
Using MarkLogic Content Pump
(mlcp)
MarkLogic 10

Publication date 2023-11-07
Copyright © 2023 Progress Software Corporation

All Rights Reserved

Table of Contents
1. Introduction to MarkLogic Content Pump ... 5

1.1. Feature Overview .. 5
1.2. Terms and Definitions .. 5
1.3. Modifying the Example Commands for Windows ... 6
1.4. Understanding the mlcp Command Line ... 6

1.4.1. Command Line Summary .. 6
1.4.2. Setting Java Virtual Machine (JVM) Options ... 7
1.4.3. Regular Expression Syntax ... 7
1.4.4. Options File Syntax .. 7

1.5. mlcp Exit Status Codes .. 8
1.6. Compatibility of mlcp Across MarkLogic Versions .. 8
1.7. Accessing the mlcp Source Code ... 9

2. Installation and Configuration .. 10
2.1. Supported Platforms .. 10
2.2. Required Software .. 10
2.3. Installing mlcp ... 10
2.4. Configuring Your MarkLogic Cluster .. 10
2.5. Security Considerations ... 12
2.6. Connecting to MarkLogic Using SSL ... 12

2.6.1. Enabling SSL on Your App Server ... 12
2.6.2. Configuring mlcp to Use SSL ... 12

2.7. Using mlcp With Kerberos .. 13
2.7.1. Creating Users ... 13
2.7.2. Configuring an XDBC App Server for Kerberos Authentication 13
2.7.3. Invoking mlcp ... 14

3. Getting Started With mlcp ... 15
3.1. Prepare to Run the Examples .. 15
3.2. Optional: Create an Options File .. 15
3.3. Load Documents ... 16
3.4. Export Documents ... 17
3.5. Understanding mlcp Output .. 18
3.6. Stopping an mclp Job Prematurely ... 19

4. Importing Content Into MarkLogic Server ... 20
4.1. Supported Input Format Summary .. 20
4.2. Understanding Input File Path Resolution ... 21
4.3. Controlling Database URIs During Ingestion ... 21

4.3.1. Default Document URI Construction .. 21
4.3.2. Transforming the Default URI .. 22
4.3.3. Character Encoding of URIs .. 23

4.4. How mlcp Determines Document Type ... 23
4.5. Loading Documents from a Directory .. 24

4.5.1. Loading a Single File .. 24
4.5.2. Loading All the Files in a Directory ... 24
4.5.3. Filtering Documents Loaded From a Directory .. 25

4.6. Loading Documents From Compressed Files .. 25
4.7. Loading Content and Metadata From an Archive ... 26
4.8. Splitting Large XML Files Into Multiple Documents .. 27
4.9. Creating Documents from Delimited Text Files .. 29

4.9.1. Example: Generating Documents From a CSV File 29
4.9.2. Expected Input Format .. 29
4.9.3. Customizing XML Output .. 30
4.9.4. Controlling Data Type in JSON Output ... 30
4.9.5. Controlling the Output Document URI .. 31

MarkLogic 10

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 2

4.9.6. Specifying the Field Delimiter .. 31
4.9.7. Optimizing Ingestion of Large Files .. 31

4.10. Creating Documents from Line-Delimited JSON Files .. 31
4.10.1. Line-Delimited JSON Overview .. 32
4.10.2. Controlling the Output Document URI .. 32

4.11. Loading Triples .. 33
4.11.1. Basics of Triple Loading .. 33
4.11.2. Graph Selection When Loading Quads ... 33
4.11.3. Graph Selection for Other Triple Types ... 35

4.12. Loading Documents from a Forest With Direct Access ... 35
4.13. Performance Considerations for Loading Documents ... 36

4.13.1. Time vs. Space: Configuring Batch and Transaction Size 36
4.13.2. Time vs. Correctness: Understanding -fastload Tradeoffs 36
4.13.3. How Assignment Policy Affects Optimization .. 38
4.13.4. Tuning Split Size and Thread Count for Local Mode 39
4.13.5. Reducing Memory Consumption With Streaming .. 40
4.13.6. Improving Throughput with -split_input ... 40
4.13.7. Concurrent Jobs .. 41

4.14. Transforming Content During Ingestion ... 41
4.14.1. Creating a Custom XQuery Transformation .. 41
4.14.2. Creating a Custom JavaScript Transformation .. 43
4.14.3. Implementation Guidelines .. 45
4.14.4. Installing a Custom Transformation .. 46
4.14.5. Using a Custom Transformation ... 46
4.14.6. Example: Server-Side Content Transformation ... 47
4.14.7. Example: Changing the URI and Document Type 50

4.15. Controlling How mlcp Connects to MarkLogic .. 52
4.15.1. How mlcp Uses the Host List ... 52
4.15.2. Restricting the Hosts mlcp Uses to Connect to MarkLogic 52
4.15.3. How -restrict_hosts Affects -fastload .. 53

4.16. Failover Handling .. 53
4.17. Retry Mechanism When Commit Fails During Ingestion ... 54

4.17.1. Limitations .. 56
4.18. Auto-scaling with Data Hub Service .. 56

4.18.1. How Adjusts Client Concurrency .. 56
4.18.2. How Other Command Line Options Affect Auto-scaling 57
4.18.3. How Assigns Threads in Auto-Scaling Process ... 57
4.18.4. Logs for Auto-Scaling .. 57

4.19. Import Command Line Options ... 57
5. Exporting Content from MarkLogic Server .. 63

5.1. Exporting Documents as Files .. 63
5.2. Exporting Documents to a Compressed File .. 64
5.3. Exporting to an Archive .. 64
5.4. How URI Decoding Affects Output File Names .. 65
5.5. Controlling What is Exported, Copied, or Extracted .. 66

5.5.1. Filtering Document Exports ... 66
5.5.2. Filtering Archive and Copy Contents .. 66
5.5.3. Understanding When Filters Are Accurate .. 67
5.5.4. Example: Exporting Documents Matching a Query 68
5.5.5. Filtering Forest Contents ... 70
5.5.6. Extracting a Consistent Database Snapshot ... 70

5.6. Redacting Content During Export or Copy Operations ... 71
5.6.1. Basic Steps for Redacting Documents ... 71
5.6.2. Example: Using mlcp for Redaction ... 72

5.7. Export Command Line Options ... 76

MarkLogic 10

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 3

6. Copying Content Between Databases ... 79
6.1. Basic Steps .. 79
6.2. Examples ... 79
6.3. Redacting Content During a Copy .. 80
6.4. Copy Command Line Options .. 80

7. Using Direct Access to Extract or Copy Documents .. 84
7.1. When to Consider Using Direct Access ... 84
7.2. Limitations of Direct Access ... 84
7.3. Choosing Between Export and Extract .. 85
7.4. Extracting Documents as Files ... 85
7.5. Importing Documents from a Forest into a Database ... 86
7.6. Extract Command Line Options .. 87

8. Troubleshooting ... 88
8.1. Checking Your Runtime Environment .. 88
8.2. Resolving Connection Issues ... 88
8.3. Enabling Debug Level Messages ... 88
8.4. Error loading class com.marklogic.contentpump.ContentPump 89
8.5. No or Too Few Files Loaded During Import ... 89
8.6. Unable to load realm info from SCDynamicStore ... 90
8.7. Warning that a Job Remains Running ... 90

9. Technical Support .. 91
10. Copyright ... 92

MarkLogic 10

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 4

1. Introduction to MarkLogic Content Pump

MarkLogic Content Pump () is a command line tool for getting data into and out of a MarkLogic Server
database.

1.1. Feature Overview
Using mlcp, you can import documents and metadata to a database, export documents and metadata
from a database, or copy documents and metadata from one database to another. For example:

• Import content into a MarkLogic Server database from flat files, compressed ZIP and GZIP files, or
mlcp database archives.

• Create documents from flat files, delimited text files, aggregate XML files, and line-delimited JSON
files. For details, see Importing Content Into MarkLogic Server.

• Import mixed content types from a directory, using the file suffix and MIME type mappings to
determine document type. Unrecognized/missing suffixes are imported as binary documents. For
details, see How mlcp Determines Document Type.

• Export the contents of a MarkLogic Server database to flat files, a compressed ZIP file, or an mlcp
database archive. For details, see Exporting Content from MarkLogic Server.

• Copy content and metadata from one MarkLogic Server database to another. For details, see
Copying Content Between Databases.

• Import or copy content into a MarkLogic Server database, applying a custom server-side
transformation before inserting each document. For details, see Transforming Content During
Ingestion.

• Extract documents from an archived forest to flat files or a compressed file using Direct Access. For
details, see Using Direct Access to Extract or Copy Documents.

• Import documents from an archived forest into a live database using Direct Access. For details, see
Importing Documents from a Forest into a Database.

The mlcp tool operates in local mode meaning that mlcp drives all its work on the host where it is
invoked. Resources such as import and input data and export destination must be reachable from that
host. All communication with MarkLogic Server is through that host.

In local mode, throughput is limited by resources such as memory and network bandwidth available to
the host running mlcp.

You can use mlcp even when a load balancer sits between the client host and the MarkLogic host. The
mlcp tool is compatible with AWS Elastic Load Balancer (ELB) and other load balancers.

1.2. Terms and Definitions
You should be familiar with the following terms and definitions when using mlcp:

Term Definition

aggregate XML content that includes recurring element names and which can be split into multiple documents
with the recurring element as the document root. For details, see Splitting Large XML Files Into
Multiple Documents.

line-delimited JSON A type of aggregate input where each line in the file is a piece of standalone JSON content. For
details, see Creating Documents from Line-Delimited JSON Files.

archive A compressed MarkLogic Server database archive created using the mlcp export command. You
can use an archive to restore or copy database content and metadata with the mlcp import
command. For details, see Exporting to an Archive.

split The unit of work devoted to a session with MarkLogic Server.

MarkLogic 10 Introduction to MarkLogic Content Pump

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 5

1.3. Modifying the Example Commands for Windows
All the examples in this guide use Unix command line syntax. If you are using mlcp with the Windows
command interpreter, Cmd.exe, use the following guidelines to construct equivalent commands:

• Replace mlcp.sh with mlcp.bat. You should always use mlcp.bat on Windows; using mlcp.sh
with Cygwin is not supported.

• For aesthetic reasons, long example command lines are broken into multiple lines using the Unix line
continuation character “\”. On Windows, remove the line continuation characters and place the entire
command on one line, or replace the line continuation characters with the Windows equivalent, “^”.

• Replace option arguments enclosed in single quotes (') with double quotes ("). If the single-quoted
string contains embedded double quotes, escape the inner quotes.

• Escape any unescaped characters that have special meaning to the Windows command interpreter.

For example, the following Unix command line:

$ mlcp.sh import -host localhost -port 8000 -username user \
 -password passwd -input_file_path /space/bill/data -mode local \
 -output_uri_replace "/space,'',/bill/data/,'/will/'" \
 -output_uri_prefix /plays

Corresponds to this Windows command line:

C:\Example> mlcp.bat import -host localhost -port 8000 -username user ^
 -password passwd -input_file_path c:\space\bill -mode local ^
 -output_uri_replace "/c:/space,'',/bill/data/,'/will/'" ^
 -output_uri_prefix /plays

1.4. Understanding the mlcp Command Line
This section covers the following key concepts and tasks related to the mlcp command line.

1.4.1. Command Line Summary
The mlcp command line has the following structure. Note that you should always use mlcp.bat on
Windows; using mlcp.sh with Cygwin is not supported.

• Linux and OS X: mlcp.sh command options
• Windows: mlcp.bat command options

Where command is one of the commands in the table below. Each command has a set of command-
specific options, which are covered in the section that discusses the command.

Command Description

import Import data from the file system or standard input to a MarkLogic Server database. For a list of
options usable with this command, see Import Command Line Options.

export Export data from a MarkLogic Server database to the file system. For a list of options usable with
this command, see Export Command Line Options.

copy Copy data from one MarkLogic Server database to another. For a list of options usable with this
command, see Copy Command Line Options.

extract Use Direct Access to extract files from a forest file to documents on the native file system. For a list
of options usable with this command, see Extract Command Line Options.

version Report mlcp runtime environment version information, including the mlcp and JRE versions, as well
as the supported MarkLogic version.

help Display brief help about mlcp.

Options can also be specified in an options file using -options_file. Options files and command line
options can be used together. For details, see Options File Syntax.

Note the following conventions for command line options to mlcp:

MarkLogic 10 Modifying the Example Commands for Windows

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 6

• Prefix options with a single dash (-).
• Option names are case-sensitive.
• If an option has a value, separate the option name and value with white space. For example: mlcp
import -username admin

• If an option has a predefined set of possible values, such as -mode, the option values are case-
insensitive unless otherwise noted.

• If an option appears more than once on the command line, the first occurrence is used.
• When string option values require quoting, use single quotes. For example: -output_uri_replace
"this,'that '".

• The value of a boolean typed option can be omitted. If the value is omitted, true is implied. For
example, -copy_collections is equivalent to -copy_collections true.

1.4.2. Setting Java Virtual Machine (JVM) Options
The mlcp tool is a Java application. You can pass extra parameters to the JVM during an mlcp
command using the environment variable JVM_OPTS.

For example, the following command passes the setting “-Xmx100M” to the JVM to increase the JVM
heap size for a single mclp run:

$ JVM_OPTS='-Xmx100M' mclp.sh import ...

1.4.3. Regular Expression Syntax
For options that use regular expressions, such as -input_file_pattern, use the Java regular
expression language. Java’s pattern language is similar to the Perl pattern language. For details on the
grammar, see the documentation for the Java class java.util.regex.Pattern

For a tutorial on the expression language, see the JDK Documentation.

1.4.4. Options File Syntax
You can specify mlcp options using an options file, in addition to using command line options by using
-options_file. Using an options file is especially convenient when working with options whose
values contain quotes and other special characters that are difficult to escape on the command line.

If you use an options file, it must be the first option on the command line. The mlcp command (import,
export, copy) can also go inside the options file. For example:

$ mlcp.sh -options_file my_options.txt -input_file_path /example

An options file has the following contents:

• Each line contains either a command name, an option, or an option value, ordered as they would
appear on the command line.

• Comments begin with “#” and must be on a line by themselves.
• Blank lines, leading white space, and trailing white space are ignored.

For example, if you frequently use the same MarkLogic Server connection information (host, port,
username, and password), you can put the this information into an options file:

MarkLogic 10 Understanding the mlcp Command Line

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 7

http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/tutorial/essential/regex/.

$ cat my-conn.txt
my connection info
-host
localhost
-port
8000
-username
me
-password
my_password
Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -options_file my-conn.txt \
 -input_file_path /space/examples/all.zip

This is equivalent to the following command line without an options file:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -host localhost -port 8000 -username me \
 -password my_password -input_file_path /space/examples/all.zip

You can also include a command name (import, export, or copy) as the first non-comment line in an
options file:

my connection info for import
import-host
localhost
-port
8000
-username
me
-password
my_password

1.5. mlcp Exit Status Codes
When mlcp exits, it returns one of the following status codes:

Exit Code Meaning

0 Successful completion.

-1 The job is still running.

1 The job failed.

2 The job is in the “preparation” state.

3 The job was terminated prematurely.

1.6. Compatibility of mlcp Across MarkLogic Versions
Unless otherwise noted, mlcp is compatible with a wide range of MarkLogic versions. That is, you can
usually use a recent version of mlcp with and older version of MarkLogic and vice versa. However, not
all features of mlcp or MarkLogic will work across version boundaries.

For example, MarkLogic 9 and mlcp 9.0 include support for redacting documents as you export them.
However, older versions of MarkLogic do not support this feature, so it is not possible to use the
-redaction option of mlcp with older versions.

Similarly, you can use mlcp to export a database archive from MarkLogic 9 or later that includes
documents with the node-update security capability. However, this capability did not exist in earlier
versions of MarkLogic, so it cannot be preserved if you import the MarkLogic 9 archive into an older
MarkLogic, and may even cause errors.

For best results, use the version of mlcp that corresponds to your version of MarkLogic, or limit your
jobs to features you know are supported in both.

MarkLogic 10 mlcp Exit Status Codes

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 8

1.7. Accessing the mlcp Source Code
The mlcp tool is developed and maintained as an open source project on GitHub. To access the
sources or contribute to the project, navigate to http://github.com/marklogic/marklogic-contentpump.

MarkLogic 10 Accessing the mlcp Source Code

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 9

http://github.com/marklogic/marklogic-contentpump

2. Installation and Configuration

This section describes how to install mlcp and configure your client environment and MarkLogic for
most effective use of the tool.

2.1. Supported Platforms
In local mode, mlcp is supported on the same platforms as MarkLogic Server, including 64-bit Linux,
64-bit Windows, and Macintosh OS X. For details, see Supported Platforms in the Installation Guide.

2.2. Required Software
The following software is required to use mlcp:

• MarkLogic Server 7.0-1 or later, with an XDBC App Server configured. MarkLogic 8 and later versions
come with an XDBC App Server pre-configured on port 8000.

• Oracle/Sun Java JRE 1.8 or later.

2.3. Installing mlcp
After downloading mlcp, follow these instructions to install mlcp:

1. Download mlcp from https://developer.marklogic.com/products/mlcp/.
2. Unpack the mlcp distribution to a location of your choice. This creates a directory named mlcp-

version, where version is the mlcp version. For example, assuming /space/marklogic contains
zip file for mlcp version 1.3, then the following commands install mlcp under /space/marklogic/
mlcp-1.3/:

$ cd /space/marklogic
$ unzip mlcp-1.3-bin.zip

3. Optionally, put the mlcp bin directory on your path. For example:

$ export PATH=${PATH}:/space/marklogic/mlcp-1.3/bin

4. Put the java command on your path. For example:

$ export PATH=${PATH}:$JAVA_HOME/bin

You might need to configure your MarkLogic cluster before using mlcp for the first time. For details, see
Configuring Your MarkLogic Cluster.

On Windows, use the mlcp.bat command to run mlcp. On UNIX and Linux, use the mlcp.sh
command. You should not use mlcp.sh in the Cygwin shell environment on Windows.

2.4. Configuring Your MarkLogic Cluster
The mlcp tool uses an XDBC App Server to communicate with each host in a MarkLogic Server cluster
that has at least one forest attached to a database used in your mlcp job. Optionally, you can configure
the mlcp tool to connect to a load balancer that sits in front of the MarkLogic Server cluster. When
configured to use a load balancer, the mlcp tool communicates with the load balancer to reach the
forests. The load balancer can communicate with hosts that are evaluator nodes, data nodes, or both.
For details, see Section 4.15, “Controlling How mlcp Connects to MarkLogic” [52].

When you use mlcp with MarkLogic 8 or later on the default port (8000), no special cluster configuration
is necessary. Port 8000 includes a pre-configured XDBC App Server. The default database associated
with port 8000 is the Documents database. To use mlcp with a different database and port 8000, use
the -database, -input_database, or -output_database options. For example:

mlcp.sh import -host myhost -port 8000 -database mydatabase ...

MarkLogic 10 Installation and Configuration

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 10

https://docs.marklogic.com/guide/installation-guide/en/requirements-and-database-compatibility/supported-platforms.html
https://developer.marklogic.com/products/mlcp/

When using MarkLogic 8 or later with a port other than 8000, the port should connect to either an XDBC
App Server or an App Server with a rewriter that is set up to handle XDBC traffic.

Hosts within a group share the same App Server configuration, but hosts in different groups do not.
Therefore, if all your forest hosts are in a single group, you only need to configure one App Server to
handle XDBC traffic. If your forests are on hosts in multiple groups, then you must configure an App
Server for XDBC that listens on the same port in each group.

For example, the cluster shown below is properly configured to use Database A as an mlcp input or
output source. Database A has 3 forests, located on 3 hosts in 2 different groups. Therefore, both
Group 1 and Group 2 must make Database A accessible via XDBC on port 9001.

If the forests of Database A are only located on Host1 and Host2, which are in the same group, then
you would only need to configure one XDBC App Server on port 9001.

If you use MarkLogic 8 or later and port 8000 instead of port 9001, then you do not need to
explicitly create any XDBC App Servers to support the above database configuration because both
group automatically have an XDBC App Server on port 8000. You might need to explicitly specify the
database name (Database A) in your mlcp command, though, if it is not the default database associated
with port 8000.

MarkLogic 10 Configuring Your MarkLogic Cluster

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 11

2.5. Security Considerations
When you use mlcp, you supply the name of a user(s) with which to interact with MarkLogic Server. If
the user does not have admin privileges, then the user must have at least the privileges listed in the
table below.

NOTE
Additional privileges may be required. These roles only enable use of MarkLogic
Server as a data source or destination. For example, these roles do not grant read
or update permissions to the database.

mlcp
Command

Privilege Notes

import hadoop-user-write Applies to the user name specified with -username. It is
recommended that you also set -output_permissions to
set the permissions on inserted documents.

export hadoop-user-read Applies to the user name specified with -username.

copy hadoop-user-read

(input)

hadoop-user-write

(output)

The -input_username user have the hadoop-user-read
privilege on source MarkLogic Server instance.

The -output_username user must have the hadoop-user-
write privilege on destination MarkLogic Server instance.

By default, mlcp requires a username and password to be included in the command line options for
each job. You can avoid passing a cleartext password between your mlcp client host and MarkLogic
Server by using Kerberos for authentication. For details, see Using mlcp With Kerberos.

2.6. Connecting to MarkLogic Using SSL
When you connect to a MarkLogic App Server with mlcp, you can use an SSL-enabled connection to
secure the communications. This applies to the import, export, and copy mlcp commands.

2.6.1. Enabling SSL on Your App Server
You can only use SSL to connect to MarkLogic through an SSL-enabled App Server. For more details,
see Configuring SSL on App Servers in Securing MarkLogic Server.

If you want to use SSL with both the source (input) and destination (output) App Servers during an mlcp
copy job, both App Servers must be SSL enabled.

2.6.2. Configuring mlcp to Use SSL
By default, mlcp does not connect to MarkLogic using SSL. Use one of the following options to specify
that mlcp should connect via SSL:

mlcp
Command

Command Line Option For more information

import -ssl Import Command Line Options

export -ssl Export Command Line Options

copy -input_ssl and/or -output_ssl Copy Command Line Options

All these options accept a boolean argument value. As described in Section 1.4.1, “Command Line
Summary” [6], “true” is assumed if you leave the argument off.

MarkLogic 10 Security Considerations

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 12

https://docs.marklogic.com/guide/security-guide/en/configuring-ssl-on-app-servers.html

If you have disabled the default SSL protocol on your App Server, you must also use one of the
following options to explicitly specify the SSL protocol that mlcp should use when connecting to
MarkLogic:

mlcp
Command

Command Line Option For more information

import -ssl_protocol Import Command Line Options

export -ssl_protocol Export Command Line Options

copy -input_ssl_protocol and/or
-output_ssl_protocol

Copy Command Line Options

NOTE
The above SSL protocol options are ignored in some cases when you use the SSL
configuration technique describe in Using mlcp With Kerberos.

2.7. Using mlcp With Kerberos
You can use mlcp in local mode with Kerberos to avoid sending cleartext passwords between your mlcp
client host and MarkLogic Server.

Before you can use Kerberos with mlcp, you must configure your MarkLogic installation to enable
external security, as described in External Security in Securing MarkLogic Server.

If external security is not already configured, you will need to perform at least the following procedures:

• Create a Kerberos external security configuration object. For details, see Creating an External
Authentication Configuration Object in Securing MarkLogic Server.

• Create a Kerberos keytab file and install it in your MarkLogic installation. For details, see Creating a
Kerberos Keytab File in Securing MarkLogic Server.

• Create one or more users associated with an external name. For details, see Assigning an External
Name to a User in Securing MarkLogic Server.

• Configure your XDBC App Server to use “kerberos-ticket” authentication. For details, see Configuring
an App Server for External Authentication in Securing MarkLogic Server.

The topics in this section touch on additional details specific to mlcp:

2.7.1. Creating Users
Before you can use Kerberos for authentication, you must create at least one MarkLogic user with
which mlcp can use Kerberos authentication to connect to MarkLogic Server, as described in Assigning
an External Name to a User in Securing MarkLogic Server.

This user must also be assigned roles and privileges required to enable your mlcp operations.

For example, if you’re using mlcp to import documents into a database, then the user must have update
privileges on the target database, as well as the minimum privileges required by mlcp. For details on the
minimum privileges required by mlcp, see Security Considerations.

2.7.2. Configuring an XDBC App Server for Kerberos Authentication
The mlcp tool communicates with MarkLogic through an XDBC App Server. Configure your XDBC App
Server to use Kerberos for external security, as described in Configuring an App Server for External
Authentication in Securing MarkLogic Server.

Configure your XDBC App Server to use “kerberos-ticket” authentication.

MarkLogic 10 Using mlcp With Kerberos

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 13

https://docs.marklogic.com/guide/security-guide/en/external-security.html
https://docs.marklogic.com/guide/security-guide/en/external-security/creating-an-external-authentication-configuration-object.html
https://docs.marklogic.com/guide/security-guide/en/external-security/creating-an-external-authentication-configuration-object.html
https://docs.marklogic.com/guide/security-guide/en/external-security/creating-a-kerberos-keytab-file.html
https://docs.marklogic.com/guide/security-guide/en/external-security/creating-a-kerberos-keytab-file.html
https://docs.marklogic.com/guide/security-guide/en/external-security/assigning-an-external-name-to-a-user.html
https://docs.marklogic.com/guide/security-guide/en/external-security/assigning-an-external-name-to-a-user.html
https://docs.marklogic.com/guide/security-guide/en/external-security/configuring-an-app-server-for-external-authentication.html
https://docs.marklogic.com/guide/security-guide/en/external-security/configuring-an-app-server-for-external-authentication.html
https://docs.marklogic.com/guide/security-guide/en/external-security/assigning-an-external-name-to-a-user.html
https://docs.marklogic.com/guide/security-guide/en/external-security/assigning-an-external-name-to-a-user.html
https://docs.marklogic.com/guide/security-guide/en/external-security/configuring-an-app-server-for-external-authentication.html
https://docs.marklogic.com/guide/security-guide/en/external-security/configuring-an-app-server-for-external-authentication.html

For example, if you create a configuration named “kerb-conf”, then configure your XDBC App Server in
the Admin Interface with these configuration setting values:

Field Value

Authentication kerberos-ticket

Internal Security false

External Securities kerb-conf

You can use an existing XDBC App Server or create a new one. To create a new XDBC App Server,
use the Admin Interface, the Admin API, or the REST Management API. For details, see Creating a
New XDBC Server in Administrating Marklogic Server.

Configure the App Server to use “kerberos-ticket” authentication and the Kerberos external security
configuration object you created following the instructions in Creating an External Authentication
Configuration Object in Securing MarkLogic Server.

NOTE
When you install MarkLogic, an XDBC App Server and other services are available
port 8000. Changing the security configuration for the App Server on port 8000 affects
all the MarkLogic services available through this port, including the HTTP App Server
and REST Client API instance.

2.7.3. Invoking mlcp
Once you configure your XDBC App Server and user for Kerberos external security, then you can do
the following to use Kerberos authentication with mlcp:

• Use kinit or a similar program on your mlcp client host to create and cache a Kerberos Ticket to
Get Tickets (TGT) for a principal you assigned to a MarkLogic user.

• Invoke mlcp with no -username and no -password option from the environment in which you
cached the TGT.

