
Developing with XCC
MarkLogic 11

Publication date 2024-04-08
Copyright © 2024 Progress Software Corporation

All Rights Reserved

Table of Contents
1. Introduction to XCC .. 4

1.1. Overview of XCC ... 4
1.1.1. XCC Client Libraries Communicate with an XDBC Server 4
1.1.2. XCC Communicates with a Client-Server Architecture 4
1.1.3. XCC Automatically Pools Connections ... 5

1.2. API and Other Documentation .. 5
1.3. XCC Requirements ... 5

1.3.1. XCC MarkLogic Server Requirements .. 6
1.3.2. XML Contentbase Connector for Java (XCC/J) Requirements 6

2. Programming in XCC ... 7
2.1. Configuring an XDBC Server ... 7
2.2. XCC Sessions ... 7
2.3. Point-In-Time Queries .. 7
2.4. Automatically Retries Exceptions .. 7
2.5. Coding Basics ... 8
2.6. Evaluating JavaScript Queries ... 8
2.7. Working with JSON Content ... 9

2.7.1. Required Libraries .. 9
2.7.2. Inserting JSON Documents ... 9
2.7.3. Processing JSON Query Results ... 10

2.8. Accessing SSL-Enabled XDBC App Servers ... 10
2.8.1. Creating a Trust Manager ... 10
2.8.2. Accessing a Keystore ... 12
2.8.3. Managing Client-Side Authentication ... 12

2.9. Accessing XDBC App Servers through External Authentication 13
2.9.1. OAuth 2.0 .. 13

2.10. Understanding Result Caching ... 14
2.11. Multi-statement Transactions .. 14

2.11.1. Overview .. 14
2.11.2. Example: Using Multi-statement Transactions in Java 15
2.11.3. Terminating a Transaction in an Exception Handler 16
2.11.4. Retrying Multi-statement Transactions .. 17
2.11.5. Using Multi-statement Transactions With Older MarkLogic Versions 17

2.12. Participating in XA Transactions ... 18
2.12.1. Overview .. 18
2.12.2. Predefined Security Roles for XA Participation ... 19
2.12.3. Enlisting MarkLogic Server in an XA Transaction .. 19
2.12.4. Heuristically Completing a Stalled Transaction .. 20
2.12.5. Reducing Blocking Caused by Slow XA Transactions 22

2.13. Using a Load Balancer or Proxy Server with an XCC Application 22
2.13.1. Enable HTTP 1.1 Compliance ... 22
2.13.2. Configure the Load Balancer or Proxy Server ... 23
2.13.3. XCC Reverse Proxy Support ... 23

2.14. Connecting XCC to MarkLogic Cloud .. 24
3. Downloading and Using the XCC API .. 26
4. Using the Sample Applications .. 27

4.1. Setting Up Your Environment ... 27
4.1.1. Setting Up Your MarkLogic Server Environment ... 27
4.1.2. Setting Up Your Java Environment .. 27

4.2. Sample Applications .. 27
4.2.1. ContentFetcher .. 28
4.2.2. ContentLoader ... 28
4.2.3. DynamicContentStream .. 28

MarkLogic 11

2024-04-08 20:28 Developing with XCC Page 2

4.2.4. HelloSecureWorld ... 28
4.2.5. HelloWorld ... 29
4.2.6. ModuleRunner ... 29
4.2.7. OutputStreamInserter ... 29
4.2.8. SimpleQueryRunner ... 30
4.2.9. XA ... 30

5. Technical support ... 32
6. Copyright ... 33

MarkLogic 11

2024-04-08 20:28 Developing with XCC Page 3

1. Introduction to XCC

The XML Contentbase Connector (XCC) is an interface to communicate with MarkLogic Server from a
Java middleware application layer. This section provides background on XCC.

1.1. Overview of XCC
The XML Contentbase Connector (XCC) is used to communicate between a Java application layer and
MarkLogic Server using the XDBC protocol.

This section provides an overview of XCC.

1.1.1. XCC Client Libraries Communicate with an XDBC Server
XCC has a set of client libraries that you use to build applications that communicate with MarkLogic
Server. XCC requires that an XDBC server is configured in MarkLogic Server.

An XDBC server responds to XDBC and XCC requests. XDBC and XCC use the same wire protocol
to communicate with MarkLogic Server. You can write applications either as standalone applications
or ones that run in an application server environment. Your XCC-enabled application connects to
a specified port on a system that is running MarkLogic Server. The application communicates with
MarkLogic Server by submitting requests (for example, XQuery statements) and processing the results
returned by those programs. These XQuery programs can incorporate calls to XQuery functions stored
and accessible by MarkLogic Server, and accessible from any XDBC-enabled application. The XQuery
programs can perform the full suite of XQuery functionality, including loading, querying, updating and
deleting content.

XQuery requests submitted via XCC return results as specified by the XQuery code. These results can
include XML and a variety of other datatypes. It is the XCC application's responsibility to parse, process
and interpret these results in a manner appropriate to the variety of datatypes available. There are a
number of publicly available libraries for assisting with this task, or you may write your own code. In
order to accept connections from XCC-enabled applications, MarkLogic Server must be configured with
an XDBC Server listening on the designated port. Each XDBC Server connects by default to a specific
database within MarkLogic Server, but XCC provides the ability to communicate with any database in
the MarkLogic Server cluster to which your application connects (and for which you have the necessary
permissions and privileges).

1.1.2. XCC Communicates with a Client-Server Architecture
XCC communicates with MarkLogic Server with a client-server architecture, where the XCC application
is the client and MarkLogic Server is the server. The following figure illustrates the high-level
architecture:

MarkLogic 11 Introduction to XCC

2024-04-08 20:28 Developing with XCC Page 4

As shown in the diagram above, the XCC-enabled application can run on the same system as an
instance of MarkLogic Server (a host), or it can run on a completely different system, as long as the two
systems are networked together.

In the diagram, the XCC application running on System A has opened an XDBC connection to port x1
on System B. On System B, MarkLogic Server is configured with an XDBC Server listening to port x1,
and that XDBC Server connects to databased1. Consequently, the configuration shown in the diagram
above allows the XCC application on System A to submit XQuery requests (including query, load,
update, and delete) for evaluation against databased1.

1.1.3. XCC Automatically Pools Connections
XCC automatically does connection pooling, so you do not need to write any connection pooling logic
in your application. The XCC Session object automatically obtains and releases connections for XCC
applications as needed.

1.2. API and Other Documentation
This document provides an introduction to the XCC developer libraries. For detailed API documentation
for XCC and for MarkLogic Server, or to learn how to configure XDBC servers in MarkLogic Server, see
the appropriate documents:

• Java API documentation (XCC Javadoc, available on developer.marklogic.com)
• MarkLogic Server Application Developer's Guide
• MarkLogic Server Administrating MarkLogic Server
• MarkLogic XQuery and XSLT Function Reference

1.3. XCC Requirements
This section lists the requirements for XCC.

MarkLogic 11 API and Other Documentation

2024-04-08 20:28 Developing with XCC Page 5

https://docs.marklogic.com/javadoc/xcc/index.html
https://developer.marklogic.com/products/java/
https://docs.marklogic.com/guide/app-dev
https://docs.marklogic.com/guide/admin-guide/en/administrating-marklogic-server.html
https://docs.marklogic.com/all

1.3.1. XCC MarkLogic Server Requirements
XCC requires MarkLogic Server 7.0-1 or later.

NOTE
Not all XCC features are usable with all versions of MarkLogic Server. For example,
you must have MarkLogic 8 or later to use the Server-Side JavaScript and JSON
features with XCC.

1.3.2. XML Contentbase Connector for Java (XCC/J) Requirements
XCC has the following requirements:

• Java 8 or later
• MarkLogic Server 7.0-1 or later (on any platform)

NOTE
The IBM JRE is not supported.

Note that not all XCC features are available with all versions of MarkLogic Server.

You must have MarkLogic 8 or later to use the Server-Side JavaScript and JSON features of XCC, and
your classpath must include Jackson JAR files for Jackson version 2.5 or later. For more information
about Jackson, see GitHub.

To use XCC in an environment that includes a load balancer or a proxy server between MarkLogic and
your XCC application, some configuration is required. For details, see Using a Load Balancer or Proxy
Server with an XCC Application.

MarkLogic 11 XCC Requirements

2024-04-08 20:28 Developing with XCC Page 6

http://github.com/FasterXML/jackson

2. Programming in XCC

XCC allows you to create multi-tier applications that communicate with MarkLogic Server as the
underlying content repository. This section describes some of the basic programming concepts used
in XCC.

