
Copyright © 2019 MarkLogic Corporation. All rights reserved.

MarkLogic Server

Loading Content Into MarkLogic
Server
1

MarkLogic 10
May, 2019

Last Revised: 10.0, May, 2019

MarkLogic Server Table of Contents

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 1

Table of Contents

Loading Content Into MarkLogic Server

1.0 Designing a Content Loading Strategy ..4
1.1 Available Content Loading Interfaces ..5
1.2 Loading Activities ...6
1.3 What to Consider Before Loading Content ..7

1.3.1 Setting Document Permissions ...7
1.3.2 Schemas ..7
1.3.3 Fragments ..8
1.3.4 Indexing ..8

2.0 Controlling Document Format ...9
2.1 Terminology ..9
2.2 Supported Document Formats ..10

2.2.1 JSON Format ..10
2.2.2 XML Format ...11
2.2.3 Binary Format ...11
2.2.4 Text (CLOB) Format ..11

2.3 Choosing a Binary Format ..12
2.3.1 Loading Binary Documents ..15
2.3.2 Configuring MarkLogic Server for Binary Documents15

2.4 Implicitly Setting the Format Based on the MIME Type15
2.5 Explicitly Setting the Format ..16
2.6 Determining the Format of a Document ...17

3.0 Specifying Encoding and Language ..18
3.1 Understanding Character Encoding ..18
3.2 Explicitly Specifying Character Encoding While Loading19
3.3 Automatically Detecting the Encoding ...19
3.4 Inferring the Language and Encoding of a Node in XQuery with xdmp:encoding-

language-detect 20
3.5 Specifying the Default Language for XML Documents21

4.0 Loading Content Using XQuery ..22
4.1 Built-In Document Loading Functions ...22
4.2 Specifying a Forest in Which to Load a Document ..23

4.2.1 Consider If You Really Want to Specify a Forest23
4.2.2 Some Potential Advantages of Specifying a Forest24
4.2.3 Example: Examining a Document to Decide Which Forest to Specify24

MarkLogic Server Table of Contents

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 2

4.2.4 More Examples ...25
4.3 Creating External Binary References Using XQuery ...26

5.0 Loading Content Using REST, Java or Node.js ...27

6.0 Loading Content Using MarkLogic Content Pump28

7.0 Loading Content Using WebDAV ...29

8.0 Repairing XML Content During Loading ..30
8.1 Programming Interfaces and Supported Content Repair Capabilities31
8.2 Enabling Content Repair ...31
8.3 General-Purpose Tag Repair ...32

8.3.1 How General-Purpose Tag Repair Works ..32
8.3.2 Pitfalls of General-Purpose Tag Repair ..33
8.3.3 Limitations ..34

8.3.3.1 XQuery Functions ...34
8.3.3.2 Root Element ...34
8.3.3.3 Previous Marklogic Versions ..34

8.3.4 Controlling General-Purpose Tag Repair ...34
8.4 Auto-Close Repair of Empty Tags ..35

8.4.1 What Empty Tag Auto-Close Repair Does ...35
8.4.2 Defining a Schema to Support Empty Tag Auto-Close Repair36
8.4.3 Invoking Empty Tag Auto-Close Repair ..37
8.4.4 Scope of Application ..39
8.4.5 Disabling Empty Tag Auto-Close ...40

8.5 Schema-Driven Tag Repair ..40
8.5.1 What Schema-Driven Tag Repair Does ..40
8.5.2 How to Invoke Schema-Driven Tag Repair ...42
8.5.3 Scope of Application ..43
8.5.4 Disabling Schema-Driven Tag Repair ..43

8.6 Load-Time Default Namespace Assignment ..44
8.6.1 How Default Namespace Assignments Work ..44
8.6.2 Scope of Application ..45

8.7 Load-Time Namespace Prefix Binding ..45
8.7.1 How Load-Time Namespace Prefix Binding Works46
8.7.2 Interaction with Load-Time Default Namespace Assignment47
8.7.3 Scope of Application ..49
8.7.4 Disabling Load-Time Namespace Prefix Binding49

8.8 Query-Driven Content Repair ...49
8.8.1 Point Repair ..50
8.8.2 Document Walkers ...50

9.0 Modifying Content During Loading ..53

MarkLogic Server Table of Contents

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 3

9.1 Converting Microsoft Office and Adobe PDF Into XML53
9.2 Converting to XHTML ...54
9.3 Automating Metadata Extraction ..54
9.4 Transforming XML Structures ...54

10.0 Performance Considerations ..55
10.1 Understanding the Locking and Journaling Database Settings for Bulk Loads ...55
10.2 Fragmentation ...56

11.0 Technical Support ..57

12.0 Copyright ...59

MarkLogic Server Designing a Content Loading Strategy

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 4

1.0 Designing a Content Loading Strategy
8

MarkLogic Server provides many ways to load content into a database including built-in XQuery
functions, the REST Client API, and the command-line tool, MarkLogic Content Pump (mlcp).
Choosing the appropriate method for a specific use case depends on many factors, including the
characteristics of your content, the source of the content, the frequency of loading, and whether
the content needs to be repaired or modified during loading. In addition, environmental and
operational factors such as workflow integration, development resources, performance
considerations, and developer expertise often need to be considered in choosing the best tools and
mechanisms.

The MarkLogic mechanisms for loading content provide varying trade-offs along a number of
dimensions such as the following:

• Usability and flexibility of the interface itself

• Performance, scalability, I/O capacity

• Loading frequency

• Automation or scripting requirements

• Workflow and integration requirements

This chapter lists the various tools to load content and contains the following sections:

• Available Content Loading Interfaces

• Loading Activities

• What to Consider Before Loading Content

MarkLogic Server Designing a Content Loading Strategy

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 5

1.1 Available Content Loading Interfaces
There are several ways to load content into MarkLogic Server. The following table summarizes
content loading interfaces and their benefits.

Interface/Tool Description Benefits

MarkLogic Content Pump
(mlcp)

A command line tool for loading
content into a MarkLogic database,
extracting content from a MarkLogic
database, or copying content between
MarkLogic databases.

Ease of workflow
integration, can leverage
Hadoop processing,
bulk loading of billions
of local files,
split and load aggregate
XML or delimited text
files

MarkLogic Connector for
Hadoop

A set of Java classes that enables
loading content from HDFS into
MarkLogic Server.

Distributed processing of
large amounts of data

Java Client API A Java API for creating applications
on top of MarkLogic Server. The API
includes document manipulation and
search operations.

Leverage existing Java
programming skills

Node.js Client API A set of Node.js interfaces for
creating applications on top of
MarkLogic Server. The API includes
document manipulation and search
operations.

Leverage existing
Node.js programming
skills

MarkLogic Server Designing a Content Loading Strategy

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 6

1.2 Loading Activities
There are various things you can do with each of the loading interfaces, all resulting in ingesting
data into the database. The following are some of the things you might do through the interfaces.
Which interface you use is a matter of which you are most comfortable with as well as trade-offs
that some might have over others (for example, ease-of-use versus extensibility). While each tool
can usually accommodate each of these activities, in cases where one tool has a specific feature to
make one of these activities easy, it is called out in the list.

