MarkLogic Server

Security Guide

MarkLogic 9
May, 2017

Last Revised: 9.0-13, July, 2020

Copyright © 2020 MarkLogic Corporation. All rights reserved.

MarkLogic Server Version MarkLogic 9—May, 2017

Page 2—Security Guide

MarkLogic Server Table of Contents

Table of Contents

Security Guide
1.0 INtroduCtion tO SECUNLY ..cc.eviveeiiie et 11
00 R N o= 0 1 o PRSP 11
1.2 SECUNLY OVEIVIEW ..ottt sttt nnenre e 11
1.2.1 Authentication and ACCESS CONLIOIcccevueviireriienesiniree e 12
1.2.2 AUNOMZBIION ..cuviiiiiiieieeieee ettt 12
HIDZRC T 0 01111 = 1 o o USRS 12
1.3 MarkLogic Security MOGEccoooeiiiiieiece e 12
1.3.1 Role-Based Security Model (AUthorization)cccoeeeenieeneninneenienene 13
1.3.2 Element Level SECUNLYccoiviiiriirieriesieeeeeee e 14
1.3.3 Access Control With the Security Databaseccccceeeveiceevecceveeieene 14
1.3.4 Security ADMINISITAtiONc.ooeiiieiieiie e e 16
i = 11011 0o [| USRS RSP TPTPPPRTRPRPN 16
O L U TR RR 16
0 S = (o [USROS 16
1.4.3 EXECULEPIIVIIEZE ..o 17
144 URIPHIVIIEOE oottt st nne s 17
O I o = 011K T o] o ISP 17
L4686 AP i n e 17
2.0 Role-Based Security MOlc.oooieiiiiiieece e 19
21 UNderstanding ROIESccoiiiiriiieieesiere e 19
2.1.1 Assigning PrivilegeSto ROIEScccecoeiieiieeceseee e 19
2111 EXECUte PriVIIEGES ..o 19
2112 URIPHVIIEGES .o 20
2.1.2 Associating Permissions With ROIESccccoveievicce e 20
2.1.3 Default PermissionSiN ROIESooeiiiiiirieeeee e 20
214 ASSgNING ROIESTO USESSoviiiiiiciieieeeeee e 20
2.1.5 Roles, Privileges, Document Permissions, and USEr'Scccoceeveeiverneene. 21
2.2 Theadmin and SECUrtY ROIEScoeiiiiiiiiceeee e e 22
2.3 Example—Introducing Roles, Users and Execute Privilegescccocevveeeneenee. 22
3.0 Protecting DOCUMENLS ..o s 25
31 Creating DOCUMENLScccooiiiriiniiniiniesie ettt st nee s 25
311 URIPrIVIIEgES oottt sttt st 25
3.1.2 Built-In URI EXecute Privil€ges ... 26
3.2 DOCUMENT PEMMISSIONSovviiviriiriiriieieie e sie e sttt e e st st sbe b sne e nes 26
3.2.1 Capabilities Associated Through PErmiSSiONScccceeeveeceneesieeieeseene, 27
3211 REA ot 27

MarkLogic 9—May, 2017 Security Guide—Page 3

MarkLogic Server Version MarkLogic 9—May, 2017 Table of Contents

4.0

5.0

6.0

3212 UPELE ...eovieiieeiieieeieee ettt 27

G228 G T \\ [0 [2L U o r= (S 27

3214 INSEMT <o e 28

3.2. 15 EXECULE ..ottt s 28

3.2.2 Setting Document PEMMISSIONScccccvieerieerienieneeseseesieeee e sseeee e 28

3.3 Securing Collection MembErShiPcoceoieeiiriiriee e 28
34 Default PEMMISSIONScccooiieieciesieeie et ee e see e s e ensesneensens 29
35 Example—USINg PErMISSIONSccceeiiiieiiieie ettt 29
3.5.1 Setting Permissions EXPlICITIYc.ooveriiiiiniieeeee e 30

3.5.2 Default Permission SENGSc.ccoerirererieeieiese e 30
AULNENTICALING USEN'S ...ttt e e e 35
4.1 U S S ittt e e e e b e e ne e e e b e e e ar e e e nn e e aneeenneeas 35
4.2 Typesof AULNENLICALIONccccuieieieieiie et 35
N R = - 1S T oSSR 36

A o= SRS 36

4.2.3 DIQESE-BESIC ...ooveieiriieiieieiee ettt e 36

4.2.4 Limitations of Digest and Basic Authenticationcccoccoeovriieeinnenne 36

I O 1 1] o = ST 37

4.2.6 APPlICAiON LEVEL ..o 37

427 KerberOS TICKELcocuieiiieieieee e 37

< T AN | 38
ComMPArtMENT SECUMLY ...c.veeeieiiieiee st estee et s 39
51 Understanding Compartment SECUMLYcocooererererenereneseeiee e 39
5.2 Configuring Compartment SECUNLYcccocveieeieeierieeseere et 40
53 Example—Compartment SECUMLYccooerirrieririienieseeee e 40
531 Creat@ROIESooeieeeeeee et 40

.32 CrEAEUSENS ... 41

5.3.3 Create the Documents and Add PermiSSionsccoceeeeeeeieeneeieencseneennes 42

I I == | A L S 43
Element LeVel SECUNTY ...oooeviiiiecee e 45
6.1 Understanding Element Level SECUNLYcccooeiiieneninenesereeee e 46
6.2 Example—Element Level SECUMLYcccoieiiiieiice e 46
6.2.1 Creat@ ROIES ..o et 47

6.2.2 Create Usersand ASSIgN ROIES ..o 47

6.2.3 Add the DOCUMENEScceviiiirieiieiesiesie e s 49

6.2.4 Add Protected Paths and Query ROIESELSccoviiiiiniineceeeeee, 50

6.2.5 Runthe EXample QUENEScccoiiiiiiiiierere e 54

6.25.1 XQuery Examples of Element Level Securitycccceevveeneee. 54

6.2.5.2 JavaScript Examples of Element Securitycccccoccvvieeiennnnne 57

6.2.6 Additional EXaMPIESccceoieiiiiiesice e 61
6.2.6.1 XQuery - Query Element Hierarchiesccccooevveveceenieceenne. 61

6.2.6.2 XQuery - Matching By Paths or Attributescccocevveiiernenne 63

Page 4—Security Guide

MarkLogic Server Table of Contents

6.3

6.4
6.5
6.6
6.7
6.8

6.9
6.10

6.11

6.12
6.13

6.14

6.2.6.3 JavaScript - Query Element Hierarchiesc.cccceoviiiinnnnnne 67
6.2.6.4 JavaScript - Matching By Paths or Attributescccccoeeveneee. 69
Configuring Element Level SECUNLYccoviiiiiieieeeee e 73
6.3.1 ProteCted PathScccoooiiieieciesece e 73
6.3.1.1 Examplesof Protected Pathsccccccovvevivieiicinnee e 74
6.3.1.2 Namespaces as Part of a Protected Pathcccccooeiininnne 75
6.3.1.3 Unprotecting or Removing Pathsccccooiiiininiininee, 76
6.3.1.4 Performance Considerations With Protected Paths 79
6.3.2 QUENY ROIESELSooiiiiiiiieeie ettt nae s 80
6.3.2.1 How Query ROIESEISWOIKccooiiiriiirieeeeeceese e 80
6.3.2.2 Parent/Child Relationships in Query Rolesetsccccveueee. 82
6.3.2.3 Overlapping Protected Pathsccooviieiiniinenieneeneee e 82
6.3.2.4 Protected Path SELScccccoeveiiereeeeeseee e 85
6.3.2.5 Helper Functionsfor Query ROIESELScccocveveeceeieeiicee i, 87
6.3.2.6 Query for Protected Paths on aDocumentc.cccceeveeeveenen. 88
Configure Element Level Security inthe Admin Ul ... 89
6.4.1 AddaProtected Pathccccoiriiieiiiee e 89
6.4.2 Add aQuery ROIESELccooiiiiiieieee e 90
Configure Element Level Security With XQUENYcocoeiviririiiiecece e 91
6.5.1 Using XQuery for Query ROIESELSccccveveeieeriice e 91
6.5.2 Using XQuery for Protected Pathscccoiiiiiieninie e 92
Configure Element Level Security With REST ... 93
6.6.1 Using REST for Query ROIESELScccceeviieieieecececeee e 93
6.6.2 Using REST for Protected Pathscoocoiiiiiiinciceeeeeceee 95
Combining Document and Element Level Permissionsccccooeveevneeneeeeneeenes 96
6.7.1 Document Level Security and INDeXingcccccevveveviesecceesecse e, 96
6.7.2 Combination Security EXampPIecccoeririiniinieeee e 97
Node Update CapabilItiEScccuiiiiierinisicieeee e 98
6.8.1 Updates With Element Level SECUNtYcccceeeeveececeese e, 98
6.8.2 Node Update and Node Insert at the Element Level ... 99
Document and Element Level PermisSions SUMMaryc.ccoceeeeeveneneneniennenn 100
Node Update and Document Permissions Expandedcccccevveeveieececceecneene, 102
6.10.1 Unexpected Behavior with PErmiSSIONSccccoveeveniineeneniee e 102
6.10.2 Different Permissions on the Same NOdeccccevveirneenence e 103
6.10.3 A More Complex EXAmMPIEccceceeieeiie e 104
APIsTor Element Level SECUNLYcccoeeeieeieniereee e 104
6.11.1 XQUENY APIS ..ottt 105
6.11.2 REST Management APISccoiiviiineneneneeeeee e 106
6.11.2.1 REST Management APIsfor Protected Pathsccc..c...... 106
6.11.2.2 REST Management APIsfor Query ROIESELSccceeveveenene 106
Algorithm That Determines Which Query Rolesetsto Usecccccecceveeieneee 106
Interactions With Compartment SECULYcccoveeieiiieniesereee e 108
6.13.1 Compartment Security and INAeXiNgcccceecveveereeinsieeseeieseeseeeens 109
Interactions with Other MarkLogiC FEALUIESccccveveeieeieie e 110
6.14.1 LeXiCON CallS ..ot 110
6.14.2 Fragmentationcceceeeereeieieeseeeeseesteseesreeseeseesse e sseesseeeesneenneens 111

MarkLogic 9—May, 2017 Security Guide—Page 5

MarkLogic Server Version MarkLogic 9—May, 2017 Table of Contents

7.0

8.0

9.0

6.14.3 SQL on Range-Index Based VIEWScccorerenenenienieeeniesese e 111

6.14.4 UDFs (including UDF-based aggregate built-ins)c.cccoovevevivenennnne 111

6.14.5 REVEISE INAEXES ..ottt e 111

6.14.6 SPARQL ...ooviieiece e 111

6.14.7 Alerting and QBFRcccooiiiiiiiee et 112

B.14.8 TDE ..ottt ettt neens 112

B.14.9 MICP oteieieieciee et 112

G T 72 51 1) SO 113
6.14.11BItEMPOral ...c.eeeeeiieieee et 113

TN 2 1 = £ USRS 113
6.14.13R0HING UPGradesSc.cocueeieiieiieeie ettt st 114
Protecting X Query and JavaScript Functions With Privileges 115
7.1 Built-In MarkLogic EXeCute PrivilE€gESccoooveieeieeeceece e 115
7.2 Protecting Your XQuery and JavaScript Code with Execute Privileges 115
7.2.1 USING EXECULE PriVIIEJEScoueiuiiieieeiere et 116

7.2.2 Execute Privilegesand APP SEIVEXSccooeeveeieeieesecee e 116

7.2.3 Creating and Updating ColleCtionsccceveriereeneniineeseeee e 117

7.3 Temporarily Increasing Privileges With AMPScccoeverininiinieierere s 117
Granular PriVIIEJESooeeiiiiieceeeee e e 119
8.1 Understanding Granular PrivilEgESccceieiiiireniienineseseeee e 119
8.2 Categories of GranUIarityccccceeceieeie i 120
8.2.1 Privilegesto Read, Write, or Delete Any Configuration File 120

8.2.2 Privilegesto Read, Write, or Delete a Specific Configuration File 120

8.2.3 Privilegesto Administer a Set of RESOUICEScccvveveeeeeieeie e 121

8.2.4 Privilegesto Administer a Specific RESOUICEccceeeereenerieeneenienens 122

8.2.5 Privilegesto Administer a Specific Aspect of a Set of Resources 122

8.2.6 Privilegesto Administer a Specific Aspect of a Specific Resource 122

8.3 Configuring Granular PrivVilEESccceviiieierie e e 126
8.3.1 Configure Granular Privilegesviathe Admin Interfacecccceeeneee 126

8.3.2 Configure Granular Privileges viathe XQuery APl Security Module ...127
8.3.2.1 Creating and Assigning Granular Privilegescccccocvnennen. 127

8.3.2.2 Using Pseudo-Functions with Granular Privileges 128

8.3.2.3 Examplesof Creating and Assigning Granular Privileges129

84 Examplesof Granular Privileges USagecccvveieriiiniiiee e 130
8.4.1 Prerequisites - Create Databases, Roles, Users, and Privileges 130

8.4.2 Scenariosthat Use Granular Privilegesccccovvvvievieiescesecie e 131

8.4.3 TESLIT OUL ..ottt st snenne s 132

85 Using Granular Priviligeswith MarkLogic DHaaScccceveiinenincnencnnne 133
Configuring SSL 0N APP SEIVENS ...ocuveiiieeieenee et 135
L& 50 R U T 0 (= £ = o [o T 135
9.2 Genera Procedure for Setting up SSL for an App Serverccceeveveveccienneene, 137
9.3 Proceduresfor Enabling SSL 0N APP SEIVEN'Scc.eeieeiinieriereeneeeeeeee e 138

Page 6—Security Guide

MarkLogic Server Table of Contents

9.3.1 Creating aCertificate TEMPIALEcocveeeieiiiiereeeeee e 138

9.3.2 Enabling SSL for an APP SEIVENccceciieeeceeie e se e se s nee e 140

9.4 Accessing an SSL-Enabled Server from a Browser or WebDAYV Client 142

9.4.1 Creating a Security Exception in Internet Explorer ... 142

9.4.2 Creating a Security Exception in Google Chrome............cccocevevceeveennnne 143

9.4.3 Importing a Self-Signed Certificate Authority into Windows 145

9.5 Proceduresfor Obtaining a Signed CertifiCateccooovrvrerenieneneneneeeeeees 151

9.5.1 Generating and Downloading Certificate Requestsc.cccevevveireennnne 152

9.5.2 Signing a Certificate with your own Certificate Authorityc........ 153

9.5.3 Importing a Signed Certificate into MarkLogic Servercccoceevvenenne 154

9.6 Viewing Trusted Certificate AUtNONITIEScecvveieeiieececee e 155

9.7 Importing a Certificate Revocation List into MarkLogic Serverccoceeeee. 157

9.8 Deeting aCertificate TEMPIALE ...oceeveeeiiiieeeee e 158

10.0 Certificate-based AUtheNtiCationcccocceeiieeeciie e 159

10.1 User Certificate EXAMPIEocooviiiiiieeeeee e 159

10.2 CA Certificate (User Cert Signer) Import from Admin Interface 160

10.3 CA Certificate Import into MarkLogic from Query Consoleccccevrceennenee. 161

104 Certificate Template & Template CA import into Client (Browser/SSL Client)
162

10.5 Creating aMarkLogic User to use Certificate-based Authentication 162

10.5.1 Creating aMarkLogic User with an Internal Namecccccceveveinnnene 162

10.5.2 Creating aMarkLogic User with an External Nameccccceeeveneee. 166

11.0 SeCUre CredentialSoeeveeiiieerieeieee e 169

11.1 Creating a Secure Credential with Username and Passwordccccceecveeneeee. 169

11.2 Creating a Secure Credential with PEM Encoded Public and Private Keys 172

11.2.1 Creating a Certificate AUTNOMTYcccoeieiiiiririeee e 173

11.2.2 Creating Secure Credentials from a Certificate Authority 174

12.0 EXIErNal SECUMLY ..oooieeeciie ettt nee s 177

121 TermsUsed inthiSChapterccocvcoiiieiicce e 177

12.2 Overview of External AUthentiCationccccoveeiininninieneee e 179

12.3 Creating an Externa Authentication Configuration Objectcccocvvirennene. 183

12.3.1 LDAP AUNENTICALTIONeoveieiiiiesieeiecee et 185

12.3.2 SAML AUhENtICAHIONeovieiiiiieieeeee e 188

12.3.3 SSL Client AUthENtICALIONccceveeiieiiereere e 189

12.4 Defining and Inserting a SAML ENtitY ...cc.oocvevieeie e 190

125 Assigning an External Nameto aUSErcoccvoeiiieienieneceee e 192

12.6 Assigning an External Nameto aROle ... 193

12.7 Configuring an App Server for External Authenticationccccoevevveiiennenen. 194

12.8 Creating aKerberoskeytab File ..., 195

12.8.1 Creating akeytab File on WIindOWSccccveeeveereseeceee e 196

12.8.2 Creating akeytab File 0N LiNUXcccoeiieiiiiieceesecee e 196

12.9 External Certificate User AUtNENLICALIONcccoveeiierieiiniisee e 197

MarkLogic 9—May, 2017 Security Guide—Page 7

MarkLogic Server Version MarkLogic 9—May, 2017 Table of Contents

13.0

12.9.1 Certificate Authentication Based on Internal User vs External Name ...197

12.9.1.1 User Certificate EXaMPIESccccceeveeiersiereeieseese e sieesie s 197
12.9.2 CA Certificate (User Cert Signer) Import from Admin GUI 198
12.9.3 CA Certificate Import into MarkLogic from Query Console 199
12.9.4 Certificate Template & Template CA import into Client (Browser/SSL Cli-
ent) 199

12.9.5 Certificate CN as Internal User vs External Name-based Internal User .199
12.9.5.1 1.) Certificate CN Field Vaue as MarkL ogic Security Database
Internal User 200
12.9.5.2 User Certificate Subject Field Vaue as External Name for Inter-

nal User 202

12.10 Example External Authorization Configurationscccceeeererinseeneseeseenen. 205
12.11 Kerberos Authentication using xdmp:http-* FUNCLIONScccooeieienencniennne 206
12.12 Kerberos Authentication for Secured HDFS ... 208
ENCryption @ RESEooiieieceeee st 209
G 350 R I o= 015 o o S 209
13.2 Termsand DEfiNITIONScooiiiiiiiienieseee et 210
13.3 Understanding ENCryption @ RESEcooieiriiiieiereseseee e 211
134 Keystores- PKCS#11 Secured Wallet or External KMS ..., 212
13.5 Encryption Key Hierarchy OVEIVIEWccccoeeeiieeiinienieiesee e 213
13.5.1 Embedded KMS Key Hierarchy ..o 214

13.5.2 External KMS Key Hierarchycccooooeveeiiiecece e 216

13.6 Example—ENCryption at RESEccccoiiiiiiiineereee e 217
13.6.1 Set Up Encryption EXamPple ... 218

13.6.2 ENCrypt aDatabasecccccveveeieeiieeieseee et 218

IS T = | A | SRS 219

13.6.4 Turn Off Encryption for aDatabaseccccoevinineninicceeee 220

13.7 Configuring ENCryption @ REStcccceeiiieece e 221
13.7.1 Database ENCryption OPLioNSccccoveererienenie e 222

13.7.2 Configure Cluster ENCryptionccooeveereneneneneseseseeee e 223
13.7.2.1 Configuration File and Log File Encryption Options 223

13.7.3 Cluster ENCryption OPLIONScccceeeerieerienienieeinseesieseesies e see e e 224
13.7.3.1 External Cluster Encryption Optionsccccceeerererenereennes 227

13.7.3.2 Changing the Internal KMS Passwordccccceevvveeveeiiennnan, 229

13.7.3.3 Synchronizing the KMS KEYScccevvriineniinienieeie e 230

13.7.4 Using an Alternative PKCS#11 DEVICEccoceveiireninieieiesesie e 231
13.7.4.1 Saving the Embedded KM Sto a Different Location 231

13.7.5 Configure Encryption USINg XQUENYccceiirerrernienennieeie e siesee e 232

13.7.6 Configure Encryption USINg REST ... 234
13.7.6.1 EXPOrt WLccooeirieiicieeee e s 237

13.7.6.2 IMPOrt Wall€lcooveieieeeeeee e 238

13.8 K&y ManaQEMENTcooiiiiiiiiesiie e 239
13.8.1 KEY ROLAHION ...c.vecuieieieiececeecte ettt 239
13.8.1.1 Manua Key ROLEHIONccccceeiieiierienienieseeie e 241

13.8.2 Export and Import EnCryption KEYScocvevveeevieie e 241

Page 8—Security Guide

MarkLogic Server Table of Contents

13.8.3 Key Deletion and Key REVOCELIONccccevirierienienenieeeeeeesese e 243

13.9 Configuring an External KeYStOreccccveiveeeiieiesie e seesie e see e 243
13.9.1 Typesof KMS DePIOYMENESoceeiieriiriieie e 244

13.9.2 Using MarkL ogic Encryption with AWS Key Management System244
13.9.21 AWSKMSONEC2 ..o 245

13.9.3 Using MarkLogic Encryption with Microsoft Azure Key Vault 249
13.9.3.1 Microsoft Azure Key Vaultccoocevereninenieeieeseseseseeees 249

13.9.4 Set Up an External KM S with MarkLogic Encryptionc.ccccceueneee. 255

13.9.5 Configurethe External KMS ..o 257

13.9.6 Set up MarkLogiC ENCIYPLIONccccvirireeieieieeseeseesee e 257

13.9.7 Transitioning from PKCS #11 Secured Wallet to an External KMS259

13.9.8 Transitioning From an External KM Sto PKCS #11 Secured Wallet259

13.9.9 Multiple External KMSsfor High Availability and Failover 260

13.10 Administration and MaiNtENANCEc.ceeererrierierierese e sae e sae e 261
13.10.1Backup and RESIOIEccccoieeiiiiiesieerie et 262
13.10.1.1 Excluding the Embedded KM S from aBackupcccceenee. 264
13.10.1.2Backups Using a Secondary Keyccccevveveeveeviecieeseesiennns 264
13.10.1.3Backups Using a Passphrasecccccveevenieneenenie e 265

13.10.2Tool to View Encrypted Log Files Outside of the Serverccc....... 265
13.10.3Disaster Recovery/Shared Disk Failoverccccccovvveevecceccecece e 268

13.11 APISTOr ENCryption @ RESEcc.coviiiiiiiieiieeiesee ettt 269
13.11.1Built-insfor ENCryption a RESEcccvieiieiirereserereeeeeee e 269
13.11.1.1Using a Credential ID with http-optionsccccceeeevveienens 270

13.11.2Admin APIsfor ENCryption a REStccceeviiiiierie e 270
13.11.3REST Management APISfor ENCryptioncccoceveneveneneneseneeeens 274

13.12 Interactions with Other MarkLogiC FEALUIESccccveeveeeeiecie e 276
13.12.1ROIING UPGradEScoiveeiiiiieieeie et 276

L1312 2TEEMELTY oottt nes 276

14.0 AdMINISLENING SECUNLY ..oovuveeieieiieeiie sttt s nee s 277
14.1 Overview of the Security Databaseccccccerererinineneneee e 277
14.2 Associating a Security Database With a Documents Databasec.cccccu...... 278
14.3 Managing and Using Objectsin the Security Databaseccoceveveenenennieennn. 279
14.3.1 Using the Admin INtErfacecooeeirieieiese e 279

14.3.2 Using the security.xgy Module FUNCLIONSccccoovvieeieece e 279

14.4 Backing Up the Security Databasecccoceeeriieienieneeesee e 279
145 Example: Using the Security Database in Different Serversccccevvvevenneee 280
15.0 AUAITING eviiiieiiieiie ettt st sre e nseesnaeenee s 283
151 Why ISAUAItING USBA? ..ot e 283
15.2 MarkLOgiC AUITING ..cceeeeceeeiecie ettt esneennas 284
15.3 Configuring AUAITINGccceeieeiiiie et 284
154 BESEPraCiCES ..ovoiviiieciecieee ettt e 284
16.0 Designing SeCUrity POIICIESccccceviiiiiiieiieeree e 285

MarkLogic 9—May, 2017 Security Guide—Page 9

MarkLogic Server Version MarkLogic 9—May, 2017 Table of Contents

16.1 Research Your Security REQUITEMENTSccooiiiiieriiiere e 285

16.2 Plan ROIES AN PrVIIEGESoocvvieeiece ettt 285

17.0 Sample SECUNitY SCENAIOSceccveeiiriieesee e esee e see e e e sreeereesraeenseeas 287
17.1 Protecting the Execution of XQuery MOdUl€escceveevvieenecce e, 287

17.2 Choosing the Access Control for an Applicationccocceveeieniinennenieeneenn, 288

17.2.1 Open AcCesS, NO LOG IN ...ouoiiiiieiieieeeee e 288

17.2.2 Providing Uniform Accessto All Authenticated Userscccccveeenneene. 288

17.2.3 Limiting Accessto a Subset Of USESSccoceeiieeniniineeeee e 289

17.2.4 Using CuStOmM LOGIN PaJEScoceeiririeieiesie et 290

17.2.5 Access Control Based on Client |P Adresscccoevereeieeneeneneniennenn 291

17.3 Implementing Security for aRead-Only USercccooeiiieniininnene e 295

17.3.1 Steps For EXample SEIUP ..o 295

17.3.2 Troubleshooting TIPS ...cccecereririerenesereeee e 296

18.0 Securing Y our Production Deploymentccccevevereeiieenieesieesee e 297
18.1 Add Password ProteCLIONSccceverererininiiesie s s 297

18.2 Adheretothe Principle of Least Privilege ..., 297

18.3 Infrastructure Hardeningccocoeerereeirieiesiese et 298

18.3.1 OS-LeVel RESIICHONSccverveieriesiiniesieniesieeee e 298

18.3.2 NEtWOIrK SECUILY ...oveeiieeiiiiieiieeie ettt 298

18.3.3 POrt Managementcccveeeiieieneesieeee e 298

18.3.4 PhYSICAl ACCESSuviiuieiiciecteeiteete sttt ae et ae st esre e neeneenne s 298

18.4 Implement AUAITINGcccooiiieiee e 299

18.5 Develop and Enforce Application SECUNLYccooeviririninenereeeeeeeee e 299

18.6 UseMarkLogiC SeCUrity FEALUIEScccocieiieeiesiece et 299

18.7 Read ADOUL SECUNLY ISSUEScceoiiiiiiiieiieie ettt st 299

19.0 TechniCal SUPPOIToooueeieecee e 301
20.0 COPYIIQNL .o e e 303

Page 10—Security Guide

MarkLogic Server Introduction to Security

1.0 Introduction to Security

When you create systems that store and retrieve data, it is important to protect the data from
unauthorized use, disclosure, modification or destruction. Ensuring that users have the proper
authority to see the data, load new data, or update existing datais an important aspect of
application development. Do all users need the same level of access to the data and to the
functions provided by your applications? Are there subsets of users that need accessto privileged
functions? Are some documents restricted to certain classes of users? The answers to questions
like these help provide the basis for the security requirements for your application.

MarkLogic Server includes a powerful and flexible role-based security model to protect your data
according to your application security requirements. There is always a trade-off between security
and usability. When a system has no security, then it is open to malicious or unmalicious
unauthorized access. When a system is too tightly secured, it might become difficult to use
successfully. Before implementing your application security model, it isimportant to understand
the core concepts and features in the MarkLogic Server security model. This chapter introduces
the MarkL ogic Server security model and includes the following sections:

e Licensing

* Security Overview

e MarklLogic Security Model

e Terminology

1.1 Licensing
Some MarkL ogic Server security features require an Advanced Security License in addition to the

regular license. The Advanced Security License option is required when using:
e Compartment Security
* Redaction
* Anexterna Key Management System (KMS) or keystore with encryption at rest

1.2 Security Overview

This section provides an overview of the three main principles used in MarkL ogic Server
Security:

e Authentication and Access Control

e Authorization

e Administration

MarkLogic 9—May, 2017 Security Guide—Page 11

MarkLogic Server Version MarkLogic 9—May, 2017 Introduction to Security

1.21 Authentication and Access Control

Authentication isthe process of verifying user credentials for anamed user. Authentication makes
sure you are who you say you are. Users are typically authenticated with a username and
password. Authentication verifies user credentials and associates an application session with the
authenticated user. Every request to MarkL ogic Server isissued from an authenticated user.
Authentication, by itself, does not grant access or authority to perform specific actions. There are
severa waysto set up server authentication in MarkLogic Server.

Authentication by username and password is only part of the story. You might grant access to
users based on something other than identity, something such as the originating | P address for the
requests. Restricting access based on something other than the identity of the user is generally
referred to as access control.

For details on authentication, see “ Authenticating Users” on page 35.

1.2.2 Authorization

Authorization provides the mechanism to control document access, XQuery and JavaScript code
execution, and document creation. For an authenticated user, authorization determines what you
are allowed to do. For example, authorization is what allows the user named Melanie to read and
update a document, allows the user named Roger to only read the document, and prevents the user
named Hal from knowing the document exists at all. In MarkLogic Server, authorization is used
to protect documents stored in a database and to protect the execution of X Query or JavaScript
code. For details on authorization in MarkLogic Server, see “ Protecting Documents’ on page 25
and “Protecting XQuery and JavaScript Functions With Privileges’ on page 115.

1.2.3 Administration

Administration is the process of defining, configuring, and managing the security objects, such as
users, roles, privileges, and permissions that implement your security policies. For details on
security administration proceduresin MarkLogic Server, see “ Security Administration” on

page 16 and the Administrator’s Guide.

1.3 MarkLogic Security Model

The MarkLogic Server security model is flexible and enables you to set up application security
with the level of granularity needed by your security requirements. This section contains the
following topics:

* Role-Based Security Model (Authorization)

e Element Level Security

e Access Control With the Security Database

e Security Administration

Page 12—Security Guide

MarkLogic Server Introduction to Security

1.3.1 Role-Based Security Model (Authorization)

Roles are the central point of authorization in the MarkL ogic Server security model. Privileges,
users, other roles, and document permissions all relate directly to roles. The following conceptual
diagram shows how each of these entities points into one or more roles.

Privileges 4\‘ V/ Other Roles
Roles
Document
Permissions
Users

There are two types of privileges: URI privileges and execute privileges. URI privileges are used
to control the creation of documents with certain URIs. Execute privileges are used to protect the
execution of functionsin XQuery or JavaScript code.

Note: For execute privileges type, you may achieve finer granularity access control over
configuration and various administration abilities through defining granular
privileges. For information on granular privileges, see “Granular Privileges’ on
page 119.

Privileges are assigned to zero or more roles, roles are assigned to zero or more other roles, and
users are assigned to zero or moreroles. A privilegeis like adoor and, when the door is locked,
you need to have the key to the door in order to open it. If the door is unlocked (no privileges),
then you can walk right through. The keysto the doors are distributed to users through roles; that
is, if auser inherits a privilege through the set of rolesto which she is assigned, then she has the
keysto unlock those inherited privileges.

Permissions are used to protect documents. Permissions are assigned to documents, either at load

time or as a separate administrative action. Each permission is a combination of arole and a
Capablllty (read, insert, update, node-update, execute).

MarkLogic 9—May, 2017 Security Guide—Page 13

MarkLogic Server Version MarkLogic 9—May, 2017 Introduction to Security

Permission

Capability

Role (read, insert,

update, node-update,
Or execute)

Users assigned the role corresponding to the permission have the ability to perform the capability.
You can set any number of permissions on a document.

Capabilities represent actions that can be performed. There are four capabilitiesin MarkLogic
Server:

e read

e insert

e update

e node-update

(] execute

Usersinherit the sum of the privileges and permissions from their roles.

For more details on how roles work in MarkLogic Server, see “ Role-Based Security Model” on
page 19. For more details on privileges and permissions, see “Protecting Documents’ on page 25.

1.3.2 Element Level Security

Element level security uses protected paths to conceal certain e ementsin document from specific
users, while leaving other parts of a document available to search and view. You can use element
level security to control access to specific JSON properties or XML elements within documents.
This means that specific information inside a document may be hidden from a particular user
based on the user’srole, while still providing access to other information in the document.

Element level security can be used in addition to and along with existing document level security
and compartment security. For more information about element level security, see“Element Level
Security” on page 45.

1.3.3 Access Control With the Security Database

MarkL ogic Server uses a security database to store the user data, privilege data, role data, and
other security information. Each database in MarkL ogic Server references a security database. A
database named security, wWhich functions as the default security database, is created as part of
the installation process.

The following figure shows that many databases can be configured to use the same security
database for authentication and authorization.

Page 14—Security Guide

MarkLogic Server Introduction to Security

Database 1 <\‘

Security Database
Database? g p (contains user data,
privilege data, role
data)

Database n

The security database is accessed to authenticate users and to control access to documents. For
details on authentication, the security database, and ways to administer objects in the security
database, see “ Authenticating Users’ on page 35 and “ Administering Security” on page 277.

There may be circumstances in which a cluster is configured with more than one security
database, such as when using database replication. When multiple security databases are used,
there should be an equal number of Admin servers with different ports, one for each security
database. Each security database can then be upgraded by its respective Admin Interface.

The name of the Security database used by the Admin Interfaceis shown in the upper right corner
of the Security Configuration page.

MarkLogic Server 9 e '.MarkLogiC‘

FTTTIITETE ense key has been entered
pre-release expires in 78 days
Telemetry is not enabled
Configure
Configure
B & Groups [ok | | cancel |
j Databases
'ii.-i Hosts security — set security parameters
j Forests
i E@ Mimetypes

i Clusters

) @

Realm public

Sechrity
ﬁ gtzrs
@

"k Roles

&

&

MarkLogic 9—May, 2017 Security Guide—Page 15

MarkLogic Server Version MarkLogic 9—May, 2017 Introduction to Security

134 Security Administration

MarkLogic Server administrators are privileged users who have the authority to perform tasks
such as creating, deleting, modifying users, roles, privileges, and so on. These tasks change or add
datain the security database. Users who perform these tasks must have the security role, either
explicitly or by inheriting it from another role (for example, from the aanin role). Typicaly, users
who perform these tasks have the adamin role, which provides the authority to perform any tasksin
the database. Use caution when assigning users to the security and/or aamin roles; users who are
assigned the aamin role can perform any task on the system, including deleting data.

MarkLogic Server provides the following ways to administer security:

* Admin Interface
* REST Management AP
* XQuery and JavaScript server-side security administration functions

For details on administering security, see “ Administering Security” on page 277.

1.4 Terminology
This section defines the following terms, which are used throughout the security documentation:

C

se

-

0

ole

e Execute Privilege

* URI Privilege

* Permission

e Amp

14.1 User

A user isanamed entity used to authenticate arequest to an HTTP, WebDAYV, ODBC, or XDBC
server. For details on users, see “ Authenticating Users’ on page 35.

1.4.2 Role

A roleisanamed entity that provides authorization privileges and permissionsto other roles or to
users. You can assign roles to other roles (which can in turn include assignments to other roles,
and so on). Roles are the fundamental building blocks that you use to implement your security
policies. For details on roles, see “Role-Based Security Model” on page 19.

Page 16—Security Guide

MarkLogic Server Introduction to Security

1.4.3 Execute Privilege

An execute privilege provides the authority to perform a protected action. Examples of protected
actions are the ability to execute a specific user-defined function, the ability to execute a built-in
function (for example, xdmp : document - insert), and S0 on. For details on execute privileges, see
“Protecting X Query and JavaScript Functions With Privileges’ on page 115.

1.4.4 URI Privilege

A URI privilege provides the authority to create documents within abase URI. When a URI
privilege exists for abase URI, only users assigned to roles that have the URI privilege can create
documents with URIs starting with the base string. For details on URI privileges, see “Protecting
Documents’ on page 25.

1.45 Permission

A permission provides arole with the capability to perform certain actions (read, insert, update,
node-update, execute) ON adocument or a collection. Permissions consist of arole and a
capability. Permissions are assigned to documents and collections. For details on permissions, see
“Protecting Documents” on page 25.

1.4.6 Amp

An amp provides a user with the additional authorization to execute a specific function by
temporarily giving the user additional roles. For details on amps, see “ Temporarily Increasing
Privileges with Amps’ on page 117.

MarkLogic 9—May, 2017 Security Guide—Page 17

MarkLogic Server Version MarkLogic 9—May, 2017 Introduction to Security

Page 18—Security Guide

MarkLogic Server Role-Based Security Model

2.0 Role-Based Security Model

MarkL ogic Server uses arole-based security model. Each security entity is associated with arole.
This chapter describes the role-based security model and includes the following sections:

e Understanding Roles

e The admin and security Roles

e Example—Introducing Roles, Users and Execute Privileges

2.1 Understanding Roles

As described in “Role-Based Security Model (Authorization)” on page 13, roles are the central
point of authorization in MarkL ogic Server. This section describes how the other security entities
relate to roles, and includes the following sections:

¢ Assigning Privileges to Roles

* Associating Permissions With Roles

e Default Permissions in Roles

* Assigning Roles to Users

* Roles, Privileges, Document Permissions, and Users

2.1.1 Assigning Privileges to Roles

Execute privileges control accessto XQuery or JavaScript code. URI privileges control accessto
creating documentsin a given URI range. You associate roles with privileges by assigning the
privilegesto theroles.

2.1.1.1 Execute Privileges

Execute privileges allow developers to control authorization for the execution of an XQuery or
JavaScript function. If an XQuery or JavaScript function is protected by an execute privilege, the
function must include logic to check if the user executing the code has the necessary execute
privilege. That privilege is assigned to a user through arole that includes the specific execute
privilege. There are many execute privileges pre-defined in the security database to control
execution of built-in XQuery and JavaScript functions.

For more details on execute privileges, see “ Protecting XQuery and JavaScript Functions With
Privileges’ on page 115.

MarkLogic 9—May, 2017 Security Guide—Page 19

MarkLogic Server Version MarkLogic 9—May, 2017 Role-Based Security Model

2.1.1.2 URI Privileges

URI privileges control authorization for creation of a document with a given URI prefix. To
create a document with a prefix that has a URI privilege associated with it, a user must be part of
arole that has the needed URI privilege.

For more details on how URI privileges interact with document creation, see “ Protecting
Documents’ on page 25.

2.1.2 Associating Permissions With Roles

Permissions are security characteristics of documents that associate a role with a capability. The
capabilities are the following:

e read

e insert

e update

e node-update
e execute

Users gain the authority to perform these capabilities on adocument if they are assigned arole to
which a permission is associated.

For more details on how permissions interact with documents, see “ Document Permissions’ on
page 26.

2.1.3 Default Permissions in Roles

Roles are one of the places where you can specify default permissions. If permissions are not
explicitly specified when a document is created, the default permissions of the user creating the
document are applied. The system determines the default permissions for a user based on the
user’sroles. Thetotal set of default permissionsis derived from the user’s roles and al inherited
roles.

For more details on how default permissions interact with document creation, see “ Default
Permissions’ on page 29.

2.1.4 Assigning Roles to Users

Users are authenticated against the security database configured for the database being accessed.
Roles are the mechanism by which authorization information is derived. You assign rolesto a
user. The roles provide the user with a set of privileges and permissions that grant the authority to
perform actions against code and documents. At any given time, a user possesses a set of
privileges and default permissions that is the sum of the privileges and default permissions
inherited from all of the roles currently assigned to that user.

Page 20—Security Guide

MarkLogic Server Role-Based Security Model

Use the Admin Interface to display the set of privileges and default permissions for a given user;
do not try and calculate it yourself asit can easily get fairly complex when a system has many
roles. To display a user’s security settings, use Admin Interface > Security > User > Describe.
You need to select a specific user to see the Describe tab.

For more details on users, see “ Authenticating Users’ on page 35.

2.1.5 Roles, Privileges, Document Permissions, and Users

Privileges, document permissions, and usersall interact with rolesto define your security policies.
The following diagram shows an example of how these entities interact.

Documentl1
Privl
Permissions Capability IS
— one of:
Rolel Capability: read
Role3 update insert
Rolel caoabilin] | BPdate
Priv2 N Role3|~My: node-update
insert execute
.
read
Role2 4/
.
XQuery Function
xdmp:security-assert (
"Privl", "$Sexecute") Userl
Priv1l needed to
execute this function

Notice how all of the arrows point into the roles; that is because the roles are the center of all
security administration in MarkLogic Server. In this diagram, useri is part of rolez2, and rolez
inheritsro1e3. Therefore, even though user1 has only been assigned role2, user1 possesses all of
the privileges and permissions from both ro1e2 and ro1e3. Following the arrows pointing into
Role2 and role3, YOU can see that the user possesses rrivi and priv2 based on the privileges
assigned to these roles and insert and read capabilities based on the permissions applied to

Documentl.

MarkLogic 9—May, 2017 Security Guide—Page 21

MarkLogic Server Version MarkLogic 9—May, 2017 Role-Based Security Model

Because user1 possesses privi (based on role inheritance), user1 is able to execute code
protected with Axdmp:security-assert ("Privl", "execute") caII; users who do not have the
privi privilege can not execute such code.

2.2 The admin and security Roles

MarkLogic Server has a special role named admin. The adamin role has full authority to do
everything in MarkLogic Server, regardless of the permissions or privileges set. In general, the
admin roleisonly for administrative activities and should not be used to load data and run
applications. Use extreme caution when assigning users the aamin role, because it gives them the
authority to perform any activity in MarkLogic, included adding or deleting users, adding or
deleting documents, changing passwords, and so on.

MarkLogic Server also has a built-in role named security. Userswho are part of the security
role have execute privileges to perform security-rel ated tasks on the system using the functionsin
the security.xqy Library Module.

The security role does not have access to the Admin Interface. To access the Admin Interface, a
user must have the aamin role. The security role provides the privileges to execute functionsin
the security.xqy module, which has functions to perform actions such as creating users, creating
roles, and so on. For details on managing security objects programmatically, see Creating and
Configuring Roles and Users and User Maintenance Operations in the Scripting Administrative Tasks
Guide.

2.3 Example—Introducing Roles, Users and Execute Privileges

Consider a scenario with two roles. engineering and sales. Th€ engineering roleis responsi ble
for making widgets and has privileges needed to perform activities related to making widgets. The
sales roleisresponsible for selling widgets and has privileges to perform activities related to
selling widgets.

To begin, create two rolesin MarkLogic Server named engineering and sales respectively.

The engineering role needs to be able to make widgets. You can create an execute privilege with
the name make-widget, and action URI http://widget .com/make-widget {O repr@ent that
privilege. The saies role needs to sell widgets,so you create an execute privilege with the name
sell-widget and action URI http://widget.com/sell-widget tO represent that privilege.

Note: Names for execute privileges are used only as display identifiers in the Admin
Interface. The action URIs are used within XQuery or JavaScript code to identify
the privilege.

Ron is an engineer in your company so you create a user for Ron and assign the engineering role

to the newly created user. Emily is an account representative so you create a user for Emily and
assign her the sa1es role.

Page 22—Security Guide

MarkLogic Server Role-Based Security Model

In your XQuery code, use the xamp: security-assert function to ensure that only engineers make
widgets and only account representatives sell widgets (if you are using JavaScript, you can
similary call xamp.securityassert inyour JavaScript function to protect the code). For example:

xquery version "1.0-ml"
define function make-widget(...) as

{
xdmp : security-assert ("http://widget.com/make-widget",
"execute"), make widget...}

If Ron islogged into the application and executes the make-widget () function,
xdmp: security-assert ("http://widget.com/make-widget", "execute") succeeds since Ron is of
the engineering role which has the execute privilege to make widgets.

If Emily attempts to execute the make-widget function, the xdmp : security-assert function call
throws an exception. You can catch the exception and handle it with atry/catch in the code. If
the exception is not caught, the transaction that called this function is rolled back.

Some functions are common to several protected actions. You can protect such a function with a
single xdmp: security-assert Call by providing the appropriate action URIsin alist. For example,
if auser needs to execute the count -widgets function when making or selling widgets, you might
protect the function as follows:

xquery version "1.0-ml"

define function count-widgets(...) as
{
xdmp: security-assert (("http://widget.com/make-widget",
"http://widget.com/sell-widget"), "execute"),

count-widget. . .

}

If there is afunction that requires more than one privilege before it can be performed, place the
xdmp : security-assert Callssequentially. For example, if you need to be a manager in the sales
department to give discounts when selling the widgets, you can protect the function as follows:

xquery version "1.0-ml"
define function discount-widget(...) as

{
xdmp: security-assert ("http://widget.com/sell-widget",
"execute"),
xdmp: security-assert ("http://widget.com/change-price",
"execute"),
discount widget. ..

}

where http://widget.com/change-price isan action URI for a change-price EXecute privi Iege
assigned to the manager role. A user needsto have the saies role and the manager role, which
providesthe user with the se11-widget and change-price execute privileges, to be able to execute
this function.

MarkLogic 9—May, 2017 Security Guide—Page 23

MarkLogic Server Version MarkLogic 9—May, 2017 Role-Based Security Model

Page 24—Security Guide

MarkLogic Server Protecting Documents

3.0 Protecting Documents

The MarkLogic Server security model has a set of tools you can use to control accessto
documents. These authorization tools control creating, inserting into, updating, and reading
documents in a database. This chapter describes those tools and includes the following sections:

¢ Creating Documents

¢ Document Permissions

e Securing Collection Membership

e Default Permissions

e Example—Using Permissions

3.1 Creating Documents

To create adocument in a MarkLogic Server database, a user must possess the needed privileges
to create a document with agiven URI. The ability to create documents based on the URI is
controlled with URI privileges and with two built-in execute privileges (any-uri and
unprotected-uri). TO POSSESS a privilege, the user must be part of arole (either directly or
indirectly, through role inheritance) to which the privilege is assigned. This section describes
these different privileges.

3.1.1 URI Privileges

URI privileges control the ability to create a new document with agiven URI prefix. Using aURI
privilege for agiven URI protects that URI from new document creation; only users possessing
the URI privilege can create a new document with the prefix.

For example, the screenshot below shows a URI privilege with /widget . com/sales/ asthe
protected URI. Any URI with /widget.com/sales/ asthe prefix isprotected. Users must be part of
the sa1es role to create documents with URIs beginning with this prefix. In this example, you
need this URI privilege (or a privilege with at least as much authority) to create a document with
the URI /widget.com/sales/my process.xml.

MarkLogic 9—May, 2017 Security Guide—Page 25

MarkLogic Server Version MarkLogic 9—May, 2017 Protecting Documents

New LRI Privilege ok | [cancel

url privilege - Friviiage representation.

privilege name salss-uri-privilsgs
Privilege name (unigue)
Required. You must supply a value for privilege-name.

uri Favicioet comissless

A URI o protect.
Required. You must supply a value for action.

roles -- The roles assighed.

r acdmin

r admin-buiting

r domain-management
r filesystem-access
r merie

r pipeline-execution

r pipeline-tnanagement

r read

3.1.2 Built-In URI Execute Privileges
The following built-in execute privileges control the creation of URIs:

e any-uri

e unprotected-uri
The any-uri privilege provides the authority to create a document with any URI in the database,
even if the URI is protected with a URI privilege. The unprotected-uri privilege provides the

authority to create a document at any URI in the database except for URIs that are protected with
aURI privilege.

3.2 Document Permissions

Permissions set on a document define access to capabilities (read, insert, update, node-update,
and execute) for that document. Each permission consists of a capability and arole. This section
describes how to set permissions on a document. It includes the following subsections:

e Capabilities Associated Through Permissions

e Setting Document Permissions

Page 26—Security Guide

MarkLogic Server Protecting Documents

3.2.1 Capabilities Associated Through Permissions

Document permissions pair arole with a capability to perform some action on a document. You
can add multiple permissions to a document. If auser is part of arole (either directly or through
inheriting the role) specified as part of adocument permission, then the user has that capability for
the given document. Each permission associates a role with one of the following capabilities:

* Read
e Update

* Node-Update

* Insert
e Execute
3.2.1.1 Read

The reaa capability provides the authority to see the content in the document. Being able to see
the content does not allow you to modify the document.

3.2.1.2 Update

The upaate capability provides the authority to modify content in the document or delete the
document. However, update does not provide the authority to read the document. Reading the
document requires the read capability. Users with update capability, but not reada capability, can
cal the xdmp : document -delete aNd xdmp: document - insert functions successful Iy However, node
update functions, such as xdmp :node-replace, xdmp:node-delete, and xdmp :node-insert-after,
cannot be called successfully. Node update functions require a node from the document as a
parameter. If auser cannot read the document, he cannot access the node in the document and
supply it as a parameter.

Thereisaway to get around the issue with node update functions. The update capability provides
the authority to change the permissions on a document. Therefore, you can use the

xdmp : document -add-permissions function to add a new permission to the document with read
capability for agivenrole. A user withboth reaa and upaate capabilities can call node update
functions succesfully.

3.2.1.3 Node-Update

The node-update capability provides a subset of the upaate capability, enabling permission to
update nodes within a document. The node-update capability offersfiner control of updates when
combined with element level security. The node-update Capability COVES'S xdmp :node-replace and
xdmp : node-delete and can also be used in built-ins on properties, including

xdmp : document -add-properties, xdmp:document -set-property, xdmp: document -set-properties
and xdmp : document - remove-properties. NOte that if arole hasthe update Capablllty, it
automatically includes the node-update capability aswell.

MarkLogic 9—May, 2017 Security Guide—Page 27

MarkLogic Server Version MarkLogic 9—May, 2017 Protecting Documents

3.2.1.4 Insert

The insert capability provides a subset of the update capability. The insert capability provides
the authority to add new content to the document. The insert capability by itself does not alow a
user to change existing content or remove an existing document (for example, callsto

xdmp : document -insert and xdmp : document -delete ON AN existing document fai |) Furthermore,
you need read capability on the document to perform actions that use any of the node insert
functions (xdmp :node-insert-before, xdmp:node-insert-after, xdmp:node-insert- child), as
explained above in the description for update. Therefore, a permission with an insert capability
must be paired with a permission with a read capability to be useful.

3.2.1.5 Execute

The execute capability provides the authority to execute application code contained in that
document, if the document is stored in a database which is configured as a modul es database.
Users without permissions for the execute capability on a stored module, are not able to execute
that module.

3.2.2 Setting Document Permissions

When you create documents in a database, you must think about setting permissions on the
document. If adocument has no permission set on it, no one, other than users with the aamin role,
can read, update, insert, or delete it. Additionally, non-admin users must add update permissions
on documents when creating them; attempts to create a document without at least one update
permission result in an xoMp-MUSTHAVEUPDATE €XCeption.

You set document permissionsin the following ways:

* Explicitly set permissions on a document at load time (as a parameter to
xdmp : document -1load OF xdmp : document - insert, for exampl e).

* Explicitly set and remove permissions on a document using the following functions:

e xdmp:document-add-permissions
e xdmp:document-set-permissions

e xdmp:document-remove-permissions

* Implicitly set permissions when the document is created based on the default permissions
of the user who creates the documents. Permissions are applied to adocument at document
creation time based on the default permissions of the user who creates the document.

For examples of setting permissions on documents, see “ Example—Using Permissions’ on
page 29.

3.3 Securing Collection Membership

You can aso secure membership in collections by assigning permissions to collections. To assign
permissionsto collections, you must use the Admin Interface or the security.xqy Library Module
functions. You cannot assign permissions to collections implicitly with default permissions.

Page 28—Security Guide

MarkLogic Server Protecting Documents

For more information about permissions on collections, see Collections and Security in the Search
Developer’s Guide.

3.4 Default Permissions

When a document is created, it isinitialized with a set of permissions. If permissions are not
explicitly set (by using xdmp : document -1oad OF xdmp : document - insert, fOr example), then the
permissions are set to the default permissions. The default permissions are determined based on
the roles assigned (both explicitly and inherited from roles assigned to other roles) to the user who
creates the document and on any default permissions assigned directly to the user.

If users are creating documents in a database, it isimportant to configure default permissions for
the roles assigned to that user. Without default permissions, it is easy to create documents that no
users (except those with the aamin rol€) can read, update, or delete.

3.5 Example—Using Permissions

It isimportant to consider document permissions when you load content into a database, whether
you load data using the built-in functions (for example, xdmp : document -10ad Or

xdmp : document - insert), WEbDAV (for example, dragging and dropping files into a WebDAV
folder), the REST API, the Java API, or a custom program. In each case, setting permissionsis
necessary, whether explicitly or by taking advantage of default permissions. This example shows
several ways of setting permissions on documents.

Suppose that Ron, of the engineering role, is given the task to create a document to describe new
features that will be added to the next version of the widget. Once the document is created, other
users with the engineering role contribute to the document and add the features they are working
on. lan, of the engineering-manager role, decides that users of the engineering role should only
be allowed to read and add to the document. This enables lan to control the process of removing
or changing features in the document. To implement this security model, the document should be
created with read and insert permissions for the engineering role, and read and update
permissions for the engineering-manager role.

There are two ways to apply permissions to documents at creation time:

e Setting Permissions Explicitly

e Default Permission Settings

MarkLogic 9—May, 2017 Security Guide—Page 29

MarkLogic Server Version MarkLogic 9—May, 2017 Protecting Documents

3.5.1 Setting Permissions Explicitly
Assume that the following code snippet is executed as User ron Of the engineering role. The code

inserts a document with the following permissions:
* read and insert permissionsfor the engineering role

® update, node-update, and read permissionsfor the engineering-manager role

xdmp : document -insert ("/widget.com/engineering/features/2017-gl.xml",
<new-features>
<features>
<name>blue whistle</name>
<assigned-to>Ron</assigned-to>

</feature>

</new-featuress,

(xdmp :permission ("engineering", "read"),

xdmp :permission ("engineering", "insert"),

xdmp :permission ("engineering-manager", "read"),

xdmp :permission ("engineering-manager", "update"),

xdmp :permission ("engineering-manager", "node-update"))

If you specify permissions to the function call explicitly, as shown above, those permissions
override any default permission settings associated with the user (through user settings and role
inheritance).

3.5.2 Default Permission Settings

If there is a set of permission requirements that meets the needs of most application scenarios,
MarkL ogic recommends creating the appropriate default permission settings at the role or user
level. Thisavoids having to explicitly create and set document permissions each time you call

xdmp : document -1load OF xdmp : document - insert.

Default permission settings that apply to a user, either through arole or through the user
definition, areimportant if you are loading documents using a WebDAV client. When you drag
and drop filesinto a WebDAV folder, the permissions are automatically set based on the default
permissions of the user logged into the WebDAV client. For more information about WebDAV
servers, see WebDAV Servers in the Administrator’s Guide.

The following screenshot shows a portion of the Admin Interface for the engineering role. It
Shows read and insert capabilities being added to the engineering role's default permissions.

Page 30—Security Guide

MarkLogic Server Protecting Documents

default permissions — The default set of permissions used in document creation.

role name (capability)

No Current Permissions.

[add] engineering + read -
[add] engineering ~ inzert -
[add] w read -

more permissions

A user’s set of default permissionsis additive; it isthe aggregate of the default permissionsfor all
of the user’srole(s) aswell asfor the user himself. Below is another screenshot of a portion of a
User configuration screen for Ron. It shows read and update capabilities being added to the
engineering-manager roleasRon's default permissions at the user level.

default permissions — The default set of permissions used in document creation.

role name + capability

engineering-manager - update
engineering-manager - read -

~ read -

more permissions

Note: Ron hasthe engineering role and does not have the engineering-manager role. A
user does not need to have a certain role in order to specify that rolein its default
permission set.

You can also use a hybrid of the two methods described above. Assume that read and insert
capabilities for the engineering role are specified as default permissions for the engineering role
as shown in the first screenshot. However, update and read capabilities are not specified for the
engineering-manager a the user or engineering role level.

Further assume that the following code snippet is executed by Ron. It achieves the desired

Obj ective of gIVI ng the engineering-manager role read, update, and node-update Capab”ltleS on
the document, and the engineering role read and insert capabiliti €sS.

MarkLogic 9—May, 2017 Security Guide—Page 31

MarkLogic Server Version MarkLogic 9—May, 2017 Protecting Documents

xdmp : document -insert ("/widget.com/engineering/features/2017-gl.xml",
<new-features>
<features>
<name>blue whistle</names
<assigned-to>Ron</assigned-to>

</feature>

</new-featuress,
(xdmp:default-permissions(),

xdmp:permission ("engineering-manager", "read")
xdmp:permission ("engineering-manager", "update"))
xdmp:permission ("engineering-manager", "node-update"))

The xdmp: default-permissions function returns Ron’s default permissions (from therole level in
this exampl e) Of read and insert Capabllltlesfor the engineering role. The read, update, and
node-update capabl litiesfor the engineering-manager role are then added expl I Cit|y as function
parameters.

Note: The xdmp:document -insert function performs an update (rather than a create)
function if adocument with the specified document URI already exists.
Conseguently, if Ron calls the xdmp : document -insert function the second time
with the same document URI, the call fails since Ron does not have update
capability on the document.

Suppose that lan, of the engineering-manager role, decidesto give users of the sales role read
permission on the document. (He wisely withholds update Or insert capability or therewill surely
be an explosion of features!) The code snippet below shows how to add permissionsto a
document after it has been created.

xdmp : document -add-permissions (
"/widget.com/engineering/features/2017-gql.xml",
xdmp :permission("sales", "read"))

The update capability isneeded to add permissions to adocument, and the node -update capability
IS needed to update a portion of adocument (or node). Therefore, the code snippet only succeed if
it is executed by lan, or another user of the engineering-manager role. This prevents Ron from
giving Emily, his buddy in sales, insert capability on the document.

But what if the Emily is now the person in sales assigned to the project? lan has the node-update

capablllty, s0 he can call xdmp:node-replace aNd xdmp :node-delete tO modlfy nodesin a
document. lan changes the “assigned-to” element in the document usiNg xdmp : node -update.

Page 32—Security Guide

MarkLogic Server Protecting Documents

xdmp :node-update (" /widget.com/engineering/features/2017-gl.xml",
<new-features>
<features>
<name>blue whistle</names
<assigned-to>Emily</assigned-to>

</feature>
</new-featuress,

Changing default permissions for arole or auser does not affect the permissions associated with
existing documents. To change permissions on existing documents, you need to use the
permission update functions. See the documentation for the MarkL ogic Built-In Functionsin
MarkLogic XQuery and XSLT Function Reference for more details.

MarkLogic 9—May, 2017 Security Guide—Page 33

MarkLogic Server Version MarkLogic 9—May, 2017 Protecting Documents

Page 34—Security Guide

MarkLogic Server Authenticating Users

4.0 Authenticating Users

MarkLogic Server authenticates users when they access an application. This chapter describes
users and the available authentication schemes, and includes the following sections:

e Users

e Types of Authentication

4.1 Users

A user in MarkLogic Server isthe basis for authenticating requests to a MarkL ogic application

server. Users are assigned to roles. Roles carry security attributes, such as privileges and default
permissions. Permissions assigned to documents pair arole with a capability, therefore roles are
central to document permissions. Users derive authorization to perform actions from their roles.

You configure usersin the Admin Interface, where you assign a user a name, a password, a set of
roles, and a set of default permissions. To see the security attributes associated with a given user,
click on the user:username link in the Admin Interface screen for the given user. For details on
configuring usersin the Admin Interface, see the “Security Administration” chapter in the
Administrator’s Guide.

During the initial installation of MarkLogic Server, two users are created. One of the usersisan
authorized administrator who has the admin role. During the installation, you are prompted to
specify the username and password for this user. The other user is a user named nobody, Which is
created with no roles assigned and is given a password which is randomly generated. For details
about installing MarkL ogic Server, see the Installation Guide.

4.2 Types of Authentication

You can control the authentication scheme for HTTP, WebDAV, ODBC, and XDBC App Servers.
This section describes the authentication schemes and includes the following parts:

* Basic

e Digest

¢ Digest-Basic

e Limitations of Digest and Basic Authentication

e Certificate

e Application Level

e Kerberos Ticket

e SAML

MarkLogic 9—May, 2017 Security Guide—Page 35

MarkLogic Server Version MarkLogic 9—May, 2017 Authenticating Users

421 Basic

Basic authentication is the typical authentication scheme for web applications. When a user
accesses an application page, she is prompted for a username and password. In basic mode, the
password is obfuscated but not encrypted.