2.1. Configuring an XDBC Server
Use the Admin Interface to set up an XDBC server. For detailed instructions how to configure an
XDBC Server, see Administrating MarkLogic Server. You need an XDBC Server for an XCC program
to communicate with MarkLogic Server. Alternately, you can use set up a REST instance to accept
XDBC requests by setting the xdbc-enabled option to true in your REST instance; for details, see
Administering REST Client API Instances in the REST Application Developer’s Guide.

2.2. XCC Sessions
XCC programs use the Session interface to set up and control communication with MarkLogic Server.
XCC automatically creates and releases connections to MarkLogic Server as needed, and automatically
pools the connections so that multiple requests are handled efficiently.

A Session handles authentication with MarkLogic Server and holds a dynamic state, but it is a
lightweight object. It is OK to create and release Session objects as needed and as makes logical
sense for your program. Do not expend effort to pool and reuse them, however, because they are not
expensive to create. For example, if your program is doing multiple requests one after another, create a
Session object at the beginning and close it when the last request is complete.

You set up the connection details with the ContentSource object. You can submit the connection
details when you invoke the XCC program with a URL that has the following form:

xcc://username:password@host:port/database

Also, there are discrete arguments to the constructors in the API to set up any or all portions of the
connection details.

2.3. Point-In-Time Queries
Point-in-time queries allow you to query older versions of content in a database. In an XCC application,
you set up the options for any requests submitted to MarkLogic Server with the RequestOptions
class. One of the options you can set is the effective point-in-time option. Therefore, to set up a query
to run at a different point in time, you just set that option (the setEffectivePointInTime method in
Java) on the RequestOptions. The query will then run at the specified point in time.

There are several things you must set up on MarkLogic Server in order to perform point-in-time queries.
For details, see Point-In-Time Queries in the Application Developer’s Guide.

2.4. Automatically Retries Exceptions
Certain exceptions that MarkLogic Server throws are retryable; that is, the exception is thrown because
of a condition that is transitory, and applications can try the request again after getting the exception.
XCC will automatically retry retryable exceptions in single-statement transactions. You can control the
maximum number of retryable exceptions with the RequestOptions interface.

Multi-statement transactions cannot automatically be retried by the server. Your application must handle
retries explicitly when using multi-statement transactions. For details, see Retrying Multi-statement
Transactions.

MarkLogic 11 Programming in XCC

2024-04-08 20:28 Developing with XCC Page 7

https://docs.marklogic.com/guide/admin-guide/en/administrating-marklogic-server.html
https://docs.marklogic.com/guide/rest-dev/service#
https://docs.marklogic.com/guide/app-dev/point_in_time

2.5. Coding Basics
To use XCC, there are several basic things you need to do in your Java code:

1. Import the needed libraries.
2. Set up the ContentSource object to authenticate against MarkLogic Server.
3. Create a new Session object.
4. Add a Request to the session object.
5. Submit the request and get back a ResultSequence object from MarkLogic Server.
6. Do something with the results (print them out, for example).
7. Close the session.

The following are Java code samples that illustrate these basic design patterns:

package com.marklogic.xcc.examples;
import com.marklogic.xcc.ContentSource;
import com.marklogic.xcc.ContentSourceFactory;
import com.marklogic.xcc.Session;
import com.marklogic.xcc.Request;
import com.marklogic.xcc.ResultSequence;
URI uri = new URI("xcc://user:pass@localhost:8000/mycontent");
ContentSource contentSource =
 ContentSourceFactory.newContentSource (uri);
Session session = contentSource.newSession();
Request request = session.newAdhocQuery ("\"Hello World\"");
ResultSequence rs = session.submitRequest (request);
System.out.println (rs.asString());
session.close();

NOTE
Session objects are not thread safe. A Session object should not be used
concurrently by multiple threads.

2.6. Evaluating JavaScript Queries
You can use AdhocQuery and Session.submitRequest to evaluate either XQuery or Server-Side
JavaScript queries on MarkLogic Server. By default, XCC assumes the query language is XQuery.
Use RequestOptions.setQueryLanguage to specify JavaScript instead. For example:

// Create a query that is Server-Side JavaScript
AdhocQuery request =
 session.newAdhocQuery("cts.doc('/my/uri')");
// Set the query language to JavaScript
RequestOptions options = new RequestOptions();
options.setQueryLanguage("javascript");
// Submit the query
request.setOptions(options);
ResultSequence rs = session.submitRequest(request);

You can the results of your query in the usual way. When a ResultItem in the result sequence is a
JsonItem, you can extract the item as Jackson JsonNode and use the Jackson library functions to
traverse and access the structure.

Note that there is a difference between returning native JavaScript objects and arrays returning JSON
nodes from the database:

MarkLogic 11 Coding Basics

2024-04-08 20:28 Developing with XCC Page 8

• A JavaScript object or array corresponds to an atomic result item type. That is, the underlying value
type is JS_OBJECT or JS_ARRAY, and ItemType.isAtomic returns true.

• A JSON node, such as the result of calling cts.doc() or the output from calling a NodeBuilder
method, has a node value type. That is, a value type such as OBJECT_NODE, ARRAY_NODE,
BOOLEAN_NODE, NUMBER_NODE, or NULL_NODE. Also, ItemType.isNode returns true.

In most cases, your code can ignore this distinction because you can use Jackson to manipulate both
kinds of results transparently through the JsonItem interface. For details, see Working with JSON
Content.

2.7. Working with JSON Content
This section covers topics related to using XCC to read and write JSON data.

2.7.1. Required Libraries
The XCC interfaces include an integration with Jackson for manipulating JSON data in Java. To
use XCC methods such as JsonItem.asJsonNode or the ContentFactory.newJsonContent
overload that accepts a JsonNode, you must have an installation of Jackson and put the Jackson jar
files on your classpath.

Exactly which libraries you need to add to your classpath depends on the Jackson features you use, but
you will probably need at least the Jackson core libraries, available from http://github.com/FasterXML/
jackson

For example, you might need to add the following libraries to your classpath:

• jackson-core-version.jar
• jackson-annotations-version.jar
• jackson-databind-version.jar

For information on version restrictions, see XML Contentbase Connector for Java (XCC/J)
Requirements.

2.7.2. Inserting JSON Documents
You can insert JSON data into the database the same way you insert other data. If the document URI
extension is mapped to the JSON document format in the MarkLogic Server MIME type mappings, then
a JSON document is automatically created.

For example, the following code snippet reads JSON data from a file and inserts it into the database as
a JSON document.

ContentSource cs = ContentSourceFactory.newContentSource(SERVER_URI);
Session session = cs.newSession();
File inputFile = new File("data.json");
String uri = "/xcc/fromFile.json";
Content content = ContentFactory.newContent(uri, inputFile, null);
session.insertContent(content);

If there is no URI extension or you use an extension that is not mapped to JSON, you can explicitly
specify JSON using ContentCreateOptions.setFormat. For example:

ContentCreateOptions options = new ContentCreateOptions();
options.setFormat(DocumentFormat.JSON);
Content content = ContentFactory.newContent(uri, inputFile, options);

The following code snippet inserts a JSON document into the database using an in-memory String
representation of the contents:

MarkLogic 11 Working with JSON Content

2024-04-08 20:28 Developing with XCC Page 9

https://docs.marklogic.com/cts.doc
http://github.com/FasterXML/jackson
http://github.com/FasterXML/jackson

ContentSource cs = ContentSourceFactory.newContentSource(SERVER_URI);
Session session = cs.newSession();
String uri = "/xcc/fromString.json";
String data = "{\"num\":1, \"arr\":[0, 1], \"str\":\"value\"}";
ContentCreateOptions options = ContentCreateOptions.newJsonInstance();
Content content = ContentFactory.newContent(uri, data, options);
session.insertContent(content);

You can also use Jackson to build up JSON content, and then pass a Jackson JsonNode
in to ContentFactory.newJsonContent. To learn more about Jackson, see https://github.com/
FasterXML/jackson-doc.

2.7.3. Processing JSON Query Results
If you run an ad hoc query that returns JSON (or a JavaScript object or array), you can use Jackson to
traverse and manipulate the data in your Java application.

For example, the following code snippet evaluates an ad hoc Server-Side JavaScript query that
retrieves a JSON document from the database, and then accesses the value in the document’s “num”
property as an integer:

Session session = cs.newSession();
AdhocQuery request =
 session.newAdhocQuery("cts.doc('/xcc/fromString.json')");
RequestOptions options = new RequestOptions();
options.setQueryLanguage("javascript");
request.setOptions(options);
ResultSequence rs = session.submitRequest(request);
while (rs.hasNext()) {
 XdmItem item = rs.next().getItem();
 if (item instanceof JsonItem) {
 JsonItem jsonItem = (JsonItem) item;
 JsonNode node = jsonItem.asJsonNode();
 // process the value...
 }
}

You can use JsonItem.asJsonNode to convert a JSON result item into a Jackson JsonNode
(com.fasterxml.jackson.databind.JsonNode). For example:

JsonItem jsonItem = (JsonItem) item;
JsonNode node = jsonItem.asJsonNode();

You can also use the Jackson interfaces to manipulate native JavaScript objects and arrays returned by
ad hoc Server-Side JavaScript queries. That is, the above conversion to a JsonNode works whether the
item is a JSON node or an atomic JS_OBJECT result.

