MarkLogic Server

XQuery and XSLT Reference Guide

MarkLogic 9
May, 2017

Last Revised: 9.0-4, January, 2018

Copyright © 2019 MarkLogic Corporation. All rights reserved.

MarkLogic Server Version MarkLogic 9—May, 2017

Page 2—XQuery and XSLT Reference Guide

MarkLogic Server Table of Contents

Table of Contents

XQuery and XSLT Reference Guide

1.0

2.0

About This XQuery and XSLT GUITEccecvrerieenieriieie e 7
XQuery Dialectsin MarkLOgiC SEIVESccoovveieeiie e 9
21 Overview of the XQUENY DISBIECESc.ccveiieiiesice e 9
2.1.1 MarkLogic Server Enhanced (XQuery 1.0-ml)cooceeieiiiieniiniiieeienene 9
212 XQUENY 0.9-Ml oot 10
2.1.3 Strict (XQUENY 1.0) oottt 10
2.2 RulesFor Combining the DIaleCtSccccoieriiiiiiere e 10
2.3 Using aNon-Default Dialect in XSLT (xdmp:dial€ct)ccoevvveieiiiinenencnee, 11
24 Strategies For Migrating Code to Enhanced Dialectccccceevvvieveecieceecienee, 11
241 When To Migrate XQUENY COUEccccerierieriiinierienie e 11
2.4.2 XQuery Changes From Previous MarkLogic Server Releases 12
2.4.3 Inheriting the Default XQuery Version From the App Server 13
25 Specifying the XQuery Dialect inthe Prologccccceveeieniinieneneeneeseeesee e 13
25.1 Porting 0.9-ml XQuery Codeto Enhanced 1.0-mlcccoevveiiiiiininene. 14
MarkLogic Server Enhanced XQuery Languageccoevvveenernieesiensenne 17
31 try/CACN EXPrESSIONooeieiiiiiiiiesiesie ettt 17
T 1 1o N1V =) o] o RS 19
3.2.1 Understanding FUNCtioN MapPingcccoeereereneerennieseesieeie e 19
3.2.2 Enabling or Disabling FUNCtion Mappingcccceeeeeeieereeneneneneseneenes 20
3.3 Semi-Colon as Transaction SEParatorcccceeveeieeiieesesieesreesie e sre e sseesseennas 20
3.4 Private Function and Variable DefinitioNnscoceveviieniniiniere e 21
3.5 FUNctions With SIde EffECESccceeveiiiieere e 21
3.6 Shorthand Positional Predicate SyntaXccccceveeieiieieciee e 21
3.7 Binary Node Constructor and NOdE TStcccceeriererrerreneeree e 22
3.8 validate @S EXPrESSIONcciiiiiiiiiiiirieeiieee ettt 22
3.9 Seriaization OPLIONSc..oceeciiciecie et r e e e nneennas 22
3.10 Importing a Stylesheet Into an XQuery Modulec.coceierieieenenieneerie e 22
311 XQUENY 3.X FEAIUIMESeiiieiecieesieeee et 23
G I I R 1 (0 TV @ 0= = | (o R 24
3.11.2 SIMPIE MEP OPEIELOLocueieeeieeieesieeie et 24
3.11.3 String Concatenation OPEralorcccccvereerieneeseeseseessesseeseesseeseesseenes 25
3.11.4 URI QUAITIEO NAIMESoooeiiiriesiisierieseseeee e 25
3.11.5 Dynamic FUNCION INVOCALIONcccueieierieeiinienieeee e 25
3.12.6 ININEFUNCLIONSoouiinieiiieie st 26
3.11L.7 FUNCtion TYPE TESLING ...eocveeieeieeieesie ettt 26
3.11.8 Named FuNnction REFEIENCEScccoerieieeiieiceree e 26

MarkLogic 9—May, 2017 XQuery and XSLT Reference Guide—Page 3

MarkLogic Server Version MarkLogic 9—May, 2017 Table of Contents

3.11.9 Partial Function APPIICALTONceeeeeieieieriese s 27
3.12.10FUNCEION ANNOLALTIONS ..ottt sttt nae s 27
3.11.11Default Values for External Variablescccovveiiiniininieneneee 28
3.11.22Unions in Typeswitch Case DESCIIPLOISccocvrerererereeieeiesee e e 28
3.11.13SWiItCh SEAEEMENTcviiiieiiesicreree e e 28
3.11.14Validate TYpe EXPreSSIONScccceeieriieiienieeie et 29
3.12.15Error Handling With Try/CatChccocoiiiiiiriiieeee e 29
3.12 Implementation-Defined SEMANLICSccccveveeveeieciee e 30
3.12.1 Automatic Namespace Imports for Predefined Namespaces 30
3.12.2 External Variables ... 31
3.12.3 COllALIONS ..ottt bbb s 32
3.12.4 Implementation-Defined Primitive XQUery TYPESccoeevvevreerererrieenes 32
3.12.5 Decimal Precision at Least 18 Digits, and is Not Configurable 32
3.12.6 Library Modules Default Function Namespace Defaults to Library
Namespace 32
4.0 XQUEY LANQUAOEcoeeiiuiieeiiiiieieiieeesitteee s siree s st e e srae e st e s s nnsae e snsnees s e 33
41 EXPressionS REIUMN ITEIMScooiiiiiie it 33
4.2 XML @Nd XQUENY ..ottt et 34
4.2.1 Direct Element Constructors: Switching Between X Query and XML Using
Curly Braces 34
4.2.2 Computed Element and Attribute CONSIrUCLOrSccoeveeieeieenienicrenine 35
4.2.3 Returning XML From an XQuery Programccccccevveeveeveseesieeieeseeenns 36
4.3 JSON aN0 XQUENY ..eooiiiiiiiiieiieeieesiee e siee st ee st sbeestesseesaeese e e sbeeeesseesbenneesnes 36
44 XQUETY MOUUIES ...ttt e e 36
4.4.1 XQuery Version Declarationccccoeeveieeieeieseese e ee e 36
442 MaNMOUUIES ..o e e 37
4.4.3 Library MOQUIESooouiiieieee e 37
ST O 1= oV = 0! [o]o S 38
45.1 Importing Modules or SChemas ... 38
4.5.2 Declaring NamMESPACEScocereriererireeeeieesee et see e 39
453 Declaring OPLIONSc.cceeiieiiieieeieeie s erie s sre e sre e sae s ae e re e 39
4531 XAMPIMABPPING -eeinvrrrieierieiierieeeeseeee e e see e seesreesresneesseesseens 39
45.3.2 XOMPIUPUELEooveieiiiiriieiieiee e 39
4.5.3.3 XAMP:COMMIL ...ooiiiieciice e 40
4534 Xdmp:transaCtion-MOUEccoceeeiieeieiieree e 40
4535 XAdMP:COPY-ON-VAIUELEcceeeiiirierienieneeeee e 41
4.5.3.6 XOAMPIOULPUL ..oeveeeiieeeeciecie ettt e 41
4537 XAMP:COOrdiNaLe-SYSIEMccueeiviiierieeieree e 43
4.5.4 Declaring FUNCHIONSccooiiiiririerienieeee et 43
455 Declaring Variablescccooeiiiiiiiece e e 43
45.6 DeclaringaDefault Collationccoceverienieneniieereee e 44
46 XQUENY COMMENTS ..cocveeiiiiieiieeesreessireessieeessseessse e sbeessssesssssessseeesseessreessseesns 44
A7 XQUENY EXPrESSIONSccuecivieiiiiieiieeiieseesteeeesteesteeaesteessesseesreesesseesseensesseessesneesnes 45
4.7.1 XPath EXPreSSIONScooieiiiiiiieeiesiesiesee et ee s s e s 45
4.7.2 FLWOR EXPrESSIONSocccveieierieeiesieesieeieseesseesesseessesessseessesssssssessesssens 45

Page 4—XQuery and XSLT Reference Guide

MarkLogic Server Table of Contents

5.0

6.0

4721 Thefor ClAUSE ...ccccccevieeeeerieere et 46

4.7.22 Thelet ClaUSE ..o 47

4.7.2.3 TheWhere ClaUSEcccooiriiieieeee e 48

4724 Theorder by ClaUSe ... 48

4.7.25 Thereturn ClaUSE ... 49

4.7.3 ThetypeswitCh EXPreSSiONccccciiieieieeneneeseeie e 50

474 TREI EXPrESSIONooiiiiiiiieriesiesieeee ettt b 51

4.75 Quantified Expressions (some/every ... satisfies...) .vieviviceieciiecnene, 52

4.7.6 Validate EXPreSSIONcccooeiieiiiiieieeee et 53

4.8 XQuery CompariSON OPEFEIONScocereriererererieeeeeseeseesseseessessessessessesseseesenes 54
4.8.1 Node Comparison OPEratorsSccceeeeveeieereeieeseeseseesseesseseessesseesseenns 54

4.8.2 Sequence and Item OPEIatOrScccceverieereererieeseenie e see e seeenes 55
4.82.1 SeqUENCE OPENBLOISccvvrverieeirireesieeste e sne e 55

4.8.2.2 1M OPEIALOrSooeiviieiieiesiie st 56

XPath QUICK REFEIENCEocoveeecee e e 59
5.1 Path EXPrESSIONScocieiiciieitecie ettt sttt et sne et sneenneennas 59
52 XPath AXES AN SYNEAXeeiueiiiriieiieeiesee ettt st 60
53 XPath 2.0 FUNCHONSccveiuieiecie ettt nn e sneenes 61
54 ReSICIEd XPaNocviiiiececee e e 61
5.4.1 Path Field and Path-Based Range Index Configurationccccceceueene. 62

54.2 Element LeVE SECUMLYcccoviiiiiiirierieeeeee e 64

5.4.3 Template Driven Extraction (TDE)ccccecveveeeevece e 64

5.4.4 Patch Feature of the Client APIScoco e e 65

5.4.5 The extract-document-data Query Optionccoceveveenerenenenereneenes 67

5.4.6 TheOptic APl Xpath FUNCLIONcceeiiiiieiece e 67

5.4.7 Functions Callablein Predicate EXPreSSionscccccveereereneeniesienseene 68
54.7.1 SUING FUNCLIONSccooiiiiiiiiienieeeeeee e 68

5.4.7.2 Logical and DataValidation FUNCLIONSccccceveeeneecnecnnene 68

5.4.7.3 Dateand TiIMe FUNCLONSccooiieriienienienee e 69

5474 Type Casting FUNCLIONSccooiiiiinenieieieeeeeee e 69

54.75 Mathematical FUNCLIONSccooevinineninininee e 70

54.7.6 Miscellanious FUNCLIONSccoeeierienienienee e 70

5.4.8 Indexable Path EXPression Grammarc.ccoeoevereeeenieneesesieseeseeseeenes 71

5.4.9 Patch and Extract Path EXpression Grammarcccccceeeeeeeeesieeieesneenns 73
Understanding XML Namespaces in XQUEYccccveveerieeeieesiieesieeseeenneens 75
6.1 XML QNames, Local Names, and NameSPaCeSccceeeeereerieeieeseesieceeseenens 75
6.2 Everything ISIN aNamMESPACEccceevirieriirireerie et s 75
6.3 XML DataModel Versus Serialized XMLcccooovieiieienieneeeeeeseee e 76
6.3.1 XQuery Accessesthe XML DataModdlccccoovevveiececcccecce e, 76

6.3.2 Serialized XML: Human-Readable With Angle Bracketsc.cceeueeee. 76

6.3.3 Understanding Namespace I nheritance With the xmiIns Attribute 78

6.4 Declaring a Default Element Namespace in XQUEYcooeeveeeeeeeiieecieceesieeens 80
6.5 TipsFor Constructing QNAIMEScccoiieririiiiiene et 80

MarkLogic 9—May, 2017 XQuery and XSLT Reference Guide—Page 5

MarkLogic Server Version MarkLogic 9—May, 2017 Table of Contents

6.6 Predefined Namespace Prefixesfor Each DialeCtcocvvevvveienenini i 81

6.6.1 1.0-ml Predefined NameSPaceScccvvvvereeieeieene e e 81

6.6.2 1.0 Predefined NameSPaCEScccoceeiireirieriienienieeee e 83

6.6.3 0.9-ml Predefined NamESPACEScccovererirerenereeee e 83

7.0 XSLT INMarkLOQIC SEIVENooiuiiiieeiie ettt 87
75 T G I I S 87

7.2 Invoking and Evaluating XSLT Stylesheetsccccceveeveiiieieececeeceece e 87

7.3 MarkLogic Server EXteNSIONST0 XSLT ..cvoiiiiieieeiesee e 88

7.3.1 Cadlling Built-In XQuery Functionsin a Stylesheetccocceveveienenene 88

7.3.2 Importing XQuery Function Librariesto a Stylesheetcccccocvenneee. 88

7.3.3 Try/Catch XSLT INSIIUCHION ..ottt 89

7.3 4 EXSLT EXIENSIONSooivvieeeiiieiieiiesieeiesiee e eeesseessesee e sseseesseenseeneesseeneas 89

7.3.5 xdmp:dialect AttriDULEcooveieeeeee e 90

7.3.6 Notes on Importing Stylesheets With <xsl:import>cccocevervrnnnnn. 91

7.4 Invoking Stylesheets Directly Using the XSLT Rewriterccoccevvveienencneene. 91

7.4.1 About the Sample REWTITEYceeiieie e 91

7.4.2 Setting Up the Sample Rewriter in Your HTTP App Serverccceeveeee. 93

7.5 XSLT, XQUENY, OF BON ..o 93

8.0 Application Programming in XQuery and XSLTccoevivriienninnienrer e 95
8.1 DESIGN PALEIMS ..ottt e b e s 95

8.2 USING FUNCLIONSooiuieiiiiieie ettt ettt st ennenneennas 95

8.2.1 Creating Reusable and Modular Codeccccoeeererienieneeeseese e 96

8.2.2 RECUrSIVE FUNCLIONSeovieieieiesie ettt nee e nns 96

8.3 SEACN FUNCLIONScoeeiiiiee et 97

8.4 Updates and TranSACIONSccccererierrerrieniirsieesieseesee e seesresseesesssesssessesssesneas 97

85 HTTP AP SEIVEr FUNCLIONSoceoiiiiiiiieiieieieee ettt 97

8.6 AditioNal RESOUITESooviiiiriiiiicierieeee ettt s re e ens 98

8.6.1 MarkLogic Server DOCUMENLELIONccccevuerierierieeiesiee e 98

8.6.2 XQUENY USE CASES ...c.eeiuiiieerieiesieesie et 98

8.6.3 Other PUDIICALIONSccovueriiriiiie e 99

9.0 TeChniCal SUPPOITeoeeeeie e nnee s 101
0O O] oY/ 1 [0 o | TR RTSOPRR 103

Page 6—XQuery and XSLT Reference Guide

MarkLogic Server About This XQuery and XSLT Guide

1.0 About This XQuery and XSLT Guide

This XQuery and XS_T Reference Guide briefly describes some of the basics of the XQuery
language, but describes more thoroughly the MarkL ogic Server implementation of XQuery,
including many of the important extensions to the language implemented in MarkL ogic Server.
Additionally, it describes how to invoke XSLT stylesheets and briefly describes the MarkL ogic
Server XSLT 2.0 implementation.

The next two chapters (“XQuery Dialectsin MarkLogic Server” on page 9 and “MarkLogic
Server Enhanced X Query Language’ on page 17) focus on the MarkL ogic Server-specific aspects
of the XQuery language. If you prefer to start with the more generic aspects of the XQuery
language before moving to the MarkL ogic Server-specific parts, start with “ X Query Language’
on page 33.

Specifically, this guide covers:
» Thedifferent dialects of XQuery supported in MarkL ogic Server (see“XQuery Dialectsin
MarkLogic Server” on page 9).

* MarkLogic extensions to the XQuery language (see “MarkLogic Server Enhanced
XQuery Language” on page 17).

* Anoverview of the basic syntax of the XQuery language (see “XQuery Language’ on
page 33).
* A brief description of XPath syntax (see “ XPath Quick Reference” on page 59).

* Anintroduction to how namespaces work in XML and XQuery (see “Understanding XML
Namespaces in XQuery” on page 75).

e Using XSLT in MarkLogic Server (see“XSLT in MarkLogic Server” on page 87).

» Some information on how XQuery and XSLT are used as application development
programming languages in MarkL ogic Server (see “ Application Programming in XQuery
and XSLT” on page 95).

MarkLogic 9—May, 2017 XQuery and XSLT Reference Guide—Page 7

MarkLogic Server Version MarkLogic 9—May, 2017 About This XQuery and XSLT Guide

Page 8—XQuery and XSLT Reference Guide

MarkLogic Server XQuery Dialects in MarkLogic Server

2.0 XQuery Dialects in MarkLogic Server

The XQuery specification is aformal recommendation from the W3C X Query Working Group.
MarkLogic 10 implements the W3C XQuery 1.0 Recommendation (http://www.w3.org/TR/xquery/).
To maximize compatibility with MarkL ogic Server and to offer strict XQuery compliance to
those who desire it, as well asto include extensions to the language to make it easier to build
applications, MarkL ogic Server supports three dialects of XQuery. This chapter describes these
dialects, and includes the following sections:

* OQverview of the XQuery Dialects

¢ Rules For Combining the Dialects

e Using a Non-Default Dialect in XSLT (xdmp:dialect)

e Strategies For Migrating Code to Enhanced Dialect

2.1 Overview of the XQuery Dialects
MarkLogic Server supports three dial ects separate dial ects of XQuery:

e MarkLogic Server Enhanced (XQuery 1.0-ml)

e XQuery 0.9-ml
e Strict (XQuery 1.0)

You can use library modules from different dial ects together, as described in “Rules For
Combining the Dialects’ on page 10. Each dialect has a different set of pre-defined namespaces,
as described in * Predefined Namespace Prefixes for Each Diaect” on page 81.

2.1.1 MarkLogic Server Enhanced (XQuery 1.0-ml)

For amodule to use the MarkL ogic Server enhanced dialect, use the following for the XQuery
version declaration on the first line of the XQuery module:

xquery version "1.0-ml";

Note the semi-colon at the end of the declaration, which isrequired in 1.0-m1. The enhanced
dialect has the XQuery 1.0 syntax and also includes various extensions to the language such as
trylcatch. Thisdialect isthe default for new App Servers, and is considered the preferred dialect
for new applications. For more details on the enhanced 1. 0-m1 dialect, see“MarkLogic Server
Enhanced X Query Language” on page 17.

MarkLogic 10—May, 2019 XQuery and XSLT Reference Guide—Page 9

MarkLogic Server Version MarkLogic 10—May, 2019 XQuery Dialects in MarkLogic Server

2.1.2 XQuery 0.9-ml

For amodule to use the XQuery o.9-m1 dialect, use the following for the XQuery version
declaration on the first line of the XQuery module:

xquery version "0.9-ml"

Note thereisno semi-colon at the end of the declarationfor o.9-m1. Theo.9-m1 didect alowsyou
to write code that you can use with both 0.9-m1 and 1.0-m1. Any code you have from releases
where no version is mentioned is equivalent to 0. 9-m1. TOUSE 0.9-m1 codein 1.0-m1, the best
practiceisto add the 0. 9-m1 XQuery declaration as the first line of each XQuery module.

Note: The XQuery o.9-m1 diaect will soon be deprecated. MarkL ogic recommends that
you use either the 1. 0-mn1 Or 1.0 dialect.

2.1.3 Strict (XQuery 1.0)

For amodule to use the MarkL ogic Server strict dialect (1. 0), use the following for the X Query
version declaration on the first line of the XQuery module:

xguery version "1.0";

Note the semi-colon at the end of the declaration, which isrequired in 1.0. The strict mode is for
compatibility with other XQuery 1.0 processors; if you write alibrary in 1.0, you can use it with
MarkLogic Server and you can also use it with other conforming processors. Similarly, you can
use modules that are written in standard X Query with MarkLogic Server.

To use the MarkL ogic Server built-in functionsin 1. o, you must bind a prefix (for example, xdmp)
to the namespace for the MarkL ogic Server functions; there is no need to import alibrary for
these built-in functions, but you do need to bind the namespace to a prefix. To use the xdmp
functionsin 1.0, add prolog entries for the namespace bindings you are using in your query, asin
the following example:

xquery version "1.0";
declare namespace xdmp = "http://marklogic.com/xdmp";

xdmp :version ()

2.2 Rules For Combining the Dialects

MarkLogic Server has avery flexible way of combining the three XQuery dialects. You can
import alibrary module written in any of the three dialects into any main or library module. For
example, you might find an open source standards-compliant module that you found on the
internet which is written in the strict XQuery 1.0 dialect. You can then import this module into
any MarkLogic Server XQuery program, regardless of dialect, and then use those functionsin
your code.

Page 10—XQuery and XSLT Reference Guide

MarkLogic Server XQuery Dialects in MarkLogic Server

When writing modules of different dialects, the best practiceisto always use the XQuery version
declaration as the first line, indicating which dialect the module is written in. That way, if the
module iswritten in adifferent diaect than the default dialect for the App Server or the program,
it will still work correctly (for details, see “Inheriting the Default XQuery Version From the App
Server” on page 13).

2.3 Using a Non-Default Dialect in XSLT (xdmp:dialect)

You can use the xamp : dialect atribute to specify which dialect expressions are evaluated in an
XSLT stylesheet. For details, see “xdmp:dialect Attribute” on page 90.

2.4 Strategies For Migrating Code to Enhanced Dialect

If you are writing new X Query code, the best practiceisto usethe 1.0-m1 diaect. If you are
updating code that was written in previous versions of MarkLogic Server, migrate that code to
1.0-ml. This section describes things to think about when migrating your application code and
includes the following parts:

¢ When To Migrate XQuery Code

e XQuery Changes From Previous MarklLogic Server Releases

* |nheriting the Default XQuery Version From the App Server

¢ Porting 0.9-ml XQuery Code to Enhanced 1.0-ml

2.4.1 When To Migrate XQuery Code

Because of the flexibility of how you can interoperably use the various XQuery dialects, itis
really up to you when and how you migrate your XQuery code. The differences between the
dialects are mostly syntax changesin the prolog, but there are also some other differences that
might cause subtle changes in behavior. For details on the differences between the XQuery
dialectsino.s-m1 and 1.0-m1, see “XQuery Changes From Previous MarkL ogic Server Releases’
on page 12. When you decide to migrate XQuery codeto 1.0-m1 (or to1.0), there are several
way's you can go about it:

» Migrate an entire application all at once. This method gets everything over with at once,
and therefore focuses the effort. If you have arelatively small amount of code to migrate,
it might make sense to just go ahead and migrate it all at once.