For example, suppose you configured an XDBC App Server on port 9010 of host “ml-host” to use
“kerberos-ticket” authentication. Further, suppose you associated the Kerberos principal name “kuser”
with the user “mluser”. Then the following commands result in mlcp authenticating with Kerberos as
user “kuser”, and importing documents into the database as “mluser”.

kinit kuser
...
mlcp.sh import -host ml-host -port 9010 -input_file_path src_dir

You do not necessarily need to run kinit every time you invoke mlcp. The cached TGT typically has a
lifetime over which it is valid.

MarkLogic 10 Using mlcp With Kerberos

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 14

https://docs.marklogic.com/guide/admin-guide/en/xdbc-servers/creating-a-new-xdbc-server.html
https://docs.marklogic.com/guide/admin-guide/en/xdbc-servers/creating-a-new-xdbc-server.html
https://docs.marklogic.com/guide/security-guide/en/external-security/creating-an-external-authentication-configuration-object.html
https://docs.marklogic.com/guide/security-guide/en/external-security/creating-an-external-authentication-configuration-object.html

3. Getting Started With mlcp

This section walks you through a short introduction to mlcp in which you import documents into a
database and then export them back out as files.

3.1. Prepare to Run the Examples
This section leads you through creating a work area and sample data with the following file system
layout:

gs/
 import/
 one.xml
 two.json
 export/

Follow this procedure to set up the example work area

1. Download and install mlcp according to the instructions in Section 2, “Installation and
Configuration” [10].

2. Ensure the mlcp bin directory and the java commands are on your path. For example, the
following example command places the mlcp bin directory on your path if mlcp is installed in
MLCP_INSTALL_DIR:

Linux: export PATH=${PATH}:MLCP_INSTALL_DIR/bin
Windows: set PATH=%PATH%;MLCP_INSTALL_DIR\bin

3. Create a directory to serve as your work area and change directories to this work area. For
example:

mkdir gs
cd gs

4. Create a sub-directory to hold the sample input and output data. For example:

mkdir import

5. Create the sample input files in the import/ directory:
a. Use the following commands on Linux:

echo '<data>1</data>' > import/one.xml
echo '{"two": 2}' > import/two.json

b. Use the following commands on Windows:

echo ^<data^>1^</data^> > import\one.xml
echo {"two":2} > import\two.json

3.2. Optional: Create an Options File
You can encapsulate mlcp command line options in an options file; for details, see Options File Syntax.
An options file is convenient for re-use of commonly used options. Also, using an options file can help
you avoid command line interpolation of quotes by the shell.

The examples use an options file to save MarkLogic connection related options so that you can easily
re-use them across multiple commands. This section describes how to create this file.

If you prefer to pass the connection options directly on the command line instead, add -username,
-password, -host, and possibly -port options to the example mlcp commands in place of
-options_file.

Use the following procedure to create the example options file:

MarkLogic 10 Getting Started With mlcp

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 15

1. If you are not already at the top level of your work area, change directory to this location. That is,
the gs folder created in Prepare to Run the Examples.

cd gs

2. Create a file named conn.txt with the following contents. Each line is either an option name or a
value for the preceding option.

-username
your_username-password
your_password-host
localhost
-port
8000

3. Edit conn.txt and modify the values of the -username and -password options to match your
environment.

4. Optionally, modify the -host and/or -port option values. The host and port must identify a
MarkLogic Server App Server that supports the XDBC protocol. MarkLogic Server comes with an
App Server pre-configured on port 8000 that supports XDBC, attached to the Documents database.
You can choose a different App Server.

You should now have the following file structure:

gs/
 conn.txt
 import/
 one.xml
 two.json

3.3. Load Documents
Load documents into a MarkLogic Server database using the mlcp import command. The examples in
this section load documents from flat files into the default database associated with the App Server on
port 8000 (the Documents database).

Other input options include compressed files, delimited text files, aggregate XML data, and line-
delimited JSON data. See Importing Content Into MarkLogic Server for details. You can also load
document into a different database using the -database option.

To load a single file, specify the path to the file as the value of -input_file_path. For example:

-input_file_path import

When you load documents, a default URI is generated based on the type of input data. For details, see
Controlling Database URIs During Ingestion.

We will import documents from flat files, so the default URI is the absolute pathname of the input file.
For example, if your work area is /space/gs on Linux or C:\gs on Windows, then the default URI
when you import documents from gs/import is as follows:

Linux: /space/gs/import/filenameWindows: /c:/gs/import/filename

You can use the -output_uri_replace option to strip off the portion of the URI that comes from the
path steps before “gs”. The option argument is of the form “pattern,replacement_text”. For example,
given the default URIs shown above, we’ll add the following option to create URIs that begin with “/gs”:

Linux: -output_uri_replace "/space,''"
Windows: -output_uri_replace "/c:,''"

Run the following command from the root of your work area (gs) to load all the files in the import
directory. Modify the argument to -output_uri_replace to match your environment.

MarkLogic 10 Load Documents

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 16

Linux:
 mlcp.sh import -options_file conn.txt \
 -output_uri_replace "/space,''" -input_file_path import
Windows:
 mlcp.bat import -options_file conn.txt ^
 -output_uri_replace "/c:,''" -input_file_path import

The output from mlcp should look similar to the following (but with a timestamp prefix on each
line). “OUTPUT_RECORDS_COMITTED: 2” indicates mlcp loaded two files. For more details, see
Understanding mlcp Output.

INFO contentpump.LocalJobRunner: Content type is set to MIXED. The format of
 the inserted documents will be determined by the MIME type specification
 configured on MarkLogic Server.
INFO input.FileInputFormat: Total input paths to process : 2
INFO contentpump.LocalJobRunner: completed 100%
INFO contentpump.LocalJobRunner: com.marklogic.mapreduce.MarkLogicCounter:
INFO contentpump.LocalJobRunner: INPUT_RECORDS: 2
INFO contentpump.LocalJobRunner: OUTPUT_RECORDS: 2
INFO contentpump.LocalJobRunner: OUTPUT_RECORDS_COMMITTED: 2
INFO contentpump.LocalJobRunner: OUTPUT_RECORDS_FAILED: 0
INFO contentpump.LocalJobRunner: Total execution time: 0 sec

Optionally, use Query Console’s Explore feature to examine the contents of the Documents database
and see that the documents were created. You should see documents with the following URIs:

/gs/import/one.xml
/gs/import/two.json

You can also create documents from files in a compressed file and from other types of input archives.
For details, see Importing Content Into MarkLogic Server.

3.4. Export Documents
Use the mlcp export command to export documents from a MarkLogic Server database into files on
your filesystem. You can export documents to several formats, including files, compressed files, and
database archives. For details, see Section 5, “Exporting Content from MarkLogic Server” [63].

You can identify the documents to export in several ways, including by URI, by directory, by collection,
and by XPath expression. This example uses a directory filter. Recall that the input documents were
loaded with URIs of the form /gs/import/filename. Therefore we can easily extract the files by
database directory using -directory_filter /gs/import/.

This example exports documents from the default database associated with the App Server on port
8000. Use the -database option to export documents from a different database.

Use the following procedure to export the documents inserted in Section 3.3, “Load Documents” [16]:

1. If you are not already at the top level of your work area, change directory to this location. That is,
the gs folder created in Section 3.1, “Prepare to Run the Examples” [15]. For example:

cd gs

2. Extract the previously inserted documents into a directory named export. The export directory
must not already exist.

Linux:
 mlcp.sh export -options_file conn.txt -output_file_path export \
 -directory_filter /gs/import/
Windows:
 mlcp.bat export -options_file conn.txt -output_file_path export ^
 -directory_filter /gs/import/

You should see output similar to the following, but with a timestamp prefix on each line. The
“OUTPUT_RECORDS: 2” line indicates mlcp exported 2 files.

MarkLogic 10 Export Documents

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 17

INFO mapreduce.MarkLogicInputFormat: Fetched 1 forest splits.
INFO mapreduce.MarkLogicInputFormat: Made 1 splits.
INFO contentpump.LocalJobRunner: completed 100%
INFO contentpump.LocalJobRunner: com.marklogic.mapreduce.MarkLogicCounter:
INFO contentpump.LocalJobRunner: INPUT_RECORDS: 2
INFO contentpump.LocalJobRunner: OUTPUT_RECORDS: 2
INFO contentpump.LocalJobRunner: Total execution time: 0 sec

The exported documents are in gs/export. A filesystem directory is created for each directory step in
the original document URI. Therefore, you should now have the following directory structure:

gs/
 export/
 gs/
 import/
 one.xml
 two.json

3.5. Understanding mlcp Output
The output from mlcp varies depending on the operation (import, export, copy, extract), but usually
looks similar to the following (with a timestamp prefix on each line). The following example is output
from an import job.

INFO contentpump.LocalJobRunner: Content type is set to MIXED. The format of
 the inserted documents will be determined by the MIME type specification
 configured on MarkLogic Server.
INFO input.FileInputFormat: Total input paths to process : 2INFO
contentpump.LocalJobRunner: completed 100%
INFO contentpump.LocalJobRunner: com.marklogic.mapreduce.ContentPumpStats:
INFO contentpump.LocalJobRunner: INPUT_RECORDS: 2INFO contentpump.LocalJobRunner:
OUTPUT_RECORDS: 2INFO contentpump.LocalJobRunner: OUTPUT_RECORDS_COMMITTED: 2INFO
contentpump.LocalJobRunner: OUTPUT_RECORDS_FAILED: 0INFO contentpump.LocalJobRunner:
Total execution time: 0 sec

The following table summarizes the purpose of key pieces of information reported by mlcp:

Message Description

Content type is set to format X. Import only. This indicates the type of documents mlcp will create. The
default is MIXED, which means mlcp will base the type on the input file
suffix. For details, see Section 4.4, “How mlcp Determines Document
Type” [23].

Total input paths to process : N Import only. Found N candidate input sources. If this number is 0, then
the pathname you supplied to -input_file_path does not contain
any data that meets your import criteria. If you’re unable to diagnose the
cause, refer to Section 8, “Troubleshooting” [88].

\INPUT_RECORDS: N The number of inputs mlcp actually tried to process. For an import
operation, this is the number of documents mlcp attempted to create.
For an export operation, this is number of documents mlcp attempted to
export. If there are errors, this number may not correspond to the actual
number of documents imported, exported, copied, or extracted.

This number can be larger or smaller than the total input paths. For
example, if you import from a compressed file that includes directories,
the directories count towards total inputs paths, but mlcp will only
attempt to create documents from the file entries, so total paths will be
larger than the attempted records.

Similarly, if you’re loading aggregate XML files and splitting them
into multiple documents, then total input paths reflects the number of
aggregate files, while the attempted records reflects the number of
documents created from the aggregates, so total paths is less than
attempted records.

MarkLogic 10 Understanding mlcp Output

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 18

ESTIMATED_INPUT_RECORDS: N Export and copy only. The estimated number of input records, based on
job parameters such as -document_selector and -input_query.
This number will be larger than INPUT_RECORDS if errors occur
while fetching documents from MarkLogic or when the database is
configured to use fragment roots. For example, if the source database
contain N documents matching the job parameters, but a host in the
cluster becomes unavailable during the job, then the actual number of
documents mlcp attempts to process can be some M < N. In such a
case, ESTIMATED_INPUT_RECORDS reflects N, while INPUT_RECORDS
reflects M.

OUTPUT_RECORDS: N On import, the number of documents (records) sent to MarkLogic
for insertion into the database. This number can be smaller than
INPUT_RECORDS if errors are detected on the client that cause a
record to be skipped.

On export, the number of output files mlcp successfully created.

OUTPUT_RECORDS_COMMITTED: N Import only. The number of documents committed to the database.
This number can be larger or smaller than OUTPUT_RECORDS. For
example, it will be smaller if an error is detected on MarkLogic Server or
larger if a server-side transformation creates multiple documents from a
single input document.

OUTPUT_RECORDS_FAILED: N Import only. The number of documents (records) rejected by MarkLogic
Server. This number does not include failures detected by mlcp on the
client.

3.6. Stopping an mclp Job Prematurely
In local mode, an interrupted job will shutdown gracefully as long as it can finish within 30 seconds. If
that time period expires, mlcp prints a warning.

MarkLogic 10 Stopping an mclp Job Prematurely

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 19

4. Importing Content Into MarkLogic Server

You can use mlcp to insert content into a MarkLogic Server database from flat files, compressed ZIP
and GZIP files, aggregate XML files, and MarkLogic Server database archives. The input data can be
accessed from the native filesystem.

For a list of import related options, see Section 4.19, “Import Command Line Options” [57].

4.1. Supported Input Format Summary
Use the -input_file_type option to tell mlcp the format of the data in each input file (or each
entry inside a compressed file). This option controls if/how mlcp converts the content into database
documents.

The default input type is documents, which means each input file or ZIP file entry creates one
database document. All other input file types represent composite input formats which can yield multiple
database documents per input file.

The following table provides a quick reference of the supported input file types, along with the allowed
document types for each, and whether or not they can be passed to mlcp as compressed files.

input_file_type Document Type -input_compressed permitted

documents XML, JSON, text, or binary; controlled with
-document_type.

Yes

archive As in the database: XML, JSON, text, and/or
binary documents, plus metadata. The type is
not under user control.

No (archives are already in compressed
format)

delimited_text XML or JSON Yes

delimited_json JSON Yes

sequencefile XML, text or binary; controlled with these
options:

-input_sequencefile_value_class
-input_sequencefile_value_type

No. However, the contents can be compressed
when you create the sequence file.
Compression is bound up with the value class
you use to generate and import the file.

aggregates XML Yes

rdf Serialized RDF triples, in one of several
formats. For details, see Supported RDF Triple
Formats in the Semantic Graph Developer’s
Guide. RDF/JSON is not supported.

Yes

forest As in the database: XML, JSON, text, and/or
binary documents. The type is not under user
control.

No

When the input file type is documents or sequencefile you must consider both the input format
(-input_file_type) and the output document format (-document_type). In addition, for some
input formats, input can come from either compressed or uncompressed files (-input_compressed).

The -document_type option controls the database document format when -input_file_type is
documents or sequencefile. MarkLogic Server supports text, JSON, XML, and binary documents.
If the document type is not explicitly set with these input file types, mlcp uses the input file suffix to
determine the type. For details, see Section 4.4, “How mlcp Determines Document Type” [23].

MarkLogic 10 Importing Content Into MarkLogic Server

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 20

https://docs.marklogic.com/guide/semantics/loading#id_70682
https://docs.marklogic.com/guide/semantics/loading#id_70682

NOTE
You cannot use mlcp to perform document conversions. Your input data should match
the stated document type. For example, you cannot convert XML input into a JSON
document just by setting -document_type json.

4.2. Understanding Input File Path Resolution
If you do not explicitly include a URI scheme prefix such as file: on the input file path, mlcp uses the
following rules to locate the input path:

• In local mode, mlcp defaults to the local file system (file).

The following example loads files from the local filesystem directory /space/bill/data:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -host localhost -port 8000 -username user \
 -password passwd -input_file_path /space/bill/data -mode local

4.3. Controlling Database URIs During Ingestion
By default, the document URIs created by mlcp during ingestion are determined by the input source.
The tool supports several command line options for modifying this default behavior.

4.3.1. Default Document URI Construction
The default database URI assigned to ingested documents depends on the input source. Loading
content from the local filesystem can create different URIs than loading the same content from a ZIP file
or archive. Command line options are available for you to modify this behavior. You can use options to
generate different URIs; for details, see Section 4.3.2, “Transforming the Default URI” [22].

The following table summarizes the default behavior with several input sources:

Input Source Default URI Example

documents in a native
directory

/path/filename

Note that on Windows, the device (“c:”)
becomes a path step, so c:\path\file
becomes /c:/path/file.

/space/data/bill/dream.xml

/c:/data/bill/dream.xml

documents in a ZIP or GZIP
file

/compressed-file-path/path/
inside/zip/filename

If the input file is /space/data/big.zip
and it contains a directory entry bill/, then
the document URI for dream.xml in that
directory is: /space/data/big.zip/bill/
dream.xml

a GZIP compressed
document

/path/filename-without-gzip-
suffix

If the input is /space/data/big.xml.gz, the
result is /space/data/big.xml.

delimited text file The value in the column used as the id.
(The first column, by default).

For a record of the form “first,second,third”
where Column 1 is the id: first

archive or forest The document URI from the source
database.

sequence file The key in a key-value pair

aggregate XML

line delimited JSON

/path/filename-split_start-
seqnum

Where /path/filename is the full path
to the input file, split_start is the byte
position from the beginning of the split, and
seqnum begins with 1 and increments for
each document created.

For input file /space/data/big.xml:/space/
data/big.xml-0-1/space/data/big.xml-0-2

For input file /space/data/
big.json:/space/data/big.json-0-1 /
space/data/big.json-0-2

RDF A generated unique name c7f92bccb4e2bfdc-0-100.xml

MarkLogic 10 Understanding Input File Path Resolution

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 21

For example, the following command loads all files from the file systemdirectory /space/bill/data
into the database attached to the App Server on port 8000. The documents inserted into the database
have URIs of form /space/bill/data/filename.

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -host localhost -port 8000 -username user \
 -password passwd -input_file_path /space/bill/data -mode local

If the /space/bill/data directory is zipped up into bill.zip, such that bill/ is the root directory
in zip file, then the following command inserts documents with URIs of the form bill/data/filename:

Windows users, see Modifying the Example Commands for Windows
$ cd /space; zip -r bill.zip bill
$ mlcp.sh import -host localhost -port 8000 -username user \
 -password passwd -input_file_path /space/bill.zip \
 -mode local -input_compressed true

When you use the -generate_uri option to have mlcp generate URIs for you, the generated URIs
follow the same pattern as for aggregate XML and line delimited JSON:

/path/filename-split_start-seqnum

The generated URIs are unique across a single import operation, but they are not globally unique. For
example, if you repeatedly import data from some file /tmp/data.csv, the generated URIs will be the
same each time (modulo differences in the number of documents inserted by the job).

4.3.2. Transforming the Default URI
Use the following options to tailor the database URI of inserted documents:

• -output_uri_replace performs one or more string substitutions on the default URI.
• -output_uri_prefix prepends a string to the URI after substitution.
• -output_uri_suffix appends a string to the URI after substitution.

The -output_uri_replace option accepts a comma delimited list of regular expression and
replacement string pairs. The string portion must be enclosed in single quotes:

-output_uri_replace pattern,’string’,pattern,’string'

For details on the regular expression language supported by -output_uri_replace, see
Section 1.4.3, “Regular Expression Syntax” [7].

NOTE
These options are applied after the default URI is constructed and encoded, so if the
option values contain characters not allowed in a URI, you must encode them yourself.
See Character Encoding of URIs.

The following example loads documents from the filesystem directory /space/bill/data. The
default output URIs would be of the form /space/bill/data/filename. The example uses
-output_uri_replace to replace “bill/data” with “will” and strip off “/space/”, and then adds a “/
plays” prefix using -output_uri_prefix. The end result is output URIs of the form /plays/will/
filename.

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -host localhost -port 8000 -username user \
 -password passwd -input_file_path /space/bill/data -mode local \
 -output_uri_replace "/space,'',/bill/data/,'/will/'" \ -output_uri_prefix /plays

MarkLogic 10 Controlling Database URIs During Ingestion

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 22

4.3.3. Character Encoding of URIs
If a URI constructed by mlcp contains special characters that are not allowed in URIs, mlcp
automatically encodes them. This applies to the special characters <space>, %, ? or #. For example,
foo bar.xml becomes foo%20bar.xml.

If you supply a URI or URI component, you are responsible for ensuring the result is a legitimate URI.
No automatic encoding takes place. This applies to -output_uri_replace, -output_uri_prefix,
and -output_uri_suffix. The changes implied by these options are applied after mlcp encodes the
default URI.

When mlcp exports documents from the database to the file system such that the output directory
and/or file names are derived from the document URI, the special symbols are decoded. That is,
foo%bar.xml becomes foo bar.xml when exported. For details, see Section 5.4, “How URI
Decoding Affects Output File Names” [65].

4.4. How mlcp Determines Document Type
The document type determines what kind of database document mlcp inserts from input content: Text,
XML, JSON, or binary. Document type is determined in the following ways:

• Document type can be inherent in the input file type. For example, aggregates and rdf input files
always insert XML documents. For details, see Section 4.1, “Supported Input Format Summary” [20].

• You can specify a document type explicitly with -document_type. For example, to load documents
as XML, use -input_file_type documents -document_type xml. You cannot set an explicit
type for all input file types.

• mlcp can determine document type dynamically from the output document URI and the MarkLogic
Server MIME type mappings when you use -input_file_type documents -document_type
mixed.

If you set -document_type to an explicit type such as -document_type json, then mlcp inserts all
documents as that type.

If you use -document_type mixed, then mlcp determines the document type from the output URI
suffix and the MIME type mapping configured into MarkLogic Server. Mixed is the default behavior for
-input_file_type documents.

NOTE

• You can only use -document_type mixed when the input file type is documents.
• If an unrecognized or unmapped file extension is encountered when loading mixed

documents, mlcp creates a binary document.

The following table contains examples of applying the default MIME type mappings to output URIs with
various file extensions, an unknown extension, and no extension. The default mapping includes many
additional suffixes. You can examine and create MIME type mappings under the Mimetypes section of
the Admin Interface. For more information, see Implicitly Setting the Format Based on the MIME Type in
the Loading Content Into MarkLogic Server Guide.

URI Document Type

/path/doc.xml XML

/path/doc.json JSON

/path/doc.jpg binary

MarkLogic 10 How mlcp Determines Document Type

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 23

https://docs.marklogic.com/guide/ingestion/formats#id_39990

/path/doc.txt text

/path/doc.unknown binary

/path/doc-nosuffix binary

The MIME type mapping is applied to the final output URI. That is, the URI that results from
applying the URI transformation options described in Section 4.3, “Controlling Database URIs During
Ingestion” [21]. The following table contains examples of how URI transformations can affect the output
document type in mixed mode, assuming the default MIME type mappings.

Input Filename URI Options Output URI Doc Type

/path/doc.1 None /path/file.1 binary

/path/doc.1 Add a .xml suffix:

-output_uri_suffix ".xml"

/path/file.xml XML

/path/doc.1 Replace the unmapped suffix with .txt:

-output_uri_replace "\.\d+,'.txt'"

/path/file.txt text

Document type determination is completed prior to invoking server side transformations. If you change
the document type in a transformation function, you are responsible for changing the output document
to match. For details, see Section 4.14, “Transforming Content During Ingestion” [41].

4.5. Loading Documents from a Directory
This section discusses importing documents stored as flat files on the native filesystem.

4.5.1. Loading a Single File
Use the following procedure to load all the files in a native directory and its sub-directories. To load
selected files, see Section 4.5.3, “Filtering Documents Loaded From a Directory” [25].

1. Set -input_file_path to the path to the input file.
2. Set -input_file_type if your input files are not documents. For example, if loading from

delimited text files, sequence files, aggregate XML files, RDF triples files, or database archives.
3. Set -document_type if -input_file_type is not documents and the content type cannot

be accurately deduced from the file suffixes as described in Section 4.4, “How mlcp Determines
Document Type” [23].

4. Set -mode: To perform the work locally, set -mode to local.

By default, the imported document has a database URI based on the input file path. For details, see
Section 4.3, “Controlling Database URIs During Ingestion” [21].

The following example command loads a single XML file:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -host localhost -port 8000 -username user \
 -password password -input_file_path /space/bill/data/hamlet.xml

4.5.2. Loading All the Files in a Directory
Use the following procedure to load all the files in a native directory and its sub-directories. To load
selected files, see Section 4.5.3, “Filtering Documents Loaded From a Directory” [25].

1. Set -input_file_path to the input directory.
2. Set -input_file_type if your input files are not documents. For example, if loading from

delimited text files, sequence files, aggregate XML files, or database archives.
3. Set -document_type if -input_file_type is not documents and the content type cannot

be accurately deduced from the file suffixes as described in Section 4.4, “How mlcp Determines
Document Type” [23].

MarkLogic 10 Loading Documents from a Directory

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 24

4. Set -mode: To perform the work locally, set -mode to local.

By default, the imported documents have database URIs based on the input file path. For details, see
Section 4.3, “Controlling Database URIs During Ingestion” [21].

The following example command loads all the files in /space/bill/data:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -host localhost -port 8000 -username user \
 -password password -input_file_path /space/bill/data

4.5.3. Filtering Documents Loaded From a Directory
If -input_file_path names a directory, mlcp loads all the documents in the input directory and
subdirectories by default. Use the -input_file_pattern option to filter the loaded documents based
on a regular expression.

NOTE
Input document filtering is handled differently for -input_file_type forest. For
details, see Section 5.5.5, “Filtering Forest Contents” [70].

For example, the following command loads only files with a “.xml” suffix from the directory /space/
bill/data:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -host localhost -port 8000 -username user \
 -password password -input_file_path /space/bill/data \
 -mode local -input_file_pattern '.*\.xml'

The mlcp tool uses Java regular expression syntax. For details, see Section 1.4.3, “Regular Expression
Syntax” [7].

4.6. Loading Documents From Compressed Files
You can load content from one or more compressed files. Filtering of compressed file content is not
supported; mlcp loads all documents in a compressed file.

Follow this procedure to load content from one or more ZIP or GZIP compressed files.

1. Set -input_file_path:
• To load from a single file, set -input_file_path to the path to the compressed file.
• To load from multiple files, set -input_file_path to a directory containing the compressed

files.
2. If the content type cannot be accurately deduced from suffixes of the files inside the

compressed file as described in Section 4.4, “How mlcp Determines Document Type” [23], set
-document_type appropriately.

3. Set -input_compressed to true.
4. If the compressed file suffix is not “.zip” or “.gzip”, specify the compressed file format by setting

-input_compression_codec to zip or gzip.

If you set -document_type to anything but mixed, then the contents of the compressed file must be
homogeneous. For example, all XML, all JSON, or all binary.

The following example command loads binary documents from the compressed file /space/
images.zip on the local filesystem.

MarkLogic 10 Loading Documents From Compressed Files

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 25

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -host localhost -port 8000 -username user \
 -password password -mode local -document_type binary \
 -input_file_path /space/images.zip -input_compressed

The following example loads all the files in the compressed file /space/example.jar, using
-input_compression_codec to tell mlcp the compression format because of the “.jar” suffix:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -host localhost -port 8000 -username user \
 -password passwd -mode local -input_file_path /space/example.jar \
 -input_compressed true -input_compression_codec zip

If -input_file_path is a directory, mlcp loads contents from all compressed files in the input
directory, recursing through subdirectories. The input directory must not contain other kinds of files.

By default, the URI prefix on documents loaded from a compressed file includes the full path to the
input compressed file and mirrors the directory hierarchy inside the compressed file. For example,
if a ZIP file /space/shakespeare.zip contains bill/data/dream.xml then the ingested
document URI is /space/shakespeare.zip/bill/data/dream.xml. To override this behavior,
see Section 4.3, “Controlling Database URIs During Ingestion” [21].

4.7. Loading Content and Metadata From an Archive
Follow this procedure to import content and metadata from a database archive created by the mlcp
export command. A database archive is stored in one or more compressed files that contain
documents and metadata.

1. Set -input_file_path:
• To load a single archive file, set -input_file_path to that file.
• To load multiple archive files, set -input_file_path to a directory containing the compressed

archive files.
2. Set -document_type to mixed, or leave it unset since mixed is the default setting.
3. Set -input_compressed to true.
4. Set -input_file_type to archive.
5. If the input archive was created without any metadata, set -archive_metadata_optional to

true. If this is not set, an exception is thrown if the archive contains no metadata.
6. If you want to exclude some or all of the document metadata in the archive:

• Set -copy_collections to false to exclude document collections metadata.
• Set -copy_permissions to false to exclude document permissions metadata.
• Set -copy_properties to false to exclude document properties.
• Set -copy_quality to false to exclude document quality metadata.
• Set -copy_metadata to false to exclude key-value metadata.

