
Copyright © 2022 MarkLogic Corporation. All rights reserved.

MarkLogic Server

mlcp User Guide
1

MarkLogic 10
May, 2019

Last Revised: 10.0-9, February, 2022

MarkLogic Server Table of Contents

MarkLogic 10—May, 2019 mlcp User Guide—Page 1

Table of Contents

mlcp User Guide

1.0 Introduction to MarkLogic Content Pump ...5
1.1 Feature Overview ..5
1.2 Terms and Definitions ..6
1.3 Modifying the Example Commands for Windows ...6
1.4 Understanding the mlcp Command Line ..7

1.4.1 Command Line Summary ...7
1.4.2 Setting Java Virtual Machine (JVM) Options ..9
1.4.3 Regular Expression Syntax ...9
1.4.4 Options File Syntax ..9

1.5 mlcp Exit Status Codes ...10
1.6 Compatibility of mlcp Across MarkLogic Versions ...10
1.7 Accessing the mlcp Source Code ..11

2.0 Installation and Configuration ...12
2.1 Supported Platforms ...12
2.2 Required Software ..12
2.3 Installing mlcp ..12
2.4 Configuring Your MarkLogic Cluster ..13
2.5 Security Considerations ..14
2.6 Connecting to MarkLogic Using SSL ..15

2.6.1 Enabling SSL on Your App Server ...15
2.6.2 Configuring mlcp to Use SSL ...16

2.7 Using mlcp With Kerberos ...17
2.7.1 Creating Users ...17
2.7.2 Configuring an XDBC App Server for Kerberos Authentication17
2.7.3 Invoking mlcp ...18

3.0 Getting Started With mlcp ...20
3.1 Prepare to Run the Examples ..20
3.2 Optional: Create an Options File ..21
3.3 Load Documents ...22
3.4 Export Documents ..23
3.5 Understanding mlcp Output ..24
3.6 Stopping an mclp Job Prematurely ...26

4.0 Importing Content Into MarkLogic Server ..27
4.1 Supported Input Format Summary ...27

MarkLogic Server Table of Contents

MarkLogic 10—May, 2019 mlcp User Guide—Page 2

4.2 Understanding Input File Path Resolution ..29
4.3 Controlling Database URIs During Ingestion ...29

4.3.1 Default Document URI Construction ...29
4.3.2 Transforming the Default URI ..31

4.4 How mlcp Determines Document Type ...32
4.5 Loading Documents from a Directory ..34

4.5.1 Loading a Single File ..34
4.5.2 Loading All the Files in a Directory ...35
4.5.3 Filtering Documents Loaded From a Directory ..35

4.6 Loading Documents From Compressed Files ...36
4.7 Loading Content and Metadata From an Archive ..37
4.8 Splitting Large XML Files Into Multiple Documents ..38
4.9 Creating Documents from Delimited Text Files ...40

4.9.1 Example: Generating Documents From a CSV File41
4.9.2 Expected Input Format ..42
4.9.3 Customizing XML Output ..42
4.9.4 Controlling Data Type in JSON Output ...43
4.9.5 Controlling the Output Document URI ..43
4.9.6 Specifying the Field Delimiter ..44
4.9.7 Optimizing Ingestion of Large Files ...45

4.10 Creating Documents from Line-Delimited JSON Files ..45
4.10.1 Line-Delimited JSON Overview ..45
4.10.2 Controlling the Output Document URI ..46

4.11 Loading Triples ...46
4.11.1 Basics of Triple Loading ...47
4.11.2 Graph Selection When Loading Quads ..47
4.11.3 Graph Selection for Other Triple Types ...49

4.12 Loading Documents from a Forest With Direct Access51
4.13 Performance Considerations for Loading Documents ..51

4.13.1 Time vs. Space: Configuring Batch and Transaction Size51
4.13.2 Time vs. Correctness: Understanding -fastload Tradeoffs52
4.13.3 How Assignment Policy Affects Optimization ..54
4.13.4 Tuning Split Size and Thread Count for Local Mode55
4.13.5 Reducing Memory Consumption With Streaming57
4.13.6 Improving Throughput with -split_input ..57
4.13.7 MLCP Concurent Jobs ..58

4.14 Transforming Content During Ingestion ...58
4.14.1 Creating a Custom XQuery Transformation ...59

4.14.1.1 Function Signature ..59
4.14.1.2 Input Parameters ..60
4.14.1.3 Expected Output ..61
4.14.1.4 Example Implementation ..62

4.14.2 Creating a Custom JavaScript Transformation ...63
4.14.2.1 Function Signature ..63
4.14.2.2 Input Parameters ..63
4.14.2.3 Expected Output ..65

MarkLogic Server Table of Contents

MarkLogic 10—May, 2019 mlcp User Guide—Page 3

4.14.2.4 Example Implementation ..65
4.14.3 Implementation Guidelines ...66
4.14.4 Installing a Custom Transformation ...66
4.14.5 Using a Custom Transformation ...67
4.14.6 Example: Server-Side Content Transformation ..68

4.14.6.1 Create the sample input files ...68
4.14.6.2 Create the XQuery transform module69
4.14.6.3 Create the JavaScript transform module70
4.14.6.4 Install the transformation module ...70
4.14.6.5 Apply the transformation ..72

4.14.7 Example: Changing the URI and Document Type73
4.14.7.1 XQuery Implementation ..73
4.14.7.2 JavaScript Implementation ..74

4.15 Controlling How mlcp Connects to MarkLogic ...74
4.15.1 How mlcp Uses the Host List ...75
4.15.2 Restricting the Hosts mlcp Uses to Connect to MarkLogic75
4.15.3 How -restrict_hosts Affects -fastload ...76

4.16 Failover Handling ...76
4.17 MLCP Retry Mechanism When Commit Fails During Ingestion78

4.17.0.1 Limitations ..80
4.18 MLCP Auto-scaling with Data Hub Service ..81

4.18.1 How MLCP Adjusts Client Concurrency ...81
4.18.2 How Other Command Line Options Affect Auto-scaling81
4.18.3 How MLCP Assigns Threads in Auto-Scaling Process81
4.18.4 MLCP Logs for Auto-Scaling ...82

4.19 Import Command Line Options ..83

5.0 Exporting Content from MarkLogic Server ..94
5.1 Exporting Documents as Files ..94
5.2 Exporting Documents to a Compressed File ..95
5.3 Exporting to an Archive ..96
5.4 How URI Decoding Affects Output File Names ..97
5.5 Controlling What is Exported, Copied, or Extracted ..98

5.5.1 Filtering Document Exports ..98
5.5.2 Filtering Archive and Copy Contents ...99
5.5.3 Understanding When Filters Are Accurate ...100
5.5.4 Example: Exporting Documents Matching a Query101
5.5.5 Filtering Forest Contents ..105
5.5.6 Extracting a Consistent Database Snapshot ..106

5.6 Redacting Content During Export or Copy Operations106
5.6.1 Basic Steps for Redacting Documents ..106
5.6.2 Example: Using mlcp for Redaction ...107

5.6.2.1 Creating a Work Area ...108
5.6.2.2 Installing the Source Documents ...108
5.6.2.3 Installing the Redaction Rules ...109
5.6.2.4 Understanding the Example Rules ..110

MarkLogic Server Table of Contents

MarkLogic 10—May, 2019 mlcp User Guide—Page 4

5.6.2.5 Applying the Redaction Rules ...112
5.7 Export Command Line Options ..114

6.0 Copying Content Between Databases ..119
6.1 Basic Steps ..119
6.2 Examples ...120
6.3 Redacting Content During a Copy ..120
6.4 Copy Command Line Options ..121

7.0 Using Direct Access to Extract or Copy Documents128
7.1 When to Consider Using Direct Access ...128
7.2 Limitations of Direct Access ..129
7.3 Choosing Between Export and Extract ...130
7.4 Extracting Documents as Files ...130
7.5 Importing Documents from a Forest into a Database ...131
7.6 Extract Command Line Options ...132

8.0 Troubleshooting ...135
8.1 Checking Your Runtime Environment ...135
8.2 Resolving Connection Issues ..135
8.3 Enabling Debug Level Messages ..136
8.4 Error loading class com.marklogic.contentpump.ContentPump137
8.5 No or Too Few Files Loaded During Import ..137
8.6 Unable to load realm info from SCDynamicStore ..138
8.7 Warning that a Job Remains Running ..138

9.0 Technical Support ..139

10.0 Copyright ...141

MarkLogic Server Introduction to MarkLogic Content Pump

MarkLogic 10—May, 2019 mlcp User Guide—Page 5

1.0 Introduction to MarkLogic Content Pump
11

MarkLogic Content Pump (mlcp) is a command line tool for getting data into and out of a
MarkLogic Server database. This chapter covers the following topics:

• Feature Overview

• Terms and Definitions

• Modifying the Example Commands for Windows

• Understanding the mlcp Command Line

• mlcp Exit Status Codes

• Compatibility of mlcp Across MarkLogic Versions

• Accessing the mlcp Source Code

1.1 Feature Overview
Using mlcp, you can import documents and metadata to a database, export documents and
metadata from a database, or copy documents and metadata from one database to another. For
example:

• Import content into a MarkLogic Server database from flat files, compressed ZIP and
GZIP files, or mlcp database archives.

• Create documents from flat files, delimited text files, aggregate XML files, and
line-delimited JSON files. For details, see “Importing Content Into MarkLogic Server” on
page 27.

• Import mixed content types from a directory, using the file suffix and MIME type
mappings to determine document type. Unrecognized/missing suffixes are imported as
binary documents. For details, see “How mlcp Determines Document Type” on page 32.

• Export the contents of a MarkLogic Server database to flat files, a compressed ZIP file, or
an mlcp database archive. For details, see “Exporting Content from MarkLogic Server” on
page 94.

• Copy content and metadata from one MarkLogic Server database to another. For details,
see “Copying Content Between Databases” on page 119.

• Import or copy content into a MarkLogic Server database, applying a custom server-side
transformation before inserting each document. For details, see “Transforming Content
During Ingestion” on page 58.

• Extract documents from an archived forest to flat files or a compressed file using Direct
Access. For details, see “Using Direct Access to Extract or Copy Documents” on
page 128.

• Import documents from an archived forest into a live database using Direct Access. For
details, see “Importing Documents from a Forest into a Database” on page 131.

MarkLogic Server Introduction to MarkLogic Content Pump

MarkLogic 10—May, 2019 mlcp User Guide—Page 6

The mlcp tool operates in local mode meaning that mlcp drives all its work on the host where it is
invoked. Resources such as import and input data and export destination must be reachable from
that host. All communication with MarkLogic Server is through that host.

In local mode, throughput is limited by resources such as memory and network bandwidth
available to the host running mlcp.

You can use mlcp even when a load balancer sits between the client host and the MarkLogic host.
The mlcp tool is compatible with AWS Elastic Load Balancer (ELB) and other load balancers.

1.2 Terms and Definitions
You should be familiar with the following terms and definitions when using mlcp:

1.3 Modifying the Example Commands for Windows
All the examples in this guide use Unix command line syntax. If you are using mlcp with the
Windows command interpreter, Cmd.exe, use the following guidelines to construct equivalent
commands:

• Replace mlcp.sh with mlcp.bat. You should always use mlcp.bat on Windows; using
mlcp.sh with Cygwin is not supported.

• For aesthetic reasons, long example command lines are broken into multiple lines using
the Unix line continuation character “\”. On Windows, remove the line continuation
characters and place the entire command on one line, or replace the line continuation
characters with the Windows equivalent, “^”.

Term Definition

aggregate XML content that includes recurring element names and which can be
split into multiple documents with the recurring element as the docu-
ment root. For details, see “Splitting Large XML Files Into Multiple
Documents” on page 38.

line-delimited JSON A type of aggregate input where each line in the file is a piece of stand-
alone JSON content. For details, see “Creating Documents from
Line-Delimited JSON Files” on page 45.

archive A compressed MarkLogic Server database archive created using the
mlcp export command. You can use an archive to restore or copy data-
base content and metadata with the mlcp import command. For details,
see “Exporting to an Archive” on page 96.

split The unit of work devoted to a session with MarkLogic Server.

MarkLogic Server Introduction to MarkLogic Content Pump

MarkLogic 10—May, 2019 mlcp User Guide—Page 7

• Replace option arguments enclosed in single quotes (') with double quotes ("). If the
single-quoted string contains embedded double quotes, escape the inner quotes.

• Escape any unescaped characters that have special meaning to the Windows command
interpreter.

For example, the following Unix command line:

$ mlcp.sh import -host localhost -port 8000 -username user \
 -password passwd -input_file_path /space/bill/data -mode local \
 -output_uri_replace "/space,'',/bill/data/,'/will/'" \
 -output_uri_prefix /plays

Corresponds to this Windows command line:

C:\Example> mlcp.bat import -host localhost -port 8000 -username user ^
 -password passwd -input_file_path c:\space\bill -mode local ^
 -output_uri_replace "/c:/space,'',/bill/data/,'/will/'" ^
 -output_uri_prefix /plays

1.4 Understanding the mlcp Command Line
This section covers the following key concepts and tasks related to the mlcp command line:

• Command Line Summary

• Setting Java Virtual Machine (JVM) Options

• Regular Expression Syntax

• Options File Syntax

1.4.1 Command Line Summary
The mlcp command line has the following structure. Note that you should always use mlcp.bat on
Windows; using mlcp.sh with Cygwin is not supported.

• Linux and OS X: mlcp.sh command options

• Windows: mlcp.bat command options

MarkLogic Server Introduction to MarkLogic Content Pump

MarkLogic 10—May, 2019 mlcp User Guide—Page 8

Where command is one of the commands in the table below. Each command has a set of
command-specific options, which are covered in the chapter that discusses the command.

Options can also be specified in an options file using -options_file. Options files and command
line options can be used together. For details, see “Options File Syntax” on page 9.

Note the following conventions for command line options to mlcp:

• Prefix options with a single dash (-).

• Option names are case-sensitive.

• If an option has a value, separate the option name and value with white space. For
example: mlcp import -username admin

• If an option has a predefined set of possible values, such as -mode, the option values are
case-insensitive unless otherwise noted.

• If an option appears more than once on the command line, the first occurrence is used.

• When string option values require quoting, use single quotes. For example:
-output_uri_replace "this,'that '".

• The value of a boolean typed option can be omitted. If the value is omitted, true is implied.
For example, -copy_collections is equivalent to -copy_collections true.

Command Description

import Import data from the file system or standard input to a MarkLogic Server
database. For a list of options usable with this command, see “Import
Command Line Options” on page 83.

export Export data from a MarkLogic Server database to the file system. For a
list of options usable with this command, see “Export Command Line
Options” on page 114.

copy Copy data from one MarkLogic Server database to another. For a list of
options usable with this command, see “Copy Command Line Options”
on page 121.

extract Use Direct Access to extract files from a forest file to documents on the
native file system. For a list of options usable with this command, see
“Extract Command Line Options” on page 132.

version Report mlcp runtime environment version information, including the
mlcp and JRE versions, as well as the supported MarkLogic version.

help Display brief help about mlcp.

MarkLogic Server Introduction to MarkLogic Content Pump

MarkLogic 10—May, 2019 mlcp User Guide—Page 9

1.4.2 Setting Java Virtual Machine (JVM) Options
The mlcp tool is a Java application. You can pass extra parameters to the JVM during an mlcp
command using the environment variable JVM_OPTS.

For example, the following command passes the setting “-Xmx100M” to the JVM to increase the
JVM heap size for a single mclp run:

$ JVM_OPTS='-Xmx100M' mclp.sh import ...

1.4.3 Regular Expression Syntax
For options that use regular expressions, such as -input_file_pattern, use the Java regular
expression language. Java’s pattern language is similar to the Perl pattern language. For details on
the grammar, see the documentation for the Java class java.util.regex.Pattern:

http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

For a tutorial on the expression language, see http://docs.oracle.com/javase/tutorial/essential/regex/.

1.4.4 Options File Syntax
You can specify mlcp options using an options file, in addition to using command line options by
using -options_file. Using an options file is especially convenient when working with options
whose values contain quotes and other special characters that are difficult to escape on the
command line.

If you use an options file, it must be the first option on the command line. The mlcp command
(import, export, copy) can also go inside the options file. For example:

$ mlcp.sh -options_file my_options.txt -input_file_path /example

An options file has the following contents:

• Each line contains either a command name, an option, or an option value, ordered as they
would appear on the command line.

• Comments begin with “#” and must be on a line by themselves.

• Blank lines, leading white space, and trailing white space are ignored.

For example, if you frequently use the same MarkLogic Server connection information (host,
port, username, and password), you can put the this information into an options file:

$ cat my-conn.txt
my connection info
-host
localhost
-port
8000
-username

http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/tutorial/essential/regex/

MarkLogic Server Introduction to MarkLogic Content Pump

MarkLogic 10—May, 2019 mlcp User Guide—Page 10

me
-password
my_password

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -options_file my-conn.txt \
 -input_file_path /space/examples/all.zip

This is equivalent to the following command line without an options file:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -host localhost -port 8000 -username me \
 -password my_password -input_file_path /space/examples/all.zip

You can also include a command name (import, export, or copy) as the first non-comment line in
an options file:

my connection info for import
import
-host
localhost
-port
8000
-username
me
-password
my_password

1.5 mlcp Exit Status Codes
When mlcp exits, it returns one of the following status codes:

1.6 Compatibility of mlcp Across MarkLogic Versions
Unless otherwise noted, mlcp is compatible with a wide range of MarkLogic versions. That is,
you can usually use a recent version of mlcp with and older version of MarkLogic and vice versa.
However, not all features of mlcp or MarkLogic will work across version boundaries.

Exit Code Meaning

0 Successful completion.

-1 The job is still running.

1 The job failed.

2 The job is in the “preparation” state.

3 The job was terminated prematurely.

MarkLogic Server Introduction to MarkLogic Content Pump

MarkLogic 10—May, 2019 mlcp User Guide—Page 11

For example, MarkLogic 9 and mlcp 9.0 include support for redacting documents as you export
them. However, older versions of MarkLogic do not support this feature, so it is not possible to
use the -redaction option of mlcp with older versions.

Similarly, you can use mlcp to export a database archive from MarkLogic 9 or later that includes
documents with the node-update security capability. However, this capability did not exist in
earlier versions of MarkLogic, so it cannot be preserved if you import the MarkLogic 9 archive
into an older MarkLogic, and may even cause errors.

For best results, use the version of mlcp that corresponds to your version of MarkLogic, or limit
your jobs to features you know are supported in both.

1.7 Accessing the mlcp Source Code
The mlcp tool is developed and maintained as an open source project on GitHub. To access the
sources or contribute to the project, navigate to the following URL in your browser:

http://github.com/marklogic/marklogic-contentpump

http://github.com/marklogic/marklogic-contentpump

MarkLogic Server Installation and Configuration

MarkLogic 10—May, 2019 mlcp User Guide—Page 12

2.0 Installation and Configuration
This chapter describes how to install mlcp and configure your client environment and MarkLogic
for most effective use of the tool. The following topics are included:

• Supported Platforms

• Required Software

• Installing mlcp

• Configuring Your MarkLogic Cluster

• Security Considerations

• Connecting to MarkLogic Using SSL

• Using mlcp With Kerberos

19

2.1 Supported Platforms
In local mode, mlcp is supported on the same platforms as MarkLogic Server, including 64-bit
Linux, 64-bit Windows, and Macintosh OS X. For details, see Supported Platforms in the
Installation Guide.

2.2 Required Software
The following software is required to use mlcp:

• MarkLogic Server 7.0-1 or later, with an XDBC App Server configured. MarkLogic 8 and
later versions come with an XDBC App Server pre-configured on port 8000.

• Oracle/Sun Java JRE 1.8 or later.

2.3 Installing mlcp
After downloading mlcp, follow these instructions to install mlcp.

1. Download mlcp from http://developer.marklogic.com/products/mlcp.

2. Unpack the mlcp distribution to a location of your choice. This creates a directory named
mlcp-version, where version is the mlcp version. For example, assuming
/space/marklogic contains zip file for mlcp version 1.3, then the following commands
install mlcp under /space/marklogic/mlcp-1.3/:

$ cd /space/marklogic
$ unzip mlcp-1.3-bin.zip

3. Optionally, put the mlcp bin directory on your path. For example:

$ export PATH=${PATH}:/space/marklogic/mlcp-1.3/bin

http://developer.marklogic.com/products/mlcp

MarkLogic Server Installation and Configuration

MarkLogic 10—May, 2019 mlcp User Guide—Page 13

4. Put the java command on your path. For example:

$ export PATH=${PATH}:$JAVA_HOME/bin

You might need to configure your MarkLogic cluster before using mlcp for the first time. For
details, see “Configuring Your MarkLogic Cluster” on page 13.

On Windows, use the mlcp.bat command to run mlcp. On UNIX and Linux, use the mlcp.sh
command. You should not use mlcp.sh in the Cygwin shell environment on Windows.

2.4 Configuring Your MarkLogic Cluster
The mlcp tool uses an XDBC App Server to communicate with each host in a MarkLogic Server
cluster that has at least one forest attached to a database used in your mlcp job. Optionally, you
can configure the mlcp tool to connect to a load balancer that sits in front of the MarkLogic Server
cluster. When configured to use a load balancer, the mlcp tool communicates with the load
balancer to reach the forests. The load balancer can communicate with hosts that are evaluator
nodes, data nodes, or both. For details, see Controlling How mlcp Connects to MarkLogic.

When you use mlcp with MarkLogic 8 or later on the default port (8000), no special cluster
configuration is necessary. Port 8000 includes a pre-configured XDBC App Server. The default
database associated with port 8000 is the Documents database. To use mlcp with a different
database and port 8000, use the -database, -input_database, or -output_database options. For
example:

mlcp.sh import -host myhost -port 8000 -database mydatabase ...

When using MarkLogic 8 or later with a port other than 8000, the port should connect to either an
XDBC App Server or an App Server with a rewriter that is set up to handle XDBC traffic.

Hosts within a group share the same App Server configuration, but hosts in different groups do
not. Therefore, if all your forest hosts are in a single group, you only need to configure one App
Server to handle XDBC traffic. If your forests are on hosts in multiple groups, then you must
configure an App Server for XDBC that listens on the same port in each group.

MarkLogic Server Installation and Configuration

MarkLogic 10—May, 2019 mlcp User Guide—Page 14

For example, the cluster shown below is properly configured to use Database A as an mlcp input
or output source. Database A has 3 forests, located on 3 hosts in 2 different groups. Therefore,
both Group 1 and Group 2 must make Database A accessible via XDBC on port 9001.

If the forests of Database A are only located on Host1 and Host2, which are in the same group,
then you would only need to configure one XDBC App Server on port 9001.

If you use MarkLogic 8 or later and port 8000 instead of port 9001, then you do not need to
explicitly create any XDBC App Servers to support the above database configuration because
both group automatically have an XDBC App Server on port 8000. You might need to explicitly
specify the database name (Database A) in your mlcp command, though, if it is not the default
database associated with port 8000.

2.5 Security Considerations
When you use mlcp, you supply the name of a user(s) with which to interact with MarkLogic
Server. If the user does not have admin privileges, then the user must have at least the privileges
listed in the table below.

Note: Additional privileges may be required. These roles only enable use of MarkLogic
Server as a data source or destination. For example, these roles do not grant read or
update permissions to the database.

Host1

forest-A1

Host2

forest-A2

XDBC App Server on port 9001

Group 1 Group 2

Database A

Host3

forest-A3

XDBC App Server on port 9001

MarkLogic Server Installation and Configuration

MarkLogic 10—May, 2019 mlcp User Guide—Page 15

By default, mlcp requires a username and password to be included in the command line options
for each job. You can avoid passing a cleartext password between your mlcp client host and
MarkLogic Server by using Kerberos for authentication. For details, see “Using mlcp With
Kerberos” on page 17.

2.6 Connecting to MarkLogic Using SSL
When you connect to a MarkLogic App Server with mlcp, you can use an SSL-enabled
connection to secure the communications. This applies to the import, export, and copy mlcp
commands.

• Enabling SSL on Your App Server

• Configuring mlcp to Use SSL

• Using mlcp With Kerberos

2.6.1 Enabling SSL on Your App Server
You can only use SSL to connect to MarkLogic through an SSL-enabled App Server. For more
details, see Configuring SSL on App Servers in the Security Guide.

If you want to use SSL with both the source (input) and destination (output) App Servers during
an mlcp copy job, both App Servers must be SSL enabled.

mlcp
Command

Privilege Notes

import hadoop-user-write Applies to the user name specified with
-username. It is recommended that you also set
-output_permissions to set the permissions on
inserted documents.

export hadoop-user-read Applies to the user name specified with
-username.

copy hadoop-user-read
(input)

hadoop-user-write
(output)

The -input_username user have the
hadoop-user-read privilege on source
MarkLogic Server instance.

The -output_username user must have the
hadoop-user-write privilege on destination
MarkLogic Server instance.

MarkLogic Server Installation and Configuration

MarkLogic 10—May, 2019 mlcp User Guide—Page 16

2.6.2 Configuring mlcp to Use SSL
By default, mlcp does not connect to MarkLogic using SSL. Use one of the following options to
specify that mlcp should connect via SSL:

All these options accept a boolean argument value. As described in “Command Line Summary”
on page 7, “true” is assumed if you leave the argument off.

If you have disabled the default SSL protocol on your App Server, you must also use one of the
following options to explicitly specify the SSL protocol that mlcp should use when connecting to
MarkLogic:

Note: The above SSL protocol options are ignored in some cases when you use the SSL
configuration technique describe in “Using mlcp With Kerberos” on page 17.

mlcp
Command

Command Line Option For more information

import -ssl “Import Command Line Options” on page 83

export -ssl “Export Command Line Options” on page 114

copy -input_ssl and/or -output_ssl “Copy Command Line Options” on page 121

mlcp
Command

Command Line Option For more information

import -ssl_protocol “Import Command Line Options” on page 83

export -ssl_protocol “Export Command Line Options” on page 114

copy -input_ssl_protocol and/or
-output_ssl_protocol

“Copy Command Line Options” on page 121

MarkLogic Server Installation and Configuration

MarkLogic 10—May, 2019 mlcp User Guide—Page 17

2.7 Using mlcp With Kerberos
You can use mlcp in local mode with Kerberos to avoid sending cleartext passwords between
your mlcp client host and MarkLogic Server.

Before you can use Kerberos with mlcp, you must configure your MarkLogic installation to
enable external security, as described in External Security in the Security Guide.

If external security is not already configured, you will need to perform at least the following
procedures:

• Create a Kerberos external security configuration object. For details, see Creating an

External Authentication Configuration Object in the Security Guide.

• Create a Kerberos keytab file and install it in your MarkLogic installation. For details, see
Creating a Kerberos keytab File in the Security Guide.

• Create one or more users associated with an external name. For details, see Assigning an

External Name to a User in the Security Guide.

• Configure your XDBC App Server to use “kerberos-ticket” authentication. For details, see
Configuring an App Server for External Authentication in the Security Guide.

The following topics touch on additional details specific to mlcp.

• Creating Users

• Configuring an XDBC App Server for Kerberos Authentication

• Invoking mlcp

2.7.1 Creating Users
Before you can use Kerberos for authentication, you must create at least one MarkLogic user with
which mlcp can use Kerberos authentication to connect to MarkLogic Server, as described in
Assigning an External Name to a User in the Security Guide.

This user must also be assigned roles and privileges required to enable your mlcp operations.

For example, if you’re using mlcp to import documents into a database, then the user must have
update privileges on the target database, as well as the minimum privileges required by mlcp. For
details on the minimum privileges required by mlcp, see “Security Considerations” on page 14.