Then you can use any of the Jackson interfaces to manipulate the contents. For example, the following
code snippet accesses the value of the “num” JSON property as an integer:

node.get("num").asInt()

To learn more about Jackson, see http://github.com/FasterXML/jackson-docs

2.8. Accessing SSL-Enabled XDBC App Servers
The basic approaches for an XCC application to create a secure connection to an SSL-enabled XDBC
App Server are described in this section and demonstrated in the HelloSecureWorld.java example
distributed with your MarkLogic XCC software distribution.

2.8.1. Creating a Trust Manager
This section describes how to use a simple Trust Manager for X.509-based authentication. The Trust
Manager shown here does not validate certificate chains and is therefore unsafe and should not be

MarkLogic 11 Accessing SSL-Enabled XDBC App Servers

2024-04-08 20:28 Developing with XCC Page 10

https://github.com/FasterXML/jackson-docs
https://github.com/FasterXML/jackson-docs
http://github.com/FasterXML/jackson-docs

used for production code. See your Java documentation for details on how to create a more robust
Trust Manager for your specific application or how to obtain a Certificate Authority from a keystore.

To enable SSL access using a trust manager, import the following classes in addition to those described
in Coding Basics:

import javax.net.ssl.SSLContext;
import com.marklogic.xcc.SecurityOptions;
import javax.net.ssl.TrustManager;
import javax.net.ssl.X509TrustManager;
import java.security.KeyManagementException;
import java.security.cert.X509Certificate;
import java.security.cert.CertificateException;

Create a trust manager and pass it to the SSLContext.init() method:

protected SecurityOptions newTrustOptions()
 throws Exception
{
 TrustManager[] trust = new TrustManager[] {
 new X509TrustManager() {
 public void checkClientTrusted(
 X509Certificate[] x509Certificates,
 String s
)
 throws CertificateException {
 // nothing to do
 }
 public void checkServerTrusted(
 X509Certificate[] x509Certificates,
 String s)
 throws CertificateException
 {
 // nothing to do
 }
 public X509Certificate[] getAcceptedIssuers() {
 return null;
 }
 }
 };
 SSLContext sslContext = SSLContext.getInstance("SSLv3");
 sslContext.init(null, trust, null);
 return new SecurityOptions(sslContext);
}

Call ContentSourceFactory.newContentSource() with a host name, port, username, password,
and SSL security options defined by newTrustOptions():

ContentSource cs =
 ContentSourceFactory.newContentSource (host,
 port,
 username,
 password,
 null,
 newTrustOptions());

NOTE
If you are passing a URI to ContentSourceFactory.newContentSource(),
specify a connection scheme of xccs, rather than xcc, as shown in Accessing a
Keystore.

MarkLogic 11 Accessing SSL-Enabled XDBC App Servers

2024-04-08 20:28 Developing with XCC Page 11

2.8.2. Accessing a Keystore
You can use the Java keytool utility to import a MarkLogic certificate into a keystore. See the Java
JSSE documentation for details on the use of the keytool and your keystore options.

You can explicitly specify a keystore, as shown in this example, or you can specify a null keystore.
Specifying a null keystore causes the TrustManagerFactory to locate your default keystore, as
described in the Java Secure Socket Extension (JSSE) Reference Guide.

To enable SSL by accessing certificates in a keystore, import the following classes in addition to those
described in Coding Basics:

import com.marklogic.xcc.SecurityOptions;
import com.marklogic.xcc.ContentSource;
import com.marklogic.xcc.ContentSourceFactory;
import java.io.FileInputStream;
import java.net.URI;
import javax.net.ssl.KeyManager;
import javax.net.ssl.KeyManagerFactory;
import javax.net.ssl.TrustManager;
import javax.net.ssl.TrustManagerFactory;
import javax.net.ssl.X509TrustManager;
import javax.net.ssl.SSLContext;
import java.security.KeyStore;
import java.security.cert.X509Certificate;

Get the signed certificate from a keystore and pass it to the SSLContext.init() method:

protected SecurityOptions newTrustOptions()
 throws Exception
{
// Load key store with trusted signing authorities.
 KeyStore trustedKeyStore = KeyStore.getInstance("JKS");
 trustedKeyStore.load(
 new FileInputStream("C:/users/myname/.keystore"),
 null);
// Build trust manager to validate server certificates using the
 specified key store.
 TrustManagerFactory trustManagerFactory =
 TrustManagerFactory.getInstance("SunX509");
 trustManagerFactory.init(trustedKeyStore);
 TrustManager[] trust = trustManagerFactory.getTrustManagers();
 SSLContext sslContext = SSLContext.getInstance("SSLv3");
 sslContext.init(null, trust, null);
 return new SecurityOptions(sslContext);
}

Call ContentSourceFactory.newContentSource() with a URI:

ContentSource cs =
 ContentSourceFactory.newContentSource (uri,
 newTrustOptions());

The URI is passed from the command line in this form:

xccs://username:password@hostname:port

2.8.3. Managing Client-Side Authentication
You can define a KeyManager, if your client application is required to send authentication credentials to
the server. The following example adds client authentication to the newTrustOptions method shown
in Accessing a Keystore:

MarkLogic 11 Accessing SSL-Enabled XDBC App Servers

2024-04-08 20:28 Developing with XCC Page 12

protected SecurityOptions newTrustOptions()
 throws Exception
{
// Load key store with trusted signing authorities.
 KeyStore trustedKeyStore = KeyStore.getInstance("JKS");
 trustedKeyStore.load(
 new FileInputStream("C:/users/myname/.keystore"),
 null);
// Build trust manager to validate server certificates using the
 specified key store.
 TrustManagerFactory trustManagerFactory =
 TrustManagerFactory.getInstance("SunX509");
 trustManagerFactory.init(trustedKeyStore);
 TrustManager[] trust = trustManagerFactory.getTrustManagers();
// Load key store with client certificates.
 KeyStore clientKeyStore = KeyStore.getInstance("JKS");
 clientKeyStore.load(
 new FileInputStream("C:/users/myname/.keystore"),
 null);
// Get key manager to provide client credentials.
 KeyManagerFactory keyManagerFactory =
 KeyManagerFactory.getInstance("SunX509");
 keyManagerFactory.init(clientKeyStore, “passphrase”);
 KeyManager[] key = keyManagerFactory.getKeyManagers();
// Initialize the SSL context with key and trust managers.
 SSLContext sslContext = SSLContext.getInstance("SSLv3");
 sslContext.init(key, trust, null);
 return new SecurityOptions(sslContext);
}

2.9. Accessing XDBC App Servers through External
Authentication
When connecting to XDBC app servers, XCC users can be authenticated through external
authentication protocols.

2.9.1. OAuth 2.0
[v11.2.0 and up]

XCC supports connecting to XDBC App Servers through OAuth.

To use OAuth, you must configure your XDBC app server to use the OAuth authentication protocol.

With OAuth authentication set up, you must pass these parameters through the ContentSourceFactory
methods:

• The OAuth JWT access token that you have acquired from a supported vendor.
• The authentication type string OAUTH.

NOTE

• You are responsible for passing a valid JWT access token which will not expire or
become invalid in the middle of a request to prevent MarkLogic Server from returning
an error.

• XCC is not responsible for maintaining, validating, or renewing the JWT access
token.

MarkLogic 11 Accessing XDBC App Servers through External Authentication

2024-04-08 20:28 Developing with XCC Page 13

https://docs.marklogic.com/guide/security-guide/en/external-security.html
https://docs.marklogic.com/javadoc/xcc/com/marklogic/xcc/ContentSourceFactory.html

2.10. Understanding Result Caching
When you submit a request to MarkLogic Server, the results are returned to your application in a
ResultSequence. By default, the XdmItem objects in the sequence are cached. That is, all the result
items are read and buffered in memory. Cached results do not tie up any connection resources and are
usually preferred.

A non-cached, or streaming, ResultSequence may only be accessed sequentially and hold the
connection to MarkLogic Server open. Individual results may only be read once and on demand, so the
result set consumes less memory, at the cost of less efficient access.

If you are retrieving large results, such as a large binary document, you may disable result caching to
conserve memory. You may disable result caching per request by creating a RequestOption object
with the setting disabled, and associating it with a request, either directly with Request.setOptions
or passing it as a parameter to a Request creation method such as Session.newAdhocQuery. You
may disable result caching per session by setting the default request options for the session using
Session.setDefaultRequestOptions.

For details, see the ResultSequence XCC javadoc.