An archive is assumed to contain metadata. However, it is possible to create archives without
metadata by setting all the metadata copying options (-copy_collections, -copy_permissions,
etc.) to false during export. If an archive does not contain metadata, you must set
-archive_metadata_optional to tell mlcp to proceed in the absence of metadata.

NOTE
When you import properties from an archive, you should disable the “maintain
last modified” configuration option on the destination database during the import.
Otherwise, you can get an XDMP-SPECIALPROP error if the import operation tries to
update the last modified property. To disable this setting, use the Admin Interface or
the library function admin:set-maintain-last-modified.

MarkLogic 10 Loading Content and Metadata From an Archive

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 26

The following example command loads the database archive in /space/archive_dir:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -host localhost -port 8000 -username user \
 -password password -mode local -input_file_type archive \
 -input_file_path /space/archive_dir

4.8. Splitting Large XML Files Into Multiple Documents
Very large XML files often contain aggregate data that can be disaggregated by splitting it into
multiple smaller documents rooted at a recurring element. Disaggregating large XML files consumes
fewer resources during loading and improves performance when searching and retrieving content.
For aggregate JSON handling, see Section 4.10, “Creating Documents from Line-Delimited JSON
Files” [31].

The following mlcp options support creating multiple documents from aggregate data:

• -aggregate_record_element
• -uri_id
• -aggregate_record_namespace

You can disaggregate XML when loading from either flat or compressed files. For more information
about working with compressed files, see Section 4.6, “Loading Documents From Compressed
Files” [25].

Follow this procedure to create documents from aggregate XML input:

1. Set -input_file_path:
• To load from a single file, set -input_file_path to the path to the aggregate XML file.
• To load from multiple files, set -input_file_path to a directory containing the aggregate files.

The directory must not contain other kinds of files.
2. If you are loading from a compressed file, set -input_compressed.
3. Set -input_file_type to aggregates.
4. Set -aggregate_record_element to the element QName of the node to use as the root for all

inserted documents. See the example below. The default is the first child element under the root
element.

NOTE
The element QName should appear at only one level. You cannot specify the
element name using a path, so disaggregation occurs everywhere that name is
found.

5. Optionally, override the default document URI by setting -uri_id to the name of the element from
which to derive the document URI.

6. If the aggregate record element is in a namespace, set -aggregate_record_namespace to the
input namespace.

The default URI is hashcode-seqnum in local mode. If there are multiple matching elements, the first
match is used.

If your aggregate URI IDs are not unique, you can overwrite one document in your input set
with another. Importing documents with non-unique URI IDs from multiple threads can also cause
deadlocks.

The example below uses the following input data:

MarkLogic 10 Splitting Large XML Files Into Multiple Documents

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 27

$ cat > example.xml
<?xml version="1.0" encoding="UTF-8"?>
<people>
 <person>
 <first>George</first>
 <last>Washington</last>
 </person>
 <person>
 <first>Betsy</first>
 <last>Ross</last>
 </person>
</people>

The following command breaks the input data into a document for each <person> element. The
-uri_id and other URI options give the inserted documents meaningful names. The command
creates URIs of the form /people/lastname.xml by using the <last/> element as the aggregate
URI id, along with an output prefix and suffix:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -host localhost -port 8000 -username user \
 -password password -mode local -input_file_path example.xml \
 -input_file_type aggregates -aggregate_record_element person \
 -uri_id last -output_uri_prefix /people/ \
 -output_uri_suffix .xml

The command creates two documents: /people/Washington.xml and /people/Ross.xml. For
example, /people/Washington.xml contains:

<?xml version="1.0" encoding="UTF-8"?>
<person>
 <first>George</first>
 <last>Washington</last>
</person>

If the input data is in a namespace, set -aggregate_record_namespace to that namespace. For
example, if the input data is modified to include a namespace:

$ cat > example.xml
<?xml version="1.0" encoding="UTF-8"?>
<people xmlns="http://marklogic.com/examples">...</people>

Then mlcp ingests no documents unless you set -aggregate_record_namespace. Setting the
namespace creates two documents in the namespace http://marklogic.com/examples. For
example, after running the following command:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -host localhost -port 8000 -username user \
 -password password -mode local -input_file_path example.xml \
 -input_file_type aggregates -aggregate_record_element person \
 -uri_id last -output_uri_prefix /people/ \
 -output_uri_suffix .xml \
 -aggregate_record_namespace "http://marklogic.com/examples"

The document with URI /people/Washington.xml contains:

<?xml version="1.0" encoding="UTF-8"?>
<person xmlns="http://marklogic.com/examples">
 <first>George</first>
 <last>Washington</last>
</person>

MarkLogic 10 Splitting Large XML Files Into Multiple Documents

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 28

4.9. Creating Documents from Delimited Text Files
Use the delimited_text input file type to import content from a delimited text file and create an
XML or JSON document corresponding to each line. For line-delimited JSON data, see Section 4.10,
“Creating Documents from Line-Delimited JSON Files” [31].

The following options are commonly used in the generation of documents from delimited text files:

• -input_file_type delimited_text

• -document_type xml or -document_type json
• -delimiter

• -uri_id

• -delimited_root_name (XML output only)
• -data_type (JSON output only)

The use of these and other supporting options is covered in this section.

4.9.1. Example: Generating Documents From a CSV File
When you import content from delimited text files, mlcp creates an XML or JSON document for each
line of input after the initial header line.

The default document type is XML. To create JSON documents, use -document_type json.

When creating XML documents, each document has a root node of <root> and child elements with
names corresponding to each column title. You can override the default root element name using the
-delimited_root_name option; for details, see Section 4.9.3, “Customizing XML Output” [30].

When creating JSON documents, each document is rooted at an unnamed object containing JSON
properties with names corresponding to each column title. By default, the values for JSON are always
strings. Use -data_type to override this behavior; for details, see Section 4.9.4, “Controlling Data
Type in JSON Output” [30].

For example, if you have the following data and mlcp command:

Windows users, see 976fb286-6c4d-43fc-9d1c-d2d3ea060668
$ cat example.csv
first,last
george,washington
betsy,ross
$ mlcp.sh ... -mode local -input_file_path /space/mlcp/data \
 -input_file_type delimited_text ...

Then mlcp creates the XML output shown in the table below. To generate the JSON output, add
-document_type json to the mlcp command line.

XML Output JSON Output
<root>
 <first>george</first>
 <last>washington</last>
</root>
<root>
 <first>betsy</first>
 <last>ross</last>
</root>

{
 "first": "george",
 "last": "washington"
}
{
 "first": "betsy",
 "last": "ross"
}

4.9.2. Expected Input Format
A delimited text input file must have the following characteristics:

• The first line in the input file contains “column” names that are used to create the XML element or
JSON property names of each document created from the file.

MarkLogic 10 Creating Documents from Delimited Text Files

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 29

• The same delimiter is used to separate each value, as well as the column names. The default
separator is a comma; use -delimiter to override it; for details, see Section 4.9.6, “Specifying the
Field Delimiter” [31].

• Every line has the same number of fields (values). Empty fields are represented as two delimiters in a
row, such as “a,b,,d”.

For example, the following data meets the input format requirements:

first,last
george,washington
betsy,ross

This data produces documents with XML elements or JSON properties named “first” and “last”.

4.9.3. Customizing XML Output
When creating XML documents, each document has a root node of <root> and child elements with
names corresponding to each column title. You can override the default root element name using the
-delimited_root_name option. You can use the -namespace option to specify a root namespace.

The following example produces documents with root element <person> in the namespace http://
my.namespace.

$ mlcp.sh ... -mode local -input_file_path /space/mlcp/data \
 -input_file_type delimited_text -namespace http://my.namespace \
 -delimited_root_name person
...
<person xmlns="http://my.namespace">
 <first>george</first>
 <last>washington</last>
</person>
...

4.9.4. Controlling Data Type in JSON Output
When creating JSON documents, the default value type is string. You can use the -data_type option
to specify explicit data types for some or all columns. The options accepts comma-separated list of
columnName, typeName pairs, where the typeName can be one of number, boolean, or string.

For example, if you have an input file called “catalog.csv” that looks like the following:

id, price, in-stock
12345, 8.99, true
67890, 2.00,false

Then the default output documents look similar to the following. Notice that all the property values are
strings.

{ "id": "12345",
 "price": "8.99",
 "in-stock: "true"
}

The following example command uses the -data_type option to make the “price” property a
number value and the “in-stock” property a boolean value. Since the “id” field is not specified in the
-data_type option, it remains a string.

$ mlcp.sh ... -mode local -input_file_path catalog.csv \
 -input_file_type delimited_text -document_type json \
 -data_type "price,number,in-stock,boolean"...
{ "id": "12345",
 "price": 8.99,
 "in-stock: true
}

MarkLogic 10 Creating Documents from Delimited Text Files

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 30

4.9.5. Controlling the Output Document URI
By default, the document URIs use the value in the first column. For example, if your input data looks
like the following:

first,last
george,washington
betsy,ross

Then importing this data with no URI related options creates two documents with name corresponding
to the “first” value. The URI will be “george” and “betsy”.

Use -uri_id to choose a different column or -generate_uri to have MarkLogic Server
automatically generate a unique URI for each document. For example, the following command creates
the documents “washington” and “ross”:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh ... -mode local -input_file_path /space/mlcp/data \
 -input_file_type delimited_text -uri_id last

Note that URIs generated with -generate_uri are only guaranteed to be unique across your import
operation. For details, see Section 4.3.1, “Default Document URI Construction” [21].

You can further tailor the URIs using -output_uri_prefix and -output_uri_suffix. These
options apply even when you use -generate_uri. For details, see Section 4.3, “Controlling Database
URIs During Ingestion” [21].

If your URI id’s are not unique, you can overwrite one document in your input set with another.
Importing documents with non-unique URI id’s from multiple threads can also cause deadlocks.

4.9.6. Specifying the Field Delimiter
The default delimiter between fields is a comma (,). You can override this using the -delimiter
option. If the delimiter is a character that is difficult to specify on the command line, specify the delimiter
in an options file instead. For details, see Section 1.4.4, “Options File Syntax” [7].

For example, the Linux bash shell parser makes it difficult to specify a tab delimiter on the command
line, so you can put the options in a file instead. In the example options file below, the string literal after
-delimiter should contain a tab character.

$ cat delim.opt
-input_file_type
delimited_text
-delimiter
"tab"
$ mlcp.sh import ... -mode local -input_file_path /space/mlcp/data \
 -options_file delim.opt

4.9.7. Optimizing Ingestion of Large Files
If your delimited text files are very large, consider using the -split_input option. When this option is
true, mlcp attempts to break each input file into multiple splits, enabling more documents to be loaded in
parallel. For details, see Section 4.13.6, “Improving Throughput with -split_input” [40].

4.10. Creating Documents from Line-Delimited JSON Files
Use the delimited_json input file type to import content from a line-delimited JSON file and create a
JSON document corresponding to each line.

To create JSON documents from delimited text files such as CSV files, see Section 4.9, “Creating
Documents from Delimited Text Files” [29]. For aggregate XML input, see Section 4.8, “Splitting Large
XML Files Into Multiple Documents” [27].

MarkLogic 10 Creating Documents from Line-Delimited JSON Files

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 31

4.10.1. Line-Delimited JSON Overview
A line-delimited JSON file is a type of aggregate file where each line is a self-contained piece of JSON
data, such as an object or array.

Usually, each line of input has similar structure, such as the following:

{"id": "12345","price":8.99, "in-stock": true}
{"id": "67890","price":2.00, "in-stock": false}

However, the JSON data on each line is independent of the other lines, so the lines do not have to
contain JSON data of the same “shape”. For example, the following is a valid input file:

{"first": "george", "last": "washington"}
{"id": 12345, "price": 8.99, "in-stock": true}

Given the input shown below, the following command creates 2 JSON documents. Each document
contains the data from a single line of input.

$ cat example.json
{"id": "12345","price":8.99, "in-stock": true}
{"id": "67890","price":2.00, "in-stock": false}
Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -host localhost -port 8000 -username user \
 -password password -mode local -input_file_path example.json \
 -input_file_type delimited_json

The example command creates documents whose contents precisely mirror each of input:

{"id": "12345","price":8.99, "in-stock": true}
{"id": "67890","price":2.00, "in-stock": false}

4.10.2. Controlling the Output Document URI
The default document URI is generated from the input file name, the split number, and a sequence
number within the split, as described in Section 4.3.1, “Default Document URI Construction” [21]. For
example, if the input file absolute path is /space/data/example.json, then the default output
document URIs have the following form:

/space/data/example.json-0-1
/space/data/example.json-0-2
...

You can base the URI on values in the content instead by using the -uri_id option to specify the
name of a property found in the data. You can further tailor the URIs using -output_uri_prefix
and -output_uri_suffix. For details, see Section 4.3, “Controlling Database URIs During
Ingestion” [21].

For example, the following command uses the value in theid field as the base of the URI and uses
-output_uri_suffix to add a .json suffix to the URIs:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh ... -mode local -input_file_path /space/data/example.json \
 -input_file_type delimited_json
 -uri_id id -output_uri_suffix ".json"

Given these options, an input line of the form shown below produces a document with the URI
12345.json instead of /space/data/example.json-0-1.

{"id": "12345","price":8.99, "in-stock": true}

If the property name specified with -uri_id is not unique in your data, mlcp will use the first occurrence
found in a breadth first search. The value of the specified property should be a valid number or string.

MarkLogic 10 Creating Documents from Line-Delimited JSON Files

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 32

If you use -uri_id, any records (lines) that do not contain the named property are skipped. If the
property is found but the value is null or not a number or string, the record is skipped.

4.11. Loading Triples
This section provides a brief overview of loading semantic data into MarkLogic Server. For more details,
see the Semantic Graph Developer’s Guide.

4.11.1. Basics of Triple Loading
To load semantic triples, use -input_file_type rdf and follow the instructions for loading a single
file, all files in a directory, or a compressed file. For example, the following command loads triples files
from the directory /my/data.

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -username user -password password -host localhost \
 -port 8000 -input_file_path /my/data -mode local \
 -input_file_type rdf

You can use mlcp to load triples files in several formats, including RDF/XML, Turtle, and N-Quads. For
a full list of supported formats, see Supported RDF Triple Formats in the Semantic Graph Developer’s
Guide.

NOTE
Each time you load triples from a file, mlcp inserts new documents into the database.
That is, multiple loads of the same input inserts new triples each time, rather than
overwriting. Only the XQuery and REST API allow you replace triples.

Load triples data embedded within other content according to the instructions for the enclosing input
file type, rather than with -input_file_type rdf. For example, if you have an XML input document
that happens to have some triples embedded in it, load the document using -input_file_type
documents.

You cannot combine loading triples files with other input file types.

If you do not include any graph selection options in your mlcp command, Quads are loaded into
the graph specified in the data. Quads with no explicit graph specification and other kinds of triple
data are loaded into the default graph. You can change this behavior with options. For details, see
Section 4.11.2, “Graph Selection When Loading Quads” [33] or Section 4.11.3, “Graph Selection for
Other Triple Types” [35].

For details, see Loading Triples with mlcp in the Semantic Graph Developer’s Guide.

4.11.2. Graph Selection When Loading Quads
When loading quads, you can use the following command line options to control the graph into which
your quads are loaded:

• -output_graph

• -output_override_graph

• -output_collections

You can use -output_collections by itself or with the other two options. You cannot use
-output_graph and -output_override_graph together.

MarkLogic 10 Loading Triples

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 33

https://docs.marklogic.com/guide/semantics
https://docs.marklogic.com/guide/semantics/loading#id_70682
https://docs.marklogic.com/guide/semantics/loading#id_50917

If your semantic data is not in a quad format like N-Quads, see Section 4.11.3, “Graph Selection for
Other Triple Types” [35].

Quads interact with these options differently than other triple formats because quads can include a
graph IRI in each quad. The following table summarizes the affect of various option combinations when
importing quads with mlcp:

Graph Options Description

none For quads that contain an explicit graph IRI, load the triple into that graph. For quads
with no explicit graph IRI, load the triple into the default graph. The default graph URI is
http://marklogic.com/semantics#default-graph.

-output_graph For quads that contain an explicit graph IRI, load the triple into that graph. For quads with
no explicit graph IRI, load the triple into the graph specified by -output_graph.

-output_override_graph Load all triples into the graph specified by -output_override_graph. This graph
overrides any graph IRIs contained in the quads.

-output_collections Similar to -output_override_graph, but you can specifiy multiple collections. Load
triples into the graph specified as the first (or only) collection; also add triples to any
additional collections on the list. This overrides any graph IRIs contained in the quads.

-output_graph with
-output_collections

For quads that contain an explicit graph IRI, load the triple into that graph. For quads with
no explicit graph IRI, load the triple into the graph specified by -output_graph. Also add
triples to the specified collections.

-output_override_graph with
-output_collection

Load all triples into the graph specified by -output_override_graph. This graph
overrides any graph IRIs contained in the quads. Also add triples to the specified
collections.

For more details, see Loading Triples with mlcp in the Semantic Graph Developer’s Guide.

For example, suppose you load the following N-Quad data with mlcp. There are 3 quads in the data set.
The first and last quad include a graph IRI, the second quad does not.

<http://one.example/subject1> <http://one.example/predicate1>
 <http://one.example/object1> <http://example.org/graph3> .
_:subject1 <http://an.example/predicate1> "object1" .
_:subject2 <http://an.example/predicate2> "object2"
 <http://example.org/graph5> .

If you use a command similar to the following load the data:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -username user -password password -host localhost \
 -port 8000 -input_file_path /my/data.nq -mode local \
 -input_file_type rdf

Then the table below illustrates how the various graph related options affect how the triples are loaded
into the database:

Graph Options Result

none Graphs:

http://example.org/graph3

http://marklogic.com/semantics#default-graph

http://example.org/graph5

-output_graph /my/graph Graphs:

http://example.org/graph3

/my/graph

http://example.org/graph5

-output_override_graph /my/graph Graphs: /my/graph for all triples

-output_collections "aa,bb,cc" Graphs: aa for all triples. All triples also added to collections bb and cc

MarkLogic 10 Loading Triples

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 34

https://docs.marklogic.com/guide/semantics/loading#id_50917

-output_graph /my/graph
-output_collections "bb,cc"

Graphs:

http://example.org/graph3

/my/graph

http://example.org/graph5

All triples also added to collections bb and cc

-output_override_graph /my/graph
-output_collections "bb,cc"

Graphs: /my/graph for all triples. All triples also added to collections
bb and cc

4.11.3. Graph Selection for Other Triple Types
When loading triples (rather than quads), you can use the following command line options to control the
graph into which your triples are loaded:

• -output_graph

• -output_collections

The following table summarizes the affect of various option combinations when importing triples with
mlcp. For quads, see Section 4.11.2, “Graph Selection When Loading Quads” [33].

Graph Options Description

none Load triples into the default graph (http://marklogic.com/semantics#default-
graph).

-output_graph Load triples into the specified graph.

output_collections Load triples into the graph specified as the first (or only) collection; also add triples to any
additional collections on the list.

-output_graph with
-output_collections

Load triples into the graph specified by -output_graph and also add them to the
specified collections.

For more details, see Loading Triples with mlcp in the Semantic Graph Developer’s Guide.

For example, if you use a command similar to the following load triples data:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -username user -password password -host localhost \
 -port 8000 -input_file_path /my/data.nt -mode local \
 -input_file_type rdf

Then the table below illustrates how the various graph related options affect how the triples are loaded
into the database:

Graph Options Result

none Graph: http://marklogic.com/semantics#default-graph

-output_graph /my/graph Graph: /my/graph

-output_collections "aa,bb,cc" Graph: aa. All triples also added to collections bb and cc

-output_graph /my/graph
-output_collections "bb,cc"

Graph: /my/graph. All triples also added to collections bb and cc

4.12. Loading Documents from a Forest With Direct Access
Direct Access enables you to extract documents directly from an offline or read-only forest without using
MarkLogic Server instance for input. Direct Access is primarily intended for accessing archived data
that is part of a tiered storage deployment.

For details, see Section 7.5, “Importing Documents from a Forest into a Database” [86].

MarkLogic 10 Loading Documents from a Forest With Direct Access

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 35

https://docs.marklogic.com/guide/semantics/loading#id_50917

4.13. Performance Considerations for Loading Documents
MarkLogic Content Pump comes configured with defaults that should provide good performance under
most circumstances. This section presents some performance tradeoffs to consider if you want to try to
optimize throughput for your workload.

4.13.1. Time vs. Space: Configuring Batch and Transaction Size
You can tune the document insertion throughput and memory requirements of your job by configuring
the batch size and transaction size of the job.

• -batch_size controls the number of updates per request to the server.
• -transaction_size controls the number of requests to the server per transaction.

The default batch size is 100 and the maximum batch size is 200. (However, some options can
affect the default). The default transaction size is 1 and the maximum transaction size is 4000/
actualBatchSize. This means that the default maximum number of updates per transaction is 1000,
and updates per transaction can range from 20 to 4000.

Selecting a batch size is a speed vs. memory tradeoff. Each request to the server introduces overhead
because extra work must be done. However, unless you use -streaming or -document_type
mixed, all the updates in a batch stay in memory until a request is sent, so larger batches consume
more memory.

Transactions introduce overhead on MarkLogic Server, so performing multiple updates per transaction
can improve insertion throughput. However, an open transaction holds locks on fragments with pending
updates, potentially increasing lock contention and affecting overall application performance.

It is also possible to overwhelm MarkLogic Server if you have too many concurrent sessions active.

4.13.2. Time vs. Correctness: Understanding -fastload Tradeoffs
The -fastload option can significantly speed up ingestion during import and copy operations, but
it can also cause problems if not used properly. This section describes how -fastload affects the
behavior of mlcp and some of the tradeoffs associated with enabling it.

The optimizations described by this section are only enabled if you explicitly specify the -fastload or
-output_directory options. (The -output_directory option implies -fastload).

NOTE
The -fastload option work slightly different when used with -restrict_hosts. For
details, see Section 4.15.3, “How -restrict_hosts Affects -fastload” [53]. The limitations
of -fastload described in this section still apply.

By default, mlcp inserts documents into the database by distributing work across the e-nodes in your
MarkLogic cluster. Each e-node inserts documents into the database according to the configured
document assignment policy.

This means the default insertion process for a document is similar to the following:

1. mlcp selects Host A from the available e-nodes in the cluster and sends it the document to be
inserted.

2. Using the document assignment policy configured for the database, Host A determines the
document should be inserted into Forest F on Host B.

MarkLogic 10 Performance Considerations for Loading Documents

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 36

3. Host A sends the document to Host B for insertion.

When you use -fastload (or -output_directory), mlcp attempts to cut out the middle step by
applying the document assignment policy on the client. The interaction becomes similar to the following:

1. Using the document assignment policy, mlcp determines the document should be inserted into
Forest F on Host B.

2. mlcp sends the document to Host B for insertion, with instructions to insert it into a specific forest.

Pre-determining the destination host and forest can always be done safely and consistently if the all of
the following conditions are met:

• Your forest topology is stable.
• You are creating rather than updating documents.

To make forest assignment decisions locally, mlcp gathers information about the database assignment
policy and forest topology at the beginning of a job. If you change the assignment policy or forest
topology while an mlcp import or copy operation is running, mlcp might make forest placement
decisions inconsistent with those MarkLogic Server would make. This can cause problems such as
duplicate document URIs and unbalanced forests.

Similar problems can occur if mlcp attempts to update a document already in the database, and the
forest topology or assignment policy changes between the time the document was originally inserted
and the time mlcp updates the document. Using user-specified forest placement when initially inserting
a document creates the same conflict.

Therefore, it is not safe to enable -fastload optimizations in the following situations:

• A document mlcp inserts already exists in the database and any of the following conditions are true:
• The forest topology has changed since the document was originally inserted.
• The assignment policy has changed since the document was originally inserted.
• The assignment policy is not Legacy (default) or Bucket. For details, see Section 4.13.3, “How

Assignment Policy Affects Optimization” [38].
• The document was originally inserted using user-specified forest placement.

• A document mlcp inserts does not already exist in the database and any of the following conditions
are true:
• The forest topology changes while mlcp is running.
• The assignment policy changes while mlcp is running.

Assignment policy is a database configuration setting that affects how MarkLogic Server selects
what forest to insert a document into or move a document into during rebalancing. For details, see
Rebalancer Document Assignment Policies in Administrating MarkLogic Server.

NOTE
Assignment policy was introduced with MarkLogic 7 and mlcp v1.2. If you use an
earlier version of mlcp with MarkLogic 7 or later, the database you import data into with
-fastload or -output_directory must be using the legacy assignment policy.

Any operation that changes the forests available for updates changes your forest topology, including the
following:

• Adding or an employing a new forest

MarkLogic 10 Performance Considerations for Loading Documents

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 37

https://docs.marklogic.com/guide/admin-guide/en/database-rebalancing/rebalancer-document-assignment-policies.html

• Removing or retiring an existing forest
• Changing the updates-allowed state of forest. For example, calling admin:forest-set-
updates-allowed

• Changing the database assignment policy

In most cases, it is your responsibility to determine whether or not you can safely use -fastload
(or -output_directory, which implies -fastload). In cases where mlcp can detect -fastload is
unsafe, it will disable it or give you an error.

4.13.3. How Assignment Policy Affects Optimization
This section describes how your choice of document assignment policy can introduce additional
limitations and risks. Assignment policy is a database configuration setting that affects how MarkLogic
Server selects what forest to insert a document into or move a document into during rebalancing. For
details, see Rebalancer Document Assignment Policies in Administrating MarkLogic Server.

NOTE
Assignment policy was introduced with MarkLogic 7 and mlcp v1.2. If you use an
earlier version of mlcp with MarkLogic 7 or later, the database you import data into with
-fastload or -output_directory must be using the legacy assignment policy.

The following table summarizes the limitations imposed by each assignment policy. If you do not
explicitly set assignment policy, the default is Legacy or Bucket.

Assignment Policy Notes

Legacy (default)

Bucket

You can safely use -fastload if:

• there are no pre-existing documents in the database with the same URIs; or
• you use -output_directory; or
• the URIs may be in use, but the forest topology has not changed since the documents were

created, and the documents were not initially inserted using user-specified forest placement.

Statistical You can only use -fastload to create new documents; updates are not supported. You should use
-output_directory to ensure there are no updates.

All documents in a batch are inserted into the same forest. The rebalancer may subsequently move
the documents if the batch size is large enough to cause the forest to become unbalanced.

If you set -fastload to true and mlcp determines database rebalancing is occurring or needs to
be done at the start of a job, an error occurs.

Range You can only use -fastload to create new documents; updates are not supported. You should use
-output_directory to ensure there are no updates.

You should use -output_partition to tell mlcp which partition to insert documents into. The
partition you specify is used even if it is not the correct partition according to your configured partition
policy.

You can only use -fastload optimizations with range policy if you are licensed for Tiered Storage.

If you set -fastload to true and mlcp determines database rebalancing is occurring or needs to
be done at the start of a job, an error occurs.

MarkLogic 10 Performance Considerations for Loading Documents

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 38

https://docs.marklogic.com/guide/admin-guide/en/database-rebalancing/rebalancer-document-assignment-policies.html

Query You can only use -fastload to create new documents; updates are not supported. You should use
-output_directory to ensure there are no updates.