2.7.2 Configuring an XDBC App Server for Kerberos Authentication
The mlcp tool communicates with MarkLogic through an XDBC App Server. Configure your
XDBC App Server to use Kerberos for external security, as described in Configuring an App Server

for External Authentication in the Security Guide.

Configure your XDBC App Server to use “kerberos-ticket” authentication.

MarkLogic Server Installation and Configuration

MarkLogic 10—May, 2019 mlcp User Guide—Page 18

For example, if you create a configuration named “kerb-conf”, then configure your XDBC App
Server with the following values for the “authentication”, “internal security”, and “external
security” configuration settings in the Admin Interface:

You can use an existing XDBC App Server or create a new one. To create a new XDBC App
Server, use the Admin Interface, the Admin API, or the REST Management API. For details, see
Procedures for Creating and Managing XDBC Servers in the Administrator’s Guide.

Configure the App Server to use “kerberos-ticket” authentication and the Kerberos external
security configuration object you created following the instructions in Creating an External

Authentication Configuration Object in the Security Guide.

Note: When you install MarkLogic, an XDBC App Server and other services are
available port 8000. Changing the security configuration for the App Server on
port 8000 affects all the MarkLogic services available through this port, including
the HTTP App Server and REST Client API instance.

2.7.3 Invoking mlcp
Once you configure your XDBC App Server and user for Kerberos external security, then you can
do the following to use Kerberos authentication with mlcp:

• Use kinit or a similar program on your mlcp client host to create and cache a Kerberos
Ticket to Get Tickets (TGT) for a principal you assigned to a MarkLogic user.

• Invoke mlcp with no -username and no -password option from the environment in which
you cached the TGT.

For example, suppose you configured an XDBC App Server on port 9010 of host “ml-host” to use
“kerberos-ticket” authentication. Further, suppose you associated the Kerberos principal name
“kuser” with the user “mluser”. Then the following commands result in mlcp authenticating with
Kerberos as user “kuser”, and importing documents into the database as “mluser”.

kinit kuser
...
mlcp.sh import -host ml-host -port 9010 -input_file_path src_dir

MarkLogic Server Installation and Configuration

MarkLogic 10—May, 2019 mlcp User Guide—Page 19

You do not necessarily need to run kinit every time you invoke mlcp. The cached TGT typically
has a lifetime over which it is valid.

MarkLogic Server Getting Started With mlcp

MarkLogic 10—May, 2019 mlcp User Guide—Page 20

3.0 Getting Started With mlcp
26

This chapter walks you through a short introduction to mlcp in which you import documents into
a database and then export them back out as files in the following steps:

• Prepare to Run the Examples

• Optional: Create an Options File

• Load Documents

• Export Documents

• Understanding mlcp Output

• Stopping an mclp Job Prematurely

3.1 Prepare to Run the Examples
This section leads you through creating a work area and sample data with the following file
system layout:

gs/
 import/
 one.xml
 two.json
 export/

Follow this procedure to set up the example work area

1. Download and install mlcp according to the instructions in “Installation and
Configuration” on page 12.

2. Ensure the mlcp bin directory and the java commands are on your path. For example, the
following example command places the mlcp bin directory on your path if mlcp is
installed in MLCP_INSTALL_DIR:

Linux: export PATH=${PATH}:MLCP_INSTALL_DIR/bin
Windows: set PATH=%PATH%;MLCP_INSTALL_DIR\bin

3. Create a directory to serve as your work area and change directories to this work area. For
example:

mkdir gs
cd gs

4. Create a sub-directory to hold the sample input and output data. For example:

mkdir import

MarkLogic Server Getting Started With mlcp

MarkLogic 10—May, 2019 mlcp User Guide—Page 21

5. Create the sample input files in the import/ directory.

a. Use the following commands on Linux:

echo '<data>1</data>' > import/one.xml
echo '{"two": 2}' > import/two.json

b. Use the following commands on Windows:

echo ^<data^>1^</data^> > import\one.xml
echo {"two":2} > import\two.json

3.2 Optional: Create an Options File
You can encapsulate mlcp command line options in an options file; for details, see “Options File
Syntax” on page 9. An options file is convenient for re-use of commonly used options. Also,
using an options file can help you avoid command line interpolation of quotes by the shell.

The examples use an options file to save MarkLogic connection related options so that you can
easily re-use them across multiple commands. This section describes how to create this file.

If you prefer to pass the connection options directly on the command line instead, add -username,
-password, -host, and possibly -port options to the example mlcp commands in place of
-options_file.

Use the following procedure to create the example options file.

1. If you are not already at the top level of your work area, change directory to this location.
That is, the gs folder created in “Prepare to Run the Examples” on page 20.

cd gs

2. Create a file named conn.txt with the following contents. Each line is either an option
name or a value for the preceding option.

-username
your_username
-password
your_password
-host
localhost
-port
8000

3. Edit conn.txt and modify the values of the -username and -password options to match
your environment.

4. Optionally, modify the -host and/or -port option values. The host and port must identify a
MarkLogic Server App Server that supports the XDBC protocol. MarkLogic Server

MarkLogic Server Getting Started With mlcp

MarkLogic 10—May, 2019 mlcp User Guide—Page 22

comes with an App Server pre-configured on port 8000 that supports XDBC, attached to
the Documents database. You can choose a different App Server.

You should now have the following file structure:

gs/
 conn.txt
 import/
 one.xml
 two.json

3.3 Load Documents
Load documents into a MarkLogic Server database using the mlcp import command. The
examples in this section load documents from flat files into the default database associated with
the App Server on port 8000 (the Documents database).

Other input options include compressed files, delimited text files, aggregate XML data, and
line-delimited JSON data. See “Importing Content Into MarkLogic Server” on page 27 for details.
You can also load document into a different database using the -database option.

To load a single file, specify the path to the file as the value of -input_file_path. For example:

-input_file_path import

When you load documents, a default URI is generated based on the type of input data. For details,
see “Controlling Database URIs During Ingestion” on page 29.

We will import documents from flat files, so the default URI is the absolute pathname of the input
file. For example, if your work area is /space/gs on Linux or C:\gs on Windows, then the default
URI when you import documents from gs/import is as follows:

Linux: /space/gs/import/filename
Windows: /c:/gs/import/filename

You can use the -output_uri_replace option to strip off the portion of the URI that comes from
the path steps before “gs”. The option argument is of the form “pattern,replacement_text”. For
example, given the default URIs shown above, we’ll add the following option to create URIs that
begin with “/gs”:

Linux: -output_uri_replace "/space,''"
Windows: -output_uri_replace "/c:,''"

Run the following command from the root of your work area (gs) to load all the files in the import
directory. Modify the argument to -output_uri_replace to match your environment.

Linux:
 mlcp.sh import -options_file conn.txt \
 -output_uri_replace "/space,''" -input_file_path import

MarkLogic Server Getting Started With mlcp

MarkLogic 10—May, 2019 mlcp User Guide—Page 23

Windows:
 mlcp.bat import -options_file conn.txt ^
 -output_uri_replace "/c:,''" -input_file_path import

The output from mlcp should look similar to the following (but with a timestamp prefix on each
line). “OUTPUT_RECORDS_COMITTED: 2” indicates mlcp loaded two files. For more details, see
“Understanding mlcp Output” on page 24.

INFO contentpump.LocalJobRunner: Content type is set to MIXED. The format of
 the inserted documents will be determined by the MIME type specification
 configured on MarkLogic Server.
INFO input.FileInputFormat: Total input paths to process : 2
INFO contentpump.LocalJobRunner: completed 100%
INFO contentpump.LocalJobRunner: com.marklogic.mapreduce.MarkLogicCounter:
INFO contentpump.LocalJobRunner: INPUT_RECORDS: 2
INFO contentpump.LocalJobRunner: OUTPUT_RECORDS: 2
INFO contentpump.LocalJobRunner: OUTPUT_RECORDS_COMMITTED: 2
INFO contentpump.LocalJobRunner: OUTPUT_RECORDS_FAILED: 0
INFO contentpump.LocalJobRunner: Total execution time: 0 sec

Optionally, use Query Console’s Explore feature to examine the contents of the Documents
database and see that the documents were created. You should see documents with the following
URIs:

/gs/import/one.xml
/gs/import/two.json

You can also create documents from files in a compressed file and from other types of input
archives. For details, see “Importing Content Into MarkLogic Server” on page 27.

3.4 Export Documents
Use the mlcp export command to export documents from a MarkLogic Server database into files
on your filesystem. You can export documents to several formats, including files, compressed
files, and database archives. For details, see “Exporting Content from MarkLogic Server” on
page 94.

You can identify the documents to export in several ways, including by URI, by directory, by
collection, and by XPath expression. This example uses a directory filter. Recall that the input
documents were loaded with URIs of the form /gs/import/filename. Therefore we can easily
extract the files by database directory using -directory_filter /gs/import/.

This example exports documents from the default database associated with the App Server on
port 8000. Use the -database option to export documents from a different database.

MarkLogic Server Getting Started With mlcp

MarkLogic 10—May, 2019 mlcp User Guide—Page 24

Use the following procedure to export the documents inserted in “Load Documents” on page 22.

1. If you are not already at the top level of your work area, change directory to this location.
That is, the gs folder created in “Prepare to Run the Examples” on page 20. For example:

cd gs

2. Extract the previously inserted documents into a directory named export. The export
directory must not already exist.

Linux:
 mlcp.sh export -options_file conn.txt -output_file_path export \
 -directory_filter /gs/import/

Windows:
 mlcp.bat export -options_file conn.txt -output_file_path export ^
 -directory_filter /gs/import/

You should see output similar to the following, but with a timestamp prefix on each line. The
“OUTPUT_RECORDS: 2” line indicates mlcp exported 2 files.

INFO mapreduce.MarkLogicInputFormat: Fetched 1 forest splits.
INFO mapreduce.MarkLogicInputFormat: Made 1 splits.
INFO contentpump.LocalJobRunner: completed 100%
INFO contentpump.LocalJobRunner: com.marklogic.mapreduce.MarkLogicCounter:
INFO contentpump.LocalJobRunner: INPUT_RECORDS: 2
INFO contentpump.LocalJobRunner: OUTPUT_RECORDS: 2
INFO contentpump.LocalJobRunner: Total execution time: 0 sec

The exported documents are in gs/export. A filesystem directory is created for each directory
step in the original document URI. Therefore, you should now have the following directory
structure:

gs/
 export/
 gs/
 import/
 one.xml
 two.json

3.5 Understanding mlcp Output
The output from mlcp varies depending on the operation (import, export, copy, extract), but
usually looks similar to the following (with a timestamp prefix on each line). The following
example is output from an import job.

INFO contentpump.LocalJobRunner: Content type is set to MIXED. The format of
 the inserted documents will be determined by the MIME type specification
 configured on MarkLogic Server.
INFO input.FileInputFormat: Total input paths to process : 2
INFO contentpump.LocalJobRunner: completed 100%

MarkLogic Server Getting Started With mlcp

MarkLogic 10—May, 2019 mlcp User Guide—Page 25

INFO contentpump.LocalJobRunner: com.marklogic.mapreduce.ContentPumpStats:
INFO contentpump.LocalJobRunner: INPUT_RECORDS: 2
INFO contentpump.LocalJobRunner: OUTPUT_RECORDS: 2
INFO contentpump.LocalJobRunner: OUTPUT_RECORDS_COMMITTED: 2
INFO contentpump.LocalJobRunner: OUTPUT_RECORDS_FAILED: 0
INFO contentpump.LocalJobRunner: Total execution time: 0 sec

The following table summarizes the purpose of key pieces of information reported by mlcp:

Message Description

Content type is set to format X. Import only. This indicates the type of documents
mlcp will create. The default is MIXED, which
means mlcp will base the type on the input file suffix.
For details, see “How mlcp Determines Document
Type” on page 32.

Total input paths to process : N Import only. Found N candidate input sources. If this
number is 0, then the pathname you supplied to
-input_file_path does not contain any data that
meets your import criteria. If you’re unable to
diagnose the cause, refer to “Troubleshooting” on
page 135.

INPUT_RECORDS: N The number of inputs mlcp actually tried to process.
For an import operation, this is the number of
documents mlcp attempted to create. For an export
operation, this is number of documents mlcp
attempted to export. If there are errors, this number
may not correspond to the actual number of
documents imported, exported, copied, or extracted.

This number can be larger or smaller than the total
input paths. For example, if you import from a
compressed file that includes directories, the
directories count towards total inputs paths, but mlcp
will only attempt to create documents from the file
entries, so total paths will be larger than the
attempted records.

Similarly, if you’re loading aggregate XML files and
splitting them into multiple documents, then total
input paths reflects the number of aggregate files,
while the attempted records reflects the number of
documents created from the aggregates, so total
paths is less than attempted records.

MarkLogic Server Getting Started With mlcp

MarkLogic 10—May, 2019 mlcp User Guide—Page 26

3.6 Stopping an mclp Job Prematurely
In local mode, an interrupted job will shutdown gracefully as long as it can finish within 30
seconds. If that time period expires, mlcp prints a warning.

ESTIMATED_INPUT_RECORDS: N Export and copy only. The estimated number of input
records, based on job parameters such as
-document_selector and -input_query. This number
will be larger than INPUT_RECORDS if errors occur
while fetching documents from MarkLogic or when
the database is configured to use fragment roots. For
example, if the source database contain N documents
matching the job parameters, but a host in the cluster
becomes unavailable during the job, then the actual
number of documents mlcp attempts to process can
be some M < N. In such a case,
ESTIMATED_INPUT_RECORDS reflects N, while
INPUT_RECORDS reflects M.

OUTPUT_RECORDS: N On import, the number of documents (records) sent
to MarkLogic for insertion into the database. This
number can be smaller than INPUT_RECORDS if
errors are detected on the client that cause a record to
be skipped.

On export, the number of output files mlcp
successfully created.

OUTPUT_RECORDS_COMMITTED: N Import only. The number of documents committed to
the database. This number can be larger or smaller
than OUTPUT_RECORDS. For example, it will be
smaller if an error is detected on MarkLogic Server
or larger if a server-side transformation creates
multiple documents from a single input document.

OUTPUT_RECORDS_FAILED: N Import only. The number of documents (records)
rejected by MarkLogic Server. This number does not
include failures detected by mlcp on the client.

Message Description

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 27

4.0 Importing Content Into MarkLogic Server
93

You can use mlcp to insert content into a MarkLogic Server database from flat files, compressed
ZIP and GZIP files, aggregate XML files, and MarkLogic Server database archives. The input
data can be accessed from the native filesystem.

For a list of import related options, see “Import Command Line Options” on page 83.

This chapter covers the following topics:

• Supported Input Format Summary

• Understanding Input File Path Resolution

• Controlling Database URIs During Ingestion

• How mlcp Determines Document Type

• Loading Documents from a Directory

• Loading Documents From Compressed Files

• Loading Content and Metadata From an Archive

• Splitting Large XML Files Into Multiple Documents

• Creating Documents from Delimited Text Files

• Creating Documents from Line-Delimited JSON Files

• Loading Triples

• Loading Documents from a Forest With Direct Access

• Performance Considerations for Loading Documents

• Transforming Content During Ingestion

• Controlling How mlcp Connects to MarkLogic

• Failover Handling

• MLCP Auto-scaling with Data Hub Service

• Import Command Line Options

4.1 Supported Input Format Summary
Use the -input_file_type option to tell mlcp the format of the data in each input file (or each
entry inside a compressed file). This option controls if/how mlcp converts the content into
database documents.

The default input type is documents, which means each input file or ZIP file entry creates one
database document. All other input file types represent composite input formats which can yield
multiple database documents per input file.

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 28

The following table provides a quick reference of the supported input file types, along with the
allowed document types for each, and whether or not they can be passed to mlcp as compressed
files.

When the input file type is documents or sequencefile you must consider both the input format
(-input_file_type) and the output document format (-document_type). In addition, for some
input formats, input can come from either compressed or uncompressed files
(-input_compressed).

-input_file_type Document Type -input_compressed permitted

documents XML, JSON, text, or binary; con-
trolled with -document_type.

Yes

archive As in the database: XML, JSON,
text, and/or binary documents, plus
metadata. The type is not under
user control.

No (archives are already in com-
pressed format)

delimited_text XML or JSON Yes

delimited_json JSON Yes

sequencefile XML, text or binary; controlled
with these options:
-input_sequencefile_value_class

-input_sequencefile_value_type.

No. However, the contents can be
compressed when you create the
sequence file. Compression is
bound up with the value class you
use to generate and import the file.

aggregates XML Yes

rdf Serialized RDF triples, in one of
several formats. For details, see
Supported RDF Triple Formats in the
Semantic Graph Developer’s
Guide. RDF/JSON is not sup-
ported.

Yes

forest As in the database: XML, JSON,
text, and/or binary documents. The
type is not under user control.

No

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 29

The -document_type option controls the database document format when -input_file_type is
documents or sequencefile. MarkLogic Server supports text, JSON, XML, and binary documents.
If the document type is not explicitly set with these input file types, mlcp uses the input file suffix
to determine the type. For details, see “How mlcp Determines Document Type” on page 32.

Note: You cannot use mlcp to perform document conversions. Your input data should
match the stated document type. For example, you cannot convert XML input into
a JSON document just by setting -document_type json.

4.2 Understanding Input File Path Resolution
If you do not explicitly include a URI scheme prefix such as file: on the input file path, mlcp
uses the following rules to locate the input path:

• In local mode, mlcp defaults to the local file system (file).

The following example loads files from the local filesystem directory /space/bill/data:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -host localhost -port 8000 -username user \
 -password passwd -input_file_path /space/bill/data -mode local

4.3 Controlling Database URIs During Ingestion
By default, the document URIs created by mlcp during ingestion are determined by the input
source. The tool supports several command line options for modifying this default behavior.

• Default Document URI Construction

• Transforming the Default URI

• Character Encoding of URIs

4.3.1 Default Document URI Construction
The default database URI assigned to ingested documents depends on the input source. Loading
content from the local filesystem can create different URIs than loading the same content from a
ZIP file or archive. Command line options are available for you to modify this behavior. You can
use options to generate different URIs; for details, see “Transforming the Default URI” on
page 31.

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 30

The following table summarizes the default behavior with several input sources:

Input Source Default URI Example

documents in a native
directory

/path/filename

Note that on Windows, the
device (“c:”) becomes a path
step, so c:\path\file becomes
/c:/path/file.

/space/data/bill/dream.xml

/c:/data/bill/dream.xml

documents in a ZIP or
GZIP file

/compressed-file-path/path/i
nside/zip/filename

If the input file is
/space/data/big.zip and it
contains a directory entry bill/,
then the document URI for
dream.xml in that directory is:
/space/data/big.zip/bill/dream.
xml

a GZIP compressed
document

/path/filename-without-gzip-
suffix

If the input is
/space/data/big.xml.gz, the result
is /space/data/big.xml.

delimited text file The value in the column used as
the id. (The first column, by
default).

For a record of the form
“first,second,third” where Column
1 is the id: first

archive or forest The document URI from the
source database.

sequence file The key in a key-value pair

aggregate XML

line delimited JSON

/path/filename-split_start-s
eqnum

Where /path/filename is the
full path to the input file,
split_start is the byte position
from the beginning of the split,
and seqnum begins with 1 and
increments for each document
created.

For input file
/space/data/big.xml:

/space/data/big.xml-0-1
/space/data/big.xml-0-2

For input file
/space/data/big.json:

/space/data/big.json-0-1
/space/data/big.json-0-2

RDF A generated unique name c7f92bccb4e2bfdc-0-100.xml

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 31

For example, the following command loads all files from the file systemdirectory
/space/bill/data into the database attached to the App Server on port 8000. The documents
inserted into the database have URIs of form /space/bill/data/filename.

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -host localhost -port 8000 -username user \
 -password passwd -input_file_path /space/bill/data -mode local

If the /space/bill/data directory is zipped up into bill.zip, such that bill/ is the root directory
in zip file, then the following command inserts documents with URIs of the form
bill/data/filename:

Windows users, see Modifying the Example Commands for Windows
$ cd /space; zip -r bill.zip bill
$ mlcp.sh import -host localhost -port 8000 -username user \
 -password passwd -input_file_path /space/bill.zip \
 -mode local -input_compressed true

When you use the -generate_uri option to have mlcp generate URIs for you, the generated URIs
follow the same pattern as for aggregate XML and line delimited JSON:

/path/filename-split_start-seqnum

The generated URIs are unique across a single import operation, but they are not globally unique.
For example, if you repeatedly import data from some file /tmp/data.csv, the generated URIs will
be the same each time (modulo differences in the number of documents inserted by the job).

4.3.2 Transforming the Default URI
Use the following options to tailor the database URI of inserted documents:

• -output_uri_replace performs one or more string substitutions on the default URI.

• -output_uri_prefix prepends a string to the URI after substitution.

• -output_uri_suffix appends a string to the URI after substitution.

The -output_uri_replace option accepts a comma delimited list of regular expression and
replacement string pairs. The string portion must be enclosed in single quotes:

-output_uri_replace pattern,’string’,pattern,’string'

For details on the regular expression language supported by -output_uri_replace, see “Regular
Expression Syntax” on page 9.

Note: These options are applied after the default URI is constructed and encoded, so if
the option values contain characters not allowed in a URI, you must encode them
yourself. See “Character Encoding of URIs” on page 32.

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 32

The following example loads documents from the filesystem directory /space/bill/data. The
default output URIs would be of the form /space/bill/data/filename. The example uses
-output_uri_replace to replace “bill/data” with “will” and strip off “/space/”, and then adds a
“/plays” prefix using -output_uri_prefix. The end result is output URIs of the form
/plays/will/filename.

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -host localhost -port 8000 -username user \
 -password passwd -input_file_path /space/bill/data -mode local \
 -output_uri_replace "/space,'',/bill/data/,'/will/'" \
 -output_uri_prefix /plays

Character Encoding of URIs
If a URI constructed by mlcp contains special characters that are not allowed in URIs, mlcp
automatically encodes them. This applies to the special characters “ ” (space), “%”, “?” or “#”.
For example, “foo bar.xml” becomes “foo%20bar.xml”.

If you supply a URI or URI component, you are responsible for ensuring the result is a legitimate
URI. No automatic encoding takes place. This applies to -output_uri_replace,
-output_uri_prefix, and -output_uri_suffix. The changes implied by these options are applied
after mlcp encodes the default URI.

When mlcp exports documents from the database to the file system such that the output directory
and/or file names are derived from the document URI, the special symbols are decoded. That is,
“foo%bar.xml” becomes “foo bar.xml” when exported. For details, see “How URI Decoding
Affects Output File Names” on page 97.

4.4 How mlcp Determines Document Type
The document type determines what kind of database document mlcp inserts from input content:
Text, XML, JSON, or binary. Document type is determined in the following ways:

• Document type can be inherent in the input file type. For example, aggregates and rdf
input files always insert XML documents. For details, see “Supported Input Format
Summary” on page 27.

• You can specify a document type explicitly with -document_type. For example, to load
documents as XML, use -input_file_type documents -document_type xml. You cannot
set an explicit type for all input file types.

• mlcp can determine document type dynamically from the output document URI and the
MarkLogic Server MIME type mappings when you use -input_file_type documents
-document_type mixed.

If you set -document_type to an explicit type such as -document_type json, then mlcp inserts all
documents as that type.

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 33

If you use -document_type mixed, then mlcp determines the document type from the output URI
suffix and the MIME type mapping configured into MarkLogic Server. Mixed is the default
behavior for -input_file_type documents.

Note: You can only use -document_type mixed when the input file type is documents.

Note: If an unrecognized or unmapped file extension is encountered when loading mixed
documents, mlcp creates a binary document.

The following table contains examples of applying the default MIME type mappings to output
URIs with various file extensions, an unknown extension, and no extension. The default mapping
includes many additional suffixes. You can examine and create MIME type mappings under the
Mimetypes section of the Admin Interface. For more information, see Implicitly Setting the Format

Based on the MIME Type in the Loading Content Into MarkLogic Server Guide.

URI Document Type

/path/doc.xml XML

/path/doc.json JSON

/path/doc.jpg binary

/path/doc.txt text

/path/doc.unknown binary

/path/doc-nosuffix binary

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 34

The MIME type mapping is applied to the final output URI. That is, the URI that results from
applying the URI transformation options described in “Controlling Database URIs During
Ingestion” on page 29. The following table contains examples of how URI transformations can
affect the output document type in mixed mode, assuming the default MIME type mappings.

Document type determination is completed prior to invoking server side transformations. If you
change the document type in a transformation function, you are responsible for changing the
output document to match. For details, see “Transforming Content During Ingestion” on page 58.

4.5 Loading Documents from a Directory
This section discusses importing documents stored as flat files on the native filesystem. The
following topics are covered:

• Loading a Single File

• Loading All the Files in a Directory

• Filtering Documents Loaded From a Directory

4.5.1 Loading a Single File
Use the following procedure to load all the files in a native directory and its sub-directories. To
load selected files, see “Filtering Documents Loaded From a Directory” on page 35.

1. Set -input_file_path to the path to the input file.

2. Set -input_file_type if your input files are not documents. For example, if loading from
delimited text files, sequence files, aggregate XML files, RDF triples files, or database
archives.

Input
Filename

URI Options Output URI
Doc
Type

/path/doc.1 None /path/file.1 binary

/path/doc.1 Add a .xml suffix:

-output_uri_suffix ".xml"

/path/file.xml XML

/path/doc.1 Replace the unmapped suffix with .txt:

-output_uri_replace "\.\d+,'.txt'"

/path/file.txt text

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 35

3. Set -document_type if -input_file_type is not documents and the content type cannot be
accurately deduced from the file suffixes as described in “How mlcp Determines
Document Type” on page 32.

4. Set -mode:

• To perform the work locally, set -mode to local.

By default, the imported document has a database URI based on the input file path. For details,
see “Controlling Database URIs During Ingestion” on page 29.

The following example command loads a single XML file:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -host localhost -port 8000 -username user \
 -password password -input_file_path /space/bill/data/hamlet.xml

4.5.2 Loading All the Files in a Directory
Use the following procedure to load all the files in a native directory and its sub-directories. To
load selected files, see “Filtering Documents Loaded From a Directory” on page 35.

1. Set -input_file_path to the input directory.

2. Set -input_file_type if your input files are not documents. For example, if loading from
delimited text files, sequence files, aggregate XML files, or database archives.

3. Set -document_type if -input_file_type is not documents and the content type cannot be
accurately deduced from the file suffixes as described in “How mlcp Determines
Document Type” on page 32.

4. Set -mode:

• To perform the work locally, set -mode to local.

By default, the imported documents have database URIs based on the input file path. For details,
see “Controlling Database URIs During Ingestion” on page 29.

The following example command loads all the files in /space/bill/data:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -host localhost -port 8000 -username user \
 -password password -input_file_path /space/bill/data

4.5.3 Filtering Documents Loaded From a Directory
If -input_file_path names a directory, mlcp loads all the documents in the input directory and
subdirectories by default. Use the -input_file_pattern option to filter the loaded documents
based on a regular expression.

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 36

Note: Input document filtering is handled differently for -input_file_type forest. For
details, see “Filtering Forest Contents” on page 105.

For example, the following command loads only files with a “.xml” suffix from the directory
/space/bill/data:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -host localhost -port 8000 -username user \
 -password password -input_file_path /space/bill/data \
 -mode local -input_file_pattern '.*\.xml'

The mlcp tool uses Java regular expression syntax. For details, see “Regular Expression Syntax”
on page 9.

