
What's New in MarkLogic 12
MarkLogic 12

Publication date 2024-08-21
Copyright © 2024 Progress Software Corporation

All Rights Reserved

Table of Contents
1. What's New in MarkLogic 12 ... 3
2. Release Notes ... 4

2.1. MarkLogic 12.0 EA1 .. 4
2.1.1. Features .. 4
2.1.2. Installation ... 4
2.1.3. Upgrade ... 4

3. New Features in MarkLogic 12.0 EA1 .. 5
3.1. Native Vector Support .. 5
3.2. BM25 Relevance Ranking .. 9
3.3. Shortest Path Graph Algorithm ... 11

4. Technical support ... 15
5. Copyright ... 16

MarkLogic 12

2024-08-22 00:02 What's New in MarkLogic 12 Page 2

1. What's New in MarkLogic 12

This guide includes these topics:

1. Release Notes
2. New Features in MarkLogic 12.0 EA1

MarkLogic 12 What's New in MarkLogic 12

2024-08-22 00:02 What's New in MarkLogic 12 Page 3

2. Release Notes

2.1. MarkLogic 12.0 EA1
MarkLogic 12.0 EA1 expands the already comprehensive query capabilities of MarkLogic Server by
providing early access to the first step towards native vector search support, Best Match 25 (BM25)
relevance ranking, and a shortest path graph algorithm. Explore these features to develop secure,
AI-enhanced applications or other search-based transactional systems with MarkLogic Server.

NOTICE
This software is made available under the following Early Access Agreement. It may be
used only for evaluation purposes. It may not be used in production.

2.1.1. Features
Detailed descriptions of each new feature in MarkLogic 12.0 EA1 can be found in the new features
sections:

• Native Vector Support
• BM25 Relevance Ranking
• Shortest Path Graph Algorithm

2.1.2. Installation
MarkLogic 12.0 EA1 is available only for Red Hat Linux 8 (or compatible Linux distributions).

To install MarkLogic 12.0 EA1, follow the MarkLogic 11 instructions from Installing MarkLogic in
Installing MarkLogic Server.

2.1.3. Upgrade

NOTICE
Upgrading to or from early access releases of MarkLogic Server is not supported.
Therefore, upgrading from any earlier version to MarkLogic 12.0 EA1 is not supported,
nor will upgrading from MarkLogic 12.0 EA1 to any later version be supported.

MarkLogic 12 Release Notes

2024-08-22 00:02 What's New in MarkLogic 12 Page 4

https://developer.marklogic.com/early-access-agreement/
https://docs.marklogic.com/11.0/guide/installation-guide/en/procedures/installing-marklogic.html

3. New Features in MarkLogic 12.0 EA1

3.1. Native Vector Support
With the recent developments in Generative AI (GenAI) and Retrieval Augmented Generation (RAG),
vector search has become a valuable tool in a search developer’s toolbox to further improve information
retrieval through vector search or vector reranking. Combining keyword-based scoring methods like
BM25 with vector similarity operations to perform a “hybrid search” boosts textually and semantically
similar documents to the top of your search result.

In a typical RAG architecture, the text classifier models map chunks of text into representative vectors
of floating-point numbers. Separate but semantically similar chunks of text would map to vectors that
are close to one another in the high-dimensional vector space.

These vectors can then be used to compute, for example, cosine similarity, dot product, or basic vector
arithmetic.

MarkLogic 12.0 EA1 introduces operators on vectors. This is the first step towards the full-scale vector
search support planned for MarkLogic 12 GA. While this support requires a full implementation of an
Approximate Nearest Neighbor (ANN) index, the operations available in MarkLogic 12.0 EA1 give an
API preview and allow exploration of hybrid search and vector-based reranking. The vector operations
available in MarkLogic 12.0 EA1 include creation, basic arithmetic, score helpers, and cosine and
euclidean distance functions that allow linear scans for nearest neighbors.

Integration with text classifier models like those provided by OpenAI is beyond the scope of this
article. Please refer to the documentation of your model of choice regarding mapping of text to vector
equivalents. The rest of this article assumes that this integration has already happened and that these
vectors are now available.

