Securing MarkLogic Server
MarkLogic 10

Publication date 2023-08-21
Copyright © 2023 Progress Software Corporation

All Rights Reserved

MarkLogic 10

Table of Contents

1. INtroduCtion t0 SECUIILY ... e 8
P I T =Y T3 T PSP 8
1.2, SECUMLY OVEIVIEBW ...ttt ettt e et e et eeeeaa s 8

1.2.1. Authentication and Access COoNtrolcovoiiiiiiiiiii e 8
1.2.2. AULNOMIZAtION .oeei e 8
1.2.3. AMINISITAtIONveeiiie e 9
1.3. MarkLogic Security MOAEIcoeuiiii e 9
1.3.1. Role-Based Security Model (Authorization)cccoooiiiiiiiiiiiii e, 9
1.3.2. Element LeVEl SECUTILYuiiiiiiiiiiiiii e 10
1.3.3. Access Control with the Security Databaseccccoooviiiiiiiiiiiieeeeee, 10
1.3.4. Security ADmINISIrationcoiiiiiiiiii e 11
L =15 0911 o (o o Y PPS 12
g O 1 Y 12
I 2 o 12
1.4.3. EXECULE PriVIIEJe ...coviiiiii e 12
(I I 4 V7= o T 12
L T =Y 4 4T L] o T 12
G TN 3 o o 12

2. Role-Based Security MOEIcooouiiiiiii e 13

2.1. Understanding ROIEScouniiiiiii e 13
2.1.1. Assigning Privileges to ROIES ..o 13
2.1.2. Associating Permissions with RoIescoooiiiiiiiiii e, 13
2.1.3. Default Permissions iN ROIESoooiiiii e 13
2.1.4. Assigning ROIES 10 USErScoiiiiiiiiiiii e 14
2.1.5. Roles, Privileges, Document Permissions, and Usersccc.cccooeiiieeeneeenn. 14

2.2. The admin and security ROIESooooiiiiiiii e 15

2.3. Example—Introducing Roles, Users, and Execute Privilegescc.cccoovviiiiiiinnnnnnn. 15

3. Protecting DOCUMENTS ...t e et e et e e et e e eaaa e eenees 17

3.1. Creating DOCUMENTSuuiiiii it e e e eeeees 17
B Tt 0 O U I 4 Y71 1= o 17
3.1.2. Built-In URI Execute Privilegesccooiiiiiiiiiiii e 18

3.2. DOCUMENt PEIMISSIONSciiiiiiiiiiii ettt e eeees 18
3.2.1. Capabilities Associated through Permissionsccccoevviiiiiiiiiiiiieeiiiinneeees 18
3.2.2. Setting Document PErmiSSiONScviviiiiiiiiiiiiieeeiii e 19

3.3. Securing Collection Membership ... e 20

3.4. Default PermiSSIONSiiiiiii e 20

3.5. Example—USIiNg PermiSSIiONSoiiiiiiiiiiiiiii et 20
3.5.1. Setting Permissions EXpPIICItlY ... 20
3.5.2. Default Permission Settingsoooiiiiiiiiiiii e 21

4. AUThENtiCAtiNG USEIS . ..ouiiiiiii it e et e e et e e es 24
g R Y= S 24
4.2. Types of AUthentiCationcccooiiiiiiii e 24

4. 2.0, BASIC ..t 24
4.2.2. DUGESE .o 24
4.2.3. DIgest-BasiCccuuiiiiiii i 25
4.2 4. Limitations of Digest and Basic Authenticationccccoeviviiiiiiiviiiin e, 25
4.2.5. CertifiCate ..o e 25
4.2.6. Application Level ... e 25
4.2.7. Kerberos TICKELouuiiiii e 25
R TS 7 1 | 25

5. ComMPartMENt SECUILYiiiiiii i e e et e et e e et e e e aaa e eaeas 27
5.1. Understanding Compartment SECUrtyccooiiiiiiiiiiiiiiiii e 27
5.2. Configuring Compartment SECUIILYooiiiiiiiiiiiiii e 27

2023-08-21 14:49 Securing MarkLogic Server Page 2

MarkLogic 10

5.3. Example—Compartment SECUNLYooiiiiiiiie e 28
5.3.1. Create ROIESoi e 28
5.3.2. Create USEISoiiiiiiii et 28
5.3.3. Create the Documents and Add Permissionscccovvieiiiiiiiiiiiiieeeiiineeeee 29
LT T 1Y | O 11 | P 30

6. Element LEVEI SECUNLYiieeiii e e eaas 31

6.1. Understanding Element Level SECUNtYccoiiviiiiiiiiiiiiiei e 31

6.2. Example—Element Level SECUitYcoouiiiiiiiiiii e 32
6.2.1. Create ROIESiiiiii it 32
6.2.2. Create Users and AsSign ROIESoouuiiiiiiiiiiiii e 32
6.2.3. Add the DOCUMENTS ... e 34
6.2.4. Add Protected Paths and Query Rolesetscccooooiiiiiiiiiiiiiiiiiceee 35
6.2.5. Run the Example QUEIIEScooiiiiii e 37
6.2.6. Additional EXamPpPIesoooeiiiiiiii e 43

6.3. Configuring Element Level SeCUrityooooiiiiiiiiiiii e 53
6.3.1. Protected Pathscoouiiiiii e 54
6.3.2. QUENY ROIESEES ... 60

6.4. Configure Element Level Security in the Admin Interfacecccooeeiiiiiiiiennnnn, 68
6.4.1. Add a Protected Path ..o 69
6.4.2. Add @ QUETNY ROIESELcooeiiiiiii e 69

6.5. Configure Element Level Security with XQuUEeryccooiiiiiiiiiiiii e 70
6.5.1. Using XQuery for Query ROIESELSccouuiiiiiiiiiiiiiiiii e 70
6.5.2. Using XQuery for Protected Pathsccoiiiiiiiiiiii e, 71

6.6. Configure Element Level Security with REST ..o 71
6.6.1. Using REST for Query ROIESEtSccouuiiiiiiiiiiii e 71
6.6.2. Using REST for Protected Paths ..o 73

6.7. Combining Document and Element Level Permissionsccccooiviiiiiiiiiinnnnee, 74
6.7.1. Document Level Security and INdexingcccoiiiiiiiiiiiiiiiiii e 74
6.7.2. Combination Security EXampleoooiiiiiiiiiiiiii e 75

6.8. Node Update CapabilitieScccouiiiiiiiii e 75
6.8.1. Updates with Element Level SeCUritycccooiiiiiiiiiiiiii e, 76
6.8.2. Node Update and Node Insert at the Element Levelc..coooiiiiiiinnnis 76

6.9. Document and Element Level Permissions SumMmarycccccooevviiiiieiiiinieeeeiinneeenns 77

6.10. Node Update and Document Permissions Expandedc.cooiiiiiiiiiiiineennns 78
6.10.1. Unexpected Behavior with Permissionsccocoooiiiiiiiiiiiiici 78
6.10.2. Different Permissions on the Same Node ..., 79
6.10.3. A More Complex EXample 80

6.11. APIs for Element Level SECUIIYcoouuiiiiiiiii e 80
B.11.1. XQUETY APIS .oeeiiiiii et e e et e e e e e eaaan 80
6.11.2. REST Management APIS ... 81

6.12. Algorithm That Determines Which Query Rolesets to Useccccoooiiiiiiiiiiinnnns 81

6.13. Interactions with Compartment Securityccooeiiiiiiiiii e, 82
6.13.1. Compartment Security and INdexingcccooiiiiiiiiiiiii i, 83

6.14. Interactions with Other MarkLogic Featurescocoieiiiiiiiiiiiie e, 84
6.14.1. LeXiCON CallSuuiiiiiiiieiii ettt e e e e et e e eaaan 84
6.14.2. Fragmentation ... 84
6.14.3. SQL on Range-Index Based VIEWScccoiiiiiiiiiiiiiiiiiieeiiieeie e 84
6.14.4. UDFs (Including UDF-Based Aggregate Built-inS)cccooiviiiiiiiiiin, 85
6.14.5. REVEISe INAEXES ...oceniiiieii e 85
B.14.6. SPARQLoiiiiiiiiiii e 85
6.14.7. Alerting and QBFR ... oo 85
Lt 8 T 431 e o PPN 85
B.14.9. XCC .ot 86
6.14.10. BitemMPOralcouniiiii i 86
0t 3 O T PPN 86

2023-08-21 14:49 Securing MarkLogic Server Page 3

MarkLogic 10

6.14.12. ROIING UPGradescoouuiiiiiiiiiiiii et 87

7. Protecting XQuery and JavaScript Functions with Privilegesccccooooiiiiiiiiiin e, 88
7.1. Built-In MarkLogic Execute Privilegesc.ooiiiiiiiiiiiiii e 88
7.2. Protecting Your XQuery and JavaScript Code with Execute Privileges 88
7.2.1. Using Execute Privileges ..o 88
7.2.2. Execute Privileges and App SEIVEIScccoeuiiiiiiiiiiiiee e 89
7.2.3. Creating and Updating Collectionsc.oeiiiiiiiiiiiii e, 89

7.3. Temporarily Increasing Privileges With AMPSooiiiiiiiiiii e 89
8. Query-Based ACCESS CONIIOluuiiiiiiiiiiiii e 91
8. 1. What is QBACT? ... e s 91
8.2. Example QBAC ApPlCAtioNSouuiiiiiiiiei e 92
8.2.1. Scenario 1: Region ResStriCtionscoviiiiiiiiiiii e 92
8.2.2. Scenario 2: Group Restrictionsoooouiiiii e 94

8.3. Interfaces to SUPPOrt QBAC .. .o 96
8.3.1. Changes to Security Module APIS ... 96
8.3.2. AdMIN INtErfaceoouuiiiiiii i e 97

S T (o] = P 97
8.5, LIMItAtiONS ... 97
9. GranUIAr PriVIIEESuiiii et e e e e aaas 99
9.1. Understanding Granular Privilegesccoiiiiiiiiiiiiii e 99
9.2. Categories Of GranUIarityccouiiiiiiiiiie e e e e e e eeaees 99
9.2.1. Privileges to Read, Write, or Delete Any Configuration File 99
9.2.2. Privileges to Read, Write, or Delete a Specific Configuration File 100
9.2.3. Privileges to Administer a Set of Resourcesccccooiviiiiiiiii 102
9.2.4. Privileges to Administer a Specific Resourcecccooooiiiiiiii, 102
9.2.5. Privileges to Administer a Specific Aspect of a Set of Resources 103
9.2.6. Privileges to Administer a Specific Aspect of a Specific Resource 103

9.3. Configuring Granular Privilegescoouiiiiiiiiiii e 105
9.3.1. Configure Granular Privileges via the Admin Interfacecccooeii. 105
9.3.2. Configure Granular Privileges via the XQuery API Security Module 106

9.4. Examples of Granular Privileges USagecocouiiiiiiiiiiiiiiii e, 108
9.4.1. Prerequisites - Create Databases, Roles, Users, and Privileges 108
9.4.2. Scenarios That Use Granular Privilegescccoovviiiiiiiiiiiiiiieeccieeeee 109
9.4.3. TESE I OUL ...t 109

9.5. Enabling Non-privileged Users to Create Privileges, Roles, and Users 110
9.5.1. Enabling Non-privileged Users to Assign Rolesccccoooiiiiiiiiiiiiiiiinnnnen. 110

9.5.2. Enabling Non-privileged Users to Create and Manage Roles (Data Roles) 111
9.5.3. Enabling Non-privileged Users to Create and Manage Users (Data Users) ... 112

9.6. Using Granular Privileges with MarkLogic Data Hub Serviceccc.cceviviiiiennnnn. 114
10. Configuring SSL ON APP SEIVETSiiiiiii it eeees 115
10.1. UNderstanding SSL ... 115
10.2. General Procedure for Setting Up SSL for an App Servercoovviiiiiiiieiieeennnn. 116
10.3. Procedures for Enabling SSL on App SErversccccooveiieiiiieiiiieeie e 116
10.3.1. Creating a Certificate Templateccooeiiiiiiiii e 116
10.3.2. Enabling SSL for an APP SEIVETccoiiiiiiiiiiiieeeee e 118

10.4. Accessing an SSL-Enabled Server from a Browser or WebDAV Client 120
10.4.1. Creating a Security Exception in Internet Explorerccoocoiiiiiiiinns 121
10.4.2. Creating a Security Exception in Google Chromeccccoocoiiiiiiiiiiinnenn, 121
10.4.3. Importing a Self-Signed Certificate Authority into Windows 122

10.5. Procedures for Obtaining a Signed Certificateccooooiiiiiiiiiies 127
10.5.1. Generating and Downloading Certificate Requestscccoooiiiiiiiis 127
10.5.2. Signing a Certificate with Your Own Certificate Authority 128
10.5.3. Importing a Signed Certificate into MarkLogic Serverccooveviieennnnns 129

10.6. Viewing Trusted Certificate Authoritiesccoooiiiiii i, 129
10.7. Importing a Certificate Revocation List into MarkLogic Servercccocoeeeennn.. 130

2023-08-21 14:49 Securing MarkLogic Server Page 4

MarkLogic 10

10.8. Deleting a Certificate Template ..o 131
11. Certificate-Based Authentication ... 132
11.1. User Certificate EXampPIecoouiiiiiiii e 132
11.2. CA Certificate (User Cert Signer) Import from Admin Interfaceccccoeoeees 132
11.3. CA Certificate Import into MarkLogic from Query Consolecccciviiiiiinnennes 134
11.4. Certificate Template & Template CA Import into Client (Browser/SSL Client) 134
11.5. Creating a MarkLogic User to Use Certificate-Based Authentication 134
11.5.1. Creating a MarkLogic User with an Internal Nameccooeeeiiei 134
11.5.2. Creating a MarkLogic User with an External Nameccccoeoeviiiinnnns 137
12. SecUre Credentialsoooeuiiiiiii e eaaan 140
12.1. Creating a Secure Credential with Username and Passwordcc.ocoeeeeani. 140
12.2. Creating a Secure Credential with PEM Encoded Public and Private Keys 143
12.2.1. Creating a Certificate AUthOrityoooiiiiiii s 143
12.2.2. Creating Secure Credentials from a Certificate Authorityc......... 143
13, EXEErNal SECUNILYoiiii e et e 146
13.1. Terms Used in this Chapter ... 146
13.2. Overview of External Authenticationccoiiiiiiiiii s 147
13.3. Creating an External Authentication Configuration Objectcccooiiiiiininnnil. 151
13.3.1. LDAP Authenticationoooiiiiiiiii e 152
13.3.2. SAML AuthentiCationcooviiiiiiiiiii e 153
13.4. Defining and Inserting @ SAML Entityccooiiiiiiiiiii e 155
13.5. Assigning an External Name t0 @ USeroooeuiiiiiiiiiiie e 156
13.6. Assigning an External Name to a Roleooooiiiiiiiiii e 157
13.7. Configuring an App Server for External Authenticationcc....ccoooi, 158
13.8. Setting Response Headers for HTTPS-Enabled App Serversccoocoivieiieenn.n. 159
13.8.1. Using the MarkLogic Admin Interfaceccccooooiiiiiiiii s 160
13.8.2. Using Admin FUNCLIONScooouiiiiiii e 160
13.8.3. USING REST APIS ...t e e e 161
13.9. Creating a Kerberos Keytab Fileoooiiiiiiiiiii e 161
13.9.1. Creating a Keytab File on WindOWSooiiiiiiiiiiiiiiee e 161
13.9.2. Creating a Keytab File on LiNUXcooiiiiiiiiiiii e 162
13.10. External Certificate User Authenticationccocooiiiiiiiiiiiin e 162
13.10.1. Certificate Authentication Based on Internal User vs External Name 162
13.10.2. CA Certificate (User Cert Signer) Import from Admin Interface 163
13.10.3. CA Certificate Import into MarkLogic from Query Console 164
13.10.4. Certificate Template & Template CA Import into Client (Browser/SSL
(O 11T 3 | SRR 164
13.10.5. Certificate CN as Internal User vs External Name-Based Internal User 164
13.11. Example External Authorization Configurationscccoovviiiiiiii s 168
13.12. Kerberos Authentication Using xdmp:http-* Functionsccc.oooiiiiiiin, 169
13.13. Kerberos Authentication for Secured HDFS ..., 170
L =g Tod Y] o[= | A =T S 171
7 I o= 1= T P 171
14.2. Terms and DefinitionNsouuiiiiiiii e 171
14.3. Understanding Encryption at Restocoouiiiiiiii e 172
14.4. Keystores - PKCS #11 Secured Wallet or External KMSccocooiiiiiiiiiiinnenn, 173
14.5. Encryption Key Hierarchy OVEIVIEWcoieiiiiiiiiiiiii i 173
14.5.1. Embedded KMS Key Hierarchycccooiiiiiiiiiiiiic e 175
14.5.2. External KMS Key Hierarchycooooiiiiiii e 176
14.6. Example—Encryption at ResSt ... 178
14.6.1. Set Up Encryption EXamplec.oiiiiiiiiiiii e 178
14.6.2. Encrypt @a Databasecooouiiiiiiiiii e 178
TR T 1= 1 11 | S 179
14.6.4. Turn Off Encryption for a Databaseccoovvviiiiiiiiii e 180
14.7. Configuring Encryption at ReStcoooviiiiiiiii e 181

2023-08-21 14:49 Securing MarkLogic Server Page 5

MarkLogic 10

14.7.1. Database Encryption Optionscoouiiiii i 181
14.7.2. Configure Cluster ENCryptionooiiiiiiiiiiiii e 182
14.7.3. Cluster Encryption OptioNScooiiiiiiiiiiiiiei e 183
14.7.4. Using an Alternative PKCS #11 DeViCecccoiiiiiiiiiiiiiiiiiiiiiieeei e, 185
14.7.5. Configure Encryption Using XQUETYcoooiiiiiiiiiiiiiiiiii e 186
14.7.6. Configure Encryption UsSing REST ..o 186
14.8. Key Managementcooiiniiiiii ettt eanas 190
14.8.1. Key ROtAtiON . .oeieiiii e 191
14.8.2. Export and Import Encryption Keys ..o 193
14.8.3. Key Deletion and Key Revocation ..o 193
14.9. Configuring an External Keystore ... 193
14.9.1. Types of External KMS Deploymentsccoiiiiiiiiiiiiiiiiiieccei e 194
14.9.2. Using MarkLogic Encryption with AWS Key Management System 194
14.9.3. Using MarkLogic Encryption with Microsoft Azure Key Vault 198
14.9.4. Set Up an External KMIP KMS with MarkLogic Encryptioncc.......... 205
14.9.5. High Availability and Failover with External KMSccoooiiin s 205
14.10. Set Up the External KMSo e 206
14.10.1. Set Up MarkLogic EnCryptionc.coeiiiiiiiiii e 207
14.10.2. Transitioning from PKCS #11 Secured Wallet to an External KMS 209
14.10.3. Transitioning from an External KMS to PKCS #11 Secured Wallet 209
14.11. Administration and Maintenance ..o 210
14.11.1. Backup and RESIOreccoviiiiii e 210
14.11.2. Tool to View Encrypted Log Files Outside of the Serverccoc..... 213
14.11.3. Disaster Recovery/Shared Disk Failoverccccooiviiiiiiiiiies 214
14.12. APIs for Encryption at Rest ..o 214
14.12.1. Built-ins for Encryption at Rest ... 214
14.12.2. Admin APlIs for Encryption at Rest ... 215
14.12.3. REST Management APIs for Encryptionccccooiiiiiiiiiiiieei e, 216
14.13. Interactions with Other MarkLogic Featurescccooiiiiiiiiiiiiii e, 218
14.13.1. ROIING UPGradesooiiiiiiiiiiii e e e e e e 218
14,132, TelEeMEIIY oo 218

15. AdMINISTEIING SECUNLYoiiiiiii e e e 219
15.1. Overview of the Security Databaseccooeeiiiiiiiiiiiiiii e 219
15.2. Associating a Security Database with a Documents Databaseccccccoee. 221
15.3. Managing and Using Objects in the Security Databasecccccooeviiiiiiiiinnnn, 221
15.3.1. Using the Admin Interface ..o 221
15.3.2. Using the security.xqy Module Functionsccccooiiiiiiiiiiiiii s 221
15.4. Backing Up the Security Databaseccooooiiiiiiiiiii e 221
15.5. Example: Using the Security Database in Different Serversc.cccoovviiiiiinennn... 221
LT W T 111 Vo PR 225
16.1. Why IS AUditing USEA?ooeeiiiiii e eeeeees 225
16.2. MarkLogic AUAItINGuiiiiiiiii e e e e e e 225
16.3. Configuring AUAItINGcovuiiiii e e 225
16.4. BESE PracCliCeScciiiiiiiiiiii e 226
17. Designing SecCUrity POJICIESccuuuiiiiiiii e eeees 227
17.1. Research Your Security ReqUIremMeNtscco.iiiiiiiiiiiiiiiiiie e 227
17.2. Plan Roles and PrivilEgescoouiiiiiii e 227
18. Sample SeCUrity SCENATIOSccouuuiiiiiii e et 228
18.1. Protecting the Execution of XQuery Modulesccoooiiiiiiiiiii e, 228
18.2. Choosing the Access Control for an Application ... 228
18.2.1. Open Access, NO LOG IN ... 228
18.2.2. Providing Uniform Access to All Authenticated Usersccccevvviiiennnnne. 229
18.2.3. Limiting Access to a Subset of USersccooviiiiiiiiiiiiii e 229
18.2.4. Using Custom Login Pagesccuoiiiiiiiiiiiiiii e 230
18.2.5. Access Control Based on Client IP ADdressccccevvviviiiiiiiiiiennininnnn. 231

2023-08-21 14:49 Securing MarkLogic Server Page 6

MarkLogic 10

18.3. Implementing Security for a Read-Only USercooiiiiiiiiiiiiiiii e, 234
18.3.1. Steps for Example Setupcooviiiiiii e 234

18.3.2. Troubleshooting TIPS ...ccevuuiiiiiiiiie e 234

19. Securing Your Production Deploymentoooiiiiiiiiiii e 236
19.1. Add Password ProteCtionscooouuiiiiiiiiiii e 236

19.2. Adhere to the Principle of Least Privilegecccooiiiiiiiiiiiii e, 236

19.3. Infrastructure Hardeningcoiiiiiiiii i 236
19.3.1. OS-Level RestriCtionsiiiiiiiiiiiii e 236

19.3.2. NEtWOTrK SECUTITY ..vvuniiiiiii i eeeeen 236

19.3.3. Port Management ... 236

19.3.4. PRYSICAl ACCESS ..niiiiiiiiiei et e e 237

19.4. Implement AUAITINGoooini e 237
19.5. Develop and Enforce Application Securityooooiiiiiiiiiiii e 237

19.6. Use MarkLogic Security Features ... 237

19.7. Read about Security ISSUESooiiiiiiiii e 237

20. TEChNICAl SUPPOIT ... et et e e et e e e e at e e e eeaaaeaees 238
A T 00T o)/ T | 1 | ST 239

2023-08-21 14:49 Securing MarkLogic Server Page 7

MarkLogic 10 Introduction to Security

1. Introduction to Security

When you create systems that store and retrieve data, it is important to protect the data from
unauthorized use, disclosure, modification or destruction. Ensuring that users have the proper authority
to see the data, load new data, or update existing data is an important aspect of application
development. Do all users need the same level of access to the data and to the functions provided

by your applications? Are there subsets of users that need access to privileged functions? Are some
documents restricted to certain classes of users? The answers to questions like these help provide the
basis for the security requirements for your application.

MarkLogic Server includes a powerful and flexible role-based security model to protect your data
according to your application security requirements. There is always a trade-off between security and
usability. When a system has no security, then it is open to malicious or unmalicious unauthorized
access. When a system is too tightly secured, it might become difficult to use successfully. Before
implementing your application security model, it is important to understand the core concepts and
features in the MarkLogic Server security model. This section introduces the MarkLogic Server security
model.

1.1. Licensing

Some MarkLogic Server security features require an Advanced Security License in addition to the
regular license. The Advanced Security License option is required when using:

+ Compartment Security

» Redaction

* An external Key Management System (KMS) or keystore with encryption at rest
* Query-Based Access Control

For more about redaction, see Redacting Document Content in the Application Developer’s Guide.
See Section 8, “Query-Based Access Control” [91] in this guide for more about query-based access
control.

1.2. Security Overview

This section provides an overview of the three main principles used in MarkLogic Server security.

1.2.1. Authentication and Access Control

Authentication is the process of verifying user credentials for a named user. Authentication makes
sure you are who you say you are. Users are typically authenticated with a username and password.
Authentication verifies user credentials and associates an application session with the authenticated
user. Every request to MarkLogic Server is issued from an authenticated user. Authentication, by itself,
does not grant access or authority to perform specific actions. There are several ways to set up server
authentication in MarkLogic Server.

Authentication by username and password is only part of the story. You might grant access to users
based on something other than identity, something such as the originating IP address for the requests.
Restricting access based on something other than the identity of the user is generally referred to as
access control.

For details on authentication, see Section 4, “Authenticating Users” [24].

1.2.2. Authorization

Authorization provides the mechanism to control document access, XQuery and JavaScript code
execution, and document creation. For an authenticated user, authorization determines what you are
allowed to do. For example, authorization is what allows the user named Melanie to read and update

2023-08-21 14:49 Securing MarkLogic Server Page 8

https://docs.marklogic.com/guide/app-dev/redaction#

MarkLogic 10 MarkLogic Security Model

a document, allows the user named Roger to only read the document, and prevents the user named
Hal from knowing the document exists at all. In MarkLogic Server, authorization is used to protect
documents stored in a database and to protect the execution of XQuery or JavaScript code. For details
on authorization in MarkLogic Server, see Section 3, “Protecting Documents” [17] and Section 7,
“Protecting XQuery and JavaScript Functions with Privileges” [88].

1.2.3. Administration

Administration is the process of defining, configuring, and managing the security objects, such as
users, roles, privileges, and permissions that implement your security policies. For details on security
administration procedures in MarkLogic Server, see Section 1.3.4, “Security Administration” [11] and
the Administrator’s Guide.

1.3. MarkLogic Security Model

The MarkLogic Server security model is flexible and enables you to set up application security with the
level of granularity needed by your security requirements.

1.3.1. Role-Based Security Model (Authorization)

Roles are the central point of authorization in the MarkLogic Server security model. Privileges, users,
other roles, and document permissions all relate directly to roles. The following conceptual diagram
shows how each of these entities points into one or more roles:

Security Roles

Other
< Roles

Privileges

Roles

Users ¢ Document
’ Permissions

There are two types of privileges: URI privileges and execute privileges. URI privileges are used
to control the creation of documents with certain URIs. Execute privileges are used to protect the
execution of functions in XQuery or JavaScript code.

E NOTE
For execute privileges’ type, you may achieve finer granularity access control over
configuration and various administration abilities through defining granular privileges.
For information on granular privileges, see Section 5, “Compartment Security” [27].

Privileges are assigned to zero or more roles, roles are assigned to zero or more other roles, and users
are assigned to zero or more roles. A privilege is like a door and, when the door is locked, you need

to have the key to the door in order to open it. If the door is unlocked (no privileges), then you can

walk right through. The keys to the doors are distributed to users through roles; that is, if a user inherits
a privilege through the set of roles to which she is assigned, then she has the keys to unlock those
inherited privileges.

2023-08-21 14:49 Securing MarkLogic Server Page 9

MarkLogic 10 MarkLogic Security Model

Permissions are used to protect documents. Permissions are assigned to documents, either at load
time or as a separate administrative action. Each permission is a combination of a role and a capability
(read, insert, update, node-update, execute):

Permissions

Capability
Role (read, insert, update,
node-update, OR execute)

Users assigned the role corresponding to the permission have the ability to perform the capability. You
can set any number of permissions on a document.

Capabilities represent actions that can be performed. There are four capabilities in MarkLogic Server:

* read

* insert

* update

* node-update
* execute

Users inherit the sum of the privileges and permissions from their roles.

For more details on how roles work in MarkLogic Server, see Section 2, “Role-Based Security
Model” [13]. For more details on privileges and permissions, see Section 3, “Protecting
Documents” [17].

1.3.2. Element Level Security

Element level security uses protected paths to conceal certain elements in document from specific
users, while leaving other parts of a document available to search and view. You can use element level
security to control access to specific JSON properties or XML elements within documents. This means
that specific information inside a document may be hidden from a particular user based on the user’s
role, while still providing access to other information in the document.

Element level security can be used in addition to and along with existing document level security and
compartment security. For more information about element level security, see Section 6, “Element Level
Security” [31].

1.3.3. Access Control with the Security Database

MarkLogic Server uses a security database to store the user data, privilege data, role data, and other
security information. Each database in MarkLogic Server references a security database. A database
named Secur ity which functions as the default security database, is created as part of the installation
process.

The following figure shows that many databases can be configured to use the same security database
for authentication and authorization:

2023-08-21 14:49 Securing MarkLogic Server Page 10

MarkLogic 10 MarkLogic Security Model

Security Database

Database 1
< >
Database 2
Security Database
(Contains user data, privilege data, role data)
Database 3

The security database is accessed to authenticate users and to control access to documents. For
details on authentication, the security database, and ways to administer objects in the security
database, see Section 4, “Authenticating Users” [24] and Section 15, “Administering Security” [219].

There may be circumstances in which a cluster is configured with more than one Security database,
such as when using database replication. When multiple Secur ity databases are used, there should
be an equal number of Admin servers with different ports, one for each Secur ity database. Each
Security database can then be upgraded by its respective Admin Interface.

The name of the Security database used by the Admin Interface is shown in the upper right corner of
the Security Configuration page.

MarkLogic Server oo el '.MarkLogiC‘

9.0-20190208 se key has been entered | noout
Software pre-release expires in 78 days
Telemetry is not enabled Security Configuratio m

Configure
Configure))
.J Groups | ok | | cancel |
.J Databases
J Hosts security — set security parameters
.J Forests
.J Wimetypes
.J Clusters

=3 ﬁ Secprity
fﬁ &rs
E% Roles

Realm public

1.3.4. Security Administration

MarkLogic Server administrators are privileged users who have the authority to perform tasks such as
creating, deleting, and modifying users, roles, and privileges. These tasks change or add data in the

2023-08-21 14:49 Securing MarkLogic Server Page 11

MarkLogic 10 Terminology

security database. Users who perform these tasks must have the security role, either explicitly or by
inheriting it from another role (for example, from the admin role). Typically, users who perform these
tasks have the admin role, which provides the authority to perform any tasks in the database. Use
caution when assigning users to the security and/or admin roles; users who are assigned the admin
role can perform any task on the system, including deleting data.

MarkLogic Server provides the following ways to administer security:

* Admin Interface
+ REST Management API
» XQuery and JavaScript server-side security administration functions

For details on administering security, see Section 15, “Administering Security” [219].

1.4. Terminology

This section defines the terms used throughout the security documentation.

1.4.1. User

A user is a named entity used to authenticate a request to an HTTP, WebDAV, ODBC, or XDBC server.
For details on users, see Section 4, “Authenticating Users” [24].

1.4.2. Role

A role is a named entity that provides authorization privileges and permissions to other roles or to users.
You can assign roles to other roles (which can in turn include assignments to other roles, and so on).
Roles are the fundamental building blocks that you use to implement your security policies. For details
on roles, see Section 2, “Role-Based Security Model” [13].

1.4.3. Execute Privilege

An execute privilege provides the authority to perform a protected action. Examples of protected actions
are the ability to execute a specific user-defined function, the ability to execute a built-in function (for
example, xdmp :document-insert), and so on. For details on execute privileges, see Section 7,
“Protecting XQuery and JavaScript Functions with Privileges” [88].

1.4.4. URI Privilege

A URI privilege provides the authority to create documents within a base URI. When a URI privilege
exists for a base URI, only users assigned to roles that have the URI privilege can create documents
with URIs starting with the base string. For details on URI privileges, see Section 3, “Protecting
Documents” [17].

1.4.5. Permission

A permission provides a role with the capability to perform certain actions (read, insert, update,
node-update, execute) on a document or a collection. Permissions consist of a role and a
capability. Permissions are assigned to documents and collections. For details on permissions, see
Section 3, “Protecting Documents” [17].

1.4.6. Amp

An amp provides a user with the additional authorization to execute a specific function by temporarily
giving the user additional roles. For details on amps, see Section 7.3, “Temporarily Increasing Privileges
with Amps” [89].

2023-08-21 14:49 Securing MarkLogic Server Page 12

MarkLogic 10 Role-Based Security Model

2. Role-Based Security Model

MarkLogic Server uses a role-based security model. Each security entity is associated with a role. This
section describes the role-based security model.

2.1. Understanding Roles

As described in Section 1.3.1, “Role-Based Security Model (Authorization)” [9], roles are the central
point of authorization in MarkLogic Server. This section describes how the other security entities relate
to roles.

2.1.1. Assigning Privileges to Roles

Execute privileges control access to XQuery or JavaScript code. URI privileges control access to
creating documents in a given URI range. You associate roles with privileges by assigning the privileges
to the roles.

Execute Privileges

Execute privileges allow developers to control authorization for the execution of an XQuery or
JavaScript function. If an XQuery or JavaScript function is protected by an execute privilege, the
function must include logic to check if the user executing the code has the necessary execute privilege.
That privilege is assigned to a user through a role that includes the specific execute privilege. There are
many execute privileges pre-defined in the security database to control execution of built-in XQuery and
JavaScript functions.

For more details on execute privileges, see Section 7, “Protecting XQuery and JavaScript Functions
with Privileges” [88].

URI Privileges

URI privileges control authorization for creation of a document with a given URI prefix. To create a
document with a prefix that has a URI privilege associated with it, a user must be part of a role that has
the needed URI privilege.

For more details on how URI privileges interact with document creation, see Section 3, “Protecting
Documents” [17].

2.1.2. Associating Permissions with Roles

Permissions are security characteristics of documents that associate a role with a capability. The
capabilities are the following:

* read

* insert

» update

* node-update
+ execute

Users gain the authority to perform these capabilities on a document if they are assigned a role to which
a permission is associated.

For more details on how permissions interact with documents, see Section 3.2, “Document
Permissions” [18].

2.1.3. Default Permissions in Roles

Roles are one of the places where you can specify default permissions. If permissions are not explicitly
specified when a document is created, the default permissions of the user creating the document are

2023-08-21 14:49 Securing MarkLogic Server Page 13

MarkLogic 10 Understanding Roles

applied. The system determines the default permissions for a user based on the user’s roles. The total
set of default permissions is derived from the user’s roles and all inherited roles.

For more details on how default permissions interact with document creation, see Section 3.4, “Default
Permissions” [20].

2.1.4. Assigning Roles to Users

Users are authenticated against the security database configured for the database being accessed.
Roles are the mechanism by which authorization information is derived. You assign roles to a user.
The roles provide the user with a set of privileges and permissions that grant the authority to perform
actions against code and documents. At any given time, a user possesses a set of privileges and
default permissions that is the sum of the privileges and default permissions inherited from all of the
roles currently assigned to that user.

Use the Admin Interface to display the set of privileges and default permissions for a given user; do

not try and calculate it yourself as it can easily get fairly complex when a system has many roles. To
display a user’s security settings, use Admin Interface > Security > User > Describe. You need to select
a specific user to see the Describe tab.

For more details on users, see Section 4, “Authenticating Users” [24].

2.1.5. Roles, Privileges, Document Permissions, and Users

Privileges, document permissions, and users all interact with roles to define your security policies. The
following diagram shows an example of how these entities interact.

Security Roles ()
Document 1
Permissions
- Capability
Priv1 > Role1 <t Role1 Update
Capability
> Role3 < Role3 insert

Priv2 » Role2 < Role2 |©apablity

. . J
XQuery Function
(Privl needed to execute) Capability is one of the following:
xdmp:security-assert{ read,insert,update
“Pr'?vl”, “$e3</ecute”} User1 node-update,execute

Notice how all of the arrows point into the roles; that is because the roles are the center of all security
administration in MarkLogic Server. In this diagram, User1 is part of Role2, and Role2 inherits
Role3. Therefore, even though User1l has only been assigned Role2, Userl possesses all of the
privileges and permissions from both Role2 and Role3. Following the arrows pointing into Role2 and
Role3, you can see that the user possesses Privl and Priv2 based on the privileges assigned to
these roles and insert and read capabilities based on the permissions applied to Document1.

2023-08-21 14:49 Securing MarkLogic Server Page 14

MarkLogic 10 The admin and security Roles

Because User1 possesses Privl (based on role inheritance), User1l is able to execute code
protected with a xdmp:security-assert("'Privl", "execute") call; users who do not have
the Priv1 privilege can not execute such code.

2.2. The admin and security Roles

MarkLogic Server has a special role named admin. The admin role has full authority to do everything
in MarkLogic Server, regardless of the permissions or privileges set. In general, the admin role is only
for administrative activities and should not be used to load data and run applications. Use extreme
caution when assigning users the admin role, because it gives them the authority to perform any
activity in MarkLogic, included adding or deleting users, adding or deleting documents, changing
passwords, and so on.

Users with the admin-ui-user role may view the Admin Ul, but do not have access to data or
the ability to make administrative changes. For more information, see The admin-ui-user role in the
Administrator’s Guide.

MarkLogic Server also has a built-in role named security. Users who are part of the security
role have execute privileges to perform security-related tasks on the system using the functions in
the security.xqy Library Module. Use extreme caution when assigning users the security role,
because it gives the user the ability to utilize or assign the admin role.

The security role does not have access to the Admin Interface. To access the Admin Interface,

a user must have the admin role or the admin-ui-user role. The security role provides the
privileges to execute functions in the security .xqy module, which has functions to perform actions
such as creating users and creating roles. For details on managing security objects programmatically,
see Creating and Configuring Roles and Users and User Maintenance Operations in the Scripting
Administrative Tasks Guide.

2.3. Example—Introducing Roles, Users, and Execute Privileges

Consider a simple scenario with two roles: engineering and sales. The engineering role is
responsible for making widgets and has privileges needed to perform activities related to making
widgets. The sales role is responsible for selling widgets and has privileges to perform activities
related to selling widgets.

To begin, create two roles in MarkLogic Server named engineering and sales respectively.

The engineering role needs to be able to make widgets. You can create an execute privilege

with the name make-widget, and action URI http://widget.com/make-widget to represent that
privilege. The sales role needs to sell widgets,so you create an execute privilege with the name
sell-widget and action URI http://widget.com/sell-widget to represent that privilege.

S NOTE
Names for execute privileges are used only as display identifiers in the Admin
Interface. The action URIs are used within XQuery or JavaScript code to identify the
privilege.

Ron is an engineer in your company so you create a user for Ron and assign the engineering role
to the newly created user. Emily is an account representative so you create a user for Emily and assign
her the sales role.

2023-08-21 14:49 Securing MarkLogic Server Page 15

https://docs.marklogic.com/guide/admin/admin_inter#id_48606
https://docs.marklogic.com/guide/admin-api/configure#id_80160
https://docs.marklogic.com/guide/admin-api/maintenance#id_11687

MarkLogic 10 Example—Introducing Roles, Users, and Execute Privileges

In your XQuery code, use the xdmp:security-assert function to ensure that only engineers make
widgets and only account representatives sell widgets (if you are using JavaScript, you can similarly call
xdmp .securityAssert in your JavaScript function to protect the code). For example:

xquery version "1.0-ml" define function make-widget(...) as ...
{ xdmp:security-assert("http://widget.com/make-widget", "execute'), nake
wi dget...}

If Ron is logged into the application and executes the make-widget() function, xdmp:security-
assert('http://widget.com/make-widget', "execute') succeeds since Ron is of the
engineering role which has the execute privilege to make widgets.

If Emily attempts to execute the make-widget function, the xdmp : security-assert function call
throws an exception. You can catch the exception and handle it with a try/catch in the code. If the
exception is not caught, the transaction that called this function is rolled back.

Some functions are common to several protected actions. You can protect such a function with a single
xdmp :security-assert call by providing the appropriate action URIs in a list. For example, if a user
needs to execute the count-widgets function when making or selling widgets, you might protect the

function as follows:

xquery version "1.0-ml" define function count-widgets(...)
as ... { xdmp:security-assert(("http://widget.com/make-widget', "http://
widget.com/sell-widget'™), "execute™), count-w dget...}

If there is a function that requires more than one privilege before it can be performed, place the
xdmp:security-assert calls sequentially. For example, if you need to be a manager in the sales
department to give discounts when selling the widgets, you can protect the function as follows:

xquery version "1.0-ml" define function discount-widget(...)

as ... { xdmp:security-assert("http://widget.com/sell-widget", "execute'),
xdmp:security-assert("http://widget.com/change-price", "execute'), discount
wi dget...}

where http://widget.com/change-price is an action URI for a change-price execute privilege
assigned to the manager role. A user needs to have the sales role and the manager role, which
provides the user with the sel I-widget and change-price execute privileges, to be able to execute
this function.

2023-08-21 14:49 Securing MarkLogic Server Page 16

https://docs.marklogic.com/xdmp:security-assert
https://docs.marklogic.com/xdmp.securityAssert
https://docs.marklogic.com/xdmp:security-assert

MarkLogic 10 Protecting Documents

3. Protecting Documents

The MarkLogic Server security model has a set of tools you can use to control access to documents.
These tools control creating, inserting into, updating, and reading documents in a database. This
section describes those tools.

3.1. Creating Documents

To create a document in a MarkLogic Server database, a user must possess the needed privileges to
create a document with a given URI. The ability to create documents based on the URI is controlled
with URI privileges and with two built-in execute privileges (any-uri and unprotected-uri). To
possess a privilege, the user must be part of a role (either directly or indirectly, through role inheritance)
to which the privilege is assigned. This section describes these different privileges.

3.1.1. URI Privileges

URI privileges control the ability to create a new document with a given URI prefix.

For example, the screenshot below shows a URI privilege with /widget.com/sales/ as the
protected URI. Any URI with /Zwidget.com/sales/ as the prefix is protected. Users must be part
of the sales role to create documents with URIs beginning with this prefix. In this example, you need
this URI privilege (or a privilege with at least as much authority) to create a document with the URI /
widget.com/sales/my_process.xml.

2023-08-21 14:49 Securing MarkLogic Server Page 17

MarkLogic 10 Document Permissions

New URI Privilege ok | [cancel

uri privilege -- Privilege representation.

privilege name zales-Uri-privilege

Privilege name (unigue)
Required. You must supply a value for privilege-name.

uri fevidget comizales!

A URI to protect.
Required. You must supply a value for action.

roles - ThHe roles assighed.

™ admin

I admin-buitins

r domain-management
r filesystem-access
r et ge

r pipeline-execution

r pipeline-management
(I read

P zales

3.1.2. Built-In URI Execute Privileges
The following built-in execute privileges control the creation of URlIs:

* any-uri
* unprotected-uri

The any-uri privilege provides the authority to create a document with any URI in the database, even
if the URI is protected with a URI privilege. The unprotected-urti privilege provides the authority to
create a document at any URI in the database except for URIs that are protected with a URI privilege.

3.2. Document Permissions

Permissions set on a document define access to capabilities (read, insert, update, node-update,
and execute) for that document. Each permission consists of a capability and a role. This section
describes how to set permissions on a document.

3.2.1. Capabilities Associated through Permissions

Document permissions pair a role with a capability to perform some action on a document. You can
add multiple permissions to a document. If a user is part of a role (either directly or through inheriting

2023-08-21 14:49 Securing MarkLogic Server Page 18

MarkLogic 10 Document Permissions

the role) specified as part of a document permission, then the user has that capability for the given
document. This section describes the capabilities you can assign to a role using permissions.

Read

The read capability provides the authority to see the content in the document. Being able to see the
content does not allow you to modify the document.

Update

The update capability provides the authority to modify content in the document or delete the
document. However, update does not provide the authority to read the document. Reading the
document requires the read capability. Users with update capability, but not read capability, can call
the xdmp :document-delete and xdmp:document-insert functions successfully. However, node
update functions, such as xdmp:node-replace, xdmp:node-delete, and xdmp:node-insert-
after, cannot be called successfully. Node update functions require a node from the document as a
parameter. If a user cannot read the document, he cannot access the node in the document and supply
it as a parameter.

There is a way to get around the issue with node update functions. The update capability provides
the authority to change the permissions on a document. Therefore, you can use the xdmp :document-
add-permissions function to add a new permission to the document with read capability for a given
role. A user with both read and update capabilities can call node update functions successfully.

Node Update

The node-update capability provides a subset of the update capability, enabling permission to
update nodes within a document. The node-update capability offers finer control of updates when
combined with element level security. The node-update capability covers xdmp:node-replace

and xdmp:node-delete and can also be used in built-ins on properties, including xdmp : document-
add-properties, xdmp:document-set-property, xdmp:document-set-properties and
xdmp :document-remove-properties. Note that if a role has the update capability, it automatically
includes the node-update capability as well.

Insert

The insert capability provides a subset of the update capability. The Insert capability provides the
authority to add new content to the document. The Insert capability by itself does not allow a user

to change existing content or remove an existing document (for example, calls to xdmp :document-
insert and xdmp:document-delete on an existing document fail). Furthermore, you need read
capability on the document to perform actions that use any of the node insert functions (xdmp :node-
insert-before, xdmp:node-insert-after, xdmp:node-insert-child), as explained above in
the description for update. Therefore, a permission with an insert capability must be paired with a
permission with a read capability to be useful.

Execute

The execute capability provides the authority to execute application code contained in that document,
if the document is stored in a database which is configured as a modules database. Users without
permissions for the execute capability on a stored module, are not able to execute that module.

3.2.2. Setting Document Permissions

When you create documents in a database, you must think about setting permissions on the document.
If a document has no permission set on it, no one, other than users with the admin role, can read,
update, insert, or delete it. Additionally, non-admin users must add update permissions on documents
when creating them; attempts to create a document without at least one update permission result in an
XDMP-MUSTHAVEUPDATE exception.

You set document permissions in the following ways:

2023-08-21 14:49 Securing MarkLogic Server Page 19

MarkLogic 10 Securing Collection Membership

» Explicitly set permissions on a document at load time (as a parameter to xdmp :document-load or
xdmp : document-insert, for example).

+ Explicitly set and remove permissions on a document using the following functions:
+ xdmp:document-add-permissions
* xdmp:document-set-permissions
* xdmp:document-remove-permissions

» Implicitly set permissions when the document is created based on the default permissions of the user
who creates the documents. Permissions are applied to a document at document creation time based
on the default permissions of the user who creates the document.

For examples of setting permissions on documents, see Section 3.5, “Example—Using
Permissions” [20].

3.3. Securing Collection Membership

You can also secure membership in collections by assigning permissions to collections. To assign
permissions to collections, you must use the Admin Interface or the security.xqy Library Module
functions. You cannot assign permissions to collections implicitly with default permissions.

For more information about permissions on collections, see Collections and Security in the Search
Developer’s Guide.

3.4. Default Permissions

When a document is created, it is initialized with a set of permissions. If permissions are not

explicitly set (by using xdmp:document-load or xdmp:document-insert, for example), then the
permissions are set to the default permissions. The default permissions are determined based on the
roles assigned (both explicitly and inherited from roles assigned to other roles) to the user who creates
the document and on any default permissions assigned directly to the user.

If users are creating documents in a database, it is important to configure default permissions for the
roles assigned to that user. Without default permissions, it is easy to create documents that no users
(except those with the admin role) can read, update, or delete.

3.5. Example—Using Permissions

It is important to consider document permissions when you load content into a database, whether

you load data using the built-in functions (for example, xdmp : document-load or xdmp : document-
insert), WebDAV (for example, dragging and dropping files into a WebDAV folder), the REST API, the
Java API, or a custom program. In each case, setting permissions is necessary, whether explicitly or by
taking advantage of default permissions. This example shows several ways of setting permissions on
documents.

Suppose that Ron, of the engineering role, is given the task to create a document to describe new
features that will be added to the next version of the widget. Once the document is created, other

users with the engineering role contribute to the document and add the features they are working
on. lan, of the engineering-manager role, decides that users of the engineering role should only
be allowed to read and add to the document. This enables lan to control the process of removing or
changing features in the document. To implement this security model, the document should be created
with read and insert permissions for the engineering role, and read and update permissions for
the engineering-manager role.

This section describes the two ways to apply permissions to documents at creation time.

3.5.1. Setting Permissions Explicitly

Assume that the following code snippet is executed as user Ron of the engineering role. The code
inserts a document with the following permissions:

2023-08-21 14:49 Securing MarkLogic Server Page 20

https://docs.marklogic.com/guide/search-dev/collections#id_32054

MarkLogic 10 Example—Using Permissions

* read and insert permissions for the engineering role
» update, node-update, and read permissions for the engineering-manager role

xdmp:document-insert(*'/widget.com/engineering/features/2017-ql.xml",
<new- f eat ur es>
<f eat ure>
<nane>blue whistle</ nane>
<assi gned-t o>Ron</ assi gned-t 0>

</feature>

</ new- f eat ures>,

(xdmp:permission(*engineering”, "read"),
xdmp:permission(‘‘engineering’, "insert"),
xdmp:permission(‘'engineering-manager', "read"),
xdmp:permission(*‘engineering-manager', ‘update'),
xdmp:permission(*'engineering-manager', ‘'‘node-update’))

If you specify permissions to the function call explicitly, as shown above, those permissions override
any default permission settings associated with the user (through user settings and role inheritance).

3.5.2. Default Permission Settings

If there is a set of permission requirements that meets the needs of most application scenarios,
MarkLogic recommends creating the appropriate default permission settings at the role or user
level. This avoids having to explicitly create and set document permissions each time you call
xdmp :document-l1oad or xdmp:document-insert.

Default permission settings that apply to a user, either through a role or through the user definition,
are important if you are loading documents using a WebDAV client. When you drag and drop files into
a WebDAV folder, the permissions are automatically set based on the default permissions of the user
logged into the WebDAV client. For more information about WebDAV servers, see WWebDAV Servers in
the Administrator’s Guide.

The following screenshot shows a portion of the Admin Interface for the engineering role. It shows
read and insert capabilities being added to the engineering role’s default permissions.

default permissions — The default el of permissions used in document creation.

role name (capability)

Mo Current Permissions

[add] engineering ~ read -
[add] engineering w insert -
[add] ~ read -

more permissions

A user’s set of default permissions is additive; it is the aggregate of the default permissions for all of
the user’s role(s) as well as for the user himself. Below is another screenshot of a portion of a User
configuration screen for Ron. It shows read and update capabilities being added to the engineering-
managerrole as Ron’s default permissions at the user level.

2023-08-21 14:49 Securing MarkLogic Server Page 21

https://docs.marklogic.com/guide/security/permissions#id_99089:~:text=WebDAV%20servers%2C%20see-,WebDAV%20Servers,-in%20the%20Administrator%27s

MarkLogic 10 Example—Using Permissions

default permissions — The default set of permissions used in document creation.

role name + capability

engineering-manager w update =
engineering-manager - read -
- read -

more permissions

S NOTE
Ron has the engineering role and does not have the engineering-manager role.
A user does not need to have a certain role in order to specify that role in its default
permission set.

You can also use a hybrid of the two methods described above. Assume that read and insert
capabilities for the engineering role are specified as default permissions for the engineering role
as shown in the first screenshot. However, update and read capabilities are not specified for the
engineering-manager at the user or engineering role level.

Further assume that the following code snippet is executed by Ron. It achieves the desired objective
of giving the engineering-manager role read, update, and node-update capabilities on the
document, and the engineering role read and Insert capabilities.

xdmp:document-insert(*'/widget.com/engineering/features/2017-g1.xml",
<new- f eat ures>
<f eature>
<nanme>blue whistle</ nane>
<assi gned-t o>Ron</ assi gned-t 0>

</feature>

</ new f eat ures>,
(xdmp:default-permissions(),

xdmp:permission(‘‘'engineering-manager™, '‘read™)
xdmp:permission(*'engineering-manager', "‘update'))
xdmp:permission(*'engineering-manager', '‘node-update'))

The xdmp:default-permissions function returns Ron’s default permissions (from the role level in
this example) of read and insert capabilities for the engineering role. The read, update, and
node-update capabilities for the engineering-manager role are then added explicitly as function
parameters.

2023-08-21 14:49 Securing MarkLogic Server Page 22

MarkLogic 10 Example—Using Permissions

E NOTE
The xdmp: document-insert function performs an update (rather than a create)
function if a document with the specified document URI already exists. Consequently,
if Ron calls the xdmp : document-insert function the second time with the same
document URI, the call fails since Ron does not have update capability on the
document.

Suppose that lan, of the engineering-manager role, decides to give users of the sales role read
permission on the document. (He wisely withholds update or insert capability or there will surely be
an explosion of features!) The code snippet below shows how to add permissions to a document after it
has been created.

xdmp:document-add-permissions(
"/widget.com/engineering/features/2017-gq1.xml",
xdmp:permission(‘'sales", "read"))

The update capability is needed to add permissions to a document, and the nhode-update capability
is needed to update a portion of a document (or node). Therefore, the code snippet only succeed if it

is executed by lan, or another user of the engineering-manager role. This prevents Ron from giving
Emily, his buddy in sales, insert capability on the document.

But what if the Emily is now the person in sales assigned to the project? lan has the node-update
capability, so he can call xdmp:node-replace and xdmp:node-delete to modify nodes in a
document. lan changes the “assigned-to” element in the document using xdmp : node-update.

xdmp :node-update("'/widget.com/engineering/features/2017-ql.xml",
<new-f eat ures>
<f eat ure>
<nanme>blue whistle</ nane>
<assi gned-t o>Emily</ assi gned- t 0>

</feature>
</ new- f eat ures>,

Changing default permissions for a role or a user does not affect the permissions associated with
existing documents. To change permissions on existing documents, you need to use the permission
update functions. See the documentation for the MarkLogic Built-In Functions in the XQuery and XSLT
Functions by Category reference for more details.

2023-08-21 14:49 Securing MarkLogic Server Page 23

https://docs.marklogic.com/all
https://docs.marklogic.com/all

MarkLogic 10 Authenticating Users

4. Authenticating Users

MarkLogic Server authenticates users when they access an application. This section describes users
and the available authentication schemes.

4.1. Users

A user in MarkLogic Server is the basis for authenticating requests to a MarkLogic application server.
Users are assigned to roles. Roles carry security attributes, such as privileges and default permissions.
Permissions assigned to documents pair a role with a capability, therefore roles are central to document
permissions. Users derive authorization to perform actions from their roles.

You configure users in the Admin Interface, where you assign a user a name, a password, a set of
roles, and a set of default permissions. To see the security attributes associated with a given user, click
on the User :username link in the Admin Interface screen for the given user. For details on configuring
users in the Admin Interface, see Security Administration in the Administrator’s Guide.

During the initial installation of MarkLogic Server, four users are created:

+ Authorized administrator - has the admin role. During the installation, you are prompted to specify
the username and password for this user.

» nobody - this user is created with the rest-reader, rest-extension-user, app-user,
and harmonized-reader roles. A password is randomly generated.

* healthcheck

* infostudio-admin

For details about installing MarkLogic Server, see the Installation Guide.

4.2. Types of Authentication

You can control the authentication scheme for HTTP, WebDAV, ODBC, and XDBC App Servers. This
section describes these authentication schemes.

4.2.1. Basic

Basic authentication is the typical authentication scheme for web applications. When a user accesses
an application page, she is prompted for a username and password. In basic mode, the password is
obfuscated but not encrypted.

4.2.2. Digest

Digest authentication works the same way as basic, but offers encryption of passwords sent over the
network. When a user accesses an application page, she is prompted for a username and password.

@ NOTE

If you change an App Server from basic to digest authentication, it invalidates existing
sessions. You must then reenter the passwords in the Admin Interface. Alternatively,
you can migrate to digest-basic mode initially, then switch to digest-only mode once
all users have accessed the server at least once. The first time the user accesses
the server after changing from basic to digest-basic scheme, the server computes the
digest password by extracting the relevant information from the credentials supplied in
basic mode.

2023-08-21 14:49 Securing MarkLogic Server Page 24

https://docs.marklogic.com/guide/admin/security

MarkLogic 10 Types of Authentication

4.2.3. Digest-Basic

The digest-basic authentication scheme uses the more secure digest scheme whenever possible, but
reverts to basic authentication when needed. Some older browsers, for example, do not support digest
authentication. The digest-basic scheme is also useful if you previously used basic authentication,

but want to migrate to digest. The first time a user accesses the server after changing from basic to
digest-basic authentication scheme, the server computes the digest password by extracting the relevant
information from the credentials supplied in basic mode.

4.2.4. Limitations of Digest and Basic Authentication

Since the browser does not provide a way to clear a user’s authentication information in basic or digest
mode, the user remains logged in until the browser is shut down. In addition, there is no way to create a
custom login page using these schemes. For certain deployments, application-level authentication may
be more appropriate.

4.2.5. Certificate

Certificate-based authentication requires internal and external users and HTTPS clients to authenticate
themselves to MarkLogic Server via a client certificate, either in addition to, or rather than a password.

Certificate-based authentication can take the following forms:

» MarkLogic Server authenticates an internal user via the common name in a certificate.

» MarkLogic Server authenticates an internal user via the distinguished name in a certificate, by
matching the distinguished name to an external name configured for an internal user.

» MarkLogic Server authenticates an external LDAP user via a certificate subject name, with internal
authorization.

» MarkLogic Server authenticates an external user via a certificate subject name, with external
authorization. User is entirely defined external to MarkLogic.

» MarkLogic Server authenticates via both a client certificate and a username/password. This provides
a greater level of security by requiring that user provide a client certificate that matches the specified
user.

For details on Certificate-based authentication, see Section 11, “Certificate-Based Authentication” [132].

4.2.6. Application Level

Application-level authentication bypasses all authentication and automatically logs all users in as a
specified default user. You specify the default user in the Admin Interface, and any users accessing the
server automatically inherit the security attributes (roles, privileges, default permissions) of the default
user. Application-level authentication is available on HTTP, ODBC, and WebDAV servers.

The default user should have the required privileges to at least read the initial page of the application.
In many application scenarios, the user is then given the opportunity to explicitly log in to the rest of
the application from that page. How much of the application and what data a user can access before
explicitly logging in depends on the application and the roles that the default user is part of. For an
example of this type of configuration, see Section 18.2.4, “Using Custom Login Pages” [230].

4.2.7. Kerberos Ticket

The user is authenticated by Kerberos and a Kerberos session ticket is used to authenticate the user to
access MarkLogic Server. For details, see Section 13.2, “Overview of External Authentication” [147].

4.2.8. SAML

When SAML authentication is used, a client requests a resource from MarkLogic Server with no
security context; MarkLogic redirects the authentication request to an Identity Provider. The Identity
Provider prompts the user to login, if necessary, and sends the authentication request back to
MarkLogic Server (the Service Provider) for validation.

There are two major components in SAML:

2023-08-21 14:49 Securing MarkLogic Server Page 25

MarkLogic 10 Types of Authentication

+ |dentity Provider (IDP) authenticates a subject and provides security assertion to service provider.
» Service Provider (SP) provides access to the resource for a client. MarkLogic Server is a Service
Provider.

MarkLogic Server sends a redirect to the resource. The client requests the resource again with
a security context. MarkLogic Server then authenticates the user using the information from the
authentication request to grant the user access to the requested resource.

See Section 13.3.2, “SAML Authentication” [153] for more information.

2023-08-21 14:49 Securing MarkLogic Server Page 26

MarkLogic 10 Compartment Security

5. Compartment Security

The MarkLogic Server includes an extension to the security model called compartment security.
Compartment security allows you to specify more complex security rules on documents.

@ NOTE
An Advanced Security License is required when using compartment security.
Section 1.1, “Licensing” [8] lists other security options requiring this license option.
Contact your MarkLogic sales representative for details on purchasing the Advance
Security License option.

This section describes compartment security.

5.1. Understanding Compartment Security

A compartment is a name associated with a role. You specify that a role is part of a compartment

by adding the compartment name to each role in the compartment. When a role is compartmented,
the compartment name is used as an additional check when determining a user’s authority to access
or create documents in a database. Compartments have no effect on execute privileges. Without
compartment security, permissions are checked using OR semantics.

For example, if a document has read permission for rolel and read permission for role2, a

user who possesses either rolel or role2 can read that document. If those roles have different
compartments associated with them (for example, compartmentl and compartment?2, respectively),
then the permissions are checked using AND semantics for each compartment, as well as OR
semantics for each non-compartmented role. To access the document if rolel and role2 are in
different compartments, a user must possess both rolel and role2 to access the document, as well
as a non-compartmented role that has a corresponding permission on the document.

If any permission on a document has a compartment, then the user must have that compartment in
order to access any of the capabilities, even if the capability is not the one with the compartment.

Access to a document requires a permission in each compartment for which there is a permission on
the document, regardless of the capability of the permission. So if there is a read permission for a role
in compartmentl, there must also be an update permission for some role in compartmentl (but not
necessarily the same role). If you try to add read, insert, node-update, or execute permissions
that reference a compartmented role to a document for which there is no update permission with the
corresponding compartment, the XDMP-MUSTHAVEUPDATE exception is thrown.

5.2. Configuring Compartment Security

You can only add a compartment for a new role. To add a compartment, use the Admin Interface >
Security > Roles > Create and enter a name for the compartment in the compartment field when you
define each role in the compartment.