* Migrate one module at atime. This method allows you to spread the migration work over
anumber of small tasks instead of one large task, and further allows you to test each
module independently after migration. Thistechniqueis very flexible, asyou can do a
little bit at atime. A good first step for this one-by-one approach isto start by adding an
XQuery o.9-m1 declaration to thefirst line of each XQuery file. Then, asyou migrate a
module, you can change the declaration to 1. 0-m1 and make any needed syntax changesto
that module.

MarkLogic 10—May, 2019 XQuery and XSLT Reference Guide—Page 11

MarkLogic Server Version MarkLogic 10—May, 2019 XQuery Dialects in MarkLogic Server

2.4.2 XQuery Changes From Previous MarkLogic Server Releases

While XQuery 1.0-m1 4.0 includes a compatibility dialect to run your o.9-m1 code without
changes, the new enhanced mode offers several important improvements, so it isagood ideato
migrate your code to the enhanced dialect (1.0-n1). Because you can mix modulesin the old
dialect with modules in the new, you can perform your migration one module at atime. This
section highlights the major syntax and semantic changes between the XQuery usedin o.9-m1 and
enhanced XQuery dialect 1.0-n1. Additionally, see the “Known Incompatibilities’ section of the
Release Notes. The changes include:

e Semi-colons (;) are now required at the end of each prolog declaration.

* Prolog declarations that previously used define NOW USE declare.

* Variable declaration syntax is slightly different, and now usesthe : - syntax (for details
and an example, see “Declaring Variables’ on page 43).

» Library module declarations now require the namespace keyword and a prefix for the
namespace, for example:

module namespace my = "my-namespace";

* Function declarations that return the empty sequence now require the empty sequence to
be specified as follows:

empty-sequence ()

INno0.9-m1, you specify empty () for the empty sequence.

» Some of the effective boolean value rules have changed. Notably, the following returns
truein o.9-m1 and returnsfalsein 1.0-m1 (and throws an exceptionin 1.0):

(: returns true in 0.9-ml, false in 1.0-ml, and
throws XDMP-EFFBOOLVALUE in 1.0 :)
fn:boolean((fn:false(), fn:false()))

This change might affect applicationsthat have i £ /then/e1se Statements where the it test
returns a sequence of boolean values. In these cases, you might see the i £ statement
evaluating to fa1se in cases where it previously evaluated to true, causing the eise
statement to be evaluated intead of the then Statement.

* Thenamespace used for durations now uses the xs namespace prefix; previously it wasthe
xdt prefix. Any code you have that uses the xat namespace prefix will require a change to
the xs prefix. For example, if you have code that uses xdt : dayTimeburation, changeit to

xs:dayTimeDuration.

Page 12—XQuery and XSLT Reference Guide

MarkLogic Server XQuery Dialects in MarkLogic Server

* clement() testSino.9-m1 are equivaJent {0 schema-element () t€Stin1.0and 1.0-ml. Any
code you have with element () tests might not match some elements that previously
matched. For example, substitution elements previously would match the base element
name, but will now only match with schema-element () testini.o and 1.0-m1. FOr more
information, see element() Test in 0.9-ml Equivalent to schema-element() Test in 1.0-ml in the
Release Notes.

» Some changes to the X Query standard functions. For example, there are subtle changes to
fn:avg and fn:sum, fn:error has a different signature, and £n:node-kind does not exist in
1.0and 1.0-ml (it isreplaced by xdmp :node-kind).

2.4.3 Inheriting the Default XQuery Version From the App Server

Each App Server has a setting for the default XQuery version. Any requests against that App
Server that do not have explicitly specify an XQuery version declaration are treated as the default
XQuery version value. Because of the way arequest inheritsit default XQuery version from the
App Server environment, requests without an explicit declaration can be treated differently by
different App Servers (if the App Servers have different default XQuery values). Therefore, it is
best practice to specify the XQuery version in each module.

Thetask server does not allow you to specify adefault XQuery version, and if there is no explicit
version declaration in the XQuery code evaluated on the task server, the default XQuery versionis
determined as follows:

* If you run an xdmp: spawn call, the default XQuery versionisi.o-mi.

» If atrigger action module is executed on the task server (for example, as the result of an
update on a document that has a post-commit update trigger), then the default XQuery
version is the default XQuery version for the App Server that triggered the update (as
specified in the configuration for the App Server).

Thismakesit especially important to use XQuery version declarations in modules used by CPF or
modules called from triggers. For details on CPF, see the Content Processing Framework Guide.

To ensure your code is aways evaluated in the dialect in which you have written it, regardless of
the context in which it isrun, the best practice is to begin each XQuery module with a XQuery
version declaration. For the syntax of the version declaration, see “ XQuery Version Declaration”
on page 36.

2.5 Specifying the XQuery Dialect in the Prolog

You specify the dialect for an XQuery module with a version declaration. The version declaration
isoptional, and comes before the prolog in an XQuery module. It is best practice to put the
XQuery version declaration in your code as thefirst linein the module, as having it there ensures
it will work as expected in any environment. For example, to specify 1.0-m1 asthe XQuery
version, begin your XQuery module with the following:

xquery version "1.0-ml";

MarkLogic 10—May, 2019 XQuery and XSLT Reference Guide—Page 13

MarkLogic Server Version MarkLogic 10—May, 2019 XQuery Dialects in MarkLogic Server

251 Porting 0.9-ml XQuery Code to Enhanced 1.0-ml

In most cases, porting any XQuery code used in 0.9-m1 to the 1.0-n1 diaect will be easy and
straightforward. The bulk of the differences are syntax changes in the prolog. As stated earlier,
you do not need to port all of your code at one time. A sensible approach isto migrate your code
one XQuery module at atime. This section outlines the basic steps to follow when migrating your
XQuery code.

The following are some basic steps to take when migrating 0. 9-m1 XQuery codeto 1.0-m1:

1 Add XQuery version declarationsto all of your existing modules. For code written in
0.9-m1, the declarations will be as follows:

xquery version "0.9-ml"

2. Review the Release Notes for any incompatibilities.

3. For each module you migrate, change the version number string in the XQuery version
declaration to 1. 0-n1 and add a semi-colon to the line so it appears as follows:

xquery version "1.0-ml";

4, Change all of the prolog declarationsto the 1.0 syntax (change define t0 declare, add
semi-colons, and so on, as described in “XQuery Changes From Previous MarkLogic
Server Releases’” on page 12). For the prolog syntax, see “XQuery Prolog” on page 38, the
W3C specification (http://www.w3.org/TR/xquery/#id-grammar), or athird-party XQuery
book.

5. If you are modifying a main module and it has function declarations that are used in the
same module, they must be declared in a namespace. The preferred way to put functions
local to amain moduleisto prefix those functions definitions and function calls with the
local: prefix, which is predefined.

6. If you have any durations that use the xat namespace prefix, change the prefix to xs (for
exampl e, Change xdt :dayTimeDuration tO xs:dayTimeDurat ion).

7. If you are modifying alibrary module, all XQuery standard functions need to be prefixed
with the £n namespace prefix. Alternately, you can declare the XQuery functions
namespace as the default function namespace in the prolog as follows:

declare default function namespace
"http://www.w3.0rg/2005/xpath-functions";

If you do declare the default function namespace, then you will also need to prefix your
own function definitions with the prefix defined in your module definition. Note that you
can no longer use the X Path functions namespace as the library module namespace.

Page 14—XQuery and XSLT Reference Guide

http://www.w3.org/TR/xquery/#id-grammar

MarkLogic Server XQuery Dialects in MarkLogic Server

10.

11.

If you are modifying alibrary module that is defined with the £n namespace URI, you
must change the namespace URI of that module; you cannot use the URI bound to the £n
namespace prefix asthe URI for alibrary modulein 1.0 or 1.0-m1. If you do change the
namespace URI of alibrary module, you must also change the URI in any import module
statements in other modules that call the library.

Test the module and correct any syntax errors that occur.

After getting the module to run, test your code to make sureit behavesasit did before. Pay
particular attention to parts of your code that might rely on boolean values that take
boolean values of sequences, as those behave differently ino.9-m1 and 1. 0-m1 (See
“XQuery Changes From Previous MarkLogic Server Releases’ on page 12). Check for
any changes due to function mapping, which is described in “ Function Mapping” on

page 19.

Repeat this process for other modules you want to migrate.

MarkLogic 10—May, 2019 XQuery and XSLT Reference Guide—Page 15

MarkLogic Server Version MarkLogic 10—May, 2019 XQuery Dialects in MarkLogic Server

Page 16—XQuery and XSLT Reference Guide

MarkLogic Server MarkLogic Server Enhanced XQuery Language

3.0 MarkLogic Server Enhanced XQuery Language

The default XQuery dialect in MarkLogic Server is enhanced. (1.0-m1) The enhanced diaect
includes all of the featuresin the strict XQuery 1.0 dialect, and adds several other features to
make it easier to use XQuery as a programming language with which to create applications. This
chapter describes the features of the enhanced dialect and includes the following sections:

e try/catch Expression

¢ Function Mapping

* Semi-Colon as Transaction Separator

¢ Private Function and Variable Definitions

* Functions With Side Effects

¢ Shorthand Positional Predicate Syntax

¢ Binary Node Constructor and Node Test

* validate as Expression

e Serialization Options

* |mporting a Stylesheet Into an XQuery Module

e XQuery 3.x Features

¢ Implementation-Defined Semantics

For details on the XQuery language, see “ XQuery Language’ on page 33 and the W3C X Query
specification (http://www.w3.org/TR/xquery/).

3.1 try/catch Expression

Thetry/catch extension allows you to catch and handle exceptions. MarkL ogic Server exceptions
are thrown in XML format, and you can apply an XPath statement to the exception if thereisa
particular part you want to extract. The exception is bound to the variable in the catch clause.

}7 try { expression } catch (variable) — { expression } —{

The following code sample uses a try/catch block to catch exceptions upon loading a document,
and prints out the filename if an exception occurs.

try {
let $filename := "/space/myfile.xml"
let Soptions := <options xmlns="xdmp:document-load"s>
<uri>/myfile.xml</uri>
<repairs>none</repairs>
</optionss>

MarkLogic 10—May, 2019 XQuery and XSLT Reference Guide—Page 17

http://www.w3.org/TR/xquery/

MarkLogic Server Version MarkLogic 10—May, 2019 MarkLogic Server Enhanced XQuery

return xdmp:document-load($filename, S$Soptions)

}

catch ($exception) {
"Problem loading file, received the following exception: ",
S$exception }

Most exceptions can be caught with a try/catch block, but the xpmp-cancerep, sve-canceren, and
XDMP-DISABLED EXCEPtions cannot be caught in atry/catch block.

When an exception is thrown by code within atry block, all actions taken in that block are rolled
back. If you catch the exception (and do not throw another), then MarkLogic will evaluate
expressions occuring after the try-catch expression.

For example, in the following code, the call t0 xdmp : document - set -metadata datathrows an

XDMP - CONFLICTINGUPDATES €XCeption because it tries to update the document metadata twice in the
same statement. The exception istrapped by the try-catch. The updatesin thetry block arelost, so
“doc.xml” isnot created. The “hello” expression is still evaluated.

xquery version "1.0-ml";

try {
xdmp :document -insert ('doc.xml"',
<data/>,
map:map () => map:with("metadata",
map:map() => map:with("a", 1)
=> map:with("b",2))
),
xdmp : document -set-metadata ('doc.xml', map:map() => map:with("c", 3))
} catch($err) { },
"hello"

(: doc.xml is not inserted; query emits "hello"

By contrast, if you wrap only the call t0 xdmp : document -set -metadata in the try-catch block, then
theinitial document insert still occurs.

xquery version "1.0-ml";
xdmp : document -insert ('doc.xml"',

<data/>,
map:map () => map:with("metadata",
map:map() => map:with("m", 1)
=> map:with("n",2))
),
try {
xdmp : document -set-metadata ('doc.xml', map:map() => map:with("b", 1))
} catch($err) { },
"hello"

(: doc.xml is inserted with m & n metadata keys; query emits "hello" :)

Page 18—XQuery and XSLT Reference Guide

MarkLogic Server MarkLogic Server Enhanced XQuery Language

Note that Server-Side JavaScript code does not handle JavaScript statements within atry block
the same way as XQuery handles expressionsin atry block. In JavaScript, statementsin the try
block that complete before the exception occurs are not rolled back if the exception is caught. For
details, see Exception Handling in the JavaScript Reference Guide.

3.2 Function Mapping

Function mapping is an extension to X Query that allows you to pass a sequence to afunction
parameter that istyped to take a singleton item, and it will invoke that function once for each item
in the sequence. This section describes function mapping and includes the following parts:

¢ Understanding Function Mapping

e Enabling or Disabling Function Mapping

3.2.1 Understanding Function Mapping

Function mapping is equivalent to iterating over the sequence like it wasin a for clause of a
FLWOR expression. The following is an example of function mapping:

xquery version "1.0-ml";
declare function local:print-word (Sword as xs:string) { $word };

local:print-word(("hello", "world"))

(:
evaluates the print-word function twice, once for "hello"
and once for "world", returning hello world

)

Function mapping also works on multiple singleton parameters, resulting in the cross product of
all the values (equivalent to nested ror clauses). In the case of multiple mappings, they occur left
to right. For example, the following is evaluated like a nested for l00p:

xquery version "1.0-ml";
(1 to 2) * (3 to 4)
(: returns the sequence (3, 4, 6, 8) :)

One consequence of function mapping, which can be surprising the first time you seeit, isthat if
the value passed for a parameter isthe empty sequence, it could result in the function being called
0 times (that is, in the function never runs and results in the empty sequence. For example, if you
entered the empty sequence as the parameter to the above function call, it returns empty, as
follows:

MarkLogic 10—May, 2019 XQuery and XSLT Reference Guide—Page 19

MarkLogic Server Version MarkLogic 10—May, 2019 MarkLogic Server Enhanced XQuery

xquery version "1.0-ml";
declare function local:print-word ($word as xs:string) { Sword };

local:print-word(())

(:
evaluates the print-word function zero times, resulting
in the empty sequence

:)

The 10cal:print-word function is never called in this case, because it isiterating over the empty
sequence, which causes zero invocations of the function. If your function calls are fed by code
that can return the empty sequence (an XPath expression, for example), then you might see this
behavior.

3.2.2 Enabling or Disabling Function Mapping

In1.0-m1, function mapping is enabled by default. In 1.0, it is disabled by default. You can enable
itin 1.0 by adding the following to the XQuery prolog:

declare namespace xdmp="http://marklogic.com/xdmp";
declare option xdmp:mapping "true";

Similarly, you can explicitly disable function mapping in 1.0-m1 by adding the following to the
prolog:

declare option xdmp:mapping "false";

You cannot use function mapping in the 0. s-m1 dialect; if you run code expecting it to map
singletonsto asequencein o.9-m1 (Orin 1.0 Or 1.0-ml if function mapping is diabled), it will
throw an exception because the sequence cannot be cast to a single string.

3.3 Semi-Colon as Transaction Separator

In the enhanced dialect, you can add a semi-colon after one or more XQuery statementsin the
body of a main module and then add another one or more X Query statement. The two sets of
statements are then evaluated as two separate transactions. Each set of statements must be amain
module; that is, they must all have their own prolog elements. All of the statementsin the program
must use the same X Query dialect. For example, the following creates a document and then
returns the contents of the document:

xquery version "1.0-ml";
xdmp : document -insert (" /mydocs/sample.xml",
<some-element>content</some-elements>) ;

xquery version "1.0-ml";

(: Note that the XQuery version must be the same for all
statements in the module :)

fn:doc ("/mydocs/sample.xml")

(: returns the document created in the previous statement :)

Page 20—XQuery and XSLT Reference Guide

MarkLogic Server MarkLogic Server Enhanced XQuery Language

Note that you cannot use the semi-colon as a transaction separator in the strict XQuery dialect
(1.0). For more details on transactions, see Understanding Transactions in MarkLogic Server chapter
in the Application Developer’s Guide.

3.4 Private Function and Variable Definitions

Inthe 1.0-m1 enhanced dialect, you can create library modules with functions and variables that
are private to the library module. Private functions and variables are useful when you have certain
code you do not want to expose to users of the library, but might be useful for functions for the
library to use. To make functions and variables private, add private to the function or variable
declaration syntax as follows:

declare private function
declare private variable

Note that functions and variablesin a main module are private by definition, so declaring them
private only makes sense for library modules.

3.5 Functions With Side Effects

The XQuery specification defines that XQuery programs produce only their return values,
without producing any side effects; that is, without causing any changes to the run-time
environment as aresult of running the program (with the exception of tn:trace). MarkLogic
Server has many enhancementsthat cause side effects. For example, there are functions that insert
or update documents in a database. Since functions like the ones that update documents do more
than functions that simply return values, they are extensions to the XQuery specification.

Side effects are extremely useful when building applications. Therefore, MarkLogic Server
includes many functions that have side effects. The following are some examples of functions
with side effects:

e xdmp:set
. Update Built-ins (xdmp :document - 1oad, xdmp :node-insert, and SO on)

* Administrative functions (xdmp : merge, Admin library, xdmp : shutdown, and So on)

3.6 Shorthand Positional Predicate Syntax

MarkLogic Server enhanced mode supports the shorthand version of the positional predicate
syntax, where you can specify the position numbersto include. For example, the following
specifies the first three items in the sequence:

xquery version "1.0-ml";
(1, 2, 3, 4, 5, 5)I[1 to 3]

In XQuery 1.0 strict mode (1. 0), you must use the fn:position () function asin the following
example:

MarkLogic 10—May, 2019 XQuery and XSLT Reference Guide—Page 21

MarkLogic Server Version MarkLogic 10—May, 2019 MarkLogic Server Enhanced XQuery

xquery version "1.0";
(1, 2, 3, 4, 5, 5)[fn:position() = (1 to 3)]

3.7 Binary Node Constructor and Node Test

MarkLogic Server enhanced mode extends the X Query types to include a binary node type.
Binary nodes are used to store binary documents. To support this type, the MarkLogic Server
enhanced X Query dialect includes a node constructor (binary) to construct a binary node and a
nodetest (binary ()) to test whether anode is a binary node (for example, in a typeswitch
expression). These extensions are not available in the 1.0 dialect.

3.8 validate as Expression

Inthe 1.0-m1 dialect, you can usethe validate as Syntax to specify thetypefor avalidate
expression. Thevalidate as expression isan extension to the XQuery 1.0 validate expression,
anditisonly availablein 1.0-m1; itisnot availableinthe 1.0 diaect. For details on the validate
expression, see “Validate Expression” on page 53.

3.9 Serialization Options

You can set the serialization options in XQuery with the declare option XQuery prolog. In
XSLT, you can set the serialization options using the <xs1 : output > instruction. For details on
setting the serialization optionsin XQuery, see “Declaring Options’ on page 39. For XSLT output
details, see the XSLT specification (http://www.w3.org/TR/xslt#output).

3.10 Importing a Stylesheet Into an XQuery Module

Using the1.0-m1 dialect, you can import a X SLT stylesheet into an X Query module, allowing you
access to the functions and variables defined defined by that stylesheet. To import a stylesheet in
XQuery, use a prolog expression of the following form:

import stylesheet at "/path-to-stylesheet.xsl";

The following example shows an XQuery module that imports a stylesheet and runs afunction in
the stylesheet:

xquery version "1.0-ml";

(: assumes a stylesheet at /f.xsl with the following contents:

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="2.0" xmlns:foo="foo">

<xsl:function name="foo:foo">foo</xsl:function>

</xsl:stylesheet>

:)

import stylesheet at "/f.xsl";
declare namespace foo="foo";

foo:foo()

Page 22—XQuery and XSLT Reference Guide

http://www.w3.org/TR/xslt#output

MarkLogic Server MarkLogic Server Enhanced XQuery Language

(: Returns the string:

foo

which is the output of the
stylesheet function. :)

Similarly, you canimport an XQuery moduleinto an XSLT stylesheet, as described in “Importing
XQuery Function Libraries to a Stylesheet” on page 88.

Note: To use functions and variables from a stylesheet in XQuery, definethemina
namespace in the stylesheet. In XQuery, it is difficult to call functions and
variables in no namespace. Therefore, the best practiceis, for functions and
variablesin a stylesheet that you plan to import into an XQuery module, define
them in a namespace. Note that in an XQuery library module, all function and
variable declarations must be in a namespace.

3.11 XQuery 3.x Features

MarkL ogic supports the following subset of language features from XQuery 3.0 and XQuery 3.1.
MarkL ogic does not support the entire XQuery 3.0 or 3.1 standard. Unless otherwise noted,
MarkL ogic implements the same semantics for these features as described by the XQuery
specification.

e Arrow Operator

e Simple Map Operator

e String Concatenation Operator

¢ URI Qualified Names

¢ Dynamic Function Invocation

¢ Inline Functions

* Function Type Testing

¢ Named Function References

e Partial Function Application

¢ Function Annotations

e Default Values for External Variables

e Unions in Typeswitch Case Descriptors

e Switch Statement

e Validate Type Expressions

e Error Handling with Try/Catch

MarkLogic 10—May, 2019 XQuery and XSLT Reference Guide—Page 23

MarkLogic Server Version MarkLogic 10—May, 2019 MarkLogic Server Enhanced XQuery

3.11.1 Arrow Operator

The arrow operator (“=>") applies afunction to the value of an expression. For example, you can
use the arrow operator to chain together callSto map: with whileinitializing a map : map:

map:map () => map:with(skeyl, $valuel)
=> map:with (Skey2, s$value2)

In the above example, the map produced by calling map : map OF map:with iSimplicitly the first
param of the applied function (map:with, here).