2.11. Multi-statement Transactions
By default, all transactions run as single-statement, auto-commit transactions.

MarkLogic Server also supports multi-statement, explicitly committed transactions in XQuery, Server-
Side JavaScript, and XCC.

However, this section covers only related behaviors unique to XCC.

For more details on transaction concepts, see Understanding Transactions in MarkLogic Server in the
Application Developer’s Guide.

2.11.1. Overview
Use the following procedure to use multi-statement, explicitly committed transactions with XCC:

1. Create a Session object in the usual way.
2. Call Session.setAutoCommit with a value of false. The next transaction created in the

session will run as a multi-statement, explicit commit transaction.
3. Optionally, call Session.setUpdate to specify an explicit transaction type. By default, MarkLogic

determines the transaction type through static analysis of the first statement in a request, but you
can explicitly set the transaction type to update or query using Session.setUpdate.

4. Call Session.submitRequest as usual to operate on your data. All requests run in the same
transaction until the transaction is committed or rolled back.

5. Call Session.commit or Session.rollback to commit or rollback the transaction. If the
session ends or times out without explicitly commit or rolling back, the transaction is rolled back.

6. To restore a session to the default, single-statement transaction model, call
Session.setAutoCommit with a value of true and Session.setUpdate with a value of
AUTO.

Note that the transaction configuration defined by setAutoCommit and setUpdate remain in effect
for all transactions created by a session until explicitly changed. If you override the transaction
configuration in an ad hoc query, the override applies only to the current transaction.

Multi-statement query transactions allow all the statements in a transaction to share the same point-in-
time view of the database, as discussed in Point-In-Time Queries.

In a multi-statement update transaction, updates performed by one statement (or request) are visible to
subsequent statements in the same transaction, without being visible to other transactions.

MarkLogic 11 Understanding Result Caching

2024-04-08 20:28 Developing with XCC Page 14

https://docs.marklogic.com/guide/app-dev/transactions#

A multi-statement transaction remains open until it is committed or rolled back. Use Session.commit.
to commit a multi-statement transaction and make the changes visible in the database. Use
Session.rollback to roll back a multi-statement transaction, discarding any updates. Multi-
statement transactions are implicitly rolled back when the containing session ends or the transaction
times out. Failure to explicitly commit or rollback a multi-statement update transaction can tie up
resources, hold locks unnecessarily, and increase the chances of deadlock.

NOTE
You may receive a java.lang.IllegalStateException if you call
Session.commit from an exception handler when there are no pending updates in
the current transaction. Committing from a handler is not recommended.

For a detailed discussion of multi-statement transactions, see Understanding Transactions in MarkLogic
Server in the Application Developer’s Guide.

Multi-statement transactions impose special re-try semantics on XCC applications. For details, see
Retrying Multi-statement Transactions.

2.11.2. Example: Using Multi-statement Transactions in Java
The following example demonstrates using multi-statement transactions in Java. The first
multi-statement transaction in the session inserts two documents into the database, calling
Session.commit to complete the transaction and commit the updates. The second transaction
demonstrates the use of Session.rollback. The third transaction demonstrates implicitly rolling
back updates by closing the session.

MarkLogic 11 Multi-statement Transactions

2024-04-08 20:28 Developing with XCC Page 15

https://docs.marklogic.com/guide/app-dev/transactions
https://docs.marklogic.com/guide/app-dev/transactions

import java.net.URI;
import com.marklogic.xcc.ContentSource;
import com.marklogic.xcc.ContentSourceFactory;
import com.marklogic.xcc.Session;
public class SimpleMST {
 public static void main(String[] args) throws Exception {
 if (args.length != 1) {
 System.err.println("usage: xcc://user:password@host:port/contentbase");
 return;
 }
 // Obtain a ContentSource object for the server at the URI.
 URI uri = new URI(args[0]);
 ContentSource contentSource =
 ContentSourceFactory.newContentSource(uri);
 // Create a Session and set the transaction mode to trigger
 // multi-statement transaction use.
 Session updateSession = contentSource.newSession();
 updateSession.setAutoCommit(false);
 updateSession.setUpdate(Session.Update.TRUE);
 // The request starts a new, multi-statement transaction.
 updateSession.submitRequest(updateSession.newAdhocQuery(
 "xdmp:document-insert('/docs/mst1.xml', <data/>)"));
 // This request executes in the same transaction as the previous
 // request and sees the results of the previous update.
 updateSession.submitRequest(updateSession.newAdhocQuery(
 "xdmp:document-insert('/docs/mst2.xml', fn:doc('/docs/mst1.xml'));"));
 // After commit, updates are visible to other transactions.
 // Commit ends the transaction after current stmt completes.
 updateSession.commit(); // txn ends, updates kept
 // Rollback discards changes and ends the transaction.
 updateSession.submitRequest(updateSession.newAdhocQuery(
 "xdmp:document-delete('/docs/mst1.xml')"));
 updateSession.rollback(); // txn ends, updates lost
 // Closing session without calling commit causes a rollback.
 updateSession.submitRequest(updateSession.newAdhocQuery(
 "xdmp:document-delete('/docs/mst1.xml')"));
 updateSession.close(); // txn ends, updates lost
 }
}

2.11.3. Terminating a Transaction in an Exception Handler
Calling Session.commit from an exception handler that wraps a request participating in a multi-
statement transaction may raise java.lang.IllegalStateException. You may always safely call
Session.rollback from such a handler.

Usually, an exception raised during multi-statement transaction processing leaves the Session open,
allowing you to continue working in the transaction after handling the exception. However, in order
to preserve consistency, exceptions occurring under the following circumstances always roll back the
transaction:

• After an XQuery statement has finished but before the XCC request is completed
• In the middle of an explicit commit or rollback

If such a rollback occurs, the current transaction is terminated before control reaches your
exception handler. Calling Session.commit when there is no active transaction raises a
java.lang.IllegalStateException. Calling Session.rollback when there is no active
transaction does not raise an exception, so rollback from a handler is always safe.

Therefore, it is usually only safe to call Session.commit from an exception handler for specific errors
you expect to receive and for which you can predict the state of the transaction.

MarkLogic 11 Multi-statement Transactions

2024-04-08 20:28 Developing with XCC Page 16

2.11.4. Retrying Multi-statement Transactions
MarkLogic Server sometimes detects the need to retry a transaction. For example, if the server detects
a deadlock, it may cancel one of the deadlocked transactions, allowing the other to complete; the
canceled transaction should be re-tried.

With single-statement, auto-commit transactions, the server can usually retry automatically because it
has the entire transaction available at the point of detection. However, the statements in multi-statement
transactions from XCC clients may be interleaved with arbitrary application-specific code of which the
server has no knowledge.

In such cases, instead of automatically retrying, the server throws a RetryableXQueryException.
The calling application is then responsible for re-trying all the requests in the transaction up to that
point. This exception is more likely to occur when using multi-statement transactions.

The following example demonstrates logic for re-trying a multi-statement transaction. The multi-
statement transaction code is wrapped in a retry loop with an exception handler that waits between
retry attempts. The number of retries and the time between attempts is up to the application.

import java.net.URI;
import com.marklogic.xcc.ContentSource;
import com.marklogic.xcc.ContentSourceFactory;
import com.marklogic.xcc.Session;
import com.marklogic.xcc.exceptions.RetryableXQueryException;
public class TransactionRetry {
 public static final int MAX_RETRY_ATTEMPTS = 5;
 public static final int RETRY_WAIT_TIME = 1;

 public static void main(String[] args) throws Exception {
 if (args.length != 1) {
 System.err.println("usage: xcc://user:password@host:port/contentbase");
 return;
 }
 // Obtain a ContentSource object for the server at the URI.
 URI uri = new URI(args[0]);
 ContentSource contentSource =
 ContentSourceFactory.newContentSource(uri);
 // Create a Session and set the transaction mode to trigger
 // multi-statement transaction use.
 Session session = contentSource.newSession();
 Session.setAutoCommit(false);
 Session.setUpdate(Session.Update.TRUE);
 // Re-try logic for a multi-statement transaction
 for (int i = 0; i < MAX_RETRY_ATTEMPTS; i++) {
 try {
 session.submitRequest(session.newAdhocQuery(
 "xdmp:document-insert('/docs/mst1.xml', <data/>)"));
 session.submitRequest(session.newAdhocQuery(
 "xdmp:document-insert('/docs/mst2.xml', fn:doc('/docs/mst1.xml'));"));
 session.commit();
 break;
 } catch (RetryableXQueryException e) {
 Thread.sleep(RETRY_WAIT_TIME);
 }
 }
 session.close();
 }
}

2.11.5. Using Multi-statement Transactions With Older MarkLogic Versions
If you use multi-statement transactions or set the transaction time limit when using XCC version
8.0-2 or later with versions of MarkLogic Server older than 8.0-2, you should set the system property

MarkLogic 11 Multi-statement Transactions

2024-04-08 20:28 Developing with XCC Page 17

xcc.txn.compatible to true. If you do not set this, then you will get an exception when trying to set
the transaction mode or transaction time limit.