4.6 Loading Documents From Compressed Files
You can load content from one or more compressed files. Filtering of compressed file content is
not supported; mlcp loads all documents in a compressed file.

Follow this procedure to load content from one or more ZIP or GZIP compressed files.

1. Set -input_file_path:

• To load from a single file, set -input_file_path to the path to the compressed file.

• To load from multiple files, set -input_file_path to a directory containing the
compressed files.

2. If the content type cannot be accurately deduced from suffixes of the files inside the
compressed file as described in “How mlcp Determines Document Type” on page 32, set
-document_type appropriately.

3. Set -input_compressed to true.

4. If the compressed file suffix is not “.zip” or “.gzip”, specify the compressed file format by
setting -input_compression_codec to zip or gzip.

If you set -document_type to anything but mixed, then the contents of the compressed file must be
homogeneous. For example, all XML, all JSON, or all binary.

The following example command loads binary documents from the compressed file
/space/images.zip on the local filesystem.

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -host localhost -port 8000 -username user \
 -password password -mode local -document_type binary \
 -input_file_path /space/images.zip -input_compressed

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 37

The following example loads all the files in the compressed file /space/example.jar, using
-input_compression_codec to tell mlcp the compression format because of the “.jar” suffix:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -host localhost -port 8000 -username user \
 -password passwd -mode local -input_file_path /space/example.jar \
 -input_compressed true -input_compression_codec zip

If -input_file_path is a directory, mlcp loads contents from all compressed files in the input
directory, recursing through subdirectories. The input directory must not contain other kinds of
files.

By default, the URI prefix on documents loaded from a compressed file includes the full path to
the input compressed file and mirrors the directory hierarchy inside the compressed file. For
example, if a ZIP file /space/shakespeare.zip contains bill/data/dream.xml then the ingested
document URI is /space/shakespeare.zip/bill/data/dream.xml. To override this behavior, see
“Controlling Database URIs During Ingestion” on page 29.

4.7 Loading Content and Metadata From an Archive
Follow this procedure to import content and metadata from a database archive created by the mlcp
export command. A database archive is stored in one or more compressed files that contain
documents and metadata.

1. Set -input_file_path:

• To load a single archive file, set -input_file_path to that file.

• To load multiple archive files, set -input_file_path to a directory containing the
compressed archive files.

2. Set -document_type to mixed, or leave it unset since mixed is the default setting.

3. Set -input_compressed to true.

4. Set -input_file_type to archive.

5. If the input archive was created without any metadata, set -archive_metadata_optional to
true. If this is not set, an exception is thrown if the archive contains no metadata.

6. If you want to exclude some or all of the document metadata in the archive:

• Set -copy_collections to false to exclude document collections metadata.

• Set -copy_permissions to false to exclude document permissions metadata.

• Set -copy_properties to false to exclude document properties.

• Set -copy_quality to false to exclude document quality metadata.

• Set -copy_metadata to false to exclude key-value metadata.

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 38

An archive is assumed to contain metadata. However, it is possible to create archives without
metadata by setting all the metadata copying options (-copy_collections, -copy_permissions,
etc.) to false during export. If an archive does not contain metadata, you must set
-archive_metadata_optional to tell mlcp to proceed in the absence of metadata.

Note: When you import properties from an archive, you should disable the “maintain last
modified” configuration option on the destination database during the import.
Otherwise, you can get an XDMP-SPECIALPROP error if the import operation tries to
update the last modified property. To disable this setting, use the Admin Interface
or the library function admin:set-maintain-last-modified.

The following example command loads the database archive in /space/archive_dir:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -host localhost -port 8000 -username user \
 -password password -mode local -input_file_type archive \
 -input_file_path /space/archive_dir

4.8 Splitting Large XML Files Into Multiple Documents
Very large XML files often contain aggregate data that can be disaggregated by splitting it into
multiple smaller documents rooted at a recurring element. Disaggregating large XML files
consumes fewer resources during loading and improves performance when searching and
retrieving content. For aggregate JSON handling, see “Creating Documents from Line-Delimited
JSON Files” on page 45.

The following mlcp options support creating multiple documents from aggregate data:

• -aggregate_record_element

• -uri_id

• -aggregate_record_namespace

You can disaggregate XML when loading from either flat or compressed files. For more
information about working with compressed files, see “Loading Documents From Compressed
Files” on page 36.

Follow this procedure to create documents from aggregate XML input:

1. Set -input_file_path:

• To load from a single file, set -input_file_path to the path to the aggregate XML
file.

• To load from multiple files, set -input_file_path to a directory containing the
aggregate files. The directory must not contain other kinds of files.

2. If you are loading from a compressed file, set -input_compressed.

3. Set -input_file_type to aggregates.

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 39

4. Set -aggregate_record_element to the element QName of the node to use as the root for
all inserted documents. See the example below. The default is the first child element under
the root element.

Note: The element QName should appear at only one level. You cannot specify the
element name using a path, so disaggregation occurs everywhere that name is
found.

5. Optionally, override the default document URI by setting -uri_id to the name of the
element from which to derive the document URI.

6. If the aggregate record element is in a namespace, set -aggregate_record_namespace to the
input namespace.

The default URI is hashcode-seqnum in local mode. If there are multiple matching elements, the
first match is used.

If your aggregate URI id’s are not unique, you can overwrite one document in your input set with
another. Importing documents with non-unique URI id’s from multiple threads can also cause
deadlocks.

The example below uses the following input data:

$ cat > example.xml
<?xml version="1.0" encoding="UTF-8"?>
<people>
 <person>
 <first>George</first>
 <last>Washington</last>
 </person>
 <person>
 <first>Betsy</first>
 <last>Ross</last>
 </person>
</people>

The following command breaks the input data into a document for each <person> element. The
-uri_id and other URI options give the inserted documents meaningful names. The command
creates URIs of the form “/people/lastname.xml” by using the <last/> element as the aggregate
URI id, along with an output prefix and suffix:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -host localhost -port 8000 -username user \
 -password password -mode local -input_file_path example.xml \
 -input_file_type aggregates -aggregate_record_element person \
 -uri_id last -output_uri_prefix /people/ \
 -output_uri_suffix .xml

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 40

The command creates two documents: /people/Washington.xml and /people/Ross.xml. For
example, /people/Washington.xml contains:

<?xml version="1.0" encoding="UTF-8"?>
<person>
 <first>George</first>
 <last>Washington</last>
</person>

If the input data is in a namespace, set -aggregate_record_namespace to that namespace. For
example, if the input data is modified to include a namespace:

$ cat > example.xml
<?xml version="1.0" encoding="UTF-8"?>
<people xmlns="http://marklogic.com/examples">...</people>

Then mlcp ingests no documents unless you set -aggregate_record_namespace. Setting the
namespace creates two documents in the namespace “http://marklogic.com/examples”. For
example, after running the following command:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -host localhost -port 8000 -username user \
 -password password -mode local -input_file_path example.xml \
 -input_file_type aggregates -aggregate_record_element person \
 -uri_id last -output_uri_prefix /people/ \
 -output_uri_suffix .xml \
 -aggregate_record_namespace "http://marklogic.com/examples"

The document with URI “/people/Washington.xml” contains :

<?xml version="1.0" encoding="UTF-8"?>
<person xmlns="http://marklogic.com/examples">
 <first>George</first>
 <last>Washington</last>
</person>

4.9 Creating Documents from Delimited Text Files
Use the delimited_text input file type to import content from a delimited text file and create an
XML or JSON document corresponding to each line. For line-delimited JSON data, see “Creating
Documents from Line-Delimited JSON Files” on page 45.

The following options are commonly used in the generation of documents from delimited text
files:

• -input_file_type delimited_text

• -document_type xml or -document_type json

• -delimiter

• -uri_id

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 41

• -delimited_root_name (XML output only)

• -data_type (JSON output only)

The use of these and other supporting options is covered in the following topics:

• Example: Generating Documents From a CSV File

• Expected Input Format

• Customizing XML Output

• Controlling Data Type in JSON Output

• Controlling the Output Document URI

• Specifying the Field Delimiter

• Optimizing Ingestion of Large Files

4.9.1 Example: Generating Documents From a CSV File
When you import content from delimited text files, mlcp creates an XML or JSON document for
each line of input after the initial header line.

The default document type is XML. To create JSON documents, use -document_type json.

When creating XML documents, each document has a root node of <root> and child elements
with names corresponding to each column title. You can override the default root element name
using the -delimited_root_name option; for details, see “Customizing XML Output” on page 42.

When creating JSON documents, each document is rooted at an unnamed object containing JSON
properties with names corresponding to each column title. By default, the values for JSON are
always strings. Use -data_type to override this behavior; for details, see “Controlling Data Type
in JSON Output” on page 43.

For example, if you have the following data and mlcp command:

Windows users, see Modifying the Example Commands for Windows
$ cat example.csv
first,last
george,washington
betsy,ross

$ mlcp.sh ... -mode local -input_file_path /space/mlcp/data \
 -input_file_type delimited_text ...

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 42

Then mlcp creates the XML output shown in the table below. To generate the JSON output, add
-document_type json to the mlcp command line.

4.9.2 Expected Input Format
A delimited text input file must have the following characteristics:

• The first line in the input file contains “column” names that are used to create the XML
element or JSON property names of each document created from the file.

• The same delimiter is used to separate each value, as well as the column names. The
default separator is a comma; use -delimiter to override it; for details, see “Specifying the
Field Delimiter” on page 44.

• Every line has the same number of fields (values). Empty fields are represented as two
delimiters in a row, such as “a,b,,d”.

For example, the following data meets the input format requirements:

first,last
george,washington
betsy,ross

This data produces documents with XML elements or JSON properties named “first” and “last”.

4.9.3 Customizing XML Output
When creating XML documents, each document has a root node of <root> and child elements
with names corresponding to each column title. You can override the default root element name
using the -delimited_root_name option. You can use the -namespace option to specify a root
namespace.

The following example produces documents with root element <person> in the namespace
http://my.namespace.

XML Output JSON Output

<root>
 <first>george</first>
 <last>washington</last>
</root>

<root>
 <first>betsy</first>
 <last>ross</last>
</root>

{
 "first": "george",
 "last": "washington"
}

{
 "first": "betsy",
 "last": "ross"
}

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 43

$ mlcp.sh ... -mode local -input_file_path /space/mlcp/data \
 -input_file_type delimited_text -namespace http://my.namespace \
 -delimited_root_name person
...
<person xmlns="http://my.namespace">
 <first>george</first>
 <last>washington</last>
</person>
...

4.9.4 Controlling Data Type in JSON Output
When creating JSON documents, the default value type is string. You can use the -data_type
option to specify explicit data types for some or all columns. The options accepts
comma-separated list of columnName,typeName pairs, where the typeName can be one of number,
boolean, or string.

For example, if you have an input file called “catalog.csv” that looks like the following:

id, price, in-stock
12345, 8.99, true
67890, 2.00,false

Then the default output documents look similar to the following. Notice that all the property
values are strings.

{ "id": "12345",
 "price": "8.99",
 "in-stock: "true"
}

The following example command uses the -data_type option to make the “price” property a
number value and the “in-stock” property a boolean value. Since the “id” field is not specified in
the -data_type option, it remains a string.

$ mlcp.sh ... -mode local -input_file_path catalog.csv \
 -input_file_type delimited_text -document_type json \
 -data_type "price,number,in-stock,boolean"
...
{ "id": "12345",
 "price": 8.99,
 "in-stock: true
}

4.9.5 Controlling the Output Document URI
By default, the document URIs use the value in the first column. For example, if your input data
looks like the following:

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 44

first,last
george,washington
betsy,ross

Then importing this data with no URI related options creates two documents with name
corresponding to the “first” value. The URI will be “george” and “betsy”.

Use -uri_id to choose a different column or -generate_uri to have MarkLogic Server
automatically generate a unique URI for each document. For example, the following command
creates the documents “washington” and “ross”:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh ... -mode local -input_file_path /space/mlcp/data \
 -input_file_type delimited_text -uri_id last

Note that URIs generated with -generate_uri are only guaranteed to be unique across your
import operation. For details, see “Default Document URI Construction” on page 29.

You can further tailor the URIs using -output_uri_prefix and -output_uri_suffix. These
options apply even when you use -generate_uri. For details, see “Controlling Database URIs
During Ingestion” on page 29.

If your URI id’s are not unique, you can overwrite one document in your input set with another.
Importing documents with non-unique URI id’s from multiple threads can also cause deadlocks.

4.9.6 Specifying the Field Delimiter
The default delimiter between fields is a comma (“,”). You can override this using the -delimiter
option. If the delimiter is a character that is difficult to specify on the command line, specify the
delimiter in an options file instead. For details, see “Options File Syntax” on page 9.

For example, the Linux bash shell parser makes it difficult to specify a tab delimiter on the
command line, so you can put the options in a file instead. In the example options file below, the
string literal after -delimiter should contain a tab character.

$ cat delim.opt
-input_file_type
delimited_text
-delimiter
"tab"

$ mlcp.sh import ... -mode local -input_file_path /space/mlcp/data \
 -options_file delim.opt

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 45

4.9.7 Optimizing Ingestion of Large Files
If your delimited text files are very large, consider using the -split_input option. When this
option is true, mlcp attempts to break each input file into multiple splits, enabling more
documents to be loaded in parallel. For details, see “Improving Throughput with -split_input” on
page 57.

4.10 Creating Documents from Line-Delimited JSON Files
Use the delimited_json input file type to import content from a line-delimited JSON file and
create a JSON document corresponding to each line.

This section covers the following topics:

• Line-Delimited JSON Overview

• Controlling the Output Document URI

To create JSON documents from delimited text files such as CSV files, see “Creating Documents
from Delimited Text Files” on page 40. For aggregate XML input, see “Splitting Large XML
Files Into Multiple Documents” on page 38.

4.10.1 Line-Delimited JSON Overview
A line-delimited JSON file is a type of aggregate file where each line is a self-contained piece of
JSON data, such as an object or array.

Usually, each line of input has similar structure, such as the following:

{"id": "12345","price":8.99, "in-stock": true}
{"id": "67890","price":2.00, "in-stock": false}

However, the JSON data on each line is independent of the other lines, so the lines do not have to
contain JSON data of the same “shape”. For example, the following is a valid input file:

{"first": "george", "last": "washington"}
{"id": 12345, "price": 8.99, "in-stock": true}

Given the input shown below, the following command creates 2 JSON documents. Each
document contains the data from a single line of input.

$ cat example.json
{"id": "12345","price":8.99, "in-stock": true}
{"id": "67890","price":2.00, "in-stock": false}

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -host localhost -port 8000 -username user \
 -password password -mode local -input_file_path example.json \
 -input_file_type delimited_json

The example command creates documents whose contents precisely mirror each of input:

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 46

{"id": "12345","price":8.99, "in-stock": true}

{"id": "67890","price":2.00, "in-stock": false}

4.10.2 Controlling the Output Document URI
The default document URI is generated from the input file name, the split number, and a sequence
number within the split, as described in “Default Document URI Construction” on page 29. For
example, if the input file absolute path is /space/data/example.json, then the default output
document URIs have the following form:

/space/data/example.json-0-1
/space/data/example.json-0-2
...

You can base the URI on values in the content instead by using the -uri_id option to specify the
name of a property found in the data. You can further tailor the URIs using -output_uri_prefix
and -output_uri_suffix. For details, see “Controlling Database URIs During Ingestion” on
page 29.

For example, the following command uses the value in the “id” field as the base of the URI and
uses -output_uri_suffix to add a “.json” suffix to the URIs:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh ... -mode local -input_file_path /space/data/example.json \
 -input_file_type delimited_json
 -uri_id id -output_uri_suffix ".json"

Given these options, an input line of the form shown below produces a document with the URI
“12345.json” instead of “/space/data/example.json-0-1”.

{"id": "12345","price":8.99, "in-stock": true}

If the property name specified with -uri_id is not unique in your data, mlcp will use the first
occurrence found in a breadth first search. The value of the specified property should be a valid
number or string.

If you use -uri_id, any records (lines) that do not contain the named property are skipped. If the
property is found but the value is null or not a number or string, the record is skipped.

4.11 Loading Triples
This section provides a brief overview of loading semantic data into MarkLogic Server. For more
details, see the Semantic Graph Developer’s Guide. The following topics are covered in this
section:

• Basics of Triple Loading

• Graph Selection When Loading Quads

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 47

• Graph Selection for Other Triple Types

4.11.1 Basics of Triple Loading
To load semantic triples, use -input_file_type rdf and follow the instructions for loading a
single file, all files in a directory, or a compressed file. For example, the following command
loads triples files from the directory /my/data.

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -username user -password password -host localhost \
 -port 8000 -input_file_path /my/data -mode local \
 -input_file_type rdf

You can use mlcp to load triples files in several formats, including RDF/XML, Turtle, and
N-Quads. For a full list of supported formats, see Supported RDF Triple Formats in Semantic Graph
Developer’s Guide.

Note: Each time you load triples from a file, mlcp inserts new documents into the
database. That is, multiple loads of the same input inserts new triples each time,
rather than overwriting. Only the XQuery and REST API allow you replace triples.

Load triples data embedded within other content according to the instructions for the enclosing
input file type, rather than with -input_file_type rdf. For example, if you have an XML input
document that happens to have some triples embedded in it, load the document using
-input_file_type documents.

You cannot combine loading triples files with other input file types.

If you do not include any graph selection options in your mlcp command, Quads are loaded into
the graph specified in the data. Quads with no explicit graph specification and other kinds of triple
data are loaded into the default graph. You can change this behavior with options. For details, see
“Graph Selection When Loading Quads” on page 47 or “Graph Selection for Other Triple Types”
on page 49.

For details, see Loading Triples with mlcp in Semantic Graph Developer’s Guide.

4.11.2 Graph Selection When Loading Quads
When loading quads, you can use the following command line options to control the graph into
which your quads are loaded:

• -output_graph

• -output_override_graph

• -output_collections

You can use -output_collections by itself or with the other two options. You cannot use
-output_graph and -output_override_graph together.

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 48

If your semantic data is not in a quad format like N-Quads, see “Graph Selection for Other Triple
Types” on page 49.

Quads interact with these options differently than other triple formats because quads can include a
graph IRI in each quad. The following table summarizes the affect of various option combinations
when importing quads with mlcp:

For more details, see Loading Triples with mlcp in the Semantic Graph Developer’s Guide.

For example, suppose you load the following N-Quad data with mlcp. There are 3 quads in the
data set. The first and last quad include a graph IRI, the second quad does not.

<http://one.example/subject1> <http://one.example/predicate1>
 <http://one.example/object1> <http://example.org/graph3> .
_:subject1 <http://an.example/predicate1> "object1" .

Graph Options Description

none For quads that contain an explicit graph IRI, load the triple into
that graph. For quads with no explicit graph IRI, load the triple
into the default graph. The default graph URI is
http://marklogic.com/semantics#default-graph.

-output_graph For quads that contain an explicit graph IRI, load the triple into
that graph. For quads with no explicit graph IRI, load the triple
into the graph specified by -output_graph.

-output_override_graph Load all triples into the graph specified by
-output_override_graph. This graph overrides any graph IRIs
contained in the quads.

-output_collections Similar to -output_override_graph, but you can specifiy multiple
collections. Load triples into the graph specified as the first (or
only) collection; also add triples to any additional collections on
the list. This overrides any graph IRIs contained in the quads.

-output_graph with
-output_collections

For quads that contain an explicit graph IRI, load the triple into
that graph. For quads with no explicit graph IRI, load the triple
into the graph specified by -output_graph. Also add triples to the
specified collections.

-output_override_graph
with -output_collection

Load all triples into the graph specified by
-output_override_graph. This graph overrides any graph IRIs
contained in the quads. Also add triples to the specified
collections.

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 49

_:subject2 <http://an.example/predicate2> "object2"
 <http://example.org/graph5> .

If you use a command similar to the following load the data:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -username user -password password -host localhost \
 -port 8000 -input_file_path /my/data.nq -mode local \
 -input_file_type rdf

Then the table below illustrates how the various graph related options affect how the triples are
loaded into the database:

4.11.3 Graph Selection for Other Triple Types
When loading triples (rather than quads), you can use the following command line options to
control the graph into which your triples are loaded:

• -output_graph

Graph Options Result

none Graphs:
 http://example.org/graph3
 http://marklogic.com/semantics#default-graph
 http://example.org/graph5

-output_graph /my/graph Graphs:
 http://example.org/graph3
 /my/graph
 http://example.org/graph5

-output_override_graph /my/graph Graphs:
 /my/graph for all triples

-output_collections "aa,bb,cc" Graphs:
 aa for all triples
All triples also added to collections bb and cc

-output_graph /my/graph
-output_collections "bb,cc"

Graphs:
 http://example.org/graph3
 /my/graph
 http://example.org/graph5
All triples also added to collections bb and cc

-output_override_graph /my/graph
-output_collections "bb,cc"

Graphs:
 /my/graph for all triples
All triples also added to collections bb and cc

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 50

• -output_collections

The following table summarizes the affect of various option combinations when importing triples
with mlcp. For quads, see “Graph Selection When Loading Quads” on page 47.

For more details, see Loading Triples with mlcp in the Semantic Graph Developer’s Guide.

For example, if you use a command similar to the following load triples data:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -username user -password password -host localhost \
 -port 8000 -input_file_path /my/data.nt -mode local \
 -input_file_type rdf

Then the table below illustrates how the various graph related options affect how the triples are
loaded into the database:

Graph Options Description

none Load triples into the default graph
(http://marklogic.com/semantics#default-graph).

-output_graph Load triples into the specified graph.

-output_collections Load triples into the graph specified as the first (or only)
collection; also add triples to any additional collections on the list.

-output_graph with
-output_collections

Load triples into the graph specified by -output_graph and also
add them to the specified collections.

Graph Options Result

none Graph:
 http://marklogic.com/semantics#default-graph

-output_graph /my/graph Graph: /my/graph

-output_collections "aa,bb,cc" Graph: aa
All triples also added to collections bb and cc

-output_graph /my/graph
-output_collections "bb,cc"

Graph: /my/graph
All triples also added to collections bb and cc

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 51

4.12 Loading Documents from a Forest With Direct Access
Direct Access enables you to extract documents directly from an offline or read-only forest
without using MarkLogic Server instance for input. Direct Access is primarily intended for
accessing archived data that is part of a tiered storage deployment.

For details, see “Importing Documents from a Forest into a Database” on page 131.

4.13 Performance Considerations for Loading Documents
MarkLogic Content Pump comes configured with defaults that should provide good performance
under most circumstances. This section presents some performance tradeoffs to consider if you
want to try to optimize throughput for your workload.

This section covers the following topics:

• Time vs. Space: Configuring Batch and Transaction Size

• Time vs. Correctness: Understanding -fastload Tradeoffs

• How Assignment Policy Affects Optimization

• Tuning Split Size and Thread Count for Local Mode

• Reducing Memory Consumption With Streaming

• Improving Throughput with -split_input

• MLCP Concurent Jobs

4.13.1 Time vs. Space: Configuring Batch and Transaction Size
You can tune the document insertion throughput and memory requirements of your job by
configuring the batch size and transaction size of the job.

• -batch_size controls the number of updates per request to the server.

• -transaction_size controls the number of requests to the server per transaction.

The default batch size is 100 and the maximum batch size is 200. (However, some options can
affect the default). The default transaction size is 1 and the maximum transaction size is
4000/actualBatchSize. This means that the default maximum number of updates per transaction is
1000, and updates per transaction can range from 20 to 4000.

Selecting a batch size is a speed vs. memory tradeoff. Each request to the server introduces
overhead because extra work must be done. However, unless you use -streaming or
-document_type mixed, all the updates in a batch stay in memory until a request is sent, so larger
batches consume more more memory.

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 52

Transactions introduce overhead on MarkLogic Server, so performing multiple updates per
transaction can improve insertion throughput. However, an open transaction holds locks on
fragments with pending updates, potentially increasing lock contention and affecting overall
application performance.

It is also possible to overwhelm MarkLogic Server if you have too many concurrent sessions
active.

4.13.2 Time vs. Correctness: Understanding -fastload Tradeoffs
The -fastload option can significantly speed up ingestion during import and copy operations, but
it can also cause problems if not used properly. This section describes how -fastload affects the
behavior of mlcp and some of the tradeoffs associated with enabling it.

The optimizations described by this section are only enabled if you explicitly specify the
-fastload or -output_directory options. (The -output_directory option implies -fastload).

Note: The -fastload option work slightly different when used with -restrict_hosts.
For details, see “How -restrict_hosts Affects -fastload” on page 76. The limitations
of -fastload described in this section still apply.

By default, mlcp inserts documents into the database by distributing work across the e-nodes in
your MarkLogic cluster. Each e-node inserts documents into the database according to the
configured document assignment policy.

This means the default insertion process for a document is similar to the following:

1. mlcp selects Host A from the available e-nodes in the cluster and sends it the document to
be inserted.

2. Using the document assignment policy configured for the database, Host A determines the
document should be inserted into Forest F on Host B.

3. Host A sends the document to Host B for insertion.

When you use -fastload (or -output_directory), mlcp attempts to cut out the middle step by
applying the document assignment policy on the client. The interaction becomes similar to the
following:

1. Using the document assignment policy, mlcp determines the document should be inserted
into Forest F on Host B.

2. mlcp sends the document to Host B for insertion, with instructions to insert it into a
specific forest.

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 53

Pre-determining the destination host and forest can always be done safely and consistently if the
all of the following conditions are met:

• Your forest topology is stable.

• You are creating rather than updating documents.

To make forest assignment decisions locally, mlcp gathers information about the database
assignment policy and forest topology at the beginning of a job. If you change the assignment
policy or forest topology while an mlcp import or copy operation is running, mlcp might make
forest placement decisions inconsistent with those MarkLogic Server would make. This can cause
problems such as duplicate document URIs and unbalanced forests.

Similar problems can occur if mlcp attempts to update a document already in the database, and the
forest topology or assignment policy changes between the time the document was originally
inserted and the time mlcp updates the document. Using user-specified forest placement when
initially inserting a document creates the same conflict.

Therefore, it is not safe to enable -fastload optimizations in the following situations:

• A document mlcp inserts already exists in the database and any of the following
conditions are true:

• The forest topology has changed since the document was originally inserted.

• The assignment policy has changed since the document was originally inserted.

• The assignment policy is not Legacy (default) or Bucket. For details, see “How
Assignment Policy Affects Optimization” on page 54.

• The document was originally inserted using user-specified forest placement.

• A document mlcp inserts does not already exist in the database and any of the following
conditions are true:

• The forest topology changes while mlcp is running.

• The assignment policy changes while mlcp is running.

Assignment policy is a database configuration setting that affects how MarkLogic Server selects
what forest to insert a document into or move a document into during rebalancing. For details, see
Rebalancer Document Assignment Policies in Administrator’s Guide.

Note: Assignment policy was introduced with MarkLogic 7 and mlcp v1.2. If you use an
earlier version of mlcp with MarkLogic 7 or later, the database you import data
into with -fastload or -output_directory must be using the legacy assignment
policy.

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 54

Any operation that changes the forests available for updates changes your forest topology,
including the following:

• Adding or an employing a new forest

• Removing or retiring an existing forest

• Changing the updates-allowed state of forest. For example, calling
admin:forest-set-updates-allowed

• Changing the database assignment policy

In most cases, it is your responsibility to determine whether or not you can safely use -fastload
(or -output_directory, which implies -fastload). In cases where mlcp can detect -fastload is
unsafe, it will disable it or give you an error.