You cannot modify an existing role to use a compartment. To add a compartment to a role, you must
delete the role and re-create it with a compartment. If you do re-create a role, any permissions you
have on documents reference the old role (because they use the role ID, not the role name). So if you
want those document permissions to use the new role, you need to update those documents with new
permissions that reference the new role.

2023-08-21 14:49 Securing MarkLogic Server Page 27

MarkLogic 10 Example—Compartment Security

5.3. Example—Compartment Security

This section describes a scenario that uses compartment security. The scenario is not meant to
demonstrate the correct way to set up compartment security, as your situation is likely to be unique.
However, it demonstrates how compartment security works and may give you ideas for how to
implement your own security model:

For a MarkLogic application used by a government department, documents are classified with a
security classification that dictates who may access the document. The department also restricts
access to some documents based on the citizenship of the user. Additionally, some documents can
only be accessed by employees with certain job functions.

To set up the compartment security for this scenario, you create the necessary roles, users, and
documents with the example permissions. You will need access to both MarkLogic Admin Interface and
Query Console.

To run through the example, perform the steps in each of the sections.

5.3.1. Create Roles

Using the Admin Interface > Security > Roles > Create, create the roles and compartments as follows:

Create roles named US and Canada and assign each of these roles the country compartment name.
These roles form the country compartment.

1. Create roles named Executive and Employee and assign each of these roles the job-
function compartment name. These roles form the job-function compartment.

2. Create roles named top-secret and unclassified and assign each of these roles the
classification compartment name. These roles form the classification compartment.

3. Create a role named can-read with no compartment.

5.3.2. Create Users

Using the Admin Interface > Security > Users > Create, create users and give them the roles indicated
in the following table:

User Roles
Don Executive
us

top-secret

can-read

Ellen Employee
us
unclassified

can-read

Frank Executive
Canada
top-secret

can-read

Gary

can-read

Hannah

unclassified

can-read

2023-08-21 14:49

Securing MarkLogic Server

Page 28

MarkLogic 10 Example—Compartment Security

5.3.3. Create the Documents and Add Permissions

Using the MarkLogic Query Console, add a document for each combination of permissions in the
following table:

Document Permissions (Role, Capability) Users with Access

docl.xml (Executive, read) Don
(Executive, update)
(US, read)

(US, update)
(top-secret, read)
(top-secret, update)
(can-read, read)

(can-read, update)
doc2.xml (US, read) Don and Ellen

(US, update)
(can-read, read)

(can-read, update)

doc3.xml (can-read, read) All users

(can-read, update)

doc4 .xml (Canada, read) Frank, Don, Ellen
(US, read)

(US, update)
(can-read, read)

(can-read, update)

doc5.xml (unclassified, read) Ellen, Hannah
(unclassified, update)
(can-read, read)

(can-read, update)

1. You can use XQuery code similar to the following example to insert the sample documents into a
database of your choice. This code adds a document with a URI of doc1.xml, containing one <a>
element and a set of five permissions.

xquery version "1.0-ml";

declare namespace html = "http://www.w3.0rg/1999/xhtml";

xdmp :document-insert(

“/docl.xml", <a>This is document 1.,

(xdmp:permission(‘‘can-read"”, "read"),
xdmp:permission(*'can-read", "‘update'),
xdmp:permission(*'US", "read"),
xdmp:permission("'US", "update'),
xdmp:permission("'Executive’, "read"),
xdmp:permission("'Executive', '"update™),
xdmp:permission(*'top-secret', "read"),
xdmp:permission(''top-secret', "update')))

The docl1.xml document can only be read by Don because the permissions designate all three
compartments and Don is the only user with a role in all three of the necessary compartmented
roles Executive, US, and top-secret, plus the basic can-read role.

2. Create the rest of the sample documents changing the sample code as needed. You need to
change the document URI and the text to correspond to doc2.xml, doc3.xml, doc4 . xml,

2023-08-21 14:49 Securing MarkLogic Server Page 29

MarkLogic 10 Example—Compartment Security

and doc5.xml and modify the permissions for each document as suggested in the table in
Section 5.3.3, “Create the Documents and Add Permissions” [29].

5.3.4. Test It Out

Using Query Console, you can execute a series of queries to verify that the users can access each
document as specified in the table in Section 5.3.3, “Create the Documents and Add Permissions” [29].

For simplicity, this sample query uses xdmp:eval and xdmp:user to execute a query in the context
of each different user. Modify the document URI and the user name to verify the permissions until you
understand how the compartment security logic works. If you added the roles, users, and documents
as described in this scenario, the query results should match the table in Section 5.3.3, “Create the
Documents and Add Permissions” [29].

xquery version "1.0-ml";
declare namespace html = "http://www.w3.0rg/1999/xhtml";
xdmp:eval (*fn:doc(*/docl.xmI")", O,
<options xmlns="xdmp:eval'>
<user - i d>{xdmp:user('Don'")}</ user-i d>
</ opti ons>)

2023-08-21 14:49 Securing MarkLogic Server Page 30

MarkLogic 10 Element Level Security

6. Element Level Security

MarkLogic Server includes element level security, an addition to the security model that allows you

to specify more complex security rules on specific elements in documents. The feature also can be
applied to JSON properties in a document. Using element level security, parts of a document may be
concealed from users who do not have the appropriate roles to view them. Users without appropriate
permissions cannot view the secured element or JSON property using XPath expressions or queries.
Element level security can conceal the XML element (along with properties and attributes) or JSON
property so that it does not appear in any searches, query plans, or indexes, unless accessed by a user
with a role included in query roleset.

Element level security protects elements or JSON properties in a document using a protected path,
where the path to an element or property within the document is protected so that only roles belonging
to a specific query roleset can view the contents of that element or property. Only users with specific
roles that match the specific query roleset can view the elements or properties protected by element
level security. You can set protection with element level security to conceal a document’s sensitive
contents in real time, and also control which contents can be viewed and/or updated by other users.

NOTE

See Section 6.14, “Interactions with Other MarkLogic Features” [84] for details about
using element level security with SQL and semantic queries.

Permissions on an element or property are similar to permissions defined on a document. Elements

or properties may contain all supported datatypes. Search results and update built-ins will honor the
permissions defined at the element level. Element level security is applied consistently across all areas
of the MarkLogic Server, including reads, updates, query plans, etc.

The protected paths are in the form of XPath expressions (not fields) that specify that an XML element
or JSON property is part of a protected path. You will need to install or upgrade to MarkLogic 9.0-1 or
later to use element level security.

6.1. Understanding Element Level Security

Elements of a document can be protected from being viewed as part of a query or XPath expression, or
from being updated by a user, unless that user has the appropriate role. You specify that an element is

part of a protected path by adding the path to the Security database. You also then add the appropriate
role to a query roleset, which is also added to the Security database.

Element level security uses query rolesets to determine which elements will appear in query results. If a
query roleset does not exist with the associated role that has permissions on the path, the role cannot
view the contents of that path.

@ NOTE
A user with admin privileges can access documents with protected elements by using
fn:doc to retrieve documents (instead of using a query). To see protected elements
as part of query results, however, a user needs the appropriate role(s).

2023-08-21 14:49 Securing MarkLogic Server Page 31

https://docs.marklogic.com/guide/copyright/glossary#id_56175
https://docs.marklogic.com/guide/security/element#:~:text=document%20using%20a-,protected%20path,-%2C%20where%20the%20path
https://docs.marklogic.com/guide/copyright/glossary#id_56175
https://docs.marklogic.com/guide/copyright/glossary#id_56175

MarkLogic 10 Example—Element Level Security

6.2. Example—Element Level Security

This section describes a scenario using element level security. The scenario is not meant to
demonstrate the correct way to set up element level security, as your situation is likely to be unique.
However, it demonstrates how element level security works and may give you ideas for how to
implement your own security model. You will need access to both MarkLogic Admin Interface and
Query Console. Install or upgrade to MarkLogic Server 9.0-x or later prior to starting this example:

For a MarkLogic application used by a department, certain parts of documents may be hidden so that
only users with the correct role may view or update those parts of the document. Users without the
proper role will not be able to see the element concealed by the protected path.

To set up the element level security for this scenario, follow the steps in each subsection.

6.2.1. Create Roles

Using the Admin Interface, create the roles as follows. You will create two roles, els-role-1 and
els-role-2.

1. In the Admin Interface, click Security in the left tree menu.

2. Click Roles and then click the Create tab.

3. On the Role Configuration page, enter the information for the first role: role name: els-role-1,
description: els role 1.

[summory T conoure T veserive T creae T werr I

Role: els-role-1 ok cancel
role — A security role. _ delete
role name els-role-1

The Role name (unigue)

description gls role 1

An object’s description.

compartment
The compartment that this role is part of.

4. Click OK to save the role.
5. Repeat these steps to create the second role (els-role-2, els role 2).

See Roles in the Administrator’s Guide for details about creating roles.

6.2.2. Create Users and Assign Roles

Now create three users (els-user-1, els-user-2, and els-user-3) using the Admin Interface.
Assign roles to two of the users.

1. Inthe Admin Interface, click Security in the left tree menu.

2. Click Users and then click Create.

3. On the User Configuration page, enter the information for the first user: user name: els-
user-1, description: ELS user 1, password: <password>.
Enter a password of your choice.

2023-08-21 14:49 Securing MarkLogic Server Page 32

https://docs.marklogic.com/guide/admin/security#id_81112

MarkLogic 10 Example—Element Level Security

(g greTes gree-ves garees gayTams <

User: els-user-1 ok cancel
user - A dafabase user. - delete
user name els-user-1

User/login name {unigue)

description ELS user 1
An object’s description.

password LTI YT Y YT Y]

Encrypted Password.

confirm Pﬂﬁword sssssEEsIRRRRRRRRERS
Encrypted Password.

Add this user to the first role that you created (els-role-1):

1. Scroll down the User Configuration page until you see the els-role-1 role you just created.
2. Click the box next to els-role-1 to assign the role to the user.

domain-management

ec2-protected-access
v els-role-1

els-role-2

filesystem-access

flexrep-admin

3. Click OK to save your changes.

Repeat these steps to create a second user and third user (els-user-2, ELS user 2, els-user-3,
ELS user 3). Assign roles to the users as shown. ELS user 3 will not have an assigned role.

2023-08-21 14:49 Securing MarkLogic Server Page 33

MarkLogic 10 Example—Element Level Security

[oy T eweae ™ T v I

User Description Roles

Admin admin user admin

els-user-1 ELS user1 els-role-1

els-user-2 ELS user 2 els-role-2

els-user-3 ELS user 3

healthcheck Healthcheck application runner healthcheck-user

infostudio-admin Information Studio CPF pipeline and task runner dis-user, dls-internal, infostudio-user, dis-admin, ...
nobody nobody user rest-reader, rest-extension-user, app-user

See Users in the Administrator’s Guide for details on creating users.

NOTE

protected paths that involve concealed elements.

6.2.3. Add the Documents

For our simple example, we will use three documents, two in XML and one in JSON. Use the

Admin users must be added to a role in order to view the results of a query on

Query Console to insert these documents into the Documents database, along with read and update

permissions for els-user-1 and els-user-2:

(: run this against the Documents database :)
xquery version "1.0-ml";
import module namespace sec="http://marklogic.com/xdmp/security"
at ""/MarkLogic/security.xqy";
xdmp:document-insert(“test1. xm *,
<r oot >
<bar baz="1" attr=""test''>abc</ bar >
<bar baz="2">def</ bar >
<bar attr=""testl''>ghi</ bar>
</root>,

(xdmp:permission(“'els-role-1", "read"), xdmp:permission(“els-role-2", "read"),

xdmp:permission(‘'els-role-1", "update™),
xdmp:permission(els-role-2", "update')))
xdmp:document-insert(“"test 2. xm *,
<r oot >
<reg expr="this is a string'">1</reg>
<reg>2</reg>
</root>,

(xdmp:permission(“'els-role-1", "read"), xdmp:permission(*els-role-2", "read"),

xdmp:permission(“els-role-1", "update),
xdmp:permission(els-role-2", "update')))
xdmp:document-insert(*'test1.json", object-node {
"foo™ : 1, "bar™ : 2", "baz" : object-node
{"bar" : array-node {3,4}, "test" : 5}

T,

(xdmp:permission(“'els-role-1", "read"), xdmp:permission(*els-role-2", "read"),

xdmp:permission(‘'els-role-1", "update'),
xdmp:permission(“els-role-2", "update')))

2023-08-21 14:49 Securing MarkLogic Server

Page 34

https://docs.marklogic.com/guide/admin/security#id_38313

MarkLogic 10 Example—Element Level Security

The code example adds permissions to the documents for els-role-1 and els-role-2 while
inserting them into the database.

6.2.4. Add Protected Paths and Query Rolesets

Using the Admin Ul, add the protected paths and query rolesets to the Security database. If no query
rolesets are configured, a query will only match documents by the terms that are visible to everyone.

To start, check for any existing protected paths using this query in the Query Console:

(: run this query against the Security database :) fn:collection("http://
marklogic.com/xdmp/protected-paths'™)

This will return an empty sequence if there are no protected paths. If there are protected paths,
information about those protected paths will be displayed, including the path ID, the path expression,
the permissions, and roles associated with that path.

Using the Admin Interface, add protected paths with permissions for els-user-2. To add the
protected path from the Admin Ul:

1. Click Security in the left tree menu.

2. Click Protected Paths and then click the Create tab.

3. Enter the path expression for the first path (/root/bar[@baz=1]),with read permissions for
els-role-2.

I ommey T e T nee IR
Configure)))]
B & Groups New Protected Path ok | [cancel
J Databases

Hosts protected path — A protected-path definition

Forests

228 J Mimetypes
BEFid custers _
= Security path expression Iroot/bar[@baz=1]
-]
_ - The XPath that specifies the XML element or JSON property in a protected-path
g Users definition
‘f{ Roles Required. You must supply a value for path-expression.

‘f{ Execute Privileges
B UR Privileges
‘S:J Amps

‘sjl Collections

path namespaces — Mamespace bindings

4.

EF.E Protected Paths
| BHLA& NewProtectedPath
‘sjl Cuery Rolesets
7553 Certificate Authorties
o Certificate Templates
B3 External Securiy
‘f{ Credentials
‘f{ Secure Credentials

prefix

A OName prefi.

namespace uri

A namespace URL
more items

permissions — The default set of permissions used in document creation.

role name + capability

gls-role-2 w read b4

more permissions

path set
Path Set

ok cancel

Click OK when you are done. Since there are no namespaces in these examples, the prefix and

namespace are not required for the protected path.

For examples using namespaces and prefixes as part of a protected path, see Namespaces as Part of
a Protected Path [55].

2023-08-21 14:49 Securing MarkLogic Server Page 35

MarkLogic 10

Example—Element Level Security

Repeat this for two additional protected paths, “test” and “/root/reg[fn:matches(@expr,

"isT)]".

Configure
J Groups
J Databases

I Summary '

Path Expression

Iroot/bar[@baz=1]

Create T

Help

Namespaces Permissions Path Set

els-role-2 (read)

-
S
)
R
74

Iroot/reg[fn:matches{@expr, ‘is")] els-role-2 (read)

Forests

]
o
=l
&
&

test elz-role-2 (read)

o
15
@
@
w

w

ecurity

Users

oles

.\.J:}
o

xecute Privileges

o @

URI Privileges

&

Amps
Collections
Protected Paths

o

&

‘=@ Query Rolezets
Certificate Authorities
ertificate Templates
xternal Security

Credentials

o

@O @@ G

Secure Credentials

The three protected paths with read permissions for els-role-2 are:
"1s7)]

Alternatively, you can add these protected paths with the Query Console. Use this code to add these
protected paths with permissions for els-user-2 to the Security database:

/root/bar[@baz=1] test /root/reg[fn:matches(@expr,

(: add protected paths -> run against the Security database :)
xquery version "1.0-ml";
import module namespace sec="http://marklogic.com/xdmp/security"

at ""/MarkLogic/security.xqy";
sec:protect-path("'/root/bar[@baz=1]", (), (xdmp:permission(‘els-role-2", "read™))),
sec:protect-path("test”, (), (xdmp:permission("els-role-2", "read™))),
sec:protect-path(*/root/reg[fn:matches(@expr, "is")]", O, (xdmp:permission(*'els-role-2",
"read™)))

=> Returns three numbers representing the protected paths

K

NOTE

Adding, unprotecting, or changing permissions on protected paths will trigger
reindexing. This reindexing will only apply to documents that include or match the
paths.

Now add query rolesets for these documents. In the Query Console, run this code to add query rolesets
for els-user-2:

2023-08-21 14:49 Securing MarkLogic Server Page 36

MarkLogic 10 Example—Element Level Security

(: run this against the Security database :)
xquery version ""1.0-ml";
import module namespace sec = "http://marklogic.com/xdmp/security"
at "/MarkLogic/security.xqy";
let $gry := "xdmp:database-node-query-rolesets(fn:doc(), ("all'))*
let $qry-rolesets :=
xdmp:eval ($qry, (),<options xmlns="xdmp:eval™>
<dat abase>{xdmp:database("Documents®)}</ dat abase>
</ opti ons>)
return
sec:add-query-rolesets($gry-rolesets)

In most cases you will want to use the helper functions (xdmp:database-node-query-rolesets
and xdmp:node-query-rolesets) to create query rolesets. The helper function automatically
created the query rolesets based on the protected paths you have set. See Helper Functions for Query
Rolesets [67] for more information. To understand more about query rolesets, see Section 6.3.2,
“Query Rolesets” [60].

You can also can add query rolesets manually with XQuery in the Query Console if you only have a
few query rolesets to add. Use this code, checking to be sure you are running it against the Security
database:

(: add query rolesets => run against the Security database :)

xquery version "1.0-ml";

import module namespace sec="http://marklogic.com/xdmp/security"
at ""/MarkLogic/security.xqy";

let $roleset := sec:query-roleset("els-role-2")

return

sec:add-query-rolesets(sec:query-rolesets($roleset))

=>

Returns a unique ID representing the added query rolesets

NOTE

Adding query rolesets does not trigger reindexing, since it is only used by queries.

Check for query rolesets in the Security database using the Query Console:

(: run this query against the Security database :)
fn:collection("'http://marklogic.com/xdmp/query-rolesets')

=>

Returns details about query rolesets in the Security database.
There is also a collection for protected paths in the Security database:
(: run this query against the Security database :)
fn:collection("http://marklogic.com/xdmp/protected-paths'™)

=>

Returns details about protected paths in the Security database.

The els-role-2 can now see the elements in these paths, but the els-user-1 cannot:

test /root/bar[@baz=1] /root/reg[fn:matches(@expr, "is")]

6.2.5. Run the Example Queries

This section includes examples in both XQuery and JavaScript. Run the following queries in the
Query Console. For simplicity, the sample queries use xdmp:eval and xdmp:get-current-user (or
xdmp.eval and xdmp .getCurrentUser) to execute a query in the context of each user. Different

2023-08-21 14:49 Securing MarkLogic Server Page 37

MarkLogic 10 Example—Element Level Security

elements and properties in a document are concealed for the different roles. Notice the different types
of queries, using either XQuery or JavaScript, that are used to search for content.

NOTE

These examples assume that you have access permissions for both the MarkLogic
Admin Interface and the Query Console.

XQuery Examples of Element Level Security

Run these queries on the Documents database using XQuery in Query Console. First run the queries in
the context of els-user-1:

(: run this against the Documents database :)

xdmp:eval (

"cts:search(fn:doc(), cts:word-query(‘''def"), "unfiltered"),

cts:search(fn:doc(), cts:element-attribute-word-query(xs:QName("'bar'), xs:QName('attr™),
"test"), "unfiltered"),

cts:search(fn:doc(), cts:element-attribute-word-query(xs:QName(*'reg'), xs:QName('expr'),
"is'"), "unfiltered)",
O,
<options xmlns="xdmp:eval'>
<user - i d>{xdmp:user(*'el s-user-1'")}</ user-i d>
</ opti ons>
)
=
<?xml version="1.0" encoding="UTF-8"7?>
<r oot >
<bar baz="2">def</ bar>
<bar attr="testl">ghi</bar>
</ root >

Notice that in the first query, all of the documents are returned, but the elements with protected paths
are missing from the content:

<bar baz="1" attr="test''>abc</ bar>
"test'': 5

<reg expr="this is a string'">1</reg>

In the second query, the document does not show up at all because the query is searching on a
protected path that els-user-1 is not allowed to see (protected path “/root/bar[@baz=1]").

2023-08-21 14:49 Securing MarkLogic Server Page 38

MarkLogic 10 Example—Element Level Security

NOTE

If you are getting different results, check to see that you have set up your user roles
correctly and added the query rolesets to the Security database.

Now, modify the query to use the context of the els-user-2 and run the queries again:

(: run this against the Documents database :)

xdmp:eval (

"cts:search(fn:doc(), cts:word-query(‘'def™), "unfiltered"),

cts:search(fn:doc(), cts:element-attribute-word-query(xs:QName(*'bar'), xs:QName(*'attr'),
"testl"), "unfiltered"),

cts:search(fn:doc(), cts:json-property-value-query(‘'bar', "2'")),

cts:search(fn:doc(), cts:element-attribute-word-query(xs:QName(*'reg'), xs:QName('expr™),
"is'™), "unfiltered™)",
O,
<options xmlns="xdmp:eval'>
<user - i d>{xdmp:user('el s-user-2'")}</ user-i d>
</ opti ons>
)
=>
<?xml version="1.0" encoding="UTF-8"?>
<r oot >
<bar baz="1" attr=""test'>abc</ bar>
<bar baz="2">def</ bar >
<bar attr="testl">ghi</bar>
</root >
<?xml version="1.0" encoding="UTF-8"?>
<r oot >
<bar baz="1" attr=""test">abc</ bar>
<bar baz="2">def</ bar >
<bar attr="testl'>ghi</bar>
</r oot >

"foo": 1,
“bar™: "2",
"baz": {
“"bar": [
3,
4
]

"test": 5

<?xml version="1.0" encoding="UTF-8"7?>
<r oot >
<reg expr="this is a string'">1</reg>
<reg>2</reg>
</root>

This time all of the documents are returned, along with the protected elements. Notice that the one
document is returned twice; two different queries find the same document.

2023-08-21 14:49 Securing MarkLogic Server Page 39

MarkLogic 10 Example—Element Level Security

Run the query one more time using the xdmp:eval pattern as els-user-3 and notice that none of
the documents are returned because els-user-3 does not have the basic permissions to read the
documents.

(: run this against the Documents database :)
xdmp:eval (
"cts:search(fn:doc(), cts:word-query(‘''def"), "unfiltered"),

cts:search(fn:doc(), cts:element-attribute-word-query(xs:QName(*’bar'), xs:QName('attr™),
"testl), "unfiltered™),

cts:search(fn:doc(), cts:element-attribute-word-query(xs:QName(*'reg'), xs:QName(“'expr'),
"is"™), "unfiltered™)",
O,

<options xmlns="xdmp:eval'>
<user - i d>{xdmp:user('el s-user-3")}</ user-i d>
</ opti ons>

Because els-user-3 does not have document level permissions, no documents are returned. You
can use document level permissions along with element level security for additional security. See
Section 6.7, “Combining Document and Element Level Permissions” [74] for more information.

Now unprotect the paths and run the previous query again without the protected paths to see difference
in output. First unprotect the paths:

(: run this against the Security database :)

import module namespace sec="http://marklogic.com/xdmp/security"
at ""/MarkLogic/security.xqy";

sec:unprotect-path(*'/root/bar[@baz=1]",),

sec:unprotect-path("'test”, ()),

sec:unprotect-path(*'/root/reg[fn:matches(@expr, "is")]1", Q)

NOTE

Adding or unprotecting protected paths will trigger reindexing. After unprotecting
elements, you must wait for reindexing to finish.

Unprotecting the paths does not remove them from the database. You will still see the protected paths
in the Admin Ul or when you run fn:zcollection(*"http://marklogic.com/xdmp/protected-
paths') against the Security database. But you will be able to see the whole document once the
protected paths are unprotected, if you have document permissions for the document. See Unprotecting
or Removing Paths [56] for more details.

Look through the code examples and run the queries using the xdmp:eval pattern to change users.
Run the queries in the context of the different users to better understand how the element level security
logic works.

JavaScript Examples of Element Security

You can also query the documents using Server-Side JavaScript. Run these JavaScript queries, using
the previous users and documents, on the Documents database in Query Console.

2023-08-21 14:49 Securing MarkLogic Server Page 40

MarkLogic 10 Example—Element Level Security

First run the queries in the context of el s-user-1:

// run this against the Documents database

var progl = “cts.search(cts.wordQuery(''def'"), "unfiltered™) ;

var prog2 = ~cts.search(cts.elementAttributeWordQuery(xs.QName(*'bar'"), xs.QName('attr™),
"testl), "unfiltered™) ;

var prog3 = ~cts.search(cts.jsonPropertyValueQuery(*bar™, "2'"));

var prog4 = “cts.search(cts.elementAttributeWordQuery(xs.QName(*'reg™), xs.QName('expr™),
"is'"), "unfiltered") ;

var res = [];

res.push(xdmp.eval(progl, null, {userld:xdmp.user(‘'el s-user-1")}));
res.push(xdmp.eval(prog2, null, {userld:xdmp.user(‘el s-user-1")}));

res.push(xdmp.eval (prog3, null, {userld:xdmp.user(‘el s-user-1")}));

res.push(xdmp.eval (prog4, null, {userld:xdmp.user(‘el s-user-1")}));

res;

=>

L

"<?2xml version=\"1.0\"" encoding=\""UTF-8\"?>\n

<r oot ><bar baz=\"2\"">def</ bar >

<bar attr=\"testl\'>ghi</bar>

</root>",
"<?2xml version=\"1.0\"" encoding=\""UTF-8\"?>\n
<r oot >

<bar baz=\"2\">def</ bar >
<bar attr=\""testl\'">ghi</ bar>
</root>",

{

"foo'': 1,
“bar': "2",
"baz': {

“"bar": [
3,

1
}
}.

null

]

Notice that all of the documents are returned, but the elements with protected paths are missing from
the content:

<bar baz="1" attr="test''>abc</ bar>
"test'': 5

<reg expr="this is a string'">1</reg>

In the second query, the document does not show up at all because the query is searching on a
protected path that els-user-1 is not allowed to see (protected path “test”).

NOTE

If you are getting different results, check to see that you have set up your user roles
correctly and added the query rolesets to the Security database.

Now, modify the query to use the context of the el s—user-2 and run the queries again:

2023-08-21 14:49 Securing MarkLogic Server Page 41

MarkLogic 10

Example—Element Level Security

// run this against the Documents database

var progl = “cts.search(cts.wordQuery('def'™), "unfiltered™)";

var prog2 = “cts.search(cts.elementAttributeWordQuery(xs.QName(*'bar'), xs.QName('attr™),
"testl), "unfiltered™) ;

var prog3 = “cts.search(cts.jsonPropertyValueQuery("'bar", "2'))~;

var prog4 = "cts.search(cts.elementAttributeWordQuery(xs.QName("'reg), xs.QName(expr'),

"is'™), "unfiltered")”;
var res = [];

res.push(xdmp.eval(progl,
res.push(xdmp.eval (prog2,
res.push(xdmp.eval (prog3,
res.push(xdmp.eval (prog4,

res;
=>

L

"<?xml version=\""1.0\"

<r oot >

encoding=\""UTF-8\"?>\n

<bar baz=\"1\" attr=\""test\'">abc</ bar >
<bar baz=\"2\"">def</ bar >
<bar attr=\""testl\'">ghi</ bar>

</ root>",

"<?xml version=\""1.0\"

encoding=\""UTF-8\""?>\n

<root ><bar baz=\"1\"" attr=\""test\">abc</ bar >
<bar baz=\"2\">def</ bar >
<bar attr=\""testl\'>ghi</ bar>

</root>",

{

"foo'": 1,
“pbar': "2",
"baz": {

“"bar": [
3,

4
1

"test": 5

}
}.

"<?xml version=\""1.0\"

<r oot >

encoding=\"UTF-8\"?>\n

<reg expr=\"this is a string\">1</reg>

<reg>2</reg>
</root >"

]

null, {userld:xdmp.user(‘el s-user-2")}));
null, {userld:xdmp.user('el s-user-2")}));
null, {userld:xdmp.user('el s-user-2")}));
null, {userld:xdmp.user(*el s-user-2")}));

This time all of the documents are returned, along with the protected elements. Notice that the one

document is returned twice; two different queries will find the same document.

Run the query one more time using the xdmp: eval pattern as els-user-3 and notice that none of
the documents are returned because els-user-3 does not have the basic permissions to read the

documents.

2023-08-21 14:49

Securing MarkLogic Server

Page 42

MarkLogic 10 Example—Element Level Security

// run this against the Documents database

var progl = “cts.search(cts.wordQuery(*'def'"), "unfiltered™) ;

var prog2 “cts.search(cts.elementAttributeWordQuery(xs.QName(*'bar'), xs.QName('attr™),
"testl), "unfiltered™) ;

var prog3 “cts.search(cts. jsonPropertyValueQuery(*'bar™, "2'"))";

var prog4 “cts.search(cts.elementAttributeWordQuery(xs.QName(*'reg'), xs.QName(“'expr™),
"is™), "unfiltered™);

var res = [];

res.push(xdmp.eval (progl, null, {userld:xdmp.user(“el s-user-3")}));
res.push(xdmp.eval(prog2, null, {userld:xdmp.user(‘el s-user-3")}));

res.push(xdmp.eval (prog3, null, {userld:xdmp.user(‘el s-user-3")}));

res.push(xdmp.eval (prog4, null, {userld:xdmp.user(*el s-user-3")}));

res;

=>

[

null,

null,

null,

null

]

Because els-user-3 does not have document level permissions, no documents are returned. You
can use document level permissions along with element level security for additional security. See
Section 6.7, “Combining Document and Element Level Permissions” [74] for more information.

Now unprotect the paths and run the previous query again without the protected paths to see difference
in output. Unprotect the paths :

//run this against the Security database

var security = require("/MarkLogic/security.xqy”);
declareUpdate();

security.unprotectPath("/root/bar[@baz=1]", [1);
security.unprotectPath("test", [1);
security.unprotectPath("/root/reg[fn:matches(@expr, "is'")]1", [1):;

NOTE

Adding, unprotecting, or changing permissions on protected paths will trigger
reindexing. After unprotecting elements, you must wait for reindexing to finish.

Unprotecting the paths does not remove them from the database. You will still see the protected paths
in the Admin Ul or when you run fn:zcollection(*"http://marklogic.com/xdmp/protected-
paths') against the Security database. But if you are els-role-1 or els-role-2, you will be
able to see the whole document once the protected paths are unprotected, if you have document
permissions for the document (i.e. els-role-1 and els-role-2, but not els-role-3). See
Unprotecting or Removing Paths [56] for more details.

Look through the code examples and run the queries using the xdmp . eval pattern. Run the queries in
the context of the different users to better understand how the element level security logic works.

6.2.6. Additional Examples

This section includes additional examples to try, both in XQuery and Server-Side JavaScript, that
demonstrate the concealing of elements. Using fn:doc instead of a cts query to retrieve documents,
different users will be able to view (or not view) protected elements. Since there is no query involved,
query rolesets are not required.

These examples make use of the users and roles set up in the earlier example. (See Section 5.3,
“Example—Compartment Security” [28] for details.) The first example shows hierarchies of permissions

2023-08-21 14:49 Securing MarkLogic Server Page 43

MarkLogic 10 Example—Element Level Security

(top-secret, secret, and unclassified) in a document. The second example shows a slightly different way
of protecting content with attributes. The example queries can be done in using XQuery or JavaScript.

XQuery - Query Element Hierarchies

Use this code to insert a new document (along with permissions) into the Documents database:

(: insert document with permissions => run against Documents database :)
xquery version "1.0-ml";
xdmp :document-insert(
"hierarchy.xml", <root>
<title>Title of the Document</title>
<sunmmar y>Summary of document contents</summary>
<executi ve- sunmar y>Executive summary of the document contents
<secret>0Only role having "secret"” can read this
<t op-secret>0Only role having "top-secret™ can read this
</t op-secret>
</ secret>
</ execut i ve- sumary>
<cont ent >Contents of document
<t op- secret >0Only role with "top-secret" can read this
<secret>0Only role with "secret" can read this</secret>
</ top-secret>
Unclassified content
</ content >

</root>,
(xdmp:permission(“'els-role-1", "read"), xdmp:permission(*els-role-2", "read"),
xdmp:permission(els-role-1", "update'), xdmp:permission(els-role-2", "update')))

Add protected paths with permissions for roles to the Security database:

(: add protected paths -> run against the Security database :)
xquery version ""1.0-ml";
import module namespace sec="http://marklogic.com/xdmp/security"
at "/MarkLogic/security.xqy";
sec:protect-path(*'secret”, (), (xdmp:permission(els-role-2", "read"))),
sec:protect-path('"top-secret”, (), (xdmp:permission(els-role-1", "read")))
=>
Returns two numbers representing the protected paths

NOTE

Adding, unprotecting, or changing permissions on protected paths will trigger
reindexing.

Test this example in the context of the different els-users. This first query uses the context of el s-
user-1:

2023-08-21 14:49 Securing MarkLogic Server Page 44

MarkLogic 10 Example—Element Level Security

(: run this against the Documents database :)
xdmp:eval (*fn:doc(*hierarchy.xml')", (),
<options xmlns="xdmp:eval'>
<user - i d>{xdmp:user(*'el s-user-1'")}</ user-i d>
</ opti ons>
)
==
<r oot >
<title>Title of the Document
</title>
<summar y>Summary of document contents</sunmary>
<executi ve- sunmar y>Executive summary of contents
</ executi ve- sunmmary>
<cont ent >Contents of document
<t op-secret >Only role with "top-secret" can read this</top-secret>
Unclassified content</content>
</root>

The “top-secret” role (els-user-1) cannot see the elements marked with “secret”, only those that
have no protected paths or marked with the protected path for “top-secret”. Next, run the query in the
context of els-user-2:

(: run this against the Documents database :)
xdmp:eval ("fn:doc("'hierarchy.xml')*,Q,
<options xmlns="xdmp:eval'>
<user - i d>{xdmp:user("el s-user-2")}</ user-id>
</ opti ons>
)
=>
<r oot >
<title>Title of the Document</title>
<summar y>Summary of document contents</ sunmary>
<executive-sunmar y>Executive summary of contents
<secret>0Only role having "secret" can read this</secret></executive-sunmary>
<cont ent >Contents of document
Unclassified content</content>
</r oot >

Notice that even though in the original document there is an element “secret” within the “top-secret”
contents of the document, it is a child of the “top-secret” element and therefore hidden to users without
the “top-secret” role.

The els-user-1 (“top-secret”) cannot see the “secret” content unless you add the els-role-2
to els-user-1. When you add the role, els-user-1 will be able to see both the “secret” and
“top-secret” elements.

If you run the query as el s-user-3, the query returns an empty sequence. The els-user-3 from the
previous query does not have permission to even see the document.

XQuery - Matching by Paths or Attributes

This next example shows how protected paths can be used with fn:contains and fn:matches. The
example uses the same roles from the previous example, adding a new role (els-role-3).

First unprotect the protected paths from the previous example:

(: unprotect the protected paths -> run against the Security database :)
xquery version "1.0-ml";
import module namespace sec = "http://marklogic.com/xdmp/security"

at "/MarkLogic/security.xqy";

sec:unprotect-path('secret”, (),
sec:unprotect-path(‘'"top-secret”, ()

2023-08-21 14:49 Securing MarkLogic Server Page 45

MarkLogic 10 Example—Element Level Security

NOTE

Adding or unprotecting protected paths will trigger reindexing. After unprotecting
elements, you must wait for reindexing to finish.

Create a new role els-role-3 and add els-user-3 to the role. See Section 6.2.1, “Create
Roles” [32] and Section 6.2.2, “Create Users and Assign Roles” [32] for details.

Add a new document with permissions to the Documents database:

(: run this against the Documents database :)
xquery version "1.0-ml";
xdmp :document-insert(
“attributes.xml", <root>
<title>Document Title</title>
<summar y>Summary of document contents</sunmary>
<executi ve- sunmar y>Executive summary of contents
<info attr="EU">0Only role with "EU" attribute can read this summary </info>
<info attr="UK">0Only role with "UK" attribute can read this summary </info>
<info attr="US">0nly role with "US" attribute can read this summary </info>
</ executive- sumary>
<cont ent >Contents of document
Unclassified content
<not es>
<info attr="EU">0Only role with "EU"™ attribute can read this content</i nfo>
<info attr="UK">0Only role with "UK"™ attribute can read this content</i nfo>
<info attr="US">0Only role with "US" attribute can read this content</info>
</ not es>
</ cont ent >

</root>,

(xdmp:permission(“els-role-1", "read"), xdmp:permission(*els-role-2", "read"),
xdmp:permission(“'els-role-3", "read"),

xdmp:permission(“els-role-1", "update'), xdmp:permission(“els-role-2", "update'),

xdmp:permission(els-role-3", "update')))
Add the new protected paths with permissions for roles to the Security database:

(: add new protected paths -> run against the Security database :)

xquery version "1.0-ml";

import module namespace sec="http://marklogic.com/xdmp/security"
at ""/MarkLogic/security.xqy";

sec:protect-path("'//info[fn:matches(@attr, "US")]", (O, (xdmp:permission(‘els-role-1",

“read"))),
sec:protect-path("//info[fn:matches(@attr, “"UK")]", (O, (xdmp:permission(‘els-role-2",
"read"),

xdmp:permission(*'els-role-3", "read"))),

sec:protect-path("//info[fn:matches(@attr, “"EU")]", (O, (xdmp:permission(‘els-role-3",

"read")))
=>

Returns three numbers representing the protected paths

NOTE

Adding, unprotecting, or changing permissions on protected paths will trigger
reindexing.

2023-08-21 14:49 Securing MarkLogic Server

Page 46

MarkLogic 10 Example—Element Level Security

Notice that the protected paths include attributes in the document elements. Also note that el s-
role-3 has permissions for two protected paths (@attr, “UK” and @attr, “EU”).

Run this next query, similar to the previous queries, this time looking for the attributes.xml
document. First query in the context of els-user-1 who has a role that can see the “US” attribute:

(: run this against the Documents database :)
xdmp:eval ("*fn:doc("attributes.xml')",),
<options xmlns="xdmp:eval'>
<user - i d>{xdmp:user('el s-user-1")}</user-id>
</ opti ons>
)
=>
<?xml version="1.0" encoding="UTF-8"?>
<r oot >
<title>Document Title</title>
<sunmmar y>Summary of document contents</sunmary>
<executi ve- sunmar y>Executive summary of contents
<info attr="US">0Only role having "US" attribute can read this summary</i nf o>
</ executi ve- sumrary>
<cont ent >Contents of document
Unclassified content
<not es>
<info attr="US">0nly role having "US" attribute can read this content
</i nfo>
</ not es>
</ cont ent >
</root>

Next modify the query to run in the context of els-user-2, who has a role that can see the “UK”
attribute:

(: run this against the Documents database :)
xdmp:eval ("fn:doc("attributes.xml'")", (),
<options xmlns="xdmp:eval'>
<user - i d>{xdmp:user('el s-user-2")}</ user-i d>
</ opti ons>
)
=>
<?xml version="1.0" encoding="UTF-8"7?>
<r oot >
<title>Document Title</title>
<summar y>Summary of document contents</sunmary>
<executi ve- sunmar y>Executive summary of contents
<info attr="UK">0Only role having "UK" attribute can read this summary
</info>
</ executi ve- sumrary>
<cont ent >Contents of document
Unclassified content
<not es>
<info attr="UK">0nly role having "UK" attribute can read this content</info>
</ not es>
</ cont ent >
</root>

And finally modify the query to run in the context of els-user-3:

2023-08-21 14:49 Securing MarkLogic Server Page 47

MarkLogic 10 Example—Element Level Security

(: run this against the Documents database :)
xdmp:eval (*fn:doc("attributes.xml')", (),
<options xmlns="xdmp:eval'>
<user - i d>{xdmp:user(*'el s-user-3")}</ user-i d>
</ opti ons>
)
==
<?xml version="1.0" encoding="UTF-8"7?>
<r oot >
<title>Document Title</title>
<summar y>Summary of document contents</ sunmary>
<execut i ve-sunmar y>Executive summary of contents
<info attr="EU">0Only role having "EU" attribute can read this summary
</info>
<info attr="UK">0Only role having "UK" attribute can read this summary

</i nf o>

</ executi ve- sumrary>
<cont ent >Contents of document
Unclassified content

<not es>
<info attr="EU">0Only role having "EU" attribute can read this content

</info>
<info attr="UK">0nly role having "UK" attribute can read this content

</info>

</ not es>

</ cont ent >
</r oot >

The els-user-3 has protected path permissions on both elements with the “EU” info attribute and the
elements with the “UK” info attribute, so the els-user-3 can see both elements. If you are getting
different results, check to be sure that you created an els-role-3 and added the els-user-3 to that
role.

NOTE

If you run the query in the context of the admin user, you will be able to see the entire
document because the query is using fn:doc.

JavaScript - Query Element Hierarchies

You can also try these examples demonstrating concealed elements using JavaScript. Using fn:doc
instead of a cts query to retrieve documents, different users will be able to view (or not view) protected
elements. Since there is no query involved, query rolesets are not required.

Use this JavaScript code to insert this document (with permissions) into the Documents database:

2023-08-21 14:49 Securing MarkLogic Server Page 48

MarkLogic 10 Example—Element Level Security

// insert document with permissions -> run against Documents database

declareUpdate();
var perms = [xdmp.permission(els-role-1", "read"), xdmp.permission(‘'els-role-2",
"read"),

xdmp.permission(“els-role-1", "update'), xdmp.permission(‘'els-role-2",
"update')
1;
xdmp .documentinsert(
“hierarchy.xml", xdmp.unquote("
<r oot >
<title>Title of the Document</title>
<summar y>Summary of document contents</sunmary>
<executi ve- sunmar y>Executive summary of the document contents
<secret>0Only role having "secret" can read this
<t op-secret >Only role having "top-secret" can read this
</t op-secret>
</ secret>
</ executive- sunary>
<cont ent >Contents of document
<t op- secret >Only role with "top-secret" can read this
<secret>0Only role with "secret" can read this</secret>
</ top-secret>
Unclassified content
</ cont ent >
</root>
), {permissions: perms})

Add protected paths with permissions for roles to the Security database:

// add protected paths -> run against the Security database

declareUpdate();

var security = require("/MarklLogic/security.xqy");

security.protectPath("secret”, []1, [xdmp.permission(els-role-2", "read", "element')]),
security.protectPath("top-secret”, [], [xdmp.permission(‘els-role-1", "read", "element)])
=>

Returns a number representing the protected paths

NOTE

Adding, unprotecting, or changing permissions on protected paths will trigger
reindexing.

Test this example in the context of the different els-users. This query uses the context of els-user-1:

2023-08-21 14:49 Securing MarkLogic Server Page 49

MarkLogic 10 Example—Element Level Security

// run this query against the Documents database
xdmp.eval (""fn.doc(“hierarchy.xml*)", null,

{

"userld" : xdmp.user(“el s-user-1")

b
=>
<?xml version="1.0" encoding="UTF-8"?>
<r oot >
<title>Title of the Document</title>
<summar y>Summary of document contents</sunmary>
<execut i ve- sunmar y>Executive summary of the document contents

</ executi ve- sunmmary>
<cont ent >Contents of document

<t op-secret >Only role with "top-secret" can read this</top-secret>
Unclassified content
</ cont ent >

</r oot >

The “top-secret” role (els-user-1) cannot see the elements marked with “secret”, only those that
have no protected paths or marked with the protected path for “top-secret”. Next, run the query in the
context of els-user-2:

// run this query against the Documents database
xdmp.eval (""fn.doc(“hierarchy.xml*)", null,

{

"userld" : xdmp.user(“el s-user-2")

b
=>
<?xml version="1.0" encoding="UTF-8"?>
<r oot >
<title>Title of the Document</title>
<summar y>Summary of document contents</sunmary>
<execut i ve- sunmar y>Executive summary of the document contents

<secret >0Only role having "secret" can read this</secret>
</ execut i ve- sunmmary>
<cont ent >Contents of document

Unclassified content
</ cont ent >
</r oot >

Notice that even though in the original document, there is an element “secret” within the “top-secret”
contents of the document, it is a child of the “top-secret” element and therefore hidden to users without
the “top-secret” role.

The els-user-1 (“top-secret”) cannot see the “secret” content unless you add the els-role-2
to els-user-1. When you add the role, els-user-1 will be able to see both the “secret” and
“top-secret” elements.

If you run the query as els-user-3, the query returns an empty sequence. The els-user-3 from the
previous query does not have permission to even see the document.

JavaScript - Matching by Paths or Attributes

This next example shows how protected paths can be used with fn.contains and fn_.matches. The
example uses the same roles from the previous example, adding a new role (els-role-3).

First unprotect the protected paths from the previous example:

2023-08-21 14:49 Securing MarkLogic Server Page 50

MarkLogic 10 Example—Element Level Security

// unprotect protected paths -> run against the Security database
declareUpdate();

var security = require("/MarkLogic/security.xqy");
security.unprotectPath("secret®, []),
security.unprotectPath("top-secret®, [])

NOTE

Adding, unprotecting, or changing permissions on protected paths will trigger
reindexing.

Create a new role els-role-3 and add els-user-3 to the role. See Section 6.2.1, “Create
Roles” [32] and Section 6.2.2, “Create Users and Assign Roles” [32] for details.

Add a new document to the Documents database:

// insert document and permissions -> run this against the Documents database

declareUpdate();

var perms = [xdmp.permission(els-role-1", "read"), xdmp.permission(‘'els-role-2",
"read"),

xdmp.permission('els-role-3", "read'), xdmp.permission(‘els-role-1", "update'),
xdmp.permission(“els-role-2", "update'), xdmp.permission(“els-role-3", "update')
1;

xdmp.documentinsert(
"attributes.xml", xdmp.unquote("
<r oot >
<title>Document Title</title>
<summar y>Summary of document contents</sunmary>
<execut i ve- sunmar y>Executive summary of contents
<info attr="EU">0Only role with "EU"™ attribute can read this summary </i nfo>
<info attr="UK">0Only role with "UK" attribute can read this summary </info>
<info attr="US">0Only role with "US"™ attribute can read this summary </i nfo>
</ executi ve- sumary>
<cont ent >Contents of document
Unclassified content
<not es>
<info attr="EU">0Only role with "EU"™ attribute can read this content</i nfo>
<info attr="UK">0Only role with "UK" attribute can read this content</i nfo>
<info attr="US">0Only role with "US"™ attribute can read this content</i nfo>
</ not es>
</ cont ent >
</ root >
7)., {permissions: perms})

Add the new protected paths with permissions for roles to the Security database:

// add new protected paths -> run against the Security database
declareUpdate();
var security = require("/MarklLogic/security.xqy");
security.protectPath("'//info[fn:matches(@attr, “US")]1", [],[xdmp.permission(els-
role-1","read", "element™)]),
security.protectPath(*'//info[fn:matches(@attr, “"UK")]", [1.[xdmp.permission(*'els-role-2",
"read", "element'),
xdmp.permission(“'els-role-3", "read", "element™)]),
security.protectPath('//info[fn:matches(@attr, “"EU")]", L1,
[xdmp.permission(“els-role-3", "read", "element')])
=>
Returns one number representing the protected paths

2023-08-21 14:49 Securing MarkLogic Server Page 51

MarkLogic 10 Example—Element Level Security

NOTE

Adding or changing permissions on protected paths will trigger reindexing.

Run the same queries as before, first in the context of els-user-1, who has a role that can see the

“US” attribute:

// run this query against the Documents database
xdmp.eval (""fn.doc("attributes.xml®)", null,

{
"userld" : xdmp.user(''el s-user-1")
D:
=>
<?xml version="1.0" encoding="UTF-8"7?>
<root >

<title>Document Title</title>

<summar y>Summary of document contents</sunmary>

<execut i ve- sunmary>Executive summary of contents

<info attr="US">0nly role with "US" attribute can read this summary</i nfo>
</ execut i ve- sunmmary>

<cont ent >Contents of document

Unclassified content

<not es>
<info attr="US">0nly role with "US" attribute can read this content</i nfo>
</ not es></ cont ent >

</r oot >

Next modify the query to run in the context of els-user-2,who has a role that can see the “UK”

attribute

// run this query against the Documents database
xdmp.eval (""fn.doc("attributes.xml®)", null,

{
"userld" : xdmp.user(el s-user-2")
D:
=
<?xml version="1.0" encoding="UTF-8"7>
<r oot >

<title>Document Title</title>
<summar y>Summary of document contents</sunmary>
<executive-sunmary>Executive summary of contents

<info attr="UK">0Only role with "UK" attribute can read this summary</i nfo></executive-

sunmar y>
<cont ent >Contents of document
Unclassified content

<not es>
<info attr="UK">0Only role with "UK" attribute can read this content</i nfo>
</ not es></ cont ent >

</root>

And finally modify the query to run in the context of els-user-3:

2023-08-21 14:49 Securing MarkLogic Server

Page 52

MarkLogic 10 Configuring Element Level Security

// run this query against the Documents database
xdmp.eval (""fn.doc("attributes.xml*)", null,

{

"userld” : xdmp.user(''el s-user-3")
b
=>
<?xml version="1.0" encoding="UTF-8"?>
<r oot >
<titl e>Document Title</title>
<summar y>Summary of document contents</sunmary>
<executi ve- sunmar y>Executive summary of contents

<info attr="EU">0Only role with "EU" attribute can read this summary</i nfo>
<info attr="UK">0nly role with "UK" attribute can read this summary</i nfo>
</ executi ve- sumary>
<cont ent >Contents of document
Unclassified content
<not es>
<info attr="EU">0Only role with "EU" attribute can read this content</i nfo>
<info attr="UK">0nly role with "UK" attribute can read this content</i nf o>
</ not es></ cont ent >

</root >

The els-user-3 has protected path permissions on both elements with the “EU” info attribute and the
elements with the “UK” info attribute. So that user can see both elements.

NOTE

If you run the query in the context of the admin user, you will be able to see the entire
document because the query is using fn.doc.

6.3. Configuring Element Level Security
Configuring element level security includes setting up protected paths and creating query rolesets, then

adding them to the Security database. This section covers the steps you will need to follow to configure
element level security. As an overview, you will need to do the following:

» Set up roles

» Create users and assign roles

» Add or update documents with permissions for users

» Add protected paths for elements in documents, by inserting the protected paths into the Security
database

» Add the query rolesets to the Security database

Configuring the query rolesets is a task for the administrator. There are two helper functions to help
configure query rolesets. The helper function xdmp : database-node-query-rolesets is used for
querying documents already in your database to discover existing query rolesets, while xdmp :node-
query-rolesets is used to query for protected paths in documents as they are being loaded into
the database. See Section 6.11, “APIs for Element Level Security” [80] for more information. You can
configure element level security using the Admin Ul, using XQuery, or by using REST.

2023-08-21 14:49 Securing MarkLogic Server Page 53

MarkLogic 10 Configuring Element Level Security

K

NOTE

The number of protected paths that you set on a single element may impact
performance. One or two protected paths on an element will have no discernible
impact (less than 5% in our testing), 10 or so protected paths may have some impact
(around 10%), but setting 100 or so protected paths on a single element will cause
severe and noticeable impact on performance.

6.3.1. Protected Paths

You can define permissions on an element in the same way that you define permissions on a
document. Element level security works by specifying an “indexable” path to an element (or JSON
property) and configuring permissions on that path - creating a protected path.

For performance and security reasons, you can only use a subset of XPath for defining protect paths.
For details, see Element Level Security in the XQuery and XSLT Reference Guide.

K

NOTE

The read, update, and insert permissions for an element are checked separately. For
instance, if there are permissions for read, but no permissions for update or insert,
there is no control for update or insert on that element. If there are no permissions on
an element, anyone can read that element, given that they have the proper document
level permissions.

Examples of Protected Paths
This table shows some examples of protected paths.

Protected Path Permissions Result

/foo/bar

(role1, read) Element “bar” is readable by “role1” but
concealed for all other roles. No mention
of other permissions means that others can
update or insert content for this element.

/foo/bar (role1, read) Element “bar” is readable by “role1” or “role2”
but concealed for all other roles. No mention
(role2, read) of other permissions means that others can
update or insert content for this element.
/foo/bar (role1, read) Element “bar” is readable by “role1” but
concealed for all other roles. “Role1” can
(role1, update) update the element. No mention of insert
permissions means that others can insert
content for this element.
/foo/bar[@attr= “test”] (role1, read) Same as above except that it only applies to
a bar element if the element has an attribute
(role1, update) “attr” with the value “test”. No mention of
insert permissions means that others can
insert content for this element.
bar (role1, read) This is the simplest path. Element “bar” is

readable by “role 1”, but concealed for all
other roles. This applies to all “bar” elements.
No mention of other permissions means that
others can update or insert content for this
element.

2023-08-21 14:49 Securing MarkLogic Server Page 54

https://docs.marklogic.com/guide/copyright/glossary#id_10694
https://docs.marklogic.com/guide/xquery/xpath#id_55131

MarkLogic 10 Configuring Element Level Security

Protected Path Permissions Result
/root/reg[fn:matches(@expr, "is")] (role1, read) Elements that match the regular express for
‘is” will be readable by “role 17, but concealed
(role1, update) for all other roles. “Role 1” can update the

element. No mention of insert permissions
means that others can insert content for this
element.

For more about update permissions with element level security, see the table in the section Section 6.9,
“Document and Element Level Permissions Summary” [77].

WARNING

Defining element level security protection (protected paths) on “reserved” elements or
properties (for example, alerting, thesaurus, and so on) may cause undefined behavior.

The path is an XPath expression, not a field.

Namespaces as Part of a Protected Path

Both namespaces and prefixes can be used as part of a protected path. For instance this simple
example uses the namespace “ex” as part of the protected path:

(: add protected paths -> run against the Security database :)
xquery version "1.0-ml";

import module namespace sec = "http://marklogic.com/xdmp/security"
at ""/MarkLogic/security.xqy";

declare namespace ex = "http://marklogic.com/example";

let $role := "role-4"

return

sec:protect-path(
""/ex:envelope/ex:instance/employee/salary",

(let $prefix = "ex",$namespace-uri :=
"marklogic.com/example™
return

sec:security-path-namespace($prefix, $namespace-uri)),
(xdmp:permission($role, "read"))

)

For simple cases, you can also specify a namespace as part of a protected path when configuring
protected paths in the Admin UlI.

2023-08-21 14:49 Securing MarkLogic Server Page 55

MarkLogic 10 Configuring Element Level Security

(g greveves greeees gueeemn gayeann |

Protected Path: /ex:envelope/ex:instance a1 [concel
lemployee/salary ~ ’

protected path — A protected-path definition :- unprotect -: -
Hamespaces (1) — The Mamespaces used by this protected path: Prefix(uri)
ex (marklogic. com'example)

permissions — Permissions to the protected path

role name (capability)

[Keep]

v role-4 (read)

[add] w read -

[more permissions

path set
Path Set

[ok | | cancel

You can also specify a namespace when using the helper functions xdmp : database-node-query-
rolesets and xdmp:node-query-rolesets. See page Helper Functions for Query Rolesets [67]
for more info.

Unprotecting or Removing Paths

Unprotecting protected paths does not remove them from the database, it removes the permissions,
which disables the protection. You will still see the unprotected paths in the Admin Ul. The

unprotected paths can also be seen by running fn:collection("'http://marklogic.com/xdmp/
protected-paths'™) against the Security database, in the Query Console.

Removing protected paths is a two-step process. First you must unprotect the path, and then you can
remove it.

@ NOTE
You must first unprotect a path before removing it to trigger the reindexer. Since query
rolesets changes don’t require reindexing, there is no need for the separate step of
unprotecting before removing a query roleset.

2023-08-21 14:49 Securing MarkLogic Server Page 56

MarkLogic 10 Configuring Element Level Security

To unprotect a protected path:

1.

4.
5.

Navigate to Protected Path Configuration by clicking Security and then Protected Paths in the left
tree menu.

Click on the name of the protected path you want to unprotect.

On the Protected Path Configuration page there are two buttons; an unprotect button and a
delete button (greyed out).

[oummasy ¥ contiaure T Deseribe T creste T teio IR

Protected Path: /root/bar[@baz=1] ok | [cancen

protected path — A protected-path definition :- unprotect -: -

Hamespaces (0) - The Namespaces used by this profected path: Prefix(uri)
none

permissions — Permissions to the protected path

role name (capability)

[Keep]
v gls-role-2 (read)

[add] - read -

more permissions

path set
Path Set

ok cancel

Click the unprotect button.
Click OK to save the changes.

When you have unprotected the protected paths, you’ll see the protected paths on the Summary page,
but no permissions are associated with the paths.

|

ey T oo T oo

Path Expression Hamespaces Permissions Path Set
Irootbar[@baz=1]
Irootreg|fn:matches{@expr, "is")]

test

To remove a path, you will need to first unprotect the path. See Unprotecting or Removing Paths [56]

2023-08-21 14:49 Securing MarkLogic Server Page 57

MarkLogic 10 Configuring Element Level Security

1. After unprotecting the path, go back to the Protected Path Configuration page. Notice that the
delete button is now available and the unprotect button is greyed out.

r Summary ‘ Configure ' Describe ' Create ' Help _

Protected Path: /root/bar[@baz=1] . ok | | cancel |

protected path — A protected-path definition || delete |

Namespaces (0) — The Namespaces used by this protected path: Prefix(uri)

none

permissions — Permissions to the protected path

role name (capability)

Mo Current Permissions

[add] w read -

| more permissions

path set
Path Set

[ok | | cancel |

2. Click the delete button to remove this protected path.
3. Click OK to confirm and save your changes.

The deleted path no longer appears on the Summary page of protected paths.

[summery T oreate e I

Path Expression Namespaces Permissions Path Set

Iroot/reg[fn:matches(@expr, "is')]

test

2023-08-21 14:49 Securing MarkLogic Server Page 58

MarkLogic 10 Configuring Element Level Security

@ NOTE
Adding, unprotecting, or changing permissions for protected paths will trigger
reindexing of the relevant databases. Having too many unprotected paths for your
database can affect performance. Best practice is to delete unprotected paths when
you no longer need them. Be sure to let the reindexing triggered by unprotecting finish
before you delete the paths.

Performance Considerations with Protected Paths

The fewer protected paths that you have in your documents, the better performance you will have with
element level security. One way to reduce the number of protected paths is to group information. If you
have the ability to control the schema of your documents, you can group information that you want to
protect under one element and then protect that element.

In this example, an insurance company has a schema that groups policy information to control access
to the information, making it easier to protect client information and policy information by role (US
Read, ID_Read, Compliance, and Risk):

"policy": {

"access': "US Read",

"client": {
"'access': "I D_Read",
"name'': "‘Paul",
"address': ''999 Broadway St',
“phone™: '"323-344-1555",
‘country*'': "uUS",
"ssn4digits': "5664"

}
"clientSSN": {
"'access': "Conpliance",
"ssn'': '"999-999-5664"
ks
"clientlncome": {
"access': "Risk",
""income'': "44,4444"
}
"info": {
"*faccess': "Risk",

""propertyType': '‘Home",
"premium': 432,
"assetValue': 750000,
"currency': "Dollar"

}
}

Different users would be able to see different parts of the data: the Call Center might have the 1D_Read
role, the Financial Risk Researcher might have the Risk role, and a Compliance Admin might have the
ID_Read, Risk, and Compliance roles. Each of these would all need to have the US Read role as
well.

If you don’t have control of the schema and your document data is in various formats, you can leverage
Entity Services as a way to improve performance. You can use entity services to create an entity that
groups multiple elements under a single node and then use a single protected path on that node. See
Introduction to Entity Services in the Entity Services Developer’s Guide for information about creating
an entity that links to the source document and protecting both.

2023-08-21 14:49 Securing MarkLogic Server Page 59

https://docs.marklogic.com/guide/security/element#id_71105:~:text=that%20node.%20See-,Introduction%20to%20Entity%20Services,-in%20the%20Entity

MarkLogic 10 Configuring Element Level Security

6.3.2. Query Rolesets

What are query rolesets and what do they do? This section describes query rolesets and how they are
used with element level security.

How Query Rolesets Work

When you add a document into MarkLogic, it parses the document and puts “terms” (or keys) into

the universal index. Later when you run a query, the query side needs to know what terms to find in

the universal index. In element level security, the terms are combined with permissions in the index.
Existing query rolesets are automatically used by the query to figure out which terms to use, based on
the role(s) of the user running the query. Each query can include multiple query rolesets. If no query
rolesets are configured, a query will only match documents using the terms that are visible to everyone.

Let’'s use an example. Say you have a protected path defined as the following:

sec:protect-path(*'/root/bar[@baz=1]", (), (xdmp:permission(els-role-2",
"read)))

And then you ingest a document like this:

<r oot >
<bar baz=1>Hello</ bar >
</r oot >

When MarkLogic parses the document, it sees that the word “Hel 10” is inside the element <bar>
that matches the protected path definition (since bar is under root and has an attribute baz=1). So
instead of simply putting the term “Hel 10” into the universal index, it combines the term “Hel 10” and
the permission information in the protected path (in this case, basically the role name “els-role-2")
into one term and puts this new term into the universal index.

Suppose then you run a search with a query cts:word-query("*Hello') with a user that has the
els-role-2 role. The query must know this new term to find the document. The query already knows
the word “Hel 10” but how would it know the permission information in the protected path?