You can set the property on the java command line with an argument of the following form:

java -Dxcc.txn.compatible=true

You can also set the property programmatically by calling System.setProperty.

You do not need to set the property if your XCC application does not use multi-statement transactions
or if your application communicates with MarkLogic Server version 8.0-2 or later.

2.12. Participating in XA Transactions
MarkLogic Server can participate in distributed transactions by acting as a Resource Manager in an
XA/JTA transaction. This section covers the related topics.

NOTE
To use XA, a license that includes XA is required.

2.12.1. Overview
XA is a standard for distributed transaction processing defined by The Open Group. For details about
XA, see https://publications.opengroup.org/?catalogno=c193

JTA is the Java Transaction API, a Java standard which supports distributed transactions across XA
resources. For details about JTA, see: http://java.sun.com/products/jta/

The XCC API includes support for registering MarkLogic Server as a resource with an XA Transaction
Manager. For details, see Enlisting MarkLogic Server in an XA Transaction.

The basic XA architecture as it applies to MarkLogic Server is shown in this diagram:

MarkLogic 11 Participating in XA Transactions

2024-04-08 20:28 Developing with XCC Page 18

https://publications.opengroup.org/?catalogno=c193
http://java.sun.com/products/jta/

2.12.2. Predefined Security Roles for XA Participation
The following security roles are predefined for participating in and administering XA transactions:

• The xa user role allows creation and management of one’s own XA transaction branches in
MarkLogic Server.

• The xa-admin role allows creation and management of any user’s XA transaction branches in
MarkLogic Server.

The xa role is required to participate in XA transactions. The xa-admin role is intended primarily for
Administrators who need to complete or forget XA transactions. See Heuristically Completing a Stalled
Transaction.

2.12.3. Enlisting MarkLogic Server in an XA Transaction
To use MarkLogic Server in an XA transaction, use the Session.getXAResource method to register
your XCC session as a javax.transaction.xa.XAResource with the XA Transaction Manager.

The following code snippet shows how to enlist an XCC session in a global XA transaction. Once you
enlist the Session, any work performed in the session is part of the global transaction. For complete
code, see the sample code in com.marklogic.xcc.examples.XA.

javax.transaction.TransactionManager tm = ...;
Session session = ...;
try {
 // Begin a distributed transaction
 tm.begin();

 // Add the MarkLogic Session to the distributed transaction
 javax.transaction.xa.XAResource xaRes = session.getXAResource();
 tm.getTransaction().enlistResource(xaRes);

 // Perform MarkLogic Server updates under the global transaction
 session.submitRequest(session.newAdhodquery(
 "xdmp:document-insert('a', <a/>)"));

 // Update other databases here

 //Commit all updates together
 tm.commit();
} catch (Exception e) {
 e.printStackTrace();
 if (tm. getTransaction != null) tm.rollback();
} finally {
 session.close();
}

When MarkLogic Server acts as an XA transaction Resource Manager, requests submitted to the server
are always part of a multi-statement update transaction, with the following important differences:

• The Session.setAutoCommit and Session.setTransactionMode settings are ignored. The
transaction is always a multi-statement update transaction, even if only a single request is submitted
to MarkLogic Server during the global transaction.

• The application should not call Session.commit or xdmp:commit(). The transaction is committed
(or rolled back) as part of the global XA transaction. To commit the global transaction, use the
Transaction Manager with which the MarkLogic Server XAResource is registered.

• The application may call Session.rollback or xdmp:rollback(). Doing so eventually causes
rollback of the global XA transaction. Rolling back via the Transaction Manager is usually preferable.

To learn more about multi-statement transactions, see Multi-statement Transactions.

MarkLogic 11 Participating in XA Transactions

2024-04-08 20:28 Developing with XCC Page 19

https://docs.marklogic.com/xdmp:commit
https://docs.marklogic.com/xdmp:rollback

2.12.4. Heuristically Completing a Stalled Transaction
Under extreme circumstances, a MarkLogic Server administrator may need to heuristically complete
(intervene to manually commit or rollback) the MarkLogic Server portion of a prepared XA transaction.
This section covers the topics related to heuristic completion.

Understanding Heuristic Completion
This section provides a brief overview of the concept of heuristically completing XA transactions.
For instructions specific to MarkLogic Server, see Heuristically Completing a MarkLogic Server
Transaction [21].

The unit of work managed by a Resource Manager in an XA transaction is a branch. Manually
intervening to force completion of a prepared XA transaction branch is making a heuristic decision,
or heuristically completing the branch. The branch may be heuristically completed by either committing
or rolling back the local transaction.

XA uses Two-Phase Commit to commit or rollback global transactions. Normal transaction completion
follows this flow:

• The Transaction Manager instructs all participants to prepare to commit.
• Each participant reports responds with whether or not it is ready to commit.
• If all participants report prepared to commit, the Transaction Manager instructs all participants to

commit.
• If one or more participants is not prepared to commit, the Transaction Manager instructs all

participants to roll back.

If the Transaction Manager goes down due to a failure such as loss of network connectivity or a system
crash, the Transaction Manager does not remember the global transaction when it comes back up. In
this case, the local transaction times out normally, or may be canceled with a normal rollback, using
xdmp:transaction-rollback().

If the Transaction Manager goes down after the transaction is prepared, the Transaction Manager
normally recovers and resumes the flow described above. However, it may not always be possible to
wait for normal recovery.

For example, if connectivity to the Transaction Manager is lost for a long time, locks may be held
unacceptably long on documents in MarkLogic Server. Under such circumstances, the administrator
may heuristically complete a branch of the global transaction to release resources.

NOTE
Heuristic completion bypasses the Transaction Manager and the Two-Phase Commit
process, so it can lead to data integrity problems. Use heuristic completion only as a
last resort.

The XA protocol requires a Resource Manager to remember the outcome of a heuristic decision,
allowing the Transaction Manager to determine the status of the branch when it resynchronizes
the global transaction.This remembered state is automatically cleaned up if the global transaction
eventually completes with the same outcome as the heuristic decision.

Manual intervention may be required after a heuristic decision. If the Transaction Manager recovers and
makes a different commit/rollback decision for the global transaction than the local heuristic decision for
the branch, then data integrity is lost and must be restored manually.

MarkLogic 11 Participating in XA Transactions

2024-04-08 20:28 Developing with XCC Page 20

https://docs.marklogic.com/xdmp:transaction-rollback

For example, if the administrator heuristically completes a branch by committing it, but the global
transaction later rolls back, then the heuristically completed branch requires manual intervention to roll
back the previously committed local transaction and make the resource consistent with the other global
transaction participants.

Heuristic completion is not needed in cases where a global transaction stalls prior to being prepared. In
this case, the global transaction is lost, and the local branches time out or otherwise fall back on normal
failure mechanisms.

Heuristically Completing a MarkLogic Server Transaction
Use the xdmp:xa-complete() built-in function to heuristically complete the MarkLogic Server branch
of a prepared global XA transaction. When using xdmp:xa-complete(), you must indicate

• whether or not to commit the local transaction.
• whether or not MarkLogic Server should remember the heuristic decision outcome (commit or

rollback).

Usually, you should rollback the local transaction and remember the heuristic decision outcome.

Forgetting the heuristic decision leads to an error and possibly loss of data integrity when the
Transaction Manager subsequently attempts to resynchornize the global transaction. If the outcome
is remembered, then the Transaction Manager can learn the status of the branch and properly resume
the global transaction.

The following examples demonstrate several forms of heuristic completion. The 3rd parameter indicates
whether or not to commit. The 4th parameter indicates whether or not to remember the outcome:

(: commit and remember the transaction outcome:)
xdmp:xa-complete($forest-id, $txn-id, fn:true(), fn:true())
(: roll back and remember the transaction outcome:)
xdmp:xa-complete($forest-id, $txn-id, fn:false(), fn:true())
(: commit and forget the transaction outcome :)
xdmp:xa-complete($forest-id, $txn-id, fn:true(), fn:false())

The forest id parameter of xdmp:xa-complete() identifies the coordinating forest. Once an XA
transaction is prepared, the coordinating forest remembers the state of the MarkLogic Server branch
until the global transaction completes. Use the Admin Interface or xdmp:forest-status() to
determine the transaction id and coordinating forest id.

For example, the following query retrieves a list of all transaction participants in transactions that are
prepared but not yet comitted. The coordinating forest id for each participant is included in the results.
For details, see xdmp:forest-status() in XQuery and XSLT Reference Guide.

xquery version "1.0-ml";
for $f in xdmp:database-forests(xdmp:database())
return xdmp:forest-status($f)//*:transaction-participants

Additional cleanup may be necessary if the Transaction Manager resumes and the global transaction
has an outcome that does not match the heuristic decision. For details, see Cleaning Up After Heuristic
Completion [21].

