
MarkLogic Server
Security Guide
2

MarkLogic 9
May, 2017

Last Revised: 9.0-13, July, 2020
Copyright © 2020 MarkLogic Corporation. All rights reserved.

MarkLogic Server Version MarkLogic 9—May, 2017
Page 2—Security Guide

MarkLogic Server Table of Contents
Table of Contents

Security Guide

1.0 Introduction to Security ...11
1.1 Licensing ...11
1.2 Security Overview ..11

1.2.1 Authentication and Access Control ..12
1.2.2 Authorization ..12
1.2.3 Administration ..12

1.3 MarkLogic Security Model ...12
1.3.1 Role-Based Security Model (Authorization) ..13
1.3.2 Element Level Security ...14
1.3.3 Access Control With the Security Database ...14
1.3.4 Security Administration ..16

1.4 Terminology ..16
1.4.1 User ...16
1.4.2 Role ...16
1.4.3 Execute Privilege ..17
1.4.4 URI Privilege ..17
1.4.5 Permission ...17
1.4.6 Amp ..17

2.0 Role-Based Security Model ...19
2.1 Understanding Roles ...19

2.1.1 Assigning Privileges to Roles ...19
2.1.1.1 Execute Privileges ...19
2.1.1.2 URI Privileges ...20

2.1.2 Associating Permissions With Roles ..20
2.1.3 Default Permissions in Roles ..20
2.1.4 Assigning Roles to Users ..20
2.1.5 Roles, Privileges, Document Permissions, and Users21

2.2 The admin and security Roles ...22
2.3 Example—Introducing Roles, Users and Execute Privileges22

3.0 Protecting Documents ..25
3.1 Creating Documents ...25

3.1.1 URI Privileges ...25
3.1.2 Built-In URI Execute Privileges ...26

3.2 Document Permissions ...26
3.2.1 Capabilities Associated Through Permissions ..27

3.2.1.1 Read ...27
MarkLogic 9—May, 2017 Security Guide—Page 3

MarkLogic Server Version MarkLogic 9—May, 2017 Table of Contents
3.2.1.2 Update ...27
3.2.1.3 Node-Update ...27
3.2.1.4 Insert ..28
3.2.1.5 Execute ..28

3.2.2 Setting Document Permissions ...28
3.3 Securing Collection Membership ...28
3.4 Default Permissions ..29
3.5 Example—Using Permissions ..29

3.5.1 Setting Permissions Explicitly ..30
3.5.2 Default Permission Settings ..30

4.0 Authenticating Users ..35
4.1 Users ...35
4.2 Types of Authentication ..35

4.2.1 Basic ..36
4.2.2 Digest ..36
4.2.3 Digest-Basic ..36
4.2.4 Limitations of Digest and Basic Authentication36
4.2.5 Certificate ..37
4.2.6 Application Level ...37
4.2.7 Kerberos Ticket ...37
4.2.8 SAML ...38

5.0 Compartment Security ...39
5.1 Understanding Compartment Security ..39
5.2 Configuring Compartment Security ..40
5.3 Example—Compartment Security ..40

5.3.1 Create Roles ..40
5.3.2 Create Users ..41
5.3.3 Create the Documents and Add Permissions ..42
5.3.4 Test It Out ...43

6.0 Element Level Security ..45
6.1 Understanding Element Level Security ..46
6.2 Example—Element Level Security ..46

6.2.1 Create Roles ..47
6.2.2 Create Users and Assign Roles ...47
6.2.3 Add the Documents ..49
6.2.4 Add Protected Paths and Query Rolesets ...50
6.2.5 Run the Example Queries ...54

6.2.5.1 XQuery Examples of Element Level Security54
6.2.5.2 JavaScript Examples of Element Security57

6.2.6 Additional Examples ...61
6.2.6.1 XQuery - Query Element Hierarchies61
6.2.6.2 XQuery - Matching By Paths or Attributes63
Page 4—Security Guide

MarkLogic Server Table of Contents
6.2.6.3 JavaScript - Query Element Hierarchies67
6.2.6.4 JavaScript - Matching By Paths or Attributes69

6.3 Configuring Element Level Security ..73
6.3.1 Protected Paths ..73

6.3.1.1 Examples of Protected Paths ...74
6.3.1.2 Namespaces as Part of a Protected Path75
6.3.1.3 Unprotecting or Removing Paths ..76
6.3.1.4 Performance Considerations With Protected Paths79

6.3.2 Query Rolesets ..80
6.3.2.1 How Query Rolesets Work ...80
6.3.2.2 Parent/Child Relationships in Query Rolesets82
6.3.2.3 Overlapping Protected Paths ...82
6.3.2.4 Protected Path Sets ..85
6.3.2.5 Helper Functions for Query Rolesets ..87
6.3.2.6 Query for Protected Paths on a Document88

6.4 Configure Element Level Security in the Admin UI ..89
6.4.1 Add a Protected Path ...89
6.4.2 Add a Query Roleset ...90

6.5 Configure Element Level Security With XQuery ...91
6.5.1 Using XQuery for Query Rolesets ..91
6.5.2 Using XQuery for Protected Paths ..92

6.6 Configure Element Level Security With REST ..93
6.6.1 Using REST for Query Rolesets ...93
6.6.2 Using REST for Protected Paths ...95

6.7 Combining Document and Element Level Permissions96
6.7.1 Document Level Security and Indexing ...96
6.7.2 Combination Security Example ..97

6.8 Node Update Capabilities ...98
6.8.1 Updates With Element Level Security ..98
6.8.2 Node Update and Node Insert at the Element Level99

6.9 Document and Element Level Permissions Summary ..100
6.10 Node Update and Document Permissions Expanded ...102

6.10.1 Unexpected Behavior with Permissions ...102
6.10.2 Different Permissions on the Same Node ...103
6.10.3 A More Complex Example ...104

6.11 APIs for Element Level Security ..104
6.11.1 XQuery APIs ...105
6.11.2 REST Management APIs ..106

6.11.2.1 REST Management APIs for Protected Paths106
6.11.2.2 REST Management APIs for Query Rolesets106

6.12 Algorithm That Determines Which Query Rolesets to Use106
6.13 Interactions With Compartment Security ...108

6.13.1 Compartment Security and Indexing ...109
6.14 Interactions with Other MarkLogic Features ..110

6.14.1 Lexicon Calls ..110
6.14.2 Fragmentation ...111
MarkLogic 9—May, 2017 Security Guide—Page 5

MarkLogic Server Version MarkLogic 9—May, 2017 Table of Contents
6.14.3 SQL on Range-Index Based Views ..111
6.14.4 UDFs (including UDF-based aggregate built-ins)111
6.14.5 Reverse Indexes ..111
6.14.6 SPARQL ...111
6.14.7 Alerting and QBFR ...112
6.14.8 TDE ...112
6.14.9 mlcp ..112
6.14.10XCC ..113
6.14.11Bitemporal ..113
6.14.12Others ..113
6.14.13Rolling Upgrades ..114

7.0 Protecting XQuery and JavaScript Functions With Privileges115
7.1 Built-In MarkLogic Execute Privileges ..115
7.2 Protecting Your XQuery and JavaScript Code with Execute Privileges115

7.2.1 Using Execute Privileges ..116
7.2.2 Execute Privileges and App Servers ...116
7.2.3 Creating and Updating Collections ...117

7.3 Temporarily Increasing Privileges with Amps ...117

8.0 Granular Privileges ..119
8.1 Understanding Granular Privileges ...119
8.2 Categories of Granularity ..120

8.2.1 Privileges to Read, Write, or Delete Any Configuration File120
8.2.2 Privileges to Read, Write, or Delete a Specific Configuration File120
8.2.3 Privileges to Administer a Set of Resources ...121
8.2.4 Privileges to Administer a Specific Resource ...122
8.2.5 Privileges to Administer a Specific Aspect of a Set of Resources122
8.2.6 Privileges to Administer a Specific Aspect of a Specific Resource122

8.3 Configuring Granular Privileges ...126
8.3.1 Configure Granular Privileges via the Admin Interface126
8.3.2 Configure Granular Privileges via the XQuery API Security Module ...127

8.3.2.1 Creating and Assigning Granular Privileges127
8.3.2.2 Using Pseudo-Functions with Granular Privileges128
8.3.2.3 Examples of Creating and Assigning Granular Privileges129

8.4 Examples of Granular Privileges Usage ...130
8.4.1 Prerequisites - Create Databases, Roles, Users, and Privileges130
8.4.2 Scenarios that Use Granular Privileges ..131
8.4.3 Test It Out ...132

8.5 Using Granular Priviliges with MarkLogic DHaaS ..133

9.0 Configuring SSL on App Servers ..135
9.1 Understanding SSL ...135
9.2 General Procedure for Setting up SSL for an App Server137
9.3 Procedures for Enabling SSL on App Servers ..138
Page 6—Security Guide

MarkLogic Server Table of Contents
9.3.1 Creating a Certificate Template ..138
9.3.2 Enabling SSL for an App Server ..140

9.4 Accessing an SSL-Enabled Server from a Browser or WebDAV Client142
9.4.1 Creating a Security Exception in Internet Explorer142
9.4.2 Creating a Security Exception in Google Chrome143
9.4.3 Importing a Self-Signed Certificate Authority into Windows145

9.5 Procedures for Obtaining a Signed Certificate ...151
9.5.1 Generating and Downloading Certificate Requests152
9.5.2 Signing a Certificate with your own Certificate Authority153
9.5.3 Importing a Signed Certificate into MarkLogic Server154

9.6 Viewing Trusted Certificate Authorities ...155
9.7 Importing a Certificate Revocation List into MarkLogic Server157
9.8 Deleting a Certificate Template ..158

10.0 Certificate-based Authentication ..159
10.1 User Certificate Example ..159
10.2 CA Certificate (User Cert Signer) Import from Admin Interface160
10.3 CA Certificate Import into MarkLogic from Query Console161
10.4 Certificate Template & Template CA import into Client (Browser/SSL Client)

162
10.5 Creating a MarkLogic User to use Certificate-based Authentication162

10.5.1 Creating a MarkLogic User with an Internal Name162
10.5.2 Creating a MarkLogic User with an External Name166

11.0 Secure Credentials ..169
11.1 Creating a Secure Credential with Username and Password169
11.2 Creating a Secure Credential with PEM Encoded Public and Private Keys172

11.2.1 Creating a Certificate Authority ...173
11.2.2 Creating Secure Credentials from a Certificate Authority174

12.0 External Security ..177
12.1 Terms Used in this Chapter ..177
12.2 Overview of External Authentication ...179
12.3 Creating an External Authentication Configuration Object183

12.3.1 LDAP Authentication ...185
12.3.2 SAML Authentication ...188
12.3.3 SSL Client Authentication ..189

12.4 Defining and Inserting a SAML Entity ...190
12.5 Assigning an External Name to a User ...192
12.6 Assigning an External Name to a Role ...193
12.7 Configuring an App Server for External Authentication194
12.8 Creating a Kerberos keytab File ...195

12.8.1 Creating a keytab File on Windows ..196
12.8.2 Creating a keytab File on Linux ...196

12.9 External Certificate User Authentication ..197
MarkLogic 9—May, 2017 Security Guide—Page 7

MarkLogic Server Version MarkLogic 9—May, 2017 Table of Contents
12.9.1 Certificate Authentication Based on Internal User vs External Name ...197
12.9.1.1 User Certificate Examples ...197

12.9.2 CA Certificate (User Cert Signer) Import from Admin GUI198
12.9.3 CA Certificate Import into MarkLogic from Query Console199
12.9.4 Certificate Template & Template CA import into Client (Browser/SSL Cli-

ent) 199
12.9.5 Certificate CN as Internal User vs External Name-based Internal User .199

12.9.5.1 1.) Certificate CN Field Value as MarkLogic Security Database
Internal User 200

12.9.5.2 User Certificate Subject Field Value as External Name for Inter-
nal User 202

12.10 Example External Authorization Configurations ...205
12.11 Kerberos Authentication using xdmp:http-* Functions206
12.12 Kerberos Authentication for Secured HDFS ..208

13.0 Encryption at Rest ..209
13.1 Licensing ...209
13.2 Terms and Definitions ..210
13.3 Understanding Encryption at Rest ..211
13.4 Keystores - PKCS #11 Secured Wallet or External KMS212
13.5 Encryption Key Hierarchy Overview ...213

13.5.1 Embedded KMS Key Hierarchy ...214
13.5.2 External KMS Key Hierarchy ...216

13.6 Example—Encryption at Rest ..217
13.6.1 Set Up Encryption Example ...218
13.6.2 Encrypt a Database ...218
13.6.3 Test It Out ...219
13.6.4 Turn Off Encryption for a Database ...220

13.7 Configuring Encryption at Rest ..221
13.7.1 Database Encryption Options ...222
13.7.2 Configure Cluster Encryption ...223

13.7.2.1 Configuration File and Log File Encryption Options223
13.7.3 Cluster Encryption Options ..224

13.7.3.1 External Cluster Encryption Options227
13.7.3.2 Changing the Internal KMS Password229
13.7.3.3 Synchronizing the KMS Keys ...230

13.7.4 Using an Alternative PKCS #11 Device ...231
13.7.4.1 Saving the Embedded KMS to a Different Location231

13.7.5 Configure Encryption Using XQuery ...232
13.7.6 Configure Encryption Using REST ..234

13.7.6.1 Export Wallet ..237
13.7.6.2 Import Wallet ..238

13.8 Key Management ..239
13.8.1 Key Rotation ...239

13.8.1.1 Manual Key Rotation ..241
13.8.2 Export and Import Encryption Keys ...241
Page 8—Security Guide

MarkLogic Server Table of Contents
13.8.3 Key Deletion and Key Revocation ...243
13.9 Configuring an External Keystore ..243

13.9.1 Types of KMS Deployments ..244
13.9.2 Using MarkLogic Encryption with AWS Key Management System244

13.9.2.1 AWS KMS on EC2 ...245
13.9.3 Using MarkLogic Encryption with Microsoft Azure Key Vault249

13.9.3.1 Microsoft Azure Key Vault ...249
13.9.4 Set Up an External KMS with MarkLogic Encryption255
13.9.5 Configure the External KMS ..257
13.9.6 Set up MarkLogic Encryption ...257
13.9.7 Transitioning from PKCS #11 Secured Wallet to an External KMS259
13.9.8 Transitioning From an External KMS to PKCS #11 Secured Wallet259
13.9.9 Multiple External KMSs for High Availability and Failover260

13.10 Administration and Maintenance ..261
13.10.1Backup and Restore ..262

13.10.1.1 Excluding the Embedded KMS from a Backup264
13.10.1.2 Backups Using a Secondary Key ..264
13.10.1.3 Backups Using a Passphrase ...265

13.10.2Tool to View Encrypted Log Files Outside of the Server265
13.10.3Disaster Recovery/Shared Disk Failover ..268

13.11 APIs for Encryption at Rest ..269
13.11.1Built-ins for Encryption at Rest ..269

13.11.1.1 Using a Credential ID with http-options270
13.11.2Admin APIs for Encryption at Rest ..270
13.11.3REST Management APIs for Encryption ...274

13.12 Interactions with Other MarkLogic Features ..276
13.12.1Rolling Upgrades ..276
13.12.2Telemetry ..276

14.0 Administering Security ..277
14.1 Overview of the Security Database ..277
14.2 Associating a Security Database With a Documents Database278
14.3 Managing and Using Objects in the Security Database279

14.3.1 Using the Admin Interface ..279
14.3.2 Using the security.xqy Module Functions ..279

14.4 Backing Up the Security Database ...279
14.5 Example: Using the Security Database in Different Servers280

15.0 Auditing ...283
15.1 Why Is Auditing Used? ...283
15.2 MarkLogic Auditing ...284
15.3 Configuring Auditing ..284
15.4 Best Practices ..284

16.0 Designing Security Policies ...285
MarkLogic 9—May, 2017 Security Guide—Page 9

MarkLogic Server Version MarkLogic 9—May, 2017 Table of Contents
16.1 Research Your Security Requirements ...285
16.2 Plan Roles and Privileges ...285

17.0 Sample Security Scenarios ...287
17.1 Protecting the Execution of XQuery Modules ..287
17.2 Choosing the Access Control for an Application ...288

17.2.1 Open Access, No Log In ...288
17.2.2 Providing Uniform Access to All Authenticated Users288
17.2.3 Limiting Access to a Subset of Users ...289
17.2.4 Using Custom Login Pages ...290
17.2.5 Access Control Based on Client IP Address ...291

17.3 Implementing Security for a Read-Only User ..295
17.3.1 Steps For Example Setup ..295
17.3.2 Troubleshooting Tips ..296

18.0 Securing Your Production Deployment ...297
18.1 Add Password Protections ..297
18.2 Adhere to the Principle of Least Privilege ..297
18.3 Infrastructure Hardening ...298

18.3.1 OS-Level Restrictions ...298
18.3.2 Network Security ..298
18.3.3 Port Management ..298
18.3.4 Physical Access ...298

18.4 Implement Auditing ..299
18.5 Develop and Enforce Application Security ..299
18.6 Use MarkLogic Security Features ..299
18.7 Read About Security Issues ..299

19.0 Technical Support ..301

20.0 Copyright ...303
Page 10—Security Guide

MarkLogic Server Introduction to Security
1.0 Introduction to Security
18

When you create systems that store and retrieve data, it is important to protect the data from
unauthorized use, disclosure, modification or destruction. Ensuring that users have the proper
authority to see the data, load new data, or update existing data is an important aspect of
application development. Do all users need the same level of access to the data and to the
functions provided by your applications? Are there subsets of users that need access to privileged
functions? Are some documents restricted to certain classes of users? The answers to questions
like these help provide the basis for the security requirements for your application.

MarkLogic Server includes a powerful and flexible role-based security model to protect your data
according to your application security requirements. There is always a trade-off between security
and usability. When a system has no security, then it is open to malicious or unmalicious
unauthorized access. When a system is too tightly secured, it might become difficult to use
successfully. Before implementing your application security model, it is important to understand
the core concepts and features in the MarkLogic Server security model. This chapter introduces
the MarkLogic Server security model and includes the following sections:

• Licensing

• Security Overview

• MarkLogic Security Model

• Terminology

1.1 Licensing
Some MarkLogic Server security features require an Advanced Security License in addition to the
regular license. The Advanced Security License option is required when using:

• Compartment Security

• Redaction

• An external Key Management System (KMS) or keystore with encryption at rest

1.2 Security Overview
This section provides an overview of the three main principles used in MarkLogic Server
security:

• Authentication and Access Control

• Authorization

• Administration
MarkLogic 9—May, 2017 Security Guide—Page 11

MarkLogic Server Version MarkLogic 9—May, 2017 Introduction to Security
1.2.1 Authentication and Access Control
Authentication is the process of verifying user credentials for a named user. Authentication makes
sure you are who you say you are. Users are typically authenticated with a username and
password. Authentication verifies user credentials and associates an application session with the
authenticated user. Every request to MarkLogic Server is issued from an authenticated user.
Authentication, by itself, does not grant access or authority to perform specific actions. There are
several ways to set up server authentication in MarkLogic Server.

Authentication by username and password is only part of the story. You might grant access to
users based on something other than identity, something such as the originating IP address for the
requests. Restricting access based on something other than the identity of the user is generally
referred to as access control.

For details on authentication, see “Authenticating Users” on page 35.

1.2.2 Authorization
Authorization provides the mechanism to control document access, XQuery and JavaScript code
execution, and document creation. For an authenticated user, authorization determines what you
are allowed to do. For example, authorization is what allows the user named Melanie to read and
update a document, allows the user named Roger to only read the document, and prevents the user
named Hal from knowing the document exists at all. In MarkLogic Server, authorization is used
to protect documents stored in a database and to protect the execution of XQuery or JavaScript
code. For details on authorization in MarkLogic Server, see “Protecting Documents” on page 25
and “Protecting XQuery and JavaScript Functions With Privileges” on page 115.

1.2.3 Administration
Administration is the process of defining, configuring, and managing the security objects, such as
users, roles, privileges, and permissions that implement your security policies. For details on
security administration procedures in MarkLogic Server, see “Security Administration” on
page 16 and the Administrator’s Guide.

1.3 MarkLogic Security Model
The MarkLogic Server security model is flexible and enables you to set up application security
with the level of granularity needed by your security requirements. This section contains the
following topics:

• Role-Based Security Model (Authorization)

• Element Level Security

• Access Control With the Security Database

• Security Administration
Page 12—Security Guide

MarkLogic Server Introduction to Security
1.3.1 Role-Based Security Model (Authorization)
Roles are the central point of authorization in the MarkLogic Server security model. Privileges,
users, other roles, and document permissions all relate directly to roles. The following conceptual
diagram shows how each of these entities points into one or more roles.

There are two types of privileges: URI privileges and execute privileges. URI privileges are used
to control the creation of documents with certain URIs. Execute privileges are used to protect the
execution of functions in XQuery or JavaScript code.

Note: For execute privileges’ type, you may achieve finer granularity access control over
configuration and various administration abilities through defining granular
privileges. For information on granular privileges, see “Granular Privileges” on
page 119.

Privileges are assigned to zero or more roles, roles are assigned to zero or more other roles, and
users are assigned to zero or more roles. A privilege is like a door and, when the door is locked,
you need to have the key to the door in order to open it. If the door is unlocked (no privileges),
then you can walk right through. The keys to the doors are distributed to users through roles; that
is, if a user inherits a privilege through the set of roles to which she is assigned, then she has the
keys to unlock those inherited privileges.

Permissions are used to protect documents. Permissions are assigned to documents, either at load
time or as a separate administrative action. Each permission is a combination of a role and a
capability (read, insert, update, node-update, execute).

Users

Roles

Other RolesPrivileges

Document
Permissions
MarkLogic 9—May, 2017 Security Guide—Page 13

MarkLogic Server Version MarkLogic 9—May, 2017 Introduction to Security
Users assigned the role corresponding to the permission have the ability to perform the capability.
You can set any number of permissions on a document.

Capabilities represent actions that can be performed. There are four capabilities in MarkLogic
Server:

• read

• insert

• update

• node-update

• execute

Users inherit the sum of the privileges and permissions from their roles.

For more details on how roles work in MarkLogic Server, see “Role-Based Security Model” on
page 19. For more details on privileges and permissions, see “Protecting Documents” on page 25.

1.3.2 Element Level Security
Element level security uses protected paths to conceal certain elements in document from specific
users, while leaving other parts of a document available to search and view. You can use element
level security to control access to specific JSON properties or XML elements within documents.
This means that specific information inside a document may be hidden from a particular user
based on the user’s role, while still providing access to other information in the document.

Element level security can be used in addition to and along with existing document level security
and compartment security. For more information about element level security, see “Element Level
Security” on page 45.

1.3.3 Access Control With the Security Database
MarkLogic Server uses a security database to store the user data, privilege data, role data, and
other security information. Each database in MarkLogic Server references a security database. A
database named Security, which functions as the default security database, is created as part of
the installation process.

The following figure shows that many databases can be configured to use the same security
database for authentication and authorization.

Role
Capability

(read, insert,
update, node-update,

Permission

or execute)
Page 14—Security Guide

MarkLogic Server Introduction to Security
The security database is accessed to authenticate users and to control access to documents. For
details on authentication, the security database, and ways to administer objects in the security
database, see “Authenticating Users” on page 35 and “Administering Security” on page 277.

There may be circumstances in which a cluster is configured with more than one Security
database, such as when using database replication. When multiple Security databases are used,
there should be an equal number of Admin servers with different ports, one for each Security
database. Each Security database can then be upgraded by its respective Admin Interface.

The name of the Security database used by the Admin Interface is shown in the upper right corner
of the Security Configuration page.

Security Database

Database 1

Database 2

Database n

(contains user data,
privilege data, role
data)
MarkLogic 9—May, 2017 Security Guide—Page 15

MarkLogic Server Version MarkLogic 9—May, 2017 Introduction to Security
1.3.4 Security Administration
MarkLogic Server administrators are privileged users who have the authority to perform tasks
such as creating, deleting, modifying users, roles, privileges, and so on. These tasks change or add
data in the security database. Users who perform these tasks must have the security role, either
explicitly or by inheriting it from another role (for example, from the admin role). Typically, users
who perform these tasks have the admin role, which provides the authority to perform any tasks in
the database. Use caution when assigning users to the security and/or admin roles; users who are
assigned the admin role can perform any task on the system, including deleting data.

MarkLogic Server provides the following ways to administer security:

• Admin Interface

• REST Management API

• XQuery and JavaScript server-side security administration functions

For details on administering security, see “Administering Security” on page 277.

1.4 Terminology
This section defines the following terms, which are used throughout the security documentation:

• User

• Role

• Execute Privilege

• URI Privilege

• Permission

• Amp

1.4.1 User
A user is a named entity used to authenticate a request to an HTTP, WebDAV, ODBC, or XDBC
server. For details on users, see “Authenticating Users” on page 35.

1.4.2 Role
A role is a named entity that provides authorization privileges and permissions to other roles or to
users. You can assign roles to other roles (which can in turn include assignments to other roles,
and so on). Roles are the fundamental building blocks that you use to implement your security
policies. For details on roles, see “Role-Based Security Model” on page 19.
Page 16—Security Guide

MarkLogic Server Introduction to Security
1.4.3 Execute Privilege
An execute privilege provides the authority to perform a protected action. Examples of protected
actions are the ability to execute a specific user-defined function, the ability to execute a built-in
function (for example, xdmp:document-insert), and so on. For details on execute privileges, see
“Protecting XQuery and JavaScript Functions With Privileges” on page 115.

1.4.4 URI Privilege
A URI privilege provides the authority to create documents within a base URI. When a URI
privilege exists for a base URI, only users assigned to roles that have the URI privilege can create
documents with URIs starting with the base string. For details on URI privileges, see “Protecting
Documents” on page 25.

1.4.5 Permission
A permission provides a role with the capability to perform certain actions (read, insert, update,
node-update, execute) on a document or a collection. Permissions consist of a role and a
capability. Permissions are assigned to documents and collections. For details on permissions, see
“Protecting Documents” on page 25.

1.4.6 Amp
An amp provides a user with the additional authorization to execute a specific function by
temporarily giving the user additional roles. For details on amps, see “Temporarily Increasing
Privileges with Amps” on page 117.
MarkLogic 9—May, 2017 Security Guide—Page 17

MarkLogic Server Version MarkLogic 9—May, 2017 Introduction to Security
Page 18—Security Guide

MarkLogic Server Role-Based Security Model
2.0 Role-Based Security Model
24

MarkLogic Server uses a role-based security model. Each security entity is associated with a role.
This chapter describes the role-based security model and includes the following sections:

• Understanding Roles

• The admin and security Roles

• Example—Introducing Roles, Users and Execute Privileges

2.1 Understanding Roles
As described in “Role-Based Security Model (Authorization)” on page 13, roles are the central
point of authorization in MarkLogic Server. This section describes how the other security entities
relate to roles, and includes the following sections:

• Assigning Privileges to Roles

• Associating Permissions With Roles

• Default Permissions in Roles

• Assigning Roles to Users

• Roles, Privileges, Document Permissions, and Users

2.1.1 Assigning Privileges to Roles
Execute privileges control access to XQuery or JavaScript code. URI privileges control access to
creating documents in a given URI range. You associate roles with privileges by assigning the
privileges to the roles.

2.1.1.1 Execute Privileges
Execute privileges allow developers to control authorization for the execution of an XQuery or
JavaScript function. If an XQuery or JavaScript function is protected by an execute privilege, the
function must include logic to check if the user executing the code has the necessary execute
privilege. That privilege is assigned to a user through a role that includes the specific execute
privilege. There are many execute privileges pre-defined in the security database to control
execution of built-in XQuery and JavaScript functions.

For more details on execute privileges, see “Protecting XQuery and JavaScript Functions With
Privileges” on page 115.
MarkLogic 9—May, 2017 Security Guide—Page 19

MarkLogic Server Version MarkLogic 9—May, 2017 Role-Based Security Model
2.1.1.2 URI Privileges
URI privileges control authorization for creation of a document with a given URI prefix. To
create a document with a prefix that has a URI privilege associated with it, a user must be part of
a role that has the needed URI privilege.

For more details on how URI privileges interact with document creation, see “Protecting
Documents” on page 25.

2.1.2 Associating Permissions With Roles
Permissions are security characteristics of documents that associate a role with a capability. The
capabilities are the following:

• read

• insert

• update

• node-update

• execute

Users gain the authority to perform these capabilities on a document if they are assigned a role to
which a permission is associated.

For more details on how permissions interact with documents, see “Document Permissions” on
page 26.

2.1.3 Default Permissions in Roles
Roles are one of the places where you can specify default permissions. If permissions are not
explicitly specified when a document is created, the default permissions of the user creating the
document are applied. The system determines the default permissions for a user based on the
user’s roles. The total set of default permissions is derived from the user’s roles and all inherited
roles.

For more details on how default permissions interact with document creation, see “Default
Permissions” on page 29.

2.1.4 Assigning Roles to Users
Users are authenticated against the security database configured for the database being accessed.
Roles are the mechanism by which authorization information is derived. You assign roles to a
user. The roles provide the user with a set of privileges and permissions that grant the authority to
perform actions against code and documents. At any given time, a user possesses a set of
privileges and default permissions that is the sum of the privileges and default permissions
inherited from all of the roles currently assigned to that user.
Page 20—Security Guide

MarkLogic Server Role-Based Security Model
Use the Admin Interface to display the set of privileges and default permissions for a given user;
do not try and calculate it yourself as it can easily get fairly complex when a system has many
roles. To display a user’s security settings, use Admin Interface > Security > User > Describe.
You need to select a specific user to see the Describe tab.

For more details on users, see “Authenticating Users” on page 35.

2.1.5 Roles, Privileges, Document Permissions, and Users
Privileges, document permissions, and users all interact with roles to define your security policies.
The following diagram shows an example of how these entities interact.

Notice how all of the arrows point into the roles; that is because the roles are the center of all
security administration in MarkLogic Server. In this diagram, User1 is part of Role2, and Role2
inherits Role3. Therefore, even though User1 has only been assigned Role2, User1 possesses all of
the privileges and permissions from both Role2 and Role3. Following the arrows pointing into
Role2 and Role3, you can see that the user possesses Priv1 and Priv2 based on the privileges
assigned to these roles and insert and read capabilities based on the permissions applied to
Document1.

User1

Role1

Document1
Priv1

Role2

Role3

Priv2

Role1 Capability:

Capability is
one of:
read

insert

update

execute

XQuery Function

xdmp:security-assert(

Permissions

update

Role3 Capability:

insert

Role2 Capability:

read

Priv1 needed to
execute this function

"Priv1", "$execute")

node-update
MarkLogic 9—May, 2017 Security Guide—Page 21

MarkLogic Server Version MarkLogic 9—May, 2017 Role-Based Security Model
Because User1 possesses Priv1 (based on role inheritance), User1 is able to execute code
protected with a xdmp:security-assert("Priv1", "execute") call; users who do not have the
Priv1 privilege can not execute such code.

2.2 The admin and security Roles
MarkLogic Server has a special role named admin. The admin role has full authority to do
everything in MarkLogic Server, regardless of the permissions or privileges set. In general, the
admin role is only for administrative activities and should not be used to load data and run
applications. Use extreme caution when assigning users the admin role, because it gives them the
authority to perform any activity in MarkLogic, included adding or deleting users, adding or
deleting documents, changing passwords, and so on.

MarkLogic Server also has a built-in role named security. Users who are part of the security
role have execute privileges to perform security-related tasks on the system using the functions in
the security.xqy Library Module.

The security role does not have access to the Admin Interface. To access the Admin Interface, a
user must have the admin role. The security role provides the privileges to execute functions in
the security.xqy module, which has functions to perform actions such as creating users, creating
roles, and so on. For details on managing security objects programmatically, see Creating and

Configuring Roles and Users and User Maintenance Operations in the Scripting Administrative Tasks
Guide.

2.3 Example—Introducing Roles, Users and Execute Privileges
Consider a scenario with two roles: engineering and sales. The engineering role is responsible
for making widgets and has privileges needed to perform activities related to making widgets. The
sales role is responsible for selling widgets and has privileges to perform activities related to
selling widgets.

To begin, create two roles in MarkLogic Server named engineering and sales respectively.

The engineering role needs to be able to make widgets. You can create an execute privilege with
the name make-widget, and action URI http://widget.com/make-widget to represent that
privilege. The sales role needs to sell widgets,so you create an execute privilege with the name
sell-widget and action URI http://widget.com/sell-widget to represent that privilege.

Note: Names for execute privileges are used only as display identifiers in the Admin
Interface. The action URIs are used within XQuery or JavaScript code to identify
the privilege.

Ron is an engineer in your company so you create a user for Ron and assign the engineering role
to the newly created user. Emily is an account representative so you create a user for Emily and
assign her the sales role.
Page 22—Security Guide

MarkLogic Server Role-Based Security Model
In your XQuery code, use the xdmp:security-assert function to ensure that only engineers make
widgets and only account representatives sell widgets (if you are using JavaScript, you can
similary call xdmp.securityAssert in your JavaScript function to protect the code). For example:

xquery version "1.0-ml"
define function make-widget(...) as ...
{
 xdmp:security-assert("http://widget.com/make-widget",
 "execute"), make widget...}

If Ron is logged into the application and executes the make-widget() function,
xdmp:security-assert("http://widget.com/make-widget", "execute") succeeds since Ron is of
the engineering role which has the execute privilege to make widgets.

If Emily attempts to execute the make-widget function, the xdmp:security-assert function call
throws an exception. You can catch the exception and handle it with a try/catch in the code. If
the exception is not caught, the transaction that called this function is rolled back.

Some functions are common to several protected actions. You can protect such a function with a
single xdmp:security-assert call by providing the appropriate action URIs in a list. For example,
if a user needs to execute the count-widgets function when making or selling widgets, you might
protect the function as follows:

xquery version "1.0-ml"
define function count-widgets(...) as ...
{
 xdmp:security-assert(("http://widget.com/make-widget",
 "http://widget.com/sell-widget"), "execute"),
 count-widget...
}

If there is a function that requires more than one privilege before it can be performed, place the
xdmp:security-assert calls sequentially. For example, if you need to be a manager in the sales
department to give discounts when selling the widgets, you can protect the function as follows:

xquery version "1.0-ml"
define function discount-widget(...) as ...
{
 xdmp:security-assert("http://widget.com/sell-widget",
 "execute"),
 xdmp:security-assert("http://widget.com/change-price",
 "execute"),
 discount widget...
}

where http://widget.com/change-price is an action URI for a change-price execute privilege
assigned to the manager role. A user needs to have the sales role and the manager role, which
provides the user with the sell-widget and change-price execute privileges, to be able to execute
this function.
MarkLogic 9—May, 2017 Security Guide—Page 23

MarkLogic Server Version MarkLogic 9—May, 2017 Role-Based Security Model
Page 24—Security Guide

MarkLogic Server Protecting Documents
3.0 Protecting Documents
34

The MarkLogic Server security model has a set of tools you can use to control access to
documents. These authorization tools control creating, inserting into, updating, and reading
documents in a database. This chapter describes those tools and includes the following sections:

• Creating Documents

• Document Permissions

• Securing Collection Membership

• Default Permissions

• Example—Using Permissions

3.1 Creating Documents
To create a document in a MarkLogic Server database, a user must possess the needed privileges
to create a document with a given URI. The ability to create documents based on the URI is
controlled with URI privileges and with two built-in execute privileges (any-uri and
unprotected-uri). To possess a privilege, the user must be part of a role (either directly or
indirectly, through role inheritance) to which the privilege is assigned. This section describes
these different privileges.

3.1.1 URI Privileges
URI privileges control the ability to create a new document with a given URI prefix. Using a URI
privilege for a given URI protects that URI from new document creation; only users possessing
the URI privilege can create a new document with the prefix.

For example, the screenshot below shows a URI privilege with /widget.com/sales/ as the
protected URI. Any URI with /widget.com/sales/ as the prefix is protected. Users must be part of
the sales role to create documents with URIs beginning with this prefix. In this example, you
need this URI privilege (or a privilege with at least as much authority) to create a document with
the URI /widget.com/sales/my_process.xml.
MarkLogic 9—May, 2017 Security Guide—Page 25

MarkLogic Server Version MarkLogic 9—May, 2017 Protecting Documents
3.1.2 Built-In URI Execute Privileges
The following built-in execute privileges control the creation of URIs:

• any-uri

• unprotected-uri

The any-uri privilege provides the authority to create a document with any URI in the database,
even if the URI is protected with a URI privilege. The unprotected-uri privilege provides the
authority to create a document at any URI in the database except for URIs that are protected with
a URI privilege.

3.2 Document Permissions
Permissions set on a document define access to capabilities (read, insert, update, node-update,
and execute) for that document. Each permission consists of a capability and a role. This section
describes how to set permissions on a document. It includes the following subsections:

• Capabilities Associated Through Permissions

• Setting Document Permissions
Page 26—Security Guide

MarkLogic Server Protecting Documents
3.2.1 Capabilities Associated Through Permissions
Document permissions pair a role with a capability to perform some action on a document. You
can add multiple permissions to a document. If a user is part of a role (either directly or through
inheriting the role) specified as part of a document permission, then the user has that capability for
the given document. Each permission associates a role with one of the following capabilities:

• Read

• Update

• Node-Update

• Insert

• Execute

3.2.1.1 Read
The read capability provides the authority to see the content in the document. Being able to see
the content does not allow you to modify the document.

3.2.1.2 Update
The update capability provides the authority to modify content in the document or delete the
document. However, update does not provide the authority to read the document. Reading the
document requires the read capability. Users with update capability, but not read capability, can
call the xdmp:document-delete and xdmp:document-insert functions successfully. However, node
update functions, such as xdmp:node-replace, xdmp:node-delete, and xdmp:node-insert-after,
cannot be called successfully. Node update functions require a node from the document as a
parameter. If a user cannot read the document, he cannot access the node in the document and
supply it as a parameter.

There is a way to get around the issue with node update functions. The update capability provides
the authority to change the permissions on a document. Therefore, you can use the
xdmp:document-add-permissions function to add a new permission to the document with read
capability for a given role. A user withboth read and update capabilities can call node update
functions succesfully.

3.2.1.3 Node-Update
The node-update capability provides a subset of the update capability, enabling permission to
update nodes within a document. The node-update capability offers finer control of updates when
combined with element level security. The node-update capability covers xdmp:node-replace and
xdmp:node-delete and can also be used in built-ins on properties, including
xdmp:document-add-properties, xdmp:document-set-property, xdmp:document-set-properties
and xdmp:document-remove-properties. Note that if a role has the update capability, it
automatically includes the node-update capability as well.
MarkLogic 9—May, 2017 Security Guide—Page 27

MarkLogic Server Version MarkLogic 9—May, 2017 Protecting Documents
3.2.1.4 Insert
The insert capability provides a subset of the update capability. The insert capability provides
the authority to add new content to the document. The insert capability by itself does not allow a
user to change existing content or remove an existing document (for example, calls to
xdmp:document-insert and xdmp:document-delete on an existing document fail). Furthermore,
you need read capability on the document to perform actions that use any of the node insert
functions (xdmp:node-insert-before, xdmp:node-insert-after, xdmp:node-insert-child), as
explained above in the description for update. Therefore, a permission with an insert capability
must be paired with a permission with a read capability to be useful.

3.2.1.5 Execute
The execute capability provides the authority to execute application code contained in that
document, if the document is stored in a database which is configured as a modules database.
Users without permissions for the execute capability on a stored module, are not able to execute
that module.

3.2.2 Setting Document Permissions
When you create documents in a database, you must think about setting permissions on the
document. If a document has no permission set on it, no one, other than users with the admin role,
can read, update, insert, or delete it. Additionally, non-admin users must add update permissions
on documents when creating them; attempts to create a document without at least one update
permission result in an XDMP-MUSTHAVEUPDATE exception.

You set document permissions in the following ways:

• Explicitly set permissions on a document at load time (as a parameter to
xdmp:document-load or xdmp:document-insert, for example).

• Explicitly set and remove permissions on a document using the following functions:

• xdmp:document-add-permissions

• xdmp:document-set-permissions

• xdmp:document-remove-permissions

• Implicitly set permissions when the document is created based on the default permissions
of the user who creates the documents. Permissions are applied to a document at document
creation time based on the default permissions of the user who creates the document.

For examples of setting permissions on documents, see “Example—Using Permissions” on
page 29.

3.3 Securing Collection Membership
You can also secure membership in collections by assigning permissions to collections. To assign
permissions to collections, you must use the Admin Interface or the security.xqy Library Module
functions. You cannot assign permissions to collections implicitly with default permissions.
Page 28—Security Guide

MarkLogic Server Protecting Documents
For more information about permissions on collections, see Collections and Security in the Search
Developer’s Guide.

3.4 Default Permissions
When a document is created, it is initialized with a set of permissions. If permissions are not
explicitly set (by using xdmp:document-load or xdmp:document-insert, for example), then the
permissions are set to the default permissions. The default permissions are determined based on
the roles assigned (both explicitly and inherited from roles assigned to other roles) to the user who
creates the document and on any default permissions assigned directly to the user.

If users are creating documents in a database, it is important to configure default permissions for
the roles assigned to that user. Without default permissions, it is easy to create documents that no
users (except those with the admin role) can read, update, or delete.

3.5 Example—Using Permissions
It is important to consider document permissions when you load content into a database, whether
you load data using the built-in functions (for example, xdmp:document-load or
xdmp:document-insert), WebDAV (for example, dragging and dropping files into a WebDAV
folder), the REST API, the Java API, or a custom program. In each case, setting permissions is
necessary, whether explicitly or by taking advantage of default permissions. This example shows
several ways of setting permissions on documents.

Suppose that Ron, of the engineering role, is given the task to create a document to describe new
features that will be added to the next version of the widget. Once the document is created, other
users with the engineering role contribute to the document and add the features they are working
on. Ian, of the engineering-manager role, decides that users of the engineering role should only
be allowed to read and add to the document. This enables Ian to control the process of removing
or changing features in the document. To implement this security model, the document should be
created with read and insert permissions for the engineering role, and read and update
permissions for the engineering-manager role.

There are two ways to apply permissions to documents at creation time:

• Setting Permissions Explicitly

• Default Permission Settings
MarkLogic 9—May, 2017 Security Guide—Page 29

MarkLogic Server Version MarkLogic 9—May, 2017 Protecting Documents
3.5.1 Setting Permissions Explicitly
Assume that the following code snippet is executed as user Ron of the engineering role. The code
inserts a document with the following permissions:

• read and insert permissions for the engineering role

• update, node-update, and read permissions for the engineering-manager role

...
xdmp:document-insert("/widget.com/engineering/features/2017-q1.xml",
 <new-features>
 <feature>
 <name>blue whistle</name>
 <assigned-to>Ron</assigned-to>
 ...
 </feature>
 ...
 </new-features>,
 (xdmp:permission("engineering", "read"),
 xdmp:permission("engineering", "insert"),
 xdmp:permission("engineering-manager", "read"),
 xdmp:permission("engineering-manager", "update"),

xdmp:permission("engineering-manager", "node-update"))
...

If you specify permissions to the function call explicitly, as shown above, those permissions
override any default permission settings associated with the user (through user settings and role
inheritance).

3.5.2 Default Permission Settings
If there is a set of permission requirements that meets the needs of most application scenarios,
MarkLogic recommends creating the appropriate default permission settings at the role or user
level. This avoids having to explicitly create and set document permissions each time you call
xdmp:document-load or xdmp:document-insert.

Default permission settings that apply to a user, either through a role or through the user
definition, are important if you are loading documents using a WebDAV client. When you drag
and drop files into a WebDAV folder, the permissions are automatically set based on the default
permissions of the user logged into the WebDAV client. For more information about WebDAV
servers, see WebDAV Servers in the Administrator’s Guide.

The following screenshot shows a portion of the Admin Interface for the engineering role. It
shows read and insert capabilities being added to the engineering role’s default permissions.
Page 30—Security Guide

MarkLogic Server Protecting Documents
A user’s set of default permissions is additive; it is the aggregate of the default permissions for all
of the user’s role(s) as well as for the user himself. Below is another screenshot of a portion of a
User configuration screen for Ron. It shows read and update capabilities being added to the
engineering-manager role as Ron’s default permissions at the user level.

Note: Ron has the engineering role and does not have the engineering-manager role. A
user does not need to have a certain role in order to specify that role in its default
permission set.

You can also use a hybrid of the two methods described above. Assume that read and insert
capabilities for the engineering role are specified as default permissions for the engineering role
as shown in the first screenshot. However, update and read capabilities are not specified for the
engineering-manager at the user or engineering role level.

Further assume that the following code snippet is executed by Ron. It achieves the desired
objective of giving the engineering-manager role read, update, and node-update capabilities on
the document, and the engineering role read and insert capabilities.
MarkLogic 9—May, 2017 Security Guide—Page 31

MarkLogic Server Version MarkLogic 9—May, 2017 Protecting Documents
...
xdmp:document-insert("/widget.com/engineering/features/2017-q1.xml",
 <new-features>
 <feature>
 <name>blue whistle</name>
 <assigned-to>Ron</assigned-to>
 ...
 </feature>
 ...
 </new-features>,
 (xdmp:default-permissions(),
 xdmp:permission("engineering-manager", "read")
 xdmp:permission("engineering-manager", "update"))

xdmp:permission("engineering-manager", "node-update"))
...

The xdmp:default-permissions function returns Ron’s default permissions (from the role level in
this example) of read and insert capabilities for the engineering role. The read, update, and
node-update capabilities for the engineering-manager role are then added explicitly as function
parameters.

Note: The xdmp:document-insert function performs an update (rather than a create)
function if a document with the specified document URI already exists.
Consequently, if Ron calls the xdmp:document-insert function the second time
with the same document URI, the call fails since Ron does not have update
capability on the document.

Suppose that Ian, of the engineering-manager role, decides to give users of the sales role read
permission on the document. (He wisely withholds update or insert capability or there will surely
be an explosion of features!) The code snippet below shows how to add permissions to a
document after it has been created.

...
xdmp:document-add-permissions(
 "/widget.com/engineering/features/2017-q1.xml",
 xdmp:permission("sales", "read"))
...

The update capability is needed to add permissions to a document, and the node-update capability
is needed to update a portion of a document (or node). Therefore, the code snippet only succeed if
it is executed by Ian, or another user of the engineering-manager role. This prevents Ron from
giving Emily, his buddy in sales, insert capability on the document.

But what if the Emily is now the person in sales assigned to the project? Ian has the node-update
capability, so he can call xdmp:node-replace and xdmp:node-delete to modify nodes in a
document. Ian changes the “assigned-to” element in the document using xdmp:node-update.
Page 32—Security Guide

MarkLogic Server Protecting Documents
...
xdmp:node-update("/widget.com/engineering/features/2017-q1.xml",
 <new-features>
 <feature>
 <name>blue whistle</name>
 <assigned-to>Emily</assigned-to>
 ...
 </feature>
 ...
 </new-features>,

Changing default permissions for a role or a user does not affect the permissions associated with
existing documents. To change permissions on existing documents, you need to use the
permission update functions. See the documentation for the MarkLogic Built-In Functions in
MarkLogic XQuery and XSLT Function Reference for more details.
MarkLogic 9—May, 2017 Security Guide—Page 33

MarkLogic Server Version MarkLogic 9—May, 2017 Protecting Documents
Page 34—Security Guide

MarkLogic Server Authenticating Users
4.0 Authenticating Users
38

MarkLogic Server authenticates users when they access an application. This chapter describes
users and the available authentication schemes, and includes the following sections:

• Users

• Types of Authentication

4.1 Users
A user in MarkLogic Server is the basis for authenticating requests to a MarkLogic application
server. Users are assigned to roles. Roles carry security attributes, such as privileges and default
permissions. Permissions assigned to documents pair a role with a capability, therefore roles are
central to document permissions. Users derive authorization to perform actions from their roles.

You configure users in the Admin Interface, where you assign a user a name, a password, a set of
roles, and a set of default permissions. To see the security attributes associated with a given user,
click on the User:username link in the Admin Interface screen for the given user. For details on
configuring users in the Admin Interface, see the “Security Administration” chapter in the
Administrator’s Guide.

During the initial installation of MarkLogic Server, two users are created. One of the users is an
authorized administrator who has the admin role. During the installation, you are prompted to
specify the username and password for this user. The other user is a user named nobody, which is
created with no roles assigned and is given a password which is randomly generated. For details
about installing MarkLogic Server, see the Installation Guide.

4.2 Types of Authentication
You can control the authentication scheme for HTTP, WebDAV, ODBC, and XDBC App Servers.
This section describes the authentication schemes and includes the following parts:

• Basic

• Digest

• Digest-Basic

• Limitations of Digest and Basic Authentication

• Certificate

• Application Level

• Kerberos Ticket

• SAML
MarkLogic 9—May, 2017 Security Guide—Page 35

MarkLogic Server Version MarkLogic 9—May, 2017 Authenticating Users
4.2.1 Basic
Basic authentication is the typical authentication scheme for web applications. When a user
accesses an application page, she is prompted for a username and password. In basic mode, the
password is obfuscated but not encrypted.

4.2.2 Digest
Digest authentication works the same way as basic, but offers encryption of passwords sent over
the network. When a user accesses an application page, she is prompted for a username and
password.

Note: If you change an App Server from basic to digest authentication, it invalidates all
passwords in the security database. You must then reenter the passwords in the
Admin Interface. Alternatively, you can migrate to digest-basic mode initially,
then switch to digest-only mode once all users have accessed the server at least
once. The first time the user accesses the server after changing from basic to
digest-basic scheme, the server computes the digest password by extracting the
relevant information from the credentials supplied in basic mode.

4.2.3 Digest-Basic
The digest-basic authentication scheme uses the more secure digest scheme whenever possible,
but reverts to basic authentication when needed. Some older browsers, for example, do not
support digest authentication. The digest-basic scheme is also useful if you previously used basic
authentication, but want to migrate to digest. The first time a user accesses the server after
changing from basic to digest-basic authentication scheme, the server computes the digest
password by extracting the relevant information from the credentials supplied in basic mode.

4.2.4 Limitations of Digest and Basic Authentication
Since the browser does not provide a way to clear a user’s authentication information in basic or
digest mode, the user remains logged in until the browser is shut down. In addition, there is no
way to create a custom login page using these schemes. For certain deployments,
application-level authentication may be more appropriate.
Page 36—Security Guide

MarkLogic Server Authenticating Users
4.2.5 Certificate
Certificate-based authentication requires internal and external users and HTTPS clients to
authenticate themselves to MarkLogic Server via a client certificate, either in addition to, or rather
than a password.

Certificate-based authentication can take the following forms:

• MarkLogic Server authenticates an internal user via the common name in a certificate.

• MarkLogic Server authenticates an internal user via the distinguished name in a
certificate, by matching the distinguished name to an external name configured for an
internal user.

• MarkLogic Server authenticates an external LDAP user via a certificate subject name,
with internal authorization.

• MarkLogic Server authenticates an external user via a certificate subject name, with
external authorization. User is entirely defined external to MarkLogic.

• MarkLogic Server authenticates via both a client certificate and a username/password.
This provides a greater level of security by requiring that user provide a client certificate
that matches the specified user.

For details on Certificate-based authentication, see “Certificate-based Authentication” on
page 159.