This is where the query rolesets are used. You configure query rolesets (with just els-role-2 in

this example) and then the query compares that query roleset with the caller’s role. If the caller’s role
“matches” the query rolesets, the query will combine that information with the word “Hel 10” to generate
the term, which matches the term put into the universal index by MarkLogic.

There are three ways to configure query rolesets:

+ Use xdmp:database-node-query-rolesets for documents with protected paths that are already
in MarkLogic. See Helper Functions for Query Rolesets [67] for information.

» Use xdmp:node-query-rolesets to configure query rolesets as documents are being loaded into
MarkLogic. See Helper Functions for Query Rolesets [67] for information.

* Use sec:add-query-rolesets to manually create the query rolesets on a case-by-case basis.

This last method of manually creating query rolesets works for simple examples and cases where there
are not many protected paths. If you have a single protected path that matches an element like one in
the examples above (with no overlaps), use a simple rule to create the query roleset in the Admin Ul.
See Section 6.2.4, “Add Protected Paths and Query Rolesets” [35] for details

The two helper functions; xdmp : database-node-query-rolesets and xdmp:node-query-
rolesets, can help with configuring more complex query rolesets, either for documents already stored
in MarkLogic or while documents are being added. MarkLogic leaves query rolesets configuration
(creating and inserting the query rolesets into the Security database) to the administrator.

Query rolesets are made up of roles. There can be any number of roles in a roleset, as long as there
are no duplicates. There can be multiple query rolesets in a database:

2023-08-21 14:49 Securing MarkLogic Server Page 60

MarkLogic 10 Configuring Element Level Security

Security Query Rolesets
Query Rolesets

Query Roleset Query Roleset Query Roleset

Role1 Role4 Role3 Role2 Role5 Rolet Role3 Role4 Role5

Query rolesets are required for element level security to work. You may ask why not just get the query
rolesets information automatically from the protected paths when you configure sec:protect-path
to avoid the manual configuration of query rolesets. For this simple example this seems practical, but
in the real world it is not uncommon to have multiple protected paths that match the same node or
element. Some use cases will have 1000s of protected paths but only 100s of query rolesets. The
indexer side of MarkLogic often needs to combine multiple query rolesets to create the term.

There is no way for the query side to derive that information from the protected path configuration,
since whether a node element matches a protected path is based on the “value” of the node. And

the query side doesn’t know the value of a node. There is no way for the query side to know what
subsets of all the configured protected paths need to be taken into consideration when creating the
query term. Since enumerating all possible combinations of the roles used in all protected paths is not
practical, MarkLogic leaves query rolesets configuration (creating and inserting the query rolesets into
the Security database) to the administrator.

Parent/Child Relationships in Query Rolesets

You might have a document where one user has permissions for an element that is the child of a
parent element, for which that user does not have permissions. For example, there might be a simple
document like this:

<r oot >
<cont ent >Contents of document
<t op- secret >0Only role with "top-secret" can read this
<secret>0Only role with "secret'" can read this</secret>
</ top-secret>
Unclassified content
</ cont ent >
</root >

This document might have these protected paths:

sec:protect-path("secret”, (), (xdmp:permission(els-role-2", "read"))),
sec:protect-path(*"top-secret”, (), (xdmp:permission(*els-role-1", "read)))

A user with permissions on only the protected path for “secret” can’t see “secret” content unless the
user also had permissions for the protected path for “top-secret” because the “secret” node is a child of
the “top-secret” parent node.

2023-08-21 14:49 Securing MarkLogic Server Page 61

MarkLogic 10 Configuring Element Level Security

Overlapping Protected Paths

Consider a more complex case with multiple paths matching the same node. Suppose you have a
document like this:

<r oot >
<foo a=1 b=2 c=3>Hello</foo0>
</r oot >

It is possible to define three different protected paths that all match the foo element, overlapping each
other:

sec:protect-path(*/root/foo[@a=1]", (), (xdmp:permission(els-role-1", "read")))
sec:protect-path(*"/root/foo[@b=2]", (), (xdmp:permission(els-role-2", "read)))
sec:protect-path(""/root/foo[@c=3]", (), (xdmp:permission(els-role-3", "read)))

MarkLogic will still create just one term for “Hel 10”, which is the combination of the word and the query
rolesets ((“els-role-1"),(“els-role-2"),(“els-role-3")).

As a side note, in the above example the query rolesets is ((“els-role-1"),(“els-role-2"),(“els-

role-3")), which is different from simply (“els-role-1","els-role-2""els-role-3").

E NOTE

In MarkLogic 9.0-2 query rolesets have been simplified and optimized. Existing
documents with query rolesets configured in 9.0-1 will still be protected in 9.0-2. To
take advantage of the optimization however, you need to reindex your documents
and regenerate your query rolesets using the helper functions (Section 6.11, “APls
for Element Level Security” [80]). It is highly recommended that you reindex
any protected documents already in your database and regenerate your query
rolesets, since documents may be reindexed by another operation, which may cause
a mismatch between the documents and the query rolesets. See Section 6.12,
“Algorithm That Determines Which Query Rolesets to Use” [81] for examples and
more details.

This is what the query rolesets hierarchy looks like for ((“els-role-1"),(“els-role-2"),(“els-
role-3")); three query rolesets and three roles:

2023-08-21 14:49 Securing MarkLogic Server Page 62

MarkLogic 10 Configuring Element Level Security

Security Query Rolesets (Hierarchy 1)
Query Rolesets

Query Roleset Query Roleset Query Roleset

\

els-role-1 els-role-2 els-role-3

This is what the query rolesets hierarchy looks like for (‘els-role-1"“els-role-2""els-role-3");
one query roleset and three roles:

Security Query Rolesets (Hierarchy 2)
Query Rolesets

Query Roleset

els-role-1 els-role-2 els-role-3

If you only have one protected path that matches foo in the above example but with three roles, like
this:

sec:protect-path(*"//foo", (O, (

xdmp:permission(“els-role-1", "read"),
xdmp:permission(“els-role-2", "read"),
xdmp:permission(“els-role-3", "read™)))

Then (“els-role-1""els-role-2""els-role-3") would be the proper query roleset to use. To
configure the former ((“els-role-1"),(“els-role-2"),(“els-role-3")), you would call:

2023-08-21 14:49 Securing MarkLogic Server Page 63

MarkLogic 10 Configuring Element Level Security

(:run against the Security database :)

xquery version ""1.0-ml";

import module namespace sec="http://marklogic.com/xdmp/security"
at "/MarkLogic/security.xqy";

let $rolesetl := sec:query-roleset((“"els-role-1"))
let $roleset2 := sec:query-roleset((“els-role-2"))
let $roleset3 := sec:query-roleset((“'els-role-3"))
return sec:add-query-rolesets(sec:query-rolesets(($rolesetl,$roleset2,$rolesetl)))

” ” o«

To configure the latter (“els-role-1""els-role-2"“els-role-3"), you can simply call:

(:run against the Security database :)

xquery version "1.0-ml";

import module namespace sec="http://marklogic.com/xdmp/security"
at ""/MarkLogic/security.xqy";

let $rolesetl := sec:query-roleset((els-role-1","els-role-2","els-role-3"))
return
sec:add-query-rolesets(sec:query-rolesets($rolesetl))

When you are starting to configure and use element level security, the two query rolesets

helper functions, xdmp : database-node-query-rolesets and xdmp:node-query-rolesets
can simplify the process of setting up your query rolesets. These functions can be used for configuring
query rolesets either for documents in the database, or for documents during ingestion. See Helper
Functions for Query Rolesets [67] for more information.

Protected Path Sets

A protected path set is a way to allow multiple protected paths covering the same element, with both
AND and OR relationships between the permissions. This enables multiple arbitrary security marking
for an element.

A protected path set is an optional string that represents the name of a set is associated with a
protected path. A path that has no “set name” can be seen as a “degenerated form” of a set. The
diagram below shows how permissions from paths in the same set are ORed, while permissions
between sets are ANDed.

2023-08-21 14:49 Securing MarkLogic Server Page 64

MarkLogic 10 Configuring Element Level Security

Security Path Sets

AND

PP1 PP2 OR PP3

(/ \)

Set1-PP1 Set1-PP2 Set1-PP3

SET 1

The set information (the name) is simply a “tag” on the protected path definition, not a separate
document in the Security database.

Consider the following element:
<foo classification="TS" releasableTo="USA GBR AUS">

Using protected paths, MarkLogic element level security allows multiple protected paths covering the
same element with an AND relationship among their permissions. This models a multiple security
markings (for example @classification and @releasableTo) situation well. For the element
above, two protected paths may be defined:

//foo[@classification="TS"] ("'Role_TS", "read")

//foo[@releasableTo="USA GBR AUS"] (("'Role_USA", "read™),
("'Role_GBR","read"), (“'Role_AUS","read"))

Note that the value of @releasableTo is a list of country codes, with each mapping to a role. A user
with any of the “country roles” is allowed to read the element. The challenge is that a list can contain an
arbitrary combination of country codes (total 200+). The above approach would require a user to define
one protected path for each of the possible combinations, which may lead to a very large number of
protected paths:

//foo[fn:contains(@releasableTo, "USA™)] ('Role_USA™, "read")
//foo[fn:contains(@releasableTo, "GBR'™)] ('Role_GBR", "read")

//foo[fn:contains(@releasableTo, "AUS'™)] ('Role_ AUS", "read")

2023-08-21 14:49 Securing MarkLogic Server Page 65

MarkLogic 10 Configuring Element Level Security

NOTE

Defining the preceding protected paths won't satisfy the requirement because the
permissions among the paths are ANDed, not ORed.

The following example shows the benefit of the path set concept more clearly. Consider the following
elements to be protected:

<foo classification="TS" releasableTo="USA">

<foo classification="TS" releasableTo=""GBR">

<foo classification="TS" releasableTo="AUS">

<foo classification="TS" releasableTo="USA GBR">
<foo classification="TS" releasableTo="GBR AUS'">
<foo classification="TS" releasableTo=""USA AUS">
<foo classification="TS" releasableTo=""USA GBR AUS'">

Without using protected path sets, the following protected paths would need to be defined to protect the
elements above:

//foo[@classification="TS"] ("Role_TS", "read")
//foo[@releasableTo="USA™] ('Role_USA™, "read"™)
//foo[@releasableTo="GBR"] (‘'Role_GBR",'"read™)
//foo[@releasableTo="AUS"] ("'Role_ AUS",'"read™)
//foo[@releasableTo=""USA GBR"] ((""Role_USA"™, "read"), ("'Role_GBR","read™))
//foo[@releasableTo="GBR AUS"] (("Role_GBR","read™), ('Role_AUS","read™))
//foo[@releasableTo="USA AUS"] (("Role_USA"™, "read), ("'Role_AUS","read™))

//foo[@releasableTo="USA GBR AUS"] (("'Role_USA", "read),
("'Role_GBR","read"), (“'Role_AUS","read"))

With protected path sets, only these protected paths are needed:
//foo[@classification="TS"] ("'Role_TS", "read"™)

//foo[fn:contains(@releasableTo, "USA™)] (“'Role_USA™, "read™)
"SetReleasableTo"

//foo[fn:contains(@releasableTo, "GBR'™)] ('Role _GBR", "read")
"SetReleasableTo™

//foo[fn:contains(@releasableTo, "AUS'™)] ('Role_ AUS", "read")
"SetReleasableTo"

The total number of protected paths required for the @releasableTo attribute is reduced from 7 to 3
using the SetReleasableTo protected path set.

2023-08-21 14:49 Securing MarkLogic Server Page 66

MarkLogic 10 Configuring Element Level Security

In real world systems, the total number of possible country codes for these examples are more
than 200, which leads to millions of possible combinations. So with protected path sets, the number
of required protected paths can be reduced from millions to just a couple of hundred for the
@releasableTo use case.

Helper Functions for Query Rolesets

In order to search for query rolesets, you find out which query rolesets are configured for protected
paths for a document already in the database. You can also discover if query rolesets are required for
proper querying of a document being loaded into the database. Element level security includes two
built-ins that can be used to discover existing protected paths in documents. The xdmp : database-
node-query-rolesets built-in is used for querying documents already in the database, while
xdmp:node-query-rolesets is used to query for protected paths in documents that are being
loaded into the database. Given a node, these functions will return a list of the query rolesets for any
protected paths, as long as the user of the built-ins has sufficient privileges and permissions. Usually
these function are called by an admin user.

For xdmp:database-node-query-rolesets, the built-in returns a sequence of query rolesets that
are required for proper querying of any given database nodes where element level security is in place
on a document already in the database.

xquery version "1.0-ml";
import module namespace sec = "http://marklogic.com/xdmp/security"
at ""/MarkLogic/security.xqy";
(: run this against the Security database :)
let $qry := "xdmp:database-node-query-rolesets(fn:doc("'/example.xml'™), (all'))"
let $qry-rolesets :=
xdmp:eval ($qgry, (),<options xmlns="xdmp:eval'>
<dat abase>{xdmp:database(YOUR_DB_NAME)}</ dat abase>
</ opti ons>)
return
sec:add-query-rolesets($gry-rolesets)
=>
<query-rol esets xml:lang="zxx" xmlns="http://marklogic.com/xdmp/security'>
<query-rol eset >
<rol e-i d>12006351629398052509
</role-id>
</ query-rol eset >
</ query-rol eset s>

To find the name of this role ID, use this query in the Query Console:

xquery version "1.0-ml";
import module namespace sec = "http://marklogic.com/xdmp/security"
at ""/MarkLogic/security.xqy";

sec:get-role-names((12006351629398052509))

=>

<sec: rol e-nane xmlns:sec="http://marklogic.com/xdmp/security'>els-role-2</sec:role-
name>

The unconfigured option for xdmp : database-node-query-rolesets will return only those query
rolesets that are not configured, meaning these query rolesets are not in the Security database yet

(you have not configured them yet). The al I option returns all query rolesets, even if they are already
configured.

You can find existing or yet-to-be-configured query rolesets for documents being loaded into the
database using xdmp : node-query-rolesets. This built-in returns a sequence of query rolesets that
are required for proper querying with element level security if the node is inserted into the database with
the given document-insert options. This built-in also comes with the unconfigured option and the all
option, and works the same as the xdmp : database-node-query-rolesets built-in.

2023-08-21 14:49 Securing MarkLogic Server Page 67

MarkLogic 10 Configure Element Level Security in the Admin Interface

A typical workflow would call this function and add each query rolesets through the sec:add-query-
rolesets function before inserting the document into the database, so that the document can be
correctly queried with element level security as soon as the document is inserted.

xdmp:node-query-rolesets(
"/example._.xml",
<f oo>aaa</ f 00>,
<options xmlns="xdmp:document-insert'>
<perm ssi ons>
{xdmp:permission(*'rolel”,"read") ,xdmp:permission(‘'role2","read")}
</ perm ssi ons>
</ opti ons>)

To run this built-in you need to have the security role privileges.

Query for Protected Paths on a Document

You can use this XQuery code as a model to customize. The code sample searches for the protected
paths associated with foo.xml.

xquery version "1.0-ml";
import module namespace sec = "http://marklogic.com/xdmp/security"
at "/MarkLogic/security.xqy";
declare function | ocal: get-rol e-nane($p as element(sec:permission)) {
element sec:permission {
$p/*,
sec:get-role-names($p/sec:role-id)
}
}:
let $doc := xdmp:eval("fn:doc("foo.xm")", (), <options
xmins="xdmp:eval'><dat abase>{xdmp:database(*'Documents')}</ dat abase></ opti ons>)
for $p in fn:collection(sec:protected-paths-collection())/sec:protected-path
let $path :=
xdnp: wi t h- namespaces (
for $ns in $p//sec:path-namespace
return ($ns/sec:prefix/fn:string(.), $ns/sec:namespace-uri/fn:string(.)),
xdmp:value(*"$doc” || $p/sec:path-expression/fn:string()))
return
if (fn:exists($path)) then
element sec:protected-path {
$p/* except $p/sec:permissions,
element sec:permissions {
$p/sec:permissions/sec:permission ! local:get-role-name(.)
}
¥

else

O

You will only be able to see the protected paths for elements that you as the user would have
permission to see. For example if you had rolel and the protected path was associated with role2,
rolel would not be able to see those paths.

Related functionality is the al -query-rolesets-fragment-count element returned from
xdmp : forest-counts. This number tells the caller how many fragments are indexed with a certain
query-rolesets. If the number is 0 (across all databases), then query-rollesets is no longer in use.

6.4. Configure Element Level Security in the Admin Interface

Protected paths and query rolesets for element level security can be configured from the Admin
Interface. The steps to configure users and roles for element level security are the same as described
in Section 6.2.1, “Create Roles” [32] and Section 6.2.2, “Create Users and Assign Roles” [32]. To test
the examples, add the sample documents using Query Console, as described in Section 6.2.3, “Add the
Documents” [34].

2023-08-21 14:49 Securing MarkLogic Server Page 68

MarkLogic 10 Configure Element Level Security in the Admin Interface

6.4.1. Add a Protected Path

To add a protected path for element level security:

1. Click Protected Paths in the left tree menu.
2. Click the Create tab.

DN gre———p g gurrann

Configure

BHEJ Groups New Protected Path [ek | [cancel |
Databases
Hosts .
protected path — A protected-path definition
Forests
Mimetypes
L\j Clusters
, ith expression =
EH & security path exp! Jrootbar{@baz=1]
H The XPath that specifies the XML element or JSON property in a protected-path
s
3 users definition
f’ Roles Required. You must supply a value for path-expression.

f’ Execute Privieges
BHES URI Privileges

path namespaces — MNamespace bindings

@ Collections
=3 E, Protected Paths

prefix
=3 E, NewProtectedPath A QMame prefix.
@ Query Rolesets
B Certificate Authorties Ao TR
3 Certificate Templates A namespace URL
3 External Security
t 3 Credentials |. more items

f’ Secure Credentials

permissions — The default set of permissions used in document creation.

role name + capability

els-role-2 w read -
I. more permissions
path set
Fath Set
| ok J | cancel J

3. Enter the information for the protected path: the path expression, the prefix and namespace, and
the role name and capabilities for the permissions.

4. Click more permissions to add additional permissions to this protected path.
5. Click OK when you are done.

6.4.2. Add a Query Roleset

To add a query roleset for element level security, using the Admin Interface:

1. Click Security in the left tree menu.
2. Click Protected Paths and then click the Create tab.

2023-08-21 14:49 Securing MarkLogic Server Page 69

MarkLogic 10

Configure Element Level Security with XQuery

]
Configure

iy Groups
iy Databases
i Hosts

Y Forests
) Mimetypes
i) Clusters
& security
? Users

New Query Rolesets

query roleset

M-_!-H-H-_!-_!@

query roleset

H

Execute Privileges

more items |
Collections) }
Protected Paths

T v T

| ok

| cancel |

els-role-1, els-role-2

(comma separated role names)

(comma separated role names)

]
1
’;‘ URI Privileges
H
28]
s3]

E}HHEHH

L Query Rolesets |
EF_ £, NewQueryRolesets

Certificate Authorities

Certificate Templates

External Security

Credentials

BEEEE ..
GO0 \5

Secure Credentials

ok | cancel |

3. Addtheroles (els-role-1 and els-role-2) for the query roleset, separated by commas.
4. Click more items to add additional comma-separated query rolesets.
5

Click OK when you are done.

NOTE

An administrator must define query rolesets.

6.5. Configure Element Level Security with XQuery

To configure element level security, you would follow the same series of steps that you used for the
earlier example. (See Section 5.3, “Example—Compartment Security” [28].)

» Set up roles.

» Create users and assign roles.

* Insert documents with permissions.

» Add the query rolesets to the Security database.

+ Add protected paths for elements in documents, by inserting the protected paths into the Security

database.

6.5.1. Using XQuery for Query Rolesets

Use the xdmp:database-node-query-rolesets helper function with the sec:add-query-
rolesets command to set up query rolesets using XQuery.

For example:

2023-08-21 14:49

Securing MarkLogic Server

Page 70

MarkLogic 10 Configure Element Level Security with REST

xquery version "1.0-ml";
import module namespace sec = "http://marklogic.com/xdmp/security"
at ""/MarkLogic/security.xqy";
(: run this against the Security database :)
let $gry := "xdmp:database-node-query-rolesets(fn:doc("'/example.xml'), (all'™))*
let $qry-rolesets :=
xdmp:eval ($qry, (),<options xmlns="xdmp:eval™>
<dat abase>{xdmp:database("Documents®)}</ dat abase>
</ opti ons>)
return
sec:add-query-rolesets($gry-rolesets)

To manually set up just a few query rolesets, use the sec:add-query-rolesets command using
XQuery.

(: add a few query rolesets => run against the Security database :)

xquery version "1.0-ml";

import module namespace sec="http://marklogic.com/xdmp/security"
at ""/MarkLogic/security.xqy";

let $roleset := sec:query-roleset("'new-role')

return

sec:add-query-rolesets(sec:query-rolesets(($roleset))

6.5.2. Using XQuery for Protected Paths

Use the sec:protect-path command to set up your protected paths.
For example:

(: add protected paths -> run against the Security database :)
xquery version "1.0-ml";
import module namespace sec="http://marklogic.com/xdmp/security"
at "/MarkLogic/security.xqy";
sec:protect-path("'secret”, (), (xdmp:permission(els-role-2", "read"))),
sec:protect-path(*'top-secret”, (), (xdmp:permission(*els-role-1", "read)))

This example uses a second parameter to set a protected path on the example path namespace.

(: add protected paths -> run against the Security database :)
xquery version "1.0-ml";

import module namespace sec = "http://marklogic.com/xdmp/security"
at "/MarkLogic/security.xqy";

declare namespace ex = "http://marklogic.com/example;

let $role := "executive"

return

sec:protect-path(
""/ex:envelope/ex:instance/employee/salary",

(let $prefix := "ex",$namespace-uri :=
"marklogic.com/example™
return

sec:security-path-namespace($prefix, $namespace-uri),
(xdmp:permission($role, "read"))

)
6.6. Configure Element Level Security with REST

You can also use the REST Management APlIs to configure element level security. The REST
properties endpoint is available to create query rolesets and protected paths:

GET:/manage/v2/security/properties

6.6.1. Using REST for Query Rolesets

The following XML and JSON examples show what is returned from GET (or used as payload to PUT)
when using REST for query rolesets.

2023-08-21 14:49 Securing MarkLogic Server Page 71

MarkLogic 10 Configure Element Level Security with REST

This example uses a GET with the response payload in XML:

$ curl -GET --anyauth -u admin:admin
-H "Accept:application/xml,Content-Type:application/xml"
http://localhost:8002/manage/v2/security/properties

This returns:

<security-properties xmlns="http://marklogic.com/manage"''>
<query-rol eset s>
<query-rol eset >
<r ol e>432432534053458236326</ r ol e>
<r ol €>454643243253405823326</ r ol e>
</ query-rol eset >
<query-rol eset >
<r ol €>124325333458236346123</ r ol e>
<r ol e>124233432432534058213</ r ol e>
</ query-rol eset >
</ query-rol eset s>
</security-properties>

Here is the same example with a JSON reponse payload:
$ curl -GET --anyauth -u admin:admin

-H "Accept:application/json,Content-Type:application/json
GET:/manage/v2/security/properties

This returns:

{
"queryRoleset™: [
L
432232321212123100000,
432432534053458200000
1,
L
124325333458236346123,
124233432432534058213
]
1
3
NOTE

The REST Management APIs will accept both role names and role IDs in configuring
query rolesets with PUT.

The following are example payloads for POST or PUT calls for managing query rolesets.
JSON:
{

}
XML:

"role-name": ["manage-admin",'rest-writer'’]

2023-08-21 14:49 Securing MarkLogic Server Page 72

MarkLogic 10 Configure Element Level Security with REST

<query-rol eset-properties xmlns="http://marklogic.com/manage/query-roleset/properties'>
<query-rol eset >
<r ol e- nane>rest-reader</r ol e- name>
</ query-rol eset >
</ query-rol eset-properties>

6.6.2. Using REST for Protected Paths

The following XML and JSON examples show what is returned from GET (or used as payload to PUT)
when using REST for query rolesets.

This example uses a GET with the reponse payload in XML:

$ curl -GET --anyauth -u admin:admin \
-H "Accept:application/xml,Content-Type:application/xml" \
http://localhost:8002/manage/v2/security/properties

This returns:

<security-properties xmlns="http://marklogic.com/manage' >
<pr ot ect ed- pat hs>
<pr ot ect - pat h>
<pat h- nanmespaces>
<pat h- nanespace>
<prefix>ml</prefix>
<nanespace- uri >marklogic.com</ nanmespace- uri >
</ pat h- nanespace>
</ pat h- nanespaces>
<pat h- expr essi on>/ml :foo/ml :bar</ pat h- expr essi on>
<perm ssi ons>
<per m ssi on>
<r ol e- nanme>useri</ r ol e- nane>
<capabi | i t y>read</ capabi l i ty>
</ perm ssi on>
</ perm ssi ons>
</ pr ot ect ed- pat h>
</ pr ot ect - pat hs>
</security-properties>

Here is the same example with a JSON reponse payload:

$ curl -GET --anyauth -u admin:admin \
-H "Accept:application/json,Content-Type:application/json™ \
http://1ocalhost:8002/manage/v2/security/properties

This returns:

"protected-path”: [

{
"path-namespace": [
{
“"prefix" : "ml",
""namespace-uri': "marklogic.com"
}
1
"path-expression': ''/some/path",
"permissions': [
{
"role-name": "‘userl",
"capability": "read"
¥
1
3
]
¥

2023-08-21 14:49 Securing MarkLogic Server Page 73

MarkLogic 10 Combining Document and Element Level Permissions

@ NOTE

* When DELETE is used, a force=true url param will force deletion of “in use”
protected paths.

 To specify an options element namespace in a JSON REST payload, you will need
to define an options-ns key to set the namespace.

6.7. Combining Document and Element Level Permissions

This section describes how document level and element level permissions interact when both are
applied to a document. At the element level read, insert, and node-update permissions can be
used as part of the protected path definition.

NOTE

At the element level, the update and node-update capabilities are equivalent.

6.7.1. Document Level Security and Indexing

The document level security (document permissions with read capability) interacts with the element
level security and affects

» The indexing of protected elements and whether index keys are combined with query rolesets.
* Whether protected embedded triples are indexed.

During indexing, the element level security of every node in the document is compared to the
document’s protection. For a given node in the document, the permissions on every matching protected
path are compared to the document’s permissions. When all matching protected paths are determined
to be weaker than the document’s protection, the element’s protection is considered to be weaker. In
this case, the query rolesets for the matching protected paths are not used when indexing the current
node. An embedded triple with weaker protection on all of its nodes (subject, predicate and object), is
extracted.

How is the element level protection determined to be weaker? In the absence of compartment security,
a higher number of roles implies weaker permission because it means more accessibility. More roles
in this case doesn’t mean the total number of roles. It means that one set of roles is a superset of

the other. The smaller set (the subset) is considered stronger because it is more restrictive. Roles are
OR’ed by default. If the document is permitted to be accessed by more roles than the element (the
element is more restrictive because there are more limitations on access), then the element security

is considered to be stronger than the document security. In such a case, the element security is given
higher precedence and the element is protected (i.e. the element is more restrictive). The fewer the
number of contained or embedded roles, the more restrictive the permissions.

In situations where neither is stronger or it is unclear whether the document security or element security
is stronger, the element level is always considered stronger. Only “Read” capability is checked when
comparing the document’s permissions to the element’s permissions.

Note that there is no “flattening” of roles (inheritance of permissions) with element level security. Using
the helper functions, described in Section 6.11, “APIs for Element Level Security” [80] can facilitate
both discovering existing query rolesets and applying them as part of ingestion.

2023-08-21 14:49 Securing MarkLogic Server Page 74

MarkLogic 10 Node Update Capabilities

6.7.2. Combination Security Example

More roles does not mean the total number of roles. It means that one set of roles is a superset of the
other. The smaller set of roles is considered stronger. Consider the following examples:

Legend
s Blue part is common
¢ Yellow is what makes it weaker

@ - is what makes it stronger

Example 1 (no compartments):
Doc—level = setl = (rolel OR roleZ OR role3l)
Element-level = set?2 = (rolel OR roleZ)

Having role3 allows a user to see the Doc-level but not the Element-level => element-level is stronger < set2 is a
subset of setl

Example 2 (no compartments):

Doc-level = setl = (E8I8T or -)

Element-level = setZ = (rolel OR)

Rolel can see both, role2 can only see element-level, role3 can only see Doc-level. Because it’s not a clear cut who
is stronger (neither set is a subset of the other), element level-security wins (stronger).

Note that in example 1, element level protection is more restrictive that the document level protection.
With compartment security, it's more complicated. The security level that has the most compartments
wins, because more compartments means that access is more restrictive.

Example3 (compartments)

Doc-level = Compartmentl (rolel OR roleZ) AND CompartmentZ(role3 OR roled)
Element-level = Compartmentl (rolel OR roleZ) AND Compartment2 (role3 OR roled)

To see the element a user must have (on top of the doc compartmented roles) at least one role from
compartment3 => Element level is stronger

Exampled (compartments)

Doc—level = Compartmentl (rolel OR roleZ) AND CompartmentZ(role3 OR roled)
Element—-level = Compartmentl (rolel OR roleZ) AND CompartmentZ (role3l)

Within compartment 2, a user with role3 can see the element and the doc (assuming they have a role form
compartment 1). User with role4 can see the doc but not the element. => element-level stronger.

When element security is weaker than the document security, MarkLogic will index the content based
on the document level security. MarkLogic lets the document level security protect it.

If the element is considered stronger, then content won'’t be visible without the correct query rolesets.
If the element is weaker, then MarkLogic will return the element as part of a query (with the correct
document level permissions).

6.8. Node Update Capabilities

Node update capabilities allow you to update document content by node. At the document level

xdmp :document-delete and xdmp:document-insert can still be used if you have update
capabilities, but node-update provides a finer control when combined with element level security. The
node-update capability exists at the document level and at the element level. At the document level,
if you have the node-update capability you can call xdmp:node-replace and xdmp:node-delete
to modify nodes in a document, but not xdmp :document-delete or xdmp:document-insert. All of
the node update built-ins take element level permissions into consideration.

Note that node-update, just like insert, can be seen as a subset of update, meaning that if a role
has the update capability, it aufomatically gets the node-update capability as well.

2023-08-21 14:49 Securing MarkLogic Server Page 75

MarkLogic 10 Node Update Capabilities

If you have the update capability at the document level, you can call xdmp:document-insert,
xdmp : document-delete, and all node-update functions. When you have the update capability at
the document level, the element level security for update will not be checked, it is effectively “turned
off”. If you have the node-update capability, you can only call all node-update functions for that
node.

6.8.1. Updates with Element Level Security

You can update content in documents when protected paths have been defined with element level
security. Both document level and element level permissions will apply to the content (compartment
level permissions may apply as well - see Section 6.13, “Interactions with Compartment Security” [82]
for details). With the appropriate permissions, you can use insert and node-update at the element level
to modify content containing protected paths. These capabilities take all element level permissions into
consideration.

You can also protect document property nodes with element level security. With the node-
update/insert capability, you can call xdmp:document-add-properties, xdmp:document-
remove-properties, xdmp:document-set-property, or xdmp:document-set-properties.
See Section 6.9, “Document and Element Level Permissions Summary” [77] for details.

6.8.2. Node Update and Node Insert at the Element Level

The node-update capability at the element level enables to you replace and delete nodes
with xdmp :node-replace and xdmp:node-delete. The insert capability enables you to call
xdmp: insert-node-before, xdmp:node-insert-after, and xdmp:node-insert-child.

NOTE

At the element level, the update and node-update capabilities are equivalent.

Here are some simple examples using the xdmp : insert-node-before, xdmp: insert-node-
after, and xdmp:node-replace functions at the element level. These examples assume that
both roles have document insert/node-update permissions as well as read permissions for the
document and that the query rolesets are configured correctly.

Say that you have a document with these nodes:
<r oot >

<f oo>hello</ f 00>

<bar >World</ bar >
</r oot >

There are two roles; rolel with both read and update permissions on the <foo> node, and role2
with read and node-insert permissionson the <root> node:

<foo>, (""rolel”, "read"),('role2", "read"),("'rolel"™, "update')
<root>,("'rolel"”, "read"),('role2", "read"),('role2", "insert")

The protected paths look like this:

sec:protect-path(*'//foo”, O, (

xdmp:permission('rolel™, "read™),("rolel", "update'),"role2", "read'))
sec:protect-path(*'//root"”, (O, (
xdmp:permission(*'rolel”, "read"),("role2", "read"),("role2", "insert™))

The insert and update permissions check the ancestors of a node as well. See Section 6.9, “Document
and Element Level Permissions Summary” [77] for details.

2023-08-21 14:49 Securing MarkLogic Server Page 76

MarkLogic 10 Document and Element Level Permissions Summary

(: insert a new document :)
xdmp :document-insert(*"/example._xml",
<r oot >
<f oo>hello</f 00>
<bar >World</ bar >
</root>
(xdmp:permission(‘'rolel™, "read"), xdmp:permission(*'role2", "read"),
xdmp:permission(*‘'rolel™, "node-update™),('rolel™, "insert'™), xdmp:permission(‘role2",
""node-update™), ("'role2", "insert')));

As role2, use xdmp:node-insert-before to add a node to the document:

(: add a baz node before the foo node :)
xdmp:node-insert-before(fn:doc(*'/example.xml')/root/foo,
<baz>Greetings</ baz>);
(: view the revised document :)
fn:doc(*"/example.xml'™)
=>
<r oot >
<baz>Greetings</ baz>
<f oo>hello</f 00>
<bar >World</ bar >
</root>

As rolel you can use xdmp:node-replace to change the <bar> node.

xdmp:node-replace(doc(*'/example.xml")/root/foo,<f oo>Hello</ f 00>));
doc("'/example.xml");
fn:doc(*"/example.xml')
=>
<r oot >
<baz>Greetings</ baz>
<f oo>Hello</ f 00>
<bar >World</ bar >
</root>

If you are using a user to other than rolel do these same operations, a permission denied exception
will be thrown.

6.9. Document and Element Level Permissions Summary

This table describes the permissions required to add, remove, or modify content at the document and
element level.

Function Signature Document and Element Level Permissions

xdmp:node-replace($old, $new) Document: node-update is required

Element: $old and all its ancestors, as well as descendants are
checked for update/node-update

xdmp:node-delete($old) Document: node-update is required

Element: $old and all its ancestors as well as descendants are
checked for update/node-update

xdmp:node-insert-before($sibling,$new) Document: insert is required

Element: all ancestors of $sibling are checked for insert

xdmp:node-insert-after($sibling,$new) Document: insert is required

Element: all ancestors of $sibling are checked for insert

xdmp:node-insert-child($parent,$new) Document: insert is required

Element $parent and all its ancestors are checked for insert

xdmp :document-add-properties($uri,$props) Document: node-update is required

Element: the properties root* is checked for insert

2023-08-21 14:49 Securing MarkLogic Server Page 77

MarkLogic 10 Node Update and Document Permissions Expanded

Function Signature Document and Element Level Permissions
xdmp :document-set-property($uri,$prop) Document: node-update is required
Element:

IF the property to be set doesn’t exist, THEN the properties root is
checked for insert;

ELSE
a.) the properties root* is checked for update/node-update

b.) the property nodes) and all their descendants are checked for
update/node-update

xdmp :document-set-properties($uri,$props) Document: node-update is required
Element:

IF there is no properties fragment THEN the properties root is
checked for insert;

ELSE
a.) the properties root* is checked for update/node-update

b.) all existing property nodes and all their descendants are
checked for update/node-update

xdmp:document-remove- Document: node-update is required
properties($uri,$property-names)
Element:

a.) the properties root* is checked for update/node-update

b.) all property nodes to be removed and all their descendants are
checked for update/node-update

* The properties root is the root of the properties node of a document, not the individual properties
contained in the properties node. The properties root is the first line in this diagram:

<prop: properties xmlns:prop="http://marklogic.com/xdmp/property">

<propl>. . .</propl>
<prop2>. . .</prop2>
<propN>. . .</propN>

</ prop: properties>

See Section 6.13, “Interactions with Compartment Security” [82] for more about combining element
level security with compartment security.

6.10. Node Update and Document Permissions Expanded

The examples in this section expand upon the interactions of element level security and document
permissions.

6.10.1. Unexpected Behavior with Permissions

In this example the role has the necessary document-level permissions. The example has to do with
the element level, protected path permissions. Say you have a document (example .xml) with these
nodes:

<f oo>
<bar >

</ foo>

For this example rolel has both read and update permissions on the <foo> node, and update
permissions on the <bar> node, but no read permissions on the <bar> node:

2023-08-21 14:49 Securing MarkLogic Server Page 78

MarkLogic 10 Node Update and Document Permissions Expanded

<foo>, (“rolel”, "read"), (“rolel”™, "update')
<bar>, ('rolel", "update')

It is assumed for these examples that all of the query rolesets are already configured correctly.
If rolel calls this xdmp:-node-replace query:

xquery version "1.0-ml";
xdmp:node-replace(doc(*'/example.xml')/foo, <foo><baz>Hello</baz></fo00>);

The query will succeed, because rolel has update permissions on /foo.
If rolel calls this xdmp :node-replace query on /bar:

xquery version "1.0-ml";
xdmp:node-replace(doc(""/example.xml'")/foo/bar, <baz>Hello</baz>);

The expression /foo/bar will return an empty sequence because rolel cannot read the bar element.
Hence the node-replace call will effectively be a no-op, because xdmp : node-replace was asked
to replace nothing with something.

6.10.2. Different Permissions on the Same Node

Multiple roles can have different permissions on the same node. Some interactions between roles may
be unexpected. For example, if you have a document with two nodes <foo> and <bar>. The <bar>
node is a child of the <foo> node.

<f oo>
<bar >

You have two roles; rolel with both read and update permissions on the <foo> node, and role2
with read permissions on the <bar> node:

<foo>, (“rolel", "read"), (“rolel”™, "node-update')
<bar>, (“'role2", "read")

NOTE

At the element level, the update and node-update functions are equivalent.

The protected paths for this document would look like this:

sec:protect-path(*"//foo", (O, (

xdmp:permission(“els-role-1", "read"™),("rolel”, "node-update'))
sec:protect-path("//foo/bar”, (O, (

xdmp:permission('role2", "read™))

With these protected paths, rolel cannot read the <bar> node. But because rolel has update
permissions on the parent node (<fo00>), rolel can overwrite the <bar> node, even though it cannot
read it.

To prevent this, add node-update permissions to the <bar> node. The permissions would now look like
this:

<foo>, (“rolel”, "read"), (“rolel”™, "node-update')
<bar>, ('role2", "read"), (“role2", "node-update')

The presence of the “node-update” permission on the <bar> node prevents rolel from being able to
update and overwrite the <bar> node (the child node of the <foo> node).

2023-08-21 14:49 Securing MarkLogic Server Page 79

MarkLogic 10 APIs for Element Level Security

This happens because node permissions are checked separately; first there’s a check for protected
paths for read. Then there is a check for protected paths for update. If no update is found for /foo/
bar, then rolel is allowed to update <bar>. If there is a protected path for updating <bar>, then
rolel is not allowed to update <bar>.

6.10.3. A More Complex Example

To expand even more on the node-update example with added document permissions, you could have
roles with both protected paths and document permissions.

Say you have a document with these nodes:

<f oo>
<bar >
<baz>

At the document level, there are these permissions:

("rolel”, "read™), (“rolel™, "node-update')
('role2", "read"), (role2", "node-update')
("role3", "read"), (“role3d", "update')

At the element level, there are these permissions for protected paths:

<foo>, (“rolel", "read"), (“rolel™, "node-update'™)
<bar>, (“role2", "read"), (“role2", "node-update')

In this example:

» rolel cannot update (or override) <bar> because at the element level role2 has <bar> protected
path permissions

» role3 can override everything because at the document level it has update capability, but can only
read <baz> which has no protected paths.

6.11. APIs for Element Level Security

This section describes the element-level security APIs.

6.11.1. XQuery APlIs

These built-in functions are available to help manage element level security:

+ sec:protect-path

* sec:unprotect-path

» sec:remove-path

+ sec:path-set-permissions

+ sec:path-add-permissions

+ sec:path-get-permissions

» sec:path-remove-permissions
» sec:query-rolesets-collection
* sec:security-path-namespace
* sec:query-roleset

* sec:query-rolesets

* sec:query-rolesets-id

+ sec:add-query-rolesets

* sec:remove-query-rolesets

+ sec:protected-paths-collection

With the appropriate permissions, protected path content can be modified using these node update
APIs:

2023-08-21 14:49 Securing MarkLogic Server Page 80

MarkLogic 10 Algorithm That Determines Which Query Rolesets to Use

+ xdmp:node-replace

* xdmp:node-delete

» xdmp:node-insert-after
» xdmp:node-insert-before
* xdmp:node-insert-child

These two helper functions can be used to search for protected paths:

+ xdmp:node-query-rolesets
+ xdmp:database-node-query-rolesets

6.11.2. REST Management APIs

The REST Management APIs provide the same functionality as the XQuery APIs covered in
Section 6.11.1, “XQuery APIs” [80] for both protected paths and query rolesets.

REST Management APIs for Protected Paths
These REST Management APIs can be used for adding, modifying, or deleting protected paths.

GET:/manage/v2/protected-paths
POST:/manage/v2/protected-paths
GET:/manage/v2/protected-paths/{id|name}
DELETE:/manage/v2/protected-paths/{id|name}
GET:/manage/v2/protected-paths/{id}/properties

PUT:/manage/v2/protected-paths/{id}/properties

REST Management APls for Query Rolesets

These REST Management APIs are available for managing query rolesets:
GET:/manage/v2/query-rolesets
POST:/manage/v2/query-rolesets
GET:/manage/v2/query-rolesets/{id|name}
DELETE:/manage/v2/query-rolesets/{id|name}
GET:/manage/v2/query-rolesets/{id|name}/properties

PUT:/manage/v2/query-rolesets/{id|name}/properties

6.12. Algorithm That Determines Which Query Rolesets to Use

In MarkLogic 9.0-1, if the path permissions on a node are “weaker” (as defined in Section 6.7.1,
“Document Level Security and Indexing” [74]) than the document level permissions or its parent node’s
permissions, the path level permissions will be ignored as far as query rolesets definition is concerned.

NOTE

A child node will still inherit its parent’s query rolesets.

2023-08-21 14:49 Securing MarkLogic Server Page 81

MarkLogic 10 Interactions with Compartment Security

In MarkLogic 9.0-2, the set of query rolesets for a given node (after inheritance from ancestors) will

be “compacted” based on the “weaker” permissions defined in Section 6.7.1, “Document Level Security
and Indexing” [74]. If a query roleset in the set is “weaker” than any other query rolesets in the set, that
“weaker” roleset will be “removed”.

For example:

Roles: role-1, role-2, role-3

Document:

<f oo>Hel lo<bar >World</ bar >,</ f 00>

with ((role-1, read), (role-2, read), (role-3, read))
Protected Paths:

//foo (role-1, read), (role-2, read)
//bar (role-1, read)

In MarkLogic 9.0-1, the query rolesets for the “bar” node is ((role-1, role-2), (role-1)), but in 9.0-2
it is simplified (“compacted”) to ((role-1)).

NOTE

If any query roleset in the above set is “weaker” than the document level permissions,
it will be omitted too.

Here is another example:
Roles: role-1, role-2, role-3

Document:

<f oo><bar >Hel lo</ bar ></ f 00>
with (role-1, read)
Protected Paths:

/foo/bar (role-1, read), (role-2, read)
//bar (role-3, read)

In 9.0-1, the query rolesets for the “bar” node is ((role-1, role-2), (role-3)), butin 9.0-2 it is
simplified (“compacted”) to ((role-3)) because (role-1, role-2) is “weaker” than the document level
permissions.

6.13. Interactions with Compartment Security

You can add an extra level of protection to any content concealed by protected paths by using
compartment security in conjunction with element level security. Compartment security adds a finer
granularity of protection for content because a user must have the appropriate role and belong to the
appropriate compartment to view the concealed content. For more about compartment security see
Section 5, “Compartment Security” [27].

A compartment is a name associated with a role. The compartment name is used as an additional
check when determining a user’s authority to access, modify, or create documents. If compartment

2023-08-21 14:49 Securing MarkLogic Server Page 82

MarkLogic 10 Interactions with Compartment Security

security is not used, permissions are checked using OR semantics. For example, if a document has
read permissions for rolel and read permissions for role2, without compartment security, a user
who has either rolel or role2 can read that document.

If any permission on a document has a compartment, then the user must have that compartment in
order to access any of the capabilities, even if the capability is not the one with the compartment.
Access to a document requires a permission in each compartment for which there is a permission on
the document, regardless of the capability of the permission. So if there is read permission for role
compartmentl, there must also be an update permission for some role in compartmentl (but not
necessarily the same role).

If compartment security is used, then the permissions are checked using AND semantics for

each compartment. If the document has compartment permissions for both compartmentl and
compartment?2, a role must be associated with both compartments to view the document. If two roles
have different compartments associated with them (for example compartmentl and compartment?2),
a user must have rolel and role2 access the document.

This is in addition to checking the OR semantics for each non-compartmented role, as well as a non-
compartmented role that has a corresponding permission on the document. If compartment security is
used along with element level security, a user must have both the appropriate compartment security
and the appropriate role to view protected content.

Because element level security follows the same role based authorization model, compartment security
checks are be done in the same way at the element level. The only difference is that when calculating
“‘compartments needed” at the element level, only those permissions with the capability being requested
(for example “read”) are checked.

Here is an example using these three roles:

» roleO (with no compartment)
* rolel (with compartmentl)
* role2 (with compartment?2)

These permissions have been set on the document:
(role0, read), (rolel, read), and (role2, update)

With these permissions set on the document, a user with both rolel and roleO cannot perform a
read operation. This is because one of the permissions mentions role2, even though it is not for
read. In fact, with these permissions at the document level, no one (except for admin) would be able to
read the document.

If the above permissions are set for an element, a user with both rolel and roleO will be able to
read the element, because element level security checks read, update, and insert permissions
separately, based on the operation requested.

NOTE

Permission checks at the document and element levels are performed independently.

6.13.1. Compartment Security and Indexing

Using more compartments means stronger security because compartments are AND’ed. The
roles within the same compartment are OR’ed. When a document or element is protected by

2023-08-21 14:49 Securing MarkLogic Server Page 83

MarkLogic 10 Interactions with Other MarkLogic Features

more compartments, this implies stricter access. Roles without compartments are OR’ed amongst
themselves and then AND’ed with compartment roles. The general rules are:

+ If an element is protected by more compartments than the document’s, the element level protection is
considered stronger.

» Within the same compartment, if the element is protected for fewer roles, the element level protection
is stronger.

» There are situations where the weaker/stronger protection cannot be clearly determined. In this case,
element level security is always considered to be stronger.

See Section 6.10, “Node Update and Document Permissions Expanded” [78] and Section 6.7.2,
“Combination Security Example” [75] for more about security protection and indexing. For more
information about compartment security, see Section 5, “Compartment Security” [27].

6.14. Interactions with Other MarkLogic Features

The element level security feature is an index-level feature that is implemented in the universal index,
the geospatial index, the bitemporal index, the range index, and the triple index. Features that use a
single lexicon (values, elements, element values, sum-aggregation, and so forth.) will work with element
level security, as well as operations that make use of the triple index.

Query operations that rely on the triple index (such as SPARQL, SQL, the new version of MarkLogic
ODBC, and the Optic API) are supported by element level security. Element-level security can be
leveraged by semantic graphs and SQL. In semantics, individual triples can be protected. In SQL, this
allows you to enable column-level security by protecting specific columns in a Template (TDE). See
Section 6.10, “Node Update and Document Permissions Expanded” [78] for details.

This section describes interactions with various MarkLogic features.

6.14.1. Lexicon Calls

For simple lexicons like values or words, this feature is similar to cts queries (see Section 6.14.11,
“Others” [86]). However, lexicon calls that involve co-occurrences will only work with unprotected
values (range-index based SQL implementation has the same problem).

6.14.2. Fragmentation

The indexer in MarkLogic doesn’t know the full path when working on child fragments of a parent
document, because the indexer indexes the child fragments first before it indexes the parent. Because
of this element level security and fragmentation don’t work well together, although fragmentation will still
work on documents that don’t have any protected elements.

Any new document with matching fragmentation and protected elements will be rejected. Either an
XDMP-PARENTLINK or an XDMP-FRAGMENTPROTECTEDPATH error will be thrown. When element

level security and fragmentation both apply simultaneously to an existing document (already in the
database), a reindexing error will be thrown, causing reindexing to stop. User must either remove/fix the
matching element level security path or the matching fragmentation element.

For example, if a protected path that ends with baz is added (/foo/bar/baz) and if a fragment root is
configured for baz, any document containing node baz (even under a different path /A/B/C/baz) will
error out with XDMP-PARENTL INK when the document is inserted or reindexed.

6.14.3. SQL on Range-Index Based Views

SQL that is based on Range-Index views will only work with values that are not protected by element
level security.

2023-08-21 14:49 Securing MarkLogic Server Page 84

MarkLogic 10 Interactions with Other MarkLogic Features

6.14.4. UDFs (Including UDF-Based Aggregate Built-ins)

UDFs that operate on a single range index will work with element level security. This includes the most
commonly used aggregate functions like cts:sum-aggregate, cts:stddev, and so on. UDFs that
apply to more than one range index will only work with unprotected values.

6.14.5. Reverse Indexes

Similar to the case for triples (see Section 6.14.6, “SPARQL” [85]), if an element that contains a
cts:query matches a protected path of any role, or any part of the cts:query matches any role,
the query won’t be added into the reverse index unless the document’s security is stronger than

the element security on the element. See Section 6.10, “Node Update and Document Permissions
Expanded” [78] for details. A cts:reverse-query that would normally find a document containing
a matching cts:query will no longer match once the embedded cts:query (or its children) is
protected by element level security that is stronger than the document’s security.

6.14.6. SPARQL

If a sem:-triple is inside an element that is concealed for any role and the element level security

is stronger than the document security, it will not be put into the triple index. If the triple itself or its
subject, predicate, or object is protected, it will not be put into the triple index, unless the document
security is stronger than the element level security protection. In some scenarios, where the document’s
security is stronger than the element security on a triple, the protected triple will be added to the triple
index. This is because the document’s security already covers the protected element. The information
will be protected at the document level. See Section 6.10, “Node Update and Document Permissions
Expanded” [78] for details.

6.14.7. Alerting and QBFR

Each target in a QBFR (Query Based Flexible Replication) configuration is associated with a user and
a query. A target can only get documents that match the query and that the user is allowed to access.
In QBFR, some flows must use the privileged user to run queries because the process needs to figure
out what documents will be deleted from a target. Internally, alerting uses reverse queries to determine
the set of matching rules for a given document or node. The matching rules are then used to trigger the
appropriate action for the target user of each matching rule.

There is a two pass rule matching approach; first the rule matching runs against the full version of
the document, then for each matching rule, a second match test is performed using the version of the
document that the target user of the rule is allowed to see.

Now, a rule that matches “hello” will not trigger the action if the target user cannot see “hello” due to
element level security protection. Using element level security, MarkLogic Server will deliver a redacted
version of the document, based on element level security configuration of protected paths and the
user’s role.

S NOTE
When using element level security with Alerting and QBFR, if a query contains a
“‘NOT” clause, you may see false negatives. What this means is documents might
not be replicated when the alerting rule contains a cts:not-query due to the false
negatives.

6.14.8. micp

When you use micp to ingest files from MarkLogic 9 or later to another MarkLogic 9 or later instance,
the protected paths and node-update permissions will be preserved.

2023-08-21 14:49 Securing MarkLogic Server Page 85

MarkLogic 10 Interactions with Other MarkLogic Features

If you use micp to export a database archive that includes documents with the node-update
permission, and then import the archive into MarkLogic 8.0-6 or earlier, the behavior is undefined. If you
import the archive in MarkLogic 8.0-7 or a later version of MarkLogic 8, the node-update permission
is silently discarded.

Similarly, if you use micp to copy documents from MarkLogic 9 or later to MarkLogic 8.0-6 or earlier, the
behavior is undefined. If your copy destination is MarkLogic 8.0-7 or a later version of MarkLogic 8, the
node-update permission is silently discarded.

6.14.9. XCC

If you use XCC to insert a document with the node-update permission into MarkLogic 8.0-6 or earlier,
the behavior is undefined.

If you use XCC to insert a document with the node-update permission into MarkLogic 8.0-7 or a later
version of MarkLogic 8, the node-update permission is silently discarded.

These restrictions apply to using Session. insertContent with a Content object whose
ContentCreateOptions include the ContentCapabi l ity . NODE_UPDATE capability.

6.14.10. Bitemporal

Do not protect system axis for bitemporal queries when using element level security.

6.14.11. Others

A key concept to support cts queries with element level security is query rolesets. A query roleset is
simply a list of roles. When indexing, MarkLogic takes query roleset information into consideration and
essentially “partitions” indexes based on query rolesets. All queries (except for composite ones like
and-query) will look into indexes for different query rolesets based on the caller’s role and logically
“OR” the results. See Section 6.3.2, “Query Rolesets” [60] for more about query rolesets.

There are special rules for cts queries, phrase breaks, field values, geo element pairs, auditing and
term-queries when the elements involved are protected.

+ cts queries - Positions are always calculated based on the original (full) document, prior to any
concealing. This implies that the distances calculated based on indexes will be larger than what
appears in the concealed document.

» Phrase breaks - When indexing, any element that is protected is considered a phrase break.
Consider the this example: <foo>1<bar>2 3</bar>4</foo>. If “bar” is protected by any
protected path, then it is considered a phrase break regardless whether a phrase through is defined
on it. So in the example, “2 3” is still a phrase, but “1 2” or “3 4” is not. “1 4” is not a phrase either.

+ Fields - For an XML document, field values or field range values are sometimes calculated by
concatenating elements included in the field. If those elements don’t have the same rolesets
(permissions), concatenating can cause leaking of information. MarkLogic server will treat this as
a misconfiguration and log a warning. The query result on such a field is undefined.

» Geo element pair with inconsistent permissions - Similar to the field case above, if permissions on the
two elements (or JSON properties) of the geo pair are not consistent (or either of the two elements
has different permissions from the parent node), MarkLogic server will treat it as a misconfiguration
and log a warning. The query result is undefined in this case.

* Auditing -

For the “document-read” event, if the node involved has any element concealed, the string “concealed”
will be reported in the event. Here is an example:

2016-10-18 15:45:29.886 event=document-read; type=concealed; uri=foo.json;
database=Documents; success=true;

2023-08-21 14:49 Securing MarkLogic Server Page 86

MarkLogic 10 Interactions with Other MarkLogic Features

When a node or properties update built-in call is rejected due to the lack of element-level permissions,
the “no-permission” event will be reported. This is very similar to how the event is used when such a call
is rejected due to the lack of document-level permissions.

» term-query - Element level security won’t prevent a “malicious” user from getting a term key through
xdmp:plan from a different MarkLogic deployment, then passing that to a cts:term-query to find
out information she is not supposed to see on the current MarkLogic deployment. The solution is to
add a new execute privilege “term-query” to “protect” cts:term-query. For backward compatibility,
this privilege will only be checked when element level security is in use (i.e., when at least one
protected path is configured).

6.14.12. Rolling Upgrades

For rolling upgrades, configuration API calls (as well as Admin GUIs) will throw an error when a
rolling upgrade (from a release that doesn’t support element level security) has not yet completed and
been committed across the cluster. Document inserts (or set-permissions) with the new node-update
capability will be rejected if the effective version is not 9.0-1 or above.

2023-08-21 14:49 Securing MarkLogic Server Page 87

MarkLogic 10 Protecting XQuery and JavaScript Functions with Privileges

7. Protecting XQuery and JavaScript Functions with
Privileges

Execute privileges provide authorization control for executing XQuery and JavaScript functions.
MarkLogic provides three ways to protect XQuery functions:

+ Built-in execute privileges, created by MarkLogic, control access to protected functions such as
xdmp:document-load.

» Custom execute privileges, which you create using the Admin Interface or the security function in the
security.xqy module, control access to functions you write.

+ Amps temporarily amplify a user’s authority by granting the authority to execute a single, specific
function. You can only amp a function in a library module that is stored in the MarkLogic modules
database.

This section describes how to use these protections.

7.1. Built-In MarkLogic Execute Privileges

Every installation of MarkLogic Server includes a set of pre-defined execute privileges. You can
view this list either in the Admin Interface or in Appendix B: Pre-defined Execute Privileges of the
Administrator’s Guide.

7.2. Protecting Your XQuery and JavaScript Code with Execute

Privileges

To protect the execution of an individual XQuery or JavaScript function that you have written, you can
use an execute privilege. When a function is protected with an execute privilege, a user must have that
specific privilege to run the protected XQuery or JavaScript function.

S NOTE
Execute privileges operate at the function level. To protect an entire XQuery or
JavaScript document that is stored in a modules database, you can use execute
permissions. For details, see Section 3.2, “Document Permissions” [18].

This section describes how to protect your code with execute privileges.

7.2.1. Using Execute Privileges
The basic steps for using execute privileges are:

+ Create the privilege.
+ Assign the privilege to a role.
» Write code to test for the privilege.

You create privileges and assign them to roles using the Admin Interface. You use the
xdmp:security-assert built-in function in your XQuery code to test for a privilege and you can

use the xdmp . securityAssert built-in function in your JavaScript code to test for a privilege. This
function tests to determine if the user running the code has the specified privilege. If the user possesses
the privilege, then the code continues to execute. If the user does not possess the privilege, then the
server throws an exception, which the application can catch and handle.

2023-08-21 14:49 Securing MarkLogic Server Page 88

https://docs.marklogic.com/guide/admin/exec_privs#

MarkLogic 10 Temporarily Increasing Privileges with Amps

For example, to create an execute privilege to control the access to an XQuery function called
display-salary, use the following steps:

1. Use the Admin Interface to create an execute privilege named al low-display-salary.

2. Assign any URI (for example, http://my/privs/al low-display-salary) to the execute
privilege.

3. Assign a role to the privilege. You may want to create a specific role for this privilege depending on
your security requirements.

4. Finally, in your display-salary XQuery function, include an xdmp:security-assert call to
test for the al low-display-salary execute privilege as follows:

xquery version "1.0-ml";

declare function display-salary (
$employee-id as xs:unsignedLong)

as xs:decimal

{

xdmp:security-assert("'http://my/privs/allow-display-salary', "execute'),

Y

7.2.2. Execute Privileges and App Servers

You can also control access to specific HTTP, WebDAV, ODBC, or XDBC servers using an execute
privilege. Using the Admin Interface, you can specify that a privilege is required for server access. Any
users that access the server must then possess the specified privilege. If a user tries to access an
application on the server and does not possess the specified privilege, an exception is thrown. For

an example of using this technique to control server access, see Section 15.5, “Example: Using the
Security Database in Different Servers” [221].

7.2.3. Creating and Updating Collections

To create or update a document and add it to a collection, the unprotected-col lections

privilege is required. You also need a role corresponding to an insert or update permission on the
document. For a protected collection (a protected collection is created using the Admin Interface),

you either need permissions to update that collection or the any-col lection execute privilege. If

the collection is an unprotected collection, then you need the unprotected-col lections execute
privilege. For details on adding collections while creating a document, see xdmp : document-load,
xdmp :document-insert, and xdmp:document-add-col lections in the XQuery/XSLT Functions
by Name reference.

7.3. Temporarily Increasing Privileges with Amps

Amps provide users with additional authorization to execute a specific function. Assigning the user this
authorization permanently could compromise the security of the system. When executing an amped
function, the user is part of an amped role, which temporarily grants the user additional privileges and
permissions of that role. Amps enable you to limit the effect of the additional roles (privileges and
permissions) to a specific function.

For example, a user may need a count of all the documents in the database in order to create a report.
If the user does not have read permissions on all the documents in the database, queries run by the
user do not “see” all the documents in the database. If you want anyone to be able to know how many
documents are in the database, regardless of whether they have permissions to see those documents,
you can create a function named document-count() and use an amp on the function to elevate the
user to a role with read permission for all documents. When the user executes the amped function, she
temporarily has the necessary read permissions that enable the function to complete accurately. The
administrator has in effect decided that, in the context of that document-count() function, it is safe to
let anyone execute it.

Amps are security objects and you use the Admin Interface or Management API to create them. Amps
are specific to a single function in a library module, which you specify by URI and local name when

2023-08-21 14:49 Securing MarkLogic Server Page 89

https://docs.marklogic.com/xdmp:document-load
https://docs.marklogic.com/xdmp:document-insert
https://docs.marklogic.com/xdmp:document-add-collections

MarkLogic 10 Temporarily Increasing Privileges with Amps

creating the amp. You can only amp a function that resides in a library module that is stored in a
trusted directory on the filesystem, such as in the Modules directory (<install_dir>/Modules), or
in the modules database configured for the server in which the function is executed. The recommended
best practice is to put your library module code into the modules database. You cannot amp functions
in XQuery modules or JavaScript modules stored in other locations. For example, you cannot amp

a function in a module installed under the filesystem root of an HTTP server, and you cannot amp
functions that reside in a main module. Functions must reside in the Modules database or in the
Modules directory because these locations are trusted. Allowing amped functions from under a server
root or from functions submitted by a client could compromise security. For details on creating amps,
see Security Administration in Administrating MarkLogic Server.