You may also use the Admin Interface to heuristically rollback XA transaction or to forget a heuristic
decision. See Rolling Back a Prepared XA Transaction Branch in Administrating MarkLogic Server.

Cleaning Up After Heuristic Completion
If a heuristic decision is made for a MarkLogic Server branch of an XA transaction and the Transaction
Manager subsequently completes the transaction, there are two possible outcomes:

• The global transaction completes with an outcome that matches the heuristic decision. No further
action is required.

MarkLogic 11 Participating in XA Transactions

2024-04-08 20:28 Developing with XCC Page 21

https://docs.marklogic.com/xdmp:xa-complete
https://docs.marklogic.com/xdmp:xa-complete
https://docs.marklogic.com/xdmp:xa-complete
https://docs.marklogic.com/xdmp:forest-status
https://docs.marklogic.com/xdmp:forest-status
https://docs.marklogic.com/guide/xquery
https://docs.marklogic.com/guide/admin-guide/en/forests/rolling-back-a-prepared-xa-transaction-branch.html

• The global transaction completes with an outcome that does not match the heuristic decision. Take
the clean up steps listed below.

If the global transaction outcome does not agree with the heuristic decision, you may need to do the
following to clean up the heuristic decision:

• Take whatever manual steps are necessary to restore data integrity for the heuristically completed
branch.

• If the heuristic decision was remembered by setting the remember parameter of xdmp:xa-
complete() to true, call xdmp:xa-forget() to clean up the remaining transaction state
information.

2.12.5. Reducing Blocking Caused by Slow XA Transactions
Since XA transactions may involve multiple participants and non-MarkLogic Server resources, they may
take longer than usual. A slow XA transaction may cause other queries on the same App Server to
block for an unacceptably long time.

You may set the “multi-version concurrency control” App Server configuration parameter to
nonblocking to minimize blocking, at the cost of less timely results. For details, see Reducing
Blocking with Multi-Version Concurrency Control in the Application Developer’s Guide.

2.13. Using a Load Balancer or Proxy Server with an XCC
Application
This section contains important information for environments in which a Layer 3 Load Balancer such
as the Amazon Elastic Load Balancer (ELB) or a proxy server sits between your XCC application and
MarkLogic Server cluster.

When you use a load balancer or proxy server, it is possible for requests from your application to
MarkLogic Server to be routed to different hosts, even within the same session. This has no effect
on most interactions with MarkLogic Server, but queries evaluated in the context of the same multi-
statement transaction need to be routed to the same host within your MarkLogic cluster. This consistent
routing through a load balancer or proxy server is called session affinity.

To enable your load balancer or proxy server to preserve session affinity, you must do the following:

1. Enable HTTP 1.1 Compliance in XCC.
2. Configure the Load Balancer or Proxy Server to use the XCC SessionID cookie to associate a

client with the MarkLogic host servicing its XCC session.

2.13.1. Enable HTTP 1.1 Compliance
Enabling HTTP compliant mode guarantees the traffic between your XDBC App Server and your XCC
client is compliant with the HTTP 1.1 protocol. This enables properly configured load balancers or proxy
servers to detect the SessionID cookie generated by MarkLogic Server and use it to enforce session
affinity.

To enable this mode for a Java application, set the xcc.httpcompliant system property to true on
the Java command line. For example:

java -Dxcc.httpcompliant=true ...

NOTE
Setting xcc.httpcompliant to true is incompatible with enabling content entity
resolution using ContentCreateOptions.setResolveEntities.

MarkLogic 11 Using a Load Balancer or Proxy Server with an XCC Application

2024-04-08 20:28 Developing with XCC Page 22

https://docs.marklogic.com/xdmp:xa-complete
https://docs.marklogic.com/xdmp:xa-complete
https://docs.marklogic.com/xdmp:xa-forget
https://docs.marklogic.com/guide/app-dev/transactions#id_41639
https://docs.marklogic.com/guide/app-dev/transactions#id_41639

If xcc.httpcompliant is not set explicitly, then xcc.httpcompliant is false.

You must also configure your load balancer or proxy server to use the value in the SessionID cookie
for session affinity. Some routers or load balancers may need to have xcc.httpcompliant enabled
to allow any traffic through, regardless of session affinity issues.

2.13.2. Configure the Load Balancer or Proxy Server
In addition to setting xcc.httpcompliant to true, you must configure your load balancer or proxy
server to use the SessionID cookie generated by MarkLogic Server for session affinity. You might
also need to enable session affinity or sticky sessions in your load balancer or proxy server. The exact
configuration steps depend on the load balancer or proxy server; see your load balancer or proxy server
documentation for details.

NOTE
Your load balancer or proxy server must be HTTP 1.1 compliant and support cookie-
based session affinity to use this feature of XCC.

A SessionID cookie looks like this:

SessionID=25b877c32807aa9f

2.13.3. XCC Reverse Proxy Support

NOTE
This feature took effect in MarkLogic Server 11.1.0.

XCC supports connecting to MarkLogic Server through a reverse proxy using path-based routing.

NOTE
Digest and certificate authentication are not currently supported when running behind
a reverse proxy or a load balancer configured with path-based routing. Configure
the MarkLogic app servers to use either basic auth over HTTPS or one of the other
supported authentication mechanisms.

For path-based routing, when constructing ContentSource objects, you must pass these parameters:

• basePath: URL that maps to a port on the destination MarkLogic application server.

NOTE
When basePath is specified, xcc.httpcompliant is automatically set to true,
and you must configure your reverse proxy to use session affinity.

MarkLogic 11 Using a Load Balancer or Proxy Server with an XCC Application

2024-04-08 20:28 Developing with XCC Page 23

• host: URL of the reverse proxy.
• port: URL of port that the reverse proxy listens to.

For more details, see the ContentSourceFactory methods.

2.14. Connecting XCC to MarkLogic Cloud
[v11.1.0 and up]

MarkLogic Cloud is a Software as a Service (SaaS) platform that hosts both MarkLogic Server and
Semaphore services. The services work behind a reverse proxy.

Connecting XCC to MarkLogic Cloud requires both token-based authentication and a base path that
maps to a port of an application server in the destination MarkLogic cluster.

NOTE

• Connecting XCC to MarkLogic Cloud requires SSL.
• When XCC connects to MarkLogic Cloud,

• xcc.httpcompliant is automatically set to TRUE.
• Session affinity is automatically preserved.

• More information about MarkLogic Cloud is coming soon.

To connect to MarkLogic Cloud, when you construct a ContentSource object, you specify apiKey
instead of username and password. You must also specify basePath:

• host: The URL of the MarkLogic Cloud Tenancy.
• apiKey: The user API key unique to each MarkLogic Cloud user for obtaining the session token from

MarkLogic Cloud.
• User API Key:

• A unique key assigned to a MarkLogic Cloud user that XCC uses to obtain session tokens.
• By default, user API keys expire after 7 days, but you can configure the expiration time within the

limits set for your MarkLogic Cloud tenant.
• You must regenerate user API keys whenever they expire or become invalidated.

• Session Token:
• A token that XCC obtains by passing the user API key to the MarkLogic Cloud token endpoint.
• It uniquely identifies a user session to provide the user access to the services hosted by

MarkLogic Cloud.
• It is used as an authorization header to authorize all subsequent requests to MarkLogic Server.
• XCC is fully responsible for obtaining, maintaining, and renewing the session token that

MarkLogic Cloud generates.
• basePath: A base URL that maps to a port of an application server on the source MarkLogic cluster

hosted by MarkLogic Cloud.
• By default, MarkLogic Cloud supports several MarkLogic Server Integration Endpoints, which are

preconfigured base paths mapped to the ports of auxiliary MarkLogic application servers.
• The MarkLogic Cloud tenants can also configure endpoints for the specific environment of their

own application servers on the “Services and Endpoints” page in MarkLogic Cloud. An example
is the preconfigured endpoint for the default App-Services app server, /ml/test/marklogic/
app-services/.

• port: 443 (since MarkLogic Cloud requires SSL connection).

MarkLogic Cloud errors are reflected in MLCloudRequestException.

MarkLogic 11 Connecting XCC to MarkLogic Cloud

2024-04-08 20:28 Developing with XCC Page 24

https://docs.marklogic.com/javadoc/xcc/com/marklogic/xcc/ContentSourceFactory.html
https://docs.marklogic.com/javadoc/xcc/com/marklogic/xcc/exceptions/MLCloudRequestException.html

For more details, see ContentSourceFactory.newContentSource().