4.2.2 Digest

Digest authentication works the same way as basic, but offers encryption of passwords sent over
the network. When a user accesses an application page, she is prompted for a username and
password.

Note: If you change an App Server from basic to digest authentication, it invalidates all
passwords in the security database. Y ou must then reenter the passwordsin the
Admin Interface. Alternatively, you can migrate to digest-basic mode initially,
then switch to digest-only mode once all users have accessed the server at least
once. Thefirst time the user accesses the server after changing from basic to
digest-basic scheme, the server computes the digest password by extracting the
relevant information from the credentials supplied in basic mode.

4.2.3 Digest-Basic

The digest-basic authentication scheme uses the more secure digest scheme whenever possible,
but reverts to basic authentication when needed. Some older browsers, for example, do not
support digest authentication. The digest-basic scheme is also useful if you previously used basic
authentication, but want to migrate to digest. The first time a user accesses the server after
changing from basic to digest-basic authentication scheme, the server computes the digest
password by extracting the relevant information from the credentials supplied in basic mode.

4.2.4 Limitations of Digest and Basic Authentication

Since the browser does not provide away to clear a user’s authentication information in basic or
digest mode, the user remains logged in until the browser is shut down. In addition, thereisno
way to create a custom login page using these schemes. For certain deployments,
application-level authentication may be more appropriate.

Page 36—Security Guide

MarkLogic Server Authenticating Users

425 Certificate

Certificate-based authentication requires internal and external usersand HTTPS clientsto
authenticate themselvesto MarkLogic Server viaaclient certificate, either in addition to, or rather
than a password.

Certificate-based authentication can take the following forms:

» MarkLogic Server authenticates an internal user viathe common name in a certificate.

* MarkLogic Server authenticates an internal user viathe distinguished namein a
certificate, by matching the distinguished name to an external name configured for an
internal user.

* MarkLogic Server authenticates an external LDAP user via a certificate subject name,
with internal authorization.

* MarkLogic Server authenticates an external user via a certificate subject name, with
external authorization. User isentirely defined external to MarkLogic.

» MarkLogic Server authenticates via both a client certificate and a username/password.
This provides agreater level of security by requiring that user provide aclient certificate
that matches the specified user.

For details on Certificate-based authentication, see “ Certificate-based Authentication” on
page 159.

4.2.6 Application Level

Application-level authentication bypasses all authentication and automatically logs all usersin as
a specified default user. You specify the default user in the Admin Interface, and any users
accessing the server automatically inherit the security attributes (roles, privileges, default
permissions) of the default user. Application-level authentication is available on HTTP, ODBC,
and WebDAV servers.

The default user should have the required privilegesto at least read the initial page of the
application. In many application scenarios, the user is then given the opportunity to explicitly log
in to the rest of the application from that page. How much of the application and what data a user
can access before explicitly logging in depends on the application and the roles that the default
user is part of. For an example of thistype of configuration, see “Using Custom Login Pages’ on
page 290.

4.2.7 Kerberos Ticket

The user is authenticated by Kerberos and a Kerberos session ticket is used to authenticate the
user to access MarkL ogic Server. For details, see “Overview of External Authentication” on
page 179.

MarkLogic 9—May, 2017 Security Guide—Page 37

MarkLogic Server Version MarkLogic 9—May, 2017 Authenticating Users

4.2.8 SAML

When SAML authentication is used, a client requests a resource from MarkL ogic Server with no
security context; MarkL ogic redirects the authentication request to an Identity Provider. The

| dentity Provider promptsthe user to login, if necessary, and sends the authentication request back
to MarkLogic Server (the Service Provider) for validation.

There are two major componentsin SAML:

* ldentity Provider (IDP) authenticates a subject and provides security assertion to service
provider.

» Service Provider (SP) provides access to the resource for aclient. MarkLogic Server isa
Service Provider.

MarkLogic Server sends aredirect to the resource. The client requests the resource again with a
security context. MarkLogic Server then authenticates the user using the information from the
authentication request to grant the user access to the requested resource.

See “SAML Authentication” on page 188 for more information.

Page 38—Security Guide

MarkLogic Server Compartment Security

5.0 Compartment Security

The MarkLogic Server includes an extension to the security model called compartment security.
Compartment security allows you to specify more complex security rules on documents.

Note: An Advanced Security Licenseis required when using compartment security.
“Licensing” on page 11 lists other security options requiring this license option.
Contact your MarkL ogic sales representative for details on purchasing the
Advance Security License option.

This chapter describes compartment security and includes the following sections:

¢ Understanding Compartment Security

* Configuring Compartment Security

e Example—Compartment Security

5.1 Understanding Compartment Security

A compartment is a name associated with arole. You specify that aroleis part of a compartment
by adding the compartment name to each role in the compartment. When arole is compartmented,
the compartment name is used as an additional check when determining a user’s authority to
access or create documents in a database. Compartments have no effect on execute privileges.
Without compartment security, permissions are checked using OR semantics.

For example, if adocument has read permission for roie1 and read permission for ro1ez2, auser
Who possesses either role1 Or role2 can read that document. If those roles have different
compartments associated with them (for example, compartment1 and compartment2, respectively),
then the permissions are checked using AND semantics for each compartment, aswell as OR
semantics for each non-compartmented role. To access the document if role1 and rolez arein
different compartments, a user must possess both ro1e1 and ro1e2 to access the document, as well
as a non-compartmented role that has a corresponding permission on the document.

If any permission on adocument has a compartment, then the user must have that compartment in
order to access any of the capabilities, even if the capability is not the one with the compartment.

Access to a document requires a permission in each compartment for which thereis a permission
on the document, regardless of the capability of the permission. So if thereisaread permission
for arolein compartment1, there must also be an update permission for somerolein compartmenti
(but not necessarily the same role). If you try to add read, insert, node-update, OF execute
permissions that reference a compartmented role to a document for which there is no update
permission with the corresponding compartment, the xomp-MusTHAVEUPDATE €XCeption is thrown.

MarkLogic 9—May, 2017 Security Guide—Page 39

MarkLogic Server Version MarkLogic 9—May, 2017 Compartment Security

5.2 Configuring Compartment Security

You can only add a compartment for a new role. To add a compartment, use the Admin Interface
> Security > Roles > Create and enter a name for the compartment in the compartment field when
you define each role in the compartment.

You cannot modify an existing role to use a compartment. To add a compartment to arole, you
must delete the role and re-create it with a compartment. If you do re-create arole, any
permissions you have on documents reference the old role (because they use the role ID, not the
role name). So if you want those document permissions to use the new role, you need to update
those documents with new permissions that reference the new role.

5.3 Example—Compartment Security

This section describes a scenario that uses compartment security. The scenario is not meant to
demonstrate the correct way to set up compartment security, as your situation islikely to be
unigue. However, it demonstrates how compartment security works and may give you ideas for
how to implement your own security model.

Description: For aMarkLogic application used by a government department, documents are
classified with a security classification that dictates who may access the document. The
department also restricts access to some documents based on the citizenship of the user.
Additionally, some documents can only be accessed by employees with certain job functions.

To set up the compartment security for this scenario, you create the necessary roles, users, and
documents with the example permissions. You will need access to both MarkLogic Admin
Interface and Query Console.

To run through the example, perform the steps in each of the following sections:

* Create Roles
* Create Users

* Create the Documents and Add Permissions

e Testlt Out

53.1 Create Roles

Using the Admin Interface > Security > Roles > Create, create the roles and compartments as
follows:

1. Create roles named us and canada and assign each of these rolesthe country compartment
name. These roles form the country compartment.

2. Create roles named executive and employee and assign each of these roles the
job-function compartment name. These rolesform the job-function COmpartment.

Page 40—Security Guide

MarkLogic Server Compartment Security

3. Create roles named top-secret and unclassified and assign each of these rolesthe
classification cOMpartment name. These roles form the classification COMpartment.

4, Create arole named can-reada With no compartment.

5.3.2 Create Users

Using the Admin Interface > Security > Users > Create, create users and give them the roles
indicated in the following table.

User Roles
Don Executive, US, top-secret, can-read
Ellen Employee, US, unclassified, can-read
Frank Executive, Canada, top-secret, can-read
Gary can-read
Hannah unclassified, can-read

MarkLogic 9—May, 2017 Security Guide—Page 41

MarkLogic Server Version MarkLogic 9—May, 2017 Compartment Security

5.3.3 Create the Documents and Add Permissions

Using the MarkL ogic Query Console, add a document for each combination of permissionsin the
following table:

Permissions [Role and

Capability] Users with Access

Document

docl.xml (Executive, read) Don
(Executive, update)
(Us, read)

(US, update)
(top-secret, read)
(top-secret, update)
(can-read, read)
(can-read, update)

doc2.xml (US, read) Don and Ellen
(US, update)
(can-read, read)
(can-read, update)

doc3.xml (can-read, read) All users
(can-read, update)

doc4 .xml (Canada, read) Frank, Don, Ellen
(UsS, read)

(US, update)
(can-read, read)
(can-read, update)

doc5.xml (unclassified, read) Ellen, Hannah
(unclassified, update)
(can-read, read)
(can-read, update)

1 You can use XQuery code similar to the following example to insert the sample
documents into a database of your choice. This code adds a document with a URI of
doc1.xml, cONtaining one <a- element and a set of five permissions.

xquery version "1.0-ml";
declare namespace html = "http://www.w3.org/1999/xhtml";
xdmp : document -insert (

"/docl.xml", <a>This is document 1.,

(xdmp :permission ("can-read", "read"),
xdmp :permission ("can-read", "update"),
xdmp :permission ("US", "read"),

xdmp :permission ("US", "update"),

xdmp :permission ("Executive", "read"),
xdmp :permission ("Executive", "update"),

Page 42—Security Guide

MarkLogic Server Compartment Security

xdmp:permission("top-secret", "read"),
xdmp:permission ("top-secret", "update")))

The dgoc1.xm1 document can only be read by pon because the permissions designate all
three compartments and pon is the only user with arolein al three of the necessary
compartmented roles executive, us, and top-secret, plus the basiC can-read role.

2. Create the rest of the sample documents changing the sample code as needed. You need to
change the document URI and the text to correspond t0 doc2 . xm1, doc3 . xm1, doc4 . xm1, and
docs . xm1 and modify the permissions for each document as suggested in the table in
“Create the Documents and Add Permissions’ on page 42.

534 Test It Out

Using Query Console, you can execute a series of queriesto verify that the users can access each
document as specified in the table in “ Create the Documents and Add Permissions’ on page 42.

For ssimplicity, this sample query uses xdmp:eval and xdmp : user t0 €xecute a query in the context
of each different user. Modify the document URI and the user name to verify the permissions until
you understand how the compartment security logic works. If you added the roles, users, and
documents as described in this scenario, the query results should match the table in “ Create the
Documents and Add Permissions’ on page 42.

xquery version "1.0-ml";
declare namespace html = "http://www.w3.0rg/1999/xhtml";

xdmp:eval ('fn:doc("/docl.xml") "', (),
<options xmlns="xdmp:eval">
<user-ids>{xdmp:user ("Don") }</user-id>
</options>)

MarkLogic 9—May, 2017 Security Guide—Page 43

MarkLogic Server Version MarkLogic 9—May, 2017 Compartment Security

Page 44— Security Guide

MarkLogic Server Element Level Security

6.0 Element Level Security

MarkLogic Server includes element level security, an addition to the security model that allows
you to specify more complex security rules on specific elements in documents. The feature also
can be applied to JSON properties in a document. Using element level security, parts of a
document may be concealed from users who do not have the appropriate roles to view them.
Users without appropriate permissions cannot view the secured element or JSON property using
XPath expressions or queries. Element level security can conceal the XML element (along with
properties and attributes) or JSON property so that it does not appear in any searches, query plans,
or indexes, unless accessed by a user with arole included in guery roleset.

Element level security protects elements or JSON properties in adocument using a protected path,
where the path to an element or property within the document is protected so that only roles
belonging to a specific guery roleset can view the contents of that element or property. Only users
with specific roles that match the specific query roleset can view the elements or properties
protected by element level security. You can set protection with element level security to conceal
adocument’s sensitive contentsin real time, and also control which contents can be viewed
and/or updated by other users.

Note: See*“Interactions with Other MarkL ogic Features’ on page 110 for details about
using element level security with SQL and semantic queries.

Permissions on an element or property are similar to permissions defined on a document.
Elements or properties may contain all supported datatypes. Search results and update built-ins
will honor the permissions defined at the element level. Element level security is applied
consistently across al areas of the MarkL ogic Server, including reads, updates, query plans, etc.

The protected paths are in the form of XPath expressions (not fields) that specify that an XML
element or JSSON property is part of a protected path. You will need to install or upgrade to
MarkLogic 9.0-1 or later to use element level security.

This chapter describes element level security and includes the following topics:

* Understanding Element Level Security

e Example—Element Level Security

* Configuring Element Level Security

e Configure Element Level Security in the Admin Ul

e Configure Element Level Security With XQuery

e Configure Element Level Security With REST

¢ Combining Document and Element Level Permissions

* Node Update Capabilities

e Document and Element Level Permissions Summary

MarkLogic 9—May, 2017 Security Guide—Page 45

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security

* Node Update and Document Permissions Expanded

e APIs for Element Level Security

¢ Algorithm That Determines Which Query Rolesets to Use

¢ Interactions With Compartment Security

¢ Interactions with Other MarkLogic Features

6.1 Understanding Element Level Security

Elements of a document can be protected from being viewed as part of a query or XPath
expression, or from being updated by a user, unless that user has the appropriate role. You specify
that an element is part of a protected path by adding the path to the Security database. You also
then add the appropriate role to a guery roleset, which is also added to the Security database.

Element level security uses query rolesets to determine which elements will appear in query
results. If aquery roleset does not exist with the associated role that has permissions on the path,
the role cannot view the contents of that path.

Note: A user with admin privileges can access documents with protected elements by
using fn:doc to retrieve documents (instead of using a query). To see protected
elements as part of query results, however, a user needs the appropriate role(s).

6.2 Example—Element Level Security

This section describes a scenario using element level security. The scenario is not meant to
demonstrate the correct way to set up element level security, as your situation is likely to be
unique. However, it demonstrates how element level security works and may give you ideas for
how to implement your own security model. You will need access to both MarkLogic Admin
Interface and Query Console. Install or upgrade to MarkL ogic Server 9.0-x or later prior to
starting the example.

Description: For aMarkL ogic application used by a department, certain parts of documents may
be hidden so that only users with the correct role may view or update those parts of the document.
Users without the proper role will not be able to see the element concealed by the protected path.

To set up the element level security for this scenario, you will follow these steps:

* Create Roles - Set up roles using the Admin Ul

* Create Users and Assign Roles - Create users using the Admin Ul and assign roles

* Add the Documents - Using Query Console, insert documents with permissions for two of
the three users into the Documents database

* Add Protected Paths and Query Rolesets - Add the query rolesets to the Security database
and add protected paths for elements in the documents by inserting the protected paths
into the Security database

Page 46—Security Guide

MarkLogic Server Element Level Security

* Run the Example Queries - Query the documents as different users to see the different
results

* Additional Examples - More query examples using X Query and Server-Side JavaScript

6.2.1 Create Roles
Using the Admin Interface, create the roles as follows. You will create two roles, e1s-role-1 and

els-role-2.

1. In the Admin Ul, click Security in the |eft tree menu.

2. Click Roles and then click the Create tab.

3. On the Role Configuration page, enter the information for the first role:

role name: els-role-1
description: e1s role 1

[sommary T connoure T vescribe T create T were NN

Role: els-role-1 | ok | | cancel
role — A security role. :- delete)
role name els-role-1

The Role name (unique)

description els role 1

An object's description.

compartment
The compartment that this role is part of.
4, Click ok to save therole.
5. Repeat these steps to create the second role (e1s-role-2, els role 2)

See Roles in the Administrator’s Guide for details about creating roles.

6.2.2 Create Users and Assign Roles

Now create three users (el1s-user-1, els-user-2, and els-user-3) using the Admin Ul. Assign
rolesto two of the users.

1. In the Admin Ul, click Security in the |eft tree menu.

2. Click Users and then click Create.

MarkLogic 9—May, 2017 Security Guide—Page 47

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security

3. On the User Configuration page, enter the information for the first user:
user Name: els-user-1
description: ELs user 1
password: <passwords

Enter a password of your choice.

(Gr—vm GeTeTe gre=ves gareews g <

User: els-user-1 ok cancel
user - A database user.) delete
user name els-user-1

User/login name (unique)

description ELS user 1
An object's description.

password

Encrypted Password.

confirm password

Encrypted Password.

Add this user to thefirst role that you created (e1s-role-1):

1 Scroll down the User Configuration page until you seethe e1s-ro1e-1 role you just
created.
2. Click the box next to e1s-role-1 to assign the role to the user.

domain-management

ec2-protected-access
V| els-role-1

els-role-2

filesystem-access

flexrep-admin

3. Click ok to save your changes.

Page 48—Security Guide

MarkLogic Server Element Level Security

Repeat these stepsto create a second user and third user (e1s-user-2, ELS user 2, els-user-3, ELS
user 3). Assign rolesto the users as shown. ELS user 3 will not have an assigned role.

[oommany T oese ™ T v

User Description Roles

Admin admin user admin

els-user-1 ELS user 1 els-role-1

els-user-2 ELS user 2 els-role-2

els-user-3 ELS user 3

healthcheck Healthcheck application runner healthcheck-user

infostudio-admin Information Studio CPF pipeline and task runner dis-user, dls-internal, infostudio-user, dls-admin, ...
nobody nobody user rest-reader, rest-extension-user, app-user

See Users in the Administrator’s Guide for details on creating users.

Note: Admin users must be added to arolein order to view the results of a query on
protected paths that involve concealed elements.

6.2.3 Add the Documents

For our ssmple example, we will use three documents, two in XML and one in JSON. Use the
Query Console to insert these documents into the Documents database, along with read and
update permissions for e1s-user-1 and els-user-2:

(: run this against the Documents database :)

xquery version "1.0-ml";
import module namespace sec="http://marklogic.com/xdmp/security"
at "/MarkLogic/security.xqy";

xdmp :document-insert ("testl.xml",
<root>
<bar baz="1" attr="test">abc</bar>
<bar baz="2">def</bar>
<bar attr="testl">ghi</bar>

</root>,

(xdmp:permission("els-role-1", "read"), xdmp:permission("els-role-2",
"read"), xdmp:permission("els-role-1", "update"),

xdmp :permission("els-role-2", "update")))

7

xdmp : document -insert ("test2.xml",

<root>
<reg expr="this is a string"s>l</reg>
<reg>2</reg>
</roots>,
(xdmp:permission("els-role-1", "read"), xdmp:permission("els-role-2",
"read"), xdmp:permission("els-role-1", "update"),
xdmp :permission("els-role-2", "update")))

MarkLogic 9—May, 2017 Security Guide—Page 49

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security

1

xdmp :document -insert ("testl.json", object-node {

"foo" : 1, "bar" : "2", "baz" : object-node

{"bar" : array-node {3,4}, "test" : 5}

}l

(xdmp:permission("els-role-1", "read"), xdmp:permission("els-role-2",
"read"), xdmp:permission("els-role-1", "update"),

xdmp :permission("els-role-2", "update")))

The code example adds permissions to the documents for e1s-role-1 and els-role-2 While
inserting them into the database.

6.2.4 Add Protected Paths and Query Rolesets

Using the Admin Ul, add the protected paths and query rolesets to the Security database. If no
query rolesets are configured, aquery will only match documents by the terms that are visible to
everyone.

To start, check for any existing protected paths using this query in the Query Console:

(: run this query against the Security database :)
fn:collection("http://marklogic.com/xdmp/protected-paths")

Thiswill return an empty sequence if there are no protected paths. If there are protected paths,
information about those protected paths will be displayed, including the path ID, the path
expression, the permissions, and roles associated with that path.

Using the Admin Ul, add protected paths with permissions for e1s-user-2. To add the protected
path from the Admin Ul:

1. Click Security in the left tree menu.

2. Click Protected Paths and then click the Create tab.

Page 50—Security Guide

MarkLogic Server Element Level Security

3. Enter the path expression for the first path (/root /bar [ebaz=11),with read permissions for

els-role-2.

L e T T e
Configure)

3 Groups New Protected Path [ok [cancer

J Databases

protected path — A protected-path definition

L th expression =
EH & security ErET Irootibar@baz=1]
The XPath that specifies the XML element or JSON property in a protected-path
e
&9 Users definition

f’ Roles Required. You must supply a value for path-expression.
3 Execute Privileges
3 URI Privieges
f’ Amps

f’ Collections

path namespaces — Namespace bindings

=3 f, Protected Paths

| B A NewProtectedpath
5_? Query Rolesets
EHEG Certificate Authorities
f’ Certificate Templates
Q‘? External Security

prefix

A QName prefic.

namespace uri

A namespace URL

EHEE Credentials | more items

f’ Secure Credentials
permissions — The default set of permissions used in document creation.

role name + capability

els-role-2 w read -

| more permissions

path set
Path Set

|. ok | cancel

4, Click ok when you are done. Since there are no namespaces in these examples, the prefix
and namespace are not required for the protected path.

For examples using namespaces and prefixes as part of a protected path, see “ Namespaces as Part
of a Protected Path” on page 75.

Repeat this for two additional protected paths, “test” and “/root/reg [fn:matches (@expr,

rign) 17,

MarkLogic 9—May, 2017 Security Guide—Page 51

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security

S e T e T e
Configure
BHEd Groups Path Expression Har

p Permissi Path Set
Databases
Irootbar[@baz=1] els-role-2 (read)
Hosts
Forests Irootireg[fn:matches(@expr, \is'}] els-role-2 (read)
Mimetypes test els-role-2 { read)
j Clusters
=3 f, Security
';% Users
';% Roles

';@ Execute Privieges
B 65 UR Privieges
';@ Amps

; ';@ Collections
Protected Paths

B

& o=

T Query Rolesets
"k Certificate Authorities

H.

‘b Certificate Templates
‘gl External Security

P OGO D

A\

redentials

B c
& s

H.

ecure Credentials

The three protected paths with read permissionsfor e1s-role-2 are:

/root /bar [@baz=1]
test
/root/reg[fn:matches (eexpr, 'is')]

Alternatively, you can add these protected paths with the Query Console. Use this code to add
these protected paths with permissions for e1s-user-2 to the Security database:

(: add protected paths -> run against the Security database :)

xquery version "1.0-ml";
import module namespace sec="http://marklogic.com/xdmp/security"
at "/MarkLogic/security.xqy";

sec:protect-path("/root/bar[@baz=1]", (),

(xdmp :permission("els-role-2", "read"))),

sec:protect-path("test", (), (xdmp:permission("els-role-2", "read"))),
sec:protect-path("/root/regl[fn:matches (@expr, 'is')1", (),

(xdmp :permission("els-role-2", "read")))

=> Returns three numbers representing the protected paths
Note: Adding, unprotecting, or changing permissions on protected paths will trigger

reindexing. Thisreindexing will only apply to documents that include or match the
paths.

Page 52—Security Guide

MarkLogic Server Element Level Security

Now add query rolesets for these documents. In the Query Console, run this code to add query
rolesetsfor els-user-2:

(: run this against the Security database :)
xquery version "1.0-ml";

import module namespace sec = "http://marklogic.com/xdmp/security"
at "/MarkLogic/security.xqy";

let $qry := 'xdmp:database-node-query-rolesets(fn:doc (), ("all"))'
let sSqgry-rolesets :=
xdmp:eval ($Sqgry, (),<options xmlns="xdmp:eval"s>
<database>{xdmp:database ('Documents') }</database>
</options>)
return

sec:add-query-rolesets ($gry-rolesets)

In most cases you will want to use the hel per functions (xdmp :database-node-query-rolesets and
xdmp : node-query-rolesets) tO create query rolesets. The helper function automatically created
the query rolesets based on the protected paths you have set. See “Helper Functions for Query
Rolesets’ on page 87 for more information. To understand more about query rolesets, see “ Query
Rolesets’ on page 80.

You can also can add query rolesets manually with XQuery in the Query Consoleif you only have
afew query rolesets to add. Use this code, checking to be sure you are running it against the
Security database:

(: add query rolesets => run against the Security database :)

xquery version "1.0-ml";

import module namespace sec="http://marklogic.com/xdmp/security"
at "/MarkLogic/security.xqy";

let Sroleset := sec:query-roleset("els-role-2")

return
sec:add-query-rolesets (sec:query-rolesets (Sroleset))

=>
Returns a unique ID representing the added query rolesets

Note: Adding query rolesets does not trigger reindexing, since it isonly used by queries.

Check for query rolesets in the Security database using the Query Console:

(: run this query against the Security database :)
fn:collection("http://marklogic.com/xdmp/query-rolesets")

=>
Returns details about query rolesets in the Security database.

Thereis also acollection for protected paths in the Security database:

MarkLogic 9—May, 2017 Security Guide—Page 53

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security

(: run this query against the Security database :)

fn:collection("http://marklogic.com/xdmp/protected-paths")
=>
Returns details about protected paths in the Security database.

The e1s-role-2 can now see the elements in these paths, but the e1s-user-1 cannot:

test
/root /bar [@baz=1]
/root/reg[fn:matches (@expr, 'is')]

6.2.5 Run the Example Queries

This section includes examples in both XQuery and JavaScript. Run the following queriesin the
Query Console. For simplicity, the sample queries use xdmp: eval and xdmp: get-current-user (Of
xdmp . eval aNd xdmp . getcurrentUser) tO €xecute aquery in the context of each user. Different
elements and properties in a document are concealed for the different roles. Notice the different
types of queries, using either XQuery or JavaScript, that are used to search for content.

Note: These examples assume that you have access permissions for both the MarkL ogic
Admin Interface and the Query Console.

This section contains these topics:

e XOQuery Examples of Element Level Security

e JavaScript Examples of Element Security

6.2.5.1 XQuery Examples of Element Level Security

Run these queries on the Documents database using X Query in Query Console. First run the
gueries in the context of e1s-user-1:

(: run this against the Documents database :)

xdmp:eval (

'cts:search(fn:doc (), cts:word-query("def"), "unfiltered"),
cts:search(fn:doc (), cts:element-attribute-word-query (xs:QName ("bar"),
xS :QName ("attr"), "test"), "unfiltered"),

cts:search(fn:doc (), cts:json-property-value-query ("bar", "2")),
cts:search(fn:doc (), cts:element-attribute-word-query (xs:QName ("reg"),
xS :QName ("expr"), "is"), "unfiltered")',

0,
<options xmlns="xdmp:eval">
<user-ids>{xdmp:user ("els-user-1") }</user-id>
</options>

)

Page 54—Security Guide

MarkLogic Server Element Level Security

=>
<?xml version="1.0" encoding="UTF-8"?>
<root>

<bar baz="2">def</bars>

<bar attr="testl">ghi</bar>
</root>

"foo": 1,

Ilbarll . "2"1

"baz": {
"bar": [
3[

Notice that in the first query, al of the documents are returned, but the elements with protected
paths are missing from the content:

<bar baz="1" attr="test"sabc</bar>
"test": 5
<reg expr="this is a string">l</reg>

In the second query, the document does not show up at all because the query is searching on a
protected path that e1s-user-1 isnot allowed to see (protected path “ /root /bar [@baz=11").

Note: If you are getting different results, check to seethat you have set up your user roles
correctly and added the query rolesets to the Security database.

Now, modify the query to use the context of the e1s-user-2 and run the queries again:
(: run this against the Documents database :)

xdmp:eval (
'cts:search(fn:doc (), cts:word-query("def"), "unfiltered"),

cts:search(fn:doc (), cts:element-attribute-word-query (xs:QName ("bar"),
xS :QName ("attr"), "testl"), "unfiltered"),

cts:search(fn:doc (), cts:json-property-value-query("bar", "2")),

cts:search(fn:doc (), cts:element-attribute-word-query (xs:QName ("reg"),
xS :QName ("expr"), "is"), "unfiltered")',

0,
<options xmlns="xdmp:eval"s>
<user-id>{xdmp:user ("els-user-2") }</user-id>

MarkLogic 9—May, 2017 Security Guide—Page 55

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security

</options>

)

=>
<?xml version="1.0" encoding="UTF-8"?>
<root>
<bar baz="1" attr="test"sabc</bar>
<bar baz="2">def</bars>
<bar attr="testl">ghi</bar>
</root>
<?xml version="1.0" encoding="UTF-8"?>
<root>
<bar baz="1" attr="test"sabc</bar>
<bar baz="2">def</bar>
<bar attr="testl">ghi</bar>
</root>

"foo": 1,
"bar": "2",
"baz": {
"bar": [
3,
4
1,
"test": 5

<?xml version="1.0" encoding="UTF-8"?>
<root>
<reg expr="this is a string">1l</reg>
<reg>2</reg>
</root>

Thistimeall of the documents are returned, along with the protected elements. Notice that the one

document is returned twice; two different queries find the same document.

Run the query one more time using the xdmp: eval pattern as eis-user-3 and notice that none of
the documents are returned because e1s-user-3 does not have the basic permissions to read the

documents.

(: run this against the Documents database

xdmp:eval (

'cts:search(fn:doc (), cts:word-query("def"),

"unfiltered"),

cts:search(fn:doc (), cts:element-attribute-word-query (xs:QName ("bar"),
xs:QName ("attr"), "testl"), "unfiltered"),

cts:search(fn:doc (), cts:json-property-value-query ("bar", "2")),

Page 56—Security Guide

MarkLogic Server Element Level Security

cts:search(fn:doc (), cts:element-attribute-word-query (xs:QName ("reg"),
xS :QName ("expr"), "is"), "unfiltered")',
0,
<options xmlns="xdmp:eval"s>
<user-id>{xdmp:user ("els-user-3") }</user-id>
</options>

Because e1s-user-3 does not have document level permissions, no documents are returned. You
can use document level permissions along with element level security for additional security. See
“Combining Document and Element Level Permissions’ on page 96 for more information.

Now unprotect the paths and run the previous query again without the protected paths to see
difference in output. First unprotect the paths:

(: run this against the Security database :)

import module namespace sec="http://marklogic.com/xdmp/security"
at "/MarkLogic/security.xqy";

sec:unprotect-path (" /root/bar [@baz=1]1", ()),
sec:unprotect-path("test", ()),
sec:unprotect-path ("/root/reg[fn:matches (@expr, 'is')I1", ())

Note: Adding or unprotecting protected paths will trigger reindexing. After unprotecting
elements, you must wait for reindexing to finish.

Unprotecting the paths does not remove them from the database. You will still see the protected
paths in the Admin Ul or when you run
fn:collection("http://marklogic.com/xdmp/protected-paths") agal nst the Security database.
But you will be able to see the whole document once the protected paths are unprotected, if you
have document permissions for the document. See “Unprotecting or Removing Paths’ on page 76
for more details.

L ook through the code examples and run the queries using the xamp : eval pattern to change users.
Run the queriesin the context of the different usersto better understand how the element level
security logic works.

6.2.5.2 JavaScript Examples of Element Security

You can also query the documents using Server-Side JavaScript. Run these JavaScript queries,
using the previous users and documents, on the Documents database in Query Console.

MarkLogic 9—May, 2017 Security Guide—Page 57

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security

First run the queriesin the context of e1s-user-1:

// run this against the Documents database

var progl = “cts.search(cts.wordQuery ("def"), "unfiltered") ~;

var prog2 = “cts.search(cts.elementAttributeWordQuery (xs.QName ("bar"),
xs.QName ("attr"), "testl"), "unfiltered") ~;

var prog3 = “cts.search(cts.jsonPropertyValueQuery ("bar", "2")) " ;

var prog4 = “cts.search(cts.elementAttributeWordQuery (xs.QName ("reg"),
xs.QName ("expr"), "is"), "unfiltered") ~;

var res [1;

res.push (xdmp.eval "els-user-1")})) ;

"els-user-1")}));
) 1))
) 1))

(

(progl, null, {userId:xdmp.user
res.push (xdmp.eval

(

(

{

prog2, null, {userId:xdmp.user
{
{

7

"els-user-1"
"els-user-1"

res.push (xdmp.eval
res.push (xdmp.eval
res;
=>
[
"<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n
<root><bar baz=\"2\">def</bar>
<bar attr=\"testl\">ghi</bar>
</root>",
"<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n
<root>
<bar baz=\"2\">def</bar>
<bar attr=\"testl\">ghi</bar>
</root>",
{
"foo": 1,
"bar": "2",
"baz": |
"bar": [

prog3, null, {userId:xdmp.user
prog4, null, {userId:xdmp.user

(
(
(
(

Py

7

]

Notice that all of the documents are returned, but the elements with protected paths are missing
from the content:

<bar baz="1" attr="test"s>abc</bar>
"test": 5
<reg expr="this is a string">l</reg>

In the second query, the document does not show up at all because the query is searching on a
protected path that e1s-user-1 is not allowed to see (protected path “test”).

Note: If you are getting different results, check to seethat you have set up your user roles
correctly and added the query rolesets to the Security database.

Page 58—Security Guide

MarkLogic Server Element Level Security

Now, modify the query to use the context of the e1s-user-2 and run the queries again:

// run this against the Documents database

var progl = “cts.search(cts.wordQuery ("def"), "unfiltered") ~;

var prog2 = “cts.search(cts.elementAttributeWordQuery (xs.QName ("bar"),
xs.QName ("attr"), "testl"), "unfiltered") ~;

var prog3 = “cts.search(cts.jsonPropertyValueQuery ("bar", "2")) " ;

var prog4 = “cts.search(cts.elementAttributeWordQuery (xs.QName ("reg"),
xs.QName ("expr"), "is"), "unfiltered") ~;

var res [1;

res.push (xdmp.eval "els-user-2")})) ;

"els-user-2")}));
) 1))
) 1))

(

(progl, null, {userId:xdmp.user
res.push (xdmp.eval

(

(

{

prog2, null, {userId:xdmp.user
{
{

7

"els-user-2"
"els-user-2"

res.push (xdmp.eval
res.push (xdmp.eval
res;
=>
[
"<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n
<root>
<bar baz=\"1\" attr=\"test\"s>abc</bar>
<bar baz=\"2\">def</bar>
<bar attr=\"testl\">ghi</bar>
</root>",
"<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n
<roots><bar baz=\"1\" attr=\"test\"s>abc</bar>
<bar baz=\"2\">def</bar>
<bar attr=\"testl\">ghi</bar>
</root>",
{
"foo": 1,
"bar": "2",
"baz": |

"bar": [

3,

4

1

prog3, null, {userId:xdmp.user
prog4, null, {userId:xdmp.user

(
(
(
(

Py

7

"test": 5
}

I
"<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n
<root>
<reg expr=\"this is a string\">1l</reg>
<reg>2</reg>
</root>"

]

Thistimeall of the documents are returned, along with the protected elements. Notice that the one
document is returned twice; two different queries will find the same document.

MarkLogic 9—May, 2017 Security Guide—Page 59

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security

Run the query one more time using the xdmp: eval pattern as eis-user-3 and notice that none of
the documents are returned because e1s-user-3 does not have the basic permissions to read the
documents.

// run this against the Documents database

var progl = “cts.search(cts.wordQuery ("def"), "unfiltered") ;

var prog2 = “cts.search(cts.elementAttributeWordQuery (xs.QName ("bar"),
xS .QName ("attr"), "testl"), "unfiltered") ~;

var prog3 = “cts.search(cts.jsonPropertyValueQuery ("bar", "2"))";

var prog4 = “cts.search(cts.elementAttributeWordQuery (xs.QName ("reg"),
xS .QName ("expr"), "is"), "unfiltered") ~;

var res [1;

(
res.push (xdmp.eval (progl, null, {userId:xdmp.user
res.push (xdmp.eval (prog2, null, {userId:xdmp.user
(({
(({

"els-user-3")}));
"els-user-3")}));
) 1)) ;
) 1))

I

"els-user-3"
"els-user-3"

res.push (xdmp.eval (prog3, null, {userId:xdmp.user
res.push (xdmp.eval (prog4, null, {userId:xdmp.user
res;

—~ o~ o~ —~

1

=>

[
null,
null,
null,
null
1

Because e1s-user-3 does not have document level permissions, no documents are returned. You
can use document level permissions along with element level security for additional security. See
“Combining Document and Element Level Permissions” on page 96 for more information.

Now unprotect the paths and run the previous query again without the protected paths to see
difference in output. Unprotect the paths :

//run this against the Security database

var security = require('/MarkLogic/security.xqy') ;
declareUpdate () ;

security.unprotectPath('/root/bar [@baz=1]", []);

security.unprotectPath('test', []1);
security.unprotectPath('/root/reg[fn:matches (@expr, "is")]', [1);

Note: Adding, unprotecting, or changing permissions on protected paths will trigger
reindexing. After unprotecting elements, you must wait for reindexing to finish.

Page 60—Security Guide

MarkLogic Server Element Level Security

Unprotecting the paths does not remove them from the database. You will still see the protected
pathsin the Admin Ul or when you run
fn:collection("http://marklogic.com/xdmp/protected-paths") agal nst the Security database.
But if you areels-role-1 Or els-role-2, you will be able to see the whole document once the
protected paths are unprotected, if you have document permissions for the document (i.e.
els-role-1 and els-role-2, but NOt e1s-role-3). See“Unprotecting or Removing Paths’ on
page 76 for more details.

L ook through the code examples and run the queries using the xdmp . eval pattern. Run the queries
in the context of the different usersto better understand how the element level security logic
works.

6.2.6 Additional Examples

This section includes additional examplesto try, both in XQuery and Server-Side JavaScript, that
demonstrate the concealing of elements. Using £n:doc instead of acts query to retrieve
documents, different userswill be able to view (or not view) protected elements. Since thereisno
guery involved, query rolesets are not required.

These examples make use of the users and roles set up in the earlier example. (See
“Example—Element Level Security” on page 46 for details.) The first example shows hierarchies
of permissions (top-secret, secret, and unclassified) in a document. The second example shows a
dightly different way of protecting content with attributes. The example queries can be donein
using XQuery or JavaScript.

e XQuery - Query Element Hierarchies

* XQuery - Matching By Paths or Attributes

e JavaScript - Query Element Hierarchies

e JavaScript - Matching By Paths or Attributes

6.2.6.1 XQuery - Query Element Hierarchies
Use this code to insert a new document (along with permissions) into the Documents database:

(: insert document with permissions => run against Documents database

:)
xquery version "1.0-ml";

xdmp : document -insert (
"hierarchy.xml", <roots>
<title>Title of the Document</title>
<summary>Summary of document contents</summarys>
<executive-summarys>Executive summary of the document contents
<secret>0Only role having "secret" can read this
<top-secret>0Only role having "top-secret" can read this
</top-secret>

MarkLogic 9—May, 2017 Security Guide—Page 61

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security

</secret>
</executive-summary>
<content>Contents of document
<top-secret>0Only role with "top-secret" can read this
<secret>Only role with "secret" can read this</secret>
</top-secret>
Unclassified content
</content>
</root>,
(xdmp:permission("els-role-1", "read"), xdmp:permission("els-role-2",
"read"),
xdmp:permission("els-role-1", "update"), xdmp:permission("els-role-2",
"update")))

Add protected paths with permissions for roles to the Security database:

(: add protected paths -> run against the Security database :)

xquery version "1.0-ml";
import module namespace sec="http://marklogic.com/xdmp/security"
at "/MarkLogic/security.xqy";

sec:protect-path("secret", (), (xdmp:permission("els-role-2",
"read"))),

sec:protect-path("top-secret", (), (xdmp:permission("els-role-1",
"read")))

=>
Returns two numbers representing the protected paths

Note: Adding, unprotecting, or changing permissions on protected paths will trigger
reindexing.

Test this example in the context of the different els-users. Thisfirst query uses the context of

els-user-1.

(: run this against the Documents database :)

xdmp:eval ('fn:doc ("hierarchy.xml") ', (),
<options xmlns="xdmp:eval">
<user-id>{xdmp:user ("els-user-1") }</user-id>
</options>
)
=>
<root>
<title>Title of the Document
</title>
<summary>Summary of document contents</summarys>
<executive-summarys>Executive summary of contents
</executive-summary>
<content>Contents of document
<top-secret>0Only role with "top-secret" can read this</top-secret>

Page 62— Security Guide

MarkLogic Server Element Level Security

Unclassified content</contents>
</root>

The “top-secret” role (e1s-user-1) cannot see the el ements marked with “ secret”, only those that
have no protected paths or marked with the protected path for “top-secret”. Next, run the query in
the context of e1s-user-2:

(: run this against the Documents database :)

xdmp:eval ('fn:doc ("hierarchy.xml") ', (),

<options xmlns="xdmp:eval">
<user-id>{xdmp:user ("els-user-2") }</user-id>

</optionss>

)

=>

<root>

<title>Title of the Document</titles>
<summary>Summary of document contents</summarys
<executive-summary>Executive summary of contents
<secret>Only role having "secret" can read

this</secret></executive-summary>
<content>Contents of document

Unclassified content</contents

</root>

Notice that even though in the original document there is an element “secret” within the
“top-secret” contents of the document, it is achild of the “top-secret” element and therefore
hidden to users without the “top-secret” role.

The e1s-user-1 (“top-secret”) cannot see the “secret” content unless you add the e1s-role-2t0
els-user-1. When you add therole, e1s-user-1 will be able to see both the “ secret” and
“top-secret” elements.

If you run the query as e1s-user-3, the query returns an empty sequence. The els-user-3 from
the previous query does not have permission to even see the document.

6.2.6.2 XQuery - Matching By Paths or Attributes

This next example shows how protected paths can be used with £n:contains and fn:matches. The
example uses the same roles from the previous example, adding anew role (e1s-role-3).

First unprotect the protected paths from the previous example:

(: unprotect the protected paths -> run against the Security database

:)
xquery version "1.0-ml";

import module namespace sec = "http://marklogic.com/xdmp/security"
at "/MarkLogic/security.xqy";

MarkLogic 9—May, 2017 Security Guide—Page 63

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security

sec:unprotect-path("secret", ()),
sec:unprotect-path("top-secret", ())

Note: Adding or unprotecting protected paths will trigger reindexing. After unprotecting
elements, you must wait for reindexing to finish.

Create anew role eis-role-3 and add e1s-user-3 to the role. See “Create Roles” on page 47 and
“Create Users and Assign Roles’ on page 47 for detalils.

Add a new document with permissions to the Documents database:

(: run this against the Documents database :)
xquery version "1.0-ml";

xdmp : document -insert (
"attributes.xml", <root>
<title>Document Title</titles>
<summary>Summary of document contents</summarys>
<executive-summarys>Executive summary of contents
<info attr="EU">Only role with "EU" attribute can read this summary

</info>

<info attr="UK">Only role with "UK" attribute can read this summary
</info>

<info attr="US">Only role with "US" attribute can read this summary
</info>

</executive-summary>
<content>Contents of document
Unclassified content

<notes>
<info attr="EU">Only role with "EU" attribute can read this
content</info>
<info attr="UK">Only role with "UK" attribute can read this
content</info>
<info attr="US">Only role with "US" attribute can read this
content</info>
</notes>
</content>
</root>,
(xdmp:permission("els-role-1", "read"), xdmp:permission("els-role-2",
"read"), xdmp:permission("els-role-3", "read"),
xdmp:permission("els-role-1", "update"), xdmp:permission("els-role-2",
"update"), xdmp:permission("els-role-3", "update")))

Add the new protected paths with permissions for roles to the Security database:

(: add new protected paths -> run against the Security database :)
xquery version "1.0-ml";

import module namespace sec="http://marklogic.com/xdmp/security"
at "/MarkLogic/security.xqy";

Page 64—Security Guide

MarkLogic Server Element Level Security

sec:protect-path("//infol[fn:matches (@attr, 'US')]", (),

(
(xdmp:permission("els-role-1", "read"))),
sec:protect-path("//infol[fn:matches (@attr, 'UK')]", (),
(xdmp:permission("els-role-2", "read"),
xdmp :permission("els-role-3", "read"))),
sec:protect-path("//infol[fn:matches (@attr, 'EU')]", (),
(xdmp:permission("els-role-3", "read")))

=>

Returns three numbers representing the protected paths

Note: Adding, unprotecting, or changing permissions on protected paths will trigger
reindexing.

Notice that the protected paths include attributes in the document elements. Also note that
els-role-3 haspermissions for two protected paths (eattr, ‘uk’ and eattr, ‘Eu’).

Run this next query, similar to the previous queries, thistime looking for the attributes. xml
document. First query in the context of e1s-user-1 Who has arole that can seethe “US’ attribute:

(: run this against the Documents database :)

xdmp:eval ('fn:doc ("attributes.xml") ', (),
<options xmlns="xdmp:eval">
<user-id>{xdmp:user ("els-user-1") }</user-id>
</optionss>

=>

<?xml version="1.0" encoding="UTF-8"?>

<root>

<title>Document Title</title>

<summary>Summary of document contents</summarys>
<executive-summary>Executive summary of contents

<info attr="US">Only role having "US" attribute can read this
summary</info>

</executive-summary>
<content>Contents of document
Unclassified content
<notes>
<info attr="US">0Only role having "US" attribute can read this content
</info>
</notes>
</content>
</root>

Next modify the query to run in the context of e1s-user-2, who hasarole that can see the “UK”
attribute:

(: run this against the Documents database :)

xdmp:eval ('fn:doc ("attributes.xml") ', (),
<options xmlns="xdmp:eval"s>

MarkLogic 9—May, 2017 Security Guide—Page 65

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security

<user-ids>{xdmp:user ("els-user-2") }</user-id>
</options>

=>
<?xml version="1.0" encoding="UTF-8"?>
<root>
<title>Document Title</titles>
<summary>Summary of document contents</summarys>
<executive-summary>Executive summary of contents
<info attr="UK">Only role having "UK" attribute can read this summary
</info>
</executive-summary>
<content>Contents of document
Unclassified content
<notes>
<info attr="UK">Only role having "UK" attribute can read this
content</info>
</notes>
</content>
</root>

And finally modify the query to run in the context of e1s-user-3:

(: run this against the Documents database :)

xdmp:eval ('fn:doc ("attributes.xml") ', (),
<options xmlns="xdmp:eval'">
<user-ids>{xdmp:user ("els-user-3") }</user-id>
</options>

=>
<?xml version="1.0" encoding="UTF-8"?>
<root>

<titlesDocument Title</title>

<summary>Summary of document contents</summarys>
<executive-summary>Executive summary of contents

<info attr="EU">Only role having "EU" attribute can read this summary

</info>
<info attr="UK">Only role having "UK" attribute can read this summary

</info>

</executive-summary>
<content>Contents of document
Unclassified content

<notes>
<info attr="EU">Only role having "EU" attribute can read this content

</info>
<info attr="UK">0Only role having "UK" attribute can read this content

Page 66—Security Guide

MarkLogic Server Element Level Security

</info>
</notes>
</content>
</root>

The e1s-user-3 has protected path permissions on both elements with the “EU” info attribute and
the elements with the “UK” info attribute, so the e1s-user-3 can see both elements. If you are
getting different results, check to be sure that you created an e1s-role-3 and added the
els-user-3 to that role.

Note: If you run the query in the context of the admin user, you will be able to see the
entire document because the query isusing £n:doc.

6.2.6.3 JavaScript - Query Element Hierarchies

You can aso try these examples demonstrating concealed elements using JavaScript. Using
fn:doc INstead of a cts query to retrieve documents, different users will be able to view (or not
view) protected elements. Since there is no query involved, query rolesets are not required.

Use this JavaScript code to insert this document (with permissions) into the Documents database:

// insert document with permissions -> run against Documents database

declareUpdate () ;

var perms = [xdmp.permission("els-role-1", "read"),

xdmp .permission("els-role-2", "read"),

xdmp .permission("els-role-1", "update"), xdmp.permission("els-role-2",
"update")

1;
xdmp . documentInsert (
"hierarchy.xml", xdmp.unquote (~
<root>
<title>Title of the Document</titles
<summary>Summary of document contents</summarys>
<executive-summary>Executive summary of the document contents
<secret>0Only role having "secret" can read this
<top-secret>0Only role having "top-secret" can read this
</top-secret>
</secret>
</executive-summary>
<content>Contents of document
<top-secret>0Only role with "top-secret" can read this
<secret>0Only role with "secret" can read this</secret>
</top-secret>
Unclassified content
</content>
</root>
*), {permissions: perms})

Add protected paths with permissions for roles to the Security database:

MarkLogic 9—May, 2017 Security Guide—Page 67

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security

// add protected paths -> run against the Security database

declareUpdate () ;
var security = require ('/MarkLogic/security.xqgy') ;

security.protectPath('secret', [], [xdmp.permission("els-role-2",
"read", "element")]),

security.protectPath('top-secret', [], [xdmp.permission("els-role-1",
"read", "element")])

=>
Returns a number representing the protected paths

Note: Adding, unprotecting, or changing permissions on protected paths will trigger
reindexing.

Test this example in the context of the different els-users. This query uses the context of

els-user-1.

// run this query against the Documents database

xdmp.eval ("fn.doc ('hierarchy.xml')", null,

{

"userId" : xdmp.user("els-user-1")

3]
=>
<?xml version="1.0" encoding="UTF-8"?>
<root>
<title>Title of the Document</titles
<summarys>Summary of document contents</summarys
<executive-summary>Executive summary of the document contents

</executive-summary>
<content>Contents of document

<top-secret>0Only role with "top-secret" can read this</top-secret>

Unclassified content
</content>
</root>

The “top-secret” role (e1s-user-1) cannot see the elements marked with “ secret”, only those that
have no protected paths or marked with the protected path for “top-secret”. Next, run the query in
the context of e1s-user-2:

// run this query against the Documents database

xdmp.eval ("fn.doc ('hierarchy.xml')", null,

{

"userId" : xdmp.user("els-user-2")

P
=>
<?xml version="1.0" encoding="UTF-8"?>

Page 68—Security Guide

MarkLogic Server Element Level Security

<root>
<title>Title of the Document</title>
<summary>Summary of document contents</summarys>
<executive-summarys>Executive summary of the document contents

<secret>Only role having "secret" can read this</secret>
</executive-summary>
<content>Contents of document

Unclassified content
</content>

</root>

Notice that even though in the original document, thereis an element “secret” within the
“top-secret” contents of the document, it is achild of the “top-secret” element and therefore
hidden to users without the “top-secret” role.

The e1s-user-1 (“top-secret”) cannot see the “ secret” content unless you add the e1s-role-2 to
els-user-1. When you add therole, e1s-user-1 will be able to see both the “ secret” and
“top-secret” elements.

If you run the query as e1s-user-3, the query returns an empty sequence. The els-user-3 from
the previous query does not have permission to even see the document.

6.2.6.4 JavaScript - Matching By Paths or Attributes

This next example shows how protected paths can be used with £n.contains and £n.matches. The
example uses the same roles from the previous example, adding anew role (e1s-role-3).

First unprotect the protected paths from the previous example:

// unprotect protected paths -> run against the Security database

declareUpdate () ;
var security = require ('/MarkLogic/security.xqgy') ;

security.unprotectPath('secret', []),
security.unprotectPath('top-secret', [])

Note: Adding, unprotecting, or changing permissions on protected paths will trigger
reindexing.

Createanew role e1s-role-3 and add e1s-user-3 to therole. See“ Create Roles’ on page 47 and
“Create Users and Assign Roles’ on page 47 for detalils.

Add a new document to the Documents database:

// insert document and permissions -> run this against the Documents
database

MarkLogic 9—May, 2017 Security Guide—Page 69

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security

declareUpdate () ;

var perms = [xdmp.permission("els-role-1", "read"),

xdmp .permission("els-role-2", "read"),

xdmp .permission("els-role-3", "read"), xdmp.permission("els-role-1",
"update"),

xdmp .permission("els-role-2", "update"), xdmp.permission("els-role-3",
"update")

i
xdmp . document Insert (
"attributes.xml", xdmp.unquote ("~
<root>
<title>Document Title</titles>
<summary>Summary of document contents</summarys>
<executive-summarys>Executive summary of contents
<info attr="EU">Only role with "EU" attribute can read this summary

</info>

<info attr="UK">Only role with "UK" attribute can read this summary
</info>

<info attr="US">0Only role with "US" attribute can read this summary
</info>

</executive-summary>
<content>Contents of document
Unclassified content
<notes>
<info attr="EU">Only role with "EU" attribute can read this
content</info>
<info attr="UK">Only role with "UK" attribute can read this
content</info>
<info attr="US">Only role with "US" attribute can read this
content</info>
</notes>
</content>
</root>
*), {permissions: perms})

Add the new protected paths with permissions for roles to the Security database:

// add new protected paths -> run against the Security database

declareUpdate () ;
var security = require ('/MarkLogic/security.xqgy') ;

security.protectPath("//info[fn:matches(@attr, 'US')]",
[1, [xdmp.permission("els-role-1", "read", "element")]),
security.protectPath("//info[fn:matches(@attr, 'UK')]",
[1, [xdmp.permission("els-role-2", "read", "element"),
xdmp .permission("els-role-3", "read", "element")]),
security.protectPath("//info[fn:matches (@attr, 'EU')I", [],
[xdmp.permission("els-role-3", "read", "element")])

=>

Returns one number representing the protected paths

Page 70—Security Guide

MarkLogic Server Element Level Security

Note: Adding or changing permissions on protected paths will trigger reindexing.

Run the same queries as before, first in the context of e1s-user-1, who has arole that can see the
“US’ attribute:

// run this query against the Documents database

xdmp.eval ("fn.doc ('attributes.xml')", null,

{

"userId" : xdmp.user("els-user-1")
P
=>
<?xml version="1.0" encoding="UTF-8"?>
<root>
<titlesDocument Title</title>
<summary>Summary of document contents</summarys>
<executive-summary>Executive summary of contents

<info attr="US">Only role with "US" attribute can read this
summary</info>

</executive-summary>

<content>Contents of document

Unclassified content

<notes>

<info attr="US">Only role with "US" attribute can read this
content</info>

</notes></content>
</root>

Next modify the query to run in the context of e1s-user-2,who has arole that can see the “UK”
attribute

// run this query against the Documents database

xdmp.eval ("fn.doc ('attributes.xml')", null,

{

"userId" : xdmp.user("els-user-2")
1)
=>
<?xml version="1.0" encoding="UTF-8"?>
<root>
<titlesDocument Title</title>
<summary>Summary of document contents</summarys>
<executive-summary>Executive summary of contents

<info attr="UK">Only role with "UK" attribute can read this
summary</info></executive-summary>
<content>Contents of document

Unclassified content

<notes>

MarkLogic 9—May, 2017 Security Guide—Page 71

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security

<info attr="UK">Only role with "UK" attribute can read this
content</info>

</notes></content>
</root>

And finally modify the query to run in the context of e1s-user-3:

// run this query against the Documents database

xdmp.eval ("fn.doc ('attributes.xml')", null,

{

"userId" : xdmp.user("els-user-3")
P
=>
<?xml version="1.0" encoding="UTF-8"?>
<root>
<titlesDocument Title</title>
<summary>Summary of document contents</summarys>
<executive-summary>Executive summary of contents

<info attr="EU">Only role with "EU" attribute can read this
summary</info>

<info attr="UK">Only role with "UK" attribute can read this
summary</info>

</executive-summary>

<content>Contents of document

Unclassified content

<notes>
<info attr="EU">Only role with "EU" attribute can read this
content</info>
<info attr="UK">Only role with "UK" attribute can read this
content</info>
</notes></content>
</root>

The e1s-user-3 has protected path permissions on both elements with the “ EU” info attribute and
the elements with the “UK” info attribute. So that user can see both elements.

Note: If you run the query in the context of the admin user, you will be able to see the
entire document because the query isusing £n. doc.

Page 72—Security Guide

MarkLogic Server Element Level Security

6.3 Configuring Element Level Security

Configuring element level security includes setting up protected paths and creating query rolesets,
then adding them to the Security database. This section coversthe steps you will need to follow to
configure element level security. As an overview, you will need to do the following:

e Setuproles
» Create users and assign roles
* Add or update documents with permissions for users

* Add protected paths for elements in documents, by inserting the protected paths into the
Security database

* Add the query rolesets to the Security database

Configuring the query rolesetsis atask for the administrator. There are two helper functions to
help configure query rolesets. The helper function xdmp : database-node-query-rolesets IS used
for querying documents already in your database to discover existing query rolesets, while

xdmp : node-query-rolesets IS USed to query for protected paths in documents as they are being
loaded into the database. See “ APIsfor Element Level Security” on page 104 for more
information. You can configure element level security using the Admin Ul, using XQuery, or by
using REST.

Note: The number of protected paths that you set on a single element may impact
performance. One or two protected paths on an element will have no discernable
impact (lessthan 5% in our testing), 10 or so protected paths may have some
impact (around 10%), but setting 100 or so protected paths on asingle el ement will
cause severe and noticeable impact on performance.

This section covers these topics:

* Protected Paths

¢ Performance Considerations With Protected Paths

* Query Rolesets

6.3.1 Protected Paths

You can define permissions on an element in the same way that you define permissionson a
document. Element level security works by specifying an “indexable’ path to an element (or
JSON property) and configuring permissions on that path - creating a protected path.

For performance and security reasons, you can only use a subset of XPath for defining protect
paths. For details, see Element Level Security in the XQuery and XSLT Reference Guide.

The section contains these topics:

e Examples of Protected Paths

MarkLogic 9—May, 2017 Security Guide—Page 73

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security

* Namespaces as Part of a Protected Path

e Unprotecting or Removing Paths

¢ Performance Considerations With Protected Paths

Note: Theread, update, and insert permissions for an element are checked separately.
For instance, if there are permissions for read, but no permissions for update or
insert, there is no control for update or insert on that element. If there are no
permissions on an element, anyone can read that element, given that they have the
proper document level permssions.

6.3.1.1 Examples of Protected Paths
This table shows some examples of protected paths.

Protected Path Permissions Result

[foolbar (rolel, read) Element “bar” is readable by
“rolel” but concealed for all
other roles. No mention of other
permissions means that others
can update or insert content for

this element.
[foolbar (rolel, read) Element “bar” is readable by
(role2, read) “rolel” or “role2” but con-

cedled for all other roles. No
mention of other permissions
means that others can update or
insert content for this element.

[fool/bar (rolel, read) Element “bar” is readable by
(rolel, update) “rolel” but concealed for all
other roles. “Rolel” can update
the element. No mention of
insert permissions means that
others can insert content for this

element.
[foo/bar[@attr= “test”] (rolel, read) Same as above except that it
(rolel, update) only appliesto a bar element if

the element has an attribute
“attr” with the value “test”. No
mention of insert permissions
means that others can insert con-
tent for this e ement.

Page 74—Security Guide

MarkLogic Server Element Level Security

Protected Path Permissions Result

bar (rolel, read) Thisisthe smplest path. Ele-
ment “bar” is readable by “role
17, but concealed for all other
roles. This appliesto all “bar”
elements. No mention of other
permissions means that others
can update or insert content for

this element.
/root/reg[fn:matches(@expr, 'is)] | (rolel, read) Elements that match the regular
(rolel, update) express for ‘is” will be readable

by “role 1”, but concealed for all
other roles. “Role 1" can update
the element. No mention of
Insert permissions means that
others can insert content for this
element.

For more about update permissions with element level security, see the table in the section
“Document and Element Level Permissions Summary” on page 100.

Warning Defining element level security protection (protected paths) on “reserved”
elements or properties (for example, alerting, thesaurus, and so on) may cause
undefined behavior.

The path is an XPath expression, not afield.