4.2.6 Application Level
Application-level authentication bypasses all authentication and automatically logs all users in as
a specified default user. You specify the default user in the Admin Interface, and any users
accessing the server automatically inherit the security attributes (roles, privileges, default
permissions) of the default user. Application-level authentication is available on HTTP, ODBC,
and WebDAV servers.

The default user should have the required privileges to at least read the initial page of the
application. In many application scenarios, the user is then given the opportunity to explicitly log
in to the rest of the application from that page. How much of the application and what data a user
can access before explicitly logging in depends on the application and the roles that the default
user is part of. For an example of this type of configuration, see “Using Custom Login Pages” on
page 290.

4.2.7 Kerberos Ticket
The user is authenticated by Kerberos and a Kerberos session ticket is used to authenticate the
user to access MarkLogic Server. For details, see “Overview of External Authentication” on
page 179.
MarkLogic 9—May, 2017 Security Guide—Page 37

MarkLogic Server Version MarkLogic 9—May, 2017 Authenticating Users
4.2.8 SAML
When SAML authentication is used, a client requests a resource from MarkLogic Server with no
security context; MarkLogic redirects the authentication request to an Identity Provider. The
Identity Provider prompts the user to login, if necessary, and sends the authentication request back
to MarkLogic Server (the Service Provider) for validation.

There are two major components in SAML:

• Identity Provider (IDP) authenticates a subject and provides security assertion to service
provider.

• Service Provider (SP) provides access to the resource for a client. MarkLogic Server is a
Service Provider.

MarkLogic Server sends a redirect to the resource. The client requests the resource again with a
security context. MarkLogic Server then authenticates the user using the information from the
authentication request to grant the user access to the requested resource.

See “SAML Authentication” on page 188 for more information.
Page 38—Security Guide

MarkLogic Server Compartment Security
5.0 Compartment Security
44

The MarkLogic Server includes an extension to the security model called compartment security.
Compartment security allows you to specify more complex security rules on documents.

Note: An Advanced Security License is required when using compartment security.
“Licensing” on page 11 lists other security options requiring this license option.
Contact your MarkLogic sales representative for details on purchasing the
Advance Security License option.

This chapter describes compartment security and includes the following sections:

• Understanding Compartment Security

• Configuring Compartment Security

• Example—Compartment Security

5.1 Understanding Compartment Security
A compartment is a name associated with a role. You specify that a role is part of a compartment
by adding the compartment name to each role in the compartment. When a role is compartmented,
the compartment name is used as an additional check when determining a user’s authority to
access or create documents in a database. Compartments have no effect on execute privileges.
Without compartment security, permissions are checked using OR semantics.

For example, if a document has read permission for role1 and read permission for role2, a user
who possesses either role1 or role2 can read that document. If those roles have different
compartments associated with them (for example, compartment1 and compartment2, respectively),
then the permissions are checked using AND semantics for each compartment, as well as OR
semantics for each non-compartmented role. To access the document if role1 and role2 are in
different compartments, a user must possess both role1 and role2 to access the document, as well
as a non-compartmented role that has a corresponding permission on the document.

If any permission on a document has a compartment, then the user must have that compartment in
order to access any of the capabilities, even if the capability is not the one with the compartment.

Access to a document requires a permission in each compartment for which there is a permission
on the document, regardless of the capability of the permission. So if there is a read permission
for a role in compartment1, there must also be an update permission for some role in compartment1
(but not necessarily the same role). If you try to add read, insert, node-update, or execute
permissions that reference a compartmented role to a document for which there is no update
permission with the corresponding compartment, the XDMP-MUSTHAVEUPDATE exception is thrown.
MarkLogic 9—May, 2017 Security Guide—Page 39

MarkLogic Server Version MarkLogic 9—May, 2017 Compartment Security
5.2 Configuring Compartment Security
You can only add a compartment for a new role. To add a compartment, use the Admin Interface
> Security > Roles > Create and enter a name for the compartment in the compartment field when
you define each role in the compartment.

You cannot modify an existing role to use a compartment. To add a compartment to a role, you
must delete the role and re-create it with a compartment. If you do re-create a role, any
permissions you have on documents reference the old role (because they use the role ID, not the
role name). So if you want those document permissions to use the new role, you need to update
those documents with new permissions that reference the new role.

5.3 Example—Compartment Security
This section describes a scenario that uses compartment security. The scenario is not meant to
demonstrate the correct way to set up compartment security, as your situation is likely to be
unique. However, it demonstrates how compartment security works and may give you ideas for
how to implement your own security model.

Description: For a MarkLogic application used by a government department, documents are
classified with a security classification that dictates who may access the document. The
department also restricts access to some documents based on the citizenship of the user.
Additionally, some documents can only be accessed by employees with certain job functions.

To set up the compartment security for this scenario, you create the necessary roles, users, and
documents with the example permissions. You will need access to both MarkLogic Admin
Interface and Query Console.

To run through the example, perform the steps in each of the following sections:

• Create Roles

• Create Users

• Create the Documents and Add Permissions

• Test It Out

5.3.1 Create Roles
Using the Admin Interface > Security > Roles > Create, create the roles and compartments as
follows:

1. Create roles named US and Canada and assign each of these roles the country compartment
name. These roles form the country compartment.

2. Create roles named Executive and Employee and assign each of these roles the
job-function compartment name. These roles form the job-function compartment.
Page 40—Security Guide

MarkLogic Server Compartment Security
3. Create roles named top-secret and unclassified and assign each of these roles the
classification compartment name. These roles form the classification compartment.

4. Create a role named can-read with no compartment.

5.3.2 Create Users
Using the Admin Interface > Security > Users > Create, create users and give them the roles
indicated in the following table.

User Roles

Don Executive, US, top-secret, can-read

Ellen Employee, US, unclassified, can-read

Frank Executive, Canada, top-secret, can-read

Gary can-read

Hannah unclassified, can-read
MarkLogic 9—May, 2017 Security Guide—Page 41

MarkLogic Server Version MarkLogic 9—May, 2017 Compartment Security
5.3.3 Create the Documents and Add Permissions
Using the MarkLogic Query Console, add a document for each combination of permissions in the
following table:

1. You can use XQuery code similar to the following example to insert the sample
documents into a database of your choice. This code adds a document with a URI of
doc1.xml, containing one <a> element and a set of five permissions.

xquery version "1.0-ml";
declare namespace html = "http://www.w3.org/1999/xhtml";
xdmp:document-insert(
 "/doc1.xml", <a>This is document 1.,
 (xdmp:permission("can-read", "read"),
 xdmp:permission("can-read", "update"),
 xdmp:permission("US", "read"),
 xdmp:permission("US", "update"),
 xdmp:permission("Executive", "read"),
 xdmp:permission("Executive", "update"),

Document
Permissions [Role and

Capability]
Users with Access

doc1.xml (Executive, read)
(Executive, update)
(US, read)
(US, update)
(top-secret, read)
(top-secret, update)
(can-read, read)
(can-read, update)

Don

doc2.xml (US, read)
(US, update)
(can-read, read)
(can-read, update)

Don and Ellen

doc3.xml (can-read, read)
(can-read, update)

All users

doc4.xml (Canada, read)
(US, read)
(US, update)
(can-read, read)
(can-read, update)

Frank, Don, Ellen

doc5.xml (unclassified, read)
(unclassified, update)
(can-read, read)
(can-read, update)

Ellen, Hannah
Page 42—Security Guide

MarkLogic Server Compartment Security
 xdmp:permission("top-secret", "read"),
 xdmp:permission("top-secret", "update")))

The doc1.xml document can only be read by Don because the permissions designate all
three compartments and Don is the only user with a role in all three of the necessary
compartmented roles Executive, US, and top-secret, plus the basic can-read role.

2. Create the rest of the sample documents changing the sample code as needed. You need to
change the document URI and the text to correspond to doc2.xml, doc3.xml, doc4.xml, and
doc5.xml and modify the permissions for each document as suggested in the table in
“Create the Documents and Add Permissions” on page 42.

5.3.4 Test It Out
Using Query Console, you can execute a series of queries to verify that the users can access each
document as specified in the table in “Create the Documents and Add Permissions” on page 42.

For simplicity, this sample query uses xdmp:eval and xdmp:user to execute a query in the context
of each different user. Modify the document URI and the user name to verify the permissions until
you understand how the compartment security logic works. If you added the roles, users, and
documents as described in this scenario, the query results should match the table in “Create the
Documents and Add Permissions” on page 42.

xquery version "1.0-ml";
declare namespace html = "http://www.w3.org/1999/xhtml";

xdmp:eval('fn:doc("/doc1.xml")', (),
 <options xmlns="xdmp:eval">
 <user-id>{xdmp:user("Don")}</user-id>
</options>)
MarkLogic 9—May, 2017 Security Guide—Page 43

MarkLogic Server Version MarkLogic 9—May, 2017 Compartment Security
Page 44—Security Guide

MarkLogic Server Element Level Security
6.0 Element Level Security
114

MarkLogic Server includes element level security, an addition to the security model that allows
you to specify more complex security rules on specific elements in documents. The feature also
can be applied to JSON properties in a document. Using element level security, parts of a
document may be concealed from users who do not have the appropriate roles to view them.
Users without appropriate permissions cannot view the secured element or JSON property using
XPath expressions or queries. Element level security can conceal the XML element (along with
properties and attributes) or JSON property so that it does not appear in any searches, query plans,
or indexes, unless accessed by a user with a role included in query roleset.

Element level security protects elements or JSON properties in a document using a protected path,
where the path to an element or property within the document is protected so that only roles
belonging to a specific query roleset can view the contents of that element or property. Only users
with specific roles that match the specific query roleset can view the elements or properties
protected by element level security. You can set protection with element level security to conceal
a document’s sensitive contents in real time, and also control which contents can be viewed
and/or updated by other users.

Note: See “Interactions with Other MarkLogic Features” on page 110 for details about
using element level security with SQL and semantic queries.

Permissions on an element or property are similar to permissions defined on a document.
Elements or properties may contain all supported datatypes. Search results and update built-ins
will honor the permissions defined at the element level. Element level security is applied
consistently across all areas of the MarkLogic Server, including reads, updates, query plans, etc.

The protected paths are in the form of XPath expressions (not fields) that specify that an XML
element or JSON property is part of a protected path. You will need to install or upgrade to
MarkLogic 9.0-1 or later to use element level security.

This chapter describes element level security and includes the following topics:

• Understanding Element Level Security

• Example—Element Level Security

• Configuring Element Level Security

• Configure Element Level Security in the Admin UI

• Configure Element Level Security With XQuery

• Configure Element Level Security With REST

• Combining Document and Element Level Permissions

• Node Update Capabilities

• Document and Element Level Permissions Summary
MarkLogic 9—May, 2017 Security Guide—Page 45

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security
• Node Update and Document Permissions Expanded

• APIs for Element Level Security

• Algorithm That Determines Which Query Rolesets to Use

• Interactions With Compartment Security

• Interactions with Other MarkLogic Features

6.1 Understanding Element Level Security
Elements of a document can be protected from being viewed as part of a query or XPath
expression, or from being updated by a user, unless that user has the appropriate role. You specify
that an element is part of a protected path by adding the path to the Security database. You also
then add the appropriate role to a query roleset, which is also added to the Security database.

Element level security uses query rolesets to determine which elements will appear in query
results. If a query roleset does not exist with the associated role that has permissions on the path,
the role cannot view the contents of that path.

Note: A user with admin privileges can access documents with protected elements by
using fn:doc to retrieve documents (instead of using a query). To see protected
elements as part of query results, however, a user needs the appropriate role(s).

6.2 Example—Element Level Security
This section describes a scenario using element level security. The scenario is not meant to
demonstrate the correct way to set up element level security, as your situation is likely to be
unique. However, it demonstrates how element level security works and may give you ideas for
how to implement your own security model. You will need access to both MarkLogic Admin
Interface and Query Console. Install or upgrade to MarkLogic Server 9.0-x or later prior to
starting the example.

Description: For a MarkLogic application used by a department, certain parts of documents may
be hidden so that only users with the correct role may view or update those parts of the document.
Users without the proper role will not be able to see the element concealed by the protected path.

To set up the element level security for this scenario, you will follow these steps:

• Create Roles - Set up roles using the Admin UI

• Create Users and Assign Roles - Create users using the Admin UI and assign roles

• Add the Documents - Using Query Console, insert documents with permissions for two of
the three users into the Documents database

• Add Protected Paths and Query Rolesets - Add the query rolesets to the Security database
and add protected paths for elements in the documents by inserting the protected paths
into the Security database
Page 46—Security Guide

MarkLogic Server Element Level Security
• Run the Example Queries - Query the documents as different users to see the different
results

• Additional Examples - More query examples using XQuery and Server-Side JavaScript

6.2.1 Create Roles
Using the Admin Interface, create the roles as follows. You will create two roles, els-role-1 and
els-role-2.

1. In the Admin UI, click Security in the left tree menu.

2. Click Roles and then click the Create tab.

3. On the Role Configuration page, enter the information for the first role:
role name: els-role-1
description: els role 1

4. Click ok to save the role.

5. Repeat these steps to create the second role (els-role-2, els role 2)

See Roles in the Administrator’s Guide for details about creating roles.

6.2.2 Create Users and Assign Roles
Now create three users (els-user-1, els-user-2, and els-user-3) using the Admin UI. Assign
roles to two of the users.

1. In the Admin UI, click Security in the left tree menu.

2. Click Users and then click Create.
MarkLogic 9—May, 2017 Security Guide—Page 47

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security
3. On the User Configuration page, enter the information for the first user:
user name: els-user-1
description: ELS user 1
password: <password>

Enter a password of your choice.

Add this user to the first role that you created (els-role-1):

1. Scroll down the User Configuration page until you see the els-role-1 role you just
created.

2. Click the box next to els-role-1 to assign the role to the user.

3. Click ok to save your changes.
Page 48—Security Guide

MarkLogic Server Element Level Security
Repeat these steps to create a second user and third user (els-user-2, ELS user 2, els-user-3, ELS
user 3). Assign roles to the users as shown. ELS user 3 will not have an assigned role.

See Users in the Administrator’s Guide for details on creating users.

Note: Admin users must be added to a role in order to view the results of a query on
protected paths that involve concealed elements.

6.2.3 Add the Documents
For our simple example, we will use three documents, two in XML and one in JSON. Use the
Query Console to insert these documents into the Documents database, along with read and
update permissions for els-user-1 and els-user-2:

(: run this against the Documents database :)

xquery version "1.0-ml";
import module namespace sec="http://marklogic.com/xdmp/security"

at "/MarkLogic/security.xqy";

xdmp:document-insert("test1.xml",
<root>
 <bar baz="1" attr="test">abc</bar>
 <bar baz="2">def</bar>
 <bar attr="test1">ghi</bar>
</root>,
(xdmp:permission("els-role-1", "read"), xdmp:permission("els-role-2",
"read"), xdmp:permission("els-role-1", "update"),
xdmp:permission("els-role-2", "update")))
,
xdmp:document-insert("test2.xml",
<root>
 <reg expr="this is a string">1</reg>
 <reg>2</reg>
</root>,
(xdmp:permission("els-role-1", "read"), xdmp:permission("els-role-2",
"read"), xdmp:permission("els-role-1", "update"),
xdmp:permission("els-role-2", "update")))
MarkLogic 9—May, 2017 Security Guide—Page 49

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security
,
xdmp:document-insert("test1.json", object-node {
"foo" : 1, "bar" : "2", "baz" : object-node
{"bar" : array-node {3,4}, "test" : 5}
},
(xdmp:permission("els-role-1", "read"), xdmp:permission("els-role-2",
"read"), xdmp:permission("els-role-1", "update"),
xdmp:permission("els-role-2", "update")))

The code example adds permissions to the documents for els-role-1 and els-role-2 while
inserting them into the database.

6.2.4 Add Protected Paths and Query Rolesets
Using the Admin UI, add the protected paths and query rolesets to the Security database. If no
query rolesets are configured, a query will only match documents by the terms that are visible to
everyone.

To start, check for any existing protected paths using this query in the Query Console:

(: run this query against the Security database :)

fn:collection("http://marklogic.com/xdmp/protected-paths")

This will return an empty sequence if there are no protected paths. If there are protected paths,
information about those protected paths will be displayed, including the path ID, the path
expression, the permissions, and roles associated with that path.

Using the Admin UI, add protected paths with permissions for els-user-2. To add the protected
path from the Admin UI:

1. Click Security in the left tree menu.

2. Click Protected Paths and then click the Create tab.
Page 50—Security Guide

MarkLogic Server Element Level Security
3. Enter the path expression for the first path (/root/bar[@baz=1]),with read permissions for
els-role-2.

4. Click ok when you are done. Since there are no namespaces in these examples, the prefix
and namespace are not required for the protected path.

For examples using namespaces and prefixes as part of a protected path, see “Namespaces as Part
of a Protected Path” on page 75.

Repeat this for two additional protected paths, “test” and “/root/reg[fn:matches(@expr,
'is')]”.
MarkLogic 9—May, 2017 Security Guide—Page 51

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security
The three protected paths with read permissions for els-role-2 are:

/root/bar[@baz=1]
test
/root/reg[fn:matches(@expr, 'is')]

Alternatively, you can add these protected paths with the Query Console. Use this code to add
these protected paths with permissions for els-user-2 to the Security database:

(: add protected paths -> run against the Security database :)

xquery version "1.0-ml";
import module namespace sec="http://marklogic.com/xdmp/security"

at "/MarkLogic/security.xqy";

sec:protect-path("/root/bar[@baz=1]", (),
(xdmp:permission("els-role-2", "read"))),
sec:protect-path("test", (), (xdmp:permission("els-role-2", "read"))),
sec:protect-path("/root/reg[fn:matches(@expr, 'is')]", (),
(xdmp:permission("els-role-2", "read")))

=> Returns three numbers representing the protected paths

Note: Adding, unprotecting, or changing permissions on protected paths will trigger
reindexing. This reindexing will only apply to documents that include or match the
paths.
Page 52—Security Guide

MarkLogic Server Element Level Security
Now add query rolesets for these documents. In the Query Console, run this code to add query
rolesets for els-user-2:

(: run this against the Security database :)

xquery version "1.0-ml";
import module namespace sec = "http://marklogic.com/xdmp/security"
 at "/MarkLogic/security.xqy";

let $qry := 'xdmp:database-node-query-rolesets(fn:doc(), ("all"))'
let $qry-rolesets :=
xdmp:eval($qry, (),<options xmlns="xdmp:eval">
 <database>{xdmp:database('Documents')}</database>
 </options>)
return
sec:add-query-rolesets($qry-rolesets)

In most cases you will want to use the helper functions (xdmp:database-node-query-rolesets and
xdmp:node-query-rolesets) to create query rolesets. The helper function automatically created
the query rolesets based on the protected paths you have set. See “Helper Functions for Query
Rolesets” on page 87 for more information. To understand more about query rolesets, see “Query
Rolesets” on page 80.

You can also can add query rolesets manually with XQuery in the Query Console if you only have
a few query rolesets to add. Use this code, checking to be sure you are running it against the
Security database:

(: add query rolesets => run against the Security database :)

xquery version "1.0-ml";
import module namespace sec="http://marklogic.com/xdmp/security"

at "/MarkLogic/security.xqy";

let $roleset := sec:query-roleset("els-role-2")
return
sec:add-query-rolesets(sec:query-rolesets($roleset))
=>
Returns a unique ID representing the added query rolesets

Note: Adding query rolesets does not trigger reindexing, since it is only used by queries.

Check for query rolesets in the Security database using the Query Console:

(: run this query against the Security database :)

fn:collection("http://marklogic.com/xdmp/query-rolesets")
=>
Returns details about query rolesets in the Security database.

There is also a collection for protected paths in the Security database:
MarkLogic 9—May, 2017 Security Guide—Page 53

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security
(: run this query against the Security database :)

fn:collection("http://marklogic.com/xdmp/protected-paths")
=>
Returns details about protected paths in the Security database.

The els-role-2 can now see the elements in these paths, but the els-user-1 cannot:

test
/root/bar[@baz=1]
/root/reg[fn:matches(@expr, 'is')]

6.2.5 Run the Example Queries
This section includes examples in both XQuery and JavaScript. Run the following queries in the
Query Console. For simplicity, the sample queries use xdmp:eval and xdmp:get-current-user (or
xdmp.eval and xdmp.getCurrentUser) to execute a query in the context of each user. Different
elements and properties in a document are concealed for the different roles. Notice the different
types of queries, using either XQuery or JavaScript, that are used to search for content.

Note: These examples assume that you have access permissions for both the MarkLogic
Admin Interface and the Query Console.

This section contains these topics:

• XQuery Examples of Element Level Security

• JavaScript Examples of Element Security

6.2.5.1 XQuery Examples of Element Level Security
Run these queries on the Documents database using XQuery in Query Console. First run the
queries in the context of els-user-1:

(: run this against the Documents database :)

xdmp:eval(
'cts:search(fn:doc(), cts:word-query("def"), "unfiltered"),
"---",
cts:search(fn:doc(), cts:element-attribute-word-query(xs:QName("bar"),
xs:QName("attr"), "test"), "unfiltered"),
"--",
cts:search(fn:doc(), cts:json-property-value-query("bar", "2")),
"---",
cts:search(fn:doc(), cts:element-attribute-word-query(xs:QName("reg"),
xs:QName("expr"), "is"), "unfiltered")',
(),
 <options xmlns="xdmp:eval">
 <user-id>{xdmp:user("els-user-1")}</user-id>
 </options>
)
Page 54—Security Guide

MarkLogic Server Element Level Security
=>
<?xml version="1.0" encoding="UTF-8"?>
<root>

<bar baz="2">def</bar>
<bar attr="test1">ghi</bar>

</root>

--
{

"foo": 1,
"bar": "2",
"baz": {

"bar": [
3,
4

]
}

}

Notice that in the first query, all of the documents are returned, but the elements with protected
paths are missing from the content:

<bar baz="1" attr="test">abc</bar>
"test": 5
<reg expr="this is a string">1</reg>

In the second query, the document does not show up at all because the query is searching on a
protected path that els-user-1 is not allowed to see (protected path “/root/bar[@baz=1]”).

Note: If you are getting different results, check to see that you have set up your user roles
correctly and added the query rolesets to the Security database.

Now, modify the query to use the context of the els-user-2 and run the queries again:

(: run this against the Documents database :)

xdmp:eval(
'cts:search(fn:doc(), cts:word-query("def"), "unfiltered"),
"---",
cts:search(fn:doc(), cts:element-attribute-word-query(xs:QName("bar"),
xs:QName("attr"), "test1"), "unfiltered"),
"--",
cts:search(fn:doc(), cts:json-property-value-query("bar", "2")),
"---",
cts:search(fn:doc(), cts:element-attribute-word-query(xs:QName("reg"),
xs:QName("expr"), "is"), "unfiltered")',
(),
 <options xmlns="xdmp:eval">
 <user-id>{xdmp:user("els-user-2")}</user-id>
MarkLogic 9—May, 2017 Security Guide—Page 55

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security
 </options>
)

=>
<?xml version="1.0" encoding="UTF-8"?>
<root>

<bar baz="1" attr="test">abc</bar>
<bar baz="2">def</bar>
<bar attr="test1">ghi</bar>

</root>

<?xml version="1.0" encoding="UTF-8"?>
<root>

<bar baz="1" attr="test">abc</bar>
<bar baz="2">def</bar>
<bar attr="test1">ghi</bar>

</root>
--
{

"foo": 1,
"bar": "2",
"baz": {

"bar": [
3,
4

],
"test": 5

}
}

<?xml version="1.0" encoding="UTF-8"?>
<root>

<reg expr="this is a string">1</reg>
<reg>2</reg>

</root>

This time all of the documents are returned, along with the protected elements. Notice that the one
document is returned twice; two different queries find the same document.

Run the query one more time using the xdmp:eval pattern as els-user-3 and notice that none of
the documents are returned because els-user-3 does not have the basic permissions to read the
documents.

(: run this against the Documents database :)

xdmp:eval(
'cts:search(fn:doc(), cts:word-query("def"), "unfiltered"),
"---",
cts:search(fn:doc(), cts:element-attribute-word-query(xs:QName("bar"),
xs:QName("attr"), "test1"), "unfiltered"),
"--",
cts:search(fn:doc(), cts:json-property-value-query("bar", "2")),
"---",
Page 56—Security Guide

MarkLogic Server Element Level Security
cts:search(fn:doc(), cts:element-attribute-word-query(xs:QName("reg"),
xs:QName("expr"), "is"), "unfiltered")',
(),
 <options xmlns="xdmp:eval">
 <user-id>{xdmp:user("els-user-3")}</user-id>
 </options>
)

=>

Because els-user-3 does not have document level permissions, no documents are returned. You
can use document level permissions along with element level security for additional security. See
“Combining Document and Element Level Permissions” on page 96 for more information.

Now unprotect the paths and run the previous query again without the protected paths to see
difference in output. First unprotect the paths:

(: run this against the Security database :)

import module namespace sec="http://marklogic.com/xdmp/security"
at "/MarkLogic/security.xqy";

sec:unprotect-path("/root/bar[@baz=1]", ()),
sec:unprotect-path("test", ()),
sec:unprotect-path("/root/reg[fn:matches(@expr, 'is')]", ())

Note: Adding or unprotecting protected paths will trigger reindexing. After unprotecting
elements, you must wait for reindexing to finish.

Unprotecting the paths does not remove them from the database. You will still see the protected
paths in the Admin UI or when you run
fn:collection("http://marklogic.com/xdmp/protected-paths") against the Security database.
But you will be able to see the whole document once the protected paths are unprotected, if you
have document permissions for the document. See “Unprotecting or Removing Paths” on page 76
for more details.

Look through the code examples and run the queries using the xdmp:eval pattern to change users.
Run the queries in the context of the different users to better understand how the element level
security logic works.

6.2.5.2 JavaScript Examples of Element Security
You can also query the documents using Server-Side JavaScript. Run these JavaScript queries,
using the previous users and documents, on the Documents database in Query Console.
MarkLogic 9—May, 2017 Security Guide—Page 57

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security
First run the queries in the context of els-user-1:

// run this against the Documents database

var prog1 = `cts.search(cts.wordQuery("def"), "unfiltered")`;
var prog2 = `cts.search(cts.elementAttributeWordQuery(xs.QName("bar"),
xs.QName("attr"), "test1"), "unfiltered")`;
var prog3 = `cts.search(cts.jsonPropertyValueQuery("bar", "2"))`;
var prog4 = `cts.search(cts.elementAttributeWordQuery(xs.QName("reg"),
xs.QName("expr"), "is"), "unfiltered")`;
var res = [];
res.push(xdmp.eval(prog1, null, {userId:xdmp.user("els-user-1")}));
res.push(xdmp.eval(prog2, null, {userId:xdmp.user("els-user-1")}));
res.push(xdmp.eval(prog3, null, {userId:xdmp.user("els-user-1")}));
res.push(xdmp.eval(prog4, null, {userId:xdmp.user("els-user-1")}));
res;
=>
[
"<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n
<root><bar baz=\"2\">def</bar>
<bar attr=\"test1\">ghi</bar>
</root>",
"<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n
<root>
<bar baz=\"2\">def</bar>
<bar attr=\"test1\">ghi</bar>
</root>",

{
"foo": 1,

"bar": "2",
"baz": {

"bar": [
3,
4

]
}

},
null

]

Notice that all of the documents are returned, but the elements with protected paths are missing
from the content:

<bar baz="1" attr="test">abc</bar>
"test": 5
<reg expr="this is a string">1</reg>

In the second query, the document does not show up at all because the query is searching on a
protected path that els-user-1 is not allowed to see (protected path “test”).

Note: If you are getting different results, check to see that you have set up your user roles
correctly and added the query rolesets to the Security database.
Page 58—Security Guide

MarkLogic Server Element Level Security
Now, modify the query to use the context of the els-user-2 and run the queries again:

// run this against the Documents database

var prog1 = `cts.search(cts.wordQuery("def"), "unfiltered")`;
var prog2 = `cts.search(cts.elementAttributeWordQuery(xs.QName("bar"),
xs.QName("attr"), "test1"), "unfiltered")`;
var prog3 = `cts.search(cts.jsonPropertyValueQuery("bar", "2"))`;
var prog4 = `cts.search(cts.elementAttributeWordQuery(xs.QName("reg"),
xs.QName("expr"), "is"), "unfiltered")`;
var res = [];
res.push(xdmp.eval(prog1, null, {userId:xdmp.user("els-user-2")}));
res.push(xdmp.eval(prog2, null, {userId:xdmp.user("els-user-2")}));
res.push(xdmp.eval(prog3, null, {userId:xdmp.user("els-user-2")}));
res.push(xdmp.eval(prog4, null, {userId:xdmp.user("els-user-2")}));
res;
=>
[
"<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n
<root>
<bar baz=\"1\" attr=\"test\">abc</bar>
<bar baz=\"2\">def</bar>
<bar attr=\"test1\">ghi</bar>
</root>",
"<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n
<root><bar baz=\"1\" attr=\"test\">abc</bar>
<bar baz=\"2\">def</bar>
<bar attr=\"test1\">ghi</bar>
</root>",

{
"foo": 1,

"bar": "2",
"baz": {

"bar": [
3,
4

]
,

"test": 5
}

},
"<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n
<root>
<reg expr=\"this is a string\">1</reg>
<reg>2</reg>
</root>"
]

This time all of the documents are returned, along with the protected elements. Notice that the one
document is returned twice; two different queries will find the same document.
MarkLogic 9—May, 2017 Security Guide—Page 59

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security
Run the query one more time using the xdmp:eval pattern as els-user-3 and notice that none of
the documents are returned because els-user-3 does not have the basic permissions to read the
documents.

// run this against the Documents database

var prog1 = `cts.search(cts.wordQuery("def"), "unfiltered")`;
var prog2 = `cts.search(cts.elementAttributeWordQuery(xs.QName("bar"),
xs.QName("attr"), "test1"), "unfiltered")`;
var prog3 = `cts.search(cts.jsonPropertyValueQuery("bar", "2"))`;
var prog4 = `cts.search(cts.elementAttributeWordQuery(xs.QName("reg"),
xs.QName("expr"), "is"), "unfiltered")`;
var res = [];
res.push(xdmp.eval(prog1, null, {userId:xdmp.user("els-user-3")}));
res.push(xdmp.eval(prog2, null, {userId:xdmp.user("els-user-3")}));
res.push(xdmp.eval(prog3, null, {userId:xdmp.user("els-user-3")}));
res.push(xdmp.eval(prog4, null, {userId:xdmp.user("els-user-3")}));
res;
=>
[
null,
null,
null,
null
]

Because els-user-3 does not have document level permissions, no documents are returned. You
can use document level permissions along with element level security for additional security. See
“Combining Document and Element Level Permissions” on page 96 for more information.

Now unprotect the paths and run the previous query again without the protected paths to see
difference in output. Unprotect the paths :

//run this against the Security database

var security = require('/MarkLogic/security.xqy');
declareUpdate();

security.unprotectPath('/root/bar[@baz=1]', []);
security.unprotectPath('test', []);
security.unprotectPath('/root/reg[fn:matches(@expr, "is")]', []);

Note: Adding, unprotecting, or changing permissions on protected paths will trigger
reindexing. After unprotecting elements, you must wait for reindexing to finish.
Page 60—Security Guide

MarkLogic Server Element Level Security
Unprotecting the paths does not remove them from the database. You will still see the protected
paths in the Admin UI or when you run
fn:collection("http://marklogic.com/xdmp/protected-paths") against the Security database.
But if you are els-role-1 or els-role-2, you will be able to see the whole document once the
protected paths are unprotected, if you have document permissions for the document (i.e.
els-role-1 and els-role-2, but not els-role-3). See “Unprotecting or Removing Paths” on
page 76 for more details.

Look through the code examples and run the queries using the xdmp.eval pattern. Run the queries
in the context of the different users to better understand how the element level security logic
works.

6.2.6 Additional Examples
This section includes additional examples to try, both in XQuery and Server-Side JavaScript, that
demonstrate the concealing of elements. Using fn:doc instead of a cts query to retrieve
documents, different users will be able to view (or not view) protected elements. Since there is no
query involved, query rolesets are not required.

These examples make use of the users and roles set up in the earlier example. (See
“Example—Element Level Security” on page 46 for details.) The first example shows hierarchies
of permissions (top-secret, secret, and unclassified) in a document. The second example shows a
slightly different way of protecting content with attributes. The example queries can be done in
using XQuery or JavaScript.

• XQuery - Query Element Hierarchies

• XQuery - Matching By Paths or Attributes

• JavaScript - Query Element Hierarchies

• JavaScript - Matching By Paths or Attributes

6.2.6.1 XQuery - Query Element Hierarchies
Use this code to insert a new document (along with permissions) into the Documents database:

(: insert document with permissions => run against Documents database
:)

xquery version "1.0-ml";

xdmp:document-insert(
"hierarchy.xml", <root>
 <title>Title of the Document</title>
 <summary>Summary of document contents</summary>
 <executive-summary>Executive summary of the document contents
 <secret>Only role having "secret" can read this
 <top-secret>Only role having "top-secret" can read this
 </top-secret>
MarkLogic 9—May, 2017 Security Guide—Page 61

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security
 </secret>
</executive-summary>
<content>Contents of document
 <top-secret>Only role with "top-secret" can read this
 <secret>Only role with "secret" can read this</secret>
 </top-secret>
Unclassified content
</content>
</root>,
(xdmp:permission("els-role-1", "read"), xdmp:permission("els-role-2",
"read"),
xdmp:permission("els-role-1", "update"), xdmp:permission("els-role-2",
"update")))

Add protected paths with permissions for roles to the Security database:

(: add protected paths -> run against the Security database :)

xquery version "1.0-ml";
import module namespace sec="http://marklogic.com/xdmp/security"

at "/MarkLogic/security.xqy";

sec:protect-path("secret", (), (xdmp:permission("els-role-2",
"read"))),
sec:protect-path("top-secret", (), (xdmp:permission("els-role-1",
"read")))

=>
Returns two numbers representing the protected paths

Note: Adding, unprotecting, or changing permissions on protected paths will trigger
reindexing.

Test this example in the context of the different els-users. This first query uses the context of
els-user-1:

(: run this against the Documents database :)

xdmp:eval('fn:doc("hierarchy.xml")',(),
<options xmlns="xdmp:eval">

<user-id>{xdmp:user("els-user-1")}</user-id>
</options>

)
=>
<root>
<title>Title of the Document
</title>
<summary>Summary of document contents</summary>
<executive-summary>Executive summary of contents
</executive-summary>

<content>Contents of document
<top-secret>Only role with "top-secret" can read this</top-secret>
Page 62—Security Guide

MarkLogic Server Element Level Security
Unclassified content</content>
</root>

The “top-secret” role (els-user-1) cannot see the elements marked with “secret”, only those that
have no protected paths or marked with the protected path for “top-secret”. Next, run the query in
the context of els-user-2:

(: run this against the Documents database :)

xdmp:eval('fn:doc("hierarchy.xml")',(),
<options xmlns="xdmp:eval">

<user-id>{xdmp:user("els-user-2")}</user-id>
</options>

)
=>
<root>
<title>Title of the Document</title>
<summary>Summary of document contents</summary>
<executive-summary>Executive summary of contents
<secret>Only role having "secret" can read

this</secret></executive-summary>
<content>Contents of document
Unclassified content</content>

</root>

Notice that even though in the original document there is an element “secret” within the
“top-secret” contents of the document, it is a child of the “top-secret” element and therefore
hidden to users without the “top-secret” role.

The els-user-1 (“top-secret”) cannot see the “secret” content unless you add the els-role-2 to
els-user-1. When you add the role, els-user-1 will be able to see both the “secret” and
“top-secret” elements.

If you run the query as els-user-3, the query returns an empty sequence. The els-user-3 from
the previous query does not have permission to even see the document.

6.2.6.2 XQuery - Matching By Paths or Attributes
This next example shows how protected paths can be used with fn:contains and fn:matches. The
example uses the same roles from the previous example, adding a new role (els-role-3).

First unprotect the protected paths from the previous example:

(: unprotect the protected paths -> run against the Security database
:)

xquery version "1.0-ml";
import module namespace sec = "http://marklogic.com/xdmp/security"

at "/MarkLogic/security.xqy";

MarkLogic 9—May, 2017 Security Guide—Page 63

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security
sec:unprotect-path("secret", ()),
sec:unprotect-path("top-secret", ())

Note: Adding or unprotecting protected paths will trigger reindexing. After unprotecting
elements, you must wait for reindexing to finish.

Create a new role els-role-3 and add els-user-3 to the role. See “Create Roles” on page 47 and
“Create Users and Assign Roles” on page 47 for details.

Add a new document with permissions to the Documents database:

(: run this against the Documents database :)

xquery version "1.0-ml";

xdmp:document-insert(
"attributes.xml", <root>
<title>Document Title</title>
<summary>Summary of document contents</summary>
<executive-summary>Executive summary of contents
<info attr="EU">Only role with "EU" attribute can read this summary

</info>
<info attr="UK">Only role with "UK" attribute can read this summary

</info>
<info attr="US">Only role with "US" attribute can read this summary

</info>
</executive-summary>
<content>Contents of document
Unclassified content
<notes>

<info attr="EU">Only role with "EU" attribute can read this
content</info>

<info attr="UK">Only role with "UK" attribute can read this
content</info>

<info attr="US">Only role with "US" attribute can read this
content</info>

</notes>
</content>

</root>,
(xdmp:permission("els-role-1", "read"), xdmp:permission("els-role-2",
"read"), xdmp:permission("els-role-3", "read"),
xdmp:permission("els-role-1", "update"), xdmp:permission("els-role-2",
"update"), xdmp:permission("els-role-3", "update")))

Add the new protected paths with permissions for roles to the Security database:

(: add new protected paths -> run against the Security database :)

xquery version "1.0-ml";
import module namespace sec="http://marklogic.com/xdmp/security"

at "/MarkLogic/security.xqy";
Page 64—Security Guide

MarkLogic Server Element Level Security
sec:protect-path("//info[fn:matches(@attr, 'US')]", (),
(xdmp:permission("els-role-1", "read"))),
sec:protect-path("//info[fn:matches(@attr, 'UK')]", (),
(xdmp:permission("els-role-2", "read"),

xdmp:permission("els-role-3", "read"))),
sec:protect-path("//info[fn:matches(@attr, 'EU')]", (),
(xdmp:permission("els-role-3", "read")))
=>
Returns three numbers representing the protected paths

Note: Adding, unprotecting, or changing permissions on protected paths will trigger
reindexing.

Notice that the protected paths include attributes in the document elements. Also note that
els-role-3 has permissions for two protected paths (@attr, ‘UK’ and @attr, ‘EU’).

Run this next query, similar to the previous queries, this time looking for the attributes.xml
document. First query in the context of els-user-1 who has a role that can see the “US” attribute:

(: run this against the Documents database :)

xdmp:eval('fn:doc("attributes.xml")',(),
<options xmlns="xdmp:eval">

<user-id>{xdmp:user("els-user-1")}</user-id>
</options>

)

=>
<?xml version="1.0" encoding="UTF-8"?>
<root>
<title>Document Title</title>
<summary>Summary of document contents</summary>
<executive-summary>Executive summary of contents
<info attr="US">Only role having "US" attribute can read this

summary</info>
</executive-summary>
<content>Contents of document
Unclassified content

<notes>
<info attr="US">Only role having "US" attribute can read this content
</info>

</notes>
</content>

</root>

Next modify the query to run in the context of els-user-2, who has a role that can see the “UK”
attribute:

(: run this against the Documents database :)

xdmp:eval('fn:doc("attributes.xml")',(),
<options xmlns="xdmp:eval">
MarkLogic 9—May, 2017 Security Guide—Page 65

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security
<user-id>{xdmp:user("els-user-2")}</user-id>
</options>

)

=>
<?xml version="1.0" encoding="UTF-8"?>
<root>
<title>Document Title</title>
<summary>Summary of document contents</summary>
<executive-summary>Executive summary of contents
<info attr="UK">Only role having "UK" attribute can read this summary
</info>

</executive-summary>
<content>Contents of document

 Unclassified content
<notes>
<info attr="UK">Only role having "UK" attribute can read this

content</info>
</notes>
</content>

</root>

And finally modify the query to run in the context of els-user-3:

(: run this against the Documents database :)

xdmp:eval('fn:doc("attributes.xml")',(),
<options xmlns="xdmp:eval">

<user-id>{xdmp:user("els-user-3")}</user-id>
</options>

)

=>
<?xml version="1.0" encoding="UTF-8"?>
<root>
<title>Document Title</title>
<summary>Summary of document contents</summary>
<executive-summary>Executive summary of contents
<info attr="EU">Only role having "EU" attribute can read this summary

</info>
<info attr="UK">Only role having "UK" attribute can read this summary

</info>

</executive-summary>
<content>Contents of document
Unclassified content

<notes>
<info attr="EU">Only role having "EU" attribute can read this content

</info>
<info attr="UK">Only role having "UK" attribute can read this content
Page 66—Security Guide

MarkLogic Server Element Level Security

</info>

</notes>
</content>

</root>

The els-user-3 has protected path permissions on both elements with the “EU” info attribute and
the elements with the “UK” info attribute, so the els-user-3 can see both elements. If you are
getting different results, check to be sure that you created an els-role-3 and added the
els-user-3 to that role.

Note: If you run the query in the context of the admin user, you will be able to see the
entire document because the query is using fn:doc.

6.2.6.3 JavaScript - Query Element Hierarchies
You can also try these examples demonstrating concealed elements using JavaScript. Using
fn:doc instead of a cts query to retrieve documents, different users will be able to view (or not
view) protected elements. Since there is no query involved, query rolesets are not required.

Use this JavaScript code to insert this document (with permissions) into the Documents database:

// insert document with permissions -> run against Documents database

declareUpdate();
var perms = [xdmp.permission("els-role-1", "read"),
xdmp.permission("els-role-2", "read"),
xdmp.permission("els-role-1", "update"), xdmp.permission("els-role-2",
"update")
];
xdmp.documentInsert(
"hierarchy.xml", xdmp.unquote(`
<root>
 <title>Title of the Document</title>
 <summary>Summary of document contents</summary>
 <executive-summary>Executive summary of the document contents
 <secret>Only role having "secret" can read this
 <top-secret>Only role having "top-secret" can read this
 </top-secret>
 </secret>
</executive-summary>
<content>Contents of document
 <top-secret>Only role with "top-secret" can read this
 <secret>Only role with "secret" can read this</secret>
 </top-secret>
Unclassified content
</content>
</root>
`), {permissions: perms})

Add protected paths with permissions for roles to the Security database:
MarkLogic 9—May, 2017 Security Guide—Page 67

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security
// add protected paths -> run against the Security database

declareUpdate();
var security = require('/MarkLogic/security.xqy');

security.protectPath('secret', [], [xdmp.permission("els-role-2",
"read", "element")]),
security.protectPath('top-secret', [], [xdmp.permission("els-role-1",
"read", "element")])
=>
Returns a number representing the protected paths

Note: Adding, unprotecting, or changing permissions on protected paths will trigger
reindexing.

Test this example in the context of the different els-users. This query uses the context of
els-user-1:

// run this query against the Documents database

xdmp.eval("fn.doc('hierarchy.xml')", null,
 {
 "userId" : xdmp.user("els-user-1")
 })
=>
<?xml version="1.0" encoding="UTF-8"?>
<root>

<title>Title of the Document</title>
<summary>Summary of document contents</summary>
<executive-summary>Executive summary of the document contents

</executive-summary>
<content>Contents of document

<top-secret>Only role with "top-secret" can read this</top-secret>

Unclassified content
</content>

</root>

The “top-secret” role (els-user-1) cannot see the elements marked with “secret”, only those that
have no protected paths or marked with the protected path for “top-secret”. Next, run the query in
the context of els-user-2:

// run this query against the Documents database

xdmp.eval("fn.doc('hierarchy.xml')", null,
{

"userId" : xdmp.user("els-user-2")
})

=>
<?xml version="1.0" encoding="UTF-8"?>
Page 68—Security Guide

MarkLogic Server Element Level Security
<root>
<title>Title of the Document</title>
<summary>Summary of document contents</summary>
<executive-summary>Executive summary of the document contents

<secret>Only role having "secret" can read this</secret>
</executive-summary>
<content>Contents of document

Unclassified content
</content>

</root>

Notice that even though in the original document, there is an element “secret” within the
“top-secret” contents of the document, it is a child of the “top-secret” element and therefore
hidden to users without the “top-secret” role.

The els-user-1 (“top-secret”) cannot see the “secret” content unless you add the els-role-2 to
els-user-1. When you add the role, els-user-1 will be able to see both the “secret” and
“top-secret” elements.

If you run the query as els-user-3, the query returns an empty sequence. The els-user-3 from
the previous query does not have permission to even see the document.

6.2.6.4 JavaScript - Matching By Paths or Attributes
This next example shows how protected paths can be used with fn.contains and fn.matches. The
example uses the same roles from the previous example, adding a new role (els-role-3).

First unprotect the protected paths from the previous example:

// unprotect protected paths -> run against the Security database

declareUpdate();
var security = require('/MarkLogic/security.xqy');

security.unprotectPath('secret', []),
security.unprotectPath('top-secret', [])

Note: Adding, unprotecting, or changing permissions on protected paths will trigger
reindexing.

Create a new role els-role-3 and add els-user-3 to the role. See “Create Roles” on page 47 and
“Create Users and Assign Roles” on page 47 for details.

Add a new document to the Documents database:

// insert document and permissions -> run this against the Documents
database
MarkLogic 9—May, 2017 Security Guide—Page 69

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security
declareUpdate();
var perms = [xdmp.permission("els-role-1", "read"),
xdmp.permission("els-role-2", "read"),
xdmp.permission("els-role-3", "read"), xdmp.permission("els-role-1",
"update"),
xdmp.permission("els-role-2", "update"), xdmp.permission("els-role-3",
"update")
];
xdmp.documentInsert(
"attributes.xml", xdmp.unquote(`
<root>

<title>Document Title</title>
<summary>Summary of document contents</summary>
<executive-summary>Executive summary of contents

<info attr="EU">Only role with "EU" attribute can read this summary
</info>

<info attr="UK">Only role with "UK" attribute can read this summary
</info>

<info attr="US">Only role with "US" attribute can read this summary
</info>

</executive-summary>
<content>Contents of document
Unclassified content

<notes>
<info attr="EU">Only role with "EU" attribute can read this

content</info>
<info attr="UK">Only role with "UK" attribute can read this

content</info>
<info attr="US">Only role with "US" attribute can read this

content</info>
</notes>

</content>
</root>
`), {permissions: perms})

Add the new protected paths with permissions for roles to the Security database:

// add new protected paths -> run against the Security database

declareUpdate();
var security = require('/MarkLogic/security.xqy');

security.protectPath("//info[fn:matches(@attr, 'US')]",
[],[xdmp.permission("els-role-1","read", "element")]),
security.protectPath("//info[fn:matches(@attr, 'UK')]",
[],[xdmp.permission("els-role-2", "read", "element"),

xdmp.permission("els-role-3", "read", "element")]),
security.protectPath("//info[fn:matches(@attr, 'EU')]", [],

[xdmp.permission("els-role-3", "read", "element")])

=>
Returns one number representing the protected paths
Page 70—Security Guide

MarkLogic Server Element Level Security
Note: Adding or changing permissions on protected paths will trigger reindexing.

Run the same queries as before, first in the context of els-user-1, who has a role that can see the
“US” attribute:

// run this query against the Documents database

xdmp.eval("fn.doc('attributes.xml')", null,
 {
 "userId" : xdmp.user("els-user-1")
 });
=>
<?xml version="1.0" encoding="UTF-8"?>
<root>

<title>Document Title</title>
<summary>Summary of document contents</summary>
<executive-summary>Executive summary of contents

<info attr="US">Only role with "US" attribute can read this
summary</info>

</executive-summary>
<content>Contents of document
Unclassified content

<notes>
<info attr="US">Only role with "US" attribute can read this

content</info>
</notes></content>

</root>

Next modify the query to run in the context of els-user-2,who has a role that can see the “UK”
attribute

// run this query against the Documents database

xdmp.eval("fn.doc('attributes.xml')", null,
 {
 "userId" : xdmp.user("els-user-2")
 });
=>
<?xml version="1.0" encoding="UTF-8"?>
<root>

<title>Document Title</title>
<summary>Summary of document contents</summary>
<executive-summary>Executive summary of contents

<info attr="UK">Only role with "UK" attribute can read this
summary</info></executive-summary>

<content>Contents of document
Unclassified content

<notes>
MarkLogic 9—May, 2017 Security Guide—Page 71

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security
<info attr="UK">Only role with "UK" attribute can read this
content</info>

</notes></content>
</root>

And finally modify the query to run in the context of els-user-3:

// run this query against the Documents database

xdmp.eval("fn.doc('attributes.xml')", null,
 {
 "userId" : xdmp.user("els-user-3")
 });
=>
<?xml version="1.0" encoding="UTF-8"?>
<root>

<title>Document Title</title>
<summary>Summary of document contents</summary>
<executive-summary>Executive summary of contents

<info attr="EU">Only role with "EU" attribute can read this

summary</info>
<info attr="UK">Only role with "UK" attribute can read this

summary</info>
</executive-summary>
<content>Contents of document

 Unclassified content
<notes>
<info attr="EU">Only role with "EU" attribute can read this

content</info>
<info attr="UK">Only role with "UK" attribute can read this
content</info>
</notes></content>

</root>

The els-user-3 has protected path permissions on both elements with the “EU” info attribute and
the elements with the “UK” info attribute. So that user can see both elements.

Note: If you run the query in the context of the admin user, you will be able to see the
entire document because the query is using fn.doc.
Page 72—Security Guide

MarkLogic Server Element Level Security
6.3 Configuring Element Level Security
Configuring element level security includes setting up protected paths and creating query rolesets,
then adding them to the Security database. This section covers the steps you will need to follow to
configure element level security. As an overview, you will need to do the following:

• Set up roles

• Create users and assign roles

• Add or update documents with permissions for users

• Add protected paths for elements in documents, by inserting the protected paths into the
Security database

• Add the query rolesets to the Security database

Configuring the query rolesets is a task for the administrator. There are two helper functions to
help configure query rolesets. The helper function xdmp:database-node-query-rolesets is used
for querying documents already in your database to discover existing query rolesets, while
xdmp:node-query-rolesets is used to query for protected paths in documents as they are being
loaded into the database. See “APIs for Element Level Security” on page 104 for more
information. You can configure element level security using the Admin UI, using XQuery, or by
using REST.

Note: The number of protected paths that you set on a single element may impact
performance. One or two protected paths on an element will have no discernable
impact (less than 5% in our testing), 10 or so protected paths may have some
impact (around 10%), but setting 100 or so protected paths on a single element will
cause severe and noticeable impact on performance.

This section covers these topics:

• Protected Paths

• Performance Considerations With Protected Paths

• Query Rolesets

6.3.1 Protected Paths
You can define permissions on an element in the same way that you define permissions on a
document. Element level security works by specifying an “indexable” path to an element (or
JSON property) and configuring permissions on that path - creating a protected path.

For performance and security reasons, you can only use a subset of XPath for defining protect
paths. For details, see Element Level Security in the XQuery and XSLT Reference Guide.

