MarkLogic Server

Loading Content Into MarkLogic
Server

MarkLogic 10
May, 2019

Last Revised: 10.0, May, 2019

Copyright © 2019 MarkLogic Corporation. All rights reserved.

MarkLogic Server Table of Contents

Table of Contents

L oading Content Into MarkL ogic Server

1.0 Designing aContent Loading Strategyccceceeeveeevieeiieeeieeseesreeseeesveesneens 4
1.1 Available Content Loading INtEIfacescccovieieieriiniereee e 5
1.2 LOAOING ACHIVITIES ..ottt 6
1.3 What to Consider Before Loading Contentccceceveevecieceesesee e 7
1.3.1 Setting DocUmMeNnt PErMISSIONScoceriierienieeiesiesieesee e s e 7
IR T o 11 1 0= O 7
1.3.3 FragmentScooiiiiiiiieciee et nnne e 8
IR 20 1 0 To (=1 o o P 8
2.0 Controlling Document FOrMALcccoveiiieiiieiie e esee et 9
P28 R = 1 01111070] [0)RR 9
2.2 Supported DOCUMENt FOMMELScccceeeieieieiesiesie et 10
221 JSON FOMMEL ...eiueiiieiieieiesiesie st see ettt be s s s e eneas 10
2.2.2 XML FOIMEL ... s 11
2.2.3 BINAY FOIMEALooiiiiiieriesieeieneeee e e 11
224 Text (CLOB) FOrMALccccoieieerieiieeieseesieeee e esre e s sse e snee s 11
2.3 Choosing aBinary FOMMELcccccoiiriieieeiinie et 12
2.3.1 Loading Binary DOCUMENLSccccereeieieerieniesiesiesiesiesieeee e 15
2.3.2 Configuring MarkLogic Server for Binary Documentscccccecveneee. 15
24 Implicitly Setting the Format Based onthe MIME TYP€cccooeviiriininniicieens 15
25 Explicitly Setting the FOrmMELccccooiriiieieeereeses s 16
2.6 Determining the Format of aDOCUMENtccccceeviieieeiiieiece e 17
3.0 Specifying Encoding and Languageccccceveevirereesieesieesee e siee e 18
3.1 Understanding Character ENCOOINGccceevuveieiiieiieiie ettt 18
3.2 Explicitly Specifying Character Encoding While Loadingccoccoveevininnienen. 19
3.3 Automatically Detecting the ENCOUINGcocerveriirirerinirieeeseeee e 19
3.4 Inferring the Language and Encoding of a Node in XQuery with xdmp:encoding-

language-detect 20

35 Specifying the Default Language for XML DOCUMENEScocveeeeeieeneereenieneene 21

4.0 Loading Content USINg XQUENYcoouiiieeiieeieesee e sies e sieeseesssesssessseens 22
4.1 Built-In Document Loading FUNCLIONSccceeeeiieriesieeseee e e eee e 22

4.2 Specifying aForest in Whichto Load aDocumentccccoceeveeveieeneeceeceeenne, 23

4.2.1 Consider If You Realy Want to Specify aForestccccccovevvvvieniininenne 23

4.2.2 Some Potential Advantages of Specifying aForestccccvecevveiieeneene 24

4.2.3 Example: Examining a Document to Decide Which Forest to Specify24

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 1

MarkLogic Server Table of Contents

5.0

6.0

7.0

8.0

9.0

424 MOr€ EXAMPIES ..o 25

4.3 Creating External Binary References USing XQUENYccoecvveeeveeeesieesieseeneeennns 26
Loading Content Using REST, Javaor NOJE.|Scccceevveeviieeciiieciiee e, 27
Loading Content Using MarkL ogic Content PUMPcccovevvvieeieniiiennienne 28
Loading Content USing WEDDAYVoooieii e 29
Repairing XML Content During Loadingcccovveveceeviesiensiece e 30
8.1 Programming Interfaces and Supported Content Repair Capabilities 31
8.2 ENnabling Content REPAITccoeiiereeiiieieseerie st es 31
8.3 Genera-Purpose Tag REPAITccceiiririieierieieres et 32
8.3.1 How General-Purpose Tag Repair WOrkScccoeeveveeieececiececcee e 32

8.3.2 Pitfalsof General-Purpose Tag REPaITccoovverierieneeieeeesee e 33

S TG TG T I 10 011 £ 0] SR 34
8.3.3.1 XQUENY FUNCLIONScovieeeeiieie et 34

8.3.3.2 ROOt EIEMENt ..o 34

8.3.3.3 PreviousMarklogiC VErSIONSccccverireriniieieesese e 34

8.3.4 Controlling General-Purpose Tag REPAITccceeveveveeiieeie e 34

84 Auto-Close Repair Of EMPLY TagSccoveieerieriiiiesieeee e 35
8.4.1 What Empty Tag Auto-Close Repair DOEScccoevieiienierenenieneeeeienes 35

8.4.2 Defining a Schemato Support Empty Tag Auto-Close Repair 36

8.4.3 Invoking Empty Tag Auto-CloSe REPAITcccoeeiierierieerienieseeie e 37

8.4.4 Scope Of APPIICALTIONocueeiiiieiriieieeeeee e 39

8.4.5 Disabling Empty Tag AULO-CIOSEcceieeiiieieceece e 40

8.5 Schema-Driven Tag REPAITcccoiiiiiiiiiieiee e 40
8.5.1 What Schema-Driven Tag Repair DOESccccoverenerenieieeeieeseeee e 40

8.5.2 How to Invoke Schema-Driven Tag Repaircccccceveeveeceiecciecee e, 42

8.5.3 Scope of APPlICALTIONoiueiiiiieeee e e 43

8.5.4 Disabling Schema-Driven Tag REPAITccccceverireninieieieee e 43

8.6 Load-Time Default Namespace ASSIGNMENTcceecveveeiieieesecrie e 44
8.6.1 How Default Namespace AssignmentS WOorkcccoceveeieneeneeieneene 44

8.6.2 SCope Of APPIICALTIONocvieiiiieiiieeieeee e 45

8.7 Load-Time Namespace Prefix BiNdiNgccccovevevieiiese e 45
8.7.1 How Load-Time Namespace Prefix Binding WOrkscccccocceveeiiennnne 46

8.7.2 Interaction with Load-Time Default Namespace Assignment 47

8.7.3 Scope of APPlICALIONocveeeee e e 49

8.7.4 Disabling Load-Time Namespace Prefix Bindingcccoccevvneineeiinnenne 49

8.8 Query-Driven Content REPAITccceveereeiiriierieeeeseesieseesteeseeseesseseeseessesseessens 49
8.8.1 POINt REPAITccviieieiiieiece sttt 50

8.8.2 DoCUMENt WAIKEN'S ..ot 50
Modifying Content During LOadingcccccceveeeieeiiieenie e 53

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 2

MarkLogic Server Table of Contents

9.1 Converting Microsoft Office and Adobe PDF Into XMLccoevvveeveeieniecieenee, 53
9.2 ConvertiNg tO XHTML ..ot 54
9.3 Automating Metadata EXIraCtioncccooeeiirieieniee e 54
9.4 Transforming XML SHUCIUIESccerieieierieieniesie et 54
10.0 Performance CoNSIAEralioNScceveerieerersieeniee e esiee e seeessee e ssessnees 55
10.1 Understanding the Locking and Journaling Database Settings for Bulk Loads ...55
10.2 Fragmentalioncccccceeeeiieiiesie st ete s e steeeesreeste e s e e aeene e st e esesneenneeneesreeneenee e 56
11.0 TechniCal SUPPOIToovieeeee et 57
2 O O] oY/ o o | PR 59

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 3

MarkLogic Server Designing a Content Loading Strategy

1.0 Designing a Content Loading Strategy

MarkLogic Server provides many ways to load content into a database including built-in XQuery
functions, the REST Client API, and the command-line tool, MarkL ogic Content Pump (mlicp).
Choosing the appropriate method for a specific use case depends on many factors, including the
characteristics of your content, the source of the content, the frequency of 1oading, and whether
the content needs to be repaired or modified during loading. In addition, environmental and
operational factors such as workflow integration, development resources, performance
considerations, and devel oper expertise often need to be considered in choosing the best tools and
mechanisms.

The MarkL ogic mechanisms for |oading content provide varying trade-offs along a number of
dimensions such as the following:

» Usability and flexibility of the interface itself

» Performance, scalability, 1/0 capacity

» Loading frequency

» Automation or scripting requirements

» Workflow and integration requirements

This chapter lists the various tools to load content and contains the following sections:

¢ Available Content Loading Interfaces

e | oading Activities

e What to Consider Before Loading Content

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 4

MarkLogic Server Designing a Content Loading Strategy

1.1 Available Content Loading Interfaces

There are several ways to load content into MarkL ogic Server. The following table summarizes
content loading interfaces and their benefits.

Interface/Tool

Description

Benefits

MarkLogic Content Pump

(mlcp)

A command line tool for loading
content into a MarkL ogic database,
extracting content from a MarkLogic
database, or copying content between
MarkL ogic databases.

Ease of workflow
integration, can leverage
Hadoop processing,

bulk loading of billions
of local files,

split and load aggregate
XML or delimited text
files

MarkL ogic Connector for
Hadoop

A set of Java classes that enables
loading content from HDFS into
MarkLogic Server.

Distributed processing of
large amounts of data

Java Client AP

A Java APl for creating applications
ontop of MarkLogic Server. The API
includes document manipulation and
search operations.

Leverage existing Java
programming skills

Node.js Client API

A set of Node.js interfaces for
creating applications on top of
MarkLogic Server. The API includes
document manipulation and search
operations.

Leverage existing
Node.js programming
skills

MarkLogic 10—May, 2019

Loading Content Into MarkL ogic Server—Page 5

MarkLogic Server Designing a Content Loading Strategy

Interface/Tool Description Benefits
REST Client API A set of HTTP REST serviceshosted | Leverage existing REST
that enable developersto build programming skills

applications on top of MarkLogic
Server. The API includes document
manipulation and search operations.

XCC XML Contentbase Connector (XCC) | Create multi-tier
is an interface to communicate with | applications with
MarkLogic Server from aJava MarkLogic Server asthe
middleware application layer underlying content
repository
XQuery API An extensive set of XQuery functions | Flexibility and expanded
that provides maximum control capabilities
Server-Side JavaScript An extensive set of JavaScript Flexibility and expanded
AP functions that execute on MarkLogic | capabilities
function and provide maximum
control

1.2 Loading Activities
There are various things you can do with each of the loading interfaces, all resulting in ingesting

datainto the database. The following are some of the things you might do through the interfaces.
Which interface you use is a matter of which you are most comfortable with as well as trade-offs
that some might have over others (for example, ease-of-use versus extensibility). While each tool
can usually accommodate each of these activities, in cases where one tool has a specific feature to
make one of these activities easy, it iscalled out in the list.