Vectors output by text classifier models are often represented as a JSON array:

JSON (URI: /sample.json)

{
 "envelope": {
 "headers": [
 {
 "textEmbedding" : {
 "lang": "zxx",
 "model": "text-embedding-ada-002",
 "source": "OpenAI",
 "dimension": 1536,
 "vector": [
 0.435647279024124, 0.167360082268715, 0.577132880687714, 0.0405717119574547,
-0.345730692148209,
 ...
 0.413799345493317, 0.339704662561417, -0.259793192148209, 0.118780590593815,
0.649678707122803
]
 }
 }
],
 "instance": {
 "url": "https://simple.wikipedia.org/wiki?curid=8126",
 "text": "The Trojan War was one of the most important ... in the 12th century BC."
 }
 }
}

MarkLogic 12 New Features in MarkLogic 12.0 EA1

2024-08-22 00:02 What's New in MarkLogic 12 Page 5

https://docs.marklogic.com/12.0/vec

They can also be represented as a serialized array of numbers in XML:

XML (URI: /sample.xml)

<envelope>
 <headers>
 <text-embedding>
 <model>text-embedding-ada-002</model>
 <source>OpenAI</source>
 <dimension>1536</dimension>
 <vector
xml:lang="zxx">[0.435647279024124,0.167360082268715,0.577132880687714,0.0405717119574547,-
0.345730692148209,
 ...,0.413799345493317,0.339704662561417,-0.259793192148209,0.118780590593815,0.649
678707122803]</vector>
 </text-embedding>
 </headers>
 <instance>
 <url>https://simple.wikipedia.org/wiki?curid=8126</url>
 <text>The Trojan War was one of the most important ... in the 12th century BC.</text>
 </instance>
</envelope>

Ingestion

SQL-aware Retrieval-Augmented Generation (RAG) systems and RAG-enabled Business Intelligence
(BI) tools are commonly configured to interact with SQL interfaces. MarkLogic Server supports this
through Template Driven Extraction (TDE) -based views, which can ingest document data into table-like
structures with columns that can be declared as scalar type vector.

Assuming the context of the template is /envelope, this is what your vector column would look like:

JSON column declaration within a TDE view

"columns": [{
 "name": "textEmbedding",
 "scalarType": "vector",
 "val": "vec:vector(headers/textEmbedding/array-node('vector'))",
 "dimension": "1536"
 },
 …
]

XML column declaration within a TDE view

<columns>
 <column>
 <name>textEmbedding</name>
 <scalar-type>vector</scalar-type>
 <val>vec:vector(headers/text-embedding/vector)</val>
 <dimension>1536</dimension>
 </column>
 …
</columns>

These generated columns can then be accessed through Optic queries.

Reference: "Template Dialect and Data Transformation Functions" in the "Template Driven Extraction
(TDE)" chapter of the Application Developer's Guide

Query

The following example query focuses on documents that contain the term trojan. Rows from a
view called article are joined on fragment ID, constraining the results to documents that match

MarkLogic 12 Native Vector Support

2024-08-22 00:02 What's New in MarkLogic 12 Page 6

the search term. queryVector contains the vector generated by sending a chunk of one of these
documents to a third-party or internal model. queryVector can be compared with the vector column of
each row to generate a vector rating--in this case, a cosine similarity. This rating can either be used to
sort the results directly or be combined with the cts.score of a document search to compute a hybrid
score:

SJS

const op = require('/MarkLogic/optic');

const documentQuery = cts.wordQuery("trojan")
const queryVector = vec.vector([
 -0.05992345495992422,-0.1234123430928, ... ,-4.549399422136e-05,-0.012034502243
])

const documents = op.fromSearch(
 documentQuery,
 ['fragmentId', 'score'],
 'docs_view',
 {
 'scoreMethod': 'bm25',
 'bm25LengthWeight': 0.5
 }
).joinDoc('doc',op.fragmentIdCol('fragmentId'));
const rows = op.fromView(
 'examples',
 'article',
 null,
 op.fragmentIdCol('$$viewFragment')
)