The section contains these topics:

• Examples of Protected Paths
MarkLogic 9—May, 2017 Security Guide—Page 73

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security
• Namespaces as Part of a Protected Path

• Unprotecting or Removing Paths

• Performance Considerations With Protected Paths

Note: The read, update, and insert permissions for an element are checked separately.
For instance, if there are permissions for read, but no permissions for update or
insert, there is no control for update or insert on that element. If there are no
permissions on an element, anyone can read that element, given that they have the
proper document level permssions.

6.3.1.1 Examples of Protected Paths
This table shows some examples of protected paths.

Protected Path Permissions Result

/foo/bar (role1, read) Element “bar” is readable by
“role1” but concealed for all
other roles. No mention of other
permissions means that others
can update or insert content for
this element.

/foo/bar (role1, read)
(role2, read)

Element “bar” is readable by
“role1” or “role2” but con-
cealed for all other roles. No
mention of other permissions
means that others can update or
insert content for this element.

/foo/bar (role1, read)
(role1, update)

Element “bar” is readable by
“role1” but concealed for all
other roles. “Role1” can update
the element. No mention of
insert permissions means that
others can insert content for this
element.

/foo/bar[@attr= “test”] (role1, read)
(role1, update)

Same as above except that it
only applies to a bar element if
the element has an attribute
“attr” with the value “test”. No
mention of insert permissions
means that others can insert con-
tent for this element.
Page 74—Security Guide

MarkLogic Server Element Level Security
For more about update permissions with element level security, see the table in the section
“Document and Element Level Permissions Summary” on page 100.

Warning Defining element level security protection (protected paths) on “reserved”
elements or properties (for example, alerting, thesaurus, and so on) may cause
undefined behavior.

The path is an XPath expression, not a field.

6.3.1.2 Namespaces as Part of a Protected Path
Both namespaces and prefixes can be used as part of a protected path. For instance this simple
example uses the namespace “ex” as part of the protected path:

(: add protected paths -> run against the Security database :)

xquery version "1.0-ml";
import module namespace sec = "http://marklogic.com/xdmp/security"
 at "/MarkLogic/security.xqy";

declare namespace ex = "http://marklogic.com/example";

let $role := "role-4"
return
 sec:protect-path(
 "/ex:envelope/ex:instance/employee/salary",
 (let $prefix := "ex",$namespace-uri :=
 "marklogic.com/example"
 return

bar (role1, read) This is the simplest path. Ele-
ment “bar” is readable by “role
1”, but concealed for all other
roles. This applies to all “bar”
elements. No mention of other
permissions means that others
can update or insert content for
this element.

/root/reg[fn:matches(@expr, 'is')] (role1, read)
(role1, update)

Elements that match the regular
express for ‘is” will be readable
by “role 1”, but concealed for all
other roles. “Role 1” can update
the element. No mention of
insert permissions means that
others can insert content for this
element.

Protected Path Permissions Result
MarkLogic 9—May, 2017 Security Guide—Page 75

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security
 sec:security-path-namespace($prefix, $namespace-uri)),
 (xdmp:permission($role, "read"))
)

For simple cases, you can also specify a namespace as part of a protected path when configuring
protected paths in the Admin UI.

You can also specify a namespace when using the helper functions
xdmp:database-node-query-rolesets and xdmp:node-query-rolesets. See page “Helper
Functions for Query Rolesets” on page 87 for more info.

6.3.1.3 Unprotecting or Removing Paths
Unprotecting protected paths does not remove them from the database, it removes the
permissions, which disables the protection. You will still see the unprotected paths in the Admin
UI. The unprotected paths can also be seen by running
fn:collection("http://marklogic.com/xdmp/protected-paths") against the Security database,
in the Query Console.

Removing protected paths is a two step process. First you must unprotect the path, and then you
can remove it.

Note: You must first unprotect a path before removing it to trigger the reindexer. Since
query rolesets changes don’t require reindexing, there is no need for the separate
step of unprotecting before removing a query roleset.
Page 76—Security Guide

MarkLogic Server Element Level Security
To unprotect a protected path:

1. Navigate to Protected Path Configuration by clicking Security and then Protected Paths in
the left tree menu.

2. Click on the name of the protected path you want to unprotect.

3. On the Protected Path Configuration page there are two buttons; an unprotect button and a
delete button (greyed out).

4. Click the unprotect button.

5. Click ok to save the changes.

When you have unprotected the protected paths, you’ll see the protected paths on the Summary
page, but no permissions are associated with the paths.
MarkLogic 9—May, 2017 Security Guide—Page 77

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security
To remove a path, you will need to first unprotect the path. See “Unprotecting or Removing
Paths” on page 76

1. After unprotecting the path, go back to the Protected Path Configuration page. Notice that
the delete button is now available and the unprotect button is greyed out.

2. Click the delete button to remove this protected path.

3. Click ok to confirm and save your changes.

The deleted path no longer appears on the Summary page of protected paths.

Note: Adding, unprotecting, or changing permissions for protected paths will trigger
reindexing of the relevant databases. Having too many unprotected paths for your
database can affect performance. Best practice is to delete unprotected paths when
you no longer need them. Be sure to let the reindexing triggered by unprotecting
finish before you delete the paths.
Page 78—Security Guide

MarkLogic Server Element Level Security
6.3.1.4 Performance Considerations With Protected Paths
The fewer protected paths that you have in your documents, the better performance you will have
with element level security. One way to reduce the number of protected paths is to group
information. If you have the ability to control the schema of your documents, you can group
information that you want to protect under one element and then protect that element.

In this example, an insurance company has a schema that groups policy information to control
access to the information, making it easier to protect client information and policy information by
role (US Read, ID_Read, Compliance, and Risk):

"policy": {
"access": "US Read",
"client": {

"access": "ID_Read",
"name": "Paul",
"address": "999 Broadway St",
"phone": "323-344-1555",
"country": "US",
"ssn4digits": "5664"

}
,
"clientSSN": {

"access": "Compliance",
"ssn": "999-999-5664"

}
,
"clientIncome": {

"access": "Risk",
"income": "44,4444"

}
,
"info": {

"access": "Risk",
"propertyType": "Home",
"premium": 432,
"assetValue": 750000,
"currency": "Dollar"

}
}

Different users would be able to see different parts of the data: the Call Center might have the
ID_Read role, the Financial Risk Researcher might have the Risk role, and a Compliance Admin
might have the ID_Read, Risk, and Compliance roles. Each of these would all need to have the US
Read role as well.

If you don’t have control of the schema and your document data is in various formats, you can
leverage Entity Services as a way to improve performance. You can use entity services to create
an entity that groups multiple elements under a single node and then use a single protected path on
that node. See Introduction to Entity Services in the Entity Services Developer’s Guide for
information about creating an entity that links to the source document and protecting both.
MarkLogic 9—May, 2017 Security Guide—Page 79

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security
6.3.2 Query Rolesets
What are query rolesets and what do they do? This section describes query rolesets and how they
are used with element level security. It contains these topics:

• How Query Rolesets Work

• Parent/Child Relationships in Query Rolesets

• Overlapping Protected Paths

• Protected Path Sets

• Helper Functions for Query Rolesets

• Query for Protected Paths on a Document

6.3.2.1 How Query Rolesets Work
When you add a document into MarkLogic, it parses the document and puts “terms” (or keys) into
the universal index. Later when you run a query, the query side needs to know what terms to find
in the universal index. In element level security, the terms are combined with permissions in the
index. Existing query rolesets are automatically used by the query to figure out which terms to
use, based on the role(s) of the user running the query. Each query can include multiple query
rolesets. If no query rolesets are configured, a query will only match documents using the terms
that are visible to everyone.

Let’s use an example. Say you have a protected path defined as the following:

sec:protect-path("/root/bar[@baz=1]", (),
(xdmp:permission("els-role-2", "read")))

And then you ingest a document like this:

<root>
<bar baz=1>Hello</bar>

</root>

When MarkLogic parses the document, it sees that the word “Hello” is inside the element <bar>
that matches the protected path definition (since bar is under root and has an attribute baz=1). So
instead of simply putting the term “Hello” into the universal index, it combines the term “Hello”
and the permission information in the protected path (in this case, basically the role name
“els-role-2”) into one term and puts this new term into the universal index.

Suppose then you run a search with a query cts:word-query("Hello") with a user that has the
els-role-2 role. The query must know this new term to find the document. The query already
knows the word “Hello” but how would it know the permission information in the protected path?
Page 80—Security Guide

MarkLogic Server Element Level Security
This is where the query rolesets are used. You configure query rolesets (with just els-role-2 in
this example) and then the query compares that query roleset with the caller’s role. If the caller’s
role “matches” the query rolesets, the query will combine that information with the word “Hello”
to generate the term, which matches the term put into the universal index by MarkLogic.

There are three ways to configure query rolesets:

• Use xdmp:database-node-query-rolesets for documents with protected paths that are
already in MarkLogic. See “Helper Functions for Query Rolesets” on page 87 for
information.

• Use xdmp:node-query-rolesets to configure query rolesets as documents are being loaded
into MarkLogic. See “Helper Functions for Query Rolesets” on page 87 for information.

• Use sec:add-query-rolesets to manually create the query rolesets on a case-by-case
basis.

This last method of manually creating query rolesets works for simple examples and cases where
there are not many protected paths. If you have a single protected path that matches an element
like one in the examples above (with no overlaps), use a simple rule to create the query roleset in
the Admin UI. See “Add Protected Paths and Query Rolesets” on page 50 for details

The two helper functions; xdmp:database-node-query-rolesets and xdmp:node-query-rolesets,
can help with configuring more complex query rolesets, either for documents already stored in
MarkLogic or while documents are being added. MarkLogic leaves query rolesets configuration
(creating and inserting the query rolesets into the Security database) to the adminstrator.

Query rolesets are made up of roles. There can be any number of roles in a roleset, as long as there
are no duplicates. There can be multiple query rolesets in a database.
MarkLogic 9—May, 2017 Security Guide—Page 81

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security
Query rolesets are required for element level security to work. You may ask why not just get the
query rolesets information automatically from the protected paths when you configure
sec:protect-path to avoid the manual configuration of query rolesets. For this simple example
this seems practical, but in the real world it is not uncommon to have multiple protected paths that
match the same node or element. Some use cases will have 1000s of protected paths but only 100s
of query rolesets. The indexer side of MarkLogic often needs to combine multiple query rolesets
to create the term.

There is no way for the query side to derive that information from the protected path
configuration, since whether a node element matches a protected path is based on the “value” of
the node. And the query side doesn’t know the value of a node. There is no way for the query side
to know what subsets of all the configured protected paths need to be taken into consideration
when creating the query term. Since enumerating all possible combinations of the roles used in all
protected paths is not practical, MarkLogic leaves query rolesets configuration (creating and
inserting the query rolesets into the Security database) to the adminstrator.

6.3.2.2 Parent/Child Relationships in Query Rolesets
You might have a document where one user has permissions for an element that is the child of a
parent element, for which that user does not have permissions. For example, there might be a
simple document like this:

<root>
<content>Contents of document
<top-secret>Only role with "top-secret" can read this

<secret>Only role with "secret" can read this</secret>
</top-secret>

Unclassified content
</content>

</root>

This document might have these protected paths:

sec:protect-path("secret", (), (xdmp:permission("els-role-2",
"read"))),
sec:protect-path("top-secret", (), (xdmp:permission("els-role-1",
"read")))

A user with permissions on only the protected path for “secret” can’t see “secret” content unless
the user also had permissions for the protected path for “top-secret” because the “secret” node is a
child of the “top-secret” parent node.

6.3.2.3 Overlapping Protected Paths
Consider a more complex case with multiple paths matching the same node. Suppose you have a
document like this:
Page 82—Security Guide

MarkLogic Server Element Level Security
<root>
<foo a=1 b=2 c=3>Hello</foo>

</root>

It is possible to define three different protected paths that all match the foo element, overlapping
each other:

sec:protect-path("/root/foo[@a=1]", (), (xdmp:permission("els-role-1",
"read")))
sec:protect-path("/root/foo[@b=2]", (), (xdmp:permission("els-role-2",
"read")))
sec:protect-path("/root/foo[@c=3]", (), (xdmp:permission("els-role-3",
"read")))

MarkLogic will still create just one term for “Hello”, which is the combination of the word and
the query rolesets ((“els-role-1”),(“els-role-2”),(“els-role-3”)).

As a side note, in the above example the query rolesets is
((“els-role-1”),(“els-role-2”),(“els-role-3”)), which is different from simply
(“els-role-1”,“els-role-2”,“els-role-3”).

Note: In MarkLogic 9.0-2 query rolesets have been simplified and optimized. Existing
documents with query rolesets configured in 9.0-1 will still be protected in 9.0-2.
To take advantage of the optimization however, you need to reindex your
documents and regenerate your query rolesets using the helper functions (“APIs
for Element Level Security” on page 104). It is highly recommended that you
reindex any protected documents already in your database and regenerate your
query rolesets, since documents may be reindexed by another operation, which
may cause a mismatch between the documents and the query rolesets. See
“Algorithm That Determines Which Query Rolesets to Use” on page 106 for
examples and more details.

This is what the query rolesets hierarchy looks like for
((“els-role-1”),(“els-role-2”),(“els-role-3”)); three query rolesets and three roles:
MarkLogic 9—May, 2017 Security Guide—Page 83

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security
This is what the query rolesets hierarchy looks like for
(“els-role-1”,“els-role-2”,“els-role-3”); one query roleset and three roles:

If you only have one protected path that matches foo in the above example but with three roles,
like this:

sec:protect-path("//foo", (), (
xdmp:permission("els-role-1", "read"),
xdmp:permission("els-role-2", "read"),
xdmp:permission("els-role-3", "read")))

Then (“els-role-1”,“els-role-2”,“els-role-3”) would be the proper query roleset to use. To
configure the former ((“els-role-1”),(“els-role-2”),(“els-role-3”)), you would call:

(:run against the Security database :)
xquery version "1.0-ml";
import module namespace sec="http://marklogic.com/xdmp/security"
 at "/MarkLogic/security.xqy";

let $roleset1 := sec:query-roleset(("els-role-1"))
let $roleset2 := sec:query-roleset(("els-role-2"))
let $roleset3 := sec:query-roleset(("els-role-3"))
return
sec:add-query-rolesets(sec:query-rolesets(($roleset1,$roleset2,$rolese
t3)))

To configure the latter (“els-role-1”,“els-role-2”,“els-role-3”), you can simply call:

(:run against the Security database :)
xquery version "1.0-ml";
import module namespace sec="http://marklogic.com/xdmp/security"
 at "/MarkLogic/security.xqy";

let $roleset1 :=
sec:query-roleset(("els-role-1","els-role-2","els-role-3"))
return
sec:add-query-rolesets(sec:query-rolesets($roleset1))
Page 84—Security Guide

MarkLogic Server Element Level Security
When you are starting to configure and use element level security, the two query rolesets helper
functions, xdmp:database-node-query-rolesets and xdmp:node-query-rolesets can simplify the
process of setting up your query rolesets. These functions can be used for configuring query
rolesets either for documents in the database, or for documents during ingestion. See “Helper
Functions for Query Rolesets” on page 87 for more information.

6.3.2.4 Protected Path Sets
A protected path set is a way to allow multiple protected paths covering the same element, with
both AND and OR relationships between the permissions. This enables multiple arbitrary security
marking for an element.

A protected path set is an optional string that represents the name of a set is associated with a
protected path. A path that has no “set name” can be seen as a “degenerated form” of a set. The
diagram below shows how permissions from paths in the same set are ORed, while permissions
between sets are ANDed.

The set information (the name) is simply a “tag” on the protected path definition, not a separate
document in the Security database.

Consider the following element:

<foo classification="TS" releasableTo="USA GBR AUS">

Using protected paths, MarkLogic element level security allows multiple protected paths covering
the same element with an AND relationship among their permissions. This models a multiple
security markings (for example @classification and @releasableTo) situation well. For the
element above, two protected paths may be defined:
MarkLogic 9—May, 2017 Security Guide—Page 85

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security
//foo[@classification="TS"] ("Role_TS", "read")
//foo[@releasableTo="USA GBR AUS"] (("Role_USA", "read"),
("Role_GBR","read"), ("Role_AUS","read"))

Note that the value of @releasableTo is a list of country codes, with each mapping to a role. A
user with any of the “country roles” is allowed to read the element. The challenge is that a list can
contain an arbitrary combination of country codes (total 200+). The above approach would
require a user to define one protected path for each of the possible combinations, which may lead
to a very large number of protected paths.

Note: Note that defining the following protected paths won’t satisfy the requirement
because the permissions among the paths are ANDed, not ORed.

//foo[fn:contains(@releasableTo, "USA")] ("Role_USA", "read")
//foo[fn:contains(@releasableTo, "GBR")] ("Role_GBR", "read")
//foo[fn:contains(@releasableTo, "AUS")] ("Role_AUS", "read")

The following example shows the benefit of the path set concept more clearly. Consider the
following elements to be protected:

<foo classification="TS" releasableTo="USA">
<foo classification="TS" releasableTo="GBR">
<foo classification="TS" releasableTo="AUS">
<foo classification="TS" releasableTo="USA GBR">
<foo classification="TS" releasableTo="GBR AUS">
<foo classification="TS" releasableTo="USA AUS">
<foo classification="TS" releasableTo="USA GBR AUS">

Without using protected path sets, the following protected paths would need to be defined to
protect the elements above:

//foo[@classification="TS"] ("Role_TS", "read")
//foo[@releasableTo="USA"] ("Role_USA", "read")
//foo[@releasableTo="GBR"] ("Role_GBR","read")
//foo[@releasableTo="AUS"] ("Role_AUS","read")
//foo[@releasableTo="USA GBR"] (("Role_USA", "read"),
("Role_GBR","read"))
//foo[@releasableTo="GBR AUS"] (("Role_GBR","read"),
("Role_AUS","read"))
//foo[@releasableTo="USA AUS"] (("Role_USA", "read"),
("Role_AUS","read"))
//foo[@releasableTo="USA GBR AUS"] (("Role_USA", "read"),
("Role_GBR","read"), ("Role_AUS","read"))

With protected path sets, only these protected paths are needed:

//foo[@classification="TS"] ("Role_TS", "read")
//foo[fn:contains(@releasableTo, "USA")] ("Role_USA", "read")
"SetReleasableTo"
//foo[fn:contains(@releasableTo, "GBR")] ("Role_GBR", "read")
"SetReleasableTo"
Page 86—Security Guide

MarkLogic Server Element Level Security
//foo[fn:contains(@releasableTo, "AUS")] ("Role_AUS", "read")
"SetReleasableTo"

The total number of protected paths required for the @releasableTo attribute is reduced from 7 to
3 using the SetReleasableTo protected path set.

In real world systems, the total number of possible country codes for these examples are more
than 200, which leads to millions of possible combinations. So with protected path sets, the
number of required protected paths can be reduced from millions to just a couple of hundred for
the @releasableTo use case.

6.3.2.5 Helper Functions for Query Rolesets
In order to search for query rolesets, you find out which query rolesets are configured for
protected paths for a document already in the database. You can also discover if query rolesets are
required for proper querying of a document being loaded into the database. Element level security
includes two built-ins that can be used to discover existing protected paths in documents. The
xdmp:database-node-query-rolesets built-in is used for querying documents already in the
database, while xdmp:node-query-rolesets is used to query for protected paths in documents that
are being loaded into the database. Given a node, these functions will return a list of the query
rolesets for any protected paths, as long as the user of the built-ins has sufficient privileges and
permissions. Usually these function are called by an admin user.

For xdmp:database-node-query-rolesets, the built-in returns a sequence of query rolesets that are
required for proper querying of any given database nodes where element level security is in place
on a document already in the database.

xquery version "1.0-ml";
import module namespace sec = "http://marklogic.com/xdmp/security"
 at "/MarkLogic/security.xqy";

(: run this against the Security database :)

let $qry := 'xdmp:database-node-query-rolesets(fn:doc("/example.xml"),
("all"))'
let $qry-rolesets :=
xdmp:eval($qry, (),<options xmlns="xdmp:eval">
 <database>{xdmp:database(YOUR_DB_NAME)}</database>
 </options>)
return
sec:add-query-rolesets($qry-rolesets)

=>
<query-rolesets xml:lang="zxx"
xmlns="http://marklogic.com/xdmp/security">
<query-roleset>
<role-id>12006351629398052509
</role-id>

</query-roleset>
</query-rolesets>
MarkLogic 9—May, 2017 Security Guide—Page 87

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security
To find the name of this role ID, use this query in the Query Console:

xquery version "1.0-ml";
import module namespace sec = "http://marklogic.com/xdmp/security"
 at "/MarkLogic/security.xqy";

sec:get-role-names((12006351629398052509))
=>
<sec:role-name
xmlns:sec="http://marklogic.com/xdmp/security">els-role-2</sec:role-
name>

The unconfigured option for xdmp:database-node-query-rolesets will return only those query
rolesets that are not configured, meaning these query rolesets are not in the Security database yet
(you have not configured them yet). The all option returns all query rolesets, even if they are
already configured.

You can find existing or yet-to-be-configured query rolesets for documents being loaded into the
database using xdmp:node-query-rolesets. This built-in returns a sequence of query rolesets that
are required for proper querying with element level security if the node is inserted into the
database with the given document-insert options. This built-in also comes with the unconfigured
option and the all option, and works the same as the xdmp:database-node-query-rolesets
built-in.

A typical workflow would call this function and add each query rolesets through the
sec:add-query-rolesets function before inserting the document into the database, so that the
document can be correctly queried with element level security as soon as the document is
inserted.

xdmp:node-query-rolesets(
 "/example.xml",
 <foo>aaa</foo>,
 <options xmlns="xdmp:document-insert">
 <permissions>
{xdmp:permission("role1","read"),xdmp:permission("role2","read")}
 </permissions>
 </options>)

To run this built-in you need to have the security role privileges.

6.3.2.6 Query for Protected Paths on a Document
You can use this XQuery code as a model to customize. The code sample searches for the
protected paths associated with foo.xml.

xquery version "1.0-ml";
import module namespace sec = "http://marklogic.com/xdmp/security"

at "/MarkLogic/security.xqy";

declare function local:get-role-name($p as element(sec:permission)) {
Page 88—Security Guide

MarkLogic Server Element Level Security
 element sec:permission {
 $p/*,
 sec:get-role-names($p/sec:role-id)
 }
};

let $doc := xdmp:eval('fn:doc("foo.xml")', (), <options
xmlns="xdmp:eval"><database>{xdmp:database("Documents")}</database></o
ptions>)
for $p in
fn:collection(sec:protected-paths-collection())/sec:protected-path
let $path :=
 xdmp:with-namespaces(
 for $ns in $p//sec:path-namespace
 return ($ns/sec:prefix/fn:string(.),
$ns/sec:namespace-uri/fn:string(.)),
 xdmp:value("$doc" || $p/sec:path-expression/fn:string()))
return
 if (fn:exists($path)) then
 element sec:protected-path {
 $p/* except $p/sec:permissions,
 element sec:permissions {
 $p/sec:permissions/sec:permission ! local:get-role-name(.)
 }
 }
 else
 ()

You will only be able to see the protected paths for elements that you as the user would have
permission to see. For example if you had role1 and the protected path was associated with role2,
role1 would not be able to see those paths.

Related functionality is the all-query-rolesets-fragment-count element returned from
xdmp:forest-counts. This number tells the caller how many fragments are indexed with a certain
query-rolesets. If the number is 0 (across all databases), then query-rolesets is no longer in use.

6.4 Configure Element Level Security in the Admin UI
Protected paths and query rolesets for element level security can be configured from the Admin
UI. The steps to configure users and roles for element level security are the same as described in
“Create Roles” on page 47 and “Create Users and Assign Roles” on page 47. To test the
examples, add the sample documents using Query Console, as described in “Add the Documents”
on page 49.

6.4.1 Add a Protected Path
To add a protected path for element level security:

1. Click Protected Paths in the left tree menu.
MarkLogic 9—May, 2017 Security Guide—Page 89

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security
2. Click the Create tab.

3. Enter the information for the protected path: the path expression, the prefix and
namespace, and the role name and capabilities for the permissions.

4. Click more permissions to add additional permissions to this protected path.

5. Click ok when you are done.

6.4.2 Add a Query Roleset
To add a query roleset for element level security, using the Admin UI:

1. Click Security in the left tree menu.
Page 90—Security Guide

MarkLogic Server Element Level Security
2. Click Protected Paths and then click the Create tab.

3. Add the roles (els-role-1 and els-role-2) for the query roleset, separated by commas.

4. Click more items to add additional comma-separated query rolesets.

5. Click ok when you are done.

Note: An administrator must define query rolesets.

6.5 Configure Element Level Security With XQuery
To configure element level security, you’d follow the same series of steps that you used for the
earlier example. (See “Example—Element Level Security” on page 46.)

• Set up roles

• Create users and assign roles

• Insert documents with permissions

• Add the query rolesets to the Security database

• Add protected paths for elements in documents, by inserting the protected paths into the
Security database

6.5.1 Using XQuery for Query Rolesets
Use the xdmp:database-node-query-rolesets helper function with the sec:add-query-rolesets
command to set up query rolesets using XQuery.
MarkLogic 9—May, 2017 Security Guide—Page 91

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security
For example:

xquery version "1.0-ml";
import module namespace sec = "http://marklogic.com/xdmp/security"
 at "/MarkLogic/security.xqy";

(: run this against the Security database :)

let $qry := 'xdmp:database-node-query-rolesets(fn:doc("/example.xml"),
("all"))'
let $qry-rolesets :=
xdmp:eval($qry, (),<options xmlns="xdmp:eval">
 <database>{xdmp:database('Documents')}</database>
 </options>)
return
sec:add-query-rolesets($qry-rolesets)

To manually set up just a few query rolesets, use the sec:add-query-rolesets command using
XQuery.

(: add a few query rolesets => run against the Security database :)

xquery version "1.0-ml";
import module namespace sec="http://marklogic.com/xdmp/security"

at "/MarkLogic/security.xqy";

let $roleset := sec:query-roleset("new-role")
return
sec:add-query-rolesets(sec:query-rolesets(($roleset))

6.5.2 Using XQuery for Protected Paths
Use the sec:protect-path command to set up your protected paths.

For example:

(: add protected paths -> run against the Security database :)

xquery version "1.0-ml";
import module namespace sec="http://marklogic.com/xdmp/security"

at "/MarkLogic/security.xqy";

sec:protect-path("secret", (), (xdmp:permission("els-role-2",
"read"))),
sec:protect-path("top-secret", (), (xdmp:permission("els-role-1",
"read")))

This example uses a second parameter to set a protected path on the example path namespace.

(: add protected paths -> run against the Security database :)

xquery version "1.0-ml";
Page 92—Security Guide

MarkLogic Server Element Level Security
import module namespace sec = "http://marklogic.com/xdmp/security"
at "/MarkLogic/security.xqy";

declare namespace ex = "http://marklogic.com/example";

let $role := "executive"
return

sec:protect-path(
"/ex:envelope/ex:instance/employee/salary",
(let $prefix := "ex",$namespace-uri :=

"marklogic.com/example"
return
sec:security-path-namespace($prefix, $namespace-uri),

(xdmp:permission($role, "read"))
)

6.6 Configure Element Level Security With REST
You can also use the REST Management APIs to configure element level security. The REST
properties endpoint is available to create query rolesets and protected paths:

GET:/manage/v2/security/properties

• Using REST for Query Rolesets

• Using REST for Protected Paths

6.6.1 Using REST for Query Rolesets
The following XML and JSON examples show what is returned from GET (or used as payload to
PUT) when using REST for query rolesets.

This example uses a GET with the response payload in XML:

$ curl -GET --anyauth -u admin:admin
-H "Accept:application/xml,Content-Type:application/xml"
http://localhost:8002/manage/v2/security/properties

This returns:

<security-properties xmlns="http://marklogic.com/manage">
 <query-rolesets>
 <query-roleset>
 <role>432432534053458236326</role>
 <role>454643243253405823326</role>
 </query-roleset>
 <query-roleset>
 <role>124325333458236346123</role>
 <role>124233432432534058213</role>
 </query-roleset>
 </query-rolesets>
</security-properties>
MarkLogic 9—May, 2017 Security Guide—Page 93

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security
Here is the same example with a JSON reponse payload:

$ curl -GET --anyauth -u admin:admin
-H "Accept:application/json,Content-Type:application/json"
GET:/manage/v2/security/properties

This returns:

{
 "queryRoleset": [
 [
 432232321212123100000,
 432432534053458200000
],
 [
 124325333458236346123,
 124233432432534058213
]
]
}

Note: The REST Management APIs will accept both role names and role IDs in
configuring query rolesets with PUT.

The following are example payloads for POST or PUT calls for managing query rolesets.

JSON Example

{
 "role-name": ["manage-admin","rest-writer"]
}

XML Example

<query-roleset-properties
xmlns="http://marklogic.com/manage/query-roleset/properties">
 <query-roleset>
 <role-name>rest-reader</role-name>
 </query-roleset>
</query-roleset-properties>
Page 94—Security Guide

MarkLogic Server Element Level Security
6.6.2 Using REST for Protected Paths
The following XML and JSON examples show what is returned from GET (or used as payload to
PUT) when using REST for query rolesets.

This example uses a GET with the reponse payload in XML:

$ curl -GET --anyauth -u admin:admin \
-H "Accept:application/xml,Content-Type:application/xml" \
http://localhost:8002/manage/v2/security/properties

This returns:

<security-properties xmlns="http://marklogic.com/manage">
 <protected-paths>
<protect-path>
 <path-namespaces>
 <path-namespace>
 <prefix>ml</prefix>
 <namespace-uri>marklogic.com</namespace-uri>
 </path-namespace>
 </path-namespaces>
 <path-expression>/ml:foo/ml:bar</path-expression>
 <permissions>
 <permission>
 <role-name>user1</role-name>
 <capability>read</capability>
 </permission>
 </permissions>
 </protected-path>
 </protect-paths>
</security-properties>

Here is the same example with a JSON reponse payload:

$ curl -GET --anyauth -u admin:admin \
-H "Accept:application/json,Content-Type:application/json" \
http://localhost:8002/manage/v2/security/properties

This returns:

"protected-path": [
{
 "path-namespace": [
 {
 "prefix" : "ml",
 "namespace-uri": "marklogic.com"
 }
]
 "path-expression": "/some/path",
 "permissions": [
 {
MarkLogic 9—May, 2017 Security Guide—Page 95

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security
 "role-name": "user1",
 "capability": "read"
 }
]
 }
]
}

Note: When DELETE is used, a force=true url param will force deletion of “in use”
protected paths.

Note: To specify an options element namespace in a JSON REST payload, you will need
to define an options-ns key to set the namespace.

6.7 Combining Document and Element Level Permissions
This section describes how document level and element level permissions interact when both are
applied to a document. At the element level read, insert, and node-update permissions can be
used as part of the protected path definition.

Note: At the element level, the update and node-update capabilities are equivalent.

This section contains the following topics:

• Document Level Security and Indexing

• Combination Security Example

6.7.1 Document Level Security and Indexing
The document level security (document permissions with read capability) interacts with the
element level security and affects:

• The indexing of protected elements and whether index keys are combined with query
rolesets

• Whether protected elements can be extracted by template driven extraction (TDE)

• Whether protected embedded triples are indexed

During indexing, the element level security of every node in the document is compared to the
document’s protection. For a given node in the document, the permissions on every matching
protected path are compared to the document’s permissions. When all matching protected paths
are determined to be weaker than the document’s protection, the element’s protection is
considered to be weaker. In this case, the query rolesets for the matching protected paths are not
used when indexing the current node. A node with a weaker path protection is allowed to be
extracted by TDE. An embedded triple with weaker protection on all of its nodes (subject,
predicate and object), is extracted.
Page 96—Security Guide

MarkLogic Server Element Level Security
How is the element level protection determined to be weaker? In the absence of compartment
security, a higher number of roles implies weaker permission because it means more accessibility.
More roles in this case doesn’t mean the total number of roles. It means that one set of roles is a
superset of the other. The smaller set (the subset) is considered stronger because it is more
restrictive. Roles are OR’ed by default. If the document is permitted to be accessed by more roles
than the element (the element is more restrictive because there are more limitations on access),
then the element security is considered to be stronger than the document security. In such a case,
the element security is given higher precedence and the element is protected (i.e. the element is
more restrictive). The fewer the number of contained or embedded roles, the more restrictive the
permissions.

In situations where neither is stronger or it is unclear whether the document security or element
security is stronger, the element level is always considered stronger. Only “Read” capability is
checked when comparing the document’s permissions to the element’s permissions.

Note that there is no “flattening” of roles (inheritance of permissions) with element level security.
Using the helper functions, described in “APIs for Element Level Security” on page 104 can
facilitate both discovering existing query rolesets and applying them as part of ingestion.

6.7.2 Combination Security Example
More roles does not mean the total number of roles. It means that one set of roles is a superset of
the other. The smaller set of roles is considered stronger. Consider the following examples:

Note that in example 1, element level protection is more restrictive that the document level
protection. With compartment security, it’s more complicated. The security level that has the most
compartments wins, because more compartments means that access is more restrictive.
MarkLogic 9—May, 2017 Security Guide—Page 97

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security
When element security is weaker than the document security, MarkLogic will index the content
based on the document level security. MarkLogic lets the document level security protect it.

If the element is considered stronger, then content won’t be visible without the correct query
rolesets. If the element is weaker, then MarkLogic will return the element as part of a query (with
the correct document level permissions).

6.8 Node Update Capabilities
Node update capabilities allow you to update document content by node. At the document level
xdmp:document-delete and xdmp:document-insert can still be used if you have update
capabilities, but node-update provides a finer control when combined with element level security.
The node-update capability exists at the document level and at the element level. At the document
level, if you have the node-update capability you can call xdmp:node-replace and
xdmp:node-delete to modify nodes in a document, but not xdmp:document-delete or
xdmp:document-insert. All of the node update built-ins take element level permissions into
consideration.

Note that node-update, just like insert, can be seen as a subset of update, meaning that if a role
has the update capability, it automatically gets the node-update capability as well.

If you have the update capability at the document level, you can call xdmp:document-insert,
xdmp:document-delete, and all node-update functions. When you have the update capability at the
document level, the element level security for update will not be checked, it is effectively “turned
off”. If you have the node-update capability, you can only call all node-update functions for that
node.

6.8.1 Updates With Element Level Security
You can update content in documents when protected paths have been defined with element level
security. Both document level and element level permissions will apply to the content
(compartment level permissions may apply as well - see “Interactions With Compartment
Security” on page 108 for details). With the appropriate permissions, you can use insert and
node-update at the element level to modify content containing protected paths. These capabilities
take all element level permissions into consideration.
Page 98—Security Guide

MarkLogic Server Element Level Security
You can also protect document property nodes with element level security. With the
node-update/insert capability, you can call xdmp:document-add-properties,
xdmp:document-remove-properties, xdmp:document-set-property, or
xdmp:document-set-properties. See “Document and Element Level Permissions Summary” on
page 100 for details.

6.8.2 Node Update and Node Insert at the Element Level
The node-update capability at the element level enables to you replace and delete nodes with
xdmp:node-replace and xdmp:node-delete. The insert capability enables you to call
xdmp:insert-node-before, xdmp:node-insert-after, and xdmp:node-insert-child.

Note: At the element level, the update and node-update capabilities are equivalent.

Here are some simple examples using the xdmp:insert-node-before, xdmp:insert-node-after,
and xdmp:node-replace functions at the element level. These examples assume that both roles
have document insert/node-update permissions as well as read permissions for the document
and that the query rolesets are configured correctly.

Say that you have a document with these nodes:

<root>
<foo>hello</foo>
<bar>World</bar>

</root>

There are two roles; role1 with both read and update permissions on the <foo> node, and role2
with read and node-insert permissionson the <root> node:

<foo>,("role1", "read"),("role2", "read"),("role1", "update")
<root>,("role1", "read"),("role2", "read"),("role2", "insert")

The protected paths look like this:

sec:protect-path("//foo", (), (
xdmp:permission("role1", "read"),("role1", "update"),"role2", "read"))
sec:protect-path("//root", (), (
xdmp:permission("role1", "read"),("role2", "read"),("role2",
"insert"))

The insert and update permissions check the ancestors of a node as well. See “Document and
Element Level Permissions Summary” on page 100 for details.

(: insert a new document :)
xdmp:document-insert("/example.xml",
<root>

<foo>hello</foo>
<bar>World</bar>

</root>
MarkLogic 9—May, 2017 Security Guide—Page 99

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security
(xdmp:permission("role1", "read"), xdmp:permission("role2", "read"),
xdmp:permission("role1", "node-update"),("role1", "insert"),
xdmp:permission("role2", "node-update"),("role2", "insert")));

As role2, use xdmp:node-insert-before to add a node to the document:

(: add a baz node before the foo node :)
xdmp:node-insert-before(fn:doc("/example.xml")/root/foo,
 <baz>Greetings</baz>);
(: view the revised document :)
fn:doc("/example.xml")

=>
<root>

<baz>Greetings</baz>
<foo>hello</foo>
<bar>World</bar>

</root>

As role1 you can use xdmp:node-replace to change the <bar> node.

xdmp:node-replace(doc("/example.xml")/root/foo,<foo>Hello</foo>));
doc("/example.xml");
fn:doc("/example.xml")
=>
<root>

<baz>Greetings</baz>
<foo>Hello</foo>
<bar>World</bar>

</root>

If you are using a user to other than role1 do these same operations, a permission denied
exception will be thrown.

6.9 Document and Element Level Permissions Summary
This table describes the permissions required to add, remove, or modify content at the document
and element level.

Function Signature Document and Element Level Permissions

xdmp:node-replace($old,$new) Document: node-update is required
Element: $old and all its ancestors, as well as
descendants are checked for update/node-update

xdmp:node-delete($old) Document: node-update is required
Element: $old and all its ancestors as well as
descendants are checked for update/node-update
Page 100—Security Guide

MarkLogic Server Element Level Security
* The properties root is the root of the properties node of a document, not the individual properties
contained in the properties node. The properties root is the first line in this diagram:

xdmp:node-insert-before($sibling,$new) Document: insert is required
Element: all ancestors of $sibling are checked
for insert

xdmp:node-insert-after($sibling,$new) Document: insert is required
Element: all ancestors of $sibling are checked
for insert

xdmp:node-insert-child($parent,$new) Document: insert is required
Element $parent and all its ancestors are checked
for insert

xdmp:document-add-properties($uri,
$props)

Document: node-update is required
Element: the properties root* is checked for
insert

xdmp:document-set-property($uri,$prop) Document: node-update is required
Element:
IF the property to be set doesn’t exist, THEN the
properties root is checked for insert;

ELSE
a.) the properties root* is checked for
update/node-update

b.) the property nodes) and all their descendants
are checked for update/node-update

xdmp:document-set-properties($uri,
$props)

Document: node-update is required
Element:
IF there is no properties fragment THEN the
properties root is checked for insert;

ELSE
a.) the properties root* is checked for

update/node-update
b.) all existing property nodes and all their

descendants are checked for update/node-update

xdmp:document-remove-properties($uri,
$property-names)

Document: node-update is required
Element:
a.) the properties root* is checked for

update/node-update

b.) all property nodes to be removed and all their
descendants are checked for update/node-update

Function Signature Document and Element Level Permissions
MarkLogic 9—May, 2017 Security Guide—Page 101

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security
<prop:properties xmlns:prop="http://marklogic.com/xdmp/property">
<prop1>. . .</prop1>
<prop2>. . .</prop2>
.
.
.
<propN>. . .</propN>

</prop:properties>

See “Interactions With Compartment Security” on page 108 for more about combining element
level security with compartment security.

6.10 Node Update and Document Permissions Expanded
These examples expand on the interactions of element level security and document permissions.
This section contains these examples:

• Different Permissions on the Same Node

• A More Complex Example

• Unexpected Behavior with Permissions

6.10.1 Unexpected Behavior with Permissions
In this example the role has the necessary document-level permissions. The example has to do
with the element level, protected path permissions. Say you have a document (example.xml) with
these nodes:

<foo>
<bar>

</foo>

For this example role1 has both read and update permissions on the <foo> node, and update
permissions on the <bar> node, but no read permissions on the <bar> node:

<foo>, ("role1", "read"), ("role1", "update")
<bar>, ("role1", "update")

It is assumed for these examples that all of the query rolesets are already configured correctly.

If role1 calls this xdmp:node-replace query:

xquery version "1.0-ml";

xdmp:node-replace(doc("/example.xml")/foo,
<foo><baz>Hello</baz></foo>);

The query will succeed, because role1 has update permissions on /foo.

If role1 calls this xdmp:node-replace query on /bar:
Page 102—Security Guide

MarkLogic Server Element Level Security
xquery version "1.0-ml";

xdmp:node-replace(doc("/example.xml")/foo/bar, <baz>Hello</baz>);

The expression /foo/bar will return an empty sequence because role1 cannot read the bar
element. Hence the node-replace call will effectively be a no-op, because xdmp:node-replace
was asked to replace nothing with something.

6.10.2 Different Permissions on the Same Node
Multiple roles can have different permissions on the same node. Some interactions between roles
may be unexpected. For example, if you have a document with two nodes <foo> and <bar>. The
<bar> node is a child of the <foo> node.

<foo>
<bar>

You have two roles; role1 with both read and update permissions on the <foo> node, and role2
with read permissions on the <bar> node:

<foo>, ("role1", "read"), ("role1", "node-update")
<bar>, ("role2", "read")

Note: At the element level, the update and node-update functions are equivalent.

The protected paths for this document would look like this:

sec:protect-path("//foo", (), (
xdmp:permission("els-role-1", "read"),("role1", "node-update"))

sec:protect-path("//foo/bar", (), (
xdmp:permission("role2", "read"))

With these protected paths, role1 cannot read the <bar> node. But because role1 has update
permissions on the parent node (<foo>), role1 can overwrite the <bar> node, even though it cannot
read it.

To prevent this, add node-update permissions to the <bar> node. The permissions would now
look like this:

<foo>, ("role1", "read"), ("role1", "node-update")
<bar>, ("role2", "read"), ("role2", "node-update")

The presence of the “node-update” permission on the <bar> node prevents role1 from being able
to update and overwrite the <bar> node (the child node of the <foo> node).
MarkLogic 9—May, 2017 Security Guide—Page 103

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security
This happens because node permissions are checked separately; first there’s a check for protected
paths for read. Then there is a check for protected paths for update. If no update is found for
/foo/bar, then role1 is allowed to update <bar>. If there is a protected path for updating <bar>,
then role1 is not allowed to update <bar>.

6.10.3 A More Complex Example
To expand even more on the node-update example with added document permissions, you could
have roles with both protected paths and document permissions.

Say you have a document with these nodes:

<foo>
<bar>

<baz>

At the document level, there are these permissions:

("role1", "read"), ("role1", "node-update")
("role2", "read"), ("role2", "node-update")
("role3", "read"), ("role3", "update")

At the element level, there are these permissions for protected paths:

<foo>, ("role1", "read"), ("role1", "node-update")
<bar>, ("role2", "read"), ("role2", "node-update")

In this example:

• role1 cannot update (or override) <bar> because at the element level role2 has <bar>
protected path permissions

• role3 can override everything because at the document level it has update capability, but
can only read <baz> which has no protected paths.

6.11 APIs for Element Level Security
This section includes the following topics:

• XQuery APIs

• REST Management APIs
Page 104—Security Guide

MarkLogic Server Element Level Security
6.11.1 XQuery APIs
These built-in functions are available to help manage element level security:

• sec:protect-path

• sec:unprotect-path

• sec:remove-path

• sec:path-set-permissions

• sec:path-add-permissions

• sec:path-get-permissions

• sec:path-remove-permissions

• sec:query-rolesets-collection

• sec:security-path-namespace

• sec:query-roleset

• sec:query-rolesets

• sec:query-rolesets-id

• sec:add-query-rolesets

• sec:remove-query-rolesets

• sec:protected-paths-collection

With the appropriate permissions, protected path content can be modified using these node update
APIs:

• xdmp:node-replace

• xdmp:node-delete

• xdmp:node-insert-after

• xdmp:node-insert-before

• xdmp:node-insert-child

These two helper functions can be used to search for protected paths:

• xdmp:node-query-rolesets

• xdmp:database-node-query-rolesets
MarkLogic 9—May, 2017 Security Guide—Page 105

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security
6.11.2 REST Management APIs
The REST Management APIs provide the same functionality as the XQuery APIs covered in
“XQuery APIs” on page 105 for both protected paths and query rolesets.

6.11.2.1 REST Management APIs for Protected Paths
These REST Management APIs can be used for adding, modifying, or deleting protected paths.

GET:/manage/v2/protected-paths

POST:/manage/v2/protected-paths

GET:/manage/v2/protected-paths/{id|name}

DELETE:/manage/v2/protected-paths/{id|name}

GET:/manage/v2/protected-paths/{id}/properties

PUT:/manage/v2/protected-paths/{id}/properties

6.11.2.2 REST Management APIs for Query Rolesets
These REST Management APIs are available for managing query rolesets:

GET:/manage/v2/query-rolesets

POST:/manage/v2/query-rolesets

GET:/manage/v2/query-rolesets/{id|name}

DELETE:/manage/v2/query-rolesets/{id|name}

GET:/manage/v2/query-rolesets/{id|name}/properties

PUT:/manage/v2/query-rolesets/{id|name}/properties

6.12 Algorithm That Determines Which Query Rolesets to Use
In MarkLogic 9.0-1, if the path permissions on a node are “weaker” (as defined in “Document
Level Security and Indexing” on page 96) than the document level permissions or its parent
node’s permissions, the path level permissions will be ignored as far as query rolesets definition is
concerned.

Note: A child node will still inherit its parent’s query rolesets.

In MarkLogic 9.0-2, the set of query rolesets for a given node (after inheritance from ancestors)
will be “compacted” based on the “weaker” permissions definined in “Document Level Security
and Indexing” on page 96. If a query roleset in the set is “weaker” than any other query rolesets in
the set, that “weaker” roleset will be “removed”.

For example:
Page 106—Security Guide

MarkLogic Server Element Level Security
Roles: role-1, role-2, role-3

Document:

<foo>Hello<bar>World</bar>,</foo>

with ((role-1, read), (role-2, read), (role-3, read))

Protected Paths:

//foo (role-1, read), (role-2, read)
//bar (role-1, read)

In MarkLogic 9.0-1, the query rolesets for the “bar” node is ((role-1, role-2), (role-1)), but in
9.0-2 it is simplified (“compacted”) to ((role-1)).

Note: If any query roleset in the above set is “weaker” than the document level
permissions, it will be omitted too.

Here is another example:

Roles: role-1, role-2, role-3

Document:

<foo><bar>Hello</bar></foo>

with (role-1, read)

Protected Paths:

/foo/bar (role-1, read), (role-2, read)
//bar (role-3, read)

In 9.0-1, the query rolesets for the “bar” node is ((role-1, role-2), (role-3)), but in 9.0-2 it is
simplified (“compacted”) to ((role-3)) because (role-1, role-2) is “weaker” than the document
level permissions.
MarkLogic 9—May, 2017 Security Guide—Page 107

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security
6.13 Interactions With Compartment Security
You can add an extra level of protection to any content concealed by protected paths by using
compartment security in conjunction with element level security. Compartment security adds a
finer granularity of protection for content because a user must have the appropriate role and
belong to the appropriate compartment to view the concealed content. For more about
compartment security see “Compartment Security” on page 39.

A compartment is a name associated with a role. The compartment name is used as an additional
check when determining a user’s authority to access, modify, or create documents. If
compartment security is not used, permissions are checked using OR semantics. For example, if a
document has read permissions for role1 and read permissions for role2, without compartment
security, a user who has either role1 or role2 can read that document.

If any permission on a document has a compartment, then the user must have that compartment in
order to access any of the capabilities, even if the capability is not the one with the compartment.
Access to a document requires a permission in each compartment for which there is a permission
on the document, regardless of the capability of the permission. So if there is read permission for
role compartment1, there must also be an update permission for some role in compartment1 (but not
necessarily the same role).

If compartment security is used, then the permissions are checked using AND semantics for each
compartment. If the document has compartment permissions for both compartment1 and
compartment2, a role must be associated with both compartments to view the document. If two
roles have different compartments associated with them (for example compartment1 and
compartment2) , a user must have role1 and role2 access the document.

This is in addition to checking the OR semantics for each non-compartmented role, as well as a
non-compartmented role that has a corresponding permission on the document. If compartment
security is used along with element level security, a user must have both the appropriate
compartment security and the appropriate role to view protected content.

Because element level security follows the same role based authorization model, compartment
security checks are be done in the same way at the element level. The only difference is that when
calculating “compartments needed” at the element level, only those permissions with the
capability being requested (for example “read”) are checked.

Here is an example using these three roles:

• role0 (with no compartment)

• role1 (with compartment1)

• role2 (with compartment2)

These permissions have been set on the document:

(role0, read), (role1, read), and (role2, update)
Page 108—Security Guide

MarkLogic Server Element Level Security
With these permissions set on the document, a user with both role1 and role0 cannot perform a
read operation. This is because one of the permissions mentions role2, even though it is not for
read. In fact, with these permissions at the document level, no one (except for admin) would be
able to read the document.

If the above permissions are set for an element, a user with both role1 and role0 will be able to
read the element, because element level security checks read, update, and insert permissions
separately, based on the operation requested.

Note: Permission checks at the document and element levels are performed
independently.

6.13.1 Compartment Security and Indexing
Using more compartments means stronger security because compartments are AND’ed. The roles
within the same compartment are OR’ed. When a document or element is protected by more
compartments, this implies stricter access. Roles without compartments are OR’ed amongst
themselves and then AND’ed with compartment roles. The general rules are:

• If an element is protected by more compartments than the document’s, the element level
protection is considered stronger.

• Within the same compartment, if the element is protected for fewer roles, the element
level protection is stronger.

• There are situations where the weaker/stronger protection cannot be clearly determined. In
this case, element level security is always considered to be stronger.

See “Node Update and Document Permissions Expanded” on page 102 and “Combination
Security Example” on page 97 for more about security protection and indexing. For more
information about compartment security, see “Compartment Security” on page 39.
MarkLogic 9—May, 2017 Security Guide—Page 109

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security
6.14 Interactions with Other MarkLogic Features
The element level security feature is an index-level feature that is implemented in the universal
index, the geospatial index, the bitemporal index, and the range index. Features that use a single
lexicon (values, elements, element values, sum-aggregration, etc.) will work with element level
security.

Element level security is not implemented for the triple index. However in some scenarios, where
the document’s security is stronger than the element security on a triple, the protected triple will
be added to the triple index. This is because the document’s security already covers the protected
element. The information contained in the triple is therefore protected at the document level.

Query operations that rely on the triple index (such as SPARQL, SQL, the new version of
MarkLogic ODBC, and the Optic API) are not supported by element level security. For content
that makes use of the triple index (like semantics and SQL) if a document contains protected
elements and the element level security is stronger than the document level security, the query
will not return any results. See “Node Update and Document Permissions Expanded” on page 102
for details.