» Load from adirectory (mlcp)

* Load from compressed files (mlcp)

» Split single aggregate XML file into multiple documents (mlcp)

» Load large numbers of small files

* Load delimited text files (mlcp)

» Enrich the documents

» Extract information from the documents during ingestion (metadata, new elements)

» Extract some information and load only extracted information

* Load large binary files

» Create neutral format archive (mlcp)

* Copy from one ML database to another ML database (mlcp)

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 6

MarkLogic Server Designing a Content Loading Strategy

1.3 What to Consider Before Loading Content

Designing your content loading strategy depends on the complexity of your source content, the
nature of the output to be inserted into the database and many other factors. This section lists
some of the areas to think about with links to more detailed discussions and contains the
following parts:

e Setting Document Permissions

e Schemas

* Fragments
* Indexing

1.3.1 Setting Document Permissions

When you load documents into a database, be sure you either explicitly set permissionsin the
document loading API or have configured default permissions on the user (or on rolesfor that
user) who is loading the documents. Default permissions are applied to a document when it is
loaded if you do not explicitly set permissions.

Permissions on a document control access to capabilities (read, insert, update, aNd execute) ON
the document. Each permission consists of a capability and a corresponding role. To have a
specific capability for adocument, a user must have the role paired with that capability on the
document permission. Default permissions are specified on roles and on users in the Admin
Interface.

If you load adocument without the needed permissions, users might not be able to read, update, or
execute the document (even by the user who loaded the document). For an overview of security,
see Security Guide. For details on creating privileges and setting permissions, see the Security
Administration chapter of the Administrator’s Guide.

Note: When you load a document, be sure that a named role has update permissions. For
any document created by a user who does not have the aamin role, the document
must be created with at |east one update permission or MarkL ogic throws an
XDMP-MUSTHAVEUPDATE €xception during document creation. If thereisno roleon a
document’ s permissions with update capability, or if the document has no
permissions, then only users with the aamin role can update or del ete the document.

1.3.2 Schemas

Schemas are automatically invoked by the server when loading documents (for conducting
content repair) and when evaluating queries (for proper datatyping). If you plan to use schemasin
your content loading strategy, review the information in the Loading Schemas chapter in the
Application Developer’s Guide.

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 7

MarkLogic Server Designing a Content Loading Strategy

1.3.3 Fragments

When loading data into a database, you have the option of specifying how XML documents are
partitioned for storage into smaller blocks of information called fragments. For large XML
documents, size can be an issue, and using fragments may help manage performance of your
system. For a discussion of fragments, see Fragments in the Administrator’s Guide.

1.3.4 Indexing

Before loading documents into a database, you have the option of specifying a number of
parameters that impact how the text components of those documents are indexed. These settings
can affect query performance and disk usage. For details, see Text Indexing in the Administrator’s
Guide.

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 8

MarkLogic Server Controlling Document Format

2.0 Controlling Document Format

Each document in a MarkLogic Server database has a format associated with it. The format is
based on the root node of the document. Once a document has been loaded as a particular format,
you cannot change the format unless you replace the root node of the document with one of a
different format. You can replace the root node of a document to change its format in anumber of
ways, including reloading the document while specifying a different format, deleting the
document and then loading it again with the same URI, or replacing the root node with one of a
different format.

Documents loaded into a MarkLogic Server database in JSON, XML, or text format are always
stored in UTF-8 encoding. Documents loaded in JSON, XML, or text format must either already
be in UTF-8 encoding or the UTF-8 encoding must be explicitly specified during loading using
options availablein the load APIs. For example, you might use the encoding option of the

xdmp : document - Load function. For more details, see Encodings and Collations in the Search
Developer’s Guide.

The following topics are included:

e Supported Document Formats

e Choosing a Binary Format

* |mplicitly Setting the Format Based on the MIME Type

e Explicitly Setting the Format

¢ Determining the Format of a Document

2.1 Terminology
The following terms are used in this topic.

Term Definition

document format Refers to how documents are stored in MarkL ogic databases. JSON,
XML, binary, or text format.

QName QName stands for qualified name and defines avalid identifier for ele-
ments and attributes. QNames are used to reference particular elements
or attributes within XML documents.

small binary A binary document stored in a MarkL ogic database whose size does not
document exceed the large size threshold. For details, see “ Choosing a Binary
Format” on page 12.

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 9

MarkLogic Server Controlling Document Format

Term Definition

large binary A binary document stored in a MarkL ogic database whose size exceeds

document the large size threshold. For details, see “Choosing a Binary Format” on
page 12.

external binary A binary document that is not stored in a MarkL ogic database and whose

document contents are not managed by the server. For details, see “Choosing a
Binary Format” on page 12.

CLOB Character large object documents, or text documents.

BLOB Binary large object documents, binary data stored as a single entity. Typ-

icaly images, audio, or other multimedia object.

2.2 Supported Document Formats
MarkL ogic supports the following document formats:

e JSON Format
e XML Format

e Binary Format
e Text (CLOB) Format

2.2.1 JSON Format

Documents that are in JSON format have special characteristics that enable you to do more with
them. For example, you can use X Path expressions to search through to particular parts of the
document and you can use the whole range of cts: query constructors to perform fine-grained
search operations, including property-level search.

JSON documents are indexed when they are loaded. The indexing speeds up query response time.
Thetype of indexing is controlled by the configuration options set on your document’s destination
database. JSON documents are a single fragment, and the maximum size of afragment (and
therefore of a JISON document) is 512 MB for 64-bit machines.

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 10

MarkLogic Server Controlling Document Format

2.2.2 XML Format

Documents that arein XML format have special characteristics that enable you to do more with
them. For example, you can use X Path expressions to search through to particular parts of the
document and you can use the whole range of cts: query constructors to perform fine-grained
search operations, including element-level search.

XML documents are indexed when they are loaded. The indexing speeds up query response time.
Thetype of indexing is controlled by the configuration options set on your document’s destination
database. One technique for loading extremely large XML documentsis to fragment the
documents using various elements in the XML structure. The maximum size of asingle XML
fragment is 512 MB for 64-bit machines. For more detail s about fragmenting documents, see
Fragments in the Administrator’s Guide.

2.2.3 Binary Format

Binary documents are loaded into the database as binary nodes. Each binary document isasingle
node with no children. Binary documents are typically not textual in nature and require another
application to read them. Some typical binary documents are image files (for example, .gif,
.ipg), Microsoft Word files (.doc and . docx), executable program files, and so on.

Binary documents are not indexed when they are loaded.

MarkL ogic Server supports three kinds of binary documents: small, large (BLOBS), and external.
Applications use the same interfaces to read all three kinds of binary documents, but they are
stored and loaded differently. These differences may lead to tradeoffs in access times, memory
requirements, and disk consumption. For more details, see “Choosing a Binary Format” on

page 12.

For adiscussion of the sizing and configuration options to consider when working with binary
content, see Configuring MarkLogic Server for Binary Content in the Application Developer’s Guide.

2.2.4 Text (CLOB) Format

Character large object (CLOB) documents, or text documents, are loaded into the database as text
nodes. Each text document is a single node with no children. Unlike binary documents, text
documents are textual in nature, and you can therefore perform text searches on them. Because
text documents only have a single node, however, you cannot navigate through the document
structure using X Path expressions like you can with XML or JSON documents.

Some typical text documents are simpletext files (. txt), source codefiles (. cpp, .java, and so
on), non well-formed HTML files, or any non-XML or non-JSON text file.

For 64-bit machines, text documents have a64 MB size limit. The in memory tree size limit

database property (on the database configuration screen in the Admin Interface) should be at | east
1 or 2 megabytes larger than the largest text document you plan on loading into the database.

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 11

MarkLogic Server Controlling Document Format

The database text-indexing settings apply to text documents (as well as JSON and XML
documents), and MarkL ogic creates the indexes when the text document is |oaded.

2.3 Choosing a Binary Format

Binary documents require special consideration because they are often much larger than text,
JSON, or XML content. MarkL ogic Server supports three types of binary documents: small,
large, and external. Applications use the same interfaces to read all three types of binary
document, but they are stored and loaded differently. A database may contain any combination of
small, large, and external binaries. Choose the format that best matches the needs of your
application and the capacity of your system. The size threshold that defines small and large binary
objectsis configurable. For details, see Selecting a Location For Binary Content in the Application
Developer’s Guide.

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 12

MarkLogic Server

Controlling Document Format

The following table summarizes attributes you should consider when organizing binary content:

Binary
Type

Managed By
MarkLogic
Server

Stored In

Considerations

Small

Yes

Stands

Fully cached for faster access

Entire contents may be cached in memory
when accessed

Size and quantity constrained by available
memory

Best suited for small frequently accessed
content, such asthumbnails, profile photos,
and icons

Large

Yes

Large Data
Directory

Access times similar to file system reads
Cached in compressed chunks for efficient
resource utilization.

Streams documents into and out of the
database

Size and quantity limited only by disk
space and system file size limit

Best suited for movies, music, and high
definition images

External

No

File system

Accesstimes similar to file system reads
Cached in compressed chunks for efficient
resource utilization.

Streams documents into and out of the
database

Size and quantity limited only by disk
gpace and system file size limit

External contents do not participate in
transactions, backups, or replication

Best suited for read-only content managed
external to MarkLogic Server

Small and large binary documents are stored in a MarkL ogic database and are fully managed by
MarkLogic Server. These documents fully participate in transactions, backup, and replication.
Small binaries are stored directly in the stands of aforest, which meansthey are cached in
memory. Large binaries are stored in a specia Large Data Directory, with only a small reference
object in the stand. The data directory containing large binary documents is located inside the
forest by default. The location is configurable during forest creation. For more details, see
Selecting a Location For Binary Content.

MarkLogic 10—May, 2019

Loading Content Into MarkL ogic Server—Page 13

MarkLogic Server Controlling Document Format

MarkLogic stores small and large binaries differently in the database to optimize resource
utilization. For example, if multiple stands contain the same large binary document, only the
reference fragment is duplicated. Similarly, if anew large binary document is created from a
segment of an existing binary document using xdmp : subbinary, anNew reference fragment is
created, but the binary content is not duplicated. For details about stands, see Understanding
Forests in the Administrator’s Guide.

MarkLogic Server does not fully manage external binary documents because the documents are
not stored in the database. The MarkL ogic database contains only a small reference fragment to
each external file. MarkLogic Server manages the reference fragments as usual, but does not
manage the external files. For example, MarkLogic Server does not replicate or back up the
external files. You must provide security, integrity, and persistence of the external files using
other means, such as the underlying operating system or file system.

Large and external binary documents require little additional disk space for merges. During a
merge, MarkL ogic copies fragments from the old stands to a new merged stand, as described in
Understanding and Controlling Database Merges in the Administrator’s Guide. The small reference
fragments of large and external binaries contribute little overhead to the merge process. The
referenced binary contents are not copied during a merge.

The following diagram shows the differencesin small, large, and externa binaries handling.
Although multiple stands may contain references fragments for the same large or externa binary
document, only the reference fragment is duplicated:

r—— - - - - - - - - - - - - - " - " " 0 "0 Y0 " " = =/ = A
| Forest |
: stand stand :
| small binary doc Large Data Directory small binary doc |
| |
| <binary contents> <binary contents> |
| ’——> <binary contents> |
| large binary doc ﬁ large binary doc |
| |
| external binary doc —-| external binary doc |
| |
Lo | J

External Unmanaged
Storage

— 1 <binary contents> [<—

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 14

MarkLogic Server Controlling Document Format

231 Loading Binary Documents

Loading small and large binary documentsinto a MarkL ogic database does not require special
handling, other than potentially explicitly setting the document format. Use the standard methods,
such as XQuery functions or other interfaces.

External binaries require special handling at load time because they are not managed by
MarkLogic. For details, see “ Creating External Binary References Using XQuery” on page 26.