MarkLogic 11 Connecting XCC to MarkLogic Cloud

2024-04-08 20:28 Developing with XCC Page 25

https://docs.marklogic.com/javadoc/xcc/com/marklogic/xcc/ContentSourceFactory.html

3. Downloading and Using the XCC API

The XCC API is available by downloading the XCC package from developer.marklogic.com.

For a description of the sample applications included with XCC, see Using the Sample Applications.

The XCC distribution has the following directory structure:

Document or Directory Description

docs/ Includes the Javadoc for XCC in both expanded HTML and compressed zip format.

lib/ Contains the marklogic-xcc-version.jar file, which is the XCC libraries, and the
marklogic-xcc-examples-version.jar file, which has the compiled versions of the
sample applications. Note that the name of the XCC jar file has the version number
encoded.

src/ Includes the source code for the sample applications.

Readme.txt Includes the version number and any last-minute updates not included in the
documentation.

MarkLogic 11 Downloading and Using the XCC API

2024-04-08 20:28 Developing with XCC Page 26

http://developer.marklogic.com/products/xcc

4. Using the Sample Applications

The XCC packages contain a number of sample applications. Each sample application is provided
along with its source code, giving you a starting point for creating your own applications. This section
describes the sample applications.

4.1. Setting Up Your Environment
Before running the sample applications, be sure to set up the necessary environment to run the
application described in this section.

4.1.1. Setting Up Your MarkLogic Server Environment
Before you run the sample applications, complete the following steps:

1. Install MarkLogic Server, or have a MarkLogic Server installation to which you can connect. For
details on installing MarkLogic Server, see Installing MarkLogic Server.

2. Create and configure an XDBC Server using the Admin Interface. See Administrating MarkLogic
Server for details on how to create and configure an XDBC Server.

3. Configure a user for the XDBC Server you created. For example, add a user to the security
database with the username as user and the password as pass. See Administrating MarkLogic
Server for details on adding a user to the security database.

4.1.2. Setting Up Your Java Environment
If you are using XCC/J, you must have Java installed on your client machine. You must also follow
these steps to set up your environment to run the sample applications:

1. Set your JAVA_HOME environment variable, if it is not already set. For example, if you
are running a Windows machine, set JAVA_HOME in a command window like this: set
JAVA_HOME=c:\Sun\SDK\jdk

2. Substitute the directory in which Java is installed in your environment.
3. Set your CLASSPATH environment variable correctly, or use the -classpath option to pass

the appropriate classpath on the command line. Make sure to use the correct name for the
marklogic-xcc-N.jar file in your CLASSPATH, where N corresponds to the service release
version number.

4.2. Sample Applications
The source code and API documentation for the sample applications are includes in the XCC packages.

The Java distribution of XCC includes marklogic-xcc-jar-N.x.jar and marklogic-xcc-
examples-N.jar files. The commands to launch the sample programs in this section assume you
have renamed these jar files to xcc.jar and xccexamples.jar, respectively. The commands to
launch the sample programs also assume the XCC Java distribution is installed in XCC_HOME.

The sample applications are as follows:

Sample Description

ContentFetcher This class fetches documents from the conentbase and writes their serialized contents to a
provided OutputStream.

ContentLoader This program accepts a server URI (in the format expected by
ContentSourceFactory.newContentSource(java.net.URI)) and one or more file
pathnames of documents to load.

DynamicContentStream This program demonstrates inserting unbuffered, chunkable dynamic content into the database
without spawning a new thread.

HelloSecureWorld This simple program prints out the string Hello World, using SSL/TLS to connect to
MarkLogic Server.

MarkLogic 11 Using the Sample Applications

2024-04-08 20:28 Developing with XCC Page 27

https://docs.marklogic.com/guide/installation-guide/en/installing-marklogic-server.html
https://docs.marklogic.com/guide/admin-guide/en/administrating-marklogic-server.html
https://docs.marklogic.com/guide/admin-guide/en/administrating-marklogic-server.html
https://docs.marklogic.com/guide/admin-guide/en/administrating-marklogic-server.html
https://docs.marklogic.com/guide/admin-guide/en/administrating-marklogic-server.html

Sample Description

HelloWorld This simple program prints out the string Hello World.

ModuleRunner This simple program invokes a named XQuery module on the server and return the result.

OutputStreamInserter This program demonstrates inserting unbuffered dynamic content into the database by
spawning a new thread to write the data.

SimpleQueryRunner This is a very simple class that will submit an XQuery string to the server and return the result.

XA This program demonstrates using MarkLogic Server in a distributed XA transaction, using
JBoss as the Transaction Manager.

4.2.1. ContentFetcher
This program fetches a document from MarkLogic Server and serializes its contents. You can serialize
the contents to the standard output (display it on the screen) or to a file using the -o option. The
following is a sample command to run the ModuleRunner class:

java -classpath "XCC_HOME/lib/xcc.jar:XCC_HOME/lib/xccexamples.jar"
 com.marklogic.xcc.examples.ContentFetcher
 xcc://username:password@localhost:8021
 /mydocs/hello.xml -o myHelloFile.xml

This sends the contents of the document at /mydocs/hello.xml to the file myHelloFile.xml (in
the same directory in which the command is run). It connects to the default database of the XDBC
Server listening on port 8021 of the local machine, using the credentials username and password to
authenticate the connection.

4.2.2. ContentLoader
This program loads the specified document in the database. It loads the file with a URI equal to the fully
qualified pathname of the file. The following is a sample command to run the ContentLoader class:

java -classpath "XCC_HOME/lib/xcc.jar:XCC_HOME/lib/xccexamples.jar"
 com.marklogic.xcc.examples.ContentLoader
 xcc://username:password@localhost:8021 hello.xml

This loads the file at hello.xml to a document with the fully qualified pathname of hello.xml
(for example, c:\examples\hello.xml). It loads it into the default database of the XDBC Server
listening on port 8021 of the local machine, using the credentials username and password to
authenticate the connection.

4.2.3. DynamicContentStream
This program demonstrates inserting dynamic content without spawning a new thread, by using
ContentFactory.newUnBufferedContent. The following is a sample command to run the
DynamicContentStream program:

java -classpath "XCC_HOME/lib/xcc.jar:XCC_HOME/lib/xccexamples.jar"
 com.marklogic.xcc.examples.DynamicContentStream
 xcc://username:password@localhost:8021
 /any/valid/docURI

This inserts a new document at /any/valid/docURI in the contentbase described by the XDBC
App Server URI xcc://username:password@localhost:8021. For demonstration purposes, the
document contents are generated dynamically by the sample application.

4.2.4. HelloSecureWorld
This program runs a query on MarkLogic Server that returns the string Hello World, using an
SSL/TLS connection to MarkLogic Server.

This example can load a specified key store of trusted signing authorities, use the Java default key
store, or use a stub that accepts any server certificate. It can also load client certificates from a
specified key store or connect without a certificate.

MarkLogic 11 Sample Applications

2024-04-08 20:28 Developing with XCC Page 28

The server certificate command line parameter may be any of the following:

• the path to a Java Key Store containing trusted signing authorities
• DEFAULT - use the Java default cacerts
• ANY - accept any server certificate

Optionally, you may also specify the path to a Java Key Store containing client certificates, along with
its passphrase.

The following is a sample command to run the HelloSecureWorld class, accepting any certificate
and no client authentication (the XDBC App Server needs ssl require client certificate set
to false for this configuration).

java -classpath "XCC_HOME/lib/xcc.jar:XCC_HOME/lib/xccexamples.jar"
 com.marklogic.xcc.examples.HelloSecureWorld
 xccs://username:password@localhost:8021 ANY

NOTE
When FIPS mode is enabled (which is the default), you need to use strong client
ciphers, and you need to download and install the Java Cryptography Extension (JCE)
Unlimited Strength package.

4.2.5. HelloWorld
This program runs a query on MarkLogic Server that returns the string Hello World. The following is
a sample command to run the HelloWorld class:

java -classpath "XCC_HOME/lib/xcc.jar:XCC_HOME/lib/xccexamples.jar"
 com.marklogic.xcc.examples.HelloWorld
 xcc://username:password@localhost:8021

4.2.6. ModuleRunner
This program allows you to invoke a module on the server. The module must exist under the XDBC
server root, either in the database (when a modules database is configured) or on the filesystem
(when the filesystem is configured for modules). The following is a sample command to run the
ModuleRunner class:

java -classpath "XCC_HOME/lib/xcc.jar:XCC_HOME/lib/xccexamples.jar"
 com.marklogic.xcc.examples.ModuleRunner
 xcc://username:password@localhost:8021 hello.xqy

This invokes the module named hello.xqy. The request is submitted to the XDBC Server running
on the local machine at port 8021, using the credentials username and password to authenticate the
connection. The module path is resolved relative to the XDBC Server root.