6.3.1.2 Namespaces as Part of a Protected Path

Both namespaces and prefixes can be used as part of a protected path. For instance this ssimple
example uses the namespace “ex” as part of the protected path:

(: add protected paths -> run against the Security database :)

xquery version "1.0-ml";
import module namespace sec = "http://marklogic.com/xdmp/security"
at "/MarkLogic/security.xqy";

declare namespace ex = "http://marklogic.com/example";
let $role := "role-4"
return

sec:protect-path (
"/ex:envelope/ex:instance/employee/salary",

(let Sprefix := "ex", $namespace-uri :=
"marklogic.com/example"
return

MarkLogic 9—May, 2017 Security Guide—Page 75

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security

sec:security-path-namespace ($prefix, $namespace-uri)),
(xdmp:permission($role, "read"))

)

For ssimple cases, you can aso specify a namespace as part of a protected path when configuring
protected paths in the Admin Ul.

I s v J§ Configure J Describe J cweat= B ver D

Protected Path: /ex:envelope/ex:instance
/lemployee/salary

ok cancel

protected path — A protected-path definition) unprotect)

|||||

P (1) - The N D used by this protected path: Prefix(uri}

ex (marklogic.com/example)}

permissions — Permizsions to the protected path

role name (capability)

[Keep]

v role-4 (read)

[add] w read -

more permissions

path set
Path Set

ok cancel

You can also specify a namespace when using the hel per functions
xdmp :database-node-query-rolesets and xdmp :node-query-rolesets. SEE page “Hel per
Functions for Query Rolesets” on page 87 for more info.

6.3.1.3 Unprotecting or Removing Paths

Unprotecting protected paths does not remove them from the database, it removes the
permissions, which disables the protection. You will still see the unprotected pathsin the Admin
Ul. The unprotected paths can also be seen by running
fn:collection("http://marklogic.com/xdmp/protected-paths") agal nst the Security database,
in the Query Console.

Removing protected pathsis atwo step process. First you must unprotect the path, and then you
can remove it.

Note: You must first unprotect a path before removing it to trigger the reindexer. Since

guery rolesets changes don’t require reindexing, there is no need for the separate
step of unprotecting before removing a query roleset.

Page 76—Security Guide

MarkLogic Server Element Level Security

To unprotect a protected path:

1 Navigate to Protected Path Configuration by clicking Security and then Protected Pathsin
the | eft tree menu.

2. Click on the name of the protected path you want to unprotect.

3. On the Protected Path Configuration page there are two buttons; an unprotect button and a
delete button (greyed out).

@ grevees greewves queen guesss

Protected Path: /root/barj@baz=1] | ok | | cancel |
protected path — A protected-path definition :- unprotect -:)
Namesp: (0) — The N 0 used by this protected path: Prefix(uri)

none
permissions — Permizsions to the protected path

role name (capability)

[Keep]

v els-role-2 (read)

[add] w read -

| more permissions |

path set
Path Set

ok || cancel |

4, Click the unprotect button.
5. Click ok to save the changes.

When you have unprotected the protected paths, you'll see the protected paths on the Summary
page, but no permissions are associated with the paths.

o T oo T o

Path Expression Namespaces Permissions Path Set
Irootbar[@baz=1]
Irootireg[fn:matches(@expr, \is')]

test

MarkLogic 9—May, 2017 Security Guide—Page 77

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security

To remove a path, you will need to first unprotect the path. See “ Unprotecting or Removing
Paths’ on page 76

1. After unprotecting the path, go back to the Protected Path Configuration page. Notice that
the delete button is now available and the unprotect button is greyed out.

[sommay T contiowe T pescribe T creste T vee N
Protected Path: /root/bar[@baz=1] [ok | [cancer |

protected path — A protected-path definition -: :- delete -:

Namesp: (0) — The N 0 used by this protected path: Prefix(uri)

none
permissions — Permizsions to the protected path

role name (capability)

No Current Permissions
[add] w read -

| more permissions |

path set
Path Set

ok || cancel |

2. Click the delete button to remove this protected path.

3. Click ok to confirm and save your changes.

The deleted path no longer appears on the Summary page of protected paths.

=R ar-aa aaree |

Path Expression Namespaces Permissions Path Set

Irootireg[fn:matches(@expr, \is'}]

test

Note: Adding, unprotecting, or changing permissions for protected paths will trigger
reindexing of the relevant databases. Having too many unprotected paths for your
database can affect performance. Best practice is to delete unprotected paths when

you nho longer need them. Be sure to let the reindexing triggered by unprotecting
finish before you delete the paths.

Page 78—Security Guide

MarkLogic Server Element Level Security

6.3.1.4 Performance Considerations With Protected Paths

The fewer protected paths that you have in your documents, the better performance you will have
with element level security. One way to reduce the number of protected pathsisto group
information. If you have the ability to control the schema of your documents, you can group
information that you want to protect under one element and then protect that element.

In this example, an insurance company has a schema that groups policy information to control
accessto the information, making it easier to protect client information and policy information by
r0|e(US Read,ID_Read,Compliance,EWKjRisky

"policy": {

"access": "US Read",

"client":
"access": "ID Read",
"name": "Paul",
"address": "999 Broadway St",
"phone": "323-344-1555",
"country": "US",
"ssn4digits": "5664"

}

"clientSSN":

"access": "Compliance",

"ssn": "999-999-5664"
"clientIncome": ({

"access": "Risk",

"income": "44,4444"
"info": {

"access": "Risk",

"propertyType": "Home",

"premium": 432,
"assetValue": 750000,
"currency": "Dollar"

}
}

Different users would be able to see different parts of the data: the Call Center might have the
1D_read role, the Financial Risk Researcher might have the risk role, and a Compliance Admin
might have the 1p_read, risk, and compliance roles. Each of these would all need to have the us
Read role aswell.

If you don’t have control of the schema and your document datais in various formats, you can
leverage Entity Services as away to improve performance. You can use entity services to create
an entity that groups multiple elements under asingle node and then use asingle protected path on
that node. See Introduction to Entity Services in the Entity Services Developer’s Guide for
information about creating an entity that links to the source document and protecting both.

MarkLogic 9—May, 2017 Security Guide—Page 79

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security

6.3.2 Query Rolesets

What are query rolesets and what do they do? This section describes query rolesets and how they
are used with element level security. It contains these topics:

* How Query Rolesets Work

e Parent/Child Relationships in Query Rolesets

* OQverlapping Protected Paths

* Protected Path Sets

¢ Helper Functions for Query Rolesets

* Query for Protected Paths on a Document

6.3.2.1 How Query Rolesets Work

When you add adocument into MarkL ogic, it parses the document and puts“terms’ (or keys) into
the universal index. Later when you run a query, the query side needs to know what terms to find
in the universal index. In element level security, the terms are combined with permissionsin the
index. Existing query rolesets are automatically used by the query to figure out which termsto
use, based on the role(s) of the user running the query. Each query can include multiple query
rolesets. If no query rolesets are configured, aquery will only match documents using the terms
that are visible to everyone.

Let’s use an example. Say you have a protected path defined as the following:

sec:protect-path("/root/bar [@baz=1]", (),
(xdmp :permission("els-role-2", "read")))

And then you ingest a document like this:

<root>
<bar baz=1>Hello</bars>
</root>

When MarkL ogic parses the document, it sees that the word “ue110” isinside the element <par>
that matches the protected path definition (Since var isunder root and has an attribute baz=1). So
instead of simply putting the term “re110” into the universal index, it combines the term “ne110”
and the permission information in the protected path (in this case, basically the role name
“els-role-2") into one term and puts this new term into the universal index.

Suppose then you run a search with aquery cts:word-query ("Hello") With auser that has the

els-role-2 role. The query must know this new term to find the document. The query aready
knows the word “re110” but how would it know the permission information in the protected path?

Page 80—Security Guide

MarkLogic Server Element Level Security

Thisiswhere the query rolesets are used. You configure query rolesets (with just e1s-role-2 Iin
this example) and then the query compares that query roleset with the caller’srole. If thecaller’'s
role “matches’ the query rolesets, the query will combine that information with the word “ue110”
to generate the term, which matches the term put into the universal index by MarkL ogic.

There are three ways to configure query rolesets:

¢ USe xdmp:database-node-query-rolesets for documents with protected paths that are
aready in MarkLogic. See “Helper Functions for Query Rolesets’ on page 87 for
information.

e Usexdmp:node-query-rolesets to configure query rolesets as documents are being |oaded
into MarkLogic. See “Helper Functions for Query Rolesets” on page 87 for information.

e Usesec:add-query-rolesets t0 manually create the query rolesets on a case-by-case
basis.

This last method of manually creating query rolesets works for simple examples and cases where
there are not many protected paths. If you have a single protected path that matches an element
like one in the examples above (with no overlaps), use asimple rule to create the query roleset in
the Admin Ul. See“ Add Protected Paths and Query Rolesets” on page 50 for details

Thetwo hel per functions; xdmp : database-node-query-rolesets and xdmp :node-query-rolesets,
can help with configuring more complex query rolesets, either for documents already stored in
MarkLogic or while documents are being added. MarkL ogic leaves query rolesets configuration
(creating and inserting the query rolesets into the Security database) to the adminstrator.

Query rolesets are made up of roles. There can be any number of rolesin aroleset, aslong asthere
are no duplicates. There can be multiple query rolesets in a database.

query rolesets

query roleset q‘Ly roleset query roleset
rolel | \ro|e3 role2 l rolel / role5
roled roleb role3 roled

MarkLogic 9—May, 2017 Security Guide—Page 81

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security

Query rolesets are required for element level security to work. You may ask why not just get the
guery rolesets information automatically from the protected paths when you configure
sec:protect-path t0 avoid the manual configuration of query rolesets. For this simple example
this seems practical, but in the real world it is not uncommon to have multiple protected paths that
match the same node or element. Some use caseswill have 1000s of protected paths but only 100s
of query rolesets. The indexer side of MarkL ogic often needs to combine multiple query rolesets
to create the term.

Thereis no way for the query side to derive that information from the protected path
configuration, since whether a node element matches a protected path is based on the “value’ of
the node. And the query side doesn’t know the value of anode. Thereis no way for the query side
to know what subsets of al the configured protected paths need to be taken into consideration
when creating the query term. Since enumerating all possible combinations of therolesused in all
protected pathsis not practical, MarkLogic leaves query rolesets configuration (creating and
inserting the query rolesets into the Security database) to the adminstrator.

6.3.2.2 Parent/Child Relationships in Query Rolesets

You might have a document where one user has permissions for an element that is the child of a
parent element, for which that user does not have permissions. For example, there might be a
simple document like this:

<root>

<content>Contents of document
<top-secret>0Only role with "top-secret" can read this

<secret>0Only role with "secret" can read this</secrets>

</top-secret>

Unclassified content

</content>

</root>

This document might have these protected paths:

sec:protect-path("secret", (), (xdmp:permission("els-role-2",
"read"))),

sec:protect-path("top-secret", (), (xdmp:permission("els-role-1",
Ilreadll)))

A user with permissions on only the protected path for “ secret” can’t see “secret” content unless
the user also had permissions for the protected path for “top-secret” because the “ secret” nodeisa
child of the “top-secret” parent node.

6.3.2.3 Overlapping Protected Paths

Consider amore complex case with multiple paths matching the same node. Suppose you have a
document like this:

Page 82—Security Guide

MarkLogic Server Element Level Security

<root>
<foo a=1 b=2 c=3>Hello</foo>
</root>

It is possible to define three different protected paths that all match the £o0 €element, overlapping
each other:

sec:protect-path("/root/fool@a=1]1", (), (xdmp:permission("els-role-1",
"read")))
sec:protect-path("/root/fool[@b=2]", (), (xdmp:permission("els-role-2",
"read")))
sec:protect-path("/root/fool@c=3]1", (), (xdmp:permission("els-role-3",
"read")))

MarkLogic will still create just one term for “ue110”, which is the combination of the word and
the query rolesets ((“els—role—l”),(“els—role—2”),(“els—role—3”)).

As aside note, in the above example the query rolesetsis
((“els—role—l”),(“els—role—2”),(“els—role—B”)), which is different from S|mply

(“els—role—l” , els-role-2" ,“els—role—B”).

Note: In MarkLogic 9.0-2 query rolesets have been ssimplified and optimized. Existing
documents with query rolesets configured in 9.0-1 will still be protected in 9.0-2.
To take advantage of the optimization however, you need to reindex your
documents and regenerate your query rolesets using the helper functions (“APls
for Element Level Security” on page 104). It is highly recommended that you
reindex any protected documents already in your database and regenerate your
guery rolesets, since documents may be reindexed by another operation, which
may cause a mismatch between the documents and the query rolesets. See
“Algorithm That Determines Which Query Rolesets to Use” on page 106 for
examples and more details.

Thisiswhat the query rolesets hierarchy looks like for
((“e1s-role-1"),("els-role-2"),(“els-role-3")); three query rolesets and three roles:

Query Rolesets

Query Roleset Query Roleset Query Roleset

| | |

els-role-1 els-role-2 els-role-3

MarkLogic 9—May, 2017 Security Guide—Page 83

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security

Thisiswhat the query rolesets hierarchy looks like for
(“els-role-1","els-role-2","els-role-3"); ONe query roleset and three roles:

Query Rolesets

Query Roleset

els-role-1 els-role-2 els-role-3

If you only have one protected path that matches foo in the above example but with three roles,
likethis:

sec:protect-path("//foo", (), (

xdmp :permission("els-role-1", "read"),
xdmp :permission("els-role-2", "read"),
xdmp :permission("els-role-3", "read")))

Then (“els-role-1",“els-role-2","els-role-3") would be the proper query roleset to use. To
configuretheformer ((“els—role—l"),("els—role—zn),("els—role—3")), you would call:

(:run against the Security database :)

xquery version "1.0-ml";

import module namespace sec="http://marklogic.com/xdmp/security"
at "/MarkLogic/security.xqy";

let Srolesetl := sec:query-roleset(("els-role-1"))

let Sroleset2 := sec:query-roleset(("els-role-2"))

let Sroleset3 := sec:query-roleset(("els-role-3"))

return

sec:add-query-rolesets (sec:query-rolesets ((Srolesetl, Sroleset2, Srolese
£3)))

To configurethe latter (“els-role-1",“els-role-2","els-role-3"), you can simply call:

(:run against the Security database :)

xquery version "1.0-ml";

import module namespace sec="http://marklogic.com/xdmp/security"
at "/MarkLogic/security.xqy";

let Srolesetl :=

sec:query-roleset (("els-role-1","els-role-2","els-role-3"))
return

sec:add-query-rolesets (sec:query-rolesets (Srolesetl))

Page 84— Security Guide

MarkLogic Server Element Level Security

When you are starting to configure and use element level security, the two query rolesets hel per
functions, xdmp : database-node-query-rolesets and xdmp : node-query-rolesets CaN Slmp“fy the
process of setting up your query rolesets. These functions can be used for configuring query
rolesets either for documents in the database, or for documents during ingestion. See “Helper
Functions for Query Rolesets” on page 87 for more information.

6.3.2.4 Protected Path Sets

A protected path set isaway to allow multiple protected paths covering the same element, with
both AND and OR relationships between the permissions. This enables multiple arbitrary security
marking for an element.

A protected path set is an optional string that represents the name of a set is associated with a
protected path. A path that has no “set name” can be seen as a“ degenerated form” of aset. The
diagram below shows how permissions from paths in the same set are ORed, while permissions
between sets are ANDed.

Setl

PP1 PP2 o PP3

Set1-PP1 Set1-PP2 Setl-PP3

The set information (the name) issimply a*“tag” on the protected path definition, not a separate
document in the Security database.

Consider the following element:
<foo classification="TS" releasableTo="USA GBR AUS">

Using protected paths, MarkL ogic element level security allows multiple protected paths covering
the same element with an AND relationship among their permissions. This models amultiple
security markings (for example eclassification and ereleasableTo) Situation well. For the
element above, two protected paths may be defined:

MarkLogic 9—May, 2017 Security Guide—Page 85

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security

//fool@classification="TS"] ("Role TS", "read")
//foo[@releasableTo="USA GBR AUS"] (("Role USA", "read"),
("Role GBR","read"), ("Role AUS","read"))

Note that the value of ereleasableto iSalist of country codes, with each mapping to arole. A
user with any of the “country roles” is allowed to read the element. The challengeisthat alist can
contain an arbitrary combination of country codes (total 200+). The above approach would
require a user to define one protected path for each of the possible combinations, which may lead
to avery large number of protected paths.

Note: Note that defining the following protected paths won't satisfy the requirement
because the permissions among the paths are ANDed, not ORed.

//fool[fn:contains (@releasableTo, "USA")] ("Role USA", "read")
//fool[fn:contains (@releasableTo, "GBR")] ("Role GBR", "read")
//fool[fn:contains (@releasableTo, "AUS")] ("Role AUS", "read")

The following example shows the benefit of the path set concept more clearly. Consider the
following elements to be protected:

<foo classification="TS" releasableTo="USA">

<foo classification="TS" releasableTo="GBR">

<foo classification="TS" releasableTo="AUS">

<foo classification="TS" releasableTo="USA GBR">
<foo classification="TS" releasableTo="GBR AUS">
<foo classification="TS" releasableTo="USA AUS">
<foo classification="TS" releasableTo="USA GBR AUS">

Without using protected path sets, the following protected paths would need to be defined to
protect the elements above:

//fool@classification="TS"]
//foo[@releasableTo="USA"]
//foo[@releasableTo="GBR"]
//foo[@releasableTo="AUS"]

"Role TS", "read")
"Role USA", "read")
"Role GBR", "read")

(
(
(
("Role AUS", "read")

//foo[@releasableTo="USA GBR"] (("Role USA", "read"),
("Role GBR", "read"))

//foo[@releasableTo="GBR AUS"] (("Role GBR","read"),
("Role AUS","read"))

//foo[@releasableTo="USA AUS"] (("Role USA", "read"),
("Role AUS", "read"))

//foo[@releasableTo="USA GBR AUS"] (("Role USA", "read"),
("Role GBR","read"), ("Role AUS","read"))

With protected path sets, only these protected paths are needed:

//fool@eclassification="TS"] ("Role TS", "read")
//foolfn:contains (@releasableTo, "USA")] ("Role USA", "read")
"SetReleasableTo"

//foolfn:contains (@releasableTo, "GBR")] ("Role GBR", "read")
"SetReleasableTo"

Page 86—Security Guide

MarkLogic Server Element Level Security

//fool[fn:contains (@releasableTo, "AUS")] ("Role AUS", "read")
"SetReleasableTo"

Thetotal number of protected paths required for the ere1easabieto attributeis reduced from 7 to
3 using the setreleasableTo protected path set.

In real world systems, the total number of possible country codes for these examples are more
than 200, which leads to millions of possible combinations. So with protected path sets, the
number of required protected paths can be reduced from millions to just a couple of hundred for
the ereleasableTo USE Case.

6.3.2.5 Helper Functions for Query Rolesets

In order to search for query rolesets, you find out which query rolesets are configured for
protected paths for a document already in the database. You can also discover if query rolesets are
required for proper querying of adocument being loaded into the database. Element level security
includes two built-ins that can be used to discover existing protected paths in documents. The
xdmp : database-node-query-rolesets DUilt-in is used for querying documents aready in the
database, while xdmp : node-query-rolesets iSused to query for protected paths in documents that
are being loaded into the database. Given a node, these functions will return alist of the query
rolesets for any protected paths, as long as the user of the built-ins has sufficient privileges and
permissions. Usually these function are called by an admin user.

FOr xdmp: database-node-query-rolesets, the built-in returns a sequence of query rolesetsthat are
required for proper querying of any given database nodes where element level security isin place
on adocument already in the database.

xquery version "1.0-ml";
import module namespace sec = "http://marklogic.com/xdmp/security"
at "/MarkLogic/security.xqy";

(: run this against the Security database :)

let $qgry := 'xdmp:database-node-query-rolesets (fn:doc("/example.xml"),
("allm))
let sSqgry-rolesets :=
xdmp:eval ($qgry, (),<options xmlns="xdmp:eval"s>
<database>{xdmp:database (YOUR DB NAME) }</database>
</options>)
return

sec:add-query-rolesets ($Sgry-rolesets)

=>
<query-rolesets xml:lang="zxx"
xmlns="http://marklogic.com/xdmp/security">
<query-roleset>
<role-1d>12006351629398052509
</role-1id>
</query-roleset>
</query-rolesets>

MarkLogic 9—May, 2017 Security Guide—Page 87

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security

To find the name of thisrole ID, use this query in the Query Console:

xquery version "1.0-ml";
import module namespace sec = "http://marklogic.com/xdmp/security"
at "/MarkLogic/security.xqy";

sec:get-role-names ((12006351629398052509))

=>

<sec:role-name
xmlns:sec="http://marklogic.com/xdmp/security">els-role-2</sec:role-
name>

The unconfigured Opti on for xdmp : database-node-query-rolesets will return onIy those query
rolesets that are not configured, meaning these query rolesets are not in the Security database yet
(you have not configured them yet). The a11 option returns all query rolesets, even if they are
aready configured.

You can find existing or yet-to-be-configured query rolesets for documents being loaded into the
database using xdmp : node -query-rolesets. Thisbuilt-in returns a sequence of query rolesets that
arerequired for proper querying with element level security if the nodeisinserted into the
database with the given document-insert options. This built-in also comes with the unconfigured
Opti on and thea11 Opti on, and works the same as the xdmp : database-node-query-rolesets
built-in.

A typica workflow would call this function and add each query rolesets through the
sec:add-query-rolesets function before inserting the document into the database, so that the
document can be correctly queried with element level security as soon as the document is
inserted.

xdmp : node-query-rolesets (
"/example.xml",
<foosaaa</foo>,
<options xmlns="xdmp:document-insert"s>
<permissions>
{xdmp:permission("rolel", "read") ,xdmp:permission("role2", "read") }
</permissions>
</optionss>)

To run this built-in you need to have the security role privileges.

6.3.2.6 Query for Protected Paths on a Document

You can use this XQuery code as amodel to customize. The code sample searches for the
protected paths associated with foo.xm1.

xquery version "1.0-ml";
import module namespace sec = "http://marklogic.com/xdmp/security"
at "/MarkLogic/security.xqy";

declare function local:get-role-name ($p as element (sec:permission)) {

Page 88—Security Guide

MarkLogic Server Element Level Security

element sec:permission
$p/*,
sec:get-role-names (S$Sp/sec:role-id)
}
Vi

let $doc := xdmp:eval('fn:doc("foo.xml")', (), <options
xmlns:"xdmp:eval"><database>{xdmp:database("Documents")}</database></o
ptions>)

for $p in
fn:collection(sec:protected-paths-collection())/sec:protected-path

let Spath :=

xdmp :with-namespaces (
for $ns in Sp//sec:path-namespace
return ($ns/sec:prefix/fn:string(.),
$ns/sec:namespace-uri/fn:string(.)),
xdmp:value ("$doc" || $p/sec:path-expression/fn:string()))
return
if (fn:exists($Spath)) then
element sec:protected-path {
Sp/* except $p/sec:permissions,
element sec:permissions {
Sp/sec:permissions/sec:permission ! local:get-role-name(.)

}
}

else

0

You will only be able to see the protected paths for el ements that you as the user would have
permission to see. For exampleif you had ro1e1 and the protected path was associated with roiez,
role1 Would not be able to see those paths.

Related functional Ity isthea11 -query-rolesets-fragment-count element returned from
xdmp : forest-counts. ThiSnumber tells the caller how many fragments are indexed with a certain
guery-rolesets. If the number is 0 (across all databases), then query-rolesets ISN0olonger in use.

6.4 Configure Element Level Security in the Admin Ul

Protected paths and query rolesets for element level security can be configured from the Admin
Ul. The stepsto configure users and roles for element level security are the same as described in
“Create Roles” on page 47 and “ Create Users and Assign Roles’ on page 47. To test the
examples, add the sample documents using Query Console, as described in “ Add the Documents’
on page 49.

6.4.1 Add a Protected Path
To add a protected path for element level security:

1. Click Protected Paths in the left tree menu.

MarkLogic 9—May, 2017 Security Guide—Page 89

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security

2. Click the Create tab.

e e T T e
Configure
B | ok | cancel

Groups New Protected Path

Databases

Hosts

Forests.
J Mimetypes
.J Clusters
B A security
f’ Users
-:f’ Roles
E’i Execute Privieges
f’ URI Privileges
-:f’ Amps
E’i Collections
EF. & Protected Paths
E} f, HewProtectedPath

-:f’ Query Rolesets

protected path — A protected-path definition

path expression frootibar/@baz=1]

The XPath that specifies the XML element or JSON property in a protected-path
definition
Required. You must supply a value for path-expression.

path namespaces — Namespace bindings

prefix

A QName prefix.

namespace uri

E’i Certificate Authorities
BHES Certificate Templates A namespace URI
-:f’ External Security

B credentials | more items

f’ Secure Credentials.
permissions — The default set of permissions used in document creation.

role name + capability

els-role-2 w read hd

| more permissions

path set
Path Set

[] [cancar

3. Enter the information for the protected path: the path expression, the prefix and
namespace, and the role name and capabilities for the permissions.

4, Click more permissions to add additional permissions to this protected path.

5. Click ok when you are done.

6.4.2 Add a Query Roleset
To add a query roleset for element level security, using the Admin Ul:

1. Click Security in the left tree menu.

Page 90—Security Guide

MarkLogic Server

6.5

Element Level Security

Click Protected Paths and then click the Create tab.

I e T e T v

Configure

i Groups |7 ok | | cancel |
¢y Databases

i Hosts New Query Rolesets

iy Forests

i) Mimetypes query roleset els-role-1, els-role-2

o Clusters (comma separated role names)
& security

:? Users

B 65 Roles query roleset

ej Execute Privilages (comma separated role names)
B3 URI Privileges
fj Amps
B collections

| D Protected Paths
i Elﬁ, Query Rolesets | ok | ~ cancel |
B L NewQueryRolesets

0 &5 & 5558

more items |

Certificate Authorities
Ceriificate Templates
xternal Security

H &€ @@

B E-EBE
L

S E
"5 Credentials
g S

ecure Credentials

Add theroles (e1s-role-1 and e1s-role-2) for the query roleset, separated by commeas.
Click more itemsto add additional comma-separated query rolesets.
Click ok when you are done.

Note: An administrator must define query rolesets.

Configure Element Level Security With XQuery

To configure element level security, you' d follow the same series of steps that you used for the
earlier example. (See “ Example—Element Level Security” on page 46.)

6.5.1

Set up roles

Create users and assign roles

Insert documents with permissions

Add the query rolesets to the Security database

Add protected paths for elements in documents, by inserting the protected paths into the
Security database

Using XQuery for Query Rolesets

Usethe xdmp : database-node-query-rolesets hel per function with the sec: add-query-rolesets
command to set up query rolesets using XQuery.

MarkLogic 9—May, 2017 Security Guide—Page 91

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security

For example:

xquery version "1.0-ml";
import module namespace sec = "http://marklogic.com/xdmp/security"
at "/MarkLogic/security.xqy";

(: run this against the Security database :)

let $gry := 'xdmp:database-node-query-rolesets (fn:doc("/example.xml"),
("allm))
let $qgry-rolesets :=
xdmp:eval ($qgry, (),<options xmlns="xdmp:eval"s>
<database>{xdmp:database ('Documents') }</database>
</options>)
return

sec:add-query-rolesets ($gry-rolesets)

To manually set up just afew query rolesets, use the sec:add-query-rolesets cOmmand using
XQuery.

(: add a few query rolesets => run against the Security database :)

xquery version "1.0-ml";
import module namespace sec="http://marklogic.com/xdmp/security"
at "/MarkLogic/security.xqy";

let Sroleset := sec:query-roleset ("new-role")

return
sec:add-query-rolesets (sec:query-rolesets ((Sroleset))

6.5.2 Using XQuery for Protected Paths
Use the sec:protect-path command to set up your protected paths.
For example:

(: add protected paths -> run against the Security database :)

xquery version "1.0-ml";
import module namespace sec="http://marklogic.com/xdmp/security"
at "/MarkLogic/security.xqy";

sec:protect-path("secret", (), (xdmp:permission("els-role-2",
"read"))),

sec:protect-path("top-secret", (), (xdmp:permission("els-role-1",
ureadu)))

This example uses a second parameter to set a protected path on the example path namespace.

(: add protected paths -> run against the Security database :)

xquery version "1.0-ml";

Page 92— Security Guide

MarkLogic Server Element Level Security

import module namespace sec = "http://marklogic.com/xdmp/security"
at "/MarkLogic/security.xqy";

declare namespace ex = "http://marklogic.com/example";
let Srole := "executive"
return

sec:protect-path (
"/ex:envelope/ex:instance/employee/salary",
(let Sprefix := "ex", $namespace-uri :=
"marklogic.com/example"
return
sec:security-path-namespace ($Sprefix, S$namespace-uri),
(xdmp :permission ($Srole, "read"))

)

6.6 Configure Element Level Security With REST

You can aso use the REST Management APIsto configure element level security. The REST
properties endpoint is available to create query rolesets and protected paths:

GET: /manage/v2/security/properties

e Using REST for Query Rolesets

e Using REST for Protected Paths

6.6.1 Using REST for Query Rolesets

The following XML and JSON examples show what is returned from cer (or used as payload to
pur) When using REST for query rolesets.

This example uses a ceT with the response payload in XML.:

$ curl -GET --anyauth -u admin:admin
-H "Accept:application/xml, Content-Type:application/xml"
http://localhost:8002/manage/v2/security/properties

This returns;

<security-properties xmlns="http://marklogic.com/manage">
<query-rolesetss>
<query-roleset>
<role>432432534053458236326</role>
<role>454643243253405823326</role>
</query-roleset>
<query-roleset>
<role>124325333458236346123</role>
<role>124233432432534058213</role>
</query-roleset>
</query-rolesets>
</security-properties>

MarkLogic 9—May, 2017 Security Guide—Page 93

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security

Here is the same example with a JSON reponse payload:

$ curl -GET --anyauth -u admin:admin
-H "Accept:application/json,Content-Type:application/json"
GET: /manage/v2/security/properties

Thisreturns;

"queryRoleset": [

[
432232321212123100000,
432432534053458200000

1,

[
124325333458236346123,
124233432432534058213

}

Note: The REST Management APIswill accept both role names and role IDsin
configuring query rolesets with pur.

The following are example payloads for rost or puT calls for managing query rolesets.

JSON Example
{

"role-name": ["manage-admin","rest-writer"]

}

XML Example

<query-roleset-properties
xmlns="http://marklogic.com/manage/query-roleset/properties">
<query-roleset>
<role-name>rest-reader</role-name>
</query-roleset>
</query-roleset-properties>

Page 94— Security Guide

MarkLogic Server Element Level Security

6.6.2 Using REST for Protected Paths

The following XML and JSON examples show what is returned from cer (or used as payload to
puT) When using REST for query rolesets.

This example uses a cer with the reponse payload in XML:

$ curl -GET --anyauth -u admin:admin \
-H "Accept:application/xml, Content-Type:application/xml" \
http://localhost:8002/manage/v2/security/properties

Thisreturns;

<security-properties xmlns="http://marklogic.com/manage">
<protected-paths>
<protect-paths>
<path-namespaces>
<path-namespaces>
<prefix>ml</prefix>
<namespace-uris>marklogic.com</namespace-uri>
</path-namespace>
</path-namespaces>
<path-expression>/ml:foo/ml:bar</path-expression>
<permissions>
<permission>
<role-namesuserl</role-name>
<capability>read</capability>
</permissions>
</permissions>
</protected-path>
</protect-paths>
</security-properties>

Here is the same example with a JSON reponse payload:

$ curl -GET --anyauth -u admin:admin \
-H "Accept:application/json,Content-Type:application/json" \
http://localhost:8002/manage/v2/security/properties

Thisreturns;

"protected-path": [

{

"path-namespace": [

{

"prefix" . llmllll
"namespace-uri": "marklogic.com"
]
"path-expression": "/some/path",
"permissions": [

{

MarkLogic 9—May, 2017 Security Guide—Page 95

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security

"role-name": "userl",
"capability": "read"

Note: When peLeTE iSUSEd, & force=true url param Will force deletion of “in use”
protected paths.

Note: To specify an options element namespacein a JSON REST payload, you will need
to define an options-ns Key to set the namespace.

6.7 Combining Document and Element Level Permissions
This section describes how document level and element level permissions interact when both are

applied to a document. At the element level read, insert, and node-update permissions can be
used as part of the protected path definition.
Note: At the element level, the update and node-update capabilities are equivalent.

This section contains the following topics:

e Document Level Security and Indexing

e Combination Security Example

6.7.1 Document Level Security and Indexing

The document level security (document permissions with read capability) interacts with the
element level security and affects:

» Theindexing of protected elements and whether index keys are combined with query
rolesets

* Whether protected elements can be extracted by template driven extraction (TDE)
» Whether protected embedded triples are indexed

During indexing, the element level security of every node in the document is compared to the
document’s protection. For a given node in the document, the permissions on every matching
protected path are compared to the document’s permissions. When all matching protected paths
are determined to be weaker than the document’s protection, the element’s protection is
considered to be weaker. In this case, the query rolesets for the matching protected paths are not
used when indexing the current node. A node with aweaker path protection is allowed to be
extracted by TDE. An embedded triple with weaker protection on all of its nodes (subject,
predicate and object), is extracted.

Page 96—Security Guide

MarkLogic Server Element Level Security

How isthe element level protection determined to be weaker? In the absence of compartment
security, a higher number of rolesimplies weaker permission because it means more accessibility.
Morerolesin this case doesn’t mean the total number of roles. It means that one set of rolesisa
superset of the other. The smaller set (the subset) is considered stronger because it is more
restrictive. Roles are OR’ ed by default. If the document is permitted to be accessed by more roles
than the element (the element is more restrictive because there are more limitations on access),
then the element security is considered to be stronger than the document security. In such a case,
the element security is given higher precedence and the element is protected (i.e. the element is
more restrictive). The fewer the number of contained or embedded roles, the more restrictive the
permissions.

In situations where neither is stronger or it is unclear whether the document security or element
security is stronger, the element level is always considered stronger. Only “Read” capability is
checked when comparing the document’s permissions to the element’s permissions.

Note that thereisno “flattening” of roles (inheritance of permissions) with element level security.
Using the helper functions, described in “APIs for Element Level Security” on page 104 can
facilitate both discovering existing query rolesets and applying them as part of ingestion.

6.7.2 Combination Security Example

More roles does not mean the total number of roles. It means that one set of rolesis a superset of
the other. The smaller set of rolesis considered stronger. Consider the following examples:

Legend
e Blue partis common
¢ Yellow is what makes it weaker
e Green is what makes it stronger

Example 1 (no compartments):
Doc—level = setl = (rolel OR roleZ OR role3)
Element-level = set2 = (rolel OR role2)

Having role3 allows a user to see the Doc-level but not the Element-level => element-level is stronger <> set2 isa
subset of setl

Example 2 (no compartments):

Doc—level = setl = (rolel COR Ealeld)

Element-level = set2 = (rolel OR EolE2)

Rolel can see both, role2 can only see element-level, role3 can only see Doc-level. Because it’s not a clear cut who
is stronger (neither set is a subset of the other), element level-security wins (stronger).

Note that in example 1, element level protection is more restrictive that the document level
protection. With compartment security, it's more complicated. The security level that has the most
compartments wins, because more compartments means that access is more restrictive.

MarkLogic 9—May, 2017 Security Guide—Page 97

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security

Example3 (compartments)

Doc—level = Compartmentl (rolel OR roleZ) AND CompartmentZ (role3 OR roled)
Element-level = Compartmentl (rolel OR roleZ) AND Compartment?(role3 OR roled)
AND Compartment3(roleS OR roleé)

To see the element a user must have (on top of the doc compartmented roles) at least one role from
compartment3 => Element level is stronger

Exampled (compartments)

Doc—level = Compartmentl (rolel OR roleZ) AND CompartmentZ (role3 OR roled)
Element-level = Compartmentl (rolel OR roleZ) AND Compartment?(role3)

Within compartment 2, a user with role3 can see the element and the doc (assuming they have a role form
compartment 1). User with role4 can see the doc but not the element. => element-level stronger.

When element security is weaker than the document security, MarkLogic will index the content
based on the document level security. MarkLogic lets the document level security protect it.

If the element is considered stronger, then content won't be visible without the correct query
rolesets. If the element is weaker, then MarkL ogic will return the element as part of a query (with
the correct document level permissions).

6.8 Node Update Capabilities

Node update capabilities allow you to update document content by node. At the document level
xdmp : document -delete and xdmp : document -insert CaN still be used if you have update
capabilities, but node-update provides afiner control when combined with element level security.
The node-update capability exists at the document level and at the element level. At the document
leve, if you have the node-update capability you can cal xdmp :node-replace and

xdmp : node-delete O modlfy nodesin adocument, but not xdmp : document -delete OF

xdmp : document - insert. All Of the node update built-ins take element level permissionsinto
consideration.

Note that node-update, just like insert, Can be seen as a subset of update, meaning that if arole
has the upaate capability, it automatically gets the node-update capability aswell.

If you have the update capability at the document level, you can call xdmp : document -insert,

xdmp : document -delete, and all node-update functions. When you have the upaate capability at the
document level, the element level security for upaate Will not be checked, it is effectively “turned
off”. If you have the node-update capability, you can only call al node-update functions for that
node.

6.8.1 Updates With Element Level Security

You can update content in documents when protected paths have been defined with element level
security. Both document level and element level permissions will apply to the content
(compartment level permissions may apply as well - see “Interactions With Compartment
Security” on page 108 for details). With the appropriate permissions, you can use insert and
node-update at the element level to modify content containing protected paths. These capabilities
take all element level permissions into consideration.

Page 98—Security Guide

MarkLogic Server Element Level Security

You can also protect document property nodes with element level security. With the
node-update/insert capablllty, YyOu Can cal xdmp : document -add-properties,

xdmp : document - remove-properties, xdmp: document -set -property, OF

xdmp : document - set -properties. See “ Document and Element Level Permissions Summary” on
page 100 for details.

6.8.2 Node Update and Node Insert at the Element Level

The noge-update capability at the element level enables to you replace and delete nodes with
xdmp : node-replace aNd xdmp:node-delete. The insert Capability enablesyou to call

xdmp: insert-node-before, xdmp:node-insert-after, and xdmp :node-insert-child.
Note: At the element level, the update and node-update capabilities are equivalent.

Here are some simple examples using the xdmp : insert -node-before, xdmp: insert-node-after,
and xdmp : node-replace functions at the element level. These examples assume that both roles
have document insert/node-update permissions as well as read permissions for the document
and that the query rolesets are configured correctly.

Say that you have a document with these nodes:

<root>
<foos>hello</foo>
<bars>World</bar>
</root>

There are two roles; roie1 with both reaa and updaate permissions on the <foo> node, and roie2
With read and node-insert permissionson the <root> node:

<foo>, ("rolel", "read"), ("role2", "read"), ("rolel", "update")
<root>, ("rolel", "read"), ("role2", "read"), ("role2", "insert")

The protected paths look like this:

sec:protect-path("//foo", (), (

xdmp :permission ("rolel", "read"), ("rolel", "update"),'"role2", "read"))
sec:protect-path("//root"™, (), (

xdmp :permission ("rolel", "read"), ("role2", "read"), ("role2",
"insert"))

The insert and update permissions check the ancestors of a node as well. See “Document and
Element Level Permissions Summary” on page 100 for details.

(: insert a new document :)
xdmp : document -insert (" /example.xml",
<root>
<foo>hello</foo>
<bar>World</bars>
</root>

MarkLogic 9—May, 2017 Security Guide—Page 99

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security

(xdmp:permission("rolel", "read"), xdmp:permission("role2", "read"),
xdmp:permission("rolel", "node-update"), ("rolel", "insert"),
xdmp:permission("role2", "node-update"), ("role2", "insert")));

AS role2, USE xdmp:node-insert-before 10 add a node to the document:

(: add a baz node before the foo node :)

xdmp :node-insert-before (fn:doc (" /example.xml") /root/foo,
<baz>Greetings</baz>) ;

(: view the revised document :)

fn:doc ("/example.xml")

=>

<root>
<baz>Greetings</baz>
<foo>hello</foo>
<bar>World</bar>

</root>

ASrolel YOU Can USe xdmp : node-replace 1O Change the <bar> node.

xdmp :node-replace (doc (" /example.xml") /root/foo, <foo>Hello</foo>)) ;
doc ("/example.xml") ;
fn:doc ("/example.xml")
=>
<root>
<baz>Greetings</baz>
<foo>Hello</foo>
<bar>World</bars>
</root>

If you are using a user to other than ro1e1 do these same operations, a permission denied
exception will be thrown.

6.9 Document and Element Level Permissions Summary
This table describes the permissions required to add, remove, or modify content at the document
and element level.

Function Signature Document and Element Level Permissions

xdmp : node-replace ($old, $Snew) Document: node-update IS required
Element: so01a and all its ancestors, aswell as
descendants are checked for update/node-update

xdmp :node-delete ($o0ld) Document: node-update IS required
Element: so1a and al its ancestors as well as
descendants are checked for update/node-update

Page 100—Security Guide

MarkLogic Server

Element Level Security

Function Signature

Document and Element Level Permissions

xdmp :node-insert-before ($sibling, Snew)

Document: insert iSrequired
Element: all ancestors of ssibling are checked
for insert

xdmp :node-insert-after ($sibling, Snew)

Document: insert iSrequired
Element: all ancestors of ssib1ing are checked
for insert

xdmp :node-insert-child ($Sparent, $Snew)

Document: insert IS required
Element sparent and all its ancestors are checked
for insert

xdmp : document -add-properties (Suri,
Sprops)

Document: node-update IS required
Element: the properties root* is checked for

insert

xdmp : document - set -property ($Suri, Sprop)

Document: node-update IS required
Element:
| F the property to be set doesn’'t exist, THEN the
properties root is checked for insert;

ELSE

a.) the properties root* is checked for
update/node-update

b.) the property nodes) and all their descendants
are checked for update/node-update

xdmp : document -set-properties (Suri,
Sprops)

Document: node-update IS required
Element:
|F there is no properties fragment THEN the
properties root is checked for insert;

ELSE

a.) the properties root* is checked for
update/node-update

b.) all existing property nodes and al their
descendants are checked for update/node-update

xdmp : document -remove-properties (Suri,
Sproperty-names)

Document: node-update IS required
Element:

a.) the properties root* is checked for
update/node-update

b.) all property nodesto be removed and all their
descendants are checked for update/node-update

* The propertiesroot isthe root of the properties node of adocument, not the individual properties
contained in the properties node. The properties root isthe first line in this diagram:

MarkLogic 9—May, 2017

Security Guide—Page 101

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security

<prop:properties xmlns:prop="http://marklogic.com/xdmp/property">

<propl>. . .</propls>
<prop2>. . .</prop2s>
<propN>. . .</propN>

</prop:propertiess>

See “Interactions With Compartment Security” on page 108 for more about combining element
level security with compartment security.

6.10 Node Update and Document Permissions Expanded

These examples expand on the interactions of element level security and document permissions.
This section contains these examples:

¢ Different Permissions on the Same Node

e A More Complex Example

e Unexpected Behavior with Permissions

6.10.1 Unexpected Behavior with Permissions

In this example the role has the necessary document-level permissions. The example has to do
with the element level, protected path permissions. Say you have a document (exampie.xm1) with
these nodes:

<foo>
<bar>
</foo>

For this example roie1 hasboth reaa and update permissions on the <foo> Node, and update
permissions on the <bar> node, but N0 read permissions on the <var> Node:

<foo>, ("rolel", "read"), ("rolel", "update")
<bar>, ("rolel", "update")

It is assumed for these examplesthat al of the query rolesets are already configured correctly.
If role1 callsthiS xdmp:node-replace qUery:
xquery version "1.0-ml";

xdmp :node-replace (doc (" /example.xml") /foo,
<foo><baz>Hello</baz></foo>) ;

The query will succeed, because ro1e1 has update permissions on /foo.

If role1 callsthiSxdmp:node-replace query on /par.

Page 102—Security Guide

MarkLogic Server Element Level Security

xquery version "1.0-ml";
xdmp :node-replace (doc (" /example.xml") /foo/bar, <baz>Hello</baz>);

The expression /foo/bar Will return an empty sequence because roie1 cannot read the bar
element. Hencethe node-replace call will effectlvely be ano-op, because xdmp :node-replace
was asked to replace nothing with something.

6.10.2 Different Permissions on the Same Node

Multiple roles can have different permissions on the same node. Some interactions between roles
may be unexpected. For example, if you have a document with two nodes <foo> and <bars. The
<bar> Nodeisachild of the <foo> node.

<foo>
<bar>

You have two roles; roie1 With both read and update permissions on the <foo> node, and ro1e2
with read permissions on the <bar> node:

<foo>, ("rolel", "read"), ("rolel", "node-update")
<bar>, ("role2", "read")

Note: At the element level, the update and node-update functions are equivalent.

The protected paths for this document would look like this:

sec:protect-path("//foo", (), (
xdmp:permission("els-role-1", "read"), ("rolel", "node-update"))

sec:protect-path("//foo/bar", () (

xdmp :permission("role2", "read"))

With these protected paths, ro1e1 cannot read the <var> node. But because roie1 has update
permissions on the parent node (<foo>), role1 can overwrite the <bar> node, even though it cannot
read it.

To prevent this, add node-update permissions to the <bar- node. The permissions would now
look like this:

<foo>, ("rolel", "read"), ("rolel", "node-update")
<bar>, ("role2", "read"), ("role2", "node-update")

The presence of the “node-update” permission on the <bar> node prevents ro1e1 from being able
to update and overwrite the <bar> node (the child node of the <foo> node).

MarkLogic 9—May, 2017 Security Guide—Page 103

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security

This happens because node permissions are checked separately; first there's a check for protected
paths for reada. Then thereis acheck for protected paths for update. If no update is found for
/foo/bar, then role1 is alowed to update <vars. If there is a protected path for updating <vars,
then ro1e1 isnot allowed to update <vars.

6.10.3 A More Complex Example

To expand even more on the node-update example with added document permissions, you could
have roles with both protected paths and document permissions.

Say you have a document with these nodes:

<foo>
<bar>
<baz>

At the document level, there are these permissions:

("rolel", "read"), ("rolel", "node-update")
("role2", "read"), ("role2", "node-update")
("role3d", "read"), ("role3", "update")

At the element level, there are these permissions for protected paths:

<foo>, ("rolel", "read"), ("rolel", "node-update")
<bar>, ("role2", "read"), ("role2", "node-update")

In this example:
* role1 Cannot update (or override) <var> because at the element level roie2 has <vars
protected path permissions

* role3 Can override everything because at the document level it has upaate capability, but
can only read <vaz> Which has no protected paths.

6.11 APIs for Element Level Security
This section includes the following topics:

e XQuery APIs
e REST Management APIs

Page 104—Security Guide

MarkLogic Server Element Level Security

6.11.1 XQuery APIs
These built-in functions are available to help manage element level security:

e sec:protect-path

e sec:unprotect-path

e sec:remove-path

e sec:path-set-permissions

e sec:path-add-permissions

e sec:path-get-permissions

e sec:path-remove-permissions
e sec:query-rolesets-collection
e sec:security-path-namespace
e sec:query-roleset

e sec:query-rolesets

e sec:query-rolesets-id

e sec:add-query-rolesets

e sec:remove-query-rolesets

e sec:protected-paths-collection

With the appropriate permissions, protected path content can be modified using these node update
APIs:

e xdmp:node-replace

e xdmp:node-delete

e xdmp:node-insert-after
e xdmp:node-insert-before
e xdmp:node-insert-child

These two helper functions can be used to search for protected paths:

e xdmp:node-query-rolesets

e xdmp:database-node-query-rolesets

MarkLogic 9—May, 2017 Security Guide—Page 105

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security

6.11.2 REST Management APIs

The REST Management APIs provide the same functionality asthe XQuery APIs coveredin
“XQuery APIS’ on page 105 for both protected paths and query rolesets.

6.11.2.1 REST Management APIs for Protected Paths

These REST Management APIs can be used for adding, modifying, or deleting protected paths.
GET: /manage/v2/protected-paths

POST: /manage/v2/protected-paths

GET:/manage/v2/protected-paths/{id|name}

DELETE: /manage/v2/protected-paths/{id|name}
GET:/manage/v2/protected-paths/{id}/properties

PUT: /manage/v2/protected-paths/{id}/properties

6.11.2.2 REST Management APIs for Query Rolesets
These REST Management APIs are available for managing query rolesets:
GET: /manage/v2/query-rolesets

POST: /manage/v2/query-rolesets
GET:/manage/v2/query-rolesets/{id|name}

DELETE: /manage/v2/query-rolesets/{id|name}
GET:/manage/v2/query-rolesets/{id|name}/properties

PUT: /manage/v2/query-rolesets/{id|name}/properties

6.12 Algorithm That Determines Which Query Rolesets to Use

In MarkLogic 9.0-1, if the path permissions on anode are “weaker” (as defined in “ Document
Level Security and Indexing” on page 96) than the document level permissions or its parent
node’s permissions, the path level permissionswill beignored asfar as query rolesets definition is
concerned.

Note: A child node will still inherit its parent’s query rolesets.
In MarkLogic 9.0-2, the set of query rolesets for a given node (after inheritance from ancestors)
will be “compacted” based on the “weaker” permissions definined in “Document Level Security
and Indexing” on page 96. If aquery roleset in the set is“weaker” than any other query rolesetsin
the set, that “weaker” roleset will be “removed”.

For example:

Page 106—Security Guide

MarkLogic Server Element Level Security

Roles: role-1, role-2, role-3
Document:

<foosHello<bars>World</bars, </foo>

with ((role-1, read), (role-2, read), (role-3, read))
Protected Paths:
//foo (role-1, read), (role-2, read)

//bar (role-1, read)

In MarkLogic 9.0-1, the query rolesets for the “bar” nodeis ((role-1, role-2), (role-1)), butin
9.0-2itissimplified (“compacted”) to ((role-1)).

Note: If any query roleset in the above set is“weaker” than the document level
permissions, it will be omitted too.

Hereis another example:
Roles: role-1, role-2, role-3
Document:

<foos><bar>Hello</bars></foo>

with (role-1, read)
Protected Paths:

/foo/bar (role-1, read), (role-2, read)
//bar (role-3, read)

In 9.0-1, the query rolesets for the “bar” nodeis ((role-1, role-2), (role-3)), butin 9.0-2itis
simplified (“compacted”) to ((ro1e-3)) because (role-1, role-2) is“weaker” than the document
level permissions.

MarkLogic 9—May, 2017 Security Guide—Page 107

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security

6.13 Interactions With Compartment Security

You can add an extralevel of protection to any content concealed by protected paths by using
compartment security in conjunction with element level security. Compartment security adds a
finer granularity of protection for content because a user must have the appropriate role and
belong to the appropriate compartment to view the concealed content. For more about
compartment security see “ Compartment Security” on page 39.

A compartment is a name associated with arole. The compartment name is used as an additional
check when determining a user’s authority to access, modify, or create documents. If
compartment security isnot used, permissions are checked using OR semantics. For example, if a
document has reaa permissions for roie1 and read permissionsfor ro1e2, without compartment
security, auser who has either role1 Or role2 can read that document.

If any permission on adocument has acompartment, then the user must have that compartment in
order to access any of the capabilities, even if the capability is not the one with the compartment.
Access to a document requires a permission in each compartment for which thereis a permission
on the document, regardless of the capability of the permission. So if there is read permission for
role compartment1, there must also be an update permission for somerolein compartment1 (but not
necessarily the same role).

If compartment security is used, then the permissions are checked using AND semantics for each
compartment. If the document has compartment permissions for both compartment1 and
compartment2, &role must be associated with both compartments to view the document. If two
roles have different compartments associated with them (for example compartment1 and
compartment2) , aUSer Must have ro1e1 and ro1e2 access the document.

Thisisin addition to checking the OR semantics for each non-compartmented role, aswell asa
non-compartmented role that has a corresponding permission on the document. If compartment
security is used along with element level security, a user must have both the appropriate
compartment security and the appropriate role to view protected content.

Because element level security follows the same role based authorization model, compartment
security checks are be done in the same way at the element level. The only differenceisthat when
calculating “ compartments needed” at the element level, only those permissions with the
capability being requested (for example “read”) are checked.

Hereis an example using these three roles:

* role0 (with no compartment)
* rolel (Wlth compartmentl)
e role2 (Wlth compartmentZ)

These permissions have been set on the document:

(role0, read), (rolel, read), and (role2, update)

Page 108—Security Guide

MarkLogic Server Element Level Security

With these permissions set on the document, a user with both ro1e1 and ro1eo cannot perform a
read operation. Thisis because one of the permissions mentions ro1e2, even though it is not for
read. In fact, with these permissions at the document level, no one (except for admin) would be
able to read the document.

If the above permissions are set for an element, a user with both ro1e1 and ro1eo will be able to
read the element, because element level security checks read, update, and insert permissions
separately, based on the operation requested.

Note: Permission checks at the document and element levels are performed
independently.

6.13.1 Compartment Security and Indexing

Using more compartments means stronger security because compartmentsare AND’ ed. Theroles
within the same compartment are OR’ ed. When a document or element is protected by more
compartments, thisimplies stricter access. Roles without compartments are OR’ ed amongst
themselves and then AND’ ed with compartment roles. The general rules are:

» |If an element is protected by more compartments than the document’s, the element level
protection is considered stronger.

» Within the same compartment, if the element is protected for fewer roles, the element
level protection is stronger.

* Thereare situations where the weaker/stronger protection cannot be clearly determined. In
this case, element level security is always considered to be stronger.

See “Node Update and Document Permissions Expanded” on page 102 and “ Combination
Security Example” on page 97 for more about security protection and indexing. For more
information about compartment security, see “Compartment Security” on page 39.

MarkLogic 9—May, 2017 Security Guide—Page 109

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security

6.14 Interactions with Other MarkLogic Features

The element level security featureis an index-level feature that isimplemented in the universa
index, the geospatial index, the bitemporal index, and the range index. Features that use asingle
lexicon (values, elements, element values, sum-aggregration, etc.) will work with element level
Security.

Element level security isnot implemented for the triple index. However in some scenarios, where
the document’s security is stronger than the element security on atriple, the protected triple will
be added to the triple index. Thisis because the document’s security already covers the protected
element. The information contained in the triple is therefore protected at the document level.

Query operations that rely on the triple index (such as SPARQL, SQL, the new version of

MarkL ogic ODBC, and the Optic API) are not supported by element level security. For content
that makes use of the triple index (like semantics and SQL) if a document contains protected
elements and the element level security is stronger than the document level security, the query
will not return any results. See “Node Update and Document Permissions Expanded” on page 102
for details.

This section describes interactions with these MarkL ogic features:

e Lexicon Calls

¢ Fragmentation

* SQL on Range-Index Based Views

e UDFs (including UDF-based aggregate built-ins)

* Reverse Indexes

e SPARQL

e Alerting and QBFR

e 1DE

* micp

* XCC

e Bitemporal
* Others

* Rolling Upgrades

6.14.1 Lexicon Calls

For simple lexicons like values or words, thisfeature is similar to cts queries (see “ Others’ on
page 113). However, lexicon calls that involve co-occurrences will only work with unprotected
values (range-index based SQL implementation has the same problem).

Page 110—Security Guide

MarkLogic Server Element Level Security

6.14.2 Fragmentation

Theindexer in MarkLogic doesn’'t know the full path when working on child fragments of a
parent document, because the indexer indexes the child fragments first before it indexes the
parent. Because of this element level security and fragmentation don’t work well together,

although fragmentation will still work on documents that don’t have any protected elements.

Any new document with matching fragmentation and protected elements will be rejected. Either
an XDMP- PARENTLINK O aNn XDMP- FRAGMENTPROTECTEDPATH €TOr will be thrown. When element level
security and fragmentation both apply simultaneously to an existing document (already in the
database), areindexing error will be thrown, causing reindexing to stop. User must either
remove/fix the matching element level security path or the matching fragmentation element.

For example, if a protected path that ends with vaz isadded (/foo/bar/baz) and if afragment root
is configured for baz, any document containing node naz (even under adifferent path /a/8/c/vaz)
will error out with xpvpe- parenTLINK When the document is inserted or reindexed.

6.14.3 SQL on Range-Index Based Views

SQL that is based on Range-Index views will only work with values that are not protected by
element level security.

6.14.4 UDFs (including UDF-based aggregate built-ins)

UDFsthat operate on asingle range index will work with element level security. Thisincludesthe
most commonly used aggregate functions like cts: sum-aggregate, cts:stddev, and so on. UDFs
that apply to more than one range index will only work with unprotected val ues.

6.14.5 Reverse Indexes

Similar to the case for triples (see SPARQL), if an element that contains a cts: query matches a
protected path of any role, or any part of the cts: query matches any role, the query won't be
added into the reverse index unless the document’s security is stronger than the element security
on the element. See “Node Update and Document Permissions Expanded” on page 102 for
details. A cts:reverse-query that would normally find a document containing a matching
cts:query Will no longer match once the embedded cts: query (Or its children) is protected by
element level security that is stronger than the document’s security.

6.14.6 SPARQL

If asem:triple iSinside an element that is concealed for any role and the element level security is
stronger than the document security, it will not be put into the triple index. If the tripleitself or its
subject, predicate, or object is protected, it will not be put into the triple index, unless the
document security is stronger than the element level security protection. In some scenarios, where
the document’s security is stronger than the element security on atriple, the protected triple will
be added to the triple index. Thisis because the document’s security already covers the protected
element. The information will be protected at the document level. See “Node Update and
Document Permissions Expanded” on page 102 for details.

MarkLogic 9—May, 2017 Security Guide—Page 111

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security

6.14.7 Alerting and QBFR

Each target in a QBFR (Query Based Flexible Replication) configuration is associated with a user
and aquery. A target should only be able to get documents that match the query and that the user
isallowed to access. In QBFR, some flows must use the privileged user to run queries because the
process needs to figure out what documents should be deleted from atarget. Internaly, alerting
uses reverse queries to determine the set of matching rules for a given document or node. The
matching rules are then used to trigger the appropriate action for the target user of each matching
rule.

There isatwo pass rule matching approach; first the rule matching runs against the full version of
the document, then for each matching rule, a second match test is performed using the version of
the document that the target user of the rule is allowed to see.

Now, arule that matches “hello” will not trigger the action if the target user cannot see “hello”
due to element level security protection. Using element level security, MarkL ogic Server will
deliver aredacted version of the document, based on element level security configuration of
protected paths and the user’srole.

Note: When using element level security with Alerting and QBFR, if aquery contains a
“NOT” clause, you may see false negatives. What this means is documents might
not be replicated when the aerting rule contains a cts : not -query due to the false
negetives.

6.14.8 TDE

Template driven extraction (or TDE) extracts triples or rows from documents during ingestion. In
some scenarios, TDE and embedded triples (sem:tripie) might be extracted from elements
protected by element level security. When the document level security is considered to be stronger
than an element’s security, the element is available for extraction by TDE. This means that TDE
will run normally on any protected element where the document’s security already coversthe
protected element. In this case, any extracted information will be protected at the document level.

This process also appliesto embedded triplesin documents. If the element level protections on the
subject, predicate, and object are weaker than the document’s protection, the embedded tripleis
extracted and indexed. For protected elements where the document level security isweaker than
the element level security, TDE behaves as if the element was missing in the document. See
Security on TDE Documents in the Application Developer’s Guide for more information.

6.14.9 mlcp

When you use micp to ingest files from MarkLogic 9 or later to another MarkLogic 9 or later
instance, the protected paths and node-update permissions will be preserved.

If you use micp to export a database archive that includes documents with the node -update
permission, and then import the archive into MarkLogic 8.0-6 or earlier, the behavior is
undefined. If you import the archive in MarkLogic 8.0-7 or alater version of MarkLogic 8, the
node-update permission is silently discarded.

Page 112—Security Guide

MarkLogic Server Element Level Security

Similarly, if you use mlcp to copy documents from MarkLogic 9 or later to MarkLogic 8.0-6 or
earlier, the behavior isundefined. If your copy destination isMarkLogic 8.0-7 or alater version of
MarkLogic 8, the node-update permission is silently discarded.

6.14.10 XCC

If you use XCC to insert a document with the node-update permission into MarkL ogic 8.0-6 or
earlier, the behavior is undefined.