2.3.2 Configuring MarkLogic Server for Binary Documents

Before loading binary content, you should carefully consider the sizing and scalability
implications of binary documents and configure the server appropriately. For details, see
Configuring MarkLogic Server for Binary Content in the Application Developer’s Guide.

2.4 Implicitly Setting the Format Based on the MIME Type

Unless the format is explicitly set when you load a document, the format of the document is
determined based on the MIME type that corresponds to the URI extension of the new document.
The URI extension MIME types, along with their default formats, are set in the Mimetypes
section of the Admin Interface.

For example, with the default MIME type settings, documents |oaded with the xm1 URI extension
areloaded as XML files; therefore loading a document with a URI /path/doc.xm1 resultsin
loading an XML document. The following table contains examples of applying the default MIME
type mappings to output URIs with various file extensions. Many additional mappings are
configured by default.

URI Document Type
/path/doc.json JSON
/path/doc .xml XML
/path/doc.jpg binary
/path/doc. txt text

You can also use the Mimetypes configuration page of the Admin Interface to modify any of the
default content setting, create new MIME types, or add new extensions and associate a format.
For example, if you know that all of your HTML files are well-formed (or clean up nicely with
content repair), you might want to change the default content loading type of URIs ending with
.html and .htm to XML.

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 15

MarkLogic Server

2.5

Explicitly Setting the Format

Controlling Document Format

When you load a document, you can specify the format. In most cases, explicitly setting the
format overrides the default settings specified on the Mimetypes configuration screen in the
Admin Interface. However, this varies depending on the API you use for ingestion.

For example, HTML files have adefault format of text, but you might have some HTML filesthat
you know are well-formed, and can therefore be loaded as XML.

Note: Itisagood practice to explicitly set the format rather than relying on implicit
format settings based on the MIME types because it gives you complete control
over the format and eliminates surprises based on implicit MIME type mappings.

The following table summarizes the mechanisms available for explicitly setting the document
format during loading for some commonly used MarkL ogic interfaces and tools.

Interface Summary For More Details
Content Set the -document_type import option Importing Content Into MarkLogic Server in
Pump the micp User Guide.
(mlcp)
JavaClient | contentbescriptor interface of the Single Document Operations in the Java
API package com.marklog.client.document | Application Developer’s Guide, and the
Java Client APl Documentation.
MarkLogiC | contentoutputFormat Class MarkLogic Connector for Hadoop
Connector Developer’s Guide and javadoc.
for Hadoop
REST Set the format parameter or Loading Content into the Database and
Client API content - type header on a PUT or Controlling Input and Output Content Type
POST request to the /documents in REST Application Developer’s
service. Guide.
XCC Set the format in the XCC Javadoc.
ContentCreateOptions class.
XQuery Specify avalue for the <format> The API documentation for
element of the <options> nodepassedto | xdmp: document-1oad iN the MarkLogic
xdmp : document - Load. XQuery and XSLT Function Reference.

MarkLogic 10—May, 2019

Loading Content Into MarkL ogic Server—Page 16

MarkLogic Server Controlling Document Format

The following XQuery example demonstrates explicitly setting the format to XML when using

xdmp : document -load.

xdmp : document-load ("c:\myFiles\file.html",
<options xmlns="xdmp:document-load">
<uri>http://myCompany.com/file.html</uri>
<permissions>{xdmp:default-permissions () }</permissions>
<collections>{xdmp:default-collections () }</collections>
<format>xml</format>
</options>)

2.6 Determining the Format of a Document

After adocument isloaded into a database, you cannot assume the URI accurately reflects the
content format. For example, adocument can be loaded as XML eveniif it hasa URI that endsin
.txt. To determine the format of a document in adatabase, perform anode test on the root node of
the document.

XQuery includes node teststo determine if anodeistext (text ()) or if anodeisan XML element
(e1ement ()). MarkLogic Server has added a node test extension to XQuery to determineif a node
isbinary (binary ().

The following code sample shows how you can use a typeswitch to determine the format of a
document.

(: Substitute in the URI of the document you want to test :)
let $x:= doc("/my/uri.xml") /node ()

return

typeswitch ($x)

case element () return "xml element node"
case text () return "text node"

case binary() return "binary node"
default return "don't know"

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 17

MarkLogic Server Specifying Encoding and Language

3.0 Specifying Encoding and Language

You can specify the encoding and default language while loading a document. You can also
automatically detect the encoding or manually detect the language (for example, using

xdmp : encoding—language—detect). This section describes how to load documents with aSpeCIfIC
encoding or language, and includes the following parts:

e Understanding Character Encoding

* Explicitly Specifying Character Encoding While Loading

e Automatically Detecting the Encoding

¢ Inferring the Language and Encoding of a Node in XQuery with xdmp:encoding-language-detect

¢ Specifying the Default Lanquage for XML Documents

For more information about languages, see Language Support in MarkLogic Server in the Search
Developer’s Guide.

3.1 Understanding Character Encoding

MarkLogic Server stores all content in the UTF-8 encoding. If you try to load non-UTF-8 content
into MarkLogic Server without trandating it to UTF-8, the server throws an exception. If you
have non-UTF-8 content, then you can specify the encoding for the content during ingestion, and
MarkLogic Server will trandate it to UTF-8. If the content cannot be translated, MarkL ogic
Server throws an exception indicating that there is non-UTF-8 content.

You can specify the encoding for content using either an encoding option on the ingestion
function or viaHTTP headers. For details, see Character Encoding in the Search Developer’s
Guide.

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 18

MarkLogic Server

Specifying Encoding and Language

3.2 Explicitly Specifying Character Encoding While Loading

The table below summarizes the mechanisms available for explicitly specifying character
encoding. See the interface-specific documentation for details. If no encoding is specified,
MarkLogic Server defaultsto UTF-8 for al non-binary documents.

Interface

Method

For Details See

MarkL ogic Content

Character encoding cannot be

“Loading Content Using

Pump (mlcp) controlled. Only UTF-8 is supported. | MarkLogic Content Pump”
on page 28.
MarkLogic Java AP Various handles. Conversion of Document
Encoding in the Java
Application Developer’s
Guide
REST Client API The charset parameter of the HTTP | REST Application
content -type header. However, Text, | Developer’s Guide
XML and JSON content must be
UTF-8 encoded.
XCC Java: Javadoc for XCC
ContentCreateOptions.setEncoding
XCC: dotnet for XCC (C# API)
Encoding property of the
ContentCreateOptions class
XQuery The encoding element of the options | XQuery and XSLT Reference
parameter to xdmp : document -1oad, Guide

xdmp : document -get, xdmp: zip-get,
and xdmp : http-get.

The following XQuery example loads the document using the 1SO-8859-1 encoding, transcoding
the content from 1SO-8859-1 to UTF-8 during the load:

xdmp : document-load ("c:/tmp/my-document .xml",

<options xmlns="xdmp:document-load">
<uri>/my-document .xml</uri>
<encoding>IS0-8859-1</encoding>

</optionss>)

3.3 Automatically Detecting the Encoding

For those interfaces that support auto-detection of encoding, MarkL ogic Server attemptsto
automatically detect the encoding of non-binary content during loading if the explicitly specified

encoding is auto.

MarkLogic 10—May, 2019

Loading Content Into MarkL ogic Server—Page 19

MarkLogic Server Specifying Encoding and Language

The automatic encoding detection chooses an encoding equivalent to the first encoding returned
by the xdmp : encoding-1anguage-detect XQuery function. Encoding detection is not an exact
science. There are cases where content encoding is ambiguous, but as long as your document is
not too small, the encoding detection isfairly accurate. There are, however, cases where
auto-detect might choose the wrong encoding.

Thefollowing XQuery example demonstrates using automatic character encoding detection when
loading a document uSiNg xdmp : document - 1oad:

xdmp : document-load ("c:/tmp/my-document .xml",
<options xmlns="xdmp:document-load">
<uri>/my-document .xml</uri>
<encoding>auto</encoding>
</optionss>)

For details, see the interface specific documentation or “Explicitly Specifying Character
Encoding While Loading” on page 19.

3.4 Inferring the Language and Encoding of a Node in XQuery with
xdmp:encoding-language-detect

If you do not want to rely on the automatic detection for the encoding or if you want to detect the
Ianguage, you Can use the xdmp : encoding-language-detect function. The

xdmp : encoding-language-detect function returns XML e ements, each of which SpeCIerS a
possible encoding and language for the specified node. Each element also has a score, and the one
with the highest score (the first element returned) has the most likely encoding and language.

xdmp : encoding-language-detect (
xdmp : document-get ("c:/tmp/session-login.css"))

=>

<encoding-language xmlns="xdmp:encoding-language-detect">
<encoding>utf-8</encoding>
<language>en</language>
<score>14.91</score>

</encoding-language>

<encoding-language xmlns="xdmp:encoding-language-detect">
<encoding>utf-8</encoding>
<language>ro</language>
<score>13.47</score>

</encoding-language>

<encoding-language xmlns="xdmp:encoding-language-detect">
<encoding>utf-8</encoding>
<language>it</language>
<score>12.84</score>

</encoding-language>

<encoding-language xmlns="xdmp:encoding-language-detect">
<encoding>utf-8</encoding>
<language>fr</language>
<score>12.71</score>

</encoding-language>

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 20

MarkLogic Server Specifying Encoding and Language

The encoding detection istypically fairly accurate when the scoreis greater than 10. The language
detection tends to be less accurate, however, because it can be difficult to detect the difference
between some languages. Because it gives you the raw data, you can use the output from

xdmp : encoding-language-detect With whatever logic you want to determine the language. For
example, if you happen to know, based on your knowledge of the content, that the languageis
either Italian or Spanish, you can ignore entries for other languages.

Sometimes the language or the encoding of ablock of text is ambiguous, therefore detecting
languages and encodings is sometimes prone to error. As arule, the larger the block of text, the
higher the accuracy of the detection. If the size of the block of text you pass into
xdmp:encoding-language-detect is more than a few paragraphs of text (several hundred bytes),
then the detection is typically fairly accurate.

3.5 Specifying the Default Language for XML Documents

The formal or natural language of XML content is determined by the element attribute xm1 : 1ang.
The language affects how MarkL ogic Server tokenizes content, and therefore affects searching
and indexing.

When there is no explicit xm1 : 1ang attribute on an XML document when it isloaded, MarkLogic
Server uses the configured default language for the database. Set the database-wide default
language through the 1anguage setting in the Admin Ul.

You can override the configured default language for the database using load options, as shown
by the table below:

Interface Method For Details See
MarkLogic -output_language COMmand line Importing Content Into MarkLogic Server
Content option in the micp User Guide
Pump
XCC ContentCreateOptions.setLanguage Javadoc for XCC
XQuery Set the <default-language> €lement | XQuery and XS_T Reference Guide

of the <options> Node passed to
xdmp : document -1load,

xdmp : document -get, xdmp:http-get,
OI xdmp: zip-get.

For details on languages, see Language Support in MarkLogic Server in the Search Developer’s
Guide.