• Load from a directory (mlcp)

• Load from compressed files (mlcp)

• Split single aggregate XML file into multiple documents (mlcp)

• Load large numbers of small files

• Load delimited text files (mlcp)

• Enrich the documents

• Extract information from the documents during ingestion (metadata, new elements)

• Extract some information and load only extracted information

• Load large binary files

• Create neutral format archive (mlcp)

• Copy from one ML database to another ML database (mlcp)

REST Client API A set of HTTP REST services hosted
that enable developers to build
applications on top of MarkLogic
Server. The API includes document
manipulation and search operations.

Leverage existing REST
programming skills

XCC XML Contentbase Connector (XCC)
is an interface to communicate with
MarkLogic Server from a Java
middleware application layer

Create multi-tier
applications with
MarkLogic Server as the
underlying content
repository

XQuery API An extensive set of XQuery functions
that provides maximum control

Flexibility and expanded
capabilities

Server-Side JavaScript
API

An extensive set of JavaScript
functions that execute on MarkLogic
function and provide maximum
control

Flexibility and expanded
capabilities

Interface/Tool Description Benefits

MarkLogic Server Designing a Content Loading Strategy

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 7

1.3 What to Consider Before Loading Content
Designing your content loading strategy depends on the complexity of your source content, the
nature of the output to be inserted into the database and many other factors. This section lists
some of the areas to think about with links to more detailed discussions and contains the
following parts:

• Setting Document Permissions

• Schemas

• Fragments

• Indexing

1.3.1 Setting Document Permissions
When you load documents into a database, be sure you either explicitly set permissions in the
document loading API or have configured default permissions on the user (or on roles for that
user) who is loading the documents. Default permissions are applied to a document when it is
loaded if you do not explicitly set permissions.

Permissions on a document control access to capabilities (read, insert, update, and execute) on
the document. Each permission consists of a capability and a corresponding role. To have a
specific capability for a document, a user must have the role paired with that capability on the
document permission. Default permissions are specified on roles and on users in the Admin
Interface.

If you load a document without the needed permissions, users might not be able to read, update, or
execute the document (even by the user who loaded the document). For an overview of security,
see Security Guide. For details on creating privileges and setting permissions, see the Security

Administration chapter of the Administrator’s Guide.

Note: When you load a document, be sure that a named role has update permissions. For
any document created by a user who does not have the admin role, the document
must be created with at least one update permission or MarkLogic throws an
XDMP-MUSTHAVEUPDATE exception during document creation. If there is no role on a
document’s permissions with update capability, or if the document has no
permissions, then only users with the admin role can update or delete the document.

1.3.2 Schemas
Schemas are automatically invoked by the server when loading documents (for conducting
content repair) and when evaluating queries (for proper data typing). If you plan to use schemas in
your content loading strategy, review the information in the Loading Schemas chapter in the
Application Developer’s Guide.

MarkLogic Server Designing a Content Loading Strategy

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 8

1.3.3 Fragments
When loading data into a database, you have the option of specifying how XML documents are
partitioned for storage into smaller blocks of information called fragments. For large XML
documents, size can be an issue, and using fragments may help manage performance of your
system. For a discussion of fragments, see Fragments in the Administrator’s Guide.

1.3.4 Indexing
Before loading documents into a database, you have the option of specifying a number of
parameters that impact how the text components of those documents are indexed. These settings
can affect query performance and disk usage. For details, see Text Indexing in the Administrator’s
Guide.

MarkLogic Server Controlling Document Format

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 9

2.0 Controlling Document Format
17

Each document in a MarkLogic Server database has a format associated with it. The format is
based on the root node of the document. Once a document has been loaded as a particular format,
you cannot change the format unless you replace the root node of the document with one of a
different format. You can replace the root node of a document to change its format in a number of
ways, including reloading the document while specifying a different format, deleting the
document and then loading it again with the same URI, or replacing the root node with one of a
different format.

Documents loaded into a MarkLogic Server database in JSON, XML, or text format are always
stored in UTF-8 encoding. Documents loaded in JSON, XML, or text format must either already
be in UTF-8 encoding or the UTF-8 encoding must be explicitly specified during loading using
options available in the load APIs. For example, you might use the encoding option of the
xdmp:document-load function. For more details, see Encodings and Collations in the Search
Developer’s Guide.

The following topics are included:

• Supported Document Formats

• Choosing a Binary Format

• Implicitly Setting the Format Based on the MIME Type

• Explicitly Setting the Format

• Determining the Format of a Document

2.1 Terminology
The following terms are used in this topic.

Term Definition

document format Refers to how documents are stored in MarkLogic databases: JSON,
XML, binary, or text format.

QName QName stands for qualified name and defines a valid identifier for ele-
ments and attributes. QNames are used to reference particular elements
or attributes within XML documents.

small binary
document

A binary document stored in a MarkLogic database whose size does not
exceed the large size threshold. For details, see “Choosing a Binary
Format” on page 12.

MarkLogic Server Controlling Document Format

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 10

2.2 Supported Document Formats
MarkLogic supports the following document formats:

• JSON Format

• XML Format

• Binary Format

• Text (CLOB) Format

2.2.1 JSON Format
Documents that are in JSON format have special characteristics that enable you to do more with
them. For example, you can use XPath expressions to search through to particular parts of the
document and you can use the whole range of cts:query constructors to perform fine-grained
search operations, including property-level search.

JSON documents are indexed when they are loaded. The indexing speeds up query response time.
The type of indexing is controlled by the configuration options set on your document’s destination
database. JSON documents are a single fragment, and the maximum size of a fragment (and
therefore of a JSON document) is 512 MB for 64-bit machines.

large binary
document

A binary document stored in a MarkLogic database whose size exceeds
the large size threshold. For details, see “Choosing a Binary Format” on
page 12.

external binary
document

A binary document that is not stored in a MarkLogic database and whose
contents are not managed by the server. For details, see “Choosing a
Binary Format” on page 12.

CLOB Character large object documents, or text documents.

BLOB Binary large object documents, binary data stored as a single entity. Typ-
ically images, audio, or other multimedia object.

Term Definition

MarkLogic Server Controlling Document Format

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 11

2.2.2 XML Format
Documents that are in XML format have special characteristics that enable you to do more with
them. For example, you can use XPath expressions to search through to particular parts of the
document and you can use the whole range of cts:query constructors to perform fine-grained
search operations, including element-level search.

XML documents are indexed when they are loaded. The indexing speeds up query response time.
The type of indexing is controlled by the configuration options set on your document’s destination
database. One technique for loading extremely large XML documents is to fragment the
documents using various elements in the XML structure. The maximum size of a single XML
fragment is 512 MB for 64-bit machines. For more details about fragmenting documents, see
Fragments in the Administrator’s Guide.

2.2.3 Binary Format
Binary documents are loaded into the database as binary nodes. Each binary document is a single
node with no children. Binary documents are typically not textual in nature and require another
application to read them. Some typical binary documents are image files (for example, .gif,
.jpg), Microsoft Word files (.doc and .docx), executable program files, and so on.

Binary documents are not indexed when they are loaded.

MarkLogic Server supports three kinds of binary documents: small, large (BLOBs), and external.
Applications use the same interfaces to read all three kinds of binary documents, but they are
stored and loaded differently. These differences may lead to tradeoffs in access times, memory
requirements, and disk consumption. For more details, see “Choosing a Binary Format” on
page 12.

For a discussion of the sizing and configuration options to consider when working with binary
content, see Configuring MarkLogic Server for Binary Content in the Application Developer’s Guide.