This section describes interactions with these MarkLogic features:

• Lexicon Calls

• Fragmentation

• SQL on Range-Index Based Views

• UDFs (including UDF-based aggregate built-ins)

• Reverse Indexes

• SPARQL

• Alerting and QBFR

• TDE

• mlcp

• XCC

• Bitemporal

• Others

• Rolling Upgrades

6.14.1 Lexicon Calls
For simple lexicons like values or words, this feature is similar to cts queries (see “Others” on
page 113). However, lexicon calls that involve co-occurrences will only work with unprotected
values (range-index based SQL implementation has the same problem).
Page 110—Security Guide

MarkLogic Server Element Level Security
6.14.2 Fragmentation
The indexer in MarkLogic doesn’t know the full path when working on child fragments of a
parent document, because the indexer indexes the child fragments first before it indexes the
parent. Because of this element level security and fragmentation don’t work well together,
although fragmentation will still work on documents that don’t have any protected elements.

Any new document with matching fragmentation and protected elements will be rejected. Either
an XDMP-PARENTLINK or an XDMP-FRAGMENTPROTECTEDPATH error will be thrown. When element level
security and fragmentation both apply simultaneously to an existing document (already in the
database), a reindexing error will be thrown, causing reindexing to stop. User must either
remove/fix the matching element level security path or the matching fragmentation element.

For example, if a protected path that ends with baz is added (/foo/bar/baz) and if a fragment root
is configured for baz, any document containing node baz (even under a different path /A/B/C/baz)
will error out with XDMP-PARENTLINK when the document is inserted or reindexed.

6.14.3 SQL on Range-Index Based Views
SQL that is based on Range-Index views will only work with values that are not protected by
element level security.

6.14.4 UDFs (including UDF-based aggregate built-ins)
UDFs that operate on a single range index will work with element level security. This includes the
most commonly used aggregate functions like cts:sum-aggregate, cts:stddev, and so on. UDFs
that apply to more than one range index will only work with unprotected values.

6.14.5 Reverse Indexes
Similar to the case for triples (see SPARQL), if an element that contains a cts:query matches a
protected path of any role, or any part of the cts:query matches any role, the query won’t be
added into the reverse index unless the document’s security is stronger than the element security
on the element. See “Node Update and Document Permissions Expanded” on page 102 for
details. A cts:reverse-query that would normally find a document containing a matching
cts:query will no longer match once the embedded cts:query (or its children) is protected by
element level security that is stronger than the document’s security.

6.14.6 SPARQL
If a sem:triple is inside an element that is concealed for any role and the element level security is
stronger than the document security, it will not be put into the triple index. If the triple itself or its
subject, predicate, or object is protected, it will not be put into the triple index, unless the
document security is stronger than the element level security protection. In some scenarios, where
the document’s security is stronger than the element security on a triple, the protected triple will
be added to the triple index. This is because the document’s security already covers the protected
element. The information will be protected at the document level. See “Node Update and
Document Permissions Expanded” on page 102 for details.
MarkLogic 9—May, 2017 Security Guide—Page 111

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security
6.14.7 Alerting and QBFR
Each target in a QBFR (Query Based Flexible Replication) configuration is associated with a user
and a query. A target should only be able to get documents that match the query and that the user
is allowed to access. In QBFR, some flows must use the privileged user to run queries because the
process needs to figure out what documents should be deleted from a target. Internally, alerting
uses reverse queries to determine the set of matching rules for a given document or node. The
matching rules are then used to trigger the appropriate action for the target user of each matching
rule.

There is a two pass rule matching approach; first the rule matching runs against the full version of
the document, then for each matching rule, a second match test is performed using the version of
the document that the target user of the rule is allowed to see.

Now, a rule that matches “hello” will not trigger the action if the target user cannot see “hello”
due to element level security protection. Using element level security, MarkLogic Server will
deliver a redacted version of the document, based on element level security configuration of
protected paths and the user’s role.

Note: When using element level security with Alerting and QBFR, if a query contains a
“NOT” clause, you may see false negatives. What this means is documents might
not be replicated when the alerting rule contains a cts:not-query due to the false
negatives.

6.14.8 TDE
Template driven extraction (or TDE) extracts triples or rows from documents during ingestion. In
some scenarios, TDE and embedded triples (sem:triple) might be extracted from elements
protected by element level security. When the document level security is considered to be stronger
than an element’s security, the element is available for extraction by TDE. This means that TDE
will run normally on any protected element where the document’s security already covers the
protected element. In this case, any extracted information will be protected at the document level.

This process also applies to embedded triples in documents. If the element level protections on the
subject, predicate, and object are weaker than the document’s protection, the embedded triple is
extracted and indexed. For protected elements where the document level security is weaker than
the element level security, TDE behaves as if the element was missing in the document. See
Security on TDE Documents in the Application Developer’s Guide for more information.

6.14.9 mlcp
When you use mlcp to ingest files from MarkLogic 9 or later to another MarkLogic 9 or later
instance, the protected paths and node-update permissions will be preserved.

If you use mlcp to export a database archive that includes documents with the node-update
permission, and then import the archive into MarkLogic 8.0-6 or earlier, the behavior is
undefined. If you import the archive in MarkLogic 8.0-7 or a later version of MarkLogic 8, the
node-update permission is silently discarded.
Page 112—Security Guide

MarkLogic Server Element Level Security
Similarly, if you use mlcp to copy documents from MarkLogic 9 or later to MarkLogic 8.0-6 or
earlier, the behavior is undefined. If your copy destination is MarkLogic 8.0-7 or a later version of
MarkLogic 8, the node-update permission is silently discarded.

6.14.10 XCC
If you use XCC to insert a document with the node-update permission into MarkLogic 8.0-6 or
earlier, the behavior is undefined.

If you use XCC to insert a document with the node-update permission into MarkLogic 8.0-7 or a
later version of MarkLogic 8, the node-update permission is silently discarded.

These restrictions apply to using Session.insertContent with a Content object whose
ContentCreateOptions include the ContentCapability.NODE_UPDATE capability.

6.14.11 Bitemporal
Do not protect system axis for bitemporal queries when using element level security.

6.14.12 Others
A key concept to support cts queries with element level security is query rolesets. A query roleset
is simply a list of roles. When indexing, MarkLogic takes query roleset information into
consideration and essentially “partitions” indexes based on query rolesets. All queries (except for
composite ones like and-query) will look into indexes for different query rolesets based on the
caller’s role and logically “OR” the results. See “Query Rolesets” on page 80 for more about
query rolesets.

There are special rules for cts queries, phrase breaks, field values, geo element pairs, auditing and
term-queries when the elements involved are protected.

• cts queries - Positions are always calculated based on the original (full) document, prior to
any concealing. This implies that the distances calculated based on indexes will be larger
than what appears in the concealed document.

• Phrase breaks - When indexing, any element that is protected is considered a phrase break.
Consider the this example:
<foo>1<bar>2 3</bar>4</foo>.
If “bar” is protected by any protected path, then it is considered a phrase break regardless
whether a phrase through is defined on it. So in the example, “2 3” is still a phrase, but
“1 2” or “3 4” is not. “1 4” is not a phrase either.

• Fields - For an XML document, field values or field range values are sometimes
calculated by concatenating elements included in the field. If those elements don’t have
the same rolesets (permissions), concatenating can cause leaking of information.
MarkLogic server will treat this as a misconfiguration and log a warning. The query result
on such a field is undefined.
MarkLogic 9—May, 2017 Security Guide—Page 113

MarkLogic Server Version MarkLogic 9—May, 2017 Element Level Security
• Geo element pair with inconsistent permissions - Similar to the field case above, if
permissions on the two elements (or JSON properties) of the geo pair are not consistent
(or either of the two elements has different permissions from the parent node), MarkLogic
server will treat it as a misconfiguration and log a warning. The query result is undefined
in this case.

• Auditing -

a. For the “document-read” event, if the node involved has any element concealed, the string
“concealed” will be reported in the event. Here is an example:

2016-10-18 15:45:29.886 event=document-read; type=concealed;
uri=foo.json; database=Documents; success=true;

b. When a node or properties update built-in call is rejected due to the lack of element-level
permissions, the “no-permission” event will be reported. This is very similar to how the
event is used when such a call is rejected due to the lack of document-level permissions.

• term-query - Element level security won’t prevent a “malicious” user from getting a term
key through xdmp:plan from a different MarkLogic deployment, then passing that to a
cts:term-query to find out information she is not supposed to see on the current
MarkLogic deployment. The solution is to add a new execute privilege “term-query” to
“protect” cts:term-query. For backward compatibility, this privilege will only be checked
when element level security is in use (i.e., when at least one protected path is configured).

6.14.13 Rolling Upgrades
For rolling upgrades, configuration API calls (as well as Admin GUIs) will throw an error when a
rolling upgrade (from a release that doesn’t support element level security) has not yet completed
and been committed across the cluster. Document inserts (or set-permissions) with the new
node-update capability will be rejected if the effective version is not 9.0-1 or above.
Page 114—Security Guide

MarkLogic Server Protecting XQuery and JavaScript Functions With
7.0 Protecting XQuery and JavaScript Functions With
Privileges

118

Execute privileges provide authorization control for executing XQuery and JavaScript functions.
MarkLogic provides three ways to protect XQuery functions:

• Built-in execute privileges, created by MarkLogic, control access to protected functions
such as xdmp:document-load.

• Custom execute privileges, which you create using the Admin Interface or the security
function in the security.xqy module, control access to functions you write.

• Amps temporarily amplify a user’s authority by granting the authority to execute a single,
specific function. You can only amp a function in a library module that is stored in the
MarkLogic modules database.

This chapter describes the following:

• Built-In MarkLogic Execute Privileges

• Protecting Your XQuery and JavaScript Code with Execute Privileges

• Temporarily Increasing Privileges with Amps

7.1 Built-In MarkLogic Execute Privileges
Every installation of MarkLogic Server includes a set of pre-defined execute privileges. You can
view this list either in the Admin Interface or in Appendix B: Pre-defined Execute Privileges of the
Administrator’s Guide.

7.2 Protecting Your XQuery and JavaScript Code with Execute Privileges
To protect the execution of an individual XQuery or JavaScript function that you have written,
you can use an execute privilege. When a function is protected with an execute privilege, a user
must have that specific privilege to run the protected XQuery or JavaScript function.

Note: Execute privileges operate at the function level. To protect an entire XQuery or
JavaScript document that is stored in a modules database, you can use execute
permissions. For details, see “Document Permissions” on page 26.

This section describes the following:

• Using Execute Privileges

• Execute Privileges and App Servers

• Creating and Updating Collections
MarkLogic 9—May, 2017 Security Guide—Page 115

MarkLogic Server Version MarkLogic 9—May, 2017 Protecting XQuery and JavaScript
7.2.1 Using Execute Privileges
The basic steps for using execute privileges are:

• Create the privilege.

• Assign the privilege to a role.

• Write code to test for the privilege.

You create privileges and assign them to roles using the Admin Interface. You use the
xdmp:security-assert built-in function in your XQuery code to test for a privilege and you can
use the xdmp.securityAssert built-in function in your JavaScript code to test for a privilege. This
function tests to determine if the user running the code has the specified privilege. If the user
possesses the privilege, then the code continues to execute. If the user does not possess the
privilege, then the server throws an exception, which the application can catch and handle.

For example, to create an execute privilege to control the access to an XQuery function called
display-salary, use the following steps:

1. Use the Admin Interface to create an execute privilege named allow-display-salary.

2. Assign any URI (for example, http://my/privs/allow-display-salary) to the execute
privilege.

3. Assign a role to the privilege. You may want to create a specific role for this privilege
depending on your security requirements.

4. Finally, in your display-salary XQuery function, include an xdmp:security-assert call
to test for the allow-display-salary execute privilege as follows:

xquery version "1.0-ml";
declare function display-salary (

$employee-id as xs:unsignedLong)
as xs:decimal
{
xdmp:security-assert("http://my/privs/allow-display-salary", "execute"),
...
} ;

7.2.2 Execute Privileges and App Servers
You can also control access to specific HTTP, WebDAV, ODBC, or XDBC servers using an
execute privilege. Using the Admin Interface, you can specify that a privilege is required for
server access. Any users that access the server must then possess the specified privilege. If a user
tries to access an application on the server and does not possess the specified privilege, an
exception is thrown. For an example of using this technique to control server access, see
“Example: Using the Security Database in Different Servers” on page 280.
Page 116—Security Guide

MarkLogic Server Protecting XQuery and JavaScript Functions With
7.2.3 Creating and Updating Collections
To create or update a document and add it to a collection, the unprotected-collections privilege
is required. You also need a role corresponding to an insert or update permission on the
document. For a protected collection (a protected collection is created using the Admin Interface),
you either need permissions to update that collection or the any-collection execute privilege. If
the collection is an unprotected collection, then you need the unprotected-collections execute
privilege. For details on adding collections while creating a document, see the documentation for
xdmp:document-load, xdmp:document-insert, and xdmp:document-add-collections in the
MarkLogic XQuery and XSLT Function Reference.

7.3 Temporarily Increasing Privileges with Amps
Amps provide users with additional authorization to execute a specific function. Assigning the
user this authorization permanently could compromise the security of the system. When executing
an amped function, the user is part of an amped role, which temporarily grants the user additional
privileges and permissions of that role. Amps enable you to limit the effect of the additional roles
(privileges and permissions) to a specific function.

For example, a user may need a count of all the documents in the database in order to create a
report. If the user does not have read permissions on all the documents in the database, queries run
by the user do not “see” all the documents in the database. If you want anyone to be able to know
how many documents are in the database, regardless of whether they have permissions to see
those documents, you can create a function named document-count() and use an amp on the
function to elevate the user to a role with read permission for all documents. When the user
executes the amped function, she temporarily has the necessary read permissions that enable the
function to complete accurately. The administrator has in effect decided that, in the context of that
document-count() function, it is safe to let anyone execute it.

Amps are security objects and you use the Admin Interface or Management API to create them.
Amps are specific to a single function in a library module, which you specify by URI and local
name when creating the amp. You can only amp a function that resides in a library module that is
stored in a trusted directory on the filesystem, such as in the Modules directory
(<install_dir>/Modules), or in the modules database configured for the server in which the
function is executed. The recommended best practice is to put your library module code into the
modules database. You cannot amp functions in XQuery modules or JavaScript modules stored in
other locations. For example, you cannot amp a function in a module installed under the
filesystem root of an HTTP server, and you cannot amp functions that reside in a main module.
Functions must reside in the Modules database or in the Modules directory because these locations
are trusted. Allowing amped functions from under a server root or from functions submitted by a
client could compromise security. For details on creating amps, see the “Security Administration”
chapter of the Administrator’s Guide.

For an example that uses an amp, see “Access Control Based on Client IP Address” on page 291.
For details on amps in JavaScript modules, see Amps and the module.amp Function in the JavaScript
Reference Guide.
MarkLogic 9—May, 2017 Security Guide—Page 117

MarkLogic Server Version MarkLogic 9—May, 2017 Protecting XQuery and JavaScript
Page 118—Security Guide

MarkLogic Server Granular Privileges
8.0 Granular Privileges
134

Granular privileges extend MarkLogic Server security model by allowing finer granularity access
control over configuration and various administration abilities. Granular privileges is a subtype
of execute privileges type. The purposes of granular privileges are:

• Allow different applications to coexist in a single cluster, with some users having
authority over some parts of the cluster and other users having authority over other parts
of the cluster.

• Support separation of concerns between different administrative users, constraining
control to just the layers they are concerned with.

This chapter describes granular privileges and includes the following sections:

• Understanding Granular Privileges

• Categories of Granularity

• Configuring Granular Privileges

• Examples of Granular Privileges Usage

• Using Granular Priviliges with MarkLogic DHaaS

8.1 Understanding Granular Privileges
The MarkLogic security model includes execute privileges. Execute privileges are identified with
URIs and can be assigned to roles. For detail on execute privileges, see “Protecting XQuery and
JavaScript Functions With Privileges” on page 115.

For example, the following privilege allows a user to restart any forest:

http://marklogic.com/xdmp/privileges/xdmp-forest-restart

Granular privileges allow more fine-grained approach to execute privileges. When assigning
privileges to roles, you may not only specify a privilege to perform a specific action but also
identify a specific resource to which this privilege applies.

For example, you may allow a user to restart a specific forest by assigning one of the following
privileges to this user’s role:

http://marklogic.com/xdmp/privileges/xdmp-forest-restart/forest/forest-ID
http://marklogic.com/xdmp/privileges/xdmp-forest-restart/database/database-ID

where forest-ID is the forest identifier and database-ID is the identifier of the database using the
forest.

You can create an appropriate fine-grained privilege, assign it to some role, and assign that role to
a user. Then the user will be able to restart the specified forest, or forests in the specified database.
MarkLogic 9—May, 2017 Security Guide—Page 119

MarkLogic Server Version MarkLogic 9—May, 2017 Granular Privileges
8.2 Categories of Granularity
You can use various categories of granular privileges to limit access to privileged operations.
These categories are elaborated in this section:

• Privileges to Read, Write, or Delete Any Configuration File

• Privileges to Read, Write, or Delete a Specific Configuration File

• Privileges to Administer a Specific Resource

• Privileges to Administer a Specific Aspect of a Set of Resources

• Privileges to Administer a Specific Aspect of a Specific Resource

• Configure Granular Privileges via the Admin Interface

• Configure Granular Privileges via the XQuery API Security Module

8.2.1 Privileges to Read, Write, or Delete Any Configuration File
A privilege in this category grants a user the ability to read, write, or delete any configuration file
as specified (for example, call to xdmp:write-cluster-config-file()). This privilege is specific
to the operation (for example, "write") and the scope (for example, "cluster"). The combination
of the two values is a specific privilege (for example,
http://marklogic.com/xdmp/privileges/xdmp-write-cluster-config-file).

The following granular privileges belong to this category:

http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file
http://marklogic.com/xdmp/privileges/xdmp-write-cluster-config-file
http://marklogic.com/xdmp/privileges/xdmp-delete-cluster-config-file

8.2.2 Privileges to Read, Write, or Delete a Specific Configuration File
A privilege in this category grants a user the ability to read, write, or delete a specific
configuration file (for example, databases.xml). This privilege is specific to the operation (for
example, "write"), scope (for example, "cluster"), and the configuration file (for example,
"databases.xml"). The combination of the three values is a specific privilege (for example,
http://marklogic.com/xdmp/privileges/xdmp-write-cluster-config-file/databases.xml).

The following privileges belong to this category:

http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file/assignments.xml
http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file/calendars.xml
http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file/clusters.xml
http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file/countries.xml
http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file/databases.xml
http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file/groups.xml
http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file/hosts.xml
http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file/languages.xml
http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file/mimetypes.xml
http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file/security.xml
http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file/server.xml
http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file/tokenizer.xml
http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file/user-languages.xml
Page 120—Security Guide

MarkLogic Server Granular Privileges
http://marklogic.com/xdmp/privileges/xdmp-write-cluster-config-file/assignments.xml
http://marklogic.com/xdmp/privileges/xdmp-write-cluster-config-file/calendars.xml
http://marklogic.com/xdmp/privileges/xdmp-write-cluster-config-file/clusters.xml
http://marklogic.com/xdmp/privileges/xdmp-write-cluster-config-file/countries.xml
http://marklogic.com/xdmp/privileges/xdmp-write-cluster-config-file/databases.xml
http://marklogic.com/xdmp/privileges/xdmp-write-cluster-config-file/groups.xml
http://marklogic.com/xdmp/privileges/xdmp-write-cluster-config-file/hosts.xml
http://marklogic.com/xdmp/privileges/xdmp-write-cluster-config-file/languages.xml
http://marklogic.com/xdmp/privileges/xdmp-write-cluster-config-file/mimetypes.xml
http://marklogic.com/xdmp/privileges/xdmp-write-cluster-config-file/security.xml
http://marklogic.com/xdmp/privileges/xdmp-write-cluster-config-file/server.xml
http://marklogic.com/xdmp/privileges/xdmp-write-cluster-config-file/tokenizer.xml
http://marklogic.com/xdmp/privileges/xdmp-write-cluster-config-file/user-languages.xml

http://marklogic.com/xdmp/privileges/xdmp-delete-cluster-config-file/assignments.xml
http://marklogic.com/xdmp/privileges/xdmp-delete-cluster-config-file/calendars.xml
http://marklogic.com/xdmp/privileges/xdmp-delete-cluster-config-file/clusters.xml
http://marklogic.com/xdmp/privileges/xdmp-delete-cluster-config-file/countries.xml
http://marklogic.com/xdmp/privileges/xdmp-delete-cluster-config-file/databases.xml
http://marklogic.com/xdmp/privileges/xdmp-delete-cluster-config-file/groups.xml
http://marklogic.com/xdmp/privileges/xdmp-delete-cluster-config-file/hosts.xml
http://marklogic.com/xdmp/privileges/xdmp-delete-cluster-config-file/languages.xml
http://marklogic.com/xdmp/privileges/xdmp-delete-cluster-config-file/mimetypes.xml
http://marklogic.com/xdmp/privileges/xdmp-delete-cluster-config-file/security.xml
http://marklogic.com/xdmp/privileges/xdmp-delete-cluster-config-file/server.xml
http://marklogic.com/xdmp/privileges/xdmp-delete-cluster-config-file/tokenizer.xml
http://marklogic.com/xdmp/privileges/xdmp-delete-cluster-config-file/user-languages.xml

8.2.3 Privileges to Administer a Set of Resources
A privilege of this category grants a user the ability to administer a specific set of resources (for
example, databases). This privilege is specific to the resource set (for example, "databases"),
which defines the specific privilege (for example,
http://marklogic.com/xdmp/privileges/admin/database). This privilege may imply the
privilege to read and write a specific configuration file.

The following privileges belong to this category:

http://marklogic.com/xdmp/privileges/admin/database
http://marklogic.com/xdmp/privileges/admin/forest
http://marklogic.com/xdmp/privileges/admin/host
http://marklogic.com/xdmp/privileges/admin/app-server
http://marklogic.com/xdmp/privileges/admin/app-server-security
http://marklogic.com/xdmp/privileges/admin/group
http://marklogic.com/xdmp/privileges/admin/group-security
http://marklogic.com/xdmp/privileges/admin/cluster
http://marklogic.com/xdmp/privileges/admin/mimetypes

Note: Privileges of this category are pre-defined and included with every installation of
MarkLogic Server. You can view them in the Execute Privileges Summary page of
the Admin Interface (see instructions in Viewing an Execute Privilege section of the
Administrator’s Guide).
MarkLogic 9—May, 2017 Security Guide—Page 121

MarkLogic Server Version MarkLogic 9—May, 2017 Granular Privileges
8.2.4 Privileges to Administer a Specific Resource
A privilege of this category grants a user an ability to administer a specific resource (for example,
a database with the specified identifier). This privilege is granted by suffixing the administrator
privilege for that kind of resource (for example, "database") with the specific identifier (for
example, database-ID), which results in the specific privilege (for example,
http://marklogic.com/xdmp/privileges/admin/database/database-ID). This privilege may
imply the privilege to read and write a portion of a configuration file. It also grants the ability to
call various built-in functions for specific resources (for example,
http://marklogic.com/xdmp/privileges/xdmp-forest-clear/forest/forest-ID privilege allows
calls to xdmp:forest-clear() for that forest identifier).

The following privileges belong to this category:

http://marklogic.com/xdmp/privileges/admin/database/database-ID
http://marklogic.com/xdmp/privileges/admin/forest/forest-ID
http://marklogic.com/xdmp/privileges/admin/host/host-ID
http://marklogic.com/xdmp/privileges/admin/app-server/server-ID
http://marklogic.com/xdmp/privileges/admin/app-server-security/server-ID
http://marklogic.com/xdmp/privileges/admin/group/group-ID
http://marklogic.com/xdmp/privileges/admin/group-security/group-ID
http://marklogic.com/xdmp/privileges/admin/cluster/cluster-ID

8.2.5 Privileges to Administer a Specific Aspect of a Set of Resources
A privilege of this category grants a user an ability to administer a specific aspect (for example,
backup) of a set of resources (for example, databases). This privilege is granted by suffixing the
administrator privilege for that kind of resource (for example, "database") with the specific
aspect (for example, "backup"), which results in the specific privilege (for example,
http://marklogic.com/xdmp/privileges/admin/database/backup). This privilege may imply the
privilege to read and write a portion of a configuration file.

The following privileges belong to this category:

http://marklogic.com/xdmp/privileges/admin/database/forests
http://marklogic.com/xdmp/privileges/admin/database/backup
http://marklogic.com/xdmp/privileges/admin/database/index
http://marklogic.com/xdmp/privileges/admin/database/replication
http://marklogic.com/xdmp/privileges/admin/database/forest-backup
http://marklogic.com/xdmp/privileges/admin/forest/backup
http://marklogic.com/xdmp/privileges/admin/group/scheduled-task

8.2.6 Privileges to Administer a Specific Aspect of a Specific Resource
A privilege of this category grants a user an ability to administer a specific aspect (for example,
backup) of a specific resource (for example, the database with identifier database-ID). This
privilege is granted by suffixing the privilege for the specific aspect (for example, "backup") of
that kind of resource (for example, "database") with the specific identifier (for example,
"database-ID"), which results in the specific privilege (for example,
http://marklogic.com/xdmp/privileges/admin/database/backup/database-ID). This privilege
may imply the privilege to read and write a portion of a configuration file.
Page 122—Security Guide

MarkLogic Server Granular Privileges
The following privileges belong to this category:

http://marklogic.com/xdmp/privileges/admin/database/forests/database-ID
http://marklogic.com/xdmp/privileges/admin/database/backup/database-ID
http://marklogic.com/xdmp/privileges/admin/database/index/database-ID
http://marklogic.com/xdmp/privileges/admin/database/index/database-name
http://marklogic.com/xdmp/privileges/admin/database/replication/database-ID
http://marklogic.com/xdmp/privileges/admin/database/forest-backup/database-ID
http://marklogic.com/xdmp/privileges/admin/forest/backup/forest-ID
http://marklogic.com/xdmp/privileges/admin/group/scheduled-task/group-ID

A user with any of the following privileges:

http://marklogic.com/xdmp/privileges/admin/database/index
http://marklogic.com/xdmp/privileges/admin/database/index/database-ID
http://marklogic.com/xdmp/privileges/admin/database/index/database-name

can alter the following properties:

Property Description

attribute-value-positions Index attribute value positions for faster near searches
involving element-attribute-value-query (slower document
loads and larger database files).

collection-lexicon Maintain a lexicon of collection URIs (slower document
loads and larger database files).

default-rulesets The default rulesets configuration.

element-attribute-word-
lexicons

Maintain lexicons of words in elements.

element-value-positions Index element value positions for faster near searches
involving element-value-query (slower document loads and
larger database files).

element-word-lexicons Maintain lexicons of words in XML elements or JSON
properties.

element-word-positions Index element word positions for faster element-based
phrase and near searches (slower document loads and larger
database files).

element-word-query-throughs The element-word-query-through specifications.

fast-case-sensitive-searches Enable faster case sensitive searches (slower document
loads and larger database files).

fast-diacritic-sensitive-
searches

Enable faster diacritic sensitive searches (slower document
loads and larger database files).
MarkLogic 9—May, 2017 Security Guide—Page 123

MarkLogic Server Version MarkLogic 9—May, 2017 Granular Privileges
fast-element-character-
searches

Enable element wildcard searches and element-character-
based XQuery predicates (slower document loads and larger
database files).

fast-element-phrase-searches Enable faster element phrase searches (slower document
loads and larger database files).

fast-element-trailing-
wildcard-searches

Enable element trailing wildcard searches (slower
document loads and larger database files).

fast-element-word-searches Enable faster element-word searches (slower document
loads and larger database files).

fast-phrase-searches Enable faster phrase searches (slower document loads and
larger database files).

fast-reverse-searches Enable faster reverse searches (slower document loads and
larger database files).

field-value-positions Index field value positions for faster near searches
involving field-value-query (slower document loads and
larger database files).

field-value-searches Index field values for faster searches involving field-value-
query (slower document loads and larger database files).

fields The fields specifications.

geospatial-element-
attribute-pair-indexes

Indexes for fast geospatial element comparisons.

geospatial-element-child-
indexes

Indexes for fast geospatial element comparisons.

geospatial-element-indexes Indexes for fast geospatial element comparisons.

geospatial-element-pair-
indexes

Indexes for fast geospatial element comparisons.

geospatial-path-indexes Indexes for fast geospatial path-based comparisons.

geospatial-region-path-
indexes

Indexes for fast geospatial region comparisons.

language The default language assumed for content (if xml:lang
encoding is absent)

path-namespaces The namespace binding specifications for Path indexes.

phrase-arounds The phrase-around specifications.

Property Description
Page 124—Security Guide

MarkLogic Server Granular Privileges
phrase-throughs The phrase-through specifications.

range-element-attribute-
indexes

Indexes for fast element-attribute inequality comparisons.

range-element-indexes Indexes for fast inequality comparisons.

range-index-optimize Specifies how to optimize range indexes.

range-path-indexes Indexes for fast inequality comparisons.

stemmed-searches Enable stemmed word searches (slower document loads and
larger database files).

tf-normalization What kind of TF normalization to apply.

three-character-searches Enable wildcard searches and faster character-based
XQuery predicates using three or more characters (slower
document loads and larger database files).

three-character-word-
positions

Index word positions for three-character searches only
when three-character-searches are enabled (slower
document loads and larger database files).

trailing-wildcard-searches Enable trailing wildcard searches (slower document loads
and larger database files).

trailing-wildcard-word-
positions

Index word positions for trailing-wildcard searches only
when trailing-wildcard-searches are enabled (slower
document loads and larger database files).

triple-index Enable the RDF triple index (slower document loads and
larger database files).

triple-positions Index triple positions for faster near searches involving
cts:triple-range-query (slower document loads and larger
database files).

Property Description
MarkLogic 9—May, 2017 Security Guide—Page 125

MarkLogic Server Version MarkLogic 9—May, 2017 Granular Privileges
8.3 Configuring Granular Privileges
You can configure granular privileges either via the MarkLogic Server Admin Interface or via the
functions of XQuery API security module.

This section describes both mechanisms in the corresponding subsections:

• Configure Granular Privileges via the Admin Interface

• Configure Granular Privileges via the XQuery API Security Module

8.3.1 Configure Granular Privileges via the Admin Interface
To create a new granular privilege via the Admin Interface, follow steps for creating an execute
privilege described at Creating an Execute Privilege section of the Administrator’s Guide.

For example, to create a granular privilege that grants a user an ability to administer a specific
aspect (for example, backup) of a set of resources (for example, forests), perform the following
steps:

1. Use the Admin Interface to create an execute privilege named admin-forest-backup.

2. Assign the action URI http://marklogic.com/xdmp/privileges/admin/forest/backup to
the privilege.

3. Assign the privilege to the desired role or roles. You may want to create a specific role for
this privilege depending on your security requirements.

The following screenshot depicts the New Execute Privilege page with these parameters:

uri-lexicon Maintain a lexicon of document URIs (slower document
loads and larger database files).

word-lexicons A list of word lexicons. Each lexicon is defined by its
collation URI.

word-positions Index word positions for faster phrase and near searches
(slower document loads and larger database files).

word-searches Enable unstemmed word searches (slower document loads
and larger database files).

Property Description
Page 126—Security Guide

MarkLogic Server Granular Privileges
Note: You cannot create a granular privilege that grants a user the ability to administer a
specific resource (such as a forest with the specified identifier) in the manner
described here because resource identifiers are not exposed in the Admin Interface.
To create a granular privilege of this type (for example,
http://marklogic.com/xdmp/privileges/admin/forest/forest-ID), you need to
use the functions of the XQuery API security module, as described in the
following section Configure Granular Privileges via the XQuery API Security Module.

8.3.2 Configure Granular Privileges via the XQuery API Security Module
You can use the XQuery API security module to create and assign granular privileges. The
following sections describe this in detail:

• Creating and Assigning Granular Privileges

• Using Pseudo-Functions with Granular Privileges

• Examples of Creating and Assigning Granular Privileges

8.3.2.1 Creating and Assigning Granular Privileges
To create a new granular privilege programmatically, use the following function of the XQuery
API security module:

sec:create-privilege(
$privilege-name as xs:string,
MarkLogic 9—May, 2017 Security Guide—Page 127

MarkLogic Server Version MarkLogic 9—May, 2017 Granular Privileges
$action as xs:string,
$kind as xs:string,
$role-names as xs:string*

) as xs:unsignedLong

To assign an existing granular privilege to an additional role, use the following function of the
XQuery API security module:

sec:privilege-set-roles(
$action as xs:string,
$kind as xs:string,
$role-names as xs:string*

) as empty-sequence()

For detailed descriptions of sec:create-privilege and sec:privilege-set-roles functions of
security.xqy library module, see the MarkLogic XQuery and XSLT Function Reference.

8.3.2.2 Using Pseudo-Functions with Granular Privileges
When you have a payload that creates a database and a granular privilege for that database, you
need to substitute a variable of some sort for the ID of the database because the database has yet to
be created. MarkLogic has the following pseudo-functions that can be used when creating and
assigning granular privileges:

Pseudo-Function and Parameters Replaced By...

$$group-id(group-name) The group ID of the named group.

$$database-id(database-name) The database ID of the named database.

$$host-id() The host ID of the host running the query.

$$host-id(host-name) The host ID of the named host.

$$forest-id(forest-name) The forest ID of the named forest.

$$cluster-id() The cluster ID of the cluster to whch the host running
the query belongs.

$$cluster-id(cluster-name) The cluster ID of the named cluster.

$$role-id(role-name) The role ID of the named role.

$$user-id(user-name) The user ID of the named user.

$$server-id(server-name) The server ID of the named server in the group to
which the host running the query belongs.
Page 128—Security Guide

MarkLogic Server Granular Privileges
For example, to create the privilege finalDbName-index-editor for a not-yet-created database
represented by the variable FinalDbName, execute the following code:

{
"privilege-name": "finalDbName-index-editor",
"action":

"http://marklogic.com/xdmp/privileges/admin/database/index/$$database-
id(FinalDbName)",

"role": ["firstEditorRole","secondEditorRole"],
"kind": "execute"

}

8.3.2.3 Examples of Creating and Assigning Granular Privileges
The following are examples of creating and assigning granular privileges via the XQuery API.

Example 1: Assign a privilege to perform index operations on any database to role1

Suppose you previously created http://marklogic.com/xdmp/privileges/admin/database/index
privilege via the Admin Interface, as described in the previous section Configure Granular Privileges

via the Admin Interface. Assign this privilege to role1 as follows:

xquery version "1.0-ml";
import module namespace sec="http://marklogic.com/xdmp/security" at
"/MarkLogic/security.xqy";

sec:privilege-set-roles(
"http://marklogic.com/xdmp/privileges/admin/database/index",
"execute",
("admin","role1")

)

Example 2: Create a privilege to perform any operations on database db1 for role2

$$server-id("server-name",
group-id)

The server ID of the named server in the specified
group. Note that group-id is an unsigned long. To
refer to the group by name as well, nest the calls:

$$server-id(server-name,
$$group-id(group-name))

$$privilege-id("privilege-name") The privilege ID of the named /execute/ privilege.

$$privilege-id("privilege-name",
"execute")

The privilege ID of the named execute privilege.

$$privilege-id("privilege-name",
"uri")

The privilege ID of the named URI privilege.

Pseudo-Function and Parameters Replaced By...
MarkLogic 9—May, 2017 Security Guide—Page 129

MarkLogic Server Version MarkLogic 9—May, 2017 Granular Privileges
Create a privilege to perform any operations on database db1 for role2 as follows (note the use of
function xdmp:database("db1") to convert from the database name to the database identifier):

xquery version "1.0-ml";
import module namespace sec="http://marklogic.com/xdmp/security" at
"/MarkLogic/security.xqy";

sec:create-privilege(
"admin-database-db1",
fn:concat("http://marklogic.com/xdmp/privileges/admin/database/",

xdmp:database("db1")),
"execute",
"role2"

)

Example 3: Create a privilege to perform index operations on database db1 for role3

Create a privilege to perform index operations on database db1 for role3 as follows (note the use
of function xdmp:database("db1") to convert from the database name to the database identifier):

xquery version "1.0-ml";
import module namespace sec="http://marklogic.com/xdmp/security" at
"/MarkLogic/security.xqy";

sec:create-privilege(
"admin-database-db1",
fn:concat("http://marklogic.com/xdmp/privileges/admin/database/inde

x/", xdmp:database("db1")),
"execute",
"role3"

)

8.4 Examples of Granular Privileges Usage
This section describes several scenarios that use granular privileges.

8.4.1 Prerequisites - Create Databases, Roles, Users, and Privileges
To execute the scenarios discussed in this section, you need to perform the following preparation
steps:

1. Using the Admin Interface, create databases db1 and db2. For details on creating
databases, see Creating a New Database section of the Administrator’s Guide.

2. Using the Admin Interface, create roles role1, role2, and role3. For details on creating
roles, see Creating a Role section of the Administrator’s Guide.

3. Using the Admin Interface, create users user1, user2, and user3 with roles role1, role2,
and role3 correspondingly. For details on creating users and assigning roles to them, see
Creating a User section of the Administrator’s Guide.
Page 130—Security Guide

MarkLogic Server Granular Privileges
4. Create and assign granular privileges to roles role1, role2, and role3 as described in
Example 1, Example 2, and Example 3 correspondingly of the previous section Configure

Granular Privileges via the XQuery API Security Module.

As the result, you will have the users with roles and privileges as described in the following table:

8.4.2 Scenarios that Use Granular Privileges
This section includes examples in XQuery that you may run for user1, user2, and user3 from the
Query Console and observe different results depending on the user’s privileges. The results are
discussed in detail in the next section, Test It Out.

Scenario 1: Add range index to database db1

Execute the following XQuery code to add a range index to database db1:

xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin" at
"/MarkLogic/admin.xqy";

let $config := admin:get-configuration()
let $dbid := xdmp:database("db1")
let $rangespec := admin:database-range-element-index("int",
"http://marklogic.com/qa", "column1", (), fn:false())
let $config := admin:database-add-range-element-index($config, $dbid,
$rangespec)
return admin:save-configuration($config)

Scenario 2: Add range index to database db2

Execute the following XQuery code to add a range index to database db2:

xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin" at
"/MarkLogic/admin.xqy";

let $config := admin:get-configuration()
let $dbid := xdmp:database("db2")
let $rangespec := admin:database-range-element-index("int",
"http://marklogic.com/qa", "column1", (), fn:false())
let $config := admin:database-add-range-element-index($config, $dbid,

User Role Privilege

user1 role1 http://marklogic.com/xdmp/privileges/admin/database/index

user2 role2 http://marklogic.com/xdmp/privileges/admin/database/db1_identifier

user3 role3 http://marklogic.com/xdmp/privileges/admin/database/index/db1_identifier
MarkLogic 9—May, 2017 Security Guide—Page 131

MarkLogic Server Version MarkLogic 9—May, 2017 Granular Privileges
$rangespec)
return admin:save-configuration($config)

Scenario 3: Add backup for database db1

Execute the following XQuery code to add a backup for database db1:

xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin" at
"/MarkLogic/admin.xqy";
let $config := admin:get-configuration()
let $backup := admin:database-monthly-backup("/space/backup", 2, 1,
xs:time("09:45:00"), 2, true(), true(), true())
return admin:save-configuration(admin:database-add-backup($config,
xdmp:database("db1"), $backup))

8.4.3 Test It Out
Using the Query Console, you can execute Scenario 1, Scenario 2, and Scenario 3 for each one of
the users user1, user2, and user3. The results of the execution are presented in the following
table:

The following analysis explains these results:

• The user user1 successfully adds indexes to both databases db1 and db2, but fails to add
backup to database db1, because the user’s role1 has granular privilege
http://marklogic.com/xdmp/privileges/admin/database/index that allows to add
indexes to any database but does not allow other operations on databases.

• The user user2 successfully adds both the index and backup to database db1, but fails to
add index to database db2, because the user’s role2 has granular privilege
http://marklogic.com/xdmp/privileges/admin/database/db1_identifier that allows this

User Role Scenario Result

user1 role1 Add range index to database db1 Success

user1 role1 Add range index to database db2 Success

user1 role1 Add backup for database db1 Failure

user2 role2 Add range index to database db1 Success

user2 role2 Add range index to database db2 Failure

user2 role2 Add backup for database db1 Success

user3 role3 Add range index to database db1 Success

user3 role3 Add range index to database db2 Failure

user3 role3 Add backup for database db1 Failure
Page 132—Security Guide

MarkLogic Server Granular Privileges
user to perform any operation on database db1 but does not allow operations on other
databases.

• The user user3 successfully adds index to database db1, but fails to add index to database
db2 and to add backup to database db1, because the user’s role3 has granular privilege
http://marklogic.com/xdmp/privileges/admin/database/index/db1_identifier that
allows to add indexes to database db1 but does not allow any other operation on database
db1 and does not allow any operation on other databases.

8.5 Using Granular Priviliges with MarkLogic DHaaS
MarkLogic Data Hub Service provides a managed AWS instance in which to deploy an
operational data hub created using Data Hub Framework (DHF). MarkLogic also provides its data
hub as a service (DHaaS) where you can store and curate your data in the cloud. The following
roles are built into DHaaS:

Role Identifier Can do these things...

Data Hub
Security
Admin

securityAdmin An administrator; can create roles based on the Flow
Developer, Flow Operator, Endpoint Developer, and
Endpoint Operator roles.

Flow
Developer

flowDeveloper A developer who can upload new or changed
documents (such as flows) to the modules database.
Can change modules, deploy apps, develops and
publishes the flows to production; can configure
indexes, TDE, and publish to modules.

Flow
Operator

flowOperator A operator who can load and modify data in the staging
database and final database, call flow runner (for
example, via ml-gradle), and monitor jobs (read
documents in the trace/jobs database).

Endpoint
Developer

endpointDeveloper A subset of flow developer that has access to endpoints
and the final documents, can add documents to the
modules database, but cannot modify somebody else's
documents or flows. This user has no access to flows,
staging, mappings, or entities. This user can publish to
modules regarding only the access side and not curation
stack, create endpoints, make use of Data Services First
APIs, and specify ports.

Endpoint
Operator

endpointOperator Represents the operator who can access the endpoints.
MarkLogic 9—May, 2017 Security Guide—Page 133

MarkLogic Server Version MarkLogic 9—May, 2017 Granular Privileges
The following rules apply to granular privileges on a data hub:

• A securityAdmin user cannot delete or modify privileges for these or any other pre-built
roles, and these pre-built roles cannot inherit privileges.

• When a securityAdmin user creates a DHaaS custom role, that role initially has no pre-
built roles associated with it.

• Custom roles in DHaaS can inherit functionality from the pre-built DHaaS roles, from
other DHaaS custom roles, or they can be created to have no inheritance, but you cannot
assign any privileges to DHaaS custom roles.

• DHaaS custom roles cannot inherit privileges from any other (non-DHaaS) pre-built
MarkLogic roles.

• You can change the external name for a DHaaS custom role, but the internal name stays
constant.

ODBC User odbcUser Represents the user that has access to the analytics stack
that has an ODBC server.

Services
Administrator

SERV-ADMIN Can create services, provision instances, subscribe or
add the service. This role manages networking
(limited).

Account
Administrator

ACCT-ADMIN Can tracks and view billing and usage.

Security
Administrator

SEC-ADMIN Can configure VPC, assign roles, and add users to the
pre-configured roles. This role is mapped to the AD
group.

Role Identifier Can do these things...
Page 134—Security Guide

MarkLogic Server Configuring SSL on App Servers
9.0 Configuring SSL on App Servers
158

This chapter describes SSL support in the MarkLogic Server, and includes the following sections:

• Understanding SSL

• General Procedure for Setting up SSL for an App Server

• Procedures for Enabling SSL on App Servers

• Accessing an SSL-Enabled Server from a Browser or WebDAV Client

• Procedures for Obtaining a Signed Certificate

• Viewing Trusted Certificate Authorities

• Importing a Certificate Revocation List into MarkLogic Server

• Deleting a Certificate Template

This chapter describes how to use the Admin Interface to configure SSL on App Servers. For
details on how to configure SSL programmatically, see Enabling SSL on an App Server in the
Scripting Administrative Tasks Guide.

9.1 Understanding SSL
SSL (Secure Sockets Layer) is a transaction security standard that provides encrypted protection
between browsers and App Servers. When SSL is enabled for an App Server, browsers
communicate with the App Server by means of an HTTPS connection, which is HTTP over an
encrypted Secure Sockets Layer. HTTPS connections are widely used by banks and web vendors
for secure transactions over the web.

A browser and App Server create a secure HTTPS connection by using a handshaking procedure.
When browser connects to an SSL-enabled App Server, the App Server sends back its
identification in the form of a digital certificate that contains the server name, the trusted
certificate authority, and the server's public encryption key. The browser uses the server's public
encryption key from the digital certificate to encrypt a random number and sends the result to the
server. From the random number, both the browser and App Server generate a session key. The
session key is used for the rest of the session to encrypt/decrypt all transmissions between the
browser and App Server, enabling them to verify that the data didn't change in route.

The end result of the handshaking procedure described above is that only the server is
authenticated. The client can trust the server, but the client remains unauthenticated. MarkLogic
Server supports mutual authentication, in which the client also holds a digital certificate that it
sends to the server. When mutual authentication is enabled, both the client and the server are
authenticated and mutually trusted.

MarkLogic Server uses OpenSSL to implement the Secure Sockets Layer (SSL v3) and Transport
Layer Security (TLS v1) protocols.
MarkLogic 9—May, 2017 Security Guide—Page 135

MarkLogic Server Version MarkLogic 9—May, 2017 Configuring SSL on App Servers
The following are the definitions for the SSL terms used in this chapter:

• A certificate, or more precisely, a public key certificate, is an electronic document that
incorporates a digital signature to bind together a public key with identity information,
such as the name of a person or an organization, address, and so on. The certificate can be
used to verify that a public key belongs to an individual or organization. In a typical public
key infrastructure (PKI) scheme, the signature will be that of a certificate authority.

• A certificate authority (CA) is a trusted third party that certifies the identity of entities,
such as users, databases, administrators, clients, and servers. When an entity requests
certification, the CA verifies its identity and grants a certificate, which is signed with the
CA's private key. If the CA is trusted, then any certificate it issues is trusted unless it has
been revoked.

• A certificate chain is a group of interdependent CAs. A certificate chain consists of a
single trusted root CA, one or more intermediate CA, and one or more end CA. The
intermediate and end certificates must be imported into MarkLogic.

Note: MarkLogic supports only one intermediate CA per host.

• A certificate request is a request data structure containing a subset of the information that
will ultimately end up in the certificate. A certificate request is sent to a certificate
authority for certification.

• A key is a piece of information that determines the output of a cipher. SSL/TLS
communications begin with a public/private key pair that allow the client and server to
securely agree on a session key. The public/private key pair is also used to validate the
identity of the server and can optionally be used to verify the identity of the client.

• A certificate template is a MarkLogic construct that is used to generate certificate requests
for the various hosts in a cluster. The template defines the name of the certificate, a
description, and identity information about the owner of the certificate.

• A cipher is an algorithm for encrypting information so that it's only readable by someone
with a key. A cipher can be either symmetric and asymmetric. Symmetric ciphers use the
same key for both encryption and decryption. Asymmetric ciphers use a public and private
key.

Note: Signed certificates are imported via the Certificate Templates import page, as
described in “Importing a Signed Certificate into MarkLogic Server” on page 154.
Certificate Authority certificates are imported via the Certificate Authorities
import page, as described in “CA Certificate (User Cert Signer) Import from
Admin Interface” on page 160.
Page 136—Security Guide

MarkLogic Server Configuring SSL on App Servers
9.2 General Procedure for Setting up SSL for an App Server
This section describes the general procedure for setting up SSL on an App Server. The general
steps are:

• Create a certificate template, as described in “Creating a Certificate Template” on
page 138.

• Enable SSL for the App Server, as described in “Enabling SSL for an App Server” on
page 140.

• Access the SSL-enabled server from a browser, as described in “Accessing an SSL-
Enabled Server from a Browser or WebDAV Client” on page 142.

• Generate a certificate request and send it off to a certificate authority, as described in
“Generating and Downloading Certificate Requests” on page 152.

• When you receive the signed certificate from the certificate authority, import it into
MarkLogic Server for use by your App Server, as described in “Importing a Signed
Certificate into MarkLogic Server” on page 154.

Note: Certificate templates, requests, and the resulting signed certificates are only valid
within a single cluster.
MarkLogic 9—May, 2017 Security Guide—Page 137

MarkLogic Server Version MarkLogic 9—May, 2017 Configuring SSL on App Servers
9.3 Procedures for Enabling SSL on App Servers
The following sections describe how to enable SSL for an App Server:

• Creating a Certificate Template

• Enabling SSL for an App Server

9.3.1 Creating a Certificate Template
Access to an SSL-enabled server is managed by a public key in a signed certificate obtained from
a certificate authority. The first step in producing a request for a signed certificate is to define a
certificate template. This procedure will produce a self-signed certificate that your browser can
temporarily use to access an SSL-enabled server until you receive a signed certificate from a
certificate authority.

1. Click the Security icon in the left tree menu.

2. Click the Certificate Templates icon on the left tree menu.

3. Click the Create tab. The Create Certificate Template page will display:

4. In the Template Name field, enter a shorthand name for this certificate template.
MarkLogic Server will use this name to refer to this template on display screens in the
Admin Interface.
Page 138—Security Guide

MarkLogic Server Configuring SSL on App Servers
5. You can enter an optional description for the certificate template.

6. Enter the name of your company or organization in the Organization Name field.

7. You can optionally fill in subject information, such as your country, state, locale, and
email address. Country Name must be two characters, such as US, UK, DE, FR, ES, etc.

8. When you have finished filling in the fields, click OK. MarkLogic Server automatically
generates a Self-Signed Certificate Authority, which in turn automatically creates a signed
certificate from the certificate template for each host. For details on how to view the
Certificate Authority and signed certificate, see “Viewing Trusted Certificate Authorities”
on page 155.
MarkLogic 9—May, 2017 Security Guide—Page 139

MarkLogic Server Version MarkLogic 9—May, 2017 Configuring SSL on App Servers
9.3.2 Enabling SSL for an App Server
After creating a certificate template, you can enable SSL for an HTTP, ODBC, WebDAV, or
XDBC server.

1. Click the Groups icon in the left tree menu.

2. Click the group in which you want to define the HTTP server (for example, Default).

3. Click the App Servers icon on the left tree menu.

4. Either create a new server by clicking on one of the Create server_type tabs or select an
existing server from the left tree menu.

The SSL fields are located at the bottom of the server specification page.

5. In the SSL Certificate Template field, select the certificate template you created in
“Creating a Certificate Template” on page 138. Selecting a certificate template implicitly
enables SSL for the App Server.

6. (Optional) The SSL Hostname field should only be filled in when a proxy or load balancer
is used to represent multiple servers. In this case, you can specify an SSL hostname here
and all instances of the application server will identify themselves as that host.

7. (Optional) In the SSL Ciphers field, you can either use the default (ALL:!LOW:@STRENGTH)
or one or more of the SSL ciphers defined in http://www.openssl.org/docs/apps/
ciphers.html.
Page 140—Security Guide

http://www.openssl.org/docs/apps/ciphers.html
http://www.openssl.org/docs/apps/ciphers.html

MarkLogic Server Configuring SSL on App Servers
8. (Optional) If you want SSL to require clients to provide a certificate, select True for SSL
Require Client Certificate. Then select Show under SSL Client Certificate Authorities and
which certificate authority is to be used to sign client certificates for the server.