4.2.7. OutputStreamInserter
This program demonstrates inserting dynamic content by spawning a new thread to write data to
the receiving end of an input stream. For an alternative method of inserting dynamically generated
streamed content, see the example DynamicContentStream.

The following is a sample command to run the OutputStreamInserter program:

MarkLogic 11 Sample Applications

2024-04-08 20:28 Developing with XCC Page 29

https://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html
https://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html

java -classpath "XCC_HOME/lib/xcc.jar:XCC_HOME/lib/xccexamples.jar"
 com.marklogic.xcc.examples.OutputStreamInserter
 xcc://username:password@localhost:8021
 /any/valid/docURI

This inserts a new document at /any/valid/docURI in the contentbase described by the XDBC
App Server URI, xcc://username:password@localhost:8021. For demonstration purposes, the
document contents are generated dynamically by the sample application.

4.2.8. SimpleQueryRunner
This program allows you to store XQuery in a file and then submit the XQuery to MarkLogic Server. The
following is a sample command to run the SimpleQueryRunner class:

java -classpath "XCC_HOME/lib/xcc.jar:XCC_HOME/lib/xccexamples.jar"
 com.marklogic.xcc.examples.SimpleQueryRunner
 xcc://username:password@localhost:8021 hello.xqy

This submits the contents of the hello.xqy file to a MarkLogic Server XDBC Server running on
the local machine at port 8021, using the credentials username and password to authenticate the
connection.

4.2.9. XA
This program demonstrates using MarkLogic Server in a distributed XA transaction. The sample uses
JBoss as a Transaction Manager, with two MarkLogic Server clusters participating in the distributed
transaction.

The sample uses libraries from JBossTS. Download and install JBossTS 4.15.0 or later from the
following location. The JBoss Application Server is not needed.

http://www.jboss.org/jbosstm

Include the following libraries from the JBossTS package on your classpath. JBOSS_HOME is the
directory where JBossTS is installed.

• JBOSSTS_HOME/lib/jbossjta.jar

• JBOSSTS_HOME/lib/ext/jboss-transaction-api_1.1_spec.jar (or other JTA
implementation)

• JBOSSTS_HOME/lib/ext/jboss-logging.jar

The participating MarkLogic Server clusters may simply be two XDBC App Servers on the same
instance, serving different databases.

The following is a sample command to run the ModuleRunner class. Change XCC_HOME,
JBOSSTS_HOME, and the two content base URIs to match your installation.

java -classpath "XCC_HOME/lib/xcc.jar:XCC_HOME/lib/xccexamples.jar:
 JBOSSTS_HOME/lib/jbossjta.jar:
 JBOSSTS_HOME/lib/ext/jboss-transaction-api_1.1_spec.jar:
 JBOSSTS_HOME/lib/ext/jboss-logging.jar"
 com.marklogic.xcc.examples.XA
 xcc://username1:password1@host1:port1/contentbase1
 xcc://username2:password2@host2:port2/contentbase2

The sample program enlists each contentbase as a resource with the JBoss Transaction Manager,
and then inserts a document in each contentbase, as part of a single global transaction. The output
from xdmp:host-status relevant to each branch’s transaction is printed out. This information includes the
global transaction id and branch qualifer, as well as the local transaction id:

MarkLogic 11 Sample Applications

2024-04-08 20:28 Developing with XCC Page 30

http://www.jboss.org/jbosstm

<transaction xmlns="http://marklogic.com/xdmp/status/host">
 <transaction-id>750821115632601886</transaction-id>
 <host-id>8814043795788656336</host-id>
 <server-id>4366002345564888063</server-id>
 <xid format-id="131076" xmlns="http://marklogic.com/xdmp/xa">
 <global-transaction-id>...825D0000000931</global-transaction-id>
 <branch-qualifier>...825D0000000A</branch-qualifier>
 </xid>
 <name/>
 <mode>update</mode>
 <timestamp>0</timestamp>
 <state>active</state>
 <database>2901782035623219290</database>
 <canceled>false</canceled>
 ...
</transaction>
<transaction xmlns="http://marklogic.com/xdmp/status/host">
 <transaction-id>4949312806261581854</transaction-id>
 <host-id>8814043795788656336</host-id>
 <server-id>7579943212553445602</server-id>
 <xid format-id="131076" xmlns="http://marklogic.com/xdmp/xa">
 <global-transaction-id>0...825D0000000931</global-transaction-id>
 <branch-qualifier>...825D0000000D</branch-qualifier>
 </xid>
 <name/>
 <mode>update</mode>
 <timestamp>0</timestamp>
 <state>active</state>
 <database>2852559629722654718</database>
 <canceled>false</canceled>
 ...
</transaction>

For details on use XA with MarkLogic Server, see Multi-statement Transactions.

MarkLogic 11 Sample Applications

2024-04-08 20:28 Developing with XCC Page 31

5. Technical support

MarkLogic provides technical support according to the terms detailed in your Software License
Agreement or End User License Agreement.

We invite you to visit our support website at http://help.marklogic.com to access information
on known and fixed issues, knowledge base articles, and more. For licensed customers with an active
maintenance contract, see the Support Handbook for instructions on registering support contacts and
on working with the MarkLogic Technical Support team.

Complete product documentation, the latest product release downloads, and other useful information
is available for all developers at http://developer.marklogic.com. For technical questions, we
encourage you to ask your question on Stack Overflow.

MarkLogic 11 Technical support

2024-04-08 20:28 Developing with XCC Page 32

http://help.marklogic.com
https://www.marklogic.com/wp-content/uploads/2021/01/support-handbook_2021_Jan_13.pdf
http://developer.marklogic.com
https://stackoverflow.com/questions/tagged/marklogic

6. Copyright

For copyright information, see Product Documentation and Copyright Notice.

MarkLogic 11 Copyright

2024-04-08 20:28 Developing with XCC Page 33

https://www.progress.com/legal/documentation-copyright

	Developing with XCC
	Table of Contents
	1. Introduction to XCC
	1.1. Overview of XCC
	1.1.1. XCC Client Libraries Communicate with an XDBC Server
	1.1.2. XCC Communicates with a Client-Server Architecture
	1.1.3. XCC Automatically Pools Connections

	1.2. API and Other Documentation
	1.3. XCC Requirements
	1.3.1. XCC MarkLogic Server Requirements
	1.3.2. XML Contentbase Connector for Java (XCC/J) Requirements

	2. Programming in XCC
	2.1. Configuring an XDBC Server
	2.2. XCC Sessions
	2.3. Point-In-Time Queries
	2.4. Automatically Retries Exceptions
	2.5. Coding Basics
	2.6. Evaluating JavaScript Queries
	2.7. Working with JSON Content
	2.7.1. Required Libraries
	2.7.2. Inserting JSON Documents
	2.7.3. Processing JSON Query Results

	2.8. Accessing SSL-Enabled XDBC App Servers
	2.8.1. Creating a Trust Manager
	2.8.2. Accessing a Keystore
	2.8.3. Managing Client-Side Authentication

	2.9. Accessing XDBC App Servers through External Authentication
	2.9.1. OAuth 2.0

	2.10. Understanding Result Caching
	2.11. Multi-statement Transactions
	2.11.1. Overview
	2.11.2. Example: Using Multi-statement Transactions in Java
	2.11.3. Terminating a Transaction in an Exception Handler
	2.11.4. Retrying Multi-statement Transactions
	2.11.5. Using Multi-statement Transactions With Older MarkLogic Versions

	2.12. Participating in XA Transactions
	2.12.1. Overview
	2.12.2. Predefined Security Roles for XA Participation
	2.12.3. Enlisting MarkLogic Server in an XA Transaction
	2.12.4. Heuristically Completing a Stalled Transaction
	Understanding Heuristic Completion
	Heuristically Completing a MarkLogic Server Transaction
	Cleaning Up After Heuristic Completion

	2.12.5. Reducing Blocking Caused by Slow XA Transactions

	2.13. Using a Load Balancer or Proxy Server with an XCC Application
	2.13.1. Enable HTTP 1.1 Compliance
	2.13.2. Configure the Load Balancer or Proxy Server
	2.13.3. XCC Reverse Proxy Support

	2.14. Connecting XCC to MarkLogic Cloud

	3. Downloading and Using the XCC API
	4. Using the Sample Applications
	4.1. Setting Up Your Environment
	4.1.1. Setting Up Your MarkLogic Server Environment
	4.1.2. Setting Up Your Java Environment

	4.2. Sample Applications
	4.2.1. ContentFetcher
	4.2.2. ContentLoader
	4.2.3. DynamicContentStream
	4.2.4. HelloSecureWorld
	4.2.5. HelloWorld
	4.2.6. ModuleRunner
	4.2.7. OutputStreamInserter
	4.2.8. SimpleQueryRunner
	4.2.9. XA

	5. Technical support
	6. Copyright