If you use XCC to insert a document with the node-update permission into MarkLogic 8.0-7 or a
later version of MarkLogic 8, the node-update permission is silently discarded.

These restrictions apply to USINg session. insertContent With @ content Object whose
ContentCreateOptions include the ContentCapability.NODE_UPDATE capabl | Ity

6.14.11 Bitemporal
Do not protect system axis for bitemporal queries when using element level security.

6.14.12 Others

A key concept to support cts querieswith element level security isquery rolesets. A query roleset
issimply alist of roles. When indexing, MarkL ogic takes query roleset information into
consideration and essentially “partitions’ indexes based on query rolesets. All queries (except for
composite ones like and-query) Will ook into indexes for different query rolesets based on the
caller’'srole and logicaly “OR” the results. See “ Query Rolesets’ on page 80 for more about
guery rolesets.

There are special rulesfor cts queries, phrase breaks, field values, geo el ement pairs, auditing and
term-queries when the elements involved are protected.

» ctsqueries- Positions are always cal cul ated based on the original (full) document, prior to
any concealing. Thisimpliesthat the distances cal culated based on indexes will be larger
than what appears in the concealed document.

* Phrase breaks- When indexing, any element that is protected is considered a phrase break.
Consider the this example:
<foo>l<bars>2 3</bar>4</foos.
If “bar” is protected by any protected path, then it is considered a phrase break regardless
whether a phrase through is defined on it. So in the example, “2 3" is still a phrase, but
“12" or“34” isnot. “14” isnot aphrase either.

» Fields- For an XML document, field values or field range values are sometimes
calculated by concatenating elements included in the field. If those elements don’t have
the same rol esets (permissions), concatenating can cause leaking of information.

MarkL ogic server will treat this as amisconfiguration and log awarning. The query result
on such afield is undefined.

MarkLogic 9—May, 2017 Security Guide—Page 113

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security

» Geo element pair with inconsistent permissions - Similar to the field case above, if
permissions on the two elements (or JSON properties) of the geo pair are not consistent
(or either of the two elements has different permissions from the parent node), MarkL ogic
server will treat it as a misconfiguration and log awarning. The query result is undefined
in this case.

* Auditing -

a. Forthe“document-read” event, if the nodeinvolved has any element concealed, the string
“concealed” will be reported in the event. Hereis an example:

2016-10-18 15:45:29.886 event=document-read; type=concealed;
uri=foo.json; database=Documents; success=true;

b. When anode or properties update built-in call is rejected due to the lack of element-level
permissions, the “no-permission” event will be reported. Thisis very similar to how the
event is used when such acall is rejected due to the lack of document-level permissions.

* term-query - Element level security won't prevent a“malicious’ user from getting aterm
key through xamp: p1an from adifferent MarkL ogic deployment, then passing that to a
cts:term-query tO find out information she is not supposed to see on the current
MarkL ogic deployment. The solution isto add a new execute privilege “term-query” to
“protect” cts:term-query. FOr backward compatibility, this privilege will only be checked
when element level security isin use (i.e., when at least one protected path is configured).

6.14.13 Rolling Upgrades

For rolling upgrades, configuration API calls (aswell as Admin GUIs) will throw an error when a
rolling upgrade (from arelease that doesn’t support element level security) has not yet compl eted
and been committed across the cluster. Document inserts (or set-permissions) with the new
node-update capability will be regjected if the effective version is not 9.0-1 or above.

Page 114—Security Guide

MarkLogic Server Protecting XQuery and JavaScript Functions With

7.0 Protecting XQuery and JavaScript Functions With
Privileges
Execute privileges provide authorization control for executing X Query and JavaScript functions.
MarkL ogic provides three ways to protect X Query functions:
» Built-in execute privileges, created by MarkL ogic, control access to protected functions

such as xdmp : document - 1oad.

» Custom execute privileges, which you create using the Admin Interface or the security
function in the security.xqy module, control access to functions you write.

* Amps temporarily amplify a user’s authority by granting the authority to execute asingle,
specific function. Y ou can only amp afunction in alibrary module that is stored in the
MarkL ogic modules database.

This chapter describes the following:

e Built-In MarkLogic Execute Privileges

e Protecting Your XQuery and JavaScript Code with Execute Privileges

e Temporarily Increasing Privileges with Amps

7.1 Built-In MarkLogic Execute Privileges

Every installation of MarkLogic Server includes a set of pre-defined execute privileges. You can
view thislist either in the Admin Interface or in Appendix B: Pre-defined Execute Privileges Of the
Administrator’s Guide.

7.2 Protecting Your XQuery and JavaScript Code with Execute Privileges

To protect the execution of an individual XQuery or JavaScript function that you have written,
you can use an execute privilege. When a function is protected with an execute privilege, a user
must have that specific privilege to run the protected X Query or JavaScript function.

Note: Execute privileges operate at the function level. To protect an entire XQuery or
JavaScript document that is stored in a modules database, you can use execute
permissions. For details, see “Document Permissions’ on page 26.

This section describes the following:

* Using Execute Privileges

e Execute Privileges and App Servers

e Creating and Updating Collections

MarkLogic 9—May, 2017 Security Guide—Page 115

MarkLogic Server Version MarkLogic 9—May, 2017 Protecting XQuery and JavaScript

7.2.1 Using Execute Privileges
The basic steps for using execute privileges are:

» Createthe privilege.
» Assigntheprivilegeto arole.
» Write code to test for the privilege.

You create privileges and assign them to roles using the Admin Interface. You use the

xdmp : security-assert built-in function in your XQuery code to test for a privilege and you can
use the xdmp . securityassert built-in function in your JavaScript code to test for aprivilege. This
function tests to determine if the user running the code has the specified privilege. If the user
possesses the privilege, then the code continues to execute. If the user does not possess the
privilege, then the server throws an exception, which the application can catch and handle.

For example, to create an execute privilege to control the access to an XQuery function called
display-salary, USethe following steps:

1. Use the Admin Interface to create an execute privilege named a11low-display-salary.

2. Assgn any URI (fOf example, http: //my/privs/allow—display—salary) to the execute
privilege.

3. Assign aroleto the privilege. You may want to create a specific role for this privilege

depending on your security requirements.

4. Fi nally, in YOUr display-salary XQuery function, include an xdmp: security-assert cal
to test for the a11ow-display-salary execute privilege as follows:

xquery version "1.0-ml";

declare function display-salary (
Semployee-id as xs:unsignedLong)

as xs:decimal

{

xdmp: security-assert ("http://my/privs/allow-display-salary", "execute"),
}oi
71.2.2 Execute Privileges and App Servers

You can a'so control accessto specific HTTP, WebDAV, ODBC, or XDBC servers using an
execute privilege. Using the Admin Interface, you can specify that a privilege isrequired for
server access. Any users that access the server must then possess the specified privilege. If auser
tries to access an application on the server and does not possess the specified privilege, an
exception is thrown. For an example of using this technique to control server access, see
“Example: Using the Security Database in Different Servers’ on page 280.

Page 116—Security Guide

MarkLogic Server Protecting XQuery and JavaScript Functions With

7.2.3 Creating and Updating Collections

To create or update a document and add it to a collection, the unprotected-collections privilege
isrequired. You also need arole corresponding to an insert or update permission on the
document. For aprotected collection (a protected collection is created using the Admin Interface),
you either need permissions to update that collection or the any-co11ection execute privilege. If
the collection is an unprotected collection, then you need the unprotected-collections execute
privilege. For details on adding collections while creating a document, see the documentation for

xdmp : document -load, xdmp : document - insert, and xdmp : document -add-collections inthe

MarkLogic XQuery and XSLT Function Reference.

7.3 Temporarily Increasing Privileges with Amps

Amps provide users with additional authorization to execute a specific function. Assigning the
user this authorization permanently could compromise the security of the system. When executing
an amped function, the user is part of an amped role, which temporarily grants the user additional
privileges and permissions of that role. Amps enable you to limit the effect of the additional roles
(privileges and permissions) to a specific function.

For example, a user may need a count of all the documents in the database in order to create a
report. If the user does not have read permissions on all the documentsin the database, queries run
by the user do not “see” all the documents in the database. If you want anyone to be able to know
how many documents are in the database, regardless of whether they have permissionsto see
those documents, you can create a function named document -count () and use an amp on the
function to elevate the user to arole with read permission for all documents. When the user
executes the amped function, she temporarily has the necessary read permissions that enable the
function to complete accurately. The administrator has in effect decided that, in the context of that
document -count () function, it is safe to let anyone execute it.

Amps are security objects and you use the Admin Interface or Management API to create them.
Amps are specific to asingle function in alibrary module, which you specify by URI and local
name when creating the amp. You can only amp afunction that residesin alibrary module that is
stored in atrusted directory on the filesystem, such asin the Modu1es directory

(<install dirs/Modules), OF in the modules database configured for the server in which the
function is executed. The recommended best practiceisto put your library module code into the
modules database. You cannot amp functions in XQuery modules or JavaScript modules stored in
other locations. For example, you cannot amp afunction in amodule installed under the
filesystem root of an HTTP server, and you cannot amp functions that reside in a main module.
Functions must reside in the modu1es database or in the modules directory because these locations
are trusted. Allowing amped functions from under a server root or from functions submitted by a
client could compromise security. For details on creating amps, see the “ Security Administration”
chapter of the Administrator’s Guide.

For an example that uses an amp, see “Access Control Based on Client IP Address’” on page 291.
For details on ampsin JavaScript modules, see Amps and the module.amp Function in the JavaScript
Reference Guide.

MarkLogic 9—May, 2017 Security Guide—Page 117

MarkLogic Server Version MarkLogic 9—May, 2017 Protecting XQuery and JavaScript

Page 118—Security Guide

MarkLogic Server Granular Privileges

8.0 Granular Privileges

Granular privileges extend MarkL ogic Server security model by allowing finer granularity access
control over configuration and various administration abilities. Granular privilegesis a subtype
of execute privileges type. The purposes of granular privileges are:

» Allow different applications to coexist in asingle cluster, with some users having
authority over some parts of the cluster and other users having authority over other parts
of the cluster.

» Support separation of concerns between different administrative users, constraining
control to just the layers they are concerned with.

This chapter describes granular privileges and includes the following sections:

¢ Understanding Granular Privileges

e Cateqgories of Granularity

e Configuring Granular Privileges

e Examples of Granular Privileges Usage

e Using Granular Priviliges with MarkLogic DHaaS

8.1 Understanding Granular Privileges

The MarkLogic security model includes execute privileges. Execute privileges are identified with
URIs and can be assigned to roles. For detail on execute privileges, see “ Protecting XQuery and
JavaScript Functions With Privileges’ on page 115.

For example, the following privilege alows a user to restart any forest:

http://marklogic.com/xdmp/privileges/xdmp-forest-restart

Granular privileges allow more fine-grained approach to execute privileges. When assigning
privileges to roles, you may not only specify a privilege to perform a specific action but also
identify a specific resource to which this privilege applies.

For example, you may allow a user to restart a specific forest by assigning one of the following
privilegesto thisuser’srole:

http://marklogic.com/xdmp/privileges/xdmp-forest-restart/forest/forest-ID
http://marklogic.com/xdmp/privileges/xdmp-forest-restart/database/database-ID

where rorest-1piSthe forest identifier and database-1p iSthe identifier of the database using the
forest.

You can create an appropriate fine-grained privilege, assign it to some role, and assign that role to
auser. Then the user will be able to restart the specified forest, or forestsin the specified database.

MarkLogic 9—May, 2017 Security Guide—Page 119

MarkLogic Server Version MarkLogic 9—May, 2017 Granular Privileges

8.2 Categories of Granularity

You can use various categories of granular privilegesto limit access to privileged operations.
These categories are elaborated in this section:

* Privileges to Read, Write, or Delete Any Configuration File

* Privileges to Read, Write, or Delete a Specific Configuration File

* Privileges to Administer a Specific Resource

* Privileges to Administer a Specific Aspect of a Set of Resources

* Privileges to Administer a Specific Aspect of a Specific Resource

* Configure Granular Privileges via the Admin Interface

* Configure Granular Privileges via the XQuery AP| Security Module

8.2.1 Privileges to Read, Write, or Delete Any Configuration File

A privilegein this category grants auser the ability to read, write, or delete any configuration file
as specified (for example, call t0 xdmp: write-cluster-config-file()). Thisprivilegeis specific
to the operation (for example, "writer) and the scope (for example, "ciusterr). The combination
of the two valuesis a specific privilege (for example,
http://marklogic.com/xdmp/privileges/xdmp—write—cluster—config—file)

The following granular privileges belong to this category:

http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file
http://marklogic.com/xdmp/privileges/xdmp-write-cluster-config-file
http://marklogic.com/xdmp/privileges/xdmp-delete-cluster-config-file

8.2.2 Privileges to Read, Write, or Delete a Specific Configuration File

A privilegein this category grants a user the ability to read, write, or delete a specific
configuration file (for example, databases.xm1). This privilege is specific to the operation (for
example, "write), scope (for example, "ciusterr), and the configuration file (for example,
"databases.xml"). The combination of the three valuesis a specific privilege (for example,
http://marklogic.com/xdmp/privileges/xdmp—write—cluster—config—file/databases.xml)

The following privileges belong to this category:

http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file/assignments.xml
http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file/calendars.xml
http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file/clusters.xml
http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file/countries.xml
http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file/databases.xml
http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-£file/groups.xml
http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file/hosts.xml
http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file/languages.xml
http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file/mimetypes.xml
http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file/security.xml
http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file/server.xml
http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file/tokenizer.xml
http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file/user-languages.xml

Page 120—Security Guide

MarkLogic Server

http:
http:
http:
http:
http:
http:
http:
http:
http:
http:

http

http:

http

http:
http:
http:
http:
http:
http:
http:
http:
http:
http:
http:
http:
http:

8.2.3

//marklogic.
//marklogic.
//marklogic.
//marklogic.
//marklogic.
//marklogic.
//marklogic.
//marklogic.
//marklogic.
//marklogic.
://marklogic.
//marklogic.
://marklogic.

//marklogic.
//marklogic.
//marklogic.
//marklogic.
//marklogic.
//marklogic.
//marklogic.
//marklogic.
//marklogic.
//marklogic.
//marklogic.
//marklogic.
//marklogic.

Granular Privileges

com/xdmp/privileges/xdmp-write-cluster-config-file/assignments.xml
com/xdmp/privileges/xdmp-write-cluster-config-file/calendars.xml
com/xdmp/privileges/xdmp-write-cluster-config-file/clusters.xml
com/xdmp/privileges/xdmp-write-cluster-config-file/countries.xml
com/xdmp/privileges/xdmp-write-cluster-config-file/databases.xml
com/xdmp/privileges/xdmp-write-cluster-config-file/groups.xml
com/xdmp/privileges/xdmp-write-cluster-config-file/hosts.xml
com/xdmp/privileges/xdmp-write-cluster-config-file/languages.xml
com/xdmp/privileges/xdmp-write-cluster-config-file/mimetypes.xml
com/xdmp/privileges/xdmp-write-cluster-config-file/security.xml
com/xdmp/privileges/xdmp-write-cluster-config-file/server.xml
com/xdmp/privileges/xdmp-write-cluster-config-file/tokenizer.xml
com/xdmp/privileges/xdmp-write-cluster-config-file/user-languages.xml

com/xdmp/privileges/xdmp-delete-cluster-config-file/assignments.xml
com/xdmp/privileges/xdmp-delete-cluster-config-file/calendars.xml
com/xdmp/privileges/xdmp-delete-cluster-config-file/clusters.xml
com/xdmp/privileges/xdmp-delete-cluster-config-file/countries.xml
com/xdmp/privileges/xdmp-delete-cluster-config-file/databases.xml
com/xdmp/privileges/xdmp-delete-cluster-config-file/groups.xml
com/xdmp/privileges/xdmp-delete-cluster-config-file/hosts.xml
com/xdmp/privileges/xdmp-delete-cluster-config-file/languages.xml
com/xdmp/privileges/xdmp-delete-cluster-config-file/mimetypes.xml
com/xdmp/privileges/xdmp-delete-cluster-config-file/security.xml
com/xdmp/privileges/xdmp-delete-cluster-config-file/server.xml
com/xdmp/privileges/xdmp-delete-cluster-config-file/tokenizer.xml
com/xdmp/privileges/xdmp-delete-cluster-config-file/user-languages.xml

Privileges to Administer a Set of Resources

A privilege of this category grants a user the ability to administer a specific set of resources (for
example, databases). This privilege is specific to the resource set (for example, "databases"),
which defines the specific privilege (for example,

http://marklogic. com/xdmp/privi1eges/admin/database). This privi Iege may lmply the
privilege to read and write a specific configuration file.

The following privileges belong to this category:

http:
http:

http

http:

http

http:
http:
http:
http:

MarkLogic 9—May, 2017

//marklogic.
//marklogic.
://marklogic.
//marklogic.
://marklogic.
//marklogic.
//marklogic.
//marklogic.
//marklogic.

com/xdmp/privileges/admin/database
com/xdmp/privileges/admin/forest
com/xdmp/privileges/admin/host
com/xdmp/privileges/admin/app-server
com/xdmp/privileges/admin/app-server-security
com/xdmp/privileges/admin/group
com/xdmp/privileges/admin/group-security
com/xdmp/privileges/admin/cluster
com/xdmp/privileges/admin/mimetypes

Note: Privileges of this category are pre-defined and included with every installation of
MarkLogic Server. Y ou can view them in the Execute Privileges Summary page of
the Admin Interface (see instructions in Viewing an Execute Privilege section of the
Administrator’s Guide).

Security Guide—Page 121

MarkLogic Server Version MarkLogic 9—May, 2017 Granular Privileges

8.24 Privileges to Administer a Specific Resource

A privilege of this category grants a user an ability to administer a specific resource (for example,
a database with the specified identifier). This privilege is granted by suffixing the administrator
privilege for that kind of resource (for example, "aatabaser) with the specific identifier (for
example, database-10), Which results in the specific privilege (for example,
http://marklogic.com/xdmp/privileges/admin/database/database- ID). This privi | ege may
imply the privilege to read and write a portion of a configuration file. It also grants the ability to
call various built-in functions for specific resources (for example,
http://marklogic.com/xdmp/privileges/xdmp—forest—clear/forest/forest-II)prhﬂ'egeiﬂlovvs

cdlsto xdmp : forest-clear () for that forest |dent|f|er)

The following privileges belong to this category:

http:
http:
http:
http:
http:
http:

http

http:

8.2.5

//marklogic.
//marklogic.
//marklogic.
//marklogic.
//marklogic.
//marklogic.
://marklogic.
//marklogic.

com/xdmp/privileges/admin/database/database-ID
com/xdmp/privileges/admin/forest/forest-ID
com/xdmp/privileges/admin/host/host-ID
com/xdmp/privileges/admin/app-server/server-ID
com/xdmp/privileges/admin/app-server-security/server-ID
com/xdmp/privileges/admin/group/group-ID
com/xdmp/privileges/admin/group-security/group-ID
com/xdmp/privileges/admin/cluster/cluster-ID

Privileges to Administer a Specific Aspect of a Set of Resources

A privilege of this category grants a user an ability to administer a specific aspect (for example,
backup) of a set of resources (for example, databases). This privilege is granted by suffixing the
administrator privilege for that kind of resource (for example, "aatabaser) with the specific
aspect (for example, "vackup), which results in the specific privilege (for example,
http://marklogic. com/xdmp/privi1eges/admin/database/backup). This privilege may |mpIy the
privilege to read and write a portion of a configuration file.

The following privileges belong to this category:

http:
http:

http

http:
http:
http:
http:

8.2.6

//marklogic.
//marklogic.
://marklogic.
//marklogic.
//marklogic.
//marklogic.
//marklogic.

com/xdmp/privileges/admin/database/forests
com/xdmp/privileges/admin/database/backup
com/xdmp/privileges/admin/database/index
com/xdmp/privileges/admin/database/replication
com/xdmp/privileges/admin/database/forest-backup
com/xdmp/privileges/admin/forest/backup
com/xdmp/privileges/admin/group/scheduled-task

Privileges to Administer a Specific Aspect of a Specific Resource

A privilege of this category grants a user an ability to administer a specific aspect (for example,
backup) of a specific resource (for example, the database with identifier database-1D). This
privilege is granted by suffixing the privilege for the specific aspect (for example, "backup") of
that kind of resource (for example, "database) with the specific identifier (for example,
database-1D"), Which results in the specific privilege (for example,
http://marklogic.com/xdmp/privileges/admin/database/backup/database—ID).Thksprhﬂ|ege
may imply the privilege to read and write a portion of a configuration file.

Page 122—Security Guide

MarkLogic Server

Granular Privileges

The following privileges belong to this category:

http:
http:
http:
http:

//marklogic.
//marklogic.
//marklogic.
//marklogic.

com/xdmp/privileges/admin/database/forests/database-ID
com/xdmp/privileges/admin/database/backup/database-ID
com/xdmp/privileges/admin/database/index/database-ID
com/xdmp/privileges/admin/database/index/database-name

http://marklogic.com/xdmp/privileges/admin/database/replication/database-ID
http://marklogic.com/xdmp/privileges/admin/database/forest-backup/database-ID
http://marklogic.com/xdmp/privileges/admin/forest/backup/forest-ID
http://marklogic.com/xdmp/privileges/admin/group/scheduled-task/group-ID

A user with any of the following privileges:

http://marklogic.com/xdmp/privileges/admin/database/index
http://marklogic.com/xdmp/privileges/admin/database/index/database-ID
http://marklogic.com/xdmp/privileges/admin/database/index/database-name

can alter the following properties:

Property

Description

attribute-value-positions

Index attribute value positions for faster near searches
involving element-attribute-value-query (slower document
loads and larger database files).

collection-lexicon

Maintain alexicon of collection URIs (slower document
loads and larger database files).

default-rulesets

The default rulesets configuration.

element-attribute-word-
lexicons

Maintain lexicons of words in elements.

element-value-positions

Index element value positions for faster near searches
involving element-value-query (slower document loads and
larger database files).

element-word-lexicons

Maintain lexicons of wordsin XML & ements or JSON
properties.

element -word-positions

Index element word positions for faster element-based
phrase and near searches (slower document |oads and larger
database files).

element -word-query-throughs

The element-word-query-through specifications.

fast-case-sensitive-searches

Enable faster case sensitive searches (slower document
loads and larger database files).

fast-diacritic-sensitive-
searches

Enable faster diacritic sensitive searches (slower document
loads and larger database files).

MarkLogic 9—May, 2017

Security Guide—Page 123

MarkLogic Server

Version MarkLogic 9—May, 2017

Granular Privileges

Property

Description

fast-element-character-
searches

Enable element wildcard searches and element-character-
based X Query predicates (slower document loads and larger
database files).

fast-element-phrase-searches

Enable faster element phrase searches (slower document
loads and larger database files).

fast-element-trailing-
wildcard-searches

Enable element trailing wildcard searches (slower
document loads and larger database files).

fast-element-word-searches

Enable faster element-word searches (slower document
loads and larger database files).

fast-phrase-searches

Enable faster phrase searches (slower document loads and
larger database files).

fast-reverse-searches

Enable faster reverse searches (slower document loads and
larger database files).

field-value-positions

Index field value positions for faster near searches
involving field-value-query (slower document loads and
larger database files).

field-value-searches

Index field values for faster searchesinvolving field-value-
query (slower document loads and larger database files).

fields

The fields specifications.

geospatial-element-
attribute-pair-indexes

Indexes for fast geospatial element comparisons.

geospatial-element-child-
indexes

Indexes for fast geospatial element comparisons.

geospatial-element-indexes

Indexes for fast geospatial element comparisons.

geospatial-element-pair-
indexes

Indexes for fast geospatial element comparisons.

geospatial-path-indexes

Indexes for fast geospatial path-based comparisons.

geospatial-region-path-
indexes

Indexes for fast geospatial region comparisons.

language

The default language assumed for content (if xml:lang
encoding is absent)

path-namespaces

The namespace binding specifications for Path indexes.

phrase-arounds

The phrase-around specifications.

Page 124—Security Guide

MarkLogic Server

Granular Privileges

Property

Description

phrase-throughs

The phrase-through specifications.

range-element-attribute-
indexes

Indexes for fast element-attribute inequality comparisons.

range-element-indexes

Indexes for fast inequality comparisons.

range-index-optimize

Specifies how to optimize range indexes.

range-path-indexes

Indexes for fast inequality comparisons.

stemmed-searches

Enable stemmed word searches (slower document loads and
larger database files).

tf-normalization

What kind of TF normalization to apply.

three-character-searches

Enable wildcard searches and faster character-based
XQuery predicates using three or more characters (slower
document loads and larger database files).

three-character-word-
positions

Index word positions for three-character searches only
when three-character-searches are enabled (slower
document loads and larger database files).

trailing-wildcard-searches

Enable trailing wildcard searches (slower document loads
and larger database files).

trailing-wildcard-word-
positions

Index word positions for trailing-wildcard searches only
when trailing-wildcard-searches are enabled (dlower
document loads and larger database files).

triple-index

Enable the RDF triple index (slower document loads and
larger database files).

triple-positions

Index triple positions for faster near searchesinvolving
cts:triple-range-query (slower document loads and larger
database files).

MarkLogic 9—May, 2017

Security Guide—Page 125

MarkLogic Server Version MarkLogic 9—May, 2017 Granular Privileges

Property Description
uri-lexicon Maintain alexicon of document URIs (slower document
loads and larger database files).
word-lexicons A list of word lexicons. Each lexicon is defined by its
collation URI.
word-positions Index word positions for faster phrase and near searches

(slower document loads and larger database files).

word-searches Enable unstemmed word searches (slower document loads
and larger database files).

8.3 Configuring Granular Privileges

You can configure granular privileges either viathe MarkL ogic Server Admin Interface or viathe
functions of XQuery API security module.

This section describes both mechanisms in the corresponding subsections:

* Configure Granular Privileges via the Admin Interface

e Configure Granular Privileges via the XQuery API Security Module

8.3.1 Configure Granular Privileges via the Admin Interface

To create anew granular privilege viathe Admin Interface, follow steps for creating an execute
privilege described at Creating an Execute Privilege Section of the Administrator’s Guide.

For example, to create a granular privilege that grants a user an ability to administer a specific
aspect (for example, backup) of a set of resources (for example, forests), perform the following

steps:

1 Use the Admin Interface to create an execute privilege named admin-forest-backup.

2. Assi gn the action URI http://marklogic.com/xdmp/privileges/admin/forest/backup tO
the privilege.

3. Assign the privilege to the desired role or roles. You may want to create a specific role for

this privilege depending on your security requirements.

The following screenshot depicts the New Execute Privilege page with these parameters:

Page 126—Security Guide

MarkLogic Server Granular Privileges

N o T o T e

New Execute Privilege | ok | cancel

execute privilege — Privilege representation.

privilege name admin-forest-backup

Privilege name (unigue)
Required. You must supply a value for privilege-name.

action o gic.co m/xdmy s'pn'-\.'iie.g esfadmi ﬁs'fo.re.st.“ba.cfc-up
AURTTo profect
Required. You must supply a value for action.

roles — The roles assigned.

Role Compartment

admin

¥ admin-builtins

Note: You cannot create agranular privilege that grants a user the ability to administer a
specific resource (such as aforest with the specified identifier) in the manner
described here because resource identifiers are not exposed in the Admin Interface.
To create agranular privilege of thistype (for example,
http://marklogic.com/xdmp/privileges/admin/forest/forest- ID), you need to
use the functions of the XQuery API security module, as described in the
following section Configure Granular Privileges via the XQuery API Security Module.

8.3.2 Configure Granular Privileges via the XQuery API Security Module

You can use the XQuery API security module to create and assign granular privileges. The
following sections describe thisin detail:

* Creating and Assigning Granular Privileges

e Using Pseudo-Functions with Granular Privileges

e Examples of Creating and Assigning Granular Privileges

8.3.2.1 Creating and Assigning Granular Privileges

To create anew granular privilege programmatically, use the following function of the XQuery
API security module:

sec:create-privilege (
Sprivilege-name as xs:string,

MarkLogic 9—May, 2017 Security Guide—Page 127

MarkLogic Server Version MarkLogic 9—May, 2017 Granular Privileges

Saction as xs:string,

Skind as xs:string,

Srole-names as xs:string*
) as xs:unsignedLong

To assign an existing granular privilege to an additional role, use the following function of the
XQuery API security module:

sec:privilege-set-roles(
Saction as xs:string,
Skind as xs:string,
Srole-names as xs:string*
) as empty-sequence ()

For detailed descriptions of sec: create-privilege and sec :privilege-set-roles functions of
security.xqy library module, see the MarkLogic XQuery and XSLT Function Reference.

8.3.2.2 Using Pseudo-Functions with Granular Privileges

When you have a payload that creates a database and a granular privilege for that database, you
need to substitute avariable of some sort for the ID of the database because the database has yet to
be created. MarkL ogic has the following pseudo-functions that can be used when creating and
assigning granular privileges:

Pseudo-Function and Parameters Replaced By...

$$group-1id (group-name) The group 1D of the named group.

$$database-id (database-name) The database 1D of the named database.

$$host-1d () The host ID of the host running the query.

$$host-1id (host-name) The host ID of the named host.

$$forest-id(forest-name) Theforest ID of the named forest.

$$cluster-id () The cluster ID of the cluster to whch the host running
the query belongs.

$$cluster-id (cluster-name) The cluster ID of the named cluster.

$$role-id(role-name) Therole ID of the named role.

$$user-id (user-name) The user 1D of the named user.

$$server-id (server-name) The server ID of the named server in the group to
which the host running the query belongs.

Page 128—Security Guide

MarkLogic Server

Granular Privileges

Pseudo-Function and Parameters

Replaced By...

-1 n - n
'
SSserver-id ("server-name
group-1id)

The server ID of the named server in the specified
group. Note that group-id isan unsigned long. To
refer to the group by name as well, nest the calls:

$Sserver-id (server-name,
$Sgroup-id (group-name))

$$privilege-id("privilege-name")

The privilege ID of the named /execute/ privilege.

$$privilege-id("privilege-name",
"execute")

The privilege ID of the named execute privilege.

S$Sprivilege-id("privilege-name",
lluri n)

The privilege ID of the named URI privilege.

For example, to create the privilege finalpbName-index-editor fOr anot-yet-created database
represented by the variable rina1pbname, execute the following code:

{

"privilege-name": "finalDbName-index-editor",

"action":

"http://marklogic.com/xdmp/privileges/admin/database/index/s$database-

id (FinalDbName) ",

"role": ["firstEditorRole", "secondEditorRole"],

"kind": "execute"

8.3.2.3 Examples of Creating and Assigning Granular Privileges
The following are examples of creating and assigning granular privileges viathe XQuery API.

Example 1. Assign aprivilegeto perform index operations on any databaseto roie1

SUppOSG you preVI OUSly created http://marklogic.com/xdmp/privileges/admin/database/index
privilege viathe Admin Interface, as described in the previous section Configure Granular Privileges
via the Admin Interface. Assign this privilege to ro1e1 asfollows:

xquery version "1.0-ml";

import module namespace sec="http://marklogic.com/xdmp/security" at

"/MarkLogic/security.xqy";

sec:privilege-set-roles(

"http://marklogic.com/xdmp/privileges/admin/database/index",

"execute",
("admin", "rolel")

)

Example 2. Create a privilegeto perform any operations on database ab1 for role2

MarkLogic 9—May, 2017

Security Guide—Page 129

MarkLogic Server Version MarkLogic 9—May, 2017 Granular Privileges

Create a privilege to perform any operations on database ap1 for ro1e2 asfollows (note the use of
function xdmp:database ("db1") to convert from the database name to the database identifier):

xquery version "1.0-ml";
import module namespace sec="http://marklogic.com/xdmp/security" at
"/MarkLogic/security.xqy";

sec:create-privilege (

"admin-database-dbl",

fn:concat ("http://marklogic.com/xdmp/privileges/admin/database/",
xdmp :database ("dbl")),

"execute",

"role2"

)

Example 3: Create a privilege to perform index operations on database av1 for roles

Create aprivilege to perform index operations on database ab1 for roies asfollows (note the use
of function xdmp: database ("db1") to convert from the database name to the database identifier):

xquery version "1.0-ml";
import module namespace sec="http://marklogic.com/xdmp/security" at
"/MarkLogic/security.xqy";

sec:create-privilege (

"admin-database-db1l",

fn:concat ("http://marklogic.com/xdmp/privileges/admin/database/inde
x/", xdmp:database("dbl")),

"execute",

"rolel"

8.4 Examples of Granular Privileges Usage
This section describes severa scenarios that use granular privileges.

8.4.1

Prerequisites - Create Databases, Roles, Users, and Privileges

To execute the scenarios discussed in this section, you need to perform the following preparation

steps:

1.

Using the Admin Interface, create databases ab1 and dv2. For details on creating
databases, see Creating a New Database Section of the Administrator’s Guide.

Using the Admin Interface, create roles role1, role2, and roles. For details on creating
roles, see Creating a Role section of the Administrator’s Guide.

Using the Admin Interface, create usersuseri, user2, and users With roles role1, rolez,
and ro1e3 correspondingly. For details on creating users and assigning roles to them, see

Creating a User section of the Administrator’s Guide.

Page 130—Security Guide

MarkLogic Server Granular Privileges

4, Create and assign granular privilegesto roles role1, role2, and roles asdescribed in
Example 1, Example 2, and Example 3 correspondingly of the previous section Configure
Granular Privileges via the XQuery AP| Security Module.

Asthe result, you will have the users with roles and privileges as described in the following table:

User | Role Privilege

userl |rolel |http://marklogic.com/xdmp/privileges/admin/database/index

user2 |role2 |http://marklogic.com/xdmp/privileges/admin/database/dbl identifier

user3 |role3 |http://marklogic.com/xdmp/privileges/admin/database/index/dbl identifier

8.4.2 Scenarios that Use Granular Privileges

This section includes examples in XQuery that you may run for user1, userz, and users from the
Query Console and observe different results depending on the user’s privileges. The results are
discussed in detail in the next section, Test It Out.

Scenario 1. Add range index to database ab1
Execute the following X Query code to add a range index to database do1:

xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin" at
"/MarkLogic/admin.xqy";

let $Sconfig := admin:get-configuration ()

let $dbid := xdmp:database("dbl")

let Srangespec := admin:database-range-element-index("int",
"http://marklogic.com/ga", "columnl", (), fn:false())

let sSconfig := admin:database-add-range-element-index(Sconfig, $dbid,
Srangespec)

return admin:save-configuration ($config)

Scenario 2: Add range index to database av2

Execute the following X Query code to add a range index to database do2:
xquery version "1.0-ml";

import module namespace admin = "http://marklogic.com/xdmp/admin" at
"/MarkLogic/admin.xqy";

let Sconfig := admin:get-configuration/()

let $dbid := xdmp:database("db2")

let Srangespec := admin:database-range-element-index("int",
"http://marklogic.com/ga", "columnl", (), fn:false())

let Sconfig := admin:database-add-range-element-index($config, $dbid,

MarkLogic 9—May, 2017 Security Guide—Page 131

MarkLogic Server Version MarkLogic 9—May, 2017 Granular Privileges

Srangespec)
return admin:save-configuration($config)

Scenario 3: Add backup for database ab1
Execute the following X Query code to add a backup for database dv1:

xquery version "1.0-ml";

import module namespace admin = "http://marklogic.com/xdmp/admin" at
"/MarkLogic/admin.xqy";

let Sconfig := admin:get-configuration/()

let S$backup := admin:database-monthly-backup ("/space/backup", 2, 1,
xs:time("09:45:00"), 2, true(), true(), true())

return admin:save-configuration (admin:database-add-backup ($config,
xdmp :database ("db1l"), sbackup))

8.4.3 Test It Out

Using the Query Console, you can execute Scenario 1, Scenario 2, and Scenario 3 for each one of
the usersuser1, user2, and users. The results of the execution are presented in the following
table:

User Role Scenario Result
userl rolel Add range index to database dbl Success
userl rolel Add range index to database db2 Success
userl rolel Add backup for database dbl Failure
user2 role2 Add range index to database dbl Success
user?2 role2 Add range index to database db2 Failure
user2 role2 Add backup for database dbl Success
user3 role3 Add range index to database dbl Success
user3 role3l Add range index to database db2 Failure
user3 role3 Add backup for database dbl Failure

The following analysis explains these results:

* Theuser user1 successfully adds indexes to both databases ab1 and ab2, but fails to add
backup to database a1, because the user’s ro1e1 has granular privilege
http://marklogic.com/xdmp/privileges/admin/database/indextha[a“CNVStC)add
indexes to any database but does not allow other operations on databases.

* Theuser user2 successfully adds both the index and backup to database av1, but failsto
add index to database ab2, because the user’s ro1e2 has granular privilege
http://marklogic.com/xdmp/privileges/admin/database/dbl_identifiertha[a“CNVStr“S

Page 132—Security Guide

MarkLogic Server Granular Privileges

user to perform any operation on database ap1 but does not allow operations on other
databases.

* Theuser users successfully adds index to database aw1, but fails to add index to database
apz2 and to add backup to database dv1, because the user’s ro1e3 has granular privilege
http://marklogic.com/xdmp/privileges/admin/database/index/dbl identifier that
allows to add indexes to database dan1 but does not allow any other operation on database
apb1 and does not allow any operation on other databases.

8.5 Using Granular Priviliges with MarkLogic DHaaS

MarkLogic Data Hub Service provides a managed AWS instance in which to deploy an
operational data hub created using Data Hub Framework (DHF). MarkL ogic also providesits data
hub as a service (DHaaS) where you can store and curate your datain the cloud. The following
roles are built into DHaaS:

Role Identifier Can do these things...
Data Hub securityAdmin An administrator; can create roles based on the Flow
Security Developer, Flow Operator, Endpoint Devel oper, and
Admin Endpoint Operator roles.
Flow flowDeveloper A developer who can upload new or changed
Developer documents (such as flows) to the modules database.

Can change modules, deploy apps, develops and
publishes the flows to production; can configure
indexes, TDE, and publish to modules.

Flow flowOperator A operator who can load and modify datain the staging
Operator database and final database, call flow runner (for
example, viaml-gradle), and monitor jobs (read
documents in the trace/jobs database).

Endpoint endpointDeveloper | A subset of flow developer that has access to endpoints
Developer and the final documents, can add documents to the
modules database, but cannot modify somebody else's
documents or flows. This user has no access to flows,
staging, mappings, or entities. This user can publish to
modules regarding only the access side and not curation
stack, create endpoints, make use of Data Services First
APIs, and specify ports.

Endpoint endpointOperator | Represents the operator who can access the endpoints.
Operator

MarkLogic 9—May, 2017 Security Guide—Page 133

MarkLogic Server Version MarkLogic 9—May, 2017 Granular Privileges
Role Identifier Can do these things...

ODBC User | odbcUser Represents the user that has access to the anal ytics stack
that has an ODBC server.

Services SERV-ADMIN Can create services, provision instances, subscribe or

Administrator add the service. This role manages networking
(limited).

Account ACCT-ADMIN Can tracks and view billing and usage.

Administrator

Security SEC-ADMIN Can configure VPC, assign roles, and add users to the

Administrator pre-configured roles. Thisroleis mapped to the AD

group.

The following rules apply to granular privileges on a data hub:

* A securityadmin USer cannot delete or modify privileges for these or any other pre-built
roles, and these pre-built roles cannot inherit privileges.

* When asecurityadmin USer creates a DHaaS custom role, that role initially has no pre-

built roles associated with it.

» Custom rolesin DHaaS can inherit functionality from the pre-built DHaaS roles, from
other DHaaS custom roles, or they can be created to have no inheritance, but you cannot
assign any privileges to DHaaS custom roles.

» DHaaS custom roles cannot inherit privileges from any other (non-DHaaS) pre-built
MarkLogic roles.

* You can change the external name for a DHaaS custom role, but the internal name stays

constant.

Page 134—Security Guide

MarkLogic Server Configuring SSL on App Servers

9.0 Configuring SSL on App Servers

This chapter describes SSL support in the MarkLogic Server, and includes the following sections:

e Understanding SSL

* General Procedure for Setting up SSL for an App Server

* Procedures for Enabling SSL on App Servers

e Accessing an SSL-Enabled Server from a Browser or WebDAV Client

* Procedures for Obtaining a Signed Certificate

* Viewing Trusted Certificate Authorities

* |mporting a Certificate Revocation List into MarkLogic Server

* Deleting a Certificate Template

This chapter describes how to use the Admin Interface to configure SSL on App Servers. For
details on how to configure SSL programmatically, see Enabling SSL on an App Server in the
Scripting Administrative Tasks Guide.

9.1 Understanding SSL

SSL (Secure Sockets Layer) is atransaction security standard that provides encrypted protection
between browsers and App Servers. When SSL is enabled for an App Server, browsers
communicate with the App Server by means of an HTTPS connection, which isHTTP over an
encrypted Secure Sockets Layer. HTTPS connections are widely used by banks and web vendors
for secure transactions over the web.

A browser and App Server create a secure HT TPS connection by using a handshaking procedure.
When browser connects to an SSL-enabled App Server, the App Server sends back its
identification in the form of adigital certificate that contains the server name, the trusted
certificate authority, and the server's public encryption key. The browser uses the server's public
encryption key from the digital certificate to encrypt arandom number and sends the result to the
server. From the random number, both the browser and App Server generate a session key. The
session key isused for the rest of the session to encrypt/decrypt all transmissions between the
browser and App Server, enabling them to verify that the data didn't change in route.

The end result of the handshaking procedure described above is that only the server is
authenticated. The client can trust the server, but the client remains unauthenticated. MarkL ogic
Server supports mutual authentication, in which the client also holds a digital certificate that it
sends to the server. When mutual authentication is enabled, both the client and the server are
authenticated and mutually trusted.

MarkL ogic Server uses OpenSSL to implement the Secure Sockets Layer (SSL v3) and Transport
Layer Security (TLSv1) protocols.

MarkLogic 9—May, 2017 Security Guide—Page 135

MarkLogic Server Version MarkLogic 9—May, 2017 Configuring SSL on App Servers

The following are the definitions for the SSL terms used in this chapter:

A certificate, or more precisely, a public key certificate, is an electronic document that
incorporates a digital signature to bind together a public key with identity information,
such as the name of a person or an organization, address, and so on. The certificate can be
used to verify that a public key belongsto an individual or organization. In atypical public
key infrastructure (PKI) scheme, the signature will be that of a certificate authority.

A certificate authority (CA) isatrusted third party that certifies the identity of entities,
such as users, databases, administrators, clients, and servers. When an entity requests
certification, the CA verifiesitsidentity and grants a certificate, which is signed with the
CA'sprivate key. If the CA istrusted, then any certificate it issuesistrusted unlessit has
been revoked.

A certificate chain is a group of interdependent CAs. A certificate chain consists of a
single trusted root CA, one or more intermediate CA, and one or more end CA. The
intermediate and end certificates must be imported into MarkL ogic.

Note: MarkLogic supports only one intermediate CA per host.

A certificate request is arequest data structure containing a subset of the information that
will ultimately end up in the certificate. A certificate request is sent to a certificate
authority for certification.

A key is apiece of information that determines the output of acipher. SSL/TLS
communications begin with a public/private key pair that allow the client and server to
securely agree on a session key. The public/private key pair is also used to validate the
identity of the server and can optionally be used to verify the identity of the client.

A certificate template isaMarkL ogic construct that is used to generate certificate requests
for the various hosts in a cluster. The template defines the name of the certificate, a
description, and identity information about the owner of the certificate.

A cipher isan agorithm for encrypting information so that it's only readable by someone
with akey. A cipher can be either symmetric and asymmetric. Symmetric ciphers use the
same key for both encryption and decryption. Asymmetric ciphersuse apublic and private

key.

Note: Signed certificates are imported via the Certificate Templates import page, as
described in “Importing a Signed Certificate into MarkLogic Server” on page 154.
Certificate Authority certificates are imported via the Certificate Authorities
import page, as described in “CA Certificate (User Cert Signer) Import from
Admin Interface” on page 160.

Page 136—Security Guide

MarkLogic Server Configuring SSL on App Servers

9.2

General Procedure for Setting up SSL for an App Server

This section describes the general procedure for setting up SSL on an App Server. The general
steps are:

Create a certificate template, as described in “Creating a Certificate Template” on
page 138.

Enable SSL for the App Server, as described in “Enabling SSL for an App Server” on
page 140.

Access the SSL-enabled server from a browser, as described in “Accessing an SSL -
Enabled Server from a Browser or WebDAV Client” on page 142.

Generate a certificate request and send it off to a certificate authority, as described in
“Generating and Downloading Certificate Requests’ on page 152.

When you receive the signed certificate from the certificate authority, import it into
MarkLogic Server for use by your App Server, as described in “Importing a Signed
Certificate into MarkLogic Server” on page 154.

Note: Certificate templates, requests, and the resulting signed certificates are only valid
within asingle cluster.

MarkLogic 9—May, 2017 Security Guide—Page 137

MarkLogic Server Version MarkLogic 9—May, 2017 Configuring SSL on App Servers

9.3 Procedures for Enabling SSL on App Servers
The following sections describe how to enable SSL for an App Server:

e Creating a Certificate Template

e Enabling SSL for an App Server

9.3.1 Creating a Certificate Template

Accessto an SSL-enabled server is managed by a public key in asigned certificate obtained from
a certificate authority. The first step in producing arequest for asigned certificate is to define a
certificate template. This procedure will produce a self-signed certificate that your browser can
temporarily use to access an SSL-enabled server until you receive a signed certificate from a
certificate authority.

1 Click the Security icon in the left tree menu.
2. Click the Certificate Templates icon on the |eft tree menu.

3. Click the Create tab. The Create Certificate Template page will display:

Create Certificate Template ok | [cancer

template — A certificate template. " delete

template name

A certificate template’s name.
Required. You must supply a value for template-name.

template description

A certificate template’s description.

subject — The subject for a certificate or certificate request.

countryName

A two character country code (e.g. "US").
stateOrProvinceName

The state or province your server is in.
localityName

The city your server is in.
organizationName

The organization or company your server belongs to (e.g. Mark Logic).
Required. You must supply a value for organizationName.

organizationalUnitName
The organizational unit your server belongs to (e.g. Engineering).
emailAddress

The email address to contact regarding your server (e.g. webmaster@yourcompany.com).

4. In the Template Name field, enter a shorthand name for this certificate template.
MarkLogic Server will use this name to refer to this template on display screensin the
Admin Interface.

Page 138—Security Guide

MarkLogic Server Configuring SSL on App Servers

5. You can enter an optional description for the certificate template.

template name mycert

A certificate template’s name.
Required. You must supply a value for template-name.

template description This iz a sample certificate template.

A certificate template’s description.

6. Enter the name of your company or organization in the Organization Name field.

7. You can optionaly fill in subject information, such as your country, state, locale, and
email address. Country Name must be two characters, such as US, UK, DE, FR, ES, etc.

subject — The subject for a certificate or certificate request.

countrylame us
A two character country code (e.g. "US").

stateOrProvinceName CA

The state or province your server is in.

localityName San Carlos

The city your server is in.

organizationName Mark Logic

The organization or company your server belongs to (e.g. Mark Logic).
Required. You must supply a value for organizationName.

organizationalUnitHame Engineering

The organizational unit your server belongs to (e.g. Engineering).

emailAddress MyName(@my company. com

The email address to contact regarding your server (e.g. webmaster@yourcompany. com).

8. When you have finished filling in the fields, click OK. MarkLogic Server automatically
generates a Self-Signed Certificate Authority, which in turn automatically creates asigned
certificate from the certificate template for each host. For details on how to view the

Certificate Authority and signed certificate, see “Viewing Trusted Certificate Authorities’
on page 155.

MarkLogic 9—May, 2017 Security Guide—Page 139

MarkLogic Server Version MarkLogic 9—May, 2017 Configuring SSL on App Servers

9.3.2 Enabling SSL for an App Server

After creating a certificate template, you can enable SSL for an HTTRE, ODBC, WebDAYV, or
XDBC server.

1. Click the Groupsicon in the |eft tree menu.
2. Click the group in which you want to define the HTTP server (for example, Default).
3. Click the App Serversicon on the left tree menu.

4, Either create anew server by clicking on one of the Create server_type tabs or select an
existing server from the left tree menu.

The SSL fields are located at the bottom of the server specification page.

5. In the SSL Certificate Template field, select the certificate template you created in
“Creating a Certificate Template” on page 138. Selecting a certificate template implicitly
enables SSL for the App Server.

6. (Optional) The SSL Hostnamefield should only befilled in when aproxy or load balancer
is used to represent multiple servers. In this case, you can specify an SSL hostname here
and all instances of the application server will identify themselves as that host.

7. (Optional) Inthe SSL Ciphersfield, you can either use the default (aLw: 1 Low: esTRENGTH)
or one or more of the SSL ci phers defined in http://www.openssl.org/docs/apps/
ciphers.html.

ssl certificate template mycert -

The certificate template. When a cerificate template is specified, the App Server
uzes an S5L encrypted protecel (e.g. hitps, davs, xccs). The cerificate template
specifies the common information for the individual SSL certificates needed for
each host in the group.

“ou can add a new certificate template by navigating to Security = Certificate
Templates = Create

53l hostname

The host name for the servers S5L certificate. This is useful when many
servers are running behind a load balancer. If not specified, each host will use a
certificate specifying its own hostname. Note that per RFC 2455, hostnames
must not exceed 64 characters in length.

ssl ciphers ALLILOW:@STRENGTH
A colon separated list of ciphers (e.g. ALLILOW.@STRENGTH)

Page 140—Security Guide

http://www.openssl.org/docs/apps/ciphers.html
http://www.openssl.org/docs/apps/ciphers.html

MarkLogic Server Configuring SSL on App Servers

(Optional) If you want SSL to require clients to provide a certificate, select True for SSL
Require Client Certificate. Then select Show under SSL Client Certificate Authorities and
which certificate authority is to be used to sign client certificates for the server.

(Optional) Set SSL Client Issuer Authority Verification to True to ensure that the App
Server will accept client certificates only signed directly by a selected CA from the SSL
Client Certificate Authoritieslist. A setting of ra1se enablesthe App Server to accept
client certificates that have a parent CA that isindirectly signed by one or more ancestor
CAs selected in the Admin Interface (same as prior to MarkL ogic 9.0-8).

ssl require client @ true e

SEhEms Whether or not a client certificate is required. This only has an effect when cne
or more client certificate authorities are specified (including the client certificate
authorities in the external securities), in which case a value of true wil refuse a
client request if it does not present a valid client certificate.

ssl client issuer true @ false

authority verification Accept client certificates only if the izsuer is one of the zelected CAs in the "ssl

client certificate authorities’ list below.

szl client certificate authorities — Certificate authorities that may sign client certificates for this server.
Selecting one or more certificate authorities when SSL is enabled will require all clients to present a valid
certificate signed by one of the selected authorities. Clicking on an organization below will reveal the
certificate authorities for that organization.

Hide

America Online Inc. (2)
Baltimore (1)

Deutsche Telekom AG (1)
DigiCert Inc (3}

¥ C =Us
0 = DigiCert Inc
OU = www digicert.com
CH = DigiCert Global Root CA

MarkLogic 9—May, 2017 Security Guide—Page 141

MarkLogic Server Version MarkLogic 9—May, 2017 Configuring SSL on App Servers

9.4 Accessing an SSL-Enabled Server from a Browser or WebDAYV Client

When you create a certificate template and set it in your App Server, MarkLogic Server
automatically generates atemporary self-signed MarkL ogic certificate authority that signs host
certificates. If you have not yet received a signed certificate for your SSL-enabled App Server
from a certificate authority, your browser must accept the temporary self-signed certificate
authority before it can access the App Server. There are two alternative ways to do this, both of
which are browser-dependent and described below.

To enable WebDAYV clientsto access an SSL-enabled App Server, you must follow the procedure
described in “Importing a Self-Signed Certificate Authority into Windows™ on page 145.

To enable asingle browser to access the SSL-enabled App Server, you can create a security
exception for the self-signed certificate in your browser, as described in the following sections:

e Creating a Security Exception in Internet Explorer

* Creating a Security Exception in Google Chrome

* Importing a Self-Signed Certificate Authority into Windows

If you need to enable a number of browsers to access the SSL-enabled App Server, you might
want each browser to import the self-signed certificate authority for the certificate template. Once
thisisdone, al certificates signed by the certificate authority will be trusted by the browser, so
you can distribute new certificates without requiring each browser to create new security
exceptions. The following sections describe how to import the self-signed MarkL ogic certificate
authority:

e Importing a Self-Signed Certificate Authority into Windows

* Procedures for Obtaining a Signed Certificate

94.1 Creating a Security Exception in Internet Explorer

If you have not imported the certificate authority for the certificate template into Windows, when
you first access an SSL-enabled server with your |E browser, you will receive an error notifying
you that there is a problem with this website’s security certificate. You can bypass this security
exception by accepting the certificate. For example, if you enabled SSL on the HTTP server, App-
Services, each host can accept the self-signed certificate as described below.

1. Access the server with the URL :
https://gordon-1:8000/

Note: Remember to start your URL with HTTPS, rather than HTTP. Otherwise, the
browser will return an error.

Page 142—Security Guide

MarkLogic Server Configuring SSL on App Servers

2. The server responds with a“ There is a problem with this website's security certificate”
notification similar to:

'g) There is a problem with this website's security certificate.

The security certificate presented by this website was not issued by a trusted certificate authority.
The security certificate presented by this website was issued for a different website's address.

Security certificate problems may indicate an attempt to fool you or intercept any data you send to the
server.

We recommend that you close this webpage and do not continue to this website.
@ Click here to close this webpage.

) Continue to this website (not recommended).

® More information

3. Click on “Continue to this website (not recommended)”

4, Enter your MarkL ogic Server username and password at the prompt.

9.4.2 Creating a Security Exception in Google Chrome

If you have not imported the MarkL ogic certificate authority into your Chrome browser, when
you first access an SSL-enabled server, you will receive an error notifying you that you have
accessed an untrusted server. You can bypass this security exception by accepting the certificate.
For example, if you enabled SSL on the HTTP server, App-Services, you can accept the self-
signed certificate as described below.

1. Access the server with the URL :
https://gordon-1:8000/

Note: Remember to start your URL with HTTPS, rather than HTTP. Otherwise, the
browser will return an error.

MarkLogic 9—May, 2017 Security Guide—Page 143

MarkLogic Server Version MarkLogic 9—May, 2017 Configuring SSL on App Servers

2. The server responds with a*“Your connection is not private” notification similar to:

Your connection is not private

Attackers might be trying to steal your information from gordon-1 (for example,
passwords, messages, or credit cards). NET:ERR_CERT_AUTHORITY_INVALID

ADV@NCED Back to safety

3. Click on “ Advanced.”

4, At the bottom of the expanded window, select “Proceed to hosthame (unsafe).”

Your connection is not private

Attackers might be trying to steal your information from gordon-1 (for example,
passwords, messages, or credit cards). NET:ERR_CERT_AUTHORITY_INVALID

HIDE ADVANCED Back to safety

This server could not prove that it is gordon-1; its security certificate is not trusted by your
computer's operating system. This may be caused by a misconfiguration or an attacker
intercepting your connection. Learn more.

Proceed to gqﬁrdon-l {unsafe

5. Enter your MarkLogic Server username and password at the prompt.

Page 144—Security Guide

MarkLogic Server Configuring SSL on App Servers

9.4.3 Importing a Self-Signed Certificate Authority into Windows

This section describes how to import the Certificate Authority into Windows for use by the
Internet Explorer browser and WebDAV clients.

1.

2.

Open the Admin interface in your Internet Explorer browser.
Click the Security icon in the left tree menu.
Click the Certificate Templates icon on the |eft tree menu.

Click the certificate template name on the |eft tree menu. The Configure certificate
template page will display.

Click the Status tab to display the certificate template Status page.

Click on Import.

Certificate Template: mycert

certificate template status — A detailed view of this certificate template's status.

name mycert

description This is a sample cerificate template.

This certificate template uses a generated certificate authority to automatically sign temporary certificates for any hosts that do not have
certificates signed by some wel known cerificate authority (e.g. Verisign}.

This iz convenient during development to guickhy configure a server with certificates for each host in a cluster. Production applications should
use certificates signed by a well known certificate authority.

You may import this certificate directhy into vour browser as a trusted cerificate authority or download it so that you can distribute it to others
to import into their browsers.

Caution: If you choose to import this certificate authority into wour browser, it will be trusted to sign cerificates for any web server. A hostile

administrator on this MarkLogic server could potentialy generate certificates for other secure sites (e.g. banks) and in combination with a rogue
DNS server construct a "man in the middle™ attack.

| import || download |

MarkLogic 9—May, 2017 Security Guide—Page 145

MarkLogic Server Version MarkLogic 9—May, 2017 Configuring SSL on App Servers
7. In the “ Do you want to open or save thisfile?” window, click Open.

Certificate Template: mycert

certificate template status — A detailed view of this certificate template's status.

name mycert
o File Download - Security Warning ==

Do you want to open or save this file?

Thi
haf Mame: certificate.crt e
ﬁ Type: Security Certificate, 1.06KB
Thig From: 127.0.0.1 gach hc
app)
Cpen] [Save] [Cancel
oy v or dos
it to
Cay While files from the Intemet can be useful, this file type can sted to 4

SET l\ ﬁl potentially harm your computer. f you do not trust the source, do not cates fo
and A open or save this software. What 's the rsk?

|. import Jl download J

Page 146—Security Guide

MarkLogic Server Configuring SSL on App Servers

8. In the “ Certificate Information” window, click Install Certificate.

F-)

Certificate ==

General |De13ils I Certification Path

.@ﬂ Certificate Information

This CA Root certificate is not trusted. To enable trust,
install this certificate in the Trusted Root Certification
Authorities store.

Issued to: mycert Certificate Authority

Issued by: mycert Certificate Authority

Valid from 5/1/200% to 5/1/2010

Install Certificate...| | Issuer Statement

Learn more about £

MarkLogic 9—May, 2017 Security Guide—Page 147

Version MarkLogic 9—May, 2017 Configuring SSL on App Servers

MarkLogic Server
0. In the Certificate Import Wizard window, select “Place all certificates in the following
store” and click Browse.
Certificate Import Wizard ==
Certificate Store
Certificate stores are system areas where certificates are kept.
Windows can automatically select a certificate store, or you can specify a location for
the certificate,
() Automatically select the certificate store based on the type of certificate
(@) Place all certificates in the following store
Certificate store:
10. In the Select Certificate Store window, select “ Trusted Root Certification Authorities” and
click OK.
Select Certificate Store ==

Select the certificate store you want to use.

| Personal -

el Trusted Root Certificéjjon Authorities |
_| Enterprise Trust

| Intermediate Certification Authorities

| Active Directory User Object -

| Trueted Buhklichars
L k

[.m

[7] show physical stores

[Ok,][Cancel]

11. In the Certificate Import Wizard window, click Next.

Page 148—Security Guide

MarkLogic Server Configuring SSL on App Servers

12. Onthe Completing the Certificate Import Wizard page, select “ Certificate Store Selected
by User” and click Finish

Certificate Import Wizard ==

Completing the Certificate Import
Wizard

j gj The certificate will be imparted after you dick Finish.
‘-::;}? You have spedfied the following settings:

Cerfificate Store Selected by User QW= s @ o=y il

Content Certificate

4 I | 3

< Back][Fir]:zﬁ'l][Cancel

MarkLogic 9—May, 2017 Security Guide—Page 149

MarkLogic Server Version MarkLogic 9—May, 2017 Configuring SSL on App Servers
13. In the Security Warning page, click Yes.

Security Warning x|

You are about to install a certificate from a certification authority (CA)
l % claiming to represent:

mycert Certificate Authority

Windows cannot validate that the certificate is actually from "mycert
Certificate Authority”. You should confirm its origin by contacting
"mycert Certificate Authority”, The following number will assist you in
this process:

Thumbprint (shal): SCECIASE 88C550AA TR256E39 268170019 AS59A0BE

Warning:

If you install this root certificate, Windows will automatically trust any
certificate issued by this CA. Installing a certificate with an unconfirmed
thumbprint is a security risk, If you click "Yes" you acknowledge this
risk.