2.2.4 Text (CLOB) Format
Character large object (CLOB) documents, or text documents, are loaded into the database as text
nodes. Each text document is a single node with no children. Unlike binary documents, text
documents are textual in nature, and you can therefore perform text searches on them. Because
text documents only have a single node, however, you cannot navigate through the document
structure using XPath expressions like you can with XML or JSON documents.

Some typical text documents are simple text files (.txt), source code files (.cpp, .java, and so
on), non well-formed HTML files, or any non-XML or non-JSON text file.

For 64-bit machines, text documents have a 64 MB size limit. The in memory tree size limit
database property (on the database configuration screen in the Admin Interface) should be at least
1 or 2 megabytes larger than the largest text document you plan on loading into the database.

MarkLogic Server Controlling Document Format

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 12

The database text-indexing settings apply to text documents (as well as JSON and XML
documents), and MarkLogic creates the indexes when the text document is loaded.

2.3 Choosing a Binary Format
Binary documents require special consideration because they are often much larger than text,
JSON, or XML content. MarkLogic Server supports three types of binary documents: small,
large, and external. Applications use the same interfaces to read all three types of binary
document, but they are stored and loaded differently. A database may contain any combination of
small, large, and external binaries. Choose the format that best matches the needs of your
application and the capacity of your system. The size threshold that defines small and large binary
objects is configurable. For details, see Selecting a Location For Binary Content in the Application
Developer’s Guide.

MarkLogic Server Controlling Document Format

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 13

The following table summarizes attributes you should consider when organizing binary content:

Small and large binary documents are stored in a MarkLogic database and are fully managed by
MarkLogic Server. These documents fully participate in transactions, backup, and replication.
Small binaries are stored directly in the stands of a forest, which means they are cached in
memory. Large binaries are stored in a special Large Data Directory, with only a small reference
object in the stand. The data directory containing large binary documents is located inside the
forest by default. The location is configurable during forest creation. For more details, see
Selecting a Location For Binary Content.

 Binary
Type

 Managed By
MarkLogic

Server
Stored In Considerations

Small Yes Stands • Fully cached for faster access
• Entire contents may be cached in memory

when accessed
• Size and quantity constrained by available

memory
• Best suited for small frequently accessed

content, such as thumbnails, profile photos,
and icons

Large Yes Large Data
Directory

• Access times similar to file system reads
• Cached in compressed chunks for efficient

resource utilization.
• Streams documents into and out of the

database
• Size and quantity limited only by disk

space and system file size limit
• Best suited for movies, music, and high

definition images

External No File system • Access times similar to file system reads
• Cached in compressed chunks for efficient

resource utilization.
• Streams documents into and out of the

database
• Size and quantity limited only by disk

space and system file size limit
• External contents do not participate in

transactions, backups, or replication
• Best suited for read-only content managed

external to MarkLogic Server

MarkLogic Server Controlling Document Format

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 14

MarkLogic stores small and large binaries differently in the database to optimize resource
utilization. For example, if multiple stands contain the same large binary document, only the
reference fragment is duplicated. Similarly, if a new large binary document is created from a
segment of an existing binary document using xdmp:subbinary, a new reference fragment is
created, but the binary content is not duplicated. For details about stands, see Understanding

Forests in the Administrator’s Guide.

MarkLogic Server does not fully manage external binary documents because the documents are
not stored in the database. The MarkLogic database contains only a small reference fragment to
each external file. MarkLogic Server manages the reference fragments as usual, but does not
manage the external files. For example, MarkLogic Server does not replicate or back up the
external files. You must provide security, integrity, and persistence of the external files using
other means, such as the underlying operating system or file system.

Large and external binary documents require little additional disk space for merges. During a
merge, MarkLogic copies fragments from the old stands to a new merged stand, as described in
Understanding and Controlling Database Merges in the Administrator’s Guide. The small reference
fragments of large and external binaries contribute little overhead to the merge process. The
referenced binary contents are not copied during a merge.

The following diagram shows the differences in small, large, and external binaries handling.
Although multiple stands may contain references fragments for the same large or external binary
document, only the reference fragment is duplicated:

small binary doc

<binary contents>

large binary doc

external binary doc

Large Data Directory

<binary contents>

small binary doc

<binary contents>

large binary doc

external binary doc

stand

Forest

External Unmanaged
Storage

<binary contents>

stand

MarkLogic Server Controlling Document Format

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 15

2.3.1 Loading Binary Documents
Loading small and large binary documents into a MarkLogic database does not require special
handling, other than potentially explicitly setting the document format. Use the standard methods,
such as XQuery functions or other interfaces.

External binaries require special handling at load time because they are not managed by
MarkLogic. For details, see “Creating External Binary References Using XQuery” on page 26.

2.3.2 Configuring MarkLogic Server for Binary Documents
Before loading binary content, you should carefully consider the sizing and scalability
implications of binary documents and configure the server appropriately. For details, see
Configuring MarkLogic Server for Binary Content in the Application Developer’s Guide.

2.4 Implicitly Setting the Format Based on the MIME Type
Unless the format is explicitly set when you load a document, the format of the document is
determined based on the MIME type that corresponds to the URI extension of the new document.
The URI extension MIME types, along with their default formats, are set in the Mimetypes
section of the Admin Interface.

For example, with the default MIME type settings, documents loaded with the xml URI extension
are loaded as XML files; therefore loading a document with a URI /path/doc.xml results in
loading an XML document. The following table contains examples of applying the default MIME
type mappings to output URIs with various file extensions. Many additional mappings are
configured by default.

You can also use the Mimetypes configuration page of the Admin Interface to modify any of the
default content setting, create new MIME types, or add new extensions and associate a format.
For example, if you know that all of your HTML files are well-formed (or clean up nicely with
content repair), you might want to change the default content loading type of URIs ending with
.html and .htm to XML.

URI Document Type

/path/doc.json JSON

/path/doc.xml XML

/path/doc.jpg binary

/path/doc.txt text

MarkLogic Server Controlling Document Format

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 16

2.5 Explicitly Setting the Format
When you load a document, you can specify the format. In most cases, explicitly setting the
format overrides the default settings specified on the Mimetypes configuration screen in the
Admin Interface. However, this varies depending on the API you use for ingestion.

For example, HTML files have a default format of text, but you might have some HTML files that
you know are well-formed, and can therefore be loaded as XML.

Note: It is a good practice to explicitly set the format rather than relying on implicit
format settings based on the MIME types because it gives you complete control
over the format and eliminates surprises based on implicit MIME type mappings.

The following table summarizes the mechanisms available for explicitly setting the document
format during loading for some commonly used MarkLogic interfaces and tools.

Interface Summary For More Details

Content
Pump
(mlcp)

Set the -document_type import option Importing Content Into MarkLogic Server in
the mlcp User Guide.

Java Client
API

ContentDescriptor interface of the
package com.marklog.client.document

Single Document Operations in the Java
Application Developer’s Guide, and the
Java Client API Documentation.

MarkLogic
Connector
for Hadoop

ContentOutputFormat class MarkLogic Connector for Hadoop
Developer’s Guide and javadoc.

REST
Client API

Set the format parameter or
Content-type header on a PUT or
POST request to the /documents
service.

Loading Content into the Database and
Controlling Input and Output Content Type
in REST Application Developer’s
Guide.