Without the arrow operator, you would need to make repeated calls to map : put Or repeated or
nested calls to map : with, as shown below. The use of the arrow operator can result in more
readable code.

(: using map:put :)

let Smap := map:map ()
let $:= map:put($Smap, S$keyl, S$valuel)
let $:= map:put(Smap, S$key2, S$value2)

return S$map

(: using map:with :)
map:with(map:with(map:map (), S$keyl, $valuel), skey2, $value2)

For more details, see the discussion of the arrow operator in the XQuery 3.1 specification at
https://www.w3.0rg/TR/2017/REC-xquery-31-20170321/.

3.11.2 Simple Map Operator
The simple map operator (“!”) is used in expressions of the following form:

PathExprl ! PathExpr2

PathExpr1 is evaluated, and then each item in the resulting sequence acts as the inner focus when
evaluating PathExpr2.

The following examplefinds al the //child elements of $nodes, and then uses each element asthe
context item (“.”) in acall to fn:concat.

xquery version "1.0-ml";

let Snodes := (
<parent><child>a</child></parent>,
<parent><child>b</child></parent>,
<parent><child>c</child></parent>

)
return $nodes//child ! fn:concat ("pfx-", .)

(: result: ("pfx-a", "pfx-b", "pfx-c") :)

For more details, see the discussion of the Simple Map Operator in the XQuery 3.0 specification
at https://www.w3.org/TR/xquery-30/#id-map-operator.

Page 24—XQuery and XSLT Reference Guide

https://www.w3.org/TR/2017/REC-xquery-31-20170321/
https://www.w3.org/TR/xquery-30/#id-map-operator

MarkLogic Server MarkLogic Server Enhanced XQuery Language

3.11.3 String Concatenation Operator

The string concatenation operator (“||”) enables you to concatenate two strings, as if by calling
fn:concat. FOr example:

Ilgreen eggs" || " and " || "ham"

(: result: "green eggs and ham" :)

For more details, see the discussion of String Concatenation Expressionsin the XQuery 3.0
specification at https://www.w3.org/TR/xquery-30/#id-string-concat-expr.

3.11.4 URI Qualified Names

A URI Qualified Name enables you to specify a namspace URI literal along with alocal name,
instead of pre-defining a namespace prefix. You can use a URI qualified name anywhere you can
use alexical QName.

A gqualifed URI name has the form:

Q{namespaceURI}I1ocal name

For example, the element <x:p/> in the following node can be referenced as
o{http://example.com/ns/foo}p.

xquery version "1.0-ml";
let Snode :=
<doc xmlns:x="http://example.com/ns/foo">
<x:p/>
</doc>
return
$node//Q{http://example.com/ns/foo}p

For more details, see the discussion of Expanded QNames in the XQuery 3.0 specification at
https://www.w3.org/TR/xquery-30/#dt-expanded-gname.

3.11.5 Dynamic Function Invocation
This feature enables you to invoke a function through a function reference. For example:

xquery version "1.0-ml";
let Sref := fn:concat#2
return S$ref ("a","b")

(: returns "ab" :)

For more details, see the discussion of dynamic function callsin the XQuery 3.0 specification at
https://www.w3.org/TR/xquery-30/#id-dynamic-function-invocation.

MarkLogic 10—May, 2019 XQuery and XSLT Reference Guide—Page 25

https://www.w3.org/TR/xquery-30/#id-dynamic-function-invocation
https://www.w3.org/TR/xquery-30/#dt-expanded-qname
https://www.w3.org/TR/xquery-30/#id-string-concat-expr

MarkLogic Server Version MarkLogic 10—May, 2019 MarkLogic Server Enhanced XQuery

3.11.6 Inline Functions

Inline functions are defined in the place where you use them, rather than being separately
declared. You can declare a function inline anywhere you can supply a function reference.

The following example passes an inline function as the first parameter of £n:map:
fn:map (function($n) {%n + $n}, (10, 20))
(: returns (20,40) :)

For more details, see the discussion of Inline Function Expressions in the XQuery 3.0
specification at https://www.w3.0rg/TR/xquery-30/#dt-inline-func.

3.11.7 Function Type Testing

You can use the typed function test feature to test that an expression is afunction reference with a
specific signature. The signature you test against can include parameter types and return type.

For more details, see the Function Test in the XQuery 3.0 specification at
https://www.w3.org/TR/xquery-30/#id-function-test.

3.11.8 Named Function References

You can create areference to a named function defined in the static context of aquery. This
feature enables you to create references to known functions, including distinguishing
implementations that accept a different number of parameters.

For example, the following code creates areference to the version of the function
local : dosomething that accept two parameters, and then invokes the function through the
reference:

xquery version "1.0-ml";

declare function local:doSomething(
Sa as xs:int, $b as xs:int

) as xs:int

{ $a+$b};

declare function local:doSomething(
Sa as xs:int, $b as xs:int, $c as xs:int
) as xs:int

{ $a * b * Sc };

let Sref := local:doSomething#2
return Sref (2,3)

You can aso create references to functions defined by X Query and MarkL ogic. For example:
fn:concat#3 Signifies areference to £n:concat expecting 3 parameters.

Page 26—XQuery and XSLT Reference Guide

https://www.w3.org/TR/xquery-30/#dt-inline-func
https://www.w3.org/TR/xquery-30/#id-function-test

MarkLogic Server MarkLogic Server Enhanced XQuery Language

For more details, see the following topic in the XQuery 3.0 specification at
https://www.w3.0org/TR/xquery-30/#id-named-function-ref.

3.11.9 Partial Function Application

When creating a function reference, you can fill in specific values for some parameters and use a
placeholder for others. When you make a function call using the reference, you pass in values
only for the placeholder parameters. The other parameters use the explicit values previously
bound to the reference.

For example, the following function reference specifies the value 10 for the first parameter of the
referenced function, and uses a placeholder for the second parameter:

let $fref := local:doSomething (10, ?)

You can invoke the function through the reference and supply only one parameter, which will take
the place of the placeholder parameter. For example:

xquery version "1.0-ml";

declare function local:doSomething(
Sa as xs:int, $b as xs:int

) as xs:int

{ $a+$b};

let $ref := local:doSomething(10,?)
return Sref (3)

(: returns 13 :)

For more details, see the discussion of partial function application in the X Query 3.0 specification
at https://www.w3.org/TR/xquery-30/.

3.11.10 Function Annotations

A function annotation declares a property of afunction. For example, XQuery defines the
annotations spublic and sprivate for indicating the visibility of afunction outside of amodule,
such asin the following code snippet:

declare %private my:func(Sp as xs:int)

MarkL ogic supports the annotations defined by the XQuery 3.0 specification. MarkLogic also
defines the following implementation-specific annotations:

* srapi:transaction-mode (mode) : SpPecCify the transaction mode of afunctionin a REST
Client API extension module. For details, see Controlling Transaction Mode in the REST
Application Developer’s Guide.

For more details, see the discussion of annotations in the Function Declaration topic of the
XQuery 3.0 specification at https://www.w3.org/TR/xquery-30/#FunctionDeclns.

MarkLogic 10—May, 2019 XQuery and XSLT Reference Guide—Page 27

https://www.w3.org/TR/xquery-30/#FunctionDeclns
https://www.w3.org/TR/xquery-30/#id-named-function-ref
https://www.w3.org/TR/xquery-30/

MarkLogic Server Version MarkLogic 10—May, 2019 MarkLogic Server Enhanced XQuery

3.11.11 Default Values for External Variables

When you declare an external variable, you can includes a default value in the declaration. If the
dynamic context during query evaluation does not include a value for the variable, the default is
used.

The following example defines an external variable with the default value "my default value".

declare variable $exv as xs:string := "my default value";

For more details, see VarDefaultValue in the Variable Declaration topic of the XQuery 3.0
specification at https://www.w3.org/TR/xquery-30/#id-variable-declarations.

3.11.12 Unions in Typeswitch Case Descriptors

You can use aunion of types in the case clause of atypeswitch statement instead of a single type.
The case matchesif any of the typesin the union match. Use the union operator (“|”) to separate
the typesin the clause.

For example, the case clause in the following typeswitch matches either aname Or address
element.

typeswitch ($some-node)
case $Sn as element (name) | element (address) return Sn
default return ()

For more details, see the discussion of SequenceTypeUnion in the Typeswitch topic of the
XQuery 3.0 specification at https://www.w3.org/TR/xquery-30/#doc-xquery30-CaseClause.

3.11.13 Switch Statement

A switch statement enables you to choose one of several expressions to evaluate based on value.
By contrast, a typeswitch enable you to choose one of severale expressions based on type.

For example, the following code selects a code path based on the value of a variable.

xquery version "1.0-ml";

let Ssome-value := 2

return switch ($some-value)
case 1 return "one"
case 2 return "two"
default return "many"

(: returns "two" :)

You can use a switch statement that tests the value fn:true() as a“ shortcut” for a nested set of
if-then-else expressions. For example:

switch (fn:true)
case ($a > 0) return "positive"

Page 28—XQuery and XSLT Reference Guide

https://www.w3.org/TR/xquery-30/#id-variable-declarations
https://www.w3.org/TR/xquery-30/#doc-xquery30-CaseClause

MarkLogic Server MarkLogic Server Enhanced XQuery Language
case ($a < 0) return "negative"

default return "zero"

For more details, see the Switch Expression topic in the XQuery 3.0 specification at
https://www.w3.org/TR/xguery-30/#id-switch.

3.11.14 Validate Type Expressions

You can validate a node against in-scope schema definitions using the “validate” operator. You
can specify avalidation level (strict or lax) or a specific schematype. Thisfeatureis similar to
calling xdmp: validate, €xcept that it raises an error on the first validation failure, rather than
returning a sequence of xdmp:validation-error €ements.

The following example specifies avalidation level. If you omit the leve, “strict” isimplied.

(: validate a structured query :)
xquery version "1.0-ml";
let squery :=
<query xmlns="http://marklogic.com/appservices/search">
<word-querys>
<element name="body-color" ns="" />
<texts>black</text>
</word-query>
</query>
return validate strict { $query }

The following example specifies a type instead:
validate type my:type { $some-node }

For more details, see the discussion of Validate Expressions in the XQuery 3.0 specification at
https://www.w3.0rg/TR/xquery-30/#id-validate.

3.11.15 Error Handling with Try/Catch

A try/catch expression enables you to trap and handle errors. MarkLogic aso supports a
proprietary try/catch implementation, as described in “try/catch Expression” on page 17. You can
use either form.

The MarkL ogic-specific and XQuery standard try/catch expressions differ in the following ways:

* Inthe standard implementation, the catch clause uses a name test to determine whether or
not to trap a given error. This enables you to trap specific exceptions by name. The
proprietary implementation traps any exception.

» The standard implementation pre-defines several variables in the scope of the expression
evaluated in the catch block. These variables provide details about the error. The
proprietary implementation binds an error element to a variable you specify in your catch
clause, and then you access error details through that variable.

MarkLogic 10—May, 2019 XQuery and XSLT Reference Guide—Page 29

https://www.w3.org/TR/xquery-30/#id-validate
https://www.w3.org/TR/xquery-30/#id-switch

MarkLogic Server Version MarkLogic 10—May, 2019 MarkLogic Server Enhanced XQuery

You cannot trap MarkL ogic errors such as XDMP-AS by name with the standard implementation
because MarkL ogic errors do not have QNames. However, you can trap the XQuery standard
error codes or all errors (“*”) with the standard try/catch expression.

The following is an example of an XQuery standard try/catch expression. It traps all all
exceptions and prints out a message constructed from some of the implicitly defined variables.

xquery version "1.0-ml";
try {

fn:error (fn:QName ('http://www.w3.0rg/2005/xgt-errors’,
'err:FOER0000'))

}

catch * {
fn:concat (Serr:code, " at ", Serr:line-number, ":",
Serr:column-number)

}

For more details, see the Try Catch Expressions discussion in the XQuery 3.0 specification at
https://www.w3.0rg/TR/xquery-30/#id-try-catch.

3.12 Implementation-Defined Semantics
The XQuery specification listsitems that may be defined by each implementation of XQuery:

http://www.w3.org/TR/xquery/#id-impl-defined-items

This section describes the following implementation-defined items as they are implemented in
MarkLogic Server:

e Automatic Namespace Imports for Predefined Namespaces

e External Variables

e Collations

* |mplementation-Defined Primitive XQuery Types

e Decimal Precision at Least 18 Digits, and is Not Configurable

e Library Modules Default Function Namespace Defaults to Library Namespace

Note: Except where noted, the itemsin this section apply all of the XQuery dialects
supported in MarkL ogic Server.

3.12.1 Automatic Namespace Imports for Predefined Namespaces

Each dialect has a set of namespace prefixes that are predefined. For those predefined
namespaces, it is not necessary to declare the prefix. For example, the £n prefix is predefined in all
of the dialects. For alist of predefined namespaces for each dialect, see “ Predefined Namespace
Prefixes for Each Dialect” on page 81.

Note: The tn: prefix isbound to adifferent namespaceini.o and 1.0-m1 thanino.9-mi.

Page 30—XQuery and XSLT Reference Guide

http://www.w3.org/TR/xquery/#id-impl-defined-items
https://www.w3.org/TR/xquery-30/#id-try-catch

MarkLogic Server MarkLogic Server Enhanced XQuery Language

3.12.2 External Variables

Externa variables are one of the things that the XQuery standard refersto as
implementation-defined. In MarkL ogic Server, external variables are implemented such that you
can pass nodes and values into an XQuery program. To use external variables, you passin
external variablesto the XQuery program (Via xdmp : invoke, xdmp: eval, xdmp: spawn, OF Via XCC).
The variables are passed in as pairs of QNames and values.

An XQuery program that accepts external variables must declare the external variablesin its
prolog, asin the following code snippet:

declare variable S$my:variable as xs:string* external;

You can create a default value for the variable by adding the : = to the specification, asin the
following code snippet:

declare variable S$my:variable as xs:string* external
:= "default value";

An XQuery program with this variable declaration would be able to use the string values passed
into it viaan external variable with the QName my : variable (Where the namespace prefix my was
declared somewhere in both the calling and called environments). You could then reference this
variablein the XQuery program as in the following example:

xquery version "1.0-ml";
declare namespace my="myNamespace";
declare variable Smy:variable as xs:string* external;

fn:concat ("The value of $Smy:variable is: ", $my:variable)

If you then call this module as follows (assuming the module can be resolved from the path

/extvar.xqy.

xquery version "1.0-ml";
declare namespace my="myNamespace";

xdmp : invoke ("/extvar.xqgy", (xs:QName ("my:variable"), "my value"))
This example returns the following string:

The value of Smy:variable is: my value

Note: MarkLogic Server will not accept more than 1024 external variable value items
over XDBC.

MarkLogic 10—May, 2019 XQuery and XSLT Reference Guide—Page 31

MarkLogic Server Version MarkLogic 10—May, 2019 MarkLogic Server Enhanced XQuery

3.12.3 Collations

The XQuery specification allows collation names and default collation values to be determined by
the implementation. MarkL ogic Server uses collations to specify the sort order of strings, and it
definesthe URIsfor the collations. Each query runs with adefault collation, and that collation can
come from the environment (each App Server has a default collation setting) or it can be specified
in the XQuery program. Also, you can specify collations for string range indexes and for word
lexicons to specify their sort order. For details about collations in MarkLogic Server, including
the valid URIsfor collations, see Encodings and Collations in the Search Developer’s Guide.

3.12.4 Implementation-Defined Primitive XQuery Types

MarkLogic Server has extended the XQuery type system and added some primitive types. These
types alow functions to operate on them and are very useful for programming. These types are
not required by the XQuery specification, but neither are they in conflict with it because the
specification allows implementation-specific primitive types. Therefore, these types are available
in al of the XQuery dialectsin MarkLogic Server (althoughin 1.0, you need to import the
namespace prefixes). The following are some of the built-in typesin MarkLogic Server:

® cts:query (Wlth many Subtypes such as cts:word-query, cts:element-query, and so on)
e map:map
® cts:region (Wlth subtypes cts:box, cts:circle, cts:polygon, and cts :point)

e Jjson:object

e json:array

3.12.5 Decimal Precision at Least 18 Digits, and is Not Configurable

MarkLogic Server does not include afacility to limit the maximum precision of adecimal. A
decimal has aprecision of at least 18 decimal digits (64-bits unsigned). For details, see the XML
Schema specification (http://www.w3.org/TR/xmlschema-2/#decimal).

3.12.6 Library Modules Default Function Namespace Defaults to Library
Namespace

The default function namespace of an XQuery library module is the namespace of the library
module. This allows you to declare functionsin the library namespace without prefixing the
functions. You can override the default function namespace with adeclare default function
namespace declaration in the prolog of the library module. For library modules where you do not
override the default function namespace (and as a general best-practice), prefix the
XQuery-standard functions (functions with the £n: prefix, which is bound to the
http://www.w3.0rg/2005/xpath-functions namespace) with the £n: prefix. Note that main
modul es default function namespace defaults to the £n: namespace, which is different from
library modules.

Page 32—XQuery and XSLT Reference Guide

http://www.w3.org/TR/xmlschema-2/#decimal

MarkLogic Server XQuery Language

4.0 XQuery Language

The chapter describes selected parts of the XQuery language. It is not a complete language
reference, but it touches on many of the widely used language constructs. For complete details on
the language and complete syntax for the language, see the W3C X Query specification
(http://mvww.w3.org/TR/xquery/). Additionally, there are many third-party books available on the
XQuery language which can help with the basics of the language. This chapter has the following
sections:

e Expressions Return Iltems

XML and XQuery

* JSON and XQuery

e XQuery Modules

e XQuery Prolog

e XQuery Comments

e XOQuery Expressions

* XQuery Comparison Operators

Note: This chapter describes a subset of the XQuery 1.0 recommendation syntax, which
isusedinthe1.0 and 1.0-m1 dialects. The syntax for the 0. 9-m1 didect (3.2
compatible) issimilar, but not identical to what is described here; most of the
differences are in the XQuery prolog. For an overview of the different XQuery
dialects, see “XQuery Dialectsin MarkLogic Server” on page 9.

4.1 Expressions Return Items

The fundamental building block in XQuery is the XQuery expression, which is what the XQuery
specification refers to as one or more ExprSngle expressions. Each X Query expression returns a
sequence of items; that is, it returns zero or more items, each of which can be anything returned
by XQuery (for example, a string, anode, a numeric value, and so on).

Any valid XQuery expression isavalid XQuery. For example, the following isavalid XQuery:
"Hello World"

It returnsthe string ze110 worid. It isasimple string literal, and isavalid XQuery. You can
combine expressions together using the concatenation operator, whichisacomma(,), as
follows:

"Hello", "World"

MarkLogic 10—May, 2019 XQuery and XSLT Reference Guide—Page 33

http://www.w3.org/TR/xquery/

MarkLogic Server Version MarkLogic 10—May, 2019 XQuery Language

This expression also returns a sequnce of two string ze11o0 and wor1d. It istwo expressions, each
returning asingle item (therefore it returns a sequence of two strings). In some contexts (a
browser, for example), the two strings will be concatenated together into the string ze11o woria.

Expressions can also return no items (the empty sequence), or they can return sequences of items.
The following adds a third expression:

"Hello", "World", 1 to 10

This expression returns the sequence selio world 1 2 3 4 5 6 7 8 9 10, Where the sequence
1 to 10 isasequence of numeric values. You can create arbitrarily complex expressionsin
XQuery, and they will aways return zero or more items.

4.2 XML and XQuery

XQuery isdesigned for working with XML, and there are several ways to construct and return
XML from XQuery expressions. This section describes some of the basic ways to combine XML
and XQuery, and contains the following parts:

¢ Direct Element Constructors: Switching Between XQuery and XML Using Curly Braces

e Computed Element and Attribute Constructors

e Returning XML From an XQuery Program

4.2.1 Direct Element Constructors: Switching Between XQuery and XML
Using Curly Braces

As described in the previous section, an XQuery expression by itself isavalid XQuery program.
You can create XML nodes as XQuery expressions. Therefore, the following isvalid XQuery:

<my-element>content goes here</my-elements>

It smply returns the element. The XQuery syntax also allows you to embed X Query between
XML, effectively “switching” back and forth between an XML syntax and an XQuery syntax to
populate parts of the XML content. The separator characters to “switch” back and forth between
XML and XQuery are the open curly brace ({) and close curly brace (}) characters. For
example, consider the following XQuery:

<my-element>{fn:current-date() }</my-element>

This expression returns an XML element named my-element With content that is the result of
evaluating the expression between the curly braces. This expression returns the current date, so
you get an element that looks like the following:

<my-element>2008-06-25-07:00</my-element>

You can create complex expressions that go “back and forth” between XML and XQuery as often
asis needed. For example, the following is slightly more complex:

Page 34—XQuery and XSLT Reference Guide

MarkLogic Server XQuery Language

<my-element id="{xdmp:random()}">{fn:current-date() }</my-element>

Thisreturns an element like the following:

<my-element 1d="9175848626240925436">2008-06-25-07:00</my-element>

This technique of constructing XML are called direct element constructors. There are many more
rules for how to use these direct element constructors to create XML nodes. For more details, see
the of the XQuery specification (http://www.w3.org/TR/xquery/#doc-xquery-DirCommentConstructor).