4.13.3 How Assignment Policy Affects Optimization
This section describes how your choice of document assignment policy can introduce additional
limitations and risks. Assignment policy is a database configuration setting that affects how
MarkLogic Server selects what forest to insert a document into or move a document into during
rebalancing. For details, see Rebalancer Document Assignment Policies in Administrator’s Guide.

Note: Assignment policy was introduced with MarkLogic 7 and mlcp v1.2. If you use an
earlier version of mlcp with MarkLogic 7 or later, the database you import data
into with -fastload or -output_directory must be using the legacy assignment
policy.

The following table summarizes the limitations imposed by each assignment policy. If you do not
explicitly set assignment policy, the default is Legacy or Bucket.

Assignment Policy Notes

Legacy (default)

Bucket

You can safely use -fastload if:

• there are no pre-existing documents in the database with the same
URIs; or

• you use -output_directory; or

• the URIs may be in use, but the forest topology has not changed
since the documents were created, and the documents were not
initially inserted using user-specified forest placement.

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 55

4.13.4 Tuning Split Size and Thread Count for Local Mode
You can tune split size only when importing documents in local mode from one of the following
input file types:

Statistical You can only use -fastload to create new documents; updates are not
supported. You should use -output_directory to ensure there are no
updates.

All documents in a batch are inserted into the same forest. The rebalancer
may subsequently move the documents if the batch size is large enough
to cause the forest to become unbalanced.

If you set -fastload to true and mlcp determines database rebalancing is
occurring or needs to be done at the start of a job, an error occurs.

Range You can only use -fastload to create new documents; updates are not
supported. You should use -output_directory to ensure there are no
updates.

You should use -output_partition to tell mlcp which partition to insert
documents into. The partition you specify is used even if it is not the
correct partition according to your configured partition policy.

You can only use -fastload optimizations with range policy if you are
licensed for Tiered Storage.

If you set -fastload to true and mlcp determines database rebalancing is
occurring or needs to be done at the start of a job, an error occurs.

Query You can only use -fastload to create new documents; updates are not
supported. You should use -output_directory to ensure there are no
updates.

You should use -output_partition to tell mlcp which partition to insert
documents into. The partition you specify is used even if it is not the
correct partition according to your configured partition policy.

You can only use -fastload optimizations with range policy if you are
licensed for Tiered Storage.

If you set -fastload to true and mlcp determines database rebalancing is
occurring or needs to be done at the start of a job, an error occurs.

Assignment Policy Notes

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 56

• Whole documents (-input_file_type documents), whether from flat or compressed files.

• Composite file types that support -split_input, such as delimited_text.

You cannot tune split size when creating documents from composite files that do not support
-split_input, such as sequence files and aggregate XML files.

You can tune thread count for both whole documents and all composite files types. Thread count
and split size can interact to affect job performance.

In local mode, a split defines the unit of work per thread devoted to a session with MarkLogic
Server. The ideal split size is one that keeps all mlcp session threads busy. The default split size is
32M for local mode. Use the -max_split_size, -thread_count, and -thread_count_per_split
options to tune your load.

By default, threads are assigned to splits in a round-robin fashion. For example, consider a
loading 120 small documents of length 1M. Since the default split size is 32M, the load is broken
into 4 splits. If -thread_count is 10, each split is assigned to at least 2 threads (10 / 4 = 2). The
remaining 2 threads are each assigned to a split, so the number of threads per split are distributed
as follows:

Split 1: 3 threads
Split 2: 3 threads
Split 3: 2 threads
Split 4: 2 threads

This distribution could result in two of the splits completing faster, leaving some threads idle. If
you set -max_split_size to 12M, the load has 10 splits, which can be evenly distributed across the
threads and may result in better thread utilization.

Prior to 10.0-4.2, mlcp uses 4 as the default thread count. For mlcp versions equal to or higher
than 10.0-4.2, mlcp conducts initial polling to identify the available server threads on the port that
handles mlcp requests. Mlcp then uses this value as the default thread count. Users can overwrite
the default value by specifying -thread_count in the command line.

If -thread_count is less than the number of splits, the default behavior is one thread per split, up
to the total number of threads. The remaining splits must wait until a thread becomes available.

Note: If you specify -thread_count_per_split, each input split will run with the
specified number. The total number of thread count, however, is controlled by the
newly calculated thread count or -thread_count if it is specified.

If MarkLogic Server is not I/O bound, then raising the thread count, and possibly threads per split,
can improve throughput when the number of splits is small but each split is very large. This is
often applicable to loading from zip files, aggregate files, and delimited text files. Note that if
MarkLogic Server is already I/O bound in your environment, increasing the concurrency of writes
will not necessarily improve performance.

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 57

4.13.5 Reducing Memory Consumption With Streaming
The streaming protocol allows you to insert a large document into the database without holding
the entire document in memory. Streaming uploads documents to MarkLogic Server in 128k
chunks.

Streaming content into the database usually requires less memory on the host running mlcp, but
ingestion can be slower because it introduces additional network overhead. Streaming also does
not take advantage of mlcp’s builtin retry mechanism. If an error occurs that is normally retryable,
the job will fail.

Note: Streaming is only usable when -input_file_type is documents. You cannot use
streaming with delimited text files, sequence files, or archives.

To use streaming, enable the -streaming option. For example:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -username user -password password -host localhost \
 -port 8000 -input_file_path /my/dir -streaming

4.13.6 Improving Throughput with -split_input
If you are loading documents from very large files, you might be able to improve throughput
using the -split_input option. When -split_input is true, mlcp attempts to break large input
files that would otherwise by processed in a single split into multiple splits. This enables portions
of the input file to be loaded by threads (local mode).

Note: This option can only be applied to composite input file types that logically produce
multiple documents and for which mlcp can efficiently identify document
boundaries, such as delimited_text. Not all composite file types are supported and
files containing multi-byte characters must be UTF-8-encoded; for details, see
“Import Command Line Options” on page 83.

In local mode, -split_input is false by default.

The -split_input option affects local mode as follows: Suppose you are importing a very large
delimited text file in local mode with -split_input set to false and the data processed as a single
split. The work might be performed by multiple threads (depending on the job configuration), but
these threads read records from the input file synchronously. This can cause some read contention.
If you set -split_input to true, then each thread is assigned its own chunk of input, resulting in
less contention and greater concurrency.

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 58

The number of subdivisions is determined by the formula file-size / max-split-size, so you
should also consider tuning split size to match your input data characteristics. For example, if
your data consists of 1 delimited text file containing 16M of data, you can observe the following
interactions between -split_input and -max_split_size:

Tuning the split size in this case potentially enables greater concurrency because the multiple
splits can be assigned to different threads or tasks.

Split size is tunable using -max_split_size, -min_split_size, and block size. For details, see
“Tuning Split Size and Thread Count for Local Mode” on page 55.

4.13.7 MLCP Concurent Jobs
We do not recommend using concurrent mlcp jobs. Regardless of the version, mlcp doesn’t
support concurrent jobs if mlcp is importing from/exporting to the same data file. In addition,
beginning in 10.0-4.2, each mlcp job uses the maximum number of threads available on the server
as the default thread count (more about this can be found in the 10.0-4.2 release notes). Therefore,
using concurrent mlcp jobs will not improve performance, as one job is already using full
concurrent capacity.

4.14 Transforming Content During Ingestion
You can create an XQuery or Server-Side JavaScript function and install it on MarkLogic Server
to transform and enrich content before inserting it into the database. Your function runs on
MarkLogic Server. You can use such functions with the mlcp import and copy commands.

• Creating a Custom XQuery Transformation

• Creating a Custom JavaScript Transformation

• Implementation Guidelines

• Installing a Custom Transformation

• Using a Custom Transformation

• Example: Server-Side Content Transformation

• Example: Changing the URI and Document Type

Input File
Size

-split_input Split Size
Number
of Splits

16M false 32M 1

16M true 32M 1

16M true 1M 16

https://docs.marklogic.com/media/10.0-4.2_rel_addendum.pdf

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 59

4.14.1 Creating a Custom XQuery Transformation
The following topics describe how to implement a server-side content transformation function in
XQuery:

• Function Signature

• Input Parameters

• Expected Output

• Example Implementation

4.14.1.1 Function Signature
A custom transformation is an XQuery function module that conforms to the following interface.
Your function receives a single input document, described by $content, and can generate zero,
one, or many output documents.

declare function yourNamespace:transform(
 $content as map:map,
 $context as map:map)
as map:map*

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 60

4.14.1.2 Input Parameters
The table below describes the input parameters to a transform function:

The type of node your function receives in the “value” property of $content depends on the input
document type, as determined by mlcp from the -document_type option or URI extension. For
details, see “How mlcp Determines Document Type” on page 32. The type of node your function
returns in the “value” property should follow the same guidelines.

Parameter Description

$content Data about the original input document. The map contains the following keys:

• uri - The URI of the document being inserted into the database.
• value - The contents of the input document, as a document node, binary

node, or text node.

$context Additional context information about the insertion, such as
tranformation-specific parameter values. The map can contain the following
keys when your transform function is invoked:

• transform_param : The value passed by the client through the
-transform_param option, if any. Your function is responsible for parsing
and validation.

• collections : Collection URIs specified by the -output_collections option.
Value format: A sequence of strings.

• permissions : Permissions specified by the -output_permissions option.
Value format: A sequence of sec:permission elements, as produced by
xdmp:permission.

• quality : The document quality specified by the -output_quality parameter.
Value format: An integer value.

• temporalCollection : The temporal collection URI specified by the
-temporal-collection parameter. Value format: A string.

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 61

The table below outlines the relationship between document type and the node type your
transform function should expect.

The collections, permissions, quality, and temporal collection metadata from the mlcp command
line is made available to your function so that you can modify or replace the values. If a given
metadata category is not specified on the command line, the key will not be present in the input
map.

4.14.1.3 Expected Output
Your function can produce more than one output document. For each document, your function
should return a map:map. The map:map for an output document must use the same keys as the
$content map (uri and value).

Note: Modifying the document URI in a transformation can cause duplicate URIs when
combined with the -fastload option, so you should not use -fastload or
-output_directory with a transformation module that changes URIs. For details,
see “Time vs. Correctness: Understanding -fastload Tradeoffs” on page 52.

The documents returned by your transformation should be exactly as you want to insert them into
the database. No further transformations are applied by the mlcp infrastructure. For example, a
transform function cannot affect document type just by changing the URI. Instead, it must convert
the document node. For details, see “Example: Changing the URI and Document Type” on
page 73.

Document Type “value” node type

XML document-node

JSON document-node

BINARY binary-node

TEXT text-node

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 62

You can use the context parameter to specify collections, permissions, quality, and values
metadata for the documents returned by your transform. Use the following keys and data formats
for specifying various categories of metadata:

For a description of the meaning of the keys, see “Input Parameters” on page 60.

If your function returns multiple documents, they will all share the metadata settings from the
context parameter.

4.14.1.4 Example Implementation
The following example adds an attribute to incoming XML documents and leaves non-XML
documents unmodified. The attribute value is specified on the mlcp command line, using the
-transform_param option.

declare function example:transform(
 $content as map:map,
 $context as map:map
) as map:map*
{
 let $attr-value :=
 (map:get($context, "transform_param"), "UNDEFINED")[1]
 let $the-doc := map:get($content, "value")
 return
 if (fn:empty($the-doc/element()))
 then $content
 else
 let $root := $the-doc/*
 return (
 map:put($content, "value",
 document {
 $root/preceding-sibling::node(),
 element {fn:name($root)} {
 attribute { fn:QName("", "NEWATTR") } {$attr-value},
 $root/@*,
 $root/node()
 },

Context Map Key Expected Value Format

collections A sequence of strings containing collection URIs.

permissions A sequence of sec:permission elements, each representing a capability
and a role id. For details, see xdmp:permission.

quality An integer value (or a string that can be converted to an integer).

metadata A map:map containing key-value metadata.

temporalCollection A string containing a temporal document collection URI.

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 63

 $root/following-sibling::node()
 }
), $content
)
};

For an end-to-end example of using this transform, see “Example: Server-Side Content
Transformation” on page 68.

4.14.2 Creating a Custom JavaScript Transformation
The following topics describe how to implement a server-side content transformation function in
Server-Side JavaScript:

• Function Signature

• Input Parameters

• Expected Output

• Example Implementation

4.14.2.1 Function Signature
A custom transformation is a JavaScript function module that conforms to the following interface.
Your function receives a single input document, described by $content, and can generate zero,
one, or many output documents.

function yourTransform(content, context)

4.14.2.2 Input Parameters
The content parameter is an object containing data about the original input document. The
content parameter has the following form:

{ uri: string,
 value: node
}

The type of node your function receives in content.value depends on the input document type, as
determined by mlcp from the -document_type option or URI extension. For details, see “How
mlcp Determines Document Type” on page 32. The type of node your function returns in the
value property should follow the same guidelines.

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 64

The table below outlines the relationship between document type and the node type your
transform function should expect (or return).

The context parameter can contain context information about the insertion, such as any
transform-specific parameters passed on the mlcp command line. The context parameter has the
following form:

{ transform_param: string,
 collections: [string, ...],
 permissions: [object, ...],
 quality: number,
 temporalCollection: string}

The following table describes the properties of the input parameters in more detail:

Document Type “value” node type

XML document-node

JSON document-node

BINARY binary-node

TEXT text-node

Parameter Description

content • uri - The URI of the document being inserted into the database.
• value - The contents of the input document, as a document node,

binary node, or text node; see below.

context • transform_param - The value passed by the client through the
-transform_param option, if any. Your function is responsible for
parsing and validation of the input string.

• collections : Collection URIs specified by the -output_collections
option. Value format: An array of strings.

• permissions : Permissions specified by the -output_permissions
option. Value format: An array of permissions objects, as produced
by xdmp.permission.

• quality : The document quality specified by the -output_quality
parameter. Value format: A number.

• temporalCollection : The temporal collection URI specified by the
-temporal-collection parameter. Value format: A string.

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 65

The collections, permissions, quality, and temporal collection metadata from the mlcp command
line is made available to your function so that you can modify or replace the values. If a given
metadata category is not specified on the command line, the property will not be present in the
context object.

4.14.2.3 Expected Output
Your function can produce more than one output document. For each document, your function
should return a JavaScript object containing the same properties as the content input parameter
(uri and value). When returning multiple document objects, put them in a Sequence.

The document content returned by your transformation should be exactly as you want to insert
them into the database. No further transformations are applied by the mlcp infrastructure. For
example, a transform function cannot affect document type just by changing the URI. Instead, it
must convert the document node. For details, see “Example: Changing the URI and Document
Type” on page 73.

You can modify the context input parameter to specify collections, permissions, quality, and
values metadata for the documents returned by your transform. Use the following property names
and data formats for specifying various categories of metadata:

For a description of the meaning of the keys, see “Input Parameters” on page 63.

If your function returns multiple documents, they will all share the metadata settings from the
context parameter.

4.14.2.4 Example Implementation
The following example adds a property named “NEWPROP” to incoming JSON documents and
leaves non-JSON documents unmodified. The property value is specified on the mlcp command
line, using the -transform_param option.

// Add a property named "NEWPROP" to any JSON input document.
// Otherwise, input passes through unchanged.

Context Property Expected Value Format

collections An array of strings, each repesenting a collection URIs.

permissions An array of permission objects, each containing a capability and a
roleId property. For details, see xdmp:permission.

quality An integer value (or a string that can be converted to an integer).

metadata An object where each property represents a key-value metadata item.

temporalCollection A string containing a temporal document collection URI.

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 66

function addProp(content, context)
{
 const propVal = (context.transform_param == undefined)
 ? "UNDEFINED" : context.transform_param;

 if (xdmp.nodeKind(content.value) == 'document' &&
 content.value.documentFormat == 'JSON') {
 // Convert input to mutable object and add new property
 const newDoc = content.value.toObject();
 newDoc.NEWPROP = propVal;

 // Convert result back into a document
 content.value = xdmp.unquote(xdmp.quote(newDoc));
 }
 return content;
};

exports.addProp = addProp;

4.14.3 Implementation Guidelines
You should be aware of the following guidelines and limitations when implementing your
transformation function:

• If you use a server-side transform with -fastload (or -output_directory, which enables
-fastload), your transformation function only has access to database content in the same
forest as the input document. If your transformation function needs general access to the
database, do not use -fastload or -output_directory.

4.14.4 Installing a Custom Transformation
Install the XQuery library module containing your function into the modules database or modules
root directory of the XDBC App Server associated with the destination database. For import
operations, this is the App Server identified by -host and -port mlcp command line options. For
copy operations, this is the App Server identified by -output_host and -output_port mlcp
command line options.

Best practice is to install your libraries into the modules database of your XDBC App Server. If
you install your module into the modules database, MarkLogic Server automatically makes the
implementation available throughout your MarkLogic Server cluster. If you choose to install
dependent libraries into the Modules directory of your MarkLogic Server installation, you must
manually do so on each node in your cluster.

MarkLogic Server supports several methods for loading modules into the modules database:

• Run an XQuery or JavaScript query in Query Console. For example, you can run a query
similar to the following to install a module using Query Console. Note: First select your
modules database in the Query Console Content Source dropdown.

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 67

xquery version "1.0-ml";
xdmp:document-load("/space/mlcp/transform.xqy",
 <options xmlns="xdmp:document-load">
 <uri>/example/mlcp-transform.xqy</uri>
 <repair>none</repair>
 <permissions>{xdmp:default-permissions()}</permissions>
 </options>)

• If you use the App Server on port 8000 or have a REST API instance, you can use any of
the following Client APIs:

• Java: ResourceExtensionsManager.write. For details, see Managing Dependent

Libraries and Other Assets in the Java Application Developer’s Guide.

• Node.js: DatabaseClient.config.extlibs. For details, see Managing Assets in the

Modules Database in the Node.js Application Developer’s Guide.

• REST: PUT /v1/ext/{directories}/{asset}. For details, see Managing Dependent

Libraries and Other Assets in the REST Application Developer’s Guide.

If you use the filesystem instead of a modules database, you can manually install your module
into the Modules directory. Copy the module into MARKLOGIC_INSTALL_DIR/Modules or into a
subdirectory of this directory. The default location of this directory is:

• Unix: /opt/MarkLogic/Modules

• Windows: C:\Program Files\MarkLogic\Modules

If your transformation function requires other modules, you should also install the dependent
libraries in the modules database or the modules directory.

For a complete example, see “Example: Server-Side Content Transformation” on page 68.

4.14.5 Using a Custom Transformation
Once you install a custom transformation function on MarkLogic Server, you can apply it to your
mlcp import or copy job using the following options:

• -transform_module - The path to the module containing your transformation. Required.

• -transform_namespace - The namespace of your transformation function. If omitted, no
namespace is assumed.

• -transform_function - The local name of your transformation function. If omitted, the
name transform is assumed.

• -transform_param - Optional additional string data to be passed through to your
transformation function.

Take note of the following limitations:

• When -fastload is in effect, your transform function runs in the scope of a single forest
(the forest mlcp determines is the appropriate destination for the file being inserted). This

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 68

means if you change the document URI as part of your transform, you can end up creating
documents with duplicate URIs.

• When you use a transform function, all the documents in each batch are transformed and
inserted into the database as a single statement. This means, for example, that if the
(transformed) batch contain more than one document with the same URI, you will get an
XDMP-CONFLICTINGUPDATES error.

The following example command assumes you previously installed a transform module with path
/example/mlcp-transform.xqy, and that the function implements a transform function (the default
function) in the namespace http://marklogic.com/example. The function expects a user-defined
parameter value, supplied using the -transform_param option.

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -mode local -host mlhost -port 8000 \
 -username user -password password \
 -input_file_path /space/mlcp-test/data \
 -transform_module /example/mlcp-transform.xqy \
 -transform_namespace "http://marklogic.com/example" \
 -transform_param "my-value"

For a complete example, see “Example: Server-Side Content Transformation” on page 68.

4.14.6 Example: Server-Side Content Transformation
This example walks you through installing and using an XQuery or Server-Side JavaScript
transform function to modify content ingested with mlcp. The example XQuery transform
function modifies XML documents by adding an attribute named NEWATTR, with an attribute value
specified on the mlcp command line. The example JavaScript transform function modifies JSON
documents by adding a new property named NEWPROP, with a value specified on the mlcp
command line.

This example assumes you have already created an XDBC App Server, configured to use "/" as
the root and a modules database of Modules.

1. Create the sample input files

2. Create the XQuery transform module

3. Create the JavaScript transform module

4. Install the transformation module

5. Apply the transformation

4.14.6.1 Create the sample input files
This section walks you through creating sample input data to be ingested by mlcp. You can use
other data.

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 69

1. Create a directory to hold the sample input data. For example:

$ mkdir /space/mlcp/txform/data

2. Create a file named txform.xml in the sample data directory with the following contents:

<parent><child/></parent>

3. Create a file named txform.json in the sample data directory with the following contents:

{ "key": "value" }

4.14.6.2 Create the XQuery transform module
If you prefer to work with a Server-Side JavaScript transform function, skip this section and go to
“Create the JavaScript transform module” on page 70.

This example module modifies XML input documents by adding an attribute named NEWATTR.
Other input document types pass through the transform unmodified.

In a location other than the sample input data directory, create a file named transform.xqy with
the following contents. For example, copy the following into /space/mlcp/txform/transform.xqy.

xquery version "1.0-ml";
module namespace example = "http://marklogic.com/example";

(: If the input document is XML, insert @NEWATTR, with the value
 : specified in the input parameter. If the input document is not
 : XML, leave it as-is.
 :)
declare function example:transform(
 $content as map:map,
 $context as map:map
) as map:map*
{
 let $attr-value :=
 (map:get($context, "transform_param"), "UNDEFINED")[1]
 let $the-doc := map:get($content, "value")
 return
 if (fn:empty($the-doc/element()))
 then $content
 else
 let $root := $the-doc/*
 return (
 map:put($content, "value",
 document {
 $root/preceding-sibling::node(),
 element {fn:name($root)} {
 attribute { fn:QName("", "NEWATTR") } {$attr-value},
 $root/@*,
 $root/node()

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 70

 },
 $root/following-sibling::node()
 }
), $content
)
};

4.14.6.3 Create the JavaScript transform module
If you prefer to work with an XQuery transform function, skip this section and go to “Create the
XQuery transform module” on page 69.

This example module modifies JSON input documents by adding an attribute named NEWPROP.
Other input document types pass through the transform unmodified.

In a location other than the sample input data directory, create a file named transform.sjs with
the following contents. For example, copy the following into /space/mlcp/txform/transform.sjs.

// Add a property named "NEWPROP" to any JSON input document.
// Otherwise, input passes through unchanged.

function addProp(content, context)
{
 var propVal = (context.transform_param == undefined)
 ? "UNDEFINED" : context.transform_param;

 var docType = xdmp.nodeKind(content.value);
 if (xdmp.nodeKind(content.value) == 'document' &&
 content.value.documentFormat == 'JSON') {
 // Convert input to mutable object and add new property
 var newDoc = content.value.toObject();
 newDoc.NEWPROP = propVal;

 // Convert result back into a document
 content.value = xdmp.unquote(xdmp.quote(newDoc));
 }
 return content;
};

exports.transform = addProp;

4.14.6.4 Install the transformation module
This section walks you through installing the transform module(s) created in “Create the XQuery
transform module” on page 69 or “Create the JavaScript transform module” on page 70.

These instructions assume you use the XDBC App Server and Documents database
pre-configured on port 8000. This procedure installs the module using Query Console. You can
use another method.

For more detailed instructions on using Query Console, see Query Console User Guide.

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 71

1. Navigate to Query Console in your browser:

http://yourhost:8000/qconsole/

2. Create a new query by clicking the "+" at the top of the query editor.

3. Select XQuery in the Query Type dropdown.

4. Install the XQuery and/or JavaScript module by copying one of the following scripts into
the new query. Modify the first parameter of xdmp:document-load to match the path to the
transform module you previously created.

a. To install the XQuery module, use the following script:

xquery version "1.0-ml";
xdmp:document-load("/space/mlcp/txform/transform.xqy",
 <options xmlns="xdmp:document-load">
 <uri>/example/mlcp-transform.xqy</uri>
 <repair>none</repair>
 <permissions>{xdmp:default-permissions()}</permissions>
 </options>)

b. To install the JavaScript module, use the following script:.

xquery version "1.0-ml";
xdmp:document-load("/space/mlcp/txform/transform.sjs",
 <options xmlns="xdmp:document-load">
 <uri>/example/mlcp-transform.sjs</uri>
 <repair>none</repair>
 <permissions>{xdmp:default-permissions()}</permissions>
 </options>)

5. Select the modules database of your XDBC App Server in the Content Source dropdown
at the top of the query editor. If you use the XDBC App Server on port 8000, this is the
database named Modules.

6. Click the Run button. Your module is installed in the modules database.

7. To confirm installation of your module, click the Explore button at the top of the query
editor and note your module installed with URI /example/mlcp-transform.xqy or
/example/mlcp-transform.sjs.

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 72

4.14.6.5 Apply the transformation
To ingest the sample documents and apply the previously installed transformation, use a
command similar to the following. Change the username, password, host, port, and
input_file_path options to match your environment.

Use a command similar to the following if you installed the XQuery transform module:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -mode local -host mlhost -port 8000 \
 -username user -password password \
 -input_file_path /space/mlcp/txform/data \
 -transform_module /example/mlcp-transform.xqy \
 -transform_namespace "http://marklogic.com/example" \
 -transform_param "my-value"

Use a command similar to the following if you installed the JavaScript transform module:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -mode local -host mlhost -port 8000 \
 -username user -password password \
 -input_file_path /space/mlcp/txform/data \
 -transform_module /example/mlcp-transform.sjs \
 -transform_function transform \
 -transform_param "my-value"

mlcp should report creating two documents. Near the end of the mlcp output, you should see lines
similar to the following:

... INFO contentpump.LocalJobRunner: OUTPUT_RECORDS: 2

... INFO contentpump.LocalJobRunner: Total execution time: 1 sec

Use Query Console to explore the content database associated with your XDBC App Server.
Confirm that mlcp created 2 documents. If your input was in the directory
/space/mlcp/txform/data, then the document URIs will be:

• /space/mlcp/txform/data/txform.xml

• /space/mlcp/txform/data/txform.json

If you use the XQuery transform, then exploring the contents of txform.xml in the database should
show a NEWATTR attribute was inserted by the transform, with the value from
-transform_param. The document contents should be as follows:

<parent NEWATTR="my-value">
 <child/>
</parent>

If you use the JavaScript transform, then exploring the contents of txform.json in the database
should show a NEWPROP property was inserted by the transform, with the value from
-transform_param. The document contents should be as follows:

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 73

{ "key": "value", "NEWPROP": "my-value"}

4.14.7 Example: Changing the URI and Document Type
This example demonstrates changing the type of a document from binary to XML and changing
the document URI to match.

Note: Transforms that change the document URI should not be combined with the
-fastload or -output_directory options as they can cause duplicate document
URIs. For details, see “Time vs. Correctness: Understanding -fastload Tradeoffs”
on page 52.

As described in “How mlcp Determines Document Type” on page 32, the URI extension and
MIME type mapping are used to determine document type when you use -document_type mixed.
However, transform functions do not run until after document type selection is completed.
Therefore, if you want to affect document type in a transform, you must convert the document
node, as well as optionally changing the output URI.

Suppose your input document set generates an output document URI with the unmapped
extension “.1”, such as /path/doc.1. Since “1” is not a recognized URI extension, mlcp creates a
binary document node from this input file by default. The example transform function in this
section intercepts such a document and transforms it into an XML document.