XCC Set the format in the
ContentCreateOptions class.

XCC Javadoc.

XQuery Specify a value for the <format>
element of the <options> node passed to
xdmp:document-load.

The API documentation for
xdmp:document-load in the MarkLogic
XQuery and XSLT Function Reference.

MarkLogic Server Controlling Document Format

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 17

The following XQuery example demonstrates explicitly setting the format to XML when using
xdmp:document-load:

xdmp:document-load("c:\myFiles\file.html",
 <options xmlns="xdmp:document-load">
 <uri>http://myCompany.com/file.html</uri>
 <permissions>{xdmp:default-permissions()}</permissions>
 <collections>{xdmp:default-collections()}</collections>
 <format>xml</format>
 </options>)

2.6 Determining the Format of a Document
After a document is loaded into a database, you cannot assume the URI accurately reflects the
content format. For example, a document can be loaded as XML even if it has a URI that ends in
.txt. To determine the format of a document in a database, perform a node test on the root node of
the document.

XQuery includes node tests to determine if a node is text (text()) or if a node is an XML element
(element()). MarkLogic Server has added a node test extension to XQuery to determine if a node
is binary (binary()).

The following code sample shows how you can use a typeswitch to determine the format of a
document.

(: Substitute in the URI of the document you want to test :)
let $x:= doc("/my/uri.xml")/node()
return
typeswitch ($x)
 case element() return "xml element node"
 case text() return "text node"
 case binary() return "binary node"
default return "don't know"

MarkLogic Server Specifying Encoding and Language

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 18

3.0 Specifying Encoding and Language
21

You can specify the encoding and default language while loading a document. You can also
automatically detect the encoding or manually detect the language (for example, using
xdmp:encoding-language-detect). This section describes how to load documents with a specific
encoding or language, and includes the following parts:

• Understanding Character Encoding

• Explicitly Specifying Character Encoding While Loading

• Automatically Detecting the Encoding

• Inferring the Language and Encoding of a Node in XQuery with xdmp:encoding-language-detect

• Specifying the Default Language for XML Documents

For more information about languages, see Language Support in MarkLogic Server in the Search
Developer’s Guide.

3.1 Understanding Character Encoding
MarkLogic Server stores all content in the UTF-8 encoding. If you try to load non-UTF-8 content
into MarkLogic Server without translating it to UTF-8, the server throws an exception. If you
have non-UTF-8 content, then you can specify the encoding for the content during ingestion, and
MarkLogic Server will translate it to UTF-8. If the content cannot be translated, MarkLogic
Server throws an exception indicating that there is non-UTF-8 content.

You can specify the encoding for content using either an encoding option on the ingestion
function or via HTTP headers. For details, see Character Encoding in the Search Developer’s
Guide.

MarkLogic Server Specifying Encoding and Language

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 19

3.2 Explicitly Specifying Character Encoding While Loading
The table below summarizes the mechanisms available for explicitly specifying character
encoding. See the interface-specific documentation for details. If no encoding is specified,
MarkLogic Server defaults to UTF-8 for all non-binary documents.

The following XQuery example loads the document using the ISO-8859-1 encoding, transcoding
the content from ISO-8859-1 to UTF-8 during the load:

xdmp:document-load("c:/tmp/my-document.xml",
 <options xmlns="xdmp:document-load">
 <uri>/my-document.xml</uri>
 <encoding>ISO-8859-1</encoding>
 </options>)

3.3 Automatically Detecting the Encoding
For those interfaces that support auto-detection of encoding, MarkLogic Server attempts to
automatically detect the encoding of non-binary content during loading if the explicitly specified
encoding is auto.

Interface Method For Details See

MarkLogic Content
Pump (mlcp)

Character encoding cannot be
controlled. Only UTF-8 is supported.

“Loading Content Using
MarkLogic Content Pump”
on page 28.

MarkLogic Java API Various handles. Conversion of Document

Encoding in the Java
Application Developer’s
Guide

REST Client API The charset parameter of the HTTP
Content-type header. However, Text,
XML and JSON content must be
UTF-8 encoded.

REST Application
Developer’s Guide

XCC Java:
ContentCreateOptions.setEncoding

XCC:
Encoding property of the
ContentCreateOptions class

Javadoc for XCC

dotnet for XCC (C# API)

XQuery The encoding element of the options
parameter to xdmp:document-load,
xdmp:document-get, xdmp:zip-get,
and xdmp:http-get.

XQuery and XSLT Reference
Guide

MarkLogic Server Specifying Encoding and Language

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 20

The automatic encoding detection chooses an encoding equivalent to the first encoding returned
by the xdmp:encoding-language-detect XQuery function. Encoding detection is not an exact
science. There are cases where content encoding is ambiguous, but as long as your document is
not too small, the encoding detection is fairly accurate. There are, however, cases where
auto-detect might choose the wrong encoding.

The following XQuery example demonstrates using automatic character encoding detection when
loading a document using xdmp:document-load:

xdmp:document-load("c:/tmp/my-document.xml",
 <options xmlns="xdmp:document-load">
 <uri>/my-document.xml</uri>
 <encoding>auto</encoding>
 </options>)

For details, see the interface specific documentation or “Explicitly Specifying Character
Encoding While Loading” on page 19.

3.4 Inferring the Language and Encoding of a Node in XQuery with
xdmp:encoding-language-detect

If you do not want to rely on the automatic detection for the encoding or if you want to detect the
language, you can use the xdmp:encoding-language-detect function. The
xdmp:encoding-language-detect function returns XML elements, each of which specifies a
possible encoding and language for the specified node. Each element also has a score, and the one
with the highest score (the first element returned) has the most likely encoding and language.

xdmp:encoding-language-detect(
 xdmp:document-get("c:/tmp/session-login.css"))
=>
<encoding-language xmlns="xdmp:encoding-language-detect">
 <encoding>utf-8</encoding>
 <language>en</language>
 <score>14.91</score>
</encoding-language>
<encoding-language xmlns="xdmp:encoding-language-detect">
 <encoding>utf-8</encoding>
 <language>ro</language>
 <score>13.47</score>
</encoding-language>
<encoding-language xmlns="xdmp:encoding-language-detect">
 <encoding>utf-8</encoding>
 <language>it</language>
 <score>12.84</score>
</encoding-language>
<encoding-language xmlns="xdmp:encoding-language-detect">
 <encoding>utf-8</encoding>
 <language>fr</language>
 <score>12.71</score>
</encoding-language>
...

MarkLogic Server Specifying Encoding and Language

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 21

The encoding detection is typically fairly accurate when the score is greater than 10. The language
detection tends to be less accurate, however, because it can be difficult to detect the difference
between some languages. Because it gives you the raw data, you can use the output from
xdmp:encoding-language-detect with whatever logic you want to determine the language. For
example, if you happen to know, based on your knowledge of the content, that the language is
either Italian or Spanish, you can ignore entries for other languages.

Sometimes the language or the encoding of a block of text is ambiguous, therefore detecting
languages and encodings is sometimes prone to error. As a rule, the larger the block of text, the
higher the accuracy of the detection. If the size of the block of text you pass into
xdmp:encoding-language-detect is more than a few paragraphs of text (several hundred bytes),
then the detection is typically fairly accurate.