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 21

MarkLogic Server Loading Content Using XQuery

4.0 Loading Content Using XQuery

This chapter describes the XQuery interface for loading content and includes the following
sections:

e Built-In Document Loading Functions

e Specifying a Forest in Which to L oad a Document

e Creating External Binary References Using XQuery

4.1 Built-In Document Loading Functions

The xdmp : document -1load, xdmp : document -insert, and xdmp : document -get functions can all be
used as part of loading documents into a database. The xdmp : document -10ad function allows you
to load documents from the filesystem into the database. The xdmp : document - insert function
allowsyou to insert an existing node into adocument (either anew or an existing document). The
xdmp : document -get function loads a document from disk into memory. If you are loading a new
document, the combination of xdmp : document -get and xdmp : document -insert is equival entto
xdmp : document -load of anew document.

Note: You may only load external binary documents using xdmp : document - insert Of @
constructed external-binary NOde. For details, see “ Creating External Binary
References Using XQuery” on page 26.

Note: Theversion 2.X xdmp: 1oad and xdmp: get functions are deprecated in the current
version of MarkL ogic Server; in their place, use the xamp : document -10ad and
xdmp : document -get functions.

The basic syntax of xdmp : document -10ad IS as follows:

xdmp : document - 1load (
Slocation as xs:string,
[Soptions as node ()]

) as empty-sequence ()

Thebasic syntax of xdmp : document -insert isasfollows:

xdmp : document -insert (
Suri as xs:string],
Sroot as node ()
[Spermissions as element (sec:permission) *],
[Scollections as xs:string*],
[Squality as xs:integer],
[sforest-ids as xs:unsignedLong*]
) as empty-sequence ()

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 22

MarkLogic Server Loading Content Using XQuery

The basic syntax of xdmp : document -get IS asfollows:

xdmp : document -get (
S$location as xs:string],
[Soptions as node()]

) as xs:node()

See the XQuery and XS T Reference Guide for a more detailed syntax description.

4.2 Specifying a Forest in Which to Load a Document

In most situations, MarkL ogic Server does a good job of determining which forest to put a
document, and in general you should not need to override the defaults. When loading a document,
however, you can use the <forests> node in an options node for xdmp : document -10ad, Or the
$forest-1id argument tO xdmp: document - insert (the sixth argument) to specify one or more forests
to which the document is loaded. Specifying multiple forest I Ds loads the document into one of
the forests specified; the system decides which one of the specified forests to |oad the document.
Once the document is loaded into aforest, it stays in that forest unless you del ete the document,
reload it specifying a different forest, or clear the forest.

Note: In order to load a document into aforest by explicitly specifying aforest key, the
forest must exist and be attached to the database into which you are loading.
Attempting to load a document into aforest that does not belong to the context
database will throw an exception. Additionally, the 10cking parameter must be set
to strict on the database configuration, otherwise an
XDMP-PLACEKEY SLOCKING exception is thrown.

This section describes some aspects of forest-specific loading and includes the following parts:

* Consider If You Really Want to Specify a Forest

e Some Potential Advantages of Specifying a Forest

e Example: Examining a Document to Decide Which Forest to Specify

* More Examples

4.2.1 Consider If You Really Want to Specify a Forest

For most applications, you should not specify the forest in which you want to load a document.
MarkLogic Server has efficient ways of determining which forest to load a document, and those
ways are amost always better than explicitly specifying the forest. The default way MarkLogic
spreads documents across forests is optimized for both query and loading efficiency. If you are
using Tiered Storage (for details, see Tiered Storage), it hasits own way of partitioning documents
that you should follow.

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 23

MarkLogic Server Loading Content Using XQuery

One of the pitfalls of specifying aforest, is that the URI you are loading may already exist in
another forest within the same database. Thisisaform of content corruption and will cause
searches that select that URI to return with an XDMP-DBDUPURI error. If you runinto thiserror,
this Knowledge Base article contains a solution as well as some strategies for preventing
duplicate URIs.

If you really want to specify the forest to which you load a document, the following describes
some details about forest-specific loading.

4.2.2 Some Potential Advantages of Specifying a Forest

Because backup operations are performed at either the database or the forest level, loading a set of
documentsinto specific forests allows you to effectively perform backup operations on that set of
documents (by backing up the database or forest, for example).

Specifying aforest also allows you to have more control over the filesystemsin which the
documents reside. Each forest configuration includes a directory where the files are stored. By
specifying the forest in which adocument resides, you can control the directories (and in turn, the
filesystems) in which the documents are stored. For example, you might want to place large,
frequently accessed documentsin aforest which resides on a RAID filesystem with complete
failover and redundancy, whereas you might want to place documents which are small and rarely
accessed in aforest which residesin a slower (and less expensive) filesystem.

Note: Once adocument isloaded into aforest, you cannot move it to another forest. If
you want to change the forest in which a document resides, you must reload the
document and specify another forest.

4.2.3 Example: Examining a Document to Decide Which Forest to
Specify
You can use the xdamp : document -get function to aload a document into memory. One use for

loading a document into memory is the ability to perform some processing or logic on the
document before you load the document onto disk.

For example, if you want to make a decision about which forest to |oad a document into based on
the document contents, you can put some simple logic in your load script as follows:

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 24

https://help.marklogic.com/Knowledgebase/Article/View/22/19/understanding-xdmp-dbdupuri-exceptions-how-they-can-occur-and-how-to-prevent-them

MarkLogic Server Loading Content Using XQuery

let S$memoryDoc := xdmp:document-get ("c:\myFiles\newDocument .xml")
let S$forest :=
if (SmemoryDoc//ID gt "1000000")
then xdmp:forest ("LargeID")
else xdmp:forest ("SmallID")
return
xdmp : document -insert (" /myCompany/newDocument .xml",
SmemoryDoc,
xdmp:default-permissions (),
xdmp:default-collections(),
0,
Sforest)

This code |oads the document newbocument .xm1 INt0 memory, finds the 1o element in the
in-memory document, and then inserts the node into the forest named Largerp if the 1p is greater
than 1,000,000, or inserts the node into the forest named sma1110 if the 1o isless than 1,000,000.

4.2.4 More Examples
The following command loads the document into the forest named myrForest:

xdmp : document-load ("c:\myFile.xml",

<options xmlns="xdmp:document-load">
<uri>/myDocs/myDocument .xml</uri>
<permissions>{xdmp:default-permissions () }</permissions>
<collections>{xdmp:default-collections () }</collections>
<repair>full</repair>
<forestss>

<forest>{xdmp:forest ("myForest") }</forest>

</forests>

</options>)

The following command |oads the document into either the forest named reawood or the forest
named aspen:

xdmp : document-load ("c:\myFile.xml",
<options xmlns="xdmp:document-load">
<uri>/myDocs/myDocument .xml</uri>
<permissions>{xdmp:default-permissions () }</permissions>
<collections>{xdmp:default-collections () }</collections>
<repair>full</repair>
<forestss>
<forest>{xdmp:forest ("redwood") }</forest>
<forest>{xdmp:forest ("aspen") }</forest>
</forests>
</options>)

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 25

MarkLogic Server Loading Content Using XQuery

4.3 Creating External Binary References Using XQuery

An external binary node is a special reference to a binary file managed and stored in the file
system separately from MarkL ogic Server. You can create an external binary node in MarkL ogic
and insert the node in the database, creating an external binary reference document. The external
binary reference document acts like a normal binary document, except that MarkL ogic never
actually storesthe binary datainternally, and instead transparently accesses the external file every
time the document is accessed. Unlike normal binary documents, you do not use

xdmp : document - 1oad t0 insert an external binary reference document in the database. To insert an
external binary reference document into the database, you first create a binary node using the
xdmp : external-binary function and then insert the node into the database usi ng

xdmp :document -insert.

For example, the following code creates a document representing the external binary file
/external/path/sample.jpg, beginning at offset 1 in thefile, with alength of 1M:

xdmp : document -insert ("/docs/xbin/sample. jpg",
xdmp :external -binary (
"/external/path/sample.jpg", 1,1024000))

When you provide alength to xdmp : external-binary, MarkLogic Server does not verify the
existence or size of the external file. If you omit alength when calling xdmp : external-binary, the
underlying external file must exist, and MarkLogic Server calculates the length in a manner
equivalent to cd Ilng xdmp: filesystem-file-length.

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 26

MarkLogic Server Loading Content Using REST, Java or Node.js

5.0 Loading Content Using REST, Java or Node.|s

You can use the Node.js Client API, Java Client API, or REST Client API to load content into
MarkLogic Server from aremote host. You do not need to understand X Query to use these
interfaces. For details, see the following guides:

* Node.js Application Developer’s Guide

» Java Application Developer’s Guide

* REST Application Developer’s Guide

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 27

MarkLogic Server Loading Content Using MarkLogic Content Pump

6.0 Loading Content Using MarkLogic Content Pump

MarkLogic Content Pump (mlcp) isacommand line tool for getting data into and out of a
MarkLogic Server database. Using milcp, you can import documents and metadata to a database,
export documents and metadata from a database, or copy documents and metadata from one
database to another.

The tool supports avariety of input formats, including flat files and compressed files, on the
native file system or on HDFS. You can aso use mlcp with Hadoop to load large amounts of
content distributed across a Hadoop cluster.

For details, see the micp User Guide.

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 28

MarkLogic Server Loading Content Using WebDAV

7.0 Loading Content Using WebDAV

If you have configured a WebDAV server, you can use a WebDAV client to load documents into
the database. WebDAV clients such as Windows Explorer alow drag and drop access to
documents, just like any other documents on the filesystem. There are a number of WebDAV
clients available for various platforms and information can be found by searching the Internet for
WebDAV clients. Some MarkL ogic users have had good success with BitKinex and with
NetDrive from Novell.

For details on setting up MarkLogic WebDAV servers, see WebDAV Servers in the Administrator’s
Guide.

Directories are required for WebDAV clients to see documents. See Directories and WebDAV
Servers in the Application Devel oper’s Guide.

For an example of using a WebDAV client with the Default Conversion Option (a CPF example
application), see Simple Drag-and-Drop Conversion in the Content Processing Framework Guide.

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 29

MarkLogic Server Repairing XML Content During Loading

8.0 Repairing XML Content During Loading
MarkLogic Server can perform the following types of XML content repair during content
loading:

» Correct content that does not conform to the well-formedness rulesin the XML

specification

* Modify inconsistently structured content according to a specific XML schema

» Assign namespaces and correct unresolved namespace bindings

* Restructure content using XPath or XQuery
Not al programming language interfaces support the full spectrum of XML content repair.
MarkLogic Server does not validate content against predetermined X Schema (DDML) or DTDs.

This chapter includes the following topics:

e Programming Interfaces and Supported Content Repair Capabilities

e Enabling Content Repair

¢ Auto-Close Repair of Empty Tags

e Schema-Driven Tag Repair

e | oad-Time Default Namespace Assignment

* | oad-Time Namespace Prefix Binding

* Query-Driven Content Repair

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 30

MarkLogic Server Repairing XML Content During Loading

8.1 Programming Interfaces and Supported Content Repair Capabilities

The MarkL ogic programming interfaces support repair options as described in the following
table:

Programming

Interface Content Repair Capabilities More Details
MarkL ogic Connector | Set the repair level. MarkLogic Connector for
for Hadoop Hadoop Developer’s Guide
MarkL ogic Content Tag repair and schema-driven -xml_repair level Option. See
Pump repair, namespace prefix binding. | Importing Content Into MarklLogic

Server inthe mlcp User Guide

MarkLogic Java AP Tag repair, schema-driven repair, Java Application Developer’s

namespace prefix binding. Guide

REST Client API General-purpose tag repair and repair parameter on
schema-driven repair, namespace | puT:/v1/documents inthe
prefix binding. REST Client API

XCC Generd -purpose tag repair and DocumentRepairLevel
schema-driven repair, namespace enumeration class
prefix binding.