You should use -output_partition to tell mlcp which partition to insert documents into. The
partition you specify is used even if it is not the correct partition according to your configured partition
policy.

You can only use -fastload optimizations with range policy if you are licensed for Tiered Storage.

If you set -fastload to true and mlcp determines database rebalancing is occurring or needs to
be done at the start of a job, an error occurs.

4.13.4. Tuning Split Size and Thread Count for Local Mode
You can tune split size only when importing documents in local mode from one of the following input file
types:

• Whole documents (-input_file_type documents), whether from flat or compressed files.
• Composite file types that support -split_input, such as delimited_text.

You cannot tune split size when creating documents from composite files that do not support
-split_input, such as sequence files and aggregate XML files.

You can tune thread count for both whole documents and all composite files types. Thread count and
split size can interact to affect job performance.

In local mode, a split defines the unit of work per thread devoted to a session with MarkLogic Server.
The ideal split size is one that keeps all mlcp session threads busy. The default split size is 32M
for local mode. Use the -max_split_size, -thread_count, and -thread_count_per_split
options to tune your load.

By default, threads are assigned to splits in a round-robin fashion. For example, consider a loading 120
small documents of length 1M. Since the default split size is 32M, the load is broken into 4 splits. If
-thread_count is 10, each split is assigned to at least 2 threads (10 / 4 = 2). The remaining 2
threads are each assigned to a split, so the number of threads per split are distributed as follows:

Split 1: 3 threads

Split 2: 3 threads

Split 3: 2 threads

Split 4: 2 threads

This distribution could result in two of the splits completing faster, leaving some threads idle. If you set
-max_split_size to 12M, the load has 10 splits, which can be evenly distributed across the threads
and may result in better thread utilization.

Prior to 10.0-4.2, mlcp uses 4 as the default thread count. For mlcp versions equal to or higher than
10.0-4.2, mlcp conducts initial polling to identify the available server threads on the port that handles
mlcp requests. Mlcp then uses this value as the default thread count. Users can overwrite the default
value by specifying -thread_count in the command line.

If -thread_count is less than the number of splits, the default behavior is one thread per split, up to
the total number of threads. The remaining splits must wait until a thread becomes available.

MarkLogic 10 Performance Considerations for Loading Documents

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 39

NOTE
If you specify -thread_count_per_split, each input split will run with the specified
number. The total number of thread count, however, is controlled by the newly
calculated thread count or -thread_count if it is specified.

If MarkLogic Server is not I/O bound, then raising the thread count, and possibly threads per split,
can improve throughput when the number of splits is small but each split is very large. This is often
applicable to loading from zip files, aggregate files, and delimited text files. Note that if MarkLogic
Server is already I/O bound in your environment, increasing the concurrency of writes will not
necessarily improve performance.

4.13.5. Reducing Memory Consumption With Streaming
The streaming protocol allows you to insert a large document into the database without holding the
entire document in memory. Streaming uploads documents to MarkLogic Server in 128k chunks.

Streaming content into the database usually requires less memory on the host running mlcp, but
ingestion can be slower because it introduces additional network overhead. Streaming also does not
take advantage of mlcp’s builtin retry mechanism. If an error occurs that is normally retryable, the job
will fail.

NOTE
Streaming is only usable when -input_file_type is documents. You cannot use
streaming with delimited text files, sequence files, or archives.

To use streaming, enable the -streaming option. For example:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -username user -password password -host localhost \
 -port 8000 -input_file_path /my/dir -streaming

4.13.6. Improving Throughput with -split_input
If you are loading documents from very large files, you might be able to improve throughput using
the -split_input option. When -split_input is true, mlcp attempts to break large input files that
would otherwise be processed in a single split into multiple splits. This enables portions of the input file
to be loaded by threads (local mode).

NOTE
This option can only be applied to composite input file types that logically
produce multiple documents and for which mlcp can efficiently identify document
boundaries, such as delimited_text. Not all composite file types are supported,
and files containing multi-byte characters must be UTF-8-encoded. For details, see
Section 4.19, “Import Command Line Options” [57].

In local mode, -split_input is false by default.

MarkLogic 10 Performance Considerations for Loading Documents

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 40

The -split_input option affects local mode as follows: Suppose you are importing a very large
delimited text file in local mode with -split_input set to false and the data processed as a single
split. The work might be performed by multiple threads (depending on the job configuration), but these
threads read records from the input file synchronously. This can cause some read contention. If you set
-split_input to true, then each thread is assigned its own chunk of input, resulting in less contention
and greater concurrency.

The number of subdivisions is determined by the formula file-size / max-split-size, so you should
also consider tuning split size to match your input data characteristics. For example, if your data
consists of 1 delimited text file containing 16M of data, you can observe the following interactions
between -split_input and -max_split_size:

Input File Size -split_input Split Size Number of Splits

16M false 32M 1

16M true 32M 1

16M true 1M 16

Tuning the split size in this case potentially enables greater concurrency because the multiple splits can
be assigned to different threads or tasks.

Split size is tunable using -max_split_size, -min_split_size, and block size. For details, see
Section 4.13.4, “Tuning Split Size and Thread Count for Local Mode” [39].

4.13.7. Concurrent Jobs
We do not recommend using concurrent mlcp jobs. Regardless of the version, mlcp doesn’t support
concurrent jobs if mlcp is importing from/exporting to the same data file. In addition, beginning in
10.0-4.2, each mlcp job uses the maximum number of threads available on the server as the default
thread count. Therefore, using concurrent mlcp jobs will not improve performance, as one job is already
using full concurrent capacity.

Here is more about threads and thread count:

• A command line option called -max_threads refers to the maximum number of threads that run
mlcp. This command line option is optional.

• mlcp conducts initial polling to identify the available server threads on the port that handles mlcp
requests. mlcp then uses half of this value as the default thread count.

• You can overwrite this calculated value by specifying -thread_count in the command line.
• If you specify -threads_per_split, each input split will run with the number you have specified.

Note, however, that the total thread count is controlled by the newly calculated thread count or, if
specified, -thread_count.

4.14. Transforming Content During Ingestion
You can create an XQuery or Server-Side JavaScript function and install it on MarkLogic Server to
transform and enrich content before inserting it into the database. Your function runs on MarkLogic
Server. You can use such functions with the mlcp import and copy commands.

4.14.1. Creating a Custom XQuery Transformation
The topics in this section describe how to implement a server-side content transformation function in
XQuery.

Function Signature
A custom transformation is an XQuery function module that conforms to the following interface. Your
function receives a single input document, described by $content, and can generate zero, one, or
many output documents.

MarkLogic 10 Transforming Content During Ingestion

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 41

declare function yourNamespace:transform(
 $content as map:map,
 $context as map:map)
as map:map*

Input Parameters
The table below describes the input parameters to a transform function:

Parameter Description

$content Data about the original input document. The map contains the following keys:

• uri - The URI of the document being inserted into the database.
• value - The contents of the input document, as a document node, binary node, or text node.

$context Additional context information about the insertion, such as tranformation-specific parameter values. The map
can contain the following keys when your transform function is invoked:

• transform_param : The value passed by the client through the -transform_param option, if any.
Your function is responsible for parsing and validation.

• collections : Collection URIs specified by the -output_collections option. Value format: A
sequence of strings.

• permissions : Permissions specified by the -output_permissions option. Value format: A
sequence of sec:permission elements, as produced by xdmp:permission.

• quality : The document quality specified by the -output_quality parameter. Value format: An
integer value.

• temporalCollection : The temporal collection URI specified by the -temporal-collection
parameter. Value format: A string.

The type of node your function receives in the “value” property of $content depends on the input
document type, as determined by mlcp from the -document_type option or URI extension. For
details, see Section 4.4, “How mlcp Determines Document Type” [23]. The type of node your function
returns in the “value” property should follow the same guidelines.

The table below outlines the relationship between document type and the node type your transform
function should expect.

Document Type “value” node type

XML document-node

JSON document-node

BINARY binary-node

TEXT text-node

The collections, permissions, quality, and temporal collection metadata from the mlcp command line
is made available to your function so that you can modify or replace the values. If a given metadata
category is not specified on the command line, the key will not be present in the input map.

Expected Output
Your function can produce more than one output document. For each document, your function should
return a map:map. The map:map for an output document must use the same keys as the $content
map (uri and value).

NOTE
Modifying the document URI in a transformation can cause duplicate URIs when
combined with the -fastload option, so you should not use -fastload or
-output_directory with a transformation module that changes URIs. For details,
see Section 4.13.2, “Time vs. Correctness: Understanding -fastload Tradeoffs” [36].

MarkLogic 10 Transforming Content During Ingestion

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 42

https://docs.marklogic.com/map:map
https://docs.marklogic.com/map:map

The documents returned by your transformation should be exactly as you want to insert them into the
database. No further transformations are applied by the mlcp infrastructure. For example, a transform
function cannot affect document type just by changing the URI. Instead, it must convert the document
node. For details, see Section 4.14.7, “Example: Changing the URI and Document Type” [50].

You can use the context parameter to specify collections, permissions, quality, and values metadata
for the documents returned by your transform. Use the following keys and data formats for specifying
various categories of metadata:

Context Map Key Expected Value Format

collections A sequence of strings containing collection URIs.

permissions A sequence of sec:permission elements, each representing a capability and a role id. For
details, see xdmp:permission.

quality An integer value (or a string that can be converted to an integer).

metadata A map:map containing key-value metadata.

temporalCollection A string containing a temporal document collection URI.

For a description of the meaning of the keys, see Input Parameters [42].

If your function returns multiple documents, they will all share the metadata settings from the context
parameter.

Example Implementation
The following example adds an attribute to incoming XML documents and leaves non-XML documents
unmodified. The attribute value is specified on the mlcp command line, using the -transform_param
option.

declare function example:transform(
 $content as map:map,
 $context as map:map
) as map:map*
{
 let $attr-value :=
 (map:get($context, "transform_param"), "UNDEFINED")[1]
 let $the-doc := map:get($content, "value")
 return
 if (fn:empty($the-doc/element()))
 then $content
 else
 let $root := $the-doc/*
 return (
 map:put($content, "value",
 document {
 $root/preceding-sibling::node(),
 element {fn:name($root)} {
 attribute { fn:QName("", "NEWATTR") } {$attr-value},
 $root/@*,
 $root/node()
 },
 $root/following-sibling::node()
 }
), $content
)
};

For an end-to-end example of using this transform, see Section 4.14.6, “Example: Server-Side Content
Transformation” [47].

4.14.2. Creating a Custom JavaScript Transformation
The topics in this section describe how to implement a server-side content transformation function in
Server-Side JavaScript.

MarkLogic 10 Transforming Content During Ingestion

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 43

Function Signature
A custom transformation is a JavaScript function module that conforms to the following interface. Your
function receives a single input document, described by $content, and can generate zero, one, or
many output documents.

function yourTransform(content, context)

Input Parameters
The content parameter is an object containing data about the original input document. The content
parameter has the following form:

{ uri: string,
 value: node}

The type of node your function receives in content.value depends on the input document type, as
determined by mlcp from the -document_type option or URI extension. For details, see Section 4.4,
“How mlcp Determines Document Type” [23]. The type of node your function returns in the value
property should follow the same guidelines.

The table below outlines the relationship between document type and the node type your transform
function should expect (or return).

Document Type “value” node type

XML document-node

JSON document-node

BINARY binary-node

TEXT text-node

The context parameter can contain context information about the insertion, such as any transform-
specific parameters passed on the mlcp command line. The context parameter has the following
form:

{ transform_param: string, collections: [string, ...],
 permissions: [object, ...],
 quality: number,
 temporalCollection: string}

The following table describes the properties of the input parameters in more detail:

Parameter Description

content • uri - The URI of the document being inserted into the database.
• value - The contents of the input document, as a document node, binary node, or text

node; see below.

• transform_param - The value passed by the client through the -transform_param
option, if any. Your function is responsible for parsing and validation of the input string.

• collections : Collection URIs specified by the -output_collections option. Value
format: An array of strings.

• permissions : Permissions specified by the -output_permissions option. Value format:
An array of permissions objects, as produced by xdmp.permission.

• quality : The document quality specified by the -output_quality parameter. Value
format: A number.

• temporalCollection : The temporal collection URI specified by the -temporal-
collection parameter. Value format: A string.

The collections, permissions, quality, and temporal collection metadata from the mlcp command line
is made available to your function so that you can modify or replace the values. If a given metadata
category is not specified on the command line, the property will not be present in the context object.

MarkLogic 10 Transforming Content During Ingestion

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 44

Expected Output
Your function can produce more than one output document. For each document, your function should
return a JavaScript object containing the same properties as the content input parameter (uri and
value). When returning multiple document objects, put them in a Sequence.

The document content returned by your transformation should be exactly as you want to insert them
into the database. No further transformations are applied by the mlcp infrastructure. For example, a
transform function cannot affect document type just by changing the URI. Instead, it must convert the
document node. For details, see Example: Changing the URI and Document Type.

You can modify the context input parameter to specify collections, permissions, quality, and values
metadata for the documents returned by your transform. Use the following property names and data
formats for specifying various categories of metadata:

Context Property Expected Value Format

collections An array of strings, each representing a collection URIs.

permissions An array of permission objects, each containing a capability and a roleId property. For
details, see xdmp:permission.

 An integer value (or a string that can be converted to an integer).

metadata An object where each property represents a key-value metadata item.

temporalCollection A string containing a temporal document collection URI.

For a description of the meaning of the keys, see Input Parameters.

If your function returns multiple documents, they will all share the metadata settings from the context
parameter.

Example Implementation
The following example adds a property named “NEWPROP” to incoming JSON documents and leaves
non-JSON documents unmodified. The property value is specified on the mlcp command line, using the
-transform_param option.

// Add a property named "NEWPROP" to any JSON input document.
// Otherwise, input passes through unchanged.
function addProp(content, context)
{
 const propVal = (context.transform_param == undefined)
 ? "UNDEFINED" : context.transform_param;
 if (xdmp.nodeKind(content.value) == 'document' &&
 content.value.documentFormat == 'JSON') {
 // Convert input to mutable object and add new property
 const newDoc = content.value.toObject();
 newDoc.NEWPROP = propVal;
 // Convert result back into a document
 content.value = xdmp.unquote(xdmp.quote(newDoc));
 }
 return content;
};
exports.addProp = addProp;

4.14.3. Implementation Guidelines
You should be aware of the following guidelines and limitations when implementing your transformation
function:

• If you use a server-side transform with -fastload (or -output_directory, which enables
-fastload), your transformation function only has access to database content in the same forest as
the input document. If your transformation function needs general access to the database, do not use
-fastload or -output_directory.

MarkLogic 10 Transforming Content During Ingestion

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 45

4.14.4. Installing a Custom Transformation
Install the XQuery library module containing your function into the modules database or modules root
directory of the XDBC App Server associated with the destination database. For import operations,
this is the App Server identified by -host and -port mlcp command line options. For copy
operations, this is the App Server identified by -output_host and -output_port mlcp command
line options.

Best practice is to install your libraries into the modules database of your XDBC App Server.
If you install your module into the modules database, MarkLogic Server automatically makes the
implementation available throughout your MarkLogic Server cluster. If you choose to install dependent
libraries into the Modules directory of your MarkLogic Server installation, you must manually do so on
each node in your cluster.

MarkLogic Server supports several methods for loading modules into the modules database:

• Run an XQuery or JavaScript query in Query Console. For example, you can run a query similar to
the following to install a module using Query Console. Note: First select your modules database in
the Query Console Content Source dropdown.

xquery version "1.0-ml";
xdmp:document-load("/space/mlcp/transform.xqy",
 <options xmlns="xdmp:document-load">
 <uri>/example/mlcp-transform.xqy</uri>
 <repair>none</repair>
 <permissions>{xdmp:default-permissions()}</permissions>
 </options>)

• If you use the App Server on port 8000 or have a REST API instance, you can use any of the
following Client APIs:

• Java: ResourceExtensionsManager.write. For details, see Managing Dependent Libraries and
Other Assets in the Java Application Developer’s Guide.

• Node.js: DatabaseClient.config.extlibs. For details, see Managing Assets in the Modules
Database in the Node.js Application Developer’s Guide.

• REST: PUT /v1/ext/{directories}/{asset}. For details, see Managing Dependent Libraries
and Other Assets in the REST Application Developer’s Guide.

If you use the filesystem instead of a modules database, you can manually install your module into the
Modules directory. Copy the module into MARKLOGIC_INSTALL_DIR/Modules or into a subdirectory
of this directory. The default location of this directory is:

• Unix: /opt/MarkLogic/Modules
• Windows: C:\Program Files\MarkLogic\Modules

If your transformation function requires other modules, you should also install the dependent libraries in
the modules database or the modules directory.

For a complete example, see Section 4.14.6, “Example: Server-Side Content Transformation” [47].

4.14.5. Using a Custom Transformation
Once you install a custom transformation function on MarkLogic Server, you can apply it to your mlcp
import or copy job using the following options:

• -transform_module - The path to the module containing your transformation. Required.
• -transform_namespace - The namespace of your transformation function. If omitted, no

namespace is assumed.
• -transform_function - The local name of your transformation function. If omitted, the name
transform is assumed.

MarkLogic 10 Transforming Content During Ingestion

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 46

https://docs.marklogic.com/guide/java/resourceservices#id_67430
https://docs.marklogic.com/guide/java/resourceservices#id_67430
https://docs.marklogic.com/guide/node-dev/extensions#id_93432
https://docs.marklogic.com/guide/node-dev/extensions#id_93432
https://docs.marklogic.com/guide/rest-dev/extensions#id_55309
https://docs.marklogic.com/guide/rest-dev/extensions#id_55309

• -transform_param - Optional additional string data to be passed through to your transformation
function.

Take note of the following limitations:

• When -fastload is in effect, your transform function runs in the scope of a single forest (the forest
mlcp determines is the appropriate destination for the file being inserted). This means if you change
the document URI as part of your transform, you can end up creating documents with duplicate URIs.

• When you use a transform function, all the documents in each batch are transformed and inserted
into the database as a single statement. This means, for example, that if the (transformed) batch
contain more than one document with the same URI, you will get an XDMP-CONFLICTINGUPDATES
error.

The following example command assumes you previously installed a transform module with path /
example/mlcp-transform.xqy, and that the function implements a transform function (the
default function) in the namespace http://marklogic.com/example. The function expects a user-
defined parameter value, supplied using the -transform_param option.

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -mode local -host mlhost -port 8000 \
 -username user -password password \
 -input_file_path /space/mlcp-test/data \
 -transform_module /example/mlcp-transform.xqy \
 -transform_namespace "http://marklogic.com/example" \
 -transform_param "my-value"

For a complete example, see Section 4.14.6, “Example: Server-Side Content Transformation” [47].

4.14.6. Example: Server-Side Content Transformation
This example walks you through installing and using an XQuery or Server-Side JavaScript transform
function to modify content ingested with mlcp. The example XQuery transform function modifies XML
documents by adding an attribute named NEWATTR, with an attribute value specified on the mlcp
command line. The example JavaScript transform function modifies JSON documents by adding a new
property named NEWPROP, with a value specified on the mlcp command line.

This example assumes you have already created an XDBC App Server, configured to use "/" as the root
and a modules database of Modules. Each part of the example is explained in its own section.

Create the sample input files
This section walks you through creating sample input data to be ingested by mlcp. You can use other
data.

1. Create a directory to hold the sample input data. For example:
$ mkdir /space/mlcp/txform/data

2. Create a file named txform.xml in the sample data directory with the following contents:
<parent><child/></parent>

3. Create a file named txform.json in the sample data directory with the following contents:
{ "key": "value" }

Create the XQuery transform module
If you prefer to work with a Server-Side JavaScript transform function, skip this section and go to Create
the JavaScript transform module [48].

This example module modifies XML input documents by adding an attribute named NEWATTR. Other
input document types pass through the transform unmodified.

In a location other than the sample input data directory, create a file named transform.xqy with the
following contents. For example, copy the following into /space/mlcp/txform/transform.xqy.

MarkLogic 10 Transforming Content During Ingestion

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 47

xquery version "1.0-ml";
module namespace example = "http://marklogic.com/example";
(: If the input document is XML, insert @NEWATTR, with the value
 : specified in the input parameter. If the input document is not
 : XML, leave it as-is.
 :)
declare function example:transform(
 $content as map:map,
 $context as map:map
) as map:map*
{
 let $attr-value :=
 (map:get($context, "transform_param"), "UNDEFINED")[1]
 let $the-doc := map:get($content, "value")
 return
 if (fn:empty($the-doc/element()))
 then $content
 else
 let $root := $the-doc/*
 return (
 map:put($content, "value",
 document {
 $root/preceding-sibling::node(),
 element {fn:name($root)} {
 attribute { fn:QName("", "NEWATTR") } {$attr-value},
 $root/@*,
 $root/node()
 },
 $root/following-sibling::node()
 }
), $content
)
};

Create the JavaScript transform module
If you prefer to work with an XQuery transform function, skip this section and go to Create the XQuery
transform module [47].

This example module modifies JSON input documents by adding an attribute named NEWPROP. Other
input document types pass through the transform unmodified.

In a location other than the sample input data directory, create a file named transform.sjs with the
following contents. For example, copy the following into /space/mlcp/txform/transform.sjs.

// Add a property named "NEWPROP" to any JSON input document.
// Otherwise, input passes through unchanged.
function addProp(content, context)
{
 var propVal = (context.transform_param == undefined)
 ? "UNDEFINED" : context.transform_param;
 var docType = xdmp.nodeKind(content.value);
 if (xdmp.nodeKind(content.value) == 'document' &&
 content.value.documentFormat == 'JSON') {
 // Convert input to mutable object and add new property
 var newDoc = content.value.toObject();
 newDoc.NEWPROP = propVal;
 // Convert result back into a document
 content.value = xdmp.unquote(xdmp.quote(newDoc));
 }
 return content;
};
exports.transform = addProp;

MarkLogic 10 Transforming Content During Ingestion

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 48

Install the transformation module
This section walks you through installing the transform module(s) created in Create the XQuery
transform module [47] or Create the JavaScript transform module [48].

These instructions assume you use the XDBC App Server and Documents database pre-configured on
port 8000. This procedure installs the module using Query Console. You can use another method.

For more detailed instructions on using Query Console, see the Query Console User Guide.

1. Navigate to Query Console in your browser: http://yourhost:8000/qconsole/
2. Create a new query by clicking the "+" at the top of the query editor.
3. Select XQuery in the Query Type dropdown.
4. Install the XQuery and/or JavaScript module by copying one of the following scripts into the new

query. Modify the first parameter of xdmp:document-load to match the path to the transform
module you previously created.
a. To install the XQuery module, use the following script:

xquery version "1.0-ml";
xdmp:document-load("/space/mlcp/txform/transform.xqy",
 <options xmlns="xdmp:document-load">
 <uri>/example/mlcp-transform.xqy</uri>
 <repair>none</repair>
 <permissions>{xdmp:default-permissions()}</permissions>
 </options>)

b. To install the JavaScript module, use the following script:.

xquery version "1.0-ml";
xdmp:document-load("/space/mlcp/txform/transform.sjs",
 <options xmlns="xdmp:document-load">
 <uri>/example/mlcp-transform.sjs</uri>
 <repair>none</repair>
 <permissions>{xdmp:default-permissions()}</permissions>
 </options>)

5. Select the modules database of your XDBC App Server in the Content Source dropdown at the
top of the query editor. If you use the XDBC App Server on port 8000, this is the database named
Modules.

6. Click the Run button. Your module is installed in the modules database.
7. To confirm installation of your module, click the Explore button at the top of the query editor and

note your module installed with URI /example/mlcp-transform.xqy or /example/mlcp-
transform.sjs.

Apply the transformation
To ingest the sample documents and apply the previously installed transformation, use a command
similar to the following. Change the username, password, host, port, and input_file_path
options to match your environment.

Use a command similar to the following if you installed the XQuery transform module:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -mode local -host mlhost -port 8000 \
 -username user -password password \
 -input_file_path /space/mlcp/txform/data \
 -transform_module /example/mlcp-transform.xqy \
 -transform_namespace "http://marklogic.com/example" \
 -transform_param "my-value"

Use a command similar to the following if you installed the JavaScript transform module:

MarkLogic 10 Transforming Content During Ingestion

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 49

https://docs.marklogic.com/guide/qconsole

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -mode local -host mlhost -port 8000 \
 -username user -password password \
 -input_file_path /space/mlcp/txform/data \
 -transform_module /example/mlcp-transform.sjs \
 -transform_function transform \
 -transform_param "my-value"

mlcp should report creating two documents. Near the end of the mlcp output, you should see lines
similar to the following:

... INFO contentpump.LocalJobRunner: OUTPUT_RECORDS: 2

... INFO contentpump.LocalJobRunner: Total execution time: 1 sec

Use Query Console to explore the content database associated with your XDBC App Server. Confirm
that mlcp created 2 documents. If your input was in the directory /space/mlcp/txform/data, then
the document URIs will be:

• /space/mlcp/txform/data/txform.xml

• /space/mlcp/txform/data/txform.json

If you use the XQuery transform, then exploring the contents of txform.xml in the database should
show a NEWATTR attribute was inserted by the transform, with the value from -transform_param.
The document contents should be as follows:

<parent NEWATTR="my-value">
 <child/>
</parent>

If you use the JavaScript transform, then exploring the contents of txform.json in the database should
show a NEWPROP property was inserted by the transform, with the value from -transform_param.
The document contents should be as follows:

{ "key": "value", "NEWPROP": "my-value"}

4.14.7. Example: Changing the URI and Document Type
This example demonstrates changing the type of a document from binary to XML and changing the
document URI to match.

NOTE
Transforms that change the document URI should not be combined with the
-fastload or -output_directory options as they can cause duplicate document
URIs. For details, see Section 4.13.2, “Time vs. Correctness: Understanding -fastload
Tradeoffs” [36].

As described in Section 4.4, “How mlcp Determines Document Type” [23], the URI extension and
MIME type mapping are used to determine document type when you use -document_type mixed.
However, transform functions do not run until after document type selection is completed. Therefore,
if you want to affect document type in a transform, you must convert the document node, as well as
optionally changing the output URI.

Suppose your input document set generates an output document URI with the unmapped extension
“.1”, such as /path/doc.1. Since “1” is not a recognized URI extension, mlcp creates a binary
document node from this input file by default. The example transform function in this section intercepts
such a document and transforms it into an XML document.

MarkLogic 10 Transforming Content During Ingestion

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 50

Note that if you define a MIME type mapping that maps the extension “1” to XML (or JSON) in your
MarkLogic Server configuration, then mlcp creates a document of the appropriate type to begin with,
and this conversion becomes unnecessary.