3.5 Specifying the Default Language for XML Documents
The formal or natural language of XML content is determined by the element attribute xml:lang.
The language affects how MarkLogic Server tokenizes content, and therefore affects searching
and indexing.

When there is no explicit xml:lang attribute on an XML document when it is loaded, MarkLogic
Server uses the configured default language for the database. Set the database-wide default
language through the language setting in the Admin UI.

You can override the configured default language for the database using load options, as shown
by the table below:

For details on languages, see Language Support in MarkLogic Server in the Search Developer’s
Guide.

Interface Method For Details See

MarkLogic
Content
Pump

-output_language command line
option

Importing Content Into MarkLogic Server
in the mlcp User Guide

XCC ContentCreateOptions.setLanguage Javadoc for XCC

XQuery Set the <default-language> element
of the <options> node passed to
xdmp:document-load,
xdmp:document-get, xdmp:http-get,
or xdmp:zip-get.

XQuery and XSLT Reference Guide

MarkLogic Server Loading Content Using XQuery

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 22

4.0 Loading Content Using XQuery
26

This chapter describes the XQuery interface for loading content and includes the following
sections:

• Built-In Document Loading Functions

• Specifying a Forest in Which to Load a Document

• Creating External Binary References Using XQuery

4.1 Built-In Document Loading Functions
The xdmp:document-load, xdmp:document-insert, and xdmp:document-get functions can all be
used as part of loading documents into a database. The xdmp:document-load function allows you
to load documents from the filesystem into the database. The xdmp:document-insert function
allows you to insert an existing node into a document (either a new or an existing document). The
xdmp:document-get function loads a document from disk into memory. If you are loading a new
document, the combination of xdmp:document-get and xdmp:document-insert is equivalent to
xdmp:document-load of a new document.

Note: You may only load external binary documents using xdmp:document-insert of a
constructed external-binary node. For details, see “Creating External Binary
References Using XQuery” on page 26.

Note: The version 2.x xdmp:load and xdmp:get functions are deprecated in the current
version of MarkLogic Server; in their place, use the xdmp:document-load and
xdmp:document-get functions.

The basic syntax of xdmp:document-load is as follows:

xdmp:document-load(
 $location as xs:string,
 [$options as node()]
) as empty-sequence()

The basic syntax of xdmp:document-insert is as follows:

xdmp:document-insert(
 $uri as xs:string],
 $root as node()
 [$permissions as element(sec:permission)*],
 [$collections as xs:string*],
 [$quality as xs:integer],
 [$forest-ids as xs:unsignedLong*]
) as empty-sequence()

MarkLogic Server Loading Content Using XQuery

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 23

The basic syntax of xdmp:document-get is as follows:

xdmp:document-get(
 $location as xs:string],
 [$options as node()]
) as xs:node()

See the XQuery and XSLT Reference Guide for a more detailed syntax description.

4.2 Specifying a Forest in Which to Load a Document
In most situations, MarkLogic Server does a good job of determining which forest to put a
document, and in general you should not need to override the defaults. When loading a document,
however, you can use the <forests> node in an options node for xdmp:document-load, or the
$forest-id argument to xdmp:document-insert (the sixth argument) to specify one or more forests
to which the document is loaded. Specifying multiple forest IDs loads the document into one of
the forests specified; the system decides which one of the specified forests to load the document.
Once the document is loaded into a forest, it stays in that forest unless you delete the document,
reload it specifying a different forest, or clear the forest.

Note: In order to load a document into a forest by explicitly specifying a forest key, the
forest must exist and be attached to the database into which you are loading.
Attempting to load a document into a forest that does not belong to the context
database will throw an exception. Additionally, the locking parameter must be set
to strict on the database configuration, otherwise an
XDMP-PLACEKEYSLOCKING exception is thrown.

This section describes some aspects of forest-specific loading and includes the following parts:

• Consider If You Really Want to Specify a Forest

• Some Potential Advantages of Specifying a Forest

• Example: Examining a Document to Decide Which Forest to Specify

• More Examples

4.2.1 Consider If You Really Want to Specify a Forest
For most applications, you should not specify the forest in which you want to load a document.
MarkLogic Server has efficient ways of determining which forest to load a document, and those
ways are almost always better than explicitly specifying the forest. The default way MarkLogic
spreads documents across forests is optimized for both query and loading efficiency. If you are
using Tiered Storage (for details, see Tiered Storage), it has its own way of partitioning documents
that you should follow.

MarkLogic Server Loading Content Using XQuery

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 24

One of the pitfalls of specifying a forest, is that the URI you are loading may already exist in
another forest within the same database. This is a form of content corruption and will cause
searches that select that URI to return with an XDMP-DBDUPURI error. If you run into this error,
this Knowledge Base article contains a solution as well as some strategies for preventing
duplicate URIs.

If you really want to specify the forest to which you load a document, the following describes
some details about forest-specific loading.

4.2.2 Some Potential Advantages of Specifying a Forest
Because backup operations are performed at either the database or the forest level, loading a set of
documents into specific forests allows you to effectively perform backup operations on that set of
documents (by backing up the database or forest, for example).

Specifying a forest also allows you to have more control over the filesystems in which the
documents reside. Each forest configuration includes a directory where the files are stored. By
specifying the forest in which a document resides, you can control the directories (and in turn, the
filesystems) in which the documents are stored. For example, you might want to place large,
frequently accessed documents in a forest which resides on a RAID filesystem with complete
failover and redundancy, whereas you might want to place documents which are small and rarely
accessed in a forest which resides in a slower (and less expensive) filesystem.

Note: Once a document is loaded into a forest, you cannot move it to another forest. If
you want to change the forest in which a document resides, you must reload the
document and specify another forest.

4.2.3 Example: Examining a Document to Decide Which Forest to
Specify

You can use the xdmp:document-get function to a load a document into memory. One use for
loading a document into memory is the ability to perform some processing or logic on the
document before you load the document onto disk.

For example, if you want to make a decision about which forest to load a document into based on
the document contents, you can put some simple logic in your load script as follows:

https://help.marklogic.com/Knowledgebase/Article/View/22/19/understanding-xdmp-dbdupuri-exceptions-how-they-can-occur-and-how-to-prevent-them

MarkLogic Server Loading Content Using XQuery

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 25

let $memoryDoc := xdmp:document-get("c:\myFiles\newDocument.xml")
let $forest :=
 if($memoryDoc//ID gt "1000000")
 then xdmp:forest("LargeID")
 else xdmp:forest("SmallID")
return
 xdmp:document-insert("/myCompany/newDocument.xml",
 $memoryDoc,
 xdmp:default-permissions(),
 xdmp:default-collections(),
 0,
 $forest)

This code loads the document newDocument.xml into memory, finds the ID element in the
in-memory document, and then inserts the node into the forest named LargeID if the ID is greater
than 1,000,000, or inserts the node into the forest named SmallID if the ID is less than 1,000,000.