For an example that uses an amp, see Section 18.2.5, “Access Control Based on Client IP
Address” [231]. For details on amps in JavaScript modules, see Amps and the module.amp Function in
the JavaScript Reference Guide.

2023-08-21 14:49 Securing MarkLogic Server Page 90

https://docs.marklogic.com/guide/admin/security
https://docs.marklogic.com/guide/jsref/functions#id_13020

MarkLogic 10 Query-Based Access Control

8. Query-Based Access Control

Query-based access control (QBAC) is a mechanism to provide policy enforcement for access to
resources based on security markings, metadata, or data in the records themselves. It works by
associating queries with roles and users, and adds these automatically to security queries to constrain
access. It integrates with the existing MarkLogic security model, which is a role-based security model.

NOTE

Advanced Security License option is required when using Query-Based Access
Control.

8.1. What is QBAC?

Prior to the addition of this feature, a secure data access query is formed solely based on permissions
from the effective user roles. QBAC augments this security query with more general cts queries to
provide more flexible data access rules. These queries are associated with roles and users, and

are added to the security queries to constrain and check access permissions. This allows you to
define access policies based on document contents or metadata, and to change those policies without
re-processing the document permissions, and without having to write triggers or code to monitor when
document contents change.

There are two types of QBAC queries: queries on roles and queries on users. Queries on roles are
definitional: a document that passes the role query is treated as having the corresponding permission
for that role, so a user with that role may also see the document. Queries on users are restrictive: the
user may only see the documents that pass the query. When the server checks queries, the queries
on uncompartmented roles are ORed, and the queries on users are ANDed. So queries on roles
expand the scope what is authorized for that role, while queries on users restrict the scope of what is
authorized.

Secure data access at the fundamental level in MarkLogic Server is constrained by a security query.
Unsecured data access is used only for the admin user or for certain internal lookups or fetches. All
user-facing APIs that access data stored in the database are secured in this fashion, whether using a
cts:search, a lexicon call such as cts:values, a SQL or SPARQL query that accesses triples, an update
operation such as xdmp:node-replace, or the execution of a module.

As a result, QBAC can integrate with all the existing MarkLogic security features, such as Compartment
Security, Element Level Security (ELS), triples and protected collections. For example, when a path is
protected by ELS, QBAC will not leak information about the contents. However, extra care should be
taken when setting up security model combining both queries and other security features.

@ NOTE
Users with QBAC document access are not able to read document properties. This is a
design limitation. Users with QBAC document access do not have properties access by
default, unless the QBAC query explicitly matches document properties through a cts
query. However, QBAC access to document properties gives access to the document
itself by default.

2023-08-21 14:49 Securing MarkLogic Server Page 91

MarkLogic 10 Example QBAC Applications

8.2. Example QBAC Applications

This section describes several scenarios that use QBAC. They are not meant to demonstrate the
correct way to set up QBAC, as your situation is likely to be unique. However, it demonstrates how
QBAC works and may give you some ideas on how to implement your own security model.

8.2.1. Scenario 1: Region Restrictions

Description: A security architect Sammy from company ABC wishes to enforce up a policy that people
in each of the regions can see documents relevant to their region by inspecting metadata in each
document to determine if someone can access it.

To setup QBAC for this scenario, you need to create the necessary roles and users, and insert
documents through Query Console or REST Management APlIs.

To run through the example, follow the steps in each subsection.

Create Roles
Sammy sets up some roles: region-APAC, region-EMEA, and region-NA.

xquery version "1.0-ml";
import module namespace sec="http://marklogic.com/xdmp/security" at "/MarkLogic/
security.xqy';
sec:create-role('can-read”, "General read”, O, O, O).,
sec:create-role("'region-APAC'", "Can see APAC documents.',

0. 0. 0. 0. O,

map:map()=>map:with(

"read", cts:element-query(xs:QName("'metadata'™), cts:element-word-

query(xs:QName('region'), "APAC™)))
),

sec:create-role("'region-EMEA"™, "Can see EMEA documents.',

C). 0. 0. O. O,
map :map(Q)=>map:with(
"read", cts:element-query(xs:QName("'metadata'™), cts:element-word-
query(xs:QName('region'), "EMEA™)))
).

sec:create-role("'region-NA", "Can see NA documents.",

0. 0. 0. 0. O,
map :map Q=>map:with(
"read", cts:element-query(xs:QName("'metadata'™), cts:element-word-
query(xs:QName("'region'), "NA™)))
)

Create Users

Using the Admin Interface > Security > Users > Create, Query Console, or REST Management APIs
(RMAs), Sammy creates the users and assign them the roles indicated in the following table:

User Roles

Edna region-NA
can-read

Fred region-EMEA

can-read

Peter

region-APAC

can-read

2023-08-21 14:49

Securing MarkLogic Server

Page 92

MarkLogic 10 Example QBAC Applications

Insert the Documents and Add Permissions

Using Query Console, insert the following documents to the database. /doc5.xml and /doc6 . xml
are added with read permissions for can-read, so that they are visible to anyone that has can-read
role.

xquery version "1.0-ml";
xdmp:document-insert(*"/docl.xml",
<r oot >
<met adat a>
<r egi on>region-NA</r egi on>
<gr oup>group-engineering</ gr oup>
</ met adat a>
<enui | >jane@companyabc.com</ enzi | >
<f eat ure>New feature</feature>
</root>),

xdmp:document-insert(*"/doc2.xml",
<r oot >
<met adat a>
<r egi on>region-NA</r egi on>
<gr oup>group-Ffinance</ gr oup>
</ met adat a>
<enui | >matt@companyabc.com</ enzi | >
<price>100</pri ce>
</root>),

xdmp:document-insert(*"/doc3.xml",
<r oot >
<met adat a>
<r egi on>region-EMEA</ r egi on>
<gr oup>group-engineering</ gr oup>
</ met adat a>
<enui | >j im@companyabc.com</ en=i | >
<f eat ur e>Another new feature</feature>
</root>),

xdmp:document-insert(*"/doc4.xml",
<r oot >
<met adat a>
<r egi on>region-APAC</ r egi on>
<gr oup>group-Ffinance</ gr oup>
</ met adat a>
<enui | >jeff@companyabc.com</ enzi | >
<price>10</price>
</root>),

xdmp:document-insert(*"/doc5.xml",
<r oot >
<met adat a>
<regi on>region-all</regi on>
<gr oup>group-al </ gr oup>
</ met adat a>
<enui | >dummy@companyabc.com</ enai | >
</root>),

xdmp:document-insert(*'/doc6.xml",
<r oot >
<met adat a>
<r egi on>region-all</regi on>
<gr oup>group-Ffinance</ gr oup>
</ met adat a>
<enui | >dummy@companyabc.com</ enmai | >
</root>),

xdmp:document-add-permissions(*'/doc5.xml", xdmp:permission(‘'‘can-read","read")),

2023-08-21 14:49 Securing MarkLogic Server Page 93

MarkLogic 10 Example QBAC Applications

xdmp:document-add-permissions(**/doc6.xml", xdmp:permission(‘'‘can-read","read"))

Test It Out

The definitional queries on the roles will effectively treat documents as having permissions for that role.
As a result, when Edna, Fred and Peter perform a search (read) against the database, they are able to
read the following documents:

Document Metadata User with r ead Access
/docl.xml region-NA Edna

/doc2.xml region-NA Edna

/doc3.xml region-EMEA Fred

/doc4 . xml region-APAC Peter

/doc5.xml can-read permission key Edna, Fred, Peter
/doc6 . xml can-read permission key Edna, Fred, Peter

8.2.2. Scenario 2: Group Restrictions

Description: Another security architect Carly from Company XYZ now wants to enforce a policy that
only folks in the engineering group should be able to see feature design specifications, and that only
folks in the finance group should be able to read and update documents with pricing information. This
scenario will show the interaction between QBAC and Compartment Security. For more information
about Compartment Security, see Compartment Security.

Carly didn't need to use compartment security here because there is only one dimension of access, but
she thinks she may have others and wants them to be intersectional. Since the update policy is of the
form if (query) then Deny, we need to also put the negated queries on the roles that we want to
exclude, so the implementation is a little more complicated.

Mike is a contractor who works for Company XYZ. He is only able to read the documents marked with
"group-all" in the metadata. He cannot see any other documents in the database. Carly sets up a user
for him and grants permissions through user queries, which are restrictive.

To run through the example, follow the steps in each subsection.

Create Roles
Carly sets up some roles: can-update, can-read, group-all, group-engineering, group-
finance.

xquery version "1.0-ml";
import module namespace sec="http://marklogic.com/xdmp/security"
at ""/MarkLogic/security.xqy";

(: Uncompartmented roles can-read and can-update for compartment setup :)
sec:create-role(*'can-read", "General read”, O, O, O),
sec:create-role(*'can-update', "General update”, O, O, O),
(: Compartment role group-all for compartment permissions :)
sec:create-role("'group-all', "All groups.”, O, O, (O, "compartment-group'),
sec:create-role('group-engineering”, "Engineering.",
O, O, O,"compartment-group”, O,
map:map(Q)=>map:with(
"node-update", cts:not-query(cts:element-query(xs:QName(*'price'), cts:true-query()))
)=>map:with(
"read", cts:element-query(xs:QName(*'feature'),cts:true-query())
)
).

2023-08-21 14:49 Securing MarkLogic Server Page 94

MarkLogic 10 Example QBAC Applications

sec:create-role("'group-finance', "Finance.",
O, O, O, "compartment-group™, O,
map:mapQ=>map:with(
"node-update", cts:element-query(xs:QName(‘'price'), cts:true-query())
)=>map:with(
"read", cts:element-query(xs:QName("'price'), cts:true-query())
)
B

xquery version "1.0-ml";

import module namespace sec="http://marklogic.com/xdmp/security"
at ""/MarkLogic/security.xqy";

sec:create-user('Mike", "'Contractor', "Mike",

("can-read™), O, O, O,
map :map Q=>map:with(
"read",cts:element-query(xs:QName("'metadata’), cts:element-word-query(xs:QName(‘'group™),
"group-all™))
)

D)

Create Users

Using the Admin Interface > Security > Users > Create, Query Console or RMAs, Carly creates the
users and assign them the roles indicated in the following table:

User Roles
John group-engineering
can-read

can-update

Pari group-finance
can-read
can-update

Mike none

Insert the Documents and Add Permissions

For simplicity, we will reuse the 6 documents in Section 8.2.1, “Scenario 1: Region Restrictions” [92].
Here are the new permissions that need to be added:

xquery version "1.0-ml";

(: Doc 1 to 4 have compartment compartment-group. Doc 5 and 6 don"t :)

let $permissions := (xdmp:permission(‘'can-read", " read"),
xdmp:permission(*'can-update','node-update'),
xdmp:permission(*'group-all',"read™))

for $i in 1 to 4

return xdmp:document-add-permissions(*'/doc”||$i]]"-xml"", $permissions),

xdmp :document-add-permissions(*'/doc5.xml"",
(xdmp:permission(‘'can-read", " read"),
xdmp:permission(*'can-update','node-update'))),

xdmp :document-add-permissions(*'/doc6.xml™,
(xdmp:permission(‘'can-read", " read"),
xdmp:permission(*'can-update',""'node-update')))

Test It Out

When John and Pari perform a read or a node-update against the database, the results are shown in
the following table:

Document Metadata User with r ead Access User with node- updat e
Access

/doc1.xml feature John

2023-08-21 14:49 Securing MarkLogic Server Page 95

MarkLogic 10

Interfaces to Support QBAC

Document Metadata User with r ead Access User with node- updat e
Access
/doc2.xml price Pari Pari
/doc3.xml feature John
/doc4 . xml price Pari Pari
/doc5.xml can-read and can- John, Pari, Mike John, Pari
update permission keys,
group-all
/doc6.xml can-read and can- John, Pari John, Pari
update permission keys

Mike is not able to read /doc6 . xml although he has the can-read role. The access to /doc6.xml is
further restricted by the user queries.

8.3. Interfaces to Support QBAC

Some existing Security APIs have been modified to support query-based access control. In addition,
several new APIs have been added.

8.3.1. Changes to Security Module APIs

The following security APls are updated to allow for queries to be added to users and roles,
sec:create-user and sec:create-role:

sec:create-user(
$user-name as xs:string,
$description as xs:string?,
$password as xs:string,
$role-names as xs:string*
$permissions as element(sec:permission)*,
$collections as xs:string*,
[$external-names as xs:string*],
[$queries as map: map]) as xs:unsignedlLong

sec:create-role(
$role-name as xs:string,
$description as xs:string?,
$role-names as xs:string*,
$permissions as element(sec:permission)*,
$collections as xs:string*,
[$compartment as xs:string?],
[$external-names as xs:string*],
[$queries as map: map]) as xs:unsignedLong

Queries are a mapping from capabilities to cts queries.

Capabilities associated through permissions are read, insert, update, node-update, and
execute. For more information about Document Permissions, see Section 3.2.1, “Capabilities
Associated through Permissions” [18]. Please note that, in terms of QBAC queries, operations that need
a node-update capability will use the node-update query, and those that need update capability
will use update query to reduce complexity. The node-update capability does not serve as a subset
of the update capability.

These new APIs are added to support QBAC:

sec:role-get-queries($role-name as xs:string) as map:map

The sec:role-get-queries function requires the privilege http://marklogic.com/xdmp/
privileges/role-get-queries.

2023-08-21 14:49 Securing MarkLogic Server Page 96

MarkLogic 10 Errors

sec:role-set-queries(
$role-name as xs:string,
$queries as map:map
) as empty-sequence()

The sec:role-set-queries functions requires the privilege http://marklogic.com/xdmp/
privileges/role-set-queries.

sec:role-set-query(
$role-name as xs:string,
$capability as xs:string,
$query as cts:query?
) as empty-sequence()

The sec:role-set-query function requires the privilege http://marklogic.com/xdmp/
privileges/role-set-queries.

sec:user-get-queries($user-name as xs:string) as map:map

The sec:user-get-queries requires the privilege http://marklogic.com/xdmp/
privileges/user-get-queries.

sec:user-set-queries(
$user-name as xs:string,
$queries as map:map
) as empty-sequence()

The sec:user-set-queries function requires the privilege http://marklogic.com/xdmp/
privileges/user-set-queries.

sec:user-set-query(
$user-name as xs:string,
$capability as xs:string,
$query as cts:query?
) as empty-sequence()

The sec:user-set-query function requires the privilege http://marklogic.com/xdmp/
privileges/user-set-queries.

8.3.2. Admin Interface

Roles and users will get an additional query map. There is a new read-only property on the
corresponding roles and users page on the Admin Interface that shows the queries and capabilities
for debugging purpose.

queries --
query (capability)

cts:not-query(cts:element-query(fn:QName("http://www.w3.org/1999/xhtml","price"), cts:true-query(), (), 1) (node-update)

8.4. Errors

A query may raise an error. For example, if a range index is referenced but not available, or stemmed
searches are used but not enabled. A failed query will lead to denial of access.

8.5. Limitations

» Users with QBAC document access are not able to read document properties. This is a design
limitation. Users with QBAC document access do not have properties access by default, unless the
QBAC query explicitly matches document properties through a cts query. However, QBAC access to
document properties gives access to the document itself by default.

2023-08-21 14:49 Securing MarkLogic Server Page 97

MarkLogic 10 Limitations

» Queries run unfiltered. If a query has false positives that means that access may be granted where it
is not intended to.

* Itis not recommended to use expensive QBAC queries (for example, wildcards with lexicon
expansion), since they run on every database request.

* Queries may depend on specific indexes (for example, range queries). If those indexes are deleted,
the queries will fail and will lead to denial of access.

» Configuration of QBAC queries is through security APIs and RMAs only. See the RMAs for
configuring roles and users at https://docs.marklogic.com/REST/POST/manage/v2/roles
and https://docs.marklogic.com/REST/POST/manage/v2/users.

2023-08-21 14:49 Securing MarkLogic Server Page 98

MarkLogic 10 Granular Privileges

9. Granular Privileges

Granular privileges extend MarkLogic Server security model by allowing finer granularity access control
over configuration and various administration abilities. Granular privileges is a subtype of execute
privileges type. The purposes of granular privileges are:

+ Allow different applications to coexist in a single cluster, with some users having authority over some
parts of the cluster and other users having authority over other parts of the cluster.

» Support separation of concerns between different administrative users, constraining control to just the
layers they are concerned with.

This section describes granular privileges.

9.1. Understanding Granular Privileges

The MarkLogic security model includes execute privileges. Execute privileges are identified with URIs
and can be assigned to roles. For detail on execute privileges, see Section 7, “Protecting XQuery and
JavaScript Functions with Privileges” [88].

For example, the following privilege allows a user to restart any forest:
http://marklogic.com/xdmp/privileges/xdmp-forest-restart

Granular privileges allow more fine-grained approach to execute privileges. When assigning privileges
to roles, you may not only specify a privilege to perform a specific action but also identify a specific
resource to which this privilege applies.

For example, you may allow a user to restart a specific forest by assigning one of the following
privileges to this user’s role:

http://marklogic.com/xdmp/privileges/xdmp-forest-restart/forest/forest-1D

http://marklogic.com/xdmp/privileges/xdmp-forest-restart/database/dat abase-
I D

where f or est - | Dis the forest identifier and dat abase- | Dis the identifier of the database using the
forest.

You can create an appropriate fine-grained privilege, assign it to some role, and assign that role to a
user. Then the user will be able to restart the specified forest, or forests in the specified database.

9.2. Categories of Granularity

You can use various categories of granular privileges to limit access to privileged operations.

9.2.1. Privileges to Read, Write, or Delete Any Configuration File

A privilege in this category grants a user the ability to read, write, or delete any configuration file as
specified (for example, call to xdmp:write-cluster-config-Tfile()). This privilege is specific to
the operation (for example, ""write'") and the scope (for example, ""cluster'). The combination

of the two values is a specific privilege (for example, http://marklogic.com/xdmp/privileges/
xdmp-write-cluster-config-Ffile).

The following granular privileges belong to this category:
http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file

http://marklogic.com/xdmp/privileges/xdmp-write-cluster-config-file

2023-08-21 14:49 Securing MarkLogic Server Page 99

MarkLogic 10 Categories of Granularity

http://marklogic.com/xdmp/privileges/xdmp-delete-cluster-config-file

9.2.2. Privileges to Read, Write, or Delete a Specific Configuration File

A privilege in this category grants a user the ability to read, write, or delete a specific configuration

file (for example, databases.xml). This privilege is specific to the operation (for example, "write"),
scope (for example, ""cluster™), and the configuration file (for example, ""databases.xml"). The
combination of the three values is a specific privilege (for example, http://marklogic.com/xdmp/
privileges/xdmp-write-cluster-config-file/databases.xml).

The following privileges belong to this category:

http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file/
assignments.xml

http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file/
calendars.xml

http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file/
clusters.xml

http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file/
countries.xml

http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file/
databases.xml

http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file/
groups . xml

http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file/hosts.xml

http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file/
languages.xml

http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file/
mimetypes.xml

http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file/
security.xml

http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file/
server .xml

http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file/
tokenizer.xml

http://marklogic.com/xdmp/privileges/xdmp-read-cluster-config-file/user-
languages.xml

http://marklogic.com/xdmp/privileges/xdmp-write-cluster-config-file/
assignments.xml

http://marklogic.com/xdmp/privileges/xdmp-write-cluster-config-file/
calendars.xml

http://marklogic.com/xdmp/privileges/xdmp-write-cluster-config-file/
clusters._xml

http://marklogic.com/xdmp/privileges/xdmp-write-cluster-config-file/
countries.xml

2023-08-21 14:49 Securing MarkLogic Server Page 100

MarkLogic 10 Categories of Granularity

http://marklogic.com/xdmp/privileges/xdmp-write-cluster-config-file/
databases.xml

http://marklogic.com/xdmp/privileges/xdmp-write-cluster-config-file/
groups . xml

http://marklogic.com/xdmp/privileges/xdmp-write-cluster-config-file/
hosts.xml

http://marklogic.com/xdmp/privileges/xdmp-write-cluster-config-file/
languages.xml

http://marklogic.com/xdmp/privileges/xdmp-write-cluster-config-file/
mimetypes.xml

http://marklogic.com/xdmp/privileges/xdmp-write-cluster-config-file/
security.xml

http://marklogic.com/xdmp/privileges/xdmp-write-cluster-config-file/
server . xml

http://marklogic.com/xdmp/privileges/xdmp-write-cluster-config-file/
tokenizer.xml

http://marklogic.com/xdmp/privileges/xdmp-write-cluster-config-file/user-
languages.xml

http://marklogic.com/xdmp/privileges/xdmp-delete-cluster-config-file/
assignments.xml

http://marklogic.com/xdmp/privileges/xdmp-delete-cluster-config-file/
calendars.xml

http://marklogic.com/xdmp/privileges/xdmp-delete-cluster-config-file/
clusters.xml

http://marklogic.com/xdmp/privileges/xdmp-delete-cluster-config-file/
countries.xml

http://marklogic.com/xdmp/privileges/xdmp-delete-cluster-config-file/
databases.xml

http://marklogic.com/xdmp/privileges/xdmp-delete-cluster-config-file/
groups.xml

http://marklogic.com/xdmp/privileges/xdmp-delete-cluster-config-file/
hosts.xml

http://marklogic.com/xdmp/privileges/xdmp-delete-cluster-config-file/
languages.xml

http://marklogic.com/xdmp/privileges/xdmp-delete-cluster-config-file/
mimetypes.xml

http://marklogic.com/xdmp/privileges/xdmp-delete-cluster-config-file/
security.xml

http://marklogic.com/xdmp/privileges/xdmp-delete-cluster-config-file/
server .xml

2023-08-21 14:49 Securing MarkLogic Server Page 101

MarkLogic 10 Categories of Granularity

http://marklogic.com/xdmp/privileges/xdmp-delete-cluster-config-file/
tokenizer.xml

http://marklogic.com/xdmp/privileges/xdmp-delete-cluster-config-file/user-
languages.xml

9.2.3. Privileges to Administer a Set of Resources

A privilege of this category grants a user the ability to administer a specific set of resources (for
example, databases). This privilege is specific to the resource set (for example, ""databases'’), which
defines the specific privilege (for example, http://marklogic.com/xdmp/privileges/admin/
database). This privilege may imply the privilege to read and write a specific configuration file.

The following privileges belong to this category:
http://marklogic.com/xdmp/privileges/admin/database
http://marklogic.com/xdmp/privileges/admin/forest
http://marklogic.com/xdmp/privileges/admin/host
http://marklogic.com/xdmp/privileges/admin/app-server
http://marklogic.com/xdmp/privileges/admin/app-server-security
http://marklogic.com/xdmp/privileges/admin/group
http://marklogic.com/xdmp/privileges/admin/group-security
http://marklogic.com/xdmp/privileges/admin/cluster

http://marklogic.com/xdmp/privileges/admin/mimetypes

@ NOTE
Privileges of this category are pre-defined and included with every installation of
MarkLogic Server. You can view them in the Execute Privileges Summary page of the
Admin Interface (see instructions in Viewing an Execute Privilege in the Administrator’s
Guide).

9.2.4. Privileges to Administer a Specific Resource

A privilege of this category grants a user an ability to administer a specific resource (for example,

a database with the specified identifier). This privilege is granted by suffixing the administrator

privilege for that kind of resource (for example, ""database"") with the specific identifier (for example,
database-I D), which results in the specific privilege (for example, http://marklogic.com/
xdmp/privileges/admin/database/dat abase- | D). This privilege may imply the privilege to
read and write a portion of a configuration file. It also grants the ability to call various built-in

functions for specific resources (for example, http://marklogic.com/xdmp/privileges/xdmp-
forest-clear/forest/f or est - | D privilege allows calls to xdmp: forest-clear () for that forest
identifier).

The following privileges belong to this category:
http://marklogic.com/xdmp/privileges/admin/database/dat abase- 1 D

http://marklogic.com/xdmp/privileges/admin/forest/forest-1D

2023-08-21 14:49 Securing MarkLogic Server Page 102

https://docs.marklogic.com/guide/security/granular#id_45427:~:text=Viewing%20an%20Execute%20Privilege

MarkLogic 10 Categories of Granularity

http://marklogic.com/xdmp/privileges/admin/host/host -1 D
http://marklogic.com/xdmp/privileges/admin/app-server/server-1D
http://marklogic.com/xdmp/privileges/admin/app-server-security/server-1D
http://marklogic.com/xdmp/privileges/admin/group/gr oup- 1 D
http://marklogic.com/xdmp/privileges/admin/group-security/group-1D

http://marklogic.com/xdmp/privileges/admin/cluster/cl uster-1D

9.2.5. Privileges to Administer a Specific Aspect of a Set of Resources

A privilege of this category grants a user an ability to administer a specific aspect (for example,

backup) of a set of resources (for example, databases). This privilege is granted by suffixing the
administrator privilege for that kind of resource (for example, ""database'") with the specific aspect (for
example, ""backup"'), which results in the specific privilege (for example, http://marklogic.com/
xdmp/privileges/admin/database/backup). This privilege may imply the privilege to read and
write a portion of a configuration file.

The following privileges belong to this category:
http://marklogic.com/xdmp/privileges/admin/database/forests
http://marklogic.com/xdmp/privileges/admin/database/backup
http://marklogic.com/xdmp/privileges/admin/database/index
http://marklogic.com/xdmp/privileges/admin/database/replication
http://marklogic.com/xdmp/privileges/admin/database/forest-backup
http://marklogic.com/xdmp/privileges/admin/forest/backup

http://marklogic.com/xdmp/privileges/admin/group/scheduled-task

9.2.6. Privileges to Administer a Specific Aspect of a Specific Resource

A privilege of this category grants a user an ability to administer a specific aspect (for example,
backup) of a specific resource (for example, the database with identifier dat abase- | D). This privilege
is granted by suffixing the privilege for the specific aspect (for example, *"backup’) of that kind of
resource (for example, ""database"") with the specific identifier (for example, **dat abase- | D'"), which
results in the specific privilege (for example, http://marklogic.com/xdmp/privileges/admin/
database/backup/dat abase- | D). This privilege may imply the privilege to read and write a portion
of a configuration file.

The following privileges belong to this category:
http://marklogic.com/xdmp/privileges/admin/database/forests/dat abase- | D
http://marklogic.com/xdmp/privileges/admin/database/backup/dat abase- 1 D
http://marklogic.com/xdmp/privileges/admin/database/index/dat abase-| D
http://marklogic.com/xdmp/privileges/admin/database/index/dat abase- nane
http://marklogic.com/xdmp/privileges/admin/database/replication/dat abase- |1 D

http://marklogic.com/xdmp/privileges/admin/database/forest-backup/dat abase-
1D

2023-08-21 14:49 Securing MarkLogic Server Page 103

MarkLogic 10

Categories of Granularity

http://marklogic.com/xdmp/privileges/admin/forest/backup/forest-1D

http://marklogic.com/xdmp/privileges/admin/group/scheduled-task/group-1D

A user with any of the following privileges

http://marklogic.com/xdmp/privileges/admin/database/index

http://marklogic.com/xdmp/privileges/admin/database/index/dat abase- 1D

http://marklogic.com/xdmp/privileges/admin/database/ index/dat abase- nane

can alter the following properties:

Property

Description

attribute-value-positions

Index attribute value positions for faster near searches involving element-attribute-
value-query (slower document loads and larger database files).

collection-lexicon

Maintain a lexicon of collection URIs (slower document loads and larger database
files).

default-rulesets

The default rulesets configuration.

element-attribute-word-lexicons

Maintain lexicons of words in elements.

element-value-positions

Index element value positions for faster near searches involving element-value-
query (slower document loads and larger database files).

element-word-lexicons

Maintain lexicons of words in XML elements or JSON properties.

element-word-positions

Index element word positions for faster element-based phrase and near searches
(slower document loads and larger database files).

element-word-query-throughs

The element-word-query-through specifications.

fast-case-sensitive-searches

Enable faster case sensitive searches (slower document loads and larger
database files).

fast-diacritic-sensitive-
searches

Enable faster diacritic sensitive searches (slower document loads and larger
database files).

fast-element-character-searches

Enable element wildcard searches and element-character-based XQuery
predicates (slower document loads and larger database files).

fast-element-phrase-searches

Enable faster element phrase searches (slower document loads and larger
database files).

fast-element-trailing-wildcard-
searches

Enable element trailing wildcard searches (slower document loads and larger
database files).

fast-element-word-searches

Enable faster element-word searches (slower document loads and larger
database files).

fast-phrase-searches

Enable faster phrase searches (slower document loads and larger database files).

fast-reverse-searches

Enable faster reverse searches (slower document loads and larger database files).

field-value-positions

Index field value positions for faster near searches involving field-value-query
(slower document loads and larger database files).

field-value-searches

Index field values for faster searches involving field-value-query (slower document
loads and larger database files).

fields

The fields specifications.

geospatial-element-attribute-
pair-indexes

Indexes for fast geospatial element comparisons.

geospatial-element-child-indexes

Indexes for fast geospatial element comparisons.

geospatial-element-indexes

Indexes for fast geospatial element comparisons.

geospatial-element-pair-indexes

Indexes for fast geospatial element comparisons.

geospatial-path-indexes

Indexes for fast geospatial path-based comparisons.

geospatial-region-path-indexes

Indexes for fast geospatial region comparisons.

language

The default language assumed for content (if xml:lang encoding is absent)

path-namespaces

The namespace binding specifications for Path indexes.

phrase-arounds

The phrase-around specifications.

phrase-throughs

The phrase-through specifications.

2023-08-21 14:49

Securing MarkLogic Server Page 104

MarkLogic 10

Configuring Granular Privileges

Property

Description

range-element-attribute-indexes

Indexes for fast element-attribute inequality comparisons.

range-element-indexes

Indexes for fast inequality comparisons.

range-index-optimize

Specifies how to optimize range indexes.

range-path-indexes

Indexes for fast inequality comparisons.

stemmed-searches

Enable stemmed word searches (slower document loads and larger database

files).

tf-normalization

What kind of TF normalization to apply.

three-character-searches

Enable wildcard searches and faster character-based XQuery predicates using
three or more characters (slower document loads and larger database files).

three-character-word-positions

Index word positions for three-character searches only when three-character-
searches are enabled (slower document loads and larger database files).

trailing-wildcard-searches

Enable trailing wildcard searches (slower document loads and larger database

files).

trailing-wildcard-word-positions

Index word positions for trailing-wildcard searches only when trailing-wildcard-
searches are enabled (slower document loads and larger database files).

triple-index

Enable the RDF triple index (slower document loads and larger database files).

triple-positions

Index triple positions for faster near searches involving cts:triple-range-query
(slower document loads and larger database files).

uri-lexicon

Maintain a lexicon of document URIs (slower document loads and larger database

files).

word-lexicons

A list of word lexicons. Each lexicon is defined by its collation URI.

word-positions

Index word positions for faster phrase and near searches (slower document loads

and larger database files).

word-searches

Enable unstemmed word searches (slower document loads and larger database

files).

9.3. Configuring Granular Privileges

You can configure granular privileges either via the MarkLogic Server Admin Interface or via the
functions of XQuery API security module.

This section describes both mechanisms.

9.3.1. Configure Granular Privileges via the Admin Interface
To create a new granular privilege via the Admin Interface, follow steps for creating an execute privilege
described at Creating an Execute Privilege in Administering MarkLogic Server.

For example, to create a granular privilege that grants a user an ability to administer a specific aspect
(for example, backup) of a set of resources (for example, forests), perform the following steps:

1.
2.

3.

Use the Admin Interface to create an execute privilege named admin-forest-backup.
Assign the action URI http://marklogic.com/xdmp/privileges/admin/forest/backup

to the privilege.

Assign the privilege to the desired role or roles. You may want to create a specific role for this
privilege depending on your security requirements.

The following screenshot depicts the New Execute Privilege page with these parameters:

2023-08-21 14:49

Securing MarkLogic Server

Page 105

https://docs.marklogic.com/guide/admin/security#id_65293

MarkLogic 10 Configuring Granular Privileges

T o T o T o

New Execute Privilege ok | | cancel

execute privilege -- Privilege representation.

privilege name admin-forest-backup
Privilege name (unigue)
Required. You must supply a value for privilege-name.

action éégic. co m.-'xﬂ.m.g. ;'pri.\.'iEe-g ésﬂ.’a.d.rrriﬁ;'fo.re-st-‘ha.c[.ﬁ-up
T
Required. You must supply a value for action.

roles — The roles assigned.

Role Compartment

admin

#| admin-builtins

@ NOTE

You cannot create a granular privilege that grants a user the ability to administer
a specific resource (such as a forest with the specified identifier) in the manner
described here because resource identifiers are not exposed in the Admin Interface.
To create a granular privilege of this type (for example, http://marklogic.com/
xdmp/privileges/admin/forest/forest-ID), you need to use the functions of the
XQuery API security module, as described in the following section Section 9.3.2,
“Configure Granular Privileges via the XQuery API Security Module” [106].

9.3.2. Configure Granular Privileges via the XQuery API Security Module

You can use the XQuery API security module to create and assign granular privileges.

Creating and Assigning Granular Privileges
To create a new granular privilege programmatically, use the following function of the XQuery API
security module:

sec:create-privilege(
$privilege-name as xs:string,
$action as xs:string,
$kind as xs:string,
$role-names as xs:string*

) as xs:unsignedLong

To assign an existing granular privilege to an additional role, use the following function of the XQuery
API security module:

2023-08-21 14:49 Securing MarkLogic Server Page 106

MarkLogic 10 Configuring Granular Privileges

sec:privilege-set-roles(
$action as xs:string,
$kind as xs:string,
$role-names as xs:string*
) as empty-sequence()

For detailed descriptions of sec:create-privilege and sec:privilege-set-roles functions of
the security.xqy library module, see the MarklLogic XQuery and XSLT Function Reference.

Using Pseudo-Functions with Granular Privileges

When you have a payload that creates a database and a granular privilege for that database, you need
to substitute a variable of some sort for the ID of the database because the database has yet to be
created. MarkLogic has the following pseudo-functions that can be used when creating and assigning
granular privileges:

Pseudo-Function and Parameters Replaced By...

$$group-id(group-name) The group ID of the named group.

$$database-id(database-name) The database ID of the named database.

$$host-i1dQ) The host ID of the host running the query.

$$host-id(host-name) The host ID of the named host.

$$forest-id(forest-name) The forest ID of the named forest.

$$cluster-idQ) The cluster ID of the cluster to which the host running the query belongs.

$$cluster-id(cluster-name) The cluster ID of the named cluster.

$$role-id(role-name) The role ID of the named role.

$$user-id(user-name) The user ID of the named user.

$$server-id(server-name) The server ID of the named server in the group to which the host running
the query belongs.

$$server-id('server-name", group-id) The server ID of the named server in the specified group. Note that
group-id is an unsigned long. To refer to the group by name as well,
nest the calls:
$$server-id(server-name, $$group-id(group-name))

$$privilege-id("privilege-name™) The privilege ID of the named /execute/ privilege.

$$privilege-id("privilege-name”, The privilege ID of the named execute privilege.

"execute')

$$privilege-id('privilege-name”, The privilege ID of the named URI privilege.

“uri’)

For example, to create the privilege finalDbName-index-editor for a not-yet-created database
represented by the variable FinalDbName, execute the following code:

{

"privilege-name": "finalDbName-index-editor",

"action": "http://marklogic.com/xdmp/privileges/admin/database/index/$$database-
id(FinalDbName)",

"role": ["firstEditorRole","secondEditorRole'],

"kind": "execute"

}

Examples of Creating and Assigning Granular Privileges
The following are examples of creating and assigning granular privileges via the XQuery API.

Example 1: Assign a privilege to perform index operations on any database torolel
Suppose you previously created http://marklogic.com/xdmp/privileges/admin/database/

index privilege via the Admin Interface, as described in the previous section, Section 9.3.1, “Configure
Granular Privileges via the Admin Interface” [105]. Assign this privilege to rolel as follows:

2023-08-21 14:49 Securing MarkLogic Server Page 107

https://docs.marklogic.com/sec:create-privilege
https://docs.marklogic.com/sec:privilege-set-roles
https://docs.marklogic.com/guide/xquery

MarkLogic 10 Examples of Granular Privileges Usage

xquery version "1.0-ml";
import module namespace sec="http://marklogic.com/xdmp/security” at "/MarkLogic/
security.xqy";
sec:privilege-set-roles(
"http://marklogic.com/xdmp/privileges/admin/database/index",
"'execute”,
('admin™,"rolel™)

)

Example 2: Create a privilege to perform any operations on database db1l for role2

Create a privilege to perform any operations on database db1 for role2 as follows (note the use of
function xdmp :database(*'db1'") to convert from the database name to the database identifier):

xquery version "1.0-ml";
import module namespace sec="http://marklogic.com/xdmp/security" at "/MarkLogic/
security.xqy";
sec:create-privilege(
"admin-database-dbl",
fn:concat("http://marklogic.com/xdmp/privileges/admin/database/', xdmp:database(''dbl')),
"'execute",
"role2"

D)

Example 3: Create a privilege to perform index operations on database db1l for role3

Create a privilege to perform index operations on database db1 for role3 as follows (note the use of
function xdmp:database("'db1') to convert from the database name to the database identifier):

xquery version "1.0-ml";
import module namespace sec="http://marklogic.com/xdmp/security" at "/MarkLogic/
security.xqy';
sec:create-privilege(
"admin-database-db1",
fn:concat(""http://marklogic.com/xdmp/privileges/admin/database/index/",
xdmp:database(*'db1')),
"'execute”,
"role3"

)

9.4. Examples of Granular Privileges Usage
This section describes several scenarios that use granular privileges.

9.4.1. Prerequisites - Create Databases, Roles, Users, and Privileges
To execute the scenarios discussed in this section, you need to perform the following preparation steps:

1. Using the Admin Interface, create databases db1 and db2. For details on creating databases, see
Creating a New Database in Administering MarkLogic Server.

2. Using the Admin Interface, create roles rolel, role2, and role3. For details on creating roles,
see Creating a Role in Administering MarkLogic Server.

3. Using the Admin Interface, create users userl, user2, and user3 with roles rolel, role2, and
role3 correspondingly. For details on creating users and assigning roles to them, see Creating a
User in Administering MarkLogic Server.

4. Create and assign granular privileges to roles rolel, role2, and role3 as described in Example
1, Example 2, and Example 3 correspondingly of the previous section Section 9.3.2, “Configure
Granular Privileges via the XQuery API Security Module” [106].

As the result, you will have the users with roles and privileges as described in the following table:

2023-08-21 14:49 Securing MarkLogic Server Page 108

https://docs.marklogic.com/guide/security/granular#id_71105:~:text=Creating%20a%20New%20Database
https://docs.marklogic.com/guide/security/granular#id_71105:~:text=creating%20roles%2C%20see-,Creating%20a%20Role,-section%20of%20the
https://docs.marklogic.com/guide/security/granular#id_71105:~:text=to%20them%2C%20see-,Creating%20a%20User,-section%20of%20the
https://docs.marklogic.com/guide/security/granular#id_71105:~:text=to%20them%2C%20see-,Creating%20a%20User,-section%20of%20the

MarkLogic 10 Examples of Granular Privileges Usage

User Role Privilege

userl rolel http://marklogic.com/xdmp/privileges/admin/database/index

user2 role2 http://marklogic.com/xdmp/privileges/admin/database/dbl_i dentifier

user3 role3 http://marklogic.com/xdmp/privileges/admin/database/index/dbl_i dentifier

9.4.2. Scenarios That Use Granular Privileges

This section includes examples in XQuery that you may run for userl, user2, and user3 from
the Query Console and observe different results depending on the user’s privileges. The results are
discussed in detail in the next section, Section 5.3.4, “Test It Out” [30].

Scenario 1: Add range index to database db1l

Execute the following XQuery code to add a range index to database db1:

xquery version "1.0-ml";

import module namespace admin = "http://marklogic.com/xdmp/admin" at "/MarkLogic/
admin.xqgy";

let $config := admin:get-configuration()

let $dbid := xdmp:database(*'dbl'™)

let $rangespec := admin:database-range-element-index(*int", "http://marklogic.com/ga",
"columnl™, (), fn:false())
let $config := admin:database-add-range-element-index($config, $dbid, $rangespec)

return admin:save-configuration($config)

Scenario 2: Add range index to database db2

Execute the following XQuery code to add a range index to database db2:

xquery version "1.0-ml";

import module namespace admin = "http://marklogic.com/xdmp/admin' at "/MarkLogic/
admin.xqy";

let $config := admin:get-configuration()

let $dbid := xdmp:database("'db2')

let $rangespec := admin:database-range-element-index('int", "http://marklogic.com/ga",
"columnl™, (), fn:false())
let $config := admin:database-add-range-element-index($config, $dbid, $rangespec)

return admin:save-configuration($config)

Scenario 3: Add backup for database dbl

Execute the following XQuery code to add a backup for database db1:

xquery version "1.0-ml";

import module namespace admin = "http://marklogic.com/xdmp/admin' at "/MarkLogic/
admin.xqy"';
let $config := admin:get-configuration()

let $backup := admin:database-monthly-backup(*'/space/backup™, 2, 1, xs:time(*'09:45:00"),
2, true(), true(), true())

return admin:save-configuration(admin:database-add-backup($config, xdmp:database('db1™),
$backup))

9.4.3. Test It Out

Using the Query Console, you can execute Scenario 1, Scenario 2, and Scenario 3 for each one of the
users userl, user2, and user3. The results of the execution are presented in the following table:

User Role Scenario Result
userl rolel Add range index to database db1 Success
userl rolel Add range index to database db2 Success
userl rolel Add backup for database db1 Failure
user2 role2 Add range index to database db1 Success

2023-08-21 14:49 Securing MarkLogic Server Page 109

MarkLogic 10 Enabling Non-privileged Users to Create Privileges, Roles, and Users

User Role Scenario Result
user2 role2 Add range index to database db2 Failure
user2 role2 Add backup for database db1 Success
user3 role3 Add range index to database db1 Success
user3 role3 Add range index to database db2 Failure
user3 role3 Add backup for database db1 Failure

The following analysis explains these results:

The user userl successfully adds indexes to both databases db1 and db2, but fails to add backup
to database db1, because the user’s rolel has granular privilege http://marklogic.com/
xdmp/privileges/admin/database/ index that allows to add indexes to any database but does
not allow other operations on databases.

The user user?2 successfully adds both the index and backup to database db1, but fails to add index
to database db2, because the user’s role2 has granular privilege http://marklogic.com/
xdmp/privileges/admin/database/db1_identifier that allows this user to perform any operation
on database db1 but does not allow operations on other databases.

The user user3 successfully adds index to database db1, but fails to add index to database db2
and to add backup to database db1, because the user’s role3 has granular privilege http://
marklogic.com/xdmp/privileges/admin/database/index/db1_identifier that allows to add
indexes to database db1 but does not allow any other operation on database db1 and does not allow
any operation on other databases.

9.5. Enabling Non-privileged Users to Create Privileges, Roles,

and Users

Non-privileged users can use granular privileges to create and manage user privileges, create and
manage roles, and create users.

9.5.1. Enabling Non-privileged Users to Assign Roles

The create-user-privilege privilege enables otherwise non-privileged users to create and
manage user-defined privileges.

If a user has a role with this privilege set, they do not need the grant-my-privileges privilege to
assign specific privileges.

The general form of this granular privilege is:

http://marklogic.com/xdmp/privileges/admin/create-user-privilege/DOMAIN/
PRIVILEGE-PATH/

Note that the PRIVILEGE-PATH can contain more than one slash (“/”) and must end with a slash.

For example, given a user with a role that has the following privilege:

This user can manage the following execute or URI privileges:

http://marklogic.com/xdmp/privileges/admin/create-user-privilege/acme.com/
publishing/

http://acme.com/publishing/
http://acme.com/publishing/updates/
http://acme.com/publishing/updates/weekly/

This user can also create roles that use these privileges, as long as the role name is unique to the
entire system, including someone else’s set of roles.

2023-08-21 14:49 Securing MarkLogic Server Page 110

MarkLogic 10 Enabling Non-privileged Users to Create Privileges, Roles, and Users

As another example, if you only want this user to be able to publish weekly updates, you would assign
them a role with the following privilege:

http://marklogic.com/xdmp/privileges/admin/create-user-privilege/acme.com/
publishing/updates/weekly

9.5.2. Enabling Non-privileged Users to Create and Manage Roles (Data

Roles)
The http://marklogic.com/xdmp/privileges/create-data-role allows non-admin users
(with the manage role) to create and manage roles.

 data role: created by a data manage (non-admin) user

» data manage user for data roles:
* non-admin to create and manage roles
» can only manage (edit, delete and grant) roles own created or granted
* requires one role to include create-data-role privilege and manage role (or privilege)
« user self can be created by admin or another data manage user
» optional grant-my-role privilege to grant roles or create another data manage user
» can grant own created or granted data roles to other data roles

 created data roles are attached to the roles (with create-data-role privilege) data manage user
owned
 tracked by internal data-role-edit-<ROLEID> and data-role-inherit-<ROLEID>

privileges created for every data role

+ every data manage user granted (new or existed) with above roles can also manage these data roles
* to share responsibility for managing data roles through a common data role

* An optional privilege - http://marklogic.com/xdmp/privileges/role-set-queries-is
required to create data roles with query-based access control (QBAC) queries. The http://
marklogic.com/xdmp/privileges/role-get-queries privilege is needed for reading the
QBAC queries on the data roles. For more information on QBAC, please see Section 8, “Query-
Based Access Control” [91].

For example:

Create role (demo-data-role), grant that role the create-data-role privilege.

curl -s --anyauth -u admin:admin -H "content-type:application/json™ \
-X POST -d "{\"role-name\": \"demo-data-role\",
\"description\": \
\"A role for demonstrating the create-data-role privilege\", \
“"privilege\": [{\
"privilege-name\": \'create-data-role\", \
"action\": \"http://marklogic.com/xdmp/privileges/create-data-role\", \
"kind\": \"execute\"}]1}" \
http://localhost:8002/manage/v2/roles

A A

Create a user and grant that user (demo-user) the demo-data-role and the manage role.

curl -s --anyauth -u admin:admin -H "content-type:application/json™ \
-X POST -d "{\"user-name\": \"demo-user\", \"password\": \"password\", \
\"description\": \"A demo user\", \
\"role\": [\"demo-data-role\", \"manage\"] }" \
http://l1localhost:8002/manage/v2/users

Now that user can create new roles, demo-role-one:
curl -s --anyauth -u "demo-user:password" -H "content-type:application/json" \
-X POST -d "{\"role-name\": \"demo-role-one\",

\"description\": \"First demo role\"™ }" \
http://localhost:8002/manage/v2/roles

2023-08-21 14:49 Securing MarkLogic Server Page 111

MarkLogic 10 Enabling Non-privileged Users to Create Privileges, Roles, and Users

And demo-role-two:

curl -s --anyauth -u "demo-user:password" -H "content-type:application/json™ \
-X POST -d "{\"role-name\": \"demo-role-two\",
\"description\": \"Second demo role\" }" \
http://localhost:8002/manage/v2/roles

The users can assign roles they have created to each other:

curl -s --anyauth -u "demo-user:password" -H "content-type:application/json™ \
-X PUT -d "{\"role\": [\"demo-role-two\"]}" \
http://localhost:8002/manage/v2/roles/demo-role-one/properties

But they cannot assign roles that they did not create. To allow a user to assign existing roles, you can
grant this demo-data-role to another user or role, so that user can manage both demo-role-one
and demo-role-two.

A user with the ability to edit a role may also delete it. When the role is deleted, the extra data-role-
edit and data-role-inherit privileges associated with it are also removed.

9.5.3. Enabling Non-privileged Users to Create and Manage Users (Data

Users)

The http://marklogic.com/xdmp/privileges/create-data-user allows non-admin users
(with the manage role) to create and manage users.

» data user: created by a data manage (non-admin) user

+ data role: created by a data manage (non-admin) user

» data manage user for data users:
* non-admin to create and manage users
» can only manage (edit and delete) users own created or granted
* might be the same data manage user to create data roles and data users
* requires one role to include create-data-user privilege and manage role (or privilege)
 user self can be created by admin or another data manage user
» optional grant-my-role privilege to grant roles or create another data manage user
» can grant data users own created or granted to other data roles

 created data users are attached to the roles (with create-data-user privilege) data manage user
owned
* tracked by an internal data-user-edit-<USERID> privilege created for every data user

» every data manage user granted (new or existed) with above roles can also manage these data users
+ to share responsibility for managing data users through a common data role

» An optional privilege - http://marklogic.com/xdmp/privileges/user-set-queries-is
required to create data users with query-based access control (QBAC) queries. The http://
marklogic.com/xdmp/privileges/user-get-queries privilege is needed for reading the
QBAC queries on the data users. For more information on QBAC, please see Section 8, “Query-
Based Access Control” [91].

For example:
Create a role (demo-data-user-role-one) and grant that role the create-data-user privilege.

curl -s --anyauth -u admin:admin -H "content-type:application/json™ \
-X POST -d "{\"role-name\": \"demo-data-user-role-one\",

\"description\": \"A role for demonstrating the create-data-user privilege\", \

\"privilege\": [{\
\"privilege-name\": \''create-data-user\", \
\"action\": \"http://marklogic.com/xdmp/privileges/create-data-user\", \
\"kind\": \"execute\"}]}" \
http://localhost:-8002/manage/v2/roles

2023-08-21 14:49 Securing MarkLogic Server Page 112

MarkLogic 10 Enabling Non-privileged Users to Create Privileges, Roles, and Users

Create another role (demo-data-user-role-two) and grant that role the create-data-user
privilege.

curl -s --anyauth -u admin:admin -H "content-type:application/json™ \
-X POST -d "{\"role-name\": \"demo-data-user-role-two\",
\"description\": \"Second role for demonstrating the create-data-user privilege\", \
\"privilege\": [{\
\"privilege-name\": \'create-data-user\", \
\"action\": \"http://marklogic.com/xdmp/privileges/create-data-user\", \
\"kind\": \"execute\"}]}" \
http://localhost:8002/manage/v2/roles

Create user demo-user-one, and grant two roles: the manage role, the new created demo-data-
user-role-one role.

curl -s --anyauth -u admin:admin -H "content-type:application/json™ \
-X POST -d "{\"user-name\": \'"demo-user-one\", \"password\":
\"password\", \
\"description\": \"A demo user one\", \
\"role\": [\"demo-data-user-role-one\", \"manage\"] }" \
http://localhost:8002/manage/v2/users

Also create another user demo-user-two and grant demo-data-user-role-two and manage role.

curl -s --anyauth -u admin:admin -H "content-type:application/json™ \
-X POST -d "{\"user-name\": \'"demo-user-two\", \"password\": \"password\"™, \
\"description\": \"A demo user two\", \
\"role\": [\"demo-data-user-role-two\", \"manage\"™] }" \
http://localhost:8002/manage/v2/users

Now that user demo-user-one can create new users, demo-one-created-user:

curl -s --anyauth -u "demo-user-one:password'” -H "content-type:application/json™ \
-X POST -d "{\"user-name\'": \" demo-one-created-user\",
\"description\": \"user created by demo-user-one\" }" \
http://localhost:8002/manage/v2/users

And user demo-user-two can create new users, demo-two-created-user:
curl -s --anyauth -u "demo-user-two:password" -H "content-type:application/json"™ \
-X POST -d "{\"user-name\'": \" demo-two-created-user\",
\"description\": \'"user created by demo-user-two\" }" \

http://localhost:8002/manage/v2/users

The user demo-one-created-user can be updated (and also deleted) by user demo-user-one
who created this user:

curl -s --anyauth -u "demo-user-one:password" -H "content-type:application/json"™ \
-X PUT -d "{\"description\": \"demo-user-one updated this\"}" \
http://localhost:8002/manage/v2/users/demo-one-created-user/properties

And user demo-user-two can update demo-two-created-user:

curl -s --anyauth -u "demo-user-two:password" -H "content-type:application/json"™ \
-X PUT -d "{\"description\": \"demo-user-two updated this\"}" \
http://localhost:8002/manage/v2/users/demo-two-created-user/properties

But these users cannot update users they did not create.

curl -s --anyauth -u "demo-user-two:password" -H "content-type:application/json"™ \
-X PUT -d "{\"description\": \'"demo-user-two updating demo-one-created-user\"}" \

http://localhost:8002/manage/v2/users/demo-one-created-user/properties

This request fails.

2023-08-21 14:49 Securing MarkLogic Server Page 113

MarkLogic 10 Using Granular Privileges with MarkLogic Data Hub Service

All users created by demo-user-two are attached to demo-data-user-role-two role, and can be
added to demo-user-one directly, so demo-user-one can edit them.

curl -s --anyauth -u "admin:admin" -H "content-type:application/json"™ \

-X PUT -d "{\"role\": [\"demo-data-user-role-one\", \"demo-data-user-role-two\",
\"manage\"] }" \

http://localhost:8002/manage/v2/users/demo-user-one/properties

Now user demo-user-two with role demo-data-user-role-two has the appropriate privilege to
edit demo-one-created-user directly. So demo-user-two can edit them, and the previous request
will succeed.

9.6. Using Granular Privileges with MarkLogic Data Hub Service

MarkLogic Data Hub Service (DHS) provides a managed instance in which to deploy an operational
data hub created using MarkLogic Data Hub.

The following roles are built into DHS:
Amazon Web Services (AWS)

» Service Roles
» Portal Roles

Microsoft Azure

» Service Roles
» Portal Roles

The following rules apply to granular privileges on a data hub:

» A user assigned the Security Admin service role cannot delete or modify privileges for these or any
other pre-built roles, and these pre-built roles cannot inherit privileges.

* When a user assigned the Security Admin service role creates a DHS custom role, that role initially
has no pre-built roles associated with it.

+ Custom roles in DHS can inherit functionality from the pre-built DHS roles, from other DHS custom
roles, or they can be created to have no inheritance, but you cannot assign any privileges to DHS
custom roles.

* DHS custom roles cannot inherit privileges from any other (non-DHS) pre-built MarkLogic roles.

* You can change the external name for a DHS custom role, but the internal name stays constant.

2023-08-21 14:49 Securing MarkLogic Server Page 114

https://docs.marklogic.com/cloudservices/aws/security/security-roles-service.html
https://docs.marklogic.com/cloudservices/aws/security/security-roles-portal-aws.html
https://docs.marklogic.com/cloudservices/azure/security/security-roles-service.html
https://docs.marklogic.com/cloudservices/azure/security/security-roles-portal-azure.html

MarkLogic 10 Configuring SSL on App Servers

10. Configuring SSL on App Servers

This section describes how to use the Admin Interface to configure SSL on App Servers. For details
on how to configure SSL programmatically, see Enabling SSL on an App Server in the Scripting
Administrative Tasks Guide.

10.1. Understanding SSL

SSL (Secure Sockets Layer) is a transaction security standard that provides encrypted protection
between browsers and App Servers. When SSL is enabled for an App Server, browsers communicate
with the App Server by means of an HTTPS connection, which is HTTP over an encrypted Secure
Sockets Layer. HTTPS connections are widely used by banks and web vendors for secure transactions
over the web.

A browser and App Server create a secure HTTPS connection by using a handshaking procedure.
When browser connects to an SSL-enabled App Server, the App Server sends back its identification
in the form of a digital certificate that contains the server name, the trusted certificate authority, and
the server's public encryption key. The browser uses the server's public encryption key from the digital
certificate to encrypt a random number and sends the result to the server. From the random number,
both the browser and App Server generate a session key. The session key is used for the rest of the
session to encrypt/decrypt all transmissions between the browser and App Server, enabling them to
verify that the data didn't change in route.

The end result of the handshaking procedure described above is that only the server is authenticated.
The client can trust the server, but the client remains unauthenticated. MarkLogic Server supports
mutual authentication, in which the client also holds a digital certificate that it sends to the server. When
mutual authentication is enabled, both the client and the server are authenticated and mutually trusted.

MarkLogic Server uses OpenSSL to implement the Secure Sockets Layer (SSL v3) and Transport
Layer Security (TLS v1) protocols.

The following are the definitions for the SSL terms used in this section:

A certificate, or more precisely, a public key certificate, is an electronic document that incorporates a
digital signature to bind together a public key with identity information, such as the name of a person
or an organization, address, and so on. The certificate can be used to verify that a public key belongs
to an individual or organization. In a typical public key infrastructure (PKI) scheme, the signature will
be that of a certificate authority.

A certificate authority (CA) is a trusted third party that certifies the identity of entities, such as users,
databases, administrators, clients, and servers. When an entity requests certification, the CA verifies
its identity and grants a certificate, which is signed with the CA's private key. If the CA is trusted, then
any certificate it issues is trusted unless it has been revoked.

* A certificate chain is a group of interdependent CAs. A certificate chain consists of a single trusted
root CA, one or more intermediate CA, and one or more end CA. The intermediate and end
certificates must be imported into MarkLogic.

NOTE

MarkLogic supports only one intermediate CA per host.

2023-08-21 14:49 Securing MarkLogic Server Page 115

https://docs.marklogic.com/guide/admin-api/maintenance#id_55408

MarkLogic 10 General Procedure for Setting Up SSL for an App Server

» A certificate request is a request data structure containing a subset of the information that will
ultimately end up in the certificate. A certificate request is sent to a certificate authority for
certification.

* A key is a piece of information that determines the output of a cipher. SSL/TLS communications begin
with a public/private key pair that allow the client and server to securely agree on a session key. The
public/private key pair is also used to validate the identity of the server and can optionally be used to
verify the identity of the client.

» A certificate template is a MarkLogic construct that is used to generate certificate requests for the
various hosts in a cluster. The template defines the name of the certificate, a description, and identity
information about the owner of the certificate.

* A cipher is an algorithm for encrypting information so that it's only readable by someone with a key.
A cipher can be either symmetric and asymmetric. Symmetric ciphers use the same key for both
encryption and decryption. Asymmetric ciphers use a public and private key.

S NOTE
Signed certificates are imported via the Certificate Templates import page, as
described in Section 10.5.3, “Importing a Signed Certificate into MarkLogic
Server” [129]. Certificate Authority certificates are imported via the Certificate
Authorities import page, as described in Section 11.2, “CA Certificate (User Cert
Signer) Import from Admin Interface” [132].

10.2. General Procedure for Setting Up SSL for an App Server

This section describes the general procedure for setting up SSL on an App Server. The general steps
are:

» Create a certificate template, as described in Section 10.3.1, “Creating a Certificate Template” [116].

» Enable SSL for the App Server, as described in Section 10.3.2, “Enabling SSL for an App
Server” [118].

» Access the SSL-enabled server from a browser, as described in Section 10.4, “Accessing an SSL-
Enabled Server from a Browser or WebDAV Client” [120].

» Generate a certificate request and send it off to a certificate authority, as described in Section 10.5.1,
“Generating and Downloading Certificate Requests” [127].

* When you receive the signed certificate from the certificate authority, import it into MarkLogic Server
for use by your App Server, as described in Section 10.5.3, “Importing a Signed Certificate into
MarkLogic Server” [129].

NOTE

Certificate templates, requests, and the resulting signed certificates are only valid
within a single cluster.

10.3. Procedures for Enabling SSL on App Servers

This section describes how to enable SSL for an App Server.

10.3.1. Creating a Certificate Template

Access to an SSL-enabled server is managed by a public key in a signed certificate obtained from a
certificate authority. The first step in producing a request for a signed certificate is to define a certificate

2023-08-21 14:49 Securing MarkLogic Server Page 116

MarkLogic 10 Procedures for Enabling SSL on App Servers

template. This procedure will produce a self-signed certificate that your browser can temporarily use to
access an SSL-enabled server until you receive a signed certificate from a certificate authority.

1. Click the Security icon in the left tree menu.
2. Click the Certificate Templates icon on the left tree menu.
3. Click the Create tab. The Create Certificate Template page appears:

Create Certificate Template [ok | [concel |

template — A cerificate template. :- delete -:

template name

A certificate template's name.
Required. You must supply a value for template-name.

template description

A certificate template’s dezcription.

subject — The subject for a certificate or certificate request.

countryMame

A two character country code (e.g. "US™).
stateOrProvinceName

The state or province your server is in.
localityName

The city your server ig in.

organizationMame

The organization or company your server belongs to (e.g. Mark Logic).
Required. You must supply a value for organizationlame.

organizationalUnitdame
The organizational unit your server belongs to (e.g. Engineering).
emailAddress

The email address to contact regarding your server (e.g. webmasten@yourcempany. com).

4. In the Template Name field, enter a shorthand name for this certificate template. MarkLogic Server
will use this name to refer to this template on display screens in the Admin Interface.
5. You can enter an optional description for the certificate template.

template name mycert

A certificate template’s name.
Required. You must supply a value for template-name.

template description Thiz iz a 2ample certificate template.
A certificate template’s description.

6. Enter the name of your company or organization in the Organization Name field.
7. You can optionally fill in subject information, such as your country, state, locale, and email address.
Country Name must be two characters, such as US, UK, DE, FR, ES, etc.

2023-08-21 14:49 Securing MarkLogic Server Page 117

MarkLogic 10 Procedures for Enabling SSL on App Servers

subject — The subject for a certificate or certificate request.

countryName us

A two character country code (e.g. "US").
stateOrProvinceName CcA

The state or province your Server ig in.
localityName San Carlos

The city vour server is in.
organizationlame Mark Logic

The organization or company your server belongs to (e.g. Mark Logic).
Required. You must supply a value for organizationlame.

organizationallnithame Engingering
The organizational unit your server belongs to (e.g. Engineering).

emailAddress Myname@mycompany. com
The email addres=s to contact regarding your server (e.g. webmaster@yourcompany.com).