XQuery Implementation
This module detects input documents with URI suffixes of the form “.1” and converts them into XML
documents with a “.xml” URI extension. Note that the transform does not snoop the content to ensure it
is actually XML.

xquery version "1.0-ml";
module namespace example = "http://marklogic.com/example";
declare function example:mod_doc_type(
 $content as map:map,
 $context as map:map
) as map:map*
{
 let $orig-uri := map:get($content, "uri")
 return
 if (fn:substring-after($orig-uri, ".") = "1") then
 let $doc-type := xdmp:node-kind(map:get($content, "value"))
 return (
 (: change the URI to an xml suffix :)
 map:put($content, "uri",
 fn:concat(fn:substring-before($orig-uri, "."), ".xml")
),
 (: convert the input from binary node to xml document node :)
 if ($doc-type = "binary") then
 map:put(
 $content, "value",
 xdmp:unquote(xdmp:quote(map:get($content, "value")))
)
 else (),
 $content
)
 else $content
};

JavaScript Implementation
This module detects input documents with URI suffixes of the form “.1” and converts them into JSON
documents with a “.json” URI extension. Note that the transform does not snoop the content to ensure it
is actually JSON.

function modDocType(content, context)
{
 var uri = String(content.uri);
 var dot = uri.lastIndexOf('.');
 if (dot > 0) {
 var suffix = uri.slice(dot);
 if (suffix == '.1') {
 content.uri = uri.substring(0,dot+1) + 'json';
 if (xdmp.nodeKind(content.value) == 'binary') {
 // convert the content to a JSON document
 content.value = xdmp.unquote(xdmp.quote(content.value));
 }
 }
 }
 return content;
};
exports.transform = modDocType;

MarkLogic 10 Transforming Content During Ingestion

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 51

4.15. Controlling How mlcp Connects to MarkLogic
This section describes how mlcp connects to MarkLogic. It also describes the options you can use to
modify the connection. For example, you can force mlcp to only connect to MarkLogic through a load
balancer.

4.15.1. How mlcp Uses the Host List
You must specify at least one host with -host command line option. You can specify multiple hosts.

If any hostname listed in the value of the -host option is not resolvable by mlcp at the beginning of a
job, then mlcp will abort the job with an IllegalArgumentException.

Assuming all hostnames are resolvable, mlcp uses the first of these hosts to gather information about
the target database. If mlcp is unable to connect to the first host in the -host list, then mlcp will move
on to the next host in the list. If mlcp cannot connect to any of the listed hosts, then the job will fail with
an IOException.

If mlcp successfully retrieves a list of forest hosts, then mlcp subsequently connects directly to these
hosts when distributing work across the cluster, whether or not these hosts are specified in the -host
option. In this way, your job does not need to be aware cluster topology.

This behavior applies to the import, export, and copy commands. (For a copy job, you specify hosts
through -input_host and -output_host, rather than -host.)

You can also restrict mlcp to just the hosts listed by the -host option. For details, see Section 4.15.2,
“Restricting the Hosts mlcp Uses to Connect to MarkLogic” [52].

4.15.2. Restricting the Hosts mlcp Uses to Connect to MarkLogic
You can restrict the hosts to which mlcp distributes work using the -restrict_hosts and -host
command line options. You might find this option combination useful in situations such as the following:

• Limit the host working set to just the e-nodes in your cluster.
• The public and private DNS names of a host differ, such as can occur for an AWS instance.

NOTE
MarkLogic automatically sets -restrict_hosts to true when it detects the
presence of a load balancer.

When -restrict_hosts is set to true, mlcp will only connect to the hosts listed in the -host option,
rather than using the approach described in Section 4.15.1, “How mlcp Uses the Host List” [52].

NOTE
Using -restrict_hosts will usually degrade the performance of an mlcp job
because mlcp cannot distribute work as efficiently.

For example, if you’re using mlcp with a load balancer between your client and your MarkLogic cluster,
you can specify the load balancer with -host and set -restrict_hosts to true to prevent mlcp from
attempting to bypass the load balancer and connect directly to the forest hosts.

MarkLogic 10 Controlling How mlcp Connects to MarkLogic

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 52

You can restrict mlcp’s host list when using the import, export, and copy commands. For import
and export, use the -host and -restrict_hosts options. For copy, use -input_host and
-restrict_input_hosts and/or -output_host and -restrict_output_hosts.

4.15.3. How -restrict_hosts Affects -fastload
You can use -fastload with -restrict_hosts. The performance improvement from -fastload
will be less than if you did not use -restrict_hosts, but better than if you do not use -fastload.
The usual cautions about -fastload apply; see Section 4.13.2, “Time vs. Correctness: Understanding
-fastload Tradeoffs” [36].

The -fastload and -restrict_hosts options interact as follows:

Without -restrict_hosts, mlcp figures out which hosts contains the destination forest for a
document, and then connects directly to that host. When -restrict_hosts is true, a connection
to the forest host might not possible. In this case, mlcp connects to an allowed e-node, and includes
the detailed destination information along with the document. The destination details makes an insertion
faster than it would otherwise be.

4.16. Failover Handling
Failover occurs when a forest or a host in a cluster becomes unavailable, due to events such as a
forest restart or a host becoming unreachable. You can configure a database to use local or shared disk
failover to attempt automatic recovery; for details see High Availability of Data Nodes With Failover in
the Scalability, Availability, and Failover Guide.

NOTE
Failover support in mlcp is only available when running mlcp against MarkLogic 9 or
later. With older MarkLogic versions, the job will fail if mlcp is connected to a host that
becomes unavailable.

mlcp always attempts to connect to a new host during a failover event. mlcp can potentially recover
from failover event in the following cases:

• If mlcp receives a connection error that indicates an e-node serving the database is down, mlcp
attempts to select another host. For a job that is not running in fastload mode, mlcp selects the next
host in its host list. For a fastload job, mlcp attempts to determine the replica forest and host and
connect to that host.

• If mlcp receives a retryable error from MarkLogic, it will retry the operation with the same host. For
example, a forest restart or a forest replica host going down can cause a retryable error.

If mlcp is able to re-establish a connection in these cases, then the job can continue. It is possible for
some documents not to be imported, depending on the configuration of the job. mlcp can only retry the
current batch.

• If -transaction_size is 1, then mlcp only needs to retry the current batch. In most cases, a
successful failover will not cause any insertions to fail.

• If -transaction_size is greater than 1, then mlcp can only retry the current batch. Other batches
in the same transaction cannot be retried. Some documents might not be inserted.

• Even if -transaction_size is 1, mlcp might fail to import all documents in the face of a failover event in
some cases. For example:

• Failover does not succeed within 5 minutes. If it takes more than 5 minutes for MarkLogic to recover
from the failure, then mlcp aborts the job and reports an error.

MarkLogic 10 Failover Handling

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 53

https://docs.marklogic.com/guide/cluster/failover#chapter

mlcp reports any documents that could not be inserted due to the failover.

The following messages are an example of mlcp output during a failover event. Timestamps have been
elided.

1. A failure of some kind occurs, such as host going down. The exact error messages will depend on
the type of failure. Notice that example errors below include a retryable exception.

...INFO contentpump.LocalJobRunner: completed 41%

...WARNING [29] (AbstractRequestController.runRequest): Error parsing HTTP headers:
Premature EOF, partial header line read: ''
...WARN mapreduce.ContentWriter: Batch 981349710.122: Exception:Error parsing HTTP
headers: Premature EOF, partial header line read: ''
...WARNING [29] (AbstractRequestController.runRequest): Error parsing HTTP headers:
Premature EOF, partial header line read: ''
...WARN mapreduce.ContentWriter: Batch 981349710.122: Failed rolling back transaction
Error parsing HTTP headers: Premature EOF, partial header line read: ''
...WARNING [29] (AbstractRequestController.runRequest): Error parsing HTTP headers:
Premature EOF, partial header line read: ''
...ERROR mapreduce.ContentWriter: Batch 981349710.122: RetryableQueryException:XDMP-
XDQPDISC: XDQP connection disconnected, server=somehost
...ERROR mapreduce.ContentWriter: Batch 981349710.122: RetryableQueryException:XDMP-
XDQPDISC: XDQP connection disconnected, server=somehost
...ERROR mapreduce.ContentWriter: Batch 981349710.122: RetryableQueryException:XDMP-
XDQPDISC: XDQP connection disconnected, server=somehost

2. mlcp begins retrying the failed insertion. Errors may continue to occur because MarkLogic is still
failing over.

...INFO mapreduce.ContentWriter: Batch 981349710.122: Retrying document insert

...WARN mapreduce.ContentWriter: Batch 981349710.122: RetryableQueryException:SVC-
SOCCONN: Socket connect error: connect 172.18.130.117:7999: Connection refused
...INFO mapreduce.ContentWriter: Batch 981349710.122: Retrying document insert
...INFO mapreduce.ContentWriter: Batch 981349710.122: Retrying document insert
...INFO mapreduce.ContentWriter: Batch 981349710.122: Retrying document insert
...WARN mapreduce.ContentWriter: Batch 981349710.122: Exception:Connection refused
...WARN mapreduce.ContentWriter: Batch 981349710.122: Exception:Connection refused
...WARN mapreduce.ContentWriter: Batch 981349710.122: RetryableQueryException:SVC-
SOCCONN: Socket connect error: connect 172.18.130.117:7999: Connection refused
...WARN mapreduce.ContentWriter: Batch 981349710.122: RetryableQueryException:SVC-
SOCCONN: Socket connect error: connect 172.18.130.117:7999: Connection refused
...WARN mapreduce.ContentWriter: Batch 981349710.122: RetryableQueryException:SVC-
SOCCONN: Socket connect error: connect 172.18.130.117:7999: Connection refused
...WARN mapreduce.ContentWriter: Batch 981349710.122: RetryableQueryException:SVC-
SOCCONN: Socket connect error: connect 172.18.130.117:7999: Connection refused

3. Eventually, MarkLogic recovers and the job continues normally.

4.17. Retry Mechanism When Commit Fails During Ingestion
When mlcp is used to ingest content into Data Hub Service (DHS), it frequently catches exceptions
when the static e-node gets overloaded, or if the dynamic e-nodes are unavailable, as they come and
go.

Before 10.0-5, when an mlcp commit failed during ingestion, due to the exceptions listed above, mlcp
did not retry the batch. All the documents in the current batch would fail permanently. The mlcp retry
mechanism has been added in 10.0-5 to make mlcp more robust and able to recover from these
exceptions.

There are three circumstances that need to be considered:

• If -batch_size is 1 and -transaction_size is 1: mlcp uses AUTO transaction mode.
Transactions automatically commit and rollback. mlcp will retry inserting the whole batch when it
catches exceptions during commit.

MarkLogic 10 Retry Mechanism When Commit Fails During Ingestion

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 54

• If -batch_size is larger than 1 and -transaction_size is 1: mlcp will use UPDATE transaction
mode, and explicitly commits and rolls back. mlcp will retry loading the whole batch if the exceptions
caught during commit are retryable. mlcp will retry when commit fails maximum 15 times. Between
each retry, it sleeps for a certain amount of time. The interval varies from 0.5 seconds to 2 minutes,
and it doubles every time retries. The total maximum sleep time sums up to ~16 minutes, which is
tuned to wait for dynamic e-nodes to come up. In most cases, a successful retry will not cause any
insertions to fail.

• If -batch_size is larger than 1 and -transaction_size is larger than 1: mlcp does not retry in
this situation as the client only caches the current batch. All the documents in the current transaction
will fail permanently.

mlcp only retries when the exceptions caught are retryable. Every time when mlcp retries, it attempts
to select another host. When the exceptions are not retryable, or the retry doesn't succeed within ~16
minutes for the DHS cluster to recover, all the documents in the current batch will fail permanently and
mlcp will log the failure.

When the current batch fails during inserting or committing, the failures will be logged on WARN level.
Then if the exception is retryable, mlcp will retry inserting the whole batch, and the retry messages will
be logged on DEBUG level. If the retry succeeds, the succeeding message will be logged on INFO level.
If the exception is not retryable, or the maximum retry limit has been exceeded, the document/batch will
fail permanently and will be logged on ERROR level.

Each log message has a batch number in the format of xxxx.xxxx (two integers separated by a dot)
attached to it. The first integer represents the current thread number and the second represents the
batch count local to the current thread. Globally, xxxx.xxxx is unique. This batch number makes it
easier to track down and debug batch failures.

The following messages are an example of common exceptions caught when running mlcp with DHS
cluster on AWS/Azure. These exceptions mostly happens when e-nodes are down or the static e-node
gets overloaded. Timestamps have been removed from these examples.

...WARN contentpump.TransformWriter: Batch #88895712.638: Failed committing transaction:
Error parsing HTTP headers: Premature EOF, partial header line read: ''
...WARN mapreduce.ContentWriter: Batch #88895712.638: QueryException:XDMP-XDQPDISC: XDQP
connection disconnected, server=somehost
...WARN contentpump.TransformWriter: Batch #1520482927.642: Failed committing
transaction: Server cannot accept request: Service Unavailable -- Stopping by SIGTERM
from pid 3121
...WARN mapreduce.ContentWriter: Batch #1520482927.642:
com.marklogic.xcc.exceptions.XQueryException: XDMP-NOTXN: No transaction with identifier
11132444146034518336
[Session: user=admin, cb={default} [ContentSource: user=admin, cb={none} [provider:
SSLconn address=5bJZEjQ1L.z.marklogicsvc.com/52.224.204.231:8005, pool=0/64]]]
[Client: XCC/11.0-20200911, Server: XDBC/10.0-4]

NOTE
mlcp gets XDMP-NOTXN when the transaction has already been committed or rolled
back.

The following messages are an example of output during a retry event. Timestamps have been
removed.

MarkLogic 10 Retry Mechanism When Commit Fails During Ingestion

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 55

...WARN contentpump.TransformWriter: Batch 1473219859.1010: Exception:Server cannot
accept request: Gateway Time-out
...WARN contentpump.TransformWriter: Batch 1473219859.1010: Failed during inserting
...DEBUG mapreduce.ContentWriter: Batch 1473219859.1010: Sleeping before
retrying...sleepTime=500ms
...DEBUG contentpump.TransformWriter: Batch 1473219859.1010: Retrying inserting batch,
attempts: 1/15
...INFO contentpump.TransformWriter: Batch 1473219859.1010: Retrying inserting batch is
successful
...WARN contentpump.TransformWriter: Batch 278973739.75: Failed committing transaction:
Error parsing HTTP headers: Connection timed out
...WARN contentpump.TransformWriter: Batch 918057596.3: Failed committing transaction:
Error parsing HTTP headers: Connection timed out
...WARN contentpump.TransformWriter: Batch 278973739.75: Failed during committing
...WARN contentpump.TransformWriter: Batch 918057596.3: Failed during committing
...WARN contentpump.TransformWriter: Batch 1763434846.80: Failed committing transaction:
Error parsing HTTP headers: Connection timed out
...WARN contentpump.TransformWriter: Batch 1763434846.80: Failed during committing
...WARN contentpump.TransformWriter: Batch 981349710.122: Failed committing transaction:
Error parsing HTTP headers: Connection timed out
...WARN contentpump.TransformWriter: Batch 981349710.122: Failed during committing
...WARN mapreduce.ContentWriter: Batch 278973739.75: Failed rolling back transaction: No
transaction
...DEBUG mapreduce.ContentWriter: com.marklogic.xcc.exceptions.XQueryException: XDMP-
NOTXN: No transaction with identifier 11132444146034518336
[Session: user=admin, cb={default} [ContentSource: user=admin, cb={none} [provider:
SSLconn address=5bJZEjQ1L.z.marklogicsvc.com/52.224.204.231:8005, pool=0/64]]]
[Client: XCC/11.0-20200911, Server: XDBC/10.0-4]
...DEBUG mapreduce.ContentWriter: Batch 278973739.75: Sleeping before
retrying...sleepTime=500ms
...WARN contentpump.TransformWriter: Batch 1978594827.298: QueryException: JS-FATAL:
xdmp:function(fn:QName(, transformInsertBatch), /MarkLogic/hadoop.sjs)($transform-module,
$transform-function, $uris, $values, $insert-options, $transform-option)
...WARN contentpump.TransformWriter: Batch 1978594827.298: Failed during inserting
...ERROR contentpump.TransformWriter: Batch 1978594827.298: Document failed
permanently: /space/data/iplocations/IP2LOCATION-LITE-DB5.CSV.gz-0-2798613 in file:/space/
data/iplocations/IP2LOCATION-LITE-DB5.CSV.gz at line 2798614

4.17.1. Limitations
There are two known limitations with the mlcp retry feature:

• When the input type is archive, mlcp is not able to retry loading metadata/naked properties when
commit fails, since by design the client does not cache these inputs.

• Loading temporal documents may have issues. When mlcp commit fails and catches exceptions,
it tries rolling back before retry loading the whole batch. However, the previous transaction may
have made it to the server and mlcp will get NOTXN exception. This may create issues for temporal
documents, since they may be inserted multiple times.

4.18. Auto-scaling with Data Hub Service
Before 10.0-6, mlcp import jobs ran with a fixed number of threads until completion. After 10.0-6,
mlcp reactive auto-scaling capability for import jobs is enabled when running against Data Hub Service
(DHS) hosted on AWS/Azure. The concurrency of mlcp now adjusts periodically based on the available
server threads as the dynamic e-nodes come and go in DHS. This feature improves mlcp performance
by leveraging the scaling feature of DHS.

4.18.1. How Adjusts Client Concurrency
When running an import job, mlcp periodically send polling requests to the server through the XCC
layer to obtain the maximum server threads. When the DHS cluster adds more dynamic e-nodes, server
has more available concurrency. Then mlcp decides whether to scale-out or scale-in, its own thread
pool based on the result.

MarkLogic 10 Auto-scaling with Data Hub Service

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 56

The following command line options can be used to tune this process:

• -max_thread_percentage: The percentage (between 0 and 100) of maximum available server
threads mlcp will use to run import jobs.

• -polling_period: The time interval (in minutes) mlcp sends the polling requests to the server.
• -polling_init_delay: The initial delay (in minutes) before mlcp starts sending the polling

requests.

4.18.2. How Other Command Line Options Affect Auto-scaling
The following existing command line options also affect the auto-scaling feature:

• -thread_count and -thread_count_per_split: When these two options are specified, mlcp
will use a fixed number of threads and auto-scaling will not happen.

• -max_threads: When -max_threads is specified, mlcp will cap the maximum thread count, and
auto-scaling cannot go beyond this number. This is to prevent the client-side from running out of
memory as the DHS cluster may have a huge number of nodes. By default, -max_threads is not
set.

4.18.3. How Assigns Threads in Auto-Scaling Process
When mlcp scales-out or scales-in, new threads are assigned to or removed from the existing input
splits using round-robin fashion, same as the logic discussed in Section 4.13.4, “Tuning Split Size and
Thread Count for Local Mode” [39].

4.18.4. Logs for Auto-Scaling
When mlcp scales-out or scales-in, there will be a log message on INFO level to notify user about
the scaling process. If the thread count has reached the maximum value, it will also be logged on
INFO level. For every periodic polling, mlcp will log new available server threads on DEBUG level. If
mlcp decides to scale-out or scale-in, the assigned or deducted threads for each input split will also be
logged on DEBUG level.

The following messages are an example of common log messages a user may get in an auto-scaling
process. Timestamps have been removed.

DEBUG contentpump.ThreadManager: Initial thread pool size: 32
DEBUG contentpump.ThreadManager: Thread pool will auto-scale based on available server
threads.
DEBUG contentpump.ThreadManager: Running with MultithreadedMapper. Initial thread count
for split #0: 11
DEBUG contentpump.ThreadManager: Running with MultithreadedMapper. Initial thread count
for split #1: 11
DEBUG contentpump.ThreadManager: Running with MultithreadedMapper. Initial thread count
for split #2: 10
INFO contentpump.LocalJobRunner: completed 0%
DEBUG contentpump.ThreadManager: New available server threads: 32
DEBUG contentpump.ThreadManager: New available server threads: 32
DEBUG contentpump.ThreadManager: New available server threads: 16
INFO contentpump.ThreadManager: Thread pool is scaling-in. New thread pool size: 16
DEBUG contentpump.ThreadManager: Running with MultithreadedMapper. New thread count for
split #0: 6
DEBUG contentpump.ThreadManager: Running with MultithreadedMapper. New thread count for
split #1: 5
DEBUG contentpump.ThreadManager: Running with MultithreadedMapper. New thread count for
split #2: 5
DEBUG contentpump.ThreadManager: New available server threads: 16

4.19. Import Command Line Options
This section summarizes the command line options available with the mlcp import command. The
following command line options define your connection to MarkLogic:

MarkLogic 10 Import Command Line Options

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 57

Option Description

-host comma-list Required. A comma-separated list of hosts through which mlcp can
connect to the destination MarkLogic Server. You must specify at
least one host. For more details, see Section 4.15.1, “How mlcp
Uses the Host List” [52].

-password string Password for the MarkLogic Server user specified with -username.
Required, unless using Kerberos authentication.

-port number Port number of the destination MarkLogic Server. There should be
an XDBC App Server on this port. Default: 8000.

-username string MarkLogic Server user with which to import documents. Required,
unless using Kerberos authentication.

The following table lists command line options that define the characteristics of the import operation:

Option Description

-aggregate_record_element string When splitting an aggregate input file into multiple documents, the
name of the element to use as the output document root. Default:
The first child element under the root element.

-aggregate_record_namespace string The namespace of the element specified by
-aggregate_record_element_name. Default: No namespace.

-aggregate_uri_id string Deprecated. Use -uri_id instead.

When splitting an aggregate input file into multiple documents, the
element or attribute name within the document root to use as the
document URI. Default: In local mode, hashcode-seqnum, where
the hashcode is derived from the split number; in distribute mode,
taskid-seqnum.

-archive_metadata_optional boolean When importing documents from a database archive, whether or
not to ignore missing metadata files. If this is false and the
archive contains no metadata, an error occurs. Default: false.

-batch_size number The number of documents to process in a single request to
MarkLogic Server. Default: 100. Maximum: 200.

-collection_filter comma-list A comma-separated list of collection URIs. Only usable with
-input_file_type forest. mlcp extracts only documents in
these collections. This option can be combined with other filter
options. Default: Import all documents.

-content_encoding string The character encoding of input documents when
-input_file_type is documents, aggregates,
delimited_text, or rdf. The option value must be
a character set name accepted by your JVM; see
java.nio.charset.Charset. Default: UTF-8. Set to system
to use the platform default encoding for the host on which mlcp
runs.

-copy_collections boolean When importing documents from an archive, whether to copy
document collections from the source archive to the destination.
Only applies when -input_file_type is archive or forest.
Default: true.

-copy_metadata boolean When importing documents from an archive, whether to copy
document key-value metadata from the source archive to the
destination. Only applies when -input_file_type is archive
or forest. Default: true.

-copy_permissions boolean When importing documents from an archive, whether to copy
document permissions from the source archive to the destination.
Only applies with -input_file_type archive. Default: true.

-copy_properties boolean When importing documents from an archive, whether to copy
document properties from the source archive to the destination.
Only applies with -input_file_type archive. Default: true.

-copy_quality boolean When importing documents from an archive, whether to copy
document quality from the source archive to the destination.
Only applies when -input_file_type is archive or forest.
Default: true.

-database string The name of the destination database. Default: The database
associated with the destination App Server identified by -host
and -port.

MarkLogic 10 Import Command Line Options

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 58

-data_type comma-list When importing content with -input_file_type
delimited_text and -document_type json, use this option
to specify the data type (string, number, or boolean) to give to
specific fields. The option value must be a comma separated list of
name,datatype pairs, such as “a,number,b,boolean”. Default: All
fields have string type. For details, see Section 4.9.4, “Controlling
Data Type in JSON Output” [30].

-delimited_root_name string When importing content with -input_file_type
delimited_text, the local name of the document root element.
Default: root.

-delimited_uri_id string Deprecated. use -uri_id instead.

When importing content -input_file_type delimited_text,
the column name that contributes to the id portion of the URI for
inserted documents. Default: The first column.

-delimiter character When importing content with -input_file_type
delimited_text, the delimiting character. Default: comma (,).

-directory_filter comma-list A comma-separated list of database directory names. Only
usable with -input_file_type forest. mlcp extracts only
documents from these directories, plus related metadata.
Directory names should usually end with “/”. This option can be
combined with other filter options. Default: Import all documents.

-document_type string The type of document to create when -input_file_type is
documents, sequencefile or delimited_text. Accepted
values: mixed(documents only), xml, json, text, binary.
Default: mixed for documents, xml for sequencefile, and
xml for delimited_text.

-fastload boolean Whether or not to force optimal performance, even at the risk
of creating duplicate document URIs. See Section 4.13.2, “Time
vs. Correctness: Understanding -fastload Tradeoffs” [36]. Default:
false.

-filename_as_collection boolean Add each loaded document to a collection corresponding to
the name of the input file. You cannot use this option when
-input_file_type is rdf or forest. Useful when splitting
an input file into multiple documents. If the filename contains
characters not permitted in a URI, those characters are URI
encoded. Default: false.

-generate_uri boolean When importing content with -input_file_type
delimited_text, or -input_file_type delimited_json,
whether or not MarkLogic Server should automatically generate
document URIs. Default: false for delimited_text, true
for delimited_json. For details, see Section 4.3.1, “Default
Document URI Construction” [21].

-input_compressed boolean Whether or not the source data is compressed. Default: false.

-input_compression_codec string When -input_compressed is true, the code used for
compression. Accepted values: zip, gzip.

-input_file_path string A regular expression describing the filesystem location(s) to use
for input. For details, see Section 1.4.3, “Regular Expression
Syntax” [7].

-input_file_pattern string Load only input files that match this regular expression from
the path(s) matched by -input_file_path. For details, see
Section 1.4.3, “Regular Expression Syntax” [7]. Default: Load
all files. This option is ignored when -input_file_type is
forest.

-input_file_type type The input file type. Accepted value: aggregates, archive,
delimited_text, delimited_json, documents, forest,
rdf, sequencefile. Default: documents.

-keystore_password string Password to a Java KeyStore containing the User Private Key(s)
and Certificate(s); if available mlcp will select the first available
certificate from the KeyStore that satisfy the TLS Certificate
Request from the MarkLogic Server.

Can be passed along with the existing -ssl option.

MarkLogic 10 Import Command Line Options

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 59

-keystore_path string Path to a Java KeyStore containing the User Private Key(s)
and Certificate(s); if available mlcp will select the first available
certificate from the KeyStore that satisfies the TLS Certificate
Request from the MarkLogic Server.

Can be passed along with the existing -ssl option.

-max_split_size number When importing from files, the maximum number of bytes
in one input split. Default: The maximum Long value
(Long.MAX_VALUE).

-max_thread_percentage The maximum percentage (integer between 0 and 100) of
available server threads used by mlcp for import jobs. Default:
100.

-max_threads The maximum number of threads that run mlcp. This command
line option is optional.

-min_split_size number When importing from files, the minimum number of bytes in one
input split. Default: 0.

-mode string Ingestion mode. Accepted values: local.

-modules_root string The modules root path to use when applying a server-side
transformation. Default: The modules root configured for the App
Server. If you also use -modules, then this path specifies the
modules root for that modules database.

-modules string Specify the name of the modules database to use when applying
a server-side transformation. Accepted values: filesystem or
a modules database name. Default: The modules database
associated with the App Server.

-namespace string The default namespace for all XML documents created during
loading.

-options_file string Specify an options file pathname from which to read additional
command line options. If you use an options file, this option
must appear first. For details, see Section 1.4.4, “Options File
Syntax” [7].

-output_cleandir boolean Whether or not to delete all content in the output database
directory prior to loading. Default: false.

-output_collections comma-list A comma separated list of collection URIs. Loaded documents are
added to these collections.

-output_directory string The destination database directory in which to create the
loaded documents. If the directory exists, its contents are
removed prior to ingesting new documents. Using this option
enables -fastload by default, which can cause duplicate
URIs to be created. See Section 4.13.2, “Time vs. Correctness:
Understanding -fastload Tradeoffs” [36].

-output_graph string Only usable with -input_file_type rdf. For quad data,
specifies the default graph for quads that do not include an explicit
graph label. For other triple formats, specifies the graph into
which to load all triples. For details, see Section 4.11, “Loading
Triples” [33].