• XQuery Implementation

• JavaScript Implementation

Note that if you define a MIME type mapping that maps the extension “1” to XML (or JSON) in
your MarkLogic Server configuration, then mlcp creates a document of the appropriate type to
begin with, and this conversion becomes unnecessary.

4.14.7.1 XQuery Implementation
This module detects input documents with URI suffixes of the form “.1” and converts them into
XML documents with a “.xml” URI extension. Note that the transform does not snoop the content
to ensure it is actually XML.

xquery version "1.0-ml";
module namespace example = "http://marklogic.com/example";

declare function example:mod_doc_type(
 $content as map:map,
 $context as map:map
) as map:map*
{
 let $orig-uri := map:get($content, "uri")
 return
 if (fn:substring-after($orig-uri, ".") = "1") then
 let $doc-type := xdmp:node-kind(map:get($content, "value"))
 return (

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 74

 (: change the URI to an xml suffix :)
 map:put($content, "uri",
 fn:concat(fn:substring-before($orig-uri, "."), ".xml")
),
 (: convert the input from binary node to xml document node :)
 if ($doc-type = "binary") then
 map:put(
 $content, "value",
 xdmp:unquote(xdmp:quote(map:get($content, "value")))
)
 else (),
 $content
)
 else $content
};

4.14.7.2 JavaScript Implementation
This module detects input documents with URI suffixes of the form “.1” and converts them into
JSON documents with a “.json” URI extension. Note that the transform does not snoop the
content to ensure it is actually JSON.

function modDocType(content, context)
{
 var uri = String(content.uri);
 var dot = uri.lastIndexOf('.');
 if (dot > 0) {
 var suffix = uri.slice(dot);
 if (suffix == '.1') {
 content.uri = uri.substring(0,dot+1) + 'json';
 if (xdmp.nodeKind(content.value) == 'binary') {
 // convert the content to a JSON document
 content.value = xdmp.unquote(xdmp.quote(content.value));
 }
 }
 }
 return content;
};

exports.transform = modDocType;

4.15 Controlling How mlcp Connects to MarkLogic
This section describes how mlcp connects to MarkLogic by default, and options you can use to
modify this behavior. For example, you can force mlcp to only connect to MarkLogic through a
load balancer host.

See the following topics for more details:

• How mlcp Uses the Host List

• Restricting the Hosts mlcp Uses to Connect to MarkLogic

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 75

• How -restrict_hosts Affects -fastload

4.15.1 How mlcp Uses the Host List
You must specify at least one host with -host command line option. You can specify multiple
hosts.

If any hostname listed in the value of the -host option is not resolvable by mlcp at the beginning
of a job, then mlcp will abort the job with an IllegalArgumentException.

Assuming all hostnames are resolvable, mlcp uses the first of these hosts to gather information
about the target database. If mlcp is unable to connect to the first host in the -host list, then mlcp
will move on to the next host in the list. If mlcp cannot connect to any of the listed hosts, then the
job will fail with an IOException.

If mlcp successfully retrieves a list of forest hosts, then mlcp subsequently connects directly to
these hosts when distributing work across the cluster, whether or not these hosts are specified in
the -host option. In this way, your job does not need to be aware cluster topology.

This behavior applies to the import, export, and copy commands. (For a copy job, you specify
hosts through -input_host and -output_host, rather than -host.)

You can also restrict mlcp to just the hosts listed by the -host option. For details, see “Restricting
the Hosts mlcp Uses to Connect to MarkLogic” on page 75.

4.15.2 Restricting the Hosts mlcp Uses to Connect to MarkLogic
You can restrict the hosts to which mlcp distributes work using the -restrict_hosts and -host
command line options. You might find this option combination useful in situations such as the
following:

• Limit the host working set to just the e-nodes in your cluster.

• The public and private DNS names of a host differ, such as can occur for an AWS
instance.

Note: MarkLogic automatically sets -restrict_hosts to true when it detects the presence
of a load balancer.

When -restrict_hosts is set to true, mlcp will only connect to the hosts listed in the -host
option, rather than using the approach described in “How mlcp Uses the Host List” on page 75.

Note: Using -restrict_hosts will usually degrade the performance of an mlcp job
because mlcp cannot distribute work as efficiently.

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 76

For example, if you’re using mlcp with a load balancer between your client and your MarkLogic
cluster, you can specify the load balancer with -host and set -restrict_hosts to true to prevent
mlcp from attempting to bypass the load balancer and connect directly to the forest hosts.

You can restrict mlcp’s host list when using the import, export, and copy commands. For import
and export, use the -host and -restrict_hosts options. For copy, use -input_host and
-restrict_input_hosts and/or -output_host and -restrict_output_hosts.

4.15.3 How -restrict_hosts Affects -fastload
You can use -fastload with -restrict_hosts. The performance improvement from -fastload
will be less than if you did not use -restrict_hosts, but better than if you do not use -fastload.
The usual cautions about -fastload apply; see “Time vs. Correctness: Understanding -fastload
Tradeoffs” on page 52.

The -fastload and -restrict_hosts options interact as follows:

Without -restrict_hosts, mlcp figures out which hosts contains the destination forest for a
document, and then connects directly to that host. When -restrict_hosts is true, a connection to
the forest host might not possible. In this case, mlcp connects to an allowed e-node, and includes
the detailed destination information along with the document. The destination details makes an
insertion faster than it would otherwise be.

4.16 Failover Handling
Failover occurs when a forest or a host in a cluster becomes unavailable, due to events such as a
forest restart or a host becoming unreachable. You can configure a database to use local or shared
disk failover to attempt automatic recovery; for details see High Availability of Data Nodes With

Failover in the Scalability, Availability, and Failover Guide.

Note: Failover support in mlcp is only available when running mlcp against MarkLogic 9
or later. With older MarkLogic versions, the job will fail if mlcp is connected to a
host that becomes unavailable.

mlcp always attempts to connect to a new host during a failover event. mlcp can potentially
recover from failover event in the following cases:

• If mlcp receives a connection error that indicates an e-node serving the database is down,
mlcp attempts to select another host. For a job that is not running in fastload mode, mlcp
selects the next host in its host list. For a fastload job, mlcp attempts to determine the
replica forest and host and connect to that host.

• If mlcp receives a retryable error from MarkLogic, it will retry the operation with the same
host. For example, a forest restart or a forest replica host going down can cause a retryable
error.

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 77

If mlcp is able to re-establish a connection in these cases, then the job can continue. It is possible
for some documents not to be imported, depending on the configuration of the job. mlcp can only
retry the current batch.

• If -transaction_size is 1, then mlcp only needs to retry the current batch. In most cases, a
successful failover will not cause any insertions to fail.

• If -transaction_size is greater than 1, then mlcp can only retry the current batch. Other
batches in the same transaction cannot be retried. Some documents might not be inserted.

• Even if -transaction_size is 1, mlcp might fail to import all documents in the face of a
failover event in some cases. For example:

• Failover does not succeed within 5 minutes. If it takes more than 5 minutes for
MarkLogic to recover from the failure, then mlcp aborts the job and reports an
error.

mlcp reports any documents that could not be inserted due to the failover.

The following messages are an example of mlcp output during a failover event. Timestamps have
been elided.

1. A failure of some kind occurs, such as host going down. The exact error messages will
depend on the type of failure. Notice that example errors below include a retryable
exception.

...INFO contentpump.LocalJobRunner: completed 41%

...WARNING [29] (AbstractRequestController.runRequest): Error parsing HTTP
headers: Premature EOF, partial header line read: ''
...WARN mapreduce.ContentWriter: Batch 981349710.122: Exception:Error parsing
HTTP headers: Premature EOF, partial header line read: ''
...WARNING [29] (AbstractRequestController.runRequest): Error parsing HTTP
headers: Premature EOF, partial header line read: ''
...WARN mapreduce.ContentWriter: Batch 981349710.122: Failed rolling back
transaction Error parsing HTTP headers: Premature EOF, partial header line
read: ''
...WARNING [29] (AbstractRequestController.runRequest): Error parsing HTTP
headers: Premature EOF, partial header line read: ''
...ERROR mapreduce.ContentWriter: Batch 981349710.122:
RetryableQueryException:XDMP-XDQPDISC: XDQP connection disconnected,
server=somehost
...ERROR mapreduce.ContentWriter: Batch 981349710.122:
RetryableQueryException:XDMP-XDQPDISC: XDQP connection disconnected,
server=somehost
...ERROR mapreduce.ContentWriter: Batch 981349710.122:
RetryableQueryException:XDMP-XDQPDISC: XDQP connection disconnected,
server=somehost

2. mlcp begins retrying the failed insertion. Errors may continue to occur because
MarkLogic is still failing over.

...INFO mapreduce.ContentWriter: Batch 981349710.122: Retrying document insert

...WARN mapreduce.ContentWriter: Batch 981349710.122:

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 78

RetryableQueryException:SVC-SOCCONN: Socket connect error: connect
172.18.130.117:7999: Connection refused
...INFO mapreduce.ContentWriter: Batch 981349710.122: Retrying document insert
...INFO mapreduce.ContentWriter: Batch 981349710.122: Retrying document insert
...INFO mapreduce.ContentWriter: Batch 981349710.122: Retrying document insert
...WARN mapreduce.ContentWriter: Batch 981349710.122: Exception:Connection
refused
...WARN mapreduce.ContentWriter: Batch 981349710.122: Exception:Connection
refused
...WARN mapreduce.ContentWriter: Batch 981349710.122:
RetryableQueryException:SVC-SOCCONN: Socket connect error: connect
172.18.130.117:7999: Connection refused
...WARN mapreduce.ContentWriter: Batch 981349710.122:
RetryableQueryException:SVC-SOCCONN: Socket connect error: connect
172.18.130.117:7999: Connection refused
...WARN mapreduce.ContentWriter: Batch 981349710.122:
RetryableQueryException:SVC-SOCCONN: Socket connect error: connect
172.18.130.117:7999: Connection refused
...WARN mapreduce.ContentWriter: Batch 981349710.122:
RetryableQueryException:SVC-SOCCONN: Socket connect error: connect
172.18.130.117:7999: Connection refused

3. Eventually, MarkLogic recovers and the job continues normally.

4.17 MLCP Retry Mechanism When Commit Fails During Ingestion
When mlcp is used to ingest content into Data Hub Service (DHS), it frequently catches
exceptions when the static e-node gets overloaded, or if the dynamic e-nodes are unavailable, as
they come and go.

Before 10.0-5, when an mlcp commit failed during ingestion, due to the exceptions listed above,
mlcp did not retry the batch. All the documents in the current batch would fail permanently. The
mlcp retry mechanism has been added in 10.0-5 to make mlcp more robust and able to recover
from these exceptions.

There are three circumstances that need to be considered:

• If -batch_size is 1 and -transaction_size is 1: mlcp uses AUTO transaction mode.
Transactions automatically commit and rollback. mlcp will retry inserting the whole batch
when it catches exceptions during commit.

• If -batch_size is larger than 1 and -transaction_size is 1: mlcp will use UPDATE
transaction mode, and explicitly commits and rolls back. mlcp will retry loading the
whole batch if the exceptions caught during commit are retryable. mlcp will retry when
commit fails maximum 15 times. Between each retry, it sleeps for a certain amount of
time. The interval varies from 0.5 seconds to 2 minutes, and it doubles every time MLCP
retries. The total maximum sleep time sums up to ~16 minutes, which is tuned to wait for
dynamic e-nodes to come up. In most cases, a successful retry will not cause any
insertions to fail.

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 79

• If -batch_size is larger than 1 and -transaction_size is larger than 1: mlcp does not retry
in this situation as the client only caches the current batch. All the documents in the
current transaction will fail permanently.

mlcp only retries when the exceptions caught are retryable. Every time when mlcp retries, it
attempts to select another host. When the exceptions are not retryable, or the retry doesn't succeed
within ~16 minutes for the DHS cluster to recover, all the documents in the current batch will fail
permanently and mlcp will log the failure.

When the current batch fails during inserting or committing, the failures will be logged on WARN
level. Then if the exception is retryable, mlcp will retry inserting the whole batch, and the retry
messages will be logged on DEBUG level. If the retry succeeds, the succeeding message will be
logged on INFO level. If the exception is not retryable, or the maximum retry limit has been
exceeded, the document/batch will fail permanently and will be logged on ERROR level.

Each log message has a batch number in the format of xxxx.xxxx (two integers separated by a dot)
attached to it. The first integer represents the current thread number and the second represents the
batch count local to the current thread. Globally, xxxx.xxxx is unique. This batch number makes it
easier to track down and debug batch failures.

The following messages are an example of common exceptions caught when running mlcp with
DHS cluster on AWS/Azure. These exceptions mostly happens when e-nodes are down or the
static e-node gets overloaded. Timestamps have been removed from these examples.

...WARN contentpump.TransformWriter: Batch #88895712.638: Failed committing
transaction: Error parsing HTTP headers: Premature EOF, partial header line
read: ''
...WARN mapreduce.ContentWriter: Batch #88895712.638:
QueryException:XDMP-XDQPDISC: XDQP connection disconnected, server=somehost
...WARN contentpump.TransformWriter: Batch #1520482927.642: Failed committing
transaction: Server cannot accept request: Service Unavailable -- Stopping by
SIGTERM from pid 3121
...WARN mapreduce.ContentWriter: Batch #1520482927.642:
com.marklogic.xcc.exceptions.XQueryException: XDMP-NOTXN: No transaction with
identifier 11132444146034518336
[Session: user=admin, cb={default} [ContentSource: user=admin, cb={none}
[provider: SSLconn address=5bJZEjQ1L.z.marklogicsvc.com/52.224.204.231:8005,
pool=0/64]]]
[Client: XCC/11.0-20200911, Server: XDBC/10.0-4]

Note: mlcp gets XDMP-NOTXN when the transaction has already been committed or rolled
back.

The following messages are an example of MLCP output during a retry event. Timestamps have
been removed.

...WARN contentpump.TransformWriter: Batch 1473219859.1010: Exception:Server
cannot accept request: Gateway Time-out
...WARN contentpump.TransformWriter: Batch 1473219859.1010: Failed during

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 80

inserting
...DEBUG mapreduce.ContentWriter: Batch 1473219859.1010: Sleeping before
retrying...sleepTime=500ms
...DEBUG contentpump.TransformWriter: Batch 1473219859.1010: Retrying
inserting batch, attempts: 1/15
...INFO contentpump.TransformWriter: Batch 1473219859.1010: Retrying inserting
batch is successful
...WARN contentpump.TransformWriter: Batch 278973739.75: Failed committing
transaction: Error parsing HTTP headers: Connection timed out
...WARN contentpump.TransformWriter: Batch 918057596.3: Failed committing
transaction: Error parsing HTTP headers: Connection timed out
...WARN contentpump.TransformWriter: Batch 278973739.75: Failed during
committing
...WARN contentpump.TransformWriter: Batch 918057596.3: Failed during
committing
...WARN contentpump.TransformWriter: Batch 1763434846.80: Failed committing
transaction: Error parsing HTTP headers: Connection timed out
...WARN contentpump.TransformWriter: Batch 1763434846.80: Failed during
committing
...WARN contentpump.TransformWriter: Batch 981349710.122: Failed committing
transaction: Error parsing HTTP headers: Connection timed out
...WARN contentpump.TransformWriter: Batch 981349710.122: Failed during
committing
...WARN mapreduce.ContentWriter: Batch 278973739.75: Failed rolling back
transaction: No transaction
...DEBUG mapreduce.ContentWriter:
com.marklogic.xcc.exceptions.XQueryException: XDMP-NOTXN: No transaction with
identifier 11132444146034518336
[Session: user=admin, cb={default} [ContentSource: user=admin, cb={none}
[provider: SSLconn address=5bJZEjQ1L.z.marklogicsvc.com/52.224.204.231:8005,
pool=0/64]]]
[Client: XCC/11.0-20200911, Server: XDBC/10.0-4]
...DEBUG mapreduce.ContentWriter: Batch 278973739.75: Sleeping before
retrying...sleepTime=500ms
...WARN contentpump.TransformWriter: Batch 1978594827.298: QueryException:
JS-FATAL: xdmp:function(fn:QName(, transformInsertBatch),
/MarkLogic/hadoop.sjs)($transform-module, $transform-function, $uris, $values,
$insert-options, $transform-option)
...WARN contentpump.TransformWriter: Batch 1978594827.298: Failed during
inserting
...ERROR contentpump.TransformWriter: Batch 1978594827.298: Document failed
permanently: /space/data/iplocations/IP2LOCATION-LITE-DB5.CSV.gz-0-2798613 in
file:/space/data/iplocations/IP2LOCATION-LITE-DB5.CSV.gz at line 2798614

4.17.0.1 Limitations
There are two known limitations with the mlcp retry feature:

• When the input type is archive, mlcp is not able to retry loading metadata/naked
properties when commit fails, since by design the client does not cache these inputs.

• Loading temporal documents may have issues. When mlcp commit fails and catches
exceptions, it tries rolling back before retry loading the whole batch. However, the

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 81

previous transaction may have made it to the server and mlcp will get NOTXN exception.
This may create issues for temporal documents, since they may be inserted multiple times.

4.18 MLCP Auto-scaling with Data Hub Service
Before 10.0-6, mlcp import jobs ran with a fixed number of threads until completion. After
10.0-6, mlcp reactive auto-scaling capability for import jobs is enabled when running against
Data Hub Service (DHS) hosted on AWS/Azure. The concurrency of mlcp now adjusts
periodically based on the available server threads as the dynamic e-nodes come and go in DHS.
This feature improves mlcp performance by leveraging the scaling feature of DHS.

4.18.1 How MLCP Adjusts Client Concurrency
When running an import job, mlcp periodically send polling requests to the server through the
XCC layer to obtain the maximum server threads. When the DHS cluster adds more dynamic
e-nodes, server has more available concurrency. Then mlcp decides whether to scale-out or
scale-in, its own thread pool based on the result.

The following command line options can be used to tune this process:

• -max_thread_percentage: The percentage (between 0 and 100) of maximum available
server threads mlcp will use to run import jobs.

• -polling_period: The time interval (in minutes) mlcp sends the polling requests to the
server.

• -polling_init_delay: The initial delay (in minutes) before mlcp starts sending the polling
requests.

4.18.2 How Other Command Line Options Affect Auto-scaling
The following existing command line options also affect the auto-scaling feature:

• -thread_count and -thread_count_per_split: When these two options are specified, mlcp
will use a fixed number of threads and auto-scaling will not happen.

• -max_threads: When -max_threads is specified, mlcp will cap the maximum thread count,
and auto-scaling cannot go beyond this number. This is to prevent the client-side from
running out of memory as the DHS cluster may have a huge number of nodes. By default,
-max_threads is not set.

4.18.3 How MLCP Assigns Threads in Auto-Scaling Process
When mlcp scales-out or scales-in, new threads are assigned to or removed from the existing
input splits using round-robin fashion, same as the logic discussed in Tuning Split Size and Thread

Count for Local Mode.

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 82

4.18.4 MLCP Logs for Auto-Scaling
When mlcp scales-out or scales-in, there will be a log message on INFO level to notify user about
the scaling process. If the thread count has reached the maximum value, it will also be logged on
INFO level. For every periodic polling, mlcp will log new available server threads on DEBUG
level. If mlcp decides to scale-out or scale-in, the assigned or deducted threads for each input split
will also be logged on DEBUG level.

The following messages are an example of common log messages a user may get in an
auto-scaling process. Timestamps have been removed.

DEBUG contentpump.ThreadManager: Initial thread pool size: 32

DEBUG contentpump.ThreadManager: Thread pool will auto-scale based on
available server threads.

DEBUG contentpump.ThreadManager: Running with MultithreadedMapper.
Initial thread count for split #0: 11

DEBUG contentpump.ThreadManager: Running with MultithreadedMapper.
Initial thread count for split #1: 11

DEBUG contentpump.ThreadManager: Running with MultithreadedMapper.
Initial thread count for split #2: 10

INFO contentpump.LocalJobRunner: completed 0%

DEBUG contentpump.ThreadManager: New available server threads: 32

DEBUG contentpump.ThreadManager: New available server threads: 32

DEBUG contentpump.ThreadManager: New available server threads: 16

INFO contentpump.ThreadManager: Thread pool is scaling-in. New thread
pool size: 16

DEBUG contentpump.ThreadManager: Running with MultithreadedMapper. New
thread count for split #0: 6

DEBUG contentpump.ThreadManager: Running with MultithreadedMapper. New
thread count for split #1: 5

DEBUG contentpump.ThreadManager: Running with MultithreadedMapper. New
thread count for split #2: 5

DEBUG contentpump.ThreadManager: New available server threads: 16

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 83

4.19 Import Command Line Options
This section summarizes the command line options available with the mlcp import command. The
following command line options define your connection to MarkLogic:

The following table lists command line options that define the characteristics of the import
operation:

Option Description

-host comma-list Required. A comma separated list of hosts
through which mlcp can connect to the destina-
tion MarkLogic Server. You must specify at least
one host. For more details, see “How mlcp Uses
the Host List” on page 75.

-port number Port number of the destination MarkLogic Server.
There should be an XDBC App Server on this
port. Default: 8000.

-username string MarkLogic Server user with which to import doc-
uments. Required, unless using Kerberos authen-
tication.

-password string Password for the MarkLogic Server user speci-
fied with -username. Required, unless using Ker-
beros authentication.

Option Description

-aggregate_record_element string When splitting an aggregate input file into multi-
ple documents, the name of the element to use as
the output document root. Default: The first
child element under the root element.

-aggregate_record_namespace string The namespace of the element specified by
-aggregate_record_element_name. Default: No
namespace.

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 84

-aggregate_uri_id string Deprecated. Use -uri_id instead.

When splitting an aggregate input file into multi-
ple documents, the element or attribute name
within the document root to use as the document
URI. Default: In local mode, hashcode-seqnum,
where the hashcode is derived from the split
number; in distribute mode, taskid-seqnum.

-batch_size number The number of documents to process in a single
request to MarkLogic Server. Default: 100.
Maximum: 200.

-collection_filter comma-list A comma-separated list of collection URIs.
Only usable with -input_file_type forest.
mlcp extracts only documents in these collec-
tions. This option can be combined with other
filter options. Default: Import all documents.

-content_encoding string The character encoding of input documents
when -input_file_type is documents, aggre-
gates, delimited_text, or rdf. The option value
must be a character set name accepted by your
JVM; see java.nio.charset.Charset. Default:
UTF-8. Set to system to use the platform default
encoding for the host on which mlcp runs.

-copy_collections boolean When importing documents from an archive,
whether to copy document collections from the
source archive to the destination. Only applies
when -input_file_type is archive or forest.
Default: true.

-copy_metadata boolean When importing documents from an archive,
whether to copy document key-value metadata
from the source archive to the destination. Only
applies when -input_file_type is archive or
forest. Default: true.

-copy_permissions boolean When importing documents from an archive,
whether to copy document permissions from the
source archive to the destination. Only applies
with -input_file_type archive. Default: true.

Option Description

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 85

-copy_properties boolean When importing documents from an archive,
whether to copy document properties from the
source archive to the destination. Only applies
with -input_file_type archive. Default: true.

-copy_quality boolean When importing documents from an archive,
whether to copy document quality from the
source archive to the destination. Only applies
when -input_file_type is archive or forest.
Default: true.

-data_type comma-list When importing content with -input_file_type
delimited_text and -document_type json, use
this option to specify the data type (string, num-
ber, or boolean) to give to specific fields. The
option value must be a comma separated list of
name,datatype pairs, such as “a,number,b,bool-
ean”. Default: All fields have string type. For
details, see “Controlling Data Type in JSON
Output” on page 43.

-database string The name of the destination database. Default:
The database associated with the destination
App Server identified by -host and -port.

-delimiter character When importing content with -input_file_type
delimited_text, the delimiting character.
Default: comma (,).

-delimited_root_name string When importing content with -input_file_type
delimited_text, the local name of the document
root element. Default: root.

-delimited_uri_id string Deprecated. use -uri_id instead.

When importing content -input_file_type
delimited_text, the column name that
contributes to the id portion of the URI for
inserted documents. Default: The first column.

Option Description

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 86

-directory_filter comma-list A comma-separated list of database directory
names. Only usable with
-input_file_type forest. mlcp extracts only
documents from these directories, plus related
metadata. Directory names should usually end
with “/”. This option can be combined with other
filter options. Default: Import all documents.

-document_type string The type of document to create when
-input_file_type is documents, sequencefile or
delimited_text. Accepted values: mixed (docu-
ments only), xml, json, text, binary. Default:
mixed for documents, xml for sequencefile, and
xml for delimited_text.

-fastload boolean Whether or not to force optimal performance,
even at the risk of creating duplicate document
URIs. See “Time vs. Correctness: Understanding
-fastload Tradeoffs” on page 52. Default: false.

-filename_as_collection boolean Add each loaded document to a collection corre-
sponding to the name of the input file. You can-
not use this option when -input_file_type is
rdf or forest. Useful when splitting an input file
into multiple documents. If the filename con-
tains characters not permitted in a URI, those
characters are URI encoded. Default: false.

-generate_uri boolean When importing content with -input_file_type
delimited_text, or -input_file_type
delimited_json, whether or not MarkLogic
Server should automatically generate document
URIs. Default: false for delimited_text, true
for delimited_json. For details, see “Default
Document URI Construction” on page 29.

-archive_metadata_optional boolean When importing documents from a database
archive, whether or not to ignore missing meta-
data files. If this is false and the archive con-
tains no metadata, an error occurs. Default:
false.

-input_compressed boolean Whether or not the source data is compressed.
Default: false.

Option Description

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 87

-input_compression_codec string When -input_compressed is true, the code used
for compression. Accepted values: zip, gzip.

-input_file_path string A regular expression describing the filesystem
location(s) to use for input. For details, see
“Regular Expression Syntax” on page 9.

-input_file_pattern string Load only input files that match this regular
expression from the path(s) matched by
-input_file_path. For details, see “Regular
Expression Syntax” on page 9. Default: Load all
files. This option is ignored when
-input_file_type is forest.

-input_file_type type The input file type. Accepted value: aggregates,
archive, delimited_text, delimited_json,
documents, forest, rdf, sequencefile. Default:
documents.

-max_split_size number When importing from files, the maximum num-
ber of bytes in one input split. Default: The max-
imum Long value (Long.MAX_VALUE).

-max_threads The maximum number of threads that run mlcp.
This command line option is optional.

-max_thread_percentage The maximum percentage (integer between 0
and 100) of available server threads used by
mlcp for import jobs. Default: 100.

-min_split_size number When importing from files, the minimum num-
ber of bytes in one input split. Default: 0.

-mode string Ingestion mode. Accepted values: local.

-modules string Specify the name of the modules database to use
when applying a server-side transformation.
Accepted values: filesystem or a modules data-
base name. Default: The modules database asso-
ciated with the App Server.

-modules_root string The modules root path to use when applying a
server-side transformation. Default: The mod-
ules root configured for the App Server. If you
also use -modules, then this path specifies the
modules root for that modules database.

Option Description

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 88

-namespace string The default namespace for all XML documents
created during loading.

-options_file string Specify an options file pathname from which to
read additional command line options. If you use
an options file, this option must appear first. For
details, see “Options File Syntax” on page 9.

-output_cleandir boolean Whether or not to delete all content in the output
database directory prior to loading. Default:
false.

-output_collections comma-list A comma separated list of collection URIs.
Loaded documents are added to these collec-
tions.

-output_directory string The destination database directory in which to
create the loaded documents. If the directory
exists, its contents are removed prior to ingest-
ing new documents. Using this option enables
-fastload by default, which can cause duplicate
URIs to be created. See “Time vs. Correctness:
Understanding -fastload Tradeoffs” on page 52.