4.2.2 Computed Element and Attribute Constructors

You can also create XML nodes by using computed constructors. There are computed
constructors for al types of XML nodes (element, attribute, document, text, comment, and
processing instruction). The following is the basic syntax for computed constructors:

{ element T — { xquery-expr} —

attribute J L QName |

document
}—; text T { xquery-expr} —»
comment J

L processing-instruction ——

— { xquery-expr} —

L _NCName ___|

The following is an example of some XML that is created using computed constructors:

element hello { attribute myatt { "world" } , "hello world" }
(:

returns the following XML:

<hello myatt="world">hello world</hello>
:)

In this example, the comma operator concatenates a constructed attribute (the myatt attribute on
the ne110 element) and aliteral expression (he11o worid, wWhich becomes the element text node
content) to create the content for the element node. The following example shows how you can
compute the QName with an XQuery expression:

element {xs:QName ("hello")} ({
attribute myatt { "world" } , "hello world" }
(:

MarkLogic 10—May, 2019 XQuery and XSLT Reference Guide—Page 35

http://www.w3.org/TR/xquery/#doc-xquery-DirCommentConstructor

MarkLogic Server Version MarkLogic 10—May, 2019 XQuery Language

returns the following XML:
<hello myatt="world"shello world</hello>
:)

4.2.3 Returning XML From an XQuery Program

Using the direct and computed constructors described above, it is natural to have the output of an
XQuery program be XML. Besides computed and direct constructors, XML can be the result of
an XPath expression, a cts:search expression, or any other expression that returns XML. The
XML can be constructed as any well-formed XML.

When you construct XML in XQuery, the XQuery evaluator will always construct well-formed
XML (assuming your XQuery isvalid). Compared with other languages where you construct
strings that represent XML, the fact that the XQuery rules ensure that an XML nodeiswell
formed tendsto eliminate awhole class of bugsin your code that you might encounter using other
languages.

4.3 JSON and XQuery

You can construct JSON nodes using computed constructors, just as you can create XML nodes.
The MarkLogic APl includes constructors for JSON nodes such as objects, arrays, numbers, and
booleans. You can aso construct JSON documents from a serialized string representation, using
xdmp : unquote. FOr details, see Constructing JSON Nodes in the Application Developer’s Guide.

4.4 XQuery Modules

While expressions are the building blocks of XQuery coding, modules are the building blocks of
XQuery programs. There are two kinds of X Query modules: main modules and library modul es.
This section describes X Query modules and includes the following sections:

e XOQuery Version Declaration

* Main Modules

e Library Modules

This section provides some basic syntax for XQuery modules. For the complete syntax of X Query
modules, see the XQuery specification (http://www.w3.org/TR/xquery/#doc-xquery-Module).

441 XQuery Version Declaration

Every XQuery module (both main and library) can have an optional X Query version declaration.
The version declaration tells MarkL ogic Server which dialect of XQuery to use. MarkLogic
Server supports three values for the XQuery version declaration: 1.0-mn1, 1.0, and 0. 9-m1. For
details on the three dialects, including rules for the combining different dialects, see “ XQuery
Dialectsin MarkLogic Server” on page 9.

The following is the basic syntax of the XQuery version declaration:

Page 36—XQuery and XSLT Reference Guide

http://www.w3.org/TR/xquery/#doc-xquery-Module

MarkLogic Server XQuery Language

—"1.0-ml" — ——

xquery version _| "1.0" :

v

"0.9-ml"

The following is an example of an XQuery version declaration:

xquery version "1.0-ml";

442 Main Modules

A main module contains an XQuery program to be evaluated. You can call amain module
directly and it will return the results of the evaluation. A main module contains an optional
XQuery version declaration, a prolog (the prolog can be empty, so it isin effect optional), and a
body. The XQuery body can be any XQuery expression.

In1.0-m1, you can construct programs that have multiple main modul es separated by semi-colons,
as described in “ Semi-Colon as Transaction Separator” on page 20.

The following is an example of avery simple main module:

xquery version "1.0-ml";
"hello world"

For another example of a main module, see the example at the end of the “Library Modules’ on
page 37.

4.4.3 Library Modules

A library module contains function definitions and/or variable definitions. You cannot call a
library module to directly evaluate it, and it cannot have a query body. To use alibrary module, it
must be imported from another module (main or library). A library module contains a module
declaration followed by aprolog. For details on the prolog, see “ XQuery Prolog” on page 38. The
following is the basic syntax of alibrary module:

_ modulenamespace__ _NCName___= ____ URILiteral -

v

— XQuery prolog >

The following is avery smple XQuery library module

MarkLogic 10—May, 2019 XQuery and XSLT Reference Guide—Page 37

MarkLogic Server Version MarkLogic 10—May, 2019 XQuery Language

xquery version "1.0-ml";
module namespace my-library="my.library.uri"

declare function hello() { "hello" };

If you stored this module under an App Server root asheiio.xqy, you could call thisfunction with
the following very simple main module:

xquery version "1.0-ml";
import module namespace my-library="my.library.uri" at "hello.xqy";

my-library:hello()
(: this returns the string "hello" :)

45 XQuery Prolog

The XQuery prolog contains any module imports, namespace declarations, function definitions,
and variable definitions for amodule. You can have aprolog in either amain module or alibrary
module. The prolog isoptional, as you can write an XQuery program with no prolog. This section
briefly describes the following parts of the XQuery prolog:

e Importing Modules or Schemas

e Declaring Namespaces

e Declaring Options

¢ Declaring Functions

e Declaring Variables

e Declaring a Default Collation

45.1 Importing Modules or Schemas

You can import modules and schemas in the XQuery prolog. The following are sample module
and schema import declarations:

import module namespace my-library="my.library.uri" at "hello.xqgy";

import schema namespace xhtml="http://www.w3.o0rg/1999/xhtml"
at "xhtmll.1l.xsd";

The library module location and the schema location are not technically required. The location
must be supplied for module imports, however, as they are used to determine the location of the
library module and the module will not be found without it. Also, all modules for agiven
namespace must be imported with a single import statement (with comma-separated |ocations).
For schemaimports, if the location is not supplied, MarkLogic Server resolves the schema URI
using the in-scope schemas (schemas in the schemas database and the <markiogic-dirs/config

Page 38—XQuery and XSLT Reference Guide

MarkLogic Server XQuery Language

directory). If there are multiple schemas with the same URI, MarkL ogic Server chooses one of
them. Therefore, to ensure you are importing the correct schema, use the location for the schema
import, too. For details on the rules for resolving the locations, see Importing XQuery Modules, XSLT
Stylesheets, and Resolving Paths in the Application Developer’s Guide.

For more details on imports, see the XQuery specification for schemaimports
(nttp://www.w3.org/TR/xquery/#id-schema-import) and for module imports
(http://www.w3.org/TR/xquery/#id-module-import).

45.2 Declaring Namespaces

Namespace declarations are used to bind a namespace prefix to a namespace URI. The following
is a sample namespace declaration:

declare namespace my-namespace="my.namespace.uri';

For more details on namespace declarations, see the XQuery specification
(http://www.w3.0rg/TR/xquery/#id-namespace-declaration)

45.3 Declaring Options
XQuery provides vendor-specific options that are declared in the prolog. This section describes

the MarkL ogic Server options you can declare in the XQuery prolog, and includes the following
prolog options:

¢ xdmp:mapping

¢ xdmp:update

¢ xdmp:commit

e xdmp:transaction-mode

e xdmp:copy-on-validate

e xdmp:output

e xdmp:coordinate-system

45.3.1 xdmp:mapping
declare option xdmp:mapping "false";

The xamp : mapping Option sets whether function mapping is enabled in amodule. For details on
function mapping, see “Function Mapping” on page 19.

45.3.2 xdmp:update

declare option xdmp:update "true';

MarkLogic 10—May, 2019 XQuery and XSLT Reference Guide—Page 39

http://www.w3.org/TR/xquery/#id-namespace-declaration
http://www.w3.org/TR/xquery/#id-schema-import
http://www.w3.org/TR/xquery/#id-module-import

MarkLogic Server Version MarkLogic 10—May, 2019 XQuery Language

The xamp : update Option forces arequest to either be an update ("truer), aquery ("faise™), Or to
determine the update mode of the query at compiletime ("autor). Without this option, the request
will behave asif the option is set to "autor and determine at compile time whether to run as an
update statement (in readers/writers mode) or whether to run at atimestamp. For details on update
statements versus query statements, see Understanding Transactions in MarkLogic Server in the
Application Developer’s Guide.

4.5.3.3 xdmp:commit
declare option xdmp:commit "explicit";

The xamp : commit Option specifies whether MarkL ogic treats each X Query statement asa
single-statement, auto-commit transaction ("auto™) or a multi-statement transaction that must be
explicitly commited or rolled back ("exp1icit™). The default behavior is auto.

For more details, see Understanding Transactions in MarkLogic Server in the Application Developer’s
Guide.

4.5.3.4 xdmp:transaction-mode

Note: Thisoption is deprecated. Use xdmp:update and xdmp:commit, instead.

Use xdmp : transaction-mode t0 Change the runtime model for newly created transactions. The
transaction mode affects when transactions are created, whether or not they span statement
boundaries, and when and how they are committed. The default mode is auto:

declare option xdmp:transaction-mode "auto";

You can specify the following values for xdmp: transaction-mode, as string literals:

* auto (default)

® uypdate-auto-commit

® update

® query

® query-single-statement
® nmulti-auto

These values correspond to the equivalent settings for the xdmp: set -transaction-mode XQuery
function. Use the option, rather than the API function, if you need to set the transaction mode
before creating any transactions.

For details on transaction modes, see Transaction Mode in the Application Developer’s Guide, and
the discussion Of xdmp : set-transaction-mode IN MarkLogic XQuery and XSLT Function
Reference.

Page 40—XQuery and XSLT Reference Guide

MarkLogic Server XQuery Language

45.3.5 xdmp:copy-on-validate
declare option xdmp:copy-on-validate "true";

The xdmp : copy-on-validate Option defines the behavior of the validate expression. You can set
the option to make a copy of the node during schema validation. For details, see “Validate
Expression” on page 53.

45.3.6 xdmp:output

The xamp : output Option determines how the output is serialized. The options mirror the
serialization options for xslt using the <xs1:output> XSLT instruction. The following example
causes html serialization:

declare option xdmp:output "method = html";

For details on the <xs1:output> XSLT instruction, from which many of the xdamp : cutput options
are derived, see http://www.w3.org/TR/xslt#output in the XSLT specification. You can combine
options by having multiple geciare option Statements.

Valid values for the xdmp : output Option are (the values must be string literals):

e method = xml

e method = html

e method = text

e method = spargl-results-json

e method = n-triples

e method = n-quads

e method = spargl-results-csv

e method = rows-json

e method = rows-json-seq

e method = rows-json-multipart

e method = rows-xml

e method = rows-xml-multipart

e method = rows-json-uniform

e method = rows-json-seg-uniform

e method = rows-json-multipart-uniform
e method = rows-xml-uniform

e method = rows-xml-multipart-uniform
e method = rows-json-multipart-node

e method = rows-json-multipart-uniform-node
e method = rows-xml-multipart-node

e method = rows-xml-multipart-uniform-node

. cdata-section-elements = <QName>

MarkLogic 10—May, 2019 XQuery and XSLT Reference Guide—Page 41

http://www.w3.org/TR/xslt#output

MarkLogic Server

Version MarkLogic 10—May, 2019

* where <onames> isalist of QNames to output as coata elements

encoding = <encoding>
use-character-maps=xdmp:sgml-entities-normal
use-character-maps=xdmp:sgml-entities-math
use-character-maps=xdmp:sgml-entities-pub

media-type = <media>

e media-type text/plain

e media-type = text/xml
» and so on with other valid mimetypes...
byte-order-mark = yes
byte-order-mark = no
indent = yes
indent = no
indent-untyped = yes
indent-untyped = no
indent-tabs = yes
indent-tabs = no
include-content-type = yes

include-content-type

no
escape-uri-attributes = yes
escape-uri-attributes = no

doctype-public = <publicidls>

XQuery Language

* where <publicidi> iSthe public identifier to use on the emitted bocTyre

doctype-system = <systemidls>

* where <systemidi> iSthe system identifier to use on the emitted poctyre

omit-xml-declaration = no
omit-xml-declaration = yes

standalone

yes
standalone = no
normalization-form = NFC
normalization-form = NFD
normalization-form = NFKD
default-attributes = no

default-attributes = yes

Additionally, these are all availablein XSLT as attributes on the <xs1 : output> instruction. In the
<xsl:output> instruction, use these attributes in the form:

attribute-name="value"

Page 42—XQuery and XSLT Reference Guide

MarkLogic Server XQuery Language

The exceptions to this are the MarkL ogic extensions indent -untyped and default-attributes.
When using these attributes, use the namespace prefix xdmp with the attributes (and you must
define the prefix in your stylesheet XML). For example:

<xsl:output xdmp:default-attributes="no" xdmp:intent-untyped="yes"
xmlns:xdmp="http://marklogic.com/xdmp" />

4.5.3.7 xdmp:coordinate-system

UsSe xdmp : coordinate-system t0 OvVerride the App Server default geospatial coordinate system and
precision. For example, the following declaration specifies that a module will use the “wgs84”
coordinate system and double precision in geospatial operations.

declare option xdmp:coordinate-system "wgs84/double";

The coordinate system name can be any of the canonical names generated by
geo:coordinate—system—canonical,inCHKﬂngthefO”OMﬂngZ

e wgst4
» wgsB4/double
* raw

* raw/double

Single precision is implied where the name does not explicitly include “double”.

45.4 Declaring Functions

Functions are a fundamental part of programming in XQuery. Functions provide more than a
mechanism to modularize your code (although they certainly are that), as functions allow you to
easily perform recursive actions. Thisis a powerful design pattern in XQuery.

Functions can optionally be typed, both for parmeters to the function and for results of the
function. The following is avery simple function declaration that takes a string as input and
returns a sentence indicating the length of the string:

declare function simple ($input as xs:string) as xs:string* {
fn:concat ('The string "', $input, '" is ',
(fn:string-length ($input)),
' characters in length.')

b

45.5 Declaring Variables

You can declare variablesin amain or library module to reference elsewherein your programs. If
you put variable definitionsin alibrary module, you can reference those variables from any
module that imports the library module. Because the content of a variable can be any valid
XQuery expression, you can create variables with dynamic content. The following isavariable
declaration that returns a string indicating if it is January or not:

MarkLogic 10—May, 2019 XQuery and XSLT Reference Guide—Page 43

MarkLogic Server Version MarkLogic 10—May, 2019 XQuery Language

declare variable $is-it-january as xs:string :=
if (fn:month-from-date (fn:current-date()) eq 1)
then "it is January"
else "it is not January" ;

If this variable were defined in alibrary module named my1ib.xqy stored under your App Server
root, and if you imported that library module bound to the namespace prefix my1ib into amain
module, then you can reference this variable in the main module as follows:

xquery version "1.0-ml";
import module namespace mylib="my.library.uri" at "mylib.xqy";

Smylib:is-it-january

4.5.6 Declaring a Default Collation

The default collation declaration defines the collation that isin effect for aquery. In general,
everything that uses a collation in a query with adefault collation declaration will use the
collation specified. The exceptions are for functions that have options which explicitly override
the default collation, and for FLWOR expressions that explicitly state the collation in the order by
clause. The following is a sample collation declaration:

declare default collation "http://marklogic.com/collation/";

For more details on collations, see the Encodings and Collations chapter of the Application
Developer’s Guide.

4.6 XQuery Comments

You can add comments throughout an XQuery program. Comments are surrounded by “smiley
face” symbols. The open parenthesis followed by the colon characters ((:) denote the start of a
comment, and the colon followed by a close parenthesis characters ((:) denote the end of a
comment. Comments can be nested within comments, which is useful when cutting and pasting
code with commentsin it into acomment. The following is an example of an XQuery that starts
with acomment:

(: everything between the smiley faces is a comment :)
"some XQuery goes here"

Note: You cannot put acomment inside of atext literal or inside of element content. For
example, the following is not interpreted as having a comment:

<node> (: not a comment :)</node>

Page 44—XQuery and XSLT Reference Guide

MarkLogic Server XQuery Language

4.7 XQuery Expressions
This section describes the following X Query expressions:

e XPath Expressions

e FLWOR Expressions

* The typeswitch Expression

e The if Expression

* Quantified Expressions (some/every ... satisfies ...)

¢ Validate Expression

4.7.1 XPath Expressions

XPath expressions search for XML content. They can be combined with other XQuery
expressionsto form other arbitrarily complex expressions. For more details on X Path expressions,
see “ XPath Quick Reference” on page 59.

4.7.2 FLWOR Expressions

The FLWOR expression (for, let, where, order by, return) iSused to generate items or
sequences. A FLWOR expression binds variables, applies a predicate, orders the data set, and
constructs a new result:

The following is the basic syntax of a FLWOR expression:

for clause —
‘—‘L[J return clause4>{

let clause J t J L
where clause order by clause

The following sections examine each of the five clausesin more detail:

* The for Clause
e The let Clause

* The where Clause

e The order by Clause

* The return Clause

MarkLogic 10—May, 2019 XQuery and XSLT Reference Guide—Page 45

MarkLogic Server Version MarkLogic 10—May, 2019 XQuery Language

4.7.2.1 The for Clause
The for clause is used for iterating over one or more sequences.

’—for —Y $variable J in expression —*{
at iterator

as type

The for clause iterates over each item in the expression to which the variable is bound. In the
return Clause, an action istypically performed on each item in the variable bound to the
expression. For example, the following binds a sequence of integersto a variable and then
performs an action (multipliesit by 2) on each item in the sequence:

for $x in (1, 2, 3, 4, 5)
return
Sx * 2

(: returns the sequence (2, 4, 6, 8, 10) :)

Asiscommon in XQuery, order issignificant, and the items are bound to the variable in the order
they are output from the expression.

You can aso bind multiple variables in one or more for clauses. The FLWOR expression then
iterates over each item in the subsequent variables once for each item in thefirst variable. For
example:

for $x in (1,2,3)
for Sy in (4,5,6)
return
Sx * 2

(: returns the sequence (2, 2, 2, 4, 4, 4, 6, 6, 6) :)

In this case, theinner for loop (with sy) isexecuted one compl eteiteration for each of theitemsin
the outer for loop (the one with ¢x). Even though it does not return anything from $y, the
expression in the return clause is evaluated once for each item in sy, and that happens once for
eachitemin sx.

You could return something from each iteration of 3y, asin the following example:

for $x in (1,2,3)
for Sy in (4,5,6)
return

($x * 2, Sy * 3)

Page 46—XQuery and XSLT Reference Guide

MarkLogic Server XQuery Language

(: returns the sequence
(2, 12, 2, 15, 2, 18, 4, 12, 4, 15, 4, 18, 6, 12, 6, 15, 6, 18) :)

Alternately, you could write the two for clauses as follows, with the same results:
for $x in (1,2,3), Sy in (4,5,6)

When you have multiple variables bound in for clauses, it is an effective way of joining content
from one variable with the other. Note that if the content from each variable comes from a
different document, then multiple ror clausesin a FLOWR expression ends up performing ajoin
of the documents.

4.7.2.2 The let Clause

The 1et clause isused for binding variables (without iteration) to asingle value or to sequences of
values:

i let $variable = expression

4%

A 1et clause produces asingle binding for each variable. Consequently, 1et clauses do not affect
the number of binding tuples evaluated in a FLWOR expression. Variables bound in a1et clause
are available to anything that follows in the FLWOR expression (for example, subsequent tor or
let clauses, the where clause, the order by clause, or the return clause).

as type —

In its simplest form, the let clause alows you to build a FLWOR expression that outputs the
sequence to which the variable is bound. For example, the following expression:

let $seq := ("hello", "goodbye") return $seq
is equivalent to the following expression:
"hello", "goodbye"

They each return the two item sequence hello goodbye.

A typical usefor alet clause isto bind a sequence to a variable, then use the variable in afor
clause to iterate over each item. For example:

let $x := (1 to 5)
for Sy in $x
return

Sx * 2

(: returns the sequence (2, 4, 6, 8, 10) :)

MarkLogic 10—May, 2019 XQuery and XSLT Reference Guide—Page 47

MarkLogic Server Version MarkLogic 10—May, 2019 XQuery Language

Again, thisisatrivial example, but it could be that the expression in the 1et binding is
complicated, and this technique allows you to cleanly structure your code.

4.7.2.3 The where Clause

The where clause specifies afilter condition on the tuples emerging from the for-1et portion of a
FLWOR expression:

i where boolean-expression >§

Only tuples for which the boolean-expression evaluates to true will contribute to the result sequence
of the FLWOR expression The where clause preserves the order of tuples, if any. boolean-expression
may contain and, or and not, @among other operators.

Typically, you use comparison operators to test for some condition in awhere clause. For
example, if you only want to output from the FLWOR itemsthat start with the letter “a’, you can
do something like the following:

for $X in (llalll IIBIII llclll IIAH’ napplen)

where fn:starts-with(fn:lower-case(Sx), "a")
return

Sx

(: returns the sequence ("a", "A", "apple") :)

4.7.2.4 The order by Clause

The order by Clause specifies the order (ascending or descending) to sort items returned from a
FLWOR expression, and also provides an option to specify a collation URI with which to
determine the order:

; order by —¥— $varExpr >
Lstable J ascending
descending
= %
empty greatest — L collation ——uri J
empty least —

Page 48—XQuery and XSLT Reference Guide

MarkLogic Server XQuery Language

The order by clause can be used to specify an order in which the tuple sequence will be passed to
the return clause. The order by clause can specify any sort key, regardless of whether that sort
key is contained in the result sequence. You can reorder sequences on an ascending or descending
basis.

The following example sorts the sequence bound to sx (in collation order) by each item:

for $X in (IIBII, IICII, "a", lldll)
order by $x
return $x (: returns the sequence ("a", "B", "c", "d") :)

The following example specifies multiple sort keys:

xquery version "1.0-ml";

for $x in (<datas<a>l10</datas>,
<data><a>205</data>,
<data><a>2025</data>)

order by $x/a descending, $x/b

return $x

(: returns the following sequence
<data><a>2025</datas>
<data><a>205</datas>
<data><a>l10</datas>

:)

4.7.2.5 Thereturn Clause
The return clause constructs the result of a FLWOR expression:

i return expression ;‘

The return expression is evaluated once for each tuple of bound variables. This evaluation
preserves the order of tuples, if any, or it can impose a new order using the order by clause.

Because the return c1ause specifies an expression, any legal XQuery expression can be used to
construct the result, including another FLWOR expression.

MarkLogic 10—May, 2019 XQuery and XSLT Reference Guide—Page 49

MarkLogic Server Version MarkLogic 10—May, 2019 XQuery Language

4.7.3 The typeswitch Expression

The typeswitch expression alows conditional evaluation of a set of sub-expressions based on the
type of a specified expression:

}7 typeswitch (expression)

+»—Y case

v

sequenceType return case_expr_n ——»

Lvariable as —!