-output_language string The xml:lang to associate with loaded documents.

-output_override_graph string Only usable with -input_file_type rdf. The graph into which
to load all triples. For quads, overrides any graph label in the
quads. For details, see Section 4.11, “Loading Triples” [33].

-output_partition string The name of the database partition in which to create documents.
For details, see Section 4.13.3, “How Assignment Policy Affects
Optimization” [38], and Range Partitions or Query Partitions in
Administrating MarkLogic Server.

-output_permissions comma-list A comma separated list of (role,capability) pairs to
apply to loaded documents. Default: The default permissions
associated with the user inserting the document. Example:
-output_permissions role1,read,role2,update

-output_quality string The quality of loaded documents. Default: 0.

-output_uri_prefix string Specify a prefix to prepend to the default URI. Used to construct
output document URIs. For details, see Section 4.3, “Controlling
Database URIs During Ingestion” [21].

MarkLogic 10 Import Command Line Options

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 60

https://docs.marklogic.com/guide/admin-guide/en/tiered-storage/range-partitions.html
https://docs.marklogic.com/guide/admin-guide/en/tiered-storage/query-partitions.html

-output_uri_replace comma-list A comma separated list of (regex,string) pairs that define
string replacements to apply to the URIs of documents
added to the database. The replacement strings must be
enclosed in single quotes. For example, -output_uri_replace
"regex1,'string1',regext2,'string2'"

-output_uri_suffix string Specify a suffix to append to the default URI Used to construct
output document URIs. For details, see Section 4.3, “Controlling
Database URIs During Ingestion” [21].

-polling_init_delay The initial delay (in minutes) before mlcp starts sending polling
request to check the available server threads. Default: 1.

-polling_period The time interval (in minutes) mlcp sends polling request to check
the current available server threads. Default: 1.

-restrict_hosts boolean Restrict mlcp to connect to MarkLogic only through the hosts
listed in the -host option. For more details, see Section 4.15.2,
“Restricting the Hosts mlcp Uses to Connect to MarkLogic” [52].

-split_input boolean Whether or not to divide input data into logical chunks to support
more concurrency. Only supported when -input_file_type
is one of the following: delimited_text. Default: false for
local mode. Data that contains multi-byte characters must be
UTF-8-encoded to use this option. For details, see Section 4.13.6,
“Improving Throughput with -split_input” [40].

-ssl boolean Enable/disable SSL secured communication with MarkLogic.
Default: false. If you set this option to true, your App Server
must be SSL enabled. For details, see Section 2.6, “Connecting
to MarkLogic Using SSL” [12].

-ssl_protocol string Specify the protocol mlcp should use when creating an SSL
connection to MarkLogic. You must include this option if you
use the -ssl option to connect to an App Server configured to
disable MarkLogic’s default protocol (TLSv1.2). Allowed values:
tls, tlsv1, tlsv1.1, tlsv1.2. Default: TLSv1.2.

-streaming boolean Whether or not to stream documents to MarkLogic Server. Applies
only when -input_file_type is documents.

-temporal_collection string The temporal collection into which the temporal documents are
to be loaded. For details on loading temporal documents into
MarkLogic, see Using MarkLogic Content Pump (MLCP) to Load
Temporal Documents in the Temporal Developer’s Guide.

-thread_count number The number of threads to spawn for concurrent loading.

Instead of using 4 as the default thread count prior to 10.0-4.2,
mlcp now conducts initial polling to identify the available server
threads on the port that handles mlcp requests. mlcp then uses
this value as the default thread count. Users can overwrite it by
specifying -thread_count in the command line.

-thread_count_per_split number The maximum number of threads that can be assigned to each
split.

If you specify -thread_count_per_split, each input split will
run with the specified number.

The total number of thread count, however, is controlled by the
newly calculated thread count or -thread_count if it is specified.

-tolerate_errors boolean NOTE: This option is deprecated, ignored, and will be removed in
a future release. mlcp always behaves as if -tolerate_errors
is true.

Applicable only when -batch_size is greater than 1. When this
option is true and batch size is greater than 1, if an error occurs
for one or more documents during loading, only the erroneous
documents are skipped; all other documents are inserted into the
database. When this option is false or batch size is 1, errors
during insertion can cause all the inserts in the current batch to
be rolled back. Default: false.

-transaction_size number The number of requests to MarkLogic Server per transaction.
Default: 1. Maximum: 4000/actualBatchSize.

-transform_function string The local name of a custom content transformation function
installed on MarkLogic Server. Ignored if -transform_module is
not specified. Default: transform. For details, see Section 4.14,
“Transforming Content During Ingestion” [41].

MarkLogic 10 Import Command Line Options

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 61

http://pubs.marklogic.com:8011/guide/temporal/managing#id_98025
http://pubs.marklogic.com:8011/guide/temporal/managing#id_98025

-transform_module string The path in the modules database or modules directory of a
custom content transformation function installed on MarkLogic
Server. This option is required to enable a custom transformation.
For details, see Section 4.14, “Transforming Content During
Ingestion” [41].

-transform_namespace string The namespace URI of the custom content transformation
function named by -transform_function. Ignored if
-transform_module is not specified. Default: no namespace.
For details, see Section 4.14, “Transforming Content During
Ingestion” [41].

-transform_param string Optional extra data to pass through to a custom transformation
function. Ignored if -transform_module is not specified.
Default: no namespace. For details, see Section 4.14,
“Transforming Content During Ingestion” [41].

-truststore_passwd string Password to a Java TrustStore containing any necessary CA
Certificates needed to verify the TLS Server Authentication
connection. If no TrustStore is provided the default TrustStore
used by the existing -ssl parameter is used.

Can be passed along with the existing -ssl option.

-truststore_path string Path to a Java TrustStore containing any necessary CA
Certificates needed to verify the TLS Server Authentication
connection. If no TrustStore is provided the default TrustStore
used by the existing -ssl parameter is used.

Can be passed along with the existing -ssl option.

-type_filter comma-list A comma-separated list of document types. Only usable with
-input_file_type forest. mlcp imports only documents with
these types. This option can be combined with other filter options.
Default: Import all documents.

-uri_id string Specify a field, XML element name, or JSON property name to
use as the basis of the output document URIs when importing
delimited text, aggregate XML, or line-delimited JSON data.

With -input_file_type aggregates or
-input_file_type delimited_json, the element, attribute,
or property name within the document to use as the
document URI. Default: None; the URI is based on the file
name, as described in Section 4.3.1, “Default Document URI
Construction” [21].

With -input_file_type delimited_text, the column name
that contributes to the id portion of the URI for inserted
documents. Default: The first column.

-xml_repair_level string The degree of repair to attempt on XML documents in order to
create well-formed XML. Accepted values: default, full, none.
Default: default, which depends on the configured MarkLogic
Server default XQuery version: In XQuery 1.0 and 1.0-ml the
default is none. In XQuery 0.9-ml the default is full.

We do not recommend using concurrent mlcp jobs. Regardless of the version, mlcp doesn’t support
concurrent jobs if mlcp is importing from/exporting to the same data file. In addition, beginning in
10.0-4.2, each mlcp job uses the maximum number of threads available on the server as the default
thread count (more about this can be found in the 10.0-4.2 release notes). Therefore, using concurrent
mlcp jobs will not improve performance, as one job is already using full concurrent capacity.

MarkLogic 10 Import Command Line Options

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 62

5. Exporting Content from MarkLogic Server

You can export content in a MarkLogic Server database to files or an archive. Use archives to copy
content from one MarkLogic Server database to another. Output can be written to the native filesystem.

For a list of export related command line options, see Section 5.7, “Export Command Line
Options” [76].

You can also use mlcp to extract documents directly from offline forests. For details, see Section 7,
“Using Direct Access to Extract or Copy Documents” [84].

5.1. Exporting Documents as Files
Use the mlcp export command to export documents in their original format as files on the native
filesystem. For example, you can export an XML document as a text file containing XML, or a binary
document as a JPG image.

To export documents from a database as files:

1. Select the files to export. For details, see Section 5.5.1, “Filtering Document Exports” [66].
• To select documents in one or more collections, set -collection_filter to a comma

separated list of collection URIs.
• To select documents in one or more database directories, set -directory_filter to a

comma separated list of directory URIs.
• To select documents matching an XPath expression, use -document_selector. To

use namespace prefixes in the XPath expression, define the prefix binding using
-path_namespace.

• To select documents matching a query, use -query_filter, alone or in combination with
one of the other filter options. False postives are possible; for details, see Section 5.5.3,
“Understanding When Filters Are Accurate” [67].

• To select all documents in the database, leave -collection_filter, -directory_filter,
-document_selector, and -query_filter unset.

2. Set -output_file_path to the destination file or directory on the native filesystem.
3. To prettyprint exported XML when using local mode, set -indented to true.

Directory names specified with -directory_filter should end with “/”.

When using -document_selector to filter by XPath expression, you can define namespace prefixes
using the -path_namespace option. For example:

-path_namespace 'ex1,http://marklogic.com/example,ex2,http://my/ex2'
-document_selector '/ex1:elem[ex2:attr > 10]'

NOTE
Document URIs are URI-decoded before filesystem directories or filenames are
constructed for them. For details, see Section 5.4, “How URI Decoding Affects Output
File Names” [65].

For a full list of export options, see Section 5.7, “Export Command Line Options” [76].

MarkLogic 10 Exporting Content from MarkLogic Server

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 63

The following example exports selected documents in the database to the native filesystem directory /
space/mlcp/export/files. The directory filter selects only the documents in /plays.

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh export -host localhost -port 8000 -username user \
 -password password -mode local -output_file_path \
 /space/mlcp/export/files -directory_filter /plays/

5.2. Exporting Documents to a Compressed File
Use the mlcp export command to export documents in their original format as files in a compressed
ZIP file on the native filesystem.

To export documents from a database as files:

1. Select the files to export. For details, see Section 5.5.1, “Filtering Document Exports” [66].
• To select documents in one or more collections, set -collection_filter to a comma

separated list of collection URIs.
• To select documents in one or more database directories, set -directory_filter to a

comma separated list of directory URIs.
• To select documents matching an XPath expression, use -document_selector. To

use namespace prefixes in the XPath expression, define the prefix binding using
-path_namespace.

• To select documents matching a query, use -query_filter, alone or in combination with
one of the other filter options. False postives are possible; for details, see Section 5.5.3,
“Understanding When Filters Are Accurate” [67].

• To select all documents in the database, leave -collection_filter,
-directory_filter,-document_selector, and -query_filter unset.

2. Set -output_file_path to the destination directory on the native filesystem. This directory must
not already exist.

3. Set -compress to true.
4. To prettyprint exported XML when using local mode, set -indented to true.

For a full list of export options, see Section 5.7, “Export Command Line Options” [76].

The zip files created by export have filenames of the form timestamp-seqnum.zip.

The following example exports all the documents in the database to the directory /space/examples/
export on the native filesystem.

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh export -host localhost -port 8000 -username user \
 -password password -mode local \
 -output_file_path /space/examples/export -compress true
$ ls /space/examples/export 20120823135307-0700-000000-XML.zip

5.3. Exporting to an Archive
Use the mlcp export command with an output type of archive to create a database archive that
includes content and metadata. You can use the mlcp import command to copy the archive to another
database or restore database contents.

To export database content to an archive file with mlcp:

1. Select the documents to export. For details, see Section 5.5.2, “Filtering Archive and Copy
Contents” [66].
• To select documents in one or more collections, set -collection_filter to a comma

separated list of collection URIs.
• To select documents in one or more database directories, set -directory_filter to a

comma separated list of directory URIs.

MarkLogic 10 Exporting Documents to a Compressed File

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 64

• To select documents matching an XPath expression, use -document_selector. To
use namespace prefixes in the XPath expression, define the prefix binding using
-path_namespace.

• To select documents matching a query, use -query_filter, alone or in combination with
one of the other filter options. False postives are possible; for details, see Section 5.5.3,
“Understanding When Filters Are Accurate” [67].

• To select all documents in the database, leave -collection_filter, -directory_filter,
-document_selector, and -query_filter unset.

2. Set -output_file_path to the destination directory on the native filesystem. This directory must
not already exist.

3. Set -output_type to archive.
4. If you want to exclude some or all document metadata from the archive:

• Set -copy_collections to false to exclude document collections metadata.
• Set -copy_permissions to false to exclude document permissions metadata.
• Set -copy_properties to false to exclude document properties.
• Set -copy_quality to false to exclude document quality metadata.
• Set -copy_metadata to false to exclude document key-value metadata.

For a full list of export options, see Section 5.7, “Export Command Line Options” [76].

The following example exports all documents and metadata to the directory /space/examples/
exported. After export, the directory contains one or more compressed archive files.

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh export -host localhost -port 8000 -username user \
 -password password -mode local \
 -output_file_path /space/examples/exported -output_type archive

The following example exports only documents in the database directory /plays/, including their
collections, properties, and quality, but excluding permissions:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh export -host localhost -port 8000 -username user \
 -password password -mode local \
 -output_file_path /space/examples/exported -output_type archive \
 -copy_permissions false -directory_filter /plays/

You can use the mlcp import command to import an archive into a database. For details, see
Section 4.7, “Loading Content and Metadata From an Archive” [26].

5.4. How URI Decoding Affects Output File Names
This discussion only applies when -output_type is document.

When you export a document to a file (or to a file in a compressed file), the output file name is based on
the document URI. The document URI is decoded to form the file name. For example, if the document
URI is foo%20bar.xml, then the output file name is foo bar.xml.

If the document URI does not conform to the standard URI syntax of RFC 3986, decoding may fail,
resulting in unexpected file names. For example, if the document URI contains unescaped special
characters then the raw URI may be used.

If the document URI contains a scheme, the scheme is removed. If the URI contains both a scheme
and an authority, both are removed. For example, if the document URI is file:foo/bar.xml,
then the output file path is output_file_path/foo/bar.xml. If the document URI is http://
marklogic.com/examples/bar.xml (contains a scheme and an authority), then the output file path
is output_file_path/examples/bar.xml.

MarkLogic 10 How URI Decoding Affects Output File Names

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 65

If the document URI includes directory steps, then corresponding output subdirectories are
created. For example, if the document URI is /foo/bar.xml, then the output file path is
output_file_path/foo/bar.xml.

5.5. Controlling What is Exported, Copied, or Extracted
By default, mlcp exports all documents or all documents and metadata in the database, depending on
whether you are exporting in document or archive format or copying the database. Several command
line options are available to enable customization.

5.5.1. Filtering Document Exports
This section covers options available for filtering what is exported by the mlcp export command when
-output_type is document.

By default, mlcp exports all documents in the database. That is, mlcp exports the equivalent of
fn:collection(). The following options allow you to filter what is exported. These options are
mutually exclusive.

• -directory_filter - export only the documents in the listed database directories. You cannot
use this option with -collection_filter or -document-selector.

• -collection_filter - export only the documents in the listed collections. You cannot use this
option with -directory_filter or -document_selector.

• -document_selector - export only documents selected by the specified XPath expression.
You cannot use this option with -directory_filter or -collection_filter. Use
-path_namespace to define namespace prefixes.

• -query_filter - export only documents matched by the specified cts query. You can use this
option alone or in combination with a directory, collection or document selector filter. You can only
use this filter with the export and copy commands. Results may not be accurate; for details, see
Section 5.5.3, “Understanding When Filters Are Accurate” [67].

NOTE
When filtering with a document selector, the XPath filtering expression should select
fragment roots only. An XPath expression that selects nodes below the root is very
inefficient.

When using -document_selector to filter by XPath expression, you can define namespace prefixes
using the -path_namespace option. For example:

-path_namespace 'ex1,http://marklogic.com/example,ex2,http://my/ex2'
-document_selector '/ex1:elem[ex2:attr > 10]'

5.5.2. Filtering Archive and Copy Contents
This section covers options available for controlling what is exported by mlcp export when
-output_type is archive, or what is copied by the mlcp copy command.

By default, all documents and metadata are exported/copied. The following options allow you to modify
this behavior:

• -directory_filter - export/copy only the documents in the listed database directories,
including related metadata. You cannot use this option with -collection_filter or
-document_selector.

• -collection_filter - export/copy only the documents in the listed collections, including related
metadata. You cannot use this options with -directory_filter or -document_selector.

MarkLogic 10 Controlling What is Exported, Copied, or Extracted

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 66

• -document_selector - export/copy only documents selected by the specified XPath
expression.You cannot use this option with -directory_filter or -collection_filter. Use
-path_namespace to define namespace prefixes.

• -query_filter - export/copy only documents matched by the specified cts query. You can use this
option alone or in combination with a directory, collection or document selector filter. Results may not
be accurate; for details, see Section 5.5.3, “Understanding When Filters Are Accurate” [67].

• -copy_collections - whether to include collection metadata
• -copy_permissions - whether to include permissions metadata
• -copy_properties - whether to include naked and document properties
• -copy_quality - whether to include document quality metadata
• -copy_metadata - whether to include document key-value metadata

If you set all the -copy_* options to false when exporting to an archive, the archive
contains no metadata. When you import an archive with no metadata, you must set
-archive_metadata_optional to true.

NOTE
When filtering with a document selector, the XPath filtering expression should select
fragment roots only. An XPath expression that selects nodes below the root is very
inefficient.

When using -document_selector to filter by XPath expression, you can define namespace prefixes
using the -path_namespace option. For example:

-path_namespace 'ex1,http://marklogic.com/example,ex2,http://my/ex2'
-document_selector '/ex1:elem[ex2:attr > 10]'

5.5.3. Understanding When Filters Are Accurate
When you use -directory_filter, -collection_filter, or -document_selector without
-query_filter, the set of documents selected by mlcp exactly matches your filtering criteria.

The query you supply with -query_filter is used in an unfiltered search, which means there
can be false positives among the selected documents. When you combine -query_filter
with -directory_filter, -collection_filter, or -document_selector, mlcp might select
documents that do not meet your directory, collection, or path filter criteria.

The interaction between -query_filter and the other filtering options is similar to the following. In
this example, the search can match documents that are not in the “parts” collection.

-collection_filter parts
-query_filter yourSerializedQuery
==> selects the documents to export similar to the following:
cts:search(
 fn:collection("parts"),
 yourQuery,
 ("unfiltered"))

For a complete example using -query_filter, see Section 5.5.4, “Example: Exporting Documents
Matching a Query” [68].

To learn more about the implications of unfiltered searches, see Fast Pagination and Unfiltered
Searches in the Query Performance and Tuning Guide.

MarkLogic 10 Controlling What is Exported, Copied, or Extracted

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 67

https://docs.marklogic.com/guide/performance/unfiltered#
https://docs.marklogic.com/guide/performance/unfiltered#

5.5.4. Example: Exporting Documents Matching a Query
This example demonstrates how to use -query_filter to select documents for export. You can
apply the same technique to filtering the source documents when copying documents from one
database to another.

The -query_filter option accepts a serialized XML cts:query or JSON cts.query as its value. For
example, the following table shows the serialization of a cts word query, prettyprinted for readability:

Format Example

XML <cts:word-query xmlns:cts="http://marklogic.com/cts">
 <cts:text xml:lang="en">mark</cts:text>
</cts:word-query>

JSON {"wordQuery":{
 "text":["huck"],
 "options":["lang=en"]
}}

For details on how to obtain the serialized representation of a cts query, see Serializations of cts:query
Constructors in the Search Developer’s Guide.

Using an options file is recommended when using -query_filter because both XML and JSON
serialized queries contain quotes and other characters that have special meaning to the Unix
and Windows command shells, making it challenging to properly escape the query. If you use
-query_filter on the command line, you must quote the serialized query and may need to do
additional special character escaping.

For example, you can create an options file similar to the following. It should contain at least 2 lines:
One for the option name and one for the serialized query. You can include other options in the file. For
details, see Section 1.4.4, “Options File Syntax” [7].

Format Options File Contents

XML -query_filter
<cts:word-query xmlns:cts="http://marklogic.com/cts"><cts:text xml:lang="en">mark</cts:text></
cts:word-query>

JSON -query_filter
{"wordQuery":{"text":["huck"], "options":["lang=en"]}}

If you save the above option in a file named “query_filter.txt”, then the following mlcp command exports
files from the database that contain the word “huck”:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh export -host localhost -port 8000 -username user \
 -password password -mode local -output_file_path \
 /space/mlcp/export/files -options_file query_filter.txt

You can combine -query_filter with another filtering option. For example, the following command
combines the query with a collection filter. The command exports only documents containing the word
“huck” in the collection named “classics”:

$ mlcp.sh export -host localhost -port 8000 -username user \
 -password password -mode local -output_file_path \
 /space/mlcp/export/files -options_file query_filter.txt
 -collection_filter classics

NOTE
The documents selected by -query_filter can include false positives, including
documents that do not match other filter criteria. For details, see Section 5.5.3,
“Understanding When Filters Are Accurate” [67].

MarkLogic 10 Controlling What is Exported, Copied, or Extracted

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 68

https://docs.marklogic.com/guide/search-dev/cts_query#id_11229
https://docs.marklogic.com/guide/search-dev/cts_query#id_11229

The following example demonstrates generating a serialized XML cts:and-query() or JSON
cts.andQuery() using the wrapper technique. Copy either example into Query Console, select the
appropriate query type, and run it to see the output.

Language Example

XQuery xquery version "1.0-ml";
let $query := cts:and-query((
 cts:word-query("mark"),
 cts:word-query("twain")
))
let $q := xdmp:quote(
 <query>{$query}</query>/*,
 <options xmlns="xdmp:quote"><indent>no</indent></options>
)
return $q
(: Output: (whitespace added for readability)
<cts:and-query xmlns:cts="http://marklogic.com/cts">
 <cts:word-query>
 <cts:text xml:lang="en">mark</cts:text>
 </cts:word-query>
 <cts:word-query>
 <cts:text xml:lang="en">twain</cts:text>
 </cts:word-query>
</cts:and-query>
:)

Server-Side
JavasScript

var wrapper =
 { query:
 cts.andQuery([
 cts.wordQuery("huck"),
 cts.wordQuery("tom")])
 };
xdmp.quote(wrapper.query.toObject())
/* Output: (whitespace added for readability)
{"andQuery":{
 "queries":[
 {"wordQuery":{"text":["huck"], "options":["lang=en"]}},
 {"wordQuery":{"text":["tom"], "options":["lang=en"]}}
]
}}
*/

Notice that in the XQuery example, the xdmp:quote() “indent” option is used to disable XML
prettyprinting, making the output better suited for inclusion on the mlcp command line:

xdmp:quote(
 <query>{$query}</query>/*,
 <options xmlns="xdmp:quote"><indent>no</indent></options>)

Notice that in the JavaScript example, it is necessary to call toObject on the wrapped query to
get the proper JSON serialization. Using toObject converts the value to a JavaScript object which
xdmp.quote will serialize as JSON.

xdmp.quote(wrapper.query.toObject())

If you want to test your serialized query before using it with mlcp, you can round-trip your XML query
with cts:search() in XQuery or your JSON query with cts.search() or the JSearch API in
Server-Side JavaScript, as shown in the following examples.

Language Example

XQuery xquery version "1.0-ml";
let $wrapper :=
 <query>{
 cts:and-query((
 cts:word-query("tom"),
 cts:word-query("huck")))
 }</query>
let $q := xdmp:quote(
 $wrapper/*,
 <options xmlns="xdmp:quote"><indent>no</indent></options>)
return cts:search(
 fn:doc(),
 cts:query(xdmp:unquote($q)/*[1])
)

MarkLogic 10 Controlling What is Exported, Copied, or Extracted

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 69

https://docs.marklogic.com/cts:and-query
https://docs.marklogic.com/cts.andQuery
https://docs.marklogic.com/xdmp:quote
https://docs.marklogic.com/cts:search
https://docs.marklogic.com/cts.search

Server-Side
JavasScript

var wrapper =
 { query:
 cts.andQuery([
 cts.wordQuery("huck"),
 cts.wordQuery("tom")])
 };
var serializedQ = xdmp.quote(wrapper.query.toObject())
cts.search(
 cts.query(fn.head(xdmp.unquote(serializedQ)).root))

Note that xdmp:unquote() returns a document node in XQuery, so you need to use XPath to address
the underlying query element root node when reconstructing the query:

cts:query(xdmp:unquote($q)/*[1])

Similarly, xdmp.unquote() in JavaScript returns a Sequence on document nodes, so you must
“dereference” both the iterator and the document node when reconstructing the query:

cts.query(fn.head(xdmp.unquote(serializedQ)).root)

5.5.5. Filtering Forest Contents
This section covers options available for filtering what is extracted from a forest when you use Direct
Access. That is, when you use the mlcp import command with -input_file_type forest or the
mlcp extract command.

By default, mlcp extracts all documents in the input forests. That is, mlcp extracts the equivalent of
fn:collection(). The following options allow you to filter what is extracted from a forest with Direct
Access. These options can be combined.

• -type_filter: Extract only documents with the listed content type (text, XML, or binary).
• -directory_filter: Extract only the documents in the listed database directories.
• -collection_filter: Extract only the documents in the listed collections.

For example, following combination of options extracts only XML documents in the collections named
“2004” or “2005”.

mlcp.sh extract -type_filter xml -collection_filter "2004,2005" ...

Similarly, the following options import only binary documents in the source database directory /
images/:

mlcp.sh import -input_file_type forest \
 -type_filter binary -directory_filter /images/

When you use Direct Access, filtering is performed in the process that reads the forest files rather than
being performed by MarkLogic Server. For example, in local mode, filters are applied by mlcp on the
host where you run it.

In addition, filtering cannot be applied until after a document is read from the forest. When you import or
extract files from a forest file, mlcp must “touch” every document in the forest.

For details, see Section 7, “Using Direct Access to Extract or Copy Documents” [84].

5.5.6. Extracting a Consistent Database Snapshot
By default, when you export or copy database contents, content is extracted from the source database
at multiple points in time. You get whatever is in the database when mlcp accesses a given document.
If the database contents are changing while the job runs, the results are not deterministic relative to the
starting time of the job. For example, if a new document is inserted into the database while an export
job is running, it might or might not be included in the export.

If you require a consistent snapshot of the database contents during an export or copy, use the
-snapshot option to force all documents to be read from the database at a consistent point in time.

MarkLogic 10 Controlling What is Exported, Copied, or Extracted

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 70

https://docs.marklogic.com/xdmp:unquote
https://docs.marklogic.com/xdmp.unquote

The submission time of the job is used as the timestamp. Any changes to the database occurring after
this time are not reflected in the output.

If a merge occurs while exporting or copying a consistent snapshot, and the merge eliminates a
fragment that is subsequently accessed by the mlcp job, you may get an XDMP-OLDSTAMP error. If this
occurs, the documents included in the same batch or task may not be included in the export/copy result.
If the source database is on MarkLogic Server 7 or later, you may be able to work around this problem
by setting the merge timestamp to retain fragments for a time period longer than the expected running
time of the job; for details, see Understanding and Controlling Database Merges in Administrating
MarkLogic Server.

5.6. Redacting Content During Export or Copy Operations
Redaction is the process of eliminating or obscuring portions of a document when retrieving the
document from MarkLogic. For example, you can eliminate or mask sensitive personal information
such as credit card numbers, phone numbers, or email addresses from documents. You can only redact
document content, not document properties.

NOTE
Using redaction requires the Advanced Security License option.

Redaction support in MarkLogic is covered in detail in Redacting Document Content in the Application
Developer’s Guide. This section describes how to use mlcp as the redaction driver.