-output_graph string Only usable with -input_file_type rdf. For
quad data, specifies the default graph for quads
that do not include an explicit graph label. For
other triple formats, specifies the graph into
which to load all triples. For details, see “Load-
ing Triples” on page 46.

-output_language string The xml:lang to associate with loaded docu-
ments.

-output_partition string The name of the database partition in which to
create documents. For details, see “How Assign-
ment Policy Affects Optimization” on page 54,
and Range Partitions or Query Partitions in the
Administrator’s Guide.

-output_override_graph string Only usable with -input_file_type rdf. The
graph into which to load all triples. For quads,
overrides any graph label in the quads. For
details, see “Loading Triples” on page 46.

Option Description

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 89

-output_permissions comma-list A comma separated list of (role,capability)
pairs to apply to loaded documents. Default: The
default permissions associated with the user
inserting the document. Example:
-output_permissions role1,read,role2,update

-output_quality string The quality of loaded documents. Default: 0.

-output_uri_prefix string Specify a prefix to prepend to the default URI.
Used to construct output document URIs. For
details, see “Controlling Database URIs During
Ingestion” on page 29.

-output_uri_replace comma-list A comma separated list of (regex,string) pairs
that define string replacements to apply to the
URIs of documents added to the database. The
replacement strings must be enclosed in single
quotes. For example, -output_uri_replace
"regex1,'string1',regext2,'string2'"

-output_uri_suffix string Specify a suffix to append to the default URI
Used to construct output document URIs. For
details, see “Controlling Database URIs During
Ingestion” on page 29.

-polling_init_delay The initial delay (in minutes) before mlcp starts
sending polling request to check the available
server threads. Default: 1.

-polling_period The time interval (in minutes) mlcp sends poll-
ing request to check the current available server
threads. Default: 1.

-restrict_hosts boolean Restrict mlcp to connect to MarkLogic only
through the hosts listed in the -host option. For
more details, see “Restricting the Hosts mlcp
Uses to Connect to MarkLogic” on page 75.

-split_input boolean Whether or not to divide input data into logical
chunks to support more concurrency. Only sup-
ported when -input_file_type is one of the fol-
lowing: delimited_text. Default: false for local
mode. Data that contains multi-byte characters
must be UTF-8-encoded to use this option. For
details, see “Improving Throughput with
-split_input” on page 57.

Option Description

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 90

-ssl boolean Enable/disable SSL secured communication
with MarkLogic. Default: false. If you set this
option to true, your App Server must be SSL
enabled. For details, see “Connecting to Mark-
Logic Using SSL” on page 15.

-ssl_protocol string Specify the protocol mlcp should use when cre-
ating an SSL connection to MarkLogic. You
must include this option if you use the -ssl
option to connect to an App Server configured to
disable MarkLogic’s default protocol (TLSv1.2).
Allowed values: tls, tlsv1, tlsv1.1, tlsv1.2.
Default: TLSv1.2.

-keystore_path string Path to a Java KeyStore containing the User Pri-
vate Key(s) and Certificate(s); if available mlcp
will select the first available certificate from the
KeyStore that satisfy the TLS Certificate
Request from the MarkLogic Server.
Can be passed along with the existing -ssl
option.

-keystore_password string Password to a Java KeyStore containing the
User Private Key(s) and Certificate(s); if avail-
able mlcp will select the first available certifi-
cate from the KeyStore that satisfy the TLS
Certificate Request from the MarkLogic Server.
Can be passed along with the existing -ssl
option.

-truststore_path string Path to a Java TrustStore containing any neces-
sary CA Certificates needed to verify the TLS
Server Authentication connection. If no Trust-
Store is provided the default TrustStore used by
the existing -ssl parameter is used.
Can be passed along with the existing -ssl
option.

-truststore_passwd string Password to a Java TrustStore containing any
necessary CA Certificates needed to verify the
TLS Server Authentication connection. If no
TrustStore is provided the default TrustStore
used by the existing -ssl parameter is used.
Can be passed along with the existing -ssl
option.

Option Description

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 91

-streaming boolean Whether or not to stream documents to Mark-
Logic Server. Applies only when
-input_file_type is documents.

-temporal_collection string The temporal collection into which the temporal
documents are to be loaded. For details on load-
ing temporal documents into MarkLogic, see
Using MarkLogic Content Pump (MLCP) to Load

Temporal Documents in the Temporal Developer’s
Guide.

-thread_count number The number of threads to spawn for concurrent
loading.

Instead of using 4 as the default thread count
prior to 10.0-4.2, mlcp now conducts initial poll-
ing to identify the available server threads on the
port that handles mlcp requests. Mlcp then uses
this value as the default thread count. Users can
overwrite it by specifying -thread_count in the
command line.

-thread_count_per_split number The maximum number of threads that can be
assigned to each split.

If you specify -thread_count_per_split, each
input split will run with the specified number.

The total number of thread count, however, is
controlled by the newly calculated thread count
or -thread_count if it is specified.

Option Description

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 92

-tolerate_errors boolean NOTE: This option is deprecated, ignored, and
will be removed in a future release. mlcp always
behaves as if -tolerate_errors is true.

Applicable only when -batch_size is greater
than 1. When this option is true and batch size is
greater than 1, if an error occurs for one or more
documents during loading, only the erroneous
documents are skipped; all other documents are
inserted into the database. When this option is
false or batch size is 1, errors during insertion
can cause all the inserts in the current batch to be
rolled back. Default: false.

-transform_function string The local name of a custom content transforma-
tion function installed on MarkLogic Server.
Ignored if -transform_module is not specified.
Default: transform. For details, see “Transform-
ing Content During Ingestion” on page 58.

-transform_module string The path in the modules database or modules
directory of a custom content transformation
function installed on MarkLogic Server. This
option is required to enable a custom transfor-
mation. For details, see “Transforming Content
During Ingestion” on page 58.

-transform_namespace string The namespace URI of the custom content trans-
formation function named by
-transform_function. Ignored if
-transform_module is not specified. Default: no
namespace. For details, see “Transforming Con-
tent During Ingestion” on page 58.

-transform_param string Optional extra data to pass through to a custom
transformation function. Ignored if
-transform_module is not specified. Default: no
namespace. For details, see “Transforming Con-
tent During Ingestion” on page 58.

-transaction_size number The number of requests to MarkLogic Server per
transaction. Default: 1. Maximum:
4000/actualBatchSize.

Option Description

MarkLogic Server Importing Content Into MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 93

We do not recommend using concurrent mlcp jobs. Regardless of the version, mlcp doesn’t
support concurrent jobs if mlcp is importing from/exporting to the same data file. In addition,
beginning in 10.0-4.2, each mlcp job uses the maximum number of threads available on the server
as the default thread count (more about this can be found in the 10.0-4.2 release notes). Therefore,
using concurrent mlcp jobs will not improve performance, as one job is already using full
concurrent capacity.

-type_filter comma-list A comma-separated list of document types.
Only usable with -input_file_type forest.
mlcp imports only documents with these types.
This option can be combined with other filter
options. Default: Import all documents.

-uri_id string Specify a field, XML element name, or JSON
property name to use as the basis of the output
document URIs when importing delimited text,
aggregate XML, or line-delimited JSON data.

With -input_file_type aggregates or
-input_file_type delimited_json, the element,
attribute, or property name within the document
to use as the document URI. Default: None; the
URI is based on the file name, as described in
“Default Document URI Construction” on
page 29.

With -input_file_type delimited_text, the
column name that contributes to the id portion of
the URI for inserted documents. Default: The
first column.

-xml_repair_level string The degree of repair to attempt on XML docu-
ments in order to create well-formed XML.
Accepted values: default, full, none. Default:
default, which depends on the configured
MarkLogic Server default XQuery version: In
XQuery 1.0 and 1.0-ml the default is none. In
XQuery 0.9-ml the default is full.

Option Description

MarkLogic Server Exporting Content from MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 94

5.0 Exporting Content from MarkLogic Server
118

You can export content in a MarkLogic Server database to files or an archive. Use archives to
copy content from one MarkLogic Server database to another. Output can be written to the native
filesystem.

For a list of export related command line options, see “Export Command Line Options” on
page 114.

You can also use mlcp to extract documents directly from offline forests. For details, see “Using
Direct Access to Extract or Copy Documents” on page 128.

This section covers the following topics:

• Exporting Documents as Files

• Exporting Documents to a Compressed File

• Exporting to an Archive

• How URI Decoding Affects Output File Names

• Redacting Content During Export or Copy Operations

• Controlling What is Exported, Copied, or Extracted

• Export Command Line Options

5.1 Exporting Documents as Files
Use the mlcp export command to export documents in their original format as files on the native
filesystem. For example, you can export an XML document as a text file containing XML, or a
binary document as a JPG image.

To export documents from a database as files:

1. Select the files to export. For details, see “Filtering Document Exports” on page 98.

• To select documents in one or more collections, set -collection_filter to a
comma separated list of collection URIs.

• To select documents in one or more database directories, set -directory_filter to
a comma separated list of directory URIs.

• To select documents matching an XPath expression, use -document_selector. To
use namespace prefixes in the XPath expression, define the prefix binding using
-path_namespace.

• To select documents matching a query, use -query_filter, alone or in combination
with one of the other filter options. False postives are possible; for details, see
“Understanding When Filters Are Accurate” on page 100.

MarkLogic Server Exporting Content from MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 95

• To select all documents in the database, leave -collection_filter,
-directory_filter, -document_selector, and -query_filter unset.

2. Set -output_file_path to the destination file or directory on the native filesystem.

3. To prettyprint exported XML when using local mode, set -indented to true.

Directory names specified with -directory_filter should end with “/”.

When using -document_selector to filter by XPath expression, you can define namespace
prefixes using the -path_namespace option. For example:

-path_namespace 'ex1,http://marklogic.com/example,ex2,http://my/ex2'
-document_selector '/ex1:elem[ex2:attr > 10]'

Note: Document URIs are URI-decoded before filesystem directories or filenames are
constructed for them. For details, see “How URI Decoding Affects Output File
Names” on page 97.

For a full list of export options, see “Export Command Line Options” on page 114.

The following example exports selected documents in the database to the native filesystem
directory /space/mlcp/export/files. The directory filter selects only the documents in /plays.

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh export -host localhost -port 8000 -username user \
 -password password -mode local -output_file_path \
 /space/mlcp/export/files -directory_filter /plays/

5.2 Exporting Documents to a Compressed File
Use the mlcp export command to export documents in their original format as files in a
compressed ZIP file on the native filesystem.

To export documents from a database as files:

1. Select the files to export. For details, see “Filtering Document Exports” on page 98.

• To select documents in one or more collections, set -collection_filter to a
comma separated list of collection URIs.

• To select documents in one or more database directories, set -directory_filter to
a comma separated list of directory URIs.

• To select documents matching an XPath expression, use -document_selector. To
use namespace prefixes in the XPath expression, define the prefix binding using
-path_namespace.

MarkLogic Server Exporting Content from MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 96

• To select documents matching a query, use -query_filter, alone or in combination
with one of the other filter options. False postives are possible; for details, see
“Understanding When Filters Are Accurate” on page 100.

• To select all documents in the database, leave -collection_filter,
-directory_filter,-document_selector, and -query_filter unset.

2. Set -output_file_path to the destination directory on the native filesystem. This directory
must not already exist.

3. Set -compress to true.

4. To prettyprint exported XML when using local mode, set -indented to true.

For a full list of export options, see “Export Command Line Options” on page 114.

The zip files created by export have filenames of the form timestamp-seqnum.zip.

The following example exports all the documents in the database to the directory
/space/examples/export on the native filesystem.

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh export -host localhost -port 8000 -username user \
 -password password -mode local \
 -output_file_path /space/examples/export -compress true

$ ls /space/examples/export
20120823135307-0700-000000-XML.zip

5.3 Exporting to an Archive
Use the mlcp export command with an output type of archive to create a database archive that
includes content and metadata. You can use the mlcp import command to copy the archive to
another database or restore database contents.

To export database content to an archive file with mlcp:

1. Select the documents to export. For details, see “Filtering Archive and Copy Contents” on
page 99.

• To select documents in one or more collections, set -collection_filter to a
comma separated list of collection URIs.

• To select documents in one or more database directories, set -directory_filter to
a comma separated list of directory URIs.

• To select documents matching an XPath expression, use -document_selector. To
use namespace prefixes in the XPath expression, define the prefix binding using
-path_namespace.

MarkLogic Server Exporting Content from MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 97

• To select documents matching a query, use -query_filter, alone or in combination
with one of the other filter options. False postives are possible; for details, see
“Understanding When Filters Are Accurate” on page 100.

• To select all documents in the database, leave -collection_filter,
-directory_filter, -document_selector, and -query_filter unset.

2. Set -output_file_path to the destination directory on the native filesystem. This directory
must not already exist.

3. Set -output_type to archive.

4. If you want to exclude some or all document metadata from the archive:

• Set -copy_collections to false to exclude document collections metadata.

• Set -copy_permissions to false to exclude document permissions metadata.

• Set -copy_properties to false to exclude document properties.

• Set -copy_quality to false to exclude document quality metadata.

• Set -copy_metadata to false to exclude document key-value metadata.

For a full list of export options, see “Export Command Line Options” on page 114.

The following example exports all documents and metadata to the directory
/space/examples/exported. After export, the directory contains one or more compressed archive
files.

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh export -host localhost -port 8000 -username user \
 -password password -mode local \
 -output_file_path /space/examples/exported -output_type archive

The following example exports only documents in the database directory /plays/, including their
collections, properties, and quality, but excluding permissions:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh export -host localhost -port 8000 -username user \
 -password password -mode local \
 -output_file_path /space/examples/exported -output_type archive \
 -copy_permissions false -directory_filter /plays/

You can use the mlcp import command to import an archive into a database. For details, see
“Loading Content and Metadata From an Archive” on page 37.

5.4 How URI Decoding Affects Output File Names
This discussion only applies when -output_type is document.

MarkLogic Server Exporting Content from MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 98

When you export a document to a file (or to a file in a compressed file), the output file name is
based on the document URI. The document URI is decoded to form the file name. For example, if
the document URI is “foo%20bar.xml”, then the output file name is “foo bar.xml”.

If the document URI does not conform to the standard URI syntax of RFC 3986, decoding may
fail, resulting in unexpected file names. For example, if the document URI contains unescaped
special characters then the raw URI may be used.

If the document URI contains a scheme, the scheme is removed. If the URI contains both a
scheme and an authority, both are removed. For example, if the document URI is
“file:foo/bar.xml”, then the output file path is output_file_path/foo/bar.xml. If the document
URI is “http://marklogic.com/examples/bar.xml” (contains a scheme and an authority), then the
output file path is output_file_path/examples/bar.xml.

If the document URI includes directory steps, then corresponding output subdirectories are
created. For example, if the document URI is “/foo/bar.xml”, then the output file path is
output_file_path/foo/bar.xml.

5.5 Controlling What is Exported, Copied, or Extracted
By default, mlcp exports all documents or all documents and metadata in the database, depending
on whether you are exporting in document or archive format or copying the database. Several
command line options are available to enable customization. This section covers the following
topics:

• Filtering Document Exports

• Filtering Archive and Copy Contents

• Understanding When Filters Are Accurate

• Example: Exporting Documents Matching a Query

• Filtering Forest Contents

• Extracting a Consistent Database Snapshot

5.5.1 Filtering Document Exports
This section covers options available for filtering what is exported by the mlcp export command
when -output_type is document.

By default, mlcp exports all documents in the database. That is, mlcp exports the equivalent of
fn:collection(). The following options allow you to filter what is exported. These options are
mutually exclusive.

• -directory_filter - export only the documents in the listed database directories. You
cannot use this option with -collection_filter or -document-selector.

MarkLogic Server Exporting Content from MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 99

• -collection_filter - export only the documents in the listed collections. You cannot use
this option with -directory_filter or -document_selector.

• -document_selector - export only documents selected by the specified XPath expression.
You cannot use this option with -directory_filter or -collection_filter. Use
-path_namespace to define namespace prefixes.

• -query_filter - export only documents matched by the specified cts query. You can use
this option alone or in combination with a directory, collection or document selector filter.
You can only use this filter with the export and copy commands. Results may not be
accurate; for details, see “Understanding When Filters Are Accurate” on page 100.

Note: When filtering with a document selector, the XPath filtering expression should
select fragment roots only. An XPath expression that selects nodes below the root
is very inefficient.

When using -document_selector to filter by XPath expression, you can define namespace prefixes
using the -path_namespace option. For example:

-path_namespace 'ex1,http://marklogic.com/example,ex2,http://my/ex2'
-document_selector '/ex1:elem[ex2:attr > 10]'

5.5.2 Filtering Archive and Copy Contents
This section covers options available for controlling what is exported by mlcp export when
-output_type is archive, or what is copied by the mlcp copy command.

By default, all documents and metadata are exported/copied. The following options allow you to
modify this behavior:

• -directory_filter - export/copy only the documents in the listed database directories,
including related metadata. You cannot use this option with -collection_filter or
-document_selector.

• -collection_filter - export/copy only the documents in the listed collections, including
related metadata. You cannot use this options with -directory_filter or
-document_selector.

• -document_selector - export/copy only documents selected by the specified XPath
expression.You cannot use this option with -directory_filter or -collection_filter.
Use -path_namespace to define namespace prefixes.

• -query_filter - export/copy only documents matched by the specified cts query. You can
use this option alone or in combination with a directory, collection or document selector
filter. Results may not be accurate; for details, see “Understanding When Filters Are
Accurate” on page 100.

• -copy_collections - whether to include collection metadata

• -copy_permissions - whether to include permissions metadata

MarkLogic Server Exporting Content from MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 100

• -copy_properties - whether to include naked and document properties

• -copy_quality - whether to include document quality metadata

• -copy_metadata - whether to include document key-value metadata

If you set all the -copy_* options to false when exporting to an archive, the archive contains no
metadata. When you import an archive with no metadata, you must set
-archive_metadata_optional to true.

Note: When filtering with a document selector, the XPath filtering expression should
select fragment roots only. An XPath expression that selects nodes below the root
is very inefficient.

When using -document_selector to filter by XPath expression, you can define namespace
prefixes using the -path_namespace option. For example:

-path_namespace 'ex1,http://marklogic.com/example,ex2,http://my/ex2'
-document_selector '/ex1:elem[ex2:attr > 10]'

5.5.3 Understanding When Filters Are Accurate
When you use -directory_filter, -collection_filter, or -document_selector without
-query_filter, the set of documents selected by mlcp exactly matches your filtering criteria.

The query you supply with -query_filter is used in an unfiltered search, which means there can
be false positives among the selected documents. When you combine -query_filter with
-directory_filter, -collection_filter, or -document_selector, mlcp might select documents
that do not meet your directory, collection, or path filter criteria.

The interaction between -query_filter and the other filtering options is similar to the following.
In this example, the search can match documents that are not in the “parts” collection.

-collection_filter parts
-query_filter yourSerializedQuery

==> selects the documents to export similar to the following:

cts:search(
 fn:collection("parts"),
 yourQuery,
 ("unfiltered"))

For a complete example using -query_filter, see “Example: Exporting Documents Matching a
Query” on page 101.

To learn more about the implications of unfiltered searches, see Fast Pagination and Unfiltered

Searches in the Query Performance and Tuning Guide.

MarkLogic Server Exporting Content from MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 101

5.5.4 Example: Exporting Documents Matching a Query
This example demonstrates how to use -query_filter to select documents for export. You can
apply the same technique to filtering the source documents when copying documents from one
database to another.

The -query_filter option accepts a serialized XML cts:query or JSON cts.query as its value. For
example, the following table shows the serialization of a cts word query, prettyprinted for
readability:

For details on how to obtain the serialized representation of a cts query, see Serializations of

cts:query Constructors in the Search Developer’s Guide.

Using an options file is recommended when using -query_filter because both XML and JSON
serialized queries contain quotes and other characters that have special meaning to the Unix and
Windows command shells, making it challenging to properly escape the query. If you use
-query_filter on the command line, you must quote the serialized query and may need to do
additional special character escaping.

For example, you can create an options file similar to the following. It should contain at least 2
lines: One for the option name and one for the serialized query. You can include other options in
the file. For details, see “Options File Syntax” on page 9.

Format Example

XML <cts:word-query xmlns:cts="http://marklogic.com/cts">
 <cts:text xml:lang="en">mark</cts:text>
</cts:word-query>

JSON {"wordQuery":{
 "text":["huck"],
 "options":["lang=en"]
}}

Format Options File Contents

XML -query_filter
<cts:word-query xmlns:cts="http://marklogic.com/cts"><cts:text
xml:lang="en">mark</cts:text></cts:word-query>

JSON -query_filter
{"wordQuery":{"text":["huck"], "options":["lang=en"]}}

MarkLogic Server Exporting Content from MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 102

If you save the above option in a file named “query_filter.txt”, then the following mlcp command
exports files from the database that contain the word “huck”:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh export -host localhost -port 8000 -username user \
 -password password -mode local -output_file_path \
 /space/mlcp/export/files -options_file query_filter.txt

You can combine -query_filter with another filtering option. For example, the following
command combines the query with a collection filter. The command exports only documents
containing the word “huck” in the collection named “classics”:

$ mlcp.sh export -host localhost -port 8000 -username user \
 -password password -mode local -output_file_path \
 /space/mlcp/export/files -options_file query_filter.txt
 -collection_filter classics

Note: The documents selected by -query_filter can include false positives, including
documents that do not match other filter criteria. For details, see “Understanding
When Filters Are Accurate” on page 100.

MarkLogic Server Exporting Content from MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 103

The following example demonstrates generating a serialized XML cts:and-query or JSON
cts.andQuery using the wrapper technique. Copy either example into Query Console, select the
appropriate query type, and run it to see the output.

Language Example

XQuery xquery version "1.0-ml";
let $query := cts:and-query((
 cts:word-query("mark"),
 cts:word-query("twain")
))
let $q := xdmp:quote(
 <query>{$query}</query>/*,
 <options xmlns="xdmp:quote"><indent>no</indent></options>
)
return $q

(: Output: (whitespace added for readability)
<cts:and-query xmlns:cts="http://marklogic.com/cts">
 <cts:word-query>
 <cts:text xml:lang="en">mark</cts:text>
 </cts:word-query>
 <cts:word-query>
 <cts:text xml:lang="en">twain</cts:text>
 </cts:word-query>
</cts:and-query>
:)

Server-Side
JavasScript

var wrapper =
 { query:
 cts.andQuery([
 cts.wordQuery("huck"),
 cts.wordQuery("tom")])
 };
xdmp.quote(wrapper.query.toObject())

/* Output: (whitespace added for readability)
{"andQuery":{
 "queries":[
 {"wordQuery":{"text":["huck"], "options":["lang=en"]}},
 {"wordQuery":{"text":["tom"], "options":["lang=en"]}}
]
}}
*/

MarkLogic Server Exporting Content from MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 104

Notice that in the XML example, the xdmp:quote “indent” option is used to disable XML
prettyprinting, making the output better suited for inclusion on the mlcp command line:

xdmp:quote(
 <query>{$query}</query>/*,
 <options xmlns="xdmp:quote"><indent>no</indent></options>
)

Notice that in the JavaScript example, it is necessary to call toObject on the wrapped query to get
the proper JSON serialization. Using toObject converts the value to a JavaScript object which
xdmp.quote will serialize as JSON.

xdmp.quote(wrapper.query.toObject())

If you want to test your serialized query before using it with mlcp, you can round-trip your XML
query with cts:search in XQuery or your JSON query with cts.search or the JSearch API in
Server-Side JavaScript, as shown in the following examples.

Note that xdmp:unquote returns a document node in XQuery, so you need to use XPath to address
the underlying query element root node when reconstructing the query:

Language Example

XQuery xquery version "1.0-ml";
let $wrapper :=
 <query>{
 cts:and-query((
 cts:word-query("tom"),
 cts:word-query("huck")))
 }</query>
let $q := xdmp:quote(
 $wrapper/*,
 <options xmlns="xdmp:quote"><indent>no</indent></options>)
return cts:search(
 fn:doc(),
 cts:query(xdmp:unquote($q)/*[1])
)

Server-Side
JavasScript

var wrapper =
 { query:
 cts.andQuery([
 cts.wordQuery("huck"),
 cts.wordQuery("tom")])
 };
var serializedQ = xdmp.quote(wrapper.query.toObject())
cts.search(
 cts.query(fn.head(xdmp.unquote(serializedQ)).root))

MarkLogic Server Exporting Content from MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 105

cts:query(xdmp:unquote($q)/*[1])

Similarly, xdmp.unquote in JavaScript returns a Sequence on document nodes, so you must
“dereference” both the iterator and the document node when reconstructing the query:

cts.query(fn.head(xdmp.unquote(serializedQ)).root)

5.5.5 Filtering Forest Contents
This section covers options available for filtering what is extracted from a forest when you use
Direct Access. That is, when you use the mlcp import command with -input_file_type forest
or the mlcp extract command.

By default, mlcp extracts all documents in the input forests. That is, mlcp extracts the equivalent
of fn:collection(). The following options allow you to filter what is extracted from a forest with
Direct Access. These options can be combined.

• -type_filter: Extract only documents with the listed content type (text, XML, or binary).

• -directory_filter: Extract only the documents in the listed database directories.

• -collection_filter: Extract only the documents in the listed collections.

For example, following combination of options extracts only XML documents in the collections
named “2004” or “2005”.

mlcp.sh extract -type_filter xml -collection_filter "2004,2005" ...

Similarly, the following options import only binary documents in the source database directory
/images/:

mlcp.sh import -input_file_type forest \
 -type_filter binary -directory_filter /images/

When you use Direct Access, filtering is performed in the process that reads the forest files rather
than being performed by MarkLogic Server. For example, in local mode, filters are applied by
mlcp on the host where you run it.

In addition, filtering cannot be applied until after a document is read from the forest. When you
import or extract files from a forest file, mlcp must “touch” every document in the forest.

For details, see “Using Direct Access to Extract or Copy Documents” on page 128.

MarkLogic Server Exporting Content from MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 106

5.5.6 Extracting a Consistent Database Snapshot
By default, when you export or copy database contents, content is extracted from the source
database at multiple points in time. You get whatever is in the database when mlcp accesses a
given document. If the database contents are changing while the job runs, the results are not
deterministic relative to the starting time of the job. For example, if a new document is inserted
into the database while an export job is running, it might or might not be included in the export.

If you require a consistent snapshot of the database contents during an export or copy, use the
-snapshot option to force all documents to be read from the database at a consistent point in time.
The submission time of the job is used as the timestamp. Any changes to the database occurring
after this time are not reflected in the output.

If a merge occurs while exporting or copying a consistent snapshot, and the merge eliminates a
fragment that is subsequently accessed by the mlcp job, you may get an XDMP-OLDSTAMP error. If
this occurs, the documents included in the same batch or task may not be included in the
export/copy result. If the source database is on MarkLogic Server 7 or later, you may be able to
work around this problem by setting the merge timestamp to retain fragments for a time period
longer than the expected running time of the job; for details, see Understanding and Controlling

Database Merges in the Administrator’s Guide.

5.6 Redacting Content During Export or Copy Operations
Redaction is the process of eliminating or obscuring portions of a document when retrieving the
document from MarkLogic. For example, you can eliminate or mask sensitive personal
information such as credit card numbers, phone numbers, or email addresses from documents.
You can only redact document content, not document properties.

Note: Using redaction requires the Advanced Security License option.