const result =
 documents
 .joinInner(
 rows,
 op.on(
 op.fragmentIdCol('fragmentId'),
 op.fragmentIdCol('$$viewFragment')
)
)
 .orderBy(op.desc(op.col('score')))
 .limit(30)
 .bind(op.as('queryvector', queryVector))
 .bind(op.as('cosineSim',
 op.vec.cosineSimilarity(
 op.col('textEmbedding'),
 op.col('queryvector')
)
))
 .bind(op.as('hybridScore',
 op.vec.vectorScore(op.col('score'), op.col('cosineSim'), 0.1)
))
 .select([
 op.col('doc'),
 op.col('cosineSim'),
 op.col('score'),
 op.col('hybridScore')
])
 .orderBy(op.desc(op.col('hybridScore')))
 .limit(20)
 .result();
result;

• op.fromSearch() retrieves the cts.score.

MarkLogic 12 Native Vector Support

2024-08-22 00:02 What's New in MarkLogic 12 Page 7

https://docs.marklogic.com/12.0/op.fromSearch

• op.joinDoc() joins the document content to pass to the RAG pipeline.
• op.limit() reduces the number of documents to be returned for vector computation.
• op.fromView() retrieves the vector column for processing.
• op.bind(op.as('cosineSim', ...)) binds a new column that is the result of the similarity

calculation between each vector value in the examples view and the query vector.
• op.vec.cosineSimilarity() computes the cosine similarity between the vector in the
textEmbedding column and queryVector.

• op.vec.vectorScore() is a convenience function. It uses a formula that takes cts.score as a
base in the first argument then adjusts it according to the vector similarity in the second argument. In
this example, the higher the cosine similarity of the vector, the more significant the boost to that base
cts.score. This pushes the more semantically similar documents higher in the result set.
This formula is used instead of Reciprocal Rank Fusion (RRF), a common method to fuse search
results from different sources into one final score.
Add op.vec.vectorScore()'s third argument, similarityWeight, to tweak the lift that cosine
similarity has on the hybrid score:
• Default: 0.1 (no similarityWeight argument)
• Lowest: 0.0 (cts.score remains unchanged)
• Highest: 1.0 (boosts cts.score significantly as the vector similarity (second argument)

approaches 1.0)
• op.select() renders these columns in its result:

• doc: The document content.
• cosineSim: The cosineSimilarity between each value in the vector column and
queryVector.

• score: The cts.score.
• hybridScore: The hybrid score.

• op.orderBy() with op.desc() on op.col() orders the resulting rows from highest to lowest
value in the hybridScore column.

Here is the XQuery version:

XQuery

MarkLogic 12 Native Vector Support

2024-08-22 00:02 What's New in MarkLogic 12 Page 8

https://docs.marklogic.com/12.0/ModifyPlan.prototype.joinDoc
https://docs.marklogic.com/12.0/ModifyPlan.prototype.limit
https://docs.marklogic.com/12.0/op.fromView
https://docs.marklogic.com/12.0/AccessPlan.prototype.bind
https://docs.marklogic.com/12.0/op.as
https://docs.marklogic.com/12.0/vec.cosineSimilarity
https://docs.marklogic.com/12.0/vec.vectorScore
https://docs.marklogic.com/12.0/vec.vectorScore
https://docs.marklogic.com/12.0/ModifyPlan.prototype.select
https://docs.marklogic.com/12.0/ModifyPlan.prototype.orderBy
https://docs.marklogic.com/12.0/op.desc
https://docs.marklogic.com/12.0/op.col

xquery version "1.0-ml";

import module namespace op = "http://marklogic.com/optic"
 at "/MarkLogic/optic.xqy";
import module namespace opvec = "http://marklogic.com/optic/expression/vec"
 at "/MarkLogic/optic/optic-vec.xqy";

let $document-query := cts:word-query("trojan")
let $query-vector := vec:vector((
 0.435647279024124, 0.167360082268715, 0.577132880687714, 0.0405717119574547,
-0.345730692148209,
 ...
 0.413799345493317, 0.339704662561417, -0.259793192148209, 0.118780590593815,
0.649678707122803
))