XQuery All types described in this chapter. | <repair> parameter in the

options node of

xdmp : document - load.

Also see the MarkLogic
XQuery and XSLT Function
Reference

8.2 Enabling Content Repair

Thetag repair, schema-driven repair, and namespace prefix binding mechanisms are enabled
using an option to the various content loading functions as listed above.

When no repair option is explicitly specified, the default isimplicitly specified by the XQuery
version of the caller. In XQuery 1.0 and 1.0-ml the default iSnone. In XQuery 0.9-ml the default is
full.

Tag repair, schema-driven repair, and namespace prefix binding can be performed on all XML

documents loaded from external sources. This includes documents loaded using the XQuery
built-in functions, XCC document insertion methods, or the Javaor REST client APIs.

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 31

MarkLogic Server Repairing XML Content During Loading

8.3 General-Purpose Tag Repair

MarkLogic Server can apply a general-purpose, stack-driven tag repair algorithm to every XML
document loaded from an external source. The algorithm is triggered by encountering a closing
tag (for example, </tag>) that does not match the most recent opening tag on the stack.

8.3.1 How General-Purpose Tag Repair Works
Consider the following simple document markup example:

<p>This is bold and <i>italic</i> within the paragraph.</p>
Each of the following variations introduces a tagging error common to hand-coded markup:

<p>This is bold and <isitalic within the paragraph.</p>
<p>This is bold and <isitalic</i></u> within the paragraph.</p>

In the first variation, the ita1ic eement is never closed. And in the second, the underline
element is never opened.

When MarkL ogic Server encounters an unexpected closing tag, it performs one of the following
actions:

* Rule 1: If the QName (both the tag’ s namespace and its local name) of the unexpected
closing tag matches the QName of atag opened earlier and not yet closed, the |loader
automatically closes all tags until the matching opening tag is closed.

Conseguently, in the first sample tagging error, the loader automatically closes theitalic
element when it encounters the tag closing the bold element:

<p>This is bold and <isitalic</i> within the paragraph.</p>

The bold characters in the markup indicate the close tag dynamically inserted by the
loader.

* Rule2: If thereis no match between the QName of the unexpected closing tag and all
previously opened tags, the loader ignores the closing tag and proceeds.

Conseguently, in the second tagging error shown above, the loader ignores the "extra’
underline closing tag and proceeds asiif it is not present:

<p>This is bold and <isitalic</i></u> within the paragraph.</p>

The italic tag indicates the closing tag that the loader isignoring.

Both rules work together to repair even more complex situations. Consider the following
variation, in which the bold and italic closing tags are mis-ordered:

<p>This is bold and <isitalic</i> within the paragraph.</p>

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 32

MarkLogic Server Repairing XML Content During Loading

In this circumstance, the first rule automatically closes the italic element when the closing bold
tag is encountered. When the closing italic tag is encountered, it is simply discarded as there are
no previously opened italic tags still on the loader's stack. The result is more than likely what the
markup author intended:

<p>This is bold and <i>italic</i> within the paragraph.</p>

8.3.2 Pitfalls of General-Purpose Tag Repair

While these two general repair rules produce sound results in most situations, their application
can lead to repairs that may not match the original intent. Consider the following examples.

1 This snippet contains a markup error: the bold element is never closed.

<p>This is a bold and <isitalic</i> part of the paragraph.</p>

The general-purpose repair algorithm fixes this problem by inserting a closing bold tag
before the closing paragraph tag, because this is the point at which it becomes apparent
that there is a markup problem:

<p>This is a bold and <is>italic</i> part of the paragraph.</p>

In this situation, the entire remainder of the paragraph is emboldened, because it is not
otherwise apparent where the tag was closed. For cases other than this example, even a
human is not always able to make the right decision.

2. Rule 1 can also cause significant “unwinding” of the stack if atag, opened much earlier in
the document, is mistakenly closed mid-document. Consider the following markup error
where </a- ismistyped as .

<a>

<C>
<d>...content intended for d...
...content intended for c...
</c>
...content intended for b...

...content intended for a...

The erroneous < /o> tag triggers rule 1 and the system closes all intervening tags between
 and <d-. Rule 2 then discards the actual close tags for <> and <c> that have now been
made redundant (since they have been closed by rule 1). Thisresultsin an incorrectly
“flattened” document as shown here (some indentation and line breaks have been added
for illustrative purposes):

<a>

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 33

MarkLogic Server Repairing XML Content During Loading

<C>
<d>...content intended for d...</d>
</c>

...content intended for c...
...content intended for b...
...content intended for a...

General-purpose tag repair is not always able to correctly repair structure problems, as shown in

the preceding examples. MarkL ogic offers additional content repair capabilities that can be used

to repair awider range of problems, including the examples above. These advanced content repair
techniques are described in the following sections.

8.3.3 Limitations
This section describes some known limitations of general-purpose tag repair.

8.3.3.1 XQuery Functions

For functions where the XML node provided as a parameter is either dynamically generated by
the query itself (and is consequently guaranteed to be well-formed) or is explicitly defined within
the XQuery code (in which case the query is not successfully parsed for execution unlessit is
well-formed), general-purpose tag repair is not performed. Thisincludes XML content loaded
using the following functions:

e xdmp:document-insert

e xdmp:node-replace

e xdmp:node-insert-before
e xdmp:node-insert-after

e xdmp:node-insert-child

8.3.3.2 Root Element

General-purpose tag repair does not insert amissing closing root element tag into an XML
document.

8.3.3.3 Previous Marklogic Versions

Versions of MarkLogic Server 2.0 and earlier would repair missing root elements, making it
effectively impossible to identify truncated source content. Later versions of MarkL ogic Server
reports an error in these conditions.

8.34 Controlling General-Purpose Tag Repair

MarkLogic Server enables you to enable or disable general-purpose tag repair during any
individual document load using an optional repair parameter. The specific parameter is language
specific. For example, if you use XQUery xdmp : document - 1oad, xdmp : unquote fUNCtiONS, you can
use the repair parameter on the options node and specify avalue of ful1 Or none. See the
language specific documentation for more details.

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 34

MarkLogic Server Repairing XML Content During Loading

8.4 Auto-Close Repair of Empty Tags

Empty tag auto-close is aspecia case of schema-driven tag repair and is supported in all versions
of MarkLogic Server. This repair mechanism automatically closes tags that are identified as
empty tags in a specially-constructed XML schema.

This approach addresses a common problem found in SGML and HTML documents. SGML and
HTML both regard tags as markup rather than as the hierarchical element containers defined by
the XML specification. In both the SGML and HTML worlds, it is acceptable to use atag as an
indication of some formatting directive, without any need to close the tag. This frequently results
in the liberal use of empty tags within SGML and HTML content.

For example, an <hr> tag in an HTML document indicates a horizontal rule. Because thereis no
sense to containing anything within a horizontal rule, the tag is interpreted by browsers as an
empty tag. Consequently, while HTML documents may be littered with <nr> tags, you rarely find
a</hr> tag or even a <hr/> tag unless someone has converted the HTML document to be
XHTML-compliant. The same can occur with and <meta> tags, to name just two. In SGML
documents, you can easily find <pgbrks, <xref> and <graphic> used similarly.

Applying thistype of content repair enables you to avoid the false nesting of content within
otherwise unclosed empty tags.

8.4.1 What Empty Tag Auto-Close Repair Does
Consider the following simple SGML document snippet:

<book>

<para>This is the first paragraph.</para>

<pgbrks>

<para>This paragraph has a cross-reference <xref id="£563t001"> in some
<italic>italic</italic> text.</para>

</book>

This snippet incorporates two tags, <pgbrk> and <xref>, that are traditionally viewed as empty
tags. Working under default settings, MarkL ogic Server views each of these two tags as opening
tags that at some point later in the document will be closed, and consequently incorrectly views
the following content as children of those tags. This resultsin afalsely nested document
(indentation and line breaks added for clarification):

<book>
<para>
This is the first paragraph.
</para>
<pgbrk>
<para>
This paragraph has a cross-reference
<xref id="£f563t001">
in some
<italic>italic</italics>
text.

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 35

MarkLogic Server Repairing XML Content During Loading

</xref>
</para>
</pgbrk>
</book>

The bold characters in the markup shown above indicate closing tags automatically inserted by
the general-purpose tag repair algorithm.

This example demonstrates how unclosed empty tags can distort the structure of a document.
Imagine how much worse this example could get if it had fifty <pgbrks tagsinit.

To understand the ramifications of this, consider how the markup applied above is processed by a
guery that specifies an XPath such as /doc/para. Thefirst paragraph matches this X Path, but the
second does not, because it has been loaded incorrectly as the child of apgbrk element. While
alternative X Path expressions such as /doc//para gloss over thisdifference, it is better to load the
content correctly in the first place (indentation and line breaks added for clarification):

<book>
<para>
This is the first paragraph.
</para>
<pgbrk/>
<para>
This paragraph has a cross-reference
<xref id="f563t001"/>
in some
<italic>italic</italic>
text.
</para>
</book>

8.4.2 Defining a Schema to Support Empty Tag Auto-Close Repair

To use empty tag auto-close repair, you first define an XML schemathat specifies which tags
should be assumed to be empty tags. Using thisinformation, when MarkLogic Server isloading
content from an external source, it automatically closes these tags as soon as they are
encountered. If some of the specified tags are, in fact, accompanied by closing tags, these closing
tags are discarded by the general-purpose tag repair algorithm.

Hereis an example of a schemathat instructs the loader to treat as empty tags any <xrets,
<graphics> and <pgbrk> tags found in documents governed by the http://www.mydomain.com/sgml
namespace:

<xs:schema
targetNamespace="http://www.mydomain.com/sgml"
xsi:schemalocation="http://www.w3.0rg/2001/XMLSchema XMLSchema.xsd"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" >
<xs:complexType name="empty"/>
<xs:element name="xref" type="empty"/>

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 36

MarkLogic Server Repairing XML Content During Loading

<xXs:element name="graphic" type="empty"/>
<xXs:element name="pgbrk" type="empty"/>
</xs:schema>

If the sample SGML document shown earlier isloaded under the control of this schema, itis
repaired correctly.

To use XML schemas for content repair, two things are required:

* The schemamust be loaded into MarkLogic Server.

» The content to be loaded must properly reference the schema at load-time.

8.4.3 Invoking Empty Tag Auto-Close Repair

There are multiple ways to invoke the empty tag auto-close functionality. The recommended
procedure is the following:

1 Write an XML schema that specifies which tags should be treated as empty tags. The
schema shown in the preceding section, “Defining a Schemato Support Empty Tag
Auto-Close Repair” on page 36, is agood starting point.

2. Load the schemainto MarkLogic. See Loading Schemas in the Application Developer’s
Guide for instructions.

3. Make sure that the content to be loaded references the namespace of the applicable
schemathat you have loaded into MarkL ogic. For the schema shown above, the
document’s root element could take one of two forms.

In the first form, the document implicitly references the schema through its namespace:

<document
xmlns="http://www.mydomain.com/sgml" >

</document >

MarkLogic Server automatically looks for a matching schema whenever a document is
loaded.