—»— default return expr_default ,‘
Lvariable J

A typeswitch expression evaluates the first case_expr whose sequenceType matches the type of
the specified expression. If there is no sequenceType match, expr_default is evaluated.

Typeswitch provides a powerful mechanism for processing node contents:

typeswitch ($address)
case Sa as element (*, USAddress) return handleUS(Sa)
case Sa as element (*, CanadaAddress) return handleCanada (Sa)
default return handleUnknown (Saddress)

This code snippet determines the sequenceType of the variable saddress, then evaluates one of
three sub-expressions. In this case:

e |If saddress isof type USAddress, the function nandieus (sa) isevauated.
o |If saddress isof type canadarddress, the function handlecanada ($a) IS evaluated.

» If thetype of variable sadaress matches none of the above, the function
handleUnknown ($a) is evaluated.

A sequenceType can also be akind test (such as an element test). It is possible to construct case
clauses in which a particular expression matches multiple sequenceTypes. In this case, the
case_expr of only the first matching sequenceTypeis evaluated. You can also use the typeswitch
expression in arecursive function to iterate through a document and perform transformation of
the document. For details about using recursive typeswitches, see the Transforming XML Structures
With a Recursive typeswitch Expression chapter of the Application Developer’s Guide.

Page 50—XQuery and XSLT Reference Guide

MarkLogic Server XQuery Language

4.7.4 The if Expression
The if expression allows conditional evaluation of sub-expressions:

| if (—expr cl—) ——thenexpr_rlelseexpr_r2

v

If expression expr_cl evaluatesto true, then the value of the i £ expression is the value of
expression expr_r1, otherwise the value of the i £ expression isthe value of expr_r2. Theeise
clause isnot optional; if no action is to be taken, use an empty sequence for expr_r2; thereisno
“end if” or similar construct in XQuery:

if (1 eq 2)
then "this is strange"
else ()

The extent of expr_r1 and expr_r2 islimited to a single expression. If amore complex set of
actions are required, an element constructor, sequence, or function call must be used.

If expressions can be nested:

if (Syear < 1994)
then
<availablesarchive</availables>
else if (syear = $current year) then
<available>current</availables>
else
<available>inventory</available>

MarkLogic 10—May, 2019 XQuery and XSLT Reference Guide—Page 51

MarkLogic Server Version MarkLogic 10—May, 2019 XQuery Language

4.7.5 Quantified Expressions (some/every ... satisfies ...)

XQuery provides predicates that simplify the evaluation of quantified expressions. The basic
syntax for these expressions follows:

some var in expr satisfies predicate

every var in expr satisfies predicate

These expressions are particularly useful when trying to select a node based on a condition
satisfied by at least one or aternatively all of a particular set of its children.

Imagine an XML document containing log messages. The document has the following structure:

<log>
<event>
<programs> </program>
<message> </message>
<levels> ... </levels>
<errors>
<code> </code>
<severity> </severity>
<resolved> </resolveds>
</errors>
<errors>
</errors>
</event>
</log>

Every <event> node has <programs, <message>, and <1level> children. Some <event> nodes have
one or more <error> children.

Consider a query to report on those events that have unresolved errors:

for sSevent in /log/event
where some $error in Sevent/error satisfies $error/resolved = "false"
return

Sevent

This query returns only those <event > nodesin which thereis an <error> node with a <resolveds
element whose valueis “false”.

Page 52—XQuery and XSLT Reference Guide

MarkLogic Server XQuery Language

4.7.6 Validate Expression

The validate expression is used to validate element and document nodes against in-scope schemas
(schemas that are in the schemas database). The following is the basic syntax of the validate
expression:

}7validate { expr }

lax

Vv

L strict

L _as — XML_type _|

The expression to validate must be a node referencing an in-scope schema. The node can
reference a schema. The default validation modeis strict. When performing 1ax validation, the
validate expression first triesto validate the node using an in-scope schema, and then if no schema
isfound and none is referenced in the node, the validation occurs without a schema. If anodeis
not valid, an exception isthrown. If anodeisvalid, then the node is returned. For more details,
see the X Query specification (http://www.w3.org/TR/xquery/#id-validate).

You can also set aprolog option to determine if the node returned is a copy of the original node
(losing its context) or the original node (keeping its context). The X Query specification calls for
the node to be a copy, but it is often useful for the node to retain its original context (for example,
S0 you can look at its ancestor elements). The following is the prolog option:

declare option xdmp:copy-on-validate "true";

You can specify true Or faise. Thisoptionis true by default inthe 1.0 dialect, and fa1se by
defaultinthe 1.0-m1 dialect.

The following is a simple validate expression:

xquery version "1.0-ml";

validate { <p xmlns="http://www.w3.org/1999/xhtml">hello there</p> }
(:

validates against the in-scope xhtml schema and returns the element:
<p xmlns="http://www.w3.0rg/1999/xhtml">hello there</p>

:)

Theas xm1_type validation mode allows you to specify the type to validate as (rather than use the
in-scope schema definitionsfor the type). This mode is an extension to the X Query 1.0 syntax and
isonly availableinthe 1.0-m1 dialect.

xquery version "1.0-ml";

validate as xs:boolean { <foo>{fn:true()}</foo> }

MarkLogic 10—May, 2019 XQuery and XSLT Reference Guide—Page 53

http://www.w3.org/TR/xquery/#id-validate

MarkLogic Server Version MarkLogic 10—May, 2019 XQuery Language

Inthe 1.0 dialect (or alsointhe1.o0-m1 diaect), you can specify the an xdmp: validate-type
pragma before an expression to perform the same as xmr,_type validation, but without the
validate as Syntax, asin the following example:

xguery version "1.0";
declare namespace xdmp="http://marklogic.com/xdmp";

(# xdmp:validate-type xs:boolean #) { <foos>{fn:true()}</foo> }

4.8 XQuery Comparison Operators

This section lists the comparison operators in XQuery. The purpose of the operators are to
compare expressions. This section includes the following parts:

* Node Comparison Operators

e Sequence and ltem Operators

4.8.1 Node Comparison Operators

You can specify node comparisonsto test if two nodes are before or after each other (in document
order), or if the nodes are the exact same node. These tests return true or false. The following are

the node comparison operators:

Operator Description Example
<< The node before let $x := <foo>
Operator_ Testsif a <bar>hello</bar>
node comes before <baz>goodbye</baz>
. </foo>
another nodein docu- | . v
ment order. ($x/baz << $x/bar, S$x/bar << $x/baz)
(: returns false, true :)
>> The node after opera- | let $x := <foo>
tor. Testsif anode <bar>hello</bar>
comes after another <baz>goodbye</baz>
. </foo>
node in document return
order. ($x/baz >> $x/bar, $x/bar >> S$x/baz)
(: returns true, false :)
is Theisoperator. Tests | let $x := <foo>
|f anode|sthe exact <bar>hello</bar>
same node as another /<baz>goodbye</baz>
. </foo>
(does_ not just test return
equIBO- ($x/baz is $x/bar, S$x/bar is $x/bar)
(: returns false, true :)

Page 54—XQuery and XSLT Reference Guide

MarkLogic Server XQuery Language

Node comparison tests are useful when creating logic that relies on document order. For example,
if you wanted to verify if a particular node came before another node, you can test as follows:

Sx << Sy

If thistest returns true, you know that the node bound to $x comes before the node bound to sy,
based on document order.

4.8.2 Sequence and Item Operators

XQuery has separate operators for to compare sequences and items.The following tabled lists
XQuery operators for sequences and for items, along with a description and example for each
operator. These operators are used to form expressions that compare values, and those expressions
return a boolean value. This section consists of the following parts:

* Sequence Operators

* Item Operators

4.8.2.1 Sequence Operators

Thefollowing operators work on sequences. Note that asingle item is asequence, so the sequence
operators can work to compare singleitems. A sequence operator istrueif any of the comparisons
aretrue.

Operator Description Example

1 => true

= The equality operator. Operates on sequences | 1

(which can contain O or moreitems). Returns | 1 = (1, 2) => true
trueif the condition (isequal to) issatisfied for | (©+ 3) = (1, 2) => false
any item in the sequence on the left compared
with any item in the sequence on the right.
> Greater than operator. Operateson sequences | 1 > 1 => false
(which can contain O or moreitems). Returns | 1 > (0, 1) => true
(0, 1) > (0, 1) => true

trueif the condition (is greater than) is satisfied
for any item in the sequence on the left com-
pared with any item in the sequence on the
right.

1 => true
> (1, 2) => true
1, 2) >= (1, 2) => true

>= Greater than or equal operator. Operates on
sequences (which can contain O or moreitems).
Returns true if the condition (is greater than or
equal to) is satisfied for any item in the
sequence on the left compared with any itemin
the sequence on the right.

>

—~ Rk P

MarkLogic 10—May, 2019 XQuery and XSLT Reference Guide—Page 55

MarkLogic Server Version MarkLogic 10—May, 2019 XQuery Language
Operator Description Example

< Less than operator. Operates on sequences 1 <1 => false
(which can contain 0 or moreitems). Returns | 1 < (1, 2) => true
trueif the condition (islessthan) issatisfied for | (*+ 2) < (1, 2) => true
any item in the sequence on the left compared
with any item in the sequence on the right.

<= Less than or equal operator. Operates on 1 <=1 => true
sequences (which can contain O or moreitems). | 1 <= (1, 2) => true
Returns true if the condition (is less than or (1, 2) <= (1, 2) => true
equal to) is satisfied for any item in the
sequence on the left compared with any itemin
the sequence on the right.

t= The not equal operator. Operateson sequences | 1 != 1 => false
(which can contain 0 or moreitems). Returns | 1 !'= (1, 2) => true

(1, 2) !'= (1, 2) => true

trueif the condition (isnot equal to) is satisfied
for any item in the sequence on the left com-
pared with any item in the sequence on the
right.

4.8.2.2

Iltem Operators

The following operators work on items. If you use these operators on a sequence, inthe 1.0-m1
dialect they will perform function mapping, and the value will be the effective boolean value of
the sequence of results. In 1.0 and 0.9-ml, they will throw an xpve-vanyITEMSEQ €XCEption if you
try to compare a sequence of more than one item.

Operator

Description

Example

eq

The equality operator. Operates only on single
items.

1 eqg 1l => true
1 eqg (1, 2) => error

Page 56—X Query and XSLT Reference Guide

MarkLogic Server XQuery Language
Operator Description Example

gt Greater than operator. Operates only on single gt 1 => false
items.

ge Greater than or equal operator. Operates only ge 1 => true
onsingleitems.

1t L ess than operator. Operates only on single 1t 1 => false
items.

le Less than or equal operator. Operates only on le 1 => true
single items.

ne The not equal operator. Operates on single ne 1 => false
items.

MarkLogic 10—May, 2019

XQuery and XSLT Reference Guide—Page 57

MarkLogic Server Version MarkLogic 10—May, 2019 XQuery Language

Page 58—XQuery and XSLT Reference Guide

MarkLogic Server XPath Quick Reference

5.0 XPath Quick Reference

The section provides abrief overview of the basics of XPath, and includes the following sections:

e Path Expressions

e XPath Axes and Syntax

e XPath 2.0 Functions

¢ Restricted XPath

For detailed information about X Path, see the W3C XPath 2.0 language reference
(http://www.w3.0rg/TR/xpath20/).

5.1 Path Expressions

XPath 2.0 ispart of XQuery 1.0. XPath is used to navigate XML structures. In MarkL ogic Server,
the XML structures can be stored in a database or they can be constructed in XQuery. A path
expression is an expression that selects nodes from an XML structure. Path expressions are a
fundamental way of identifying content in XQuery. Each path has zero or more steps, which
typically select XML nodes. Each step can have zero or more predicates, which constrain the
nodes that are selected. By combining multiple steps and predicates, you can create arbitrarily
complex path expressions. Consider the following path expression (which isinitself avalid
XQuery expression):

//LINE [fn:contains (., "To be, or not to be")]

Against the Shakespeare database (the XML is available at
http://www.oasis-open.org/cover/bosakShakespeare200.html), this X Path expression selects all n.ine
elements that contain the text To be or not to be. You can then walk up the document to its
parent to see who saysthisline. asfollows:

//LINE[fn:contains (., "To be, or not to be")]/../SPEAKER
This returns the following line:
<SPEAKER>HAMLET</SPEAKER>

You can make path expressions arbitrarily complex, which makes them avery powerful tool for
navigating through XML structures. For more details about path expressions, see the W3C
XQuery specification (http://www.w3.org/TR/xquery/#id-path-expressions).

MarkLogic 10—May, 2019 XQuery and XSLT Reference Guide—Page 59

http://www.oasis-open.org/cover/bosakShakespeare200.html
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xquery/#id-path-expressions

MarkLogic Server Version MarkLogic 10—May, 2019 XPath Quick Reference

A path expression always returns nodes in document order. If you want to return nodes in
relevance order (that is, relevance-ranked nodes), use the MarkL ogic Server cts:search built-in
function or put the XPath in a FLWOR expression with an order by clause. Note that both X Path
expressions and cts: search EXPressions use any available indexes for fast expression evaluation.
For detailson cts: search, See the Application Devel oper’s Guide and the MarkLogic XQuery and
XSLT Function Reference. For details about index options in MarkL ogic Server, see the
Administrator’s Guide.

5.2 XPath Axes and Syntax
The following table shows the X Path axes supported in MarkLogic Server.

AXxis Description SLELE I (N
P if no shorthand)
ancestor: : Selects all ancestor nodes, which N/A

includes the parent node, the parent’s
parent node, and so on.

ancestor-or-self:: Selects the current node as well as all N/A
ancestor nodes, which includes the par-
ent node, the parent’s parent node, and so

on.
attribute:: Selects the attributes of the current node. | @
child:: Selects the immediate child nodes of the | /

current node.

descendant: : Selects all descendant nodes (child N/A
nodes, their child nodes, and so on).

descendant-or-self:: Selects the current node as well as all //
descendant nodes (child nodes, their
child nodes, and so on).

following: : Selects everything following the current | >>
node.
following-sibling:: Selects all sibling nodes (nodes at the N/A

same level in the XML hierarchy) that
come after the current node.

namespace: : Selects the namespace node of the cur- N/A
rent node.

Page 60—XQuery and XSLT Reference Guide

MarkLogic Server XPath Quick Reference

AXxis Description Shorthand (N/A
P if no shorthand)
parent: : Selects the immedi ate parent of the cur-
rent node.
preceding: : Selects everything before the current <<
node.
preceding-sibling:: Selects all sibling nodes (nodes at the N/A

same level in the XML hierarchy) that
come before the current node.

property: : MarkLogic Server enhancement. Selects | N/A
the properties fragment corresponding to
the current node.

self:: Selects the current node (the context
node).

Keep in mind the following notes when using the X Path axes:

» XPath expressions are always returned in document order.

» Axesthat look forward return in document order (closest to farthest away from the context
node).

» Axesthat look backward return in reverse document order (closest to farthest away from
the context node).

» The context node is the node from which X Path steps are evaluated. The context node is
sometimes called the current node.

5.3 XPath 2.0 Functions

The XQuery standard functions are the same as the XPath 2.0 functions. These X Query-standard
functions are al built into MarkLogic Server, and use the namespace bound to the tn prefix,
which is predefined in MarkLogic Server. For details on these functions, see the MarkLogic
XQuery and XSLT Function Reference reference.

5.4 Restricted XPath

MarkL ogic supports the full XPath 2.0 grammar (plus extensions) in most places where you can
specify an X Path expression. However, some evaluation contexts restrict you to a subset of XPath
for performance and/or security reasons.

MarkLogic 10—May, 2019 XQuery and XSLT Reference Guide—Page 61

MarkLogic Server Version MarkLogic 10—May, 2019 XPath Quick Reference

The following features only support arestricted X Path subset. Each feature imposes different
[imitations.

e Path Field and Path-Based Range Index Configuration

e Element Level Security

e Template Driven Extraction (TDE)

e Patch Feature of the Client APls

* The extract-document-data Query Option

e The Optic API xpath Function

The following topics provide supporting details for the X Path restrictions applicable to these
features.

¢ Functions Callable in Predicate Expressions

* |ndexable Path Expression Grammar

e Patch and Extract Path Expression Grammar

For detailed information about X Path, see the W3C XPath 2.0 language reference
(http://www.w3.0rg/TR/xpath20/).

54.1 Path Field and Path-Based Range Index Configuration
When you create afield or an index based on an XPath expression, these X Path expressions are

limited to the subset described here. This restriction applies to configuring the following:
» Path Range Index
* Field Range Index
» Geospatial Region Index
» Geospatia Path Index (a path-based point index)
To test an XPath expression for validity in these contexts, use the XQuery function

cts:valid-index-path OF the Server-Side JavaScri pt function cts.validIindexpath.

Note: Avoid creating multiple path indexes that end with the same el ement/attribute, as
ingestion performance degrades with the number of path indexesthat end in
common element/attributes.

Thefollowing list defines key aspects of the X Path restrictions. Additional restrictions may apply.
For acomplete definition of the valid X Path subset, see “1ndexabl e Path Expression Grammar” on

page 71.

* Theonly operators you can use in predicate expressions are comparison and logical
operators. (=, 1=, <, <=, >=, >, eq, ne, 1t, le, ge, gt, and, or).

Page 62—XQuery and XSLT Reference Guide

http://www.w3.org/TR/xpath20/

MarkLogic Server

XPath Quick Reference

» Theright operand of a comparison in a predicate can only be a string literal, numeric
literal, or a sequence of string or numeric literals.

* You canonly use forward axes in path steps. That is, you can use axes such aSseif: :,
child: :, descendant: :, DUt yOu cannot use reverse axes such aSparent: :, ancestor: :, O
preceding: :. FOr details, see http://www.w3.org/TR/xpath/#predicates.

* You canonly call functions on the “safe” function list in a predicate expression. For
details, see “Functions Callable in Predicate Expressions’ on page 68.

* You cannot span afragment root. Paths must be scoped within fragment roots.

* You cannot use an unnamed node test as the last path step. For example, when addressing
JSON, you cannot have afina path step such asnode () Or array-node (). Y OU can use

named nodes, such a8Snode ('a').

The following table provides some examples of path expressions that meet the requirements of an
indexable path expression. This set of examplesis not exhaustive.

Supported XPath Feature Valid Example
Absolute path /a/b
Relative path a/b

Intermediate path step containing atest for a
named or unnamed node

/a/element (b) /c
/a/node () /b
/a/object-node('b') /c

Final path step containing atest for an named | /a/node('b")
node
Predicates, including those containing callsto | /a/blfn:matches (@attr, "is")]

safe functions or complex expressions

[fn
/a/bl./c > 20]
/a/blc < 20 and d = "dog"]/e
/a/blc < 201 [d = "dog"]/e
/a/blfn:empty(./c)]

Forward axes a//b
/a/child::*/b
/a/descendant: :b/c
Wildcards /a/*/b
/a/b/*

Namespace prefixes (assuming the namespace
binding is defined)

/ns:a/ns:b
/a/*:b

For more detail s on using namespace prefixes in indexable path expressions, see Using Namespace
Prefixes in Index Path Expressions in the Administrator’s Guide.

MarkLogic 10—May, 2019

XQuery and XSLT Reference Guide—Page 63

http://www.w3.org/TR/xpath/#predicates

MarkLogic Server Version MarkLogic 10—May, 2019 XPath Quick Reference

The following table contains some examples of valid XPath expressions that cannot be used to
define path-based indexes. That is, expressions that could be used in other contexts, but for which
cts:valid-index-path Of cts.validIndexPath I€turns false.

Unsupported X Path Feature Invalid Example

Final path step containing atest for an /a/b/node ()

unnamed node /a/b/element ()
/a/b/boolean-node ()

Reverse axes /a/b/parent::*/c
/a/b/c/ancestor: : *
/a/b/../c

Callsto unsafe functions in predicates a/b[xdmp:eval (5+3)]

Complex expressions astheright operandof a | /a/blc > fn:sum((1,2,3))]
comparison operator in a predicate a/ble > (5+3)]

5.4.2 Element Level Security

When you define a protected path for use with Element Level Security, the protected path is
restricted to the same XPath subset as is used for creating path-based indexes. For details, see
“Path Field and Path-Based Range Index Configuration” on page 62 and “Indexable Path
Expression Grammar” on page 71.

To test whether or not an XPath expression is valid as a protected path, use the XQuery function
cts:valid-index-path OF the Server-Side JavaScript function cts.validindexpath.

To learn more about element level security, see Element Level Security in the Security Guide.

5.4.3 Template Driven Extraction (TDE)

When you create a TDE template, you identify the template context using X Path expressions.
These expressions are limited to the same X Path subset asis used for creating path-based indexes,
with the following differences:

* Youcanuse"/" asacontext XPath expression if the template has collection or directory
scope. For details, see Collections and Directories in the Application Developer’s Guide.

To test an X Path expression for validity in a TDE template, use the XQuery function
cts:valid-tde-context OF the Server-Side JavaScrlpt function cts.validrdecontext.

For more details and examples, see “ Path Field and Path-Based Range Index Configuration” on
page 62 and “Indexable Path Expression Grammar” on page 71.

Page 64—XQuery and XSLT Reference Guide

MarkLogic Server

XPath Quick Reference

To learn more about TDE, see Template Driven Extraction (TDE) in the Application Developer’s

Guide.

544 Patch Feature of the Client APIs

When you create a patch (or partial update) descriptor for use with the Java, Node,js, or REST
Client API, you identify the content to be updated using an XPath expression. These X Path
expressions are restricted to the X Path subset described here.

To test an XPath expression for validity in a patch descriptor, use the XQuery function
cts:valid-document-patch-path OF the Server-Side JavaScri pt function

cts.validDocumentPatchPath.

Thefollowing list defines key aspects of the X Path restrictions. Additional restrictions may apply.
For a complete definition of the valid X Path subset, see “Patch and Extract Path Expression

Grammar” on page 73.