let $documents := op:from-search(
 $document-query,
 ("fragmentId","score"),
 "docs_view",
 map:map()
 => map:with("scoreMethod", "bm25")
 => map:with("bm25LengthWeight", 0.5)
)
 =>op:join-doc("doc",op:fragment-id-col("fragmentId"))
let $view := op:from-view(
 "examples",
 "article",
 (),
 op:fragment-id-col("$$view-fragment")
)
return $documents
 => op:join-inner(
 $view,
 op:on(
 op:fragment-id-col("fragmentId"),
 op:fragment-id-col("$$view-fragment")
)
)
 => op:order-by(op:desc(op:col("score")))
 => op:limit(30)
 => op:bind(op:as("queryvector", $query-vector))
 => op:bind(op:as("cosineSim",
 opvec:cosine-similarity(op:col("textEmbedding"), op:col("queryvector"))
))
 => op:bind(
 op:as("hybridScore",
 opvec:vector-score(op:col("score"), op:col("cosineSim"), 0.1)
)
)
 => op:select((
 op:col("doc"),
 op:col("cosineSim"),
 op:col("score"),
 op:col("hybridScore")
))
 => op:order-by(op:desc(op:col("hybridScore")))
 => op:limit(20)
 => op:result()

Be sure to explore the other new vector operators.

3.2. BM25 Relevance Ranking
MarkLogic 12.0 EA1 supports Best Match 25 (BM25) for relevance scoring of search results.

MarkLogic 12 BM25 Relevance Ranking

2024-08-22 00:02 What's New in MarkLogic 12 Page 9

https://docs.marklogic.com/12.0/vec

The BM25 method of scoring documents is widely used because of its effectiveness in ranking
documents based on relevance to a query. With the rise of Generative AI (GenAI) and Retrieval
Augmented Generation (RAG) workflows, BM25 has come into play for retrieving relevant documents to
supply as context to a Large Language Model (LLM). LLM-generated answers see a significant quality
boost when ranked documents become the sources of knowledge.

The MarkLogic Server core text search has always returned results based on relevance. The default
MarkLogic Server relevance scoring method, logTF-IDF, implicitly weights document length by counting
unique terms. The new BM25 scoring method explicitly does this by adding a tunable parameter to
directly increase or decrease the weight of a document's length on the score.

Consider the following documents' term frequencies and lengths retrieved by
cts.wordQuery("trojan"):

URI Term Frequency Length (Average: 1396 characters)

/doc1.json 3 1628

/doc2.json 2 976

/doc3.json 2 916

/doc4.json 10 2592

/doc5.json 2 868

Compare the ranking differences between traditional logTF-IDF, which uses term frequency alone, and
BM25, which heavily penalizes /doc4.json for being significantly longer than the average document
length of 1396:

Ranking logTF-IDF BM25

1st /doc4.json /doc5.json

2nd /doc1.json /doc2.json

3rd /doc2.json /doc3.json

4th /doc3.json /doc1.json

5th /doc5.json /doc4.json

The BM25 scoring method accounts for the fact that a short document with a high term frequency is
more likely to be about that term than a long document with the same term frequency, which is more
likely to simply be using that term in passing.

Use one of these code samples to enable the BM25 scoring method for core text search queries:

• Each specifies BM25 as the score method.
Default: logTF-IDF

• Each provides the optional parameter BM25 length weight of 0.25:
• Default: 0.33 (no BM25 length weight parameter)
• Lowest: Just above 0.0 (most similar to logTF-IDF results)
• Highest: 1.0 (weight document length as heavily as possible)

CTS

cts.search(
 cts.wordQuery("trojan"),
 [
 "score-bm25",
 "bm25-length-weight=0.25"
]
)

Optic

MarkLogic 12 BM25 Relevance Ranking

2024-08-22 00:02 What's New in MarkLogic 12 Page 10

https://docs.marklogic.com/12.0/cts.wordQuery

const op = require('/MarkLogic/optic');
op.fromSearch(
 cts.wordQuery("trojan"),
 null,
 null,
 {
 "scoreMethod" : "bm25",
 "bm25LengthWeight": 0.25
 }
)

NOTE
op.fromSearchDocs() also takes BM25 scoring parameters.