8. When you have finished filling in the fields, click OK. MarkLogic Server automatically generates a
Self-Signed Certificate Authority, which in turn automatically creates a signed certificate from the
certificate template for each host. For details on how to view the Certificate Authority and signed
certificate, see Section 10.6, “Viewing Trusted Certificate Authorities” [129].

10.3.2. Enabling SSL for an App Server

After creating a certificate template, you can enable SSL for an HTTP, ODBC, WebDAYV, or XDBC
server:

Click the Groups icon in the left tree menu.

Click the group in which you want to define the HTTP server (for example, Default).

Click the App Servers icon on the left tree menu.

Either create a new server by clicking on one of the Create server_type tabs or select an existing

server from the left tree menu.

The SSL fields are located at the bottom of the server specification page.

5. Inthe SSL Certificate Template field, select the certificate template you created in Section 10.3.1,
“Creating a Certificate Template” [116]. Selecting a certificate template implicitly enables SSL for
the App Server.

6. (Optional) The SSL Hostname field should only be filled in when a proxy or load balancer is used to
represent multiple servers. In this case, you can specify an SSL hostname here and all instances of
the application server will identify themselves as that host.

7. (Optional) In the SSL Ciphers field, you can either use the default (ALL: YLOW:@STRENGTH) or one

or more of the SSL ciphers defined in https://www.openssl.org/docs/manl_0.2/manl/

ciphers.html.

S

2023-08-21 14:49 Securing MarkLogic Server Page 118

https://www.openssl.org/docs/man1.0.2/man1/ciphers.html
https://www.openssl.org/docs/man1.0.2/man1/ciphers.html

MarkLogic 10 Procedures for Enabling SSL on App Servers

ssl certificate template mycert -

The certificate template. When a certificate template is specified, the App Server
uses an SSL encrypted protocol (e.g. hitps, davs, xccs). The certificate template
specifies the common information for the individual S5L certificates needed for
each host in the group.

“ou can add a new certificate template by navigating to Security = Cedificate
Templates = Create

szl hostname

The host name for the server's S50 cerificate. This is useful when many
gervers are running behind a load balancer. If not gpecified, each host will use a
certificate specifying it own hostname. Note that per RFC 24559, hostnames
must not exceed 84 characters in length.

ssl ciphers ALLILOW.@STRENGTH
A colon separated list of ciphers (e.g. ALLALOW:@STRENGTH)

zzl require client

- 2! true false
FEILIELE Whether or not a client certificate is required. This onby has an effect when one
or more client certificate authorities are specified (including the client certificate
authorities in the external securities), in which case a value of true will refuse a
client request if it does not prezent a valid client cerificate.
szl client issuer true @ faze

authority verification Accept client cerificates only if the iszuer is one of the =elected CAs in the "ssl

client certificate authorities’ list below.

8. (Optional) If you want SSL to require clients to provide a certificate, select True for SSL Require
Client Certificate. Then select Show under SSL Client Certificate Authorities and which certificate
authority is to be used to sign client certificates for the server.

9. (Optional) Set SSL Client Issuer Authority Verification to True to ensure that the App Server will
accept client certificates only signed directly by a selected CA from the SSL Client Certificate
Authorities list. A setting of False enables the App Server to accept client certificates that have a
parent CA that is indirectly signed by one or more ancestor CAs selected in the Admin Interface
(same as prior to MarkLogic 9.0-8).

2023-08-21 14:49 Securing MarkLogic Server Page 119

MarkLogic 10 Accessing an SSL-Enabled Server from a Browser or WebDAV Client

ssl require client @ true false

SEHLE Whether or not a client certificate is required. This only has an effect when one
or more client certificate authorities are specified (including the client certificate
authorities in the external securities), in which case a value of true will refuse a
client request if it does not prezent a valid client cerificate.

szl client issuer " true @ falze

authority verification Accept client certificates only if the izsuer is one of the selected CAs in the 'ss|

client certificate authorities” list below.

==l client certificate authorities — Cerificate authorities that may sign client certificates for this server.
Selecting one or more certificate authorities when S3L is enabled will require all clients to present a valid
cerificate signed by one of the selected authorities. Clicking on an organization below will reveal the
cerificate authorities for that organization.

Hide

America Online Inc. (2}
Baltimore (1)

Deutsche Telekom AG (1)
DigiCert Inc (3}

C =Us
0 = DigiCert Inc
OU = www.digicert.com
CN = DigiCert Global Root CA

10.4. Accessing an SSL-Enabled Server from a Browser or
WebDAV Client

When you create a certificate template and set it in your App Server, MarkLogic Server automatically
generates a temporary self-signed MarkLogic certificate authority that signs host certificates. If you
have not yet received a signed certificate for your SSL-enabled App Server from a certificate authority,
your browser must accept the temporary self-signed certificate authority before it can access the App
Server. There are two alternative ways to do this, both of which are browser-dependent and described
below.

To enable WebDAV clients to access an SSL-enabled App Server, you must follow the procedure
described in Section 10.4.3, “Importing a Self-Signed Certificate Authority into Windows” [122].

To enable a single browser to access the SSL-enabled App Server, you can create a security exception
for the self-signed certificate in your browser, as described in the following sections:

» Section 10.4.1, “Creating a Security Exception in Internet Explorer” [121]
+ Section 10.4.2, “Creating a Security Exception in Google Chrome” [121]
+ Section 10.4.3, “Importing a Self-Signed Certificate Authority into Windows” [122]

If you need to enable a number of browsers to access the SSL-enabled App Server, you might

want each browser to import the self-signed certificate authority for the certificate template. Once
this is done, all certificates signed by the certificate authority will be trusted by the browser, so you
can distribute new certificates without requiring each browser to create new security exceptions. The
following sections describe how to import the self-signed MarkLogic certificate authority:

+ Section 10.4.3, “Importing a Self-Signed Certificate Authority into Windows” [122]
» Section 10.5, “Procedures for Obtaining a Signed Certificate” [127]

2023-08-21 14:49 Securing MarkLogic Server Page 120

MarkLogic 10 Accessing an SSL-Enabled Server from a Browser or WebDAYV Client

10.4.1. Creating a Security Exception in Internet Explorer

If you have not imported the certificate authority for the certificate template into Windows, when you

first access an SSL-enabled server with your IE browser, you will receive an error notifying you that
there is a problem with this website’s security certificate. You can bypass this security exception by
accepting the certificate. For example, if you enabled SSL on the HTTP server, App-Services, each host
can accept the self-signed certificate as described below.

1. Access the server with this URL:
https://gordon-1:8000/

NOTE
Remember to start your URL with HTTPS, rather than HTTP. Otherwise, the
browser will return an error.

2. The server responds with a There is a problem with this website’s security certificate
notification like this:

'g) There is a problem with this website's security certificate.

The security certificate presented by this website was not issued by a trusted certificate authority.
The security certificate presented by this website was issued for a different website's address.

Security certificate problems may indicate an attempt to fool you or intercept any data you send to the
SErVer.

We recommend that you close this webpage and do not continue to this website.

& Click here to close this webpage.

B Continue to this website (not recommended).
@ More information

3. Click Continue to this website (not recommended).
4. Enter your MarkLogic Server username and password at the prompt.

10.4.2. Creating a Security Exception in Google Chrome

If you have not imported the MarkLogic certificate authority into your Chrome browser, when you first
access an SSL-enabled server, you will receive an error notifying you that you have accessed an
untrusted server. You can bypass this security exception by accepting the certificate. For example,

if you enabled SSL on the HTTP server, App-Services, you can accept the self-signed certificate as
described below.

1. Access the server with this URL:
https://gordon-1:8000/

NOTE
Remember to start your URL with HTTPS, rather than HTTP. Otherwise, the
browser will return an error.

2. The server responds with a Your connection is not private notification like this:

2023-08-21 14:49 Securing MarkLogic Server Page 121

MarkLogic 10 Accessing an SSL-Enabled Server from a Browser or WebDAYV Client

Your connection is not private

Attackers might be trying to steal your information from gorden-1 (for example,
passwords, messages, or credit cards). NET:ERR_CERT_AUTHORITY_INVALID

ADVﬁNC ED Back to safety

3. Click Advanced.
4. At the bottom of the expanded window, select Proceed to hostname (unsafe).

Your connection is not private

Attackers might be trying to steal your information from gordon-1 (for example,
passwords, messages, or credit cards). NET:ERR_CERT_AUTHORITY_INVALID

HIDE ADVAMNCED Back to safety

This server could not prove that it is gordon-1; its security certificate is not trusted by your
computer's operating system. This may be caused by a misconfiguration or an attacker
intercepting your connection. Learn more.

Proceed to Clr?rdc:n—l {unsafe)

5. Enter your MarkLogic Server username and password at the prompt.

10.4.3. Importing a Self-Signed Certificate Authority into Windows

This section describes how to import the Certificate Authority into Windows for use by the Internet
Explorer browser and WebDAV clients.

1. Open the Admin interface in your Internet Explorer browser.
2. Click the Security icon in the left tree menu.

2023-08-21 14:49 Securing MarkLogic Server Page 122

MarkLogic 10

Accessing an SSL-Enabled Server from a Browser or WebDAV Client

3. Click the Certificate Templates icon on the left tree menu.

4. Click the certificate template name on the left tree menu. The Configure certificate template page
will display.

5. Click the Status tab to display the certificate template Status page.

6. Click on Import.
Certificate Template: mycert

certificate template status — A detailed view of this certificate template’s status.

nam

& mycert

description Thiz iz a sample cerificate template.

This certificate template uses a generated certificate authority to automatically =ign temporary certificates for any hosts that do not have

certific

ates signed by some well known cerificate authority (e.g. Verigign).

This is convenient during development to quickly configure a server with certificates for each host in a cluster. Production applications should

UsE CEl

rtificates signed by a well known certificate authority.

“ou may import this certificate directly into your browser as a trusted cerificate authority or download it so that you can distribute it to others

to impo

rt into their browsers.

Caution: If you choose to impert this certificate authority into your browser, it will be trusted to sign certificates for any web server. A hostile
administrator on this MarkLogic server could potentialtly generate certificates for other secure sites (e.g. banks) and in combination with a rogue
DNS =server construct a "man in the middie™ attack.

| im|

port || download |

7. In the Do you want to open or save this file? window, click Open.

Certi

ficate Template: mycert

certificate template status — A detailed view of this certificate template's status.

orary ce

each hc

v or dow

sted to 4
cates fo

name mycert
od File Download - Security Warning @I
Do you want to open or save this file?
Thig -
haw Mame: certificate. crt
ﬁ Type: Security Certificate, 1.06KB
Thig From: 127.0.0.1
app
Open | | Save | [Cancel

ou
it to
Cau I T | While files from the Intemet can be useful, this file type can
SET y r potentially ham your computer. you do not trust the source, do not
and = open or save this software. What 's the sk 7
| import || download |

8. In the Certificate Information window, click Install Certificate.

2023-08-21

14:49 Securing MarkLogic Server

Page 123

MarkLogic 10 Accessing an SSL-Enabled Server from a Browser or WebDAV Client

P)

Certificate @

General |De13ils I Certification Path

.@ﬁ Certificate Information

This CA Root certificate is not trusted. To enable trust,
install this certificate in the Trusted Root Certification
Authorities store.

Issued to: mycert Certificate Authority

Issued by: mycert Certificate Authority

Valid from 5/1/2009 to 5/1/2010

Install Certificate. ..] Issuer Statement

9. In the Certificate Import Wizard window, select Place all certificates in the following store and
click Browse.

2023-08-21 14:49 Securing MarkLogic Server Page 124

MarkLogic 10 Accessing an SSL-Enabled Server from a Browser or WebDAV Client

-

=)

Certificate Import Wizard

Certificate Store
Certificate stores are system areas where certificates are kept.

Windows can automatically select a certificate store, or you can specify a location for

the certificate.
1 Automatically select the certificate store based on the type of certificate

@ Place all certificates in the following store

Certificate store:

Learn mare about cerfificate stores

< Back][Mext =][Cancel

10. In the Select Certificate Store window, select Trusted Root Certification Authorities and click

OK.

' B

Select Certificate Store

Select the certificate store you want to use.

| Personal

Bl Trusted Root Certiﬁ:zﬁun Authorities
_| Enterprise Trust

| Intermediate Certification Authorities
| Active Directory User Object

1 Trueted Buhlichers
T I

[| »

[] Show physical stores

DK] [Cancel

11. In the Certificate Import Wizard window, click Next.
12. On the Completing the Certificate Import Wizard page, select Certificate Store Selected by

User and click Finish.

2023-08-21 14:49 Securing MarkLogic Server Page 125

MarkLogic 10 Accessing an SSL-Enabled Server from a Browser or WebDAV Client

P -

Certificate Import Wizard @

Completing the Certificate Import
Wizard

The certificate will be imported after you dick Finish.

f;:;];" You have spedfied the following settings:
Certificate Store Selected by User JREgV = Lxlslo 4 8= g} il
Content Certificate
4 1 | 3

< Back][Firw_]l Cancel |

13. In the Security Warning page, click Yes.

Security Warning x|

You are about to install a certificate from a certification authority (C4)
claiming to represent:

N

mycert Certificate Authority

Windows cannot validate that the certificate is actually from "mycert
Certificate Authority”. You should confirm its crigin by contacting
"miycert Certificate Authority”. The following number will assist you in
this process:

Thumbprint (shal): 5CECIAOE BEC550AA TR256E39 28170019 AS59A0BS

Warning:

If you install this root certificate, Windows will automatically trust any
certificate issued by this CA. Installing a certificate with an unconfirmed
thurmbprint is a security risk, If you click "Yes" you acknowledge this
risk.

Do you want to install this certificate?

2023-08-21 14:49 Securing MarkLogic Server Page 126

MarkLogic 10 Procedures for Obtaining a Signed Certificate

14. When you see “The import was successful prompt, click OK.

I "

Certificate Import Wizard ==

':o:' The import was successful,

15. In the Certificate Information window, click OK to exit.

You should now be able to access the SSL-enabled server from your Internet Explorer browser or
WebDAV client.

10.5. Procedures for Obtaining a Signed Certificate

This section describes how to obtain a signed certificate and import it into your server.

@ NOTE
No outside authority is used to sign certificates used between servers communicating
over the internal XDQP connections in a cluster. Such certificates are self-signed and
trusted by each server in the cluster. For details, see Enabling SSL communication
over XDQP in the Administrator’s Guide.

10.5.1. Generating and Downloading Certificate Requests

Once the server is created or modified with SSL enabled, you can generate one or more PEM-encoded
certificate requests.

S NOTE
You must first assign the certificate template to an App Server, as described in
Section 10.3.2, “Enabling SSL for an App Server” [118], before you can generate a
certificate request.

1. Click the Security icon in the left tree menu.

2. Click the Certificate Templates icon on the left tree menu.

3. Click the certificate template name on the left tree menu. The Configure certificate template page
appears:

4. Click the Request tab. The Generate Certificate Request page appears:

2023-08-21 14:49 Securing MarkLogic Server Page 127

https://docs.marklogic.com/guide/admin/groups#id_82620
https://docs.marklogic.com/guide/admin/groups#id_82620

MarkLogic 10 Procedures for Obtaining a Signed Certificate

Summary Configure Status Request Import Create Help

Generate Certificate Requests: mycert

Which certificate requests ghould be generated?

All(1 request for hpg510-524vE4b marklogic. com)

@ Only those that are needed for missing, expired, temporary, or out of date certificates that are not already pending. (1 request for
hp&910-524vE4b.marklogic.com)

ok -: :- cancel
5. Select either “All” or “Only those that are needed for missing, expired, self-signed, or out of date
certificates that are not already pending,” then click OK.
6. The certificate template Status page will display. Click on Download to download the certificate
request to your file system.

Pending Certificate Requests

The following hosts have pending certificate requests. You can download them and present them to a certificate authority for signing. The
signed certificates can then be imported using the import tab above.

hp&910-524vE4b. marklogic.com

| download |

7. Ifthe file does not already have a ‘zip’ extension, rename the file by replacing the ‘xqy’ extension
with ‘zip’.
8. Send the zip file containing the certificate requests to a Certificate Authority, such as Verisign.

10.5.2. Signing a Certificate with Your Own Certificate Authority

As an alternative to using a third-party Certificate Authority, you can create your own Certificate
Authority, as described in Section 12.2.1, “Creating a Certificate Authority” [143]. You can then

use this Certificate Authority to sign the certificate request using the pki authority-sign-host-
certificate-request function.

Once signed, you can forward the signed certificate to any MarkLogic user, who can then import
the signed certificate into their MarkLogic host, as described in Section 10.5.3, “Importing a Signed
Certificate into MarkLogic Server” [129].

For example, to request and sign a certificate from the mycert template created in Section 10.3.1,
“Creating a Certificate Template” [116], do the following:

xquery version "1.0-ml";

import module namespace pki = "http://marklogic.com/xdmp/pki"*
at "/MarkLogic/pki.xqy';
declare namespace x509 = "http://marklogic.com/xdmp/x509";
let $req :=
pki:generate-certificate-request(
pki:-get-template-by-name("'mcert')/pki:template-id,
"ServerName", O, O)
let $cert :=
pki zauthority-sign-host-certificate-request(
xdmp:credential-id(''acme-ca™),
xdmp :x509-request-extract($req),
fn:current-dateTime(),
fn:current-dateTime() + xs:dayTimeDuration(‘'P365D™))
return xdmp:x509-certificate-extract($cert)

2023-08-21 14:49 Securing MarkLogic Server Page 128

MarkLogic 10 Viewing Trusted Certificate Authorities

10.5.3. Importing a Signed Certificate into MarkLogic Server

When you receive the PEM file(s) containing signed certificate(s) from the certification authority, import
the PEM file(s) into MarkLogic Server. If you are using chained certificates, you will need to import the
end and intermediate certificate PEM files into MarkLogic Server. If your MarkLogic Server is to act as a
client , you must also import the root certificate.

NOTE

Because the signed certificate is from a trusted certification authority, browsers are
already configured to trust the certificate.

1. Click the Security icon in the left tree menu.

2. Click the Certificate Templates icon on the left tree menu.

3. Click the certificate template name on the left tree menu. The Configure certificate template page
will display.

4. Click the Import tab. The Import Certificates page will display:
Import Certificates

Toimport signed certficates, you can either paste them into the text area below or select a file to upload

‘The uploaded file can be either text or a zip archive of text files

Upload Private Key File: | Choose File | No file chosen

5. Click on Choose File to locate the PEM file(s) containing the signed certificate(s) and select OK.
Zip files can be uploaded directly without the need to unzip them. Alternatively, you can paste an
individual certificate(s) into the text area.

6. We now allow users to import certificates signed by something besides a downloaded CSR from
MarkLogic. To do this, the user also needs to import the private key of the certificate. The user can
only input one certificate at a time if doing this.

10.6. Viewing Trusted Certificate Authorities

You can list all of the certificate authorities that are known to and trusted by the server in the Certificate
Authority page. Each CA in the list links to the corresponding Certificate Authority page for that CA.

The Certificate Authority page provides detailed information on the CA, a list of revoked certificates,
the option to manually revoke a certificate by ID, and the ability to delete the CA from the server.

1. Click the Security icon in the left tree menu.

2023-08-21 14:49 Securing MarkLogic Server Page 129

MarkLogic 10 Importing a Certificate Revocation List into MarkLogic Server

2. Click the Certificate Authority icon on the left tree menu.
3. The Certificate Authority Summary page displays the list of trusted CAs:

Summary Import Help
Organization Certificates
America Online Inc. 1
GoDaddy.com, Inc. 1
Mark Logic 5
Mark Logic Corporation 1
“erisign Trust Network 1
Verisign, Inc. 3

4. Click on a CA in the list to display the details on the CA:

| delete |

seriallumber -47C4ATSE1
signatureType sha1WithRSAEncryption
issuer

organizationName Mark Logic

commonlame mycert Cerificate Authority
validity

notBefore March 23, 2009 11:23 PM

notAfter March 23, 2010 11:23 PM
subject

organizationName Mark Logic

commonlame mycert Certificate Authority
publicKey = ————- BEGIN PFUBLIC FEY-———-—

MIGEMROGCSgES I3 DQERAQUARACNADCEBIQEBgQDFCYS/ TecdtS+nrwlB/ pe¥MhTO
ninJAThmOn0Qmy ZHch1 VdQomd ecHNnx / E+c+TeQ7aIJCOvEDjecH1MTvqwd GUQFg
ONgoG4gaolrcSugrUNEgky8oSkE50yidinFAIEfOncdeavIgZnDBlVEMSMEY 2 CHm
Nk00wgZgyPow0Tn52QTDAQRR

viext
basicConstraints CATRUE
keylsage Certificate Sign, CRL Sign
nsCertType SSL Server

MIICI=zCCAYyghwIBAgIEuDtYnzANEBgkghkiCowiBAQUFADA SMEMwEQYDVOOEEWwEN
YHIrTExwZ2]1 jMSYwIAYDVRODEx]1 teWNlenRyIEN1cnRpiZml JYXRITEF1dGhveml 0
eTReFwiwDTAZM I MyMzT zMTRa FwixMDA z M JMyM=zT zMTRaMDOXEzARBgNVBACTCklh
cmsgTE9naiMe T A kBgNVEAMTHW1 5 Y 2VydDIgR2 VydElmaWNhdCUgVlaGayaXRs
MIGEMROECSgESTE3DREBAQUARLCNADCBIQEBgQDFCYS/ 7TecdtS+tnrwHE /pe¥MhTO
ninJATemOn 0Qmmr ZHch1 VdQomd e X cHNnx /E+c+TtQ7aJC0vIOjecHIMTvgqwdEUQFg
OHgoG4gaolrciugrUNEgkyEo3kE50yidinFR1Efincde cvIgZnDBl1VrMsMbYe CHm
Nk0OwgZgyPomv0TnSZQIDAQRABozAWLj AMBgNVHEMERTADAQH /MAEsCR 1 TdDWwEAWIE
BijARBglghkgBhvhCAQEERAMCBEAWDOY JEoZIhweNAQEFBQADGYEAY1eFg2 84 1mv 7
NYj8wBU/ /4cIREeFTJullaHy et LDY LEGE1gyR SMIHn=NbDX 05y ladQDVaet ¥t PxS
YZriCbQEZcPiolOinbSkMtmagl JaERA]13WA1IMa+7iw¥C51sRUGIRwc454ERvAEMT
Z1i5inEnSkb0AtBYsdCCEBlrIusSP0Ews=

10.7. Importing a Certificate Revocation List into MarkLogic
Server

A Certificate Revocation List (CRL) is a list of certificate serial numbers that have been revoked by
a certificate authority. The CRL is signed by the certificate authority to verify its accuracy. The CRL

2023-08-21 14:49 Securing MarkLogic Server Page 130

MarkLogic 10 Deleting a Certificate Template

contains the revocation date of each certificate, along with the date the CRL was published and the
date it will next be published, which is useful in determining whether a newer CRL should be fetched.

You can use the pki:insert-certificate-revocation-list function to import a CRL into the
Security database. certificate authorities typically allow the CRL to be downloaded via HTTP. The
document URL in the database is derived from the URL passed in to the function, so Inserting a newer
CRL retrieved from the same URL will replace the previous one in the database.

For example, the following script imports a PEM- or DER-encoded CRL from Verisign into the Security
database:

xquery version "1.0-ml";
import module namespace pki = "http://marklogic.com/xdmp/pki"*
at "/MarkLogic/pki .xqy";

let $URI := "http://crl.verisign.com/pca3.crl"
return
pki:insert-certificate-revocation-list(
$URI,

xdmp:document-get($URI)/binary())

@ NOTE
If the next publication date of the CRL is earlier than the current time, you will receive
the following message in the error log: loadCertificateRevocationLists:
Most recent CRL for issuer=<issuer_name> Is expired.

10.8. Deleting a Certificate Template

Deleting a template deletes all signed certificates and pending requests for the template. Before
deleting a certificate template, ensure that a certificate with that name is not in use by a server. If

a certificate with the same name as the certificate template is in use by a server, the delete operation
returns an “Invalid input” error.

To delete an unused certificate template:

Click the Security icon in the left tree menu.

Click the Certificate Templates icon on the left tree menu.
Click the certificate template name on the left tree menu.
On the Certificate Template page, click Delete.

In the confirmation page, select OK.

A

2023-08-21 14:49 Securing MarkLogic Server Page 131

MarkLogic 10 Certificate-Based Authentication

11. Certificate-Based Authentication

Certificate-based user authentication allows users to log into MarkLogic Server without being required
to enter user name/password. Certificate-based user authentication configuration can be achieved
using either internal user or external name based user configurations.

11.1. User Certificate Example

There are few common steps/examples listed to add to clarity. In this example setup, the certificate
presented by the App Server user (demoUser1l) will be as follows.

Certificate:
Data:
Version: 1 (0x0)
Serial Number: 7 (Ox7)
Signature Algorithm: shalWithRSAEncryption
Issuer: C=US, ST=CA, L=San Carlos, O=MarkLogic Corp., OU=Engineering, CN=MarkLogic DemoCA
Validity
Not Before: Jul 11 02:58:24 2017 GMT
Not After : Aug 27 02:58:24 2019 GMT
Subject: C=US, ST=CA, L=San Carlos, O=MarkLogic Corp., OU=Engineering, CN=demoUserl
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
Public-Key: (1024 bit)
Modulus:

Exponent: 65537 (0x10001)
Signature Algorithm: shalWithRSAEncryption

11.2. CA Certificate (User Cert Signer) Import from Admin

Interface

In order to allow MarkLogic Server to accept the Certificate presented by a user, MarkLogic Server
needs a Certificate Authority (CA) to sign the user certificate installed into MarkLogic.

Install a CA certificate used to sign the demoUser1 certificate in the Admin Interface, as follows.

1. Click the Security icon in the left tree menu.
2. Click the Certificate Authorities icon on the left tree menu.
3. Click the Import tab and import a certificate, such as the one shown in the example below.

2023-08-21 14:49 Securing MarkLogic Server Page 132

MarkLogic 10 CA Certificate (User Cert Signer) Import from Admin Interface

(gre=——l e—_rese |

Import Trusted Certificates:

Paste a PEM encoded trusted certificate into the text area below, or select a text or zip file of trusted certificates to upload.

Certificate: -
Diata:
‘Version: 3 (0x2)
Serial Number: 5774583184744115905 (0x87agas8cc2B085c1)
Signature Algorithm: sha258WithRSAEncryption
lssuer: C=US5, ST=NY, L=New ork, O=Marklogic Corporation, QU=Engineering,
Walidity
Mot Before: Jul 11 02:53:18 2017 GNMT
Mot After : Jul 6 02:53:18 2037 GMT
Subject: C=U5, ST=NY, L=New York, O=MarklL.ogic Corporation, QU=Engineering,
Subject Public Key Info:
Public Key Algorithm: rgaEncryption
Public-Key: (4055 bit)
Modulus:

m

Exponent: 85537 (0x10001)
X5059v3 extensions:
X509v3 Subject Key ldentifier: -
D9:45.B9:9A.DC.93.78.06.47.07.C6:96:63.57.1 3. AT . AS.F1.00:C3

Upload File: No file selected.

| ok | | cancel |

Example CA certificate:

Certificate:
Data:
Version: 3 (0x2)
Serial Number: 9774683164744115905 (0x87a6a68cc29066c1)
Signature Algorithm: sha256WithRSAEncryption
Issuer: C=US, ST=CA, L=San Carlos, O=MarkLogic Corp., OU=Engineering, CN=MarkLogic DemoCA
Validity
Not Before: Jul 11 02:53:18 2017 GMT
Not After : Jul 6 02:53:18 2037 GMT
Subject: C=US, ST=CA, L=San Carlos, O=MarkLogic Corp., OU=Engineering, CN=MarkLogic DemoCA
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
Public-Key: (4096 bit)
Modulus:
Exponent: 65537 (0x10001)
X509v3 extensions:
X509v3 Subject Key ldentifier:
D9:45:B9:9A:DC:93:7B:DB:47:07:C6:96:63:57:13:A7:A8:F1:D0:C8
X509v3 Authority Key ldentifier:
keyid:D9:45:B9:9A:DC:93:7B:DB:47:07:C6:96:63:57:13:A7:A8:F1:D0:C8
X509v3 Basic Constraints: critical
CA:TRUE
X509v3 Key Usage: critical
Digital Signature, Certificate Sign, CRL Sign
Signature Algorithm: sha256WithRSAEncryption

2023-08-21 14:49 Securing MarkLogic Server Page 133

MarkLogic 10 CA Certificate Import into MarkLogic from Query Console

11.3. CA Certificate Import into MarkLogic from Query Console

You can also import the Certificate Authority by using the pki : insert-trusted-certificates
function to load the Trusted CA into the Security database in MarkLogic, as shown below.

NOTE

If using Query Console, make sure this query is executed against the Security
database.

xquery version "1.0-ml";
import module namespace pki = "http://marklogic.com/xdmp/pki" at "/MarkLogic/pki.xqy";

pki:insert-trusted-certificates(
xdmp:document-get(*'/OurCertificatelLocation/DemoLabCA.pem",
<options xmlns="xdmp:document-get'>
<f or mat >text</ f or mat >
</ opti ons>)

D)

11.4. Certificate Template & Template CA Import into Client
(Browser/SSL Client)

To enable SSL on the App Server, do either of the following:

» Create certificate template, as described in Section 10.3.1, “Creating a Certificate Template” [116], to
utilize Self Signed Certificate.

» Import a signed certificate into MarkLogic, as described in Section 10.5.3, “Importing a Signed
Certificate into MarkLogic Server” [129].

In both of the above cases, you must import the CA used to sign the certificate used by the

MarkLogic SSL App Server into Client Browser/SSL Client, as described in Section 10.5, “Procedures
for Obtaining a Signed Certificate” [127] or Section 10.4.3, “Importing a Self-Signed Certificate Authority
into Windows” [122].

After creating a certificate template, link the template with the App Server and enable SSL on the App
Server.

11.5. Creating a MarkLogic User to Use Certificate-Based

Authentication

When creating a internal MarkLogic user to use certificate-based authentication, specify the

user name as it appears in the CN value of the certificate Subject field (demoUser1l in

the example shown in Section 11.1, “User Certificate Example” [132]). When creating an

external MarkLogic user to use certificate-based authentication, specify the external name as

it appears in the whole certificate Subject field (C=US,ST=CA,L=San Carlos,0O=MarkLogic
Corp.,0U=Engineering,CN=demoUserl in the example shown in Section 11.1, “User Certificate
Example” [132]).

11.5.1. Creating a MarkLogic User with an Internal Name

To configure certificate-based user authentication for user, demoUser1, as a MarkLogic internal user,
follow these steps in the Admin Interface:

1. Click the Security icon in the left tree menu.

2023-08-21 14:49 Securing MarkLogic Server Page 134

MarkLogic 10 Creating a MarkLogic User to Use Certificate-Based Authentication

2. Click the <guilable>Users</guilabel> icon.

Click the Create tab. The User Configuration page appears

4. In the user name field, enter the user name as it appears in the CN value of the certificate Subject
field (demoUser1 in the example shown in Section 11.1, “User Certificate Example” [132])

[Coummey T ceae T e R

New User ([ok | [cancet |

w

user — A database user.

user name demollseri

Userflogin name (unigue)
Required. You must supply a value for user-name.

description User Cert CN field as Internal User
An object’s description.

password TTITI T
Encrypted Password.
Required.

confirm password T

Encrypted Password.
Required.

external names — The external names specifications.

external name

more external names

5. In the App Server configuration page, set Authentication to Certificate and set Internal
Security to true. Unless you want to have the user authenticated as an external user as well,
set External Securities to none.

authentication certificate -
The authentication scheme to use for this server

internal security @ true false
Whether or not the security database is used for authentication and authorization.

external securities — External authentication and authorization configurations.

—none— -

More External Securities

6. Inthe App Server configuration page, scroll down to the bottom and select show in the SSL
Client Certificate Authorities section.

2023-08-21 14:49 Securing MarkLogic Server Page 135

MarkLogic 10 Creating a MarkLogic User to Use Certificate-Based Authentication

ss| client certificate authorities — Certificate authorities that may sign client certificates for this server. Selecting one
or more certificate authoriies when SSL is enabled will require all clients to present a valid certificate signed by one of
the selected authorities. Clicking on an organization below will reveal the certificate authorities for that organization.

Show

s

| ok | | cancel |

7. Select the CA created in Section 11.2, “CA Certificate (User Cert Signer) Import from Admin
Interface” [132] to sign the client/user certificate.

Hide

America Online Inc. (2)
Baltimore (1)

Deutzche Telekom AG (1)
DigiCert Inc (3}

Digital Signature Trust (1)
Digital Signature Trust Co. (3}
Entrust, Inc. (1)

Entrust.net (1)

Equifax (1}

Equifax Secure (1)

Equifax Secure Inc. (2}
GeoTrustInc. (7}
Goladdy.com, Inc. (1}

Google Inc (1)

Google Trust Services LLC (4)
GTE Corporation (1)

Japan Certification Services, Inc. (1}
Japanese Government (1)
Mark Logic (1)

MarkLogic Corp. (1)

%C = U5
ST =CA

L = San Carlos

0 = MarkLogic Corp.

OU = Engineering

CH = MarkLogic Corp Certificate Authority

MarkLogic Ops Director (1)

Once configured, demoUser1l is now able to access the App Server with a browser that has the user
certificate installed, as described in Section 11.4, “Certificate Template & Template CA Import into Client
(Browser/SSL Client)” [134].

NOTE

You will also need to assign the necessary roles to demoUser1 to access the needed
MarkLogic resources.

2023-08-21 14:49 Securing MarkLogic Server Page 136

MarkLogic 10 Creating a MarkLogic User to Use Certificate-Based Authentication

11.5.2. Creating a MarkLogic User with an External Name

To configure certificate-based user authentication for user, newUser1, as a MarkLogic user with an
external name, follow these steps in the Admin Interface:

Click the Security icon in the left tree menu.

Click the <guilable>Users</guilabel> icon.

Click the Create tab. The User Configuration page appears
In the User Name field, enter newUser1.

In the External Name field, enter the entire Subject field from the example shown in
Section 11.1, “User Certificate Example” [132].

aORrLN-~

User: newlUser1 ok ~ cancel

user — A database user. - delete)

LEET I ILE newlser]

Uszer/legin name (unigue)

description User Cert Subject in External Name
An object's description.

password I LI LTI LTI I I Y]

Encrypted Pazsword.

confirm password T T LTI LIy}

Encrypted Pazsword.

external names — The external names specifications.

external name

[Keep]
e C=US ST=CA L=San Carloes,O=MarkLogic Corp.,OU=Engineering, CN=demoUser1

[add]

more external names

Click Security in the left tree menu.
Click External Security.
Click the Create tab at the top of the External Security Summary window:

In the New External Security object window, name the External Security object and select
Certificate for Authentication.

© N

2023-08-21 14:49 Securing MarkLogic Server Page 137

MarkLogic 10 Creating a MarkLogic User to Use Certificate-Based Authentication

e T o T o I

New External Security | ok | | cancel |

external security — An external authentication and authorization config.

external security name Demo-External-Certificate-Object

External security name (unique}
Required. You must supply a value for external-security-name.

description Certific Auth External Sec Object
An object's description.

authentication certificate -
Authentication

cache timeout 100

The login cache timeout, in seconds.

authorization internal
An authorization scheme.

10. Scroll down to the bottom of the External Security object configuration page and select show in
the SSL Client Certificate Authorities section.
ssl client certificate authorities — Certificate authorities that may sign client certificates for this server. Selecting one

or more certificate authorities when SSL is enabled will reguire ail clients to present a valid certificate signed by one of
the selected authorities. Clicking on an organization below will reveal the certificate authorities for that organization.

Show

s

ssl require client certificate @ true) falze

Whether or not a client certificate is required. This only has an effect when one or more
mare client certificate authorities are specified, in which case a value of true will fail client
authentication if a valid client cerificate is not provided.

11. Select the CA certificate you configured in Section 11.2, “CA Certificate (User Cert Signer) Import
from Admin Interface” [132].

2023-08-21 14:49 Securing MarkLogic Server Page 138

MarkLogic 10

MIArK Logic (1)
MarkLogic Corp. (1}

Iﬁc =Us
ST = CA

L = San Carlos

0 = MarkLogic Corp.
OU = Engineering
CN = MarkLogic Corp Certificate Authority

MarkLogic Ops Director (1)
Network Solutions L.L.C. (1}
RSA Security Inc (1)

SECOM Trust Systems CO.,LTD. (2)
SECOM Trust.net (1)
SecureTrust Corporation (2)
Starfield Technologies, Inc. (1)
Swizzcom (1)

SwizsSign AG (3)

Thawte Consulting cc (2}
thawte, Inc. (3}

The Go Daddy Group, Inc. (1)
VeriSign, Inc. (13}

VISA (1)

Wells Fargo (1)

Wells Fargo Wells Secure (1)

ssl require client certificate @ true false

Whether or not a client certificate is required. This enly has an effect when one or more

Creating a MarkLogic User to Use Certificate-Based Authentication

more client certificate autherities are specified, in which caze a value of true will fail client
authentication if a valid client certificate iz not provided.

12. Return to the App Server configuration page and select the External Security object you just
created from the External Securities pull-down menu.

2023-08-21 14:49

authentication basic -
The authentication scheme to use for this server

internal security @ true e

Whether or not the security database is used for authentication and authorization.

external securities — External authentication and authorization configurations.

Demo-External-Certificate-Object

More External Securities

Securing MarkLogic Server

Page 139

MarkLogic 10 Secure Credentials

12. Secure Credentials

Secure credentials enable a security administrator to manage credentials, making them available to
less privileged users for authentication to other systems without giving them access to the credentials
themselves.

Secure credentials consist of a PEM encoded x509 certificate and private key and/or a username and
password. Secure credentials are stored as secure documents in the Security database on MarkLogic
Server, with passwords and private keys encrypted. A user references a credential by name and access
is granted if the permissions stored within the credential document permit the access to the user. There
is no way for a user to get access to the unencrypted credentials.

Secure credentials allow you to control which users have access to specific resources. A secure
credential controls what URlIs it may be used for, the type of authentication (e.g. digest), whether the
credential can be used to sign other certificates, and the user role(s) needed to access the resource.

The security on a credential can be configured three different ways:

+ Credentials that secure a resource by username and password.

» Credentials that secure a resource by a PEM encoded X509 certificate and a PEM encoded private
key.

» Credentials that secure a resource by username and password, as well as a PEM encoded X509
certificate and a PEM encoded private key.

In most cases, the private key and x509 certificate used to configure a secure credential are obtained
from a trusted Certificate Authority. However, there may be situations in which you may want to create
your own Certificate Authority and generate your own private key and certificate.

12.1. Creating a Secure Credential with Username and

Password

This section describes how to use the Admin Interface to create a simple secure credential that grants
access to a resource by means of a username and password.

1. Inthe Admin Interface, click the Security icon in the left tree menu.
2. Click the Secure Credentials icon.
3. Click the Create tab at the top of the Secure Credentials window:

Summary Ere@ Help

Secure Credentials

4. In the New Credential window, enter the name of the credential. You can optionally specify a
description, the name of the user and password to use to access the resource.

2023-08-21 14:49 Securing MarkLogic Server Page 140

MarkLogic 10 Creating a Secure Credential with Username and Password

Summary] Create | Help

MNew Credential ok | | cancel

credential — A credential securely stores suthentication information in the security database with the password and/or private key
encrypied. i may be uzed by & uzer for HTTF client cperafionz, subject fo the iarget resirictions. | may be uzed fo =ign X503
certificates if the zigning flag iz =et fo e,

credential name mycredential

The name of this credential.
Required. Name cannot be empty.

credential description A new credentisl
An credentials description.

credential username jusar

The user name for this credentisl when used for HTTP client operations.

credential password ————
The password for this credentia when used for HTTP client operations.

confirm credential password ————
The password for this credentia when used for HTTP client operations.

5. Leave the credential certificate and credential private key fields empty. Set credential signing to
false.

2023-08-21 14:49 Securing MarkLogic Server Page 141

MarkLogic 10 Creating a Secure Credential with Username and Password

credential
certificate
The PEM encoded X509 certificate for this credential. If it is used for HTTP client operations, this is the client
certificate. If it is used for signing other certificates, this is the issuer.
credential
private key
The PEM encoded private key corresponding to the certificate.
credential signing true @ false

Whether or not the credential may be used to sign X509 cerificates.

6. In the target uri pattern field, enter the URIs of the MarkLogic App Servers this credential is
to protect, starting with https. Select the authorization used by the target App Servers. In the
credential permissions menu, select which roles and permissions are required for a user to access

the App Servers using this credential.

NOTE

A role with read capability implies execute capability, as well.

2023-08-21 14:49 Securing MarkLogic Server Page 142

MarkLogic 10 Creating a Secure Credential with PEM Encoded Public and Private Keys

credential targets — Accepfabie targetz that thiz credentisl may be uzed fo sccezs. delete
[target uri pattern [target authentication

| https:/fgordon-2: 80027 = digest

| digest

credential permissions — Pemizsions controlling credentisl vesge. delete

|rnle |c-apahi|ityr
| Fdmin - | read o
| n'a - | execute o,

12.2. Creating a Secure Credential with PEM Encoded Public

and Private Keys

You can skip this procedure if you have obtained a signed Certificate Authority (CA) from a trusted third
party. In this case, you can paste the credential and private key into the Secure Credentials window
described above in Section 12.1, “Creating a Secure Credential with Username and Password” [140].

Generating a secure credential that includes PEM encoded public and private keys is a two-step
procedure that is best done in code.

12.2.1. Creating a Certificate Authority

Secure credentials that contain PEM encoded public and private keys can be used to control access to
a CA stored in a MarkLogic Security database. To create and insert a CA into the Security database,
use the pki :create-authority function.

For example, the following query creates a CA, named acme-ca:

xquery version "1.0-ml";
import module namespace pki = "http://marklogic.com/xdmp/pki'*
at ""/MarkLogic/pki.xqy";
declare namespace x509 = "http://marklogic.com/xdmp/x509";
pki:create-authority(
"acme-ca', ""Acme Certificate Authority",
element x509:subject {

element x509:countryName {"USs"},
element x509:stateOrProvinceName {"California"},
element x509:l1ocalityName {"San Carlos"},
element x509:organizationName {"Acme Inc."},
element x509:organizationalUnitName {" Engineering"},
element x509:commonName {"Acme CA"},
element x509:emailAddress {""ca@acme.com"}
1.

fn:current-dateTime(),
fn:current-dateTime() + xs:dayTimeDuration(*'P365D"),
(xdmp:permission(*'admin™,"read")))

12.2.2. Creating Secure Credentials from a Certificate Authority

Once you have created a CA as described in Section 12.2.1, “Creating a Certificate Authority” [143],
you can use the CA to create a client certificate and private key to build a secure credential.

Use the pki zauthority-create-client-certificate function to create a client certificate with

PEM encoded public/private keys. Next, use the sec:create-credential to generate and insert the
credential.

2023-08-21 14:49 Securing MarkLogic Server Page 143

MarkLogic 10 Creating a Secure Credential with PEM Encoded Public and Private Keys

For example, to create a secure credential, named acme-cred, from the acme-ca CA that includes
PEM encoded public and private keys, a username and password, and that enables access to the
target, https://MLserver:8010/.%*, do the following:

xquery version "1.0-ml";

import module namespace sec = "http://marklogic.com/xdmp/security"
at ""/MarkLogic/security.xqy";
import module namespace pki = "http://marklogic.com/xdmp/pki"*

at "/MarkLogic/pki._xqy";

declare namespace x509 = "http://marklogic.com/xdmp/x509";
let $tmp :=
pki :authority-create-client-certificate(
xdmp:credential-id("'acme-ca'),
element x509:subject {

element x509:countryName {"USs"},

element x509:stateOrProvinceName {"California"},

element x509:localityName {"San Carlos"},

element x509:organizationName {"Acme Inc."},

element x509:organizationalUnitName {"Engineering"},
element x509:commonName {"Elmer Fudd"},

element x509:emailAddress {"elmer.fudd@acme.com"}

T,
fn:current-dateTime(),
fn:current-dateTime() + xs:dayTimeDuration(*'P365D'"))

let $cert := $tmp[1]

let $privkey := $tmp[2]

return sec:create-credential(
"acme-cred", "A credential with user/password and certificate",
“admin', "admin', $cert, $privkey,
fn:false(),
sec:uri-credential-target("'https://MLserver:-8010/.*", "digest™),
xdmp:permission(*admin®," read"))

To create a secure credential, named simple-cred, that uses only a username and password, do the
following:

xquery version "1.0-ml";
import module namespace sec = "http://marklogic.com/xdmp/security"

at ""/MarkLogic/security.xqy";
sec:create-credential (

"simple-cred”, "A simple credential without a certificate",
"admin™, "admin”, O, O,
fn:false(),

sec:uri-credential-target("https://MLserver:-8010/.*", "digest'),
xdmp:permission(*admin®, " read"))

As described in Section 10, “Configuring SSL on App Servers” [115], MarkLogic App Servers
authenticate clients by means of a host certificate associated with a certificate template. The following
example shows how to create a host certificate using the CA described in Section 12.2.1, “Creating a
Certificate Authority” [143] and import it into the myTemplate certificate template. For details on how to
create a certificate template, see Section 10.3.1, “Creating a Certificate Template” [116].

2023-08-21 14:49 Securing MarkLogic Server Page 144

MarkLogic 10 Creating a Secure Credential with PEM Encoded Public and Private Keys

xquery version "1.0-ml";

import module namespace pki = "http://marklogic.com/xdmp/pki"*
at ""/MarkLogic/pki.xqy";

declare namespace x509 = "http://marklogic.com/xdmp/x509";
let $tmp :=
pki :authority-create-host-certificate(
xdmp:credential-id("'acme-ca'),
element x509:subject {

element x509:countryName {"USs"},
element x509:stateOrProvinceName {"California"},
element x509:l1ocalityName {""San Carlos"},
element x509:organizationName {""Acme Inc."},
element x509:organizationalUnitName {"Engineering"},
element x509:commonName {""MLserver.marklogic.com"},
element x509:emailAddress {""'me@marklogic.com"}
3.

fn:current-dateTime(),
fn:current-dateTime() + xs:dayTimeDuration('P365D"),
"www.eng.acme.com™, "1.2.3.4")
let $template := pki:template-get-id(
pki:get-template-by-name("'myTemplate'))
let $cert := $tmp[1]
let $privkey := $tmp[2]
return pki:insert-host-certificate($template, $cert, $privkey)

2023-08-21 14:49 Securing MarkLogic Server Page 145

MarkLogic 10 External Security

13. External Security

MarkLogic Server allows you to configure MarkLogic Server so that users are authenticated using an
external authentication protocol, such as Lightweight Directory Access Protocol (LDAP), Kerberos, or
certificate. These external agents serve as centralized points of authentication or repositories for user
information from which authorization decisions can be made.

NOTE

You can configure MarkLogic 1 Server with multiple external security providers. A user
only needs to authenticate with one of them to gain access.

This section describes how to configure MarkLogic 1 Server for external authentication using LDAP
and/or Kerberos.

13.1. Terms Used in this Chapter

The following terms are used in this section:

» Authentication is the process of verifying user credentials for a named user, usually based on a
username and password. Authentication generally verifies user credentials and associates a session
with the authenticated user. It does not grant any access or authority to perform any actions on the
system. Authentication can be done internally inside MarkLogic Server, or externally by means of a
Kerberos or LDAP server. This section describes how do configure MarkLogic Server for external
authentication using either the Kerberos or LDAP protocol, SAML, or Certificates.

* Authorization is the process of allowing a user to perform some action, such as create, read, update,
or delete a document or execute a program, based on the user's identity. Authorization defines what
an authenticated user is allowed to do on the server. When an App Server is configured for external
authentication, authorization can be done either by MarkLogic Server or by LDAP.

 Lightweight Directory Access Protocol (LDAP) is an authentication protocol for accessing server
resources over an internet or intranet network. An LDAP server provides a centralized user database
where one password can be used to authenticate a user for access to multiple servers in the network.
LDAP is supported on Active Directory on Windows Server 2008 and OpenLDAP 2.4 on Linux and
other Unix platforms.

* Kerberos is a ticket-based authentication protocol for trusted hosts on untrusted networks. Kerberos
provides users with encrypted tickets that can be used to request access to particular servers.
Because Kerberos uses tickets, both the user and the server can verify each other's identity and user
passwords do not have to pass through the network.

* An External Authentication Configuration Object specifies which authentication protocol and
authorization scheme to use, along with any other parameters necessary for LDAP authentication.
After an external authentication configuration object is created, multiple App Servers can use the
same configuration object.

» A Distinguished Name (DN) is a sequence of Relative Distinguished Names (RDNs),
which are attributes with associated values expressed by the form attribute=value. Each
RDN is separated by a comma in a DN. For example, to identify the user, joe, as
having access to the server MARKLOGIC1.COM, the DN for joe would look like this:
UlD=joe,CN=Users,DC=MARKLOGIC1,DC=COM.

2023-08-21 14:49 Securing MarkLogic Server Page 146

MarkLogic 10 Overview of External Authentication

NOTE

The attributes after UID make up what is known as the Base DN.

For details on LDAP DNs, see http://www.rfc-editor.org/rfc/rfc4514 .txt.

* A Principal is a unique identity to which Kerberos can assign tickets. For example, in Kerberos, a user
is a principal that consists of a user name and a server resource, described as a realm. Each user
or service that participates in a Kerberos authentication realm must have a principal defined in the
Kerberos database.

A user principal is defined by the format: username@REALM.NAME. For example, to identify the
user, joe, as having access to the server MARKLOG IC1 . COM, the principal might look like this:
JOoe@VARKLOGIC1 .COM.

For details on Kerberos principals, see http://www.kerberos.org/software/tutorial.html#1.3.2.

* Certificate Authentication enables HTTPS clients to authenticate themselves to MarkLogic server via
a client certificate, either in addition to, or instead of, a password.

* SAML (Security Assertion Markup Language) is an authorization scheme that defines a Principal
(such as a user), an Identity Provider (IDP), and a Service Provider (SP). In this scheme, the
Principal requests a service from the Service Provider, which accesses the Identity Provider to
authorize the Principal. MarkLogic supports SAML, version 2.0.

NOTE
MarkLogic currently only supports SOAP binding only HTTPS.

* A SAML Entity is an XML document located in the MarkLogic Security database that serves as the
SAML Identity Provider.

13.2. Overview of External Authentication

MarkLogic Server supports external authentication by means of LDAP, SAML, Kerberos, or certificate.
When a user attempts to access a MarkLogic App Server that is configured for external authentication,
the requested App Server sends the username and password to an LDAP or SAML server for
authentication. (For Kerberos, only the username is sent.) Once authenticated, the LDAP, SAML,
Kerberos, or certificate protocol is used to identify the user on MarkLogic Server. For details on

how to configure an App Server for external authentication, see Section 13.3, “Creating an External
Authentication Configuration Object” [151] and Section 13.7, “Configuring an App Server for External
Authentication” [158].

Users can be authorized either internally by MarkLogic Server, externally by an LDAP or SAML server,
or both internally and externally.

If the App Server is configured for internal authorization, the user needs to exist in the MarkLogic
Security database where his or her “external name” matches the external user identity registered with
either LDAP, Kerberos or certificate, depending on the selected authentication protocol. For details on
how to map a MarkLogic user to an LDAP Distinguished Name (DN) or a Kerberos User Principal, see
Section 13.5, “Assigning an External Name to a User” [156].

If the App Server is configured for LDAP authorization, the user does not need to exist in MarkLogic
Server. Instead, the external user is identified by a username with the LDAP server and the LDAP
groups associated with the DN are mapped to MarkLogic roles. MarkLogic Server then creates a
temporary user with a unique and deterministic id and those roles. For details on how to map a
MarkLogic role to an LDAP group, see Section 13.6, “Assigning an External Name to a Role” [157].

If the App Server is configured for SAML authorization, the server issues a standard SAML attribute
query to the identity provider to retrieve authorization information. The identity provider is uniquely

2023-08-21 14:49 Securing MarkLogic Server Page 147

http://http://www.rfc-editor.org/rfc/rfc4514.txt
http://www.kerberos.org/software/tutorial.html#1.3.2

MarkLogic 10 Overview of External Authentication

identified by its ID, which is combined with an attribute name and value to form an external name with
the necessary privileges.

If the App Server is configured for both internal and external authorization, users that exist in the
MarkLogic Security database are authorized internally by MarkLogic Server. If a user is not a registered
MarkLogic user, then the user must be registered on the LDAP or SAML server.

S NOTE
MarkLogic Server caches negative lookups to avoid overloading the external Kerberos
or LDAP server. Successful logins are also cached. The cache can be cleared by
calling the sec:external-security-clear-cache function.

The following flowchart illustrates the logic used to determine how a MarkLogic user is authenticated
and authorized.

2023-08-21 14:49 Securing MarkLogic Server Page 148

MarkLogic 10 Overview of External Authentication

Security Authentication Workflow

No External

Security?

Internal
Security?

Return
Error

_ User is validated by Idap, saml,

Yes L
oauth, kerberos, or certificate

Locate User in
Security Database

External Idap | saml | cauth

Authorization?

Internal

Locate User by
External Names in
Security Database

Create Temporary
User

Password
Match?

Return
Error

Return
Success

No Return
Error

Return
Success

Yes

Return
Success

The possible external authorization configurations for accessing MarkLogic Server are shown in the
following table.

Authentication Authentication Scheme Authorization Description

Protocol Scheme

certificate certificate | Idap | saml The user is authenticated by a certificate and
application-level | the user’s groups are mapped to the MarkLogic
basic roles. The user does not need to exist on

MarkLogic. Instead, the MarkLogic server creates
a temporary user with the correct roles to access
MarkLogic.

2023-08-21 14:49 Securing MarkLogic Server Page 149

MarkLogic 10

Overview of External Authentication

Authentication
Protocol

Authentication Scheme

Authorization
Scheme

Description

certificate

certificate |
application-level |
basic

internal

The user is authenticated by a certificate. User
must exist in MarkLogic.

kerberos

kerberos-ticket

internal

The user is authenticated by Kerberos and a
Kerberos session ticket is used to authenticate the
user to access MarkLogic Server.

The user must exist in MarkLogic, where the

user’s “external name” matches the Kerberos
User Principal.

kerberos

application-level

internal

The user is authenticated by Kerberos and

a Kerberos session ticket is used at a time
determined by the App Server to authenticate the
user to access MarkLogic Server.

The user must exist in MarkLogic, where the
user’s “external name” matches the Kerberos
User Principal.

kerberos

basic

internal

The user is authenticated by Kerberos. No ticket
is exchanged between the client and the App
Server. Instead, the username and password are
passed. This configuration is used when the client
is not capable of ticket exchange and should

only be used over SSL connections because the
password is communicated as clear text.

The user must exist in MarkLogic, where the

user’s “external name” matches the Kerberos
User Principal.

kerberos

kerberos-ticket |
application-level |
basic

Idap

The user is authenticated by Kerberos and a
Kerberos session ticket is used to identify the
user to MarkLogic Server. MarkLogic extracts the
user ID from the ticket and sends it to the LDAP
directory.

MarkLogic uses the information returned by the
LDAP directory to create a temporary user with
the correct roles to access MarkLogic. The user
does not need to exist on MarkLogic.

Idap

certificate |
application-level |
basic

internal

The user is authenticated by LDAP. User must
exist in MarkLogic, where the user’s “external
name” matches the LDAP Distinguished Name

(DN).

Idap

certificate |
application-level |
basic

Idap | saml

The user is authenticated by LDAP or SAML and
the user’s groups are mapped to the MarkLogic
roles. The user does not need to exist on
MarkLogic. Instead, the MarkLogic server creates
a temporary user with the correct roles to access
MarkLogic.

saml

saml

saml

A SAML Identity Provider prompts the user to
login, if necessary, and sends the authentication
request back to MarkLogic Server.

2023-08-21 14:49

Securing MarkLogic Server

Page 150

MarkLogic 10 Creating an External Authentication Configuration Object

@ NOTE
When application-level authentication is enabled with Kerberos authentication, an
application can use the xdmp:gss-server-negotiate function to obtain a
username that can be passed to the xdmp: login function to log into MarkLogic
Server.

If running MarkLogic Server on Windows and using LDAP authentication to
authenticate users, the user name must include the domain name of the form:
userName@domainName.

13.3. Creating an External Authentication Configuration Object

This section describes how to create an external authentication configuration object in the Admin
Interface. You can also use the sec:create-external-security function to create an external
authentication configuration object. Once created, multiple App Servers can use the same external
authentication configuration object.

NOTE
If the authentication used in an appserver is Kerberos or SAML, only the first external
security configuration will be used.

1. Inthe Admin Interface, click Security in the left tree menu.
2. Click External Security.
3. Click the Create tab at the top of the External Security Summary window:

New External Security ok | | cancel

external security — An external authentication and authorization config.

external security name ldapconfig

External security name (unigue}
Required. You must supply a value for external-security-name.

description config for ldap
An object's description.

authentication ldap -
Authentication

cache timeout 300

The login cache timeout, in seconds.

authorization ldap -
An authorization scheme.

2023-08-21 14:49 Securing MarkLogic Server Page 151

MarkLogic 10 Creating an External Authentication Configuration Object

Field Description

external security name The name used to identify this External Security Configuration Object.

description The description of this External Authentication Configuration Object.

authentication The authentication protocol to use: certificate, kerberos, Idap, or saml. The configuration

details for LDAP and SAML are described below in Section 13.3.1, “LDAP
Authentication” [152] and Section 13.3.2, “SAML Authentication” [153].

cache timeout The login cache timeout, in seconds. When the timeout period is exceeded, the LDAP
server reauthenticates the user with MarkLogic Server.

authorization The authorization scheme: internal for authorization by MarkLogic Server, Idap for
authorization by an LDAP server, or saml for authorization by a SAML server.

13.3.1. LDAP Authentication

If you use LDAP authentication, set the fields described in this section.

Idap server — An LDAP server configuration.

Idap server uri idap:iidct mitest! local: 385
URI of the Idap server. Reguired if authentication or authorization is ldap.

Idap base DC=MLTEST1,DC=LOCAL
starting point for search. Required if authentication or autherization is ldap.

Idap attribute sAMAccountlame
ldap attribute for user lookup. Reguired if authentication or authorization is ldap.

Idap default user CM=Admin DC=MLTEST1, DC=LOCAL
ldap user uzed by MarkLogic server. Required if authentication iz kerberos and authorization is
ldap or kind methed iz simple.

Idap password snnuw

password of the default ldap user. Required if authentication is kerberos and authorization is
ldap or bind methed is simple.

confirm ldap password [

password of the default ldap user. Required if authentication is kerberos and authorization is
ldap or kind method is simple.

Idap bind method Simple -
ldap bind method.

Idap memberof atiribute

ldap attribute for group lookup. This iz optional. if it is not specified, "member0Of™ will be used
for search for the groups of a user.

Idap member attribute

idap attribute for group lookup. This is optional. if i is not specified, "member” will be used for
search for the group of a group.

NOTE

S The MarkLogic SSL App Server can work with SAN or Wild Card certificates. However,
the MarkLogic LDAP client will not accept or work with a SAN or Wildcard-based
certificate.

2023-08-21 14:49 Securing MarkLogic Server Page 152

MarkLogic 10

Creating an External Authentication Configuration Object

Field

Description

Idap server uri

If authorization is set to 1dap, then enter the URI for the LDAP server. Required if
authentication or authorization is 1dap.

Idap base

If authorization is set to 1dap, then enter the base DN for user lookup. Required if
authentication or authorization is Idap.

Idap attribute

If authorization is set to Idap, then enter the name of the attribute used to identify the user
on the LDAP server. Required if authentication or authorization is 1dap.

Idap default user

The LDAP default user. Required if authentication is kerberos and authorization is Idap or
bind method is simple.

If you specify an Idap-bind-method of simple, this must be a Distinguished Name (DN). If
you specify an Idap-bind-method of MD5, this must be the name of a user registered with
the LDAP

Idap passwordconfirm Idap
password

The password and confirmation password for the LDAP default user. Required if
authentication is kerberos and authorization is Idap or bind method is simple.

Idap bind method

The LDAP bind method to use. This can be either MD5, simple, or external. MD5
makes use of the DIGEST-MD5 authentication method. If the bind method is simple, then
the ldap default user must be a Distinguished Name (DN). If MD5, then the Idap
default user must be the name of a valid LDAP user.

When using a bind method of simple, the password is not encrypted, so it is
recommended you use secure Idaps (LDAP with SSL).

A bind method of external makes use of a certificate to authenticate with the LDAP
server. If the bind method is external, Idap-start-tls should be set to true.

Idap memberof attribute

The optional Idap attribute for group lookup. If not specified, memberOf is used for search
for the groups of a user.

Idap member attribute

The optional Idap attribute for group lookup. If not specified, member is used for search for
the group of a group.

Idap start tls

Whether or not to use start TLS request to the LDAP server. Set to true to use start
TLS request. If set to true, the LDAP server URI should start with 1dap:// instead of
ldaps://.