In the second form, one of multiple matching schemas can be explicitly referenced by the
document being loaded:

<document
xmlns="http://www.mydomain.com/sgml"
xsi:schemalLocation="http://www.mydomain.com/sgml /sch/SGMLEmpty.xsd"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema" >

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 37

MarkLogic Server Repairing XML Content During Loading

</document >

This example explicitly references the schemastored at URI /sch/seMLEmpty . xsd in the
current schema database. If there is no schema stored at that URI, or the schema stored at
that URI has a target namespace other than nttp: //www.mydomain. com/sgml, NO SChemais
used.

See Loading Schemas in the Application Developer’s Guide for an in-depth discussion of
the precedence rules that are applied in the event that multiple matching schemas are
found.

4, L oad the content using xdmp : document -10ad Or one of the other language interface
document insertion methods.

After the content is loaded, you can inspect it to see that the content repair was performed. If
empty tag auto-close repair was not applied, then you should troubleshoot the location, naming
and cross-referencing of your schema, as thisis the most likely source of the problem.

When it is not feasible to modify your content so that it properly references a namespacein its
root element, there are other approaches that can yield the same result:

1 Write an XML schema that specifies which tags should be treated as empty tags. Because
the root xs : schema €lement lacks a targetNamespace attribute, the document below
specifies a schemathat applies to documents loaded in the unnamed namespace:

<xs:schema
xsi:schemalocation="http://www.w3.0rg/2001/XMLSchema XMLSchema.xsd"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" >
<xXs:complexType name="empty"/>
<xXs:element name="xref" type="empty"/>
<xXs:element name="graphic" type="empty"/>
<xXs:element name="pgbrk" type="empty"/>

</xs:schema>

2. L oad the schemainto MarkL ogic, remembering the URI name under which you loaded
the schema. See Loading Schemas in the Application Developer’s Guide for instructions on
properly loading schemain MarkLogic Server.

3. Construct an XQuery statement that temporarily imports the schemainto the appropriate
namespace and |oads the content within that context.

* A simple example of importing a schemainto the unnamed namespace might look like the
following:

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 38

MarkLogic Server Repairing XML Content During Loading

xquery version "0.9-ml"
import schema namespace "myNS" at "schema-uri-you-specified-in-step-2";
xdmp : document -load ("content-to-be-repaired.sgml", ...)

Be careful to restrict the content loading operations you carry out within the context of this
import schema directive, asall documents loaded in the unnamed namespace are filtered
through the “empty tag auto close” repair algorithm under the control of this schema.

Note: The target namespace specified in the import schema prolog statement and in the
schema document itself must be the same, otherwise the schemaimport fails
silently.

4, Run the query shown above to load and repair the content.

8.4.4 Scope of Application

Once a schemais configured and loaded for empty tag auto-closing, any content that references
that schema and is loaded from an external source is automatically repaired as directed by that
schema.

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 39

MarkLogic Server Repairing XML Content During Loading

8.45 Disabling Empty Tag Auto-Close
There are several ways to disable load-time empty tag auto-close repair:

1 Disable content repair at |oad-time using the applicable option for your chosen language
interface.
2. Remove the corresponding schema from the database and ensure that none of the content

to be loaded in the future still references that schema.
3. Modify the referenced schemato remove the empty tag definitions.

Removing the schema from the database does not impact documents already loaded under the
rubric of that schema, at least with respect to their empty tags being properly closed. To the extent
that the schemain question contains other information about the content that is used during query
processing, you should consider the removal of the schema from the database carefully.

8.5 Schema-Driven Tag Repair

MarkL ogic Server supports the use of XML schemas for more complex schema-driven tag repair.
This enables you to use XML schemas to define a set of general rules that govern how various
elementsinteract hierarchically within an XML document.

8.5.1 What Schema-Driven Tag Repair Does
For example, consider the following SGML document snippet:

<book>
<section><para>This is a paragraph in section 1.
<section><para>This is a paragraph in section 2.
</book>

This snippet illustrates one of the key challenges created by interpreting markup languages as
XML. Under default settings, the server repairs and loads this content as follows (indentation and
line breaks added for clarification):

<book>
<sections>
<paras>
This is a paragraph in section 1.
<section>
<para>This is a paragraph in section 2.</para>
</section>
</para>
</section>
</book>

The repaired content shown above isamost certainly not what the author intended. However, itis
all that the server can accomplish using only general-purpose tag repair.

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 40

MarkLogic Server Repairing XML Content During Loading

Schema-driven content repair improves the situation by allowing you to indicate constraintsin the
relationships between elements by using an XML schema. In this case, you can indicate that a
<section> €lement may only contain <para> elements. Therefore, a<section> €lement cannot bea
child of another <section> element. In addition, you can indicate that <para> element isasimple
type that only contains text. Using the schema, MarkLogic Server can improve the quality of
content repair that it performs. For example, the server can use the schemato know that it should
check to seeif there is an open <section> element on the stack whenever it encounters a new
<section> €lement.

Theresulting repair of the SGML document snippet shown aboveis closer to the original intent of
the document author:

<book >
<section>
<para>
This is a paragraph in section 1.
</para>
</section>
<section>
<para>
This is a paragraph in section 2.
</para>
</section>
</book>How it works

To take advantage of schema-driven tag repair, you must first define an XML schema that
describes the constraints on the relationships between elements. Using this information, when
tMarkL ogic Server loads content from an external source, it automatically closes tags still open
on its stack when it encounters an open tag that would violate the specified constraints.

Unlike general-purpose tag repair, which is triggered by unexpected closing tags, schema-driven
tag repair istriggered by unexpected opening tags, so the two different repair modelsinteroperate
cleanly. In the worst case, schema-driven tag repair may, as directed by the governing schemafor
the document being loaded, automatically close an element sooner than that element is explicitly
closed in the document itself. This case only occurs when the rel ationship between elementsin the
document is at odds with the constraints described in the schema, in which case the schemais
used as the dominating decision factor.

The following is an example of a schemathat specifies the following constraints:

* <books €lementsinthe http: //www.mydomain.com/sgml NAMespace can only contain
<section> €lements.

* <section> @lementsinthenttp://www.mydomain.com/sgml NAMespace can only contain
<para> elements.

* <paras €élementsinthenttp://www.mydomain.com/sgml NAMESPace can only contain text.

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 41

MarkLogic Server

If the sample SGML document shown above is loaded under the control of this simple schema, it

<Xs:schema

targetNamespace="http://www.mydomain.com/sgml"

xsi:schemaLocation="http://www.w3.0rg/2001/XMLSchema XMLSchema .xsd"

xmlns:xs="http://www.w3.0rg/2001/XMLSchema"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" >

<xs:complexType name="book">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element ref="section"/>
</xs:choice>
</xs:complexType>

<xs:complexType name="section"s
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element ref="para"/>
</xs:choice>
</xs:complexType>

<xXs:element name="book" type="book"/>
<Xs:element name="section" type="section"/>
<Xs:element name="para" type="xs:string"/>

</xs:schema>

is corrected as specified.

To make this happen, two things are required:

8.5.2

1.

2.

MarkLogic 10—May, 2019

The schema must be loaded into MarkLogic Server.

The content to be loaded must properly reference this schema at load-time.

How to Invoke Schema-Driven Tag Repair

There are multiple ways to do schema-driven correction. The recommended procedureis the
following:

Write an XML schema that describes the relationships between the elements.

Load the schemainto MarkLogic Server. See Loading Schemas in the Application
Developer’s Guide for instructions.

In the content that you need to load, ensure that the root element properly references the
appropriate schema. See “Invoking Empty Tag Auto-Close Repair” on page 37 for
examples of referencing the XML schema from inside the content.

L oad the content using xdmp : document - 10ad Or any of the other available document
insertion methods.

Repairing XML Content During Loading

Loading Content Into MarkL ogic Server—Page 42

MarkLogic Server Repairing XML Content During Loading

After the content is loaded, you can inspect it to see that the content repair was performed. If the
appropriate content repair did not occur, then you should troubleshoot the placement, naming and
cross-referencing of your schema.

If it is not feasible to modify the content so that it properly referencesthe XML schemain its root
element, there are other approaches that can yield the same resullt:

1 Write a schemathat describes the relationships between the elements, and omit a
targetNamespace atribute from itSxs:schema root element.

2. Load the schemainto MarkL ogic Server, remembering the URI name under which you
store the schema. See Loading Schemas for instructions on properly loading schemain
MarkLogic Server.

3. Construct an XQuery statement that temporarily imports the schema into the appropriate
namespace and loads the content within that context. Following is a simple example of
importing a schema into the unnamed namespace:

xquery version "0.9-ml"
import schema namespace "myNS" at "schema-uri-you-specified-in-step-1";
xdmp : document -load ("content-to-be-repaired.sgml", ...)

Be careful to restrict the content oading operations you carry out within the context of this
import schema directive, asall documentsloaded are filtered through the same
schema-driven content repair algorithm.

Note: The target namespace specified in the import schema prolog statement and in the
schema document itself must be the same, otherwise the schemaimport fails
silently.

4, Run the query shown above to load and repair the content.

8.5.3 Scope of Application

Once a schema has been configured and loaded for schema-driven tag repair, any content that
references that schemaand isloaded from an external source is automatically repaired as directed
by that schema.

8.5.4 Disabling Schema-Driven Tag Repair
There are several ways to turn off load-time schema-driven tag repair:

1 Disable content repair at |oad-time using the appropriate parameter for your chosen
content loading mechanism.

2. Remove the corresponding schema from the database and ensure that none of the content
loaded in the future references that schema.

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 43

MarkLogic Server Repairing XML Content During Loading

3. Modify the referenced schemato remove the empty tag definitions.

Removing the schema from the database does not impact documents already loaded under the
rubric of that schema. To the extent that the schemain question contains other information about
the content that is used during query processing, you should consider the removal of the schema
from the database carefully.

8.6 Load-Time Default Namespace Assignment

When documents are loaded into MarkL ogic, every element is stored with a QName comprised of
anamespace URI and alocal name.

However, many XML files are authored without specifying a default namespace or a namespace
for any of their elements. When these files are loaded from external sources, MarkLogic applies
the default unnamed namespace to all the nodes that do not have an associated namespace.

In some situations thisis not the desired result. Once the document is loaded without a specified
namespace, it is difficult to remap each QName to a different namespace. It is better to load the
document into MarkLogic Server with the correct default namespace in the first place.

The best way to specify a default namespace for a document is to add a default namespace
attribute to the document’s root node directly. When that is not possible, MarkL ogic's load-time
namespace substitution capability offers a good solution. If you are using XQuery or XCC for
your document loading, you can specify a default namespace for the document at load-time,
provided that the document root node does not already contain a default namespace specification.

Note: Thisfunction is performed as described below if a default namespace is specified
at load time, even if content repair isturned off.

Note: The REST and Javaclient APIs do not provide a default namespace option. When
you use these APIs for your document loading, it is best to add the appropriate
namespace attribute to your documents before loading them to the database.

8.6.1 How Default Namespace Assignments Work

The xdmp : document - 10ad function and the XCC setnamespace method (|n the
contentCreateOptions Class) allow you to optionally specify a namespace as the default
namespace for an individual document loading operation.

MarkL ogic uses that namespace definition as follows:
Rule 1: If the root node of the document does not contain the default namespace attribute, the
server uses the provided namespace as the default namespace for the root node. The appropriate

namespaces of descendant nodes are then determined through the standard namespace rules.