Search/REST Search API

import module namespace search = "http://marklogic.com/appservices/search"
 at "/MarkLogic/appservices/search/search.xqy";
search:search("trojan",
 <options
 xmlns="http://marklogic.com/appservices/search">
 <search-option>score-bm25</search-option>
 <search-option>bm25-length-weight=0.25</search-option>
 </options>
)

JSearch

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.documents()
 .where(cts.wordQuery("trojan"))
 .withOptions(
 {
 search: [
 'score-bm25',
 'bm25-length-weight=0.25'
]
 }
)
 .result()

Using core text search within MarkLogic Server has always been the key to finding the data that you
need. BM25 is an extra knob to further tune your search results.

3.3. Shortest Path Graph Algorithm
Many real-world problems--such as ones within navigational systems, network routing, and circuit
design--can be represented as shortest path problems.

In MarkLogic Server, triples and the Semantics capability can model and resolve such shortest path
problems. Each subject and object can be considered as nodes separated by predicate edges.
Crossing these edges comes at a cost, so finding the path with the fewest edges is crucial.

Likewise, the ways that recommendation systems and natural language processing applications use
knowledge graphs to model relationships between people, words, or concepts can be looked at as
shortest path problems.

MarkLogic 12 Shortest Path Graph Algorithm

2024-08-22 00:02 What's New in MarkLogic 12 Page 11

https://docs.marklogic.com/12.0/op.fromSearchDocs

Shortest path queries can help discover relevant facts in knowledge graphs and piece together
information that may have been missed before.

To facilitate such queries, MarkLogic 12.0 EA1 introduces the SPARQL magic property,
xdmp:shortestPath.

xdmp:shortestPath makes use of these named arguments:

• xdmp:start

• xdmp:end

• xdmp:pattern

• xdmp:path

• xdmp:length

The framework to support xdmp:shortestPath can easily allow the addition of future SPARQL magic
properties like xdmp:unnest.

Reference: W3C’s SPARQL/Extensions/Computed Properties

To better understand the shortest path problem, consider this simple data set:

@prefix p: <http://example.org/kennedy/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
p:john foaf:knows p:bob .
p:john foaf:knows p:alice .
p:john foaf:knows p:zak .
p:bob foaf:knows p:alice .
p:bob foaf:knows p:maia .
p:alice foaf:knows p:zak .
p:zak foaf:knows p:drew .
p:drew foaf:knows p:maia .

This diagram represents the data set:

The shortest path from john to maia would be the one with the fewest edges (blue arrows) between
them: through bob.

The Shortest Path from John to Maia

This SPARQL query uses the new xdmp:shortestPath property to find the shortest path from john
to maia:

MarkLogic 12 Shortest Path Graph Algorithm

2024-08-22 00:02 What's New in MarkLogic 12 Page 12

https://www.w3.org/wiki/SPARQL/Extensions/Computed_Properties#:~:text=A%20computed%20property%20(also%20known,member%20items%20of%20the%20list.

PREFIX xdmp: <http://marklogic.com/xdmp#>
PREFIX p: <http://example.org/kennedy/>
SELECT *
where {
 (
 [xdmp:start ?s]
 [xdmp:end ?o]
) xdmp:shortestPath (
 [xdmp:path ?path]
 [xdmp:length ?length]
)
 FILTER (?s = p:john && ?o = p:maia)
}

Here is the response:

[{
 "s": "<http://example.org/kennedy/john>",
 "o": "<http://example.org/kennedy/maia>",
 "path": [{
 "s": "http://example.org/kennedy/john",
 "_:ANON9088488689022242345": "http://xmlns.com/foaf/0.1/knows",
 "o": "http://example.org/kennedy/bob"
 }, {
 "s": "http://example.org/kennedy/bob",
 "_:ANON9088488689022242345": "http://xmlns.com/foaf/0.1/knows",
 "o": "http://example.org/kennedy/maia"
 }
],
 "length": "\"2\"^^xs:unsignedLong"
}]

By default, xdmp:shortestPath finds the shortest path from the subject (john) to the object (maia).