5.6.1. Basic Steps for Redacting Documents
Use the -redaction option of mlcp to apply redaction rules to an export or copy operation. This option
accepts a comma-separated list of redaction rule collection URIs. For example:

-redaction "pii-rules,sec-rules"

Before you can use redaction, you must install one or more redaction rule sets in the Schemas
database. For details on defining and installing redaction rules, see Redacting Document Content in the
Application Developer’s Guide.

Preparing to redact documents with mlcp requires the following steps. For a complete example, see
Section 5.6.2, “Example: Using mlcp for Redaction” [72].

1. Install one or more redaction rules in the Schemas database. Each rule must be part of at least
one collection. For details, see Defining Redaction Rules and Installing Redaction Rules in the
Application Developer’s Guide.

2. If you create a rule that uses a user-defined redaction function, install the implementation of your
redaction function in the modules database associated with the App Server you will connect to
using mlcp. For details, see User-Defined Redaction Functions in the Application Developer’s
Guide.

3. Add the -redaction option to your mlcp command line. For example, the following command
applies the rules in the collections “pii-rules” and “sec-rules” to all exported documents.

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh export -host localhost -port 8000 -username user \
 -password password -mode local -output_file_path \
 /space/mlcp/export/files -directory_filter /people/ \
 -redaction "pii-rules,sec-rules"

MarkLogic 10 Redacting Content During Export or Copy Operations

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 71

https://docs.marklogic.com/guide/admin-guide/en/understanding-and-controlling-database-merges.html
https://docs.marklogic.com/guide/app-dev/redaction#
https://docs.marklogic.com/guide/app-dev/redaction#
https://docs.marklogic.com/guide/app-dev/redaction#id_74685
https://docs.marklogic.com/guide/app-dev/redaction#id_41409
https://docs.marklogic.com/guide/app-dev/redaction#id_97341

The -redaction option works similarly for copy operations. For details, see Section 6.3, “Redacting
Content During a Copy” [80].

The user who extracts redacted documents must have read permissions on the source documents and
the rules, but need not be able to modify the rule collection or rule definitions. For details, see Security
Considerations in Application Developer’s Guide.

The following behaviors apply when exceptional conditions occur. You should be aware of these
behaviors so you understand when content might not be redacted as expected:

• If a rule collection is empty, mlcp issues a warning and continues with the job.
• If any of the rules contain errors, an error is reported and mlcp aborts the export or copy operation.
• If a rule is valid, but an error occurs when applying the rule, the rule is skipped for the current

document and a warning is logged. The job continues.

5.6.2. Example: Using mlcp for Redaction
This example walks you through using mlcp to install and apply redaction rules based on the built-in
redaction functions. For a similar example using XQuery and Query console, see Example: Getting
Started With Redaction in the Application Developer’s Guide.

It uses rules based on built-in redaction functions. For an example of using user-defined redaction
functions, see User-Defined Redaction Functions in the Application Developer’s Guide.

Creating a Work Area
This example assumes the following directory hierarchy:

redact-gs/
 data/
 rules/

The data/ directory will hold the source documents. The rules/ directory will hold redaction rules.
The example walks you through populating these directories and uploading the contents to MarkLogic
using mlcp in preparation for exporting a set of redacted documents with mlcp.

Create the required directories on Linux by running the following command in a location of your
choosing:

$ mkdir -p redact-gs/data redact-gs/rules

Create the required directories on Windows by running the following command in a location of your
choice:

>mkdir redact-gs\data redact-gs\rules

Installing the Source Documents
When you complete this exercise, the Documents database should contain the following documents.
The documents are inserted into a collection named “gs-samples” for easy reference.

• /redact-gs/sample1.xml

• /redact-gs/sample2.json

Follow the steps in this procedure to install two sample documents in the Documents database.

1. Change directory to the data directory you created in Creating a Work Area [72]. You should be in
your redact-gs/data directory.

2. Copy the following text into a file named sample1.xml:

MarkLogic 10 Redacting Content During Export or Copy Operations

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 72

https://docs.marklogic.com/guide/app-dev/redaction#id_22632
https://docs.marklogic.com/guide/app-dev/redaction#id_22632
https://docs.marklogic.com/guide/app-dev/redaction#id_96859
https://docs.marklogic.com/guide/app-dev/redaction#id_96859
https://docs.marklogic.com/guide/app-dev/redaction#id_97341

<personal>
 <name>Little Bopeep</name>
 <summary>Seeking lost sheep. Please call 123-456-7890.</summary>
 <id>12-3456789</id>
</personal>

3. Copy the following text into a file name sample2.json:

{"personal": {
 "name": "Jack Sprat",
 "summary": "Free nutrition advice! Call (234)567-8901 now!",
 "id": "45-6789123"
}}

4. Run the following mlcp command to insert the sample documents into the Documents database.
Modify the connection details as needed to match your environment.

$ mlcp.sh import -host localhost -port 8000 \
 -username user -password password -mode local \
 -input_file_path . \
 -output_uri_replace ".*/redact-gs/data/,'/redact-gs/'" \
 -output_collections "gs-samples"

You can use Query Console to explore the Documents database and confirm the upload.

The use of -output_uri_replace on the import command line replaces the portion of the default
URI that is based on the filesystem location with the fixed directory prefix “/rules/gs”. For more details,
see Section 4.3, “Controlling Database URIs During Ingestion” [21].

Installing the Redaction Rules
Rules must be installed in the schemas database associated with your content database. Rules must
also be part of a collection before you can use them. This section installs rules in the Schemas
database, which is the default schemas database associated with the Documents database.

When you complete this exercise, the Schemas database should contain the following documents. The
documents are inserted into a rule collection named “gs-rules”. Rules must be in a rule collection before
you can apply them.

• /rules/gs/redact-phone.xml

• /rules/gs/conceal-id.json

The rules installed in this step use the redact-us-phone and conceal built-in redaction functions. For
details on these and other built-in redaction functions, see Built-in Redaction Function Reference in the
Application Developer’s Guide.

Follow the steps in this procedure to install two sample rules in the Schemas database. For an
explanation of what the rules do, see Understanding the Example Rules [74].

1. Change directory to the rules directory you created in Creating a Work Area [72]. You should be
in your redact-gs/rules directory.

2. Copy the following text into a file named redact-phone.xml.

<rule xml:lang="zxx" xmlns="http://marklogic.com/xdmp/redaction">
 <description>Obscure phone numbers.</description>
 <path>//summary</path>
 <method>
 <function>redact-us-phone</function>
 </method>
 <options>
 <level>partial</level>
 </options>
</rule>

3. Copy the following text into a file name conceal-id.json:

MarkLogic 10 Redacting Content During Export or Copy Operations

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 73

https://docs.marklogic.com/guide/app-dev/redaction#id_64092
https://docs.marklogic.com/guide/app-dev/redaction#id_91614
https://docs.marklogic.com/guide/app-dev/redaction#id_90832

{ "rule": {
 "description": "Remove customer ids.",
 "path": "//id",
 "method": { "function": "conceal" }
}}

4. Run the following mlcp command to insert the rules into the Schemas database. Modify the
connection details as needed to match your environment.

$ mlcp.sh import -host localhost -port 8000 \
 -username user -password password -mode local \
 -database Schemas -input_file_path . \
 -output_uri_replace ".*/redact-gs/rules/,'/rules/gs/'" \
 -output_collections "gs-rules"

You can use Query Console to explore the Schemas database and confirm the upload.

The use of -output_uri_replace on the import command line replaces the portion of the default
URI that is based on the filesystem location with the fixed directory prefix /rules/gs. For more details,
see Section 4.3, “Controlling Database URIs During Ingestion” [21].

Understanding the Example Rules
The XML rule installed in Installing the Redaction Rules [73] has the following form:

<rule xml:lang="zxx" xmlns="http://marklogic.com/xdmp/redaction">
 <description>Obscure phone numbers.</description>
 <path>//summary</path>
 <method>
 <function>redact-us-phone</function>
 </method>
 <options>
 <level>partial</level>
 </options>
</rule>

The rule elements have the following effect:

• description - Optional metadata for informational purposes.
• path - Apply the redaction function specified by the rule to nodes selected by the path expression

“//summary”.
• method - Use the built-in redaction function redact-us-phone to redact the value in a summary

XML element or JSON property. By default, this function replaces all digits in a phone number by the
character “#”. You can tell this is a built-in function because method has no module child.

• options - Pass a level parameter value of “partial” to redact-us-phone, causing the function to
leave the last 4 digits of the value unchanged.

The expected result of applying this rule is that any text in the value of a node named “summary”
that matches the pattern of a US phone number will be replaced. The replacement value uses the “#”
number to replace all but the last 4 digits. For example, a value such as 123-456-7890 is redacted to
###-###-7890. For more details, see redact-us-phone in the Application Developer’s Guide.

The JSON rule installed in Installing the Redaction Rules [73] has the following form:

{ "rule": {
 "description": "Remove customer ids.",
 "path": "//id",
 "method": { "function": "conceal" }
}}

The rule properties have the following effect:

• description - Optional metadata for informational purposes.

MarkLogic 10 Redacting Content During Export or Copy Operations

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 74

https://docs.marklogic.com/guide/app-dev/redaction#id_64092

• path - Apply the redaction function specified by the rule to nodes selected by the path
expression //id.

• method - Use the built-in redaction function conceal to redact the id XML element or JSON
property. This function will hide the nodes selected by path. You can tell this is a built-in function
because method has no module child.

The expected result of applying this rule is to remove nodes named id. For example, if //id selects
and XML element or JSON property, the element or property does not appear in the redacted output.
Note that, if //id selects array items in JSON, the items are eliminated, but the id property might
remain, depending on the structure of the document. For more details, see conceal in the Application
Developer’s Guide.

Applying the Redaction Rules
Run the following command from your redact-gs/ directory to export redacted versions of the sample
documents. Modify the connection details as needed to match your environment. A collection filter
(-collection_filter "gs-samples") is used to select the documents for redaction and export.

$ mlcp.sh export -host localhost -port 8000 \
 -username user -password password -mode local \
 -collection_filter "gs-samples" \
 -output_file_path ./output/ \
 -redaction "gs-rules"

Running the export command saves the redacted documents to an output/ sub-directory. You should
have the following filesystem hierarch. The “extra” redact-gs sub-directory is created by mlcp because
the document URIs are of the form /redact-s/filename.

redact-gs/
 output/
 redact-gs/
 sample1.xml
 sample2.json

The following table shows the result of redacting the XML sample document. Notice that the telephone
number in the summary element has been partially redacted by the redact-us-phone function. Also,
the id element has been completely hidden by the conceal function. The affected parts of the content
are highlighted in the table.

Stage XML Content

Original
Document

<personal>
 <name>Little Bopeep</name>
 <summary>Seeking lost sheep. Please call 123-456-7890.</summary>
 <id>12-3456789</id></personal>

Redacted
Result

<personal>
 <name>Little Bopeep</name>
 <summary>Seeking lost sheep. Please call ###-###-7890.</summary>
</personal>

The following table shows the result of redacting the JSON sample document. Notice that the telephone
number in the summary property has been partially redacted by the redact-us-phone function. Also,
the id property has been completely hidden by the conceal function. The affected parts of the content
are highlighted in the table.

Stage JSON Content

Original
Document

{"personal": {
 "name": "Jack Sprat",
 "summary": "Free nutrition advice! Call (234)567-8901 now!",
 "id": "45-6789123"
}}

Redacted
Result

{"personal": {
 "name": "Jack Sprat",
 "summary": "Free nutrition advice! Call (###)###-8901 now!"
}}

MarkLogic 10 Redacting Content During Export or Copy Operations

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 75

https://docs.marklogic.com/guide/app-dev/redaction#id_91614

To redact documents when copying them between databases rather than exporting them, add the
-redaction option to the mlcp copy command line.

5.7. Export Command Line Options
This section summarizes the command line options available with the mlcp export command. The
following command line options define your connection to MarkLogic:

Option Description

-host comma-list Required. A comma separated list of hosts through which mlcp can
connect to the destination MarkLogic Server. You must specify at
least one host. For more details, see Section 4.15.1, “How mlcp
Uses the Host List” [52].

-password string Password for the MarkLogic Server user specified with -username.
Required, unless using Kerberos authentication.

-port number Port number of the source MarkLogic Server. There should be an
XDBC App Server on this port. Default: 8000.

-username string MarkLogic Server user from which to export documents. Required,
unless using Kerberos authentication.

The following table lists command line options that define the characteristics of the export operation:

Option Description

-collection_filter comma-list A comma-separated list of collection URIs. mlcp exports only
documents in these collections, plus related metadata. This
option may not be combined with -directory_filter or
-document_selector. Default: All documents and related
metadata.

-compress boolean Whether or not to compress the output document. Only applicable
when -output_type is document. Default: false.

-content_encoding string The character encoding of output documents when
-input_file_type is documents. The option value must
be a character set name accepted by your JVM; see
java.nio.charset.Charset. Default: UTF-8. Set to system
to use the platform default encoding for the host on which mlcp
runs.

-copy_collections boolean When exporting documents to an archive, whether or not to copy
collections to the destination. Default: true.

-copy_metadata boolean When exporting documents to an archive, whether or not to copy
key-value metadata to the destination. Default: true.

-copy_permissions boolean When exporting documents to an archive, whether or not to copy
document permissions to the destination. Default: true.

-copy_properties boolean When exporting documents to an archive, whether or not to copy
properties to the destination. Default: true.

-copy_quality boolean When exporting documents to an archive, whether or not to copy
document quality to the destination. Default: true.

-database string The name of the source database. Default: The database
associated with the source App Server identified by -host and
-port.

-directory_filter comma-list A comma-separated list of database directory names. mlcp
exports only documents from these directories, plus related
metadata. Directory names should usually end with “/”. This
option may not be combined with -collection_filter or
-document_selector. Default: All documents and related
metadata.

-document_selector string Specifies an XPath expression used to select which documents
are exported from the database. The XPath expression should
select fragment roots. This option may not be combined with
-directory_filter or -collection_filter. Default: All
documents and related metadata.

-indented boolean Whether to pretty-print XML output. Default: false.

MarkLogic 10 Export Command Line Options

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 76

-keystore_password string Password to a Java KeyStore containing the User Private Key(s)
and Certificate(s); if available mlcp will select the first available
certificate from the KeyStore that satisfy the TLS Certificate
Request from the MarkLogic Server.

Can be passed along with the existing -ssl option.

-keystore_path string Path to a Java KeyStore containing the User Private Key(s)
and Certificate(s); if available mlcp will select the first available
certificate from the KeyStore that satisfy the TLS Certificate
Request from the MarkLogic Server.

Can be passed along with the existing -ssl option.

-max_split_size number The maximum number of document fragments processed per split.
Default: 20000 in local mode.

-max_threads The maximum number of threads that run mlcp. This command
line option is optional.

-mode string Export mode. Accepted values: local.

-options_file string Specify an options file pathname from which to read additional
command line options. If you use an options file, this option
must appear first. For details, see Section 1.4.4, “Options File
Syntax” [7].

-output_file_path string Destination directory where the archive or documents are saved.
The directory must not already exist.

-output_type string The type of output to produce. Accepted values: document,
archive. Default: document.

-output_type string Specifies one or more namespace prefix bindings for
namespace prefixes usable in path expressions passed to
-document_selector. The list items should be alternating
pairs of prefix names and namespace URIs, such as
'pfx1,http://my/ns1,pfx2,http://my/ns2'.

-query_filter string Specifies a query to apply when selecting documents for export.
The argument must be the XML serialization of a cts:query or
JSON serialization of a cts.query. Only documents matching the
query are considered for export; false positives are possible. For
details, see Section 5.5, “Controlling What is Exported, Copied, or
Extracted” [66].

-redaction comma-list Apply one or more redaction rule collections. The argument must
be a comma-separated list of rule collection URIs. The rule
collections must be installed in the schemas database. For details
and example, see Section 5.6, “Redacting Content During Export
or Copy Operations” [71] and Redacting Document Content in the
Application Developer’s Guide.

-restrict_hosts boolean Restrict mlcp to connect to MarkLogic only through the hosts
listed in the -host option. Default: false (no restriction). For more
details, see Section 4.15.2, “Restricting the Hosts mlcp Uses to
Connect to MarkLogic” [52].

-snapshot boolean Whether or not to export a consistent point-in-time snapshot of
the database contents. Default: false. When true, the job
submission time is used as the database read timestamp for
selecting documents to export. For details, see Section 5.5.6,
“Extracting a Consistent Database Snapshot” [70].

-ssl boolean Enable/disable SSL secured communication with MarkLogic.
Default: false. If you set this option to true, your App Server
must be SSL enabled. For details, see Section 2.6, “Connecting
to MarkLogic Using SSL” [12].

-ssl_protocol string Specify the protocol mlcp should use when creating an SSL
connection to MarkLogic. You must include this option if you
use the -ssl option to connect to an App Server configured to
disable MarkLogic’s default protocol (TLSv1.2). Allowed values:
tls, tlsv1, tlsv1.1, tlsv1.2. Default: TLSv1.2.

-thread_count number The number of threads to spawn for concurrent exporting. The
total number of threads spawned by the process can be larger
than this number, but this option caps the number of concurrent
sessions with MarkLogic Server. Only available in local mode.
Default: 4.

MarkLogic 10 Export Command Line Options

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 77

https://docs.marklogic.com/guide/app-dev/redaction#

-truststore_passwd string Password to a Java TrustStore containing any necessary CA
Certificates needed to verify the TLS Server Authentication
connection. If no TrustStore is provided the default TrustStore
used by the existing -ssl parameter is used.

Can be passed along with the existing -ssl option.

-truststore_path string Path to a Java TrustStore containing any necessary CA
Certificates needed to verify the TLS Server Authentication
connection. If no TrustStore is provided the default TrustStore
used by the existing -ssl parameter is used.

Can be passed along with the existing -ssl option.

MarkLogic 10 Export Command Line Options

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 78

6. Copying Content Between Databases

Use the mlcp copy command to copy content and associated metadata from one MarkLogic Server
database to another when both are reachable on the network. You can also copy data from offline
forests to a MarkLogic Server database; for details, see Section 7, “Using Direct Access to Extract or
Copy Documents” [84].

6.1. Basic Steps
To copy one database to another with mclp:

1. Set -input_host, -input_port, -input_username, and -input_password to identify the
source MarkLogic Server instance and user.

2. Set -output_host, -output_port, -output_username, and -output_password to identify
the destination MarkLogic Server instance and user.

3. Select what documents to copy. For details, see Section 5.5.2, “Filtering Archive and Copy
Contents” [66].
• To select documents in one or more collections, set -collection_filter to a comma

separated list of collection URIs.
• To select documents in one or more database directories, set -directory_filter to a

comma separated list of directory URIs.
• To select documents matching an XPath expression, use -document_selector. To

use namespace prefixes in the XPath expression, define the prefix binding using
-path_namespace.

• To select document matching a query, use -query_filter. You can use this option alone or in
combination with a directory, collection or document selector filter. False positives are possible;
for details, see Section 5.5.3, “Understanding When Filters Are Accurate” [67].

• To select all documents in the database, leave -collection_filter, -directory_filter,
-document_selector, and -query_filter unset.

4. If you want to exclude some or all source document metadata:
• Set -copy_collections to false to exclude document collections metadata.
• Set -copy_permissions to false to exclude document permissions metadata.
• Set -copy_properties to false to exclude document properties.
• Set -copy_quality to false to exclude document quality metadata.
• Set -copy_metadata to false to exclude document key-value metadata.

5. If you want to add or override document metadata in the destination database:
• Set -output_collections to add destination documents to a collection.
• Set -output_permissions to add permissions to destination documents.
• Set -output_quality to set the quality of destination documents.

6. If you want the destination documents to have database URIs different from the source URIs, set
-output_uri_replace, -output_uri_prefix, and/or -output_uri_suffix. For details,
see Section 4.3, “Controlling Database URIs During Ingestion” [21].

For a complete list of mlcp copy command options, see Section 6.4, “Copy Command Line
Options” [80].

6.2. Examples
This example copies all documents and their metadata from the source database to the destination
database:

MarkLogic 10 Copying Content Between Databases

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 79

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh copy -mode local -input_host srchost -input_port 8000 \
 -input_username user1 -input_password password1 \
 -output_host desthost -output_port 8010 -output_username user2 \
 -output_password password2

This example copies selected documents, excluding the source permissions and adding the documents
to 2 new collections in the destination database:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh copy -mode local -input_host srchost -input_port 8000 \
 -input_username user1 -input_password password1 \
 -output_host desthost -output_port 8000 -output_username user2 \
 -output_password password2 -copy_permissions false \
 -output_collections shakespeare,plays

For an example of using -query_filter, see Section 5.5.4, “Example: Exporting Documents Matching a
Query” [68].

6.3. Redacting Content During a Copy
Redaction is the process of eliminating or obscuring portions of a document when retrieving the
document from MarkLogic. For example, you can eliminate or mask sensitive personal information
such as credit card numbers, phone numbers, or email addresses from documents. You can only redact
document content, not document properties.

Redaction is performed as documents are read from the source database. For example, if you copy
documents between databases in two different MarkLogic installations, the unredacted content never
leaves the source installation.

Redaction support in MarkLogic is covered in detail in Section 5.6, “Redacting Content During Export or
Copy Operations” [71] and Redacting Document Content in the Application Developer’s Guide.

Use the -redaction option to apply redaction rules during a copy. For example, the following
command copies documents in the “my_docs” collection from one database to another, and applies
the redaction rules in the rule collections “hipaa-rules and “biz-rules” to the source documents before
copying them to the destination database.

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh copy -mode local -input_host srchost -input_port 8000 \
 -input_username user1 -input_password password1 \
 -output_host desthost -output_port 8000 -output_username user2 \
 -output_password password2 -collection_filter my_docs \
 -redaction "hipaa-rules,biz-rules"

For more details, see Section 5.6, “Redacting Content During Export or Copy Operations” [71].

6.4. Copy Command Line Options
This section summarizes the command line options available with the mlcp copy command. The
following command line options define your connection to MarkLogic:

Option Description

-input_host comma-list Required. A comma-separated list of hosts through which mlcp can
connect to the source database. You must specify at least one host. For
more details, see Section 4.15.1, “How mlcp Uses the Host List” [52].

-input_password string Password for the MarkLogic Server user specified with
-input_username. Required, unless using Kerberos authentication.

-input_port number Port number of the source MarkLogic Server. There should be an XDBC
App Server on this port. Default: 8000.

-input_username string MarkLogic Server user with which to export documents. Required, unless
using Kerberos authentication.

MarkLogic 10 Redacting Content During a Copy

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 80

https://docs.marklogic.com/guide/app-dev/redaction#

-output_host comma-list Required. A comma separated list of hosts through which mlcp can
connect to the destination database. You must specify at least one host.
For more details, see Section 4.15.1, “How mlcp Uses the Host List” [52].

-output_password string Password for the MarkLogic Server user specified with
-output_username. Required, unless using Kerberos authentication.

-output_port number Port number of the destination MarkLogic Server. There should be an
XDBC App Server on this port. Default: 8000.

-output_username string MarkLogic Server user with which to import documents to the destination.
Required, unless using Kerberos authentication.

The following table lists command line options that define the characteristics of the copy operation:

Option Description

-batch_size number The number of documents to load per request to MarkLogic Server.
Default: 100. Maximum: 200.

-collection_filter comma-list A comma-separated list of collection URIs. mlcp exports only documents
in these collections, plus related metadata. This option may not
be combined with -directory_filter. Default: All documents and
related metadata.

-copy_collections boolean Whether to copy document collections from the source database to the
destination database. Default: true.

-copy_metadata boolean Whether to copy document key-value metadata from the source database
to the destination database. Default: true.

-copy_permissions boolean Whether to copy document permissions from the source database to the
destination database. Default: true.

-copy_properties boolean Whether to copy document properties from the source database to the
destination database. Default: true.

-copy_quality boolean Whether to copy document quality from the source database to the
destination database. Default: true.

-directory_filter comma-list A comma-separated list of database directories. mlcp exports only
documents from these directories, plus related metadata. Directory
names should usually end with “/”. This option may not be combined with
-collection_filter. Default: All documents and related metadata.

-document_selector string Specifies an XPath expression used to select which documents
are extracted from the source database. The XPath expression
should select fragment roots. This option may not be combined
with -directory_filter or -collection_filter. Default: All
documents and related metadata.

-fastload boolean Whether or not to force optimal performance, even at the risk of creating
duplicate document URIs. See Section 4.13.2, “Time vs. Correctness:
Understanding -fastload Tradeoffs” [36]. Default: false.

-input_database string The name of the source database. Default: The database associated with
the source App Server identified by -input_host and -input_port.

-input_ssl boolean Enable/disable SSL secured communication with the input App Server.
Default: false. If you set this option to true, your App Server must be SSL
enabled. For details, see Section 2.6, “Connecting to MarkLogic Using
SSL” [12].

-input_ssl_protocol string Specify the protocol mlcp should use when creating an SSL connection
to the input App Server. You must include this option if you use the
-input_ssl option to connect to an App Server configured to disable
MarkLogic’s default protocol (TLSv1.2). Allowed values: tls, tlsv1,
tlsv1.1, tlsv1.2. Default: TLSv1.2.

-max_split_size number The maximum number of document fragments processed per split.
Default: 50000.

-mode string Copy mode. Accepted values: local.

Default: local.

-options_file string Specify an options file pathname from which to read additional command
line options. If you use an options file, this option must appear first. For
details, see Section 1.4.4, “Options File Syntax” [7].

-output_collections comma-list A comma separated list of collection URIs. Output documents are added
to these collections.

MarkLogic 10 Copy Command Line Options

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 81

-output_database string The name of the destination database. Default: The database associated
with the destination App Server identified by -output_host and
-output_port.

-output_database string A comma separated list of (role,capability) pairs to apply to
loaded documents. Default: The default permissions associated with
the user inserting the document. Example: -output_permissions
role1,read,role2,update

-output_partition string The name of the database partition in which to create documents.
Required when using range assignment policy. For details, see
Section 4.13.3, “How Assignment Policy Affects Optimization” [38] and
Range Partitions in Administrating Marklogic Server.

-output_quality string The quality to assign to output documents.

-output_ssl boolean Enable/disable SSL secured communication with the output App Server.
Default: false. If you set this option to true, your App Server must be SSL
enabled. For details, see Section 2.6, “Connecting to MarkLogic Using
SSL” [12].

-output_ssl_protocol string Specify the protocol mlcp should use when creating an SSL connection
to the output App Server. You must include this option if you use the
-output_ssl option to connect to an App Server configured to disable
MarkLogic’s default protocol (TLSv1.2). Allowed values: tls, tlsv1,
tlsv1.1, tlsv1.2. Default: TLSv1.2.

-output_uri_prefix string Specify a prefix to prepend to the default URI. Used to construct output
document URIs. For details, see Section 4.3, “Controlling Database URIs
During Ingestion” [21].

-output_uri_replace comma-list A comma-separated list of (regex,string) pairs that define
string replacements to apply to the URIs of documents
added to the database. The replacement strings must be
enclosed in single quotes. For example, -output_uri_replace
"regex1,'string1',regext2,'string2'"

-output_uri_suffix string Specify a suffix to append to the default URI Used to construct output
document URIs. For details, see Section 4.3, “Controlling Database URIs
During Ingestion” [21].

-path_namespace comma-list Specifies one or more namespace prefix bindings for namespace prefixes
usable in path expressions passed to -document_selector. The list
items should be alternating pairs of prefix names and namespace URIs,
such as 'pfx1,http://my/ns1,pfx2,http://my/ns2'.