Rule 2: If the root node of the document incorporates a default namespace attribute, the server
ignores the provided namespace.

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 44

MarkLogic Server Repairing XML Content During Loading

Note that rule 2 means that the default namespace provided at load time cannot be used to
override an explicitly specified default namespace at the root element

8.6.2 Scope of Application

You can specify default namespaces at |oad-time when you use XQuery or XCC to load content.
See the corresponding documentation for further details.

8.7 Load-Time Namespace Prefix Binding

The original XML specifications allow the use of colonsin element names, for example,
<myprefix:a>. However, according to the XML Namespace specifications (devel oped after the
initial XML specifications), the string before a colon in an element name isinterpreted as a
namespace prefix. The use of prefixes that are not bound to namespaces is deemed as
non-compliant with the XML Namespace specifications.

Prior to version 2.1, MarkL ogic Server dropped unresolved prefixes from documents loaded into
the database in order to conform to the XML Namespace specifications. Consider a document
named mybook . xm1 that contains the following content:

<publisher:book>
<section>
This is a section.
</section>
</publisher:book>

If pub1isher IS NOt bound to any namespace, mybook . xm1 IS loaded into the database as:

<book >
<section>
This is a section.
</section>
<book>

Starting in 2.1, MarkL ogic Server supports more powerful correction of XML documents with
unresolved namespace bindings. If content repair iSon, mybook . xm1 1S |oaded with a namespace
binding added for the publisher prefix.

<publisher:book
xmlns:publisher="appropriate namespace-see details below">
<section>
This is a section.
</section>
</publisher:book>

If content repair is off, MarkLogic Server returns an error if unresolved namespace prefixes are
encountered at load time.

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 45

MarkLogic Server Repairing XML Content During Loading

8.7.1 How Load-Time Namespace Prefix Binding Works

If content repair is enabled, MarkL ogic can create namespace bindings at |oad time for namespace
prefixes that would otherwise be unresolved.

Namespace prefixes are resolved using the rules below. The rules are listed in order of
precedence:

Rule 1: When the prefix is specified in the document, that binding is retained. In the following
example, the binding for publisher tO "http://publishera.con" IS Specified in the document and
IS retained.

<publisher:book xmlns:publisher="http://publisherA.com">
<sections>
This is a section.
</section>
</publisher:book>

Rule 2: When the prefix is declared in the XQuery environment, that binding is used. For
example, suppose that nybook . xm1, the document being loaded, contains the following content:

<publisher:book>
<section>
This is a section.
</section>
</publisher:book>

In addition, suppose that pub1isher iSbound tO http: //publishers.com in the XQuery
environment:

declare namespace publisher = "http://publisherB.com"
xdmp : document -load ("mybook .xml1")

The code snippet loads the mybook . xm1 as.

<publisher:book xmlns:publisher="http://publisherB.com">
<section>
This is a section.
</section>
</publisher:book>

Note: Thisrule only appliesin the XQuery environment.

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 46

MarkLogic Server Repairing XML Content During Loading

Rule 3: If the prefix is declared in the Admin Interface for the HTTP or XDBC server through
which the document is loaded, that binding is used.

For example, imagine a scenario in which the namespace prefix pub1isher iSdefined on
the HTTP server named Test.

Namespace Configuration

Configure Add Help
Configure _ _ _
E}- AJ‘ Groups ok J I cancel)
{ B LA pefautt
H _ 4:‘ Hosts namespaces -- The hameapace binding specifications.
E AJ_, AppServers
: ; - B il . . e . —
EZ Admin [HTTP) n pace - A namespace binding specification. [arop

B €5 Docs HTTP]
=LA Test TR

; : prefix IpuinShEr
E - fs Hamespaces A GMame prefix.
B fj Schemas
i namespace uri Ihﬂp:.l’.l‘publisherc.com
- 55
! 3 Task Server A namespace LRI
B :s; Schemas
B ﬁj Mamespaces
LB ”s; Diagnostics

;) ok || cancel |
Bl motabacas - - -

Then, suppose that the following code snippet is executed on Test:

xdmp : document -1load ("mybook .xml1")

Theinitial document mybook .xm1 as shown in the second case isloaded as:

<publisher:book xmlns:publisher="http://publisherC.com">
<section>
This is a section.
</section>
</publisher:book>

Rule 4: If no binding for the prefix isfound, the server creates a namespace that is the same asthe
prefix and binds it to the prefix. In thisinstance, mybook . xm1 iSloaded as:

<publisher:book xmlns:publisher="publisher">
<section>
This is a section.
</section>
</publisher:book>

8.7.2 Interaction with Load-Time Default Namespace Assignment

While both |oad-time default namespace assignment and |oad-time namespace prefix binding
involve document namespaces, the two features work independently. The former allows the
assignment of a default namespace at the root element level, while the latter creates bindings for
namespaces that are otherwise unresolved.

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 47

MarkLogic Server Repairing XML Content During Loading

Consider the examples below:

1. This document has neither abinding for the pub1isher prefix, nor a default namespace.

<publisher:book>
<section>
This is a section.
</section>
</publisher:book>

Suppose a default namespace http://publisher.com/default-namespace is spe(:|f|ed at
load time, and the publisher prefix resolvesto http://publisher.com/prefix according to
the rules described in the previous section. The document is loaded as:

<publisher:book xmlns:publisher="http://publisher.com/prefix"
xmlns="http://publisher.com/default-namespace">

<section>
This is a section.

</section>
</publisher:book>

Inthiscase, <books iSinthe "http://publisher.com/prefix" NAMESPACE, while <sections
iSir1the'Wnttp://publisher.com/default—namespace" namespace.

2. This document has a binding for the pub1isher prefix, but does not specify a default
namespace in the root node.

<publisher:book xmlns:publisher="http://publisher.com/prefix">

<section>
This is a section.

</section>
</publisher:book>

If http://publisher.com/default-namespace IS SpeC|f|ed as the default namespace at load
time, the loaded document is the same as the document loaded in the example above.

3. This document specifies a default namespace, but does not contain a binding for the
publisher prefix, thistime, associated with the <section> element.

<book xmlns="http://publisher.com/original-namespace">
<publisher:section>
This is a section.
<paragraph>
This is a paragraph.
</paragraph>

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 48

MarkLogic Server Repairing XML Content During Loading

</publisher:section>
</book>

If adefault Namespace http: //publisher.com/default-namespace is SpECIfled at load
time, it isignored. Assume that publisher resolves to pub1isher. The document isloaded
as shown below:

<book xmlns="http://publisher.com/original-namespace">
<publisher:section xmlns:publisher="publisher">
This is a section.
<paragraph>
This is a paragraph.
</paragraph>
</publisher:section>
</book>

In this case, the <book> and <paragraph> €lements are in the default namespace
http://publisher.com/original -namespace, whilethe <section> element isin the publisher
namespace.

8.7.3 Scope of Application

If content repair is enabled, MarkL ogic attempts to create bindings for unresolved namespace
prefixes as aform of content repair for all documents loaded from external sources according to
the rules described in “How Load-Time Namespace Prefix Binding Works™ on page 46.

8.7.4 Disabling Load-Time Namespace Prefix Binding

MarkL ogic enables you to disable content repair during any individual document load using a
language specific repair parameter. See “ Programming I nterfaces and Supported Content Repair
Capabilities” on page 31.

8.8 Query-Driven Content Repair

The content repair models described above influence the content asit is loaded, trying to ensure
that the structure of the poorly or inconsistently formatted content is as close to the author's intent
aspossible when it isfirst stored in the database.

When a situation requires content repair that is beyond the scope of some combination of these
four approaches, MarkL ogic's schema-independent core makes XQuery itself a powerful content
repair mechanism.

Once adocument is loaded into MarkL ogic, queries can be written to specifically restructure the
content as required, without needing to reconfigure the database. Two approachesto query-driven
content repair -- point repair and document walkers -- are described in the following sections. If
you want to do something similar from other languages, use atransformation, a feature of the
REST and Java client API'sthat lets you install XQuery or XSLT that you can use during
document loading and retrieval.

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 49

MarkLogic Server Repairing XML Content During Loading

8.8.1 Point Repair

Point repair uses X Path-based queries to identify document subtrees of interest, create repaired
content structures from the source content, and then call xdmp : node-rep1ace to replace the
document subtree of interest. A simple example of such a query follows:

for $node-to-be-repaired in doc ($uri-to-be-repaired)//italic
return
xdmp :node-replace ($node-to-be-repaired,
<i>{ $node-to-be-repaired/* }</i>)

This example code finds every element with local name ita1ic in the default element namespace
and changes its QName to local name i in the default element namespace. All of the element's
attributes and descendants are inherited as is.

An important constraint of the XQuery shown above liesin its assumption that italic elements
cannot be descendants of other italic elements, a constraint that should be enforced at load-time
using schemardriven content repair. If such a situation occurs in the document specified by
$uri-to-be-repaired, the above XQuery generates an error.

8.8.2 Document Walkers

Document walkers use recursive descent document processing functions written in XQuery to
traverse either the entire document or a subtree within it, create a transformed (and appropriately
repal red) version of the document, and then call xdmp : document - insert OF xdmp :node-replace tO
place the repaired content back into the database.

Queriesinvolving document traversal are typically more complex than point repair queries,
because they deal with larger overall document context. Because they can also traverse the entire
document, the scope of repairs that they can address is also significantly broader.

The wa1k-tree function shown here uses arecursive descent parser to traverse the entire
document:

xquery version "1.0-ml";
declare function local:walk-tree(
Snode as node())
as node ()
{
if (xdmp:node-kind($node) = "element") then
(: Reconstruct node and its attributes; descend to its children :)
element { fn:node-name ($node) } {
Snode/@*,
for $child-node in $node/node ()
return
local:walk-tree ($child-node)
}

else if (xdmp:node-kind ($node)
xdmp : node-kind ($node)
xdmp : node-kind ($node)

"comment" or
"processing-instruction" or
"text") then

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 50

MarkLogic Server Repairing XML Content During Loading

(: Return the node as is :)
Snode
else if (xdmp:node-kind($Snode) = "document") then
document {
(: Start descent from the document node's children :)
for $child-node in $node/node ()
return
local:walk-tree ($child-node)
}
else
(: Should never get here :)
fn:error(
fn:concat ("Error: Could not process node of type '",
xdmp :node-kind ($node), "'")

}i

let $node := text {"hello"}

return

local:walk-tree ($node)

(: returns the text node containing the string "hello" :)

This function can be used as the starting point for any content repair query that needs to walk the
entire document in order to perform its repair. By inserting further checksin each of the various
clauses, this function can transform both the structure and the content. For example, consider the
following modification of thefirst it clause:

if (xdmp:node-kind(Snode) = "element") then
(: Reconstruct node and its attributes; descend to its children :)
element {
if (fn:local-name($node) != "italic") then
fn:node-name (Snode)
else
fn:QName (fn:namespace-uri ($node), "i")
b A
Snode/@*,
for $child-node in $node/node ()
return
local:walk-tree ($child-node)
}

Inserting this code into the wa1x-tree function enables the function to traverse a document,
finding any element whose local-nameis italic, regardless of that element’s namespace, and
change that element’s local-name to i, keeping its namespace unchanged.

You can use the above document walker as the basis for complex content transformations,

effecting content repair using the database itself as the repair tool once the content has been
loaded into the database.