The FILTERs in this query are optional:

• ?s: Constrains the start of the shortest path search on the subject. If left off, the query would display
all the shortest paths that lead to the end object of a triple (in this case, to maia).

• ?o: Constrains the end of the shortest path search on the object. If left off, the query would display all
the shortest paths that start from the subject of a triple (in this case, from john).

For large graphs, apply FILTER on ?length to stop the shortest path search after reaching a specified
number of hops.

The Shortest Path from Maia to John

What about getting from maia (object) to john (subject) instead? In this case, use xdmp:pattern to
reverse the direction of the edges:

query
PREFIX xdmp: <http://marklogic.com/xdmp#>
PREFIX p: <http://example.org/kennedy/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/knows>
SELECT *
where {
 (
 [xdmp:start ?s]
 [xdmp:end ?o]
 [xdmp:pattern "?s foaf:|^foaf: ?o"]
) xdmp:shortestPath (
 [xdmp:path ?path]
 [xdmp:length ?length]
)
 FILTER (?s = p:maia && ?o = p:john)
}

MarkLogic 12 Shortest Path Graph Algorithm

2024-08-22 00:02 What's New in MarkLogic 12 Page 13

xdmp:pattern takes a triple pattern lookup as a string. This string uses the OR operator (|) along
with the inverse operator (^) to implement an inverse property path. This inverse property path reverses
the relationship between subject and object, forcing the shortest path computation to start with
object instead.

That query renders this result:

[{
 "s": "<http://example.org/kennedy/maia>",
 "o": "<http://example.org/kennedy/john>",
 "path": [{
 "o": "http://example.org/kennedy/bob",
 "s": "http://example.org/kennedy/maia"
 }, {
 "o": "http://example.org/kennedy/john",
 "s": "http://example.org/kennedy/bob"
 }
],
 "length": "\"2\"^^xs:unsignedLong"
}]

Reference: SPARQL 1.1 Property Paths

This new shortest path magic property can help discover links in a knowledge graph and supplies a
method to retrieve the path from start to finish--or from finish to start.

MarkLogic 12 Shortest Path Graph Algorithm

2024-08-22 00:02 What's New in MarkLogic 12 Page 14

https://www.w3.org/TR/sparql11-property-paths/

4. Technical support

Progress Software provides technical support according to the terms detailed in your Software License
Agreement or End User License Agreement.

We invite you to visit our support website at http://help.marklogic.com to access information
on known and fixed issues, knowledge base articles, and more. For licensed customers with an active
maintenance contract, see the Support Handbook for instructions on registering support contacts and
on working with the MarkLogic Server Technical Support team.

Complete product documentation, the latest product release downloads, and other useful information
is available for all developers at http://developer.marklogic.com. For technical questions, we
encourage you to ask your question on the Progress Community.

MarkLogic 12 Technical support

2024-08-22 00:02 What's New in MarkLogic 12 Page 15

http://help.marklogic.com
https://www.marklogic.com/wp-content/uploads/2021/01/support-handbook_2021_Jan_13.pdf
http://developer.marklogic.com
https://community.progress.com/s/topic/0TO4Q000000Y6WXWA0/marklogic-general-discussions

5. Copyright

For copyright information, see Product Documentation and Copyright Notice.

MarkLogic 12 Copyright

2024-08-22 00:02 What's New in MarkLogic 12 Page 16

https://www.progress.com/legal/documentation-copyright

	What's New in MarkLogic 12
	Table of Contents
	1. What's New in MarkLogic 12
	2. Release Notes
	2.1. MarkLogic 12.0 EA1
	2.1.1. Features
	2.1.2. Installation
	2.1.3. Upgrade

	3. New Features in MarkLogic 12.0 EA1
	3.1. Native Vector Support
	3.2. BM25 Relevance Ranking
	3.3. Shortest Path Graph Algorithm

	4. Technical support
	5. Copyright