4.2.4 More Examples
The following command loads the document into the forest named myForest:

xdmp:document-load("c:\myFile.xml",
 <options xmlns="xdmp:document-load">
 <uri>/myDocs/myDocument.xml</uri>
 <permissions>{xdmp:default-permissions()}</permissions>
 <collections>{xdmp:default-collections()}</collections>
 <repair>full</repair>
 <forests>
 <forest>{xdmp:forest("myForest")}</forest>
 </forests>
 </options>)

The following command loads the document into either the forest named redwood or the forest
named aspen:

xdmp:document-load("c:\myFile.xml",
 <options xmlns="xdmp:document-load">
 <uri>/myDocs/myDocument.xml</uri>
 <permissions>{xdmp:default-permissions()}</permissions>
 <collections>{xdmp:default-collections()}</collections>
 <repair>full</repair>
 <forests>
 <forest>{xdmp:forest("redwood")}</forest>
 <forest>{xdmp:forest("aspen")}</forest>
 </forests>
 </options>)

MarkLogic Server Loading Content Using XQuery

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 26

4.3 Creating External Binary References Using XQuery
An external binary node is a special reference to a binary file managed and stored in the file
system separately from MarkLogic Server. You can create an external binary node in MarkLogic
and insert the node in the database, creating an external binary reference document. The external
binary reference document acts like a normal binary document, except that MarkLogic never
actually stores the binary data internally, and instead transparently accesses the external file every
time the document is accessed. Unlike normal binary documents, you do not use
xdmp:document-load to insert an external binary reference document in the database. To insert an
external binary reference document into the database, you first create a binary node using the
xdmp:external-binary function and then insert the node into the database using
xdmp:document-insert.

For example, the following code creates a document representing the external binary file
/external/path/sample.jpg, beginning at offset 1 in the file, with a length of 1M:

xdmp:document-insert("/docs/xbin/sample.jpg",
 xdmp:external-binary(
 "/external/path/sample.jpg", 1,1024000))

When you provide a length to xdmp:external-binary, MarkLogic Server does not verify the
existence or size of the external file. If you omit a length when calling xdmp:external-binary, the
underlying external file must exist, and MarkLogic Server calculates the length in a manner
equivalent to calling xdmp:filesystem-file-length.

MarkLogic Server Loading Content Using REST, Java or Node.js

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 27

5.0 Loading Content Using REST, Java or Node.js
27

You can use the Node.js Client API, Java Client API, or REST Client API to load content into
MarkLogic Server from a remote host. You do not need to understand XQuery to use these
interfaces. For details, see the following guides:

• Node.js Application Developer’s Guide

• Java Application Developer’s Guide

• REST Application Developer’s Guide

MarkLogic Server Loading Content Using MarkLogic Content Pump

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 28

6.0 Loading Content Using MarkLogic Content Pump
28

MarkLogic Content Pump (mlcp) is a command line tool for getting data into and out of a
MarkLogic Server database. Using mlcp, you can import documents and metadata to a database,
export documents and metadata from a database, or copy documents and metadata from one
database to another.

The tool supports a variety of input formats, including flat files and compressed files, on the
native file system or on HDFS. You can also use mlcp with Hadoop to load large amounts of
content distributed across a Hadoop cluster.

For details, see the mlcp User Guide.

MarkLogic Server Loading Content Using WebDAV

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 29

7.0 Loading Content Using WebDAV
29

If you have configured a WebDAV server, you can use a WebDAV client to load documents into
the database. WebDAV clients such as Windows Explorer allow drag and drop access to
documents, just like any other documents on the filesystem. There are a number of WebDAV
clients available for various platforms and information can be found by searching the Internet for
WebDAV clients. Some MarkLogic users have had good success with BitKinex and with
NetDrive from Novell.

For details on setting up MarkLogic WebDAV servers, see WebDAV Servers in the Administrator’s
Guide.

Directories are required for WebDAV clients to see documents. See Directories and WebDAV

Servers in the Application Developer’s Guide.

For an example of using a WebDAV client with the Default Conversion Option (a CPF example
application), see Simple Drag-and-Drop Conversion in the Content Processing Framework Guide.

MarkLogic Server Repairing XML Content During Loading

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 30

8.0 Repairing XML Content During Loading
52

MarkLogic Server can perform the following types of XML content repair during content
loading:

• Correct content that does not conform to the well-formedness rules in the XML
specification

• Modify inconsistently structured content according to a specific XML schema

• Assign namespaces and correct unresolved namespace bindings

• Restructure content using XPath or XQuery

Not all programming language interfaces support the full spectrum of XML content repair.
MarkLogic Server does not validate content against predetermined XSchema (DDML) or DTDs.

This chapter includes the following topics:

• Programming Interfaces and Supported Content Repair Capabilities

• Enabling Content Repair

• Auto-Close Repair of Empty Tags

• Schema-Driven Tag Repair

• Load-Time Default Namespace Assignment

• Load-Time Namespace Prefix Binding

• Query-Driven Content Repair

MarkLogic Server Repairing XML Content During Loading

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 31

8.1 Programming Interfaces and Supported Content Repair Capabilities
The MarkLogic programming interfaces support repair options as described in the following
table:

8.2 Enabling Content Repair
The tag repair, schema-driven repair, and namespace prefix binding mechanisms are enabled
using an option to the various content loading functions as listed above.

When no repair option is explicitly specified, the default is implicitly specified by the XQuery
version of the caller. In XQuery 1.0 and 1.0-ml the default is none. In XQuery 0.9-ml the default is
full.

Tag repair, schema-driven repair, and namespace prefix binding can be performed on all XML
documents loaded from external sources. This includes documents loaded using the XQuery
built-in functions, XCC document insertion methods, or the Java or REST client APIs.

Programming
Interface

Content Repair Capabilities More Details

MarkLogic Connector
for Hadoop

Set the repair level. MarkLogic Connector for
Hadoop Developer’s Guide

MarkLogic Content
Pump

Tag repair and schema-driven
repair, namespace prefix binding.

-xml_repair_level option. See
Importing Content Into MarkLogic
Server in the mlcp User Guide

MarkLogic Java API Tag repair, schema-driven repair,
namespace prefix binding.

Java Application Developer’s
Guide

REST Client API General-purpose tag repair and
schema-driven repair, namespace
prefix binding.

repair parameter on
PUT:/v1/documents in the
REST Client API

XCC General-purpose tag repair and
schema-driven repair, namespace
prefix binding.

DocumentRepairLevel
enumeration class

XQuery All types described in this chapter. <repair> parameter in the
options node of
xdmp:document-load.
Also see the MarkLogic
XQuery and XSLT Function
Reference

MarkLogic Server Repairing XML Content During Loading

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 32

8.3 General-Purpose Tag Repair
MarkLogic Server can apply a general-purpose, stack-driven tag repair algorithm to every XML
document loaded from an external source. The algorithm is triggered by encountering a closing
tag (for example, </tag>) that does not match the most recent opening tag on the stack.

8.3.1 How General-Purpose Tag Repair Works
Consider the following simple document markup example:

<p>This is bold and <i>italic</i> within the paragraph.</p>

Each of the following variations introduces a tagging error common to hand-coded markup:

<p>This is bold and <i>italic within the paragraph.</p>

<p>This is bold and <i>italic</i></u> within the paragraph.</p>

In the first variation, the italic element is never closed. And in the second, the underline
element is never opened.

When MarkLogic Server encounters an unexpected closing tag, it performs one of the following
actions:

• Rule 1: If the QName (both the tag’s namespace and its local name) of the unexpected
closing tag matches the QName of a tag opened earlier and not yet closed, the loader
automatically closes all tags until the matching opening tag is closed.

Consequently, in the first sample tagging error, the loader automatically closes the italic
element when it encounters the tag closing the bold element:

<p>This is bold and <i>italic</i> within the paragraph.</p>

The bold characters in the markup indicate the close tag dynamically inserted by the
loader.