-query_filter string Specifies a query to apply when selecting documents to be copied.
The argument must be the XML serialization of a cts:query or JSON
serialization of a cts.query. Only documents in the source database that
match the query are considered for copying. For details, see Section 5.5,
“Controlling What is Exported, Copied, or Extracted” [66]. False postives
are possible; for details, see Section 5.5.3, “Understanding When Filters
Are Accurate” [67].

-redaction comma-list Apply one or more redaction rule collections. The argument must be a
comma-separated list of rule collection URIs. The rule collections must be
installed in the schemas database on the source MarkLogic installation.
For details and example, see Section 5.6, “Redacting Content During
Export or Copy Operations” [71] and Redacting Document Content in the
Application Developer’s Guide.

-restrict_input_hosts boolean Restrict mlcp to connect to the source database only through the hosts
listed in the -input_host option. Default: false (no restriction). For more
details, see Section 4.15.2, “Restricting the Hosts mlcp Uses to Connect
to MarkLogic” [52].

-restrict_output_hosts boolean Restrict mlcp to connect to the destination database only through the
hosts listed in the -output_host option. Default: false (no restriction).
For more details, see Section 4.15.2, “Restricting the Hosts mlcp Uses to
Connect to MarkLogic” [52].

-snapshot boolean Whether or not to use a consistent point-in-time snapshot of the source
database contents. Default: false. When true, the job submission time
is used as the database read timestamp for selecting documents to
export. For details, see Section 5.5.6, “Extracting a Consistent Database
Snapshot” [70].

-temporal_collection string A temporal collection into which the documents are to be loaded in
the destination database. For details on loading temporal documents
into MarkLogic, see Using MarkLogic Content Pump (MLCP) to Load
Temporal Documents in the Temporal Developer’s Guide.

MarkLogic 10 Copy Command Line Options

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 82

https://docs.marklogic.com/guide/admin-guide/en/tiered-storage/range-partitions.html
https://docs.marklogic.com/guide/app-dev/redaction#
https://docs.marklogic.com/guide/temporal/managing#id_98025
https://docs.marklogic.com/guide/temporal/managing#id_98025

-thread_count number The number of threads to spawn for concurrent copying. The total number
of threads spawned by the process can be larger than this number,
but this option caps the number of concurrent sessions with MarkLogic
Server. Only available in local mode. Default: 4.

-transaction_size number When loading documents into the destination database, the number of
requests to MarkLogic Server in one transaction. Default: 1. Maximum:
4000/actualBatchSize.

-transform_function string The local name of a custom content transformation function installed
on MarkLogic Server. Ignored if -transform_module is not specified.
Default: transform. For details, see Section 4.14, “Transforming
Content During Ingestion” [41].

-transform_module string The path in the modules database or modules directory of a custom
content transformation function installed on MarkLogic Server. This
option is required to enable a custom transformation. For details, see
Section 4.14, “Transforming Content During Ingestion” [41].

-transform_namespace string The namespace URI of the custom content transformation function
named by -transform_function. Ignored if -transform_module
is not specified. Default: no namespace. For details, see Section 4.14,
“Transforming Content During Ingestion” [41].

-transform_param string Optional extra data to pass through to a custom transformation
function. Ignored if -transform_module is not specified. Default: no
namespace. For details, see Section 4.14, “Transforming Content During
Ingestion” [41].

MarkLogic 10 Copy Command Line Options

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 83

7. Using Direct Access to Extract or Copy Documents

Direct Access enables you to bypass MarkLogic Server and extract documents from a database
by reading them directly from the on-disk representation of a forest. This feature is best suited for
accessing documents in archived, offline forests.

7.1. When to Consider Using Direct Access
Direct Access enables you to extract documents directly from an offline or read-only forest without
going through MarkLogic Server. A forest is the internal representation of a collection of documents in
a MarkLogic database; for details, see Understanding Forests in Administrating MarkLogic Server. A
database can span multiple forests on multiple hosts.

Direct Access is primarily intended for accessing archived data that is part of a tiered storage
deployment; for details, see Tiered Storage in Administrating MarkLogic Server. You should only use
Direct Access on a forest that is offline or read-only; for details, see Section 7.2, “Limitations of Direct
Access” [84].

For example, if you have data that ages out over time such that you need to retain it, but you do not
need to have it available for real time queries through MarkLogic Server, you can archive the data by
taking the containing forests offline, but still access the contents using Direct Access.

Use Direct Access with mlcp to access documents in offline and read-only forests in the following ways:

• The mlcp extract command to extracts archived documents from a database as flat files. This
operation is similar to exporting documents from a database to files, but does not require a
source MarkLogic Server instance. For details, see Section 7.3, “Choosing Between Export and
Extract” [85].

• The mlcp import command with -input_file_type forest imports archived documents as to
another database as live documents. A destination MarkLogic Server instance is required, but no
source instance.

Since Direct Access bypasses the active data management performed by MarkLogic Server, you
should not use it on forests receiving document updates. Additional restrictions apply. For details, see
Section 7.2, “Limitations of Direct Access” [84].

7.2. Limitations of Direct Access
You should only use Direct Access on a forest that meets one of the following criteria:

• The forest is offline and not in an error state. A forest is offline if the availability is set to offline, or
the forest or the database to which it is attached is disabled. For details, see Taking Forests and
Partitions Online and Offline in Administrating MarkLogic Server.

• The forest is online, but the updates-allowed state of the forest is read-only. For details, see
Setting the updates-allowed State on Partitions in Administrating MarkLogic Server.

The following additional limitations apply to using Direct Access:

• Accessing documents with Direct Access bypasses security roles and privileges. The content is
protected only by the filesystem permissions on the forest data.

• Direct Access cannot take advantage of indexing or caching when accessing documents. Every
document in each participating forest is read, even when you use filtering criteria such as
-directory_filter or -type_filter. Filtering can only be applied after reading a document
off disk.

• Direct Access skips property fragments.
• Direct Access skips documents partitioned into multiple fragments. For details, see Fragments in

Administrating MarkLogic Server.

MarkLogic 10 Using Direct Access to Extract or Copy Documents

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 84

https://docs.marklogic.com/guide/admin-guide/en/forests/understanding-forests.html
https://docs.marklogic.com/guide/admin-guide/en/database-rebalancing/how-the-rebalancer-interacts-with-other-database-and-forest-settings/tiered-storage.html
https://docs.marklogic.com/guide/admin-guide/en/tiered-storage/common-forest-and-partition-operations/taking-forests-and-partitions-online-and-offline.html
https://docs.marklogic.com/guide/admin-guide/en/tiered-storage/common-forest-and-partition-operations/taking-forests-and-partitions-online-and-offline.html
https://docs.marklogic.com/guide/admin-guide/en/tiered-storage/common-forest-and-partition-operations/setting-the-updates-allowed-state-on-partitions.html
https://docs.marklogic.com/guide/admin-guide/en/fragments.html

• Older versions of mlcp might not be able to read forest data from MarkLogic 9 or later. For best
results, use the version of mlcp that corresponds to your MarkLogic version.

When you use Direct Access, mlcp skips any forest (or a stand within a forest) that is receiving updates
or that is in an error state. Processing continues even when some documents are skipped.

When you use mlcp with Direct Access, your forest data must be reachable from the host(s) processing
the input. In local mode, the forests must be reachable from the host on which you execute mlcp.

If mlcp accesses large or external binaries with Direct Access, then the reachability requirement also
applies to the large data directory and any external binary directories. Furthermore, these directories
must be reachable along the same path as when the forest was online.

7.3. Choosing Between Export and Extract
You can use the export and extract commands to save content in a MarkLogic database to files on
the native file system. You should usually use export rather than extract. The extract command
is best suited for archive data in offline or read-only forests. Otherwise, use the export command.

The extract command places no load on MarkLogic Server. The export command offloads
most of the work to your MarkLogic cluster. Thus, export honors document permissions, takes
advantage of database indexes, and can apply transformations and filtering at the server. By contrast,
extract bypasses security (other than file permissions on the forest files), must access all document
sequentially, and applies a limited set of filters on the client.

The export command offers a richer set of filtering options than extract. In addition, export only
accesses the documents selected by your options, while extract must scan the entirety of each input
forest, even when extracting selected documents.

For more information, see the following topics:

• Section 5.1, “Exporting Documents as Files” [63]
• Section 7.4, “Extracting Documents as Files” [85]

7.4. Extracting Documents as Files
Use the mlcp extract command to extract documents from archival forest files to files on the native
filesystem. For example, you can extract an XML document as a text file containing XML, or a binary
document as a JPG image.

To extract documents from a forest as files:

1. Set -input_file_path to the path to the input forest directory(s). Specify multiple forests using
a comma-separated list of paths.

2. Select the documents to extract. For details, see Section 5.5.5, “Filtering Forest Contents” [70].
• To select documents in one or more collections, set -collection_filter to a comma

separated list of collection URIs.
• To select documents in one or more database directories, set -directory_filter to a

comma separated list of directory URIs.
• To select documents by document type, set -type_filter to a comma separated list of

document types.
• To select all documents in the database, leave -collection_filter, -directory_filter,

and -type_filter unset.
3. Set -output_file_path to the destination file or directory on the native filesystem. This

directory must not already exist.
4. Set -mode to local: Your input forests must be reachable from the host where you execute mlcp.
5. If you want to extract the documents as files in compressed files, set -compress to true.

MarkLogic 10 Choosing Between Export and Extract

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 85

Filtering options can be combined. Directory names specified with -directory_filter should end
with “/”. All filters are applied on the client, so every document is accessed, even if it is filtered out of the
output document set.

NOTE
Document URIs are URI-decoded before filesystem directories or filenames are
constructed for them. For details, see Section 5.4, “How URI Decoding Affects Output
File Names” [65].

For a full list of extract options, see Section 7.6, “Extract Command Line Options” [87].

The following example extracts selected documents from the forest files in /var/opt/MarkLogic/
Forests/example to the native filesystem directory /space/mlcp/extracted/files. The
directory filter selects only the input documents in the database directory /plays.

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh extract -mode local \
 -input_file_path /var/opt/MarkLogic/Forests/example \
 -output_file_path /space/mlcp/extracted/files \
 -directory_filter /plays/

7.5. Importing Documents from a Forest into a Database
Use the following procedure to load all the files in a native forest directory and its sub-directories. To
load selected files, see Section 4.5.3, “Filtering Documents Loaded From a Directory” [25]. For more
details on the command line options used in this procedure, see Section 4.19, “Import Command Line
Options” [57].

1. Set -input_file_path to the path to the input forest directory(s). Specify multiple forests using
a comma-separated list of paths.
• To select documents in one or more collections, set -collection_filter to a comma

separated list of collection URIs.
• To select documents in one or more database directories, set -directory_filter to a

comma separated list of directory URIs.
• To select documents by document type, set -type_filter to a comma separated list of

document types.
• To select all documents in the database, leave -collection_filter, -directory_filter,

and -type_filter unset.
2. Set -input_file_type to forest.
3. Specify the connection information for the destination database using -host, -port, -username,

and -password.
4. Select the files to extract from the input forest. For details, see Section 5.5.5, “Filtering Forest

Contents” [70]. Filtering options can be used together.
5. If you want to exclude some or all of the document metadata in the forests:

• Set -copy_collections to false to exclude document collections metadata.
• Set -copy_quality to false to exclude document quality metadata.
• Set -copy_metadata to false to exclude key-value metadata.

6. Set -mode to local (This is the default mode): Your input forests and the destination MarkLogic
Server instance must be reachable from the host where you run mlcp.

By default, an imported document has a database URI based on the input file path. You can customize
the URI using options. For details, see Section 4.3, “Controlling Database URIs During Ingestion” [21].

MarkLogic 10 Importing Documents from a Forest into a Database

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 86

The following example command loads the documents in the forests in /var/opt/MarkLogic/
Forests/example:

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh import -host localhost -port 8000 -username user \
 -password password -input_file_type forest \
 -input_file_path /var/opt/MarkLogic/Forests/example

7.6. Extract Command Line Options
This section summarizes the command line options available with the mlcp extract command. An
extract command requires the -input_file_path and -output_file_path options. That is, an
extract command has the following form:

mlcp.sh extract -input_file_path forest-path \
 -output_file_path dest-path ...

The following table lists command line options that define the characteristics of the extraction:

Option Description

-collection_filter comma-list A comma-separated list of collection URIs. mlcp extracts only
documents in these collections. This option can be combined with
other filter options. Default: All documents.

-compress boolean Whether or not to compress the output. mlcp might generate
multiple compressed files. Default: false.

-directory_filter comma-list A comma-separated list of database directory names. mlcp
extracts only documents from these directories, plus related
metadata. Directory names should usually end with “/”. This option
can be combined with other filter options. Default: All documents
and related metadata.

-max_split_size number The maximum number of document fragments processed per split.
Default: 50000.

-mode string Export mode. Accepted values: local.

-options_file string Specify an options file pathname from which to read additional
command line options. If you use an options file, this option
must appear first. For details, see Section 1.4.4, “Options File
Syntax” [7].

-output_file_path string Destination directory where the documents are saved. The
directory must not already exist.

-thread_count number The number of threads to spawn for concurrent exporting. The
total number of threads spawned by the process can be larger
than this number, but this option caps the number of concurrent
sessions with MarkLogic Server. Only available in local mode.
Default: 4.

-type_filter comma-list A comma-separated list of document types. mlcp extracts only
documents with these types. This option can be combined with
other filter options. Allowed documentypes: xml, text, binary.
Default: All documents.

MarkLogic 10 Extract Command Line Options

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 87

8. Troubleshooting

This section includes tips for debugging some common problems.

8.1. Checking Your Runtime Environment
You can use the mlcp version command to generate a report of key software versions mlcp detects in
your runtime environment. This is useful for confirming your path and other environment settings create
the environment you expect or mlcp requires.

For example, the command below reports the version of mlcp, and the Java JRE that mlcp will use at
runtime, plus the versions of MarkLogic supported by this version of mlcp.

$ mlcp.sh version
ContentPump version: 8.0
Java version: 1.7.0_45
Supported MarkLogic versions: 6.0 - 8.0

Note that not all features of mlcp are supported by all versions of MarkLogic, even within the reported
range of supported versions. For example, if MarkLogic version X introduces a new feature that is
supported by mlcp, that doesn’t mean you can use mlcp to work with the feature in MarkLogic version
X-1.

8.2. Resolving Connection Issues
All mlcp command lines include host and port information for connecting to MarkLogic Server. This host
must be reachable from the host where you run mlcp.

In addition, mlcp connects directly to hosts in your MarkLogic Server cluster that contain forests of the
target database. Therefore, all the hosts that serve a target database must be reachable from the host
where mlcp runs (local mode).

mlcp gets the lists of participating hosts by querying your MarkLogic Server cluster configuration. If a
hostname returned by this query is not resolvable, mlcp will not be able to connect, which can prevent
document loading.

If you think you might have connection issues, enable debug level logging to see details on
name resolution and connection failures. For details, see Section 8.3, “Enabling Debug Level
Messages” [88].

8.3. Enabling Debug Level Messages
You can enable debug level log messages to see detailed debugging information about what mlcp is
doing. Debug logging generates many messages, so you should not enable it unless you need it to
troubleshoot a problem.

To enable debug logging:

For versions of mlcp 10 earlier than 10.0-8.2:

1. Edit the file MLCP_INSTALL_DIR/conf/log4j.properties. For example, if mlcp is installed
in /opt/mlcp, edit /opt/mlcp/conf/log4j.properties.

2. In log4j.properties, set the properties log4j.logger.com.marklogic.mapreduce and
log4j.logger.com.marklogic.contentpump to DEBUG. For example, include the following:

log4j.logger.com.marklogic.mapreduce=DEBUG
log4j.logger.com.marklogic.contentpump=DEBUG

MarkLogic 10 Troubleshooting

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 88

You may find these property settings are already at the end of log4j.properties, but
commented out. Remove the leading # to enable them.

In 10.0-8.2, we migrated log4j to log4j2 due to security vulnerabilities. For mlcp 10 versions 10.0-8.2
and later:

1. Edit the file MLCP_INSTALL_DIR/conf/log4j2.xml. For example, if mlcp is installed in /opt/
mlcp, edit /opt/mlcp/conf/log4j2.xml.

2. In log4j2.xml, set the level to DEBUG for logger com.marklogic.mapreduce and
com.marklogic.contentpump. For example, include the following:

<Logger name="com.marklogic.mapreduce" level="DEBUG" additivity="false">
 <AppenderRef ref="Console"/>
</Logger>
<Logger name="com.marklogic.contentpump" level="DEBUG" additivity="false">
 <AppenderRef ref="Console"/>
</Logger>

You may find these property settings are already in log4j2.xml, but commented out. Remove the
leading <!-- and --> to enable them.

8.4. Error loading class
com.marklogic.contentpump.ContentPump
The cause of the following error is usually running mlcp.sh on Windows under Cygwin, which is not a
supported configuration.

Error: Could not find or load main class
com.marklogic.contentpump.ContentPump

You should always use mlcp.bat on Windows.

8.5. No or Too Few Files Loaded During Import
If ATTEMPTED_INPUT_RECORD_COUNT is non-zero and SKIPPED_INPUT_RECORD_COUNT is zero,
then errors may have occurred on the server side or your combination of options may be inconsistent.
For example:

• The input type is documents, and the document type is set to (or determined to be) XML, but the
input file fails to parse properly as XML. Correct the error in the input data and try again.

• You set -input_file_path to a location containing compressed files, but you do not set
-input_compressed and -input_compression_codec. In this case, mlcp will load the
compressed files as binary documents, rather than creating documents from the contents of the
compressed files.

• You set -document_type to a value inconsistent with the input data referenced by
-input_file_path.

If ATTEMPTED_INPUT_RECORD_COUNT is non-zero and SKIPPED_INPUT_RECORD_COUNT is non-
zero, then there are probably formatting errors in your input that mlcp detected on the client. Correct the
input errors and try again. For example:

• A syntax error was encountered while splitting an aggregate XML file into multiple pieces of
document content.

• A delimited text file contains records (lines) with an incorrect number of column values or with no
value for the URI id column.

If mlcp reports an ATTEMPTED_INPUT_RECORD_COUNT of 0, then the tool found no input documents
meeting your requirements. If there are errors or warnings, correct them and try again. If there are no
errors, then the combination of options on your command line probably does not select any suitable
documents. For example:

MarkLogic 10 Error loading class com.marklogic.contentpump.ContentPump

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 89

• You set -input_compressed -input_compression_codec zip, but -input_file_path
references a location that contains no ZIP files.

• You set -input_compressed and set -input_file_path to a location containing compressed files, but
failed to set -input_compression_codec.

8.6. Unable to load realm info from SCDynamicStore
Depending on your JVM version, you might see the message “Unable to load realm info from
SCDynamicStore” when using mlcp if your system has Kerberos installed and krb5.conf doesn’t
explicitly list the realm information. You can safely ignore this message.

8.7. Warning that a Job Remains Running
If you interrupt an mlcp job before it completes, such as by entering Ctrl-C, the job might continue
running.

In local mode, an interrupted job will shutdown gracefully as long as it can finish within 30 seconds.

If mlcp cannot gracefully shut down the job, you might see the following warning:

WARN contentpump.ContentPump: Job yourJobName status remains RUNNING

MarkLogic 10 Unable to load realm info from SCDynamicStore

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 90

9. Technical Support

MarkLogic provides technical support according to the terms detailed in your Software License
Agreement or End User License Agreement.

We invite you to visit our support website at http://help.marklogic.com to access information
on known and fixed issues, knowledge base articles, and more. For licensed customers with an active
maintenance contract, see the Support Handbook for instructions on registering support contacts and
on working with the MarkLogic Technical Support team.

Complete product documentation, the latest product release downloads, and other useful information
is available for all developers at http://developer.marklogic.com. For technical questions, we
encourage you to ask your question on Stack Overflow.

MarkLogic 10 Technical Support

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 91

http://help.marklogic.com
https://www.marklogic.com/wp-content/uploads/2021/01/support-handbook_2021_Jan_13.pdf
http://developer.marklogic.com
https://stackoverflow.com/questions/tagged/marklogic

10. Copyright

MarkLogic Server 10 and supporting products. Last updated: April, 2023.

Copyright © 2023 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.
This technology is protected by U.S. Patent No. 7,127,469B2, U.S. Patent No. 7,171,404B2, U.S.
Patent No. 7,756,858 B2, and U.S. Patent No 7,962,474 B2, US 8,892,599, and US 8,935,267.

The MarkLogic software is protected by United States and international copyright laws, and
incorporates certain third party libraries and components which are subject to the attributions, terms,
conditions and disclaimers set forth below.

For all copyright notices, including third-party copyright notices, see the Combined Product Notices for
your version of MarkLogic.

MarkLogic 10 Copyright

2023-11-07 17:12 Using MarkLogic Content Pump (mlcp) Page 92

	Using MarkLogic Content Pump (mlcp)
	Table of Contents
	1. Introduction to MarkLogic Content Pump
	1.1. Feature Overview
	1.2. Terms and Definitions
	1.3. Modifying the Example Commands for Windows
	1.4. Understanding the mlcp Command Line
	1.4.1. Command Line Summary
	1.4.2. Setting Java Virtual Machine (JVM) Options
	1.4.3. Regular Expression Syntax
	1.4.4. Options File Syntax

	1.5. mlcp Exit Status Codes
	1.6. Compatibility of mlcp Across MarkLogic Versions
	1.7. Accessing the mlcp Source Code

	2. Installation and Configuration
	2.1. Supported Platforms
	2.2. Required Software
	2.3. Installing mlcp
	2.4. Configuring Your MarkLogic Cluster
	2.5. Security Considerations
	2.6. Connecting to MarkLogic Using SSL
	2.6.1. Enabling SSL on Your App Server
	2.6.2. Configuring mlcp to Use SSL

	2.7. Using mlcp With Kerberos
	2.7.1. Creating Users
	2.7.2. Configuring an XDBC App Server for Kerberos Authentication
	2.7.3. Invoking mlcp

	3. Getting Started With mlcp
	3.1. Prepare to Run the Examples
	3.2. Optional: Create an Options File
	3.3. Load Documents
	3.4. Export Documents
	3.5. Understanding mlcp Output
	3.6. Stopping an mclp Job Prematurely

	4. Importing Content Into MarkLogic Server
	4.1. Supported Input Format Summary
	4.2. Understanding Input File Path Resolution
	4.3. Controlling Database URIs During Ingestion
	4.3.1. Default Document URI Construction
	4.3.2. Transforming the Default URI
	4.3.3. Character Encoding of URIs

	4.4. How mlcp Determines Document Type
	4.5. Loading Documents from a Directory
	4.5.1. Loading a Single File
	4.5.2. Loading All the Files in a Directory
	4.5.3. Filtering Documents Loaded From a Directory

	4.6. Loading Documents From Compressed Files
	4.7. Loading Content and Metadata From an Archive
	4.8. Splitting Large XML Files Into Multiple Documents
	4.9. Creating Documents from Delimited Text Files
	4.9.1. Example: Generating Documents From a CSV File
	4.9.2. Expected Input Format
	4.9.3. Customizing XML Output
	4.9.4. Controlling Data Type in JSON Output
	4.9.5. Controlling the Output Document URI
	4.9.6. Specifying the Field Delimiter
	4.9.7. Optimizing Ingestion of Large Files

	4.10. Creating Documents from Line-Delimited JSON Files
	4.10.1. Line-Delimited JSON Overview
	4.10.2. Controlling the Output Document URI

	4.11. Loading Triples
	4.11.1. Basics of Triple Loading
	4.11.2. Graph Selection When Loading Quads
	4.11.3. Graph Selection for Other Triple Types

	4.12. Loading Documents from a Forest With Direct Access
	4.13. Performance Considerations for Loading Documents
	4.13.1. Time vs. Space: Configuring Batch and Transaction Size
	4.13.2. Time vs. Correctness: Understanding -fastload Tradeoffs
	4.13.3. How Assignment Policy Affects Optimization
	4.13.4. Tuning Split Size and Thread Count for Local Mode
	4.13.5. Reducing Memory Consumption With Streaming
	4.13.6. Improving Throughput with -split_input
	4.13.7. Concurrent Jobs

	4.14. Transforming Content During Ingestion
	4.14.1. Creating a Custom XQuery Transformation
	Function Signature
	Input Parameters
	Expected Output
	Example Implementation

	4.14.2. Creating a Custom JavaScript Transformation
	Function Signature
	Input Parameters
	Expected Output
	Example Implementation

	4.14.3. Implementation Guidelines
	4.14.4. Installing a Custom Transformation
	4.14.5. Using a Custom Transformation
	4.14.6. Example: Server-Side Content Transformation
	Create the sample input files
	Create the XQuery transform module
	Create the JavaScript transform module
	Install the transformation module
	Apply the transformation

	4.14.7. Example: Changing the URI and Document Type
	XQuery Implementation
	JavaScript Implementation

	4.15. Controlling How mlcp Connects to MarkLogic
	4.15.1. How mlcp Uses the Host List
	4.15.2. Restricting the Hosts mlcp Uses to Connect to MarkLogic
	4.15.3. How -restrict_hosts Affects -fastload

	4.16. Failover Handling
	4.17. Retry Mechanism When Commit Fails During Ingestion
	4.17.1. Limitations

	4.18. Auto-scaling with Data Hub Service
	4.18.1. How Adjusts Client Concurrency
	4.18.2. How Other Command Line Options Affect Auto-scaling
	4.18.3. How Assigns Threads in Auto-Scaling Process
	4.18.4. Logs for Auto-Scaling

	4.19. Import Command Line Options

	5. Exporting Content from MarkLogic Server
	5.1. Exporting Documents as Files
	5.2. Exporting Documents to a Compressed File
	5.3. Exporting to an Archive
	5.4. How URI Decoding Affects Output File Names
	5.5. Controlling What is Exported, Copied, or Extracted
	5.5.1. Filtering Document Exports
	5.5.2. Filtering Archive and Copy Contents
	5.5.3. Understanding When Filters Are Accurate
	5.5.4. Example: Exporting Documents Matching a Query
	5.5.5. Filtering Forest Contents
	5.5.6. Extracting a Consistent Database Snapshot

	5.6. Redacting Content During Export or Copy Operations
	5.6.1. Basic Steps for Redacting Documents
	5.6.2. Example: Using mlcp for Redaction
	Creating a Work Area
	Installing the Source Documents
	Installing the Redaction Rules
	Understanding the Example Rules
	Applying the Redaction Rules

	5.7. Export Command Line Options

	6. Copying Content Between Databases
	6.1. Basic Steps
	6.2. Examples
	6.3. Redacting Content During a Copy
	6.4. Copy Command Line Options

	7. Using Direct Access to Extract or Copy Documents
	7.1. When to Consider Using Direct Access
	7.2. Limitations of Direct Access
	7.3. Choosing Between Export and Extract
	7.4. Extracting Documents as Files
	7.5. Importing Documents from a Forest into a Database
	7.6. Extract Command Line Options

	8. Troubleshooting
	8.1. Checking Your Runtime Environment
	8.2. Resolving Connection Issues
	8.3. Enabling Debug Level Messages
	8.4. Error loading class com.marklogic.contentpump.ContentPump
	8.5. No or Too Few Files Loaded During Import
	8.6. Unable to load realm info from SCDynamicStore
	8.7. Warning that a Job Remains Running

	9. Technical Support
	10. Copyright