9. (Optional) Set SSL Client Issuer Authority Verification to True to ensure that the App
Server will accept client certificates only signed directly by a selected CA from the SSL
Client Certificate Authorities list. A setting of False enables the App Server to accept
client certificates that have a parent CA that is indirectly signed by one or more ancestor
CAs selected in the Admin Interface (same as prior to MarkLogic 9.0-8).
MarkLogic 9—May, 2017 Security Guide—Page 141

MarkLogic Server Version MarkLogic 9—May, 2017 Configuring SSL on App Servers
9.4 Accessing an SSL-Enabled Server from a Browser or WebDAV Client
When you create a certificate template and set it in your App Server, MarkLogic Server
automatically generates a temporary self-signed MarkLogic certificate authority that signs host
certificates. If you have not yet received a signed certificate for your SSL-enabled App Server
from a certificate authority, your browser must accept the temporary self-signed certificate
authority before it can access the App Server. There are two alternative ways to do this, both of
which are browser-dependent and described below.

To enable WebDAV clients to access an SSL-enabled App Server, you must follow the procedure
described in “Importing a Self-Signed Certificate Authority into Windows” on page 145.

To enable a single browser to access the SSL-enabled App Server, you can create a security
exception for the self-signed certificate in your browser, as described in the following sections:

• Creating a Security Exception in Internet Explorer

• Creating a Security Exception in Google Chrome

• Importing a Self-Signed Certificate Authority into Windows

If you need to enable a number of browsers to access the SSL-enabled App Server, you might
want each browser to import the self-signed certificate authority for the certificate template. Once
this is done, all certificates signed by the certificate authority will be trusted by the browser, so
you can distribute new certificates without requiring each browser to create new security
exceptions. The following sections describe how to import the self-signed MarkLogic certificate
authority:

• Importing a Self-Signed Certificate Authority into Windows

• Procedures for Obtaining a Signed Certificate

9.4.1 Creating a Security Exception in Internet Explorer
If you have not imported the certificate authority for the certificate template into Windows, when
you first access an SSL-enabled server with your IE browser, you will receive an error notifying
you that there is a problem with this website’s security certificate. You can bypass this security
exception by accepting the certificate. For example, if you enabled SSL on the HTTP server, App-
Services, each host can accept the self-signed certificate as described below.

1. Access the server with the URL:

https://gordon-1:8000/

Note: Remember to start your URL with HTTPS, rather than HTTP. Otherwise, the
browser will return an error.
Page 142—Security Guide

MarkLogic Server Configuring SSL on App Servers
2. The server responds with a “There is a problem with this website’s security certificate”
notification similar to:

3. Click on “Continue to this website (not recommended)”

4. Enter your MarkLogic Server username and password at the prompt.

9.4.2 Creating a Security Exception in Google Chrome
If you have not imported the MarkLogic certificate authority into your Chrome browser, when
you first access an SSL-enabled server, you will receive an error notifying you that you have
accessed an untrusted server. You can bypass this security exception by accepting the certificate.
For example, if you enabled SSL on the HTTP server, App-Services, you can accept the self-
signed certificate as described below.

1. Access the server with the URL:

https://gordon-1:8000/

Note: Remember to start your URL with HTTPS, rather than HTTP. Otherwise, the
browser will return an error.
MarkLogic 9—May, 2017 Security Guide—Page 143

MarkLogic Server Version MarkLogic 9—May, 2017 Configuring SSL on App Servers
2. The server responds with a “Your connection is not private” notification similar to:

3. Click on “Advanced.”

4. At the bottom of the expanded window, select “Proceed to hostname (unsafe).”

5. Enter your MarkLogic Server username and password at the prompt.
Page 144—Security Guide

MarkLogic Server Configuring SSL on App Servers
9.4.3 Importing a Self-Signed Certificate Authority into Windows
This section describes how to import the Certificate Authority into Windows for use by the
Internet Explorer browser and WebDAV clients.

1. Open the Admin interface in your Internet Explorer browser.

2. Click the Security icon in the left tree menu.

3. Click the Certificate Templates icon on the left tree menu.

4. Click the certificate template name on the left tree menu. The Configure certificate
template page will display.

5. Click the Status tab to display the certificate template Status page.

6. Click on Import.
MarkLogic 9—May, 2017 Security Guide—Page 145

MarkLogic Server Version MarkLogic 9—May, 2017 Configuring SSL on App Servers
7. In the “Do you want to open or save this file?” window, click Open.
Page 146—Security Guide

MarkLogic Server Configuring SSL on App Servers
8. In the “Certificate Information” window, click Install Certificate.
MarkLogic 9—May, 2017 Security Guide—Page 147

MarkLogic Server Version MarkLogic 9—May, 2017 Configuring SSL on App Servers
9. In the Certificate Import Wizard window, select “Place all certificates in the following
store” and click Browse.

10. In the Select Certificate Store window, select “Trusted Root Certification Authorities” and
click OK.

11. In the Certificate Import Wizard window, click Next.
Page 148—Security Guide

MarkLogic Server Configuring SSL on App Servers
12. On the Completing the Certificate Import Wizard page, select “Certificate Store Selected
by User” and click Finish
MarkLogic 9—May, 2017 Security Guide—Page 149

MarkLogic Server Version MarkLogic 9—May, 2017 Configuring SSL on App Servers
13. In the Security Warning page, click Yes.

14. When you see “The import was successful prompt,” click OK.

15. In the Certificate Information window, click OK to exit.

You should now be able to access the SSL-enabled server from your Internet Explorer browser or
WebDAV client.
Page 150—Security Guide

MarkLogic Server Configuring SSL on App Servers
9.5 Procedures for Obtaining a Signed Certificate
Use the following procedures to obtain a signed certificate and import into your server:

• Generating and Downloading Certificate Requests

• Signing a Certificate with your own Certificate Authority

• Importing a Signed Certificate into MarkLogic Server

Note: No outside authority is used to sign certificates used between servers
communicating over the internal XDQP connections in a cluster. Such certificates
are self-signed and trusted by each server in the cluster. For details, see Enabling

SSL communication over XDQP in the Administrator’s Guide.
MarkLogic 9—May, 2017 Security Guide—Page 151

MarkLogic Server Version MarkLogic 9—May, 2017 Configuring SSL on App Servers
9.5.1 Generating and Downloading Certificate Requests
Once the server is created or modified with SSL enabled, you can generate one or more PEM-
encoded certificate requests.

Note: You must first assign the certificate template to an App Server, as described in
“Enabling SSL for an App Server” on page 140, before you can generate a
certificate request.

1. Click the Security icon in the left tree menu.

2. Click the Certificate Templates icon on the left tree menu.

3. Click the certificate template name on the left tree menu. The Configure certificate
template page will display.

4. Click the Request tab. The Generate Certificate Request page will display:

5. Select either “All” or “Only those that are needed for missing, expired, self-signed, or out
of date certificates that are not already pending,” then click OK.

6. The certificate template Status page will display. Click on Download to download the
certificate request to your file system.
Page 152—Security Guide

MarkLogic Server Configuring SSL on App Servers
7. If the file does not already have a ‘zip’ extension, rename the file by replacing the ‘xqy’
extension with ‘zip’.

8. Send the zip file containing the certificate requests to a Certificate Authority, such as
Verisign.

9.5.2 Signing a Certificate with your own Certificate Authority
As an alternative to using a third-party Certificate Authority, you can create your own Certificate
Authority, as described in “Creating a Certificate Authority” on page 173. You can then use this
Certificate Authority to sign the certificate request using the pki:authority-sign-host-
certificate-request function.

Once signed, you can forward the signed certificate to any MarkLogic user, who can then import
the signed certificate into their MarkLogic host, as described in “Importing a Signed Certificate
into MarkLogic Server” on page 154.

For example, to request and sign a certificate from the mycert template created in “Creating a
Certificate Template” on page 138, do the following:

xquery version "1.0-ml";

import module namespace pki = "http://marklogic.com/xdmp/pki"

at "/MarkLogic/pki.xqy";

declare namespace x509 = "http://marklogic.com/xdmp/x509";

let $req :=
pki:generate-certificate-request(

pki:get-template-by-name("mcert")/pki:template-id,
"ServerName", (), ())

let $cert :=
pki:authority-sign-host-certificate-request(

xdmp:credential-id("acme-ca"),
xdmp:x509-request-extract($req),
fn:current-dateTime(),
fn:current-dateTime() + xs:dayTimeDuration("P365D"))

return xdmp:x509-certificate-extract($cert)
MarkLogic 9—May, 2017 Security Guide—Page 153

MarkLogic Server Version MarkLogic 9—May, 2017 Configuring SSL on App Servers
9.5.3 Importing a Signed Certificate into MarkLogic Server
When you receive the PEM file(s) containing signed certificate(s) from the certification authority,
import the PEM file(s) into MarkLogic Server. If you are using chained certificates, you will need
to import the end and intermediate certificate PEM files into MarkLogic Server. If your
MarkLogic Server is to act as a client , you must also import the root certificate.

Note: Because the signed certificate is from a trusted certification authority, browsers are
already configured to trust the certificate.

1. Click the Security icon in the left tree menu.

2. Click the Certificate Templates icon on the left tree menu.

3. Click the certificate template name on the left tree menu. The Configure certificate
template page will display.

4. Click the Import tab. The Import Certificates page will display:

5. Click on Browse to locate the PEM file(s) containing the signed certificate(s) and select
OK. Zip files can be uploaded directly without the need to unzip them. Alternatively, you
can paste an individual certificate(s) into the text area.
Page 154—Security Guide

MarkLogic Server Configuring SSL on App Servers
9.6 Viewing Trusted Certificate Authorities
You can list all of the certificate authorities that are known to and trusted by the server in the
Certificate Authority page. Each CA in the list links to the corresponding Certificate Authority
page for that CA.

The Certificate Authority page provides detailed information on the CA, a list of revoked
certificates, the option to manually revoke a certificate by ID, and the ability to delete the CA
from the server.

1. Click the Security icon in the left tree menu.

2. Click the Certificate Authority icon on the left tree menu.

3. The Certificate Authority Summary page displays the list of trusted CAs:
MarkLogic 9—May, 2017 Security Guide—Page 155

MarkLogic Server Version MarkLogic 9—May, 2017 Configuring SSL on App Servers
4. Click on a CA in the list to display the details on the CA:
Page 156—Security Guide

MarkLogic Server Configuring SSL on App Servers
9.7 Importing a Certificate Revocation List into MarkLogic Server
A Certificate Revocation List (CRL) is a list of certificate serial numbers that have been revoked
by a certificate authority. The CRL is signed by the certificate authority to verify its accuracy. The
CRL contains the revocation date of each certificate, along with the date the CRL was published
and the date it will next be published, which is useful in determining whether a newer CRL should
be fetched.

You can use the pki:insert-certificate-revocation-list function to import a CRL into the
Security database. certificate authorities typically allow the CRL to be downloaded via HTTP.
The document URL in the database is derived from the URL passed in to the function, so
Inserting a newer CRL retrieved from the same URL will replace the previous one in the database.

For example, the following script imports a PEM- or DER-encoded CRL from Verisign into the
Security database:

xquery version "1.0-ml";
import module namespace pki = "http://marklogic.com/xdmp/pki"

at "/MarkLogic/pki.xqy";

let $URI := "http://crl.verisign.com/pca3.crl"

return
pki:insert-certificate-revocation-list(

$URI,
xdmp:document-get($URI)/binary())

Note: If next publication date of the CRL is earlier than the current time, you will recieve
the following message in the error log: loadCertificateRevocationLists: Most
recent CRL for issuer=<issuer_name> is expired.
MarkLogic 9—May, 2017 Security Guide—Page 157

MarkLogic Server Version MarkLogic 9—May, 2017 Configuring SSL on App Servers
9.8 Deleting a Certificate Template
Deleting a template deletes all signed certificates and pending requests for the template. Before
deleting a certificate template, ensure that a certificate with that name is not in use by a server. If a
certificate with the same name as the certificate template is in use by a server, the delete operation
returns an “Invalid input” error.

To delete an unused certificate template:

1. Click the Security icon in the left tree menu.

2. Click the Certificate Templates icon on the left tree menu.

3. Click the certificate template name on the left tree menu.

4. On the Certificate Template page, click Delete:

5. In the confirmation page, select OK.
Page 158—Security Guide

MarkLogic Server Certificate-based Authentication
10.0 Certificate-based Authentication
168

Certificate-based user authentication allows users to log into MarkLogic Server without being
required to enter user name/password. Certificate-based user authentication configuration can be
achieved using either internal user or external name based user configurations.

The main topics are as follows.

• User Certificate Example

• CA Certificate (User Cert Signer) Import from Admin Interface

• CA Certificate Import into MarkLogic from Query Console

• Certificate Template & Template CA import into Client (Browser/SSL Client)

• Creating a MarkLogic User to use Certificate-based Authentication

10.1 User Certificate Example
There are few common steps/examples listed to add to clarity. In this example setup, the
certificate presented by the App Server user (demoUser1) will be as follows.

Certificate:
Data:

Version: 1 (0x0)
Serial Number: 7 (0x7)

Signature Algorithm: sha1WithRSAEncryption
Issuer: C=US, ST=CA, L=San Carlos, O=MarkLogic Corp.,

OU=Engineering, CN=MarkLogic DemoCA
Validity

Not Before: Jul 11 02:58:24 2017 GMT
Not After : Aug 27 02:58:24 2019 GMT

Subject: C=US, ST=CA, L=San Carlos, O=MarkLogic Corp.,
OU=Engineering, CN=demoUser1

Subject Public Key Info:
Public Key Algorithm: rsaEncryption

Public-Key: (1024 bit)
Modulus:

.....................
Exponent: 65537 (0x10001)

Signature Algorithm: sha1WithRSAEncryption
MarkLogic 9—May, 2017 Security Guide—Page 159

MarkLogic Server Version MarkLogic 9—May, 2017 Certificate-based Authentication
10.2 CA Certificate (User Cert Signer) Import from Admin Interface
In order to allow MarkLogic Server to accept the Certificate presented by a user, MarkLogic
Server needs a Certificate Authority (CA) to sign the user certificate installed into MarkLogic.

Install a CA certificate used to sign the demoUser1 certificate in the Admin Interface, as follows.

1. Click the Security icon in the left tree menu.

2. Click the Certificate Authorities icon on the left tree menu.

3. Click the Import tab and import a certificate, such as the one shown in the example below.

Example CA certificate:

Certificate:
Data:

Version: 3 (0x2)
Serial Number: 9774683164744115905 (0x87a6a68cc29066c1)

Signature Algorithm: sha256WithRSAEncryption
Issuer: C=US, ST=CA, L=San Carlos, O=MarkLogic Corp.,

OU=Engineering, CN=MarkLogic DemoCA
Validity

Not Before: Jul 11 02:53:18 2017 GMT
Page 160—Security Guide

MarkLogic Server Certificate-based Authentication
Not After : Jul 6 02:53:18 2037 GMT
Subject: C=US, ST=CA, L=San Carlos, O=MarkLogic Corp.,

OU=Engineering, CN=MarkLogic DemoCA
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
Public-Key: (4096 bit)
Modulus:

Exponent: 65537 (0x10001)

X509v3 extensions:
X509v3 Subject Key Identifier:

D9:45:B9:9A:DC:93:7B:DB:47:07:C6:96:63:57:13:A7:A8
:F1:D0:C8

X509v3 Authority Key Identifier:
keyid:D9:45:B9:9A:DC:93:7B:DB:47:07:C6:96:63:57:13

:A7:A8:F1:D0:C8
X509v3 Basic Constraints: critical

CA:TRUE
X509v3 Key Usage: critical

Digital Signature, Certificate Sign, CRL Sign
Signature Algorithm: sha256WithRSAEncryption

10.3 CA Certificate Import into MarkLogic from Query Console
You can also import the Certificate Authority by using the pki:insert-trusted-certificates
function to load the Trusted CA into the Security database in MarkLogic, as shown below.

Note: If using Query Console, make sure this query is executed against the Security
database.

xquery version "1.0-ml";

import module namespace pki = "http://marklogic.com/xdmp/pki" at "/
MarkLogic/pki.xqy";

pki:insert-trusted-certificates(

xdmp:document-get("/OurCertificateLocation/DemoLabCA.pem",
<options xmlns="xdmp:document-get">

<format>text</format>
</options>)

)

MarkLogic 9—May, 2017 Security Guide—Page 161

MarkLogic Server Version MarkLogic 9—May, 2017 Certificate-based Authentication
10.4 Certificate Template & Template CA import into Client (Browser/SSL
Client)

To enable SSL on the App Server, do either of the following.

• Create certificate template, as described in “Creating a Certificate Template” on page 138,
to utilize Self Signed Certificate.

or.....

• Import a signed certificate into MarkLogic, as described in “Importing a Signed
Certificate into MarkLogic Server” on page 154.

In both of the above cases, you must import the CA used to sign the certificate used by the
MarkLogic SSL App Server into Client Browser/SSL Client, as described in “Procedures for
Obtaining a Signed Certificate” on page 151 or “Importing a Self-Signed Certificate Authority
into Windows” on page 145.

After creating a certificate template, link the template with the App Server and enable SSL on the
App Server.

10.5 Creating a MarkLogic User to use Certificate-based Authentication
When creating a internal MarkLogic user to use certificate-based authentication, specify the user
name as it appears in the CN value of the certificate Subject field (demoUser1 in the example shown
in “User Certificate Example” on page 159). When creating an external MarkLogic user to use
certificate-based authentication, specify the external name as it appears in the whole certificate
Subject field (C=US,ST=CA,L=San Carlos,O=MarkLogic
Corp.,OU=Engineering,CN=demoUser1 in the example shown in “User Certificate Example”
on page 159).

10.5.1 Creating a MarkLogic User with an Internal Name
To configure certificate-based user authentication for user, demoUser1, as a MarkLogic internal
user, do the following in the Admin Interface.

1. Click the Security icon in the left tree menu.

2. Click the Users icon.

3. Click the Create tab. The User Configuration page appears
Page 162—Security Guide

MarkLogic Server Certificate-based Authentication
4. In the user name field, enter the user name as it appears in the CN value of the certificate
Subject field (demoUser1 in the example shown in “User Certificate Example” on
page 159)
MarkLogic 9—May, 2017 Security Guide—Page 163

MarkLogic Server Version MarkLogic 9—May, 2017 Certificate-based Authentication
5. In the App Server configuration page, set Authentication to Certificate and set Internal
Security to true. Unless you want to have the user authenticated as an external user as
well, set External Securities to none.

6. In the App Server configuration page, scroll down to the bottom and select show in the SSL
Client Certificate Authorities section.
Page 164—Security Guide

MarkLogic Server Certificate-based Authentication
7. Select the CA created in “CA Certificate (User Cert Signer) Import from Admin
Interface” on page 160 to sign the client/user certificate.

Once configured, demoUser1 is now able to access the App Server with a browser that has the user
certificate installed, as described in “Certificate Template & Template CA import into Client
(Browser/SSL Client)” on page 162.

Note: You will also need to assign the necessary roles to demoUser1 to access the needed
MarkLogic resources.
MarkLogic 9—May, 2017 Security Guide—Page 165

MarkLogic Server Version MarkLogic 9—May, 2017 Certificate-based Authentication
10.5.2 Creating a MarkLogic User with an External Name
To configure certificate-based user authentication for user, newUser1, as a MarkLogic user with an
external name, do the following in the Admin Interface.

1. Click the Security icon in the left tree menu.

2. Click the Users icon.

3. Click the Create tab. The User Configuration page appears

4. In the User Name field, enter newUser1.

5. In the External Name field, enter the entire Subject field from the example shown in “User
Certificate Example” on page 159.
Page 166—Security Guide

MarkLogic Server Certificate-based Authentication
6. Click Security in the left tree menu.

7. Click External Security.

8. Click the Create tab at the top of the External Security Summary window:

9. In the New External Security object window, name the External Security object and select
Certificate for Authentication.

10. Scroll down to the bottom of the External Security object configuration page and select
show in the SSL Client Certificate Authorities section.
MarkLogic 9—May, 2017 Security Guide—Page 167

MarkLogic Server Version MarkLogic 9—May, 2017 Certificate-based Authentication
11. Select the CA certificate you configured in “CA Certificate (User Cert Signer) Import
from Admin Interface” on page 160.

12. Return to the App Server configuration page and select the External Security object you
just created from the External Securities pull-down menu.
Page 168—Security Guide

MarkLogic Server Secure Credentials
11.0 Secure Credentials
176

Secure credentials enable a security administrator to manage credentials, making them available
to less privileged users for authentication to other systems without giving them access to the
credentials themselves.

Secure credentials consist of a PEM encoded x509 certificate and private key and/or a username
and password. Secure credentials are stored as secure documents in the Security database on
MarkLogic Server, with passwords and private keys encrypted. A user references a credential by
name and access is granted if the permissions stored within the credential document permit the
access to the user. There is no way for a user to get access to the unencrypted credentials.

Secure credentials allow you to control which users have access to specific resources. A secure
credential controls what URIs it may be used for, the type of authentication (e.g. digest), whether
the credential can be used to sign other certificates, and the user role(s) needed to access the
resource.

The security on a credential can be configured three different ways:

• Credentials that secure a resource by username and password.

• Credentials that secure a resource by a PEM encoded X509 certificate and a PEM encoded
private key.

• Credentials that secure a resource by username and password, as well as a PEM encoded
X509 certificate and a PEM encoded private key.

In most cases, the private key and x509 certificate used to configure a secure credential are
obtained from a trusted Certificate Authority. However, there may be situations in which you may
want to create your own Certificate Authority and generate your own private key and certificate,
as described in the following sections:

• Creating a Secure Credential with Username and Password

• Creating a Secure Credential with PEM Encoded Public and Private Keys

11.1 Creating a Secure Credential with Username and Password
This section describes how to use the Admin Interface to create a simple secure credential that
grants access to a resource by means of a username and password.

1. In the Admin Interface, click the Security icon in the left tree menu.

2. Click the Secure Credentials icon.
MarkLogic 9—May, 2017 Security Guide—Page 169

MarkLogic Server Version MarkLogic 9—May, 2017 Secure Credentials
3. Click the Create tab at the top of the Secure Credentials window:

4. In the New Credential window, enter the name of the credential. You can optionally
specify a description, the name of the user and password to use to access the resource.
Page 170—Security Guide

MarkLogic Server Secure Credentials
5. Leave the credential certificate and credential private key fields empty. Set credential
signing to false.
MarkLogic 9—May, 2017 Security Guide—Page 171

MarkLogic Server Version MarkLogic 9—May, 2017 Secure Credentials
6. In the target uri pattern field, enter the URIs of the MarkLogic App Servers this credential
is to protect, starting with https. Select the authorization used by the target App Servers.
In the credential permissions menu, select which roles and permissions are required for a
user to access the App Servers using this credential.

Note: A role with read capability implies execute capability, as well.

11.2 Creating a Secure Credential with PEM Encoded Public and Private
Keys

You can skip this procedure if you have obtained a signed Certificate Authority (CA) from a
trusted third party. In this case, you can paste the credential and private key into the Secure
Credentials window described above in “Creating a Secure Credential with Username and
Password” on page 169.

Generating a secure credential that includes PEM encoded public and private keys is a two-step
procedure that is best done in code:

• Creating a Certificate Authority

• Creating Secure Credentials from a Certificate Authority
Page 172—Security Guide

MarkLogic Server Secure Credentials
11.2.1 Creating a Certificate Authority
Secure credentials that contain PEM encoded public and private keys can be used to control
access to a CA stored in a MarkLogic Security database. To create and insert a CA into the
Security database, use the pki:create-authority function.

For example, the following query creates a CA, named acme-ca:

xquery version "1.0-ml";

import module namespace pki = "http://marklogic.com/xdmp/pki"
at "/MarkLogic/pki.xqy";

declare namespace x509 = "http://marklogic.com/xdmp/x509";

pki:create-authority(
"acme-ca", "Acme Certificate Authority",
element x509:subject {

element x509:countryName {"US"},
element x509:stateOrProvinceName {"California"},
element x509:localityName {"San Carlos"},
element x509:organizationName {"Acme Inc."},
element x509:organizationalUnitName {"Engineering"},
element x509:commonName {"Acme CA"},
element x509:emailAddress {"ca@acme.com"}

},
fn:current-dateTime(),
fn:current-dateTime() + xs:dayTimeDuration("P365D"),
(xdmp:permission("admin","read")))
MarkLogic 9—May, 2017 Security Guide—Page 173

MarkLogic Server Version MarkLogic 9—May, 2017 Secure Credentials
11.2.2 Creating Secure Credentials from a Certificate Authority
Once you have created a CA as described in “Creating a Certificate Authority” on page 173, you
can use the CA to create a client certificate and private key to build a secure credential.

Use the pki:authority-create-client-certificate function to create a client certificate with
PEM encoded public/private keys. Next, use the sec:create-credential to generate and insert the
credential.

For example, to create a secure credential, named acme-cred, from the acme-ca CA that includes
PEM encoded public and private keys, a username and password, and that enables access to the
target, https://MLserver:8010/.*, do the following:

xquery version "1.0-ml";

import module namespace sec = "http://marklogic.com/xdmp/security"

at "/MarkLogic/security.xqy";
import module namespace pki = "http://marklogic.com/xdmp/pki"

at "/MarkLogic/pki.xqy";

declare namespace x509 = "http://marklogic.com/xdmp/x509";

let $tmp :=
pki:authority-create-client-certificate(

xdmp:credential-id("acme-ca"),
element x509:subject {

element x509:countryName {"US"},
element x509:stateOrProvinceName {"California"},
element x509:localityName {"San Carlos"},
element x509:organizationName {"Acme Inc."},
element x509:organizationalUnitName {"Engineering"},
element x509:commonName {"Elmer Fudd"},
element x509:emailAddress {"elmer.fudd@acme.com"}

},
fn:current-dateTime(),
fn:current-dateTime() + xs:dayTimeDuration("P365D"))

let $cert := $tmp[1]
let $privkey := $tmp[2]

return sec:create-credential(
"acme-cred", "A credential with user/password and certificate",
"admin", "admin", $cert, $privkey,
fn:false(),
sec:uri-credential-target("https://MLserver:8010/.*", "digest"),
xdmp:permission("admin","read"))
Page 174—Security Guide

MarkLogic Server Secure Credentials
To create a secure credential, named simple-cred, that uses only a username and password, do the
following:

xquery version "1.0-ml";

import module namespace sec = "http://marklogic.com/xdmp/security"

at "/MarkLogic/security.xqy";

sec:create-credential(
"simple-cred", "A simple credential without a certificate",
"admin", "admin", (), (),
fn:false(),
sec:uri-credential-target("https://MLserver:8010/.*", "digest"),
xdmp:permission("admin","read"))

As described in “Configuring SSL on App Servers” on page 135, MarkLogic App Servers
authenticate clients by means of a host certificate associated with a certificate template. The
following example shows how to create a host certificate using the CA described in “Creating a
Certificate Authority” on page 173 and import it into the myTemplate certificate template. For
details on how to create a certificate template, see “Creating a Certificate Template” on page 138.

xquery version "1.0-ml";

import module namespace pki = "http://marklogic.com/xdmp/pki"

at "/MarkLogic/pki.xqy";

declare namespace x509 = "http://marklogic.com/xdmp/x509";

let $tmp :=
pki:authority-create-host-certificate(

xdmp:credential-id("acme-ca"),
element x509:subject {

element x509:countryName {"US"},
element x509:stateOrProvinceName {"California"},
element x509:localityName {"San Carlos"},
element x509:organizationName {"Acme Inc."},
element x509:organizationalUnitName {"Engineering"},
element x509:commonName {"MLserver.marklogic.com"},
element x509:emailAddress {"me@marklogic.com"}

},
fn:current-dateTime(),
fn:current-dateTime() + xs:dayTimeDuration("P365D"),
"www.eng.acme.com", "1.2.3.4")

let $template := pki:template-get-id(
pki:get-template-by-name("myTemplate"))

let $cert := $tmp[1]
let $privkey := $tmp[2]

return pki:insert-host-certificate($template, $cert, $privkey)
MarkLogic 9—May, 2017 Security Guide—Page 175

MarkLogic Server Version MarkLogic 9—May, 2017 Secure Credentials
Page 176—Security Guide

MarkLogic Server External Security
12.0 External Security
208

MarkLogic Server allows you to configure MarkLogic Server so that users are authenticated
using an external authentication protocol, such as Lightweight Directory Access Protocol
(LDAP), Kerberos, or certificate. These external agents serve as centralized points of
authentication or repositories for user information from which authorization decisions can be
made.

Note: You can configure MarkLogic Server with multiple external security providers. A
user only needs to authenticate with one of them to gain access.

This chapter describes how to configure MarkLogic Server for external authentication using
LDAP and/or Kerberos. The topics in this chapter are:

• Terms Used in this Chapter

• Overview of External Authentication

• Creating an External Authentication Configuration Object

• Defining and Inserting a SAML Entity

• Assigning an External Name to a User

• Assigning an External Name to a Role

• Configuring an App Server for External Authentication

• Creating a Kerberos keytab File

• External Certificate User Authentication

• Example External Authorization Configurations

• Kerberos Authentication using xdmp:http-* Functions

• Kerberos Authentication for Secured HDFS

12.1 Terms Used in this Chapter
The following terms are used in this chapter:

• Authentication is the process of verifying user credentials for a named user, usually based
on a username and password. Authentication generally verifies user credentials and
associates a session with the authenticated user. It does not grant any access or authority to
perform any actions on the system. Authentication can be done internally inside
MarkLogic Server, or externally by means of a Kerberos or LDAP server. This chapter
describes how do configure MarkLogic Server for external authentication using either the
Kerberos or LDAP protocol, SAML, or Certificates.

• Authorization is the process of allowing a user to perform some action, such as create,
read, update, or delete a document or execute a program, based on the user's identity.
Authorization defines what an authenticated user is allowed to do on the server. When an
MarkLogic 9—May, 2017 Security Guide—Page 177

MarkLogic Server Version MarkLogic 9—May, 2017 External Security
App Server is configured for external authentication, authorization can be done either by
MarkLogic Server or by LDAP.

• Lightweight Directory Access Protocol (LDAP) is an authentication protocol for
accessing server resources over an internet or intranet network. An LDAP server provides
a centralized user database where one password can be used to authenticate a user for
access to multiple servers in the network. LDAP is supported on Active Directory on
Windows Server 2008 and OpenLDAP 2.4 on Linux and other Unix platforms.

• Kerberos is a ticket-based authentication protocol for trusted hosts on untrusted networks.
Kerberos provides users with encrypted tickets that can be used to request access to
particular servers. Because Kerberos uses tickets, both the user and the server can verify
each other's identity and user passwords do not have to pass through the network.

• An External Authentication Configuration Object specifies which authentication protocol
and authorization scheme to use, along with any other parameters necessary for LDAP
authentication. After an external authentication configuration object is created, multiple
App Servers can use the same configuration object.

• A Distinguished Name (DN) is a sequence of Relative Distinguished Names (RDNs),
which are attributes with associated values expressed by the form attribute=value. Each
RDN is separated by a comma in a DN. For example, to identify the user, joe, as having
access to the server MARKLOGIC1.COM, the DN for joe would look like:

UID=joe,CN=Users,DC=MARKLOGIC1,DC=COM

Note: The attributes after UID make up what is known as the Base DN.

For details on LDAP DNs, see http://www.rfc-editor.org/rfc/rfc4514.txt.

• A Principal is a unique identity to which Kerberos can assign tickets. For example, in
Kerberos, a user is a principal that consists of a user name and a server resource, described
as a realm. Each user or service that participates in a Kerberos authentication realm must
have a principal defined in the Kerberos database.

A user principal is defined by the format: username@REALM.NAME. For example, to identify
the user, joe, as having access to the server MARKLOGIC1.COM, the principal might look like:

joe@MARKLOGIC1.COM

For details on Kerberos principals, see http://www.kerberos.org/software/tutorial.html#1.3.2.

• Certificate Authentication enables HTTPS clients to authenticate themselves to
MarkLogic server via a client certificate, either in addition to, or instead of, a password.

• SAML (Security Assertion Markup Language) is an authorization scheme that defines a
Principal (such as a user), an Identity Provider (IDP), and a Service Provider (SP). In this
scheme, the Principal requests a service from the Service Provider, which accesses the
Identity Provider to authorize the Principal. MarkLogic supports SAML, version 2.0.
Page 178—Security Guide

http://www.rfc-editor.org/rfc/rfc4514.txt
http://www.kerberos.org/software/tutorial.html#1.3.2

MarkLogic Server External Security
Note: MarkLogic currently only supports SOAP binding only HTTPS.

• A SAML Entity is an XML document located in the MarkLogic Security database that
serves as the SAML Identity Provider.

12.2 Overview of External Authentication
MarkLogic Server supports external authentication by means of LDAP, SAML, Kerberos, or
certificate. When a user attempts to access a MarkLogic App Server that is configured for external
authentication, the requested App Server sends the username and password to an LDAP or SAML
server for authentication. (For Kerberos, only the username is sent.) Once authenticated, the
LDAP, SAML, Kerberos, or certificate protocol is used to identify the user on MarkLogic Server.
For details on how to configure an App Server for external authentication, see “Creating an
External Authentication Configuration Object” on page 183 and “Configuring an App Server for
External Authentication” on page 194.

Users can be authorized either internally by MarkLogic Server, externally by an LDAP or SAML
server, or both internally and externally.

If the App Server is configured for internal authorization, the user needs to exist in the MarkLogic
Security database where his or her “external name” matches the external user identity registered
with either LDAP, Kerberos or certificate, depending on the selected authentication protocol. For
details on how to map a MarkLogic user to an LDAP Distinguished Name (DN) or a Kerberos
User Principal, see “Assigning an External Name to a User” on page 192.

If the App Server is configured for LDAP authorization, the user does not need to exist in
MarkLogic Server. Instead, the external user is identified by a username with the LDAP server
and the LDAP groups associated with the DN are mapped to MarkLogic roles. MarkLogic Server
then creates a temporary user with a unique and deterministic id and those roles. For details on
how to map a MarkLogic role to an LDAP group, see “Assigning an External Name to a Role” on
page 193.

If the App Server is configured for SAML authorization, the server issues a standard SAML
attribute query to the identity provider to retrieve authorization information. The identity provider
is uniquely identified by its ID, which is combined with an attribute name and value to form an
external name with the necessary privileges.

If the App Server is configured for both internal and external authorization, users that exist in the
MarkLogic Security database are authorized internally by MarkLogic Server. If a user is not a
registered MarkLogic user, then the user must be registered on the LDAP or SAML server.

Note: MarkLogic Server caches negative lookups to avoid overloading the external
Kerberos or LDAP server. Successful logins are also cached. The cache can be
cleared by calling the sec:external-security-clear-cache function.
MarkLogic 9—May, 2017 Security Guide—Page 179

MarkLogic Server Version MarkLogic 9—May, 2017 External Security
The following flowchart illustrates the logic used to determine how a MarkLogic user is
authenticated and authorized.

Login

Internal
Security?

Locate User
in Security
Database

User Found?

Password
Match?

Return
Success

Return
Success

Return
Success

Return
Error

Return
Error

Return
Error

Create Temp User

External
Authorization?

Locate User
by External Names

in Security Database

User Found?

No

No

No

No

No

ldap | saml
Yes

Yes

Yes

Yes -- User is validated by ldap,

Yes

Internal

External
Security?

saml, kerberos, or certificate
Page 180—Security Guide

MarkLogic Server External Security
The possible external authorization configurations for accessing MarkLogic Server are shown in
the following table.

Authentication
Protocol

Authentication
Scheme

Authorization
Scheme

Description

certificate certificate |
application-level
| basic

ldap | saml The user is authenticated by a
certificate and the user’s groups are
mapped to the MarkLogic roles. The
user does not need to exist on
MarkLogic. Instead, the MarkLogic
server creates a temporary user with
the correct roles to access
MarkLogic.

certificate certificate |
application-level
| basic

internal The user is authenticated by a
certificate. User must exist in
MarkLogic.

kerberos kerberos-ticket internal The user is authenticated by
Kerberos and a Kerberos session
ticket is used to authenticate the user
to access MarkLogic Server.

The user must exist in MarkLogic,
where the user’s “external name”
matches the Kerberos User Principal.

kerberos application-level internal The user is authenticated by
Kerberos and a Kerberos session
ticket is used at a time determined by
the App Server to authenticate the
user to access MarkLogic Server.

The user must exist in MarkLogic,
where the user’s “external name”
matches the Kerberos User Principal.
MarkLogic 9—May, 2017 Security Guide—Page 181

MarkLogic Server Version MarkLogic 9—May, 2017 External Security
kerberos basic internal The user is authenticated by
Kerberos. No ticket is exchanged
between the client and the App
Server. Instead, the username and
password are passed. This
configuration is used when the client
is not capable of ticket exchange and
should only be used over SSL
connections because the password is
communicated as clear text.

The user must exist in MarkLogic,
where the user’s “external name”
matches the Kerberos User Principal.

kerberos kerberos-ticket |
application-level
| basic

ldap The user is authenticated by
Kerberos and a Kerberos session
ticket is used to identify the user to
MarkLogic Server. MarkLogic
extracts the user ID from the ticket
and sends it to the LDAP directory.

MarkLogic uses the information
returned by the LDAP directory to
create a temporary user with the
correct roles to access MarkLogic.
The user does not need to exist on
MarkLogic.

ldap certificate |
application-level
| basic

internal The user is authenticated by LDAP.
User must exist in MarkLogic, where
the user’s “external name” matches
the LDAP Distinguished Name
(DN).

Authentication
Protocol

Authentication
Scheme

Authorization
Scheme

Description
Page 182—Security Guide

MarkLogic Server External Security
Note: When application-level authentication is enabled with Kerberos authentication, an
application can use the xdmp:gss-server-negotiate function to obtain a username
that can be passed to the xdmp:login function to log into MarkLogic Server.

Note: If running MarkLogic Server on Windows and using LDAP authentication to
authenticate users, the user name must include the domain name of the form:
userName@domainName.

12.3 Creating an External Authentication Configuration Object
This section describes how to create an external authentication configuration object in the Admin
Interface. You can also use the sec:create-external-security function to create an external
authentication configuration object. Once created, multiple App Servers can use the same external
authentication configuration object.

1. In the Admin Interface, click Security in the left tree menu.

2. Click External Security.

ldap certificate |
application-level
| basic

ldap | saml The user is authenticated by LDAP
or SAML and the user’s groups are
mapped to the MarkLogic roles. The
user does not need to exist on
MarkLogic. Instead, the MarkLogic
server creates a temporary user with
the correct roles to access
MarkLogic.

saml saml saml A SAML Identity Provider prompts
the user to login, if necessary, and
sends the authentication request back
to MarkLogic Server.

Authentication
Protocol

Authentication
Scheme

Authorization
Scheme

Description
MarkLogic 9—May, 2017 Security Guide—Page 183

MarkLogic Server Version MarkLogic 9—May, 2017 External Security
3. Click the Create tab at the top of the External Security Summary window:

Field Description

external security name The name used to identify this External Security Configuration
Object.

description The description of this External Authentication Configuration
Object.

authentication The authentication protocol to use: certificate, kerberos, ldap, or
saml. The configuration details for LDAP and SAML are
described below in “LDAP Authentication” on page 185 and
“SAML Authentication” on page 188.

cache timeout The login cache timeout, in seconds. When the timeout period is
exceeded, the LDAP server reauthenticates the user with
MarkLogic Server.

authorization The authorization scheme: internal for authorization by
MarkLogic Server, ldap for authorization by an LDAP server, or
saml for authorization by a SAML server.
Page 184—Security Guide

MarkLogic Server External Security
12.3.1 LDAP Authentication
If you use LDAP authentication, set the fields described in this section.

Field Description

ldap server uri If authorization is set to ldap, then enter the URI for the LDAP
server. Required if authentication or authorization is ldap.

ldap base If authorization is set to ldap, then enter the base DN for user
lookup. Required if authentication or authorization is ldap.

ldap attribute If authorization is set to ldap, then enter the name of the attribute
used to identify the user on the LDAP server. Required if
authentication or authorization is ldap.
MarkLogic 9—May, 2017 Security Guide—Page 185

MarkLogic Server Version MarkLogic 9—May, 2017 External Security
ldap default user The LDAP default user. Required if authentication is kerberos and
authorization is ldap or bind method is simple.

If you specify an ldap-bind-method of simple, this must be a
Distinguished Name (DN). If you specify an ldap-bind-method of
MD5, this must be the name of a user registered with the LDAP

ldap password
confirm ldap password

The password and confirmation password for the LDAP default
user. Required if authentication is kerberos and authorization is
ldap or bind method is simple.

ldap bind method The LDAP bind method to use. This can be either MD5, simple, or
external. MD5 makes use of the DIGEST-MD5 authentication
method. If the bind method is simple, then the ldap default
user must be a Distinguished Name (DN). If MD5, then the ldap
default user must be the name of a valid LDAP user.

When using a bind method of simple, the password is not
encrypted, so it is recommended you use secure ldaps (LDAP
with SSL).

A bind method of external makes use of a certificate to
authenticate with the LDAP server. If the bind method is
external, ldap-start-tls should be set to true.

ldap memberof attribute The optional ldap attribute for group lookup. If not specified,
memberOf is used for search for the groups of a user.

ldap member attribute The optional ldap attribute for group lookup. If not specified,
member is used for search for the group of a group.

ldap start tls Whether or not to use start TLS request to the LDAP server. Set to
true to use start TLS request. If set to true, the LDAP server URI
should start with ldap:// instead of ldaps://.

ldap certificate The PEM encoded X509 certificate for MarkLogic server to
connect the LDAP server using mutual authentication. Required if
bind method is external. Optional if bind method is MD5 or
simple.

ldap private key The PEM encoded private key corresponding to the certificate.
Required if bind method is external. Optional if bind method is
MD5 or simple.

Field Description
Page 186—Security Guide

MarkLogic Server External Security
Note: The MarkLogic SSL App Server can work with SAN or Wild Card certificates.
However, the MarkLogic LDAP client will not accept or work with a SAN or
Wildcard-based certificate.
MarkLogic 9—May, 2017 Security Guide—Page 187

MarkLogic Server Version MarkLogic 9—May, 2017 External Security
12.3.2 SAML Authentication
If you use SAML authentication, set the fields described in this section.
Page 188—Security Guide

MarkLogic Server External Security
12.3.3 SSL Client Authentication
To enable mutual authentication, where the client also holds a digital certificate that it sends to the
server, set the fields described in this section.

Field Description

saml entity id SAML entity id (as a URL). Required if authorization is SAML.
For details on creating and inserting a SAML entity, see
“Defining and Inserting a SAML Entity” on page 190

saml destination The URL that identifies the Identity Provider to accept the
authentication request.

saml issuer The URL that identifies the Service Provider (MarkLogic Server).

saml idp certificate
authority

The certificate used to validate the signature in the authentication
request.

saml sp certificate The certificate used to sign the authentication request.

saml sp private key The private key used to sign the authentication request.

saml attribute name One or more SAML attribute names. Optional when authorization
is SAML. These names will be requested as part of the attribute
query and mapped as appropriate to internal MarkLogic roles.

saml privilege
attribute name

SAML privilege attribute name. Optional when authorization is
SAML. If specified, the name will also be requested as part of the
attribute query and mapped to MarkLogic privileges.
MarkLogic 9—May, 2017 Security Guide—Page 189

MarkLogic Server Version MarkLogic 9—May, 2017 External Security
When you have finished configuring MarkLogic Server for external security, click Ok.

12.4 Defining and Inserting a SAML Entity
SAML authorization is done by means of a SAML entity stored in the MarkLogic Security
database.

The SAML 2.0 specification provides a standard format for describing a SAML entity. The
SAML specification provides for a variety of elements that can be defined in an entity, but only
the AttributeAuthorityDescriptor element is used by MarkLogic. The SAML spec is located at
the URL:

http://docs.oasis-open.org/security/saml/v2.0/saml-metadata-2.0-os.pdf

The SAML entity defines an entityID in the form of a URL. To make use of a SAML entity,
specify its entity ID URL in the “saml entity id” field in the external security configuration, as
described in “Creating an External Authentication Configuration Object” on page 183.

MarkLogic only supports the SAML 2.0 SOAP binding over HTTP. If multiple AttributeService
elements are specified in the entity, one will be chosen at random. This allows support for
multiple hosts in a cluster to be specified when no load balancer is used.

Field Description

ssl client certificate
authorities

If you set SSL Require Client Certificate to true, then select
Show and chose with certificate authority is to be used to sign
client certificates.

ssl require client
certificate

Specifies whether or not a client certificate is required. If you
want SSL to require clients to provide a certificate, select true for
SSL Require Client Certificate then select Show under SSL Client
Certificate Authorities and select which certificate authority is to
be used to sign client certificates for the server:
Page 190—Security Guide

http://docs.oasis-open.org/security/saml/v2.0/saml-metadata-2.0-os.pdf

MarkLogic Server External Security
Use the sec:saml-entity-insert function to insert the SAML entity into the MarkLogic Security
database. For example, to insert a SAML entity, identified as http://example.com/example, that
uses an encoded certificate for authorization, enter:

xquery version "1.0-ml";
import module namespace sec = "http://marklogic.com/xdmp/security"
 at "/MarkLogic/security.xqy";

declare namespace md="urn:oasis:names:tc:SAML:2.0:metadata";
declare namespace ds="http://www.w3.org/2000/09/xmldsig#";

sec:saml-entity-insert(
<md:EntityDescriptor entityID="http://example.com/example">

<md:AttributeAuthorityDescriptor
protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol">
<md:KeyDescriptor>

<ds:KeyInfo>
<ds:X509Data>

<ds:X509Certificate>
MIID+TCCAeGgAwIBAgIJAImAkE0o79czMA0GCSqGSIb3DQEBCwUAMDwxEjAQBgNV
BAoMCUFjbWUgSW5jLjEmMCQGA1UEAwwdQWNtZSBJbmMuIE9wZXJhdGlvbnMgRGly
ZWN0b3IwHhcNMTcwMTA5MjE0MDE0WhcNMjcwMTA3MjE0MDE0WjA8MRIwEAYDVQQK
DAlBY21lIEluYy4xJjAkBgNVBAMMHU9wc0RpciBNYW5hZ2VkIENsdXN0ZXIgQWNj
ZXNzMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAwu4iOujPFrkltDel
XgNl1BO/Xbcu6SEWnGCh3yGMwETqx1PnYDlueRuXIrZAHj8FFoKICJIwsARhcixM
ia2vDH0EkZPFGhb0shf0NEt7glDf1uaUava2x2jNXo5YUuiGDUhES50H3A0HS0Nz
WO0TIMaCu1vCTh5IHnKUnQB2MWrNGeb0I3RxOpqhRp6HarTb1u0mQN1iyiQox+pi
67Wh+eZ1313RTQBv8oavJFKHPT6JQK0rOVDXGDez/VajiUJswFNGZ2MgpVxqCDu3
iA+fdTV3TFp8XGYTPYCQgri5OKC9cGmFXzDgIiXqJLR8iAGbQT8YWsCzTzpYtTVN
JnqN/QIDAQABMA0GCSqGSIb3DQEBCwUAA4ICAQDPgcmLCl4kQFp15cfEKuI0QguC
vlCMjaZDDAr86IUDVJkVfm3Ytkw/QswI4ghZkbPuEhRf4SCo37OSR3++sPmMu5MR
gFtsU/UWGm6xXmIrBl/bkK+wmUwrW3DCcZQLZGOTG4o0tXSX+gGlvip5swpBTf5T
BsxJ3Hu479R48fTMIjoJ2gnVvZQ7aqnDqcZkifEskY6E7v431W1GEgccf0EJggnz
eRcTWfReYNy/foKKFuPW5MFYLd6RHOyWxgqJ3Nvroqu6xegVSQYJloJprZhhHx2H
NLZcBNYcgu2RgWNq9Pdjswxn3P1rRjch9YjgzZyjWywQpX+aASpPT2m0ONDYbkWK
V6YZmZbTmDDmwVfR4SK5GB93oxdZ647SfJwVsqN2qyKEDl/P2qwSY1iN851PhXAh
WMEyHfMgPTP22LHyYfQa+ExN5hpD95az+ZBdx+1CTO/9fJmQXvrmD1bNdbpfeKBD
YIv+yyL3UDtKQcMhp8zumt2XYJNAzSMhLkAMe2P7/i+47f5lXiGtrRuDVPyNzddB
VD2cQvB3JvQ7YRmt6BJPFmtuGSlx65d0fN7D3M8I5xtDa3XkmrrivcgOKi7DRSzE
bUu4cwfg7mWFJFDkWNWtIzqeni8658yLuEEgyFBUeW9OVjR2caTUZcSIObD2yvq7
o1oZlzTJxNplg99CCA==

</ds:X509Certificate
</ds:X509Data>

</ds:KeyInfo>
</md:KeyDescriptor>
<md:AttributeService

Binding="urn:oasis:names:tc:SAML:2.0:bindings:SOAP"
Location="https://ML1:8005/SAML2/SOAP/AttributeQuery"/>

</md:AttributeAuthorityDescriptor>
</md:EntityDescriptor>
)

MarkLogic 9—May, 2017 Security Guide—Page 191

MarkLogic Server Version MarkLogic 9—May, 2017 External Security
12.5 Assigning an External Name to a User
This section describes how to assign one or more external names to a user in the Admin Interface.
You can also use the sec:create-user or sec:user-set-external-names function to assign one or
more external names to a user. The external names are used to match the user with one or more
Distinguished Names in an LDAP server or User Principals in a Kerberos server.

1. Click Security in the left tree menu.

2. Click Users.

3. Select a user or create a new one by clicking the Create tab at the top of the User Summary
window.

4. In the User Configuration window, enter the external name for the user in the field in the
External Name section. You can associate multiple external names with the user by
clicking More External Name.

5. Click OK.
Page 192—Security Guide

MarkLogic Server External Security
12.6 Assigning an External Name to a Role
When LDAP authorization is used, the LDAP groups associated with the user are mapped to
MarkLogic roles. One or more groups can be associated with a single role. These LDAP groups
are defined as External Names in the Role Configuration Page.

This section describes how to assign one or more external names to a role in the Admin Interface.
You can also use the sec:create-role or sec:role-set-external-names function to assign one or
more external names to a role.

1. Click Security in the left tree menu.

2. Click the Roles.

3. Select a role or create a new one by clicking the Create tab at the top of the Role Summary
window.

4. In the Role Configuration window, enter the name of the LDAP group to be associated
with the role in the field in the External Name section. You can associate multiple LDAP
groups with the role by clicking More External Name.

5. Click OK.
MarkLogic 9—May, 2017 Security Guide—Page 193

MarkLogic Server Version MarkLogic 9—May, 2017 External Security
12.7 Configuring an App Server for External Authentication
This section describes how to configure an App Server for external authentication.

1. Click Groups in the left tree menu.

2. Click the group in which you want to create or configure the App Server (for example,
Default).

3. Click App Servers on the left tree menu.

4. Select the Create HTTP tab to create a new App Server, or select an existing App Server
from the Summary page.

5. In the App Server Configuration page, scroll down to the authentication section and set the
fields, as described in the table below.

Field Description

authentication The authentication scheme: basic or application-level for LDAP
authentication, kerberos-ticket for Kerberos authentication, certificate
for certificate authentication, or saml for SAML authentication.

internal
security

Determines whether or not authentication for the App Server is to be done
internally by MarkLogic Server.
Page 194—Security Guide

MarkLogic Server External Security
12.8 Creating a Kerberos keytab File
If you are configured for Kerberos authentication, then you must create a services.keytab file
and place it in the MarkLogic data directory.