Do you want to install this certificate?

Yfies Mo
5

14. When you see“ The import was successful prompt,” click OK.

F- =

Certificate Import Wizard ==

L9]

15. In the Certificate Information window, click OK to exit.

You should now be able to access the SSL-enabled server from your Internet Explorer browser or
WebDAV client.

Page 150—Security Guide

MarkLogic Server Configuring SSL on App Servers

9.5 Procedures for Obtaining a Signed Certificate
Use the following procedures to obtain a signed certificate and import into your server:

* Generating and Downloading Certificate Requests

* Signing a Certificate with your own Certificate Authority

e |mporting a Signed Certificate into MarkLogic Server

Note: No outside authority is used to sign certificates used between servers
communicating over the internal XDQP connectionsin a cluster. Such certificates
are self-signed and trusted by each server in the cluster. For details, see Enabling
SSL communication over XDQP in the Administrator’s Guide.

MarkLogic 9—May, 2017 Security Guide—Page 151

MarkLogic Server Version MarkLogic 9—May, 2017 Configuring SSL on App Servers

9.5.1 Generating and Downloading Certificate Requests

Once the server is created or modified with SSL enabled, you can generate one or more PEM-
encoded certificate requests.

Note: You must first assign the certificate template to an App Server, as described in
“Enabling SSL for an App Server” on page 140, before you can generate a
certificate request.

1 Click the Security icon in the left tree menu.
2. Click the Certificate Templates icon on the |eft tree menu.

3. Click the certificate template name on the | eft tree menu. The Configure certificate
template page will display.

4, Click the Request tab. The Generate Certificate Request page will display:

Summary Configure Status Request Import Create Help

Generate Certificate Requests: mycert

Which certificate requests should be generated?

All (1 request for hpG910-524vE54b. marklogic.com)

@ Only those that are needed for missing, expired, temporary, or out of date certificates that are not already pending. (1 request for
hp&910-624vE4b. marklogic.com)

ok | | cancel |

5. Select either “All” or “Only those that are needed for missing, expired, self-signed, or out
of date certificates that are not already pending,” then click OK.

6. The certificate template Status page will display. Click on Download to download the
certificate request to your file system.
Pending Certificate Requests

The following hosts have pending certificate requests. Wou can download them and present them to a cerificate authority for signing. The
zigned certificatez can then be imported using the import tab above.

hp5910-624vE4b. marklogic.com

| download |

Page 152—Security Guide

MarkLogic Server Configuring SSL on App Servers

7. If the file does not already have a“‘zip’ extension, rename the file by replacing the *xqy’
extension with ‘zip'.

8. Send the zip file containing the certificate requests to a Certificate Authority, such as
Verisign.

9.5.2 Signing a Certificate with your own Certificate Authority

As an aternative to using athird-party Certificate Authority, you can create your own Certificate
Authority, as described in “Creating a Certificate Authority” on page 173. You can then use this
Certificate Authority to sign the certificate request using the pki : authority-sign-host-
certificate-request function.

Once signed, you can forward the signed certificate to any MarkL ogic user, who can then import
the signed certificate into their MarkL ogic host, as described in “Importing a Signed Certificate
into MarkLogic Server” on page 154.

For example, to request and sign a certificate from the mycert template created in “Creating a
Certificate Template” on page 138, do the following:

xquery version "1.0-ml";

import module namespace pki = "http://marklogic.com/xdmp/pki"
at "/MarkLogic/pki.xgy";

declare namespace x509 = "http://marklogic.com/xdmp/x509";

let Sreq :=
pki:generate-certificate-request (
pki:get-template-by-name ("mcert") /pki:template-id,
"ServerName", (), ())
let Scert :=
pki:authority-sign-host-certificate-request (
xdmp:credential-id("acme-ca"),
xdmp :x509-request-extract ($req) ,
fn:current-dateTime (),
fn:current-dateTime () + xs:dayTimeDuration ("P365D"))

return xdmp:x509-certificate-extract (Scert)

MarkLogic 9—May, 2017 Security Guide—Page 153

MarkLogic Server Version MarkLogic 9—May, 2017 Configuring SSL on App Servers

9.5.3 Importing a Signed Certificate into MarkLogic Server

When you receive the PEM fileg(s) containing signed certificate(s) from the certification authority,
import the PEM file(s) into MarkLogic Server. If you are using chained certificates, you will need
to import the end and intermediate certificate PEM filesinto MarkLogic Server. If your
MarkLogic Server isto act asaclient , you must also import the root certificate.

Note: Becausethe signed certificateisfrom atrusted certification authority, browsers are
already configured to trust the certificate.

1 Click the Security icon in the left tree menu.
2. Click the Certificate Templates icon on the |eft tree menu.

3. Click the certificate template name on the left tree menu. The Configure certificate
template page will display.

4, Click the Import tab. The Import Certificates page will display:

Import Certificates

To import signed certificates, you can either paste them into the text area below or select a file to upload.

The uploaded file can be either text or a zip archive of text files.

Upload File: Browse. .

ok cancel

5. Click on Browse to locate the PEM file(s) containing the signed certificate(s) and select
OK. Zip files can be uploaded directly without the need to unzip them. Alternatively, you
can paste an individual certificate(s) into the text area.

Page 154—Security Guide

MarkLogic Server Configuring SSL on App Servers

9.6 Viewing Trusted Certificate Authorities
You can list al of the certificate authorities that are known to and trusted by the server in the

Certificate Authority page. Each CA in thelist links to the corresponding Certificate Authority
page for that CA.

The Certificate Authority page provides detailed information on the CA, alist of revoked
certificates, the option to manually revoke a certificate by ID, and the ability to delete the CA
from the server.

1 Click the Security icon in the left tree menu.

2. Click the Certificate Authority icon on the left tree menu.

3. The Certificate Authority Summary page displaysthe list of trusted CAs:

Sumniary Import Help
Organization Certificates
America Online Inc. 1
GoDaddy.com, Inc. 1
Mark Logic 5
Mark Logic Corporation 1
eriSign Trust Network 1
VeriSign, Inc. 3

MarkLogic 9—May, 2017 Security Guide—Page 155

MarkLogic Server Version MarkLogic 9—May, 2017

4,

Click on aCA inthelist to display the details on the CA:

serialNumber -47TC4ATE1
signatureType sha1WithRSAEncryption
issuer

organizationHame Mark Logic

commonlame mycert Certificate Authority
validity

notBefore March 23, 2009 11:23 PM

notAfter March 23, 2010 11:23 PM
subject

organizationHame Mark Logic

commonlame mycert Certificate Authority
publickey —-———- BEZIN PUBLIC EEY-—————

Configuring SSL on App Servers

| delete

MIGEMAOECSgESIb3DQERBAQUARLCHADCEiQEBgRDECYS/ TecdtStnrula /peYMhTO
nDnJATbmOn 00y ZHch 1VdQomd eXcHNnx /E+ct Tt 7aJC0vI0jecHIMIvqwd CUQEg
OHNgoG4gaolrciugrUNEgky8o3kE50yidinFAlEfOnGd4ecvIgZnDBlVrMEMEY e Clim

Nk00vgZgyPme0TnSZQIDAGAR

viext
basicConstraints CATRUE
keylUsage Certificate Sign, CRL Sign
nsCertType S5L Server

MITCI=CCAYygAwIBRAgIEuDtYn=ANBgkghkiGowiBAQUFADR IMEMWEQYDVRQEEWDH
YHIrIExvZIZ]ljMSYwIAYDVRQDEx]lteWNlenQyIEN1cnBpiml jYXRIIEF1dGhvemld
eTReFwiwOTAEMMyMz I zMTRa FulxMDA =M MyMz I =eMT RaMDOxEz2ARBgNVBAoTCk1h
cmagTESnaMxdj A kBgNVBAMTHW 1 5¥ 2 VydDIgREZVydE lmaWihdCUgRHViaE8yaXRs
MIGfMAOGCSgESIL3DQERAQUARACNADCEBI QEBgRDEFCYS/ TecdtS+nrwl8 /peYMhTO
nnJATemOn 0QmyZHch1 VdQomd ecHNnx /E+c+TeQ7alC0vI0jecH1MTvgquwdEUQFg
ONgoGigacIrcSugrUNEgky8oikCi0yidinFRAIEfOnedeevTgZnDB1VrMEMbEY e CNm
Nk00wgZgyPmv0TnS2QIDARRRo=RAwL] AMBgNVHEMEBRTADAQH /MAsCGRITdDwQERAWIE
BjARBglghkgBhvhCAQEEBAMCBRAWDRY JFoZ ThvcNAQEFBQADGYEAY1eFgZ B4 1mvT
NYj8wPU/ /4cIQeFT7JullaHyetLDYLBGE1gyRSMZHn=NEDK0Sylad)DVaet¥EtExg
YZriObQEZcPiolOnb5kMtmaql JaER]13W01IMa+7jwYC51aQRUE0Rwed54EhwAEMC

Z1i8jnEnSbblAtBEsdCCBl rTuSP0Evs=

Page 156—Security Guide

MarkLogic Server Configuring SSL on App Servers

9.7 Importing a Certificate Revocation List into MarkLogic Server

A Certificate Revocation List (CRL) isalist of certificate serial numbers that have been revoked
by a certificate authority. The CRL issigned by the certificate authority to verify itsaccuracy. The
CRL contains the revocation date of each certificate, along with the date the CRL was published

and the date it will next be published, which is useful in determining whether anewer CRL should
be fetched.

You can use the pki:insert-certificate-revocation-list function to import aCRL intothe
Security database. certificate authorities typically allow the CRL to be downloaded viaHTTP.
The document URL in the database is derived from the URL passed in to the function, so
Inserting anewer CRL retrieved from the same URL will replace the previous one in the database.

For example, the following script imports a PEM- or DER-encoded CRL from Verisign into the
Security database:

xquery version "1.0-ml";
import module namespace pki = "http://marklogic.com/xdmp/pki"
at "/MarkLogic/pki.xgy";

let SURI := "http://crl.verisign.com/pca3.crl"
return
pki:insert-certificate-revocation-list (
SURI,

xdmp : document -get (SURI) /binary ())

Note: If next publication date of the CRL is earlier than the current time, you will recieve
the following message in the error 10g: 1cadcertificateRevocationLists: Most

recent CRL for issuer=<issuer_name> is expired.

MarkLogic 9—May, 2017 Security Guide—Page 157

MarkLogic Server Version MarkLogic 9—May, 2017 Configuring SSL on App Servers

9.8 Deleting a Certificate Template
Deleting atemplate deletes al signed certificates and pending requests for the template. Before

deleting a certificate template, ensure that a certificate with that nameisnot in use by aserver. If a
certificate with the same name as the certificate template isin use by a server, the delete operation
returns an “Invalid input” error.

To delete an unused certificate template:

1 Click the Security icon in the left tree menu.

2. Click the Certificate Templates icon on the |eft tree menu.

3. Click the certificate template name on the left tree menu.

4, On the Certificate Template page, click Delete:

Certificate Template: mycert ok cancel
template — A certificate template. - de@F)
5. In the confirmation page, select OK.

Page 158—Security Guide

MarkLogic Server Certificate-based Authentication

10.0 Certificate-based Authentication

Certificate-based user authentication allows usersto log into MarkL ogic Server without being
required to enter user name/password. Certificate-based user authentication configuration can be
achieved using either internal user or external name based user configurations.

The main topics are as follows.

e User Certificate Example

e CA Certificate (User Cert Signer) Import from Admin Interface

e CA Certificate Import into MarkLogic from Query Console

e Certificate Template & Template CA import into Client (Browser/SSL Client)

* Creating a MarkLogic User to use Certificate-based Authentication

10.1 User Certificate Example

There are few common steps/examples listed to add to clarity. In this example setup, the
certificate presented by the App Server user (demouser1) will be asfollows.

Certificate:
Data:
Version: 1 (0x0)
Serial Number: 7 (0x7)
Signature Algorithm: shalWithRSAEncryption
Issuer: C=US, ST=CA, L=San Carlos, O=MarkLogic Corp.,
OU=Engineering, CN=MarkLogic DemoCA
Validity
Not Before: Jul 11 02:58:24 2017 GMT
Not After : Aug 27 02:58:24 2019 GMT
Subject: C=US, ST=CA, L=San Carlos, O=MarkLogic Corp.,
OU=Engineering, CN=demoUserl
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
Public-Key: (1024 bit)
Modulus:
Exponent: 65537 (0x10001)
Signature Algorithm: shalWithRSAEncryption

MarkLogic 9—May, 2017 Security Guide—Page 159

MarkLogic Server Version MarkLogic 9—May, 2017 Certificate-based Authentication

10.2 CA Certificate (User Cert Signer) Import from Admin Interface

In order to allow MarkL ogic Server to accept the Certificate presented by a user, MarkLogic
Server needs a Certificate Authority (CA) to sign the user certificate installed into MarkL ogic.

Install a CA certificate used to sign the aemousera certificate in the Admin Interface, as follows.

1.

2.

Click the Security icon in the left tree menu.
Click the Certificate Authorities icon on the |eft tree menu.

Click the Import tab and import a certificate, such as the one shown in the example bel ow.

sy T weore Tvee I

Import Trusted Certificates:

Paste a PEM encoded trusted certificate into the text area below, or select a text or zip file of trusted cerificates to upload.

Certificate: -
Data:
Version: 3 (0=2)
Serial Number: 9774583164744115905 (0x&7a8a88cc23066c1)
Signature Algorithm: sha258WithRSAEncryption
lssuer: C=US, ST=NY, L=New York, O=Markl.ogic Corporation, QU=Engineering,
Validity
Mot Before: Jul 11 02:53:18 2017 GMT
Not After : Jul §02:53:18 2037 GMT
Subject: C=US, ST=NY, L=New York, O=larkl.egic Corporation, QU=Engineering,
Subject Public Key Info:
Public Key Algorithm: rgaEncryption
Public-Key: (40598 bit)
Modulus:

m

Exponent: 85537 (0x10001})
X50%9v3 extensions:
X509v3 Subject Key Identifier: -
09:45:89:94.DC:93.78:0B:47.07.C6:96:63:57 13 A7 ABF1.D0:.C8

Upload File: No file selected.

| ok | | cancel |

Example CA certificate:

Certificate:
Data:
Version: 3 (0x2)
Serial Number: 9774683164744115905 (0x87a6a68cc29066cl)
Signature Algorithm: sha256WithRSAEncryption
Issuer: C=US, ST=CA, L=San Carlos, O=MarkLogic Corp.,
OU=Engineering, CN=MarkLogic DemoCA
Validity
Not Before: Jul 11 02:53:18 2017 GMT

Page 160—Security Guide

MarkLogic Server Certificate-based Authentication

Not After : Jul 6 02:53:18 2037 GMT
Subject: C=US, ST=CA, L=San Carlos, O=MarkLogic Corp.,
OU=Engineering, CN=MarkLogic DemoCA
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
Public-Key: (4096 bit)
Modulus:

Exponent: 65537 (0x10001)
X509v3 extensions:
X509v3 Subject Key Identifier:
D9:45:B9:9A:DC:93:7B:DB:47:07:C6:96:63:57:13:A7:A8
:F1:D0:C8
X509v3 Authority Key Identifier:
keyid:D9:45:B9:9A:DC:93:7B:DB:47:07:C6:96:63:57:13
:A7:A8:F1:D0:C8
X509v3 Basic Constraints: critical
CA: TRUE
X509v3 Key Usage: critical
Digital Signature, Certificate Sign, CRL Sign
Signature Algorithm: sha256WithRSAEncryption

10.3 CA Certificate Import into MarkLogic from Query Console

You can aso import the Certificate Authority by using the pki : insert-trusted-certificates
function to load the Trusted CA into the Security database in MarkLogic, as shown below.

Note: If using Query Console, make sure this query is executed against the Security
database.

xquery version "1.0-ml";

import module namespace pki = "http://marklogic.com/xdmp/pki" at "/
MarkLogic/pki.xqgy";

pki:insert-trusted-certificates(
xdmp : document -get (" /OurCertificateLocation/DemoLabCA.pem",
<options xmlns="xdmp:document-get">
<format>text</formats>
</optionss>)

MarkLogic 9—May, 2017 Security Guide—Page 161

MarkLogic Server Version MarkLogic 9—May, 2017 Certificate-based Authentication

10.4 Certificate Template & Template CA import into Client (Browser/SSL
Client)

To enable SSL on the App Server, do either of the following.

» Create certificate template, as described in “ Creating a Certificate Template” on page 138,
to utilize Self Signed Certificate.

* Import asigned certificate into MarkLogic, as described in “Importing a Signed
Certificate into MarkLogic Server” on page 154.

In both of the above cases, you must import the CA used to sign the certificate used by the
MarkLogic SSL App Server into Client Browser/SSL Client, as described in “ Procedures for
Obtaining a Signed Certificate” on page 151 or “Importing a Self-Signed Certificate Authority
into Windows” on page 145.

After creating a certificate template, link the template with the App Server and enable SSL on the
App Server.

10.5 Creating a MarkLogic User to use Certificate-based Authentication

When creating ainternal MarkLogic user to use certificate-based authentication, specify the user
name asit appearsin the cn value of the certificate subject field (dgemouser1 in the example shown
in “User Certificate Example” on page 159). When creating an external MarkL ogic user to use
certificate-based authentication, specify the external name as it appears in the whole certificate
Subject field (C:US ,ST=CA,L=San Carlos,O=MarkLogic

Corp.,OU=Engineering, CN=demoUserl inthe example shown in*“User Certificate Example”
on page 159).

10.5.1 Creating a MarkLogic User with an Internal Name

To configure certificate-based user authentication for user, demouser1, asaMarkLogic interna
user, do the following in the Admin Interface.

1. Click the Security icon in the left tree menu.
2. Click the Usersicon.

3. Click the Create tab. The User Configuration page appears

Page 162—Security Guide

MarkLogic Server Certificate-based Authentication

4, In the user name field, enter the user name asit appears in the cv value of the certificate
subject field (aemouser1 in the example shown in “User Certificate Example” on

page 159)

e T o T o

New User | ok | | cancel |

user — A dafabase user.

user name demoUseri

Uszer/login name (unigue)
Required. You must supply a value for user-name.

description User Cert CN field as Internal User
An object's description.

password ssssnene
Encrypted Password.
Required.

confirm password [—

Encrypted Password.
Required.

external names — The external names specifications.

external name

more external names

MarkLogic 9—May, 2017 Security Guide—Page 163

MarkLogic Server Version MarkLogic 9—May, 2017 Certificate-based Authentication

5. Inthe App Server configuration page, set authentication tO certificate and Set internal
security 10 true. Unless you want to have the user authenticated as an external user as
We”, Set External Securities tO none.

authentication certificate -

The authentication scheme to use for this server

internal security @ true falsc

Whether or not the security database is used for authentication and authorization.

external securities — External authentication and authorization configurations.

—nong— -

More External Securities

6. In the App Server configuration page, scroll down to the bottom and select show in the sst..
Client Certificate Authorities SEction.

szl client certificate authorities — Certificate authorities that may sign client certificates for this server. Selecting one
or more certificate authorities when SSL is enabled will require all clients to present a valid certificate signed by one of
the selected authorities. Clicking on an organization below will reveal the certificate authorities for that organization.

Show

[

ok | | cancel

Page 164—Security Guide

MarkLogic Server Certificate-based Authentication

7. Select the CA created in “ CA Certificate (User Cert Signer) Import from Admin
Interface” on page 160 to sign the client/user certificate.

Hide

America Online Inc. (2)
Baltimore (1)

Deutsche Telekom AG (1)
DigiCert Inc (3}

Digital Signature Trust (1)
Digital Signature Trust Co. (3)
Entrust, Inc. (1)

Entrust.net (1)

Equifax (1}

Equifax Secure (1)

Equifax Secure Inc. (2)
GeoTrust Inc. (7}
GoDaddy.com, Inc. (1)

Google Inc (1)

Google Trust Services LLC (4)
GTE Corporation (1)

Japan Certification Services, Inc. (1)
Japanese Government (1)
Mark Logic (1)

MarkLogic Corp. (1)

%C = s
ST = CA

L = San Carlos

O = MarkLegic Corp.
0OU = Engineering
CN = MarkLegic Corp Certificate Authority

MarkLogic Ops Director (1)

Once configured, dgemouser1 isnow able to access the App Server with a browser that has the user
certificate installed, as described in “ Certificate Template & Template CA import into Client
(Browser/SSL Client)” on page 162.

Note: You will also need to assign the necessary roles to demouser1 to access the needed
MarkL ogic resources.

MarkLogic 9—May, 2017 Security Guide—Page 165

MarkLogic Server Version MarkLogic 9—May, 2017 Certificate-based Authentication

10.5.2

Creating a MarkLogic User with an External Name

To configure certificate-based user authentication for user, newuser1, asaMarkLogic user with an
external name, do the following in the Admin Interface.

1.

2.

Click the Security icon in the left tree menu.

Click the Usersicon.

Click the Create tab. The User Configuration page appears
Inthe user wame field, enter newuser:.

Inthe external name field, enter the entire subject field from the example shown in “User
Certificate Example” on page 159.

User: newUser1 ok ~ cancel
user — A database user. _ delete)
Ledrasiis newlser!

Uszerflogin name (unigue)

description User Cert Subject in External Name
An object's description.

password LTI LTI

Encrypted Password.

confirm password SRS ENREREEE

Encrypted Password.

external names — The external names specifications.

external name

[Keep]
v C=US,5T=CA L=San Carlos,O=MarkLegic Corp.,0U=Engineering, CN=demolser1

[add]

more external names

Page 166—Security Guide

MarkLogic Server Certificate-based Authentication

6. Click Security in the left tree menu.
7. Click External Security.
8. Click the Create tab at the top of the External Security Summary window:

0. In the New External Security object window, name the External Security object and select

Certificate fOr Authentication.

I sommay T ceae T e

New External Security [ok | [cancer |

external security — An external authentication and authorization config.

external security name Demo-ExternakCertificate-Object

External security name (unique)
Required. You must supply a value for external-security-name.

description Certific Auth External Sec Object
An object's description.

authentication certificate »
Awuthentication

cache timeout 300

The login cache timeout, in seconds.

authorization internal
An authorization scheme.

10. Scroll down to the bottom of the External Security object configuration page and select
show INthe ssL. client Certificate Authorities SECtion.

szl client certificate authorities — Certificate authorities that may sign client certificates for this server. Selecting one
or more certificate authorities when S5L is enabled will require all clients to present a valid certificate signed by one of
the selected authorities. Clicking on an organization below will reveal the certificate authorities for that organization.

Show

s

ssl require client certificate @ true false

Whether or not a client certificate is required. This only has an effect when one or more
more client certificate authorities are specified, in which case a value of true will fail client
authentication if a valid client certificate iz not provided.

MarkLogic 9—May, 2017 Security Guide—Page 167

MarkLogic Server Version MarkLogic 9—May, 2017 Certificate-based Authentication

11. Select the CA certificate you configured in “CA Certificate (User Cert Signer) Import
from Admin Interface” on page 160.

MAark Logic |1}
MarkLogic Corp. (1)

%c = Us
ST = CA

L = San Carlos

0O = MarkLogic Corp.
OU = Engineering
CMN = MarkLogic Corp Certificate Authority

MarkLogic Ops Director (1)
Network Solutions L.L.C. (1}
RSA Security Inc (1)

SECOM Trust Systems CO.LTD. (2}
SECOM Trust.net (1)
SecureTrust Corporation (2)
Starfield Technologies, Inc. (1)
Swisscom (1)

SwissSign AG (3)

Thawte Consulting cc (2)
thawte, Inc. (3)

The Go Daddy Group, Inc. (1)
VeriSign, Inc. (13}

VISA (1)

Wells Fargo (1)

Wells Fargo Wells Secure (1)

ssl require client certificate @ true false

Whether or not a client certificate is reguired. This enly has an effect when cne or more
more client certificate autherities are specified, in which case a value of true will fail client
authentication if a valid client certificate is not provided.

12. Return to the App Server configuration page and select the External Security object you
just created from the external securities pull-down menu.

authentication basic -
The authentication scheme to use for this server

internal security @ true falsc
Whether or not the security database is used for authentication and authorization.

external securities — External authentication and authorization configurations.

Demo-External-Certificate-Object

More External Securities

Page 168—Security Guide

MarkLogic Server Secure Credentials

11.0 Secure Credentials

Secure credentials enable a security administrator to manage credentials, making them available
to less privileged users for authentication to other systems without giving them access to the
credentials themselves.

Secure credentials consist of a PEM encoded x509 certificate and private key and/or a username
and password. Secure credentials are stored as secure documents in the Security database on
MarkLogic Server, with passwords and private keys encrypted. A user references a credential by
name and access is granted if the permissions stored within the credential document permit the
access to the user. Thereisno way for a user to get access to the unencrypted credentials.

Secure credentials allow you to control which users have access to specific resources. A secure
credential controls what URIsit may be used for, the type of authentication (e.g. digest), whether
the credential can be used to sign other certificates, and the user role(s) needed to access the
resource.

The security on a credential can be configured three different ways:

» Credentialsthat secure aresource by username and password.

» Credentialsthat secure aresource by aPEM encoded X509 certificate and a PEM encoded
private key.

» Credentials that secure aresource by username and password, as well as a PEM encoded
X509 certificate and a PEM encoded private key.

In most cases, the private key and x509 certificate used to configure a secure credential are
obtained from atrusted Certificate Authority. However, there may be situationsin which you may
want to create your own Certificate Authority and generate your own private key and certificate,
as described in the following sections:

* Creating a Secure Credential with Username and Password

e Creating a Secure Credential with PEM Encoded Public and Private Keys

11.1 Creating a Secure Credential with Username and Password

This section describes how to use the Admin Interface to create a simple secure credential that
grants access to a resource by means of a username and password.

1 In the Admin Interface, click the Security icon in the left tree menu.

2. Click the Secure Credentialsicon.

MarkLogic 9—May, 2017 Security Guide—Page 169

MarkLogic Server Version MarkLogic 9—May, 2017 Secure Credentials

3. Click the Create tab at the top of the Secure Credentials window:

Suminary Cre@ Help

Secure Credentials

4, In the New Credential window, enter the name of the credential. You can optionally
specify a description, the name of the user and password to use to access the resource.

enear-aaseees

MNew Credential ok cancel

credential - A credential securely stores suthentication information in the securify dafabase with the password andfor private key
encrypted. f may be uzed by & uzer for HTTF client operationz, subject to the target reztrictionz. i may be vzed fto zign X509
cerificates if the signing flag iz sef fo true.

credential name mycredential

The name of this credential.
Required. Name cannot be empty.

credential description A new credential

An credentials description.

credential username jusar

The user name for this credentisl when used for HTTP client operations.

credential password [—

The password fior this credentis when used for HTTP client operations.

confirm credential password e

The password fior this credentia when used for HTTP client operations.

Page 170—Security Guide

MarkLogic Server Secure Credentials

5. Leave the credential certificate and credentia private key fields empty. Set credential
signing to false.

credential

certificate
The PEM encoded X509 certificate for this credential. If it is used for HTTP client operations, this is the client
certificate. If it is used for =igning other cerlificates, this is the issuer.

credential

private key
The PEM encoded private key corresponding to the certificate.

credential signing true @ false

L S T U SO S S i N T S

MarkLogic 9—May, 2017 Security Guide—Page 171

MarkLogic Server Version MarkLogic 9—May, 2017 Secure Credentials

6. In the target uri pattern field, enter the URIs of the MarkL ogic App Serversthis credential
isto protect, starting with nttps. Select the authorization used by the target App Servers.
In the credential permissions menu, select which roles and permissions are required for a
user to access the App Servers using this credential.

Note: A rolewith read capability implies execute capability, as well.

credential targets — Acceptable targetz that thiz credentis! may be vzed fo Sccezs. delete

|target uri pattern |target authentication

| https://gordon-2: 80027 =

credential permissions — Pemizzions controlling credentisl! uvssge. delete

digest o

digest .

[role [capabitity

| admin b | resd e

execute

= ~ [oeo ~

11.2 Creating a Secure Credential with PEM Encoded Public and Private
Keys

You can skip this procedure if you have obtained a signed Certificate Authority (CA) from a

trusted third party. In this case, you can paste the credential and private key into the Secure

Credentials window described above in “ Creating a Secure Credential with Username and
Password” on page 169.

Generating a secure credential that includes PEM encoded public and private keys is a two-step
procedure that is best done in code:

e Creating a Certificate Authority

e Creating Secure Credentials from a Certificate Authority

Page 172—Security Guide

MarkLogic Server

Secure Credentials

11.2.1 Creating a Certificate Authority

Secure credentials that contain PEM encoded public and private keys can be used to control
accessto a CA stored in aMarkLogic Security database. To create and insert a CA into the
Security database, use the pki : create-authority function.

For example, the following query creates a CA, named acme-ca:

xquery version "1.0-ml";

import module namespace pki = "http://marklogic.com/xdmp/pki"
at "/MarkLogic/pki.xqgy";

declare namespace x509 = "http://marklogic.com/xdmp/x509";

pki:create-authority(
"Acme Certificate Authority",
element x509:subject

"acme-ca'",

element
element
element
element
element
element
element

b

x509
x509
x509
x509
x509
x509
x509

:countryName {rusr},
:stateOrProvinceName {rcalifornia"},
:localityName {"san Carlos"}
:organizationName {"Acme Inc."},
:organizationalUnitName {"Engineering"},
: commonName {"Acme cA"},
:emailAddress {"caeacme.com"}

fn:current-dateTime (),
fn:current-dateTime () + xs:dayTimeDuration ("P365D"),
(xdmp:permission ("admin", "read")))

MarkLogic 9—May, 2017

Security Guide—Page 173

MarkLogic Server Version MarkLogic 9—May, 2017 Secure Credentials

11.2.2 Creating Secure Credentials from a Certificate Authority

Once you have created a CA as described in “ Creating a Certificate Authority” on page 173, you
can use the CA to create a client certificate and private key to build a secure credential.

Usethe pki:authority-create-client-certificate function to create a client certificate with
PEM encoded public/private keys. Next, usethe sec:create-credential to generate and insert the
credential.

For example, to create a secure credential, named acme - cred, from the acme-ca CA that includes
PEM encoded public and private keys, a username and password, and that enables access to the
target, nttps://MLserver:8010/ . *, do the following:

xquery version "1.0-ml";

import module namespace sec = "http://marklogic.com/xdmp/security"
at "/MarkLogic/security.xqy";
import module namespace pki = "http://marklogic.com/xdmp/pki"

at "/MarkLogic/pki.xgy";
declare namespace x509 = "http://marklogic.com/xdmp/x509";

let stmp :=
pki:authority-create-client-certificate(
xdmp:credential-id("acme-ca"),
element x509:subject
element x509:countryName {rusr},
element x509:stateOrProvinceName {rcalifornia"},
element x509:localityName {"san Carlos"}
element x509:organizationName {"Acme Inc."},
element x509:organizationalUnitName {"Engineering"},
element x509:commonName {"Elmer Fudd"},
element x509:emailAddress {"elmer.fuddeacme.com"}
I
fn:current-dateTime (),
fn:current-dateTime () + xs:dayTimeDuration ("P365D"))

let Scert := $tmpl[l]
let sSprivkey := $tmp[2]

return sec:create-credential (

"acme-cred", "A credential with user/password and certificate",
"admin", "admin", $cert, S$privkey,

fn:false(),

sec:uri-credential-target ("https://MLserver:8010/.*", "digest"),

xdmp :permission ("admin", "read"))

Page 174—Security Guide

MarkLogic Server Secure Credentials

To create asecure credential, named simple-cred, that uses only ausername and password, do the
following:

xquery version "1.0-ml";

import module namespace sec = "http://marklogic.com/xdmp/security"
at "/MarkLogic/security.xqy";

sec:create-credential (

"simple-cred", "A simple credential without a certificate",
"admin", "admin", (), (),

fn:false(),

sec:uri-credential-target ("https://MLserver:8010/.*", "digest"),

xdmp :permission ("admin", "read"))

Asdescribed in “Configuring SSL on App Servers’ on page 135, MarkLogic App Servers
authenticate clients by means of a host certificate associated with a certificate template. The
following example shows how to create a host certificate using the CA described in “Creating a
Certificate Authority” on page 173 and import it into the mytemp1ate certificate template. For
details on how to create a certificate template, see “ Creating a Certificate Template” on page 138.

xquery version "1.0-ml";

import module namespace pki = "http://marklogic.com/xdmp/pki"
at "/MarkLogic/pki.xqgy";

declare namespace x509 = "http://marklogic.com/xdmp/x509";

let stmp :=
pki:authority-create-host-certificate(
xdmp:credential-id("acme-ca"),
element x509:subject
element x509:countryName {rusr},
element x509:stateOrProvinceName {rcalifornia"},
element x509:localityName {"san Carlos"}
element x509:organizationName {"Acme Inc."},
element x509:organizationalUnitName {"Engineering"},
element x509:commonName {"MLserver.marklogic.com"},
element x509:emailAddress {"meemarklogic.com"}
b

fn:current-dateTime (),

fn:current-dateTime () + xs:dayTimeDuration ("P365D"),
"www.eng.acme.com", "1.2.3.4")
let sStemplate := pki:template-get-id(
pki:get-template-by-name ("myTemplate"))
let Scert := S$tmpl[l]
let sSprivkey := $tmp[2]

return pki:insert-host-certificate(Stemplate, S$Scert, Sprivkey)

MarkLogic 9—May, 2017 Security Guide—Page 175

MarkLogic Server Version MarkLogic 9—May, 2017 Secure Credentials

Page 176—Security Guide

MarkLogic Server External Security

12.0 External Security

MarkLogic Server alows you to configure MarkLogic Server so that users are authenticated
using an external authentication protocol, such as Lightweight Directory Access Protocol
(LDAP), Kerberos, or certificate. These external agents serve as centralized points of
authentication or repositories for user information from which authorization decisions can be
made.

Note: You can configure MarkL ogic Server with multiple external security providers. A
user only needs to authenticate with one of them to gain access.

This chapter describes how to configure MarkLogic Server for external authentication using
LDAP and/or Kerberos. The topicsin this chapter are:

e Terms Used in this Chapter

e Qverview of External Authentication

e Creating an External Authentication Configuration Object

e Defining and Inserting a SAML Entity

e Assigning an External Name to a User

* Assigning an External Name to a Role

e Configuring an App Server for External Authentication

* Creating a Kerberos keytab File

e External Certificate User Authentication

e Example External Authorization Configurations

e Kerberos Authentication using xdmp:http-* Functions

e Kerberos Authentication for Secured HDES

12.1 Terms Used in this Chapter
The following terms are used in this chapter:

» Authentication is the process of verifying user credentials for anamed user, usually based
on a username and password. Authentication generally verifies user credentials and
associates a session with the authenticated user. It does not grant any access or authority to
perform any actions on the system. Authentication can be done internally inside
MarkLogic Server, or externally by means of a Kerberos or LDAP server. This chapter
describes how do configure MarkL ogic Server for external authentication using either the
Kerberos or LDAP protocol, SAML, or Certificates.

» Authorization is the process of allowing a user to perform some action, such as create,
read, update, or delete a document or execute a program, based on the user's identity.
Authorization defines what an authenticated user is alowed to do on the server. When an

MarkLogic 9—May, 2017 Security Guide—Page 177

MarkLogic Server Version MarkLogic 9—May, 2017 External Security

App Server is configured for external authentication, authorization can be done either by
MarkLogic Server or by LDAP.

» Lightweight Directory Access Protocol (LDAP) is an authentication protocol for
accessing server resources over an internet or intranet network. An LDAP server provides
acentralized user database where one password can be used to authenticate a user for
access to multiple serversin the network. LDAP is supported on Active Directory on
Windows Server 2008 and OpenLDAP 2.4 on Linux and other Unix platforms.

» Kerberosisaticket-based authentication protocol for trusted hosts on untrusted networks.
Kerberos provides users with encrypted tickets that can be used to request access to
particular servers. Because Kerberos uses tickets, both the user and the server can verify
each other's identity and user passwords do not have to pass through the network.

* An External Authentication Configuration Object specifies which authentication protocol
and authorization scheme to use, along with any other parameters necessary for LDAP
authentication. After an external authentication configuration object is created, multiple
App Servers can use the same configuration object.

» A Distinguished Name (DN) is a sequence of Relative Distinguished Names (RDNS),
which are attributes with associated values expressed by the form attribute=value. Each
RDN is separated by acommain a DN. For example, to identify the user, joe, as having
access to the server markrogzca . com, the DN for j0e would look like:

UID=joe,CN=Users, DC=MARKLOGIC1, DC=COM
Note: The attributes after uzo make up what is known as the Base DN.

For details on LDAP DNSs, see http://www.rfc-editor.org/rfc/rfc4514.txt.

* A Principal isaunique identity to which Kerberos can assign tickets. For example, in
Kerberos, auser isaprincipal that consists of auser name and a server resource, described
asarealm. Each user or service that participates in a K erberos authentication realm must
have a principa defined in the Kerberos database.

A user principal is defined by the format: usernameerearm. NnavE. FOr example, to identify
the user, joe, as having access to the server markroczc . com, the principal might look like:

joe@MARKLOGIC1 .COM

For details on Kerberos principals, see http://www.kerberos.org/software/tutorial.html#1.3.2.

» Certificate Authentication enables HTTPS clients to authenticate themselves to
MarkLogic server viaaclient certificate, either in addition to, or instead of, a password.

* SAML (Security Assertion Markup Language) is an authorization scheme that defines a
Principal (such as auser), an Identity Provider (IDP), and a Service Provider (SP). In this
scheme, the Principal requests a service from the Service Provider, which accesses the
|dentity Provider to authorize the Principal. MarkL ogic supports SAML, version 2.0.

Page 178—Security Guide

http://www.rfc-editor.org/rfc/rfc4514.txt
http://www.kerberos.org/software/tutorial.html#1.3.2

MarkLogic Server External Security

Note: MarkLogic currently only supports SOAP binding only HTTPS.

* A SAML Entity isan XML document located in the MarkL ogic Security database that
serves as the SAML Identity Provider.

12.2 Overview of External Authentication

MarkLogic Server supports external authentication by means of LDAP, SAML, Kerberos, or
certificate. When auser attemptsto accessaMarkL ogic App Server that is configured for external
authentication, the requested App Server sends the username and password to an LDAP or SAML
server for authentication. (For Kerberos, only the username is sent.) Once authenticated, the
LDAP, SAML, Kerberos, or certificate protocol is used to identify the user on MarkLogic Server.
For details on how to configure an App Server for external authentication, see “Creating an
External Authentication Configuration Object” on page 183 and “Configuring an App Server for
External Authentication” on page 194.

Users can be authorized either internally by MarkLogic Server, externally by an LDAP or SAML
server, or both internally and externally.

If the App Server is configured for internal authorization, the user needsto exist in the MarkL ogic
Security database where his or her “external name” matches the external user identity registered
with either LDAP, Kerberos or certificate, depending on the selected authentication protocol. For
details on how to map a MarkLogic user to an LDAP Distinguished Name (DN) or a Kerberos
User Principal, see “Assigning an External Name to a User” on page 192.

If the App Server is configured for LDAP authorization, the user does not need to exist in
MarkLogic Server. Instead, the external user isidentified by a username with the LDAP server
and the LDAP groups associated with the DN are mapped to MarkLogic roles. MarkL ogic Server
then creates atemporary user with a unique and deterministic id and those roles. For details on
how to map aMarkLogic roleto an LDAP group, see “ Assigning an External Nameto aRole” on
page 193.

If the App Server is configured for SAML authorization, the server issues a standard SAML
attribute query to the identity provider to retrieve authorization information. The identity provider
isuniquely identified by its 1D, which is combined with an attribute name and value to form an
external name with the necessary privileges.

If the App Server is configured for both internal and external authorization, users that exist in the
MarkL ogic Security database are authorized internally by MarkLogic Server. If auser isnot a
registered MarkL ogic user, then the user must be registered on the LDAP or SAML server.

Note: MarkLogic Server caches negative lookups to avoid overloading the external

Kerberos or LDAP server. Successful logins are also cached. The cache can be
cleared by Calllng the sec:external-security-clear-cache function.

MarkLogic 9—May, 2017 Security Guide—Page 179

MarkLogic Server Version MarkLogic 9—May, 2017 External Security

The following flowchart illustrates the logic used to determine how a MarkLogic user is
authenticated and authorized.

* Yes -- User is vaidated by |dap,
saml, kerberos, or certificate

Idap | saml

External

* Yes Authorization?
Locate User
in Security Internal
Database

v Y
No
w Create Temp User

*Y&

Return
Success

Y
Locate User
by External Names
in Security Database
> No / Return
User Found~ > Error
Yes

Return
Success

Page 180—Security Guide

MarkLogic Server External Security

The possible external authorization configurations for accessing MarkLogic Server are shown in
the following table.

Authentication Authentication Authorization

Protocol Scheme Scheme DSl Lan

certificate certificate | ldap | saml | Theuser isauthenticated by a
application-level certificate and the user’s groups are
| basic mapped to the MarkLogic roles. The
user does not need to exist on
MarkLogic. Instead, the MarkL ogic
server creates atemporary user with
the correct roles to access
MarkLogic.

certificate certificate | internal The user is authenticated by a
application-level certificate. User must exist in
| basic MarkLogic.

kerberos kerberos-ticket internal The user is authenticated by
Kerberos and a Kerberos session
ticket is used to authenticate the user
to access MarkLogic Server.

The user must exist in MarkLogic,
where the user’s “ external name”
matches the Kerberos User Principal.

kerberos application-level | internal The user is authenticated by
Kerberos and a Kerberos session
ticket isused at atime determined by
the App Server to authenticate the
user to access MarkLogic Server.

The user must exist in MarkL ogic,
where the user’s “external name”
matches the Kerberos User Principal.

MarkLogic 9—May, 2017 Security Guide—Page 181

MarkLogic Server

Version MarkLogic 9—May, 2017 External Security

Authentication
Protocol

Authentication
Scheme

Authorization
Scheme

Description

kerberos

basic

internal

The user is authenticated by
Kerberos. No ticket is exchanged
between the client and the App
Server. Instead, the username and
password are passed. This
configuration is used when the client
is not capable of ticket exchange and
should only be used over SSL
connections because the password is
communicated as clear text.

The user must exist in MarkLogic,
where the user’s “ external name”
matches the Kerberos User Principal.

kerberos

kerberos-ticket |
application-level
| basic

ldap

The user is authenticated by
Kerberos and a Kerberos session
ticket is used to identify the user to
MarkLogic Server. MarkLogic
extracts the user ID from the ticket
and sendsit to the LDAP directory.

MarkL ogic uses the information
returned by the LDAP directory to
create atemporary user with the
correct rolesto access MarkLogic.
The user does not need to exist on
MarkLogic.

ldap

certificate |
application-level
| basic

internal

The user is authenticated by LDAP.
User must exist in MarkLogic, where
the user’s “external name’ matches
the LDAP Distinguished Name
(DN).

Page 182—Security Guide

MarkLogic Server

External Security

Authentication Authentication
Protocol

Scheme

Authorization
Scheme

Description

ldap

certificate |
application-level
| basic

ldap | saml

The user is authenticated by LDAP
or SAML and the user’s groups are
mapped to the MarkL ogic roles. The
user does not need to exist on
MarkLogic. Instead, the MarkL ogic
server creates atemporary user with
the correct roles to access
MarkLogic.

saml

saml

saml

A SAML ldentity Provider prompts
the user to login, if necessary, and
sends the authenti cation request back
to MarkLogic Server.

Note: When application-level authentication is enabled with Kerberos authentication, an
application can use the xdmp : gss-server-negotiate fUNCtion to obtain a username
that can be passed to the xamp : 10gin function to log into MarkLogic Server.

Note:

If running MarkLogic Server on Windows and using LDAP authentication to
authenticate users, the user name must include the domain name of the form:

userName@domainName.

12.3 Creating an External Authentication Configuration Object

This section describes how to create an external authentication configuration object in the Admin
Interface. You can also usethe sec:create-external-security function to create an externa

authentication configuration object. Once created, multiple App Servers can use the same external
authentication configuration object.

1.

2.

In the Admin Interface, click Security in the left tree menu.

Click External Security.

MarkLogic 9—May, 2017

Security Guide—Page 183

MarkLogic Server

Version MarkLogic 9—May, 2017 External Security

3. Click the Create tab at the top of the External Security Summary window:

New External Security | ok | | cancel |

external security — An external authentication and authorization config.

external security name

description

authentication

cache timeout

authorization

ldapconfig

External security name (uniguej
Required. You must supply a value for external-security-name.

config for ldap
An object's description.

dap -
Awuthentication

300
The legin cache timeout, in seconds.

dap -
An authorization scheme.

Field

Description

external security name

The name used to identify this External Security Configuration
Object.

description The description of this External Authentication Configuration
Object.
authentication The authentication protocol to use: certificate, kerberos, |dap, or

saml. The configuration details for LDAP and SAML are
described below in “LDAP Authentication” on page 185 and
“SAML Authentication” on page 188.

cache timeout

The login cache timeout, in seconds. When the timeout period is
exceeded, the LDAP server reauthenticates the user with
MarkLogic Server.

authorization

The authorization scheme: interna1 for authorization by
MarkLogic Server, 14ap for authorization by an LDAP server, or
sam1 for authorization by a SAML server.

Page 184—Security Guide

MarkLogic Server

External Security

12.3.1 LDAP Authentication
If you use LDAP authentication, set the fields described in this section.

Idap server — An LDAP server configuration.

Idap server uri

Idap base

Idap attribute

Idap default user

Idap password

confirm ldap password

Idap bind method

Idap memberof attribute

Idap member attribute

ldap://dc1.mitest local 389
URI of the Idap server. Required if authentication or authorization is Idap.

DC=MLTEST1,DC=LOCAL
starting point for search. Required if authentication or authorization is Idap.

sAMAccountMame
ldap attribute for user loockup. Required if authentication or authorization is Idap.

CH=Admin, DC=MLTEST1,DC=LOCAL

ldap uzer used by MarkLogic server. Required if authentication is kerberos and authorization is
ldap or bind method is simple.

password of the default Idap user. Required if authentication is kerberos and authorization is
ldap or bind method is simple.

password of the default Idap user. Required if authentication is kerberos and authorization is
ldap or bind method is simple.

simple -

ldap bind method.

ldap attribute for greup lookup. This is opticnal. if it is not specified, "member0Of" will be used
for search for the groups of a user.

ldap attribute for greup lookup. This is optional. if it is not specified, "member” will be used for
search for the group of a group.

Field

Description

ldap server uri

If authorization is set to 14ap, then enter the URI for the LDAP
server. Required if authentication or authorization is 1dap.

ldap base

If authorization is set to 1dap, then enter the base DN for user
lookup. Required if authentication or authorization is 1dap.

ldap attribute

If authorization is set to 1dap, then enter the name of the attribute
used to identify the user on the LDAP server. Required if
authentication or authorization is 1dap.

MarkLogic 9—May, 2017

Security Guide—Page 185

MarkLogic Server

Version MarkLogic 9—May, 2017 External Security

Field

Description

ldap default user

The LDAP default user. Required if authentication iskerberosand
authorization is|dap or bind method is simple.

If you specify an Idap-bind-method of simple, this must be a
Distinguished Name (DN). If you specify an |dap-bind-method of
MDD5, this must be the name of a user registered with the LDAP

ldap password
confirm ldap password

The password and confirmation password for the LDAP default
user. Required if authentication is kerberos and authorization is
Idap or bind method iS simp1le.

ldap bind method

The LDAP bind method to use. This can be either mps, simple, OF
external. MD5 makes use of the DIGEST-MD5 authentication
method. If the bind method iS simp1e, thenthe 1dap default
user must be aDistinguished Name (DN). If MD5, then the 1dap
default user must bethe name of avalid LDAP user.

When using a bind method of simp1e, the password is not
encrypted, so it isrecommended you use secure Idaps (LDAP
with SSL).

A bind method of external makes use of a certificate to
authenticate with the LDAP server. If the bind method is
external, ldap-start-tls should be set to true.

ldap memberof attribute

The optional Idap attribute for group lookup. If not specified,
memberof 1S USed for search for the groups of a user.

ldap member attribute

The optional Idap attribute for group lookup. If not specified,
member 1S USed for search for the group of a group.

ldap start tls

Whether or not to use start TL Srequest to the LDAP server. Set to
true t0 Use start TLS request. If set to true, the LDAP server URI
should start with 1dap:// instead of 1daps://.

ldap certificate

The PEM encoded X509 certificate for MarkLogic server to
connect the LDAP server using mutual authentication. Required if
bind method iS externa1. Optiona if bind method iSmps or

simple.

ldap private key

The PEM encoded private key corresponding to the certificate.
Required if bind method is externa1l. Optional if bind method is

MD5 O simple.

Page 186—Security Guide

MarkLogic Server External Security

Note: The MarkLogic SSL App Server can work with SAN or Wild Card certificates.
However, the MarkL ogic LDAP client will not accept or work with a SAN or
Wildcard-based certificate.

MarkLogic 9—May, 2017 Security Guide—Page 187

MarkLogic Server Version MarkLogic 9—May, 2017 External Security

12.3.2 SAML Authentication
If you use SAML authentication, set the fields described in this section.

saml server — An SAML server configuration.

saml entity id | nttps:iiked2012dc. engriab.marklogic.comiidp |

SAML entity id. Required if authorization is SAML.

saml destination |nttps:iiserver11.marklogic.com:9031/idp/SSO.sami3 |

SAML destination.

saml issuer |ht‘tps:ﬂservice—prnvider.marklngic.cumfsp |

SANML issuer.

saml idp certificate authority —__BEGIN CERTIFICATE——

MIC1DCCAZgAWIBAGIBADANBOkghKIGEWOBAQOFADCERELMAKGATUEBRKMCAX
W=

CzAJBgNVBAGMAKNBMRwW wGo YDV QAKDBNNY X rTGEnaWMgUGIUZyBEZW v
HPOLEGWT

TWFyalxvZ2[jIFBpbmcgRGVibzESMBAGA1UEAWWIUZFtbCBUZXNOMROWEQYD
vaaL

DAtFbmdpbmVIcmiuZzEIMCAGCSqGSIb3DAEJARYTY XRzb2IAbWFyaZavZ2LmN W
v

The PEM encoded X509 certificate authority for SAML IDP.

saml sp certificate —_BEGIN CERTIFICATE—

MIC1DCCAZgAWIBAGIBADANBOkghKIGEWOBAQOFADCERELMAKGATUEBRKMCAX
W=

CzAJBgNVBAQMAKNBMRwW wGo YDV QQKDBNNY XIrTGEnaWMgUGIUZyBEZW v

TWFyalxvZZ[IFBpbmcgRGVibzESMBAGATUEAW wWIUZFtbCBUZXNOMRAWEGYD
vaaL

DAtFbmdpbmyicmiuZzEMCAGCSgGSb3DAEIARY TY XRzbZIAbWFyaZaZ2LmN W
W

The PEM encoded X509 cerificate for SAML SP.

SIS A L ——BEGIN PRIVATE KEY—

MIGTMADGCSgGSIb3DAEBAQUAALGNADCEIQKBY
QDFsXidgFSulmTXuCosxked55C Agg+diaRgul1rmyMEc)DpRFedcNAleVTCWVhiZ
EEVTWY ZTeNVZPerMmUmgd 7 oY lu rvxdSnlTO4%5IEHOWueCBSZNWEM30031S
CglNwefFBSwINM0zNSFDRBK/sats Qz%etFigddy bayPFgQIDACAB

——END PRIWATE KEY ——

The PEM encoded private key for SAML SP.

saml attribute names — A list of SAML attribute names.

saml attribute name

| more saml attribute name |

saml privilege attribute
name

SAML privilege attribute name.

Page 188—Security Guide

MarkLogic Server

External Security

Field

Description

saml entity id

SAML entity id (asaURL). Required if authorization is SAML.
For details on creating and inserting a SAML entity, see
“Defining and Inserting a SAML Entity” on page 190

saml destination

The URL that identifies the Identity Provider to accept the
authentication request.

saml issuer

The URL that identifies the Service Provider (MarkLogic Server).

saml idp certificate
authority

The certificate used to validate the signature in the authentication
request.

saml sp certificate

The certificate used to sign the authentication request.

saml sp private key

The private key used to sign the authentication request.

saml attribute name

One or more SAML attribute names. Optiona when authorization
is SAML. These names will be requested as part of the attribute
guery and mapped as appropriate to internal MarkLogic roles.

saml privilege
attribute name

SAML privilege attribute name. Optional when authorization is
SAML. If specified, the name will also be requested as part of the
attribute query and mapped to MarkL ogic privileges.

12.3.3 SSL Client Authentication

To enable mutual authentication, where the client also holds adigital certificate that it sendsto the
server, set the fields described in this section.

szl client certificate authorities — Certificate authorities that may sign client certificates for this server.
Selecting one or more certiicate authorities when S5L is enabled will require all clients fo present a valid
certificate signed by one of the selected authorities. Clicking on an organization below will reveal the certificate
authorities for that organization.

Show

s&l require client

certificate

ok

MarkLogic 9—May, 2017

2 true falze
Whether or not a client certificate is required. This only has an effect when one or
more more client certificate authorities are specified, in which case a value of true will
fail client authentication if a valid client certificate i= not provided.

Security Guide—Page 189

MarkLogic Server Version MarkLogic 9—May, 2017 External Security

Field Description

ssl client certificate If you set SSL Require Client Certificate to true, then select
authorities Show and chose with certificate authority isto be used to sign
client certificates.

ssl require client Specifies whether or not a client certificate is required. If you
certiticate want SSL to require clientsto provide a certificate, select true for
SSL Require Client Certificate then select Show under SSL Client
Certificate Authorities and select which certificate authority isto
be used to sign client certificates for the server:

When you have finished configuring MarkL ogic Server for external security, click Ok.

12.4 Defining and Inserting a SAML Entity

SAML authorization is done by means of a SAML entity stored in the MarkLogic Security
database.

The SAML 2.0 specification provides a standard format for describing a SAML entity. The
SAML specification provides for avariety of elements that can be defined in an entity, but only
the attributeauthoritybescriptor €lement isused by MarkLogic. The SAML specislocated at
the URL:

http://docs.oasis-open.org/security/saml/v2.0/saml-metadata-2.0-o0s.pdf

The SAML entity defines an entity1p in the form of a URL. To make use of a SAML entity,
specify itsentity ID URL in the “saml entity id” field in the external security configuration, as
described in “ Creating an External Authentication Configuration Object” on page 183.

MarkLogic only supportsthe SAML 2.0 SOAP binding over HTTP. If multiple attributeservice

elements are specified in the entity, one will be chosen at random. This allows support for
multiple hosts in a cluster to be specified when no load balancer is used.

Page 190—Security Guide

http://docs.oasis-open.org/security/saml/v2.0/saml-metadata-2.0-os.pdf

MarkLogic Server External Security

Usethe sec:saml-entity-insert function to insert the SAML entity into the MarkL ogic Security
database. For example, to insert a SAML entity, identified aShttp://example.com/example, that
uses an encoded certificate for authorization, enter:

xquery version "1.0-ml";
import module namespace sec = "http://marklogic.com/xdmp/security"
at "/MarkLogic/security.xqy";

declare namespace md="urn:oasis:names:tc:SAML:2.0:metadata";
declare namespace ds="http://www.w3.0org/2000/09/xmldsig#";

sec:saml-entity-insert (
<md:EntityDescriptor entityID="http://example.com/example">
<md:AttributeAuthorityDescriptor
protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol">
<md:KeyDescriptors>
<ds:KeyInfo>
<ds:X509Data>
<ds:X509Certificates
MIID+TCCAeGgAWIBAGIJAIMAKEOO79¢czMAOGCSgGSIb3DQEBCWUAMDWXE jAQBgNV
BAOMCUF]jbWUgSW5jLjEMMCQGAIUEAWWAQWNt ZSBIJbmMuIE9wZXJThdGlvbnMgRGly
ZWNOb3 IwHhcNMTcwMTASM]j EOMDEOWhceNMj cwMTA3MjEOMDEOW]ASBMRIWEAYDVQQK
DA1BY211TE1uYy4xJjAkBgNVBAMMHU9WCORpciBNYW5hZ2VKIENsdXNOZXIgQWN]j
ZXNzMIIBIjANBgkghkiGO9wOBAQEFAAOCAQ8AMIIBCgKCAQEAWU4i10ujPFrkltDel
XgN11BO/Xbcu6SEWNGCh3yGMwWETgx1PnYDlueRuXIrZAH]8FFoKICJIwsARhcixM
1a2vDHOEkKZPFGhb0OshfONEt 7glDflualUava2x2jNXo5YUuiGDUhES50H3A0HSONzZ
WOOTIMaCulvCTh5ITHNKUNQB2MWrNGeb0I3RxOpghRp6HarTh1luOmQN1iyiQox+pi
67Wh+eZ1313RTQBv80avJFKHPT6JQK0rOVDXGDez/VajiUJswFNGZ2MgpVxgCDu3
iA+fdTV3TFp8XGYTPYCQgri50OKC9cGmFXzDgIiXqJLR8i1AGhQT8YWsCzTzp Yt TVN
JngN/QIDAQABMAOGCSgGSIb3DQEBCWUAA4 ICAQDPgemLCl14kQFpl5¢cfEKUIOQguC
v1CMjaZDDAr86IUDVJIkVEm3Ytkw/QswI4ghZkbPuEhRf4SCo370SR3 ++sPmMuSMR
gFtsU/UWGmMm6xXmIrBl /bkK+wmUwrW3DCcZQLZGOTG400tXSX+gGlvip5swpBTEST
BsxJ3Hu479R48fTMIjoJd2gnVvzZQ7agqnDgcZkifEskY6E7v431W1GEgccf0EJggnz
eRcTWEReYNy/foKKFUPWSMFYLA6RHOYyWxggJd3NvroquéxegVSQYJlodprZhhHx2H
NLZcBNYcgu2RgWNg9Pdjswxn3P1lrRjch9YjgzZyjWywQpX+aASpPT2m0ONDYbkWK
V6YZmZbTmDDmwVER4SK5GB930xdZ647SfIJwVsgN2gqyKED]1 /P2gqwSY1iN851PhXAh
WMEyHfMgPTP22LHyYfQa+ExNShpD95az+ZBdx+1CTO/9fJmQXvrmD1bNdbpfeKBD
YIv+yyL3UDtKQcMhp8zumt2XYINAZSMhLKkAMe2P7/1+47£51X1iGtrRuDVPyNzddB
VD2cQvB3JvQ7YRMt 6BIPFmtuGS1x65d0£fN7D3M8I5xtDa3XkmrrivegOKi 7DRSzZE
bUu4cwifg7mWFIFDkWNWt Izgeni8658yLUEEgyFBUeW90VjR2caTUZcSIObD2yvg7
010Z1zTJIxNplg99CCA==
</ds:X509Certificate
</ds:X509Data>
</ds:KeyInfo>
</md:KeyDescriptors>
<md:AttributeService
Binding="urn:oasis:names:tc:SAML:2.0:bindings:SOAP"
Location="https://ML1:8005/SAML2/SOAP/AttributeQuery"/>
</md:AttributeAuthorityDescriptors>
</md:EntityDescriptors>
)

MarkLogic 9—May, 2017 Security Guide—Page 191

MarkLogic Server Version MarkLogic 9—May, 2017 External Security

12.5 Assigning an External Name to a User

This section describes how to assign one or more external namesto auser in the Admin Interface.
You can aso use the sec:create-user OF sec:user-set-external-names function to assgn one or
more external namesto a user. The external names are used to match the user with one or more
Distinguished Namesin an LDAP server or User Principalsin a Kerberos server.

1.

2.

Click Security in the left tree menu.
Click Users.

Select auser or create anew one by clicking the Create tab at the top of the User Summary
window.