* Theonly operators you can use in predicate expressions are comparison and logical
operators. (:, 1=, <, <=, >=, >, eq, ne, 1t, le, ge, gt, and, or).

» Theright operand of a comparison in a predicate can only be astring literal, numeric
literal, or a sequence of string or numeric literals.

* You canonly use forward axesin path steps. That is, you can use axes such as seif: :,
child::, descendant: :, but you cannot use reverse axes such dSparent: :, ancestor::, OF
preceding: :. FOr details, see http://www.w3.org/TR/xpath/#predicates.

* Youcanonly cal functions on the “safe” function list in a predicate expression. For
details, see “ Functions Callable in Predicate Expressions’ on page 68.

* You cannot span afragment root. Paths must be scoped within fragment roots.

Thefollowing table provides some examples of path expressions that meet the requirements of an
indexable path expression. This set of examplesis not exhaustive.

Supported X Path Feature Valid Example
Absolute path /a/b
Relative path a/b
Path step containing atest for a named or /a/node () /b
unnamed node /a/node ()

/a/element (b) /c
/a/number-node ()
/a/object-node('b')

MarkLogic 10—May, 2019

XQuery and XSLT Reference Guide—Page 65

http://www.w3.org/TR/xpath/#predicates

MarkLogic Server

Version MarkLogic 10—May, 2019

XPath Quick Reference

Supported X Path Feature

Valid Example

Predicates, including those containing calls to
safe functions or complex expressions

/a/blfn:matches (@attr, "is")]
/a/bl./c > 20]

/a/blc < 20 and d = "dog"]/e
/a/blc < 20] [d = "dog"]/e
/a/blfn:empty(./c)]

Forward axes a//b
/a/child: :*/b
/a/descendant: :b/c
Wildcards /a/*/b
/a/b/*

Namespace prefixes (assuming the namespace
binding is defined)

/ns:a/ns:b
/a/*:b

The following table contains some examples of valid XPath expressions that cannot be used to
define path expressions in patch operations. That is, expressions that could be used in other
CorﬂeXtS,buthTVthjTcts:valid—document—patch—path.Orcts.validDocumentPatchPath.ﬁiurns

false. This set of examplesis not exhaustive.

Unsupported X Path Feature

Invalid Example

Reverse axes

/a/b/parent::*/c
/a/b/c/ancestor: : *

/a/b/../c

Callsto unsafe functionsin predicates

a/b[xdmp:eval (5+3)]

Complex expressions astheright operand of a
comparison operator in a predicate

/a/blc > fn:sum((1,2,3))]
a/blc > (5+3)]1

To learn more about the document patch feature, see the following topics:

» JavaClient API: Partially Updating Document Content and Metadata in the Java Application

Developer’s Guide

* NodejsClient API: Patching Document Content or Metadata in the Node.js Application

Developer’s Guide

* REST Client API: Partially Updating Document Content or Metadata in the REST Application

Developer’s Guide

Page 66—XQuery and XSLT Reference Guide

MarkLogic Server XPath Quick Reference

545 The extract-document-data Query Option

The XQuery Search API, Server-Side JavaScript Jsearch API, and the Java, Node,js, and REST
client APIs support a query option named extract -document -data that enables you to specify
portions of a matched document to be returned in document search results. You identify the
content to be extracted by specifying an XPath expression in the extract-path portion of the
option.

The extract-path iSrestricted to the same X Path subset that is described in “ Patch Feature of the
Client APIS’ on page 65.

To test an XPath expression for validity as an extract-path Value, use the XQuery function
cts:valid-extract-path OF the Server-Side JavaScri pt function cts.validextractpath.

To learn more about the extract-document-data QUEry option, see extract-document-data in the
Search Developer’s Guide. To learn more about the equivalent JSearch feature, see Extracting
Portions of Each Matched Document in the Search Developer’s Guide.

The Java and Node.js Client APIs support asimilar feature for Optic searches. For details, see
“The Optic API xpath Function” on page 67.

5.4.6 The Optic API xpath Function

Optic searches enable you to extract child nodes from a column with node values. You identify
these nodes with an X Path expression. This XPath expression is restricted to the subset described
in limited to the XPath subset described in “Patch Feature of the Client APIS’ on page 65.

The restrictions apply to the following contexts:

* Server-Side JavaScript Optic API: op.xpath

e XQuery Optic API: op:xpath

* NodejsClient APl: planBuilder.xpath

 JavaClient APl: com.marklogic.client.expression.PlanBuilder.xpath
To test an XPath expression for validity as an Optic xpath value, use the XQuery function
cts:valid-optic-path OF the Server-Side JavaScript function cts.validopticpath.

To learn more about the Optic API, see the following topics:

» XQuery and Server-Side JavaScript: Optic API for Multi-Model Data Access in the
Application Developer’s Guide

» JavaClient API: Optic Java API for Relational Operations in the Java Application
Developer’s Guide

* NodejsClient API: Using the Optic API for Relational Operations in the Node.js Application
Developer’s Guide

MarkLogic 10—May, 2019 XQuery and XSLT Reference Guide—Page 67

MarkLogic Server Version MarkLogic 10—May, 2019

5.4.7

Functions Callable in Predicate Expressions

XPath Quick Reference

In arestricted XPath subset that supports function callsin predicates, you can only call functions
known to be performant and secure in the context in which the restricted X Path applies. The
following topicslist these “safe” functions:

String Functions

Loqical and Data Validation Functions

Date and Time Functions

Type Casting Functions

Mathematical Functions

Miscellanious Functions

5.4.7.1 String Functions

fn:codepoint-equal fn:iri-to-uri fn:string-join
fn:codepoints-to-string fn:last fn:string-length
fn:compare fn:lower-case fn:string-to-codepoints
fn:concat fn:matches fn:subsequence
fn:contains fn:normalize-space fn:substring
fn:encode-for-uri fn:normalize-unicode fn:substring-after
fn:ends-with fn:position fn:substring-before
fn:escape-html-uri fn:remove fn:tokenize
fn:escape-uri fn:replace fn:translate
fn:format-number fn:reverse fn:upper-case
fn:insert-before fn:starts-with

5.4.7.2 Logical and Data Validation Functions

fn:boolean
fn:empty
fn:exists
fn:false

fn:not

Page 68—XQuery and XSLT Reference Guide

MarkLogic Server XPath Quick Reference

i fn:true

5.4.7.3 Date and Time Functions

fn:adjust-date-to-timezone fn:years-from-duration sqgl:seconds
fn:adjust-dateTime-to-timezone | fn:day-from-date sqgl:timestampadd
fn:adjust-time-to-timezone fn:day-from-dateTime sgl:timestampdiff
fn:month-from-date fn:days-from-duration sql:week
fn:month-from-dateTime fn:format-date sql :weekday
fn:months-from-duration fn:formate-dateTim€ sqgl:year
fn:seconds-from-dateTime fn:format-time sql:yearday
fn:seconds-from-duration fn:hours-from-dateTime sqgl:dateadd
fn:seconds-from-time fn:hours-from-duration sqgl:datediff
fn:minutes-from-dateTime fn:hours-from-time sqgl:datepart
fn:minutes-from-duration sql:day xdmp : dayname-from-date
fn:minutes-from-time sql:dayname xdmp:quarter-from-date
fn:timezone-from-date sgl:hours xdmp : week-from-date
fn:timezone-from-dateTime sgl:minutes xdmp : weekday-from-date
fn:timezone-from-time sgl:month xdmp :yearday-from-date
fn:year-from-date sgl :monthname xdmp : parse-yymmdd
fn:year-from-dateTime sqgl:quarter xdmp : parse-dateTime

5.4.7.4 Type Casting Functions

fn:number xs:float xs:gMonth
fn:string xs:double xs :gDay

Xs:string xs:boolean xs:duration
xs:decimal xs:dateTime xs:anyURI
xs:integer xs:date xs:dayTimeDuration

MarkLogic 10—May, 2019 XQuery and XSLT Reference Guide—Page 69

MarkLogic Server

Version MarkLogic 10—May, 2019

XPath Quick Reference

xs:long Xs:time xs:yearMonthDuration
xs:int xs:gYearMonth xdmp:castable-as
xs:short xs:gYear

xs:byte xs:gMonthDay

5.4.7.5 Mathematical Functions

fn:abs math:cosh math:modf
fn:ceiling math:cot math:pi
fn:floor math:degrees math:pow
fn:round math:exp math:radians
fn:round-half-to-even math:fabs math:sin

math:acos

math:floor

math:sinh

math:asin math:fmod math:sqgrt
math:atan math:frexp math:tan
math:atan2 math:ldexp math:tanh
math:ceil math:log math:trunc
math:cos math:1ogl0

5.4.7.6 Miscellanious Functions

fn:head fn:sum sem:invalid-datatype
fn:tail fn:count sem:typed-literal
fn:base-uri fn:avg cts:point
fn:document-uri sem:uuid xdmp :node-metadata-value
fn:lang sem:uuid-string xdmp : node-metadata
fn:local-name sem:bnode xdmp :node-kind

fn:name sem:datatype xdmp :node-uri

Page 70—XQuery and XSLT Reference Guide

MarkLogic Server XPath Quick Reference

fn:namespace-uri sem: sameTerm xdmp :path
fn:node-name sem:lang xdmp: type
fn:number sem:iri
fn:root sem:unknown
fn:min sem:unknown-datatype
fn:max sem:invalid

5.4.8 Indexable Path Expression Grammar

Most users can rely on the examplesin “Path Field and Path-Based Range Index Configuration”
on page 62 and the validity checking function appropriate to the context to develop valid path
range index expressions. For example, USe cts:valid-index-path Of cts.validIndexPath tOtest a
path expression.

For advanced users, this section contains a detailed grammar that defines the subset of XPath you
can use to define path-based indexes. The same grammar applies to X Path expressions for the
following features. Any differences are called out below.

e Template Driven Extraction (TDE): TDE also allowsthe use of “/” asa TDE context XPath
EXPression in some Cases.

e Element Level Security: No differences.

The grammar is derived from the W3C XML Path Language specification; for details, see
http://www.w3.org/TR/xpath/. If you find it easier to explore the grammar graphically, the BNF is
suitable for use with many tools that generate “railroad diagrams” from BNF, such as
http://bottlecaps.de/rr/ui.

The following grammar expresses the X Path subset you can use to define path-based indexes.
Note that Functionalcall inthe grammar can only be acall to one of the functionslisted in
“Functions Callable in Predicate Expressions’ on page 68. Also, an unamed kindTest cannot be
used asthe leaf step.

IndexablePathExpr ::= (PathExpr)* (("/" | "//") LeafExpr Predicates)
LeafExpr ::= " (" UnionExpr ")" | LeafStep
PathExpr = ("/" RelativePathExpr?)

| ("//" RelativePathExpr)

| RelativePathExpr
RelativePathExpr = UnionExpr | " (" UnionExpr ")"
UnionExpr ::= GeneralStepExpr ("|" GeneralStepExpr) *
GeneralStepExpr z:= (/" | "//")? StepExpr (("/" | "//")? StepExpr)*
StepExpr ::= ForwardStep Predicates
ForwardStep = (ForwardAxis AbbreviatedFwdStep)

| AbbreviatedFwdStep
AbbreviatedFwdStep ::= "." | ("@" NameTest) | NameTest | KindTest

MarkLogic 10—May, 2019 XQuery and XSLT Reference Guide—Page 71

http://www.w3.org/TR/xpath/
http://bottlecaps.de/rr/ui

MarkLogic Server

LeafStep
NameTest
Wildcard
QName
PrefixedName
UnprefixedName
Prefix
LocalPart
NCName

*/

Name
QuotedNCName

Predicates
Predicate
Digit
PredicateExpr

ComparisonExpr

FunctionExpr

GeneralComp
ValueComp
SequenceExpr
Literal

KindTest

StringLiteral)??
NamedKindTest

Version MarkLogic 10—May, 2019

ll) n

("@"QName) | QName | NamedKindTest

QName | Wildcard

"&" | NCName ":" "*" | m&n nw.nv NCName
PrefixedName | UnprefixedName

Prefix ":" LocalPart

LocalPart

NCName

NCName

Name - (Char* ":" Char*) /* An XML Name, minus the ":
NameStartChar (NameChar) *

"1 NCName "'"

""" NCName '"'

Predicatex*

PredicateExpr | "[" Digit+ "]"

[0-9]

"[" PredicateExpr "and" PredicateExpr "]"
"[" PredicateExpr "or" PredicateExpr "I"
"[" ComparisonExpr "]" | "[" FunctionExpr
RelativePathExpr GeneralComp SequenceExpr
RelativePathExpr ValueComp Literal
PathExpr

FunctionCall GeneralComp SequenceExpr
FunctionCall ValueComp Literal

ll] n

FunctionCall

"eg" | "ne" | "lt" | "le" | "gt" | "ge"
Literal+

NumericLiteral | StringLiteral
"attribute" " (" QNameOrWildcard? ")"
"element" " (" QNameOrWildcard? ")"
"array-node" " (" QuotedNCName? ")"
"object-node" " (" QuotedNCName? ")"
"boolean-node" " (" QuotedNCName? ")"
"number-node" " (" QuotedNCName? ")"
"null-node" " (" QuotedNCName? ")"
"node" " (" QuotedNCName? ")"
"schema-element" " (" QName ")"
"schema-attribute" " (" QName ")"
"processing-instruction" " (" (NCName |
"attribute" " (" QONameOrWildcard ")"
"element" " (" QNameOrWildcard ")"
"array-node" " (" QuotedNCName ")"
"object-node" " (" QuotedNCName ")"
"boolean-node" " (" QuotedNCName ")"
"number-node" " (" QuotedNCName ")"
"null-node" " (" QuotedNCName ")"
"node" " (" QuotedNCName ")"
"schema-element" " (" QName ")"
"schema-attribute" " (" QName ")"
"processing-instruction" " (" (NCName |

Page 72—XQuery and XSLT Reference Guide

XPath Quick Reference

MarkLogic Server XPath Quick Reference

StringLiteral) ")"
QNameOrWildcard ::= QName | "*v

5.4.9 Patch and Extract Path Expression Grammar

Most users can rely on the summary and examplesin “Patch Feature of the Client APIS’ on
page 65 and the validity checking function appropriate to the context to develop valid path
eXpr ons. For exampl €, USE cts:valid-document-patch-path OF cts.documentPatchpPath tO test
apath expression.

For advanced users, this section contains a detailed grammar that defines the subset of XPath you
can use with the following features. More details and examples are available in the referenced
topics.

e Patch Feature of the Client APls

e The extract-document-data Query Option

e The Optic APl xpath Function

The grammar is derived from the W3C XML Path Language specification; for details, see
http://www.w3.org/TR/xpath/. If you find it easier to explore the grammar graphically, the BNFis
suitable for use with many tools that generate “railroad diagrams’ from BNF, such as
http://bottlecaps.de/rr/ui.

Thefollowing grammar expresses the X Path subset. Note that Functionaicai1 inthe grammar can
only be acall to one of the functions listed in “Functions Callable in Predicate Expressions’ on

page 68.

ExtractPathExpr = ("/" RelativePathExpr?)
| ("//" RelativePathExpr)
| RelativePathExpr
RelativePathExpr = UnionExpr | " (" UnionExpr ")"
UnionExpr ::= GeneralStepExpr ("|" GeneralStepExpr) *
GeneralStepExpr s:= ("/" | "//")? StepExpr (("/" | "//")? StepExpr)*
StepExpr = ForwardStep Predicates
ForwardStep = (ForwardAxis AbbreviatedFwdStep)
| AbbreviatedFwdStep
AbbreviatedFwdStep ::= "." | ("@" NameTest) | NameTest | KindTest
NameTest ::= QName | Wildcard
Wildcard ::= "*" | NCName ":" "#" | "w&w w.n NCName
OName ::= PrefixedName | UnprefixedName
PrefixedName ::= Prefix ":" LocalPart
UnprefixedName ::= LocalPart
Prefix : := NCName
LocalPart : := NCName
NCName ::= Name - (Char* ":" Char*) /* An XML Name, minus
the ".n */
Name ::= NameStartChar (NameChar) *
Predicates ::= Predicate*
Predicate ::= PredicateExpr | "[" Digit+ "1"

MarkLogic 10—May, 2019 XQuery and XSLT Reference Guide—Page 73

http://bottlecaps.de/rr/ui
http://www.w3.org/TR/xpath/

MarkLogic Server

Digit
PredicateExpr

ComparisonExpr

FunctionExpr

GeneralComp
ValueComp
SequenceExpr
Literal
KindTest

TextTest
CommentTest
AttributeTest
ElementTest
ArrayNodeTest
ObjectNodeTest
BooleanNodeTest
NumberNodeTest
NullNodeTest
AnyKindTest
SchemaElemTest
SchemaAttrTest
PITest
StringLiteral)?
QONameOrWildcard
QuotedNCName

ll) n

Version MarkLogic 10—May, 2019

XPath Quick Reference

[0-9]

"[" PredicateExpr "and" PredicateExpr "]"
"[" PredicateExpr "or" PredicateExpr "]"
"[" ComparisonExpr "]" | "[" FunctionExpr
RelativePathExpr GeneralComp SequenceExpr
RelativePathExpr ValueComp Literal
PathExpr

FunctionCall GeneralComp SequenceExpr
FunctionCall ValueComp Literal
FunctionCall

|
"eq" | "ne" |
Literal+

ll] n

ne—n

llge n

nyp—n | nen | ne—n |

nlgn |

nomn |

nlan | "gt" |

= NumericLiteral | StringLiteral

ElementTest
AttributeTest

CommentTest

TextTest

ArrayNodeTest

ObjectNodeTest

BooleanNodeTest

NumberNodeTest

NullNodeTest

AnyKindTest

DocumentTest

SchemaElemTest

SchemaAttrTest

PITest

"text" "(m m)"

"comment" " (" ")

"attribute" " (" QONameOrWildcard? ")"
"element" " (" QONameOrWildcard? ")"
"array-node" " (" QuotedNCName? ")"
"object-node" " (" QuotedNCName? ")"
"boolean-node" " (" QuotedNCName? ")"
"number-node" " (" QuotedNCName? ")"
"null-node" " (" QuotedNCName? ")"
"node" " (" QuotedNCName? ")"
"schema-element" " (" QName ")"
"schema-attribute" " (" QName ")"
"processing-instruction" " (" (NCName |
QName | "=*"
"1 NCName
NCName

Page 74—XQuery and XSLT Reference Guide

MarkLogic Server Understanding XML Namespaces in XQuery

6.0 Understanding XML Namespaces in XQuery

XQuery isdesigned to work well with XML content, allowing many convenient ways to search
through XML elements and attributes as well as making it easy to output XML from an XQuery
program. When working with XML, you must understand a little about the XML data model, and
one fundamental aspect of the XML data model is namespaces. This chapter describes XML
namespaces and how they are important in XQuery, and includes the following sections:

e XML QNames, Local Names, and Namespaces

e Everything Is In a Namespace

e XML Data Model Versus Serialized XML

e Declaring a Default Element Namespace in XQuery

¢ Tips For Constructing QNames

* Predefined Namespace Prefixes for Each Dialect

6.1 XML QNames, Local Names, and Namespaces

XML uses qualified names, also called QNames, to uniquely identify elements and attributes. A
QName for an XML element or attribute has two parts. the namespace name and the local name.
Together, the namespace and local name uniquely define how the element or attribute is
identified. Additionally, the QName also retains its namespace prefix, if thereisone. A
namespace prefix binds a namespace URI to a specified string (the string is the prefix).

6.2 Everything Is In a Namespace

In XML and XQuery, element and attribute nodes are always in a namespace, even if that
namespace is the empty namespace (sometimes called no namespace). Each namespace has a
uniform resource identifier (URI) associated. A URI is essentially a unique string that identifies
the namespace. That string can be bound to a namespace prefix, which is just a shorthand string
which is used to identify a (usually longer) namespace name. When something is in the empty
namespace, the namespace name is the empty string ().

There can a so be adefault element namespace defined for the module, as described in “ Declaring
a Default Element Namespace in XQuery” on page 80. The fact that every element isin a
namespace, along with the fact that X Path expressions of an unknown node return the empty
sequence, make it easy to have simple coding errors (or even typographic errors) that cause your
guery to be avalid XPath expression, but to return the empty string. For example, if you have a
simple typographical error in a namespace declaration, then XPath expressions that you might
expect to return nodes might return the empty sequence. Consider the following query against a
database with XHTML content:

xquery version "1.0-ml";
declare namespace xh="http://www.w3.0rg/1999/html";
//xh:p

MarkLogic 9—May, 2017 XQuery and XSLT Reference Guide—Page 75

MarkLogic Server Version MarkLogic 9—May, 2017 Understanding XML Namespaces in

You might expect thisto return all of the XHTML p elementsin the database, but instead it
returns nothing (the empty sequence). If you look closely, though, you will notice that the
namespace URI ismisspelled (it ismissing the x in xhtm1). If you keep in mind that everything is
in anamespace, it can help find many simple XQuery coding errors. The correct version of this
guery is asfollows, and will return all of the XHTML p elements:

xquery version "1.0-ml";
declare namespace xh="http://www.w3.0rg/1999/xhtml";
//xh:p

6.3 XML Data Model Versus Serialized XML

This section highlights the difference between the XML data model, used to programmatically
access XML content, and the serialized form of XML, used to display the XML in
human-readable form. The following topics are covered:

e XQuery Accesses the XML Data Model

* Serialized XML: Human-Readable With Angle Brackets

¢ Understanding Namespace Inheritance With the xmins Attribute

6.3.1 XQuery Accesses the XML Data Model

When an XQuery program accesses XML, it accesses it through the XML data model. The XML
data model access nodes viatheir QNames, which are pairs of namespace name and local name.
The XML data model does not store namespace prefixes. You can use namespace prefixes to
access XML if those prefixes are in-scope in your XQuery (that is, if the prefixes are bound to a
namespace). I n-scope prefixes are a combination of any prefixes bound to a namespace in your
guery and the predefined namespace prefixes defined in “ Predefined Namespace Prefixes for
Each Dialect” on page 81.