Note: The name of the generated keytab file must be services.keytab.

This section contains the following topics:

• Creating a keytab File on Windows

• Creating a keytab File on Linux

external
security

The name of the external authentication configuration object to use. For
details on how to create an external authentication configuration object,
see “Creating an External Authentication Configuration Object” on
page 183. To set additional external authentication configuration objects,
click on More External Securities and select an additional configuration
object from the pull-down menu.

Note: If you have configured an App Server with multiple
external configuration objects that use LDAP, the LDAP
server specified by the first configuration object (the object
at the top of the list) is always used first. If this first LDAP
server is unresponsive, the second LDAP server will not be
tried until the first LDAP server exceeds the time-out
period established by cache timeout setting.

default user If you select application-level authentication, you will also need to
specify a Default User. Anyone accessing the HTTP server is
automatically logged in as the Default User until the user logs in explicitly.
A Default User must be an internal user stored in the Security database.

Field Description
MarkLogic 9—May, 2017 Security Guide—Page 195

MarkLogic Server Version MarkLogic 9—May, 2017 External Security
12.8.1 Creating a keytab File on Windows
On Windows platforms, the services.keytab file is created using Active Directory Domain
Services (AD DS) on a Windows server.

Note: If you are using the MD5 bind method and Active Directory Domain Services (AD
DS) on a computer that is running Windows Server 2008 or Windows Server 2008
R2, be sure that you have installed the hot fix described in http://

support.microsoft.com/kb/975697.

To create a services.keytab file, do the following:

1. Using Active Directory Domain Services on the Windows server, create a “user” with the
same name as the MarkLogic Server hostname. For example, if the MarkLogic Server is
named mysrvr.marklogic.com, create a user with the name mysrvr.marklogic.com.

2. Create a keytab file with the principal HTTP/hostname using ktpass command of the form:

ktpass princ HTTP/<hostname> mapuser <user-account> pass <password>
out <filename>

For example, to create a keytab file for the host named mysrvr.marklogic.com, do the
following:

ktpass princ HTTP/mysrvr.marklogic.com@MLTEST1.LOCAL
mapuser mysrvr.marklogic.com@MLTEST1.LOCAL pass mysecret
out services.keytab

3. Copy the services.keytab from the Windows server to the MarkLogic data directory on
your MarkLogic Server.

12.8.2 Creating a keytab File on Linux
On Linux platforms, the services.keytab file is created as follows:

1. In a shell window, use kadmin.local to start the Kerberos administration command-line
tool.

2. Use the addprinc command to add the principal to Kerberos.

3. Use the ktadd command to generate the services.keytab file for the principal.

For example, to create a services.keytab file for the host named mysrvr.marklogic.com,
do the following:

$ kadmin.local
> addprinc -randkey HTTP/mysrvr.marklogic.com
> ktadd -k services.keytab HTTP/mysrvr.marklogic.com
Page 196—Security Guide

http://support.microsoft.com/kb/975697
http://support.microsoft.com/kb/975697

MarkLogic Server External Security
4. Copy the services.keytab from the Linux Kerberos server to the MarkLogic data
directory on your MarkLogic Server.

12.9 External Certificate User Authentication
MarkLogic 9 includes certificate-based user authentication, which allows users to log into
MarkLogic Server without being required to enter a user name/password. Previously certificates
were only utilized to restrict client access to MarkLogic Server with the Digest/Basic User
Authentication Scheme. Certificate-based user authentication configuration can be achieved
based user configurations using either an internal user or external name.

12.9.1 Certificate Authentication Based on Internal User vs External Name
The difference between authentication based on an internal user or external name lies in the
existence of the Certificate CN field-based user (demoUser1 in the following example) in the
MarkLogic Security Database (internal user) versus if the user retrieved from Certificate Subject
field (the whole Subject field as DN) is mapped as external name value in any existing user.

12.9.1.1 User Certificate Examples
Here are few common examples, shown for clarity.

For the examples, the certificate presented by the App Server User (demoUser1) is the following.

$ openssl x509 -in UserCert.pem -text -noout
 Certificate:
 Data:
 Version: 1 (0x0)
 Serial Number: 7 (0x7)
 Signature Algorithm: sha1WithRSAEncryption
 Issuer: C=US, ST=NY, L=New York, O=MarkLogic Corporation,
OU=Engineering, CN=MarkLogic DemoCA
 Validity
 Not Before: Jul 11 02:58:24 2017 GMT
 Not After : Aug 27 02:58:24 2019 GMT
 Subject: C=US, ST=NJ, L=Princeton, O=MarkLogic Corporation,
OU=Engineering, CN=demoUser1
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 Public-Key: (1024 bit)
 Modulus:

 Exponent: 65537 (0x10001)
 Signature Algorithm: sha1WithRSAEncryption
MarkLogic 9—May, 2017 Security Guide—Page 197

MarkLogic Server Version MarkLogic 9—May, 2017 External Security
12.9.2 CA Certificate (User Cert Signer) Import from Admin GUI
To allow MarkLogic Server to accept the certificate presented by a user, MarkLogic Server needs
a Certificate Authority (CA) to sign the user certificate installed into MarkLogic. You can install
a CA Certificate (below) to be used to sign demoUser1 Cert through the Admin UI.

Click Configure in the left tree menu of the Admin UI, then click Security to expand the options.
Click Certificate Authorities, and then click the Import tab.

Paste this text for the trusted certificate into the field:

$ openssl x509 -in CACert.pem -text -noout
 Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 9774683164744115905 (0x87a6a68cc29066c1)
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: C=US, ST=NY, L=New York, O=MarkLogic Corporation,
OU=Engineering, CN=MarkLogic DemoCA
 Validity
 Not Before: Jul 11 02:53:18 2017 GMT
 Not After : Jul 6 02:53:18 2037 GMT
 Subject: C=US, ST=NY, L=New York, O=MarkLogic Corporation,
OU=Engineering, CN=MarkLogic DemoCA
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 Public-Key: (4096 bit)
 Modulus:

 Exponent: 65537 (0x10001)
 X509v3 extensions:
 X509v3 Subject Key Identifier:

D9:45:B9:9A:DC:93:7B:DB:47:07:C6:96:63:57:13:A7:A8:F1:D0:C8
 X509v3 Authority Key Identifier:

keyid:D9:45:B9:9A:DC:93:7B:DB:47:07:C6:96:63:57:13:A7:A8:F1:D0:C8
 X509v3 Basic Constraints: critical
 CA:TRUE
 X509v3 Key Usage: critical
 Digital Signature, Certificate Sign, CRL Sign
 Signature Algorithm: sha256WithRSAEncryption
Page 198—Security Guide

MarkLogic Server External Security
12.9.3 CA Certificate Import into MarkLogic from Query Console
You can also import the Certificate Authority using an XQuery call (pki:insert-trusted-
certificates) to load the Trusted CA into MarkLogic.

This sample Query Console code demonstrates this process.

xquery version "1.0-ml";
import module namespace pki = "http://marklogic.com/xdmp/pki"

at "/MarkLogic/pki.xqy";

pki:insert-trusted-certificates(
 xdmp:document-get("/OurCertificateLocation/DemoLabCA.pem",
 <options xmlns="xdmp:document-get">
 <format>text</format>
 </options>)
)

Be sure that this query is executed against the Security database. (The query is
Import_Trusted_CA.xqy hosted by GitHub.)

12.9.4 Certificate Template & Template CA import into Client (Browser/
SSL Client)

To enable the SSL App Server, you can either:

• Create a Certificate Template to utilize a Self-Signed Certificate.

or

• Import a pre-signed Certificate into MarkLogic.

In both of the above cases, you will need to import the Certificate Authority used to sign the
certificate used by MarkLogic SSL AppServer into Client Browser/SSL For example:

• Importing a Self Signed Certificate Authority into Windows

Once template is created, you can link your Template with your App Server to enable the SSL-
based App Server.

12.9.5 Certificate CN as Internal User vs External Name-based Internal
User

Difference between the two options lies in if the Certificate CN field User (demoUser1 in our
example) exists in MarkLogic Security Database as an internal user verses if the user retrieved
from the Certificate Subject field is mapped as an external name to any existing user.
MarkLogic 9—May, 2017 Security Guide—Page 199

MarkLogic Server Version MarkLogic 9—May, 2017 External Security
12.9.5.1 1.) Certificate CN Field Value as MarkLogic Security Database
Internal User

Follow these steps to configure Certificate-based User Authentication for the user (demoUser1) as
a MarkLogic internal user.

1. Create the user demoUser1 with the necessary roles in the MarkLogic Security database
(Internal User).
Page 200—Security Guide

MarkLogic Server External Security
2. On the AppServer page, set the authentication schema to “Certificate” with Internal
Security to set to “true”. Unless you want to have some users authenticated as an External
User as well, leave External Security object to “none”.

3. The AppServer will also select the CA that will be used to sign Client/User Certificate as
accepted Certificate Authorities (See section CA Certificate earlier for example).

Once configured, accessing the App Server with a browser the has the User Certificate
(demoUser1) installed will be able to log into MarkLogic with the internal demoUser1.
MarkLogic 9—May, 2017 Security Guide—Page 201

MarkLogic Server Version MarkLogic 9—May, 2017 External Security
Note: You will also need to assign the necessary roles to the internal user to be able to
access resources as needed.

12.9.5.2 User Certificate Subject Field Value as External Name for Internal
User

Follow these steps to configure certificate-based user authentication for demoUser1 as a
MarkLogic external name for the internal user “newUser1”.

1. Create a user named “newUser1” with the necessary roles in MarkLogic Security database
(Internal User), and configure the User Certificate Subject field as External Name to User.
Page 202—Security Guide

MarkLogic Server External Security
2. Create an external security object with certificate-based authentication.

3. On the External Security Object Configuration itself, select the CA that will be used to
sign Client/User Certificate as accepted Certificate Authorities (See section: CA
Certificate earlier for example).

Note: The Configuration below is different than configuring Client CA on App Server
(required for Internal User).
MarkLogic 9—May, 2017 Security Guide—Page 203

MarkLogic Server Version MarkLogic 9—May, 2017 External Security
4. For External Name (Cert Subject field) based linkage to Internal User, the App Server
needs to point to our External Security Object.
Page 204—Security Guide

MarkLogic Server External Security
12.10 Example External Authorization Configurations
This section provides an example of how Kerberos and LDAP users and groups might be mapped
to MarkLogic users and roles.

On Active Directory, there is a Kerberos user and an LDAP user assigned to an LDAP group:

• Kerberos Principal: jsmith@MLTEST1.LOCAL

• LDAP DN: CN=John Smith,CN=Users,DC=MLTEST1,DC=LOCAL

• LDAP memberOf: CN=TestGroup Admin,CN=Users,DC=MLTEST1,DC=LOCAL

On MarkLogic Server, the two users and the ldaprole1 role are assigned external names that map
them to the above users and LDAP group.

Kerberos User:

• User name: krbuser1

• External names: jsmith@MLTEST1.LOCAL

LDAP User:

• User name: ldapuser1

• External names: CN=John Smith,CN=Users,DC=MLTEST1,DC=LOCAL

Role:

• Role name: ldaprole1

• External names: CN=TestGroup Admin,CN=Users,DC=MLTEST1,DC=LOCAL

After authentication, the xdmp:get-current-user function returns a different user name,
depending on the external authorization configuration. The possible configurations and returned
name is shown in the following table.

Authentication
Protocol

Authorization
Scheme

Name Returned

kerberos internal krbuser1

kerberos ldap jsmith@MLTEST1.LOCAL (TEMP user with role ldaprole1)

ldap internal ldapuser1

ldap ldap jsmith (TEMP user with role ldaprole1)
MarkLogic 9—May, 2017 Security Guide—Page 205

MarkLogic Server Version MarkLogic 9—May, 2017 External Security
12.11 Kerberos Authentication using xdmp:http-* Functions
Kerberos authentication is supported by the xdmp:http-get, xdmp:http-post, xdmp:http-put, and
xdmp:http-delete functions with the negotiate authentication option. When negotiate is
specified, the username and password are not used. Instead, the server authenticates with the
keytab file identified by an environment variable. This effectively does a kinit operation with the
keytab file and then starts the MarkLogic server.

To use this feature, you must set the following environment variables:

For example, to authenticate xdmp:http-get for Kerberos, your function would look like the
following.

XQuery:

xdmp:http-get("http://atsoi-z620.marklogic.com:8008/ticket.xqy",
<options xmlns="xdmp:http">

<authentication method="negotiate">
</authentication>

</options>)

JavaScript:

xdmp.httpGet("http://atsoi-z620.marklogic.com:8008/ticket.xqy",
{ "authentication": { "method" : "negotiate" } })

Environment Variable Value

MARKLOGIC_KEYTAB Path to the Kerberos client keytab file.

MARKLOGIC_PRINCIPAL Kerberos Principal.
Page 206—Security Guide

MarkLogic Server External Security
The xdmp:http-get, xdmp:http-post, xdmp:http-put, and xdmp:http-delete functions include a
kerberos-ticket-forwarding option to enable the use of a user credential instead of
MARKLOGIC_PRINCIPAL.

For example, to forward the ticket (if the user ticket is forwardable), do the following.

XQuery:

xdmp:http-get(“http://myhost.com:8005/index.xqy”,
<options xmlns="xdmp:http">

<authentication method="negotiate">
</authentication>
<kerberos-ticket-forwarding>{”optional”}
</kerberos-ticket-forwarding>

</options>)

JavaScript:

xdmp:httpGet(“http://myhost.com:8005/index.xqy”,
{

"authentication": {"method" : "negotiate"},
"kerberosTicketForwarding": “optional”

})

The xdmp:http-get, xdmp:http-post, xdmp:http-put, and xdmp:http-delete functions also have a
proxy option to support proxy and proxy tunneling. When an HTTP or HTTPS request is sent to
proxy server, the proxy server will forward the request to the destination.

For example, to forward requests to a proxy server, named http://proxy.marklogic.com:8080, do
the following.

XQuery:

xdmp:http-get("http://targethost.marklogic.com/index.html",
<options xmlns="xdmp:http">

<proxy>http://proxy.marklogic.com:8080</proxy>
</options>)

JavaScript:

xdmp.httpGet("http://targethost.marklogic.com/index.html",
{proxy:"http://proxy.marklogic.com:8080"})
MarkLogic 9—May, 2017 Security Guide—Page 207

MarkLogic Server Version MarkLogic 9—May, 2017 External Security
12.12 Kerberos Authentication for Secured HDFS
MarkLogic can use Kerberos Secured HDFS as a file system on Linux platforms. MarkLogic
Server acts as a client to Kerberos Secured HDFS and should have its own unique identity, so the
credentials provided to MarkLogic Server should be different from the Kerberos credentials of
other MarkLogic client applications.

MarkLogic Server accesses Kerberos Secured HDFS using the keytab file and principal. To
configure Kerberos authentication to Secured HDFS, set the following environment variables in
your /etc/marklogic.conf file:

Note: When using rolling upgrades, deploy your credential keytab files after the cluster
has been fully upgraded to MarkLogic Server 9. Otherwise the behavior of
accessing secure HDFS will be undefined.

Environment Variable Value

MARKLOGIC_KEYTAB Path to the Kerberos client keytab file.

MARKLOGIC_PRINCIPAL Kerberos Principal to be authenticated.
Page 208—Security Guide

MarkLogic Server Encryption at Rest
13.0 Encryption at Rest
276

Encryption at rest protects your data on media - which is “data at rest” as opposed to data moving
across a communications channel, otherwise known as “data in motion.” Increasing security risks
and compliance requirements sometimes mandate the use of encryption at rest to prevent
unauthorized access to data on disk.

Note: No additional license is required to use encryption at rest with the built-in internal
keystore. To use encryption at rest with an external key management system
(KMS), an Advanced Security license is required. For details on purchasing an
Advanced Security license, contact your MarkLogic sales representative. See
“Licensing” on page 11 for more information.

Encryption at rest can be configured to encrypt data, log files, and configuration files separately.
Encryption is only applied to newly created files once encryption at rest is enabled, and does not
apply to existing files without further action by the user. For existing data, a merge or re-index
will trigger encryption of data, a configuration change will trigger encryption of configuration
files, and log rotation will initiate log encryption.

This chapter describes encryption at rest security and includes the following sections:

• Licensing

• Terms and Definitions

• Understanding Encryption at Rest

• Keystores - PKCS #11 Secured Wallet or External KMS

• Encryption Key Hierarchy Overview

• Example—Encryption at Rest

• Configuring Encryption at Rest

• Key Management

• Configuring an External Keystore

• Administration and Maintenance

• APIs for Encryption at Rest

• Interactions with Other MarkLogic Features

13.1 Licensing
The use of an external Key Management System (KMS) or keystore with encryption at rest
requires an Advanced Security License, in addition to the regular license. See “Licensing” on
page 11 for more details.
MarkLogic 9—May, 2017 Security Guide—Page 209

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest
13.2 Terms and Definitions
The following terms and definitions are associated with encryption at rest.

Term Definition

Encryption at rest Encryption of data that is stored on digital media

KMS Key Management System

wallet The PKCS #11 secured wallet provided and managed by
MarkLogic, that functions as the default standalone KMS

KEK A Key Encryption Key used to encrypt or ‘wrap’ another encryption
key

keystore Repository for crytographic keys in the PKCS #11 secured wallet or
any external KMS that is KMIP-server conformant

KMIP Key Management Interoperability Protocol (KMIP specification) -
governed by OASIS standards body. There are multiple versions of
KMIP currently available. MarkLogic Encryption supports KMIP
version 1.2

PKCS #11 One of the Public-Key Cryptography Standards, and also the
programming interface to create and manipulate cryptographic
tokens. See the OASIS PKCS TC for details

MKEK Master Key Encryption Key, resides in the keystore, and is used to
generate the CKEK, which is enveloped (encrypted) with the
MKEK

CKEK Cluster Key Encryption Key, resides in the keystore and is used to
encrypt the data (CDKEK), configuration(CCKEK), and log
CLKEK) encryption keys

CDKEK Cluster Data Key Encryption Key, used to directly encrypt (wrap)
the object key encryption keys (OKEY) for stands, forest journals,
and large files

CCKEK Cluster Configuration Key Encryption Key, used to encrypt (wrap)
the object key encryption keys (OKEY) for configuration files

CLKEK Cluster Log Key Encryption Key, used to encrypt (wrap) the object
key encryption keys (OKEY) for log files
Page 210—Security Guide

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=kmip
https://www.oasis-open.org/committees/pkcs11/

MarkLogic Server Encryption at Rest
13.3 Understanding Encryption at Rest
Encryption at rest enables you to transparently and selectively encrypt your data residing on disk
(locally or in the cloud) in MarkLogic clusters. You can set your options at the cluster level to
encrypt data on all the hosts in that cluster.

Three types of data can be encrypted:

• User data - data ingested into MarkLogic databases, along with derived data such as
indexes, user dictionaries, journals, backups, and so on

• Configuration files - all configuration files generated by MarkLogic (for example,
whenever a change is made to the configuration file)

• Log files - all log files generated by MarkLogic, such as error logs, access logs, service
dumps, server error logs, logs for each application server, and the task server logs

There are both MarkLogic Application Server logs and MarkLogic Server logs; both types
of logs will be encrypted as part of log encryption.

Note: If you are using the Default Conversion Option described in The Default Conversion

Option in the Content Processing Framework Guide, note that the MarkLogic
Converters package may generate temporary files, which are not supported by
encryption at rest.

OKEY Object Encryption Key, otherwise known as the data object
encryption key, a symmetric key used to directly encrypt objects like
stands, forest journals, large files, configuration files, or log files

BKEK Backup Key Encryption Key, used to encrypt backups, both full and
incremental. The BKEK is a locally generated backup KEK, that is
used to encrypt all files in the backup. The BKEK is encrypted with
the CDKEY and the BDKEY.

BDKEK Backup Database Key, (alternative) only applicable to external
KMS configurations. It is used to encrypt a backup in addition to the
CDKEK.

HSM Hardware Security Module or other hardware device is a physical
computing device that safeguards and manages digital key materials

Key strength The size of key in bits. Usually the more bits, the stronger the key
and more difficult to break; for example 128-bits, 256 bits, or
512-bits, and so on

Key rotation The process of aging out and replacing encryption keys over time

Term Definition
MarkLogic 9—May, 2017 Security Guide—Page 211

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest
These types of data can each be encrypted separately. You can configure encryption for databases
individually, or at the cluster level. Encryption at rest is “off” by default. To use encryption at rest,
you need to configure and enable encryption for your database(s), configuration files, and/or log
files.

Note: To access unencrypted forest data MarkLogic normally uses memory-mapped
files. When files are encrypted, MarkLogic instead decrypts them to anonymous
memory. As a result, encrypted MarkLogic forests use more anonymous memory
and less file-mapped memory than unencrypted forests.

Encryption at rest provides data confidentiality, but not authentication of identity or access control
(permissions). See “Authenticating Users” on page 35 and “Protecting Documents” on page 25
for information about authentication and other forms of security in MarkLogic Server.

Warning If you cannot access your PKCS #11 secured wallet (or external KMS if you are
using one), or lose your encryption keys, you will not be able to decrypt any of
your encrypted data. There is no “mechanism” to recover the encrypted data. We
recommend that you backup your encryption keys in a secure location. See
“Backup and Restore” on page 262 for more details.

13.4 Keystores - PKCS #11 Secured Wallet or External KMS
A keystore is a secure location where the actual encryption keys used to encrypt data are stored.
The keystore for encryption at rest is a key management system (KMS). This keystore can be
either the MarkLogic embedded PKCS #11 secured wallet, an external KMS that conforms to the
KMIP-standard interface, or the native AWS KMS (Amazon Web Services Key Management
System). The embedded keystore is installed by default when you install MarkLogic 9.0-x or
later.

The MarkLogic embedded wallet uses a standard PKCS #11 protocol, using the PKCS #11 APIs.
The wallet or another KMS, must be available during the MarkLogic startup process (or be
bootstrapped from MarkLogic during start-up). You can also use any KMIP-compliant external
keystore with MarkLogic or the native AWS KMS.

To configure an external KMS you will need the following information for your cluster:

• Host name

• Port number

• Client certificate

• Server certificate

If you are using the native AWS KMS, you will not need the Client certificate or the Server
certificate. You will need the other information.
Page 212—Security Guide

MarkLogic Server Encryption at Rest
Note: If you plan to use an external key management system, configure the external
KMS first, and then turn on encryption in the MarkLogic server.

For details, see “Configuring an External Keystore” on page 243.

13.5 Encryption Key Hierarchy Overview
The following section provides an overview of the encryption key hierarchy used by MarkLogic
encryption at rest to secure data. Keys in the encryption hierarchy wrap (or encrypt) those keys
below them in the hierarchy. Three possible configurations of the encryption key hierarchy are
described. The first is an idealized key hierarchy that provides a generic example. The second is
an embedded KMS (the PKCS #11 secured wallet) configuration, and the third shows an external
keystore management system (KMS) configuration.

You do not need to completely understand the details of the key hierarchy to use the encryption
feature, but this section will help to understand the general concepts involved.

The keystore contains the Master Key Encryption Key (MKEK). The keystore generates the
Cluster Key Encryption Key (CKEK), which is enveloped (encrypted) with or derived from the
Master Key Encryption Key. Both the Master Key Encryption Key and the Cluster Key
Encryption Key reside in the keystore (key management system or KMS). These keys never leave
the keystore and MarkLogic Server has no knowledge or control over these keys. The keys are
referenced from the keystore by their key IDs.
MarkLogic 9—May, 2017 Security Guide—Page 213

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest
The KMS can be either the internal keystore provided by MarkLogic or an external
KMIP-compliant KMS; the same mechanism is used by both types of keystores. The
configuration happens at the cluster level because there is one keystore configuration per cluster.
The encryption feature is fully compliant with the KMIP standard and the Amazon KMS.

The external KMS provides even higher security. The key IDs are provided by the KMS and
returned through a TLS tunnel after the MarkLogic-generated keys have been sent to the KMS
and wrapped (encrypted). The actual encryption keys never leave the KMS.

There are multiple levels to the key hierarchy, each level wrapping (encrypting) the level below it.
The KMS generates the Cluster Level Data Encryption Keys for data (CDKEK), configuration
files (CCKEK), and log files (CLKEK). The corresponding key (CDKEK, CCKEK, or CLKEY)
is used to encrypt (wrap) all the Object Encryption Keys (OKEY) generated by MarkLogic Server
for each file, so that an encryption key protects each file, no matter what category (data,
configuration files, logs).

The Object Encryption Keys (OKEY) are randomly generated per file (for stands, journals, config
files, and log files, etc.) wrapped (encrypted) with the corresponding keys (CDKEK, CCKEK, or
CLKEK). So an encryption key protects each file within a category (data, configuration files,
logs).

For example, the Master Key Encryption Key (MKEK) wraps (encrypts) the Cluster Key
Encryption Keys (CKEK), which in turn wraps (encrypts) the Data Key Encryption Key
(CDKEK). The Data Key Encryption Key encrypts the Object Encryption Key (OKEY) for a file
such as a stand. The keys at the bottom of the diagram are encrypted as headers in each file,
wrapped (encrypted) with each of the keys above them in the hierarchy. Each of the three
categories of objects (data, configuration files, and logs) has its own key encryption hierarchy.

Database backups are encrypted using a generated backup key (BKEK). This key is then
encrypted with the cluster key (CDKEK). See “Backup and Restore” on page 262 for more
information about backups.

13.5.1 Embedded KMS Key Hierarchy
When you use the embedded PKCS #11 secured wallet provided with MarkLogic Server, the
recommended key hierarchy would be similar to this illustration.
Page 214—Security Guide

MarkLogic Server Encryption at Rest
MarkLogic Server generates the Data Key Encryption Key (CDKEK), the Configuration Key
Encryption key (CCKEK) and the Logs Key Encryption Key (CLKEK). The Data Key
Encryption Key is then used to wrap the OKEYs for the database objects (journals, data files,
etc.). These keys are stored in the wallet (internal KMS). The key IDs are generated in the
MarkLogic Server for encryption and decryption by the KMS (the PKCS #11 secured wallet in
this case). The configuration happens at the cluster level because there is one keystore per cluster.

The individual Object Encryption Keys (OKEYs) are then randomly generated and used to
directly encrypt individual files (journals, config files, and log files, etc.). These keys (the
OKEYs) are wrapped (encrypted) with the corresponding KEK for data, config, and logs. A
unique key protects (encrypts) each file. The keys at the object levels are wrapped (encrypted by
the keys above them) for each category.

For example, the Data Key Encryption Key (CDKEK) wraps (encrypts) the Object Encryption
Key (OKEY) for a file such as a journal. The keys at the bottom of the diagram are encrypted
(wrapped) by all the keys above them in the hierarchy, and then placed in the header for each file.
In the case of the embedded KMS, there is only one CDKEK for the entire cluster - all databases
in the cluster will use that key. When using the embedded KMS, it is not possible to use “per
database” keys for encryption.

Database backups are encrypted using the locally generated backup key (BKEK) that is used to
encrypt all of the files in the backup. The BKEK is then encrypted with the cluster data key
(CDKEK) and then encrypted with the cluster key (CKEK). Additionally you could encrypt this
key with the BDKEY and a passphrase. See “Backup and Restore” on page 262 for more
information about backups.
MarkLogic 9—May, 2017 Security Guide—Page 215

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest
13.5.2 External KMS Key Hierarchy
The external KMS provides even higher security, along with additional key management features.
When you use an external key management system (KMS or keystore), the recommended key
hierarchy deployment might look like this illustration.

The keystore contains the Master Key Encryption Key (MKEK). The KMS generates or derives
the Cluster Key Encryption Key (CKEK), which is enveloped (encrypted) with the Master Key
Encryption Key. Both the Master Key Encryption Key and the Cluster Key Encryption Key reside
in the KMS keystore. These keys never leave the keystore. MarkLogic Server has no knowledge
or control over these keys. The keys are referenced from the keystore by their key IDs. The actual
encryption keys never leave the KMS.

There are multiple levels to the key hierarchy in this deployment, each level wrapping
(encrypting) the level below it. The KMS generates the cluster level encryption keys for data
(CDKEK), configuration files (CCKEK), and log files (CLKEK). The corresponding KEK is used
is used to encrypt (wrap) all the Object Encryption Keys (OKEY) generated by MarkLogic Server
for each file, so that a unique key protects each file, no matter what category (data, configuration
files, logs). A unique key protects each file within a category (data, configuration files, logs).
Page 216—Security Guide

MarkLogic Server Encryption at Rest
The corresponding KEK (for data, config, or logs) is used to encrypt (wrap) all the Object
Encryption Keys (OKEY) generated by MarkLogic Server for each file, so that an encryption key
protects each file, no matter what category (data, configuration files, logs).

For example, the Master Key Encryption Key (MKEK) wraps (encrypts) the Cluster Key
Encryption Keys (CKEK), which in turn wraps (encrypts) the Data Key Encryption Key
(CDKEK), then wraps (encrypts) the Object Encryption Key (OKEY) for a file such as a stand.
The keys at the bottom of the diagram are encrypted (wrapped) by all the keys above them in the
hierarchy, and then placed in the header for each file.

Database backups are encrypted using the BKEK, the locally generated backup KEK, the BKEK
is encrypted with the CDKEK. Then the CDKEY may be encrypted or derived from the cluster
key (CKEK). This last step is outside of the control of MarkLogic. You can also use a password
or passphrase to encrypt and secure your backup. See “Backup and Restore” on page 262 for
more information about backups and the use of a passphrase to secure your backup.

Note: If you plan to use an external key management system, configure the external
KMS first, and then turn on encryption in the MarkLogic server.

13.6 Example—Encryption at Rest
This section describes a scenario using encryption at rest to encrypt a database. This example is
for informational purposes only. It is not meant to demonstrate the correct way to set up and use
encryption at rest, as your situation is likely to be unique. However, it demonstrates how
encryption at rest works and may give you ideas for how to configure your own encryption at rest
security model.

Description:.

To set up encryption at rest for this scenario, you will need Admin privileges. You will need
access to both MarkLogic Admin Interface and Query Console.

To run through the example, perform the steps in each of the following sections:

• Set Up Encryption Example

• Encrypt a Database

• Test It Out

• Turn Off Encryption for a Database
MarkLogic 9—May, 2017 Security Guide—Page 217

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest
13.6.1 Set Up Encryption Example
Install MarkLogic 9.0-1 or later. Encryption at rest options are not available in earlier versions of
MarkLogic Server. You must explicitly select which data (databases, configuration files, log files,
or entire clusters) you want to have encrypted. This example shows how to set up encryption for a
single database.

Note: The Security database or other databases used by MarkLogic will not be encrypted
by default. Existing data can be encrypted by forcing a merge or a reindex of the
database.

See “Configuring Encryption at Rest” on page 221 for more details.

13.6.2 Encrypt a Database
For this example, we will use the Admin UI to set up encryption for the Documents database.

1. Select Databases from the left tree menu in the Admin UI.

2. Click on the Documents database.

3. On the Database Configuration page, next to data encryption, select on from the
drop-down menu. (The other options are default-cluster and off.)

4. Click ok.
Page 218—Security Guide

MarkLogic Server Encryption at Rest
If you select default-cluster, encryption for that database will default to whatever encryption
option has been set for the cluster as a whole. If the cluster is set to encrypt data, this database will
be encrypted. If encryption has not been turned on for the cluster, this database will not be
encrypted if default-cluster is selected. See “Cluster Encryption Options” on page 224 for
details.

As you access data in your database, it will be encrypted when it is written back to disk. You can
view the encryption progress on the Database Status page by looking at the Size and Encrypted
Size numbers.

Note: To encrypt the existing data in your database, you will need to re-index your
database. On the Database Configuration page, click the reindex button at the top
of the page (below the “OK” button), and then click ok. You can also force a
merge of the database to encrypt the data.

Encryption of large databases will take some time initially. Updates and changes to the database
will be fairly transparent to the user after initial encryption. The Size and Encrypted Size numbers
will be equal when the encryption process is complete.

13.6.3 Test It Out
Using Query Console, you can run a simple query to verify that the Documents database has
encryption turned on.

You can also check the Size and Encrypted Size numbers on the Database Status page. These
numbers will be equal when the encryption process is complete and the entire database is
encrypted.

Language Example

XQuery xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin"

at "/MarkLogic/admin.xqy";

let $config := admin:get-configuration()
return admin:database-get-data-encryption($config,
xdmp:database("Documents"))

=>
on

Server-Side
JavaScript

const admin = require('/MarkLogic/admin');
const config = admin.getConfiguration();

admin.databaseGetDataEncryption(
config, xdmp.database('Documents'));

// Returns ‘on’
MarkLogic 9—May, 2017 Security Guide—Page 219

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest
13.6.4 Turn Off Encryption for a Database
1. Select Databases from the left tree menu in the Admin UI.

2. Click on the Documents database to turn off encryption.

3. On the Database Configuration page, next to data encryption, select off from the
drop-down menu.

4. Click ok.

To verify that encryption is turned off, run this query in Query Console:
Page 220—Security Guide

MarkLogic Server Encryption at Rest
To decrypt the existing data in your database, you will need to re-index your database. On the
Database Configuration page, click the reindex button and then click ok.

Note: You can also decrypt the data by forcing a merge on the database to decrypt its
contents. This process may take a while.

13.7 Configuring Encryption at Rest
Install MarkLogic Server version 9.0-x or later. The encryption at rest feature and the PKCS #11
secured wallet are installed by default. You can configure encryption at rest for databases (data
encryption), log files (log encryption) and configuration files (config encryption). The encryption
feature will need to be configured and enabled for your data to be encrypted.

When you start up MarkLogic for the first time after installation, the keystore.xml file will be
loaded first. It contains the encryption key IDs. After loading the keystore.xml configuration,
MarkLogic validates connectivity to the KMS (local or external) and the validity of the keys
stored in keystore.xml. Once validated, encryption keys will be loaded and decrypted. Normal
startup then continues. If configuration files are encrypted, the file layer will decrypt them as they
are being loaded, making the encryption transparent to the cluster.

Note: If a node in your cluster is offline for any reason, wait until the host comes back
online to make any changes to your encryption at rest settings. Do not change your
encryption settings while a host is offline.

Language Example

XQuery xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin"

at "/MarkLogic/admin.xqy";

let $config := admin:get-configuration()
return admin:database-get-data-encryption(

$config, xdmp:database("Documents"))

=>
off

Server-Side
JavaScript

const admin = require('/MarkLogic/admin');
const config = admin.getConfiguration();

admin.databaseGetDataEncryption(
config, xdmp.database('Documents'));

// Returns ‘off’
MarkLogic 9—May, 2017 Security Guide—Page 221

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest
This section contains the following topics:

• Database Encryption Options

• Configure Cluster Encryption

• Cluster Encryption Options

• Using an Alternative PKCS #11 Device

• Configure Encryption Using XQuery

• Configure Encryption Using REST

13.7.1 Database Encryption Options
You can configure encryption for each database on the Database Configuration page in the Admin
UI. Encryption at rest can be separately enabled per database, or at the cluster level by setting the
database encryption to default to the cluster encryption settings. The encryption options for
databases are shown in the following table.

With encryption enabled, files are encrypted as they are ingested into the database, or when those
files are written back to disk. If you want to encrypt existing data in a database either reindex the
database or force a merge on the database. This will take a few minutes depending on the size of
database. See Cluster Encryption Options

Note: Large binary files are only encrypted during initial ingestion into the database. If
you want to encrypt existing large binary files already loaded into MarkLogic
Server prior to turning on encryption, you must reindex the database or force a
merge.

1. To configure database encryption, go to the Admin UI and click Databases in the left
navigation tree.

2. Click on the database you want to encrypt.

Encryption Encryption Options

Default-Cluster On Off

Database encryption encryption defaults
to cluster setting

encryption enabled
for database

encryption off,
unless cluster
encryption is set to
force encryption
Page 222—Security Guide

MarkLogic Server Encryption at Rest
3. On the Database Configuration page, next to data encryption, select on from the
drop-down menu. (The other options are default-cluster and off.)

4. Click ok when you are done.

13.7.2 Configure Cluster Encryption
You can set cluster encryption options for configuration files and log files, and also set or override
the encryption options for databases on the Cluster Configuration page.

13.7.2.1 Configuration File and Log File Encryption Options
Encryption at rest for configuration files and/or log files is done on the Cluster Configuration
page in the Admin UI. Navigate to this page by choosing Clusters from the left tree menu,
clicking the cluster name, and then clicking the Configure tab.

The encryption options are shown in the following table.

File Type Cluster Encryption Settings

Default On Default Off Force

Configuration files encrypt do not encrypt encrypt

Log files encrypt do not encrypt encrypt
MarkLogic 9—May, 2017 Security Guide—Page 223

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest
Note: The keystore.xml and hsm.cfg files are never be encrypted because they are
configuration for the Keystore. The servers.xml file is not immediately encrypted
until a server (apps server) is updated, a new server is created, or an existing server
is deleted. This is because these actions trigger a restart of the MarkLogic server.

Cluster configuration settings for encryption at rest interact with the encryption settings for
databases. You can separately configure encryption for each database on the Database
Configuration page in the Admin UI or set database encryption to default to the cluster encryption
settings.

Note: The database encryption configuration settings take precedence unless the cluster
Force Encryption option is set. If Force Encryption is on, configuration files and
log files will be encrypted. Please check all database encryption settings to ensure
that they are set correctly.

The following table shows the interaction between the cluster configuration options and the
database configuration options. There are three possible database encryption settings and three
possible cluster encryption settings. The cell where the row and column intersect shows the
outcome of that configuration combination.

The Force Encryption option in the Cluster Encryption Settings will force encryption for all of the
databases in the cluster. If the Cluster Encryption Setting is Force Encryption (or Default On), or
the Database Encryption Setting is On, then the database will be encrypted.

13.7.3 Cluster Encryption Options
You can either configure encryption for the embedded keystore (the PKCS #11 secured wallet) or
for a external KMIP-compliant keystore using the Admin UI. Use the Edit Keystore
Configuration page to configure encryption at rest for a cluster. Using this page you can configure
data encryption, configuration file encryption, encryption of log files, or key synchronization.

1. To configure encryption using the embedded keystore in the Admin UI, click Clusters in
the left navigation tree and click the name of the cluster you want to configure.

Database Encryption
Setting

Cluster Encryption Settings

Force Encryption Default On Default Off

Default to cluster encrypt encrypt do not encrypt

On encrypt encrypt encrypt

Off encrypt do not encrypt do not encrypt
Page 224—Security Guide

MarkLogic Server Encryption at Rest
2. Click the Keystore tab to configure the keystore for encryption at rest.

3. Use the drop-down menus to configure encryption for data, config files, and log files.
MarkLogic 9—May, 2017 Security Guide—Page 225

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest
Beneath these options on the Edit Keystore Configuration page, there are two tabs for
specifying further options for either the Internal KMS or the External KMS. The following
options are available for the Internal KMS:

Setting Description

data encryption Specifies whether or not encryption is enabled for user data. The options are:

force — Force encryption for all data in the cluster. The database
configuration cannot overwrite this setting.

default-on — By default encryption is on. The database configuration
can overwrite this setting.

default-off — By default encryption is off. The database configuration
can overwrite this setting.

config encryption Specifies whether or not encryption is enabled for configuration files

logs encryption Specifies whether or not encryption is enabled for log files.

kms type Specifies whether the KMS is internal to MarkLogic or an external KMS

A keystore is a secure location where the actual encryption keys used to
encrypt data are stored. The keystore for encryption at rest is a key
management system (KMS). This keystore can be either the MarkLogic
embedded PKCS #11 secured wallet, or an external third party KMS

Setting Description

backup option The internal KMS is automatically included in backups unless you
change the default setting of “include” to “exclude”.

internal data
encryption key id

The UUID that identifies the encryption key from the internal KMS that
is to be used to encrypt data files.

internal config
encryption key id

The UUID that identifies the encryption key from the internal KMS that
is to be used to encrypt config files.

internal logs
encryption key id

The UUID that identifies the encryption key from the internal KMS that
is to be used to encrypt log files.

Change password Click this button to change the password for this KMS.

Synchronize Keys Click this button to synchronize the enveloped keys with the KMS.
Page 226—Security Guide

MarkLogic Server Encryption at Rest
4. Click ok when you are done.

13.7.3.1 External Cluster Encryption Options
Use the Edit Keystore Configuration page to configure encryption at rest for a cluster using an
external keystore. Using this page you can configure data encryption, configuration file
encryption, encryption of log files, or key synchronization.

1. To configure encryption using an external keystore in the Admin UI, click Clusters in the
left navigation tree and click the name of the cluster you want to configure.

2. Click the Keystore tab to configure the keystore for encryption at rest.
MarkLogic 9—May, 2017 Security Guide—Page 227

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest
3. Use the drop-down menus to configure encryption for data, config files, and log files.

Beneath these options on the Edit Keystore Configuration page, there are two tabs for
specifying further options for either the Internal KMS or the External KMS. The following
options are available for the Internal KMS:

Setting Description

data encryption Specifies whether or not encryption is enabled for user data. The options are:

force — Force encryption for all data in the cluster. The database
configuration cannot overwrite this setting.

default-on — By default encryption is on. The database configuration
can overwrite this setting.

default-off — By default encryption is off. The database configuration
can overwrite this setting.

config encryption Specifies whether or not encryption is enabled for configuration files

logs encryption Specifies whether or not encryption is enabled for log files.

kms type Specifies whether the KMS is internal to MarkLogic or an external KMS

A keystore is a secure location where the actual encryption keys used to
encrypt data are stored. The keystore for encryption at rest is a key
management system (KMS). This keystore can be either the MarkLogic
embedded PKCS #11 secured wallet, or an external third party KMS

Setting Description

hostname The hostname for the external KMS.

port The port for the external KMS

external data
encryption key id

The UUID that identifies the encryption key from the external KMS that
is to be used to encrypt data files.

external config
encryption key id

The UUID that identifies the encryption key from the external KMS that
is to be used to encrypt config files.

external logs
encryption key id

The UUID that identifies the encryption key from the external KMS that
is to be used to encrypt log files.

Synchronize Keys Click this button to synchronize the enveloped keys with the KMS.
Page 228—Security Guide

MarkLogic Server Encryption at Rest
4. Click ok when you are done.

Note: Adding or changing any encryption information will require a restart of all of the
hosts in the cluster.

13.7.3.2 Changing the Internal KMS Password
You can change the password for the internal KMS using the Change Internal KMS Password
screen. To change the internal KMS password do the following:

1. Click Clusters in the left navigation tree and click the name of the cluster that has the
KMS keystore with password that you want to change.

2. Click the Keystore tab to open the Edit Keystore Configuration page. Click the change
password button on the Edit Keystore Configuration page. This opens the Change Internal
KMS Password page.

3. Enter the current password in the first field, then enter the new password in the second
field. Confirm the new password by entering it again in the third field.

4. Click ok when you are done.
MarkLogic 9—May, 2017 Security Guide—Page 229

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest
13.7.3.3 Synchronizing the KMS Keys
Synchronize the KMS keys with the enveloped keys on MarkLogic Server to ensure that
MarkLogic uses the most current keys for encryption.

To synchronize the KMS keys, do the following:

1. Click Clusters in the left navigation tree and click the name of the cluster that has the
KMS keystore with the keys you want to synchronize.

2. Click the Keystore tab to open the Edit Keystore Configuration page.
Page 230—Security Guide

MarkLogic Server Encryption at Rest
3. Click the Synchornize Keys button on the Edit Keystore Configuration page. This opens
the Synchronize Keys page.

4. Click ok to confirm that you want to synchronize the MarkLogic Server keys with your
KMS.

13.7.4 Using an Alternative PKCS #11 Device
The MarkLogic wallet (the embedded KMS) uses SoftHSM as its default hardware security module

(HSM). Customers wishing to use another PKCS #11-compliant key storage device must follow
these steps before starting MarkLogic with encryption for the first time.

Follow these steps:

1. The PKCS #11 device must not be initialized, and no PIN should be set. MarkLogic
encryption will initialize the device and set the PIN.

2. Set the environment variable MARKLOGIC_P11_DRIVER_PATH (locally or in
/etc/marklogic.conf) to point to the library that you want to use.

3. Start MarkLogic for the first time. MarkLogic will initialize the device and set the PIN.

4. Verify that no error messages are logged during start up.

13.7.4.1 Saving the Embedded KMS to a Different Location
Follow these steps to change your KMS wallet location, or change the location of the backup for
your KMS:

1. Export your KMS, if you want to be able to use your existing (old) encryption keys.
MarkLogic 9—May, 2017 Security Guide—Page 231

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest
2. Change the wallet location with admin:cluster-set-keystore-wallet-location. See the
table below for the XQuery and Javascript command options.

Use the options available in admin:cluster-set-keystore-wallet-location (XQuery) or
admin.clusterSetKeystoreWalletLocation (SJS) to change the location of the internal
wallet.

The admin:cluster-set-keystore-wallet-location (XQuery) or
admin.clusterSetKeystoreWalletLocation (SJS) function will also set the backup location
for an embedded KMS.

3. Restart the MarkLogic server.

4. If you are changing KMS location, now you can reimport your KMS.

Note: MarkLogic does not support having the wallet location being on some shared NFS
location at this time.

13.7.5 Configure Encryption Using XQuery
Instead of using the Admin UI, you can configure encryption for your MarkLogic instance using
XQuery.

Language Example

XQuery let $dir-name := "/sotfhsm/wallet"
let $config := admin:get-configuration()

return
admin:cluster-set-keystore-wallet-location(

$config,$dir-name)

Server-Side
JavaScript

const admin = require('/MarkLogic/admin');
const dirName = '/sotfhsm/wallet';
const config = admin.getConfiguration();

admin.clusterSetKeystoreWalletLocation(config, dirName);
Page 232—Security Guide

MarkLogic Server Encryption at Rest
In Query Console, you can use admin:cluster-set-data-encryption (XQuery) or
admin.clusterSetDataEncryption (SJS) to turn on data encryption for the current database:

For example, to set the encryption for log files at cluster level:

Language Example

XQuery xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin"
 at "/MarkLogic/admin.xqy";

let $config := admin:get-configuration()
return

admin:cluster-set-data-encryption($config,"default-on")

Server-Side
JavaScript

const admin = require('/MarkLogic/admin');
const config = admin.getConfiguration();

admin.clusterSetDataEncryption(config, 'default-on');

XQuery xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin"
 at "/MarkLogic/admin.xqy";

let $config := admin:get-configuration()
return
admin:save-configuration(

admin:cluster-set-logs-encryption(
 $config, "on"))

Server-Side
JavaScript

const admin = require('/MarkLogic/admin');
const config = admin.getConfiguration();

admin.saveConfiguration(
admin.clusterSetLogsEncryption(
config, 'on'));
MarkLogic 9—May, 2017 Security Guide—Page 233

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest
To see whether encryption is turned on for log files, you can run this XQuery in the Query
Console:

13.7.6 Configure Encryption Using REST
You can use REST Management APIs to work with encryption at rest.

GET:/manage/v2/databases/{id|name}/properties

This command gets the current properties of the Documents database, including the encryption
status and encryption key ID in JSON format:

$ curl -GET --anyauth -u admin:admin \
-H "Accept:application/json,Content-Type:application/json" \
http://localhost:8002/manage/v2/databases/Documents/properties

Returns

{"database-name":"Documents", "forest":["Documents"],
"security-database":"Security", "schema-database":"Schemas",
"triggers-database":"Triggers", "enabled":true,
"data-encryption":"off", "encryption-key-id":"",

The same command in XML format:

$ curl -GET --anyauth -u admin:admin \
-H "Accept:application/xml,Content-Type:application/xml" \
http://localhost:8002/manage/v2/databases/Documents/properties

Returns

<database-properties xmlns="http://marklogic.com/manage">
 <database-name>Documents</database-name>
 <forests>

Language Example

XQuery xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin"

at "/MarkLogic/admin.xqy";

let $config := admin:get-configuration()
return
 admin:cluster-get-logs-encryption($config)
 (: returns the encryption setting for log files:)

Server-Side
JavaScript

const admin = require('/MarkLogic/admin');
const config = admin.getConfiguration();

admin.clusterGetLogsEncryption(config);

// Returns the encryption setting for log files
Page 234—Security Guide

MarkLogic Server Encryption at Rest
 <forest>Documents</forest>
 </forests>
 <security-database>Security</security-database>
 <schema-database>Schemas</schema-database>
 <triggers-database>Triggers</triggers-database>
 <enabled>true</enabled>
 <data-encryption>on</data-encryption>
 <encryption-key-id/>
...
</database-properties>

GET:/manage/v2/security/properties

This command returns the current encryption status, along with other properties including
encryption key ID, for localhost in JSON format:

$ curl -GET --anyauth -u admin:admin \
-H "Accept:application/json,Content-Type:application/json" \
http://localhost:8002/manage/v2/security/properties

Returns:

{"keystore":{"data-encryption":"default-off",
"data-encryption-key-id":"091fd9a0-f090-4c7e-91ca-fedfe21dbfef",
"config-encryption":"off", "config-encryption-key-id":"",
"logs-encryption":"off", "logs-encryption-key-id":"",
"host-name":"LOCALHOST", "port":9056}}

Here is the same version of the command, this time returning XML:

$ curl -GET --anyauth -u admin:admin \
-H "Accept:application/xml,Content-Type:application/xml" \
http://localhost:8002/manage/v2/security/properties

Returns:

<security-properties
xsi:schemaLocation="http://marklogic.com/manage/security/properties
manage-security-properties.xsd"
xmlns="http://marklogic.com/manage/security/properties"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<keystore>
<data-encryption>default-off</data-encryption>
<data-encryption-key-id>8d0b07d8-b655-4408-affd-e49a2ece0af3

</data-encryption-key-id>
<config-encryption>off</config-encryption>
<config-encryption-key-id/>
<logs-encryption>off</logs-encryption>
<logs-encryption-key-id/>
<host-name>LOCALHOST</host-name>
<port>9056</port>
MarkLogic 9—May, 2017 Security Guide—Page 235

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest
</keystore>
</security-properties>

POST:/manage/v2/security/properties

This command sets the protected path for //d with read permissions for manage-user:

$ curl -POST --anyauth -u admin:admin \
-d @file.xml -H "Content-Type:application/xml" \
http://localhost:8002/manage/v2/protected-paths

Here is the payload (file.xml):

<protected-path-properties
xmlns="http://marklogic.com/manage/protected-path/properties">
 <path-expression>//d</path-expression>
 <path-namspaces/>
 <permissions>
 <permission>
 <role-name>manage-user</role-name>
 <capability>read</capability>
 </permission>
 </permissions>
</protected-path-properties>

Here is the same operation in JSON:

curl -X POST --anyauth -u admin:admin \
-d @file.json -H "Content-Type:application/json" \
http://localhost:8002/manage/v2/protected-paths

Here is the payload (file.json):

{
"path-expression": "//e",
"path-namespace": [],
"permission": [{
"role-name": ["manage-user"],
"capability": "read"
}]
}

PUT:/manage/v2/databases/{id|name}/properties

This command will turn on encryption for the Documents database:

$ curl -X PUT --anyauth -u admin:admin -d '{"data-encryption":"on"}' \
-H "Content-Type:application/json" \
http://localhost:8002/manage/v2/databases/Documents/properties
Page 236—Security Guide

MarkLogic Server Encryption at Rest
13.7.6.1 Export Wallet
To export the embedded KMS (the PKCS #11 secured wallet) using REST, you can use this form
with REST and XML:

POST manage/v2/security?
operation=export-wallet&filename=/my/test..wallet&password=test

As a curl command (using MANAGEADMIN="admin" and MANAGEPASS="admin") it would look like
this:

curl -v -X POST --anyauth --user $MANAGEADMIN:$MANAGEPASS \
--header "Content-Type:application/xml" \

-d@data/security/export-wallet.xml \
http://$host:8002/manage/v2/security

Where export-wallet.xml is:

<export-wallet-operation xmlns="http://marklogic.com/manage/security">
 <operation>export-wallet</operation>
 <filename>/tmp/mywallet.txt</filename>
 <password>mypassword</nassword>
</export-wallet-operation>

Or you can use this form for REST using a JSON format:

POST manage/v2/security
{"operation":"export-wallet","filename":"/my/test.wallet","password":"
test"}

As a curl command (using MANAGEADMIN="admin" and MANAGEPASS="admin") it would look like
this:

curl -v -X POST --anyauth --user $MANAGEADMIN:$MANAGEPASS \
--header "Content-Type:application/json" \

-d@data/security/export-wallet.json \
http://$host:8002/manage/v2/security

Where export-wallet.json is:

{
 "operation":"export-wallet",
 "filename":"/tmp/mywallet.tmp",
 "password":"mypassword"
}

Note: The export wallet operation saves the wallet to a directory on the server on which
MarkLogic is running. Similarly, the import wallet operation imports from the
filesystem on which MarkLogic is running.
MarkLogic 9—May, 2017 Security Guide—Page 237

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest
13.7.6.2 Import Wallet
To import the embedded KMS (the PKCS #11 secured wallet) using REST, you can use this form
with a JSON payload:

POST manage/v2/security
{"operation":"import-wallet","filename":"/my/test.wallet","password":"
test"}

As a curl command (using MANAGEADMIN="admin" and MANAGEPASS="admin") it would look like
this:

curl -v -X POST --anyauth --user $MANAGEADMIN:$MANAGEPASS \
--header "Content-Type:application/json" \

-d@data/security/import-wallet.json \
http://$host:8002/manage/v2/security

Where import-wallet.json is:

{
 "operation":"import-wallet",
 "filename":"/tmp/mywallet.tmp",
 "password":"mypassword"
}

Or you can use this form with an XML payload:

POST manage/v2/security?
operation=import-wallet&filename=/my/test.wallet&password=test

As a curl command (using MANAGEADMIN="admin" and MANAGEPASS="admin") it would look like
this:

curl -v -X POST --anyauth --user $MANAGEADMIN:$MANAGEPASS \
--header "Content-Type:application/xml" \

-d@data/security/import-wallet.xml \
http://$host:8002/manage/v2/security

Where import-wallet.xml is:

<import-wallet-operation xmlns="http://marklogic.com/manage/security">
 <operation>import-wallet</operation>
 <filename>/tmp/mywallet.txt</filename>
 <password>mypassword</password>
</import-wallet-operation>

Note: MarkLogic will only import keys generated by the embedded MarkLogic KMS.
Page 238—Security Guide

MarkLogic Server Encryption at Rest
13.8 Key Management
Encryption key management for the embedded KMS (the PKCS #11 secured wallet) is handled
automatically by MarkLogic. Keys are never purged from the wallet, which is encrypted by a
MarkLogic-generated key activated by a passphrase. The administrator’s password is used as the
initial passphrase.