In the User Configuration window, enter the external name for the user in the field in the
External Name section. You can associate multiple external names with the user by
clicking More External Name.

Click OK.

user — A database user.

User name ldapusert

User/login name (uniguej

description LDAP user

An object's description.

password s

confirm password e

Encrypted Password.

external names - The exiernal naimes specificalions.

external name

Mo Current External Name
[add] CH=TestUser 1.CI—I=U55r5.EE=r.IL‘ES‘1.EE=LE|C;‘-xL|

more external names

Page 192—Security Guide

MarkLogic Server External Security

12.6 Assigning an External Name to a Role

When LDAP authorization is used, the LDAP groups associated with the user are mapped to
MarkL ogic roles. One or more groups can be associated with asingle role. These LDAP groups
are defined as External Names in the Role Configuration Page.

This section describes how to assign one or more external namesto arole in the Admin Interface.
You can also usethe sec:create-role OF sec:role-set-external -names function to aSS|gn one or
more externa namesto arole.

1.

2.

Click Security in the left tree menu.
Click the Roles.

Select arole or create anew one by clicking the Create tab at the top of the Role Summary
window.

In the Role Configuration window, enter the name of the LDAP group to be associated
with therole in the field in the External Name section. You can associate multiple LDAP
groups with the role by clicking More External Name.

Click OK.

Role: app-user ok

role — A security role.

role name app-user

The Role name (unigue)

description appservices app user role

An object's description.

compartment

The compartrment that this role iz part of.

external names — The external names specifications.

external name

Mo Current External Mame
[add] appgroup

more external names

MarkLogic 9—May, 2017 Security Guide—Page 193

MarkLogic Server Version MarkLogic 9—May, 2017 External Security

12.7 Configuring an App Server for External Authentication
This section describes how to configure an App Server for external authentication.

1 Click Groups in the |eft tree menu.
2. Click the group in which you want to create or configure the App Server (for example,
Default).

3. Click App Servers on the | eft tree menu.

4, Select the Create HT TP tab to create anew App Server, or select an existing App Server
from the Summary page.

5. In the App Server Configuration page, scroll down to the authentication section and set the
fields, as described in the table below.

authentication application-level -
The authentication scheme to use for this server

internal security true @ false

‘Whether or not the security database is used for authentication and authorization.

external securities — Exfemnal authentication and authonzation configurations.

—nane-— |~
—-none—

LDAPconfig

My-External-Security
OpsDirector-External-Security

default user LOAPuserd -
The user used as the default user in application level authentication. Using the admir
user as the default useris equivalent to turning security off.

Field Description

authentication | The authentication scheme: basic OF application-level fOr LDAP
authentication, xerberos-ticket for Kerberos authentication, certificate
for certificate authentication, or sam1 for SAML authentication.

internal Determines whether or not authentication for the App Server isto be done
security internally by MarkLogic Server.

Page 194—Security Guide

MarkLogic Server External Security

Field Description
external The name of the external authentication configuration object to use. For
security details on how to create an external authentication configuration object,

see “ Creating an External Authentication Configuration Object” on

page 183. To set additional external authentication configuration objects,
click onMore External securities and select an additional configuration
object from the pull-down menu.

Note: If you have configured an App Server with multiple
external configuration objects that use LDAP, the LDAP
server specified by the first configuration object (the object
at the top of the list) isalways used first. If thisfirst LDAP
server is unresponsive, the second LDAP server will not be
tried until the first LDAP server exceeds the time-out
period established by cache timeout Setting.

default user If you select application-1level authentication, you will aso need to
specify a Default User. Anyone accessing the HTTP server is
automatically logged in asthe Default User until the user logsin explicitly.
A Default User must be an internal user stored in the Security database.

12.8 Creating a Kerberos keytab File

If you are configured for Kerberos authentication, then you must create a services.keytab file
and place it in the MarkL ogic data directory.

Note: The name of the generated keytab file must be services.keytab.
This section contains the following topics:

* Creating a keytab File on Windows

e Creating a keytab File on Linux

MarkLogic 9—May, 2017 Security Guide—Page 195

MarkLogic Server Version MarkLogic 9—May, 2017 External Security

12.8.1 Creating a keytab File on Windows

On Windows platforms, the services.keytab fileis created using Active Directory Domain
Services (AD DS) on aWindows server.

Note: If you are using the MDS5 bind method and Active Directory Domain Services (AD
DS) on acomputer that isrunning Windows Server 2008 or Windows Server 2008
R2, be sure that you have installed the hot fix described in http:/
support.microsoft.com/kb/975697.

To create aservices. keytab file, do the following:

1 Using Active Directory Domain Services on the Windows server, create a“user” with the
same name as the MarkL ogic Server hostname. For example, if the MarkLogic Server is
named mysrvr.marklogic.com, Create a user with the name mysrvr.marklogic.com.

2. Create a keytab file with the principal urTe/hostname USING ktpass command of the form:

ktpass princ HTTP/<hostname> mapuser <user-account> pass <password>
out <filenames>

For example, to create a keytab file for the host named mysrvr.marklogic.com, do the
following:

ktpass princ HTTP/mysrvr.marklogic.com@MLTEST1.LOCAL
mapuser mysrvr.marklogic.com@MLTEST1.LOCAL pass mysecret
out services.keytab

3. Copy the services.keytab from the Windows server to the MarkL ogic data directory on
your MarkLogic Server.

12.8.2 Creating a keytab File on Linux
On Linux platforms, the services.keytab fileis created as follows:

1 In ashell window, use kadmin.1ocal to start the Kerberos administration command-line
tool.

2. Use the agaprinc command to add the principal to Kerberos.

3. Use the ktadd command to generate the services.keytab file for the principal.

For example, to create aservices. keytab file for the host named nysrvr . marklogic. com,
do the following:

S kadmin.local
> addprinc -randkey HTTP/mysrvr.marklogic.com
> ktadd -k services.keytab HTTP/mysrvr.marklogic.com

Page 196—Security Guide

http://support.microsoft.com/kb/975697
http://support.microsoft.com/kb/975697

MarkLogic Server External Security

4. Copy the services.keytab from the Linux Kerberos server to the MarkL ogic data
directory on your MarkLogic Server.

12.9 External Certificate User Authentication

MarkLogic 9 includes certificate-based user authentication, which allows users to log into
MarkLogic Server without being required to enter a user name/password. Previously certificates
were only utilized to restrict client access to MarkLogic Server with the Digest/Basic User
Authentication Scheme. Certificate-based user authentication configuration can be achieved
based user configurations using either an internal user or external name.

12.9.1 Certificate Authentication Based on Internal User vs External Name

The difference between authentication based on an internal user or external nameliesin the
existence of the Certificate CN field-based user (demouser1 in the following example) in the
MarkL ogic Security Database (internal user) versusif the user retrieved from Certificate Subject
field (the whole Subject field as DN) is mapped as external name value in any existing user.

12.9.1.1 User Certificate Examples
Here are few common examples, shown for clarity.

For the examples, the certificate presented by the App Server User (demouseri) isthe following.

$ openssl x509 -in UserCert.pem -text -noout
Certificate:
Data:
Version: 1 (0x0)
Serial Number: 7 (0x7)
Signature Algorithm: shalWithRSAEncryption
Issuer: C=US, ST=NY, L=New York, O=MarkLogic Corporation,
OU=Engineering, CN=MarkLogic DemoCA
Validity
Not Before: Jul 11 02:58:24 2017 GMT
Not After : Aug 27 02:58:24 2019 GMT
Subject: C=US, ST=NJ, L=Princeton, O=MarkLogic Corporation,
OU=Engineering, CN=demoUserl
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
Public-Key: (1024 bit)
Modulus:
Exponent: 65537 (0x10001)
Signature Algorithm: shalWithRSAEncryption

MarkLogic 9—May, 2017 Security Guide—Page 197

MarkLogic Server Version MarkLogic 9—May, 2017 External Security

12.9.2 CA Certificate (User Cert Signer) Import from Admin GUI

To alow MarkL ogic Server to accept the certificate presented by a user, MarkLogic Server needs
a Certificate Authority (CA) to sign the user certificate installed into MarkLogic. You can install
a CA Certificate (below) to be used to sign dgemouser1 Cert through the Admin UlI.

Click Configure in the left tree menu of the Admin Ul, then click Security to expand the options.
Click Certificate Authorities, and then click the Import tab.

Paste this text for the trusted certificate into the field:

$ openssl x509 -in CACert.pem -text -noout
Certificate:
Data:
Version: 3 (0x2)
Serial Number: 9774683164744115905 (0x87a6a68cc29066cl)
Signature Algorithm: sha256WithRSAEncryption
Issuer: C=US, ST=NY, L=New York, O=MarkLogic Corporation,
OU=Engineering, CN=MarkLogic DemoCA
Validity
Not Before: Jul 11 02:53:18 2017 GMT
Not After : Jul 6 02:53:18 2037 GMT
Subject: C=US, ST=NY, L=New York, O=MarkLogic Corporation,
OU=Engineering, CN=MarkLogic DemoCA
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
Public-Key: (4096 bit)
Modulus:
Exponent: 65537 (0x10001)
X509v3 extensions:
X509v3 Subject Key Identifier:

D9:45:B9:9A:DC:93:7B:DB:47:07:C6:96:63:57:13:A7:A8:F1:D0:C8
X509v3 Authority Key Identifier:

keyid:D9:45:B9:9A:DC:93:7B:DB:47:07:C6:96:63:57:13:A7:A8:F1:D0:C8
X509v3 Basic Constraints: critical
CA: TRUE
X509v3 Key Usage: critical
Digital Signature, Certificate Sign, CRL Sign
Signature Algorithm: sha256WithRSAEncryption

Page 198—Security Guide

MarkLogic Server External Security

12.9.3 CA Certificate Import into MarkLogic from Query Console

You can also import the Certificate Authority using an XQuery call (pki:insert-trusted-
certificates) t0load the Trusted CA into MarkLogic.

This sample Query Console code demonstrates this process.

xquery version "1.0-ml";
import module namespace pki = "http://marklogic.com/xdmp/pki"
at "/MarkLogic/pki.xgy";

pki:insert-trusted-certificates(
xdmp : document -get (" /OurCertificateLocation/DemoLabCA.pem",
<options xmlns="xdmp:document-get">
<format>text</formats>
</options>)

)

Be sure that this query is executed against the Security database. (The query is
Import Trusted CA.xqy hosted by GitHUb.)

12.9.4 Certificate Template & Template CA import into Client (Browser/
SSL Client)

To enable the SSL App Server, you can either:

» Create aCertificate Template to utilize a Self-Signed Certificate.

or

* Import apre-signed Certificate into MarkL ogic.

In both of the above cases, you will need to import the Certificate Authority used to sign the
certificate used by MarkLogic SSL AppServer into Client Browser/SSL For example:

» Importing a Self Signed Certificate Authority into Windows

Once template is created, you can link your Template with your App Server to enable the SSL -
based App Server.

12.9.5 Certificate CN as Internal User vs External Name-based Internal
User

Difference between the two optionsliesin if the Certificate CN field User (demouser1 in our
example) existsin MarkL ogic Security Database as an internal user verses if the user retrieved
from the Certificate Subject field is mapped as an external name to any existing user.

MarkLogic 9—May, 2017 Security Guide—Page 199

MarkLogic Server Version MarkLogic 9—May, 2017 External Security

12.9.5.1 1.) Certificate CN Field Value as MarkLogic Security Database
Internal User

Follow these steps to configure Certificate-based User Authentication for the user (demouser1) as
aMarkLogic internal user.

1 Create the user demouser1 With the necessary roles in the MarkLogic Security database
(Internal User).
User: demoUser1 ok cancel

Usarflogin nama (wngues)

description Usar Cart CN Fiald as Intemal User
An object’s descriplion.

confirm PAEEWOTd ssssssssssse
Encrypind Paasword

external names — The external names specifications.

axtarnal name

No Current External Mama

[acted]

Page 200—Security Guide

MarkLogic Server External Security

2. On the AppServer page, set the authentication schemato “ Certificate” with Internal
Security to set to “true”’. Unless you want to have some users authenticated as an External
User aswell, leave External Security object to “none”.

authentication cerfificate i

v

The authentication scheme o use for this server

internal security °1.|'|.|3 false

Whether or not the security database is used for authentication and
authorization.

external securities - Exfemal authentication and authorization configurations.

~Mone- 4

More External Securities

3. The AppServer will also select the CA that will be used to sign Client/User Certificate as
accepted Certificate Authorities (See section CA Certificate earlier for example).

Hide

Amorica Online Inc. (2)
Baltimores (1)

DemoCrg (1)

Deutachs Telakom AG (1)
DigiCart ine (3)

Digltal Signature Trost (1)
Digital Signaturs Trust Co. (3)
Entrust, Inc. (1)

Entrust.net (1)

ifax Secure Inc. (2)
GeoTrust Inc. (7}
GobDaddy.com, Ine. (1)
GTE Carporation (1)
Japan Cortification Services, Inc, (1)
Japansse Governmant (1)
Mark Logio (1)
MarkLogic Corporation (1)

o= us
8T = MY
L = Mew York
O = MarkLogic Corporation
OU = Englnasring
S o= harkLogie DoemaCs,

Network Solutlons L.L.C, (1)
RSA Socurity Inc (1)

BECOM Trust Systems COLTD, (2)
SECOM Trust.mst (1)

SecuraTrusi Corporation (2)
Swisscom (1)

SwinuSign A (3)

Thawts Consulting s (2}

thaswts, InG. (3)

The Go Daddy Group, Ine. (1)
VariBign, Ine. (13)

WVISA (1)

Walle Farge (1)

Walls Fargo WallsSocurs (1)

Once configured, accessing the App Server with a browser the has the User Certificate
(demouser1) installed will be able to log into MarkL ogic with the internal gemouseri.

MarkLogic 9—May, 2017 Security Guide—Page 201

MarkLogic Server Version MarkLogic 9—May, 2017 External Security

Note: You will also need to assign the necessary roles to the internal user to be ableto
access resources as needed.

12.9.5.2 User Certificate Subject Field Value as External Name for Internal

User
Follow these steps to configure certificate-based user authentication for demouser1 asa

MarkLogic external name for the internal user “newUserl”.

Create a user named “newuser1” With the necessary rolesin MarkLogic Security database

1.
(Internal User), and configure the User Certificate Subject field as External Name to User.

User: newlUser1 ok cancel

user — A dafabase user, delete

L, TRES nevwlisori
Usarlogin name (unique)

description Ugar Con Subject as Extamal Name
An object's description,

password
Encrypled Passwaord.

Encryptod Password,

exiornal names — The external names specificalions.

external name

[Keep]
C=US5 S5T=MJ, L=Princeton, O=MarkLoglc Corporation, OU=Enginsaring, CHN=damalsar

Page 202—Security Guide

MarkLogic Server External Security

2. Create an external security object with certificate-based authentication.

External Security:

Demo_External_Certificate_Object * conee!

external security - An external authentication and authorzation config. delete

external security name Dema_Extemal_Certificate_Object
External sacurity nama (uniquea)

description Certificate Auth External Sec Object
An object’s description.
authentication cartificale §
Authentication
cache timeout 300

The lagin cache timeoul, in seconds,

authorization Internal &
An authorization scheme.

3. On the External Security Object Configuration itself, select the CA that will be used to
sign Client/User Certificate as accepted Certificate Authorities (See section: CA
Certificate earlier for example).

Note: The Configuration below is different than configuring Client CA on App Server
(required for Internal User).

Hiche

America Online Inc. (2}
Ealtbmone (1)

Damading (1}

Dautsche Telekom A (1)
DigiCert g (3}

Digiisl Bigoature Trust (1)
Diginl Bignature Trust Co. (3)
Entrust, ino. (1)

Entrust st (1)

curs (13
Wauifeax Securs lnae, (2)

dapan Certification Bervices, lnc. (1)
Japanoemss Gowermmani k1)
Bark Logic (1)

MarkLogic Corporation (1)

B S =us
BT = NY
L= Naw vork
O = MBRLOG COrponmion
S = Engheariig
SN = MarkLoghs Dt

Hatwork Solutions LL.C. (1)
REA Sacurity Inc (1}
BECOM Trust Systeme OO0, LTD. (T}
BECOM Trust, et (1)
BeoureTrust Corporation (2}
Bwinmaom (1)
BwisnSign A (3}
Thmwts Conmulling oo (2)
thawts, Inc. (33
The Go Daddy Groups, Inc, (13
WS, e, (150
Waits Farge (1

wils Farge (1)
Wislls Farge Ew-llta-touu- 1

nal require client o

cartificate e —
Wbt e mal @ cllant corificate i reguired. This onty has an affect whe
Gena or morm morn chent cortificate aulhoriboes s apecitiod, in which cane
& walue of frue will fail cliont suthentication i o wlid cllant codificate i ot
prouided.

MarkLogic 9—May, 2017 Security Guide—Page 203

MarkLogic Server Version MarkLogic 9—May, 2017 External Security

4, For External Name (Cert Subject field) based linkage to Internal User, the App Server
needs to point to our External Security Object.

111G UGIEUIL ARG IEUS 3PS I YUSIHS,

authentication basic c
The authentication scheme fo use for this server

internal security °trua falea
Whether or not the securily database is used for authentication and

external securities — External authentication and authonization configurations.

| Derno_Extemal Certificale Object 4 |

More External Securities

Page 204—Security Guide

MarkLogic Server External Security

12.10 Example External Authorization Configurations

This section provides an example of how Kerberos and LDAP users and groups might be mapped
to MarkLogic users and roles.

On Active Directory, thereis a Kerberos user and an LDAP user assigned to an LDAP group:

» Kerberos Principal: jsmitheMLTEST1 . LOCAL

* LDAPDN: cN=John Smith,CN=Users, DC=MLTEST1,DC=LOCAL

* LDAP memberOf: cn=TestGroup Admin,CN=Users,DC=MLTEST1,DC=LOCAL
On MarkLogic Server, the two users and the 1aaproie1 role are assigned external names that map
them to the above users and LDAP group.

Kerberos User:

e User name: krbuser1
* [External names; jsmitheMLTEST1 .LOCAL
LDAP User:

e User name: 1dapuserl
e External names: cN=John Smith, CN=Users,DC=MLTEST1,DC=LOCAL

Role:

 Rolename: 1daprolel
* External names. cN=TestGroup Admin, CN=Users, DC=MLTEST1, DC=LOCAL

After authentication, the xdmp : get -current -user function returns a different user name,
depending on the external authorization configuration. The possible configurations and returned
name is shown in the following table.

Autgr%rtlgggltl on Autshcc;]r(lazmag on Name Returned

kerberos internal krbuserl

kerberos |dap jsmitheMLTEST1.LocaL (TEMP user with role 1daprole1)
Idap internal ldapuserl

Idap Idap jsmith (TEMP user with role 1daproie)

MarkLogic 9—May, 2017 Security Guide—Page 205

MarkLogic Server Version MarkLogic 9—May, 2017 External Security

12.11 Kerberos Authentication using xdmp:http-* Functions

Kerberos authentication is supported by the xdmp : http-get, xdmp : http-post, xdmp: http-put, and
xdmp :http-delete functions with the negotiate authentication option. When negotiate is
specified, the username and password are not used. Instead, the server authenticates with the
keytab fileidentified by an environment variable. This effectively doesaxinit operation with the
keytab file and then starts the MarkL ogic server.

To use this feature, you must set the following environment variables:

Environment Variable Vaue
MARKLOGIC_KEYTAB Path to the Kerberos client keytab file.
MARKLOGIC PRINCIPAL Kerberos Principal.

For example, to authenticate xamp : http-get for Kerberos, your function would look like the
following.

XQuery:
xdmp :http-get ("http://atsoi-z620.marklogic.com:8008/ticket.xqy",
<options xmlns="xdmp:http">
<authentication method="negotiate">
</authentications>
</optionss>)

JavaScript:

xdmp . httpGet ("http://atsoi-z620.marklogic.com:8008/ticket.xqy",
{ "authentication": { "method" : "negotiate" } })

Page 206—Security Guide

MarkLogic Server External Security

The xdmp :http-get, xdmp:http-post, xdmp:http-put, and xdmp:http-delete functionsinclude a
kerberos-ticket-forwarding Option to enable the use of a user credential instead of
MARKLOGIC PRINCIPAL.

For example, to forward the ticket (if the user ticket is forwardable), do the following.
XQuery:

xdmp :http-get (*http://myhost.com:8005/index.xqgy”,
<options xmlns="xdmp:http">
<authentication method="negotiate">
</authentications>
<kerberos-ticket-forwarding>{”optional”}
</kerberos-ticket-forwarding>
</options>)

JavaScript:

xdmp : httpGet (“http://myhost.com:8005/index.xqy”,

{

"authentication": {"method" : "negotiate"},
"kerberosTicketForwarding": “optional”

)

The xdmp : http-get, xdmp:http-post, xdmp:http-put, and xdmp :http-delete functions also have a
proxy Option to support proxy and proxy tunneling. When an HTTP or HTTPS request is sent to
proxy server, the proxy server will forward the request to the destination.

For example, to forward requests to a proxy server, named http: //proxy.marklogic.com: 8080, dO
the following.

XQuery:
xdmp :http-get ("http://targethost .marklogic.com/index.html",
<options xmlns="xdmp:http">
<proxy>http://proxy.marklogic.com:8080</proxy>
</options>)
JavaScript:

xdmp . httpGet ("http://targethost.marklogic.com/index.html",
{proxy:"http://proxy.marklogic.com:8080"})

MarkLogic 9—May, 2017 Security Guide—Page 207

MarkLogic Server Version MarkLogic 9—May, 2017 External Security

12.12 Kerberos Authentication for Secured HDFS

MarkL ogic can use Kerberos Secured HDFS as afile system on Linux platforms. MarkLogic
Server acts as aclient to Kerberos Secured HDFS and should have its own unique identity, so the
credentials provided to MarkL ogic Server should be different from the Kerberos credentials of
other MarkL ogic client applications.

MarkL ogic Server accesses Kerberos Secured HDFS using the keytab file and principal. To
configure Kerberos authentication to Secured HDFS, set the following environment variablesin
YOUI /etc/marklogic.conf file:

Environment Variable Value
MARKLOGIC_KEYTAB Path to the Kerberos client keytab file.
MARKLOGIC_PRINCIPAL Kerberos Principal to be authenticated.

Note: When using rolling upgrades, deploy your credential keytab files after the cluster
has been fully upgraded to MarkL ogic Server 9. Otherwise the behavior of
accessing secure HDFS will be undefined.

Page 208—Security Guide

MarkLogic Server Encryption at Rest

13.0 Encryption at Rest

Encryption at rest protects your dataon media - which is*dataat rest” as opposed to data moving
across a communications channel, otherwise known as “datain motion.” Increasing security risks
and compliance requirements sometimes mandate the use of encryption at rest to prevent
unauthorized access to data on disk.

Note: No additional licenseisrequired to use encryption at rest with the built-in internal
keystore. To use encryption at rest with an external key management system
(KMS), an Advanced Security license is required. For details on purchasing an
Advanced Security license, contact your MarkL ogic sales representative. See
“Licensing” on page 11 for more information.

Encryption at rest can be configured to encrypt data, log files, and configuration files separately.
Encryption isonly applied to newly created files once encryption at rest is enabled, and does not
apply to existing files without further action by the user. For existing data, a merge or re-index
will trigger encryption of data, a configuration change will trigger encryption of configuration
files, and log rotation will initiate log encryption.

This chapter describes encryption at rest security and includes the following sections:

e Licensing

¢ Terms and Definitions

¢ Understanding Encryption at Rest

e Keystores - PKCS #11 Secured Wallet or External KMS

e Encryption Key Hierarchy Overview

e Example—Encryption at Rest

e Configuring Encryption at Rest

e Key Management

* Configuring an External Keystore

¢ Administration and Maintenance

* APIs for Encryption at Rest

¢ Interactions with Other MarkLogic Features

13.1 Licensing

The use of an external Key Management System (KMS) or keystore with encryption at rest
requires an Advanced Security License, in addition to the regular license. See “Licensing” on
page 11 for more details.

MarkLogic 9—May, 2017 Security Guide—Page 209

MarkLogic Server

Version MarkLogic 9—May, 2017 Encryption at Rest

13.2 Terms and Definitions
The following terms and definitions are associated with encryption at rest.

Term

Definition

Encryption at rest

Encryption of datathat is stored on digital media

KMS

Key Management System

wallet

The PKCS #11 secured wallet provided and managed by
MarkL ogic, that functions as the default standalone KMS

KEK

A Key Encryption Key used to encrypt or ‘wrap’ another encryption
key

keystore

Repository for crytographic keysin the PK CS #11 secured wallet or
any external KM S that is KMIP-server conformant

KMIP

Key Management Interoperability Protocol (KMIP specification) -
governed by OASIS standards body. There are multiple versions of
KMIP currently available. MarkL ogic Encryption supports KMIP
version 1.2

PKCS#11

One of the Public-Key Cryptography Standards, and also the
programming interface to create and manipulate cryptographic
tokens. See the OASIS PKCS TC for details

MKEK

Master Key Encryption Key, residesin the keystore, and is used to
generate the CKEK, which is enveloped (encrypted) with the
MKEK

CKEK

Cluster Key Encryption Key, resides in the keystore and is used to
encrypt the data (CDKEK), configuration(CCKEK), and log
CLKEK) encryption keys

CDKEK

Cluster Data Key Encryption Key, used to directly encrypt (wrap)
the object key encryption keys (OKEY) for stands, forest journals,
and largefiles

CCKEK

Cluster Configuration Key Encryption Key, used to encrypt (wrap)
the object key encryption keys (OKEY) for configuration files

CLKEK

Cluster Log Key Encryption Key, used to encrypt (wrap) the object
key encryption keys (OKEY)) for log files

Page 210—Security Guide

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=kmip
https://www.oasis-open.org/committees/pkcs11/

MarkLogic Server

Encryption at Rest

Term

Definition

OKEY

Object Encryption Key, otherwise known as the data object
encryption key, asymmetric key used to directly encrypt objectslike
stands, forest journals, large files, configuration files, or log files

BKEK

Backup Key Encryption Key, used to encrypt backups, both full and
incremental. The BKEK isalocally generated backup KEK, that is
used to encrypt al filesin the backup. The BKEK is encrypted with
the CDKEY and the BDKEY.

BDKEK

Backup Database Key, (alternative) only applicable to external
KMS configurations. It isused to encrypt abackup in addition to the
CDKEK.

HSM

Hardware Security Module or other hardware deviceis aphysica
computing device that safeguards and manages digital key materials

Key strength

The size of key in bits. Usually the more bits, the stronger the key
and more difficult to break; for example 128-bits, 256 bits, or
512-bits, and so on

Key rotation

The process of aging out and replacing encryption keys over time

13.3 Understanding Encryption at Rest

Encryption at rest enables you to transparently and selectively encrypt your data residing on disk
(locally or in the cloud) in MarkLogic clusters. You can set your options at the cluster level to
encrypt data on all the hostsin that cluster.

Three types of data can be encrypted:

» User data - dataingested into MarkL ogic databases, along with derived data such as
indexes, user dictionaries, journals, backups, and so on

» Configuration files - all configuration files generated by MarkL ogic (for example,
whenever a change is made to the configuration file)

* Logfiles- dll log files generated by MarkLogic, such as error logs, access logs, service
dumps, server error logs, logs for each application server, and the task server logs

There are both MarkLogic Application Server logs and MarkL ogic Server logs; both types
of logs will be encrypted as part of log encryption.

Note: If you are using the Default Conversion Option described in The Default Conversion
Option in the Content Processing Framework Guide, note that the MarkL ogic
Converters package may generate temporary files, which are not supported by
encryption at rest.

MarkLogic 9—May, 2017

Security Guide—Page 211

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest

These types of data can each be encrypted separately. You can configure encryption for databases
individually, or at the cluster level. Encryption at rest is“off” by default. To use encryption at rest,
you need to configure and enable encryption for your database(s), configuration files, and/or log
files.

Note: To access unencrypted forest data MarkL ogic normally uses memory-mapped
files. When files are encrypted, MarkL ogic instead decrypts them to anonymous
memory. As aresult, encrypted MarkL ogic forests use more anonymous memory
and less file-mapped memory than unencrypted forests.

Encryption at rest provides data confidentiality, but not authentication of identity or access control
(permissions). See “ Authenticating Users’ on page 35 and “ Protecting Documents” on page 25
for information about authentication and other forms of security in MarkLogic Server.

Warning If you cannot access your PKCS #11 secured wallet (or external KMSif you are
using one), or lose your encryption keys, you will not be able to decrypt any of
your encrypted data. There is no “mechanism” to recover the encrypted data. We
recommend that you backup your encryption keys in a secure location. See
“Backup and Restore” on page 262 for more details.

13.4 Keystores - PKCS #11 Secured Wallet or External KMS

A keystore is a secure location where the actual encryption keys used to encrypt data are stored.
The keystore for encryption at rest is akey management system (KMS). This keystore can be
either the MarkL ogic embedded PK CS #11 secured wallet, an external KM S that conforms to the
KMIP-standard interface, or the native AWS KM S (Amazon Web Services Key Management
System). The embedded keystore is installed by default when you install MarkLogic 9.0-x or
later.

The MarkL ogic embedded wallet uses a standard PK CS #11 protocol, using the PKCS #11 APIs.
The wallet or another KMS, must be available during the MarkL ogic startup process (or be
bootstrapped from MarkLogic during start-up). You can also use any KMIP-compliant external
keystore with MarkLogic or the native AWS KMS.

To configure an external KM S you will need the following information for your cluster:

* Host name

* Port number

* Client certificate
* Server certificate

If you are using the native AWS KMS, you will not need the Client certificate or the Server
certificate. You will need the other information.

Page 212—Security Guide

MarkLogic Server Encryption at Rest

Note: If you plan to use an externa key management system, configure the externa
KM S first, and then turn on encryption in the MarkLogic server.

For details, see “Configuring an External Keystore” on page 243.

13.5 Encryption Key Hierarchy Overview

The following section provides an overview of the encryption key hierarchy used by MarkL ogic
encryption at rest to secure data. Keys in the encryption hierarchy wrap (or encrypt) those keys
below them in the hierarchy. Three possible configurations of the encryption key hierarchy are
described. Thefirst is an idealized key hierarchy that provides a generic example. The second is
an embedded KM S (the PKCS #11 secured wallet) configuration, and the third shows an external
keystore management system (KMS) configuration.

You do not need to completely understand the details of the key hierarchy to use the encryption
feature, but this section will help to understand the general concepts involved.

NP Wy s
Data KEK Configuration Logs KEK

CDKEK KEK (CCKEK' CLKEK
Stand KEK Forest Journals Large File |
(FRKEY) (FRKEY) [FRK_EY]

Y 2 v

= DEiECI Encr\;ption Per configuration Per Log File
ey (OKEY' =
Object :=[Large files —H file [GKEY] {GKEY]
T T
[

¥

Y
Per object Encryption Per object Encryption
key (OKEY) key (OKEY)
Object := [Stand files] Object := [Forest Journals
[

These keys are generated per file by MarkLogic Server, encrypted with the keys from the KMS, and stored encrypted as headers ineach file.

The keystore contains the Master Key Encryption Key (MKEK). The keystore generates the
Cluster Key Encryption Key (CKEK), which is enveloped (encrypted) with or derived from the
Master Key Encryption Key. Both the Master Key Encryption Key and the Cluster Key
Encryption Key residein the keystore (key management system or KMS). These keys never leave
the keystore and MarkL ogic Server has no knowledge or control over these keys. The keys are
referenced from the keystore by their key I1Ds.

MarkLogic 9—May, 2017 Security Guide—Page 213

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest

The KMS can be either the internal keystore provided by MarkLogic or an external
KMIP-compliant KM S; the same mechanism is used by both types of keystores. The
configuration happens at the cluster level because there is one keystore configuration per cluster.
The encryption feature is fully compliant with the KMIP standard and the Amazon KMS.

The external KM S provides even higher security. The key IDs are provided by the KMS and
returned through a TL S tunnel after the MarkL ogic-generated keys have been sent to the KMS
and wrapped (encrypted). The actual encryption keys never leave the KMS.

There are multiple levelsto the key hierarchy, each level wrapping (encrypting) the level below it.
The KMS generates the Cluster Level Data Encryption Keys for data (CDKEK), configuration
files (CCKEK), and log files (CLKEK). The corresponding key (CDKEK, CCKEK, or CLKEY)
isused to encrypt (wrap) all the Object Encryption Keys (OKEY') generated by MarkL ogic Server
for each file, so that an encryption key protects each file, no matter what category (data,
configuration files, logs).

The Object Encryption Keys (OKEY) are randomly generated per file (for stands, journals, config
files, and log files, etc.) wrapped (encrypted) with the corresponding keys (CDKEK, CCKEK, or
CLKEK). So an encryption key protects each file within a category (data, configuration files,
logs).

For example, the Master Key Encryption Key (MKEK) wraps (encrypts) the Cluster Key
Encryption Keys (CKEK), which in turn wraps (encrypts) the Data Key Encryption Key
(CDKEK). The Data Key Encryption Key encrypts the Object Encryption Key (OKEY)) for afile
such as astand. The keys at the bottom of the diagram are encrypted as headersin each file,
wrapped (encrypted) with each of the keys above them in the hierarchy. Each of the three
categories of objects (data, configuration files, and logs) hasits own key encryption hierarchy.

Database backups are encrypted using a generated backup key (BKEK). Thiskey isthen
encrypted with the cluster key (CDKEK). See “Backup and Restore” on page 262 for more
information about backups.

13.5.1 Embedded KMS Key Hierarchy

When you use the embedded PKCS #11 secured wallet provided with MarkLogic Server, the
recommended key hierarchy would be similar to thisillustration.

Page 214—Security Guide

MarkLogic Server Encryption at Rest

MarkLogic Server

PKCS #11 Secured Wallet

G}nﬁgu ration KEK

Data KEK (CDKEK) (CCKEK)

Logs KEK (CLKEK)

Encryption Key I1Ds =

v v v v

Per object Encryption Per object Encryption Per object Encryption Per configuration file Per Log File
key (OKEY) key (OKEY) key (OKEY) CKEK ELKEK
Object == [Stand filex] Object := [Fnrm Sournal] Object = [Large files]
1 [

These keys are generated by MarkLogic Server, encrypted withthe keys from the KMS, and stored as encrypted headersin each file .

MarkLogic Server generates the Data Key Encryption Key (CDKEK), the Configuration Key
Encryption key (CCKEK) and the Logs Key Encryption Key (CLKEK). The DataKey
Encryption Key is then used to wrap the OKEY s for the database objects (journals, datafiles,
etc.). These keys are stored in the wallet (internal KMS). The key IDs are generated in the
MarkLogic Server for encryption and decryption by the KM S (the PKCS #11 secured wallet in
this case). The configuration happens at the cluster level because there is one keystore per cluster.

The individual Object Encryption Keys (OKEY s) are then randomly generated and used to
directly encrypt individual files (journals, config files, and log files, etc.). These keys (the

OKEY s) are wrapped (encrypted) with the corresponding KEK for data, config, and logs. A
unique key protects (encrypts) each file. The keys at the object levels are wrapped (encrypted by
the keys above them) for each category.

For example, the Data Key Encryption Key (CDKEK) wraps (encrypts) the Object Encryption
Key (OKEY) for afile such asajournal. The keys at the bottom of the diagram are encrypted
(wrapped) by al the keys above them in the hierarchy, and then placed in the header for each file.
In the case of the embedded KMS, there is only one CDKEK for the entire cluster - all databases
in the cluster will use that key. When using the embedded KMS, it is not possible to use “ per
database” keys for encryption.

Database backups are encrypted using the locally generated backup key (BKEK) that isused to
encrypt all of the filesin the backup. The BKEK is then encrypted with the cluster data key
(CDKEK) and then encrypted with the cluster key (CKEK). Additionally you could encrypt this
key with the BDKEY and a passphrase. See “Backup and Restore” on page 262 for more
information about backups.

MarkLogic 9—May, 2017 Security Guide—Page 215

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest

13.5.2 External KMS Key Hierarchy

The external KM S provides even higher security, along with additional key management features.
When you use an external key management system (KMS or keystore), the recommended key
hierarchy deployment might look like thisillustration.

KMS (keystore)

These keys all reside in the KMS,
outside of MarkLogic Server.
Only the key 1Ds are used by
MarkLogic Server.

These keys are optional.

These keys are required. J
Data KEK Configuration Logs KEK
(CDKEK) KEK (CCKEK (CLKEK)

a— Encryption Key IDs —Q

MarkLogic Server

Per °:le“ Encryption Per configuration Per Log File
A H File (OKEY) h (OKEY) ﬂ

e
Per object Encryption Per object Encryption

key (OKEY) key (OKEY)
Object := [Stand files = urnals
[

These keys are generated per file by MarkLogic Server, encrypted with the keys from the KMS, and stored encrypted as headers in each file.

The keystore contains the Master Key Encryption Key (MKEK). The KMS generates or derives
the Cluster Key Encryption Key (CKEK), which is enveloped (encrypted) with the Master Key
Encryption Key. Both the Master Key Encryption Key and the Cluster Key Encryption Key reside
in the KM S keystore. These keys never leave the keystore. MarkLogic Server has no knowledge
or control over these keys. The keys are referenced from the keystore by their key IDs. The actual
encryption keys never leave the KMS.

There are multiple levels to the key hierarchy in this deployment, each level wrapping
(encrypting) the level below it. The KM S generates the cluster level encryption keys for data
(CDKEK), configuration files (CCKEK), and log files (CLKEK). The corresponding KEK isused
isused to encrypt (wrap) all the Object Encryption Keys (OKEY) generated by MarkL ogic Server
for each file, so that a unique key protects each file, no matter what category (data, configuration
files, logs). A unique key protects each file within a category (data, configuration files, logs).

Page 216—Security Guide

MarkLogic Server Encryption at Rest

The corresponding KEK (for data, config, or logs) is used to encrypt (wrap) all the Object
Encryption Keys (OKEY) generated by MarkL ogic Server for each file, so that an encryption key
protects each file, no matter what category (data, configuration files, 10gs).

For example, the Master Key Encryption Key (MKEK) wraps (encrypts) the Cluster Key
Encryption Keys (CKEK), which in turn wraps (encrypts) the Data Key Encryption Key
(CDKEK), then wraps (encrypts) the Object Encryption Key (OKEY)) for afile such as a stand.
The keys at the bottom of the diagram are encrypted (wrapped) by all the keys above them in the
hierarchy, and then placed in the header for each file.

Database backups are encrypted using the BKEK, the locally generated backup KEK, the BKEK
is encrypted with the CDKEK. Then the CDKEY may be encrypted or derived from the cluster
key (CKEK). Thislast step is outside of the control of MarkLogic. You can also use a password
or passphrase to encrypt and secure your backup. See “Backup and Restore” on page 262 for
more information about backups and the use of a passphrase to secure your backup.

Note: If you plan to use an external key management system, configure the external
KM S first, and then turn on encryption in the MarkLogic server.

13.6 Example—Encryption at Rest

This section describes a scenario using encryption at rest to encrypt a database. This exampleis
for informational purposes only. It is not meant to demonstrate the correct way to set up and use
encryption at rest, as your situation is likely to be unique. However, it demonstrates how
encryption at rest works and may give you ideas for how to configure your own encryption at rest
security model.

Description:.

To set up encryption at rest for this scenario, you will need Admin privileges. You will need
access to both MarkL ogic Admin Interface and Query Console.

To run through the example, perform the steps in each of the following sections:

e Set Up Encryption Example

* Encrypt a Database

e Testlt Out

e Turn Off Encryption for a Database

MarkLogic 9—May, 2017 Security Guide—Page 217

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest

13.6.1 Set Up Encryption Example

Install MarkLogic 9.0-1 or later. Encryption at rest options are not available in earlier versions of
MarkLogic Server. You must explicitly select which data (databases, configuration files, log files,
or entire clusters) you want to have encrypted. This example shows how to set up encryption for a
single database.

Note: The Security database or other databases used by MarkL ogic will not be encrypted
by default. Existing data can be encrypted by forcing a merge or areindex of the
database.

See “Configuring Encryption at Rest” on page 221 for more details.

13.6.2 Encrypt a Database
For this example, we will use the Admin Ul to set up encryption for the Documents database.

1. Select Databases from the left tree menu in the Admin Ul.
2. Click on the Documents database.

3. On the Database Configuration page, next to data encryption, select on from the
drop-down menu. (The other options are default-cluster and off.)

[summary T ontigure T statue | backup/hostore | toad [croste [veio (R

ok cancel

database - The database specification. i merge ATl reindex Al clear A8 disable 1S delete)

database name Documents
The database name.

security database Security -
The security database.

schema database Schemas bt
The database that contains schemas.

triggers database Triggers -
The database that contains triggers.

data encryption® on -
Enable encryption at rest for this database

4. Click ok.

Page 218—Security Guide

MarkLogic Server Encryption at Rest

If you select gefault-cluster, encryption for that database will default to whatever encryption
option has been set for the cluster asawhole. If the cluster is set to encrypt data, this database will
be encrypted. If encryption has not been turned on for the cluster, this database will not be
encrypted if gefault-cluster IS Selected. See “ Cluster Encryption Options’ on page 224 for
details.

Asyou access data in your database, it will be encrypted when it iswritten back to disk. You can
view the encryption progress on the Database Status page by looking at the Size and Encrypted
Size numbers.

Note: To encrypt the existing data in your database, you will need to re-index your
database. On the Database Configuration page, click the reindex button at the top
of the page (below the “OK” button), and then click ok. You can aso force a
merge of the database to encrypt the data.

Encryption of large databases will take some time initially. Updates and changes to the database
will befairly transparent to the user after initial encryption. The Size and Encrypted Size numbers
will be equal when the encryption process is complete.

13.6.3 Test It Out

Using Query Console, you can run asimple query to verify that the Documents database has
encryption turned on.

Language Example

XQuery xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin"
at "/MarkLogic/admin.xqy";

let $config := admin:get-configuration/()
return admin:database-get-data-encryption ($config,
xdmp : database ("Documents"))

=>
on

Server-Side const admin = require ('/MarkLogic/admin') ;
JavaScript const config = admin.getConfiguration() ;

admin.databaseGetDataEncryption (
config, xdmp.database ('Documents')) ;

// Returns ‘on’

You can also check the Size and Encrypted Size numbers on the Database Status page. These
numbers will be equal when the encryption process is complete and the entire database is
encrypted.

MarkLogic 9—May, 2017 Security Guide—Page 219

MarkLogic Server

Version MarkLogic 9—May, 2017

13.6.4 Turn Off Encryption for a Database
1. Select Databases from the left tree menu in the Admin UL.

2. Click on the Documents database to turn off encryption.

Encryption at Rest

3. On the Database Configuration page, next to data encryption, select ot from the

drop-down menu.

| summary ‘ Configure rstatus 'hdmwmat Load '

database - The database specification

database name

security database

schema database

triggers database

data encryption®

4. Click ok.

To verify that encryption is turned off, run this query in Query Console:

Page 220—Security Guide

| merge | reindex | clear

Documents

The database name.

Security -
The security database.

Schemas hd
The database that contains schemas.

Triggers -
The database that contains triggers.

off A
Enable encryption at rest for this database

| disable |

weate [werr [

ok | cancel

delete

MarkLogic Server Encryption at Rest

Language Example
XQuery xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin"
at " /MarkLogic/admin.xqgy" ;
let $config := admin:get-configuration/()

return admin:database-get-data-encryption(
Sconfig, xdmp:database ("Documents"))

=>

off
Server-Side const admin = require ('/MarkLogic/admin') ;
JavaScript const config = admin.getConfiguration() ;

admin.databaseGetDataEncryption (
config, xdmp.database ('Documents')) ;

// Returns ‘off’

To decrypt the existing data in your database, you will need to re-index your database. On the
Database Configuration page, click the reindex button and then click ok.

Note: You can aso decrypt the data by forcing a merge on the database to decrypt its
contents. This process may take awhile.

13.7 Configuring Encryption at Rest

Install MarkL ogic Server version 9.0-x or later. The encryption at rest feature and the PKCS #11
secured wallet are installed by default. You can configure encryption at rest for databases (data
encryption), log files (log encryption) and configuration files (config encryption). The encryption
feature will need to be configured and enabled for your data to be encrypted.

When you start up MarkLogic for the first time after installation, the keystore . xm1 file will be
loaded first. It contains the encryption key I1Ds. After loading the keystore.xm1 configuration,
MarkL ogic validates connectivity to the KM S (local or external) and the validity of the keys
stored in keystore . xm1. ONce validated, encryption keys will be loaded and decrypted. Normal
startup then continues. If configuration files are encrypted, the file layer will decrypt them as they
are being loaded, making the encryption transparent to the cluster.

Note: If anodeinyour cluster isoffline for any reason, wait until the host comes back

online to make any changesto your encryption at rest settings. Do not change your
encryption settings while ahost is offline.

MarkLogic 9—May, 2017 Security Guide—Page 221

MarkLogic Server

Version MarkLogic 9—May, 2017

This section contains the following topics:

e Database Encryption Options

e Configure Cluster Encryption

e Cluster Encryption Options

e Using an Alternative PKCS #11 Device

e Configure Encryption Using XQuery

e Configure Encryption Using REST

13.7.1

Database Encryption Options

Encryption at Rest

You can configure encryption for each database on the Database Configuration page in the Admin
Ul. Encryption at rest can be separately enabled per database, or at the cluster level by setting the
database encryption to default to the cluster encryption settings. The encryption options for

databases are shown in the following table.

to cluster setting

Encryption Encryption Options
Default-Cluster On Off
Database encryption | encryption defaults | encryption enabled | encryption off,

for database

unless cluster
encryption is set to
force encryption

With encryption enabled, files are encrypted as they are ingested into the database, or when those
files are written back to disk. If you want to encrypt existing datain a database either reindex the
database or force a merge on the database. Thiswill take a few minutes depending on the size of

database. See Cluster Encryption Options

Note: Large binary files are only encrypted during initial ingestion into the database. If
you want to encrypt existing large binary files already |oaded into MarkL ogic
Server prior to turning on encryption, you must reindex the database or force a

merge.

1. To configure database encryption, go to the Admin Ul and click Databases in the | eft

navigation tree.

2. Click on the database you want to encrypt.

Page 222—Security Guide

MarkLogic Server Encryption at Rest

3. On the Database Configuration page, next to data encryption, select on from the
drop-down menu. (The other options are default-cluster and off.)

TRETTR AT AT TR TR0

ok | cancel
database - The database specification. ;_ merge) ‘- reindex) ;_ clear - ;- disable) ‘- delete)
database name Documents
The database name.

security database Security -
The security database.

schema database Schemas -
The database that contains schemas.

triggers database Triggers -
The database that contains triggers.

data encryption® an -
Enable encryption at rest for this database

4, Click ok when you are done.

13.7.2 Configure Cluster Encryption

You can set cluster encryption optionsfor configuration filesand log files, and al so set or override
the encryption options for databases on the Cluster Configuration page.

13.7.2.1 Configuration File and Log File Encryption Options

Encryption at rest for configuration files and/or log filesis done on the Cluster Configuration
page in the Admin Ul. Navigate to this page by choosing Clusters from the left tree menu,
clicking the cluster name, and then clicking the Configure tab.

The encryption options are shown in the following table.

File Type Cluster Encryption Settings
Default On Default Off Force
Configuration files | encrypt do not encrypt encrypt
Log files encrypt do not encrypt encrypt

MarkLogic 9—May, 2017 Security Guide—Page 223

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest

Note: Thexkeystore.xml and hsm.cfg files are never be encrypted because they are
configuration for the Keystore. The servers.xm1 fileisnot immediately encrypted
until aserver (apps server) isupdated, anew server iscreated, or an existing server
isdeleted. Thisis because these actionstrigger arestart of the MarkL ogic server.

Cluster configuration settings for encryption at rest interact with the encryption settings for
databases. You can separately configure encryption for each database on the Database
Configuration page in the Admin Ul or set database encryption to default to the cluster encryption
settings.

Note: The database encryption configuration settings take precedence unless the cluster
Force Encryption option is set. If Force Encryption is on, configuration files and
log fileswill be encrypted. Please check all database encryption settings to ensure
that they are set correctly.

The following table shows the interaction between the cluster configuration options and the
database configuration options. There are three possible database encryption settings and three
possible cluster encryption settings. The cell where the row and column intersect shows the
outcome of that configuration combination.

Databa:tltzir:];rypti on Cluster Encryption Settings

Force Encryption Default On Default Off
Default to cluster encrypt encrypt do not encrypt
On encrypt encrypt encrypt
Off encrypt do not encrypt do not encrypt

The Force Encryption option in the Cluster Encryption Settings will force encryption for al of the
databases in the cluster. If the Cluster Encryption Setting is Force Encryption (or Default On), or
the Database Encryption Setting is On, then the database will be encrypted.

13.7.3 Cluster Encryption Options

You can either configure encryption for the embedded keystore (the PKCS #11 secured wallet) or
for aexterna KMIP-compliant keystore using the Admin Ul. Use the Edit Keystore
Configuration page to configure encryption at rest for a cluster. Using this page you can configure
data encryption, configuration file encryption, encryption of log files, or key synchronization.

1 To configure encryption using the embedded keystore in the Admin Ul, click Clustersin
the left navigation tree and click the name of the cluster you want to configure.

Page 224—Security Guide

MarkLogic Server

Encryption at Rest

2. Click the Keystore tab to configure the keystore for encryption at rest.

[summary W contowre W reysiore W opsvirectr T cowpie T we T

Edit Keystore Configuration

config encryption

logs encryption

kms type

[ok] [cancel]

default-off
Enable encryption for user data.

off W

off =
Enable encryption for new log files.

internal W
Type of KMS used to manage keys for newly encrypted files.

af792693-6Tb5-4cd4-b085-6bclFaaivaie

5418621-e080-4dcB-a58a-5f57af61 fa20

25cbb5591-cT40-42d8-Bbad-aS%a2d7 caedd

[ok] [cancel]

3. Use the drop-down menus to configure encryption for data, config files, and log files.

MarkLogic 9—May, 2017

Security Guide—Page 225

MarkLogic Server

Version MarkLogic 9—May, 2017 Encryption at Rest

Setting

Description

data encryption

Specifieswhether or not encryption isenabled for user data. The options are:

force — Force encryption for all datain the cluster. The database
configuration cannot overwrite this setting.

default-on — By default encryption is on. The database configuration
can overwrite this setting.

default-off — By default encryption is off. The database configuration
can overwrite this setting.

config encryption

Specifies whether or not encryption is enabled for configuration files

logs encryption

Specifies whether or not encryption is enabled for log files.

kmstype

Specifies whether the KM Sisinternal to MarkLogic or an external KMS

A keystore is a secure location where the actual encryption keys used to
encrypt data are stored. The keystore for encryption at rest is akey
management system (KMS). This keystore can be either the MarkLogic
embedded PKCS #11 secured wallet, or an external third party KMS

Beneath these options on the Edit Keystore Configuration page, there are two tabs for
specifying further optionsfor either the Internal KM S or the External KM S. Thefollowing
options are available for the Internal KM S:

Setting

Description

backup option

Theinternal KM S is automatically included in backups unless you
change the default setting of “include” to “exclude’.

internal data
encryption key id

The UUID that identifies the encryption key from the internal KM S that
isto be used to encrypt datafiles.

internal config
encryption key id

The UUID that identifies the encryption key from the internal KM S that
isto be used to encrypt config files.

internal logs
encryption key id

The UUID that identifies the encryption key from the internal KM S that
isto be used to encrypt log files.

Change password

Click this button to change the password for this KMS.

Synchronize Keys

Click this button to synchronize the envel oped keys with the KM S.

Page 226—Security Guide

MarkLogic Server Encryption at Rest

4, Click ok when you are done.

13.7.3.1 External Cluster Encryption Options

Use the Edit Keystore Configuration page to configure encryption at rest for a cluster using an
external keystore. Using this page you can configure data encryption, configuration file
encryption, encryption of log files, or key synchronization.

1 To configure encryption using an external keystore in the Admin Ul, click Clustersin the
left navigation tree and click the name of the cluster you want to configure.

2. Click the Keystore tab to configure the keystore for encryption at rest.

Summary Configure Keystore Ops Director Couple Help

Edit Keystore Configuration [ok | [concel |

data encryption default-on
Enable encryption for user data.

config encryption on v
Enable encrypticn for configuration files.

logs encryption on
Enable encryption for new log files.

kms type external
Type of KMS used to manage keys for newly encrypted files.

If you encrypt anything using a KMS, you need to retain access to that KM S to avoid losing data.
Internal KMS || External KMS }

host name [mi_KnS_1 |

The host name(s) of the external Key Management Server. If multiple, separated by comma.

port =S |
The external Key Management Server's socket port number(s), If multiple, separated by comma.

external data encryption key |af792693-61b5-4c84-b0BE-Ebc0Baa3TETe |
et The identifier of the user data encryption key at the external KMS.

external config encryption | aff92693-5fb5-4c84-b085-5bc0Baaliave |
key id The identifier of the configuration file encryption key at the external KMS.

external logs encryption key |af?92693—6fb5—4cs4-b035—6!}009553?8?& |
i The identifier of the log file encryption key at the external KMS.

Synchronize Keys

ok || cancel |

MarkLogic 9—May, 2017 Security Guide—Page 227

MarkLogic Server

3.

Version MarkLogic 9—May, 2017 Encryption at Rest

Use the drop-down menus to configure encryption for data, config files, and log files.

Setting

Description

data encryption

Specifieswhether or not encryption is enabled for user data. The options are:

force — Force encryption for all datain the cluster. The database
configuration cannot overwrite this setting.

default-on — By default encryption is on. The database configuration
can overwrite this setting.

default-off — By default encryption is off. The database configuration
can overwrite this setting.

config encryption

Specifies whether or not encryption is enabled for configuration files

logs encryption

Specifies whether or not encryption is enabled for log files.

kmstype

Specifies whether the KM Sisinternal to MarkLogic or an external KM S

A keystore is a secure location where the actual encryption keys used to
encrypt data are stored. The keystore for encryption at rest isakey
management system (KMS). This keystore can be either the MarkL ogic
embedded PKCS #11 secured wallet, or an external third party KMS

Beneath these options on the Edit Keystore Configuration page, there are two tabs for
specifying further optionsfor either the Internal KM S or the External KM S. The following
options are available for the Internal KM S:

Setting Description
hostname The hostname for the external KMS.
port The port for the external KMS
external data The UUID that identifies the encryption key from the external KM S that

encryption key id

isto be used to encrypt datafiles.

external config
encryption key id

The UUID that identifies the encryption key from the external KM S that
isto be used to encrypt config files.

external logs
encryption key id

The UUID that identifies the encryption key from the external KM S that
isto be used to encrypt log files.

Synchronize Keys

Click this button to synchronize the envel oped keys with the KMS.

Page 228—Security Guide

MarkLogic Server Encryption at Rest

4, Click ok when you are done.

Note: Adding or changing any encryption information will require arestart of all of the
hostsin the cluster.

13.7.3.2 Changing the Internal KMS Password

You can change the password for the internal KM S using the Change Internal KM S Password
screen. To change the internal KM S password do the following:

1 Click Clustersin the left navigation tree and click the name of the cluster that has the
KMS keystore with password that you want to change.

2. Click the Keystore tab to open the Edit Keystore Configuration page. Click the change

password button on the Edit Keystore Configuration page. This opens the Change I nternal
KMS Password page.

Change Internal KMS Password ok | | cancel

Current password

Encrypted Password.
Required.

New password

Encrypted Password.
Required.

Confirm new password

Encrypted Password.
Required.

ok cancel

3. Enter the current password in the first field, then enter the new password in the second
field. Confirm the new password by entering it again in the third field.

4, Click ok when you are done.

MarkLogic 9—May, 2017 Security Guide—Page 229

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest

13.7.3.3 Synchronizing the KMS Keys

Synchronize the KM S keys with the enveloped keys on MarkLogic Server to ensure that
MarkL ogic uses the most current keys for encryption.

To synchronize the KM S keys, do the following:

1 Click Clustersin the left navigation tree and click the name of the cluster that has the
KMS keystore with the keys you want to synchronize.

2. Click the Keystore tab to open the Edit Keystore Configuration page.

[summary W contgwe W reysiore W opsoirectr W cowpie W verr I

Edit Keystore Configuration ok | [cancer

data encryption default-off w
Enable encryption for user data.

config encryption off -
Enable encryption for configuration files.

logs encryption off -
Enable encryption for new log files.

kms type internal w
Tvpe of KMS used to manage keys for newly encrypted files.

Internal KMS ” External KMS

backup option include w

The internal KMS is included in backups automatically. Set this field to exclude to prevent inclusion of the
internal KMS in backups.

internal data encryption key id af792693-6fb5-4cB4-b035-6

05 6bcl9aa3veve

—&Coa-DU
A UUID identifying the encryption key at the internal KMS that should be used to encrypt data files

internal config encryption key id 5418621-e060-4dc8-a58a-9797af61 1829
A UUID identifying the encryption key at the internal KMS that should be used to encrypt configuration files

internal logs encryption key id 25cbb591-c740-42d8-2bad-ad0a2d7 caeld
A UUID identifying the encryption key at internal KMS to be used to encrypt log files

Change password Synchronize Keys

ok cancel

Page 230—Security Guide

MarkLogic Server Encryption at Rest

3.

4.

Click the Synchornize Keys button on the Edit Keystore Configuration page. This opens
the Synchronize Keys page.

Synchronize Keys

Confirm you would like to synchronize MarkLogic's keys with
your KMS.

ok cancel

Click ok to confirm that you want to synchronize the MarkL ogic Server keys with your
KMS.

13.7.4 Using an Alternative PKCS #11 Device

The MarkLogic wallet (the embedded KM S) uses SoftHSM as its default hardware security module
(HSM). Customers wishing to use another PKCS #11-compliant key storage device must follow
these steps before starting MarkL ogic with encryption for the first time.

Follow these steps:

1.

3.

4.

The PKCS #11 device must not beinitialized, and no PIN should be set. MarkLogic
encryption will initialize the device and set the PIN.

Set the environment variable markroczc_p11 priver pata (localy or in
/etc/marklogic.conf) tO point to the library that you want to use.

Start MarkL ogic for the first time. MarkLogic will initialize the device and set the PIN.

Verify that no error messages are logged during start up.

13.7.4.1 Saving the Embedded KMS to a Different Location

Follow these steps to change your KM S wallet location, or change the location of the backup for
your KMS:

1.

Export your KMS, if you want to be able to use your existing (old) encryption keys.

MarkLogic 9—May, 2017 Security Guide—Page 231

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest

2. Change the wallet location with admin: cluster-set-keystore-wallet-location. Seethe
table below for the XQuery and Javascript command options.

Use the options available in admin:cluster-set-keystore-wallet-location (XQuery) or
admin.clusterSetKeystoreWalletLocation (SJS) to Change the location of the internal

wallet.
Language Example
XQuery let $dir-name := "/sotfhsm/wallet"
let $config := admin:get-configuration/()
return
admin:cluster-set-keystore-wallet-location (
Sconfig, $dir-name)
Server-Side const admin = require ('/MarkLogic/admin') ;
JavaScript const der:?lme = /s.;otfhsm/wa}let P
const config = admin.getConfiguration() ;
admin.clusterSetKeystoreWalletLocation (config, dirName) ;

The admin:cluster-set-keystore-wallet-location (XQuery) or
admin.clusterSetKeystoreWalletLocation (SJS) function will also set the backup location
for an embedded KMS.

3. Restart the MarkL ogic server.
4. If you are changing KM S location, now you can reimport your KMS.

Note: MarkLogic does not support having the wallet location being on some shared NFS
location at thistime.

13.7.5 Configure Encryption Using XQuery

Instead of using the Admin UlI, you can configure encryption for your MarkL ogic instance using
XQuery.