Idap certificate

The PEM encoded X509 certificate for MarkLogic server to connect the LDAP server using
mutual authentication. Required if bind method is external. Optional if bind method is
MD5 or simple.

Idap private key

The PEM encoded private key corresponding to the certificate. Required if bind method is
external. Optional if bind method is MD5 or simple.

Idap nested lookup

Whether or not to perform nested group lookup.

Idap remove domain

Whether or not to remove domain before matching with Idap-attribute.

13.3.2. SAML Authentication

If you use SAML authentication, set the fields described in this section.

2023-08-21 14:49 Securing MarkLogic Server Page 153

MarkLogic 10

Creating an External Authentication Configuration Object

saml server — An SAML zener configuration.

saml entity id

saml destination

saml issuer

saml assertion host

saml idp certificate
authority

saml sp certificate

saml sp private key

| markkogicsp |
SAML entity id. Reguired if suthorization iz SAML.

| https://=aml wamesnet. com: 2080/ auth/realms Marklogic/protocol'samil |
SAML destination.

| https://=aml wamnesnet. com: 2080 auth/realms MarkLogic |
SAML issuer.

| https:/imi1 . bocaldomain |
SAML zssertion host.

——BEGIN CERTIFICATE— A
MIICDCCARgA BAgIBADANBgkahkiGSwlBEAQOFADCERELMAKGA 1UELHMC DM cZ A BgNVEAH
AkNEMRwaw Gy DVOOKEBNNY X TGnaWhg UGILZy BEZW1 v MPOEGVRTWFy Al 221 BADANE
gahkiGEwIBACIFADCEBRELMAKGA 1 UEBHMC dXMacZ A BgNVEAGMAKNEMRww GgY DVROKEBNN
YHITEIaWHgUGZDAFBpbmeR GVizESMEAGA T UEAwaBNNYX i TEEnaWhg U GhZyBETW T v
MPOEGVRTW yA oy 220 BADANEgkohki G3wIEACIFADCERELMAKGAT UEEHMC D MxcZ A BgNV
BAGMAKNEMRwwGgY DVOOKEBNNY X TEEnaWigL GZ DAFBpbmcRGVbzESMEAGATUEAwaNE
gohkiGEwIBACIFADCEBRELMAKGA T UEEHMC dXMaoZ A BgNVEAGMAKNEM R GgY DVROKEENN
YHITGEInaWhgUGLEYEEZW vMPOEGVRTW yAloo Z2iil BADANEghghkiGIwIBARIFADCBHELM

Bl B 8 P LUK AT e 8 I B 1 T el e B DT B D™ 0 P D DTS e T D =i ey] D A D e,

The PEM encoded X509 cartificate authornty for SAML IDP.

——BEGIN CERTIFICATE— A
Wy Aoy 220 BADANEgkghkiGowlBAQOFADCBHELMAKGA | UELHMC EMxcZ A BgNVBAgMAK
NEMRwwGgY DVROKEENNY X hTEonaWhigU GLZ DA BpbmoR GVthzE SMBAGA T UE AwaNEgkah
KiGEwIBAQOFADCEHELMAKGA1UELHMCdXMrZ A EgNVBAGMAKNEM RwaGg Y DVROKEBNNTY
JITEEnaW kg UGILTy BERW 1 v MPOEGVRTW yAlow 226l BADANEghkahkiGHw0BAROFADCERELM
AkGATUEBHMC DMz A BgNVEAgMAKNEMRww Gy Y DVROKEBNNY X TGInaWhgUGLZDAFE ¥
pbmcRGVibzE SMEAGATUEAwaBNNYXIrTGInaWHgU GIuZyBEZW 1 v MPOEGVRTW ey Z2il
BADANBghahkiGHwlEACIFADCERELMAKMIICDCCAIZgAw BAg BADANBgkahkiGSwIEAQIFAD

The PEM encoded X508 cartificate for SAML SF.

——BEGIN PRIVATE KEY—-

AQOFADCBhELMAKGATUERHMC DM Z A BgNVEAgMAKMBMRww G DVOHEBM MY X TGEnaWhkig
UGuZyBEZW 1 v MPOEgVRTWFyAlsooy Z2lij| BADANBgkghkiGSwiIBALIFADCENELMAKGATUERHMCd
FhbecZAJBgNVBAGMAKNBMRwwGgY DV QOKEBNNY X TGEInaVWkigUGluZ DAtFBpbmeRGYtbe ESMBAG
ATUEARABNNYXNTEEnaWMgU GuZyBEZW1 v MPOEQYRTWFy Aoy Z21j| BADAM BghghliGowiBAL
—EMD PRIVATE KEY—

The PEM encoded private key for SAML 5P.

saml attribute names — A lizt of SAML stiribute names.

saml attribute name

) mare saml attribute name .

saml privilege attribute name |

SAML privilege attribute name.

| ok | |:unbelJ

Field

Description

saml entity id

SAML entity id (as a URL). Required if authorization is SAML. For details on creating and
inserting a SAML entity, see Section 13.4, “Defining and Inserting a SAML Entity” [155]

saml destination

The URL that identifies the Identity Provider to accept the authentication request.

saml issuer

The URL that identifies the Service Provider (MarkLogic Server).

saml assertion host

The URL that identifies the host making the assertion

2023-08-21 14:49

Securing MarkLogic Server Page 154

MarkLogic 10 Defining and Inserting a SAML Entity

Field Description

saml idp certificate The certificate used to validate the signature in the authentication request.

authority

saml sp certificate The certificate used to sign the authentication request.

saml sp private key The private key used to sign the authentication request.

saml attribute name One or more SAML attribute names. Optional when authorization is SAML. These names

will be requested as part of the attribute query and mapped as appropriate to internal
MarkLogic roles.

saml privilege attribute SAML privilege attribute name. Optional when authorization is SAML. If specified, the
name name will also be requested as part of the attribute query and mapped to MarkLogic
privileges.

When you have finished configuring MarkLogic Server for external security, click ok.

13.4. Defining and Inserting a SAML Entity

SAML authorization is done by means of a SAML entity stored in the MarkLogic Security database.

The SAML 2.0 specification provides a standard format for describing a SAML entity. The SAML
specification provides for a variety of elements that can be defined in an entity, but only the
AttributeAuthorityDescriptor elementis used by MarkLogic. The SAML spec is located at
this URL:

http://docs.oasis-open.org/security/saml/v2._0/saml-metadata-2.0-o0s.pdf

The SAML entity defines an entityID in the form of a URL. To make use of a SAML entity, specify
its entity ID URL in the “saml entity id” field in the external security configuration, as described in
Section 13.3, “Creating an External Authentication Configuration Object” [151].

MarkLogic only supports the SAML 2.0 SOAP binding over HTTP. If multiple AttributeService
elements are specified in the entity, one will be chosen at random. This allows support for multiple hosts
in a cluster to be specified when no load balancer is used.

S NOTE
The saml-entity-insert is only needed for SAML authorization without SAML
authentication (for example LDAP authentication and SAML authorization). This is not
a common use case. The common use case would be SAML authentication and SAML
authorization. There is no Admin Ul mapping for saml-entity-insert.

You do not need to use saml-entity-insert. To use SAML, you only need create-external -
security or to use the Admin Ul to configure it.

Use the sec:saml-entity-insert function to insert the SAML entity into the MarkLogic Security
database. For example, to insert a SAML entity, identified as http://example.com/example, that
uses an encoded certificate for authorization, enter:

2023-08-21 14:49 Securing MarkLogic Server Page 155

http://http://docs.oasis-open.org/security/saml/v2.0/saml-metadata-2.0-os.pdf

MarkLogic 10 Assigning an External Name to a User

xquery version "1.0-ml";
import module namespace sec = "http://marklogic.com/xdmp/security"
at ""/MarkLogic/security.xqy";
declare namespace md="'urn:oasis:names:tc:SAML:2_0:metadata";
declare namespace ds="http://www.w3.0rg/2000/09/xmldsig#";
sec:saml-entity-insert(
<md: EntityDescriptor entitylD="http://example.com/example'>
<nd: Attri but eAut hori tyDescri ptor
protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol">
<nmd: KeyDescri pt or >
<ds: Keyl nf 0>
<ds: X509Dat a>
<ds: X509Certificate>
M1 I1D+TCCAeGgAwW I BAg 1 JAIMAKEO079czMAOGCSqGS I b3DQEBCWUAMDWXE jAQBgNV
BAOMCUF jbWUgSW5 j L j EmMCQGA1UEAWWAQWNtZSBJIbmMu I EQWZXJIhdGIvbnMgRGly
ZWNOb3 1wHhcNMTcwMTASM j EOMDEOWhCNM j cwMTA3Mj EOMDEOW jASMR IWEAYDVQQK
DAIBY2111E1uYy4xJjAkBgNVBAMMHUOWCORpC iBNYW5hZ2VKIENSAXNOZX1gQWNj
ZXNzM1 1B 1 jANBgkghk i GOWOBAQEFAAOCAQ8AM I 1 BCgKCAQEAWU4iOu jPFrkltDel
XgN11B0/Xbcu6SEWNGCh3yGMWETgx1PnYDlueRuX 1 rZAHj8FFoKICJIwsARhcixM
1a2vDHOEKZPFGhbOshfONEt7glDflualava2x2jNXo5YUu i GDUhES50H3A0HSONZ
WOOT IMaCulvCTh5 IHNKUNQB2MWrNGebO 13Rx0OpghRp6HarTh1uOmQNLliyiQox+pi
67Wh+eZ1313RTQBv80avJFKHPT6JQKOrOVDXGDez/Vaj i UJswFNGZ2MgpVxqCDu3
1A+FdTV3TFp8XGYTPYCQgri50KC9cGMFXzDgl i XqJLR81AGbQT8YWsSCzTzpYLTVN
JIngN/Q1DAQABMAOGCSQGS 1 b3DQEBCWUAA4 1 CAQDPgcmLCI4kQFp15cFEKU10QguC
vICMjazDDAr86 1UDVJIkVFm3Ytkw/Qswl4ghZkbPUEhRF4SCo370SR3++sPmMu5SMR
gFtsU/ZUWGm6xXml rB1/bkK+wmUwrW3DCcZQLZGOTG400tXSX+gGlvip5swpBT 5T
BsxJ3Hu479R48FTMI joJ2gnVvZQ7aqnDgcZki FEskY6E7v431W1GEgccfOEJggnz
eRcTWFReYNy/FoKKFUPW5MFYLd6RHOyWxggJ3NvroqubxegVSQYJloJprZhhHx2H
NLZcBNYcgu2RgWNQOPdjswxn3P1rRjch9YjgzZy jWywQpX+aASpPT2mOONDYbkWK
V6YZmZbTmDDmwVFR4SK5GBO30xdZ2647STIwVsgN2qyKED1/P2qwSY1iN851PhXAh
WMEYHfMgPTP22LHyYfQa+ExN5hpD95az+ZBdx+1CT0/9fImQXvrmD1bNdbpfekBD
Y Iv+yyL3UDtKQcMhp8zumt2XYJINAzSMhLkAMe2P7/1+47F51XiGtrRuDVPyNzddB
VD2cQvB3JIvQ7YRmt6BIPFMtuGS Ix65d0FN7D3M8 I 5xtDa3XkmrrivcgOKi 7DRSzE
bUu4cwfg7mWFIFDKWNWEI zgen i 8658y L UEEgyFBUeW90V jR2caTUZcS 10bD2yvq7
010Z1zTIxNp1g99CCA==
</ds:X509Certificate
</ ds: X509Dat a>
</ ds: Keyl nf o>
</ nd: KeyDescri pt or >
<md: Attri buteService
Binding="urn:oasis:names:tc:SAML:2.0:bindings:SOAP"
Location="https://ML1:8005/SAML2/SOAP/AttributeQuery"/ >
</ md: Attri but eAut horityDescri ptor>
</ md: EntityDescriptor>

)

13.5. Assigning an External Name to a User

This section describes how to assign one or more external names to a user in the Admin Interface. You
can also use the sec:create-user or sec:user-set-external-names function to assign one
or more external names to a user. The external names are used to match the user with one or more
Distinguished Names in an LDAP server or User Principals in a Kerberos server.

1. Click Security in the left tree menu.

2. Click Users.
3. Select a user or create a new one by clicking the Create tab at the top of the User Summary
window.

4. Inthe User Configuration window, enter the external name for the user in the field in the External
Name section. You can associate multiple external names with the user by clicking More External
Name.

5. Click OK.

2023-08-21 14:49 Securing MarkLogic Server Page 156

MarkLogic 10 Assigning an External Name to a Role

user — A database user.

UsEr name

ldapu=zeri

User/login name (unigue}
description LDAP user

An object's description.
password fEERERERERERERERERE

Encrypted Paszword.

confirm password

Encrypted Passwaord.

external names — The external names specificalions.

external name

Mo Current External Name
[add] CN=TestUser 1.CH=UEEFE.EC=HL_EE_1.I:C=L|:I|:s1x|_|

more external names

13.6. Assigning an External Name to a Role

When LDAP authorization is used, the LDAP groups associated with the user are mapped to MarkLogic
roles. One or more groups can be associated with a single role. These LDAP groups are defined as
External Names in the Role Configuration Page.

This section describes how to assign one or more external names to a role in the Admin Interface. You
can also use the sec:create-role or sec:role-set-external-names function to assign one or
more external names to a role.

1. Click Security in the left tree menu.

2. Click the Roles.

3. Select a role or create a new one by clicking the Create tab at the top of the Role Summary
window.

4. Inthe Role Configuration window, enter the name of the LDAP group to be associated with the
role in the field in the External Name section. You can associate multiple LDAP groups with the role
by clicking More External Name.

5. Click OK.

2023-08-21 14:49 Securing MarkLogic Server Page 157

MarkLogic 10 Configuring an App Server for External Authentication

Role: app-user ok

role — A security role.

role name

app-user
The Role name (unigue}
description appservices app user role
An object’s description.
compartment

The compartment that this role is part of.

external names — The external names specifications.

external name

Mo Current External Mame

[add] appgroup

more external names

13.7. Configuring an App Server for External Authentication

This section describes how to configure an App Server for external authentication.

Click Groups in the left tree menu.
Click the group in which you want to create or configure the App Server (for example, Default).
Click App Servers on the left tree menu.

Select the Create HTTP tab to create a new App Server, or select an existing App Server from the
Summary page.

5. Inthe App Server Configuration page, scroll down to the authentication section and set the fields,
as described in the table below.

il NS

2023-08-21 14:49 Securing MarkLogic Server Page 158

MarkLogic 10

Setting Response Headers for HTTPS-Enabled App Servers

authentication

internal security

application-level -
The authentication scheme to use for this server

true @ false
Whether or not the security database is used for authentication and authorization.

external securities — Exfernal authenticalion and authonzation configurations.

default user

-none— =]

—noneg—

My-External-Security
OpsDirector-External-Security

LDAFusert -
The user used as the default user in application level authentication. Using the admin
user as the default useris equivalent to turning security off.

Field

Description

authentication

The authentication scheme: basic or application-level for LDAP authentication, kerberos-
ticket for Kerberos authentication, certificate for certificate authentication, or saml for SAML

authentication.

internal security

Determines whether or not authentication for the App Server is to be done internally by MarkLogic 1

Server.

external security

The name of the external authentication configuration object to use. For details on how to create an
external authentication configuration object, see Section 13.3, “Creating an External Authentication
Configuration Object” [151]. To set additional external authentication configuration objects, click on
More External Securities and select an additional configuration object from the pull-down menu.

K

NOTE

If you have configured an App Server with multiple external configuration objects
that use LDAP, the LDAP server specified by the first configuration object (the
object at the top of the list) is always used first. If this first LDAP server is
unresponsive, the second LDAP server will not be tried until the first LDAP
server exceeds the time-out period established by cache timeout setting.

default user

If you select application-level authentication, you will also need to specify a Default User.
Anyone accessing the HTTP server is automatically logged in as the Default User until the user logs in
explicitly. A Default User must be an internal user stored in the Security database.

13.8. Setting Response Headers for HTTPS-Enabled App

Servers

App Servers that use HTTPS do not set strict-transport-security in the response header by default.
MarkLogic has options to control HSTS (HTTP Strict-Transport-Security) headers.

NOTE

These options are only effective when the app server is configured with HTTPS.

2023-08-21 14:49

Securing MarkLogic Server Page 159

MarkLogic 10 Setting Response Headers for HTTPS-Enabled App Servers

The max age value can be set for the HSTS response headers. If the max age value for the HSTS
is set to 0 (over an HTTPS connection) it immediately expires the Strict-Transport-Security header,
allowing access via HTTP. The typical value used for HSTS is one year, expressed as 31536000.

These options can be set in three different ways.

13.8.1. Using the MarkLogic Admin Interface

In the Admin Interface, click App Servers in the left nav bar. Then click App-Services to open the
configuration options. Scroll to the bottom of the screen to the “enable hsts header” option specify
whether to include HSTS header in response if the app server is configured to use HTTPS.

enable hsts header @true O i
Whether or not to include HSTS header in HTTPS response.

hsts header max age 31536000

The max-age field of HSTS header

* -- requires restart of one or more hosts

Select true to enable the option. Set the maximum age for the HSTS in the next field. Click OK to
enable the HSTS header when you are done.

13.8.2. Using Admin Functions

The Admin functions appserver-get-enable-hsts-header, appserver-get-hsts-header-
max-age, appserver-set-enable-hsts-header, and appserver-set-hsts-header-max-
age can be used to enable and configure HSTS headers.

Use appserver-get-enable-hsts-header to get information about the HSTS header.

xquery version "1.0-ml";

import module namespace admin = "http://marklogic.com/xdmp/admin"’
at ""/MarkLogic/admin.xqy"';

let $config := admin:get-configuration()

let $groupid := admin:group-get-id($config, "Default'™)

return

admin:appserver-get-enable-hsts-header($config,
admin:appserver-get-id($config, $groupid, ‘test'))

Use appserver-get-hsts-header-max-age to get information about the current HSTS header
max age amount.

xquery version "1.0-ml";

import module namespace admin = "http://marklogic.com/xdmp/admin"’
at "/MarkLogic/admin.xqy";

let $config := admin:get-configuration()

let $groupid := admin:group-get-id($config, "Default')

return

admin:appserver-get-hsts-header-max-age($config,
admin:appserver-get-id($config, $groupid, "test™))

Use appserver-set-enable-hsts-header to enable HSTS header.

2023-08-21 14:49 Securing MarkLogic Server Page 160

MarkLogic 10 Creating a Kerberos Keytab File

xquery version "1.0-ml";

import module namespace admin = "http://marklogic.com/xdmp/admin®’
at ""/MarkLogic/admin._xqy";

let $config := admin:get-configuration()

let $groupid := admin:group-get-id($config, '"Default™)

return

admin:appserver-set-enable-hsts-header($config,
admin:appserver-get-id($config, $groupid, "test™),true())

Use appserver-set-hsts-header-max-age to set the HSTS max age amount.

xquery version "1.0-ml";

import module namespace admin = "http://marklogic.com/xdmp/admin"’
at ""/MarkLogic/admin.xqy";

let $config := admin:get-configuration()

let $groupid := admin:group-get-id($config, "Default'™)

return

admin:appserver-set-hsts-header-max-age($config,
admin:appserver-get-id($config, $groupid, "test'),31536000)

The max age amount is being set to 31536000 or one year.

13.8.3. Using REST APIs
These REST APIs can be used to set HSTS headers.

This REST call will get the current properties.

curl -X GET --digest -u admin:admin \
"http://1ocalhost:8002/manage/v2/servers/test/properties?group-id=Default”

This REST call enables the HSTS header and sets the HSTS max age.

curl -X PUT --digest -u admin:admin -H "Content-type: application/json"\
-d "{"enable-hsts-header':true, "hsts-header-max-age':31536000}"\
"http://1ocalhost:8002/manage/v2/servers/test/properties?group-id=Default"

The max age amount is being set to 31,536,000 or one year.

13.9. Creating a Kerberos Keytab File

If you are configured for Kerberos authentication, then you must create a services.keytab file and
place it in the MarkLogic data directory.

NOTE

The name of the generated keytab file must be services.keytab.

13.9.1. Creating a Keytab File on Windows

On Windows platforms, the services.keytab file is created using Active Directory Domain Services
(AD DS) on a Windows server.

2023-08-21 14:49 Securing MarkLogic Server Page 161

MarkLogic 10 External Certificate User Authentication

@ NOTE
If you are using the MD5 bind method and Active Directory Domain Services (AD DS)
on a computer that is running Windows Server 2008 or Windows Server 2008 R2,
be sure that you have installed the hot fix described in htip://support.microsoft.com/kb/
975697.

To create a services.keytab file, do the following:

1. Using Active Directory Domain Services on the Windows server, create a “user” with the same
name as the MarkLogic Server hostname. For example, if the MarkLogic Server is named
mysrvr.marklogic.com, create a user with the name mysrvr_marklogic.com.

2. Create a keytab file with the principal HTTP/hostname using ktpass command of the form:

ktpass princ HTTP/<host name> mapuser <user-account> pass <password>
out <fil enane>

For example, to create a keytab file for the host named mysrvr._marklogic.com, do the
following:

ktpass princ HTTP/mysrvr._.marklogic.com@MLTEST1.LOCAL
mapuser mysrvr.marklogic.com@MLTEST1.LOCAL pass mysecret
out services.keytab

3. Copy the services.keytab from the Windows server to the MarkLogic data directory on your
MarkLogic Server.

13.9.2. Creating a Keytab File on Linux

On Linux platforms, the services.keytab file is created as follows:

1. In a shell window, use kadmin. local to start the Kerberos administration command-line tool.
2. Use the addprinc command to add the principal to Kerberos.
3. Use the ktadd command to generate the services.keytab file for the principal.
For example, to create a services.keytab file for the host named mysrvr._marklogic.com,
do the following:

$ kadmin.local
> addprinc -randkey HTTP/mysrvr._.marklogic.com
> ktadd -k services.keytab HTTP/mysrvr.marklogic.com

4. Copy the services.keytab from the Linux Kerberos server to the MarkLogic data directory on
your MarkLogic Server.

13.10. External Certificate User Authentication

MarkLogic 9 includes certificate-based user authentication, which allows users to log into MarkLogic
Server without being required to enter a user name/password. Previously certificates were only utilized
to restrict client access to MarkLogic Server with the Digest/Basic User Authentication Scheme.
Certificate-based user authentication configuration can be achieved based user configurations using
either an internal user or external name.

13.10.1. Certificate Authentication Based on Internal User vs External Name

The difference between authentication based on an internal user or external name lies in the existence
of the Certificate CN field-based user (demoUser1 in the following example) in the MarkLogic Security
Database (internal user) versus if the user retrieved from Certificate Subject field (the whole Subject
field as DN) is mapped as external name value in any existing user.

2023-08-21 14:49 Securing MarkLogic Server Page 162

http://support.microsoft.com/kb/975697
http://support.microsoft.com/kb/975697

MarkLogic 10 External Certificate User Authentication

User Certificate Examples
Here are a few common examples, shown for clarity.

For the examples, the certificate presented by the App Server User (demoUser1) is the following.

$ openssl x509 -in UserCert.pem -text -noout
Certificate:
Data:
Version: 1 (0x0)
Serial Number: 7 (0x7)
Signature Algorithm: shalWithRSAEncryption
Issuer: C=US, ST=NY, L=New York, O=MarkLogic Corporation, OU=Engineering,
CN=Mar kLogi ¢ DenpCA Validity
Not Before: Jul 11 02:58:24 2017 GMT
Not After : Aug 27 02:58:24 2019 GMT
Subject: C=US, ST=NJ, L=Princeton, O=MarkLogic Corporation, OU=Engineering,
CN=denoUser 1 Subject Public Key Info:
Public Key Algorithm: rsaEncryption
Public-Key: (1024 bit)
Modulus:
Exponent: 65537 (0x10001)
Signature Algorithm: shalWithRSAEncryption

13.10.2. CA Certificate (User Cert Signer) Import from Admin Interface

To allow MarkLogic Server to accept the certificate presented by a user, MarkLogic Server needs a
Certificate Authority (CA) to sign the user certificate installed into MarkLogic. You can install a CA
Certificate (below) to be used to sign demoUser1 Cert through the Admin Interface.

Click Configure in the left tree menu of the Admin Admin Interface, then click Security to expand the
options. Click Certificate Authorities, and then click the Import tab.

Paste this text for the trusted certificate into the field:

$ openssl x509 -in CACert.pem -text -noout
Certificate:
Data:
Version: 3 (0x2)
Serial Number: 9774683164744115905 (0x87a6a68cc29066cl)
Signature Algorithm: sha256WithRSAEncryption
| ssuer: C=US, ST=NY, L=New York, O=MarklLogic Corporation, OU=Engi neering
CN=Mar kLogi ¢ DenpCA Validity
Not Before: Jul 11 02:53:18 2017 GMT
Not After : Jul 6 02:53:18 2037 GMT
Subj ect: C=US, ST=NY, L=New York, O=MarkLogic Corporation, OU=Engi neering
CN=Mar kLogi ¢ DenpCA
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
Public-Key: (4096 bit)
Modulus:
Exponent: 65537 (0x10001)
X509v3 extensions:
X509v3 Subject Key ldentifier:
D9:45:B9:9A:DC:93:7B:DB:47:07:C6:96:63:57:13:A7:A8:F1:D0:C8
X509v3 Authority Key ldentifier:
keyid:D9:45:B9:9A:DC:93:7B:DB:47:07:C6:96:63:57:13:A7:A8:F1:D0:C8
X509v3 Basic Constraints: critical
CA:TRUE
X509v3 Key Usage: critical
Digital Signature, Certificate Sign, CRL Sign
Signature Algorithm: sha256WithRSAEncryption

2023-08-21 14:49 Securing MarkLogic Server Page 163

MarkLogic 10 External Certificate User Authentication

13.10.3. CA Certificate Import into MarkLogic from Query Console
You can also import the Certificate Authority using an XQuery call (pki : insert-trusted-
certificates) to load the Trusted CA into MarkLogic.

This sample Query Console code demonstrates this process.

xquery version "1.0-ml";
import module namespace pki = "http://marklogic.com/xdmp/pki"*
at ""/MarkLogic/pki.xqy";

pki:insert-trusted-certificates(
xdmp:document-get(*'/OurCertificatelLocation/DemolLabCA.pem",
<options xmlns="xdmp:document-get''>
<f or mat >text</f or mat >
</ opti ons>)

)

Be sure that this query is executed against the Security database. (The query is
Import_Trusted_CA.xqy hosted by GitHub.)

13.10.4. Certificate Template & Template CA Import into Client (Browser/SSL
Client)
To enable the SSL App Server, do either of the following:

» Create a Certificate Template to utilize a Self-Signed Certificate.
 Import a pre-signed Certificate into MarkLogic.

In both of the above cases, you will need to import the Certificate Authority used to sign the certificate
used by MarkLogic SSL AppServer into Client Browser/SSL. For example:

 Importing a Self Signed Certificate Authority into Windows

Once template is created, you can link your Template with your App Server to enable the SSL-based
App Server.

13.10.5. Certificate CN as Internal User vs External Name-Based Internal User

Difference between the two options lies in if the Certificate CN field User (demoUser1 in our example)
exists in MarkLogic Security Database as an internal user verses if the user retrieved from the
Certificate Subject field is mapped as an external name to any existing user.

Certificate CN Field Value as MarkLogic Security Database Internal User

Follow these steps to configure Certificate-Based User Authentication for the user (demoUser1l) as a
MarkLogic internal user:

1. Create the user demoUser1 with the necessary roles in the MarkLogic Security database (Internal
User).

2023-08-21 14:49 Securing MarkLogic Server Page 164

MarkLogic 10 External Certificate User Authentication

User: demolser oK _ cancel
user - A dalabase usar. dlelete
LERGT NAme darmallsart
Usarflogin name [uniguee)
description Usar Cart CN Fiald as Intemal Usar

An object's descriplion.

confirm password 0 ccccessscesssssses

axternal names — The exfernal names specifications.

extarnal name

o Current External Mame

[add]

2. Onthe AppServer page, set the authentication schema to “Certificate” with Internal Security to set
to “true”. Unless you want to have some users authenticated as an External User as well, leave
External Security object to “none”.

authentication cerificate i
The authentication scheme to use for this server

internal security Otre false

Whether or not the security database is used for authentication and
authorization.

external securities — Exfernal authentication and authorization configurations.

~one-- &

More External Securities

3. The AppServer will also select the CA that will be used to sign Client/User Certificate as accepted
Certificate Authorities (See section CA Certificate earlier for example).

2023-08-21 14:49 Securing MarkLogic Server Page 165

MarkLogic 10 External Certificate User Authentication

Hids

Amarica Online Inc. (Z)
Baltimors (1)
DamoOrg (1)
Dautache Talakam AG (1)
DigiCart Inc (3}
Digital Sigrnature Trust (1)
Ciigltal Signatures Trust So. (3)
Entrust, Ina. (1)
Entrust.net (1)
Equifax {1}
Equifax Securs (1)

ifax Secure Inc. ()
GeoTrust Ino. (7)
SoDaddy.com, nae. (1)
GTE Coarparatian (1)
Japan Coertification Services, nc, (1)
Japanese Gowesromant {13
Manrk Loglo (1)
MarkLogie Corparation (1)

e = us
8T = MY
L = Py Work

© = MarkLogic Corporation
O = Enginassring
CH = MarkLogie Dhmalh,

HMatwark Salutions L.L.C, (1)
REA Socurity Inc (1)

SECOM Trust Systems GO, LTD, (2)
BECOM Trust.rast (1)
SscuraTrust Conpormtion (2)
Bwinseam (1}

BwinaSign A (3}

Thawts Consulting oo (2}
thanwite, Inc. (3)

Tha Go Daddy Group, oo, (13
VariBign, lne. (13)

VISR (1)

Walls Fargo (1)

Walls Fargo WellsSecure (1)

Once configured, accessing the App Server with a browser the has the User Certificate (demoUser1l)
installed will be able to log into MarkLogic with the internal demoUser1.

NOTE

You will also need to assign the necessary roles to the internal user to be able to
access resources as needed.

User Certificate Subject Field Value as External Name for Internal User

Follow these steps to configure certificate-based user authentication for demoUser1 as a MarkLogic
external name for the internal user “newUser1”.

1. Create a user named “newUser1” with the necessary roles in MarkLogic Security database
(Internal User), and configure the User Certificate Subject field as External Name to User.

2023-08-21 14:49 Securing MarkLogic Server Page 166

MarkLogic 10 External Certificate User Authentication

User: newlser ok | | cancel |
user — A dalabase user delete |
A A narwrliseri

Usarnfogin nami (unigua)

descriplion Ugar Conl Subject as Extamal Name
An object’s description,

pagsword 0000 sccesssssssssssssss
Encrypld Passwond,

confirm password ccceessseressas
Encrypled Password,

external names - The external names spocificalions,

aexternal name
[Keep]
C=US 5T =M L=Princeton, O=MarkLoglc Corporation, OU=Enginesering CN=demolsori

2. Create an external security object with certificate-based authentication.

External Security:

Demo_External_Certificate_Object = —_—

external security - An external authentication and authonzation config. delete

external security name Dermo_Extemal_Cerificate_Object
External security name {unique)

description Cartificata Auth External Ses Object
An object’s description.
authentication cartificate %
Authentication
cache timeout 300

The login cache limeout, in Seconds,

authorization Intarnal &
An authorization scharm,

3. For External Name (Cert Subject field) based linkage to Internal User, the App Server needs to
point to our External Security Object.

2023-08-21 14:49 Securing MarkLogic Server Page 167

MarkLogic 10 Example External Authorization Configurations

1S WEIAHIE WA RIS Y Y LS 6,

authentication hasic A
The authentication scheme o use for this server

internal security Oie false

Whether or not the security database is used for authentication and
authorization.

external securities — Extemal authentication and authorization configurations.

Demo_Extemal_Certificate Object &

More External Securities

13.11. Example External Authorization Configurations

This section provides an example of how Kerberos and LDAP users and groups might be mapped to
MarkLogic users and roles.

On Active Directory, there is a Kerberos user and an LDAP user assigned to an LDAP group:

» Kerberos Principal: Jsmith@MLTEST1.LOCAL
» LDAP DN: CN=John Smith,CN=Users,DC=MLTEST1,DC=LOCAL
* LDAP memberOf: CN=TestGroup Admin,CN=Users,DC=MLTEST1,DC=LOCAL

On MarkLogic Server, the two users and the Idaprolel role are assigned external names that map
them to the above users and LDAP group.

Kerberos User:

» User name: krbuserl
» External names: jsmith@MLTEST1.LOCAL

LDAP User:

* User name: ldapuserl
» External names: CN=John Smith,CN=Users,DC=MLTEST1,DC=LOCAL

Role:

* Role name: Idaprolel
» External names: CN=TestGroup Admin,CN=Users,DC=MLTEST1,DC=LOCAL

After authentication, the xdmp:get-current-user function returns a different user name, depending

on the external authorization configuration. The possible configurations and returned name is shown in
the following table.

2023-08-21 14:49 Securing MarkLogic Server Page 168

MarkLogic 10

Kerberos Authentication Using xdmp:http-* Functions

AuthenticationPr
otocol

AuthorizationSc
heme

Name Returned

kerberos internal krbuserl

kerberos Idap JsSmith@VLTEST1.LOCAL(TEMP user with role Idaprolel)
Idap internal Idapuseril

Idap Idap Jsmith (TEMP user with role Idaprolel)

13.12. Kerberos Authentication Using xdmp:http-* Functions

Kerberos authentication is supported by the xdmp - http-get, xdmp:http-post, xdmp : http-put,
and xdmp: http-delete functions with the negotiate authentication option. When negotiate is
specified, the username and password are not used. Instead, the server authenticates with the keytab
file identified by an environment variable. This effectively does a kinit operation with the keytab file
and then starts the MarkLogic server.

To use this feature, you must set the following environment variables:

Environment Variable Value
MARKLOGIC_KEYTAB
MARKLOGIC_PRINCIPAL

Path to the Kerberos client keytab file.

Kerberos Principal.

For example, to authenticate xdmp - http-get for Kerberos, your function would look like the following.

XQuery:

xdmp:http-get("'http://atsoi-z620.marklogic.com:8008/ticket.xqy",
<options xmlns="xdmp:http">

<aut henti cati on method="negotiate">

</ aut henti cati on>
</ opti ons>)

JavaScript:

xdmp.httpGet("'http://atsoi-z620.marklogic.com:8008/ticket.xqy",
{ "authentication”: { "method" : "negotiate" } })

The xdmp:http-get, xdmp:http-post, xdmp:http-put, and xdmp:http-delete functions
include a kerberos-ticket-forwarding option to enable the use of a user credential instead of
MARKLOGIC_PRINCIPAL.

For example, to forward the ticket (if the user ticket is forwardable), do the following.

XQuery:

xdmp:http-get(“http://myhost.com:8005/index.xqy”,
<options xmlns="xdmp:http">
<aut henti cati on method="negotiate">
</ aut henti cati on>
<ker beros-ticket-forwardi ng>{"optional”}
</ ker beros-ticket-forwardi ng>
</ opti ons>)

JavaScript:
xdmp:httpGet(“http://myhost.com:8005/index.xqy”,
{
"authentication': {"method"™ : "negotiate'},
""kerberosTicketForwarding': ‘“optional”
b

2023-08-21 14:49 Securing MarkLogic Server Page 169

MarkLogic 10 Kerberos Authentication for Secured HDFS

The xdmp:http-get, xdmp:http-post, xdmp:http-put, and xdmp:http-delete functions also
have a proxy option to support proxy and proxy tunneling. When an HTTP or HTTPS request is sent to
proxy server, the proxy server will forward the request to the destination.

For example, to forward requests to a proxy server, named http://proxy.marklogic.com:8080,
do the following.

XQuery:

xdmp:http-get("'http://targethost._marklogic.com/index.html",
<options xmIns="xdmp:http">
<pr oxy>http://proxy.marklogic.com:8080</ pr oxy>
</ opti ons>)

JavaScript:

xdmp.httpGet("'http://targethost.marklogic.com/index.html",
{proxy:"http://proxy.marklogic.com:8080"})

13.13. Kerberos Authentication for Secured HDFS

MarkLogic can use Kerberos Secured HDFS as a file system on Linux platforms. MarkLogic Server
acts as a client to Kerberos Secured HDFS and should have its own unique identity, so the credentials
provided to MarkLogic Server should be different from the Kerberos credentials of other MarkLogic
client applications.

MarkLogic Server accesses Kerberos Secured HDFS using the keytab file and principal. To configure
Kerberos authentication to Secured HDFS, set the following environment variables in your /etc/
marklogic.conf file;

Environment Variable Value
MARKLOGIC_KEYTAB Path to the Kerberos client keytab file.
MARKLOGIC_PRINCIPAL Kerberos Principal to be authenticated.

E NOTE
When using rolling upgrades, deploy your credential keytab files after the cluster has
been fully upgraded to MarkLogic Server 9. Otherwise the behavior of accessing
secure HDFS will be undefined.

2023-08-21 14:49 Securing MarkLogic Server Page 170

MarkLogic 10 Encryption at Rest

14. Encryption at Rest

Encryption at rest protects your data on media - which is “data at rest” as opposed to data moving
across a communications channel, otherwise known as “data in motion.” Increasing security risks and
compliance requirements sometimes mandate the use of encryption at rest to prevent unauthorized
access to data on disk.

S NOTE
To use encryption at rest with an external key management system (KMS), an
Advanced Security License key that includes this feature is required. For details on
purchasing a license key for the Advanced Security features, contact your MarkLogic
sales representative. See Section 1.1, “Licensing” [8] for more information.

Encryption at rest can be configured to encrypt data, log files, and configuration files separately.
Encryption is only applied to newly created files once encryption at rest is enabled, and does not apply
to existing files without further action by the user. For existing data, a merge or re-index will trigger
encryption of data, a configuration change will trigger encryption of configuration files, and log rotation
will initiate log encryption.

14.1. Licensing

The use of an external Key Management System (KMS) or keystore with encryption at rest requires an
Advanced Security License, in addition to the regular license. See Section 1.1, “Licensing” [8] for more
details.

14.2. Terms and Definitions

The following terms and definitions are associated with encryption at rest.

Term Definition

Encryption at rest Encryption of data that is stored on digital media

KMS Key Management System

wallet The PKCS #11 secured wallet provided and managed by MarkLogic, that functions as the
default standalone KMS

KEK A Key Encryption Key used to encrypt or ‘wrap’ another encryption key

keystore Repository for crytographic keys in the PKCS #11 secured wallet or any external KMS that is
KMIP-server conformant

KMIP Key Management Interoperability Protocol (KMIP specification) - governed by OASIS
standards body. There are multiple versions of KMIP currently available. MarkLogic
Encryption supports 1.2

PKCS #11 One of the Public-Key Cryptography Standards, and also the programming interface to create
and manipulate cryptographic tokens. See the OASIS PKCS TC for details

MKEK Master Key Encryption Key, resides in the keystore, and is used to generate the CKEK, which
is enveloped (encrypted) with the MKEK

CKEK Cluster Key Encryption Key, resides in the keystore and is used to encrypt the data (CDKEK),
configuration(CCKEK), and log (CLKEK) encryption keys

CDKEK Cluster Data Key Encryption Key, used to directly encrypt (wrap) the object key encryption
keys (OKEY) for stands, forest journals, and large files

CCKEK Cluster Configuration Key Encryption Key, used to encrypt (wrap) the object key encryption
keys (OKEY) for configuration files

2023-08-21 14:49

Securing MarkLogic Server Page 171

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=kmip
https://www.oasis-open.org/committees/pkcs11/

MarkLogic 10

Understanding Encryption at Rest

Term Definition

CLKEK Cluster Log Key Encryption Key, used to encrypt (wrap) the object key encryption keys
(OKEY) for log files

OKEY Object Encryption Key, otherwise known as the data object encryption key, a symmetric key
used to directly encrypt objects like stands, forest journals, large files, configuration files, or
log files

BKEK Backup Key Encryption Key, used to encrypt backups, both full and incremental. The BKEK is
a locally generated backup KEK, that is used to encrypt all files in the backup. The BKEK is
encrypted with the CDKEY and the BDKEY.

BDKEK Backup Database Key, (alternative) only applicable to external KMS configurations. It is used
to encrypt a backup in addition to the CDKEK.

HSM Hardware Security Module or other hardware device is a physical computing device that
safeguards and manages digital key materials

Key strength The size of key in bits. Usually the more bits, the stronger the key and more difficult to break;

for example 128-bits, 256 bits, or 512-bits, and so on

Key rotation

The process of aging out and replacing encryption keys over time

14.3. Understanding Encryption at Rest

Encryption at rest enables you to transparently and selectively encrypt your data residing on disk
(locally or in the cloud) in MarkLogic clusters. You can set your options at the cluster level to encrypt
data on all the hosts in that cluster.

Three types of data can be encrypted:

» User data - data ingested into MarkLogic databases, along with derived data such as indexes, user
dictionaries, journals, backups, and so on

+ Configuration files - all configuration files generated by MarkLogic (for example, whenever a change
is made to the configuration file)

» Log files - all log files generated by MarkLogic, such as error logs, access logs, service dumps, server
error logs, logs for each application server, and the task server logs

There are both MarkLogic Application Server logs and MarkLogic Server logs; both types of logs will be
encrypted as part of log encryption.

K

If you are using the Default Conversion Option described in The Default Conversion
Option in the Content Processing Framework Guide. Note that the MarkLogic
Converters package may generate temporary files, which are not supported by
encryption at rest.

These types of data can each be encrypted separately. You can configure encryption for databases
individually, or at the cluster level. Encryption at rest is “off” by default. To use encryption at rest, you
need to configure and enable encryption for your database(s), configuration files, and/or log files.

K

2023-08-21 14:49

To access unencrypted forest data, MarkLogic normally uses memory-mapped files.
When files are encrypted, MarkLogic instead decrypts them to anonymous memory.
As a result, encrypted MarkLogic forests use more anonymous memory and less
file-mapped memory than unencrypted forests

Securing MarkLogic Server Page 172

https://docs.marklogic.com/guide/cpf/default#
https://docs.marklogic.com/guide/cpf/default#

MarkLogic 10 Keystores - PKCS #11 Secured Wallet or External KMS

Encryption at rest provides data confidentiality, but not authentication of identity or access control
(permissions). See Section 4, “Authenticating Users” [24] and Section 3, “Protecting Documents” [17]
for information about authentication and other forms of security in MarkLogic Server.

“L‘ WARNING

If you cannot access your PKCS #11 secured wallet (or external KMS if you are
using one), or lose your encryption keys, you will not be able to decrypt any

of your encrypted data. There is no “mechanism” to recover the encrypted data.
We recommend that you backup your encryption keys in a secure location. See
Section 14.11.1, “Backup and Restore” [210] for more details.

14.4. Keystores - PKCS #11 Secured Wallet or External KMS

A keystore is a secure location where the actual encryption keys used to encrypt data are stored. The
keystore for encryption at rest is a key management system (KMS). This keystore can be either the
MarkLogic embedded PKCS #11 secured wallet, an external KMS that conforms to the KMIP-standard
interface, or the native AWS KMS (Amazon Web Services Key Management System). The embedded
keystore is installed by default when you install MarkLogic 9.0-x or later.

The MarkLogic embedded wallet uses a standard PKCS #11 protocol, using the PKCS #11 APIs. The
wallet or another KMS, must be available during the MarkLogic startup process (or be bootstrapped
from MarkLogic during start-up). You can also use any KMIP-compliant external keystore with
MarkLogic or the native AWS KMS.

To configure an external KMS you will need the following information for your cluster:

* Host name

* Port number

* Client certificate
» Server certificate

If you are using the native AWS KMS, you will not need the Client certificate or the Server certificate.
You will need the other information.

NOTE

If you plan to use an external key management system, configure the external KMS
first, and then turn on encryption in the MarkLogic server.

For details, see Section 14.9, “Configuring an External Keystore” [193].

14.5. Encryption Key Hierarchy Overview

The following section provides an overview of the encryption key hierarchy used by MarkLogic
encryption at rest to secure data. Keys in the encryption hierarchy wrap (or encrypt) those keys below
them in the hierarchy. Three possible configurations of the encryption key hierarchy are described. The
first is an idealized key hierarchy that provides a generic example. The second is an embedded KMS
(the PKCS #11 secured wallet) configuration, and the third shows an external keystore management
system (KMS) configuration.

2023-08-21 14:49 Securing MarkLogic Server Page 173

MarkLogic 10 Encryption Key Hierarchy Overview

You do not need to completely understand the details of the key hierarchy to use the encryption feature,
but this section will help to understand the general concepts involved.

Security Encryption

Y Y \
Per Object Per Object Per Object Per Per
Encryption Key Encryption Key Encryption Key Configuration Log File
(OKEY) (OKEY) (OKEY) File (OKEY) (OKEY)
Object:= Object:= Object:=
[Stand Files] [Forest Journals] [Stand Files]

These keys are generated per file by the MarkLogic Server, encrypted
with the keys from the KMS, and stored encrypted as headers in each file.

The keystore contains the Master Key Encryption Key (MKEK). The keystore generates the Cluster Key
Encryption Key (CKEK), which is enveloped (encrypted) with or derived from the Master Key Encryption
Key. Both the Master Key Encryption Key and the Cluster Key Encryption Key reside in the keystore
(key management system or KMS). These keys never leave the keystore and MarkLogic Server has no
knowledge or control over these keys. The keys are referenced from the keystore by their key IDs.

The KMS can be either the internal keystore provided by MarkLogic or an external KMIP-compliant
KMS; the same mechanism is used by both types of keystores. The configuration happens at the
cluster level because there is one keystore configuration per cluster. The encryption feature is fully
compliant with the KMIP standard and the Amazon KMS.

The external KMS provides even higher security. The key IDs are provided by the KMS and returned

through a TLS tunnel after the MarkLogic-generated keys have been sent to the KMS and wrapped
(encrypted). The actual encryption keys never leave the KMS.

2023-08-21 14:49 Securing MarkLogic Server Page 174

MarkLogic 10 Encryption Key Hierarchy Overview

There are multiple levels to the key hierarchy, each level wrapping (encrypting) the level below it.
The KMS generates the Cluster Level Data Encryption Keys for data (CDKEK), configuration files
(CCKEK), and log files (CLKEK). The corresponding key (CDKEK, CCKEK, or CLKEY) is used to
encrypt (wrap) all the Object Encryption Keys (OKEY) generated by MarkLogic Server for each file, so
that an encryption key protects each file, no matter what category (data, configuration files, logs).

The Object Encryption Keys (OKEY) are randomly generated per file (for stands, journals, config files,
and log files, etc.) wrapped (encrypted) with the corresponding keys (CDKEK, CCKEK, or CLKEK). So
an encryption key protects each file within a category (data, configuration files, logs).

For example, the Master Key Encryption Key (MKEK) wraps (encrypts) the Cluster Key Encryption
Keys (CKEK), which in turn wraps (encrypts) the Data Key Encryption Key (CDKEK). The Data Key
Encryption Key encrypts the Object Encryption Key (OKEY) for a file such as a stand. The keys at the
bottom of the diagram are encrypted as headers in each file, wrapped (encrypted) with each of the keys
above them in the hierarchy. Each of the three categories of objects (data, configuration files, and logs)
has its own key encryption hierarchy.

Database backups are encrypted using a generated backup key (BKEK). This key is then encrypted
with the cluster key (CDKEK). See Section 14.11.1, “Backup and Restore” [210] for more information
about backups.

14.5.1. Embedded KMS Key Hierarchy

When you use the embedded PKCS #11 secured wallet provided with MarkLogic Server, the
recommended key hierarchy would be similar to this illustration:

Embedded KMS

/ MarkLogic Server \

PKCS #11 Secured Wallet

Encryption Key IDs

\ Y \
Per Object Per Object Per Object Per Per
Encryption Key Encryption Key Encryption Key Configuration Log File
(OKEY) (OKEY) (OKEY) File (CKEK) (ELKEK)
Object:= Object:= Object:=
[Stand Files] [Forest Journals] [Stand Files]

—_—i e e

These keys are generated per file by the MarkLogic Server, encrypted
with the keys from the KMS, and stored encrypted as headers in each file.

2023-08-21 14:49 Securing MarkLogic Server Page 175

MarkLogic 10 Encryption Key Hierarchy Overview

MarkLogic Server generates the Data Key Encryption Key (CDKEK), the Configuration Key Encryption
key (CCKEK) and the Logs Key Encryption Key (CLKEK). The Data Key Encryption Key is then used
to wrap the OKEY's for the database objects (journals, data files, etc.). These keys are stored in the
wallet (internal KMS). The key IDs are generated in the MarkLogic Server for encryption and decryption
by the KMS (the PKCS #11 secured wallet in this case). The configuration happens at the cluster level
because there is one keystore per cluster.

The individual Object Encryption Keys (OKEYs) are then randomly generated and used to directly
encrypt individual files (journals, config files, and log files, etc.). These keys (the OKEYs) are wrapped
(encrypted) with the corresponding KEK for data, config, and logs. A unique key protects (encrypts)
each file. The keys at the object levels are wrapped (encrypted by the keys above them) for each
category.

For example, the Data Key Encryption Key (CDKEK) wraps (encrypts) the Object Encryption Key
(OKEY) for a file such as a journal. The keys at the bottom of the diagram are encrypted (wrapped) by
all the keys above them in the hierarchy, and then placed in the header for each file. In the case of the
embedded KMS, there is only one CDKEK for the entire cluster - all databases in the cluster will use
that key. When using the embedded KMS, it is not possible to use “per database” keys for encryption.

Database backups are encrypted using the locally generated backup key (BKEK) that is used to encrypt
all of the files in the backup. The BKEK is then encrypted with the cluster data key (CDKEK) and then
encrypted with the cluster key (CKEK). Additionally you could encrypt this key with the BDKEY and a
passphrase. See Section 14.11.1, “Backup and Restore” [210] for more information about backups.

14.5.2. External KMS Key Hierarchy

The external KMS provides even higher security, along with additional key management features. When
you use an external key management system (KMS or keystore), the recommended key hierarchy
deployment might look like this illustration:

2023-08-21 14:49 Securing MarkLogic Server Page 176

MarkLogic 10 Encryption Key Hierarchy Overview

External KMS

KMS (Keystore)

These keys all reside in the
KMS, outside of the Marklog-
ic Server. Only the key IDs of
DataKEK, Configuration KEK
and Logs KEK are used by
the Marklogic Server.

Encryption Key IDs

MarkLogic Server
\4 \ \
Per Object Per Object Per Object Per Per
Encryption Key Encryption Key Encryption Key Configuration Log File
(OKEY) (OKEY) (OKEY) File (OKEY) (OKEY)
Object:= Object:= Object:=
[Stand Files] [Forest Journals] [Stand Files]
l l l | |
| | | | |

These keys are generated per file by the MarkLogic Server, encrypted
with the keys from the KMS, and stored encrypted as headers in each file.

The keystore contains the Master Key Encryption Key (MKEK). The KMS generates or derives the
Cluster Key Encryption Key (CKEK), which is enveloped (encrypted) with the Master Key Encryption
Key. Both the Master Key Encryption Key and the Cluster Key Encryption Key reside in the KMS
keystore. These keys never leave the keystore. MarkLogic Server has no knowledge or control over
these keys. The keys are referenced from the keystore by their key IDs. The actual encryption keys
never leave the KMS.

There are multiple levels to the key hierarchy in this deployment, each level wrapping (encrypting) the
level below it. The KMS generates the cluster level encryption keys for data (CDKEK), configuration
files (CCKEK), and log files (CLKEK). The corresponding KEK is used is used to encrypt (wrap) all
the Object Encryption Keys (OKEY) generated by MarkLogic Server for each file, so that a unique key
protects each file, no matter what category (data, configuration files, logs). A unique key protects each
file within a category (data, configuration files, logs).

2023-08-21 14:49 Securing MarkLogic Server Page 177

MarkLogic 10 Example—Encryption at Rest

The corresponding KEK (for data, config, or logs) is used to encrypt (wrap) all the Object Encryption
Keys (OKEY) generated by MarkLogic Server for each file, so that an encryption key protects each file,
no matter what category (data, configuration files, logs).

For example, the Master Key Encryption Key (MKEK) wraps (encrypts) the Cluster Key Encryption Keys
(CKEK), which in turn wraps (encrypts) the Data Key Encryption Key (CDKEK), then wraps (encrypts)
the Object Encryption Key (OKEY) for a file such as a stand. The keys at the bottom of the diagram

are encrypted (wrapped) by all the keys above them in the hierarchy, and then placed in the header for
each file.

Database backups are encrypted using the BKEK, the locally generated backup KEK, the BKEK is
encrypted with the CDKEK. Then the CDKEY may be encrypted or derived from the cluster key
(CKEK). This last step is outside of the control of MarkLogic. You can also use a password or
passphrase to encrypt and secure your backup. See Section 14.11.1, “Backup and Restore” [210] for
more information about backups and the use of a passphrase to secure your backup.

NOTE

If you plan to use an external key management system, configure the external KMS
first, and then turn on encryption in the MarkLogic server.

14.6. Example—Encryption at Rest

This section describes a scenario using encryption at rest to encrypt a database. This example is for
informational purposes only. It is not meant to demonstrate the correct way to set up and use encryption
at rest, as your situation is likely to be unique. However, it demonstrates how encryption at rest works
and may give you ideas for how to configure your own encryption at rest security model:

To set up encryption at rest for this scenario, you will need Admin privileges. You will need access to
both MarkLogic Admin Interface and Query Console.

To run through the example, perform the steps in each sections.

14.6.1. Set Up Encryption Example

Install MarkLogic 9.0-1 or later. Encryption at rest options are not available in earlier versions of
MarkLogic Server. You must explicitly select which data (databases, configuration files, log files, or
entire clusters) you want to have encrypted. This example shows how to set up encryption for a single
database.

NOTE

@ The Security database or other databases used by MarkLogic will not be encrypted
by default. Existing data can be encrypted by forcing a merge or a reindex of the
database.

See Section 5.2, “Configuring Compartment Security” [27] for more details.

14.6.2. Encrypt a Database

For this example, we will use the Admin Ul to set up encryption for the Documents database.

2023-08-21 14:49 Securing MarkLogic Server Page 178

MarkLogic 10 Example—Encryption at Rest

1. Select Databases from the left tree menu in the Admin Ul.

2. Click on the Documents database.

3. On the Database Configuration page, next to data encryption, select on from the drop-down
menu. (The other options are defaul t-cluster and off.)

TR TSR grRwe geweeeves qrvens gureewens greees |

ok cancel

database - The database specification) merge [reindex |[clear || disable) delete

database name Documents

The database name.
security database Security -

The security database.
schema database Schemas -

The database that contains schemas.
triggers database Triggers -

The database that contains triggers.
data encryption* an -

Enable encryption at rest for this database

4. Click OK.

If you select default-cluster, encryption for that database will default to whatever encryption option
has been set for the cluster as a whole. If the cluster is set to encrypt data, this database will be
encrypted. If encryption has not been turned on for the cluster, this database will not be encrypted if
default-cluster is selected. See Section 14.7.3, “Cluster Encryption Options” [183] for details.

As you access data in your database, it will be encrypted when it is written back to disk. You can
view the encryption progress on the Database Status page by looking at the Size and Encrypted Size
numbers.

S NOTE
To encrypt the existing data in your database, you will need to re-index your database.
On the Database Configuration page, click the reindex button at the top of the page
(below the “OK” button), and then click ok. You can also force a merge of the database
to encrypt the data.

Encryption of large databases will take some time initially. Updates and changes to the database will be
fairly transparent to the user after initial encryption. The Size and Encrypted Size numbers will be equal
when the encryption process is complete.

14.6.3. Test It Out

Using Query Console, you can run a simple query to verify that the Documents database has
encryption turned on.

2023-08-21 14:49 Securing MarkLogic Server Page 179

MarkLogic 10 Example—Encryption at Rest

xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin®’
at ""/MarkLogic/admin._xqy";
let $config := admin:get-configuration()
return admin:database-get-data-encryption($config, xdmp:database(''Documents'))
=>
on

You can also check the Size and Encrypted Size numbers on the Database Status page. These
numbers will be equal when the encryption process is complete and the entire database is encrypted.

14.6.4. Turn Off Encryption for a Database

1. Select Databases from the left tree menu in the Admin Interface.
2. Click on the Documents database to turn off encryption.
3. On the Database Configuration page, next to data encryption, select off from the drop-down

menu.
[summary W contionn T status | ackup/estors | toad U creste 1 veir R
ok cancel
database - The database specification. " merge || reindex || clear || disable || delete
database name Documents
The database name.
security database Security -
The security database.
schema database Schemas -
The database that contains schemas.
triggers database Triggers -
The database that contains triggers.
data encryption® off -
Enable encryption at rest for this database
4. Click OK.

To verify that encryption is turned off, run this query in Query Console:

xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin"*
at "/MarkLogic/admin.xqy";
let $config := admin:get-configuration()
return admin:database-get-data-encryption($config, xdmp:database(''Documents'))
=>
off

To decrypt the existing data in your database, you will need to re-index your database. On the
Database Configuration page, click the reindex button and then click ok.

NOTE

You can also decrypt the data by forcing a merge on the database to decrypt its
contents. This process may take a while.

2023-08-21 14:49 Securing MarkLogic Server Page 180

MarkLogic 10 Configuring Encryption at Rest

14.7. Configuring Encryption at Rest

Install MarkLogic Server version 9.0-x or later. The encryption at rest feature and the PKCS #11
secured wallet are installed by default. You can configure encryption at rest for databases (data
encryption), log files (log encryption) and configuration files (config encryption). The encryption feature
will need to be configured and enabled for your data to be encrypted.

When you start up MarkLogic for the first time after installation, the keystore .xml file will be

loaded first. It contains the encryption key IDs. After loading the keystore .xml configuration,
MarkLogic validates connectivity to the KMS (local or external) and the validity of the keys stored in
keystore.xml. Once validated, encryption keys will be loaded and decrypted. Normal startup then
continues. If configuration files are encrypted, the file layer will decrypt them as they are being loaded,
making the encryption transparent to the cluster.

E NOTE
If a node in your cluster is offline for any reason, wait until the host comes back
online to make any changes to your encryption at rest settings. Do not change your
encryption settings while a host is offline.

14.7.1. Database Encryption Options

You can configure encryption for each database on the Database Configuration page in the Admin
Ul. Encryption at rest can be separately enabled per database, or at the cluster level by setting the
database encryption to default to the cluster encryption settings. The encryption options for databases
are shown in this table:

Encryption Encryption Encryption
Encryption Option: Option: Option:
Default-Cluster On Off
Database encryption encryption defaults to encryption enabled for encryption off,
cluster setting database
unless cluster encryption is
set to force encryption

With encryption enabled, files are encrypted as they are ingested into the database, or when those files
are written back to disk. If you want to encrypt existing data in a database either reindex the database
or force a merge on the database. This will take a few minutes depending on the size of database. See
Section 14.7.3, “Cluster Encryption Options” [183]

@ NOTE
Large binary files are only encrypted during initial ingestion into the database. If you
want to encrypt existing large binary files already loaded into MarkLogic Server prior to
turning on encryption, you must reindex the database or force a merge.

1. To configure database encryption, go to the Admin Ul and click Databases in the left navigation
tree.
2. Click on the database you want to encrypt.

2023-08-21 14:49 Securing MarkLogic Server Page 181

MarkLogic 10

Configuring Encryption at Rest

3. On the Database Configuration page, next to data encryption, select on from the drop-down
menu. (The other options are default-cluster and off.)

[summary " Configure ' Status 'Backuwnum' Load ' Craste ' Help _

database -- The database specification. ;_ merge -

database name

security database

schema database

triggers database

data encryption®

4. Click OK when you are done.

Documents
The database name.

Security -
The security database.

Schemas -
The database that contains schemas.

Triggers -
The database that contains triggers.

on -
Enable encryption at rest for this database

14.7.2. Configure Cluster Encryption

You can set cluster encryption options for configuration files and log files, and also set or override the

encryption options for databases on the Cluster Configuration page.

Configuration File and Log File Encryption Options

reindex

ok | cancel

clear | disable | delete

Encryption at rest for configuration files and/or log files is done on the Cluster Configuration page in
the Admin Ul. Navigate to this page by choosing Clusters from the left tree menu, clicking the cluster
name, and then clicking the Configure tab.

The encryption options are shown in this table:

Cluster Cluster Cluster
Encryption Encryption Encryption
File Type ryp ryp! Typ!
Setting: Setting: Setting:
Default On Default Off Force
Configuration files encrypt do not encrypt encrypt
Log files encrypt do not encrypt encrypt

NOTE

K

The keystore.xml and hsm.cfg files are never be encrypted because they are

configuration for the Keystore. The servers.xml file is not immediately encrypted
until a server (apps server) is updated, a new server is created, or an existing server is
deleted. This is because these actions trigger a restart of the MarkLogic server.

2023-08-21 14:49

Securing MarkLogic Server

Page 182

MarkLogic 10 Configuring Encryption at Rest

Cluster configuration settings for encryption at rest interact with the encryption settings for databases.
You can separately configure encryption for each database on the Database Configuration page in the
Admin Ul or set database encryption to default to the cluster encryption settings.

@ NOTE
The database encryption configuration settings take precedence unless the cluster
Force Encryption option is set. If Force Encryption is on, configuration files and log files
will be encrypted. Please check all database encryption settings to ensure that they are
set correctly.