• Rule 2: If there is no match between the QName of the unexpected closing tag and all
previously opened tags, the loader ignores the closing tag and proceeds.

Consequently, in the second tagging error shown above, the loader ignores the "extra"
underline closing tag and proceeds as if it is not present:

<p>This is bold and <i>italic</i></u> within the paragraph.</p>

 The italic tag indicates the closing tag that the loader is ignoring.

Both rules work together to repair even more complex situations. Consider the following
variation, in which the bold and italic closing tags are mis-ordered:

<p>This is bold and <i>italic</i> within the paragraph.</p>

MarkLogic Server Repairing XML Content During Loading

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 33

In this circumstance, the first rule automatically closes the italic element when the closing bold
tag is encountered. When the closing italic tag is encountered, it is simply discarded as there are
no previously opened italic tags still on the loader's stack. The result is more than likely what the
markup author intended:

<p>This is bold and <i>italic</i> within the paragraph.</p>

8.3.2 Pitfalls of General-Purpose Tag Repair
While these two general repair rules produce sound results in most situations, their application
can lead to repairs that may not match the original intent. Consider the following examples.

1. This snippet contains a markup error: the bold element is never closed.

<p>This is a bold and <i>italic</i> part of the paragraph.</p>

The general-purpose repair algorithm fixes this problem by inserting a closing bold tag
before the closing paragraph tag, because this is the point at which it becomes apparent
that there is a markup problem:

<p>This is a bold and <i>italic</i> part of the paragraph.</p>

In this situation, the entire remainder of the paragraph is emboldened, because it is not
otherwise apparent where the tag was closed. For cases other than this example, even a
human is not always able to make the right decision.

2. Rule 1 can also cause significant “unwinding” of the stack if a tag, opened much earlier in
the document, is mistakenly closed mid-document. Consider the following markup error
where </d> is mistyped as .

<a>

 <c>
 <d>...content intended for d...
 ...content intended for c...
 </c>
 ...content intended for b...

 ...content intended for a...

The erroneous tag triggers rule 1 and the system closes all intervening tags between
 and <d>. Rule 2 then discards the actual close tags for and <c> that have now been
made redundant (since they have been closed by rule 1). This results in an incorrectly
“flattened” document as shown here (some indentation and line breaks have been added
for illustrative purposes):

<a>

MarkLogic Server Repairing XML Content During Loading

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 34

 <c>
 <d>...content intended for d...</d>
 </c>

 ...content intended for c...
 ...content intended for b...
 ...content intended for a...

General-purpose tag repair is not always able to correctly repair structure problems, as shown in
the preceding examples. MarkLogic offers additional content repair capabilities that can be used
to repair a wider range of problems, including the examples above. These advanced content repair
techniques are described in the following sections.

8.3.3 Limitations
This section describes some known limitations of general-purpose tag repair.

8.3.3.1 XQuery Functions
For functions where the XML node provided as a parameter is either dynamically generated by
the query itself (and is consequently guaranteed to be well-formed) or is explicitly defined within
the XQuery code (in which case the query is not successfully parsed for execution unless it is
well-formed), general-purpose tag repair is not performed. This includes XML content loaded
using the following functions:

• xdmp:document-insert

• xdmp:node-replace

• xdmp:node-insert-before

• xdmp:node-insert-after

• xdmp:node-insert-child

8.3.3.2 Root Element
General-purpose tag repair does not insert a missing closing root element tag into an XML
document.

8.3.3.3 Previous Marklogic Versions
Versions of MarkLogic Server 2.0 and earlier would repair missing root elements, making it
effectively impossible to identify truncated source content. Later versions of MarkLogic Server
reports an error in these conditions.

8.3.4 Controlling General-Purpose Tag Repair
MarkLogic Server enables you to enable or disable general-purpose tag repair during any
individual document load using an optional repair parameter. The specific parameter is language
specific. For example, if you use XQuery xdmp:document-load, xdmp:unquote functions, you can
use the repair parameter on the options node and specify a value of full or none. See the
language specific documentation for more details.

MarkLogic Server Repairing XML Content During Loading

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 35

8.4 Auto-Close Repair of Empty Tags
Empty tag auto-close is a special case of schema-driven tag repair and is supported in all versions
of MarkLogic Server. This repair mechanism automatically closes tags that are identified as
empty tags in a specially-constructed XML schema.

This approach addresses a common problem found in SGML and HTML documents. SGML and
HTML both regard tags as markup rather than as the hierarchical element containers defined by
the XML specification. In both the SGML and HTML worlds, it is acceptable to use a tag as an
indication of some formatting directive, without any need to close the tag. This frequently results
in the liberal use of empty tags within SGML and HTML content.

For example, an <hr> tag in an HTML document indicates a horizontal rule. Because there is no
sense to containing anything within a horizontal rule, the tag is interpreted by browsers as an
empty tag. Consequently, while HTML documents may be littered with <hr> tags, you rarely find
a </hr> tag or even a <hr/> tag unless someone has converted the HTML document to be
XHTML-compliant. The same can occur with and <meta> tags, to name just two. In SGML
documents, you can easily find <pgbrk>, <xref> and <graphic> used similarly.

Applying this type of content repair enables you to avoid the false nesting of content within
otherwise unclosed empty tags.

8.4.1 What Empty Tag Auto-Close Repair Does
Consider the following simple SGML document snippet:

<book>
<para>This is the first paragraph.</para>
<pgbrk>
<para>This paragraph has a cross-reference <xref id="f563t001"> in some
<italic>italic</italic> text.</para>
</book>

This snippet incorporates two tags, <pgbrk> and <xref>, that are traditionally viewed as empty
tags. Working under default settings, MarkLogic Server views each of these two tags as opening
tags that at some point later in the document will be closed, and consequently incorrectly views
the following content as children of those tags. This results in a falsely nested document
(indentation and line breaks added for clarification):

<book>
 <para>
 This is the first paragraph.
 </para>
 <pgbrk>
 <para>
 This paragraph has a cross-reference
 <xref id="f563t001">
 in some
 <italic>italic</italic>
 text.

MarkLogic Server Repairing XML Content During Loading

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 36

 </xref>
 </para>
 </pgbrk>
</book>

The bold characters in the markup shown above indicate closing tags automatically inserted by
the general-purpose tag repair algorithm.

This example demonstrates how unclosed empty tags can distort the structure of a document.
Imagine how much worse this example could get if it had fifty <pgbrk> tags in it.

To understand the ramifications of this, consider how the markup applied above is processed by a
query that specifies an XPath such as /doc/para. The first paragraph matches this XPath, but the
second does not, because it has been loaded incorrectly as the child of a pgbrk element. While
alternative XPath expressions such as /doc//para gloss over this difference, it is better to load the
content correctly in the first place (indentation and line breaks added for clarification):

<book>
 <para>
 This is the first paragraph.
 </para>
 <pgbrk/>
 <para>
 This paragraph has a cross-reference
 <xref id="f563t001"/>
 in some
 <italic>italic</italic>
 text.
 </para>
</book>

8.4.2 Defining a Schema to Support Empty Tag Auto-Close Repair
To use empty tag auto-close repair, you first define an XML schema that specifies which tags
should be assumed to be empty tags. Using this information, when MarkLogic Server is loading
content from an external source, it automatically closes these tags as soon as they are
encountered. If some of the specified tags are, in fact, accompanied by closing tags, these closing
tags are discarded by the general-purpose tag repair algorithm.