Page 232—Security Guide

MarkLogic Server Encryption at Rest

In Query Console, you can USe admin:cluster-set-data-encryption (XQuery) or
admin.clusterSetDataEncryption (SJS) t0 turn on data encryption for the current database:

Language Example

XQuery xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin"
at "/MarkLogic/admin.xqy";

let $config := admin:get-configuration/()
return
admin:cluster-set-data-encryption ($config, "default-on")

Server-Side const admin = require ('/MarkLogic/admin') ;
JavaScHFn const config = admin.getConfiguration() ;

admin.clusterSetDataEncryption(config, 'default-on');

For example, to set the encryption for log files at cluster level:

)((gueyy xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin"
at "/MarkLogic/admin.xgy";

let S$config := admin:get-configuration/()
return
admin:save-configuration (
admin:cluster-set-logs-encryption (
Sconfig, "on"))

Server-Side const admin = require ('/MarkLogic/admin') ;
JavaEbrnﬁ const config = admin.getConfiguration() ;

admin.saveConfiguration (
admin.clusterSetLogsEncryption (
config, 'on'));

MarkLogic 9—May, 2017 Security Guide—Page 233

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest

To see whether encryption is turned on for log files, you can run this XQuery in the Query
Console:

Language Example

XQuery xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin"
at "/MarkLogic/admin.xqy";

let $config := admin:get-configuration/()
return
admin:cluster-get-logs-encryption ($config)
(: returns the encryption setting for log files:)

Server-Side const admin = require ('/MarkLogic/admin') ;
JavaEbrnﬁ const config = admin.getConfiguration() ;

admin.clusterGetLogsEncryption (config) ;

// Returns the encryption setting for log files

13.7.6 Configure Encryption Using REST
You can use REST Management APIs to work with encryption at rest.

GET:/manage/v2/databases/{id|name}/properties

This command gets the current properties of the Documents database, including the encryption
status and encryption key 1D in JSON format:

$ curl -GET --anyauth -u admin:admin \
-H "Accept:application/json,Content-Type:application/json" \
http://localhost:8002/manage/v2/databases/Documents/properties

Returns
{"database—name":"Documents", "forest": ["Documents"],
"security-database":"Security", "schema-database":"Schemas",
"triggers-database":"Triggers", "enabled":true,
"data-encryption":"off", "encryption-key-id":"",

The same command in XML format:

$ curl -GET --anyauth -u admin:admin \
-H "Accept:application/xml, Content-Type:application/xml" \
http://localhost:8002/manage/v2/databases/Documents/properties

Returns

<database-properties xmlns="http://marklogic.com/manage">
<database-name>Documents</database-name>
<forests>

Page 234—Security Guide

MarkLogic Server Encryption at Rest

<forest>Documents</forests>
</forests>
<security-database>Security</security-database>
<schema-database>Schemas</schema-database>
<triggers-database>Triggers</triggers-databases>
<enableds>true</enableds>
<data-encryption>on</data-encryptions>
<encryption-key-id/>

</database-properties>
GET: /manage/v2/security/properties

This command returns the current encryption status, along with other propertiesincluding
encryption key 1D, for localhost in JSON format:

$ curl -GET --anyauth -u admin:admin \
-H "Accept:application/json,Content-Type:application/json" \
http://localhost:8002/manage/v2/security/properties

Returns:

{"keystore":{"data-encryption":"default-off",
"data-encryption-key-id":"091£d9a0-£f090-4c7e-91ca-fedfe2ldbfef",

"config-encryption":"off", "config-encryption-key-id":"",
"logs-encryption":"off", "logs-encryption-key-id":"",
"host-name" : "LOCALHOST", "port":9056}}

Hereis the same version of the command, this time returning XML.:

$ curl -GET --anyauth -u admin:admin \
-H "Accept:application/xml, Content-Type:application/xml" \
http://localhost:8002/manage/v2/security/properties

Returns:

<security-properties
xsi:schemalocation="http://marklogic.com/manage/security/properties
manage-security-properties.xsd"
xmlns="http://marklogic.com/manage/security/properties"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" >
<keystore>
<data-encryption>default-off</data-encryptions>
<data-encryption-key-1d>8d0b07d8-b655-4408-affd-e49a2ecelaf3
</data-encryption-key-ids>
<config-encryption>off</config-encryptions>
<config-encryption-key-id/>
<logs-encryption>off</logs-encryption>
<logs-encryption-key-id/>
<host -name>LOCALHOST</host-name>
<port>9056</port>

MarkLogic 9—May, 2017 Security Guide—Page 235

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest

</keystore>
</security-properties>

POST: /manage/v2/security/properties

This command sets the protected path for //a with reaa permissions for manage-user:

$ curl -POST --anyauth -u admin:admin \
-d @efile.xml -H "Content-Type:application/xml" \
http://localhost:8002/manage/v2/protected-paths

Hereisthe payload (file.xm1):

<protected-path-properties
xmlns="http://marklogic.com/manage/protected-path/properties">
<path-expression>//d</path-expression>
<path-namspaces/>
<permissions>
<permission>
<role-name>manage-user</role-name>
<capability>read</capability>
</permission>
</permissions>
</protected-path-properties>

Hereis the same operation in JSON:

curl -X POST --anyauth -u admin:admin \
-d @file.json -H "Content-Type:application/json" \
http://localhost:8002/manage/v2/protected-paths

Hereisthe payload (file.json):

{

"path-expression": "//e",
"path-namespace": [],
"permission": [{

"role-name": ["manage-user"],
"capability": "read"

1]

}

PUT: /manage/v2/databases/{id|name}/properties

This command will turn on encryption for the Documents database:

$ curl -X PUT --anyauth -u admin:admin -d '{"data-encryption":"on"}' \
-H "Content-Type:application/json" \
http://localhost:8002/manage/v2/databases/Documents/properties

Page 236—Security Guide

MarkLogic Server Encryption at Rest

13.7.6.1 Export Wallet

To export the embedded KM S (the PK CS #11 secured wallet) using REST, you can use thisform
with REST and XML:

POST manage/v2/security?
operation=export-wallet&filename=/my/test..wallet&password=test

Asacurl command (using MANAGEADMIN="admin" and MANAGEPASS="admin") it would look like
this:

curl -v -X POST --anyauth --user S$MANAGEADMIN:SMANAGEPASS \
--header "Content-Type:application/xml" \

-dedata/security/export-wallet.xml \
http://shost:8002/manage/v2/security

Where export-wallet.xml is:

<export-wallet-operation xmlns="http://marklogic.com/manage/security">
<operation>export-wallet</operation>
<filename>/tmp/mywallet.txt</filename>
<passwords>mypassword</nasswords>

</export-wallet-operation>

Or you can use thisform for REST using a JSON format:

POST manage/v2/security

{"operation":"export-wallet","filename":"/my/test.wallet", "password":"
test"}

Asacurl command (using MANAGEADMIN="admin" and MANAGEPASS="admin") it would look like
this:

curl -v -X POST --anyauth --user S$MANAGEADMIN:SMANAGEPASS \
--header "Content-Type:application/json" \

-dedata/security/export-wallet.json \
http://Shost:8002/manage/v2/security

Where export-wallet.json is:
"operation":"export-wallet",

"filename":"/tmp/mywallet.tmp",
"password": "mypassword"

Note: The export wallet operation saves the wallet to a directory on the server on which
MarkLogic isrunning. Similarly, the import wallet operation imports from the
filesystem on which MarkLogic is running.

MarkLogic 9—May, 2017 Security Guide—Page 237

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest

13.7.6.2 Import Wallet

To import the embedded KM S (the PK CS #11 secured wallet) using REST, you can use thisform
with a JSON payload:

POST manage/v2/security
{"operation":"import-wallet","filename":"/my/test.wallet", "password":"
test"}

Asacurl command (using MANAGEADMIN="admin" and MANAGEPASS="admin") it would look like
this:

curl -v -X POST --anyauth --user S$MANAGEADMIN:SMANAGEPASS \
--header "Content-Type:application/json" \

-dedata/security/import-wallet.json \
http://shost:8002/manage/v2/security

Where import-wallet.json IS

"operation":"import-wallet",
"filename":"/tmp/mywallet.tmp",
"password" : "mypassword"

}
Or you can use this form with an XML payload:

POST manage/v2/security?
operation=import-wallet&filename=/my/test.wallet&password=test

Asacurl command (using MANAGEADMIN="admin" and MANAGEPASS="admin") it would look like
this:

curl -v -X POST --anyauth --user S$MANAGEADMIN:SMANAGEPASS \
--header "Content-Type:application/xml" \

-dedata/security/import-wallet.xml \
http://Shost:8002/manage/v2/security

Where import-wallet.xml is:
<import-wallet-operation xmlns="http://marklogic.com/manage/security">
<operation>import-wallet</operations>
<filename>/tmp/mywallet.txt</filename>
<password>mypassword</password>

</import-wallet-operation>

Note: MarkLogic will only import keys generated by the embedded MarkLogic KMS.

Page 238—Security Guide

MarkLogic Server Encryption at Rest

13.8 Key Management

Encryption key management for the embedded KMS (the PKCS #11 secured wallet) is handled
automatically by MarkLogic. Keys are never purged from the wallet, which is encrypted by a
MarkL ogic-generated key activated by a passphrase. The administrator’s password is used as the
initial passphrase.

Note: By default the keystore passphrase is set to the admin password. We strongly
recommend that you set a new, different passphrase before turning on encryption.
Using a separate passphrase for admin and the keystore hel ps support the strong
security principle called “ Separation of Duties”.

This passphrase can be changed usi ng either the XQuery (xdmp :keystore- set—kms—passphrase) or
Javascript (xdmp . keystoresetkmsPassphrase) built-ins. As part of key management, you may
want to export, import, or rotate encryption keys. MarkLogic provides built-in functions for
exporting and importing encryption keys, and manually rotating encryption keys. If you require
additional key management functionality, you may want to consider an external key management
system. See “Configuring an External Keystore” on page 243 for more information.

If you believe that an encryption key has been compromised, you should force amerge or start a
re-index of your datato change/update the encryption keys. See “Key Rotation” on page 239 for
more about updating encryption keys.

This section includes the following topics:

¢ Key Rotation

e Export and Import Encryption Keys

e Key Deletion and Key Revocation

13.8.1 Key Rotation

For the internal wallet, key encryption keys (KEK) can be manually rotated. Keys can be
manually rotated at regular intervals or if an encryption key has been compromised. This type of
key rotation can be triggered on individual encryption categories (configuration, data, logs) using
MarkLogic built-in functions.

MarkLogic 9—May, 2017 Security Guide—Page 239

MarkLogic Server Version MarkLogic 9—May, 2017

Encryption at Rest

These keys are rotated

i

R !

Configuration
KEK (CCKEK

I

Then these keys are re-encrypted

Per Log File
{OKEY)

el Y
Per object Encryption Per object Encryption Per object Encryption Per configuration
key (OKEY) —H key (OKEY) key (OKEY) —H file (OKEY)
Object :=[Stand files’ Object := [Forest Journals! Object:=[Large files
L
[[

ﬂ

|

These keys are generated per file by MarkLogic Server, encrypted with the keys from the KMS, and stored encrypted as headers ineach file.

There are two steps to key rotation. First, rotating the KEK keys (using AES 256 symmetric
encryption) used to envelope the object file encryption keys, and second, re-encrypting the object

file encryption keys (also using AES 256 symmetric encryption).

After calling the built-in function to rotate encryption keys, all new datawill be written to disk
using the new key encryption key. Old datawill be migrated asit isre-written to disk. If you wish
to force re-encryption using the new key, you can either force a merge or re-index the forest.

At the cluster level, you can manually rotate the data keys, configuration keys, and the logs keys

(CDKEK, CCKEK, CLKEK) using these APIs:

e XQuery: admin:cluster-rotate-config-encryption-key-id,
admin:cluster-rotate-data-encryption-key-id,
admin:cluster-rotate-logs-encryption-key-id

e JavaScript: admin.clusterRotateConfigEncryptionKeyId,

admin.clusterRotateDataEncryptionKeyId, admin.clusterRotateLogsEncryptionKeyId

Note: These key rotation functions are only available for the MarkLogic internal KMS
(the PKCS #11 secured wallet) and not for any keys that are managed by an

external KMS.

Note: When you are using an external KM S, MarkL ogic does not have access to the
envelope key, it only has access to the key 1D, and asks for the KM S to open the

envelope.

Page 240—Security Guide

MarkLogic Server Encryption at Rest

13.8.1.1 Manual Key Rotation

The intermediate fast rotation keys enable immediate envelope key rotation with a minimum of
1/O. File level keys can be rotated at any time by forcing a merge. Log rotation and configuration
file updates use new keys. Old logs, backups, and configuration files are not re-encrypted.

Theinternal KMS (the PK CS #11 secured wallet) follows these steps for fast key rotation:

1 User sends rotation key command to MarkLogic (for example,
admin:cluster-rotate-data-encryption-key-id (XQuery) or
admin.clusterRotateDataEncryptionKeyId (SJS))

2. MarkL ogic requests a new data encryption key (CDKEK, CCKEK, CLKEK - the
cluster-level encryption keys) from the internal KMS.

3. Only the fast rotation keys are re-encrypted with the new data encryption keys (CDKEK,
CCKEK, CLKEK).

An external KMS, follows these steps for fast key rotation:

1. The external KM S creates new KEK key (CDKEK, CCKEK, CLKEK - the cluster-level
encryption keys).

2. User updates the UUIDs in MarkLogic. See “Set Up an External KM S with MarkLogic
Encryption” on page 255 for UUID details.

3. MarkL ogic sends sends a Fast Rotation Key (FRKEK) to the KMS.
4, The external KM S sends new enveloped key back to MarkL ogic.
5. The enveloped key is saved to disk, per file.

Note: Expired keys can be used for decryption, but not encryption. Expired keys may be
needed for decrypting backups.

13.8.2 Export and Import Encryption Keys

The ability to export and import key encryption keys (KEK) from the PKCS #11 secured wallet
(the embedded KMS) is useful when you want to clone a cluster. Exporting a key encryption key
(KEK) isrestricted to cluster-level keys (CDKEK, CCKEK, CLKEK) and requires a passphrase
and afilepath. The datawill be exported (encrypted with the passphrase) into afile at the location
specified by the filepath.

MarkLogic 9—May, 2017 Security Guide—Page 241

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest

To export a keystore from the embedded KMS:

Language Example

XQuery xquery version "1.0-ml";

import module namespace admin =

"http://marklogic.com/xdmp/admin"
at "/MarkLogic/admin.xqy";

xdmp: keystore-export ("Unique passphrase",
" /backups/MarkLogic.wallet .bak")

=>

true

Server-Side | const admin = require('/MarkLogic/admin') ;

JavaScript
xdmp . keystoreExport (

'Unique passphrase', '/backups/MarkLogic.wallet.bak');

// Returns true

To import a keystore into the embedded KMS:

Language Example

XQuery xquery version "1.0-ml";

import module namespace admin =

"http://marklogic.com/xdmp/admin"
at "/MarkLogic/admin.xqy";

xdmp:keystore-import ("Unique passphrase",
" /backups/MarkLogic.wallet .bak")
=> true

Server-Side | const admin = require('/MarkLogic/admin') ;

JavaScript
xdmp . keystoreImport (

'Unique passphrase', '/backups/MarkLogic.wallet.bak');

// Returns true

Key encryption keys can only be imported from MarkL ogic exported files. Imported keys can
only be used for decryption. The import requires the passphrase that was provided at the time of
the export.

Note: If aduplicate key ID is supplied during the import, the imported key ID will be
ignored. Duplicate key 1Ds can be caused by importing the keystore twice.

Page 242—Security Guide

MarkLogic Server Encryption at Rest

13.8.3 Key Deletion and Key Revocation
For these functions you will need to use a external keystore (KMS).

13.9 Configuring an External Keystore

An external key management system (KMS) or keystore offers additional security for your
encryption keys, along with key management capabilities like automatic key rotation, key
revocation, and key deletion. If you want the ability to perform these tasks, you will need an
external KM S. MarkL ogic Encryption at Rest supports KMIP 1.2 compliant KM S servers and
Amazon's KMS.

Note: The use of an external Key Management System (KMS) or keystore with
encryption at rest, requires an Advanced Security License, in addition to the
regular MarkL ogic license.

When using an external KM S, usually there is a security administrator role separate from the
MarkL ogic administrator. The security administrator would be the role setting up and configuring
the external keystore. The MarkL ogic administrator can also perform this task, but for greater
security it is recommended that the separate security administrator configure the KMS.

Note: Having a separate security administrator follows an important security principle
called “ Separation of Duties’ and is recommended by security experts.

This section covers setting up MarkLogic encryption for use with an external key management
system from the MarkL ogic Admin Ul on the MarkL ogic host. You don’t need to have

MarkL ogic encryption turned on for your cluster while you are setting up and configuring the
external key management system.

Note: If you plan to use an externa key management system, we recommend that you
configure the external keystore first, and then turn on encryption in the MarkL ogic
server.

The installation process for the external keystore will vary depending on the type of external
KMSyou plan to use. A security administrator must configure the external keystore using the
administration set up tools that come with the external KM S. This section provides a high-level
overview of the process from the MarkLogic Server point of view.

e Types of KMS Deployments

* Using MarklLogic Encryption with AWS Key Management System

¢ Using MarkLoqgic Encryption with Microsoft Azure Key Vault

e Set Up an External KMS with MarkLogic Encryption

e Configure the External KMS

e Set up MarklLogic Encryption

MarkLogic 9—May, 2017 Security Guide—Page 243

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest

¢ Transitioning from PKCS #11 Secured Wallet to an External KMS

* Transitioning From an External KMS to PKCS #11 Secured Wallet

e Multiple External KMSs for High Availability and Failover

13.9.1 Types of KMS Deployments
There are avariety of key management systems.

1. A virtual KM Sinstance running inaVM (virtual machine) environment, or in aprivate or
public cloud

2. A physical appliance running aKMS server
3. A dedicated FIPS 140-2 Level 3 appliance
4, A dedicated hardened FIPS 140-2 Level 4 appliance

These systems are listed by increasing levels of security.

13.9.2 Using MarkLogic Encryption with AWS Key Management System

Amazon Web Services (AWS) provides a key management system (KM S) that you can use with
MarkLogic encryption at rest to encrypt your data. The AWS KM S is supported for customers
running their cluster on AWS. You must set up your AWS KMS encryption keys and configure
the encryption key IDsin your MarkLogic server before using the AWS KMS.

To set up the AWS key management system, first set up your AWS instance. See Getting Started
with MarkLogic Server on AWS and Overview of MarkLogic Server on AWS in the MarkLogic Server on
Amazon Web Services (AWS) Guide for details.

The AWS KMS keys must be configured in MarkL ogic before using encryption.

You cannot use the master key and roles from the MarkLogic KM S to access the AWS KMS, so
you will need to have a Key Administrator specify access to the AWS KMS keys on a per-key
basistied to the user’'s 1AM role. The Key Administrator can specify access using the Encryption
Keys section of the JAM AWS management console. See the next section (AWS KMS on EC2) for
details and the AWS documentation regarding key policies for more information.

Warning If an encryption key stored in the AWS KM S is disabled for any reason, it cannot
be used for encryption or decryption, and MarkLogic |oses access to any data
encrypted with the disabled key. Deleting akey will lead to permanent dataloss as
deleted keys can never be recovered. Any keys created in the AWS KMS are
cluster management keys and should never be deleted. See
https://docs.aws.amazon.com/kms/latest/developerguide/enabling-keys.html for more
information.

Page 244—Security Guide

https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html#key-policy-default-allow-users
https://docs.aws.amazon.com/kms/latest/developerguide/enabling-keys.html

MarkLogic Server

13.9.2.1 AWS KMS on EC2

Encryption at Rest

If your cluster isrunning on AWS, the IAM role associated with the EC2 instance running
MarkLogic is used to access the AWS KMS on behalf of MarkLogic. The hostname and port
number will be automatically entered in the correct fields in the Keystore tab of the Admin UlI.

The key policy istied to the the user’s IAM role. To set up your IAM role and privileges, see
Creating an IAM Role in the MarkLogic Server on Amazon Web Services (AWS) Guide.

Once you have set up your MarkLogic Server (and IAM roles if necessary), follow these steps:

1. In AWS, navigate to the AWS IAM Management Console.

2. Click Encryption keys at the bottom of the |eft navigation bar.

« Welcome to Identity and Access Management

IAM users sign-in link:

https./imarklogic.signin.aws.amazon.com/console ()

Groups

Users IAM Resources

Roles Users: 89 Roles: 99

Palicies Groups: 17 Identity Providers: 3

) A Customer Managed Policies: 31
|dentity providers =

Account settings Security Status

Credential report

Customize

o - out of 5 complete.

Activate MFA on your root account v
Create individual 1AM users v
Use groups to assign permissions v
Apply an IAM password policy v
Rotate your access keys b
3. In the next screen, pick aregion (in the same region as your MarkL ogic instance).

4, Create the key following the steps indicated. In the next step, be sure to give each key you

create a descriptive name so that you can tell them apart.

MarkLogic 9—May, 2017

Security Guide—Page 245

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest

5. In the last step of this process you can preview the key policy you just created. Be sureto
authorize your MarkL ogic instance to use the key.

Preview Key Policy

This is a preview of your key policy
Step 1: Create Alias and

Description ¢ R

Step 2 Add Tags "Id": "key-consolepolicy-3",
"Version": “2012-18-17",
"Statement”: [
{
Step 4 : Define Key Usage "Sid": "Enable IAM User Permissions",
Permissions "Effect”: "Allow",

Step 3 Define Key
Administrative Permissions

m

Step 5 Preview Key Policy

"arn:aws:iam: 1027394069461 : root"

1

Is
"Action": "kms:*",

"Resource™: "*"
Cancel | Previous m
6. Click Previous to go back and make any changes, if necessary. Click Finish when you are

done checking the Key policy you just created.

7. From the AWS IAM Management Console, click Encryption keysin the left navigation
bar again and open the list of encryption keys. Be sure to select the same region from the
drop down that you chose when creating the key to see the correct list.

8. Find the key that you just created. Select and copy the key ID from the list. Repeat the
process for the other keys.

Note: To separate the encryption keys for data, configuration, and log files, we
recommend that you create three separate encryption keys. Give each type of key a
descriptive name (for example ML_data key) for the type of content it will be
used to encrypt.

Page 246—Security Guide

MarkLogic Server Encryption at Rest

0. Open the MarkLogic Admin Ul and click on the Keystore tab. Paste the key 1D you copied
from AWS into the encryption key id fields in the Edit Keystore Configuration page.

I T cortore T torsoe T omsovecr ¥ cowe T e I

ok cancel

Edit Keystore Configuration

data encryption default-on
Enable encryption for user data.

config encryption on ¥
Enable encryption for configuration files.

logs encryption on ¥
Enable encryption for new log files.

kms type external ¥
Type of KMS used to manage keys for newly encrypted files.

If you encrypt anything using a KMS, you need to retain access to that KM S to avoid losing data.

Internal KMS || External KMS

host name kms-us-west2. amazonaws.com
The host name(s) of the external Key Management Server. If multiple, separated by comma.

port 443
The external Key Management Server's socket port number(s), If multiple, separated by comma.

external data encryption key id a57a06db-07b5-48a4-2d0b7741d53cal2
The identifier of the user data encryption key at the external KMS.

external config encryption key id a57a06db-07b5-48a4-2d0b7741d53cal2
The identifier of the configuration file encryption key at the external KMS.

external logs encryption key id a57a06db-07b5-48a4-2d0b7741d53cal2
The identifier of the log file encryption key at the external KMS.

Synchronize Keys

ok cancel

10. Enter the following information to identify the external KM S and the required encryption
keys. Add the appropriate encryption key 1D to each field.

Note: We recommend that you create three separate encryption key 1Ds (one for data,
one for configuration, and one for logs). Give each a descriptive name in order to

help distinguish between them.

Setting Description

host name The host name of the external Key Management Server (KMS).

MarkLogic 9—May, 2017 Security Guide—Page 247

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest

Setting Description
port The external KM S client socket port number.
external data encryption | The UUID that identifies the encryption key from the external
key id KMS that isto be used to encrypt datafiles.
externa config The UUID that identifies the encryption key from the externa
encryption key id KMS that isto be used to encrypt config files.

external logs encryption | The UUID that identifies the encryption key from the external
key id KM S that isto be used to encrypt log files.

For more about |AM roles and privileges, see Creating an IAM Role in the MarkLogic Server on
Amazon Web Services (AWS) Guide. To learn more about using MarkL ogic with Amazon Web
Services, see the MarkLogic Server on Amazon Web Services (AWS) Guide.

Enhanced AWS S3 Encryption Support

Starting with MarkL ogic 9.0-8, Amazon AWS S3 support with encryption is built into the
MarkLogic server as an available file system or a storage location for backup/restore. When
MarkLogic server writes or updates objects on AWS S3, it can use the AWS KMS server side
encryption to protect data. You can choose the encryption method by GUI or API.

To use the AWS KM S key to encrypt datathat will be stored on AWS S3, specify which key to be
used to encrypt. You can do this using the Admin Ul or by using the
admin:group-set-s3-server-side-encryption-kms-key API. To find the S3 encryption key (if it
has al ready been Set) use the admin: group-set-s3-server-side-encryption-kms-key API.

To set the AWS KM S in the MarkLogic Admin Ul, navigate to Groups Configuration page. Scroll
down to the S3 protocol configuration field. Select nttps asthe s3 protocol and aws : kms asthe s3
server side encryption. Paste the s3 server side encryption kms key into the field.

s3 protocol https v
The simple storage service network protocol.

s3 server side encryption aws:kms ¥ |
none 'er side encryption for data at rest on the simple storage service.
aes256

s3 server side encryption kms key 2bb62e87-711e-4fe5-9a52-00190c4bfd24

Specifies the AWS KMS key ID for server-side encryption.

Configure the external KM S keys as shown in the previous section.

Page 248—Security Guide

MarkLogic Server Encryption at Rest

Encryption on EBS Volumes

Elastic Block Storage Volume is a durable, block-level storage device that you can attach to a
single EC2 instance. Encryption on EBS offers a simple encryption solution for your EBS
volumes without the need to build, maintain, and secure your own key management
infrastructure. AWS EBS volumes support encryption with a custom key.

Starting in MarkLogic 9.0-8, this capability is supported by MarkLogic for AWS. Users can turn
on encryption on EBS volumes on their cluster and also optionally specify a custom key for
volumes. This can be done using MarkL ogic CloudFormation templates and Managed Cluster
Feature. See The Managed Cluster Feature and Deploying MarkLogic on EC2 Using CloudFormation in
the MarkLogic Server on Amazon Web Services (AWS) Guide.

If acluster is created by the MarkL ogic CloudFormation template, a same encryption key will be
used to encrypt all EBS volumes in the cluster. If encryption option is specified, all volumes
attached to an instance will apply the same setting. EBS Encryption is only supported by some
EC2 instance types, mostly the new generation. The key that is used to encrypt the volume must
be in the same region.

Note: KMS keys are never transmitted outside of the AWS regions in which they were
created.

13.9.3 Using MarkLogic Encryption with Microsoft Azure Key Vault

Microsoft Azure Key Vault can encrypt your datain MarkLogic. Azure Key Vault is supported
for customers running their cluster on Microsoft Azure. You must set up your Azure Key Vaullt,
create the encryption keysin Key Vault, and configure the encryption key IDsin your MarkL ogic
server before using the keys to encrypt datain MarkL ogic.

To set up the Microsoft Azure Key Vault, first set up your Azure instance. See Getting Started with
MarkLogic Server on Azure and Overview of MarkLogic Server on Azure for details. Keys are governed
by access policies created by the Key Administrator. See the next section (Microsoft Azure Key
Vault) for details and the Azure documentation regarding key policies for more information.

Warning If an encryption key stored in the Azure Key Vault is disabled, it cannot be used
for encryption or decryption, and MarkL ogic loses access to any data encrypted
with the disabled key. Deleting akey will lead to permanent data | oss as deleted
keys can never be recovered.

13.9.3.1 Microsoft Azure Key Vault

To set up Microsoft Azure Key Vault, you will create avirtual machine (VM) on Azure. Then
create aKey Vault, set up your access policy, and create your encryption keysin the Key Vaullt.

Create a Virtual Machine in Azure

On the Azure Home page, click virtual machines and click Add to create anew VM. Enter
information into the fields for the basic setup.

MarkLogic 9—May, 2017 Security Guide—Page 249

MarkLogic Server

Version MarkLogic 9—May, 2017

Home * Virtuzl machines * Create a virtual machine
Create a virtual machine

Basics Disks MNetworking Management Advanced Tags Review + create

Create & virtusl machine that runs Linux or Windows. Select an image from Azure marketplace or use your own customized
image.

Complete the Basics tab then Review + creste to provision a virtual machine with default parameters or review each tab for
full customization.

Locking for classic VMs? Create VM from Azure Marketplace

Project details

Select the subscription to manage deployed resources and costs. Use resource groups like folders to organize and manage
&ll your resources.

* Subscription @ | Pay-Az-You-Go w |

| (Mew) mi_azure ~ |

Create new

Instance details

* Virtual machine name @ | mizzure "l
* Region @ [wswestus2 ~|
Availzbilty options g | No infrastructure redundancy required ~ |
*Image @ | Red Hat Enterprise Linux 7.6 ol |

Browse zll public and private images

Size g Standard D2 v3
2 vepus, B GIB memaory
Change size

Administrator account

Authentication type @ (®) password () SSH pubiic key

* Username @ | Joneck: ./l
* Password @ | ween ./l
[eeseemenenes 7]

Inbound port rules

Select which virtuzl machine network ports are accessible frem the public internet. You can specify more imited or granular
network access on the Metworking tab.

* Public inbeund ports @ () None ®) Aliow selected ports

* Select inbound ports HTTP, HTTPS, S5H hal

+ Select or create a Resource group.

* Provide aname for the new virtual machine.

» Select aregion to host the virtual machine (West US 2).

» Select an image type (Redhat).

Encryption at Rest

* Choose the Authentication type: password with username/password or SSH public key.

Page 250—Security Guide

MarkLogic Server

Home > Virtual machines > Create a virtual machine

Create a virtual machine

Basics Disks MNetworking Management Advanced Tags Review + create

Define network connectivity for your virtual machine by configuring netwaork interface card [NIC) settings. You can

control ports, inbound and outbound connectivity with security group rules, or place behind an existing load

balancing solution. Learn maore

Network interface

‘When creating a virtual machine, a netwaork interface will be created for you.

* Virtual network @ | ml_azure-vnet

* Subnet @ [defeut 01100/24)

PublicIP @ | {new) mizazurel-ip

MIC netwaork security group @

* Public inbound ports @

v]
Create new

v]
Manage subnet configuration

v]
Create new

e

* Select inbound ports HTTPR. HTTPS, 55H

A\ These ports will be exposed to the internet. Use the Advanced controls to fimit
inbound traffic to known IP addresses. You can also update inbound traffic rules

later.

Accelerated networking @ i

The selected VM size does not support accelerated networking.

Load balancing

You can place this virtual machine in the backend poaol of an existing Azure load balancing solution. Learn mare

Place this virtual machine behind an
existing load balancing solution?

Under the Networking tab:

e Select basic in the NIC network security group.

» Select inbound ports (80, 443, 22).

MarkLogic 9—May, 2017

Encryption at Rest

Security Guide—Page 251

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest

Home * Virtual machines * Create a virtual machine

Create a virtual machine

Basics Disks Metworking Management Advanced Tags Review + create
Configure monitoring and management cptions for your VM.

Azure Security Center

Azure Security Center provides unified security management and advanced threat protection across hybrid cloud workloads.
Learn maore

9 vour subscription i protected by Azure Security Center basic plan.

Manitoring

e ~
e new
Identity
Systern zszigned managed identity @ L:.‘ on [or
Azure Active Directory
Legin with AAD credentials {Preview) @ on ® of
This preview capability is not for production use. When you sign in, verify the name of the app on the sign-in screen is “Azure Linux
WM sign in” and the IP address of the target VM iz comect.
Auto-shutdown
wn 0 O on ® or
Backup
Enabie backup @ O on @ ox

Under the Management tab, set Identity to On.

On the Review tab, enter your prefered email address and phone number. Review your
information and click Create. This process may take a bit of time. Once the virtual machine has
been created, you can configure the Key Vault.

Configure Azure Key Vault

To create an Azure Key Vault, navigate to Key Vaults under Home (use Search to find Key
Vaults).

Page 252—Security Guide

MarkLogic Server Encryption at Rest

Home > Keyvaults > Create key vault

Create key vault

Basics Access policy Virtual netweork Tags Review + create

Azure Key Vault is a cloud service used to manage keys, secrets, and certificates, Key Vault eliminates the need for
developers to store security information in their code, It allows you to centralize the storage of your application
secrets which greatly reduces the chances that secrets may be leaked, Key Vault also allows you to securely store
secrets and keys backed by Hardware Security Modules or HSMs, The HSMs used are Federal Information Processing
Standards (FIPS) 140-2 Level 2 validated. In addition, key vault provides logs of all access and usage attempts of your
secrets so you have a complete audit trail for compliance, Learn maore

Project details

Select the subscription to manage deployed resources and costs, Use resource groups like folders to organize and
manage all your resources,

* Subscription Pay-As-You-Go Ed
* Resource group ml_azure hd
Create new

Instance details

* Key vault name @ | mi-azure \/|
* Region | UK Wes] v |
* Pricing tier @ Standard e

Create a new Key Vault with name/resource group/location and a new access policy with keys
permissions (decrypt and encrypt) and principle (your newly created VM).

Under Settings navigate to Keys, and generate new keys for data/config/logs encryption. Use
these keys IDs to configure MarkL ogic encryption.

Install MarkLogic
Install MarkL ogic on the Azure virtual machine. See Set up a Simple Deployment in the MarkLogic

Server on Microsoft® Azure® Guide for details. Once MarkLogic isinstalled on Azure, start
MarkL ogic and navigate to the Admin Ul (port 8001).

Note: Y ou may need to stop the firewall from the command line (sudo service
firewalld stop).

MarkLogic 9—May, 2017 Security Guide—Page 253

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest

Add Encryption Configuration Settings to Markl ogic
In the MarkLogic Admin Ul, click on Clustersin the left navigation bar, and then click the
Keystore tab. Select external as the kms type. Click the External KM S tab.

Summary Configura Keystors Ops Dirsctor Coupla Halp

Edit Keystore Configuration ok | [cancel

data encryption defaulton W
Enable encryption for user data.

config encryption on -
Enable encryption for configuration files.

logs encryption off w
Enable encryption for new log files.

kms type external w
Type of KMS used to manage keys for newhy encrypted files.

If you encrypt anything using a KM5, you need to retain access to that KMS to avoid losing data.

Internal KM5 | [External KMS

host name mizzure. vault azure. net
The host name(s) of the external Key Management Server. |f multiple, separated by comma.

port 443
The external ey Management Server's socket port number(s), If multiple, separated by comma.

external data encryption key id afT92653 61b5-4cB4-b085-BbclBaalTETe
The identifier of the user dats encryption key at the external KMS.

external config encryption key id 3gT32693-51b5-4084-085-B0c082a3TETe
The identifier of the configuration file encryption key at the external KMS.

external logs encryption key id 3dT52853-6b5-4c84- b0BS-BbcdBasITETe
The identifier of the log file encryption key at the external KMS.

Synchronize Keys

ok cancel

Enter the following information to identify the Azure Key Vault and the required encryption key
identifiers. Add the appropriate encryption key ID to each field.

* Set hostname using DNS Name from the Azure Key Vault (without the beginning
“https://” and the ending “/”, and ending with “vault.azure.net”).
o Set port 443

» Copy the encryption key IDsfor the Azure Key Vault into the external data encryption
key field, the external config encryption key field, and the external logs encryption key
field.

Click OK to configure encryption.

Page 254—Security Guide

MarkLogic Server Encryption at Rest

Note: We recommend that you create three separate encryption key 1Ds (one for data,
one for configuration, and one for logs). Give each a descriptive name in order to
help distinguish between them.

Setting Description
host name The host name of the external Key Vaullt.
port The external Key Vault client socket port number.
external dataencryption | Theidentifier of the encryption key from the external KM S that
key id isto be used to encrypt datafiles.
external config The identifier of the encryption key from the external KM S that
encryption key id isto be used to encrypt config files.

external logs encryption | Theidentifier ofthe encryption key from the external KMSthat is
key id to be used to encrypt log files.

For more about roles and privileges, see the MarkLogic Server on Microsoft® Azure® Guide.

13.9.4 Set Up an External KMS with MarkLogic Encryption

To configure the external key management system using the MarkLogic Admin Ul on the
MarkLogic host, you will need the following information for your external KMS:

Host name - the hostname of the key management system

Port number - the port number used to communicate with KM S
Dataencryption key ID (UUID generated by external KMS)
Configuration encryption key ID (UUID generated by external KM S)
Logs encryption key ID (UUID generated by external KMS)

The TL S certificates, used to secure the communication with the KMS, must be stored locally on
each host in the MarkL ogic data directory (/var/opt/MarkLogic). By default, the files are
expected to be located in the MarkL ogic data directory and must have the following names:

kmip-Ca.pem - The root/certificate of the CA that signed the certificate request for
MarkLogic.

kmip-cert.pem - The certificate that was issued to MarkL ogic and one that was signed by
the CA.

kmip-key.pem - The private key that was generated for MarkLogic and is associated with
the Certificate issued to MarkLogic (kmip-cert). (Optiona for some KMS servers.)

MarkLogic 9—May, 2017 Security Guide—Page 255

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest

These certificates are the Certificate Authority (CA) for the root of the certificate chain for the
kmip-cert.pem. A certificate could be a self-signed root used by an enterprise or an external CA.
Copy thesefilesinto the MarkL ogic data directory (/var/opt/MarkLogic). The location and name

of these files can be changed by calling the admin functions. See “Admin APIsfor Encryption at
Rest” on page 270 for details.

Note: These settings are cluster wide, so each individual host must have alocal copy at
the location specified.

Page 256—Security Guide

MarkLogic Server Encryption at Rest

13.9.5 Configure the External KMS

In most cases, an external KM S is configured by security administrator, a separate role from the
MarkL ogic admin role. However, in some cases the security administrator may also be the
MarkLogic admin role.

If you don’t already have the external KM S configured and running, set up the external KMS
using the appliance’s interface before turning on MarkLogic encryption. The steps in the process
for setting up the external KM S will depend on the type of KMIP-compliant external KMS you
are using.

Make sure that:

» Theexternal key management system is set up, running, and provisioned first to use
KMIP 1.2, before you configure MarkL ogic encryption.

Note: Only KMIPv1.2 is supported. Using KMIP v1.1 will result in an error stating that
the server cannot validate the KMS KMIP protocol.

* To secure communications between the KMS and MarkL ogic Server obtain the required
certificates;, KMIP TLS certificate, CA of the KMS, private key for the client (optional for
some KMS servers).

The security administrator can enable encryption for user data, configuration files, and/or logs,
either per cluster or per database. You must use the administration tools that come with the
external KM Sto set up the external keystore.

Note: The external key management system (KMS) must be available during the
MarkLogic startup process. Access to the external KM S must be granted to all
nodes in the cluster.

13.9.6 Set up MarkLogic Encryption

Before you set up encryption at rest, be sure that your cluster has upgraded to MarkL ogic 9. If the
cluster has not been upgraded, the encryption feature will not be available.

1. Set up your external KMS, if not already set up. See “ Set Up an External KM S with
MarkLogic Encryption” on page 255 for details.

2. Get the generated encryption key 1Dsfrom the external KM S (for data, config, and logs as
needed). If you are using data encryption, configuration file encryption, and log
encryption, and you want different encryption keys for each, you will need three
encryption key 1Ds (UUIDs).

3. Click Clustersin the left navigation tree, then click the name of the cluster to configure.

4, Click the Keystore tab, then click the external radio button next to Key Management
System (KMS). Additional fields for setting up the externa KM S are displayed.

MarkLogic 9—May, 2017 Security Guide—Page 257

MarkLogic Server Version MarkLogic 9—May, 2017

5. Provide the host name and port number for your external KM S in the appropriate fields.

Summary Configure Keystore Ops Director Couple Help

Edit Keystore Configuration

data encryption

config encryption

logs encryption

kms type

ok | | cancel |

Enable encryption for user data.

on
Enable encryption for configuration files.

!

!

on
Enable encryption for new log files.

external
Type of KMS used to manage keys for newly encrypted files.

If you encrypt anything using a KMS5, you need to retain access to that KMS to avoid losing data.

Internal KM S External KMS]

host name

port

external data encryption key
id

external config encryption
key id

external logs encryption key
id

Synchronize Keys

[ml_KMS_1
The host name(s) of the external Key Management Server. If multiple, separated by comma.

|s0s8
The external Key Management Server's socket port number(s), If multiple, separated by comma.

|af792693-6b5-4c84-b085-6bc09aalTaTe |
The identifier of the user data encryption key at the external KMS.

|af792693-6b5-4c84-b0B5-6bc09aa3TETe |
The identifier of the configuration file encryption key at the external KMS.

|af792693-6b5-4cB4-b0BS-6bC09aa3TaTe |
The identifier of the log file encryption key at the external KMS.

ok || cancel |

6. Add the encryption key 1Ds (generated by the external KMS) for the types of encryption
you are configuring (data, configuration, and/or logs), to the appropriate fields on the Edit

Keystore Configuration page in the Admin Ul.

7. Click ok.
Note: Adding the encryption information will require arestart of all of the hostsin your
cluster.
8. Turn on the types of encryption you wish from Admin Ul (data encryption, configuration

file encryption, and/or log file encryption).

Page 258—Security Guide

Encryption at Rest

MarkLogic Server Encryption at Rest

When using an external KM S, key encryption keys (KEK) might be rotated according to the
policy set inthe KMS. Each time that the keys are rotated in an external KM'S, you will haveto
update the new KEK 1Ds (UUIDs- i.e. key encryption keys - KEKS) to MarkLogic. Datawill then
start to be encrypted with new KEK ID, as described in “Key Rotation” on page 239.

Encryption at rest may be configured using REST, XQuery, or JavaScript APIs. See “APIsfor
Encryption at Rest” on page 269 for details.

13.9.7 Transitioning from PKCS #11 Secured Wallet to an External KMS

Transitioning from the internal PK CS #11 secured wallet to an external KM S will re-encrypt of
all configuration filesand forest labels. Re-encryption will happen the next time afileiswritten to
disk. If ayou want to force re-encryption of all data, start are-index of the database.

Customer-provided cluster KEK IDswill be validated against the KM S for
encryption/decryption. If any KEK ID validation fails or MarkL ogic cannot connect to the KMS,
there will be no changes to the configuration files.

Even after you have migrated to an external KM S, the PKCS #11 secured wallet will retain and
manage any encryption keys that were generated before the migration to the external keystore.

To migrate from the PKCS #11 secured wallet to an externa keystore (KM S) do the following:

1 Important: Before you start the transition to an external KM'S, backup the wallet that
contains all of the internal keys.

2. Confirm that the external KM Sis running and available. See “ Set Up an External KMS
with MarkLogic Encryption” on page 255 .

3. Enable the desired encryption options from the MarkL ogic Admin Ul. MarkLogic
encryption will now use the encryption keys supplied by the external KM S.

13.9.8 Transitioning From an External KMS to PKCS #11 Secured Wallet

If you are using MarkLogic 9.0-6 or later, and for some reason you want to stop encrypting your
data with your external KM'S, you can switch encryption to use the internal PKCS #11 wallet by
setting the KM S type configuration back to the internal KMS.

The following procedure is recommended for a user to perform in order to switch from external
KMSto interna KMS and stop access to the external KM S:

1 Stop any updates to the target databases.

MarkLogic 9—May, 2017 Security Guide—Page 259

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest

2. Switch the KM S type from external to internal using the Admin Ul or APIs.

To switch encryption from the external KM S to the internal PK CS #11 secured wallet
(KMS) inthe Admin Ul, set the kms-typeto internal on the Edit Keystore Configuration

page.

Or you can Use admin: cluster-set-keystore-kms-type (XQuery) or
admin.clusterSetKeystoreKmsType (SJS) to change the KMSfor encrypti on.

3. Perform afull backup, using a passphrase, of al the affected databases.
4, Perform afull restore of al the affected databases using the above-specified passphrase.

After these steps, it should be safe for the system to lose access to the originally configured
external KMS.

Warning Moving from an external KM S to the internal KM S will downgrade your overall
security, asthe external KM S is more secure than the internal PKCS #11 secured
wallet.

13.9.9 Multiple External KMSs for High Availability and Failover

MarkLogic encryption at rest enables you to specify multiple hosts, multiple ports, and multiple
KMIP credentias to connect to more than one KMIP server. The information to connect to these
serversis specified in the fields on the external Key Management Service (KMS) section of the
Edit Keystore Configuration page.

The information must be validated at configuration time. For each host specified, there must exist
a PEM-encoded Cerficate Authority file and a PEM-encoded KMIP certificate file accessible to
each node of the MarkLogic server. The PEM files are checked using the user-specified path or
default location for the first host. For subsequent hosts, the file names are expected to be
accessible through the original file name prepended by the host’s index in the configuration
sequence.

Page 260—Security Guide

MarkLogic Server Encryption at Rest

Internal KMS External KMS

host name kms1.marklogic.com, kms2.marklogic.com
The host name(s) of the external Key Management Server. If multiple, separated by comma.

port 8010
The external Key Management Server's socket port number(g), If multiple, separated by comma.

external data encryption key id 8003785c-3fb6-48d2-bb7a-17858c31a65f
A UUID identifying the encryption key at the external KMS that should be used to encrypt data files

external config encryption key id 96d7c56b-ebBo-4eBa-b311-ab10aa82b586
A UUID identifying the encryption key at the external KMS that should be used to encrypt configuration files

external logs encryption key id 084ddf54-a463-40eb-97ad-e5d3a o757
A UUID identifying the encryption key at external KMS that should be used to encrypt log files

ok cancel

For example, if the configured host names are “kmsl.marklogic.com” and
“kms2.marklogic.com”. The configured port is 9010. The specified CA fileisat
“path/kmip-CA.pem”. The specified certificate fileis at “/path/kmip-cert.pem”. The
configuration must be validated through the following:

» File /path/kmip-CA.pem, /path/1-CA.pem, /path/kmip-cert.pem, and /path/1l-cert.pem al
exist.

» The user-specified encryption keys can be validated through connecting to
kms1.marklogic.com & poOrt sozo.

* The user-specified encryption keys can be validated through connecting to
kms2.marklogic.com & pOrt sozo.

If the first specified KMIP host stops responding, MarkLogic will try to connect to each of the
other hosts on the user-specified list in turn until it successfully connects.

If MarkLogic is unable to connect with avalid KMIP server after multiple attempts, it will report
exception.

13.10 Administration and Maintenance
This section covers additional tasks you may want to perform once you have configured
encryption.

e Backup and Restore

* Tool to View Encrypted Log Files Outside of the Server

MarkLogic 9—May, 2017 Security Guide—Page 261

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest

e Disaster Recovery/Shared Disk Failover

13.10.1 Backup and Restore

Individual backup files are encrypted with the cluster data encryption key (CDKEK). Backups are
forest driven, so data from an encrypted forest will also be encrypted in backups. Configuration
filesincluded in a backup will be encrypted if the cluster is enabled for configuration file
encryption. This encryption works with full backups, incremental backups, and journal archiving.

Note: If any forest in the backup has encryption enabled, then the entire backup will be
encrypted.

The encryption keysresiding in the PK CS #11 secured wallet (the embedded KMS) will be
exported as part of afull backup by default. Thisistrue whether encryption is configured to use
theinterna KM S or an external KMS. Full backups will include this exported copy of the
keystore, encrypted using the embedded KM S passphrase, unless you specify otherwise. See.

Warning If you cannot access your PKCS #11 secured wallet (or external KMSif you are
using one), or lose your encryption keys, you will not be able to decrypt any of
your encrypted data (including backups). There is no workaround to recover the
encrypted data. We recommend that you backup your encryption keys in a secure
location.

The built-in function admin:cluster-set-keystore-passphrase (XQuery) or
admin.clusterSetKeystorePassphrase (SJS) can be used to Change the KMS passphrase When
you first set up encryption, we strongly recommend that you change the KM S passphrase to
something other than the admin passphrase. Thisis to ensure that you utilize the Separation of
Duties security principle as much as possible.

Note: By default the keystore passphrase is automatically set to the admin password. We
strongly recommend that you set a new, different passphrase before turning on
encryption.

During an internal keystore backup/restore, datais added to the embedded PKCS #11 secured
wallet; no keys are deleted. The encrypted file containing the keysis named ks . exp. The
exported keystore is not imported during a restore from a backup. If you need to restore the keys,
use the xdmp : keystore-import (XQuery) OI xdmp . keystoreImport (SJS) function. The keystore
passphrase will be required to decrypt the exported keystore file when restoring backups on
another MarkL ogic instance.

Note: To change the keystore passphrase, the current password or passphrase is required.
To restore an encrypted backup to the same cluster:

1 Import the backup as usual. See Backing Up and Restoring a Database in the Administrator’s
Guidefor details.

Page 262—Security Guide

MarkLogic Server Encryption at Rest

To restore an encrypted backup to a different cluster:

1. Usethe xdmp : keystore-import (XQuery) OI xdmp . keystoreImport (SJS) function to
import the keystore. The function requires the keystore passphrase to decrypt the keystore.

e XQuery: xdmp:keystore-import (
"strong passphrase", "/backups/MarkLogic.wallet.bak")

e JavaScript: xdmp.keystoreImport (
'strong passphrase', '/backups/MarkLogic.wallet.bak');

The import process will reject duplicate keys and log awarning that includesthe ID of the
rejected keys. Imported keys can only be used for decryption.

2. Import the backup as usual. See Backing Up and Restoring a Database in the Administrator’s
Guidefor details.

Note: Aslong asthe current database being restored is encrypted, the restored database
will also be encrypted.

Using this process you can move your encrypted backups from one system to another and restore
them, as long as you have the passphrase and import the keystore into the new system before
restoring the backup. See Backup and Restore Overview in the Administrator’s Guide for more
information about backup and restore procedures.

Warning If you lose the cluster configuration information, you must first manually restore
the keystore before an encrypted backup can be restored.

To export your keystore, use the xdmp : keystore-export (XQuery) Or xdmp . keystoreExport (SJS)
function.

e XQuery: xdmp:keystore-export (
"strong passphrase", "/backups/MarkLogic.wallet.bak")

e JavaScript: xdmp.keystoreExport (
'strong passphrase', '/backups/MarkLogic.wallet.bak');

This function exports al of the encryption keys stored in the MarkL ogic embedded KMS (the
PKCS #11 secured wallet) and stores them at the location provided to the function.

MarkLogic 9—May, 2017 Security Guide—Page 263

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest

13.10.1.1Excluding the Embedded KMS from a Backup

By default the MarkL ogic embedded KM S (the PK CS #11 secured wallet) is automatically
included in a backup. You can exclude the embedded wallet using the optionsin
admin:cluster-set-keystore-backup-option (XQuery) or
admin.clusterSetKeystoreBackupoption (SJS). The include OF exclude Options enable you to
choose whether to have the embedded KM S included as part of backups.

Language Example

XQuery xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin"
at "/MarkLogic/admin.xqy";

"exclude"
admin:get-configuration()

let Soption :

let S$config :

return
admin:cluster-set-keystore-backup-option ($config, Soption)

Server-Side const admin = require ('/MarkLogic/admin') ;

JavaScript
'exclude';

admin.getConfiguration() ;

const option
const config

admin.clusterSetKeystoreBackupOption (config, option) ;

Setting the option to exc1ude prevents the embedded KM S from being included in the backup.

Warning If you set the backup option to exc1ude and turn off the automatic inclusion of the
keystore, you are responsible for saving keystore (the embedded KM S) to a secure
location. If you cannot access your PKCS #11 secured wallet (or external KMS if
you are using one), or lose your encryption keys, you will not be able to decrypt
any of your encrypted data (including backups).

13.10.1.2Backups Using a Secondary Key

MarkLogic encryption at rest includes the ability to use a secondary backup key encryption key
(BDKEK) for encrypting backups when encryption is configured with an external KMS. Using
this BDKEK you can restore your backup to a new system, one that might not have accessto the
CDKEK and/or CCKEK.

For example, with this XQuery statement you can backup your Documents database using the
BDKEK:

xdmp : database-backup (xdmp:database-forests (xdmp:database ("Documents"))
" /backups/Data", fn:true(),
" /backups/JournalArchiving", 15,"bf44aab-3f7a-41d2-a6a5-fc4lale5e0cf")

Or you could use server-side JavaScript:

Page 264—Security Guide

MarkLogic Server Encryption at Rest

xdmp . databaseBackup (xdmp .databaseForests (xdmp.database ("Documents")) , "
/backups/Data", fn:true(),

" /backups/JournalArchiving",

15, "bf44aab-3f7a-41d2-a6a5-fc4lale5elcf") ;

In these examples “bfasaab-3£7a-41d2-a6a5-fcalaoeseoct” 1Sthe secondary backup key
(BDKEK).

The built-ins xdmp : database-backup (XQuery) Or xdmp .databaseBackup (SJS) and

xdmp : database-incremental -backup (XQuery) Of xdmp . databaseIncrementalBackup (SJS) have an
optional argument to take advantage of the BDKEK from the external KMS. The REST API can
also take advantage of a secondary backup key as part of the backup operations.

13.10.1.3Backups Using a Passphrase

MarkL ogic also provides the ability to encrypt backups with a backup passphrase. The

xdmp : database-backup (XQUENY) Or xdmp . databaseBackup (SIS) and

xdmp :database-incremental -backup (XQuery) OI xdmp .databaseIncrementalBackup (SJS) APls
take an optional argument for the passphrase (sbackup-passphrase).

Similarly, the built-in xdmp : database-restore (XQUErY) Or xdmp . databaserestore (SIS) for
restoring a database accepts an optional parameter for the backup passphrase
($vackup-passphrase). Using a passphrase, a user can restore into any system without requiring
import of the original keys or connection to an external KMS.

13.10.2 Tool to View Encrypted Log Files Outside of the Server

MarkLogic encryption at rest includes the m1ecat command line tool, which can be used to view
encrypted log files outside of the server. Themiecat tool can be used successfully in either of
these conditions:

o If themiecat tool isgiven accessto the MarkL ogic data directory and the .pen files.
» If thelog files are encrypted with a user-specified logs passphrase and the same logs
passphrase is passed t0 miecat With -p option.

Note: Themiecat tool should be run by auser with sufficient OS privilegesto access the
PKCS#11 wallet (Iocated by default at /var/opt/MarkLogic). Itis Sugg%ted that
the user be amember of group running MarkL ogic (by default gaemon).

MarkLogic 9—May, 2017 Security Guide—Page 265

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest

If you want to decrypt log files without having access to your KM S, you must set a
logs-encryption-passphrase. 10 S&t this passphrase, use the
admin:cluster—set—keystore—logs—encryption—passphrase()((DUEYy)(H
admin.clusterSetKeystoreLogsEncryptionPassphrase(SUSDfUﬂCﬂOﬂ.

For example:

Language Example

XQuery xquery version "1.0-ml";

import module namespace admin =

"http://marklogic.com/xdmp/admin"
at "/MarkLogic/admin.xgy";

let S$config := admin:get-configuration/)

let S$passphrase := "dazzling zebras"

let S$config :=

admin:cluster-set-keystore-logs-encryption-passphrase
(Sconfig, $passphrase)

return admin:save-configuration($config)

Server-Side const admin = require('/MarkLogic/admin') ;
JavaScript
const config = admin.getConfiguration() ;
const passphrase = 'dazzling zebras';
const cfg =
admin.clusterSetKeystoreLogsEncryptionPassphrase (
config, passphrase);

admin.saveConfiguration (cfg) ;

Note: Log file encryption must be enabled for this passphrase to be used.

For every OS you must add vark.ocIc_INSTALL DIR @Nd MARKLOGIC INSTALL DIR/bin tO YyOUr
pata. For example,

PATH=$MARKLOGIC INSTALL DIR:$MARKLOGIC INSTALL DIR/bin:$PATH

To see the command line options for the m1ecat tool, invoke miecat (OF mlecat.bat) With no
arguments.

mlecat
==>
mlecat [option] filepath(s)
option:
-i iDIR, iDir is MarkLogic's Install directory, alternatively the
environment variable
MARKLOGIC_ INSTALL DIR can be used to set this value.
-d dDIR, dDIR is MarkLogic's Data directory, alternatively the
environmental variable
MARKLOGIC DATA DIR can be used to set this value.

Page 266—Security Guide

MarkLogic Server Encryption at Rest

-p PASS, PASS is the logs encryption passphrase (if you are using
one) ;

alternatively the environmental variable MARKLOGIC KMS PASSPHRASE
can be used to provide this value.

[-f] filepath(s), one or more file paths (-f can be specified before
each file for explicit file list)

For example:

mlecat -p admin /var/opt/MarkLogic/Logs/ErrorLog.txt

In order to run this tool the environment must be set to include MarkLogic's libraries.

OnLinux, p_rIBrary paTH MUst include $MARKLOGIC INSTALL DIR/1ib
e On Windows, pata must include sMarRKLOGIC INSTALL DIR%

For example, to run on Linux, you could could set the path like this:
MARKLOGIC DATA DIR=/var/opt/MarkLogic
MARKLOGIC_INSTALL_DIR=/opt/MarkLogic

LD LIBRARY PATH=$SMARKLOGIC INSTALL DIR/lib:$LD LIBRARY PATH

PATH=$PATH: SMARKLOGIC INSTALL DIR/bin

export MARKLOGIC INSTALL DIR MARKLOGIC DATA DIR PATH LD LIBRARY PATH

Defaults for the MarkL ogic data and install directories are shown in the following

Note: Windows users will use miecat .bat, instead instead of miecat.

Platform Installation Directory Defa_ult Dqta Dlrectory_
(for configuration and log files)
Windows c¢:\Program Files\MarkLogic c¢:\Program Files\MarkLogic\Data
Red Hat /opt/MarkLogic /var/opt/MarkLogic
Linux

Mac OS X ~/Library/MarkLogic ~/Library/Application Support/MarkLogic/Data

For more about setting environment variables on various platforms, see the information about
installation and data directories as part of Installing MarkLogic in the Installation Guide.

MarkLogic 9—May, 2017 Security Guide—Page 267

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest

13.10.3 Disaster Recovery/Shared Disk Failover

Unless you have suffered a complete loss of your host, disaster recovery should work just fine
with encryption at rest. See High Availability and Disaster Recovery in the Concepts Guide for
information about setting up shared disk failover and steps for disaster recovery.

If you have experienced a complete loss of your host, you will need to do the following:

1. Reinstall and configure a new MarkLogic host.

2. Import the keystore and keys from a backup (Using xdmp : keystore-import (XQuery) or
xdmp . keystoreImport (SJS)). See “Export and Import Encryption Keys’ on page 241 for
details.

3. Perform a restore from backup as usual. See Backing Up and Restoring a Database in the

Administrator’s Guide for more information.

Page 268—Security Guide

MarkLogic Server Encryption at Rest

13.11 APIs for Encryption at Rest

The encryption at rest feature includes APIs for working with encryption, using either the default
keystore (the interal PKCS #11 secured wallet) or a KMIP-compliant external KMS.

This section includes:

e Built-ins for Encryption at Rest

e Admin APIs for Encryption at Rest

e REST Management APIs for Encryption

13.11.1 Built-ins for Encryption at Rest

These functions will work with both the internal PKCS #11 secured wallet, or a external
KMIP-compliant keystore. Using these functions you can encrypt data and check the status of
encryption in your clusters using either JavaScript or XQuery.