Redaction support in MarkLogic is covered in detail in Redacting Document Content in the
Application Developer’s Guide. This section describes how to use mlcp as the redaction driver.
This section includes the following topics:

• Basic Steps for Redacting Documents

• Example: Using mlcp for Redaction

5.6.1 Basic Steps for Redacting Documents
Use the -redaction option of mlcp to apply redaction rules to an export or copy operation. This
option accepts a comma-separated list of redaction rule collection URIs. For example:

-redaction "pii-rules,sec-rules"

Before you can use redaction, you must install one or more redaction rule sets in the Schemas
database. For details on defining and installing redaction rules, see Redacting Document Content in
the Application Developer’s Guide.

MarkLogic Server Exporting Content from MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 107

Preparing to redact documents with mlcp requires the following steps. For a complete example,
see “Example: Using mlcp for Redaction” on page 107.

1. Install one or more redaction rules in the Schemas database. Each rule must be part of at
least one collection. For details, see Defining Redaction Rules and Installing Redaction Rules
in the Application Developer’s Guide.

2. If you create a rule that uses a user-defined redaction function, install the implementation
of your redaction function in the modules database associated with the App Server you
will connect to using mlcp. For details, see User-Defined Redaction Functions in the
Application Developer’s Guide.

3. Add the -redaction option to your mlcp command line. For example, the following
command applies the rules in the collections “pii-rules” and “sec-rules” to all exported
documents.

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh export -host localhost -port 8000 -username user \
 -password password -mode local -output_file_path \
 /space/mlcp/export/files -directory_filter /people/ \
 -redaction "pii-rules,sec-rules"

The -redaction option works similarly for copy operations. For details, see “Redacting Content
During a Copy” on page 120.

The user who extracts redacted documents must have read permissions on the source documents
and the rules, but need not be able to modify the rule collection or rule definitions. For details, see
Security Considerations in Application Developer’s Guide.

The following behaviors apply when exceptional conditions occur. You should be aware of these
behaviors so you understand when content might not be redacted as expected:

• If a rule collection is empty, mlcp issues a warning and continues with the job.

• If any of the rules contain errors, an error is reported and mlcp aborts the export or copy
operation.

• If a rule is valid, but an error occurs when applying the rule, the rule is skipped for the
current document and a warning is logged. The job continues.

5.6.2 Example: Using mlcp for Redaction
This example walks you through using mlcp to install and apply redaction rules based on the
built-in redaction functions. For a similar example using XQuery and Query console, see Example:

Getting Started With Redaction in the Application Developer’s Guide.

MarkLogic Server Exporting Content from MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 108

The example has the following parts:

• Creating a Work Area

• Installing the Source Documents

• Installing the Redaction Rules

• Understanding the Example Rules

• Applying the Redaction Rules

This example uses rules based on built-in redaction functions. For an example of using
user-defined redaction functions, see User-Defined Redaction Functions in the Application
Developer’s Guide.

5.6.2.1 Creating a Work Area
This example assumes the following directory hierarchy:

redact-gs/
 data/
 rules/

The data/ directory will hold the source documents. The rules/ directory will hold redaction
rules. The example walks you through populating these directories and uploading the contents to
MarkLogic using mlcp in preparation for exporting a set of redacted documents with mlcp.

Create the required directories on Linux by running the following command in a location of your
choosing:

$ mkdir -p redact-gs/data redact-gs/rules

Create the required directories on Windows by running the following command in a location of
your choice:

>mkdir redact-gs\data redact-gs\rules

5.6.2.2 Installing the Source Documents
When you complete this exercise, the Documents database should contain the following
documents. The documents are inserted into a collection named “gs-samples” for easy reference.

• /redact-gs/sample1.xml

• /redact-gs/sample2.json

Follow the steps in this procedure to install two sample documents in the Documents database.

1. Change directory to the data directory you created in “Creating a Work Area” on
page 108. You should be in your redact-gs/data directory.

MarkLogic Server Exporting Content from MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 109

2. Copy the following text into a file named “sample1.xml”:

<personal>
 <name>Little Bopeep</name>
 <summary>Seeking lost sheep. Please call 123-456-7890.</summary>
 <id>12-3456789</id>
</personal>

3. Copy the following text into a file name “sample2.json”:

{"personal": {
 "name": "Jack Sprat",
 "summary": "Free nutrition advice! Call (234)567-8901 now!",
 "id": "45-6789123"
}}

4. Run the following mlcp command to insert the sample documents into the Documents
database. Modify the connection details as needed to match your environment.

$ mlcp.sh import -host localhost -port 8000 \
 -username user -password password -mode local \
 -input_file_path . \
 -output_uri_replace ".*/redact-gs/data/,'/redact-gs/'" \
 -output_collections "gs-samples"

You can use Query Console to explore the Documents database and confirm the upload.

The use of -output_uri_replace on the import command line replaces the portion of the default
URI that is based on the filesystem location with the fixed directory prefix “/rules/gs”. For more
details, see “Controlling Database URIs During Ingestion” on page 29.

5.6.2.3 Installing the Redaction Rules
Rules must be installed in the schemas database associated with your content database. Rules
must also be part of a collection before you can use them. This section installs rules in the
Schemas database, which is the default schemas database associated with the Documents
database.

When you complete this exercise, the Schemas database should contain the following documents.
The documents are inserted into a rule collection named “gs-rules”. Rules must be in a rule
collection before you can apply them.

• /rules/gs/redact-phone.xml

• /rules/gs/conceal-id.json

The rules installed in this step use the redact-us-phone and conceal built-in redaction functions. For
details on these and other built-in redaction functions, see Built-in Redaction Function Reference in
the Application Developer’s Guide.

MarkLogic Server Exporting Content from MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 110

Follow the steps in this procedure to install two sample rules in the Schemas database. For an
explanation of what the rules do, see “Understanding the Example Rules” on page 110.

1. Change directory to the rules directory you created in “Creating a Work Area” on
page 108. You should be in your redact-gs/rules directory.

2. Copy the following text into a file named “redact-phone.xml”.

<rule xml:lang="zxx" xmlns="http://marklogic.com/xdmp/redaction">
 <description>Obscure phone numbers.</description>
 <path>//summary</path>
 <method>
 <function>redact-us-phone</function>
 </method>
 <options>
 <level>partial</level>
 </options>
</rule>

3. Copy the following text into a file name “conceal-id.json”:

{ "rule": {
 "description": "Remove customer ids.",
 "path": "//id",
 "method": { "function": "conceal" }
}}

4. Run the following mlcp command to insert the rules into the Schemas database. Modify
the connection details as needed to match your environment.

$ mlcp.sh import -host localhost -port 8000 \
 -username user -password password -mode local \
 -database Schemas -input_file_path . \
 -output_uri_replace ".*/redact-gs/rules/,'/rules/gs/'" \
 -output_collections "gs-rules"

You can use Query Console to explore the Schemas database and confirm the upload.

The use of -output_uri_replace on the import command line replaces the portion of the default
URI that is based on the filesystem location with the fixed directory prefix “/rules/gs”. For more
details, see “Controlling Database URIs During Ingestion” on page 29.

5.6.2.4 Understanding the Example Rules
The XML rule installed in “Installing the Redaction Rules” on page 109 has the following form:

<rule xml:lang="zxx" xmlns="http://marklogic.com/xdmp/redaction">
 <description>Obscure phone numbers.</description>
 <path>//summary</path>
 <method>

MarkLogic Server Exporting Content from MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 111

 <function>redact-us-phone</function>
 </method>
 <options>
 <level>partial</level>
 </options>
</rule>

The rule elements have the following effect:

• description - Optional metadata for informational purposes.

• path - Apply the redaction function specified by the rule to nodes selected by the path
expression “//summary”.

• method - Use the built-in redaction function redact-us-phone to redact the value in a
summary XML element or JSON property. By default, this function replaces all digits in a
phone number by the character “#”. You can tell this is a built-in function because method
has no module child.

• options - Pass a level parameter value of “partial” to redact-us-phone, causing the
function to leave the last 4 digits of the value unchanged.

The expected result of applying this rule is that any text in the value of a node named “summary”
that matches the pattern of a US phone number will be replaced. The replacement value uses the
“#” number to replace all but the last 4 digits. For example, a value such as 123-456-7890 is
redacted to ###-###-7890. For more details, see redact-us-phone in the Application Developer’s
Guide.

The JSON rule installed in “Installing the Redaction Rules” on page 109 has the following form:

{ "rule": {
 "description": "Remove customer ids.",
 "path": "//id",
 "method": { "function": "conceal" }
}}

The rule properties have the following effect:

• description - Optional metadata for informational purposes.

• path - Apply the redaction function specified by the rule to nodes selected by the path
expression //id.

• method - Use the built-in redaction function conceal to redact the id XML element or
JSON property. This function will hide the nodes selected by path. You can tell this is a
built-in function because method has no module child.

MarkLogic Server Exporting Content from MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 112

The expected result of applying this rule is to remove nodes named id. For example, if //id
selects and XML element or JSON property, the element or property does not appear in the
redacted output. Note that, if //id selects array items in JSON, the items are eliminated, but the id
property might remain, depending on the structure of the document. For more details, see conceal
in the Application Developer’s Guide.

5.6.2.5 Applying the Redaction Rules
Run the following command from your redact-gs/ directory to export redacted versions of the
sample documents. Modify the connection details as needed to match your environment. A
collection filter (-collection_filter "gs-samples") is used to select the documents for
redaction and export.

$ mlcp.sh export -host localhost -port 8000 \
 -username user -password password -mode local \
 -collection_filter "gs-samples" \
 -output_file_path ./output/ \
 -redaction "gs-rules"

Running the export command saves the redacted documents to an output/ sub-directory. You
should have the following filesystem hierarch. The “extra” redact-gs sub-directory is created by
mlcp because the document URIs are of the form /redact-s/filename.

redact-gs/
 output/
 redact-gs/
 sample1.xml
 sample2.json

The following table shows the result of redacting the XML sample document. Notice that the
telephone number in the summary element has been partially redacted by the redact-us-phone
function. Also, the id element has been completely hidden by the conceal function. The affected
parts of the content are highlighted in the table.

Stage XML Content

Original
Document

<personal>
 <name>Little Bopeep</name>
 <summary>Seeking lost sheep. Please call 123-456-7890.</summary>
 <id>12-3456789</id>
</personal>

Redacted
Result

<personal>
 <name>Little Bopeep</name>
 <summary>Seeking lost sheep. Please call ###-###-7890.</summary>
</personal>

MarkLogic Server Exporting Content from MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 113

The following table shows the result of redacting the JSON sample document. Notice that the
telephone number in the summary property has been partially redacted by the redact-us-phone
function. Also, the id property has been completely hidden by the conceal function. The affected
parts of the content are highlighted in the table.

To redact documents when copying them between databases rather than exporting them, add the
-redaction option to the mlcp copy command line.

Stage JSON Content

Original
Document

{"personal": {
 "name": "Jack Sprat",
 "summary": "Free nutrition advice! Call (234)567-8901 now!",
 "id": "45-6789123"
}}

Redacted
Result

{"personal": {
 "name": "Jack Sprat",
 "summary": "Free nutrition advice! Call (###)###-8901 now!"
}}

MarkLogic Server Exporting Content from MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 114

5.7 Export Command Line Options
This section summarizes the command line options available with the mlcp export command. The
following command line options define your connection to MarkLogic:

The following table lists command line options that define the characteristics of the export
operation:

Option Description

-host comma-list Required. A comma separated list of hosts
through which mlcp can connect to the destina-
tion MarkLogic Server. You must specify at least
one host. For more details, see “How mlcp Uses
the Host List” on page 75.

-port number Port number of the source MarkLogic Server.
There should be an XDBC App Server on this
port. Default: 8000.

-username string MarkLogic Server user from which to export doc-
uments. Required, unless using Kerberos authen-
tication.

-password string Password for the MarkLogic Server user speci-
fied with -username. Required, unless using Ker-
beros authentication.

Option Description

-collection_filter comma-list A comma-separated list of collection URIs.
mlcp exports only documents in these collec-
tions, plus related metadata. This option may not
be combined with -directory_filter or
-document_selector. Default: All documents
and related metadata.

-compress boolean Whether or not to compress the output docu-
ment. Only applicable when -output_type is
document. Default: false.

MarkLogic Server Exporting Content from MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 115

-content_encoding string The character encoding of output documents
when -input_file_type is documents. The
option value must be a character set name
accepted by your JVM; see java.nio.char-
set.Charset. Default: UTF-8. Set to system to use
the platform default encoding for the host on
which mlcp runs.

-copy_collections boolean When exporting documents to an archive,
whether or not to copy collections to the destina-
tion. Default: true.

-copy_metadata boolean When exporting documents to an archive,
whether or not to copy key-value metadata to the
destination. Default: true.

-copy_permissions boolean When exporting documents to an archive,
whether or not to copy document permissions to
the destination. Default: true.

-copy_properties boolean When exporting documents to an archive,
whether or not to copy properties to the destina-
tion. Default: true.

-copy_quality boolean When exporting documents to an archive,
whether or not to copy document quality to the
destination. Default: true.

-database string The name of the source database. Default: The
database associated with the source App Server
identified by -host and -port.

-directory_filter comma-list A comma-separated list of database directory
names. mlcp exports only documents from these
directories, plus related metadata. Directory
names should usually end with “/”. This option
may not be combined with -collection_filter
or -document_selector. Default: All documents
and related metadata.

Option Description

MarkLogic Server Exporting Content from MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 116

-document_selector string Specifies an XPath expression used to select
which documents are exported from the data-
base. The XPath expression should select frag-
ment roots. This option may not be combined
with -directory_filter or -collection_filter.
Default: All documents and related metadata.

-indented boolean Whether to pretty-print XML output. Default:
false.

-max_split_size number The maximum number of document fragments
processed per split. Default: 20000 in local
mode.

-max_threads The maximum number of threads that run mlcp.
This command line option is optional.

-mode string Export mode. Accepted values: local.

-options_file string Specify an options file pathname from which to
read additional command line options. If you use
an options file, this option must appear first. For
details, see “Options File Syntax” on page 9.

-output_file_path string Destination directory where the archive or docu-
ments are saved. The directory must not already
exist.

-output_type string The type of output to produce. Accepted values:
document, archive. Default: document.

-path_namespace comma-list Specifies one or more namespace prefix bind-
ings for namespace prefixes usable in path
expressions passed to -document_selector. The
list items should be alternating pairs of prefix
names and namespace URIs, such as
'pfx1,http://my/ns1,pfx2,http://my/ns2'.

-query_filter string Specifies a query to apply when selecting docu-
ments for export. The argument must be the
XML serialization of a cts:query or JSON serial-
ization of a cts.query. Only documents matching
the query are considered for export; false posi-
tives are possible. For details, see “Controlling
What is Exported, Copied, or Extracted” on
page 98.

Option Description

MarkLogic Server Exporting Content from MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 117

-redaction comma-list Apply one or more redaction rule collections.
The argument must be a comma-separated list of
rule collection URIs. The rule collections must
be installed in the schemas database. For details
and example, see “Redacting Content During
Export or Copy Operations” on page 106 and
Redacting Document Content in the Application
Developer’s Guide.

-restrict_hosts boolean Restrict mlcp to connect to MarkLogic only
through the hosts listed in the -host option.
Default: false (no restriction). For more details,
see “Restricting the Hosts mlcp Uses to Connect
to MarkLogic” on page 75.

-snapshot boolean Whether or not to export a consistent
point-in-time snapshot of the database contents.
Default: false. When true, the job submission
time is used as the database read timestamp for
selecting documents to export. For details, see
“Extracting a Consistent Database Snapshot” on
page 106.

-ssl boolean Enable/disable SSL secured communication
with MarkLogic. Default: false. If you set this
option to true, your App Server must be SSL
enabled. For details, see “Connecting to Mark-
Logic Using SSL” on page 15.

-ssl_protocol string Specify the protocol mlcp should use when cre-
ating an SSL connection to MarkLogic. You
must include this option if you use the -ssl
option to connect to an App Server configured to
disable MarkLogic’s default protocol
(TLSv1.2). Allowed values: tls, tlsv1, tlsv1.1,
tlsv1.2. Default: TLSv1.2.

-keystore_path string Path to a Java KeyStore containing the User Pri-
vate Key(s) and Certificate(s); if available mlcp
will select the first available certificate from the
KeyStore that satisfy the TLS Certificate
Request from the MarkLogic Server.
Can be passed along with the existing -ssl
option.

Option Description

MarkLogic Server Exporting Content from MarkLogic Server

MarkLogic 10—May, 2019 mlcp User Guide—Page 118

-keystore_password string Password to a Java KeyStore containing the
User Private Key(s) and Certificate(s); if avail-
able mlcp will select the first available certifi-
cate from the KeyStore that satisfy the TLS
Certificate Request from the MarkLogic Server.
Can be passed along with the existing -ssl
option.

-truststore_path string Path to a Java TrustStore containing any neces-
sary CA Certificates needed to verify the TLS
Server Authentication connection. If no Trust-
Store is provided the default TrustStore used by
the existing -ssl parameter is used.
Can be passed along with the existing -ssl
option.

-truststore_passwd string Password to a Java TrustStore containing any
necessary CA Certificates needed to verify the
TLS Server Authentication connection. If no
TrustStore is provided the default TrustStore
used by the existing -ssl parameter is used.
Can be passed along with the existing -ssl
option.

-thread_count number The number of threads to spawn for concurrent
exporting. The total number of threads spawned
by the process can be larger than this number,
but this option caps the number of concurrent
sessions with MarkLogic Server. Only available
in local mode. Default: 4.

Option Description

MarkLogic Server Copying Content Between Databases

MarkLogic 10—May, 2019 mlcp User Guide—Page 119

6.0 Copying Content Between Databases
127

Use the mlcp copy command to copy content and associated metadata from one MarkLogic Server
database to another when both are reachable on the network. You can also copy data from offline
forests to a MarkLogic Server database; for details, see “Using Direct Access to Extract or Copy
Documents” on page 128.

This chapter includes the following topics:

• Basic Steps

• Examples

• Redacting Content During a Copy

• Copy Command Line Options

6.1 Basic Steps
To copy one database to another with mclp:

1. Set -input_host, -input_port, -input_username, and -input_password to identify the
source MarkLogic Server instance and user.

2. Set -output_host, -output_port, -output_username, and -output_password to identify the
destination MarkLogic Server instance and user.

3. Select what documents to copy. For details, see “Filtering Archive and Copy Contents” on
page 99.

• To select documents in one or more collections, set -collection_filter to a
comma separated list of collection URIs.

• To select documents in one or more database directories, set -directory_filter to
a comma separated list of directory URIs.

• To select documents matching an XPath expression, use -document_selector. To
use namespace prefixes in the XPath expression, define the prefix binding using
-path_namespace.

• To select document matching a query, use -query_filter. You can use this option
alone or in combination with a directory, collection or document selector filter.
False positives are possible; for details, see “Understanding When Filters Are
Accurate” on page 100.

• To select all documents in the database, leave -collection_filter,
-directory_filter, -document_selector, and -query_filter unset.

4. If you want to exclude some or all source document metadata:

• Set -copy_collections to false to exclude document collections metadata.

MarkLogic Server Copying Content Between Databases

MarkLogic 10—May, 2019 mlcp User Guide—Page 120

• Set -copy_permissions to false to exclude document permissions metadata.

• Set -copy_properties to false to exclude document properties.

• Set -copy_quality to false to exclude document quality metadata.

• Set -copy_metadata to false to exclude document key-value metadata.

5. If you want to add or override document metadata in the destination database:

• Set -output_collections to add destination documents to a collection.

• Set -output_permissions to add permissions to destination documents.

• Set -output_quality to set the quality of destination documents.

6. If you want the destination documents to have database URIs different from the source
URIs, set -output_uri_replace, -output_uri_prefix, and/or -output_uri_suffix. For
details, see “Controlling Database URIs During Ingestion” on page 29.

For a complete list of mlcp copy command options, see “Copy Command Line Options” on
page 121.

6.2 Examples
The following example copies all documents and their metadata from the source database to the
destination database:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh copy -mode local -input_host srchost -input_port 8000 \
 -input_username user1 -input_password password1 \
 -output_host desthost -output_port 8010 -output_username user2 \
 -output_password password2

The following example copies selected documents, excluding the source permissions and adding
the documents to 2 new collections in the destination database:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh copy -mode local -input_host srchost -input_port 8000 \
 -input_username user1 -input_password password1 \
 -output_host desthost -output_port 8000 -output_username user2 \
 -output_password password2 -copy_permissions false \
 -output_collections shakespeare,plays

For an example of using -query_filter, see “Example: Exporting Documents Matching a Query”
on page 101.

6.3 Redacting Content During a Copy
Redaction is the process of eliminating or obscuring portions of a document when retrieving the
document from MarkLogic. For example, you can eliminate or mask sensitive personal
information such as credit card numbers, phone numbers, or email addresses from documents.
You can only redact document content, not document properties.

MarkLogic Server Copying Content Between Databases

MarkLogic 10—May, 2019 mlcp User Guide—Page 121

Redaction is performed as documents are read from the source database. For example, if you copy
documents between databases in two different MarkLogic installations, the unredacted content
never leaves the source installation.

Redaction support in MarkLogic is covered in detail in “Redacting Content During Export or
Copy Operations” on page 106 and Redacting Document Content in the Application Developer’s
Guide.

Use the -redaction option to apply redaction rules during a copy. For example, the following
command copies documents in the “my_docs” collection from one database to another, and
applies the redaction rules in the rule collections “hipaa-rules and “biz-rules” to the source
documents before copying them to the destination database.

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh copy -mode local -input_host srchost -input_port 8000 \
 -input_username user1 -input_password password1 \
 -output_host desthost -output_port 8000 -output_username user2 \
 -output_password password2 -collection_filter my_docs \
 -redaction "hipaa-rules,biz-rules"

For more details, see “Redacting Content During Export or Copy Operations” on page 106.

6.4 Copy Command Line Options
This section summarizes the command line options available with the mlcp copy command. The
following command line options define your connection to MarkLogic:

Option Description

-input_host comma-list Required. A comma separated list of hosts through
which mlcp can connect to the source database. You
must specify at least one host. For more details, see
“How mlcp Uses the Host List” on page 75.

-input_port number Port number of the source MarkLogic Server. There
should be an XDBC App Server on this port. Default:
8000.

-input_username string MarkLogic Server user with which to export
documents. Required, unless using Kerberos
authentication.

-input_password string Password for the MarkLogic Server user specified
with -input_username. Required, unless using
Kerberos authentication.

MarkLogic Server Copying Content Between Databases

MarkLogic 10—May, 2019 mlcp User Guide—Page 122

The following table lists command line options that define the characteristics of the copy
operation:

-output_host comma-list Required. A comma separated list of hosts through
which mlcp can connect to the destination database.
You must specify at least one host. For more details,
see “How mlcp Uses the Host List” on page 75.

-output_port number Port number of the destination MarkLogic Server.
There should be an XDBC App Server on this port.
Default: 8000.

-output_username string MarkLogic Server user with which to import
documents to the destination. Required, unless using
Kerberos authentication.

-output_password string Password for the MarkLogic Server user specified
with -output_username. Required, unless using
Kerberos authentication.

Option Description

-batch_size number The number of documents to load per request to
MarkLogic Server. Default: 100. Maximum: 200.

-collection_filter comma-list A comma-separated list of collection URIs. mlcp
exports only documents in these collections, plus
related metadata. This option may not be combined
with -directory_filter. Default: All documents and
related metadata.

-copy_collections boolean Whether to copy document collections from the
source database to the destination database. Default:
true.

-copy_metadata boolean Whether to copy document key-value metadata from
the source database to the destination database.
Default: true.

-copy_permissions boolean Whether to copy document permissions from the
source database to the destination database. Default:
true.

Option Description

MarkLogic Server Copying Content Between Databases

MarkLogic 10—May, 2019 mlcp User Guide—Page 123

-copy_properties boolean Whether to copy document properties from the source
database to the destination database. Default: true.

-copy_quality boolean Whether to copy document quality from the source
database to the destination database. Default: true.

-directory_filter comma-list A comma-separated list of database directories. mlcp
exports only documents from these directories, plus
related metadata. Directory names should usually end
with “/”. This option may not be combined with
-collection_filter. Default: All documents and
related metadata.

-document_selector string Specifies an XPath expression used to select which
documents are extracted from the source database.
The XPath expression should select fragment roots.
This option may not be combined with
-directory_filter or -collection_filter. Default:
All documents and related metadata.

-fastload boolean Whether or not to force optimal performance, even at
the risk of creating duplicate document URIs. See
“Time vs. Correctness: Understanding -fastload
Tradeoffs” on page 52. Default: false.

-input_database string The name of the source database. Default: The
database associated with the source App Server
identified by -input_host and -input_port.

-input_ssl boolean Enable/disable SSL secured communication with the
input App Server. Default: false. If you set this option
to true, your App Server must be SSL enabled. For
details, see “Connecting to MarkLogic Using SSL” on
page 15.

-input_ssl_protocol string Specify the protocol mlcp should use when creating
an SSL connection to the input App Server. You must
include this option if you use the -input_ssl option to
connect to an App Server configured to disable Mark-
Logic’s default protocol (TLSv1.2). Allowed values:
tls, tlsv1, tlsv1.1, tlsv1.2. Default: TLSv1.2.

-max_split_size number The maximum number of document fragments
processed per split. Default: 50000.

Option Description

MarkLogic Server Copying Content Between Databases

MarkLogic 10—May, 2019 mlcp User Guide—Page 124

-mode string Copy mode. Accepted values: local.
Default: local.

-path_namespace comma-list Specifies one or more namespace prefix bindings for
namespace prefixes usable in path expressions passed
to -document_selector. The list items should be
alternating pairs of prefix names and namespace
URIs, such as
'pfx1,http://my/ns1,pfx2,http://my/ns2'.

-options_file string Specify an options file pathname from which to read
additional command line options. If you use an
options file, this option must appear first. For details,
see “Options File Syntax” on page 9.

-output_collections comma-list A comma separated list of collection URIs. Output
documents are added to these collections.

-output_database string The name of the destination database. Default: The
database associated with the destination App Server
identified by -output_host and -output_port.

-output_permissions comma-list A comma separated list of (role,capability) pairs to
apply to loaded documents. Default: The default
permissions associated with the user inserting the
document. Example: -output_permissions
role1,read,role2,update

-output_quality string The quality to assign to output documents.

-output_partition string The name of the database partition in which to create
documents. Required when using range assignment
policy. For details, see “How Assignment Policy
Affects Optimization” on page 54 and Range Partitions
in the Administrator’s Guide.

-output_ssl boolean Enable/disable SSL secured communication with the
output App Server. Default: false. If you set this
option to true, your App Server must be SSL enabled.
For details, see “Connecting to MarkLogic Using
SSL” on page 15.

Option Description

MarkLogic Server Copying Content Between Databases

MarkLogic 10—May, 2019 mlcp User Guide—Page 125

-output_ssl_protocol string Specify the protocol mlcp should use when creating
an SSL connection to the output App Server. You
must include this option if you use the -output_ssl
option to connect to an App Server configured to dis-
able MarkLogic’s default protocol (TLSv1.2).
Allowed values: tls, tlsv1, tlsv1.1, tlsv1.2.
Default: TLSv1.2.

-output_uri_prefix string Specify a prefix to prepend to the default URI. Used
to construct output document URIs. For details, see
“Controlling Database URIs During Ingestion” on
page 29.

-output_uri_replace comma-list A comma separated list of (regex,string) pairs that
define string replacements to apply to the URIs of
documents added to the database. The replacement
strings must be enclosed in single quotes. For
example, -output_uri_replace
"regex1,'string1',regext2,'string2'"

-output_uri_suffix string Specify a suffix to append to the default URI Used to
construct output document URIs. For details, see
“Controlling Database URIs During Ingestion” on
page 29.