Note: By default the keystore passphrase is set to the admin password. We strongly
recommend that you set a new, different passphrase before turning on encryption.
Using a separate passphrase for admin and the keystore helps support the strong
security principle called “Separation of Duties”.

This passphrase can be changed using either the XQuery (xdmp:keystore-set-kms-passphrase) or
JavaScript (xdmp.keystoreSetKmsPassphrase) built-ins. As part of key management, you may
want to export, import, or rotate encryption keys. MarkLogic provides built-in functions for
exporting and importing encryption keys, and manually rotating encryption keys. If you require
additional key management functionality, you may want to consider an external key management
system. See “Configuring an External Keystore” on page 243 for more information.

If you believe that an encryption key has been compromised, you should force a merge or start a
re-index of your data to change/update the encryption keys. See “Key Rotation” on page 239 for
more about updating encryption keys.

This section includes the following topics:

• Key Rotation

• Export and Import Encryption Keys

• Key Deletion and Key Revocation

13.8.1 Key Rotation
For the internal wallet, key encryption keys (KEK) can be manually rotated. Keys can be
manually rotated at regular intervals or if an encryption key has been compromised. This type of
key rotation can be triggered on individual encryption categories (configuration, data, logs) using
MarkLogic built-in functions.
MarkLogic 9—May, 2017 Security Guide—Page 239

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest
There are two steps to key rotation. First, rotating the KEK keys (using AES 256 symmetric
encryption) used to envelope the object file encryption keys, and second, re-encrypting the object
file encryption keys (also using AES 256 symmetric encryption).

After calling the built-in function to rotate encryption keys, all new data will be written to disk
using the new key encryption key. Old data will be migrated as it is re-written to disk. If you wish
to force re-encryption using the new key, you can either force a merge or re-index the forest.

At the cluster level, you can manually rotate the data keys, configuration keys, and the logs keys
(CDKEK, CCKEK, CLKEK) using these APIs:

• XQuery: admin:cluster-rotate-config-encryption-key-id,
admin:cluster-rotate-data-encryption-key-id,
admin:cluster-rotate-logs-encryption-key-id

• JavaScript: admin.clusterRotateConfigEncryptionKeyId,
admin.clusterRotateDataEncryptionKeyId, admin.clusterRotateLogsEncryptionKeyId

Note: These key rotation functions are only available for the MarkLogic internal KMS
(the PKCS #11 secured wallet) and not for any keys that are managed by an
external KMS.

Note: When you are using an external KMS, MarkLogic does not have access to the
envelope key, it only has access to the key ID, and asks for the KMS to open the
envelope.
Page 240—Security Guide

MarkLogic Server Encryption at Rest
13.8.1.1 Manual Key Rotation
The intermediate fast rotation keys enable immediate envelope key rotation with a minimum of
I/O. File level keys can be rotated at any time by forcing a merge. Log rotation and configuration
file updates use new keys. Old logs, backups, and configuration files are not re-encrypted.

The internal KMS (the PKCS #11 secured wallet) follows these steps for fast key rotation:

1. User sends rotation key command to MarkLogic (for example,
admin:cluster-rotate-data-encryption-key-id (XQuery) or
admin.clusterRotateDataEncryptionKeyId (SJS)).

2. MarkLogic requests a new data encryption key (CDKEK, CCKEK, CLKEK - the
cluster-level encryption keys) from the internal KMS.

3. Only the fast rotation keys are re-encrypted with the new data encryption keys (CDKEK,
CCKEK, CLKEK).

An external KMS, follows these steps for fast key rotation:

1. The external KMS creates new KEK key (CDKEK, CCKEK, CLKEK - the cluster-level
encryption keys).

2. User updates the UUIDs in MarkLogic. See “Set Up an External KMS with MarkLogic
Encryption” on page 255 for UUID details.

3. MarkLogic sends sends a Fast Rotation Key (FRKEK) to the KMS.

4. The external KMS sends new enveloped key back to MarkLogic.

5. The enveloped key is saved to disk, per file.

Note: Expired keys can be used for decryption, but not encryption. Expired keys may be
needed for decrypting backups.

13.8.2 Export and Import Encryption Keys
The ability to export and import key encryption keys (KEK) from the PKCS #11 secured wallet
(the embedded KMS) is useful when you want to clone a cluster. Exporting a key encryption key
(KEK) is restricted to cluster-level keys (CDKEK, CCKEK, CLKEK) and requires a passphrase
and a filepath. The data will be exported (encrypted with the passphrase) into a file at the location
specified by the filepath.
MarkLogic 9—May, 2017 Security Guide—Page 241

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest
To export a keystore from the embedded KMS:

To import a keystore into the embedded KMS:

Key encryption keys can only be imported from MarkLogic exported files. Imported keys can
only be used for decryption. The import requires the passphrase that was provided at the time of
the export.

Note: If a duplicate key ID is supplied during the import, the imported key ID will be
ignored. Duplicate key IDs can be caused by importing the keystore twice.

Language Example

XQuery xquery version "1.0-ml";
import module namespace admin =
"http://marklogic.com/xdmp/admin"

at "/MarkLogic/admin.xqy";

xdmp:keystore-export("Unique passphrase",
"/backups/MarkLogic.wallet.bak")
=>
true

Server-Side
JavaScript

const admin = require('/MarkLogic/admin');

xdmp.keystoreExport(
'Unique passphrase', '/backups/MarkLogic.wallet.bak');

// Returns true

Language Example

XQuery xquery version "1.0-ml";
import module namespace admin =
"http://marklogic.com/xdmp/admin"

at "/MarkLogic/admin.xqy";

xdmp:keystore-import("Unique passphrase",
"/backups/MarkLogic.wallet.bak")
=> true

Server-Side
JavaScript

const admin = require('/MarkLogic/admin');

xdmp.keystoreImport(
'Unique passphrase', '/backups/MarkLogic.wallet.bak');

// Returns true
Page 242—Security Guide

MarkLogic Server Encryption at Rest
13.8.3 Key Deletion and Key Revocation
For these functions you will need to use a external keystore (KMS).

13.9 Configuring an External Keystore
An external key management system (KMS) or keystore offers additional security for your
encryption keys, along with key management capabilities like automatic key rotation, key
revocation, and key deletion. If you want the ability to perform these tasks, you will need an
external KMS. MarkLogic Encryption at Rest supports KMIP 1.2 compliant KMS servers and
Amazon’s KMS.

Note: The use of an external Key Management System (KMS) or keystore with
encryption at rest, requires an Advanced Security License, in addition to the
regular MarkLogic license.

When using an external KMS, usually there is a security administrator role separate from the
MarkLogic administrator. The security administrator would be the role setting up and configuring
the external keystore. The MarkLogic administrator can also perform this task, but for greater
security it is recommended that the separate security administrator configure the KMS.

Note: Having a separate security administrator follows an important security principle
called “Separation of Duties” and is recommended by security experts.

This section covers setting up MarkLogic encryption for use with an external key management
system from the MarkLogic Admin UI on the MarkLogic host. You don’t need to have
MarkLogic encryption turned on for your cluster while you are setting up and configuring the
external key management system.

Note: If you plan to use an external key management system, we recommend that you
configure the external keystore first, and then turn on encryption in the MarkLogic
server.

The installation process for the external keystore will vary depending on the type of external
KMS you plan to use. A security administrator must configure the external keystore using the
administration set up tools that come with the external KMS. This section provides a high-level
overview of the process from the MarkLogic Server point of view.

• Types of KMS Deployments

• Using MarkLogic Encryption with AWS Key Management System

• Using MarkLogic Encryption with Microsoft Azure Key Vault

• Set Up an External KMS with MarkLogic Encryption

• Configure the External KMS

• Set up MarkLogic Encryption
MarkLogic 9—May, 2017 Security Guide—Page 243

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest
• Transitioning from PKCS #11 Secured Wallet to an External KMS

• Transitioning From an External KMS to PKCS #11 Secured Wallet

• Multiple External KMSs for High Availability and Failover

13.9.1 Types of KMS Deployments
There are a variety of key management systems.

1. A virtual KMS instance running in a VM (virtual machine) environment, or in a private or
public cloud

2. A physical appliance running a KMS server

3. A dedicated FIPS 140-2 Level 3 appliance

4. A dedicated hardened FIPS 140-2 Level 4 appliance

These systems are listed by increasing levels of security.

13.9.2 Using MarkLogic Encryption with AWS Key Management System
Amazon Web Services (AWS) provides a key management system (KMS) that you can use with
MarkLogic encryption at rest to encrypt your data. The AWS KMS is supported for customers
running their cluster on AWS. You must set up your AWS KMS encryption keys and configure
the encryption key IDs in your MarkLogic server before using the AWS KMS.

To set up the AWS key management system, first set up your AWS instance. See Getting Started

with MarkLogic Server on AWS and Overview of MarkLogic Server on AWS in the MarkLogic Server on
Amazon Web Services (AWS) Guide for details.

The AWS KMS keys must be configured in MarkLogic before using encryption.

You cannot use the master key and roles from the MarkLogic KMS to access the AWS KMS, so
you will need to have a Key Administrator specify access to the AWS KMS keys on a per-key
basis tied to the user’s IAM role. The Key Administrator can specify access using the Encryption
Keys section of the IAM AWS management console. See the next section (AWS KMS on EC2) for
details and the AWS documentation regarding key policies for more information.

Warning If an encryption key stored in the AWS KMS is disabled for any reason, it cannot
be used for encryption or decryption, and MarkLogic loses access to any data
encrypted with the disabled key. Deleting a key will lead to permanent data loss as
deleted keys can never be recovered. Any keys created in the AWS KMS are
cluster management keys and should never be deleted. See
https://docs.aws.amazon.com/kms/latest/developerguide/enabling-keys.html for more
information.
Page 244—Security Guide

https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html#key-policy-default-allow-users
https://docs.aws.amazon.com/kms/latest/developerguide/enabling-keys.html

MarkLogic Server Encryption at Rest
13.9.2.1 AWS KMS on EC2
If your cluster is running on AWS, the IAM role associated with the EC2 instance running
MarkLogic is used to access the AWS KMS on behalf of MarkLogic. The hostname and port
number will be automatically entered in the correct fields in the Keystore tab of the Admin UI.

The key policy is tied to the the user’s IAM role. To set up your IAM role and privileges, see
Creating an IAM Role in the MarkLogic Server on Amazon Web Services (AWS) Guide.

Once you have set up your MarkLogic Server (and IAM roles if necessary), follow these steps:

1. In AWS, navigate to the AWS IAM Management Console.

2. Click Encryption keys at the bottom of the left navigation bar.

3. In the next screen, pick a region (in the same region as your MarkLogic instance).

4. Create the key following the steps indicated. In the next step, be sure to give each key you
create a descriptive name so that you can tell them apart.
MarkLogic 9—May, 2017 Security Guide—Page 245

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest
5. In the last step of this process you can preview the key policy you just created. Be sure to
authorize your MarkLogic instance to use the key.

6. Click Previous to go back and make any changes, if necessary. Click Finish when you are
done checking the Key policy you just created.

7. From the AWS IAM Management Console, click Encryption keys in the left navigation
bar again and open the list of encryption keys. Be sure to select the same region from the
drop down that you chose when creating the key to see the correct list.

8. Find the key that you just created. Select and copy the key ID from the list. Repeat the
process for the other keys.

Note: To separate the encryption keys for data, configuration, and log files, we
recommend that you create three separate encryption keys. Give each type of key a
descriptive name (for example ML_data_key) for the type of content it will be
used to encrypt.
Page 246—Security Guide

MarkLogic Server Encryption at Rest
9. Open the MarkLogic Admin UI and click on the Keystore tab. Paste the key ID you copied
from AWS into the encryption key id fields in the Edit Keystore Configuration page.

10. Enter the following information to identify the external KMS and the required encryption
keys. Add the appropriate encryption key ID to each field.

Note: We recommend that you create three separate encryption key IDs (one for data,
one for configuration, and one for logs). Give each a descriptive name in order to
help distinguish between them.

Setting Description

host name The host name of the external Key Management Server (KMS).
MarkLogic 9—May, 2017 Security Guide—Page 247

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest
For more about IAM roles and privileges, see Creating an IAM Role in the MarkLogic Server on
Amazon Web Services (AWS) Guide. To learn more about using MarkLogic with Amazon Web
Services, see the MarkLogic Server on Amazon Web Services (AWS) Guide.

Enhanced AWS S3 Encryption Support

Starting with MarkLogic 9.0-8, Amazon AWS S3 support with encryption is built into the
MarkLogic server as an available file system or a storage location for backup/restore. When
MarkLogic server writes or updates objects on AWS S3, it can use the AWS KMS server side
encryption to protect data. You can choose the encryption method by GUI or API.

To use the AWS KMS key to encrypt data that will be stored on AWS S3, specify which key to be
used to encrypt. You can do this using the Admin UI or by using the
admin:group-set-s3-server-side-encryption-kms-key API. To find the S3 encryption key (if it
has already been set) use the admin:group-set-s3-server-side-encryption-kms-key API.

To set the AWS KMS in the MarkLogic Admin UI, navigate to Groups Configuration page. Scroll
down to the S3 protocol configuration field. Select https as the s3 protocol and aws:kms as the s3
server side encryption. Paste the s3 server side encryption kms key into the field.

Configure the external KMS keys as shown in the previous section.

port The external KMS client socket port number.

external data encryption
key id

The UUID that identifies the encryption key from the external
KMS that is to be used to encrypt data files.

external config
encryption key id

The UUID that identifies the encryption key from the external
KMS that is to be used to encrypt config files.

external logs encryption
key id

The UUID that identifies the encryption key from the external
KMS that is to be used to encrypt log files.

Setting Description
Page 248—Security Guide

MarkLogic Server Encryption at Rest
Encryption on EBS Volumes

Elastic Block Storage Volume is a durable, block-level storage device that you can attach to a
single EC2 instance. Encryption on EBS offers a simple encryption solution for your EBS
volumes without the need to build, maintain, and secure your own key management
infrastructure. AWS EBS volumes support encryption with a custom key.

Starting in MarkLogic 9.0-8, this capability is supported by MarkLogic for AWS. Users can turn
on encryption on EBS volumes on their cluster and also optionally specify a custom key for
volumes. This can be done using MarkLogic CloudFormation templates and Managed Cluster
Feature. See The Managed Cluster Feature and Deploying MarkLogic on EC2 Using CloudFormation in
the MarkLogic Server on Amazon Web Services (AWS) Guide.

If a cluster is created by the MarkLogic CloudFormation template, a same encryption key will be
used to encrypt all EBS volumes in the cluster. If encryption option is specified, all volumes
attached to an instance will apply the same setting. EBS Encryption is only supported by some
EC2 instance types, mostly the new generation. The key that is used to encrypt the volume must
be in the same region.

Note: KMS keys are never transmitted outside of the AWS regions in which they were
created.

13.9.3 Using MarkLogic Encryption with Microsoft Azure Key Vault
Microsoft Azure Key Vault can encrypt your data in MarkLogic. Azure Key Vault is supported
for customers running their cluster on Microsoft Azure. You must set up your Azure Key Vault,
create the encryption keys in Key Vault, and configure the encryption key IDs in your MarkLogic
server before using the keys to encrypt data in MarkLogic.

To set up the Microsoft Azure Key Vault, first set up your Azure instance. See Getting Started with

MarkLogic Server on Azure and Overview of MarkLogic Server on Azure for details. Keys are governed
by access policies created by the Key Administrator. See the next section (Microsoft Azure Key

Vault) for details and the Azure documentation regarding key policies for more information.

Warning If an encryption key stored in the Azure Key Vault is disabled, it cannot be used
for encryption or decryption, and MarkLogic loses access to any data encrypted
with the disabled key. Deleting a key will lead to permanent data loss as deleted
keys can never be recovered.

13.9.3.1 Microsoft Azure Key Vault
To set up Microsoft Azure Key Vault, you will create a virtual machine (VM) on Azure. Then
create a Key Vault, set up your access policy, and create your encryption keys in the Key Vault.

Create a Virtual Machine in Azure

On the Azure Home page, click virtual machines and click Add to create a new VM. Enter
information into the fields for the basic setup.
MarkLogic 9—May, 2017 Security Guide—Page 249

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest
• Select or create a Resource group.

• Provide a name for the new virtual machine.

• Select a region to host the virtual machine (West US 2).

• Select an image type (Redhat).

• Choose the Authentication type: password with username/password or SSH public key.
Page 250—Security Guide

MarkLogic Server Encryption at Rest
Under the Networking tab:

• Select basic in the NIC network security group.

• Select inbound ports (80, 443, 22).
MarkLogic 9—May, 2017 Security Guide—Page 251

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest
Under the Management tab, set Identity to On.

On the Review tab, enter your prefered email address and phone number. Review your
information and click Create. This process may take a bit of time. Once the virtual machine has
been created, you can configure the Key Vault.

Configure Azure Key Vault

To create an Azure Key Vault, navigate to Key Vaults under Home (use Search to find Key
Vaults).
Page 252—Security Guide

MarkLogic Server Encryption at Rest
Create a new Key Vault with name/resource group/location and a new access policy with keys
permissions (decrypt and encrypt) and principle (your newly created VM).

Under Settings navigate to Keys, and generate new keys for data/config/logs encryption. Use
these keys IDs to configure MarkLogic encryption.

Install MarkLogic

Install MarkLogic on the Azure virtual machine. See Set up a Simple Deployment in the MarkLogic
Server on Microsoft® Azure® Guide for details. Once MarkLogic is installed on Azure, start
MarkLogic and navigate to the Admin UI (port 8001).

Note: You may need to stop the firewall from the command line (sudo service
firewalld stop).
MarkLogic 9—May, 2017 Security Guide—Page 253

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest
Add Encryption Configuration Settings to MarkLogic

In the MarkLogic Admin UI, click on Clusters in the left navigation bar, and then click the
Keystore tab. Select external as the kms type. Click the External KMS tab.

Enter the following information to identify the Azure Key Vault and the required encryption key
identifiers. Add the appropriate encryption key ID to each field.

• Set hostname using DNS Name from the Azure Key Vault (without the beginning
“https://” and the ending “/”, and ending with “vault.azure.net”).

• Set port 443

• Copy the encryption key IDs for the Azure Key Vault into the external data encryption
key field, the external config encryption key field, and the external logs encryption key
field.

Click OK to configure encryption.
Page 254—Security Guide

MarkLogic Server Encryption at Rest
Note: We recommend that you create three separate encryption key IDs (one for data,
one for configuration, and one for logs). Give each a descriptive name in order to
help distinguish between them.

For more about roles and privileges, see the MarkLogic Server on Microsoft® Azure® Guide.

13.9.4 Set Up an External KMS with MarkLogic Encryption
To configure the external key management system using the MarkLogic Admin UI on the
MarkLogic host, you will need the following information for your external KMS:

• Host name - the hostname of the key management system

• Port number - the port number used to communicate with KMS

• Data encryption key ID (UUID generated by external KMS)

• Configuration encryption key ID (UUID generated by external KMS)

• Logs encryption key ID (UUID generated by external KMS)

The TLS certificates, used to secure the communication with the KMS, must be stored locally on
each host in the MarkLogic data directory (/var/opt/MarkLogic). By default, the files are
expected to be located in the MarkLogic data directory and must have the following names:

• kmip-CA.pem - The root/certificate of the CA that signed the certificate request for
MarkLogic.

• kmip-cert.pem - The certificate that was issued to MarkLogic and one that was signed by
the CA.

• kmip-key.pem - The private key that was generated for MarkLogic and is associated with
the Certificate issued to MarkLogic (kmip-cert). (Optional for some KMS servers.)

Setting Description

host name The host name of the external Key Vault.

port The external Key Vault client socket port number.

external data encryption
key id

The identifier of the encryption key from the external KMS that
is to be used to encrypt data files.

external config
encryption key id

The identifier of the encryption key from the external KMS that
is to be used to encrypt config files.

external logs encryption
key id

The identifier ofthe encryption key from the external KMS that is
to be used to encrypt log files.
MarkLogic 9—May, 2017 Security Guide—Page 255

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest
These certificates are the Certificate Authority (CA) for the root of the certificate chain for the
kmip-cert.pem. A certificate could be a self-signed root used by an enterprise or an external CA.
Copy these files into the MarkLogic data directory (/var/opt/MarkLogic). The location and name
of these files can be changed by calling the admin functions. See “Admin APIs for Encryption at
Rest” on page 270 for details.

Note: These settings are cluster wide, so each individual host must have a local copy at
the location specified.
Page 256—Security Guide

MarkLogic Server Encryption at Rest
13.9.5 Configure the External KMS
In most cases, an external KMS is configured by security administrator, a separate role from the
MarkLogic admin role. However, in some cases the security administrator may also be the
MarkLogic admin role.

If you don’t already have the external KMS configured and running, set up the external KMS
using the appliance’s interface before turning on MarkLogic encryption. The steps in the process
for setting up the external KMS will depend on the type of KMIP-compliant external KMS you
are using.

Make sure that:

• The external key management system is set up, running, and provisioned first to use
KMIP 1.2, before you configure MarkLogic encryption.

Note: Only KMIP v1.2 is supported. Using KMIP v1.1 will result in an error stating that
the server cannot validate the KMS KMIP protocol.

• To secure communications between the KMS and MarkLogic Server obtain the required
certificates; KMIP TLS certificate, CA of the KMS, private key for the client (optional for
some KMS servers).

The security administrator can enable encryption for user data, configuration files, and/or logs,
either per cluster or per database. You must use the administration tools that come with the
external KMS to set up the external keystore.

Note: The external key management system (KMS) must be available during the
MarkLogic startup process. Access to the external KMS must be granted to all
nodes in the cluster.

13.9.6 Set up MarkLogic Encryption
Before you set up encryption at rest, be sure that your cluster has upgraded to MarkLogic 9. If the
cluster has not been upgraded, the encryption feature will not be available.

1. Set up your external KMS, if not already set up. See “Set Up an External KMS with
MarkLogic Encryption” on page 255 for details.

2. Get the generated encryption key IDs from the external KMS (for data, config, and logs as
needed). If you are using data encryption, configuration file encryption, and log
encryption, and you want different encryption keys for each, you will need three
encryption key IDs (UUIDs).

3. Click Clusters in the left navigation tree, then click the name of the cluster to configure.

4. Click the Keystore tab, then click the external radio button next to Key Management
System (KMS). Additional fields for setting up the external KMS are displayed.
MarkLogic 9—May, 2017 Security Guide—Page 257

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest
5. Provide the host name and port number for your external KMS in the appropriate fields.

6. Add the encryption key IDs (generated by the external KMS) for the types of encryption
you are configuring (data, configuration, and/or logs), to the appropriate fields on the Edit
Keystore Configuration page in the Admin UI.

7. Click ok.

Note: Adding the encryption information will require a restart of all of the hosts in your
cluster.

8. Turn on the types of encryption you wish from Admin UI (data encryption, configuration
file encryption, and/or log file encryption).
Page 258—Security Guide

MarkLogic Server Encryption at Rest
When using an external KMS, key encryption keys (KEK) might be rotated according to the
policy set in the KMS. Each time that the keys are rotated in an external KMS, you will have to
update the new KEK IDs (UUIDs - i.e. key encryption keys - KEKs) to MarkLogic. Data will then
start to be encrypted with new KEK ID, as described in “Key Rotation” on page 239.

Encryption at rest may be configured using REST, XQuery, or JavaScript APIs. See “APIs for
Encryption at Rest” on page 269 for details.

13.9.7 Transitioning from PKCS #11 Secured Wallet to an External KMS
Transitioning from the internal PKCS #11 secured wallet to an external KMS will re-encrypt of
all configuration files and forest labels. Re-encryption will happen the next time a file is written to
disk. If a you want to force re-encryption of all data, start a re-index of the database.

Customer-provided cluster KEK IDs will be validated against the KMS for
encryption/decryption. If any KEK ID validation fails or MarkLogic cannot connect to the KMS,
there will be no changes to the configuration files.

Even after you have migrated to an external KMS, the PKCS #11 secured wallet will retain and
manage any encryption keys that were generated before the migration to the external keystore.

To migrate from the PKCS #11 secured wallet to an external keystore (KMS) do the following:

1. Important: Before you start the transition to an external KMS, backup the wallet that
contains all of the internal keys.

2. Confirm that the external KMS is running and available. See “Set Up an External KMS
with MarkLogic Encryption” on page 255 .

3. Enable the desired encryption options from the MarkLogic Admin UI. MarkLogic
encryption will now use the encryption keys supplied by the external KMS.

13.9.8 Transitioning From an External KMS to PKCS #11 Secured Wallet
If you are using MarkLogic 9.0-6 or later, and for some reason you want to stop encrypting your
data with your external KMS, you can switch encryption to use the internal PKCS #11 wallet by
setting the KMS type configuration back to the internal KMS.

The following procedure is recommended for a user to perform in order to switch from external
KMS to internal KMS and stop access to the external KMS:

1. Stop any updates to the target databases.
MarkLogic 9—May, 2017 Security Guide—Page 259

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest
2. Switch the KMS type from external to internal using the Admin UI or APIs.

To switch encryption from the external KMS to the internal PKCS #11 secured wallet
(KMS) in the Admin UI, set the kms-type to internal on the Edit Keystore Configuration
page.

Or you can use admin:cluster-set-keystore-kms-type (XQuery) or
admin.clusterSetKeystoreKmsType (SJS) to change the KMS for encryption.

3. Perform a full backup, using a passphrase , of all the affected databases.

4. Perform a full restore of all the affected databases using the above-specified passphrase.

After these steps, it should be safe for the system to lose access to the originally configured
external KMS.

Warning Moving from an external KMS to the internal KMS will downgrade your overall
security, as the external KMS is more secure than the internal PKCS #11 secured
wallet.

13.9.9 Multiple External KMSs for High Availability and Failover
MarkLogic encryption at rest enables you to specify multiple hosts, multiple ports, and multiple
KMIP credentials to connect to more than one KMIP server. The information to connect to these
servers is specified in the fields on the external Key Management Service (KMS) section of the
Edit Keystore Configuration page.

The information must be validated at configuration time. For each host specified, there must exist
a PEM-encoded Cerficate Authority file and a PEM-encoded KMIP certificate file accessible to
each node of the MarkLogic server. The PEM files are checked using the user-specified path or
default location for the first host. For subsequent hosts, the file names are expected to be
accessible through the original file name prepended by the host’s index in the configuration
sequence.
Page 260—Security Guide

MarkLogic Server Encryption at Rest
For example, if the configured host names are “kms1.marklogic.com” and
“kms2.marklogic.com”. The configured port is 9010. The specified CA file is at
“path/kmip-CA.pem”. The specified certificate file is at “/path/kmip-cert.pem”. The
configuration must be validated through the following:

• File /path/kmip-CA.pem, /path/1-CA.pem, /path/kmip-cert.pem, and /path/1-cert.pem all
exist.

• The user-specified encryption keys can be validated through connecting to
kms1.marklogic.com at port 9010.

• The user-specified encryption keys can be validated through connecting to
kms2.marklogic.com at port 9010.

If the first specified KMIP host stops responding, MarkLogic will try to connect to each of the
other hosts on the user-specified list in turn until it successfully connects.

If MarkLogic is unable to connect with a valid KMIP server after multiple attempts, it will report
exception.

13.10 Administration and Maintenance
This section covers additional tasks you may want to perform once you have configured
encryption.

• Backup and Restore

• Tool to View Encrypted Log Files Outside of the Server
MarkLogic 9—May, 2017 Security Guide—Page 261

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest
• Disaster Recovery/Shared Disk Failover

13.10.1 Backup and Restore
Individual backup files are encrypted with the cluster data encryption key (CDKEK). Backups are
forest driven, so data from an encrypted forest will also be encrypted in backups. Configuration
files included in a backup will be encrypted if the cluster is enabled for configuration file
encryption. This encryption works with full backups, incremental backups, and journal archiving.

Note: If any forest in the backup has encryption enabled, then the entire backup will be
encrypted.

The encryption keys residing in the PKCS #11 secured wallet (the embedded KMS) will be
exported as part of a full backup by default. This is true whether encryption is configured to use
the internal KMS or an external KMS. Full backups will include this exported copy of the
keystore, encrypted using the embedded KMS passphrase, unless you specify otherwise. See .

Warning If you cannot access your PKCS #11 secured wallet (or external KMS if you are
using one), or lose your encryption keys, you will not be able to decrypt any of
your encrypted data (including backups). There is no workaround to recover the
encrypted data. We recommend that you backup your encryption keys in a secure
location.

The built-in function admin:cluster-set-keystore-passphrase (XQuery) or
admin.clusterSetKeystorePassphrase (SJS) can be used to change the KMS passphrase. When
you first set up encryption, we strongly recommend that you change the KMS passphrase to
something other than the admin passphrase. This is to ensure that you utilize the Separation of
Duties security principle as much as possible.

Note: By default the keystore passphrase is automatically set to the admin password. We
strongly recommend that you set a new, different passphrase before turning on
encryption.

During an internal keystore backup/restore, data is added to the embedded PKCS #11 secured
wallet; no keys are deleted. The encrypted file containing the keys is named kms.exp. The
exported keystore is not imported during a restore from a backup. If you need to restore the keys,
use the xdmp:keystore-import (XQuery) or xdmp.keystoreImport (SJS) function. The keystore
passphrase will be required to decrypt the exported keystore file when restoring backups on
another MarkLogic instance.

Note: To change the keystore passphrase, the current password or passphrase is required.

To restore an encrypted backup to the same cluster:

1. Import the backup as usual. See Backing Up and Restoring a Database in the Administrator’s
Guide for details.
Page 262—Security Guide

MarkLogic Server Encryption at Rest
To restore an encrypted backup to a different cluster:

1. Use the xdmp:keystore-import (XQuery) or xdmp.keystoreImport (SJS) function to
import the keystore. The function requires the keystore passphrase to decrypt the keystore.

• XQuery: xdmp:keystore-import(
"strong passphrase", "/backups/MarkLogic.wallet.bak")

• JavaScript: xdmp.keystoreImport(
'strong passphrase', '/backups/MarkLogic.wallet.bak');

The import process will reject duplicate keys and log a warning that includes the ID of the
rejected keys. Imported keys can only be used for decryption.

2. Import the backup as usual. See Backing Up and Restoring a Database in the Administrator’s
Guide for details.

Note: As long as the current database being restored is encrypted, the restored database
will also be encrypted.

Using this process you can move your encrypted backups from one system to another and restore
them, as long as you have the passphrase and import the keystore into the new system before
restoring the backup. See Backup and Restore Overview in the Administrator’s Guide for more
information about backup and restore procedures.

Warning If you lose the cluster configuration information, you must first manually restore
the keystore before an encrypted backup can be restored.

To export your keystore, use the xdmp:keystore-export (XQuery) or xdmp.keystoreExport (SJS)
function.

• XQuery: xdmp:keystore-export(
"strong passphrase", "/backups/MarkLogic.wallet.bak")

• JavaScript: xdmp.keystoreExport(
'strong passphrase', '/backups/MarkLogic.wallet.bak');

This function exports all of the encryption keys stored in the MarkLogic embedded KMS (the
PKCS #11 secured wallet) and stores them at the location provided to the function.
MarkLogic 9—May, 2017 Security Guide—Page 263

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest
13.10.1.1Excluding the Embedded KMS from a Backup
By default the MarkLogic embedded KMS (the PKCS #11 secured wallet) is automatically
included in a backup. You can exclude the embedded wallet using the options in
admin:cluster-set-keystore-backup-option (XQuery) or
admin.clusterSetKeystoreBackupOption (SJS). The include or exclude options enable you to
choose whether to have the embedded KMS included as part of backups.

Setting the option to exclude prevents the embedded KMS from being included in the backup.

Warning If you set the backup option to exclude and turn off the automatic inclusion of the
keystore, you are responsible for saving keystore (the embedded KMS) to a secure
location. If you cannot access your PKCS #11 secured wallet (or external KMS if
you are using one), or lose your encryption keys, you will not be able to decrypt
any of your encrypted data (including backups).

13.10.1.2Backups Using a Secondary Key
MarkLogic encryption at rest includes the ability to use a secondary backup key encryption key
(BDKEK) for encrypting backups when encryption is configured with an external KMS. Using
this BDKEK you can restore your backup to a new system, one that might not have access to the
CDKEK and/or CCKEK.

For example, with this XQuery statement you can backup your Documents database using the
BDKEK:

xdmp:database-backup(xdmp:database-forests(xdmp:database("Documents"))
"/backups/Data", fn:true(),
"/backups/JournalArchiving", 15,"bf44aab-3f7a-41d2-a6a5-fc41a0e5e0cf")

Or you could use server-side JavaScript:

Language Example

XQuery xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin"

at "/MarkLogic/admin.xqy";

let $option := "exclude"
let $config := admin:get-configuration()
return
 admin:cluster-set-keystore-backup-option($config,$option)

Server-Side
JavaScript

const admin = require('/MarkLogic/admin');

const option = 'exclude';
const config = admin.getConfiguration();

admin.clusterSetKeystoreBackupOption(config, option);
Page 264—Security Guide

MarkLogic Server Encryption at Rest
xdmp.databaseBackup(xdmp.databaseForests(xdmp.database("Documents")),"
/backups/Data", fn:true(),
"/backups/JournalArchiving",
15,"bf44aab-3f7a-41d2-a6a5-fc41a0e5e0cf");

In these examples “bf44aab-3f7a-41d2-a6a5-fc41a0e5e0cf” is the secondary backup key
(BDKEK).

The built-ins xdmp:database-backup (XQuery) or xdmp.databaseBackup (SJS) and
xdmp:database-incremental-backup (XQuery) or xdmp.databaseIncrementalBackup (SJS) have an
optional argument to take advantage of the BDKEK from the external KMS. The REST API can
also take advantage of a secondary backup key as part of the backup operations.

13.10.1.3Backups Using a Passphrase
MarkLogic also provides the ability to encrypt backups with a backup passphrase. The
xdmp:database-backup (XQuery) or xdmp.databaseBackup (SJS) and
xdmp:database-incremental-backup (XQuery) or xdmp.databaseIncrementalBackup (SJS) APIs
take an optional argument for the passphrase ($backup-passphrase).

Similarly, the built-in xdmp:database-restore (XQuery) or xdmp.databaseRestore (SJS) for
restoring a database accepts an optional parameter for the backup passphrase
($backup-passphrase). Using a passphrase, a user can restore into any system without requiring
import of the original keys or connection to an external KMS.

13.10.2 Tool to View Encrypted Log Files Outside of the Server
MarkLogic encryption at rest includes the mlecat command line tool, which can be used to view
encrypted log files outside of the server. The mlecat tool can be used successfully in either of
these conditions:

• If the mlecat tool is given access to the MarkLogic data directory and the .pem files.

• If the log files are encrypted with a user-specified logs passphrase and the same logs
passphrase is passed to mlecat with -p option.

Note: The mlecat tool should be run by a user with sufficient OS privileges to access the
PKCS#11 wallet (located by default at /var/opt/MarkLogic). It is suggested that
the user be a member of group running MarkLogic (by default daemon).
MarkLogic 9—May, 2017 Security Guide—Page 265

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest
If you want to decrypt log files without having access to your KMS, you must set a
logs-encryption-passphrase. To set this passphrase, use the
admin:cluster-set-keystore-logs-encryption-passphrase (XQuery) or
admin.clusterSetKeystoreLogsEncryptionPassphrase (SJS) function.
For example:

Note: Log file encryption must be enabled for this passphrase to be used.

For every OS you must add MARKLOGIC_INSTALL_DIR and MARKLOGIC_INSTALL_DIR/bin to your
PATH. For example,

PATH=$MARKLOGIC_INSTALL_DIR:$MARKLOGIC_INSTALL_DIR/bin:$PATH

To see the command line options for the mlecat tool, invoke mlecat (or mlecat.bat) with no
arguments.

mlecat
==>
mlecat [option] filepath(s)
option:

-i iDIR, iDir is MarkLogic's Install directory, alternatively the
environment variable
MARKLOGIC_INSTALL_DIR can be used to set this value.

-d dDIR, dDIR is MarkLogic's Data directory, alternatively the
environmental variable
MARKLOGIC_DATA_DIR can be used to set this value.

Language Example

XQuery xquery version "1.0-ml";
import module namespace admin =
"http://marklogic.com/xdmp/admin"

at "/MarkLogic/admin.xqy";

let $config := admin:get-configuration()
let $passphrase := "dazzling zebras"
let $config :=
admin:cluster-set-keystore-logs-encryption-passphrase

($config,$passphrase)
return admin:save-configuration($config)

Server-Side
JavaScript

const admin = require('/MarkLogic/admin');

const config = admin.getConfiguration();
const passphrase = 'dazzling zebras';
const cfg =

admin.clusterSetKeystoreLogsEncryptionPassphrase(
config, passphrase);

admin.saveConfiguration(cfg);
Page 266—Security Guide

MarkLogic Server Encryption at Rest
-p PASS, PASS is the logs encryption passphrase (if you are using
one);

alternatively the environmental variable MARKLOGIC_KMS_PASSPHRASE
can be used to provide this value.

[-f] filepath(s), one or more file paths (-f can be specified before
each file for explicit file list)

For example:

mlecat -p admin /var/opt/MarkLogic/Logs/ErrorLog.txt

In order to run this tool the environment must be set to include MarkLogic's libraries.

• On Linux, LD_LIBRARY_PATH must include $MARKLOGIC_INSTALL_DIR/lib

• On Windows, PATH must include %MARKLOGIC_INSTALL_DIR%

For example, to run on Linux, you could could set the path like this:

MARKLOGIC_DATA_DIR=/var/opt/MarkLogic

MARKLOGIC_INSTALL_DIR=/opt/MarkLogic

LD_LIBRARY_PATH=$MARKLOGIC_INSTALL_DIR/lib:$LD_LIBRARY_PATH

PATH=$PATH:$MARKLOGIC_INSTALL_DIR/bin

export MARKLOGIC_INSTALL_DIR MARKLOGIC_DATA_DIR PATH LD_LIBRARY_PATH

Defaults for the MarkLogic data and install directories are shown in the following

Note: Windows users will use mlecat.bat, instead instead of mlecat.

For more about setting environment variables on various platforms, see the information about
installation and data directories as part of Installing MarkLogic in the Installation Guide.

Platform Installation Directory
Default Data Directory

(for configuration and log files)

Windows c:\Program Files\MarkLogic c:\Program Files\MarkLogic\Data

Red Hat
Linux

/opt/MarkLogic /var/opt/MarkLogic

Mac OS X ~/Library/MarkLogic ~/Library/Application Support/MarkLogic/Data
MarkLogic 9—May, 2017 Security Guide—Page 267

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest
13.10.3 Disaster Recovery/Shared Disk Failover
Unless you have suffered a complete loss of your host, disaster recovery should work just fine
with encryption at rest. See High Availability and Disaster Recovery in the Concepts Guide for
information about setting up shared disk failover and steps for disaster recovery.

If you have experienced a complete loss of your host, you will need to do the following:

1. Reinstall and configure a new MarkLogic host.

2. Import the keystore and keys from a backup (using xdmp:keystore-import (XQuery) or
xdmp.keystoreImport (SJS)). See “Export and Import Encryption Keys” on page 241 for
details.

3. Perform a restore from backup as usual. See Backing Up and Restoring a Database in the
Administrator’s Guide for more information.
Page 268—Security Guide

MarkLogic Server Encryption at Rest
13.11 APIs for Encryption at Rest
The encryption at rest feature includes APIs for working with encryption, using either the default
keystore (the interal PKCS #11 secured wallet) or a KMIP-compliant external KMS.

This section includes:

• Built-ins for Encryption at Rest

• Admin APIs for Encryption at Rest

• REST Management APIs for Encryption

13.11.1 Built-ins for Encryption at Rest
These functions will work with both the internal PKCS #11 secured wallet, or a external
KMIP-compliant keystore. Using these functions you can encrypt data and check the status of
encryption in your clusters using either JavaScript or XQuery.

The Server-Side JavaScript built-ins are:

• xdmp.keystoreExport

• xdmp.keystoreImport

• xdmp.filesystemFileEncryptionStatus

• xdmp.databaseEncryptionAtRest

• xdmp.databaseEncryptionKeyId

• xdmp.keystoreValidateExported

• xdmp.keystoreSetCurrentHost

The Server-Side XQuery built-ins are:

• xdmp:keystore-export

• xdmp:keystore-import

• xdmp:filesystem-file-encryption-status

• xdmp:database-encryption-at-rest

• xdmp:database-encryption-key-id

• xdmp:keystore-validate-exported

• xdmp:keystore-set-current-host
MarkLogic 9—May, 2017 Security Guide—Page 269

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest
13.11.1.1Using a Credential ID with http-options
The xdmp:http-options function now accepts a credential-id when used with XQuery. The
schema looks like this:

<xs:complexType name="options">
 <xs:sequence>
 <xs:element ref="timeout" minOccurs="0"/>
 <xs:element ref="data" minOccurs="0"/>
 <xs:element ref="headers" minOccurs="0"/>
 <xs:element ref="credential-id" minOccurs="0"/>
 <xs:element ref="authentication" minOccurs="0"/>
 <xs:element ref="client-cert" minOccurs="0"/>
 <xs:element ref="client-key" minOccurs="0"/>
 <xs:element ref="pass-phrase" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>

13.11.2 Admin APIs for Encryption at Rest
These functions are used to set the mode and descriptions for the host, set the keystore host name
and the keystore host port. You can also set the keystore data key ID, config key ID, or logs key
ID, along with setting the keystore serve certificate and enabling encryption.

These server-side Javascript functions work with either the PKCS #11 secured wallet or a
third-party KMIP-compliant keystore:

• admin.clusterGetConfigEncryption

• admin.clusterGetDataEncryption

• admin.clusterGetLogsEncryption

• admin.clusterSetConfigEncryption

• admin.clusterSetDataEncryption

• admin.clusterSetLogsEncryption

• admin.databaseGetDataEncryption

• admin.databaseSetDataEncryption

• admin.clusterSetKeystorePassphrase

• admin.clusterGetKeystoreLogsEncryption

• admin.clusterGetKeystoreBackupOption

• admin.clusterGetKeystoreWallet

• admin.clusterGeternalDataEncryptionKeyId

• admin.clusterGetInternalDataEncryptionKeyId

• admin.clusterGetExternalConfigEncryptionKeyId

• admin.clusterGetInternalConfigEncryptionKeyId

• admin.clusterGetExternalLogsEncryptionKeyId

• admin.clusterGetInternalLogsEncryptionKeyId
Page 270—Security Guide

MarkLogic Server Encryption at Rest
• admin.clusterSetDataEncryptionKeyId

• admin.clusterSetExternalConfigEncryptionKeyId

• admin.clusterSetExternalLogsEncryptionKeyId

These server-side XQuery functions will work with either the PKCS #11 secured wallet or a
third-party KMIP-compliant keystore:

• admin:cluster-get-config-encryption

• admin:cluster-get-data-encryption

• admin:cluster-get-logs-encryption

• admin:cluster-set-config-encryption

• admin:cluster-set-data-encryption

• admin:cluster-set-logs-encryption

• admin:database-get-data-encryption

• admin:database-set-data-encryption

• admin:cluster-set-keystore-passphrase

• admin:cluster-set-keystore-logs-encryption-passphrase

• admin:cluster-get-keystore-backup-option

• admin:cluster-get-keystore-wallet-location

• admin:cluster-get-external-data-encryption-key-id

• admin:cluster-get-internal-data-encryption-key-id

• admin:cluster-get-external-config-encryption-key-id

• admin:cluster-get-internal-config-encryption-key-id

• admin:cluster-get-external-logs-encryption-key-id

• admin:cluster-get-internal-logs-encryption-key-id

• admin:cluster-set-external-data-encryption-key-id

• admin:cluster-set-external-config-encryption-key-id

• admin:cluster-set-external-logs-encryption-key-id

The admin.clusterRotateXXXXEncryptionKeyId or
admin:cluster-rotate-xxxx-encryption-key-id APIs are only for use with the embedded KMS
provided by MarkLogic (the PKCS #11 secured wallet). Using these functions with an external
KMS will cause an error.

The Javascript APIs are:

• admin.clusterRotateConfigEncryptionKeyId

• admin.clusterRotateDataEncryptionKeyId

• admin.clusterRotateLogsEncryptionKeyId

• admin.groupGetRotateAuditFiles

• admin.groupGetRotateLogFiles

• admin.groupSetRotateAuditFiles

• admin.groupSetRotateLogFiles
MarkLogic 9—May, 2017 Security Guide—Page 271

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest
The XQuery APIs are:

• admin:cluster-rotate-config-encryption-key-id

• admin:cluster-rotate-data-encryption-key-id

• admin:cluster-rotate-logs-encryption-key-id

• admin:group-get-rotate-audit-files

• admin:group-get-rotate-log-files

• admin:group-set-rotate-audit-files

• admin:group-set-rotate-log-files

These next two APIs are used in transitioning from an internal keystore (the PKCS #11 secured
wallet) to an external KMIP-compliant keystore. If these functions are set to external, MarkLogic
Server will first look for the external keystore to verify the keys.

Javascript:

• admin.clusterSetKeystoreKmsType

• admin.clusterGetKeystoreKmsType

XQuery:

• admin:cluster-set-keystore-kms-type

• admin:cluster-get-keystore-kms-type
Page 272—Security Guide

MarkLogic Server Encryption at Rest
These Javascript and XQuery functions are designed to work with a external KMIP-compliant
keystore.

Javascript APIs:

• admin.clusterGetConfigEncryptionKeyId

• admin.clusterSetConfigEncryptionKeyId

• admin.clusterGetConfigEncryptionKeyId

• admin.clusterSetDataEncryptionKeyId

• admin.clusterGetKeystoreHostName

• admin.clusterGetKeystoreHostNames

• admin.clusterSetKeystoreHostName

• admin.clusterSetKeystoreHostNames

• admin.clusterGetKeystorePort

• admin.clusterGetKeystorePorts

• admin.clusterSetKeystorePort

• admin.clusterSetKeystorePorts

• admin.clusterGetLogsEncryptionId

• admin.clusterSetLogsEncryptionId

• admin.clusterGetKeystoreKmipCAPath

• admin.clusterSetKeystoreKmipCAPath

• admin.clusterGetKeystoreKmipCertificatePath

• admin.clusterSetKeystoreKmipCertificatePath

• admin.clusterGetKeystoreKmipKeyPath

• admin.clusterSetKeystoreKmipKeyPath

• admin.databaseGetEncryptionKeyId

• admin.databaseGetEncryptionKeyId

XQuery APIs:

• admin:cluster-get-config-encryption-key-id

• admin:cluster-set-config-encryption-key-id

• admin:cluster-get-data-encryption-key-id

• admin:cluster-set-data-encryption-key-id

• admin:cluster-get-keystore-host-name

• admin:cluster-get-keystore-host-names

• admin:cluster-set-keystore-host-name

• admin:cluster-set-keystore-host-names

• admin:cluster-get-keystore-port

• admin:cluster-get-keystore-ports

• admin:cluster-set-keystore-port

• admin:cluster-set-keystore-ports
MarkLogic 9—May, 2017 Security Guide—Page 273

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest
• admin:cluster-get-logs-encryption-key-id

• admin:cluster-set-logs-encryption-key-id

• admin:cluster-get-keystore-kmip-CA-path

• admin:cluster-set-keystore-kmip-CA-path

• admin:cluster-get-keystore-kmip-certificate-path

• admin:cluster-set-keystore-kmip-certificate-path

• admin:cluster-get-keystore-kmip-key-path

• admin:cluster-set-keystore-kmip-key-path

• admin:database-get-encryption-key-id

• admin:database-set-encryption-key-id

Note: The functions designed to work with a external KMS will return an error if you try
to use them with the PKCS #11 secured wallet (the default built-in KMS).