The following table shows the interaction between the cluster configuration options and the database
configuration options. There are three possible database encryption settings and three possible
cluster encryption settings. The cell where the row and column intersect shows the outcome of that
configuration combination.

Cluster Cluster Cluster
Encryption Encryption Encryption
Database Encryption Setting L e e
Setting: Setting: Setting:
Force Encryption Default On Default Off
Default to cluster encrypt encrypt do not encrypt
On encrypt encrypt encrypt
Off encrypt do not encrypt do not encrypt

The Force Encryption option in the Cluster Encryption Settings will force encryption for all of the
databases in the cluster. If the Cluster Encryption Setting is Force Encryption (or Default On), or the
Database Encryption Setting is On, then the database will be encrypted.

14.7.3. Cluster Encryption Options

You can either configure encryption for the embedded keystore (the PKCS #11 secured wallet) or
for a external KMIP-compliant keystore using the Admin Ul. Use the Edit Keystore Configuration
page to configure encryption at rest for a cluster. Using this page you can configure data encryption,
configuration file encryption, or encryption of log files.

1. To configure encryption using the embedded keystore in the Admin Interface, click Clusters in the
left navigation tree and click the name of the cluster you want to configure.
2. Click the Keystore tab to configure the keystore for encryption at rest.

2023-08-21 14:49 Securing MarkLogic Server Page 183

MarkLogic 10 Configuring Encryption at Rest

EF——_g— e e]

Edit Keystore Configuration - e

fatask o= w

Ermtey encrpyine b sae Sein

s " -
i B 1 e B

W by W
Tobd 5 TR G 1 R G N T BT DA
e ML || ¢ ternal i
]
bty opdme 1
Tha s U RO B Rt Gl B T W SeTh R SO EEE B
e Y 0 kg
i s ek by
L T T whieal be whecd S weor)l de fe
s comiyy encrrEmon ey o

& LD amttyey B Ty iy P P S0 st b el S g g e

s L T
a o] . e B
- -

3. Use the drop-down menus to configure encryption for data, config files, and/or log files.

Setting Description

data encryption Specifies whether or not encryption is enabled for user data. The options are:

force — Force encryption for all data in the cluster. The database configuration cannot
overwrite this setting.

default-on — By default encryption is on. The database configuration can overwrite this
setting.

default-off — By default encryption is off. The database configuration can overwrite this

setting.
config encryption Specifies whether or not encryption is enabled for configuration files
logs encryption Specifies whether or not encryption is enabled for log files.
kms type Specifies whether the KMS is internal to MarkLogic or an external KMS

A keystore is a secure location where the actual encryption keys used to encrypt data are
stored. The keystore for encryption at rest is a key management system (KMS). This keystore
can be either the MarkLogic embedded PKCS #11 secured wallet, or an external third party
KMS

Beneath these options on the Edit Keystore Configuration page, there are two tabs for specifying
further options for either the Internal KMS or the External KMS. For the Internal KMS there are
these options:

Setting Description

backup option The internal KMS is automatically included in backups unless you change the default setting of
“include” to “exclude”.

internal data encryption The UUID that identifies the encryption key from the internal KMS that is to be used to encrypt

key id data files.

internal config The UUID that identifies the encryption key from the internal KMS that is to be used to encrypt

encryption id config files.

internal logs encryption The UUID that identifies the encryption key from the internal KMS that is to be used to encrypt

id log files.

2023-08-21 14:49 Securing MarkLogic Server Page 184

MarkLogic 10 Configuring Encryption at Rest

4. Click OK when you are done.

NOTE

Adding or changing any encryption information will require a restart of all of the
hosts in the cluster.

Changing the Internal KMS Password

You can change the password for the internal KMS using the Change Internal KMS Password screen.
To change the internal KMS password do the following:

1. Click Clusters in the left navigation tree and click the name of the cluster that has the KMS
keystore with password that you want to change.

2. Click the Keystore tab to open the Edit Keystore Configuration page. Click the change
password button on the Edit Keystore Configuration page. This opens the Change Internal
KMS Password page.

Change Internal KMS Password ok | | cancel

Current password

Encrypted Password.
Required.

New password

Encrypted Password.
Required.

Confirm new password

Encrypted Password.
Required.

ok cancel

3. Enter the current password in the first field, then enter the new password in the second field.
Confirm the new password by entering it again in the third field.
4. Click OK when you are done.

14.7.4. Using an Alternative PKCS #11 Device

MarkLogic uses SoftHSM as its default hardware security module (HSM). This section describes the
process of setting up an alternate hardware security module if you want to use a PKCS #11 HSM (or
any other PKCS #11-compliant HSM) by following these steps before starting MarkLogic for the first
time.

NOTE

This process will only work on a clean data directory with a first time install.

2023-08-21 14:49 Securing MarkLogic Server Page 185

https://docs.marklogic.com/guide/copyright/glossary#id_70694

MarkLogic 10 Configuring Encryption at Rest

1. The PKCS#11 devices must not be initialized and no PIN should be set, MarkLogic will initialize it
and set a PIN.

2. Set environment variable=MARKLOGIC_P11_ DRIVER_PATH to the PKCS#11 library you want to
use.

3. Start MarkLogic for the first time

4. \Verify no error messages are logged during startup.

Saving the Embedded KMS to a Different Location

Use the options available in admin:cluster-set-keystore-wal let-location to change the
location of the backup for the internal wallet.

let $dir-name := "/sotfhsm/wallet"
let $config := admin:get-configuration()
return

admin:cluster-set-keystore-wallet-location($config,$dir-name)

The admin:cluster-set-keystore-wal let-location function will set the backup location for
embedded KMS.

14.7.5. Configure Encryption Using XQuery

Instead of using the Admin Interface, you can configure encryption for your MarkLogic instance using
XQuery.

In Query Console, you can use admin:cluster-set-data-encryption to turn on data encryption
for the current database:

xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin"’
at ""/MarkLogic/admin._xqy";
let $config := admin:get-configuration()
return
admin:cluster-set-data-encryption($config, "default-on')

For example, to set the encryption for log files at cluster level:

xquery version "1.0-ml";

import module namespace admin = "http://marklogic.com/xdmp/admin"’
at ""/MarkLogic/admin.xqy";

let $config := admin:get-configuration()

return

admin:cluster-set-logs-encryption($config, "default-on')

(: returns the new configuration element -- use admin:save-configuration
to save the changes to the configuration or pass the configuration to
other Admin APl functions to make other changes. :)

To see whether encryption is turned on for log files, you can run this XQuery in the Query Console:

xquery version "1.0-ml";

import module namespace admin = "http://marklogic.com/xdmp/admin®’
at ""/MarkLogic/admin._xqy";

let $config := admin:get-configuration()

return
admin:cluster-get-logs-encryption($config)

=>

on
(: returns the encryption setting for log files:)

14.7.6. Configure Encryption Using REST

You can use REST Management APls to work with encryption at rest.

GET:/manage/v2/databases/{id|name}/properties

2023-08-21 14:49 Securing MarkLogic Server Page 186

MarkLogic 10 Configuring Encryption at Rest

This command gets the current properties of the Documents database, including the encryption status

and encryption key ID in JSON format:
$ curl -GET --anyauth -u admin:admin \
-H "Accept:application/json,Content-Type:application/json” \
http://localhost:8002/manage/v2/databases/Documents/properties
Returns

{""database-name" :""Documents", "forest":[''Documents'],

"security-database':""Security', '"schema-database':''Schemas",
""triggers-database':""Triggers’™, '"enabled":true,
"data-encryption:"off"", "encryption-key-id":"",

The same command in XML format:

$ curl -GET --anyauth -u admin:admin \
-H "Accept:application/xml,Content-Type:application/xml" \
http://localhost:8002/manage/v2/databases/Documents/properties

Returns

<dat abase- properties xmlns="http://marklogic.com/manage'>
<dat abase- nane>Documents</ dat abase- nane>
<f orests>

<f or est >Documents</ f or est >

</forests>
<securi ty-dat abase>Security</security-dat abase>
<schenm- dat abase>Schemas</ schena- dat abase>
<triggers-database>Triggers</tri ggers-dat abase>
<enabl ed>true</ enabl ed>
<dat a- encr ypt i on>on</ dat a- encrypti on>
<encryption-key-id/ >

</ dat abase- properti es>

GET:/manage/v2/security/properties

This command returns the current encryption status, along with other properties including encryption

key ID, for localhost in JSON format:

$ curl -GET --anyauth -u admin:admin \
-H "Accept:application/json,Content-Type:application/json" \
http://localhost:8002/manage/v2/security/properties

Returns:
{"keystore":{""data-encryption':"default-off",
"data-encryption-key-id'":""091fd9a0-f090-4c7e-91ca-fedfe2ldbfef",
"config-encryption':"off", "config-encryption-key-id":"",
"logs-encryption™:"off", "logs-encryption-key-id":""",
"host-name':"LOCALHOST", "port":9056}}
Here is the same version of the command, this time returning XML:
$ curl -GET --anyauth -u admin:admin \
-H "Accept:application/xml,Content-Type:application/xml" \
http://1ocalhost:8002/manage/v2/security/properties

Returns:

2023-08-21 14:49 Securing MarkLogic Server

Page 187

MarkLogic 10 Configuring Encryption at Rest

<security-properties xsi:schemaLocation="http://marklogic.com/manage/security/properties
manage-security-properties.xsd" xmlns="http://marklogic.com/manage/security/properties"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"'>
<keyst or e>
<dat a- encrypt i on>default-off</ dat a- encrypti on>
<dat a- encrypti on-key-i d>8d0b07d8-b655-4408-affd-e49a2eceOaf3
</ dat a- encrypti on- key-i d>
<confi g-encrypti on>off</ confi g-encryption>
<config-encryption-key-id/>
<l ogs- encrypti on>0ff</| ogs-encrypti on>
<l ogs-encryption-key-id/>
<host - nane>LOCALHOST</ host - nanme>
<port >9056</ port >
</ keyst or e>
</security-properties>

POST :/manage/v2/security/properties
This command sets the protected path for //d with read permissions for manage-user:

$ curl -POST --anyauth -u admin:admin \
-d @file.xml -H "Content-Type:application/xml"™ \
http://localhost:8002/manage/v2/protected-paths

Here is the payload (file.xml):

<pr ot ect ed- pat h- properti es xmIns="http://marklogic.com/manage/protected-path/properties'>
<pat h- expr essi on>//d</ pat h- expr essi on>
<pat h- nanspaces/ >
<perm ssi ons>
<per m ssi on>
<r ol e- nane>manage-user</r ol e- nane>
<capabi | i t y>read</ capabi l i ty>
</ perm ssi on>
</ per m ssi ons>
</ prot ect ed- pat h- properti es>

Here is the same operation in JSON:

curl -X POST --anyauth -u admin:admin \
-d @File.json -H "Content-Type:application/json” \
http://localhost:8002/manage/v2/protected-paths

Here is the payload (file.json):

{

"path-expression': "//e",
"'path-namespace': [],
"permission': [{

"role-name": ["manage-user'],
"capability'": "read"

|

¥

PUT:/manage/v2/databases/{id|name}/properties
This command will turn on encryption for the Documents database:
$ curl -X PUT --anyauth -u admin:admin -d "{"'data-encryption:"on"}" \

-H "Content-Type:application/json" \
http://localhost:8002/manage/v2/databases/Documents/properties

Export Wallet

To export the embedded KMS (the PKCS #11 secured wallet) using REST, you can use this form in
XQuery:

2023-08-21 14:49 Securing MarkLogic Server Page 188

MarkLogic 10 Configuring Encryption at Rest

POST manage/v2/security?
operation=export-wallet&filename=/my/test. .wal let&password=test

As a curl command (using MANAGEADMIN=""admin" and MANAGEPASS=""admin"") it would look like
this:

curl -v -X POST --anyauth --user $MANAGEADMIN:$MANAGEPASS \
--header "'Content-Type:application/xml” \

-d@datas/security/export-wallet.xml \
http://$host:8002/manage/v2/security

Where export-wallet.xml is:

<export-wal | et - operation xmlns="http://marklogic.com/manage/security'>
<oper at i on>export-wallet</ operati on>
<fil ename>/tmp/mywallet.txt</fil enane>
<passwor d>mypassword</ nasswor d>

</ export-wal |l et -operation>

Or you can use this form for JavaScript:

POST manage/v2/security
{"operation':"export-wallet”,"filename":"/my/test.wallet", password':""test"}

As a curl command (using MANAGEADMIN=""admin"" and MANAGEPASS=""admin"") it would look like
this:

curl -v -X POST --anyauth --user $MANAGEADMIN:$MANAGEPASS \
--header "Content-Type:application/json™ \

-d@datas/security/export-wallet_json \
http://$host:8002/manage/v2/security

Where export-wallet. jsonis:

{
"operation':"export-wallet",
“Filename™:"/tmp/mywallet._tmp",
"password" :"'mypassword"’

¥

@ NOTE
The export wallet operation saves the wallet to a directory on the server on which
MarkLogic is running. Similarly, the import wallet operation imports from the filesystem
on which MarkLogic is running.

Import Wallet
To import the embedded KMS (the PKCS #11 secured wallet) using REST, you can use this form in
XQuery:

POST manage/v2/security?
operation=import-wallet&filename=/my/test.wal let&password=test

As a curl command (using MANAGEADMIN=""admin" and MANAGEPASS=""admin"") it would look like
this:

curl -v -X POST --anyauth --user $MANAGEADMIN:$MANAGEPASS \
--header "Content-Type:application/xml"™ \

-d@datas/security/import-wallet.xml \
http://$host:8002/manage/v2/security

2023-08-21 14:49 Securing MarkLogic Server Page 189

MarkLogic 10 Key Management

Where import-wallet.xml is:

<i nport-wal | et -operation xmlns="http://marklogic.com/manage/security'>
<oper ati on>import-wallet</ operati on>
<fil ename>/tmp/mywallet.txt</fil enane>
<passwor d>mypassword</ passwor d>

</inport-wall et-operation>

Or you can use this form for JavaScript:

POST manage/v2/security
{"operation':"import-wallet”,"filename":"/my/test.wallet", password':""test"}

As a curl command (using MANAGEADMIN=""admin"" and MANAGEPASS=""admin"") it would look like
this:

curl -v -X POST --anyauth --user $MANAGEADMIN:$MANAGEPASS \
--header "Content-Type:application/json™ \

-d@datas/security/import-wallet_json \
http://$host:8002/manage/v2/security

Where import-wallet.jsonis:

{
"operation':"import-wallet",
“Filename":""/tmp/mywallet.tmp",
""password" :"mypassword"

¥

NOTE
MarkLogic will only import keys generated by the embedded MarkLogic KMS.

14.8. Key Management

Encryption key management for the embedded KMS (the PKCS #11 secured wallet) is handled
automatically by MarkLogic. Keys are never purged from the wallet, which is encrypted by a
MarkLogic-generated key activated by a passphrase. The administrator’s password is used as the initial
passphrase.

S NOTE
By default the keystore passphrase is set to the admin password. We strongly
recommend that you set a new, different passphrase before turning on encryption.
Using a separate passphrase for admin and the keystore helps support the strong
security principle called “Separation of Duties”.

This passphrase can be changed using either the XQuery (xdmp : keystore-set-kms-passphrase)
or JavaScript (xdmp . keystoreSetKmsPassphrase) built-ins. As part of key management, you may
want to export, import, or rotate encryption keys. MarkLogic provides built-in functions for exporting

and importing encryption keys, and manually rotating encryption keys. If you require additional key
management functionality, you may want to consider an external key management system. See
Section 14.9, “Configuring an External Keystore” [193] for more information.

2023-08-21 14:49 Securing MarkLogic Server Page 190

MarkLogic 10 Key Management

If you believe that an encryption key has been compromised, you should force a merge or start a
re-index of your data to change/update the encryption keys. See Section 14.8.1, “Key Rotation” [191]
for more about updating encryption keys.

14.8.1. Key Rotation

For the internal wallet, key encryption keys (KEK) can be manually rotated. Keys can be manually
rotated at regular intervals or if an encryption key has been compromised. This type of key rotation
can be triggered on individual encryption categories (configuration, data, logs) using MarkLogic built-in
functions.

Security Key Rotation

2. Keys are re-encryted

|
V) /v V\
Per Object Per Object Per Object Per Per
Encryption Key Encryption Key Encryption Key Configuration Log File
(OKEY) (OKEY) (OKEY) File (OKEY) (OKEY)
Object:= Object:= Object:=
[Stand Files] [Forest Journals] [Stand Files]
I I [N I
l l l D l e

v

These keys are generated per file by the MarkLogic Server, encrypted
with the keys from the KMS, and stored encrypted as headers in each file.

There are two steps to key rotation. First, rotating the KEK keys (using AES 256 symmetric encryption)
used to envelope the object file encryption keys, and second, re-encrypting the object file encryption
keys (also using AES 256 symmetric encryption).

After calling the built-in function to rotate encryption keys, all new data will be written to disk using
the new key encryption key. Old data will be migrated as it is re-written to disk. If you wish to force
re-encryption using the new key, you can either force a merge or re-index the forest.

2023-08-21 14:49 Securing MarkLogic Server Page 191

MarkLogic 10 Key Management

At the local, host level, you can manually rotate the data keys, configuration keys, and the logs keys
(CDKEK, CCKEK, CLKEK) using these APlIs:

» admin:cluster-rotate-config-encryption-key-id
+ admin:cluster-rotate-data-encryption-key-id
* admin:cluster-rotate-logs-encryption-key-id

NOTE

These key rotation functions are only available for the MarkLogic internal KMS (the
PKCS #11 secured wallet) and not for any keys that are managed by an external KMS.

At the cluster level, to manually rotate the cluster-level keys use these APIs:

* admin:group-get-rotate-audit-files
* admin:group-get-rotate-log-files
* admin:group-set-rotate-audit-files
* admin:group-set-rotate-log-files

@ NOTE
When you are using an external KMS, MarkLogic does not have access to the
envelope key, it only has access to the key ID, and asks for the KMS to open the
envelope.

Manual Key Rotation

The intermediate fast rotation keys enable immediate envelope key rotation with a minimum of I/O. File
level keys can be rotated at any time by forcing a merge. Log rotation and configuration file updates use
new keys. Old logs, backups, and configuration files are not re-encrypted.

The internal KMS (the PKCS #11 secured wallet) follows these steps for fast key rotation:

1. User sends rotation key command to MarkLogic (for example, admin:cluster-rotate-data-
encryption-key-id).

2. MarkLogic requests a new data encryption key (CDKEK, CCKEK, CLKEK - the cluster-level
encryption keys) from the internal KMS.

3. Only the fast rotation keys are re-encrypted with the new data encryption keys (CDKEK, CCKEK,
CLKEK).

An external KMS, follows these steps for fast key rotation:

1. The external KMS creates new KEK key (CDKEK, CCKEK, CLKEK - the cluster-level encryption
keys).

2. User updates the UUIDs in MarkLogic. See Section 14.9.4, “Set Up an External KMIP KMS with
MarkLogic Encryption” [205] for UUID details.

3. MarkLogic sends a Fast Rotation Key (FRKEK) to the KMS.

The external KMS sends new enveloped key back to MarkLogic.

5. The enveloped key is saved to disk, per file.

B

2023-08-21 14:49 Securing MarkLogic Server Page 192

MarkLogic 10 Configuring an External Keystore

NOTE

Expired keys can be used for decryption, but not encryption. Expired keys may be
needed for decrypting backups.

14.8.2. Export and Import Encryption Keys

The ability to export and import key encryption keys (KEK) from the PKCS #11 secured wallet (the
embedded KMS) is useful when you want to clone a cluster. Exporting a key encryption key (KEK) is
restricted to cluster-level keys (CDKEK, CCKEK, CLKEK) and requires a passphrase and a filepath.
The data will be exported (encrypted with the passphrase) into a file at the location specified by the
filepath.

To export a keystore from the embedded KMS:

xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin"’
at "/MarkLogic/admin.xqy";
xdmp:keystore-export('Unique passphrase', '/backups/MarkLogic.wallet.bak')
=>
true

To import a keystore into the embedded KMS:

xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin"’
at ""/MarkLogic/admin.xqy";
xdmp:keystore-import(*'Unique passphrase', "/backups/MarkLogic.wallet.bak')
=> true

Key encryption keys can only be imported from MarkLogic exported files. Imported keys can only be
used for decryption. The import requires the passphrase that was provided at the time of the export.

WARNING

If a duplicate key is supplied during the import, the import will be rejected. Duplicate
keys can be caused by importing the keystore twice.

14.8.3. Key Deletion and Key Revocation

For these functions you will need to use a external keystore (KMS).

14.9. Configuring an External Keystore

An external key management system (KMS) or keystore offers additional security for your encryption
keys, along with key management capabilities like automatic key rotation, key revocation, and key
deletion. If you want the ability to perform these tasks, you will need an external KMS. MarkLogic
Encryption at Rest supports KMIP 1.2 compliant KMS servers and Amazon’s KMS.

2023-08-21 14:49 Securing MarkLogic Server Page 193

MarkLogic 10 Configuring an External Keystore

@ NOTE
The use of an external Key Management System (KMS) or keystore with encryption
at rest, requires an Advanced Security License, in addition to the regular MarkLogic

license.

When using an external KMS, usually there is a security administrator role separate from the MarkLogic
administrator. The security administrator would be the role setting up and configuring the external
keystore. The MarkLogic administrator can also perform this task, but for greater security it is
recommended that the separate security administrator configure the KMS.

NOTE

Having a separate security administrator follows an important security principle called
“Separation of Duties” and is recommended by security experts.

This section covers setting up MarkLogic encryption for use with an external key management system
from the MarkLogic Admin Ul on the MarkLogic host. You don’t need to have MarkLogic encryption
turned on for your cluster while you are setting up and configuring the external key management
system.

S NOTE
If you plan to use an external key management system, we recommend that you
configure the external keystore first, and then turn on encryption in the MarkLogic

server.

The installation process for the external keystore will vary depending on the type of external KMIP-
compliant KMS you plan to use. A security administrator must configure the external keystore using the
administration set up tools that come with the external KMS. This section provides a high-level overview
of the process from the MarkLogic Server point of view.

14.9.1. Types of External KMS Deployments

There are a variety of types of external key management systems. An external key management
system deployment may be one of the following types:

A virtual KMS instance running in a VM (virtual machine) environment, or in a private or public cloud
» A physical appliance running a KMS server

» A dedicated FIPS 140-2 Level 3 appliance

» A dedicated hardened FIPS 140-2 Level 4 appliance

These systems are listed by increasing levels of security.

14.9.2. Using MarkLogic Encryption with AWS Key Management System

Amazon Web Services (AWS) provides a key management system (KMS) that you can use with
MarkLogic encryption at rest to encrypt your data. The AWS KMS is supported for customers running

2023-08-21 14:49 Securing MarkLogic Server Page 194

MarkLogic 10 Configuring an External Keystore

their cluster on AWS in the cloud. You must set up your AWS KMS encryption keys and configure the
encryption key IDs in your MarkLogic server before using the AWS KMS.

To set up the AWS key management system, first set up your AWS instance. See Getting Started with
MarkLogic Server on AWS and Overview of MarkLogic Server on AWS in the MarkLogic Server on
Amazon Web Services (AWS) Guide for details.

The AWS KMS keys (data, config, and log encryption keys) needed to encrypt and decrypt data must
be configured in MarkLogic before using encryption.

You cannot use the master key and roles from the MarkLogic KMS to access the AWS KMS, so you
will need to have a Key Administrator specify access to the AWS KMS keys on a per-key basis tied to
the user’s IAM role. The Key Administrator can specify access using the Encryption Keys section of the
IAM AWS management console. See the next section (Encryption on EBS Volumes [198]) for details
and the AWS documentation regarding key policies for more information.

A WARNING

If an encryption key stored in the AWS KMS is disabled for any reason, it cannot be
used for encryption or decryption, and MarkLogic loses access to any data encrypted
with the disabled key. Deleting a key will lead to permanent data loss as deleted keys
can never be recovered. Any keys created in the AWS KMS are cluster management
keys and should never be deleted. See https://docs.aws.amazon.com/kms/latest/
developerguide/enabling-keys.html for more information.

AWS KMS on EC2

If your cluster is running on AWS, the |IAM role associated with the EC2 instance running MarkLogic
is used to access the AWS KMS on behalf of MarkLogic. The hostname and port number will be
automatically entered in the correct fields in the Keystore tab of the Admin UI.

The key policy is tied to the user’s IAM role. To set up your IAM role and privileges, see Creating an
IAM Role in the MarkLogic Server on Amazon Web Services (AWS) Guide.

Once you have set up your MarkLogic Server (and IAM roles if necessary), follow these steps:

1. In AWS, navigate to the AWS IAM Management Console.
2. Click Encryption keys at the bottom of the left navigation bar.

2023-08-21 14:49 Securing MarkLogic Server Page 195

https://docs.marklogic.com/guide/security/encryption#id_50800:~:text=AWS%20instance.%20See-,Getting%20Started%20with%20MarkLogic%20Server%20on%20AWS,-and%20Overview%20of
https://docs.marklogic.com/guide/security/encryption#id_50800:~:text=AWS%20instance.%20See-,Getting%20Started%20with%20MarkLogic%20Server%20on%20AWS,-and%20Overview%20of
https://docs.marklogic.com/guide/security/encryption#id_50800:~:text=on%20AWS%20and-,Overview%20of%20MarkLogic%20Server%20on%20AWS,-in%20the%20MarkLogic
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html#key-policy-default-allow-users
https://docs.aws.amazon.com/kms/latest/developerguide/enabling-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/enabling-keys.html
https://docs.marklogic.com/guide/ec2/GettingStarted#id_39710
https://docs.marklogic.com/guide/ec2/GettingStarted#id_39710

MarkLogic 10 Configuring an External Keystore

+« Welcome to Identity and Access Management

1AM users sign-in link:

https:/imarklogic.signin.aws.amazon.com/console () Customize
Groups
Users IAM Resources
Roles Users: 89 Roles: 99
Palicies Groups: 17 Identity Providers: 3

q Wanaged Policies: 3
Identity providers Customer Managed Policies: 31

Account settings Security Status o 5 out of 5 complete.
Credential report .
Activate MFA on your root account v
Create indiidual IAM users v
Encryplion keys
Use groups to assign permissions v
Apply an |AM password policy v
Rotate your access keys g

In the next screen, pick a region (in the same region as your MarkLogic instance).

Create the key following the steps indicated. In the next step, be sure to give each key you create a
descriptive name so that you can tell them apart.

In the last step of this process you can preview the key policy you just created. Be sure to authorize
your MarkLogic instance to use the key.

Preview Key Policy

This is a preview of your key policy

Step 1. Create Alias and
Description { P
Step 2 Add Tags "Id": "key-consolepolicy-3",
"Version": "2012-18-17",
"Statement™: [

i
Step 4 Define Key Usage "Sid": “Enable IAM User Permissions®,
Permissions "Effect™: "Allow",
"Principal™: {

"AWS": [

"arn:aws:iam: 1027394069461 : root"”

m

Step 3: Define Key
Administrative Permissions

Step 5: Preview Key Policy

"Resource™:

Cancel Previous Finish

Click Previous to go back and make any changes, if necessary. Click Finish when you are done
checking the Key policy you just created.

From the AWS IAM Management Console, click Encryption keys in the left navigation bar again
and open the list of encryption keys. Be sure to select the same region from the drop down that you
chose when creating the key to see the correct list.

Find the key that you just created. Select and copy the key ID from the list. Repeat the process for
the other keys.

@ NOTE
To separate the encryption keys for data, configuration, and log files, we
recommend that you create three separate encryption keys. Give each type of
key a descriptive name (for example ML_data_key) for the type of content it will be
used to encrypt.

2023-08-21 14:49 Securing MarkLogic Server Page 196

MarkLogic 10 Configuring an External Keystore

9. Open the MarkLogic Admin Ul and click on the Keystore tab. Paste the key ID you copied from
AWS into the encryption key id fields in the Edit Keystore Configuration page.
[gre=— g=rp gE-p g-—_rcesaees |

ok cancel

Edit Keystore Configuration

data encryption default-on ¥
Enable encryption for user data.

config encryption on v
Enable encryption for configuration files.

logs encryption on ¥
Enable encryption for new log files.

kms type external ¥
Type of KMS used to manage keys for newly encrypted files.

If you encrypt anything using a KM S5, you need to retain access to that KM S to avoid losing data.
Internal KMS || External KMS

host name kms-us-west2 amazonaws.com
The host name{s) of the external Key Management Server. If multiple, separated by comma.

port 443
The external Key Management Server's socket port number(s), If multiple, =eparated by comma.

external data encryption key id a67al8db-07b6-48a4-2d0bT741d63cal2
The identifier of the user data encryption key at the external KMS.

external config encryption key id 367a060b-07b6-43a4-500b7741d63ca12
The identifier of the configuration file encryption key at the external KMS.

external logs encryption key id a67al8db-07b6-48a4-2d0bT741d63cal2
The identifier of the log file encryption key at the external KMS.

Synchronize Keys

ok cancel

10. Enter the following information to identify the external KMS and the required encryption keys. Add
the appropriate encryption key ID to each field.

@ NOTE
We recommend that you create three separate encryption key IDs (one for data,
one for configuration, and one for logs). Give each a descriptive name in order to
help distinguish between them.

Setting Description

host name The host name of the external Key Management Server (KMS).

port The external KMS client socket port number.

external data encryption The UUID that identifies the encryption key from the external KMS that is to be used to
key id encrypt data files.

external config The UUID that identifies the encryption key from the external KMS that is to be used to
encryption key id encrypt config files.

external logs encryption The UUID that identifies the encryption key from the external KMS that is to be used to
key id encrypt log files.

For more about IAM roles and privileges, see Creating an IAM Role in the MarkLogic Server on
Amazon Web Services (AWS) Guide. To learn more about using MarkLogic with Amazon Web
Services, see the MarkLogic Server on Amazon Web Services (AWS) Guide.

2023-08-21 14:49 Securing MarkLogic Server Page 197

https://docs.marklogic.com/guide/ec2/GettingStarted#id_39710
https://docs.marklogic.com/guide/ec2

MarkLogic 10 Configuring an External Keystore

Encryption on EBS Volumes

Elastic Block Storage Volume is a durable, block-level storage device that you can attach to a single
EC2 instance. Encryption on EBS offers a simple encryption solution for your EBS volumes without
the need to build, maintain, and secure your own key management infrastructure. AWS EBS volumes
support encryption with a custom key.

Starting in MarkLogic 9.0-8, this capability is supported by MarkLogic for AWS. Users can turn on
encryption on EBS volumes on their cluster and also optionally specify a custom key for volumes.
This can be done using MarkLogic CloudFormation templates and Managed Cluster Feature. See The
Managed Cluster Feature and Deploying MarkLogic on EC2 Using CloudFormation in the MarkLogic
Server on Amazon Web Services (AWS) Guide.

If a cluster is created by the MarkLogic CloudFormation template, a same encryption key will be used
to encrypt all EBS volumes in the cluster. If encryption option is specified, all volumes attached to an
instance will apply the same setting. EBS Encryption is only supported by some EC2 instance types,
mostly the new generation. The key that is used to encrypt the volume must be in the same region.

NOTE

KMS keys are never transmitted outside of the AWS regions in which they were
created.

Enhanced AWS S3 Encryption Support

Starting with MarkLogic 9.0-8, Amazon AWS S3 support with encryption is built into the MarkLogic
server as an available file system or a storage location for backup/restore. When MarkLogic server
writes or updates objects on AWS S3, it can use the AWS KMS server side encryption to protect data.
You can choose the encryption method by GUI or API.

To use the AWS KMS key to encrypt data that will be stored on AWS S3, specify which key to be

used to encrypt. You can do this using the Admin Ul or by using the admin:group-set-s3-server-
side-encryption-kms-key API. To find the S3 encryption key (if it has already been set) use the
admin:group-set-s3-server-side-encryption-kms-key API.

To set the AWS KMS in the MarkLogic Admin Ul, navigate to Groups Configuration page. Scroll down to
the S3 protocol configuration field. Select https as the s3 protocol and aws : kms as the s3 server side
encryption. Paste the s3 server side encryption kms key into the field.

s3 protocol hitps ¥
The simple storage service network protocol.

s3 server side encryption aws:kms ¥ |
none 'er side encryption for data at rest on the simple storage service.
aes256

s3 server side encryption kms key 2bb62e87-711e-4fe5-9a52-00190c4bfd24

Specifies the AWS KMS key ID for server-side encryption.

Configure the external KMS keys as shown in the previous section.

14.9.3. Using MarkLogic Encryption with Microsoft Azure Key Vault

Microsoft Azure Key Vault can encrypt your data in MarkLogic. Azure Key Vault is supported for
customers running their cluster on Microsoft Azure. You must set up your Azure Key Vault, create the

2023-08-21 14:49 Securing MarkLogic Server Page 198

https://docs.marklogic.com/guide/security/encryption#id_78690:~:text=The%20Managed%20Cluster%20Feature
https://docs.marklogic.com/guide/security/encryption#id_78690:~:text=The%20Managed%20Cluster%20Feature
https://docs.marklogic.com/guide/ec2/CloudFormation#

MarkLogic 10 Configuring an External Keystore

encryption keys in Key Vault, and configure the encryption key IDs in your MarkLogic server before
using the keys to encrypt data in MarkLogic.

To set up the Microsoft Azure Key Vault, first set up your Azure instance. See Getting Started with
MarkLogic Server on Azure and Overview of MarkLogic Server on Azure for details. Keys are governed
by access policies created by the Key Administrator. See the next section (Microsoft Azure Key

Vault [199]) for details and the Azure documentation regarding key policies for more information.

A WARNING

If an encryption key stored in the Azure Key Vault is disabled, it cannot be used for
encryption or decryption, and MarkLogic loses access to any data encrypted with the
disabled key. Deleting a key will lead to permanent data loss as deleted keys can
never be recovered.

Microsoft Azure Key Vault

To set up Microsoft Azure Key Vault, you will create a virtual machine (VM) on Azure. Then create a
Key Vault, set up your access policy, and create your encryption keys in the Key Vault.

Create a Virtual Machine in Azure

1. On the Azure Home page, click Virtual machines.
2. Click Add to create a new virtual machine (VM). This screen appears:

2023-08-21 14:49 Securing MarkLogic Server Page 199

https://docs.marklogic.com/guide/security/encryption#id_50800:~:text=Azure%20instance.%20See-,Getting%20Started%20with%20MarkLogic%20Server%20on%20Azure,-and%20Overview%20of
https://docs.marklogic.com/guide/security/encryption#id_50800:~:text=Azure%20instance.%20See-,Getting%20Started%20with%20MarkLogic%20Server%20on%20Azure,-and%20Overview%20of
https://docs.marklogic.com/guide/azure/Overview#

MarkLogic 10

Configuring an External Keystore

Home * Viruzl machines * Create a virtual machine

Create a virtual machine

Basics Disks Metworking

image.

full customization.

Project details

&ll your resources.
* Subscription @&

* Resource group @

Instance details

* Virtual machine name @
* Region @
Availability options @

* Image @

* Size @

Administrator account

Authentication type @
* Username @
* Pazzword @

* Confirm password @

Inbound port rules

* Public inbound ports @

* Select inbound ports

Management

Advanced Tags

Looking for classic VMs? Creste VM from Azure Marketplace

Review + create

Create a virtual machine that runs Linux or Windows. Select an image from Azure marketplace or use your own customized

Complete the Basics tab then Review + create to provision a virtuel machine with default parameters or review each tab for

Select the subsoription to manage deployed resources and costs. Use resource groups like folders to organize and manage

| Pay-As-You-Go s |
| (New) mi_azure ~ |
Creste new
| milamure vl
[ws)westusz - |
| Nao infrastructure redundancy reguired o |
| Red Hat Enterprise Linwx 7.6 v |
Browse all public and private images

Standard D2 v3

2 wecpus, B GiB memaorny

Change size
(®) password () ssH public key
[Jmex |
| (TTIIT T I YY) ""l
| (TTIIT T I YY) vl

L None ‘% Allow selected ports

Select which virtual machine network ports are accessible from the public internet You can specify more imited or granular
network access on the Metworking tab.

HTTP, HTTPE, 55H

4k These ports will be exposed to the internet. Use the Advanced controls to lmit
intouand traffic to known IP sddresses. You can alzo updste inbound traffic rules

ater.

3. Enter information into the fields for the basic setup:
a. In Resource group, select or create a resource.
b. In Virtual machine name, enter a name for the new virtual machine.
c. InRegion, select a region to host the virtual machine (for example, West US 2).

2023-08-21 14:49

Securing MarkLogic Server

Page 200

MarkLogic 10 Configuring an External Keystore

d. InlImage, select an image type (for example, Red Hat).

e. In Authentication type, choose either password (and fill in the username and password
fields) or SSH public key.

4. Click the Networking tab. This screen appears:

Home > Virtual machines > Create a virtual machine

Create a virtual machine

Basice Disks Metworking Management Advanced Tags Review + create

Define network connectivity for your virtual machine by configuring network interface card (NIC) settings. You can
control ports, inbound and outbound connectivity with security group rules, or place behind an existing load
balancing solution. Learn more

Metwork interface

‘When creating a virtual machine, a network interface will be created for you.

* Virtual network @ | mi_szure-vnet R |

Create new

* Subnet @ | defautt (10.1100/24) v |
Manage subnet configuration

PublicIP @ | [new) milazurel-ip B |

Create new

() None ® Basic () Advanced

MIC network security group &

* Publicinbound ports @ O None ® Anow selected ports

* Select inbound ports HTTP, HTTFS, 55H w

These ports will be exp
nbound traffic to known IP 2

ster

Accelerated networking @ - .;:'i:;. Off

The selected VM size does not support accelerated networking.
Load balancing
You can place this virtual machine in the backend pool of an existing Azure load balancing solution. Learn more

Place this virtual machine behind an .;:':;. Yes .;:i:;. Nao
existing load balancing solution?))

a. In NIC network security group, select Basic.

b. In Select inbound ports, select (80, 443, 22).
5. Under the Management tab, set System assigned managed identity to On.

2023-08-21 14:49 Securing MarkLogic Server Page 201

MarkLogic 10 Configuring an External Keystore

Home * Wirtuzl machines * Create a virual machine

Create a virtual machine

Basics Disks MNetworking Management Advanced Tags Review + create

Configure monitoring and management cptions for your V.

Azure Security Center

Azure Security Center provides unified security management and advanced threst protection across hybnid cloud workloads.
Learn rmore

@ vour subscription is protected by Azure Security Center basic plan

Maonitoring
£ P
* on) OF

P £
) on & ofF

* Dizgnostics storage scoount g (new) mizzuredisg r

Create new

Identity
r--====-< a
Systemn assigned managed identity @ :.:... on i LT
| Ep 47
Azure Active Directory
Login with AAD credentizls [Preview) @ :: On :..: o

Thits preview capability is not for production use. When you sign in, verify the name of the app on the sign-in soreen is “Azure Linux
Wi sign in” and the IP sddress of the target WM i commect.

Auto-shutdown
Enable auto-shutdown @ \: on :..: O
Backup

Enable backup @ ’: on e O

Lty

6. Under the Review tab, enter your preferred email address and phone number.
7. Review your information and click Create. The create process may take a bit of time.
8. Once the virtual machine has been created, configure the Key Vault.

Configure Azure Key Vault
To create an Azure Key Vault, follow these steps:

1. Navigate to Key Vaults under Home (use Search to find Key Vaults).

2023-08-21 14:49 Securing MarkLogic Server Page 202

MarkLogic 10 Configuring an External Keystore

Home > Keywvaults * Create key vault

Create key vault

Basics Access policy Virtual network Tags Review + create

Azure Key WVault is a cloud service used to manage keys, secrets, and certificates. Key Vault eliminates the need for
developers to store security information in their code, It allows you to centralize the storage of your application
secrets which greatly reduces the chances that secrets may be leaked. Key Vault also allows you to securely store
secrets and keys backed by Hardware Security Modules or H5Ms. The HSMs used are Federal Information Processing
Standards (FIPS) 140-2 Level 2 validated, In addition, key vault provides logs of all access and usage attempts of your
secrets so you have a complete audit trail for compliance. Learn more

Project details

Select the subscription to manage deployed resources and costs. Use resource groups like folders to organize and
manage all your resources,

* Subscription Pay-As-You-Go v
* Resource group mi_azure e
Create new

Instance details

* Keyvault name ¢ | rl-zzure vfl
* Region | UK'U"."E';II ~ |
* Pricing tier @ Standard e

2. Create a new Key Vault with name/resource group/location and a new access policy with keys
permissions (decrypt and encrypt) and principle (your newly created VM).

3. Under Settings navigate to Keys, and generate new keys for data/config/logs encryption. Use
these keys IDs to configure MarkLogic encryption.

Install MarkLogic

Install MarkLogic on the Azure virtual machine. See Set Up a Simple Deployment in the MarkLogic
Server on Microsoft® Azure® Guide for details. Once MarkLogic is installed on Azure, start MarkLogic
and navigate to the Admin Interface (port 8001).

NOTE

You may need to stop the firewall from the command line (sudo service
firewalld stop).

Add Encryption Configuration Settings to MarkLogic

To add encryption configuration settings to MarkLogic, follow these steps in the MarkLogic Admin
Interface:

1. Click Clusters in the left navigation bar.
2. Click the Keystore tab. This screen appears:

2023-08-21 14:49 Securing MarkLogic Server Page 203

https://docs.marklogic.com/guide/azure/GettingStarted#id_93201

MarkLogic 10 Configuring an External Keystore

Sumimeary Configurs Keystors Ops Dirsctor Coupls Help

Edit Keystore Configuration ok | [concer

data encryption default-on W
Enable encryption for user data.

config encryption on w
Enable encryption for configuration files.

logs encryption off w
Enable encryption for new log files.

kms type extemnal W
Type of KMS used to manage keys for newly encrypted files.

If you encrypt anything using a KM5, you need to retain access to that KMS to avoid losing data.

Internal KM5S || External KMS

host name miszure. vault.azure net
The host name(s) of the extemnal Ky Management Server. |f multiple, separated by comma.

port 443
The external Ky Management Servers socket port number(s), |f multiple, separated by comma.

external data encryption key id ST92693-61b5-4c84-b085-Bbc05aa3TET
The identifier of the user dats encryption key at the external KMS.

external config encryption key id 3gTI2RE0 Bib5-4cB4 BOBE-Sbel9aalTETe
The identifier of the configuration file encryption key at the external KMS.

external logs encryption key id dT92883-6b5-4c84-b0BE-Bbe09aa3TETe
The identifier of the log file encryption key st the external KMS.

Synchronize Keys

ok cancel

3. In kms type, select external.
Click the External KMS tab.
5. Enter the following information to identify the Azure Key Vault and the required encryption key
identifiers, adding the appropriate encryption key ID to each field:
+ Set host name using DNS Name from the Azure Key Vault (without the beginning https://
and the ending /, and ending with vault.azure.net).
» Set port to 443.
» Copy the encryption key IDs for the Azure Key Vault into the external data encryption key id,
external config encryption key id, and external logs encryption key id fields.

6. Click OK to configure encryption.

B

S NOTE
We recommend that you create three separate encryption key IDs (one for data, one
for configuration, and one for logs). Give each a descriptive name in order to help

distinguish between them.

Setting Description
host name The host name of the external Key Vault.
port The external Key Vault client socket port number.

2023-08-21 14:49 Securing MarkLogic Server Page 204

MarkLogic 10 Configuring an External Keystore

Setting Description

external data encryption key id The identifier of the encryption key from the external KMS that is to be used to encrypt data
files.

external config encryption key id The identifier of the encryption key from the external KMS that is to be used to encrypt
config files.

external logs encryption key id The identifier of the encryption key from the external KMS that is to be used to encrypt log
files.

For more about roles and privileges, see the MarkLogic Server on Microsoft® Azure® Guide.

14.9.4. Set Up an External KMIP KMS with MarkLogic Encryption

To configure the external key management system using the MarkLogic Admin Ul on the MarkLogic
host, you will need the following information for your external KMS:

* Host name - the hostname of the key management system

* Port number - the port number used to communicate with KMS

» Data encryption key ID (UUID generated by external KMS)

» Configuration encryption key ID (UUID generated by external KMS)
» Logs encryption key ID (UUID generated by external KMS)

The TLS certificates, used to secure the communication with the KMS, must be stored locally on each
host in the MarkLogic data directory (/var/opt/MarkLogic). By default, the files are expected to be
located in the MarkLogic data directory and must have the following names:

+ kmip-CA.pem - The root/certificate of the CA that signed the certificate request for MarkLogic.

+ kmip-cert._pem - The certificate that was issued to MarkLogic and the one that was signed by the
CA.

» kmip-key.pem - The private key that was generated for MarkLogic and is associated with the
Certificate issued to MarkLogic (kmip-cert). (Optional for some KMS servers.)

These certificates are the Certificate Authority (CA) for the root of the certificate chain for the kmip-
cert.pem. A certificate could be a self-signed root used by an enterprise or an external CA. Copy
these files into the MarkLogic data directory (/var/opt/MarkLogic). The location and name of these
files can be changed by calling the admin functions. See Section 14.12.2, “Admin APIs for Encryption at
Rest” [215] for details.

NOTE

These settings are cluster wide, so each individual host must have a local copy at the
location specified.

14.9.5. High Availability and Failover with External KMS

Encryption at rest enables the you to specify multiple hosts, multiple ports, and multiple KMIP
credentials to connect to KMIP servers. The information to connect to these servers are specified in

the fields on the external Key Management Service (KMS) section of the Edit Keystore Configuration
page. The information must be validated at configuration time. For each host with specified, if there
must exist a PEM-encoded Certificate Authority file and a PEM-encoded KMIP certificate file accessible
to each node of the MarkLogic server.

For each host specified, there must exist a PEM-encoded Certificate Authority file and PEM-encoded
KMIP certificate file accessible to each node of MarkLogic server.

2023-08-21 14:49 Securing MarkLogic Server Page 205

https://docs.marklogic.com/guide/azure

MarkLogic 10 Set Up the External KMS

The pem files are looked up with the user-specified path or default location for the first host. For
subsequent hosts, the file names are expected to be accessible through the original file name pre-
pended by the host’s index in the configuration sequence.

Internal KMS External KMS

host name kms1.marklogic.com, kms2. marklogic. com
The hest name(s) of the external Key Management Server. If multiple, separated by comma.

port 2010
The external Key Management Server's socket port number(s), If multiple, separated by comma.

external data encryption key id 8003785c-3fb6-48d2-bbTa-1785ec31a69f
A UUID identifying the encryption key at the external KMS that should be used to encrypt data files

external config encryption key id 96d7c56b-eb6c-4e9a-b311-ab10aa82bs86
A UUID identifying the encryption key at the external KMS that should be used to encrypt configuration files

external logs encryption key id 084ddf54-a453-40eb-57a8-e5d3afe75g
A UUID identifying the encryption key at external KMS that should be used to encrypt log files

ok cancel

For example, if the configured host names are “kms1.marklogic.com” and “kms2.marklogic.com”. The
configured port is 9010. The specified CA file is at “path/CA.pem”. The specified certificate file is at
“/path/cert.pem”. The configuration must be validated through the following:

1. File /path/CA.pem, /path/1-CA_pem, /path/cert.pem, and /path/1-cert.pem all exist.

2. The user-specified encryption keys can be validated through connecting to
kmsl.marklogic.com at port 9010.

3. The user-specified encryption keys can be validated through connecting to
kms2.marklogic.com at port 9010.

If the first specified KMIP host stops responding, the program will try to connect to each of the other
hosts on the user-specified list in turn until it successfully connects.

If for some reason the programs is unable to connect with a valid KMIP server after multiple attempts, it
will report exception.

14.10. Set Up the External KMS

In most cases, an external KMS is configured by security administrator, a separate role from the
MarkLogic admin role. However, in some cases the security administrator may also be the MarkLogic
admin role.

If you don’t already have the external KMS configured and running, set up the external KMS using the
appliance’s interface before turning on MarkLogic encryption. The steps in the process for setting up the
external KMS will depend on the type of KMIP-compliant external KMS you are using.

Make sure that:

» The external key management system is set up, running, and provisioned first to use KMIP 1.2,
before you configure MarkLogic encryption.

+ To secure communications between the KMS and MarkLogic Server obtain the required certificates;
KMIP TLS certificate, CA of the KMS, private key for the client (optional for some KMS servers).

2023-08-21 14:49 Securing MarkLogic Server Page 206

MarkLogic 10 Set Up the External KMS

The security administrator can enable encryption for user data, configuration files, and/or logs, either
per cluster or per database. You must use the administration tools that come with the external KMS to
set up the external keystore.

NOTE
@ The external key management system (KMS) must be available during the MarkLogic

startup process. Access to the external KMS must be granted to all nodes in the
cluster.

14.10.1. Set Up MarkLogic Encryption

Before you set up encryption at rest, be sure that your cluster has upgraded to MarkLogic 9. If the
cluster has not been upgraded, the encryption feature will not be available.

1.

Set up your external KMS, if not already set up. See Section 14.9.4, “Set Up an External KMIP
KMS with MarkLogic Encryption” [205] for details.

Get the generated encryption key IDs from the external KMS (for data, config, and logs as needed).
If you are using data encryption, configuration file encryption, and log encryption, and you want
different encryption keys for each, you will need three encryption key IDs (UUIDs).

Click Clusters in the left navigation tree, then click the name of the cluster to configure.

Click the Keystore tab, then click the external radio button next to Key Management System
(KMS). Additional fields for setting up the external KMS are displayed.

Provide the host name and port number for your external KMS in the appropriate fields.

NOTE

Replace the existing host name and port and any existing encryption key IDs, with
the information for the external KMS.

2023-08-21 14:49 Securing MarkLogic Server Page 207

MarkLogic 10 Set Up the External KMS

[summar W contioure W tersiore U Opstirector W cowwie W e
Edit Keystore Configuration ok | [cancer |

data encryption default-off
Enable encryption for user data.

config encryption off =

logs encryption off -
Enable encryption for new log files.
kms type external *

Type of KMS used to manage keys for newly encrypted files.

Internal KMS

| syohroniz Keys |

[ok] [cancel]

6. Add the encryption key IDs (generated by the external KMS) for the types of encryption you
are configuring (data, configuration, and/or logs), to the appropriate fields on the Edit Keystore
Configuration page in the Admin Ul.

7. Click OK.

8. Turn on the types of encryption you wish from Admin Ul (data encryption, configuration file
encryption, and/or log file encryption).

NOTE

Adding the encryption information will require a restart of all of the hosts in your cluster.

2023-08-21 14:49 Securing MarkLogic Server Page 208

MarkLogic 10 Set Up the External KMS

When using an external KMS, key encryption keys (KEK) might be rotated according to the policy set in
the KMS. Each time that the keys are rotated in an external KMS, you will have to update the new KEK
IDs (UUIDs - i.e. key encryption keys - KEKs) to MarkLogic. Data will then start to be encrypted with
new KEK ID, as described in Section 14.8.1, “Key Rotation” [191]. The object keys (OKEYs) with be
enveloped by the external KMS and the new keys as MarkLogic uses the IDs to request that the OKEY
be enveloped with the corresponding KEK ID.

Encryption at rest may be configured using REST, XQuery, or JavaScript APIs. See Section 14.12,
“APls for Encryption at Rest” [214] for details.

14.10.2. Transitioning from PKCS #11 Secured Wallet to an External KMS

Transitioning from the internal PKCS #11 secured wallet to an external KMS will re-encrypt of all
configuration files and forest labels. Re-encryption will happen the next time a file is written to disk. If a
you want to force re-encryption of all data, start a re-index of the database.

Customer-provided cluster KEK IDs will be validated against the KMS for encryption/decryption. If any
KEK ID validation fails or MarkLogic cannot connect to the KMS, there will be no changes to the
configuration files.

Even after you have migrated to an external KMS, the PKCS #11 secured wallet will retain and manage
any encryption keys that were generated before the migration to the external keystore.

To migrate from the PKCS #11 secured wallet to an external keystore (KMS) do the following:

1. Important: Before you start the transition to an external KMS, back up the wallet that contains all of
the internal keys.

2. Confirm that the external KMS is running and available. See Section 14.9.4, “Set Up an External
KMIP KMS with MarkLogic Encryption” [205] .

3. Enable the desired encryption options from the MarkLogic Admin Ul. MarkLogic encryption will now
used the encryption keys supplied by the external KMS.

14.10.3. Transitioning from an External KMS to PKCS #11 Secured Wallet

WARNING

Moving from an external KMS to the internal KMS will downgrade your overall security,
as the external KMS is more secure than the internal PKCS #11 secured wallet.

If for some reason you want to stop using your external KMS and revert to using the internal PKCS #11
secured wallet, use the steps in this section to transition to the internal PKCS #11 wallet.

To migrate encryption to internal the PKCS #11 wallet, do the following:

1. Important: Before you start the transition to an external KMS, back up the wallet that contains all of
the internal keys.

2. Turn off encryption on all categories and force decryption of all encrypted forests by issuing a
merge command.

3. Ensure that all data is un-encrypted, forest status reports encryption size.

4. Set the configuration back to the internal PKCS #11 KMS and rotate the key encryption keys. See
Section 14.8.1, “Key Rotation” [191] for more information.

5. Re-index or force a merge of the database to re-encrypt your data.

2023-08-21 14:49 Securing MarkLogic Server Page 209

MarkLogic 10 Administration and Maintenance

NOTE

Encrypted read-only forests will need to be set to updates-allow all and
merge or they will be inaccessible.

14.11. Administration and Maintenance
This section covers additional tasks you may want to perform once you have configured encryption.

14.11.1. Backup and Restore

Individual backup files are encrypted with the cluster data encryption key (CDKEK). Backups are forest
driven, so data from an encrypted forest will also be encrypted in backups. Configuration files included
in a backup will be encrypted if the cluster is enabled for configuration file encryption. This encryption
works with full backups, incremental backups, and journal archiving.

NOTE

If any forest in the backup has encryption enabled, then the entire backup will be
encrypted.

The encryption keys residing in the PKCS #11 secured wallet (the embedded KMS) will be exported as
part of a full backup by default. This is true whether encryption is configured to use the internal KMS
or an external KMS. Full backups will include this exported copy of the keystore, encrypted using the
embedded KMS passphrase, unless you specify otherwise. See Excluding the Embedded KMS from a
Backup [212].

A WARNING

If you cannot access your PKCS #11 secured wallet (or external KMS if you are
using one), or lose your encryption keys, you will not be able to decrypt any of your
encrypted data (including backups). There is no workaround to recover the encrypted
data. We recommend that you backup your encryption keys in a secure location.

The built-in function admin:cluster-set-keystore-passphrase can be used to change the KMS
passphrase. When you first set up encryption, we strongly recommend that you change the KMS
passphrase to something other than the admin passphrase. This is to ensure that you utilize the
Separation of Duties security principle as much as possible.

@ NOTE
By default the keystore passphrase is automatically set to the admin password.
We strongly recommend that you set a new, different passphrase before turning on
encryption.

2023-08-21 14:49 Securing MarkLogic Server Page 210

MarkLogic 10 Administration and Maintenance

During an internal keystore backup/restore, data is added to the embedded PKCS #11 secured
wallet; no keys are deleted. The encrypted file containing the keys is named kms.exp. The exported
keystore is not imported during a restore from a backup. If you need to restore the keys, use the
xdmp: keystore-import function. The keystore passphrase will be required to decrypt the exported
keystore file when restoring backups on another MarkLogic instance.

NOTE

To change the keystore passphrase, the current password or passphrase is required.

To restore an encrypted backup to the same cluster:

Restore the backup as usual. See Backing Up and Restoring a Database in the Administrator’s Guide
for details.

To restore an encrypted backup to a different cluster:

1. Use the xdmp : keystore-import function to import the keystore. This function requires the
keystore passphrase of the cluster where the backup was created, to decrypt the keystore:
xdmp:keystore-import(‘’keystore passphrase', */backup-directory/kms.exp™)
The import process will reject duplicate keys and log a warning that includes the ID of the rejected
keys. Imported keys can only be used for decryption.

2. Restore the backup as usual. See Backing Up and Restoring a Database in the Administrator’s
Guide for details.

NOTE

As long as the current database being restored is encrypted, the restored
database will also be encrypted.

Using this process you can move your encrypted backups from one system to another and restore
them, as long as you have the passphrase and import the keystore into the new system before restoring
the backup. See Backup and Restore Overview in the Administrator’s Guide for more information about
backup and restore procedures.

WARNING

If you lose the cluster configuration information, you must first manually restore the
keystore before an encrypted backup can be restored.

To export your keystore, use the xdmp: keystore-export function: xdmp:keystore-
export(*'strong passphrase', '/backups/MarkLogic.wallet.bak'™)

This function exports all of the encryption keys stored in the MarkLogic embedded KMS (the PKCS #11
secured wallet) and stores them at the location provided to the function.

2023-08-21 14:49 Securing MarkLogic Server Page 211

https://docs.marklogic.com/guide/admin/backup_restore#
https://docs.marklogic.com/guide/admin/backup_restore#
https://docs.marklogic.com/guide/admin/backup_restore#id_95335

MarkLogic 10 Administration and Maintenance

Excluding the Embedded KMS from a Backup

A WARNING

If you set the backup option to exclude and turn off the automatic inclusion of the
keystore, you are responsible for saving keystore (the embedded KMS) to a secure
location. If you cannot access your PKCS #11 secured wallet (or external KMS if you
are using one), or lose your encryption keys, you will not be able to decrypt any of your
encrypted data (including backups).

By default the MarkLogic embedded KMS (the PKCS #11 secured wallet) is automatically included
in a backup. You can exclude the embedded wallet using the options in admin:cluster-set-
keystore-backup-option. The include or exclude options enable you to choose whether to
have the embedded KMS included as part of backups.

xquery version "1.0-ml";

import module namespace admin = "http://marklogic.com/xdmp/admin®’
at ""/MarkLogic/admin._xqy";

let $option := "exclude"

let $config := admin:get-configuration()

return

admin:cluster-set-keystore-backup-option($config, $option)

Setting the option to exclude prevents the embedded KMS from being included in the backup.

Backups Using a Secondary Key

MarkLogic encryption at rest includes the ability to use a secondary backup key encryption key
(BDKEK) for encrypting backups when encryption is configured with an external KMS. Using this
BDKEK you can restore your backup to a new system, one that might not have access to the CDKEK
and/or CCKEK.

For example, with this XQuery statement you can backup your Documents database using the BDKEK:

xdmp : database-backup(xdmp:database-forests(xdmp:database('Documents')),"/backups/Data",
fn:true(),
""/backups/JournalArchiving”, 15,"bf 44aab- 3f 7a- 41d2- a6a5-f c41a0e5e0cf ™)

Or you could use server-side JavaScript:

xdmp .databaseBackup(xdmp.databaseForests(xdmp.database(''Documents'™)), "/backups/Data",
fn:true(),
""/backups/JournalArchiving”, 15,"bf 44aab- 3f 7a- 41d2- a6a5-f c41a0e5e0cf ') ;

In these examples “bf44aab-3f7a-41d2-a6a5-fc41a0e5e0cF is the secondary backup key
(BDKEK).

The built-ins xdmp : database-backup and xdmp:database-incremental-backup have an
optional argument to take advantage of the BDKEK from the external KMS. The REST API can also
take advantage of a secondary backup key as part of the backup operations.

Backups Using a Passphrase

MarkLogic also provides the ability to encrypt backups with a backup passphrase. The
xdmp : dababase-backup and xdmp:database-incremental-backup APIs take an optional
argument for the passphrase ($backup-passphrase).

2023-08-21 14:49 Securing MarkLogic Server Page 212

MarkLogic 10 Administration and Maintenance

Similarly, the built-in xdmp :database-restore for restoring a database accepts an optional
parameter for the backup passphrase ($backup-passphrase). Using a passphrase, a user can
restore into any system without requiring import of the original keys or connection to an external KMS.

14.11.2. Tool to View Encrypted Log Files Outside of the Server

MarkLogic encryption at rest includes the mlecat command line tool, which can be used to view
encrypted log files outside of the server.

NOTE

Windows users use mlecat.bat instead of mlecat.

The mlecat tool can be used successfully in either of these conditions:

+ If the mlecat tool is given access to the MarkLogic data directory and the . pem files.
+ If the log files are encrypted with a user-specified logs passphrase and the same logs passphrase is
passed to mlecat with —-p option.

@ NOTE
The mlecat tool should be run by a user with sufficient OS privileges to access the
PKCS#11 wallet (located by default at /var/opt/MarkLogic). It is suggested that
the user be a member of group running MarkLogic (by default daemon).

If you want to decrypt log files without having access to your KMS, you must set a logs-
encryption-passphrase. To set this passphrase, use the admin:cluster-set-keystore-
logs-encryption-passphrase function. For example:

xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin"’
at "/MarkLogic/admin.xqy";
let $config := admin:get-configuration()
let $passphrase := "dazzling zebras"
let $config := admin:cluster-set-keystore-logs-encryption-passphrase
($config,$passphrase)
return admin:save-configuration($config)

NOTE

Log file encryption must be enabled for this passphrase to be used.