The XML data model is aware of XML schema, and all XML nodes can optionally have XML
types (for example, xs:string, xs:dateTime, xs: integer, and SO on). When you are creating
library functions that might be called from a number of contexts, knowing that X Query accesses
the XML data model can help you to make your code robust. For example, you might have code
that explicitly (or implicitly, using the XQuery rules) casts nodesto a particular XML type,
enforcing strong typing in your code.

6.3.2 Serialized XML: Human-Readable With Angle Brackets

When XML nodes are transformed from their internal, XML data model representation to a
human-readable form, the process is known as XML serialization. A serialized XML node
contains all of the namespace information, although some namespace prefixes may or may not be
included in the serialization. Serialized XML does not generally contain the type information or
the schema information; it is up to the XQuery program to specify a schemafor agiven XML
representation.

Page 76—XQuery and XSLT Reference Guide

MarkLogic Server Understanding XML Namespaces in XQuery

When serializing XML, there are five XML reserved characters that are serialized with their
corresponding XML entities. These characters cannot appear as content in a serialized XML text
node. The following table shows these five characters:

Character XML Entity Name of Character
" " ; double quotation mark
& & ; ampersand
' ' apostrophe
< < less-than sign
> > ; greater-than sign

There are different waysto serialize the same XML content. The way XML content is serialized
depends on how the content is constructed, the various namespace declarations in the query, and
how the XML content was loaded into MarkL ogic Server (for content loaded into a database). In
particular, the ampersand character can be tricky to construct in an XQuery string, asitisan
escape character to the XQuery parser. The waysto construct the ampersand character in XQuery
are:

* Usethe XML entity syntax (for example, samp;).

 UseaCDATA element (< ! [CDATA [element content here]] >), which tellsthe XQuery
parser to read the content as character data.

d Usetherepa”'Opﬁon(NTxdmp:document—load,xdmp:document—get,Orxdmp:unquote

For example, consider the following query:

xquery version "1.0-ml";
declare default element namespace "my.namespace.hello";

<some-element><! [CDATA [element content with & goes
here]] ></some-element>

If you evaluate this query, it returns the following serialization of the specified element:

<some-element xmlns="my.namespace.hello">element content
with & goes here</some-element>

MarkLogic 9—May, 2017 XQuery and XSLT Reference Guide—Page 77

MarkLogic Server Version MarkLogic 9—May, 2017 Understanding XML Namespaces in

If you consider a similar query with a namespace prefix binding instead of the default element
namespace declaration:

xquery version "1.0-ml";
declare namespace hello="my.namespace.hello";

<hello:some-element><! [CDATA [element content with & goes
here]] ></hello:some-element>

If you evaluate this query, it returns the following serialization of the specified element:

<hello:some-element xmlns:hello="my.namespace.hello">element
content with & goes here</hello:some-element>

Notice that in both cases, the s character is escaped as an XML entity, and in each case thereisan
xmlns attribute added to the serialization. In the first example, there is no prefix bound to the
namespace, but in the second one there is (because it is declared in the query). Both serializations
represent the exact same XML data model.

To construct the double quotation mark and apostrophe characters within a string quoted with one
of these characters (' or), you can use the character to escape itself, or you can quote the string
with the other quote character, as follows:

wwnn (: returns a single character: " :)
'"m' (: returns a single character: " :)
''11v (: returns a single character: ' :)

mrw (: returns a single character: ' :)

6.3.3 Understanding Namespace Inheritance With the xmlns Attribute

Asseeninthe previous example, XML has a namespace declaration called xm1ns, which isused to
specify namespacesin XML. An xm1ns Namespace declaration looks like an attribute (although it
isnot actually an attribute). It can either stand by itself or have a prefix appended to it, separated
by acolon (:) character. Any xmins Namespace declaration isinherited by all of its child
elements, and if it has a prefix appended to it, the children also inherit the namespace prefix
binding.

For example, the following XML serialization specifies that the XHTML namespace is inherited
from the root element:

<html xmlns="http://www.w3.0rg/1999/xhtml">
<body><p>This is in the XHTML namespace</p></body>
</html>

Each of the elements (htm1, body, and p in this example) are in the XHTML namespace.

Page 78—XQuery and XSLT Reference Guide

MarkLogic Server Understanding XML Namespaces in XQuery

Similarly, an xmins Namespace declaration with a prefix appended specifies that the prefix is
inherited by the element children.

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:my="my.namespace">
<body>
<p>This is in the XHTML namespace</p>
<my:p>This element is in my.namespace</my:p>
</body>
</html>

One other sublety about default namespaces using the xmins attribute in constructed elementsis
that any XPath statement that is constructed within an element constructor that uses an xmins
default namespace will default to the namespace of the parent element. This can be unexpected if
you are trying to write an XPath expression using QNames in no namespace. The following code
sample demonstrates how this namespace X Path inheritance works.

xquery version "1.0-ml";
declare namespace foo="foo";

(: notice the element constructed in $x is in no namespace :)
let $x := <a>hello

return

(

<blah xmlns="foo">{$x/b}</blah>,

<foo:blah>{$x/b}</foo:blah>

)

(:

Returns:

<blah xmlns="foo"/>

<foo:blah xmlns:foo="foo">hello</foo:blah>

Notice how in the first part of the return, the "b" in $x/b
inherits the namespace from the parent element, which is
constructed with a default namespace (xmlns="foo"),

so it returns empty.

In the second $x/b, the "b" is in no namespace.

:)

There are some other subtleties of namespaceinheritancein XML. For more details, seethe XML
Schema specification (http://www.w3.org/XML/Schema).

MarkLogic 9—May, 2017 XQuery and XSLT Reference Guide—Page 79

http://www.w3.org/XML/Schema

MarkLogic Server Version MarkLogic 9—May, 2017 Understanding XML Namespaces in

6.4 Declaring a Default Element Namespace in XQuery

An XQuery program can declare a namespace as the default element namespace for any elements
that do not have a namespace. By default, the default el ement namespace is no namespace, which
is denoted by the empty string URI (). If you want to define a default element namespace for a
guery, add a declaration to the prolog similar to the following, which declares the XHTML
namespace (http://www.w3.org/1999/xhtml) as the default el ement namespace:

declare default element namespace "http://www.w3.org/1999/xhtml";

An XQuery program that has this prolog declaration will use the XHTML namespace for all
elements where a namespace is not explicitly defined (for example, with a namespace prefix).

Declaring a default element namespace is a convenience and a style which some programmers
find useful. While it is sometimes convenient (so you do not have to prefix element names, for
example), it can also cause confusion in larger programs that use multiple namespaces, so for
more complex programming efforts, explicitly defining namespacesis usually more clear.

6.5 Tips For Constructing QNames

In XML, elements and attributes are uniquely identified by a qualified names (QNames, as
described in “XML QNames, Local Names, and Namespaces’ on page 75). A QNameisapairing
of anamespace name and alocal name, and it uniquely describes an element or attribute name.
XQuery also uses QNames to uniquely identify function names, variable names, and type names.

There are many functions that use QNames in XQuery, and all of the rules for in-scope
namespaces apply to constructing those QNames. For example, if the namespace prefiX my is
bound to the namespace URI ny . namespace in the scope of a query, then the following would
construct a QName in that namespace with the local name some-element:

xs:QName ("my:some-element")
Similarly, you can construct this QName using the £n: oname function as follows:

fn:QName ("my.namespace", "some-element")

Because a prefix is not specified in the second parameter to the above function, the QNameis
defined to have a prefix of the empty string ().

Similarly, you can construct this QName with the prefix my by using the £n: oname function as
follows:

fn:QName ("my.namespace", "my:some-element")

XQuery functions and other language constructs that take a QName can use any in-scope
namespace prefixes. For example, the following will construct an nem1 element in the XHTML
namespace:

Page 80—XQuery and XSLT Reference Guide

MarkLogic Server Understanding XML Namespaces in XQuery
xquery version "1.0-ml";
declare namespace xh="http://www.w3.0rg/1999/xhtml";
element xh:html { "This is in the xhtml namespace." }

6.6 Predefined Namespace Prefixes for Each Dialect

This section lists the namespaces that are predefined for each of the dialects supported in
MarkLogic Server. When a prefix is predefined, you can useit in your XQuery without the need
to defineit in adeclare namespace prolog statement. It contains the following parts:

e 1.0-ml Predefined Namespaces

e 1.0 Predefined Namespaces

* 0.9-ml Predefined Namespaces

6.6.1 1.0-ml Predefined Namespaces

The following table lists the namespace prefixes and the corresponding URIs to which they are
bound that are predefined in the 1.0-ml XQuery dialect.

1.0-ml
Predefined Used For Namespace URI
Prefix
cts MarkLogiC Server http://marklogic.com/cts
search functions
(Core Text Services)
dav Used with WebDAV | DAV:
dbg Debug Built-In http://marklogic.com/xdmp/debug
functions
dir MarkLogiC Server http://marklogic.com/xdmp/directory
directory XML
err nanmﬁpapefor http://www.w3.0rg/2005/xgt-errors
XQuery and XPath
errors
error MarkLogiC Server http://marklogic.com/xdmp/error
error namespace
fn XQuery standard http://www.w3.0rg/2005/xpath-functions
function namespace

MarkLogic 9—May, 2017 XQuery and XSLT Reference Guide—Page 81

MarkLogic Server Version MarkLogic 9—May, 2017 Understanding XML Namespaces in
1.0-ml
Predefined Used For Namespace URI
Prefix
local local namespacefor | http://www.w3.0org/2005/xquery-local-functions

functions defined in
main modules

lock MarkLogic Server http://marklogic.com/xdmp/lock
locks

map MarkLogic Server http://marklogic.com/xdmp/map
maps

math math Built-1n http://marklogic.com/xdmp/math
functions

prof profile Built-In http://marklogic.com/xdmp/profile
functions

prop MarkLogic Server http://marklogic.com/xdmp/property
properties

sec security Built-In http://marklogic.com/xdmp/security
functions

sem semantic Built-In http://marklogic.com/semantics
functions

spell spelling correction http://marklogic.com/xdmp/spell
functions

xdmp MarkLogiC Server http://marklogic.com/xdmp
Built-In functions

xml XML namespace http://www.w3.0rg/XML/1998 /namespace

xmlns xmlns namespace http://www.w3.0rg/2000/xmlns/

xge deprecated http://marklogic.com/xge
MarkLogic Server
Xge namespace

xgterr XQuery test suite http://www.w3.0rg/2005/xgt-errors
errors (same aserr)

XS XML Schema http://www.w3.0rg/2001/XMLSchema
namespace

Page 82—XQuery and XSLT Reference Guide

MarkLogic Server

6.6.2

Understanding XML Namespaces in XQuery

1.0 Predefined Namespaces

The following table lists the namespace prefixes and the corresponding URIs to which they are
bound that are predefined in the 1.0 XQuery dialect (strict XQuery 1.0).

1.0
Predefined Used For Namespace URI
Prefix

err namespace for http://www.w3.0rg/2005/xgt-errors
XQuery and XPath
errors

fn XQuery standard http://www.w3.0rg/2005/xpath-functions
function namespace

local local namespace for http://www.w3.0rg/2005/xquery-local-functions
functions defined in
main modules

xml XML namespace http://www.w3.0rg/XML/1998 /namespace

xmlns xmlns namespace http://www.w3.0rg/2000/xmlns/

Xs XML Schema http://www.w3.0rg/2001/XMLSchema
namespace

6.6.3 0.9-ml Predefined Namespaces

The following table lists the namespace prefixes and the corresponding URIs to which they are
bound that are predefined in the 0.9-ml XQuery dialect (MarkLogic Server legacy).

0.9-ml
Predefined Used For Namespace URI
Prefix
cts MarkLogiC Server http://marklogic.com/cts
search functions
(Core Text Services)
dav Used with WebDAV | DAV:
dbg Debug Built-In http://marklogic.com/xdmp/debug
functions

MarkLogic 9—May, 2017

XQuery and XSLT Reference Guide—Page 83

MarkLogic Server

Version MarkLogic 9—May, 2017

Understanding XML Namespaces in

0.9-ml
Predefined Used For Namespace URI
Prefix

dir MarkLogic Server http://marklogic.com/xdmp/directory
directory XML

err MarkLogiC Server http://marklogic.com/xdmp/error
error namespace
(note thisisdifferent
than1.0and 1.0-m1)

error MarkLogiC Server http://marklogic.com/xdmp/error
error namespace

fn XQuery standard http://www.w3.0rg/2003/05/xpath-functions
function namespace
(not thishas a
different namespace
URi than 1.0 and
1.0-ml)

lock MarkLogiC Server http://marklogic.com/xdmp/lock
locks

map MarkLogiC Server http://marklogic.com/xdmp/map
maps

math math Built-In http://marklogic.com/xdmp/math
functions

prof profile Built-In http://marklogic.com/xdmp/profile
functions

prop MarkLogic Server http://marklogic.com/xdmp/property
properties

sec security Built-In http://marklogic.com/xdmp/security
functions

spell spelling correction http://marklogic.com/xdmp/spell
functions

xdt May 2003 duration http://www.w3.0rg/2003/05/xpath-datatypes
namespace

xdmp MarkLogic Server http://marklogic.com/xdmp

Built-In functions

Page 84—XQuery and XSLT Reference Guide

MarkLogic Server

Understanding XML Namespaces in XQuery

0.9-ml
Predefined Used For Namespace URI
Prefix
xml XML namespace http://www.w3.org/XML/1998 /namespace
xmlns xmlns namespace http://www.w3.0rg/2000/xmlns/
xge deprecated http://marklogic.com/xge
MarkLogic Server
XQe namespace
xgterr XQuery test suite http://www.w3.0rg/2005/xgt-errors
errors (same aserr)
XS XML Schema http://www.w3.0rg/2001/XMLSchema
namespace

MarkLogic 9—May, 2017

XQuery and XSLT Reference Guide—Page 85

MarkLogic Server Version MarkLogic 9—May, 2017 Understanding XML Namespaces in

Page 86—XQuery and XSLT Reference Guide

MarkLogic Server XSLT in MarkLogic Server

7.0 XSLT in MarkLogic Server

In MarkLogic Server, you have both the XQuery and XSLT languages available. You can use one
or both of these languages as needed. This chapter briefly describes some of the XSLT language
features and describes how to run XSLT in MarkLogic Server, and includes the following
sections:

e XSLT?2.0

¢ Invoking and Evaluating XSLT Stylesheets

* MarklLogic Server Extensions to XSLT

¢ Invoking Stylesheets Directly Using the XSLT Rewriter

e XSLT, XQuery, or Both

7.1 XSLT 2.0

MarkLogic Server implements the W3C XSLT 2.0 recommendation. XSLT 2.0 includes
compatibility mode for 1.0 stylesheets. XSLT is a programming languages designed to make it
easy to transform XML.

For details about the XSLT 2.0 recommendation, see the W3C website;

e http://www.w3.org/TR/xslt20/

An XSLT stylesheet isan XML document. Each element is an instruction in the XSLT language.
For asummary of the syntax of the various elementsin an XSLT stylesheet, see
https://www.w3.0rg/TR/xslt20/#element-syntax-summary.

7.2 Invoking and Evaluating XSLT Stylesheets

To run an XSLT stylesheet in MarkLogic Server, you run one of the following functions from an
XQuery context:

e xdmp:xslt-invoke

e xdmp:xslt-eval
The xamp: xs1t-1invoke function invokes an XSLT stylesheet from the App Server root, and the
xdmp : xs1t-eval function takes a stylesheet as an element and evaluatesit as an XSLT stylesheet.

As part of running a stylesheet, you pass the stylesheet a node to operate on. For details on
xdmp : xs1t-invoke aNd xdmp:xs1t-eval, Seethe MarkLogic XQuery and XSLT Function Reference.

MarkLogic 10—May, 2019 XQuery and XSLT Reference Guide—Page 87

http://www.w3.org/TR/xslt20/
https://www.w3.org/TR/xslt20/#element-syntax-summary

MarkLogic Server Version MarkLogic 10—May, 2019 XSLT in MarkLogic Server

7.3 MarkLogic Server Extensions to XSLT

Besides the ability to invoke and evaluate XSLT stylesheets from an XQuery context (as
described in “Invoking and Evaluating XSLT Stylesheets’ on page 87), there are several
extensionsto XSLT availablein MarkLogic Server. This section describes those extensions and
includes the following parts:

e Calling Built-In XQuery Functions in a Stylesheet

e Importing XQuery Function Libraries to a Stylesheet

e Try/Catch XSLT Instruction

e EXSLT Extensions

e xdmp:dialect Attribute

* Notes on Importing Stylesheets With <xsl:import>

7.3.1 Calling Built-In XQuery Functions in a Stylesheet
You can call any of the MarkL ogic Server Built-In XQuery functions from an XSLT stylesheet.

7.3.2 Importing XQuery Function Libraries to a Stylesheet

In addition to using <xs1 : import> to import other XSLT stylesheets into your stylesheet, you can
use the <xdmp : import-modules instruction to import an XQuery library module to an XSLT
stylesheet. Once you have imported the modul e, any functions defined in the module are available
to that stylesheet. When using the <xdmp : import-modules instruction, you must specify xdmp asa
value of the extension-element-prefixes attribute on the <xs1: stylesheet> instruction and you
also must bind the xamp prefix to its namespace in the stylesheet XML.

The following is an example of an <xdmp : import -module> iNStruction:
xquery version "1.0-ml";

xdmp:xslt-eval (
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xdmp="http://marklogic.com/xdmp"
xmlns:search="http://marklogic.com/appservices/search"
extension-element-prefixes="xdmp"
version="2.0">
<xdmp : import-module
namespace="http://marklogic.com/appservices/search"
href="/MarkLogic/appservices/search/search.xqy"/>
<xsl:template match="/">
<xsl:copy-of select="search:search('hello')"/>
</xsl:template>
</xsl:stylesheet>

1

document{ <doc/> })

Page 88—XQuery and XSLT Reference Guide

MarkLogic Server XSLT in MarkLogic Server

Similarly, you can import an XSLT sytlesheet into an XQuery library, as described in “Importing
XQuery Function Libraries to a Stylesheet” on page 88.

7.3.3 Try/Catch XSLT Instruction

You can use the <xdmp : try> INstruction to create a try/catch expression in XSLT. When using the
<xdmp:try> instruction, you must speCIfy xdmp AS avalue of the extension-element-prefixes
attribute on the <xs1:stylesheets instruction and you also must bind the xamp prefix to its
namespace in the stylesheet XML.

The following is an example of atry/catch in XSLT. This example returns the error XML, which
is bound to the variable named e in the name attribute of the <xdmp: catch> Instruction.

xquery version "1.0-ml";

xdmp:xslt-eval (
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xdmp="http://marklogic.com/xdmp"
extension-element-prefixes="xdmp"
version="2.0">
<xsl:template match="/">
<xdmp:try>
<xsl:value-of select="error (xs:QName ('MY-ERROR') ,
'"This is an error')"/>
<xdmp:catch name="e">
<xsl:copy-of select="$Se"/>
</xdmp:catch>
</xdmp:try>
</xsl:template>
</xsl:stylesheet>

I

document { <doc>hello</doc>})

7.3.4 EXSLT Extensions

MarkLogic Server includes many of the EXSLT extensions (http://www.exslt.org/). The extensions
include the exs1t :node-set and exsit: object-type functions and the exs1 : document instruction.
For details about the functions, see the MarkLogic XQuery and XSLT Function Reference and the
EXSLT web site.

The following is an example of the exs1: document instruction. Note that thisis essentially the
same as the xs1 : result-document instruction, which is part of XSLT 2.0.

xquery version "1.0-ml";

(: Assumes this is run from a file called c:/mypath/exsl.xqy :)

xdmp : set-response-content-type ("text/html"),

let $nodes := xdmp:xslt-eval (

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:exsl="http://exslt.org/common"
extension-element-prefixes="exsl"
xmlns:xdmp="http://marklogic.com/xdmp"

MarkLogic 10—May, 2019 XQuery and XSLT Reference Guide—Page 89

http://www.exslt.org/

MarkLogic Server Version MarkLogic 10—May, 2019 XSLT in MarkLogic Server

version="2.0">
<xsl:template match="/">
<html>
<head><title>Frame example</title></head>
<frameset cols="20%, 80%">
<frame src="toc.html"/>
<exsl:document href="toc.html">
<html>
<head><title>Table of Contents</title></head>
<body>
<xsl:apply-templates mode="toc" select="*"/>
</body>
</html>
</exsl :document >
<frame src="body.html"/>
<exsl:document href="body.html">
<html>
<head><title>Body</title></head>
<body>
<xsl:apply-templates select="*"/>
</body>
</html>
</exsl:document>
</frameset>
</html>
</xsl:template>
</xsl:stylesheets>,
document {element p { "hello" }})
for $node at $i in S$nodes
return
if (fn:document-uri ($node))
then xdmp:save (
fn:resolve-uri (fn:document-uri (Snode) ,
"C://mypath/exsl.xqy"), $node)
else (Snode)

The above query will save the two documents created with exs1 : document t0 the App Server root
on the filesystem, making them available to the output document with the frameset. For more
details about the exsl:document instruction, see the EXSLT web site.

7.3.5 xdmp:dialect Attribute

You can add the attribute xamp : dialect t0 any element in a stylesheet to control the dialect in
which expressions are evaluated, with avalue of any valid dialect (for example, "1.0-m1n or
n1.0"). If NO xdmp:dialect altributeis present, the default valueis »1.0v, whichis
standards-compliant XSLT 2.0 XPath.

If you are using code shared with other stylesheets (especialy stylesheets that might be used with
other XSLT processors), use care when setting the dialect to 1. 0-n1, asit might have subtle
differences in the way expressions are eval uated.

For details about dialects, see “Overview of the XQuery Dialects’ on page 9.

Page 90—XQuery and XSLT Reference Guide

MarkLogic Server XSLT in MarkLogic Server

7.3.6 Notes on Importing Stylesheets With <xsl:import>

XSLT includes the <xs1 : import > instruction, which is used to import other stylesheetsinto a
stylesheet. The MarkL ogic implementation of the <xs1: import> instruction is conformant to the
specification, but the <xs1 : import > instruction can be complicated. For details on the
<xs1:import> INStruction, see the XSLT specification or your favorite XSLT programming book.