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 51

MarkLogic Server Repairing XML Content During Loading

Another common design pattern for recursive descent isto use a typeswitch expression. For

details, see Transforming XML Structures With a Recursive typeswitch Expression in the Application
Developer’s Guide.

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 52

MarkLogic Server Modifying Content During Loading

9.0 Modifying Content During Loading

Content can go through many stages before it isready to usein an application. These stages might
include modifying the content so that it is well-formed XML, transforming one XML structure to
another, or combining the content with other content or information. The process of content going
from one stage to another is called content processing.

Content processing can be very simple or extremely complex. You might decide to add a
timestamp to a document and define a content processing stage to add the timestamp. You might
have a process that trangdlates the text from one language to another. Often, many of these stages
combined together form an overall set of content processing work you need to do on a document.

While the range of problems that can be addressed is virtually unlimited, there are several core
content processing capabilities required to address many of the wide-ranging issues:

» The ability to change the content from one form to another.

The ability to tie together different pieces of content processing.
» The ability to separate different documents for different types of processing.

* The ability to automate the entire procedure so documents can move through complex
processing phases automatically.

* The ability to integrate manual steps or long-running, asynchronous operations in
applications.

Flexibility isimportant in content processing, as both the starting points of documents and their
end results can vary significantly. Also, application requirements can evolve over time, forcing
the content processing application to change with the requirements. It is therefore necessary to
have a content processing environment that can alow for such change.

MarkLogic Server provides capabilities to modify content with workflows and pipelines. An
example of a content processing application is The Default Conversion Option, Which uses the
components of the MarkL ogic Content Processing Framework, and XQuery modules, to create a
unified conversion process that converts Microsoft Office, Adobe PDF, and HTML filesto
well-structured XHTML and simplified DocBook format XML documents.

9.1 Converting Microsoft Office and Adobe PDF Into XML

The Default Conversion Option of the Content Processing Framework converts Microsoft Office,
Adobe PDF, and HTML filesto XHTML and DocBook. The Default Conversion Option only
converts Microsoft Office 97 and newer documents; it cannot convert documents from Microsoft
Office 95 or earlier.

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 53

MarkLogic Server Modifying Content During Loading

9.2 Converting to XHTML
MarkL ogic provides facilities for converting documents to XHTML asfollows:

* xdmp:tidy convertsHTML to XHTML

» Default Conversion Option of the Content Processing Framework converts Microsoft
Office, PDF, and HTML filesto XHTML

* xdmp:pdf-convert convertsaPDF fileto XHTML

* xdmp:excel-convert converts a Microsoft Excel document to XHTML

9.3 Automating Metadata Extraction

MarkL ogic provides facilities to extract and associate metadata from binary documents as
follows:

* xdmp:document-filter, abuilt-in XQuery function

» MarkLogic content pump provides commands to include or exclude metadata during
copy, export, and import

9.4 Transforming XML Structures

A common task sometimes required with XML isto transform one structure to another structure.
A design pattern using the X Query typeswitch expression to transform XML to XHTML or
XSL-FO isdescribed in Transforming XML Structures With a Recursive typeswitch Expression in the
Application Developer’s Guide.

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 54

MarkLogic Server Performance Considerations

10.0 Performance Considerations
This chapter covers the following topics:

¢ Understanding the Locking and Journaling Database Settings for Bulk Loads

¢ Fragmentation

10.1 Understanding the Locking and Journaling Database Settings for Bulk
Loads

When you load content, MarkL ogic Server performs updates transactionally, locking documents
as needed and saving the content to disk in the journal before the transaction commits. By default,
all documents are locked during an update and the journal is set to preserve committed
transactions, even if the MarkLogic Server process ends unexpectedly.

The database settings 10cking and journaling control how fine-grained and robust you want this
transactional process to behave. By default, it is set up to be a good balance of speed and
data-integrity. All documents being loaded are locked, making it impossible for another
transaction to update the same document being loaded or updated in a different transaction, and
making it impossible to create duplicate URIs in your database.

Thereisajournal write to disk on transaction commit, and by default the system relies on the
operating system to perform the disk write. Therefore, even if the MarkL ogic Server process ends,
the write to the journal occurs, unless the computer crashes before the operating system can
perform the disk write. Protecting against the MarkLogic Server process ending unexpectedly is
the fast setting for the journaling option. If you want to protect against the computer crashing
unexpectedly, you can set the journaling to strict. A setting of strict forces afilesystem sync
before the transaction is committed. This takes alittle longer for each transaction, but protects
your transactions against the computer failing.

If you are sure that no other programs are updating content in the database, and if you are sure that
your program is not updating a URI more than one time, it is possible to turn the journaling
and/or 10cking database settings to o £. Turning these o £ might make sense, for example, during
abulk load. You should only do so if you are sure that no URIs are being updated more than once.
Be sureto turnthe directory creation database setti Ng t0 manual before disabli NQg locking ina
database, as automatic directory creation creates directories if they do not already exist, and,
without locking, can result in duplicate directory URIs in some cases. The default 10cking option
of fast locks URIsfor existing documents, but not for new documents, but thisis safe because the
system knows where new documents will be placed and therefore does not need locks for new
documents, therefore it is both safe and fast.

Warning Use extreme caution when setting these parametersto o £, as that will disable and

limit the transactional checks performed in the database, and doing so without
understanding how it works can result in inconsistent data.

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 55

MarkLogic Server Performance Considerations

The advantage of disabling the 1ocking O journaling Settingsisthat it makesthe loadsfaster. For

bulk loads, where if something goes wrong you can simply start over, this might be a trade-off
worth considering.

For more detail s on how transactions work, see Understanding Transactions in MarkLogic Server.

10.2 Fragmentation

Proper fragmentation is important to performance. Before you specify how to fragment the XML
data being loaded, you need to plan your fragmentation strategy. For guidelines on fragmentation,
See Choosing a Fragmentation Strategy in the Administrator’s Guide.

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 56

MarkLogic Server Technical Support

11.0 Technical Support

MarkL ogic provides technical support according to the terms detailed in your Software License
Agreement or End User License Agreement.

We invite you to visit our support website at http://help.marklogic.com to access information on
known and fixed issues, knowledge base articles, and more. For licensed customers with an active
maintenance contract, see the Support Handbook for instructions on registering support contacts
and on working with the MarkL ogic Technical Support team.

Complete product documentation, the latest product release downloads, and other useful
information is available for al developers at http:/developer.marklogic.com. For technical
guestions, we encourage you to ask your question on Stack Overflow.

MarkLogic 10

http://help.marklogic.com/
https://stackoverflow.com/questions/tagged/marklogic
http://developer.marklogic.com
http://www.marklogic.com/files/Mark_Logic_Support_Handbook.pdf

MarkLogic Server Technical Support

MarkLogic 10—May, 2019 Administrator’ s Guide—Page 58

MarkLogic Server Copyright

12.0 Copyright

MarkLogic Server 10.0 and supporting products.
Last updated: February, 2022

Copyright © 2022 MarkL ogic Corporation. All rights reserved.
Thistechnology is protected by U.S. Patent No. 7,127,469B2, U.S. Patent No. 7,171,404B2, U.S.
Patent No. 7,756,858 B2, and U.S. Patent No 7,962,474 B2, US 8,892,599, and US 8,935,267.

The MarkL ogic software is protected by United States and international copyright laws, and
incorporates certain third party libraries and components which are subject to the attributions,
terms, conditions and disclaimers set forth below.

For all copyright notices, including third-party copyright notices, see the Combined Product
Notices for your version of MarkLogic.

MarkLogic 10

MarkLogic Server Copyright

MarkLogic 10—May, 2019 Administrator’ s Guide—Page 60

	Loading Content Into MarkLogic Server
	Table of Contents
	1.0 Designing a Content Loading Strategy
	1.1 Available Content Loading Interfaces
	1.2 Loading Activities
	1.3 What to Consider Before Loading Content
	1.3.1 Setting Document Permissions
	1.3.2 Schemas
	1.3.3 Fragments
	1.3.4 Indexing

	2.0 Controlling Document Format
	2.1 Terminology
	2.2 Supported Document Formats
	2.2.1 JSON Format
	2.2.2 XML Format
	2.2.3 Binary Format
	2.2.4 Text (CLOB) Format

	2.3 Choosing a Binary Format
	2.3.1 Loading Binary Documents
	2.3.2 Configuring MarkLogic Server for Binary Documents

	2.4 Implicitly Setting the Format Based on the MIME Type
	2.5 Explicitly Setting the Format
	2.6 Determining the Format of a Document

	3.0 Specifying Encoding and Language
	3.1 Understanding Character Encoding
	3.2 Explicitly Specifying Character Encoding While Loading
	3.3 Automatically Detecting the Encoding
	3.4 Inferring the Language and Encoding of a Node in XQuery with xdmp:encoding-language-detect
	3.5 Specifying the Default Language for XML Documents

	4.0 Loading Content Using XQuery
	4.1 Built-In Document Loading Functions
	4.2 Specifying a Forest in Which to Load a Document
	4.2.1 Consider If You Really Want to Specify a Forest
	4.2.2 Some Potential Advantages of Specifying a Forest
	4.2.3 Example: Examining a Document to Decide Which Forest to Specify
	4.2.4 More Examples

	4.3 Creating External Binary References Using XQuery

	5.0 Loading Content Using REST, Java or Node.js
	6.0 Loading Content Using MarkLogic Content Pump
	7.0 Loading Content Using WebDAV
	8.0 Repairing XML Content During Loading
	8.1 Programming Interfaces and Supported Content Repair Capabilities
	8.2 Enabling Content Repair
	8.3 General-Purpose Tag Repair
	8.3.1 How General-Purpose Tag Repair Works
	8.3.2 Pitfalls of General-Purpose Tag Repair
	8.3.3 Limitations
	8.3.4 Controlling General-Purpose Tag Repair

	8.4 Auto-Close Repair of Empty Tags
	8.4.1 What Empty Tag Auto-Close Repair Does
	8.4.2 Defining a Schema to Support Empty Tag Auto-Close Repair
	8.4.3 Invoking Empty Tag Auto-Close Repair
	8.4.4 Scope of Application
	8.4.5 Disabling Empty Tag Auto-Close

	8.5 Schema-Driven Tag Repair
	8.5.1 What Schema-Driven Tag Repair Does
	8.5.2 How to Invoke Schema-Driven Tag Repair
	8.5.3 Scope of Application
	8.5.4 Disabling Schema-Driven Tag Repair

	8.6 Load-Time Default Namespace Assignment
	8.6.1 How Default Namespace Assignments Work
	8.6.2 Scope of Application

	8.7 Load-Time Namespace Prefix Binding
	8.7.1 How Load-Time Namespace Prefix Binding Works
	8.7.2 Interaction with Load-Time Default Namespace Assignment
	8.7.3 Scope of Application
	8.7.4 Disabling Load-Time Namespace Prefix Binding

	8.8 Query-Driven Content Repair
	8.8.1 Point Repair
	8.8.2 Document Walkers

	9.0 Modifying Content During Loading
	9.1 Converting Microsoft Office and Adobe PDF Into XML
	9.2 Converting to XHTML
	9.3 Automating Metadata Extraction
	9.4 Transforming XML Structures

	10.0 Performance Considerations
	10.1 Understanding the Locking and Journaling Database Settings for Bulk Loads
	10.2 Fragmentation

	11.0 Technical Support
	12.0 Copyright