The Server-Side JavaScript built-ins are:

e xdmp.keystoreExport

e xdmp.keystoreImport

e xdmp.filesystemFileEncryptionStatus
e xdmp.databaseEncryptionAtRest

e xdmp.databaseEncryptionKeyId

e xdmp.keystoreValidateExported

e xdmp.keystoreSetCurrentHost

The Server-Side XQuery built-ins are:

e xdmp:keystore-export

e xdmp:keystore-import

e xdmp:filesystem-file-encryption-status
e xdmp:database-encryption-at-rest

e xdmp:database-encryption-key-id

e xdmp:keystore-validate-exported

e xdmp:keystore-set-current-host

MarkLogic 9—May, 2017 Security Guide—Page 269

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest

13.11.1.1Using a Credential ID with http-options

The xamp : http-options function now accepts a credential-id when used with XQuery. The
schema looks like this:

<xs:complexType name="options">

<xXS:sequence>
<xs:element ref="timeout" minOccurs="0"/>
<xs:element ref="data" minOccurs="0"/>
<xs:element ref="headers" minOccurs="0"/>
<xs:element ref="credential-id" minOccurs="0"/>
<xs:element ref="authentication" minOccurs="0"/>
<xs:element ref="client-cert" minOccurs="0"/>
<xs:element ref="client-key" minOccurs="0"/>
<xs:element ref="pass-phrase" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

13.11.2 Admin APIs for Encryption at Rest

These functions are used to set the mode and descriptions for the host, set the keystore host name
and the keystore host port. You can also set the keystore data key ID, config key ID, or logs key
ID, along with setting the keystore serve certificate and enabling encryption.

These server-side Javascript functions work with either the PK CS #11 secured wallet or a
third-party KMIP-compliant keystore:

e admin.clusterGetConfigEncryption
e admin.clusterGetDataEncryption

e admin.clusterGetLogsEncryption

e admin.clusterSetConfigEncryption
e admin.clusterSetDataEncryption

e admin.clusterSetLogsEncryption

e admin.databaseGetDataEncryption

e admin.databaseSetDataEncryption

® admin.clusterSetKeystorePassphrase

e admin.clusterGetKeystoreLogsEncryption
® admin.clusterGetKeystoreBackupOption

e admin.clusterGetKeystoreWallet

e admin.clusterGeternalDataEncryptionKeyId

e admin.clusterGetInternalDataEncryptionKeyId

e admin.clusterGetExternalConfigEncryptionKeyId
e admin.clusterGetInternalConfigEncryptionKeyId
e admin.clusterGetExternalLogsEncryptionKeyId

e admin.clusterGetInternallogsEncryptionKeyId

Page 270—Security Guide

MarkLogic Server

admin.
admin.

admin.

clusterSetDataEncryptionKeyId
clusterSetExternalConfigEncryptionKeyId

clusterSetExternallogsEncryptionKeyId

Encryption at Rest

These server-side XQuery functions will work with either the PKCS #11 secured wallet or a
third-party KMIP-compliant keystore:

admin:
admin:
admin:
admin
admin:
admin:
admin:
admin:

admin:

admin

admin:
admin:
admin:
admin
admin:
admin:
admin:
admin
admin:
admin:

admin:

cluster-get-config-encryption
cluster-get-data-encryption

cluster-get-logs-encryption

:cluster-set-config-encryption

cluster-set-data-encryption
cluster-set-logs-encryption
database-get-data-encryption
database-set-data-encryption

cluster-set-keystore-passphrase

:cluster-set-keystore-logs-encryption-passphrase

cluster-get-keystore-backup-option
cluster-get-keystore-wallet-location

cluster-get-external-data-encryption-key-id

:cluster-get-internal-data-encryption-key-id

cluster-get-external-config-encryption-key-id
cluster-get-internal-config-encryption-key-id

cluster-get-external-logs-encryption-key-id

:cluster-get-internal-logs-encryption-key-id

cluster-set-external-data-encryption-key-id
cluster-set-external-config-encryption-key-id

cluster-set-external-logs-encryption-key-id

-Theadmin.clusterRotateXXXXEncryptionKeyhiOr
admin:cluster-rotate-xxxx-encryption-key-id APIsare onIy for use with the embedded KM S
provided by MarkLogic (the PKCS #11 secured wallet). Using these functions with an external

KMS will cause an error.

The Javascript APIs are:

admin.
admin.
admin.
admin.
admin.
admin

admin.

clusterRotateConfigEncryptionKeyId
clusterRotateDataEncryptionKeyId
clusterRotatelLogsEncryptionKeyId
groupGetRotateAuditFiles

groupGetRotateLogFiles

.groupSetRotateAuditFiles

groupSetRotateLogFiles

MarkLogic 9—May, 2017

Security Guide—Page 271

MarkLogic Server Version MarkLogic 9—May, 2017

The XQuery APIs are:

admin:
admin:
admin:
admin:
admin:
admin:

admin:

cluster-rotate-config-encryption-key-id
cluster-rotate-data-encryption-key-id
cluster-rotate-logs-encryption-key-id
group-get-rotate-audit-files
group-get-rotate-log-files
group-set-rotate-audit-files

group-set-rotate-log-files

Encryption at Rest

These next two APIs are used in transitioning from an internal keystore (the PK CS #11 secured
wallet) to an external KMIP-compliant keystore. If these functions are set to external, MarkL ogic

Server will first look for the external keystore to verify the keys.

Javascript:

admin.

admin.

XQuery:

admin:

admin

clusterSetKeystoreKmsType

clusterGetKeystoreKmsType

cluster-set-keystore-kms-type

:cluster-get-keystore-kms-type

Page 272—Security Guide

MarkLogic Server

Encryption at Rest

These Javascript and XQuery functions are designed to work with a external KMIP-compliant
keystore.

Javascript APIs:

admin.

admin.

admin

admin.
admin.

admin.

admin

admin.
admin.
admin.

admin.

admin

admin.
admin.

admin.

admin

admin.
admin.
admin.

admin.

admin

admin.

XQuery APIs:

admin:
admin:
admin:
admin:
admin:
admin:

admin:

admin

admin:
admin:

admin:

admin

clusterGetConfigEncryptionKeyId

clusterSetConfigEncryptionKeyId

.clusterGetConfigEncryptionKeyId

clusterSetDataEncryptionKeyId
clusterGetKeystoreHostName

clusterGetKeystoreHostNames

.clusterSetKeystoreHostName

clusterSetKeystoreHostNames
clusterGetKeystorePort
clusterGetKeystorePorts

clusterSetKeystorePort

.clusterSetKeystorePorts

clusterGetLogsEncryptionId
clusterSetLogsEncryptionId

clusterGetKeystoreKmipCAPath

.clusterSetKeystoreKmipCAPath

clusterGetKeystoreKmipCertificatePath
clusterSetKeystoreKmipCertificatePath
clusterGetKeystoreKmipKeyPath

clusterSetKeystoreKmipKeyPath

.databaseGetEncryptionKeyId

databaseGetEncryptionKeyId

cluster-get-config-encryption-key-id
cluster-set-config-encryption-key-id
cluster-get-data-encryption-key-id
cluster-set-data-encryption-key-id
cluster-get-keystore-host-name
cluster-get-keystore-host-names

cluster-set-keystore-host-name

:cluster-set-keystore-host-names

cluster-get-keystore-port
cluster-get-keystore-ports

cluster-set-keystore-port

:cluster-set-keystore-ports

MarkLogic 9—May, 2017

Security Guide—Page 273

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest

admin:cluster-get-logs-encryption-key-id
admin:cluster-set-logs-encryption-key-id
admin:cluster-get-keystore-kmip-CA-path
admin:cluster-set-keystore-kmip-CA-path
admin:cluster-get-keystore-kmip-certificate-path
admin:cluster-set-keystore-kmip-certificate-path
admin:cluster-get-keystore-kmip-key-path
admin:cluster-set-keystore-kmip-key-path
admin:database-get-encryption-key-id

admin:database-set-encryption-key-id

Note: The functions designed to work with a external KM S will return an error if you try
to use them with the PKCS #11 secured wallet (the default built-in KMS).

13.11.3 REST Management APIs for Encryption

You can manage encryption using the REST Management APIs. Some of the tasks you can do
with these APIsinclude:

Encryption configuration

Keystore configuration

Database configuration

Database status, including database encryption (encrypted size, total size)
Cluster status

Forest status

Security

Backups, status (encrypted or not)

Restore (with property for using private key)

The REST Management APIsthat are used to query and manage the cluster security properties
include encryption information for database, cluster, and forest.

Below isa XML payload example for the security endpoint:

<security-properties
xmlns="http://marklogic.com/manage/security/properties"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://marklogic.com/manage/security/properties
manage-security-properties.xsd">

<keystores>

<data-encryption>default-off</data-encryptions>
<config-encryption>off</config-encryptions>
<logs-encryption>off</logs-encryption>

Page 274—Security Guide

MarkLogic Server

<kms-type>internal</kms-type>
<host-name>localhost</host-name>
<port>9056</port>

Encryption at Rest

<data-encryption-key-id>92ed7360-458a-427e-abad-c6595b192cb7</data-enc

ryption-key-id>

<config-encryption-key-id>8b9a9bdb-7b0e-41eb-9aa6-edée8cb23ad5</config

-encryption-key-ids>

<logs-encryption-key-1d>01c50d02-b43f-46bc-bbe5-6d4111d1180b</logs-enc

ryption-key-id>
</keystore>
</security-properties>

And hereis a JSON payload example for the security endpoint:

"keystore":

"data-encryption": "default-off",

"config-encryption": "off",
"logs-encryption": "off",
"kms-type": "internal",
"host-name": "localhost",
"port": 9056,
"data-encryption-key-id":

"92ed7360-458a-427e-abad-c6595b192cb7",

"config-encryption-key-id":

"8b9a9bdb-7b0e-41eb-9%9aa6-ed6e8cb23ads",

"logs-encryption-key-id":

"01lc50d02-b43f-46bc-bbe5-6d4111d1180b"

MarkLogic 9—May, 2017

Security Guide—Page 275

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest

These operations are available for encryption key rotation:

curl -v -X POST --anyauth --user admin:admin \
--header "Content-Type:application/json" -d \
'{"operation":"rotate-config-encryption-key"}' \
http://localhost:8002/manage/v2/security

curl -v -X POST --anyauth --user admin:admin \
--header "Content-Type:application/json" -d \
'{"operation":"rotate-data-encryption-key"}' \
http://localhost:8002/manage/v2/security

curl -v -X POST --anyauth --user admin:admin \
--header "Content-Type:application/json" -d \
'{"operation":"rotate-logs-encryption-key"}' \
http://localhost:8002/manage/v2/security

13.12 Interactions with Other MarkLogic Features

In most cases the encryption at rest feature will be transparent to the user, that is data on disk will
be encrypted, decrypted during use (by users with the appropriate security permissions), and
re-encrypted when the data is written back to disk.

13.12.1 Rolling Upgrades

Encryption at rest isafeature introduced in MarkLogic 9. Clusters running older versions need to
be completely upgraded to MarkL ogic 9 before using this feature. See Rolling Upgrades in the
Administrator’s Guide for more about rolling upgrades.

Note: During upgrades, the default passphrase for the upgraded system is not set. You
will need to reset the default passphrase after an upgrade.

13.12.2 Telemetry

The telemetry feature is not available for use until the cluster is upgraded to MarkLogic 9.0-1 or
later. See Telemetry in the Monitoring MarkLogic Guide for more about telemetry.

Page 276—Security Guide

MarkLogic Server Administering Security

14.0 Administering Security

This chapter describes the basic steps to administer security in MarkLogic Server. It does not
provide the detailed procedures for creating users, roles, privileges, and so on. For those
procedures, see the “ Security Administration” chapter of the Administrator’s Guide. This chapter
includes the following sections:

e Qverview of the Security Database

* Associating a Security Database With a Documents Database

¢ Managing and Using Objects in the Security Database

e Backing Up the Security Database

e Example: Using the Security Database in Different Servers

14.1 Overview of the Security Database

Authentication in MarkL ogic Server occurs viathe security database. The security database
contains security objects such as privileges, roles, and users. A security database is associated
with each HTTPR, WebDAV, ODBC, or XDBC server. Typically, asingle security database
services all of the servers configured in a system. Actions against the server are authorized based
on the security database. The security database works the same way for clustered systems as it
does for single-node systems; there is aways a single security database associated with each
HTTP, WebDAV, ODBC, or XDBC server.

The configuration that associates the security database with the database and serversis at the
database level. HTTP, WebDAV, ODBC, and XDBC servers each access a single documents
database, and each database in turn accesses a single security database. Multiple documents
databases can access the same security database. The following figure shows many servers
accessing some shared and some different documents databases, but all accessing the same
security database.

MarkLogic 9—May, 2017 Security Guide—Page 277

MarkLogic Server Version MarkLogic 9—May, 2017 Administering Security

HTTP Serverl

Documents
Databasel

D

Security
Database

WebDAV

XDBC Serverl

Documents
Database?2

XDBC Server2

Sharing the security database across multiple servers provides a common security configuration.
You can set up different privileges for different databases if that makes sense, but they are all
stored in acommon security database. For an example of this type of configuration, see
“Example: Using the Security Database in Different Servers’ on page 280.

In addition to storing users, roles, and privileges that you create, the security database also stores
pre-defined privileges and pre-defined roles. These objects control access to privileged activities
in MarkL ogic Server. Examples of privileged activities include loading data and accessing URIs.
The security database isinitialized during the installation process. For alist of al of the

pre-defined privileges and roles, see the corresponding appendixes in the Administrator’s Guide.

14.2 Associating a Security Database With a Documents Database

When you configure a database, you must specify which database is its security database. You
can associate the security database to another database in the database configuration screen of the
Admin Interface. This configuration specifies which database the server will use to authenticate
users and authorize requests. By default, the security database is named Security. The following
screen shot shows the server configuration screen drop-list that specifies the security database.

security database I Security - I

The security databasze.

Page 278—Security Guide

MarkLogic Server Administering Security

14.3 Managing and Using Objects in the Security Database

There are two mechanisms available to add, change, delete, and use objects in the security
database: the Admin Interface and the X Query functions. provided by the security.xqy library
module. This section describes what you can do with each of these mechanisms and includes the
following topics:

* Using the Admin Interface

e Using the security.xgy Module Functions

14.3.1 Using the Admin Interface

The Admin Interface is an application installed with MarkLogic Server for administering
databases, servers, clusters, and security objects. The Admin Interface is designed to manage the
objectsin the security database, although it manages other things, such as configuration
information, too. You use the Admin Interface to create, change, or delete objects in the security
database. Activities such as creating users, creating roles, assigning privileges to roles, and so on,
are all donein the Admin Interface. By default, the Admin Interface application runs on port
8001.

For the procedures for creating, deleting, and modifying security objects, see the Administrator’s
Guide.

14.3.2 Using the security.xqy Module Functions

The installation processinstalls an XQuery library to help you use security objectsin your
XQuery code. The security.xqy library module includes functions to access user and privilege
information, as well as functions to create, modify, and delete objects in the security database.

The functionsin security.xqy must be executed against the security database. You can use these
functionsto do awide variety of things. For example, you can write code to test which collections
auser has access to, and use that information in your code.

For the signatures and descriptions of the functionsin security.xqy, See the MarkLogic XQuery
and XSLT Function Reference.

14.4 Backing Up the Security Database

The security database isthe central entry point to al of your MarkLogic Server applications. If the
security database becomes unavailable, no users can access any applications. Therefore, it is
important to create a backup of the security database. Use the database backup utility in the
Admin Interface to back up the security database. For details, see the “Backing Up and Restoring
aDatabase” chapter of the Administrator’s Guide.

MarkLogic 9—May, 2017 Security Guide—Page 279

MarkLogic Server Version MarkLogic 9—May, 2017 Administering Security

14.5 Example: Using the Security Database in Different Servers

The security database typically is used for the entire system, including all of the HTTP, WebDAV,
ODBC, and XDBC servers configured. You can create distinct privilegesto control accessto each
server. If each server accesses a different document database, these privileges can effectively
control access to each database (because the database is associated with the server). Users must
have the appropriate login privileges to log into the server, and therefore they have no way of
accessing either the applications or the content stored in the database accessed through that server
without possessing the appropriate privilege. This example describes such a scenario.

Consider an example with two databases—pocument sa and bocumentsB. Documentsa and
DocumentsB Share a single security database, security. security iSthe default security database
managed by the Admin Interface on port 8001. There are two HTTP servers, applicationa and
Applications, cONNECted to Documentsa aNd Documentss respectlvely

ExecutePrivilegeA controls Iogin access to applicationa, and ExecutePrivilegeB tO
ApplicationB. RoleA isgranted ExecutePrivilegeA and roleB isgranted ExecutePrivilegeB.

With this configuration, users who are assigned ro1ea can access documents in bocumentsa and
users of roler can access documents in bocumentss. ASSUMING that Executeprivilegea OF
ExecutePrivilegeB are appropriately configured aslogin privileges on every HTTP and XDBC
server that accesses either pocumentsa OF DocumentsB, USEr access to these databases can
conveniently be managed by assigning users the role(s) ro1ea and/or roler as required.

Admin I nterface
Port: 8001

< ApplicationA
DocumentsA
J Documents Database
: HTTP Server
Security v
ExecutePrivilegeA-- RoleA
ExecutePrivilegeB -- RoleB
RoleA — UserAl, UserA2...
RoleB — UserB1, UserB2... ApplicationB
*ﬂ. ~ ‘ DocumentsB I‘ J
Security Database I &
HTTP Server
Documents Database

Page 280—Security Guide

MarkLogic Server Administering Security

Note: The Admin Interface at port 8001 is also used to configure all databases, HTTP
servers, hosts, and so on. The connection between the Admin Interface and the
security database in the diagram simply indicates that the Admin Interfaceis
storing al security objects—users, roles, and privileges—in security database.

The steps below outline the process to create the configuration in the above example.

1.

Create two document databases. pocumentsa and pocument se. Leave the security database
for the document databases as security (the default setting).

Create two execute privileges: executeprivilegea and Executeprivilegen. They represent

the privilege to access applicationA and ApplicationB respectlvely ApplicationA and

applications aretwo HTTP serversthat are created later in this procedure.

Note: The new execute privileges created using the Admin Interface are stored in the
security database. The new roles and users created below are also stored in the
Security database.

Create two new roles. These roles are used to organize users into groups and to facilitate
granting access to users as a group.

Create anew role. Name it rolea.
Scroll down to the Execute Privileges section and select executeprivilegea. This

associates Executeprivilegea With rRolea. ANy user assigned ro1ea is granted

ExecutePrivilegeA.

Repeat the steps for ro1es, selecting executeprivilegen instead.
Create two new HTTP servers:

Create anew HTTP server. Name it applicationa.

Select pocumentsa as the database. ApplicationA is now attached t0 pocumentsa which in
turn uses security asits security database.

Select basic, digest or digest-basic authentication scheme.

Select executerrivilegea in the privilege drop down menu. Thisindicates that
ExecutePrivilegea IS required to access applicationa.

Repeat the steps for ApplicationB, selecti NQg ExecutePrivilegeB instead.
Create new users.

Create a new user named usera1.

MarkLogic 9—May, 2017 Security Guide—Page 281

MarkLogic Server Version MarkLogic 9—May, 2017 Administering Security

b. Scroll down to the Roles section and select ro1ea.
C. Repeat the steps for usersi, selecting roies in the roles section.

Useral IS granted executeprivilegea Dy virtue of itsrole (ro1ea) and has login access to
Applicationa. BeCaUse applicationa IS connected tO bocumentsa, useral IS able to access
documents in pocumentsa assuming no additional security requirements are implemented
iN applicationa, OF added to documents in pocumentsa. The corresponding is true for
UserBl.

The configuration process is now complete. Additional users can be created by simply repeating
step 5 and selecting the appropriate role. All users assigned ro1ea have login access to
applicationa and all users assigned roles have login accessto applications.

This approach can also be easily extended to handle additional discrete databases and user groups
by creating additional document databases, roles and execute privileges as necessary.

Page 282—Security Guide

MarkLogic Server Auditing

15.0 Auditing

Auditing is the monitoring and recording of selected operational actions from both application
users and administrative users. You can audit various kinds of actions related to document access
and updates, configuration changes, administrative actions, code execution, and changes to access
control. You can audit both successful and failed activities. This chapter contains the following
parts:

e Why Is Auditing Used?

e Markl ogic Auditing

e Configuring Auditing

e Best Practices

For procedures on setting up auditing as well asalist of audit events, see Auditing Events in the
Administrator’s Guide.

15.1 Why Is Auditing Used?
You typically use auditing to perform the following activities:

» Enable accountability for actions. These might include actions taken on documents,
changesto configuration settings, administrative actions, changes to the security database,
or system-wide events.

» Deter users or potential intruders from inappropriate actions.
» Investigate suspicious activity.
* Notify an auditor of the actions of an unauthorized user.

» Detect problems with an authorization or access control implementation. For example,
you can design audit policies that you expect to never generate an audit record because the
datais protected in other ways. However, if these policies generate audit records, then you
know the other security controls are not properly implemented.

» Address auditing requirements for regulatory compliance.

MarkLogic 9—May, 2017 Security Guide—Page 283

MarkLogic Server Version MarkLogic 9—May, 2017 Auditing

15.2 MarkLogic Auditing

MarkLogic Server includes an auditing capability. You can enable auditing to capture
security-relevant events to monitor suspicious database activity or to satisfy applicable auditing
requirements. You can configure the generation of audit events by including or excluding
MarkLogic Server roles, users, or documents based on URI. Some actions that can be audited are
the following:

» startup and shutdown of MarkLogic Server
» adding or removing roles from a user

* usage of amps

» dtarting and stopping the auditing system

For the complete list of auditable events and their descriptions, see Auditing Events in the
Administrator’s Guide.

15.3 Configuring Auditing

Auditing is configured at the MarkLogic Server cluster management group level. A MarkLogic
Server group isaset of similarly configured hosts in a cluster, and includes configurations for the
HTTP, WebDAV, ODBC, and XDBC App Serversin the group. The group auditing configuration
includes enabling and disabling auditing for each cluster management group.

Audit records are stored on the local file system of the host on which the event is detected and on
which the Server subsystem is running.

Rotation of the audit logs to different filesis configurable by variousintervals, and the number of
audit filesto keep is aso configurable.

For more details and examples of audit event logs, see Auditing Events in the Administrator’s
Guide.

15.4 Best Practices

Auditing can be an effective method of enforcing strong interna controls enabling your
application to meet any applicable regulatory compliance requirements. Appropriate auditing can
help you to monitor business operations and detect activities that may deviate from company
policy. If it isimportant to your security policy to monitor thistype of activity, then you should
consider enabling and configuring auditing on your system.

Be selective with auditing and ensure that it meets your business needs. As a general rule, design
your auditing strategy to collect the amount and type of information that you need to meet your
requirements, while ensuring afocus on events that cause the greatest security concerns.

If you enable auditing, develop a monitoring mechanism to use the audit event logs. Such a
system might periodically archive and purge the audit event logs.

Page 284—Security Guide

MarkLogic Server Designing Security Policies

16.0 Designing Security Policies

This chapter describes the general stepsto follow when using security in an application. Because
of the flexibility of the MarkLogic Server security model, there are different ways to implement
similar security policies. These steps are simple guidelines; the actual steps you take depends on
the security policies you need to implement. The following sections are included:

e Research Your Security Requirements

e Plan Roles and Privileges

16.1 Research Your Security Requirements
Asafirst step in planning your security policies, try to have answers for the following types of

guestions:
* What documents do you want to protect?
» What code do you want to control the execution of?

» Arethere any natural categories you can define based on business function (for example,
marketing, sales, engineering)?

* What isthelevel of risk posed by your users? Are your applications used only by trusted,
internal people or are they open to awider audience?

* How sensitive is the data you are protecting?

Thislist is not necessarily comprehensive, but is agood way to start thinking about your security
policy.

16.2 Plan Roles and Privileges

Depending on your security requirements and the structure of your enterprise or organization,
plan the roles and privileges that make the most sense.

1 Determine the level of granularity with which you need to protect objects in the database.
2. Determine how you want to group privileges together in roles.

3. Create needed URI and execute privileges.

4. Createroles.

5. Create users.

6. Assign usersto roles.
7. Set default permissions for users, either indirectly through roles or directly through the
users.

MarkLogic 9—May, 2017 Security Guide—Page 285

MarkLogic Server Version MarkLogic 9—May, 2017 Designing Security Policies

8. Protect code with xdmp : security-assert functions, where needed.
9. L oad your documents with the appropriate permissions. If needed, change the permissions

of existi ng documents us ng the xdmp : document -add-permissions,

xdmp : document -set-permissions, and xdmp : document -remove-permissions functions.

10. Assign access privilegesto HTTP, WebDAV, ODBC, and XDBC servers as needed.

Page 286—Security Guide

MarkLogic Server Sample Security Scenarios

17.0 Sample Security Scenarios

This chapter describes some common scenarios for defining security policiesin your applications.
The scenarios shown here are by no means exhaustive. There are many possibilities for how to set
up security in your applications. The following sections are included:

* Protecting the Execution of XQuery Modules

* Choosing the Access Control for an Application

* Implementing Security for a Read-Only User

17.1 Protecting the Execution of XQuery Modules

One simple way to restrict access to your MarkLogic Server application isto limit the users that
have permission to run the application. If you load your Xquery code into a modul es database,
you can use an execute permission on the X Query document itself to control who can runit. Then,
auser must possess execute permissionsto run the module. To set up amodule to do this, perform
the following steps:

1. Using the Admin Interface, specify a modules database in the configuration for the App
Server (HTTP or WebDAV) that controls the execution of your X Query module.

2. L oad the XQuery module into the modul es database, using a URI with an . xqy extension,
for exampl €my module.xqy.

3. Set execute permissions on the XQuery document for a given role. For example, if you
want users with the run_app1ication roleto be able to execute an X Query module with
the URI http://modules/my module.xqy, runaquery similar to the following:

xdmp : document -set-permissions ("http://modules/my module.xqgy",

xdmp:permission("run application", "execute"))
4. Create the run_application role.
5. Assign the run_app1lication roleto the users who can run this application.

Now only users with the run_app1ication role can execute this document.

Note: Because your application could also contain amped functions, this technique can
help restrict access to applications that use amps.

MarkLogic 9—May, 2017 Security Guide—Page 287

MarkLogic Server Version MarkLogic 9—May, 2017 Sample Security Scenarios

17.2 Choosing the Access Control for an Application

The role-based security model in MarkLogic Server combined with the supported authentication
schemes provides numerous options for implementing application access control. This section
describes common application access control alternatives:

* OpenAccess, No Log In

* Providing Uniform Access to All Authenticated Users

* Limiting Access to a Subset of Users

e Using Custom Login Pages

* Access Control Based on Client IP_Address

For details on the different authentication schemes, see “ Types of Authentication” on page 35.

17.2.1 Open Access, No Log In

This approach may be appropriate if security is not a concern for your MarkL ogic Server
implementation or if you arejust getting started and want to explore the capabilities of MarkL ogic
Server before contemplating your security architecture. This scenario provides all of your users
with the aamin role.

You can turn off access control for each HTTP or WebDAV server individually by following
these steps using the Admin Interface:

1. Go to the Configure tab for the HTTP server for which you want to turn off access control.

2. Scroll down to the authentication field and choose application-1evel for the
authentication scheme.

3. Choose a user with the aamin role for the default user. For example, you may choose the
admin USer you created when you installed MarkL ogic.

Note: To assist with identifying users with the aamin role, the default user selection field
places (admin) Next t0 admin USES.

In this scenario, all users accessing the application server are automatically logged in with a user
that has the adanin role. By default, the aanin role has the privileges and permissions to perform
any action and access any document in the server. Therefore, security is essentially turned off for
the application. All users have full access to the application and database associated with the
application server.

17.2.2 Providing Uniform Access to All Authenticated Users

This approach allows you to restrict application access to usersin your security database, and
givesthose users full accessto all application servers defined in MarkLogic Server. There are
multiple ways to achieve the same objective but thisis the ssimplest way.

Page 288—Security Guide

MarkLogic Server Sample Security Scenarios

1 In the Admin Interface, go to the Userstab under Security.

2. Give all usersin the security database the admin role.

3. Go to the Configuration tab for all HTTP and WebDAV serversin the system.

4, Go to the authentication field and choose digest, basic OF digest-basic authentication.

5. Leave the privilege field blank since it has no effect in this scenario. Thisfield specifies
the privilege that is needed to log into application server. However, the users are assigned

the aamin role and are treated as having all privileges.

In this scenario, all users must authenticate with a username and password. Once they are
authenticated, however, they have full accessto al functions and data in the server.

17.2.3 Limiting Access to a Subset of Users

This application access control method can be modified or extended to meet the requirementsin
many application scenarios. It uses more of the available security features and therefore requires a
better understanding of the security model.

To limit application access to a subset of the usersin the security database, perform the following
steps using the Admin Interface:

1. Create an execute privilege named exe-priv-app1 t0 represent the privilege to access the
App Server.

2. Create arole named role-app1 that has exe-priv-app1 execute privilege.

3. Add ro1e-app1 to therolesof al usersin the security database who should have access to
this App Server.

4, In the Configuration page for this App Server, scroll down to the authentication field and

select digest, basic Of digest-basic. |f you want to use application-level authentication
to achieve the same objective, a custom login page is required. See the next section for
details.

5. Select exe-priv-app1 for the privilege field. Once thisis done, only the users who have the
exe-priv-appl Dy virtue of their role(s) are able to access this App Server.

Note: If you want any user in the security database to be able to access the application,
leave the privilege field blank.

At this point, the application access control is configured.

MarkLogic 9—May, 2017 Security Guide—Page 289

MarkLogic Server Version MarkLogic 9—May, 2017 Sample Security Scenarios

This method of authentication also needs to be accompanied by the appropriate security
configuration for both users and documents associated with this App Server. For example,
functions such as xdmp :document -insert and xdmp : document -load throw excepti ons unless the
user possesses the appropriate execute privileges. Also, users must have the appropriate default
permissions (or specify the appropriate permissions with the API) when creating new documents
in adatabase. Documents created by a user who does not have the aamin role must be created with
at least one update permission or else the transaction throws an xpvp-MusTHAVEUPDATE €XCEPLiON.
The update permission is required because otherwise once the documents are created no user
(except users with the aamin role) would be able to access them, including the user who created
them.

17.2.4 Using Custom Login Pages

Digest and basic authentication use the browser’s username and password prompt to obtain user
credentials. The server then authenticates the credential s against the security database. Thereisno
good way to create a custom login page using digest and basic authentication. To create custom
login pages, you need to use application-level authentication.

To configure MarkL ogic Server to use a custom login page for an App Server, perform the
following steps using the Admin Interface:

1 Go to the Configuration tab for the HTTP App Server for which you want to create a
custom login page.

2. Scroll down to the authentication field and select application-level.

3. Choose nobody as the default user. The nobody User is automatically created when
MarkLogic Server isinstalled. It does not have an associated role and therefore has no
privileges. The nobody User can only access pages and perform functions for which no
privileges are required.

4, Create a custom login page that meets your needs. We refer to this page as 10gin. xqy.

5. Make 10gin.xqy the default page displayed by the application server. Do not require any
privilege to access 10gin.xqy (that iS, do not place xdmp:security-assert () inthe
beginning of the code for 10gin.xqy. This makes 10gin.xqy accessible by nobody, the
default user specified above, until the actual user logs in with his credentials.

The 10gin.xqy page likely contains a snippet of code as shown below:

...return
if xdmp:login($username, S$password) then
. protected page goes here...
else
. redirect to login page or display error page...

Page 290—Security Guide

MarkLogic Server Sample Security Scenarios

Therest of this example assumes that all valid users can access all the pages and functions
within the application.

Note: If you are using a modules database to store your code, the 10gin.xqy file till
needs to have an execute permission that alows the nobody (Or whichever isthe
default) user to access the module. For example, you can put an execute
permission paired with the app-user role on the 10gin. xqy module document, and
make sure the nobody User has the app-user role (which it does by default).

6. Create arole called application-user-role.

7. Create an execute privilege called app1ication-privilege. Add this privilege to the

application-user-role.

8. Add the app1ication-user-role t0 al users who are allowed to access the application.

0. Add this snippet of code before the code that displays each of the pagesin the application,
except for 10gin.xqy:

try

{

xdmp:security-assert ("application-privilege", "execute")

}

catch (se)

{

xdmp:redirect-response ("login.xqgy")

}

or

if (not (xdmp:has-privilege ("application-privilege", "execute")))
then
(

xdmp:redirect-response ("login.xqgy")
)

else ()

This ensures that only a user who has the app1ication-privilege by virtue of hisrole can access
these protected pages.

Similar to the previous approach, this method of authentication requires the appropriate security
configuration for users and documents. See “Introduction to Security” on page 11 for background
on the security model.

17.2.5 Access Control Based on Client IP Address

MarkLogic Server supports deploymentsin which a user is automatically given access to the
application based on the client | P address.

MarkLogic 9—May, 2017 Security Guide—Page 291

MarkLogic Server Version MarkLogic 9—May, 2017 Sample Security Scenarios

Consider a scenario in which a user is automatically logged in if he is accessing the application
locally (as1ocal-user) or from an approved subnet (as site-user). Otherwise, the user is asked to
login explicitly. The steps below describe how to configure MarkLogic Server to achieve this
access control.

1 Using the Admin Interface, configure the App Server to use a custom login page:

a. Go to the Configuration tab for the HTTP or WebDAV App Server for which you want to
create a custom login page.

b. Scroll down to the authentication field and select application-level.

c. For thisexample, choose nobody as the default user. The nobody User is automatically
created when MarkLogic Server isinstalled. It does not have an associated role and hence
has no privileges. The nobody User can only access pages and perform functions for which
no privileges are required.

2. Add the following code snippet to the beginning of the default page displayed by the
application, for example, default.xqy.

xquery version "1.0-ml"

declare namespace widget ="http://widget.com"
import module "http://widget.com" at "/login-routine.xgy"

let $login := widget:try-ip-login ()
return
if (Slogin) then
<html>
<body>

The protected page goes here.
You are {xdmp:get-current-user ()}
</body>
</html>
else
xdmp :redirect-response ("login.xqy")

The try-ip-1ogin function isdefined in 1ogin-routine.xqy. It iSused to determineif the user can
be automatically logged in based on the client IP address. If the user cannot be logged in
automatically, he is redirected to alogin page called 10gin.xqy Where he hasto log in explicitly.
See “Using Custom Login Pages’ on page 290 for example code for 10gin.xqy.

3. Define try-ip-login.
a. Createafilenamed 10gin-routine.xqy and place thefilein the voduies directory within

the MarkL ogic Server program directory. You create an amp for try-ip-login in
login-routine.xqy iN the next code sample. For security reasons, al amped functions

Page 292—Security Guide

MarkLogic Server Sample Security Scenarios

must be located in the specified vodules directory or in the modules database for the App
Server.

b. Add thefollowing codeto 10gin-routine.xqy:

xquery version "1.0-ml"

module "http://widget.com"
declare namespace widget ="http://widget.com"

define function try-ip-login()as xs:boolean

{

}

let $ip := xdmp:get-request-client-address()

return

if (compare ($ip,"127.0.0.1") eqg 0) then (:local host:)
xdmp:login("localuser", ())

else if (starts-with($Sip, <approved-subnets>)) then
xdmp:login("site-user", ())

else
false()

If the user is accessing the application from an approved IP address, try-ip-1ogin lOgsin the
user with username 1ocal-user Of site-user as appropriate and returns true. Otherwise,
try-ip-login FetUrns false.

Note: In the code snippet above, the empty sequence () is supplied in place of the actual

pasaNords for 1ocal-user and site-user. The pre—deflned xdmp-login EXECUtE
privilege grants the right to call xamp: 10gin Without the actual password. This
makes it possible to create deployments in which users can be automatically
logged in without storing user passwords outside the system.

4, Finally, to ensure that the code snippet above is called with the requisite xdmp-login
privilege, configure an amp for try-ip-1login:

a. Using the Admin Interface, create arole called 10gin-role.

b. Ass an the pre—defl ned xdmp-login EXECUtE privi Iege t0 1ogin-role. The xdmp-1login
privilege gives a user of the 10gin-role theright to call xamp:10gin fOr any user without
supplying the password.

c. Create an amp for try-ip-1login as shown below:

MarkLogic 9—May, 2017 Security Guide—Page 293

MarkLogic Server

New Amp

amp -- A role amplification.

local name

namespace

document uri

database

roles -- The roles assighed.

r admin
r admin-buitting
r domain-management

r filesystem-access

Version MarkLogic 9—May, 2017

ok

try-ip-login
A function local-name.
Required. You must supply a value for local-name.

Fittpo: ficlget . com
A namespace.
Required. You must supply a value for namespace.

Nogin-library oy
A document's LRI
Required. You must supply a value for document-uri.

I [filesystem) vl

A database the module is found in.

cancel

Sample Security Scenarios

An amp temporarily assigns additional role(s) to a user only for the execution of the specified
function. The amp above gives any user who is executing try-ip-login () the login-role
temporarily for the execution of the function.

In thisexample, default.xqy iSexecuted as nobody, the default user for the application. When the
try-ip-login function is called, the nobody user istemporarily amped to the 10gin-role. The
nobody USEr istemporarily assigned the xamp : 10gin €xecute privilege by virtue of the 10gin-roie.
This enables nobody 10 call xdmp:1ogin iN try-ip-1ogin fOr any user without the corresponding
password. Once the login process is completed, the user can access the application with the

permissions and privileges of 1ocal-user OF site-user asappropriate.

5. The remainder of the example assumesthat 10cal-user and site-user can access al the
pages and functions within the application.

a Createarolecalled application-user-role.

b. Create an execute privilege called application-privilege. Add this privilege to the

application-user-role.

c. Addthe application-user-role {0 local-user and site-user.

Page 294—Security Guide

MarkLogic Server Sample Security Scenarios

d. Add this snippet of code before the code that displays each of the subsequent pagesin the
application:

try

{

xdmp:security-assert ("application-privilege", "execute")

}

catch(se)

{

xdmp:redirect-response ("login.xqgy")

}

or

if (not (xdmp:has-privilege ("application-privilege", "execute")))
then
(
xdmp :redirect-response ("login.xqy")
)

else ()

This ensures that only the user who hasthe appilication-privilege by virtue of hisrole can
access these protected pages.

17.3 Implementing Security for a Read-Only User

In this scenario, assume that you want to implement a security model that enables your users to
run any XQuery code stored in the modules database for a specific App Server with read-only
permissions on all documentsin the database.

Reviewing the MarkL ogic security model, recall that users do not have permissions, documents
have permissions. And permissions are made up of arole paired with a capability. Additionally,
execute privileges protect code execution and URI privileges protect the creation of documentsin
a specific URI namespace. This example shows one way to implement the read-only user and is
devided into the following parts:

e Steps For Example Setup

* Troubleshooting Tips

17.3.1 Steps For Example Setup
To set up this example scenario, perform the following steps, using the Admin Interface:

1. Create arole named readsstuff.
2. Create a user named readon1y and grant this user the readsstuff role.
3. Create arole named writesstuff and grant thisrole the readsstust role.

MarkLogic 9—May, 2017 Security Guide—Page 295

MarkLogic Server Version MarkLogic 9—May, 2017 Sample Security Scenarios

4, Grant thewritesstutt roletheany-uri privilege, aswell as any execute privileges needed
for your application code.

5. Create auser named oadsstuft and grant this user the writesstuzs role. When you load
documents, load them asthe Loadsstut £ user and give each document an update and insert
permission for the writesstutf role and aread permission for the readsstustt role.

Here is sample code to create a set of permissions to do this as on option to either the
xdmp : document -insert function or the xdmp : document -load function:

(xdmp :permission ("ReadsStuff", "read"),
xdmp :permission ("WritesStuff", "insert"),
xdmp :permission ("WritesStuff", "update"))

An aternative to specifying the permissions when you load documents is to assign default
permissions to the noadsstuff USer or thewritesstuts role.

17.3.2 Troubleshooting Tips

If you are running a URL rewriter (or an error handler), you need to give the readsstutt roleto
the nobody User or whichever user isthe default user for your App Server. When the URL rewriter
executes, the request has not yet been authenticated, so it runs as the default user. The default user
IS nobody Unless you have specified a different default for your App Server. The best practiceisto
create another role, for example my-app-user and add an execute permission for the URL rewriter
and your error handler (if any) for the my-app-user role. Thisis better because you do not want the
nobody USer to have access to your database.

Page 296—Security Guide

MarkLogic Server Securing Your Production Deployment

18.0 Securing Your Production Deployment

A security system isonly as good as its weakest link. This chapter describes some general
principles to think about with an eye toward hardening your entire environment for security, and
contains the following sections:

* Add Password Protections

¢ Adhere to the Principle of Least Privilege

e |nfrastructure Hardening

¢ Implement Auditing

e Develop and Enforce Application Security

e Use MarkLogic Security Features

e Read About Security Issues

18.1 Add Password Protections

When your data and business requirements warrant it, design and implement password
protections. These protections can range from providing guidelines to your users to implementing
programmatic checking to enforce password complexity and management.

Complexity verification verifies that each password is complex enough to provide reasonable
protection against intruders who try to break into the system by guessing passwords. This
encourages users to create strong passwords.

Password managment includes things such as password aging and expiration, automatically
locking users out of the application after failed login attempts, and controlling the reuse of old
passwords.

To enforce password complexity programmatically, use the password plugins. For more
information about the plugin framework and to view a sample password plugin, see System Plugin
Framework and Password Plugin Sample in the Application Developer’s Guide.]

18.2 Adhere to the Principle of Least Privilege

Grant necessary privileges only. Do not provide users or roles more privileges than are necessary.
If possible, grant privileges to roles, not individual users. The principle of least privilege is that
users are given only those privileges that are actually required to efficiently perform their jobs.

Restrict the following as much as possible:

* The number of users granted the admin Of security roles.

* Thenumber of rolesor users who are allowed to make changes to security objects, such as
roles, users, and document permissions.

MarkLogic 9—May, 2017 Security Guide—Page 297

MarkLogic Server Version MarkLogic 9—May, 2017 Securing Your Production Deployment

» The number of rolesthat have capabilities to add, change or remove security-related
privileges.

18.3 Infrastructure Hardening

Most computer platforms offer network security features to limit outside access to the system.
The purpose of infrastructure hardening isto eliminate as many security risks as possible. It can
involve both hardware and software, as well as physical restrictions. The following are some
infrastructure hardening topics:

* (OS-Level Restrictions

e Network Security

* Port Management

e Physical Access

18.3.1 OS-Level Restrictions

The United States National Security Agency devel ops and distributes security configuration
guidance for awide variety of software, including the most common operating system platforms.

You can view this guidance on their website at:
http://www.nsa.gov/ia/mitigation_quidance/security _configuration_guides/operating_systems.shtml.

18.3.2 Network Security

Encrypt network traffic between the browser and MarkL ogic Server by enabling SSL. You can
also enable SSL for intra-cluster communication. For high security needs, make sure MarkL ogic
Server runsin FIPS mode (which is the default mode). This option restricts your SSL ciphers to
those that have met the FIPS 140-2 Level 1 validation requirements. For information on how to
configure SSL and FIPS mode, see Clusters in the Administrator’s Guide.

18.3.3 Port Management

Protect accessto MarkLogic’s Admin Interface and devel opment tool ports:8000, 8001, 8002
behind a corporate firewall. While your MarkL ogic application may run on a publicly available
port, such as port 80, it is good practice to secure the MarkLogic Admin Interface and other
development application ports behind afirewall.

18.3.4 Physical Access

Ensure that machines running MarkL ogic Server are in aphysically secure location. Physical
accessto aserver isahigh security risk. Physical accessto a server by an unauthorized user could
result in unauthorized access or modification, as well asinstallation of hardware or software
designed to circumvent security. To maintain a secure environment, you should restrict physical
access to your MarkL ogic Server host computers.

Page 298—Security Guide

http://www.nsa.gov/ia/mitigation_guidance/security_configuration_guides/operating_systems.shtml

MarkLogic Server Securing Your Production Deployment

18.4 Implement Auditing

MarkL ogic includes an auditing capability. Designing and implementing an auditing policy can
be an important part of your overall security planning. For more details, see Auditing in this guide.
For procedures related to enabling auditng, see Auditing Events in the Administrator’s Guide.

18.5 Develop and Enforce Application Security

An important step in creating a MarkL ogic application isto ensure that it is properly secure.
Network security mostly ignores the contents of HTTP traffic, therefore you can’t use network
layer protection (firewall, SSL, IDS, hardening) to stop or detect application layer attacks. The
Open Web Application Security Project is an open group focused on understanding and
improving the security of web applications and web services. You can visit their site at:
http://www.owasp.org/. The OWASP Top Ten Project is one starting point for understanding how
you can build good security into your application.

18.6 Use MarkLogic Security Features

L et collections and document permissions restrict the data access for the user. Do not write your
own access restriction code. Write code so that it uses the MarkLogic Server security model and
operates on the correct data based on the user’s permissions and the current documents in use.

18.7 Read About Security Issues

Many excellent resources exist on the Internet. These sources contain valuable security-related
information for everyone in the enterprise software devel opment and deployment chain from
software developers and system administrators to managers. For example, the Defense
Information Systems Agency (DISA) sponsors the Information Assurance Support Environment
website found at http://iase.disa.mil/index2.html. This site contains Security Technical
Implementation Guides (STIGs). The STIGs contain technical guidance to “lock down”
information systems and software that might otherwise be vulnerable to a malicious computer
attack.

Another exampleisthe CERT Program, a part of the Software Engineering Institute, a federally
funded research and devel opment center operated by Carnegie Mellon University. This
organization is devoted to ensuring that appropriate technology and systems management
practices are used to resist attacks on networked systems and to limit damage and ensure
continuity of critical servicesin spite of successful attacks, accidents, or failures. For more
detailed information about CERT visit their website: http://www.cert.org/.

MarkLogic 9—May, 2017 Security Guide—Page 299

http://iase.disa.mil/index2.html
http://www.cert.org/
http://www.owasp.org

MarkLogic Server Version MarkLogic 9—May, 2017 Securing Your Production Deployment

Page 300—Security Guide

MarkLogic Server Technical Support

19.0 Technical Support

MarkL ogic provides technical support according to the terms detailed in your Software License
Agreement or End User License Agreement.

We invite you to visit our support website at http://help.marklogic.com to access information on
known and fixed issues, knowledge base articles, and more. For licensed customers with an active
maintenance contract, see the Support Handbook for instructions on registering support contacts
and on working with the MarkL ogic Technical Support team.

Complete product documentation, the latest product release downloads, and other useful
information is available for al developers at http:/developer.marklogic.com. For technical
guestions, we encourage you to ask your question on Stack Overflow.

MarkLogic 9

http://help.marklogic.com/
https://stackoverflow.com/questions/tagged/marklogic
http://developer.marklogic.com
http://www.marklogic.com/files/Mark_Logic_Support_Handbook.pdf

MarkLogic Server Version MarkLogic 9—May, 2017 Technical Support

Page 302—Gl ossary, Copyright, and Support

MarkLogic Server Copyright

20.0 Copyright

MarkLogic Server 9.0 and supporting products.
Last updated: August 5, 2020

Copyright © 2020 MarkL ogic Corporation.

MarkLogic and the MarkL ogic logo are trademarks or registered trademarks of MarkLogic
Corporation in the United States and other countries.

MarkL ogic technology is protected by one or more U.S. Patent Nos. 7,127,469, 7,171,404,
7,756,858, 7,962,474, 8,935,267, 8,892,599, 9,092,507, 10,108,742, 10,114,975, 10,311,088,
10,325,106, 10,339,337, 10,394,889, and 10,503,780.

MarkL ogic software incorporates certain third-party software under license. Third-party
attributions, copyright notices, and other disclosures required under license are available in the
respective notice document for your version of the MarkL ogic software.

MarkLogic 9

MarkLogic Server Version MarkLogic 9—May, 2017 Copyright

Page 304—Glossary, Copyright, and Support

	Security Guide
	Table of Contents
	1.0 Introduction to Security
	1.1 Licensing
	1.2 Security Overview
	1.2.1 Authentication and Access Control
	1.2.2 Authorization
	1.2.3 Administration

	1.3 MarkLogic Security Model
	1.3.1 Role-Based Security Model (Authorization)
	1.3.2 Element Level Security
	1.3.3 Access Control With the Security Database
	1.3.4 Security Administration

	1.4 Terminology
	1.4.1 User
	1.4.2 Role
	1.4.3 Execute Privilege
	1.4.4 URI Privilege
	1.4.5 Permission
	1.4.6 Amp

	2.0 Role-Based Security Model
	2.1 Understanding Roles
	2.1.1 Assigning Privileges to Roles
	2.1.2 Associating Permissions With Roles
	2.1.3 Default Permissions in Roles
	2.1.4 Assigning Roles to Users
	2.1.5 Roles, Privileges, Document Permissions, and Users

	2.2 The admin and security Roles
	2.3 Example—Introducing Roles, Users and Execute Privileges

	3.0 Protecting Documents
	3.1 Creating Documents
	3.1.1 URI Privileges
	3.1.2 Built-In URI Execute Privileges

	3.2 Document Permissions
	3.2.1 Capabilities Associated Through Permissions
	3.2.2 Setting Document Permissions

	3.3 Securing Collection Membership
	3.4 Default Permissions
	3.5 Example—Using Permissions
	3.5.1 Setting Permissions Explicitly
	3.5.2 Default Permission Settings

	4.0 Authenticating Users
	4.1 Users
	4.2 Types of Authentication
	4.2.1 Basic
	4.2.2 Digest
	4.2.3 Digest-Basic
	4.2.4 Limitations of Digest and Basic Authentication
	4.2.5 Certificate
	4.2.6 Application Level
	4.2.7 Kerberos Ticket
	4.2.8 SAML

	5.0 Compartment Security
	5.1 Understanding Compartment Security
	5.2 Configuring Compartment Security
	5.3 Example—Compartment Security
	5.3.1 Create Roles
	5.3.2 Create Users
	5.3.3 Create the Documents and Add Permissions
	5.3.4 Test It Out

	6.0 Element Level Security
	6.1 Understanding Element Level Security
	6.2 Example—Element Level Security
	6.2.1 Create Roles
	6.2.2 Create Users and Assign Roles
	6.2.3 Add the Documents
	6.2.4 Add Protected Paths and Query Rolesets
	6.2.5 Run the Example Queries
	6.2.6 Additional Examples

	6.3 Configuring Element Level Security
	6.3.1 Protected Paths
	6.3.2 Query Rolesets

	6.4 Configure Element Level Security in the Admin UI
	6.4.1 Add a Protected Path
	6.4.2 Add a Query Roleset

	6.5 Configure Element Level Security With XQuery
	6.5.1 Using XQuery for Query Rolesets
	6.5.2 Using XQuery for Protected Paths

	6.6 Configure Element Level Security With REST
	6.6.1 Using REST for Query Rolesets
	6.6.2 Using REST for Protected Paths

	6.7 Combining Document and Element Level Permissions
	6.7.1 Document Level Security and Indexing
	6.7.2 Combination Security Example

	6.8 Node Update Capabilities
	6.8.1 Updates With Element Level Security
	6.8.2 Node Update and Node Insert at the Element Level

	6.9 Document and Element Level Permissions Summary
	6.10 Node Update and Document Permissions Expanded
	6.10.1 Unexpected Behavior with Permissions
	6.10.2 Different Permissions on the Same Node
	6.10.3 A More Complex Example

	6.11 APIs for Element Level Security
	6.11.1 XQuery APIs
	6.11.2 REST Management APIs

	6.12 Algorithm That Determines Which Query Rolesets to Use
	6.13 Interactions With Compartment Security
	6.13.1 Compartment Security and Indexing

	6.14 Interactions with Other MarkLogic Features
	6.14.1 Lexicon Calls
	6.14.2 Fragmentation
	6.14.3 SQL on Range-Index Based Views
	6.14.4 UDFs (including UDF-based aggregate built-ins)
	6.14.5 Reverse Indexes
	6.14.6 SPARQL
	6.14.7 Alerting and QBFR
	6.14.8 TDE
	6.14.9 mlcp
	6.14.10 XCC
	6.14.11 Bitemporal
	6.14.12 Others
	6.14.13 Rolling Upgrades

	7.0 Protecting XQuery and JavaScript Functions With Privileges
	7.1 Built-In MarkLogic Execute Privileges
	7.2 Protecting Your XQuery and JavaScript Code with Execute Privileges
	7.2.1 Using Execute Privileges
	7.2.2 Execute Privileges and App Servers
	7.2.3 Creating and Updating Collections

	7.3 Temporarily Increasing Privileges with Amps

	8.0 Granular Privileges
	8.1 Understanding Granular Privileges
	8.2 Categories of Granularity
	8.2.1 Privileges to Read, Write, or Delete Any Configuration File
	8.2.2 Privileges to Read, Write, or Delete a Specific Configuration File
	8.2.3 Privileges to Administer a Set of Resources
	8.2.4 Privileges to Administer a Specific Resource
	8.2.5 Privileges to Administer a Specific Aspect of a Set of Resources
	8.2.6 Privileges to Administer a Specific Aspect of a Specific Resource

	8.3 Configuring Granular Privileges
	8.3.1 Configure Granular Privileges via the Admin Interface
	8.3.2 Configure Granular Privileges via the XQuery API Security Module

	8.4 Examples of Granular Privileges Usage
	8.4.1 Prerequisites - Create Databases, Roles, Users, and Privileges
	8.4.2 Scenarios that Use Granular Privileges
	8.4.3 Test It Out

	8.5 Using Granular Priviliges with MarkLogic DHaaS

	9.0 Configuring SSL on App Servers
	9.1 Understanding SSL
	9.2 General Procedure for Setting up SSL for an App Server
	9.3 Procedures for Enabling SSL on App Servers
	9.3.1 Creating a Certificate Template
	9.3.2 Enabling SSL for an App Server

	9.4 Accessing an SSL-Enabled Server from a Browser or WebDAV Client
	9.4.1 Creating a Security Exception in Internet Explorer
	9.4.2 Creating a Security Exception in Google Chrome
	9.4.3 Importing a Self-Signed Certificate Authority into Windows

	9.5 Procedures for Obtaining a Signed Certificate
	9.5.1 Generating and Downloading Certificate Requests
	9.5.2 Signing a Certificate with your own Certificate Authority
	9.5.3 Importing a Signed Certificate into MarkLogic Server

	9.6 Viewing Trusted Certificate Authorities
	9.7 Importing a Certificate Revocation List into MarkLogic Server
	9.8 Deleting a Certificate Template

	10.0 Certificate-based Authentication
	10.1 User Certificate Example
	10.2 CA Certificate (User Cert Signer) Import from Admin Interface
	10.3 CA Certificate Import into MarkLogic from Query Console
	10.4 Certificate Template & Template CA import into Client (Browser/SSL Client)
	10.5 Creating a MarkLogic User to use Certificate-based Authentication
	10.5.1 Creating a MarkLogic User with an Internal Name
	10.5.2 Creating a MarkLogic User with an External Name

	11.0 Secure Credentials
	11.1 Creating a Secure Credential with Username and Password
	11.2 Creating a Secure Credential with PEM Encoded Public and Private Keys
	11.2.1 Creating a Certificate Authority
	11.2.2 Creating Secure Credentials from a Certificate Authority

	12.0 External Security
	12.1 Terms Used in this Chapter
	12.2 Overview of External Authentication
	12.3 Creating an External Authentication Configuration Object
	12.3.1 LDAP Authentication
	12.3.2 SAML Authentication
	12.3.3 SSL Client Authentication

	12.4 Defining and Inserting a SAML Entity
	12.5 Assigning an External Name to a User
	12.6 Assigning an External Name to a Role
	12.7 Configuring an App Server for External Authentication
	12.8 Creating a Kerberos keytab File
	12.8.1 Creating a keytab File on Windows
	12.8.2 Creating a keytab File on Linux

	12.9 External Certificate User Authentication
	12.9.1 Certificate Authentication Based on Internal User vs External Name
	12.9.2 CA Certificate (User Cert Signer) Import from Admin GUI
	12.9.3 CA Certificate Import into MarkLogic from Query Console
	12.9.4 Certificate Template & Template CA import into Client (Browser/ SSL Client)
	12.9.5 Certificate CN as Internal User vs External Name-based Internal User

	12.10 Example External Authorization Configurations
	12.11 Kerberos Authentication using xdmp:http-* Functions
	12.12 Kerberos Authentication for Secured HDFS

	13.0 Encryption at Rest
	13.1 Licensing
	13.2 Terms and Definitions
	13.3 Understanding Encryption at Rest
	13.4 Keystores - PKCS #11 Secured Wallet or External KMS
	13.5 Encryption Key Hierarchy Overview
	13.5.1 Embedded KMS Key Hierarchy
	13.5.2 External KMS Key Hierarchy

	13.6 Example—Encryption at Rest
	13.6.1 Set Up Encryption Example
	13.6.2 Encrypt a Database
	13.6.3 Test It Out
	13.6.4 Turn Off Encryption for a Database

	13.7 Configuring Encryption at Rest
	13.7.1 Database Encryption Options
	13.7.2 Configure Cluster Encryption
	13.7.3 Cluster Encryption Options
	13.7.4 Using an Alternative PKCS #11 Device
	13.7.5 Configure Encryption Using XQuery
	13.7.6 Configure Encryption Using REST

	13.8 Key Management
	13.8.1 Key Rotation
	13.8.2 Export and Import Encryption Keys
	13.8.3 Key Deletion and Key Revocation

	13.9 Configuring an External Keystore
	13.9.1 Types of KMS Deployments
	13.9.2 Using MarkLogic Encryption with AWS Key Management System
	13.9.3 Using MarkLogic Encryption with Microsoft Azure Key Vault
	13.9.4 Set Up an External KMS with MarkLogic Encryption
	13.9.5 Configure the External KMS
	13.9.6 Set up MarkLogic Encryption
	13.9.7 Transitioning from PKCS #11 Secured Wallet to an External KMS
	13.9.8 Transitioning From an External KMS to PKCS #11 Secured Wallet
	13.9.9 Multiple External KMSs for High Availability and Failover

	13.10 Administration and Maintenance
	13.10.1 Backup and Restore
	13.10.2 Tool to View Encrypted Log Files Outside of the Server
	13.10.3 Disaster Recovery/Shared Disk Failover

	13.11 APIs for Encryption at Rest
	13.11.1 Built-ins for Encryption at Rest
	13.11.2 Admin APIs for Encryption at Rest
	13.11.3 REST Management APIs for Encryption

	13.12 Interactions with Other MarkLogic Features
	13.12.1 Rolling Upgrades
	13.12.2 Telemetry

	14.0 Administering Security
	14.1 Overview of the Security Database
	14.2 Associating a Security Database With a Documents Database
	14.3 Managing and Using Objects in the Security Database
	14.3.1 Using the Admin Interface
	14.3.2 Using the security.xqy Module Functions

	14.4 Backing Up the Security Database
	14.5 Example: Using the Security Database in Different Servers

	15.0 Auditing
	15.1 Why Is Auditing Used?
	15.2 MarkLogic Auditing
	15.3 Configuring Auditing
	15.4 Best Practices

	16.0 Designing Security Policies
	16.1 Research Your Security Requirements
	16.2 Plan Roles and Privileges

	17.0 Sample Security Scenarios
	17.1 Protecting the Execution of XQuery Modules
	17.2 Choosing the Access Control for an Application
	17.2.1 Open Access, No Log In
	17.2.2 Providing Uniform Access to All Authenticated Users
	17.2.3 Limiting Access to a Subset of Users
	17.2.4 Using Custom Login Pages
	17.2.5 Access Control Based on Client IP Address

	17.3 Implementing Security for a Read-Only User
	17.3.1 Steps For Example Setup
	17.3.2 Troubleshooting Tips

	18.0 Securing Your Production Deployment
	18.1 Add Password Protections
	18.2 Adhere to the Principle of Least Privilege
	18.3 Infrastructure Hardening
	18.3.1 OS-Level Restrictions
	18.3.2 Network Security
	18.3.3 Port Management
	18.3.4 Physical Access

	18.4 Implement Auditing
	18.5 Develop and Enforce Application Security
	18.6 Use MarkLogic Security Features
	18.7 Read About Security Issues

	19.0 Technical Support
	20.0 Copyright