For every OS you must add MARKLOGIC _INSTALL_DIR and MARKLOGIC_INSTALL_DIR/bin to your
PATH. For example,

PATH=$MARKLOGIC_INSTALL_DIR:$MARKLOGIC_INSTALL_DIR/bin:$PATH

2023-08-21 14:49 Securing MarkLogic Server Page 213

MarkLogic 10 APIs for Encryption at Rest

For more about setting environment variables on various platforms, see the information about
installation and data directories as part of Installing MarkLogic in the Installation Guide.

To see the command line options for the mlecat tool, invoke mlecat with no arguments:

mlecat
==>
mlecat [option] Ffilepath(s)
option:

-1 IDIR, iDir is MarkLogic"s Install directory, alternatively the environmental variable
MARKLOGIC_INSTALL_DIR can be used to set this value.

-d dDIR, dDIR is MarkLogic"s Data directory, alternatively the environmental variable
MARKLOGIC_DATA DIR can be used to set this value

-p PASS, PASS is your logs-encryption-passphrase (if you are using one);

[-f] filepath(s), one or more file paths (-f can be specified before each file for
explicit file list)

For example:
mlecat -p admin /var/opt/MarkLogic/Logs/ErrorLog.txt

Defaults for the MarkLogic data and install directories are shown in this table:

Platform Installation Directory Default Data Directory (for configuration and log files)
Windows c:\Program Files\MarkLogic c:\Program Files\MarkLogic\Data

Red Hat /opt/MarkLogic /var/opt/MarkLogic

Linux

Mac OS X ~/Library/MarkLogic ~/Library/Application Support/MarkLogic/Data

For more about setting environment variables on various platforms, see the information about
installation and data directories as part of Installing MarkLogic in the Installation Guide.

14.11.3. Disaster Recovery/Shared Disk Failover

Unless you have suffered a complete loss of your host, disaster recovery should work just fine with
encryption at rest. See High Availability and Disaster Recovery in the Concepts Guide for information
about setting up shared disk failover and steps for disaster recovery.

If you have experienced a complete loss of your host, follow these steps:

1. Reinstall and configure a new MarkLogic host.

2. Import the keystore and keys from a backup (using xdmp : keystore-import). See
Section 14.8.2, “Export and Import Encryption Keys” [193] for details.

3. Perform a restore from backup as usual. See Backing Up and Restoring a Database in the
Administrator’s Guide for more information.

14.12. APIs for Encryption at Rest

The encryption at rest feature includes APIs for working with encryption, using either the default
keystore (the internal PKCS #11 secured wallet) or a KMIP-compliant external KMS.

14.12.1. Built-ins for Encryption at Rest

These functions will work with both the internal PKCS #11 secured wallet, or a external KMIP-compliant
keystore. Using these functions you can encrypt data and check the status of encryption in your clusters
using either JavaScript or XQuery.

These are the Server-Side JavaScript built-ins:

+ xdmp.keystoreExport
» xdmp.keystorelmport

2023-08-21 14:49 Securing MarkLogic Server Page 214

https://docs.marklogic.com/guide/installation/procedures#id_28962
https://docs.marklogic.com/guide/installation/procedures#id_28962
https://docs.marklogic.com/guide/concepts/backup-replication#
https://docs.marklogic.com/guide/security/encryption#id_73062:~:text=from%20backup%20as%20usual.%20See-,Backing%20Up%20and%20Restoring%20a%20Database,-in%20the%20Administrator%27s%20Guide%20for

MarkLogic 10 APIs for Encryption at Rest

+ xdmp.FfilesystemFileEncryptionStatus
+ xdmp.databaseEncryptionAtRest

+ xdmp.databaseEncryptionKeyld

» xdmp.keystoreVal idateExported

These are the Server-Side XQuery built-ins:

+ xdmp:keystore-export

+ xdmp:keystore-import

+ xdmp:Ffilesystem-file-encryption-status
+ xdmp:database-encryption-at-rest

+ Xdmp:database-encryption-key-id

+ xdmp:keystore-val idate-exported

Using a Credential ID with http-options

The xdmp:http-options function now accepts a credential-id when used with XQuery. The schema
looks like this:

<xs: conpl exType name="options'>
<XS:sequence>
<xs: el enent ref="timeout" minOccurs="0"/>
<xs: el enent ref="data" minOccurs="0"/>
<xs: el ement ref="headers'" minOccurs="0"/>
<xs:elenent ref="credential-id" mnCccurs="0"/> <xs: el enent
ref="authentication” minOccurs="0"/ >
<xs: el ement ref="client-cert" minOccurs="0"/>
<xs: el ement ref="client-key" minOccurs="0"/>
<xs: el enent ref="pass-phrase'" minOccurs="0"/>
</ xs: sequence>
</ xs: conpl exType>

14.12.2. Admin APIs for Encryption at Rest

These functions are used to set the mode and descriptions for the host, set the keystore host name and
the keystore host port. You can also set the keystore data key ID, config key ID, or logs key ID, along
with setting the keystore serve certificate and enabling encryption.

These server-side XQuery functions work with either the PKCS #11 secured wallet or a third-party
KMIP-compliant keystore:

+ admin:cluster-get-config-encryption

» admin:cluster-get-data-encryption

+ admin:cluster-get-logs-encryption

» admin:cluster-set-config-encryption

+ admin:cluster-set-data-encryption

+ admin:cluster-set-logs-encryption

+ admin:database-get-data-encryption

+ admin:database-set-data-encryption

+ admin:cluster-set-keystore-passphrase

» admin:cluster-set-keystore-logs-encryption-passphrase
+ admin:cluster-get-keystore-backup-option

+ admin:cluster-get-keystore-wallet-location

The admin:cluster-rotate-xxxx-encryption-key-id APlIs are only for use with the embedded
KMS provided by MarkLogic (the PKCS #11 secured wallet). Using these functions with an external
KMS will cause an error.

+ admin:cluster-rotate-config-encryption-key-id

2023-08-21 14:49 Securing MarkLogic Server Page 215

MarkLogic 10 APIs for Encryption at Rest

* admin:cluster-rotate-data-encryption-key-id
+ admin:cluster-rotate-logs-encryption-key-id
* admin:group-get-rotate-audit-files

* admin:group-get-rotate-log-files

* admin:group-set-rotate-audit-files

* admin:group-set-rotate-log-files

These next two APIs are used in transitioning from an internal keystore (the PKCS #11 secured wallet)
to an external KMIP-compliant keystore. If these functions are set to external, MarkLogic Server will first
look for the external keystore to verify the keys.

+ admin:cluster-set-keystore-kms-type
+ admin:cluster-get-keystore-kms-type

These functions are designed to work with a external KMIP-compliant keystore:

+ admin:cluster-get-config-encryption-key-id

* admin:cluster-set-config-encryption-key-id

+ admin:cluster-get-data-encryption-key-id

« admin:cluster-set-data-encryption-key-id

+ admin:cluster-get-keystore-host-name

+ admin:cluster-set-keystore-host-name

+ admin:cluster-get-keystore-port

+ admin:cluster-set-keystore-port

+ admin:cluster-get-logs-encryption-key-id

+ admin:cluster-set-logs-encryption-key-id

* admin:cluster-get-keystore-kmip-CA-path

+ admin:cluster-set-keystore-kmip-CA-path

* admin:cluster-get-keystore-kmip-certificate-path
+ admin:cluster-set-keystore-kmip-certificate-path
+ admin:cluster-get-keystore-kmip-key-path

+ admin:cluster-set-keystore-kmip-key-path

+ admin:database-get-encryption-key-id

+ admin:database-set-encryption-key-id

NOTE

The functions designed to work with a external KMS will return an error if you try to use
them with the PKCS #11 secured wallet (the default built-in KMS).

14.12.3. REST Management APIs for Encryption

You can manage encryption using the REST Management APIs. Some of the tasks you can do with
these APIs include:

» Encryption configuration

» Keystore configuration

» Database configuration

» Database status, including database encryption (encrypted size, total size)
 Cluster status

» Forest status

2023-08-21 14:49 Securing MarkLogic Server Page 216

MarkLogic 10 APIs for Encryption at Rest

» Security
» Backups, status (encrypted or not)
» Restore (with property for using private key)

The REST Management APls that are used to query and manage the cluster security properties include
encryption information for database, cluster, and forest.

Below is a XML payload example for the security endpoint:

<security-properties xmlns="http://marklogic.com/manage/security/properties"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance""
xsi:schemalLocation="http://marklogic.com/manage/security/properties
manage-security-properties.xsd">

<keyst or e>

<dat a- encrypt i on>default-off</ dat a- encrypti on>

<confi g-encrypti on>0ff</confi g-encryption>

<l ogs- encrypti on>0ff</| ogs-encrypti on>

<kms-t ype>internal</ kns-type>

<host - nane>localhost</ host - nane>

<por t >9056</ port >

<dat a- encrypti on-key-i d>92ed7360-458a-427e-abad-c6595b192cb7</ dat a- encrypti on- key-i d>
<confi g-encryption-key-i d>8b9a9bdb-7b0e-41eb-9aa6-ed6e8cb23ad5</ confi g-encrypti on-key-i d>
<l ogs-encrypti on-key-i d>01c50d02-b43f-46bc-bbe5-6d4111d1180b</ | ogs- encrypti on- key-i d>
</ keyst or e>

</ security-properties>

And here is a JSON payload example for the security endpoint:

{
"keystore': {
"data-encryption”: "default-off",
"config-encryption”: "off",
"logs-encryption': "off",
"kms-type': "internal",
"host-name'": "localhost",
"port': 9056,
"data-encryption-key-id":
"'92ed7360-458a-427e-abad-c6595b192cb7"",
"config-encryption-key-id":
""8b9a9bdb-7b0e-41eb-9aa6-ed6e8cb23ad5",
"logs-encryption-key-id":
"'01c50d02-b43f-46bc-bbe5-6d4111d1180b**
}
¥

These operations are available for encryption key rotation:

curl -v -X POST --anyauth --user admin:admin \
--header "Content-Type:application/json” -d \
"{"operation:"rotate-config-encryption-key"}" \
http://localhost:8002/manage/v2/security

curl -v -X POST --anyauth --user admin:admin \
--header "Content-Type:application/json” -d \
"{"operation":"rotate-data-encryption-key"}" \
http://1ocalhost:8002/manage/v2/security

curl -v -X POST --anyauth --user admin:admin \
--header "Content-Type:application/json” -d \
"{"operation":"rotate-logs-encryption-key"}" \
http://localhost:8002/manage/v2/security

2023-08-21 14:49 Securing MarkLogic Server Page 217

MarkLogic 10 Interactions with Other MarkLogic Features

14.13. Interactions with Other MarkLogic Features

In most cases the encryption at rest feature will be transparent to the user, that is data on disk will be
encrypted, decrypted during use (by users with the appropriate security permissions), and re-encrypted
when the data is written back to disk.

14.13.1. Rolling Upgrades

Encryption at rest is a feature introduced in MarkLogic 9. Clusters running older versions need
to be completely upgraded to MarkLogic 9 before using this feature. See Rolling Upgrades in the
Administrator’s Guide for more about rolling upgrades.

NOTE
During upgrades, the default passphrase for the upgraded system is not set. You will
need to reset the default passphrase after an upgrade.

14.13.2. Telemetry
The telemetry feature is not available for use until the cluster is upgraded to MarkLogic 9.0-1 or later.
See Telemetry in the Monitoring MarkLogic Guide for more about telemetry.

2023-08-21 14:49 Securing MarkLogic Server Page 218

https://docs.marklogic.com/guide/admin/rolling-upgrades#
https://docs.marklogic.com/guide/monitoring/telemetry#

MarkLogic 10 Administering Security

15. Administering Security

This section describes the basic steps to administer security in MarkLogic Server. It does not provide
the detailed procedures for creating users, roles, privileges, and so on. For those procedures, see
Security Administration in the Administrator’s Guide.

15.1. Overview of the Security Database

Authentication in MarkLogic Server occurs via the security database. The security database contains
security objects such as privileges, roles, and users. A security database is associated with each HTTP,
WebDAV, ODBC, or XDBC server. Typically, a single security database services all of the servers
configured in a system. Actions against the server are authorized based on the security database. The
security database works the same way for clustered systems as it does for single-node systems; there
is always a single security database associated with each HTTP, WebDAV, ODBC, or XDBC server.

The configuration that associates the security database with the database and servers is at the
database level. HTTP, WebDAV, ODBC, and XDBC servers each access a single documents database,
and each database in turn accesses a single security database. Multiple documents databases can
access the same security database. The following figure shows many servers accessing some shared
and some different documents databases, but all accessing the same security database.

2023-08-21 14:49 Securing MarkLogic Server Page 219

https://docs.marklogic.com/11.0/guide/admin/security

MarkLogic 10 Overview of the Security Database

Security Server Database

/ ’
/ y
/)
HTTP Serveri
Documents
Database1
e @
/ ”
/ y
WebDAV Serveri
/ ’
/ ’
p
/ Security
Database
XDBC Server1
Documents
Database?
: I
p

XDBC Server?2

Sharing the security database across multiple servers provides a common security configuration. You
can set up different privileges for different databases if that makes sense, but they are all stored in a
common security database. For an example of this type of configuration, see Section 15.5, “Example:
Using the Security Database in Different Servers” [221].

In addition to storing users, roles, and privileges that you create, the security database also stores
predefined privileges and predefined roles. These objects control access to privileged activities in
MarkLogic Server. Examples of privileged activities include loading data and accessing URIs. The
security database is initialized during the installation process. For a list of all of the predefined privileges
and roles, see Appendix B and Appendix C in Administrating MarkLogic Server.

2023-08-21 14:49 Securing MarkLogic Server Page 220

https://docs.marklogic.com/guide/admin/exec_privs
https://docs.marklogic.com/guide/admin/pre_def_roles

MarkLogic 10 Associating a Security Database with a Documents Database

15.2. Associating a Security Database with a Documents

Database

When you configure a database, you must specify which database is its security database. You can
associate the security database to another database in the database configuration screen of the Admin
Interface. This configuration specifies which database the server will use to authenticate users and
authorize requests. By default, the security database is named Security. The following screen shot
shows the server configuration screen drop-list that specifies the security database.

security database I Security - I

The security database.

15.3. Managing and Using Objects in the Security Database

There are two mechanisms available to add, change, delete, and use objects in the security database:
the Admin Interface and the XQuery functions. provided by the security.xqy library module. This
section describes what you can do with each of these mechanisms.

15.3.1. Using the Admin Interface

The Admin Interface is an application installed with MarkLogic Server for administering databases,
servers, clusters, and security objects. The Admin Interface is designed to manage the objects in the
security database, although it manages other things, such as configuration information, too. You use the
Admin Interface to create, change, or delete objects in the security database. Activities such as creating
users, creating roles, assigning privileges to roles, and so on, are all done in the Admin Interface. By
default, the Admin Interface application runs on port 8001.

For the procedures for creating, deleting, and modifying security objects, see the Administrator’s Guide.

15.3.2. Using the security.xqy Module Functions

The installation process installs an XQuery library to help you use security objects in your XQuery code.
The security.xqy library module includes functions to access user and privilege information, as well
as functions to create, modify, and delete objects in the security database.

The functions in security.xqy must be executed against the security database. You can use these
functions to do a wide variety of things. For example, you can write code to test which collections a user
has access to, and use that information in your code.

For the signatures and descriptions of the functions in security.xqy, see the MarkLogic XQuery and
XSLT Function Reference.

15.4. Backing Up the Security Database

The security database is the central entry point to all of your MarkLogic Server applications. If

the security database becomes unavailable, no users can access any applications. Therefore, it is
important to create a backup of the security database. Use the database backup utility in the Admin
Interface to back up the security database. For details, see the Backing Up and Restoring a Database
in the Administrator’s Guide.

15.5. Example: Using the Security Database in Different Servers

The security database typically is used for the entire system, including all of the HTTP, WebDAV,
ODBC, and XDBC servers configured. You can create distinct privileges to control access to each
server. If each server accesses a different document database, these privileges can effectively control
access to each database (because the database is associated with the server). Users must have the
appropriate login privileges to log into the server, and therefore they have no way of accessing either
the applications or the content stored in the database accessed through that server without possessing
the appropriate privilege. This example describes such a scenario.

2023-08-21 14:49 Securing MarkLogic Server Page 221

https://docs.marklogic.com/guide/admin
https://docs.marklogic.com/guide/xquery
https://docs.marklogic.com/guide/xquery
https://docs.marklogic.com/guide/admin/backup_restore

MarkLogic 10

Example: Using the Security Database in Different Servers

Consider an example with two databases—DocumentsA and DocumentsB:

Security Server Database Example

>

Document @
Database
Documents A

Admin Interface
Port: 8001

N

N

HTTP Server

Application A
Execute priyilegen..RO'CR
Execute priyileges..R0\e®
Rolea - UserA1, UserA2 Q
RoleB - yserp1, UserB2-
)

2N

Securit
Databasye HTTP Server
“Security” Application B

N

Document
Database
Documents B

DocumentsA and DocumentsBshare a single security database, Security. Security is the default
security database managed by the Admin Interface on port 8001. There are two HTTP servers,
ApplicationA and ApplicationB, connected to DocumentsAand DocumentsB respectively.

ExecutePrivilegeA controls login access to ApplicationA, and ExecutePrivilegeB
to ApplicationB. RoleA is granted ExecutePrivilegeA and RoleB is granted
ExecutePrivilegeB.

With this configuration, users who are assigned RoleAcan access documents in DocumentsA and
users of RoleB can access documents in DocumentsB. Assuming that ExecutePrivilegeA or
ExecutePrivilegeB are appropriately configured as login privileges on every HTTP and XDBC

2023-08-21 14:49

Securing MarkLogic Server Page 222

MarkLogic 10 Example: Using the Security Database in Different Servers

server that accesses either DocumentsA or DocumentsB, user access to these databases can
conveniently be managed by assigning users the role(s) RoleA and/or RoleB as required.

S NOTE
The Admin Interface at port 8001 is also used to configure all databases, HTTP
servers, hosts, and so on. The connection between the Admin Interface and the
Security database in the diagram simply indicates that the Admin Interface is storing
all security objects—users, roles, and privileges—in Secur ity database.

The steps below outline the process to create the configuration in the above example.

1.

Create two document databases: DocumentsA and DocumentsB. Leave the security database for
the document databases as Security (the default setting).

Create two execute privileges: ExecutePrivilegeA and ExecutePrivilegeB. They represent
the privilege to access ApplicationA and ApplicationB respectively. ApplicationA and
ApplicationB are two HTTP servers that are created later in this procedure.

@ NOTE
The new execute privileges created using the Admin Interface are stored in the
Security database. The new roles and users created below are also stored in
the Security database.

Create two new roles. These roles are used to organize users into groups and to facilitate granting

access to users as a group.

a. Create a new role. Name it RoleA.

b. Scroll down to the Execute Privileges section and select ExecutePrivilegeA. This
associates ExecutePrivilegeA with RoleA. Any user assigned RoleA is granted
ExecutePrivilegeA.

c. Repeat the steps for RoleB, selecting ExecutePrivilegeB instead.

Create two new HTTP servers:

a. Create a new HTTP server. Name it Appl icationA.

b. Select DocumentsA as the database. ApplicationA is now attached to DocumentsA which
in turn uses Security as its security database.

c. Select basic, digest or digest-basic authentication scheme.

d. Select ExecutePrivilegeA in the privilege drop down menu. This indicates that
ExecutePrivilegeA is required to access ApplicationA.

e. Repeat the steps for ApplicationB, selecting ExecutePrivilegeB instead.

Create new users.

a. Create a new user named UserAl.

b. Scroll down to the Roles section and select RoleA.

c. Repeat the steps for UserB1, selecting RoleB in the roles section.

UserAl is granted ExecutePrivi legeA by virtue of its role (RoleA) and has login access

to ApplicationA. Because ApplicationA is connected to DocumentsA, UserAl is able to

access documents in DocumentsA assuming no additional security requirements are implemented

in ApplicationA, or added to documents in DocumentsA. The corresponding is true for UserBL1.

The configuration process is now complete. Additional users can be created by simply repeating step 5
and selecting the appropriate role. All users assigned RoleA have login access to ApplicationA and
all users assigned RoleB have login access to ApplicationB.

2023-08-21 14:49 Securing MarkLogic Server Page 223

MarkLogic 10 Example: Using the Security Database in Different Servers

This approach can also be easily extended to handle additional discrete databases and user groups by
creating additional document databases, roles and execute privileges as necessary.

2023-08-21 14:49 Securing MarkLogic Server Page 224

MarkLogic 10 Auditing

16. Auditing

Auditing is the monitoring and recording of selected operational actions from both application users and
administrative users. You can audit various kinds of actions related to document access and updates,
configuration changes, administrative actions, code execution, and changes to access control. You can
audit both successful and failed activities.

For procedures on setting up auditing as well as a list of audit events, see Auditing Events in the
Administrator’s Guide.

16.1. Why Is Auditing Used?

You typically use auditing to perform the following activities:

» Enable accountability for actions. These might include actions taken on documents, changes to
configuration settings, administrative actions, changes to the security database, or system-wide
events.

» Deter users or potential intruders from inappropriate actions.

* Investigate suspicious activity.

* Notify an auditor of the actions of an unauthorized user.

» Detect problems with an authorization or access control implementation. For example, you can
design audit policies that you expect to never generate an audit record because the data is protected
in other ways. However, if these policies generate audit records, then you know the other security
controls are not properly implemented.

» Address auditing requirements for regulatory compliance.

16.2. MarkLogic Auditing

MarkLogic Server includes an auditing capability. You can enable auditing to capture security-relevant
events to monitor suspicious database activity or to satisfy applicable auditing requirements. You can
configure the generation of audit events by including or excluding MarkLogic Server roles, users, or
documents based on URI. Some actions that can be audited are the following:

+ startup and shutdown of MarkLogic Server
+ adding or removing roles from a user

» usage of amps

+ starting and stopping the auditing system

For the complete list of auditable events and their descriptions, see Auditing Events in the
Administrator’s Guide.

16.3. Configuring Auditing

Auditing is configured at the MarkLogic Server cluster management group level. A MarkLogic Server
group is a set of similarly configured hosts in a cluster, and includes configurations for the HTTP,
WebDAV, ODBC, and XDBC App Servers in the group. The group auditing configuration includes
enabling and disabling auditing for each cluster management group.

Audit records are stored on the local file system of the host on which the event is detected and on which
the Server subsystem is running.

Rotation of the audit logs to different files is configurable by various intervals, and the number of audit
files to keep is also configurable.

For more details and examples of audit event logs, see Auditing Events in the Administrator’s Guide.

2023-08-21 14:49 Securing MarkLogic Server Page 225

https://docs.marklogic.com/guide/admin/auditing#
https://docs.marklogic.com/guide/security/auditing#:~:text=their%20descriptions%2C%20see-,Auditing%20Events,-in%20the%20Administrator%27s
https://docs.marklogic.com/guide/admin/auditing#

MarkLogic 10 Best Practices

16.4. Best Practices

Auditing can be an effective method of enforcing strong internal controls enabling your application to
meet any applicable regulatory compliance requirements. Appropriate auditing can help you to monitor
business operations and detect activities that may deviate from company policy. If it is important to
your security policy to monitor this type of activity, then you should consider enabling and configuring
auditing on your system.

Be selective with auditing and ensure that it meets your business needs. As a general rule, design your
auditing strategy to collect the amount and type of information that you need to meet your requirements,
while ensuring a focus on events that cause the greatest security concerns.

If you enable auditing, develop a monitoring mechanism to use the audit event logs. Such a system
might periodically archive and purge the audit event logs.

2023-08-21 14:49 Securing MarkLogic Server Page 226

MarkLogic 10 Designing Security Policies

17. Designing Security Policies

This section describes the general steps to follow when using security in an application. Because of the
flexibility of the MarkLogic Server security model, there are different ways to implement similar security
policies. These steps are simple guidelines; the actual steps you take depends on the security policies

you need to implement.

17.1. Research Your Security Requirements
As a first step in planning your security policies, try to have answers for the following types of questions:

* What documents do you want to protect?

* What code do you want to control the execution of?

 Are there any natural categories you can define based on business function (for example, marketing,
sales, engineering)?

+ What is the level of risk posed by your users? Are your applications used only by trusted, internal
people or are they open to a wider audience?

» How sensitive is the data you are protecting?

This list is not necessarily comprehensive, but is a good way to start thinking about your security policy.

17.2. Plan Roles and Privileges

Depending on your security requirements and the structure of your enterprise or organization, plan the
roles and privileges that make the most sense.

Determine the level of granularity with which you need to protect objects in the database.
Determine how you want to group privileges together in roles.

Create needed URI and execute privileges.

Create roles.

Create users.

Assign users to roles.

Set default permissions for users, either indirectly through roles or directly through the users.
Protect code with xdmp : security-assert functions, where needed.

Load your documents with the appropriate permissions. If needed, change the permissions
of existing documents using the xdmp : document-add-permissions, xdmp:document-set-
permissions, and xdmp:document-remove-permissions functions.

10. Assign access privileges to HTTP, WebDAV, ODBC, and XDBC servers as needed.

©oeNO AWM=

2023-08-21 14:49 Securing MarkLogic Server Page 227

MarkLogic 10 Sample Security Scenarios

18. Sample Security Scenarios

This section describes some common scenarios for defining security policies in your applications. The
scenarios shown here are by no means exhaustive. There are many possibilities for how to set up
security in your applications.

18.1. Protecting the Execution of XQuery Modules

One simple way to restrict access to your MarkLogic Server application is to limit the users that have
permission to run the application. If you load your Xquery code into a modules database, you can use
an execute permission on the XQuery document itself to control who can run it. Then, a user must
possess execute permissions to run the module. To set up a module to do this, perform the following
steps:

1. Using the Admin Interface, specify a modules database in the configuration for the App Server
(HTTP or WebDAV) that controls the execution of your XQuery module.

2. Load the XQuery module into the modules database, using a URI with an .xqy extension, for
example my_module.xqy.

3. Set execute permissions on the XQuery document for a given role. For example, if you want
users with the run_application role to be able to execute an XQuery module with the URI
http://modules/my_module.xqy, run a query similar to the following:

xdmp:document-set-permissions(*'http://modules/my_module.xqy",
xdmp:permission(*'run_application”, "execute'))

4. Create the run_application role.
5. Assign the run_application role to the users who can run this application.

Now only users with the run_appl ication role can execute this document.

NOTE

Because your application could also contain amped functions, this technique can help
restrict access to applications that use amps.

18.2. Choosing the Access Control for an Application

The role-based security model in MarkLogic Server combined with the supported authentication
schemes provides numerous options for implementing application access control. This section
describes common application access control alternatives.

For details on the different authentication schemes, see Section 4.2, “Types of Authentication” [24].

18.2.1. Open Access, No Log In

This approach may be appropriate if security is not a concern for your MarkLogic Server implementation
or if you are just getting started and want to explore the capabilities of MarkLogic Server before
contemplating your security architecture. This scenario provides all of your users with the admin role.

You can turn off access control for each HTTP or WebDAV server individually by following these steps
using the Admin Interface:

1. Go to the Configure tab for the HTTP server for which you want to turn off access control.

2023-08-21 14:49 Securing MarkLogic Server Page 228

MarkLogic 10 Choosing the Access Control for an Application

2. Scroll down to the authentication field and choose application-level for the authentication
scheme.

3. Choose a user with the admin role for the default user. For example, you may choose the admin
user you created when you installed MarkLogic.

NOTE

To assist with identifying users with the admin role, the default user selection field
places (admin) next to admin users.

In this scenario, all users accessing the application server are automatically logged in with a user
that has the admin role. By default, the admin role has the privileges and permissions to perform
any action and access any document in the server. Therefore, security is essentially turned off for the
application. All users have full access to the application and database associated with the application
server.

18.2.2. Providing Uniform Access to All Authenticated Users

This approach allows you to restrict application access to users in your security database, and gives
those users full access to all application servers defined in MarkLogic Server. There are multiple ways
to achieve the same objective but this is the simplest way.

In the Admin Interface, go to the Users tab under Security.

Give all users in the security database the admin role.

Go to the Configuration tab for all HTTP and WebDAV servers in the system.

Go to the authentication field and choose digest, basic or digest-basic authentication.
Leave the privilege field blank since it has no effect in this scenario. This field specifies the privilege
that is needed to log into application server. However, the users are assigned the admin role and
are treated as having all privileges.

AR

In this scenario, all users must authenticate with a username and password. Once they are
authenticated, however, they have full access to all functions and data in the server.

18.2.3. Limiting Access to a Subset of Users

This application access control method can be modified or extended to meet the requirements in many
application scenarios. It uses more of the available security features and therefore requires a better
understanding of the security model.

To limit application access to a subset of the users in the security database, perform the following steps
using the Admin Interface:

1. Create an execute privilege named exe-priv-appl to represent the privilege to access the App
Server.

2. Create a role named role-appl that has exe-priv-appl execute privilege.

3. Add role-appl to the roles of all users in the security database who should have access to this
App Server.

4. In the Configuration page for this App Server, scroll down to the authentication field and select
digest, basic or digest-basic. If you want to use application-level authentication to achieve
the same objective, a custom login page is required. See the next section for details.

5. Select exe-priv-appl for the privilege field. Once this is done, only the users who have the
exe-priv-appl by virtue of their role(s) are able to access this App Server.

2023-08-21 14:49 Securing MarkLogic Server Page 229

MarkLogic 10 Choosing the Access Control for an Application

NOTE

If you want any user in the security database to be able to access the application,
leave the privilege field blank.

At this point, the application access control is configured.

This method of authentication also needs to be accompanied by the appropriate security configuration
for both users and documents associated with this App Server. For example, functions such as

xdmp : document-insert and xdmp:document-load throw exceptions unless the user possesses
the appropriate execute privileges. Also, users must have the appropriate default permissions (or
specify the appropriate permissions with the API) when creating new documents in a database.
Documents created by a user who does not have the admin role must be created with at least one
update permission or else the transaction throws an XDMP-MUSTHAVEUPDATE exception. The update
permission is required because otherwise once the documents are created no user (except users with
the admin role) would be able to access them, including the user who created them.

18.2.4. Using Custom Login Pages

Digest and basic authentication use the browser’s username and password prompt to obtain user
credentials. The server then authenticates the credentials against the security database. There is no
good way to create a custom login page using digest and basic authentication. To create custom login
pages, you need to use application-level authentication.

To configure MarkLogic Server to use a custom login page for an App Server, perform the following
steps using the Admin Interface:

1. Go to the Configuration tab for the HTTP App Server for which you want to create a custom login
page.

2. Scroll down to the authentication field and select application-level.

3. Choose nobody as the default user. The nobodyuser is automatically created when MarkLogic
Server is installed. It is created with the following roles: rest-reader, rest-extension-
user, app-user, harmonized-reader and is given a password which is randomly
generated.

4. Create a custom login page that meets your needs. We refer to this page as login.xqy.

5. Make login.xqy the default page displayed by the application server. Do not require any privilege
to access login.xqy (thatis, do not place xdmp:security-assert() in the beginning of the
code for login.xqy. This makes login.xqy accessible by nobody, the default user specified
above, until the actual user logs in with his credentials.

The login.xqy page likely contains a snippet of code as shown below:

...return
it xdmp:login($username, $password) then
. protected page goes here...
else
. redirect to login page or display error page...

The rest of this example assumes that all valid users can access all the pages and functions within
the application.

2023-08-21 14:49 Securing MarkLogic Server Page 230

MarkLogic 10 Choosing the Access Control for an Application

@ NOTE
If you are using a modules database to store your code, the login.xqy file still
needs to have an execute permission that allows the nobody (or whichever is
the default) user to access the module. For example, you can put an execute
permission paired with the app-user role on the login.xqy module document,
and make sure the nobody user has the app-user role (which it does by
default).

6. Create arole called application-user-role.

7. Create an execute privilege called application-privilege. Add this privilege to the
application-user-role.

8. Addthe application-user-role to all users who are allowed to access the application.

9. Add this snippet of code before the code that displays each of the pages in the application, except
for login.xqy:

try

{
xdmp:security-assert("application-privilege", "execute')

}

catch(%e)

{
xdmp:redirect-response("'login.xqy"')

}
or

iT(not(xdmp:has-privilege('application-privilege", " execute')))
then
(

xdmp:redirect-response("'login.xqy"')
)
else O

This ensures that only a user who has the application-privilege by virtue of his role can access
these protected pages.

Similar to the previous approach, this method of authentication requires the appropriate security
configuration for users and documents. See Section 1, “Introduction to Security” [8] for background
on the security model.

18.2.5. Access Control Based on Client IP Address

MarkLogic Server supports deployments in which a user is automatically given access to the application
based on the client IP address.

Consider a scenario in which a user is automatically logged in if he is accessing the application locally
(as local-user) or from an approved subnet (as site-user). Otherwise, the user is asked to login
explicitly. The steps below describe how to configure MarkLogic Server to achieve this access control.

1. Using the Admin Interface, configure the App Server to use a custom login page:
a. Go to the Configuration tab for the HTTP or WebDAV App Server for which you want to
create a custom login page.
b. Scroll down to the authentication field and select application-level
c. For this example, choose nobody as the default user. The nobody user is automatically
created when MarkLogic Server is installed. It is created with the following roles: rest-
reader, rest-extension-user, app-user, harmonized-reader and is given a
password which is randomly generated.
2. Add the following code snippet to the beginning of the default page displayed by the application, for
example, default.xqy.

2023-08-21 14:49 Securing MarkLogic Server Page 231

MarkLogic 10 Choosing the Access Control for an Application

xquery version "1.0-ml"
declare namespace widget ="http://widget.com"
import module "http://widget.com™ at "/login-routine.xqy"

let $login := widget:try-ip-loginQ)

return

if($login) then

<ht m >
<body>
The protected page goes here.
You are {xdmp:get-current-user()}
</ body>
</htm >

else

xdmp:redirect-response(*"login.xqy"™)
3. Define try-ip-login:

a. Create a file named login-routine.xqy and place the file in the Modules directory within
the MarkLogic Server program directory. You create an amp for try-ip-loginin login-
routine.xqy in the next code sample. For security reasons, all amped functions must be
located in the specified Modu lesdirectory or in the Modu les database for the App Server.

b. Add the following code to login-routine.xqy:

xquery version "1.0-mI"

module "http://widget.com"
declare namespace widget ="http://widget.com"

define function try-ip-login(Qas xs:boolean

{
let $ip := xdmp:get-request-client-address()
return
if(compare($ip,"127.0.0.1") eq 0) then (:local host:)
xdmp:login(*"localuser™, ()
else if(starts-with($ip,<approved-subnet>)) then
xdmp: login("'site-user",())
else
false()
T
If the user is accessing the application from an approved IP address,try-ip-loginlogs in the
user with username local-user or site-user as appropriate and returns true. Otherwise,
try-ip-login returns false.

@ NOTE
In the code snippet above, the empty sequence () is supplied in place of the actual
passwords for local -user and site-user. The pre-defined xdmp-login
execute privilege grants the right to call xdmp: login without the actual password.
This makes it possible to create deployments in which users can be automatically
logged in without storing user passwords outside the system.

4. Finally, to ensure that the code snippet above is called with the requisite xdmp-login privilege,
configure an amp for try-ip-login:

a. Using the Admin Interface, create a role called login-role.

b. Assign the pre-defined xdmp-login execute privilege to login-role. The xdmp-login
privilege gives a user of the login-role the right to call xdmp: login for any user without
supplying the password.

c. Create an amp for try-ip-login as shown below:

2023-08-21 14:49 Securing MarkLogic Server Page 232

MarkLogic 10 Choosing the Access Control for an Application

Mew ﬂmp ok cancel

amp -- A rofe amplification.

local name Lty -ip-login

A function local-name.
Required. You must supply a value for local-name.

namespace hittp: idviciget .cam

A namespace.
Required. You must supply a value for namespace.

document uri Nogin-library xoy

A document's LRI
Required. You must supply a value for document-uri.

database I (filesystam) vI

A databaze the madule iz found in.

roles - The rolas assighed.

r admin
r admin-buitins
r damain-management

r filesystem-access

An amp temporarily assigns additional role(s) to a user only for the execution of the specified

function. The amp above gives any user who is executing try-ip-login() the login-role

temporarily for the execution of the function.

In this example, default.xqy is executed as nobody, the default user for the application. When

the try-ip-login function is called, the nobody user is temporarily amped to the login-role.

The nobody user is temporarily assigned the xdmp: login execute privilege by virtue of the

login-role. This enables nobody to call xdmp: login in try-ip-login for any user without

the corresponding password. Once the login process is completed, the user can access the

application with the permissions and privileges of local-user or site-user as appropriate.

5. The remainder of the example assumes that local-user and site-user can access all the

pages and functions within the application.

a. Create arole called application-user-role.

b. Create an execute privilege called application-privilege. Add this privilege to the
application-user-role.

c. Addthe application-user-role to local-user and site-user.

d. Add this snippet of code before the code that displays each of the subsequent pages in the
application:

2023-08-21 14:49 Securing MarkLogic Server Page 233

MarkLogic 10 Implementing Security for a Read-Only User

try
{

xdmp:security-assert(application-privilege", "execute')

’
catch($e)

{

xdmp:redirect-response(*'login.xqy"')

}
or

if(not(xdmp:has-privilege("application-privilege", ""execute')))
then
(

xdmp:redirect-response(*'login.xqy'")
)
else O

This ensures that only the user who has the application-privilege by virtue of his role can
access these protected pages.

18.3. Implementing Security for a Read-Only User
In this scenario, assume that you want to implement a security model that enables your users to run

any XQuery code stored in the modules database for a specific App Server with read-only permissions
on all documents in the database.

Reviewing the MarkLogic security model, recall that users do not have permissions, documents have
permissions. And permissions are made up of a role paired with a capability. Additionally, execute
privileges protect code execution and URI privileges protect the creation of documents in a specific
URI namespace. This example shows one way to implement the read-only user and is divided into two
parts.

18.3.1. Steps for Example Setup

To set up this example scenario, perform the following steps, using the Admin Interface:

Create a role named ReadsStuff.

Create a user named ReadOnly and grant this user the ReadsStuff role.

Create a role named WritesStuff and grant this role the ReadsStuff role.

Grant the WritesStufT role the any-uri privilege, as well as any execute privileges needed for
your application code.

5. Create a user named LoadsStuff and grant this user the WritesStuff role. When you load
documents, load them as the LoadsStuff user and give each document an update and insert
permission for the WritesStuff role and a read permission for the ReadsStuff role.

Here is sample code to create a set of permissions to do this as an option to either the

xdmp :document-insert function or the xdmp : document-load function:

PoON-~

(xdmp:permission(‘'ReadsStuff", "'read"),
xdmp:permission("WritesStuff'", "insert"),
xdmp:permission("WritesStuff", "update'))

An alternative to specifying the permissions when you load documents is to assign default permissions
to the LoadsStufF user or the WritesStuff role.

18.3.2. Troubleshooting Tips

If you are running a URL rewriter (or an error handler), you need to give the ReadsStufF role to

the nobody user or whichever user is the default user for your App Server. When the URL rewriter
executes, the request has not yet been authenticated, so it runs as the default user. The default user is
nobody unless you have specified a different default for your App Server. The best practice is to create
another role, for example my-app-user and add an execute permission for the URL rewriter and your

2023-08-21 14:49 Securing MarkLogic Server Page 234

MarkLogic 10 Implementing Security for a Read-Only User

error handler (if any) for the my-app-user role. This is better because you do not want the nobody
user to have access to your database.

2023-08-21 14:49 Securing MarkLogic Server Page 235

MarkLogic 10 Securing Your Production Deployment

19. Securing Your Production Deployment

A security system is only as good as its weakest link. This section describes some general principles to
think about with an eye toward hardening your entire environment for security.

19.1. Add Password Protections

When your data and business requirements warrant it, design and implement password protections.
These protections can range from providing guidelines to your users to implementing programmatic
checking to enforce password complexity and management.

Complexity verification verifies that each password is complex enough to provide reasonable protection
against intruders who try to break into the system by guessing passwords. This encourages users to
create strong passwords.

Password management includes things such as password aging and expiration, automatically locking
users out of the application after failed login attempts, and controlling the reuse of old passwords.

To enforce password complexity programmatically, use the password plugins. For more information
about the plugin framework and to view a sample password plugin, see System Plugin Framework and
Password Plugin Sample in the Application Developer’s Guide.

19.2. Adhere to the Principle of Least Privilege

Grant necessary privileges only. Do not provide users or roles more privileges than are necessary. If
possible, grant privileges to roles, not individual users. The principle of least privilege is that users are
given only those privileges that are actually required to efficiently perform their jobs.

Restrict the following as much as possible:

» The number of users granted the admin or security roles.

* The number of roles or users who are allowed to make changes to security objects, such as roles,
users, and document permissions.

» The number of roles that have capabilities to add, change or remove security-related privileges.

19.3. Infrastructure Hardening

Most computer platforms offer network security features to limit outside access to the system. The
purpose of infrastructure hardening is to eliminate as many security risks as possible. It can involve
both hardware and software, as well as physical restrictions.

19.3.1. OS-Level Restrictions

The United States National Security Agency develops and distributes security configuration
guidance for a wide variety of software, including the most common operating system

platforms. You can view this guidance on their website at http://www.nsa.gov/ia/mitigation_guidance/
security _configuration_guides/operating_systems.shtml.

19.3.2. Network Security

Encrypt network traffic between the browser and MarkLogic Server by enabling SSL. You can also
enable SSL for intra-cluster communication. For high security needs, make sure MarkLogic Server runs
in FIPS mode (which is the default mode). This option restricts your SSL ciphers to those that have

met the FIPS 140-2 Level 1 validation requirements. For information on how to configure SSL and FIPS
mode, see Clusters in the Administrator’s Guide.

19.3.3. Port Management

Protect access to MarkLogic’s Admin Interface and development tool ports:8000, 8001, 8002 behind a
corporate firewall. While your MarkLogic application may run on a publicly available port, such as port

2023-08-21 14:49 Securing MarkLogic Server Page 236

https://docs.marklogic.com/guide/app-dev/plugins#
https://docs.marklogic.com/guide/app-dev/plugins#id_91783
http://www.nsa.gov/ia/mitigation_guidance/security_configuration_guides/operating_systems.shtml
http://www.nsa.gov/ia/mitigation_guidance/security_configuration_guides/operating_systems.shtml
https://docs.marklogic.com/guide/admin/clusters#

MarkLogic 10 Implement Auditing

80, it is good practice to secure the MarkLogic Admin Interface and other development application ports
behind a firewall.

19.3.4. Physical Access

Ensure that machines running MarkLogic Server are in a physically secure location. Physical access
to a server is a high security risk. Physical access to a server by an unauthorized user could result
in unauthorized access or modification, as well as installation of hardware or software designed to
circumvent security. To maintain a secure environment, you should restrict physical access to your
MarkLogic Server host computers.

19.4. Implement Auditing

MarkLogic includes an auditing capability. Designing and implementing an auditing policy can be an
important part of your overall security planning. For more details, see Section 16, “Auditing” [225] in this
guide. For procedures related to enabling auditing, see Auditing Events in the Administrator’s Guide.

19.5. Develop and Enforce Application Security

An important step in creating a MarkLogic application is to ensure that it is properly secure. Network
security mostly ignores the contents of HTTP traffic, therefore you can’t use network layer protection
(firewall, SSL, IDS, hardening) to stop or detect application layer attacks. The Open Web Application
Security Project is an open group focused on understanding and improving the security of web
applications and web services. You can visit their site at https://owasp.org/. The OWASP Top Ten
Project is one starting point for understanding how you can build good security into your application.

19.6. Use MarkLogic Security Features

Let collections and document permissions restrict the data access for the user. Do not write your own
access restriction code. Write code so that it uses the MarkLogic Server security model and operates
on the correct data based on the user’s permissions and the current documents in use.

19.7. Read about Security Issues

Many excellent resources exist on the Internet. These sources contain valuable security-related
information for everyone in the enterprise software development and deployment chain from software
developers and system administrators to managers. For example, the Defense Information Systems
Agency (DISA) sponsors the Information Assurance Support Environment website found at http://
iase.disa.mil/index2.html. This site contains Security Technical Implementation Guides (STIGs). The
STIGs contain technical guidance to “lock down” information systems and software that might otherwise
be vulnerable to a malicious computer attack.

Another example is the CERT Program, a part of the Software Engineering Institute, a federally
funded research and development center operated by Carnegie Mellon University. This organization
is devoted to ensuring that appropriate technology and systems management practices are used to
resist attacks on networked systems and to limit damage and ensure continuity of critical services in
spite of successful attacks, accidents, or failures. For more detailed information about CERT visit their
website: http://www.cert.org/.

2023-08-21 14:49 Securing MarkLogic Server Page 237

https://docs.marklogic.com/guide/security/production#id_73202:~:text=enabling%20auditing%2C%20see-,Auditing%20Events,-in%20the%20Administrator%27s
https://owasp.org/
http://http://iase.disa.mil/index2.html
http://http://iase.disa.mil/index2.html
http://www.cert.org/

MarkLogic 10 Technical Support

20. Technical Support

MarkLogic provides technical support according to the terms detailed in your Software License
Agreement or End User License Agreement.

We invite you to visit our support website at http://help_marklogic.com to access information
on known and fixed issues, knowledge base articles, and more. For licensed customers with an active
maintenance contract, see the Support Handbook for instructions on registering support contacts and
on working with the MarkLogic Technical Support team.

Complete product documentation, the latest product release downloads, and other useful information
is available for all developers at http://developer.marklogic.com. For technical questions, we
encourage you to ask your question on Stack Overflow.

2023-08-21 14:49 Securing MarkLogic Server Page 238

http://help.marklogic.com
https://www.marklogic.com/wp-content/uploads/2021/01/support-handbook_2021_Jan_13.pdf
http://developer.marklogic.com
https://stackoverflow.com/questions/tagged/marklogic

MarkLogic 10 Copyright

21. Copyright

MarkLogic Server 10 and supporting products. Last updated: April, 2023.

Copyright © 2023 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.
This technology is protected by U.S. Patent No. 7,127,469B2, U.S. Patent No. 7,171,404B2, U.S.
Patent No. 7,756,858 B2, and U.S. Patent No 7,962,474 B2, US 8,892,599, and US 8,935,267.

The MarkLogic software is protected by United States and international copyright laws, and
incorporates certain third party libraries and components which are subject to the attributions, terms,
conditions and disclaimers set forth below.

For all copyright notices, including third-party copyright notices, see the Combined Product Notices for
your version of MarkLogic.

2023-08-21 14:49 Securing MarkLogic Server Page 239

	Securing MarkLogic Server
	Table of Contents
	1. Introduction to Security
	1.1. Licensing
	1.2. Security Overview
	1.2.1. Authentication and Access Control
	1.2.2. Authorization
	1.2.3. Administration

	1.3. MarkLogic Security Model
	1.3.1. Role-Based Security Model (Authorization)
	1.3.2. Element Level Security
	1.3.3. Access Control with the Security Database
	1.3.4. Security Administration

	1.4. Terminology
	1.4.1. User
	1.4.2. Role
	1.4.3. Execute Privilege
	1.4.4. URI Privilege
	1.4.5. Permission
	1.4.6. Amp

	2. Role-Based Security Model
	2.1. Understanding Roles
	2.1.1. Assigning Privileges to Roles
	Execute Privileges
	URI Privileges

	2.1.2. Associating Permissions with Roles
	2.1.3. Default Permissions in Roles
	2.1.4. Assigning Roles to Users
	2.1.5. Roles, Privileges, Document Permissions, and Users

	2.2. The admin and security Roles
	2.3. Example—Introducing Roles, Users, and Execute Privileges

	3. Protecting Documents
	3.1. Creating Documents
	3.1.1. URI Privileges
	3.1.2. Built-In URI Execute Privileges

	3.2. Document Permissions
	3.2.1. Capabilities Associated through Permissions
	Read
	Update
	Node Update
	Insert
	Execute

	3.2.2. Setting Document Permissions

	3.3. Securing Collection Membership
	3.4. Default Permissions
	3.5. Example—Using Permissions
	3.5.1. Setting Permissions Explicitly
	3.5.2. Default Permission Settings

	4. Authenticating Users
	4.1. Users
	4.2. Types of Authentication
	4.2.1. Basic
	4.2.2. Digest
	4.2.3. Digest-Basic
	4.2.4. Limitations of Digest and Basic Authentication
	4.2.5. Certificate
	4.2.6. Application Level
	4.2.7. Kerberos Ticket
	4.2.8. SAML

	5. Compartment Security
	5.1. Understanding Compartment Security
	5.2. Configuring Compartment Security
	5.3. Example—Compartment Security
	5.3.1. Create Roles
	5.3.2. Create Users
	5.3.3. Create the Documents and Add Permissions
	5.3.4. Test It Out

	6. Element Level Security
	6.1. Understanding Element Level Security
	6.2. Example—Element Level Security
	6.2.1. Create Roles
	6.2.2. Create Users and Assign Roles
	6.2.3. Add the Documents
	6.2.4. Add Protected Paths and Query Rolesets
	6.2.5. Run the Example Queries
	XQuery Examples of Element Level Security
	JavaScript Examples of Element Security

	6.2.6. Additional Examples
	XQuery - Query Element Hierarchies
	XQuery - Matching by Paths or Attributes
	JavaScript - Query Element Hierarchies
	JavaScript - Matching by Paths or Attributes

	6.3. Configuring Element Level Security
	6.3.1. Protected Paths
	Examples of Protected Paths
	Namespaces as Part of a Protected Path
	Unprotecting or Removing Paths
	Performance Considerations with Protected Paths

	6.3.2. Query Rolesets
	How Query Rolesets Work
	Parent/Child Relationships in Query Rolesets
	Overlapping Protected Paths
	Protected Path Sets
	Helper Functions for Query Rolesets
	Query for Protected Paths on a Document

	6.4. Configure Element Level Security in the Admin Interface
	6.4.1. Add a Protected Path
	6.4.2. Add a Query Roleset

	6.5. Configure Element Level Security with XQuery
	6.5.1. Using XQuery for Query Rolesets
	6.5.2. Using XQuery for Protected Paths

	6.6. Configure Element Level Security with REST
	6.6.1. Using REST for Query Rolesets
	6.6.2. Using REST for Protected Paths

	6.7. Combining Document and Element Level Permissions
	6.7.1. Document Level Security and Indexing
	6.7.2. Combination Security Example

	6.8. Node Update Capabilities
	6.8.1. Updates with Element Level Security
	6.8.2. Node Update and Node Insert at the Element Level

	6.9. Document and Element Level Permissions Summary
	6.10. Node Update and Document Permissions Expanded
	6.10.1. Unexpected Behavior with Permissions
	6.10.2. Different Permissions on the Same Node
	6.10.3. A More Complex Example

	6.11. APIs for Element Level Security
	6.11.1. XQuery APIs
	6.11.2. REST Management APIs
	REST Management APIs for Protected Paths
	REST Management APIs for Query Rolesets

	6.12. Algorithm That Determines Which Query Rolesets to Use
	6.13. Interactions with Compartment Security
	6.13.1. Compartment Security and Indexing

	6.14. Interactions with Other MarkLogic Features
	6.14.1. Lexicon Calls
	6.14.2. Fragmentation
	6.14.3. SQL on Range-Index Based Views
	6.14.4. UDFs (Including UDF-Based Aggregate Built-ins)
	6.14.5. Reverse Indexes
	6.14.6. SPARQL
	6.14.7. Alerting and QBFR
	6.14.8. mlcp
	6.14.9. XCC
	6.14.10. Bitemporal
	6.14.11. Others
	6.14.12. Rolling Upgrades

	7. Protecting XQuery and JavaScript Functions with Privileges
	7.1. Built-In MarkLogic Execute Privileges
	7.2. Protecting Your XQuery and JavaScript Code with Execute Privileges
	7.2.1. Using Execute Privileges
	7.2.2. Execute Privileges and App Servers
	7.2.3. Creating and Updating Collections

	7.3. Temporarily Increasing Privileges with Amps

	8. Query-Based Access Control
	8.1. What is QBAC?
	8.2. Example QBAC Applications
	8.2.1. Scenario 1: Region Restrictions
	Create Roles
	Create Users
	Insert the Documents and Add Permissions
	Test It Out

	8.2.2. Scenario 2: Group Restrictions
	Create Roles
	Create Users
	Insert the Documents and Add Permissions
	Test It Out

	8.3. Interfaces to Support QBAC
	8.3.1. Changes to Security Module APIs
	8.3.2. Admin Interface

	8.4. Errors
	8.5. Limitations

	9. Granular Privileges
	9.1. Understanding Granular Privileges
	9.2. Categories of Granularity
	9.2.1. Privileges to Read, Write, or Delete Any Configuration File
	9.2.2. Privileges to Read, Write, or Delete a Specific Configuration File
	9.2.3. Privileges to Administer a Set of Resources
	9.2.4. Privileges to Administer a Specific Resource
	9.2.5. Privileges to Administer a Specific Aspect of a Set of Resources
	9.2.6. Privileges to Administer a Specific Aspect of a Specific Resource

	9.3. Configuring Granular Privileges
	9.3.1. Configure Granular Privileges via the Admin Interface
	9.3.2. Configure Granular Privileges via the XQuery API Security Module
	Creating and Assigning Granular Privileges
	Using Pseudo-Functions with Granular Privileges
	Examples of Creating and Assigning Granular Privileges

	9.4. Examples of Granular Privileges Usage
	9.4.1. Prerequisites - Create Databases, Roles, Users, and Privileges
	9.4.2. Scenarios That Use Granular Privileges
	9.4.3. Test It Out

	9.5. Enabling Non-privileged Users to Create Privileges, Roles, and Users
	9.5.1. Enabling Non-privileged Users to Assign Roles
	9.5.2. Enabling Non-privileged Users to Create and Manage Roles (Data Roles)
	9.5.3. Enabling Non-privileged Users to Create and Manage Users (Data Users)

	9.6. Using Granular Privileges with MarkLogic Data Hub Service

	10. Configuring SSL on App Servers
	10.1. Understanding SSL
	10.2. General Procedure for Setting Up SSL for an App Server
	10.3. Procedures for Enabling SSL on App Servers
	10.3.1. Creating a Certificate Template
	10.3.2. Enabling SSL for an App Server

	10.4. Accessing an SSL-Enabled Server from a Browser or WebDAV Client
	10.4.1. Creating a Security Exception in Internet Explorer
	10.4.2. Creating a Security Exception in Google Chrome
	10.4.3. Importing a Self-Signed Certificate Authority into Windows

	10.5. Procedures for Obtaining a Signed Certificate
	10.5.1. Generating and Downloading Certificate Requests
	10.5.2. Signing a Certificate with Your Own Certificate Authority
	10.5.3. Importing a Signed Certificate into MarkLogic Server

	10.6. Viewing Trusted Certificate Authorities
	10.7. Importing a Certificate Revocation List into MarkLogic Server
	10.8. Deleting a Certificate Template

	11. Certificate-Based Authentication
	11.1. User Certificate Example
	11.2. CA Certificate (User Cert Signer) Import from Admin Interface
	11.3. CA Certificate Import into MarkLogic from Query Console
	11.4. Certificate Template & Template CA Import into Client (Browser/SSL Client)
	11.5. Creating a MarkLogic User to Use Certificate-Based Authentication
	11.5.1. Creating a MarkLogic User with an Internal Name
	11.5.2. Creating a MarkLogic User with an External Name

	12. Secure Credentials
	12.1. Creating a Secure Credential with Username and Password
	12.2. Creating a Secure Credential with PEM Encoded Public and Private Keys
	12.2.1. Creating a Certificate Authority
	12.2.2. Creating Secure Credentials from a Certificate Authority

	13. External Security
	13.1. Terms Used in this Chapter
	13.2. Overview of External Authentication
	13.3. Creating an External Authentication Configuration Object
	13.3.1. LDAP Authentication
	13.3.2. SAML Authentication

	13.4. Defining and Inserting a SAML Entity
	13.5. Assigning an External Name to a User
	13.6. Assigning an External Name to a Role
	13.7. Configuring an App Server for External Authentication
	13.8. Setting Response Headers for HTTPS-Enabled App Servers
	13.8.1. Using the MarkLogic Admin Interface
	13.8.2. Using Admin Functions
	13.8.3. Using REST APIs

	13.9. Creating a Kerberos Keytab File
	13.9.1. Creating a Keytab File on Windows
	13.9.2. Creating a Keytab File on Linux

	13.10. External Certificate User Authentication
	13.10.1. Certificate Authentication Based on Internal User vs External Name
	User Certificate Examples

	13.10.2. CA Certificate (User Cert Signer) Import from Admin Interface
	13.10.3. CA Certificate Import into MarkLogic from Query Console
	13.10.4. Certificate Template & Template CA Import into Client (Browser/SSL Client)
	13.10.5. Certificate CN as Internal User vs External Name-Based Internal User
	Certificate CN Field Value as MarkLogic Security Database Internal User
	User Certificate Subject Field Value as External Name for Internal User

	13.11. Example External Authorization Configurations
	13.12. Kerberos Authentication Using xdmp:http-* Functions
	13.13. Kerberos Authentication for Secured HDFS

	14. Encryption at Rest
	14.1. Licensing
	14.2. Terms and Definitions
	14.3. Understanding Encryption at Rest
	14.4. Keystores - PKCS #11 Secured Wallet or External KMS
	14.5. Encryption Key Hierarchy Overview
	14.5.1. Embedded KMS Key Hierarchy
	14.5.2. External KMS Key Hierarchy

	14.6. Example—Encryption at Rest
	14.6.1. Set Up Encryption Example
	14.6.2. Encrypt a Database
	14.6.3. Test It Out
	14.6.4. Turn Off Encryption for a Database

	14.7. Configuring Encryption at Rest
	14.7.1. Database Encryption Options
	14.7.2. Configure Cluster Encryption
	Configuration File and Log File Encryption Options

	14.7.3. Cluster Encryption Options
	Changing the Internal KMS Password

	14.7.4. Using an Alternative PKCS #11 Device
	Saving the Embedded KMS to a Different Location

	14.7.5. Configure Encryption Using XQuery
	14.7.6. Configure Encryption Using REST
	Export Wallet
	Import Wallet

	14.8. Key Management
	14.8.1. Key Rotation
	Manual Key Rotation

	14.8.2. Export and Import Encryption Keys
	14.8.3. Key Deletion and Key Revocation

	14.9. Configuring an External Keystore
	14.9.1. Types of External KMS Deployments
	14.9.2. Using MarkLogic Encryption with AWS Key Management System
	AWS KMS on EC2
	Encryption on EBS Volumes
	Enhanced AWS S3 Encryption Support

	14.9.3. Using MarkLogic Encryption with Microsoft Azure Key Vault
	Microsoft Azure Key Vault
	Create a Virtual Machine in Azure
	Configure Azure Key Vault
	Install MarkLogic
	Add Encryption Configuration Settings to MarkLogic

	14.9.4. Set Up an External KMIP KMS with MarkLogic Encryption
	14.9.5. High Availability and Failover with External KMS

	14.10. Set Up the External KMS
	14.10.1. Set Up MarkLogic Encryption
	14.10.2. Transitioning from PKCS #11 Secured Wallet to an External KMS
	14.10.3. Transitioning from an External KMS to PKCS #11 Secured Wallet

	14.11. Administration and Maintenance
	14.11.1. Backup and Restore
	Excluding the Embedded KMS from a Backup
	Backups Using a Secondary Key
	Backups Using a Passphrase

	14.11.2. Tool to View Encrypted Log Files Outside of the Server
	14.11.3. Disaster Recovery/Shared Disk Failover

	14.12. APIs for Encryption at Rest
	14.12.1. Built-ins for Encryption at Rest
	Using a Credential ID with http-options

	14.12.2. Admin APIs for Encryption at Rest
	14.12.3. REST Management APIs for Encryption

	14.13. Interactions with Other MarkLogic Features
	14.13.1. Rolling Upgrades
	14.13.2. Telemetry

	15. Administering Security
	15.1. Overview of the Security Database
	15.2. Associating a Security Database with a Documents Database
	15.3. Managing and Using Objects in the Security Database
	15.3.1. Using the Admin Interface
	15.3.2. Using the security.xqy Module Functions

	15.4. Backing Up the Security Database
	15.5. Example: Using the Security Database in Different Servers

	16. Auditing
	16.1. Why Is Auditing Used?
	16.2. MarkLogic Auditing
	16.3. Configuring Auditing
	16.4. Best Practices

	17. Designing Security Policies
	17.1. Research Your Security Requirements
	17.2. Plan Roles and Privileges

	18. Sample Security Scenarios
	18.1. Protecting the Execution of XQuery Modules
	18.2. Choosing the Access Control for an Application
	18.2.1. Open Access, No Log In
	18.2.2. Providing Uniform Access to All Authenticated Users
	18.2.3. Limiting Access to a Subset of Users
	18.2.4. Using Custom Login Pages
	18.2.5. Access Control Based on Client IP Address

	18.3. Implementing Security for a Read-Only User
	18.3.1. Steps for Example Setup
	18.3.2. Troubleshooting Tips

	19. Securing Your Production Deployment
	19.1. Add Password Protections
	19.2. Adhere to the Principle of Least Privilege
	19.3. Infrastructure Hardening
	19.3.1. OS-Level Restrictions
	19.3.2. Network Security
	19.3.3. Port Management
	19.3.4. Physical Access

	19.4. Implement Auditing
	19.5. Develop and Enforce Application Security
	19.6. Use MarkLogic Security Features
	19.7. Read about Security Issues

	20. Technical Support
	21. Copyright