13.11.3 REST Management APIs for Encryption
You can manage encryption using the REST Management APIs. Some of the tasks you can do
with these APIs include:

• Encryption configuration

• Keystore configuration

• Database configuration

• Database status, including database encryption (encrypted size, total size)

• Cluster status

• Forest status

• Security

• Backups, status (encrypted or not)

• Restore (with property for using private key)

The REST Management APIs that are used to query and manage the cluster security properties
include encryption information for database, cluster, and forest.

Below is a XML payload example for the security endpoint:

<security-properties
xmlns="http://marklogic.com/manage/security/properties"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://marklogic.com/manage/security/properties
manage-security-properties.xsd">
<keystore>
<data-encryption>default-off</data-encryption>
<config-encryption>off</config-encryption>
<logs-encryption>off</logs-encryption>
Page 274—Security Guide

MarkLogic Server Encryption at Rest
<kms-type>internal</kms-type>
<host-name>localhost</host-name>
<port>9056</port>
<data-encryption-key-id>92ed7360-458a-427e-abad-c6595b192cb7</data-enc
ryption-key-id>
<config-encryption-key-id>8b9a9bdb-7b0e-41eb-9aa6-ed6e8cb23ad5</config
-encryption-key-id>
<logs-encryption-key-id>01c50d02-b43f-46bc-bbe5-6d4111d1180b</logs-enc
ryption-key-id>
</keystore>
</security-properties>

And here is a JSON payload example for the security endpoint:

{
"keystore": {

"data-encryption": "default-off",
"config-encryption": "off",
"logs-encryption": "off",
"kms-type": "internal",
"host-name": "localhost",
"port": 9056,
"data-encryption-key-id":

"92ed7360-458a-427e-abad-c6595b192cb7",
"config-encryption-key-id":

"8b9a9bdb-7b0e-41eb-9aa6-ed6e8cb23ad5",
"logs-encryption-key-id":

"01c50d02-b43f-46bc-bbe5-6d4111d1180b"
}

}

MarkLogic 9—May, 2017 Security Guide—Page 275

MarkLogic Server Version MarkLogic 9—May, 2017 Encryption at Rest
These operations are available for encryption key rotation:

curl -v -X POST --anyauth --user admin:admin \
--header "Content-Type:application/json" -d \
'{"operation":"rotate-config-encryption-key"}' \
http://localhost:8002/manage/v2/security

curl -v -X POST --anyauth --user admin:admin \
--header "Content-Type:application/json" -d \
'{"operation":"rotate-data-encryption-key"}' \
http://localhost:8002/manage/v2/security

curl -v -X POST --anyauth --user admin:admin \
--header "Content-Type:application/json" -d \
'{"operation":"rotate-logs-encryption-key"}' \
http://localhost:8002/manage/v2/security

13.12 Interactions with Other MarkLogic Features
In most cases the encryption at rest feature will be transparent to the user, that is data on disk will
be encrypted, decrypted during use (by users with the appropriate security permissions), and
re-encrypted when the data is written back to disk.

13.12.1 Rolling Upgrades
Encryption at rest is a feature introduced in MarkLogic 9. Clusters running older versions need to
be completely upgraded to MarkLogic 9 before using this feature. See Rolling Upgrades in the
Administrator’s Guide for more about rolling upgrades.

Note: During upgrades, the default passphrase for the upgraded system is not set. You
will need to reset the default passphrase after an upgrade.

13.12.2 Telemetry
The telemetry feature is not available for use until the cluster is upgraded to MarkLogic 9.0-1 or
later. See Telemetry in the Monitoring MarkLogic Guide for more about telemetry.
Page 276—Security Guide

MarkLogic Server Administering Security
14.0 Administering Security
282

This chapter describes the basic steps to administer security in MarkLogic Server. It does not
provide the detailed procedures for creating users, roles, privileges, and so on. For those
procedures, see the “Security Administration” chapter of the Administrator’s Guide. This chapter
includes the following sections:

• Overview of the Security Database

• Associating a Security Database With a Documents Database

• Managing and Using Objects in the Security Database

• Backing Up the Security Database

• Example: Using the Security Database in Different Servers

14.1 Overview of the Security Database
Authentication in MarkLogic Server occurs via the security database. The security database
contains security objects such as privileges, roles, and users. A security database is associated
with each HTTP, WebDAV, ODBC, or XDBC server. Typically, a single security database
services all of the servers configured in a system. Actions against the server are authorized based
on the security database. The security database works the same way for clustered systems as it
does for single-node systems; there is always a single security database associated with each
HTTP, WebDAV, ODBC, or XDBC server.

The configuration that associates the security database with the database and servers is at the
database level. HTTP, WebDAV, ODBC, and XDBC servers each access a single documents
database, and each database in turn accesses a single security database. Multiple documents
databases can access the same security database. The following figure shows many servers
accessing some shared and some different documents databases, but all accessing the same
security database.
MarkLogic 9—May, 2017 Security Guide—Page 277

MarkLogic Server Version MarkLogic 9—May, 2017 Administering Security
Sharing the security database across multiple servers provides a common security configuration.
You can set up different privileges for different databases if that makes sense, but they are all
stored in a common security database. For an example of this type of configuration, see
“Example: Using the Security Database in Different Servers” on page 280.

In addition to storing users, roles, and privileges that you create, the security database also stores
pre-defined privileges and pre-defined roles. These objects control access to privileged activities
in MarkLogic Server. Examples of privileged activities include loading data and accessing URIs.
The security database is initialized during the installation process. For a list of all of the
pre-defined privileges and roles, see the corresponding appendixes in the Administrator’s Guide.

14.2 Associating a Security Database With a Documents Database
When you configure a database, you must specify which database is its security database. You
can associate the security database to another database in the database configuration screen of the
Admin Interface. This configuration specifies which database the server will use to authenticate
users and authorize requests. By default, the security database is named Security. The following
screen shot shows the server configuration screen drop-list that specifies the security database.

HTTP Server1

WebDAV
Server1

XDBC Server2

Security
Database

Documents
Database1

Documents
Database2

XDBC Server1
Page 278—Security Guide

MarkLogic Server Administering Security
14.3 Managing and Using Objects in the Security Database
There are two mechanisms available to add, change, delete, and use objects in the security
database: the Admin Interface and the XQuery functions. provided by the security.xqy library
module. This section describes what you can do with each of these mechanisms and includes the
following topics:

• Using the Admin Interface

• Using the security.xqy Module Functions

14.3.1 Using the Admin Interface
The Admin Interface is an application installed with MarkLogic Server for administering
databases, servers, clusters, and security objects. The Admin Interface is designed to manage the
objects in the security database, although it manages other things, such as configuration
information, too. You use the Admin Interface to create, change, or delete objects in the security
database. Activities such as creating users, creating roles, assigning privileges to roles, and so on,
are all done in the Admin Interface. By default, the Admin Interface application runs on port
8001.

For the procedures for creating, deleting, and modifying security objects, see the Administrator’s
Guide.

14.3.2 Using the security.xqy Module Functions
The installation process installs an XQuery library to help you use security objects in your
XQuery code. The security.xqy library module includes functions to access user and privilege
information, as well as functions to create, modify, and delete objects in the security database.

The functions in security.xqy must be executed against the security database. You can use these
functions to do a wide variety of things. For example, you can write code to test which collections
a user has access to, and use that information in your code.

For the signatures and descriptions of the functions in security.xqy, see the MarkLogic XQuery
and XSLT Function Reference.

14.4 Backing Up the Security Database
The security database is the central entry point to all of your MarkLogic Server applications. If the
security database becomes unavailable, no users can access any applications. Therefore, it is
important to create a backup of the security database. Use the database backup utility in the
Admin Interface to back up the security database. For details, see the “Backing Up and Restoring
a Database” chapter of the Administrator’s Guide.
MarkLogic 9—May, 2017 Security Guide—Page 279

MarkLogic Server Version MarkLogic 9—May, 2017 Administering Security
14.5 Example: Using the Security Database in Different Servers
The security database typically is used for the entire system, including all of the HTTP, WebDAV,
ODBC, and XDBC servers configured. You can create distinct privileges to control access to each
server. If each server accesses a different document database, these privileges can effectively
control access to each database (because the database is associated with the server). Users must
have the appropriate login privileges to log into the server, and therefore they have no way of
accessing either the applications or the content stored in the database accessed through that server
without possessing the appropriate privilege. This example describes such a scenario.

Consider an example with two databases—DocumentsA and DocumentsB. DocumentsA and
DocumentsB share a single security database, Security. Security is the default security database
managed by the Admin Interface on port 8001. There are two HTTP servers, ApplicationA and
ApplicationB, connected to DocumentsA and DocumentsB respectively.

ExecutePrivilegeA controls login access to ApplicationA, and ExecutePrivilegeB to
ApplicationB. RoleA is granted ExecutePrivilegeA and RoleB is granted ExecutePrivilegeB.

With this configuration, users who are assigned RoleA can access documents in DocumentsA and
users of RoleB can access documents in DocumentsB. Assuming that ExecutePrivilegeA or
ExecutePrivilegeB are appropriately configured as login privileges on every HTTP and XDBC
server that accesses either DocumentsA or DocumentsB, user access to these databases can
conveniently be managed by assigning users the role(s) RoleA and/or RoleB as required.

ApplicationB

HTTP Server

ApplicationA

HTTP Server

Documents Database

DocumentsA

Documents Database

DocumentsB

ExecutePrivilegeA-- RoleA
ExecutePrivilegeB -- RoleB
RoleA – UserA1, UserA2…
RoleB – UserB1, UserB2…

Security Database

Admin Interface
Port: 8001

Security
Page 280—Security Guide

MarkLogic Server Administering Security
Note: The Admin Interface at port 8001 is also used to configure all databases, HTTP
servers, hosts, and so on. The connection between the Admin Interface and the
Security database in the diagram simply indicates that the Admin Interface is
storing all security objects—users, roles, and privileges—in Security database.

The steps below outline the process to create the configuration in the above example.

1. Create two document databases: DocumentsA and DocumentsB. Leave the security database
for the document databases as Security (the default setting).

2. Create two execute privileges: ExecutePrivilegeA and ExecutePrivilegeB. They represent
the privilege to access ApplicationA and ApplicationB respectively. ApplicationA and
ApplicationB are two HTTP servers that are created later in this procedure.

Note: The new execute privileges created using the Admin Interface are stored in the
Security database. The new roles and users created below are also stored in the
Security database.

3. Create two new roles. These roles are used to organize users into groups and to facilitate
granting access to users as a group.

a. Create a new role. Name it RoleA.

b. Scroll down to the Execute Privileges section and select ExecutePrivilegeA. This
associates ExecutePrivilegeA with RoleA. Any user assigned RoleA is granted
ExecutePrivilegeA.

c. Repeat the steps for RoleB, selecting ExecutePrivilegeB instead.

4. Create two new HTTP servers:

a. Create a new HTTP server. Name it ApplicationA.

b. Select DocumentsA as the database. ApplicationA is now attached to DocumentsA which in
turn uses Security as its security database.

c. Select basic, digest or digest-basic authentication scheme.

d. Select ExecutePrivilegeA in the privilege drop down menu. This indicates that
ExecutePrivilegeA is required to access ApplicationA.

e. Repeat the steps for ApplicationB, selecting ExecutePrivilegeB instead.

5. Create new users.

a. Create a new user named UserA1.
MarkLogic 9—May, 2017 Security Guide—Page 281

MarkLogic Server Version MarkLogic 9—May, 2017 Administering Security
b. Scroll down to the Roles section and select RoleA.

c. Repeat the steps for UserB1, selecting RoleB in the roles section.

UserA1 is granted ExecutePrivilegeA by virtue of its role (RoleA) and has login access to
ApplicationA. Because ApplicationA is connected to DocumentsA, UserA1 is able to access
documents in DocumentsA assuming no additional security requirements are implemented
in ApplicationA, or added to documents in DocumentsA. The corresponding is true for
UserB1.

The configuration process is now complete. Additional users can be created by simply repeating
step 5 and selecting the appropriate role. All users assigned RoleA have login access to
ApplicationA and all users assigned RoleB have login access to ApplicationB.

This approach can also be easily extended to handle additional discrete databases and user groups
by creating additional document databases, roles and execute privileges as necessary.
Page 282—Security Guide

MarkLogic Server Auditing
15.0 Auditing
284

Auditing is the monitoring and recording of selected operational actions from both application
users and administrative users. You can audit various kinds of actions related to document access
and updates, configuration changes, administrative actions, code execution, and changes to access
control. You can audit both successful and failed activities. This chapter contains the following
parts:

• Why Is Auditing Used?

• MarkLogic Auditing

• Configuring Auditing

• Best Practices

For procedures on setting up auditing as well as a list of audit events, see Auditing Events in the
Administrator’s Guide.

15.1 Why Is Auditing Used?
You typically use auditing to perform the following activities:

• Enable accountability for actions. These might include actions taken on documents,
changes to configuration settings, administrative actions, changes to the security database,
or system-wide events.

• Deter users or potential intruders from inappropriate actions.

• Investigate suspicious activity.

• Notify an auditor of the actions of an unauthorized user.

• Detect problems with an authorization or access control implementation. For example,
you can design audit policies that you expect to never generate an audit record because the
data is protected in other ways. However, if these policies generate audit records, then you
know the other security controls are not properly implemented.

• Address auditing requirements for regulatory compliance.
MarkLogic 9—May, 2017 Security Guide—Page 283

MarkLogic Server Version MarkLogic 9—May, 2017 Auditing
15.2 MarkLogic Auditing
MarkLogic Server includes an auditing capability. You can enable auditing to capture
security-relevant events to monitor suspicious database activity or to satisfy applicable auditing
requirements. You can configure the generation of audit events by including or excluding
MarkLogic Server roles, users, or documents based on URI. Some actions that can be audited are
the following:

• startup and shutdown of MarkLogic Server

• adding or removing roles from a user

• usage of amps

• starting and stopping the auditing system

For the complete list of auditable events and their descriptions, see Auditing Events in the
Administrator’s Guide.

15.3 Configuring Auditing
Auditing is configured at the MarkLogic Server cluster management group level. A MarkLogic
Server group is a set of similarly configured hosts in a cluster, and includes configurations for the
HTTP, WebDAV, ODBC, and XDBC App Servers in the group. The group auditing configuration
includes enabling and disabling auditing for each cluster management group.

Audit records are stored on the local file system of the host on which the event is detected and on
which the Server subsystem is running.

Rotation of the audit logs to different files is configurable by various intervals, and the number of
audit files to keep is also configurable.

For more details and examples of audit event logs, see Auditing Events in the Administrator’s
Guide.

15.4 Best Practices
Auditing can be an effective method of enforcing strong internal controls enabling your
application to meet any applicable regulatory compliance requirements. Appropriate auditing can
help you to monitor business operations and detect activities that may deviate from company
policy. If it is important to your security policy to monitor this type of activity, then you should
consider enabling and configuring auditing on your system.

Be selective with auditing and ensure that it meets your business needs. As a general rule, design
your auditing strategy to collect the amount and type of information that you need to meet your
requirements, while ensuring a focus on events that cause the greatest security concerns.

If you enable auditing, develop a monitoring mechanism to use the audit event logs. Such a
system might periodically archive and purge the audit event logs.
Page 284—Security Guide

MarkLogic Server Designing Security Policies
16.0 Designing Security Policies
286

This chapter describes the general steps to follow when using security in an application. Because
of the flexibility of the MarkLogic Server security model, there are different ways to implement
similar security policies. These steps are simple guidelines; the actual steps you take depends on
the security policies you need to implement. The following sections are included:

• Research Your Security Requirements

• Plan Roles and Privileges

16.1 Research Your Security Requirements
As a first step in planning your security policies, try to have answers for the following types of
questions:

• What documents do you want to protect?

• What code do you want to control the execution of?

• Are there any natural categories you can define based on business function (for example,
marketing, sales, engineering)?

• What is the level of risk posed by your users? Are your applications used only by trusted,
internal people or are they open to a wider audience?

• How sensitive is the data you are protecting?

This list is not necessarily comprehensive, but is a good way to start thinking about your security
policy.

16.2 Plan Roles and Privileges
Depending on your security requirements and the structure of your enterprise or organization,
plan the roles and privileges that make the most sense.

1. Determine the level of granularity with which you need to protect objects in the database.

2. Determine how you want to group privileges together in roles.

3. Create needed URI and execute privileges.

4. Create roles.

5. Create users.

6. Assign users to roles.

7. Set default permissions for users, either indirectly through roles or directly through the
users.
MarkLogic 9—May, 2017 Security Guide—Page 285

MarkLogic Server Version MarkLogic 9—May, 2017 Designing Security Policies
8. Protect code with xdmp:security-assert functions, where needed.

9. Load your documents with the appropriate permissions. If needed, change the permissions
of existing documents using the xdmp:document-add-permissions,
xdmp:document-set-permissions, and xdmp:document-remove-permissions functions.

10. Assign access privileges to HTTP, WebDAV, ODBC, and XDBC servers as needed.
Page 286—Security Guide

MarkLogic Server Sample Security Scenarios
17.0 Sample Security Scenarios
296

This chapter describes some common scenarios for defining security policies in your applications.
The scenarios shown here are by no means exhaustive. There are many possibilities for how to set
up security in your applications. The following sections are included:

• Protecting the Execution of XQuery Modules

• Choosing the Access Control for an Application

• Implementing Security for a Read-Only User

17.1 Protecting the Execution of XQuery Modules
One simple way to restrict access to your MarkLogic Server application is to limit the users that
have permission to run the application. If you load your Xquery code into a modules database,
you can use an execute permission on the XQuery document itself to control who can run it. Then,
a user must possess execute permissions to run the module. To set up a module to do this, perform
the following steps:

1. Using the Admin Interface, specify a modules database in the configuration for the App
Server (HTTP or WebDAV) that controls the execution of your XQuery module.

2. Load the XQuery module into the modules database, using a URI with an .xqy extension,
for example my_module.xqy.

3. Set execute permissions on the XQuery document for a given role. For example, if you
want users with the run_application role to be able to execute an XQuery module with
the URI http://modules/my_module.xqy, run a query similar to the following:

xdmp:document-set-permissions("http://modules/my_module.xqy",
xdmp:permission("run_application", "execute"))

4. Create the run_application role.

5. Assign the run_application role to the users who can run this application.

Now only users with the run_application role can execute this document.

Note: Because your application could also contain amped functions, this technique can
help restrict access to applications that use amps.
MarkLogic 9—May, 2017 Security Guide—Page 287

MarkLogic Server Version MarkLogic 9—May, 2017 Sample Security Scenarios
17.2 Choosing the Access Control for an Application
The role-based security model in MarkLogic Server combined with the supported authentication
schemes provides numerous options for implementing application access control. This section
describes common application access control alternatives:

• Open Access, No Log In

• Providing Uniform Access to All Authenticated Users

• Limiting Access to a Subset of Users

• Using Custom Login Pages

• Access Control Based on Client IP Address

For details on the different authentication schemes, see “Types of Authentication” on page 35.

17.2.1 Open Access, No Log In
This approach may be appropriate if security is not a concern for your MarkLogic Server
implementation or if you are just getting started and want to explore the capabilities of MarkLogic
Server before contemplating your security architecture. This scenario provides all of your users
with the admin role.

You can turn off access control for each HTTP or WebDAV server individually by following
these steps using the Admin Interface:

1. Go to the Configure tab for the HTTP server for which you want to turn off access control.

2. Scroll down to the authentication field and choose application-level for the
authentication scheme.

3. Choose a user with the admin role for the default user. For example, you may choose the
admin user you created when you installed MarkLogic.

Note: To assist with identifying users with the admin role, the default user selection field
places (admin) next to admin users.

In this scenario, all users accessing the application server are automatically logged in with a user
that has the admin role. By default, the admin role has the privileges and permissions to perform
any action and access any document in the server. Therefore, security is essentially turned off for
the application. All users have full access to the application and database associated with the
application server.

17.2.2 Providing Uniform Access to All Authenticated Users
This approach allows you to restrict application access to users in your security database, and
gives those users full access to all application servers defined in MarkLogic Server. There are
multiple ways to achieve the same objective but this is the simplest way.
Page 288—Security Guide

MarkLogic Server Sample Security Scenarios
1. In the Admin Interface, go to the Users tab under Security.

2. Give all users in the security database the admin role.

3. Go to the Configuration tab for all HTTP and WebDAV servers in the system.

4. Go to the authentication field and choose digest, basic or digest-basic authentication.

5. Leave the privilege field blank since it has no effect in this scenario. This field specifies
the privilege that is needed to log into application server. However, the users are assigned
the admin role and are treated as having all privileges.

In this scenario, all users must authenticate with a username and password. Once they are
authenticated, however, they have full access to all functions and data in the server.

17.2.3 Limiting Access to a Subset of Users
This application access control method can be modified or extended to meet the requirements in
many application scenarios. It uses more of the available security features and therefore requires a
better understanding of the security model.

To limit application access to a subset of the users in the security database, perform the following
steps using the Admin Interface:

1. Create an execute privilege named exe-priv-app1 to represent the privilege to access the
App Server.

2. Create a role named role-app1 that has exe-priv-app1 execute privilege.

3. Add role-app1 to the roles of all users in the security database who should have access to
this App Server.

4. In the Configuration page for this App Server, scroll down to the authentication field and
select digest, basic or digest-basic. If you want to use application-level authentication
to achieve the same objective, a custom login page is required. See the next section for
details.

5. Select exe-priv-app1 for the privilege field. Once this is done, only the users who have the
exe-priv-app1 by virtue of their role(s) are able to access this App Server.

Note: If you want any user in the security database to be able to access the application,
leave the privilege field blank.

At this point, the application access control is configured.
MarkLogic 9—May, 2017 Security Guide—Page 289

MarkLogic Server Version MarkLogic 9—May, 2017 Sample Security Scenarios
This method of authentication also needs to be accompanied by the appropriate security
configuration for both users and documents associated with this App Server. For example,
functions such as xdmp:document-insert and xdmp:document-load throw exceptions unless the
user possesses the appropriate execute privileges. Also, users must have the appropriate default
permissions (or specify the appropriate permissions with the API) when creating new documents
in a database. Documents created by a user who does not have the admin role must be created with
at least one update permission or else the transaction throws an XDMP-MUSTHAVEUPDATE exception.
The update permission is required because otherwise once the documents are created no user
(except users with the admin role) would be able to access them, including the user who created
them.

17.2.4 Using Custom Login Pages
Digest and basic authentication use the browser’s username and password prompt to obtain user
credentials. The server then authenticates the credentials against the security database. There is no
good way to create a custom login page using digest and basic authentication. To create custom
login pages, you need to use application-level authentication.

To configure MarkLogic Server to use a custom login page for an App Server, perform the
following steps using the Admin Interface:

1. Go to the Configuration tab for the HTTP App Server for which you want to create a
custom login page.

2. Scroll down to the authentication field and select application-level.

3. Choose nobody as the default user. The nobody user is automatically created when
MarkLogic Server is installed. It does not have an associated role and therefore has no
privileges. The nobody user can only access pages and perform functions for which no
privileges are required.

4. Create a custom login page that meets your needs. We refer to this page as login.xqy.

5. Make login.xqy the default page displayed by the application server. Do not require any
privilege to access login.xqy (that is, do not place xdmp:security-assert() in the
beginning of the code for login.xqy. This makes login.xqy accessible by nobody, the
default user specified above, until the actual user logs in with his credentials.

The login.xqy page likely contains a snippet of code as shown below:

...return
if xdmp:login($username, $password) then
 ... protected page goes here...
else
 ... redirect to login page or display error page...
Page 290—Security Guide

MarkLogic Server Sample Security Scenarios
The rest of this example assumes that all valid users can access all the pages and functions
within the application.

Note: If you are using a modules database to store your code, the login.xqy file still
needs to have an execute permission that allows the nobody (or whichever is the
default) user to access the module. For example, you can put an execute
permission paired with the app-user role on the login.xqy module document, and
make sure the nobody user has the app-user role (which it does by default).

6. Create a role called application-user-role.

7. Create an execute privilege called application-privilege. Add this privilege to the
application-user-role.

8. Add the application-user-role to all users who are allowed to access the application.

9. Add this snippet of code before the code that displays each of the pages in the application,
except for login.xqy:

try
{
 xdmp:security-assert("application-privilege","execute")
}
catch($e)
{
 xdmp:redirect-response("login.xqy")
}

or

if(not(xdmp:has-privilege("application-privilege","execute")))
then
(
 xdmp:redirect-response("login.xqy")
)
else ()

This ensures that only a user who has the application-privilege by virtue of his role can access
these protected pages.

Similar to the previous approach, this method of authentication requires the appropriate security
configuration for users and documents. See “Introduction to Security” on page 11 for background
on the security model.

17.2.5 Access Control Based on Client IP Address
MarkLogic Server supports deployments in which a user is automatically given access to the
application based on the client IP address.
MarkLogic 9—May, 2017 Security Guide—Page 291

MarkLogic Server Version MarkLogic 9—May, 2017 Sample Security Scenarios
Consider a scenario in which a user is automatically logged in if he is accessing the application
locally (as local-user) or from an approved subnet (as site-user). Otherwise, the user is asked to
login explicitly. The steps below describe how to configure MarkLogic Server to achieve this
access control.

1. Using the Admin Interface, configure the App Server to use a custom login page:

a. Go to the Configuration tab for the HTTP or WebDAV App Server for which you want to
create a custom login page.

b. Scroll down to the authentication field and select application-level.

c. For this example, choose nobody as the default user. The nobody user is automatically
created when MarkLogic Server is installed. It does not have an associated role and hence
has no privileges. The nobody user can only access pages and perform functions for which
no privileges are required.

2. Add the following code snippet to the beginning of the default page displayed by the
application, for example, default.xqy.

xquery version "1.0-ml"

declare namespace widget ="http://widget.com"
import module "http://widget.com" at "/login-routine.xqy"

let $login := widget:try-ip-login()
return
if($login) then
 <html>
 <body>
 The protected page goes here.
 You are {xdmp:get-current-user()}
 </body>
 </html>
else
 xdmp:redirect-response("login.xqy")

The try-ip-login function is defined in login-routine.xqy. It is used to determine if the user can
be automatically logged in based on the client IP address. If the user cannot be logged in
automatically, he is redirected to a login page called login.xqy where he has to log in explicitly.
See “Using Custom Login Pages” on page 290 for example code for login.xqy.

3. Define try-ip-login:

a. Create a file named login-routine.xqy and place the file in the Modules directory within
the MarkLogic Server program directory. You create an amp for try-ip-login in
login-routine.xqy in the next code sample. For security reasons, all amped functions
Page 292—Security Guide

MarkLogic Server Sample Security Scenarios
must be located in the specified Modules directory or in the Modules database for the App
Server.

b. Add the following code to login-routine.xqy:

xquery version "1.0-ml"

module "http://widget.com"
declare namespace widget ="http://widget.com"

define function try-ip-login()as xs:boolean
{
 let $ip := xdmp:get-request-client-address()
 return
 if(compare($ip,"127.0.0.1") eq 0) then (:local host:)
 xdmp:login("localuser",())
 else if(starts-with($ip,<approved-subnet>)) then
 xdmp:login("site-user",())
 else
 false()
}

If the user is accessing the application from an approved IP address, try-ip-login logs in the
user with username local-user or site-user as appropriate and returns true. Otherwise,
try-ip-login returns false.

Note: In the code snippet above, the empty sequence () is supplied in place of the actual
passwords for local-user and site-user. The pre-defined xdmp-login execute
privilege grants the right to call xdmp:login without the actual password. This
makes it possible to create deployments in which users can be automatically
logged in without storing user passwords outside the system.

4. Finally, to ensure that the code snippet above is called with the requisite xdmp-login
privilege, configure an amp for try-ip-login:

a. Using the Admin Interface, create a role called login-role.

b. Assign the pre-defined xdmp-login execute privilege to login-role. The xdmp-login
privilege gives a user of the login-role the right to call xdmp:login for any user without
supplying the password.

c. Create an amp for try-ip-login as shown below:
MarkLogic 9—May, 2017 Security Guide—Page 293

MarkLogic Server Version MarkLogic 9—May, 2017 Sample Security Scenarios
An amp temporarily assigns additional role(s) to a user only for the execution of the specified
function. The amp above gives any user who is executing try-ip-login() the login-role
temporarily for the execution of the function.

In this example, default.xqy is executed as nobody, the default user for the application. When the
try-ip-login function is called, the nobody user is temporarily amped to the login-role. The
nobody user is temporarily assigned the xdmp:login execute privilege by virtue of the login-role.
This enables nobody to call xdmp:login in try-ip-login for any user without the corresponding
password. Once the login process is completed, the user can access the application with the
permissions and privileges of local-user or site-user as appropriate.

5. The remainder of the example assumes that local-user and site-user can access all the
pages and functions within the application.

a. Create a role called application-user-role.

b. Create an execute privilege called application-privilege. Add this privilege to the
application-user-role.

c. Add the application-user-role to local-user and site-user.
Page 294—Security Guide

MarkLogic Server Sample Security Scenarios
d. Add this snippet of code before the code that displays each of the subsequent pages in the
application:

try
{
 xdmp:security-assert("application-privilege","execute")
 ...
}
catch($e)
{
 xdmp:redirect-response("login.xqy")
}

or

if(not(xdmp:has-privilege("application-privilege","execute")))
then
(
 xdmp:redirect-response("login.xqy")
)
else ()

This ensures that only the user who has the application-privilege by virtue of his role can
access these protected pages.

17.3 Implementing Security for a Read-Only User
In this scenario, assume that you want to implement a security model that enables your users to
run any XQuery code stored in the modules database for a specific App Server with read-only
permissions on all documents in the database.

Reviewing the MarkLogic security model, recall that users do not have permissions, documents
have permissions. And permissions are made up of a role paired with a capability. Additionally,
execute privileges protect code execution and URI privileges protect the creation of documents in
a specific URI namespace. This example shows one way to implement the read-only user and is
devided into the following parts:

• Steps For Example Setup

• Troubleshooting Tips

17.3.1 Steps For Example Setup
To set up this example scenario, perform the following steps, using the Admin Interface:

1. Create a role named ReadsStuff.

2. Create a user named ReadOnly and grant this user the ReadsStuff role.

3. Create a role named WritesStuff and grant this role the ReadsStuff role.
MarkLogic 9—May, 2017 Security Guide—Page 295

MarkLogic Server Version MarkLogic 9—May, 2017 Sample Security Scenarios
4. Grant the WritesStuff role the any-uri privilege, as well as any execute privileges needed
for your application code.

5. Create a user named LoadsStuff and grant this user the WritesStuff role. When you load
documents, load them as the LoadsStuff user and give each document an update and insert
permission for the WritesStuff role and a read permission for the ReadsStuff role.

Here is sample code to create a set of permissions to do this as on option to either the
xdmp:document-insert function or the xdmp:document-load function:

(xdmp:permission("ReadsStuff", "read"),
xdmp:permission("WritesStuff", "insert"),
xdmp:permission("WritesStuff", "update"))

An alternative to specifying the permissions when you load documents is to assign default
permissions to the LoadsStuff user or the WritesStuff role.

17.3.2 Troubleshooting Tips
If you are running a URL rewriter (or an error handler), you need to give the ReadsStuff role to
the nobody user or whichever user is the default user for your App Server. When the URL rewriter
executes, the request has not yet been authenticated, so it runs as the default user. The default user
is nobody unless you have specified a different default for your App Server. The best practice is to
create another role, for example my-app-user and add an execute permission for the URL rewriter
and your error handler (if any) for the my-app-user role. This is better because you do not want the
nobody user to have access to your database.
Page 296—Security Guide

MarkLogic Server Securing Your Production Deployment
18.0 Securing Your Production Deployment
300

A security system is only as good as its weakest link. This chapter describes some general
principles to think about with an eye toward hardening your entire environment for security, and
contains the following sections:

• Add Password Protections

• Adhere to the Principle of Least Privilege

• Infrastructure Hardening

• Implement Auditing

• Develop and Enforce Application Security

• Use MarkLogic Security Features

• Read About Security Issues

18.1 Add Password Protections
When your data and business requirements warrant it, design and implement password
protections. These protections can range from providing guidelines to your users to implementing
programmatic checking to enforce password complexity and management.

Complexity verification verifies that each password is complex enough to provide reasonable
protection against intruders who try to break into the system by guessing passwords. This
encourages users to create strong passwords.

Password managment includes things such as password aging and expiration, automatically
locking users out of the application after failed login attempts, and controlling the reuse of old
passwords.

To enforce password complexity programmatically, use the password plugins. For more
information about the plugin framework and to view a sample password plugin, see System Plugin

Framework and Password Plugin Sample in the Application Developer’s Guide.]

18.2 Adhere to the Principle of Least Privilege
Grant necessary privileges only. Do not provide users or roles more privileges than are necessary.
If possible, grant privileges to roles, not individual users. The principle of least privilege is that
users are given only those privileges that are actually required to efficiently perform their jobs.

Restrict the following as much as possible:

• The number of users granted the admin or security roles.

• The number of roles or users who are allowed to make changes to security objects, such as
roles, users, and document permissions.
MarkLogic 9—May, 2017 Security Guide—Page 297

MarkLogic Server Version MarkLogic 9—May, 2017 Securing Your Production Deployment
• The number of roles that have capabilities to add, change or remove security-related
privileges.

18.3 Infrastructure Hardening
Most computer platforms offer network security features to limit outside access to the system.
The purpose of infrastructure hardening is to eliminate as many security risks as possible. It can
involve both hardware and software, as well as physical restrictions. The following are some
infrastructure hardening topics:

• OS-Level Restrictions

• Network Security

• Port Management

• Physical Access

18.3.1 OS-Level Restrictions
The United States National Security Agency develops and distributes security configuration
guidance for a wide variety of software, including the most common operating system platforms.
You can view this guidance on their website at:
http://www.nsa.gov/ia/mitigation_guidance/security_configuration_guides/operating_systems.shtml.

18.3.2 Network Security
Encrypt network traffic between the browser and MarkLogic Server by enabling SSL. You can
also enable SSL for intra-cluster communication. For high security needs, make sure MarkLogic
Server runs in FIPS mode (which is the default mode). This option restricts your SSL ciphers to
those that have met the FIPS 140-2 Level 1 validation requirements. For information on how to
configure SSL and FIPS mode, see Clusters in the Administrator’s Guide.

18.3.3 Port Management
Protect access to MarkLogic’s Admin Interface and development tool ports:8000, 8001, 8002
behind a corporate firewall. While your MarkLogic application may run on a publicly available
port, such as port 80, it is good practice to secure the MarkLogic Admin Interface and other
development application ports behind a firewall.

18.3.4 Physical Access
Ensure that machines running MarkLogic Server are in a physically secure location. Physical
access to a server is a high security risk. Physical access to a server by an unauthorized user could
result in unauthorized access or modification, as well as installation of hardware or software
designed to circumvent security. To maintain a secure environment, you should restrict physical
access to your MarkLogic Server host computers.
Page 298—Security Guide

http://www.nsa.gov/ia/mitigation_guidance/security_configuration_guides/operating_systems.shtml

MarkLogic Server Securing Your Production Deployment
18.4 Implement Auditing
MarkLogic includes an auditing capability. Designing and implementing an auditing policy can
be an important part of your overall security planning. For more details, see Auditing in this guide.
For procedures related to enabling auditng, see Auditing Events in the Administrator’s Guide.

18.5 Develop and Enforce Application Security
An important step in creating a MarkLogic application is to ensure that it is properly secure.
Network security mostly ignores the contents of HTTP traffic, therefore you can’t use network
layer protection (firewall, SSL, IDS, hardening) to stop or detect application layer attacks. The
Open Web Application Security Project is an open group focused on understanding and
improving the security of web applications and web services. You can visit their site at:
http://www.owasp.org/. The OWASP Top Ten Project is one starting point for understanding how
you can build good security into your application.

18.6 Use MarkLogic Security Features
Let collections and document permissions restrict the data access for the user. Do not write your
own access restriction code. Write code so that it uses the MarkLogic Server security model and
operates on the correct data based on the user’s permissions and the current documents in use.

18.7 Read About Security Issues
Many excellent resources exist on the Internet. These sources contain valuable security-related
information for everyone in the enterprise software development and deployment chain from
software developers and system administrators to managers. For example, the Defense
Information Systems Agency (DISA) sponsors the Information Assurance Support Environment
website found at http://iase.disa.mil/index2.html. This site contains Security Technical
Implementation Guides (STIGs). The STIGs contain technical guidance to “lock down”
information systems and software that might otherwise be vulnerable to a malicious computer
attack.

Another example is the CERT Program, a part of the Software Engineering Institute, a federally
funded research and development center operated by Carnegie Mellon University. This
organization is devoted to ensuring that appropriate technology and systems management
practices are used to resist attacks on networked systems and to limit damage and ensure
continuity of critical services in spite of successful attacks, accidents, or failures. For more
detailed information about CERT visit their website: http://www.cert.org/.
MarkLogic 9—May, 2017 Security Guide—Page 299

http://iase.disa.mil/index2.html
http://www.cert.org/
http://www.owasp.org

MarkLogic Server Version MarkLogic 9—May, 2017 Securing Your Production Deployment
Page 300—Security Guide

MarkLogic Server Technical Support
19.0 Technical Support
302

MarkLogic provides technical support according to the terms detailed in your Software License
Agreement or End User License Agreement.

We invite you to visit our support website at http://help.marklogic.com to access information on
known and fixed issues, knowledge base articles, and more. For licensed customers with an active
maintenance contract, see the Support Handbook for instructions on registering support contacts
and on working with the MarkLogic Technical Support team.

Complete product documentation, the latest product release downloads, and other useful
information is available for all developers at http://developer.marklogic.com. For technical
questions, we encourage you to ask your question on Stack Overflow.
MarkLogic 9

http://help.marklogic.com/
https://stackoverflow.com/questions/tagged/marklogic
http://developer.marklogic.com
http://www.marklogic.com/files/Mark_Logic_Support_Handbook.pdf

MarkLogic Server Version MarkLogic 9—May, 2017 Technical Support
Page 302—Glossary, Copyright, and Support

MarkLogic Server Copyright
20.0 Copyright
999

MarkLogic Server 9.0 and supporting products.
Last updated: August 5, 2020

Copyright © 2020 MarkLogic Corporation.

MarkLogic and the MarkLogic logo are trademarks or registered trademarks of MarkLogic
Corporation in the United States and other countries.

MarkLogic technology is protected by one or more U.S. Patent Nos. 7,127,469, 7,171,404,
7,756,858, 7,962,474, 8,935,267, 8,892,599, 9,092,507, 10,108,742, 10,114,975, 10,311,088,
10,325,106, 10,339,337, 10,394,889, and 10,503,780.

MarkLogic software incorporates certain third-party software under license. Third-party
attributions, copyright notices, and other disclosures required under license are available in the
respective notice document for your version of the MarkLogic software.
MarkLogic 9

MarkLogic Server Version MarkLogic 9—May, 2017 Copyright
Page 304—Glossary, Copyright, and Support

	Security Guide
	Table of Contents
	1.0 Introduction to Security
	1.1 Licensing
	1.2 Security Overview
	1.2.1 Authentication and Access Control
	1.2.2 Authorization
	1.2.3 Administration

	1.3 MarkLogic Security Model
	1.3.1 Role-Based Security Model (Authorization)
	1.3.2 Element Level Security
	1.3.3 Access Control With the Security Database
	1.3.4 Security Administration

	1.4 Terminology
	1.4.1 User
	1.4.2 Role
	1.4.3 Execute Privilege
	1.4.4 URI Privilege
	1.4.5 Permission
	1.4.6 Amp

	2.0 Role-Based Security Model
	2.1 Understanding Roles
	2.1.1 Assigning Privileges to Roles
	2.1.2 Associating Permissions With Roles
	2.1.3 Default Permissions in Roles
	2.1.4 Assigning Roles to Users
	2.1.5 Roles, Privileges, Document Permissions, and Users

	2.2 The admin and security Roles
	2.3 Example—Introducing Roles, Users and Execute Privileges

	3.0 Protecting Documents
	3.1 Creating Documents
	3.1.1 URI Privileges
	3.1.2 Built-In URI Execute Privileges

	3.2 Document Permissions
	3.2.1 Capabilities Associated Through Permissions
	3.2.2 Setting Document Permissions

	3.3 Securing Collection Membership
	3.4 Default Permissions
	3.5 Example—Using Permissions
	3.5.1 Setting Permissions Explicitly
	3.5.2 Default Permission Settings

	4.0 Authenticating Users
	4.1 Users
	4.2 Types of Authentication
	4.2.1 Basic
	4.2.2 Digest
	4.2.3 Digest-Basic
	4.2.4 Limitations of Digest and Basic Authentication
	4.2.5 Certificate
	4.2.6 Application Level
	4.2.7 Kerberos Ticket
	4.2.8 SAML

	5.0 Compartment Security
	5.1 Understanding Compartment Security
	5.2 Configuring Compartment Security
	5.3 Example—Compartment Security
	5.3.1 Create Roles
	5.3.2 Create Users
	5.3.3 Create the Documents and Add Permissions
	5.3.4 Test It Out

	6.0 Element Level Security
	6.1 Understanding Element Level Security
	6.2 Example—Element Level Security
	6.2.1 Create Roles
	6.2.2 Create Users and Assign Roles
	6.2.3 Add the Documents
	6.2.4 Add Protected Paths and Query Rolesets
	6.2.5 Run the Example Queries
	6.2.6 Additional Examples

	6.3 Configuring Element Level Security
	6.3.1 Protected Paths
	6.3.2 Query Rolesets

	6.4 Configure Element Level Security in the Admin UI
	6.4.1 Add a Protected Path
	6.4.2 Add a Query Roleset

	6.5 Configure Element Level Security With XQuery
	6.5.1 Using XQuery for Query Rolesets
	6.5.2 Using XQuery for Protected Paths

	6.6 Configure Element Level Security With REST
	6.6.1 Using REST for Query Rolesets
	6.6.2 Using REST for Protected Paths

	6.7 Combining Document and Element Level Permissions
	6.7.1 Document Level Security and Indexing
	6.7.2 Combination Security Example

	6.8 Node Update Capabilities
	6.8.1 Updates With Element Level Security
	6.8.2 Node Update and Node Insert at the Element Level

	6.9 Document and Element Level Permissions Summary
	6.10 Node Update and Document Permissions Expanded
	6.10.1 Unexpected Behavior with Permissions
	6.10.2 Different Permissions on the Same Node
	6.10.3 A More Complex Example

	6.11 APIs for Element Level Security
	6.11.1 XQuery APIs
	6.11.2 REST Management APIs

	6.12 Algorithm That Determines Which Query Rolesets to Use
	6.13 Interactions With Compartment Security
	6.13.1 Compartment Security and Indexing

	6.14 Interactions with Other MarkLogic Features
	6.14.1 Lexicon Calls
	6.14.2 Fragmentation
	6.14.3 SQL on Range-Index Based Views
	6.14.4 UDFs (including UDF-based aggregate built-ins)
	6.14.5 Reverse Indexes
	6.14.6 SPARQL
	6.14.7 Alerting and QBFR
	6.14.8 TDE
	6.14.9 mlcp
	6.14.10 XCC
	6.14.11 Bitemporal
	6.14.12 Others
	6.14.13 Rolling Upgrades

	7.0 Protecting XQuery and JavaScript Functions With Privileges
	7.1 Built-In MarkLogic Execute Privileges
	7.2 Protecting Your XQuery and JavaScript Code with Execute Privileges
	7.2.1 Using Execute Privileges
	7.2.2 Execute Privileges and App Servers
	7.2.3 Creating and Updating Collections

	7.3 Temporarily Increasing Privileges with Amps

	8.0 Granular Privileges
	8.1 Understanding Granular Privileges
	8.2 Categories of Granularity
	8.2.1 Privileges to Read, Write, or Delete Any Configuration File
	8.2.2 Privileges to Read, Write, or Delete a Specific Configuration File
	8.2.3 Privileges to Administer a Set of Resources
	8.2.4 Privileges to Administer a Specific Resource
	8.2.5 Privileges to Administer a Specific Aspect of a Set of Resources
	8.2.6 Privileges to Administer a Specific Aspect of a Specific Resource

	8.3 Configuring Granular Privileges
	8.3.1 Configure Granular Privileges via the Admin Interface
	8.3.2 Configure Granular Privileges via the XQuery API Security Module

	8.4 Examples of Granular Privileges Usage
	8.4.1 Prerequisites - Create Databases, Roles, Users, and Privileges
	8.4.2 Scenarios that Use Granular Privileges
	8.4.3 Test It Out

	8.5 Using Granular Priviliges with MarkLogic DHaaS

	9.0 Configuring SSL on App Servers
	9.1 Understanding SSL
	9.2 General Procedure for Setting up SSL for an App Server
	9.3 Procedures for Enabling SSL on App Servers
	9.3.1 Creating a Certificate Template
	9.3.2 Enabling SSL for an App Server

	9.4 Accessing an SSL-Enabled Server from a Browser or WebDAV Client
	9.4.1 Creating a Security Exception in Internet Explorer
	9.4.2 Creating a Security Exception in Google Chrome
	9.4.3 Importing a Self-Signed Certificate Authority into Windows

	9.5 Procedures for Obtaining a Signed Certificate
	9.5.1 Generating and Downloading Certificate Requests
	9.5.2 Signing a Certificate with your own Certificate Authority
	9.5.3 Importing a Signed Certificate into MarkLogic Server

	9.6 Viewing Trusted Certificate Authorities
	9.7 Importing a Certificate Revocation List into MarkLogic Server
	9.8 Deleting a Certificate Template

	10.0 Certificate-based Authentication
	10.1 User Certificate Example
	10.2 CA Certificate (User Cert Signer) Import from Admin Interface
	10.3 CA Certificate Import into MarkLogic from Query Console
	10.4 Certificate Template & Template CA import into Client (Browser/SSL Client)
	10.5 Creating a MarkLogic User to use Certificate-based Authentication
	10.5.1 Creating a MarkLogic User with an Internal Name
	10.5.2 Creating a MarkLogic User with an External Name

	11.0 Secure Credentials
	11.1 Creating a Secure Credential with Username and Password
	11.2 Creating a Secure Credential with PEM Encoded Public and Private Keys
	11.2.1 Creating a Certificate Authority
	11.2.2 Creating Secure Credentials from a Certificate Authority

	12.0 External Security
	12.1 Terms Used in this Chapter
	12.2 Overview of External Authentication
	12.3 Creating an External Authentication Configuration Object
	12.3.1 LDAP Authentication
	12.3.2 SAML Authentication
	12.3.3 SSL Client Authentication

	12.4 Defining and Inserting a SAML Entity
	12.5 Assigning an External Name to a User
	12.6 Assigning an External Name to a Role
	12.7 Configuring an App Server for External Authentication
	12.8 Creating a Kerberos keytab File
	12.8.1 Creating a keytab File on Windows
	12.8.2 Creating a keytab File on Linux

	12.9 External Certificate User Authentication
	12.9.1 Certificate Authentication Based on Internal User vs External Name
	12.9.2 CA Certificate (User Cert Signer) Import from Admin GUI
	12.9.3 CA Certificate Import into MarkLogic from Query Console
	12.9.4 Certificate Template & Template CA import into Client (Browser/ SSL Client)
	12.9.5 Certificate CN as Internal User vs External Name-based Internal User

	12.10 Example External Authorization Configurations
	12.11 Kerberos Authentication using xdmp:http-* Functions
	12.12 Kerberos Authentication for Secured HDFS

	13.0 Encryption at Rest
	13.1 Licensing
	13.2 Terms and Definitions
	13.3 Understanding Encryption at Rest
	13.4 Keystores - PKCS #11 Secured Wallet or External KMS
	13.5 Encryption Key Hierarchy Overview
	13.5.1 Embedded KMS Key Hierarchy
	13.5.2 External KMS Key Hierarchy

	13.6 Example—Encryption at Rest
	13.6.1 Set Up Encryption Example
	13.6.2 Encrypt a Database
	13.6.3 Test It Out
	13.6.4 Turn Off Encryption for a Database

	13.7 Configuring Encryption at Rest
	13.7.1 Database Encryption Options
	13.7.2 Configure Cluster Encryption
	13.7.3 Cluster Encryption Options
	13.7.4 Using an Alternative PKCS #11 Device
	13.7.5 Configure Encryption Using XQuery
	13.7.6 Configure Encryption Using REST

	13.8 Key Management
	13.8.1 Key Rotation
	13.8.2 Export and Import Encryption Keys
	13.8.3 Key Deletion and Key Revocation

	13.9 Configuring an External Keystore
	13.9.1 Types of KMS Deployments
	13.9.2 Using MarkLogic Encryption with AWS Key Management System
	13.9.3 Using MarkLogic Encryption with Microsoft Azure Key Vault
	13.9.4 Set Up an External KMS with MarkLogic Encryption
	13.9.5 Configure the External KMS
	13.9.6 Set up MarkLogic Encryption
	13.9.7 Transitioning from PKCS #11 Secured Wallet to an External KMS
	13.9.8 Transitioning From an External KMS to PKCS #11 Secured Wallet
	13.9.9 Multiple External KMSs for High Availability and Failover

	13.10 Administration and Maintenance
	13.10.1 Backup and Restore
	13.10.2 Tool to View Encrypted Log Files Outside of the Server
	13.10.3 Disaster Recovery/Shared Disk Failover

	13.11 APIs for Encryption at Rest
	13.11.1 Built-ins for Encryption at Rest
	13.11.2 Admin APIs for Encryption at Rest
	13.11.3 REST Management APIs for Encryption

	13.12 Interactions with Other MarkLogic Features
	13.12.1 Rolling Upgrades
	13.12.2 Telemetry

	14.0 Administering Security
	14.1 Overview of the Security Database
	14.2 Associating a Security Database With a Documents Database
	14.3 Managing and Using Objects in the Security Database
	14.3.1 Using the Admin Interface
	14.3.2 Using the security.xqy Module Functions

	14.4 Backing Up the Security Database
	14.5 Example: Using the Security Database in Different Servers

	15.0 Auditing
	15.1 Why Is Auditing Used?
	15.2 MarkLogic Auditing
	15.3 Configuring Auditing
	15.4 Best Practices

	16.0 Designing Security Policies
	16.1 Research Your Security Requirements
	16.2 Plan Roles and Privileges

	17.0 Sample Security Scenarios
	17.1 Protecting the Execution of XQuery Modules
	17.2 Choosing the Access Control for an Application
	17.2.1 Open Access, No Log In
	17.2.2 Providing Uniform Access to All Authenticated Users
	17.2.3 Limiting Access to a Subset of Users
	17.2.4 Using Custom Login Pages
	17.2.5 Access Control Based on Client IP Address

	17.3 Implementing Security for a Read-Only User
	17.3.1 Steps For Example Setup
	17.3.2 Troubleshooting Tips

	18.0 Securing Your Production Deployment
	18.1 Add Password Protections
	18.2 Adhere to the Principle of Least Privilege
	18.3 Infrastructure Hardening
	18.3.1 OS-Level Restrictions
	18.3.2 Network Security
	18.3.3 Port Management
	18.3.4 Physical Access

	18.4 Implement Auditing
	18.5 Develop and Enforce Application Security
	18.6 Use MarkLogic Security Features
	18.7 Read About Security Issues

	19.0 Technical Support
	20.0 Copyright