-query_filter string Specifies a query to apply when selecting documents
to be copied. The argument must be the XML
serialization of a cts:query or JSON serialization of a
cts.query. Only documents in the source database that
match the query are considered for copying. For
details, see “Controlling What is Exported, Copied, or
Extracted” on page 98. False postives are possible; for
details, see “Understanding When Filters Are
Accurate” on page 100.

-redaction comma-list Apply one or more redaction rule collections. The
argument must be a comma-separated list of rule
collection URIs. The rule collections must be installed
in the schemas database on the source MarkLogic
installation. For details and example, see “Redacting
Content During Export or Copy Operations” on
page 106 and Redacting Document Content in the
Application Developer’s Guide.

Option Description

MarkLogic Server Copying Content Between Databases

MarkLogic 10—May, 2019 mlcp User Guide—Page 126

-restrict_input_hosts boolean Restrict mlcp to connect to the source database only
through the hosts listed in the -input_host option.
Default: false (no restriction). For more details, see
“Restricting the Hosts mlcp Uses to Connect to Mark-
Logic” on page 75.

-restrict_output_hosts boolean Restrict mlcp to connect to the destination database
only through the hosts listed in the -output_host
option. Default: false (no restriction). For more
details, see “Restricting the Hosts mlcp Uses to Con-
nect to MarkLogic” on page 75.

-snapshot boolean Whether or not to use a consistent point-in-time
snapshot of the source database contents. Default:
false. When true, the job submission time is used as
the database read timestamp for selecting documents
to export. For details, see “Extracting a Consistent
Database Snapshot” on page 106.

-temporal_collection string A temporal collection into which the documents are to
be loaded in the destination database. For details on
loading temporal documents into MarkLogic, see
Using MarkLogic Content Pump (MLCP) to Load Temporal

Documents in the Temporal Developer’s Guide.

-thread_count number The number of threads to spawn for concurrent
copying. The total number of threads spawned by the
process can be larger than this number, but this option
caps the number of concurrent sessions with
MarkLogic Server. Only available in local mode.
Default: 4.

-transform_function string The local name of a custom content transformation
function installed on MarkLogic Server. Ignored if
-transform_module is not specified. Default:
transform. For details, see “Transforming Content
During Ingestion” on page 58.

Option Description

MarkLogic Server Copying Content Between Databases

MarkLogic 10—May, 2019 mlcp User Guide—Page 127

-transform_module string The path in the modules database or modules
directory of a custom content transformation function
installed on MarkLogic Server. This option is required
to enable a custom transformation. For details, see
“Transforming Content During Ingestion” on page 58.

-transform_namespace string The namespace URI of the custom content
transformation function named by
-transform_function. Ignored if -transform_module
is not specified. Default: no namespace. For details,
see “Transforming Content During Ingestion” on
page 58.

-transform_param string Optional extra data to pass through to a custom
transformation function. Ignored if
-transform_module is not specified. Default: no
namespace. For details, see “Transforming Content
During Ingestion” on page 58.

-transaction_size number When loading documents into the destination
database, the number of requests to MarkLogic Server
in one transaction. Default: 1. Maximum:
4000/actualBatchSize.

Option Description

MarkLogic Server Using Direct Access to Extract or Copy Documents

MarkLogic 10—May, 2019 mlcp User Guide—Page 128

7.0 Using Direct Access to Extract or Copy Documents
134

Direct Access enables you to bypass MarkLogic Server and extract documents from a database by
reading them directly from the on-disk representation of a forest. This feature is best suited for
accessing documents in archived, offline forests.

This section covers the following topics:

• When to Consider Using Direct Access

• Limitations of Direct Access

• Choosing Between Export and Extract

• Extracting Documents as Files

• Importing Documents from a Forest into a Database

• Extract Command Line Options

7.1 When to Consider Using Direct Access
Direct Access enables you to extract documents directly from an offline or read-only forest
without going through MarkLogic Server. A forest is the internal representation of a collection of
documents in a MarkLogic database; for details, see Understanding Forests in the Administrator’s
Guide. A database can span multiple forests on multiple hosts.

Direct Access is primarily intended for accessing archived data that is part of a tiered storage
deployment; for details, see Tiered Storage in the Administrator’s Guide. You should only use
Direct Access on a forest that is offline or read-only; for details, see “Limitations of Direct
Access” on page 129.

For example, if you have data that ages out over time such that you need to retain it, but you do
not need to have it available for real time queries through MarkLogic Server, you can archive the
data by taking the containing forests offline, but still access the contents using Direct Access.

Use Direct Access with mlcp to access documents in offline and read-only forests in the following
ways:

• The mlcp extract command to extracts archived documents from a database as flat files.
This operation is similar to exporting documents from a database to files, but does not
require a source MarkLogic Server instance. For details, see “Choosing Between Export
and Extract” on page 130.

• The mlcp import command with -input_file_type forest imports archived documents as
to another database as live documents. A destination MarkLogic Server instance is
required, but no source instance.

MarkLogic Server Using Direct Access to Extract or Copy Documents

MarkLogic 10—May, 2019 mlcp User Guide—Page 129

Since Direct Access bypasses the active data management performed by MarkLogic Server, you
should not use it on forests receiving document updates. Additional restrictions apply. For details,
see “Limitations of Direct Access” on page 129.

7.2 Limitations of Direct Access
You should only use Direct Access on a forest that meets one of the following criteria:

• The forest is offline and not in an error state. A forest is offline if the availability is set to
offline, or the forest or the database to which it is attached is disabled. For details, see
Taking Forests and Partitions Online and Offline in the Administrator’s Guide.

• The forest is online, but the updates-allowed state of the forest is read-only. For details,
see Setting the Updates-allowed State on Partitions in the Administrator’s Guide.

The following additional limitations apply to using Direct Access:

• Accessing documents with Direct Access bypasses security roles and privileges. The
content is protected only by the filesystem permissions on the forest data.

• Direct Access cannot take advantage of indexing or caching when accessing documents.
Every document in each participating forest is read, even when you use filtering criteria
such as -directory_filter or -type_filter. Filtering can only be applied after reading a
document off disk.

• Direct Access skips property fragments.

• Direct Access skips documents partitioned into multiple fragments. For details, see
Fragments in the Administrator’s Guide.

• Older versions of mlcp might not be able to read forest data from MarkLogic 9 or later.
For best results, use the version of mlcp that corresponds to your MarkLogic version.

When you use Direct Access, mlcp skips any forest (or a stand within a forest) that is receiving
updates or that is in an error state. Processing continues even when some documents are skipped.

When you use mlcp with Direct Access, your forest data must be reachable from the host(s)
processing the input. In local mode, the forests must be reachable from the host on which you
execute mlcp.

If mlcp accesses large or external binaries with Direct Access, then the reachability requirement
also applies to the large data directory and any external binary directories. Furthermore, these
directories must be reachable along the same path as when the forest was online.

MarkLogic Server Using Direct Access to Extract or Copy Documents

MarkLogic 10—May, 2019 mlcp User Guide—Page 130

7.3 Choosing Between Export and Extract
You can use the export and extract commands to save content in a MarkLogic database to files
on the native file system. You should usually use export rather than extract. The extract
command is best suited for archive data in offline or read-only forests. Otherwise, use the export
command.

The extract command places no load on MarkLogic Server. The export command offloads most
of the work to your MarkLogic cluster. Thus, export honors document permissions, takes
advantage of database indexes, and can apply transformations and filtering at the server. By
contrast, extract bypasses security (other than file permissions on the forest files), must access all
document sequentially, and applies a limited set of filters on the client.

The export command offers a richer set of filtering options than extract. In addition, export only
accesses the documents selected by your options, while extract must scan the entirety of each
input forest, even when extracting selected documents.

For more information, see the following topics:

• “Exporting Documents as Files” on page 94

• “Extracting Documents as Files” on page 130

7.4 Extracting Documents as Files
Use the mlcp extract command to extract documents from archival forest files to files on the
native filesystem. For example, you can extract an XML document as a text file containing XML,
or a binary document as a JPG image.

To extract documents from a forest as files:

1. Set -input_file_path to the path to the input forest directory(s). Specify multiple forests
using a comma-separated list of paths.

2. Select the documents to extract. For details, see “Filtering Forest Contents” on page 105.

• To select documents in one or more collections, set -collection_filter to a
comma separated list of collection URIs.

• To select documents in one or more database directories, set -directory_filter to
a comma separated list of directory URIs.

• To select documents by document type, set -type_filter to a comma separated list
of document types.

• To select all documents in the database, leave -collection_filter,
-directory_filter, and -type_filter unset.

3. Set -output_file_path to the destination file or directory on the native filesystem. This
directory must not already exist.

MarkLogic Server Using Direct Access to Extract or Copy Documents

MarkLogic 10—May, 2019 mlcp User Guide—Page 131

4. Set -mode to local:

• Your input forests must be reachable from the host where you execute mlcp.

5. If you want to extract the documents as files in compressed files, set -compress to true.

Filtering options can be combined. Directory names specified with -directory_filter should end
with “/”. All filters are applied on the client, so every document is accessed, even if it is filtered
out of the output document set.

Note: Document URIs are URI-decoded before filesystem directories or filenames are
constructed for them. For details, see “How URI Decoding Affects Output File
Names” on page 97.

For a full list of extract options, see “Extract Command Line Options” on page 132.

The following example extracts selected documents from the forest files in
/var/opt/MarkLogic/Forests/example to the native filesystem directory
/space/mlcp/extracted/files. The directory filter selects only the input documents in the
database directory /plays.

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh extract -mode local \
 -input_file_path /var/opt/MarkLogic/Forests/example \
 -output_file_path /space/mlcp/extracted/files \
 -directory_filter /plays/

7.5 Importing Documents from a Forest into a Database
Use the following procedure to load all the files in a native forest directory and its sub-directories.
To load selected files, see “Filtering Documents Loaded From a Directory” on page 35. For more
details on the command line options used in this procedure, see “Import Command Line Options”
on page 83.

1. Set -input_file_path to the path to the input forest directory(s). Specify multiple forests
using a comma-separated list of paths.

2. Set -input_file_type to forest.

3. Specify the connection information for the destination database using -host, -port,
-username, and -password.

4. Select the files to extract from the input forest. For details, see “Filtering Forest Contents”
on page 105. Filtering options can be used together.

• To select documents in one or more collections, set -collection_filter to a
comma separated list of collection URIs.

MarkLogic Server Using Direct Access to Extract or Copy Documents

MarkLogic 10—May, 2019 mlcp User Guide—Page 132

• To select documents in one or more database directories, set -directory_filter to
a comma separated list of directory URIs.

• To select documents by document type, set -type_filter to a comma separated list
of document types.

• To select all documents in the database, leave -collection_filter,
-directory_filter, and -type_filter unset.

5. If you want to exclude some or all of the document metadata in the forests:

• Set -copy_collections to false to exclude document collections metadata.

• Set -copy_quality to false to exclude document quality metadata.

• Set -copy_metadata to false to exclude key-value metadata.

6. Set -mode to local (This is the default mode):

• Your input forests and the destination MarkLogic Server instance must be
reachable from the host where you run mlcp.

By default, an imported document has a database URI based on the input file path. You can
customize the URI using options. For details, see “Controlling Database URIs During Ingestion”
on page 29.

The following example command loads the documents in the forests in
/var/opt/MarkLogic/Forests/example:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -host localhost -port 8000 -username user \
 -password password -input_file_type forest \
 -input_file_path /var/opt/MarkLogic/Forests/example

7.6 Extract Command Line Options
This section summarizes the command line options available with the mlcp extract command.
An extract command requires the -input_file_path and -output_file_path options. That is, an
extract command has the following form:

mlcp.sh extract -input_file_path forest-path \
 -output_file_path dest-path ...

MarkLogic Server Using Direct Access to Extract or Copy Documents

MarkLogic 10—May, 2019 mlcp User Guide—Page 133

The following table lists command line options that define the characteristics of the extraction:

Option Description

-collection_filter comma-list A comma-separated list of collection URIs.
mlcp extracts only documents in these collec-
tions. This option can be combined with other
filter options. Default: All documents.

-compress boolean Whether or not to compress the output. mlcp
might generate multiple compressed files.
Default: false.

-directory_filter comma-list A comma-separated list of database directory
names. mlcp extracts only documents from these
directories, plus related metadata. Directory
names should usually end with “/”. This option
can be combined with other filter options.
Default: All documents and related metadata.

-max_split_size number The maximum number of document fragments
processed per split. Default: 50000.

-mode string Export mode. Accepted values: local.

-options_file string Specify an options file pathname from which to
read additional command line options. If you use
an options file, this option must appear first. For
details, see “Options File Syntax” on page 9.

-output_file_path string Destination directory where the documents are
saved. The directory must not already exist.

-thread_count number The number of threads to spawn for concurrent
exporting. The total number of threads spawned
by the process can be larger than this number,
but this option caps the number of concurrent
sessions with MarkLogic Server. Only available
in local mode. Default: 4.

-type_filter comma-list A comma-separated list of document types.
mlcp extracts only documents with these types.
This option can be combined with other filter
options. Allowed documentypes: xml, text,
binary. Default: All documents.

MarkLogic Server Using Direct Access to Extract or Copy Documents

MarkLogic 10—May, 2019 mlcp User Guide—Page 134

MarkLogic Server Troubleshooting

MarkLogic 10—May, 2019 mlcp User Guide—Page 135

8.0 Troubleshooting
138

This chapter includes tips for debugging some common problems. The following topics are
covered:

• Checking Your Runtime Environment

• Resolving Connection Issues

• Enabling Debug Level Messages

• Error loading class com.marklogic.contentpump.ContentPump

• No or Too Few Files Loaded During Import

• Unable to load realm info from SCDynamicStore

• Warning that a Job Remains Running

8.1 Checking Your Runtime Environment
You can use the mlcp version command to generate a report of key software versions mlcp
detects in your runtime environment. This is useful for confirming your path and other
environment settings create the environment you expect or mlcp requires.

For example, the command below reports the version of mlcp, and the Java JRE that mlcp will use
at runtime, plus the versions of MarkLogic supported by this version of mlcp.

$ mlcp.sh version
ContentPump version: 8.0
Java version: 1.7.0_45
Supported MarkLogic versions: 6.0 - 8.0

Note that not all features of mlcp are supported by all versions of MarkLogic, even within the
reported range of supported versions. For example, if MarkLogic version X introduces a new
feature that is supported by mlcp, that doesn’t mean you can use mlcp to work with the feature in
MarkLogic version X-1.

8.2 Resolving Connection Issues
All mlcp command lines include host and port information for connecting to MarkLogic Server.
This host must be reachable from the host where you run mlcp.

In addition, mlcp connects directly to hosts in your MarkLogic Server cluster that contain forests
of the target database. Therefore, all the hosts that serve a target database must be reachable from
the host where mlcp runs (local mode).

mlcp gets the lists of participating hosts by querying your MarkLogic Server cluster
configuration. If a hostname returned by this query is not resolvable, mlcp will not be able to
connect, which can prevent document loading.

MarkLogic Server Troubleshooting

MarkLogic 10—May, 2019 mlcp User Guide—Page 136

If you think you might have connection issues, enable debug level logging to see details on name
resolution and connection failures. For details, see “Enabling Debug Level Messages” on
page 136.

8.3 Enabling Debug Level Messages
You can enable debug level log messages to see detailed debugging information about what mlcp
is doing. Debug logging generates many messages, so you should not enable it unless you need it
to troubleshoot a problem.

To enable debug logging:

For versions of mlcp 10 earlier than 10.0-8.2:

1. Edit the file MLCP_INSTALL_DIR/conf/log4j.properties. For example, if mlcp is installed
in /opt/mlcp, edit /opt/mlcp/conf/log4j.properties.

2. In log4j.properties, set the properties log4j.logger.com.marklogic.mapreduce and
log4j.logger.com.marklogic.contentpump to DEBUG. For example, include the following:

log4j.logger.com.marklogic.mapreduce=DEBUG
log4j.logger.com.marklogic.contentpump=DEBUG

You may find these property settings are already at the end of log4j.properties, but
commented out. Remove the leading # to enable them.

In 10.0-8.2, we migrated log4j to log4j2 due to security vulnerabilities. For mlcp 10 versions
10.0-8.2 and later:

1. Edit the file MLCP_INSTALL_DIR/conf/log4j2.xml. For example, if mlcp is installed in
/opt/mlcp, edit /opt/mlcp/conf/log4j2.xml.

2. In log4j2.xml, set the level to DEBUG for logger com.marklogic.mapreduce and
com.marklogic.contentpump. For example, include the following:

<Logger name="com.marklogic.mapreduce" level="DEBUG"
additivity="false">
 <AppenderRef ref="Console"/>
</Logger>
<Logger name="com.marklogic.contentpump" level="DEBUG"
additivity="false">
 <AppenderRef ref="Console"/>
</Logger>

You may find these property settings are already in log4j2.xml, but commented out.
Remove the leading <!-- and --> to enable them.

MarkLogic Server Troubleshooting

MarkLogic 10—May, 2019 mlcp User Guide—Page 137

8.4 Error loading class com.marklogic.contentpump.ContentPump
The cause of the following error is usually running mlcp.sh on Windows under Cygwin, which is
not a supported configuration.

Error: Could not find or load main class com.marklogic.contentpump.ContentPump

You should always use mlcp.bat on Windows.

8.5 No or Too Few Files Loaded During Import
If ATTEMPTED_INPUT_RECORD_COUNT is non-zero and SKIPPED_INPUT_RECORD_COUNT is zero, then
errors may have occurred on the server side or your combination of options may be inconsistent.
For example:

• The input type is documents, and the document type is set to (or determined to be) XML,
but the input file fails to parse properly as XML. Correct the error in the input data and try
again.

• You set -input_file_path to a location containing compressed files, but you do not set
-input_compressed and -input_compression_codec. In this case, mlcp will load the
compressed files as binary documents, rather than creating documents from the contents
of the compressed files.

• You set -document_type to a value inconsistent with the input data referenced by
-input_file_path.

If ATTEMPTED_INPUT_RECORD_COUNT is non-zero and SKIPPED_INPUT_RECORD_COUNT is non-zero, then
there are probably formatting errors in your input that mlcp detected on the client. Correct the
input errors and try again. For example:

• A syntax error was encountered while splitting an aggregate XML file into multiple pieces
of document content.

• A delimited text file contains records (lines) with an incorrect number of column values or
with no value for the URI id column.

If mlcp reports an ATTEMPTED_INPUT_RECORD_COUNT of 0, then the tool found no input documents
meeting your requirements. If there are errors or warnings, correct them and try again. If there are
no errors, then the combination of options on your command line probably does not select any
suitable documents. For example:

• You set -input_compressed -input_compression_codec zip, but -input_file_path
references a location that contains no ZIP files.

• You set -input_compressed and set -input_file_path to a location containing compressed
files, but failed to set -input_compression_codec.

MarkLogic Server Troubleshooting

MarkLogic 10—May, 2019 mlcp User Guide—Page 138

8.6 Unable to load realm info from SCDynamicStore
Depending on your JVM version, you might see the message “Unable to load realm info from
SCDynamicStore” when using mlcp if your system has Kerberos installed and krb5.conf doesn’t
explicitly list the realm information. You can safely ignore this message.

8.7 Warning that a Job Remains Running
If you interrupt an mlcp job before it completes, such as by entering Ctrl-C, the job might
continue running.

In local mode, an interrupted job will shutdown gracefully as long as it can finish within 30
seconds.

If mlcp cannot gracefully shut down the job, you might see the following warning:

WARN contentpump.ContentPump: Job yourJobName status remains RUNNING

MarkLogic Server Technical Support
9.0 Technical Support
140

MarkLogic provides technical support according to the terms detailed in your Software License
Agreement or End User License Agreement.

We invite you to visit our support website at http://help.marklogic.com to access information on
known and fixed issues, knowledge base articles, and more. For licensed customers with an active
maintenance contract, see the Support Handbook for instructions on registering support contacts
and on working with the MarkLogic Technical Support team.

Complete product documentation, the latest product release downloads, and other useful
information is available for all developers at http://developer.marklogic.com. For technical
questions, we encourage you to ask your question on Stack Overflow.
MarkLogic 11

http://help.marklogic.com/
https://stackoverflow.com/questions/tagged/marklogic
http://developer.marklogic.com
http://www.marklogic.com/files/Mark_Logic_Support_Handbook.pdf

MarkLogic Server Technical Support
MarkLogic 11—December, 2022 Installation Guide for All Platforms—Page 140

MarkLogic Server Copyright
10.0 Copyright
999

MarkLogic Server 10.0 and supporting products.
Last updated: February, 2022

Copyright © 2022 MarkLogic Corporation. All rights reserved.
This technology is protected by U.S. Patent No. 7,127,469B2, U.S. Patent No. 7,171,404B2, U.S.
Patent No. 7,756,858 B2, and U.S. Patent No 7,962,474 B2, US 8,892,599, and US 8,935,267.

The MarkLogic software is protected by United States and international copyright laws, and
incorporates certain third party libraries and components which are subject to the attributions,
terms, conditions and disclaimers set forth below.

For all copyright notices, including third-party copyright notices, see the Combined Product
Notices for your version of MarkLogic.
MarkLogic 11

MarkLogic Server Copyright
MarkLogic 11—December, 2022 Installation Guide for All Platforms—Page 142

	mlcp User Guide
	Table of Contents
	1.0 Introduction to MarkLogic Content Pump
	1.1 Feature Overview
	1.2 Terms and Definitions
	1.3 Modifying the Example Commands for Windows
	1.4 Understanding the mlcp Command Line
	1.4.1 Command Line Summary
	1.4.2 Setting Java Virtual Machine (JVM) Options
	1.4.3 Regular Expression Syntax
	1.4.4 Options File Syntax

	1.5 mlcp Exit Status Codes
	1.6 Compatibility of mlcp Across MarkLogic Versions
	1.7 Accessing the mlcp Source Code

	2.0 Installation and Configuration
	2.1 Supported Platforms
	2.2 Required Software
	2.3 Installing mlcp
	2.4 Configuring Your MarkLogic Cluster
	2.5 Security Considerations
	2.6 Connecting to MarkLogic Using SSL
	2.6.1 Enabling SSL on Your App Server
	2.6.2 Configuring mlcp to Use SSL

	2.7 Using mlcp With Kerberos
	2.7.1 Creating Users
	2.7.2 Configuring an XDBC App Server for Kerberos Authentication
	2.7.3 Invoking mlcp

	3.0 Getting Started With mlcp
	3.1 Prepare to Run the Examples
	3.2 Optional: Create an Options File
	3.3 Load Documents
	3.4 Export Documents
	3.5 Understanding mlcp Output
	3.6 Stopping an mclp Job Prematurely

	4.0 Importing Content Into MarkLogic Server
	4.1 Supported Input Format Summary
	4.2 Understanding Input File Path Resolution
	4.3 Controlling Database URIs During Ingestion
	4.3.1 Default Document URI Construction
	4.3.2 Transforming the Default URI

	4.4 How mlcp Determines Document Type
	4.5 Loading Documents from a Directory
	4.5.1 Loading a Single File
	4.5.2 Loading All the Files in a Directory
	4.5.3 Filtering Documents Loaded From a Directory

	4.6 Loading Documents From Compressed Files
	4.7 Loading Content and Metadata From an Archive
	4.8 Splitting Large XML Files Into Multiple Documents
	4.9 Creating Documents from Delimited Text Files
	4.9.1 Example: Generating Documents From a CSV File
	4.9.2 Expected Input Format
	4.9.3 Customizing XML Output
	4.9.4 Controlling Data Type in JSON Output
	4.9.5 Controlling the Output Document URI
	4.9.6 Specifying the Field Delimiter
	4.9.7 Optimizing Ingestion of Large Files

	4.10 Creating Documents from Line-Delimited JSON Files
	4.10.1 Line-Delimited JSON Overview
	4.10.2 Controlling the Output Document URI

	4.11 Loading Triples
	4.11.1 Basics of Triple Loading
	4.11.2 Graph Selection When Loading Quads
	4.11.3 Graph Selection for Other Triple Types

	4.12 Loading Documents from a Forest With Direct Access
	4.13 Performance Considerations for Loading Documents
	4.13.1 Time vs. Space: Configuring Batch and Transaction Size
	4.13.2 Time vs. Correctness: Understanding -fastload Tradeoffs
	4.13.3 How Assignment Policy Affects Optimization
	4.13.4 Tuning Split Size and Thread Count for Local Mode
	4.13.5 Reducing Memory Consumption With Streaming
	4.13.6 Improving Throughput with -split_input
	4.13.7 MLCP Concurent Jobs

	4.14 Transforming Content During Ingestion
	4.14.1 Creating a Custom XQuery Transformation
	4.14.2 Creating a Custom JavaScript Transformation
	4.14.3 Implementation Guidelines
	4.14.4 Installing a Custom Transformation
	4.14.5 Using a Custom Transformation
	4.14.6 Example: Server-Side Content Transformation
	4.14.7 Example: Changing the URI and Document Type

	4.15 Controlling How mlcp Connects to MarkLogic
	4.15.1 How mlcp Uses the Host List
	4.15.2 Restricting the Hosts mlcp Uses to Connect to MarkLogic
	4.15.3 How -restrict_hosts Affects -fastload

	4.16 Failover Handling
	4.17 MLCP Retry Mechanism When Commit Fails During Ingestion
	4.18 MLCP Auto-scaling with Data Hub Service
	4.18.1 How MLCP Adjusts Client Concurrency
	4.18.2 How Other Command Line Options Affect Auto-scaling
	4.18.3 How MLCP Assigns Threads in Auto-Scaling Process
	4.18.4 MLCP Logs for Auto-Scaling

	4.19 Import Command Line Options

	5.0 Exporting Content from MarkLogic Server
	5.1 Exporting Documents as Files
	5.2 Exporting Documents to a Compressed File
	5.3 Exporting to an Archive
	5.4 How URI Decoding Affects Output File Names
	5.5 Controlling What is Exported, Copied, or Extracted
	5.5.1 Filtering Document Exports
	5.5.2 Filtering Archive and Copy Contents
	5.5.3 Understanding When Filters Are Accurate
	5.5.4 Example: Exporting Documents Matching a Query
	5.5.5 Filtering Forest Contents
	5.5.6 Extracting a Consistent Database Snapshot

	5.6 Redacting Content During Export or Copy Operations
	5.6.1 Basic Steps for Redacting Documents
	5.6.2 Example: Using mlcp for Redaction

	5.7 Export Command Line Options

	6.0 Copying Content Between Databases
	6.1 Basic Steps
	6.2 Examples
	6.3 Redacting Content During a Copy
	6.4 Copy Command Line Options

	7.0 Using Direct Access to Extract or Copy Documents
	7.1 When to Consider Using Direct Access
	7.2 Limitations of Direct Access
	7.3 Choosing Between Export and Extract
	7.4 Extracting Documents as Files
	7.5 Importing Documents from a Forest into a Database
	7.6 Extract Command Line Options

	8.0 Troubleshooting
	8.1 Checking Your Runtime Environment
	8.2 Resolving Connection Issues
	8.3 Enabling Debug Level Messages
	8.4 Error loading class com.marklogic.contentpump.ContentPump
	8.5 No or Too Few Files Loaded During Import
	8.6 Unable to load realm info from SCDynamicStore
	8.7 Warning that a Job Remains Running

	9.0 Technical Support
	10.0 Copyright