Some of the important points to note about the <xs1 : import > Instruction are as follows:

» Any absolute URI referencesin the nrer attribute are resolved in the context of the current
MarkLogic Server database URIs. Relative paths are resolved relative to current module
in the App Server root. For details, see XQuery Library Modules and Main Modules in the
Application Developer’s Guide.

* Any code imported in an <xs1:import> instruction follows the rules of precedence for
XSLT imports. In general, that meansthat a stylesheet that imports has precedence over an
imported stylesheet.

* Any XQuery library modulesimported into a styleheet follow the rules for XQuery
imports, not the rules for XSLT imports. Notably, only functions and variablesin the
imported module are directly available to the stylesheet, not functions and variables that
the XQuery library might import. XQuery library module imports use the
<xdmp : import -module> €Xtension instruction, as described in “Importing X Query Function
Librariesto a Stylesheet” on page 88.

7.4 Invoking Stylesheets Directly Using the XSLT Rewriter

Asdescribed in “Invoking and Evaluating XSLT Stylesheets” on page 87, you invoke a stylesheet
from an XQuery program. To set up an HTTP App Server to invoke a stylesheet by directly
calling it from the App Server, you can set up a URL rewriter. For general information on using a
URL rewriter, see Creating an Interpretive XQuery Rewriter to Support REST Web Services in the
Application Developer’s Guide.

This section describes the sample URL rewriter for XSLT stylesheets and includes the following
parts:

e About the Sample Rewriter

e Setting Up the Sample Rewriter in Your HTTP App Server

7.4.1 About the Sample Rewriter

The sample XSLT rewriter consists of two files, both installed in the
<marklogic-dir>/Samples/xslt dnfxiory:

e xslt-invoker.xqy

e xslt-rewrite-handler.xqgy

Once you set up the rewriter as described in the next section, URLsto the App Server of the form:

MarkLogic 10—May, 2019 XQuery and XSLT Reference Guide—Page 91

MarkLogic Server Version MarkLogic 10—May, 2019 XSLT in MarkLogic Server

/filename.xsl?doc=/url-of -context-node.xml

will invoke the fi1ename . xs1 Stylesheet and passit the context node at the URI specified in the
doc request field.

It will also take URLSsif the form:

/styled/url-of-context-node.xml?stylesheet=/stylesheet.xsl

will invoke the stylesheet at the path specified in the stylesheet request field passing in the context
node in the path after /styled (furl-of-context-node.xml inthe above sample).

The following table describes what the request fields you pass translate to when you are using the
sample XSLT rewriter.

Request Field Description

doc Specifies the URI of the document to be passed into the stylesheet as the
context node. If there isno doc request field, then it defaults to a context
node of default.xmi. If no document with the URI gefault.xm1 existsin
the database, then the rewriter will throw an exception.

stylesheet Used with paths that start with /sty1ea. Specifies the path to the
stylesheet to invoke. If it isnot present, uses the stylesheet at
default.xslt.

mode The name of the initial mode to passinto the stylesheet. If not present, no
mode is passed.
template The name of theinitia template to passinto the stylesheet. If not present,

no template is passed in.

Page 92—XQuery and XSLT Reference Guide

MarkLogic Server XSLT in MarkLogic Server

7.4.2 Setting Up the Sample Rewriter in Your HTTP App Server

You can use the sample rewriter as-is or you can modify it to suit your needs. For example, if it
makes sense for your stylesheets, you can modify it to always pass a certain node as the context
node.

To use the sample XSLT rewriter, perform the following steps:

1. COpy the xs1t-invoker.xqy and xslt-rewrite-handler.xqy Modulesfrom the
<marklogic-dirs>/Samples/xs1t directory to your App Server root. The files must be at the
top of the root of the App Server, not a subdirectory of the root. For example, if your root
isset to /space/my-app-server, YOU MUSt COPY the new filesto
/space/my-app-server/xslt-invoker.xqy and
/space/my-app-server/xslt-rewrite-handler.xqy. |f your root isin a modules database,
then you must load the 2 files as text document (with any needed permissions) with URIs
that begin with the App Server root.

2. In the Admin Interface, navigate to the HTTP App Server configuration for the App
Server in which want to directly invoke XSLT stylesheets.

3. Onthe HTTP Server Configuration page, find the ur1 rewriter field (it is towards the

bottom of the page).
4. Enter /xdt-rewrite-handler.xgy into the url rewriter field.
5. Click OK.

Request against the App Server will now be automatically rewritten to directly invoke stylesheets
as described in the previous section.

7.5 XSLT, XQuery, or Both

Both XQuery and XSLT are Turing Complete programming languages, that is, in theory, you can
use either language to compute whatever you need to compute. XQuery and XSLT share the same
data model and share XPath 2.0, so there are alot of commonalities between the two languages.

On some level, choosing which language to perform a specific task is one of style. Different
programmers have different styles, and so there is no “correct” answer to what to do in XQuery
and what to do in XSLT.

In practice, however, XSLT is very convenient for performing XML transformation. You can do

these transformations in XQuery too, and you can do them well in XQuery, but some
programmers find it more natural to write atransformation in XSLT.

MarkLogic 10—May, 2019 XQuery and XSLT Reference Guide—Page 93

MarkLogic Server Version MarkLogic 10—May, 2019 XSLT in MarkLogic Server

Page 94—XQuery and XSLT Reference Guide

MarkLogic Server Application Programming in XQuery and XSLT

8.0 Application Programming in XQuery and XSLT

In MarkLogic Server, XQuery and XSLT are not only used to query XML, but are a'so used as
programming languages to create applications. They are especially powerful as a programming
languages to create web applications, as you can easily write XQuery and/or XSLT code that
outputs XHTML, which isthe XML variant of HTML. This chapter describes some of the
language features that make XQuery and XSLT particularly useful as application programming
languages, and includes the following sections:

¢ Design Patterns
¢ Using Functions

e Search Functions

e Updates and Transactions

e HTTP App Server Functions

* Additional Resources

8.1 Design Patterns

For any programming language, there are design patterns that develop over time to perform
various tasks. In XQuery with MarkL ogic Server, one design pattern developers have gravitated
toward isusing MarkLogic Server to create single-tier applications, where an XQuery program
accesses the content in a database, preparesit for display to an application, and sendsthe resultsto
aclient over an HTTP App Server.

Many of the extensionsin the 1.0-m1 enhanced XQuery dialect make building these types of
applications easier and more efficient. Extensionsto the language such astry/catch are very useful
in building robust applications. For details on these extensions, see “MarkL ogic Server Enhanced
XQuery Language’ on page 17.

The Application Developer’s Guide lists many common design patternsin MarkL ogic Server, and
the Search Developer’s Guide lists common design patterns for MarkL ogic Server specific search
application functionality. These guides provide detail s about searches, lexicons, and many other
techniques devel opers use to build applicationsin MarkLogic Server.

8.2 Using Functions

Functions are a powerful way to encapsulate XQuery code. For an example of an XQuery
function, see “ Declaring Functions’ on page 43. This section covers the following aspects of
functions:

* Creating Reusable and Modular Code

* Recursive Functions

MarkLogic 9—May, 2017 XQuery and XSLT Reference Guide—Page 95

MarkLogic Server Version MarkLogic 9—May, 2017 Application Programming in XQuery

8.2.1 Creating Reusable and Modular Code

Functions provide a convenient way to modularize or componentize your XQuery code. When
you move some functionality into afunction in alibrary module, it allows you to call that library
module and use any of its functions from any other X Query module, allowing maximum code
reuse. You can separate the library modules any way that makes sense for your development
environment. For example, you can use a model-view-controller (MV C) approach where you
have a set of functions that are used to access the content, a set of functions used to display the
content in a user-interface, and a set of functions used to control the businesslogic of the
application (for example, workflow logic based on various events).

8.2.2 Recursive Functions

Using functions recursively (creating functions that call themselves) is a useful design patternin
XQuery. Recursive functions are very convenient for iterating through an XML tree structure to
perform XML transformations from one structure to another.

Note that MarkLogic will apply tail call optimization to arecursive XQuery functionif and only if
the function return type is untyped. For example:

(: Can be tail call optimized - no explicit return type :)
declare function my:func (
Sparam as xs:string

) |
.

(: Cannot be tail call optimized - explicitly returns node() :)
declare function my:func (

Sparam as xs:string
) as node () {

.

Recursive functions that are not tail call optimized create a new stack frame for each call and can
eventually cause a stack overflow if the call stack gets too deep. By contrast, tail call optimized
recursive functions use constant stack space.

For details on performing recursive transformations, see the Transforming XML Structures With a
Recursive typeswitch Expression chapter of the Application Developer’s Guide.

You can also use XSLT to perform transformations. For more information about XSLT, see
“XSLT in MarkLogic Server” on page 87.

Page 96—X Query and XSLT Reference Guide

MarkLogic Server Application Programming in XQuery and XSLT

8.3 Search Functions

MarkLogic Server includes functions to perform high-performance full-text search queries. The
cts:query constructors alow you to compose complex queries. The cts:search API returns
relevance-ranked, search-engine style queries. The cts:contains APl can be used in XPath
predicates or other XQuery expressions. Both cts:search and cts: contains take the composable
cts:query APIS as a parameter, allowing you to perform full-text searchesin any XQuery or
XSLT context, whether it is on content stored in a database or on content constructed in memory.

There are many index settings on the database configuration. The indexes speed up searches (both
XPath and cts:search) on documents in the database. The default index settings provide a good
mix of performance and economy of disk space, and the default settings work well in many
applications. If you want more index options, you can configure them at the database level.

For details on composing cts : query CONStructors, see Composing cts:query Expressions in the
Search Developer’s Guide. For the syntax of the various search built-in functions, see the
MarkLogic XQuery and XSLT Function Reference. For details on index options, see the Databases
and Text Indexing chapters of the Administrator’s Guide.

8.4 Updates and Transactions

MarkLogic Server isatransactional system that ensures dataintegrity. When you perform updates
on documents in a database, the system automatically locks any needed documents to ensure
those documents are not updated by any other concurrent transactions. If a query readsa
document, the system ensuresthat it the query reads a consistent view of the document throughout
the transaction.

There are XQuery/XSLT functions built into MarkL ogic Server to create documents, update
documents, and del ete documents in a database. These update built-in functions are used in
XQuery programs, so you can build complex logic (or whatever is required by your application)
into your programs that update content.

For details on transactions, see the Understanding Transactions in MarkLogic Server chapter in the
Application Developer’s Guide. For details on the update built-in functions, see the MarkLogic
XQuery and XSLT Function Reference.

8.5 HTTP App Server Functions

When you issue XQuery requests against aMarkLogic Server HTTP App Server, the requests are
processed over the HTTP protocol. MarkLogic Server provides X Query built-in functionsto
perform various HTTP server functions. Use these functions to HT TP-server related actions such
as adding an HTTP header, accessing the request object, and so on.

The App Server functions are extremely useful when you are creating compl ete applications that

return XHTML. For details about the signatures of the App Server functions, see the MarkLogic
XQuery and XSLT Function Reference.

MarkLogic 9—May, 2017 XQuery and XSLT Reference Guide—Page 97

MarkLogic Server Version MarkLogic 9—May, 2017 Application Programming in XQuery

8.6 Additional Resources
This section lists some sources for additional XQuery resources. They include:

e MarkLogic Server Documentation

e XQuery Use Cases

e Other Publications

8.6.1 MarkLogic Server Documentation

In addition to this document, which describes the X Query language implemented in MarkL ogic
Server, the MarkLogic Server documentation also includes XQuery APl documentation for all of
the XQuery-standard functions as well as the MarkL ogic-defined XQuery functions. Included in
the APl documentation are many useful X Query code samples.

The other documents in the MarkL ogic Server library describe various other aspects of the
product. In particular, the Application Developer’s Guide includes many useful XQuery design
patterns that work well with MarkLogic Server. For a description of MarkL ogic Server
documentation, see the product documentation section of the MarkL ogic Developer site
(http://developer.marklogic.com/).

8.6.2 XQuery Use Cases

MarkL ogic Server includes an application that shows the X Query Use Cases. The Use Cases have
been devel oped by the W3C X Query Working Group and demonstrates how a significant number
of core tasks can be implemented using the X Query language. The W3C describes the use casesin
the following document:

http://www.w3.org/TR/xquery-use-cases/

The Use Cases have a default XQuery dialect of 1.0, so if you want to run code in 1.0-ml, use an
XQuery version declaration in the prolog, as described in “ Specifying the X Query Dialect in the
Prolog” on page 13. The Getting Sarted with MarkLogic Server walks you through this process

of using the Use Cases application some detail.

Page 98—XQuery and XSLT Reference Guide

http://www.w3.org/TR/xquery-use-cases/
http://developer.marklogic.com/pubs/

MarkLogic Server Application Programming in XQuery and XSLT

8.6.3 Other Publications

In addition to the MarkL ogic Server documentation, there are many excellent third-party books
on XQuery. See the MarkL ogic devel oper site for some recommendations
(http://developer.marklogic.com).

You can aso look directly at the XQuery specification, although much of the specification is
geared more toward people who are implementing an XQuery processor rather than for people
who are writing applications in XQuery. Nevertheless, it isvery useful to at |east get some
familiarity with the following specifications:

* The current XQuery language recommendation (http://www.w3.org/TR/xquery/).

* The current recommendation for XQuery Functions and Operators
(http://www.w3.org/TR/xquery-operators/).

* The XML Schema standard—useful for both type definitions and to understand the
schema definitions that can be used in MarkLogic Server.

MarkLogic 9—May, 2017 XQuery and XSLT Reference Guide—Page 99

http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery-operators/
http://developer.marklogic.com

MarkLogic Server Version MarkLogic 9—May, 2017 Application Programming in XQuery

Page 100—XQuery and XSLT Reference Guide

MarkLogic Server Technical Support

9.0 Technical Support

MarkL ogic provides technical support according to the terms detailed in your Software License
Agreement or End User License Agreement.

We invite you to visit our support website at http://help.marklogic.com to access information on
known and fixed issues, knowledge base articles, and more. For licensed customers with an active
maintenance contract, see the Support Handbook for instructions on registering support contacts
and on working with the MarkL ogic Technical Support team.

Complete product documentation, the latest product release downloads, and other useful
information is available for al developers at http:/developer.marklogic.com. For technical
guestions, we encourage you to ask your question on Stack Overflow.

MarkLogic 9

http://help.marklogic.com/
https://stackoverflow.com/questions/tagged/marklogic
http://developer.marklogic.com
http://www.marklogic.com/files/Mark_Logic_Support_Handbook.pdf

MarkLogic Server Version MarkLogic 9—May, 2017 Technical Support

Page 102—Glossary, Copyright, and Support

MarkLogic Server Copyright

10.0 Copyright

MarkLogic Server 9.0 and supporting products.
Last updated: August 5, 2020

Copyright © 2020 MarkL ogic Corporation.

MarkLogic and the MarkL ogic logo are trademarks or registered trademarks of MarkLogic
Corporation in the United States and other countries.

MarkL ogic technology is protected by one or more U.S. Patent Nos. 7,127,469, 7,171,404,
7,756,858, 7,962,474, 8,935,267, 8,892,599, 9,092,507, 10,108,742, 10,114,975, 10,311,088,
10,325,106, 10,339,337, 10,394,889, and 10,503,780.

MarkL ogic software incorporates certain third-party software under license. Third-party

attributions, copyright notices, and other disclosures required under license are available in the
respective notice document for your version of the MarkL ogic software.

MarkLogic 9

MarkLogic Server Version MarkLogic 9—May, 2017 Copyright

Page 104—Glossary, Copyright, and Support

	XQuery and XSLT Reference Guide
	Table of Contents
	1.0 About This XQuery and XSLT Guide
	2.0 XQuery Dialects in MarkLogic Server
	2.1 Overview of the XQuery Dialects
	2.1.1 MarkLogic Server Enhanced (XQuery 1.0-ml)
	2.1.2 XQuery 0.9-ml
	2.1.3 Strict (XQuery 1.0)

	2.2 Rules For Combining the Dialects
	2.3 Using a Non-Default Dialect in XSLT (xdmp:dialect)
	2.4 Strategies For Migrating Code to Enhanced Dialect
	2.4.1 When To Migrate XQuery Code
	2.4.2 XQuery Changes From Previous MarkLogic Server Releases
	2.4.3 Inheriting the Default XQuery Version From the App Server

	2.5 Specifying the XQuery Dialect in the Prolog
	2.5.1 Porting 0.9-ml XQuery Code to Enhanced 1.0-ml

	3.0 MarkLogic Server Enhanced XQuery Language
	3.1 try/catch Expression
	3.2 Function Mapping
	3.2.1 Understanding Function Mapping
	3.2.2 Enabling or Disabling Function Mapping

	3.3 Semi-Colon as Transaction Separator
	3.4 Private Function and Variable Definitions
	3.5 Functions With Side Effects
	3.6 Shorthand Positional Predicate Syntax
	3.7 Binary Node Constructor and Node Test
	3.8 validate as Expression
	3.9 Serialization Options
	3.10 Importing a Stylesheet Into an XQuery Module
	3.11 XQuery 3.x Features
	3.11.1 Arrow Operator
	3.11.2 Simple Map Operator
	3.11.3 String Concatenation Operator
	3.11.4 URI Qualified Names
	3.11.5 Dynamic Function Invocation
	3.11.6 Inline Functions
	3.11.7 Function Type Testing
	3.11.8 Named Function References
	3.11.9 Partial Function Application
	3.11.10 Function Annotations
	3.11.11 Default Values for External Variables
	3.11.12 Unions in Typeswitch Case Descriptors
	3.11.13 Switch Statement
	3.11.14 Validate Type Expressions
	3.11.15 Error Handling with Try/Catch

	3.12 Implementation-Defined Semantics
	3.12.1 Automatic Namespace Imports for Predefined Namespaces
	3.12.2 External Variables
	3.12.3 Collations
	3.12.4 Implementation-Defined Primitive XQuery Types
	3.12.5 Decimal Precision at Least 18 Digits, and is Not Configurable
	3.12.6 Library Modules Default Function Namespace Defaults to Library Namespace

	4.0 XQuery Language
	4.1 Expressions Return Items
	4.2 XML and XQuery
	4.2.1 Direct Element Constructors: Switching Between XQuery and XML Using Curly Braces
	4.2.2 Computed Element and Attribute Constructors
	4.2.3 Returning XML From an XQuery Program

	4.3 JSON and XQuery
	4.4 XQuery Modules
	4.4.1 XQuery Version Declaration
	4.4.2 Main Modules
	4.4.3 Library Modules

	4.5 XQuery Prolog
	4.5.1 Importing Modules or Schemas
	4.5.2 Declaring Namespaces
	4.5.3 Declaring Options
	4.5.4 Declaring Functions
	4.5.5 Declaring Variables
	4.5.6 Declaring a Default Collation

	4.6 XQuery Comments
	4.7 XQuery Expressions
	4.7.1 XPath Expressions
	4.7.2 FLWOR Expressions
	4.7.3 The typeswitch Expression
	4.7.4 The if Expression
	4.7.5 Quantified Expressions (some/every ... satisfies ...)
	4.7.6 Validate Expression

	4.8 XQuery Comparison Operators
	4.8.1 Node Comparison Operators
	4.8.2 Sequence and Item Operators

	5.0 XPath Quick Reference
	5.1 Path Expressions
	5.2 XPath Axes and Syntax
	5.3 XPath 2.0 Functions
	5.4 Restricted XPath
	5.4.1 Path Field and Path-Based Range Index Configuration
	5.4.2 Element Level Security
	5.4.3 Template Driven Extraction (TDE)
	5.4.4 Patch Feature of the Client APIs
	5.4.5 The extract-document-data Query Option
	5.4.6 The Optic API xpath Function
	5.4.7 Functions Callable in Predicate Expressions
	5.4.8 Indexable Path Expression Grammar
	5.4.9 Patch and Extract Path Expression Grammar

	6.0 Understanding XML Namespaces in XQuery
	6.1 XML QNames, Local Names, and Namespaces
	6.2 Everything Is In a Namespace
	6.3 XML Data Model Versus Serialized XML
	6.3.1 XQuery Accesses the XML Data Model
	6.3.2 Serialized XML: Human-Readable With Angle Brackets
	6.3.3 Understanding Namespace Inheritance With the xmlns Attribute

	6.4 Declaring a Default Element Namespace in XQuery
	6.5 Tips For Constructing QNames
	6.6 Predefined Namespace Prefixes for Each Dialect
	6.6.1 1.0-ml Predefined Namespaces
	6.6.2 1.0 Predefined Namespaces
	6.6.3 0.9-ml Predefined Namespaces

	7.0 XSLT in MarkLogic Server
	7.1 XSLT 2.0
	7.2 Invoking and Evaluating XSLT Stylesheets
	7.3 MarkLogic Server Extensions to XSLT
	7.3.1 Calling Built-In XQuery Functions in a Stylesheet
	7.3.2 Importing XQuery Function Libraries to a Stylesheet
	7.3.3 Try/Catch XSLT Instruction
	7.3.4 EXSLT Extensions
	7.3.5 xdmp:dialect Attribute
	7.3.6 Notes on Importing Stylesheets With <xsl:import>

	7.4 Invoking Stylesheets Directly Using the XSLT Rewriter
	7.4.1 About the Sample Rewriter
	7.4.2 Setting Up the Sample Rewriter in Your HTTP App Server

	7.5 XSLT, XQuery, or Both

	8.0 Application Programming in XQuery and XSLT
	8.1 Design Patterns
	8.2 Using Functions
	8.2.1 Creating Reusable and Modular Code
	8.2.2 Recursive Functions

	8.3 Search Functions
	8.4 Updates and Transactions
	8.5 HTTP App Server Functions
	8.6 Additional Resources
	8.6.1 MarkLogic Server Documentation
	8.6.2 XQuery Use Cases
	8.6.3 Other Publications

	9.0 Technical Support
	10.0 Copyright