Here is an example of a schema that instructs the loader to treat as empty tags any <xref>,
<graphic> and <pgbrk> tags found in documents governed by the http://www.mydomain.com/sgml
namespace:

<xs:schema
 targetNamespace="http://www.mydomain.com/sgml"
 xsi:schemaLocation="http://www.w3.org/2001/XMLSchema XMLSchema.xsd"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <xs:complexType name="empty"/>
 <xs:element name="xref" type="empty"/>

MarkLogic Server Repairing XML Content During Loading

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 37

 <xs:element name="graphic" type="empty"/>
 <xs:element name="pgbrk" type="empty"/>
</xs:schema>

If the sample SGML document shown earlier is loaded under the control of this schema, it is
repaired correctly.

To use XML schemas for content repair, two things are required:

• The schema must be loaded into MarkLogic Server.

• The content to be loaded must properly reference the schema at load-time.

8.4.3 Invoking Empty Tag Auto-Close Repair
There are multiple ways to invoke the empty tag auto-close functionality. The recommended
procedure is the following:

1. Write an XML schema that specifies which tags should be treated as empty tags. The
schema shown in the preceding section, “Defining a Schema to Support Empty Tag
Auto-Close Repair” on page 36, is a good starting point.

2. Load the schema into MarkLogic. See Loading Schemas in the Application Developer’s
Guide for instructions.

3. Make sure that the content to be loaded references the namespace of the applicable
schema that you have loaded into MarkLogic. For the schema shown above, the
document’s root element could take one of two forms.

In the first form, the document implicitly references the schema through its namespace:

<document
 xmlns="http://www.mydomain.com/sgml">
 ...
</document>

MarkLogic Server automatically looks for a matching schema whenever a document is
loaded.

In the second form, one of multiple matching schemas can be explicitly referenced by the
document being loaded:

<document
 xmlns="http://www.mydomain.com/sgml"
 xsi:schemaLocation="http://www.mydomain.com/sgml /sch/SGMLEmpty.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema">

MarkLogic Server Repairing XML Content During Loading

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 38

 ...
</document>

This example explicitly references the schema stored at URI /sch/SGMLEmpty.xsd in the
current schema database. If there is no schema stored at that URI, or the schema stored at
that URI has a target namespace other than http://www.mydomain.com/sgml, no schema is
used.

See Loading Schemas in the Application Developer’s Guide for an in-depth discussion of
the precedence rules that are applied in the event that multiple matching schemas are
found.

4. Load the content using xdmp:document-load or one of the other language interface
document insertion methods.

After the content is loaded, you can inspect it to see that the content repair was performed. If
empty tag auto-close repair was not applied, then you should troubleshoot the location, naming
and cross-referencing of your schema, as this is the most likely source of the problem.

When it is not feasible to modify your content so that it properly references a namespace in its
root element, there are other approaches that can yield the same result:

1. Write an XMLschema that specifies which tags should be treated as empty tags. Because
the root xs:schema element lacks a targetNamespace attribute, the document below
specifies a schema that applies to documents loaded in the unnamed namespace:

<xs:schema
 xsi:schemaLocation="http://www.w3.org/2001/XMLSchema XMLSchema.xsd"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <xs:complexType name="empty"/>
 <xs:element name="xref" type="empty"/>
 <xs:element name="graphic" type="empty"/>
 <xs:element name="pgbrk" type="empty"/>
</xs:schema>

2. Load the schema into MarkLogic, remembering the URI name under which you loaded
the schema. See Loading Schemas in the Application Developer’s Guide for instructions on
properly loading schema in MarkLogic Server.

3. Construct an XQuery statement that temporarily imports the schema into the appropriate
namespace and loads the content within that context.

• A simple example of importing a schema into the unnamed namespace might look like the
following:

MarkLogic Server Repairing XML Content During Loading

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 39

xquery version "0.9-ml"
import schema namespace "myNS" at "schema-uri-you-specified-in-step-2";
xdmp:document-load("content-to-be-repaired.sgml", ...)

Be careful to restrict the content loading operations you carry out within the context of this
import schema directive, as all documents loaded in the unnamed namespace are filtered
through the “empty tag auto close” repair algorithm under the control of this schema.

Note: The target namespace specified in the import schema prolog statement and in the
schema document itself must be the same, otherwise the schema import fails
silently.

4. Run the query shown above to load and repair the content.

8.4.4 Scope of Application
Once a schema is configured and loaded for empty tag auto-closing, any content that references
that schema and is loaded from an external source is automatically repaired as directed by that
schema.

MarkLogic Server Repairing XML Content During Loading

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 40

8.4.5 Disabling Empty Tag Auto-Close
There are several ways to disable load-time empty tag auto-close repair:

1. Disable content repair at load-time using the applicable option for your chosen language
interface.

2. Remove the corresponding schema from the database and ensure that none of the content
to be loaded in the future still references that schema.

3. Modify the referenced schema to remove the empty tag definitions.

Removing the schema from the database does not impact documents already loaded under the
rubric of that schema, at least with respect to their empty tags being properly closed. To the extent
that the schema in question contains other information about the content that is used during query
processing, you should consider the removal of the schema from the database carefully.

8.5 Schema-Driven Tag Repair
MarkLogic Server supports the use of XML schemas for more complex schema-driven tag repair.
This enables you to use XML schemas to define a set of general rules that govern how various
elements interact hierarchically within an XML document.

8.5.1 What Schema-Driven Tag Repair Does
For example, consider the following SGML document snippet:

<book>
<section><para>This is a paragraph in section 1.
<section><para>This is a paragraph in section 2.
</book>

This snippet illustrates one of the key challenges created by interpreting markup languages as
XML. Under default settings, the server repairs and loads this content as follows (indentation and
line breaks added for clarification):

<book>
 <section>
 <para>
 This is a paragraph in section 1.
 <section>
 <para>This is a paragraph in section 2.</para>
 </section>
 </para>
 </section>
</book>

The repaired content shown above is almost certainly not what the author intended. However, it is
all that the server can accomplish using only general-purpose tag repair.

MarkLogic Server Repairing XML Content During Loading

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 41

Schema-driven content repair improves the situation by allowing you to indicate constraints in the
relationships between elements by using an XML schema. In this case, you can indicate that a
<section> element may only contain <para> elements. Therefore, a <section> element cannot be a
child of another <section> element. In addition, you can indicate that <para> element is a simple
type that only contains text. Using the schema, MarkLogic Server can improve the quality of
content repair that it performs. For example, the server can use the schema to know that it should
check to see if there is an open <section> element on the stack whenever it encounters a new
<section> element.

The resulting repair of the SGML document snippet shown above is closer to the original intent of
the document author:

<book>
 <section>
 <para>
 This is a paragraph in section 1.
 </para>
 </section>
 <section>
 <para>
 This is a paragraph in section 2.
 </para>
 </section>
</book>How it works

To take advantage of schema-driven tag repair, you must first define an XML schema that
describes the constraints on the relationships between elements. Using this information, when
tMarkLogic Server loads content from an external source, it automatically closes tags still open
on its stack when it encounters an open tag that would violate the specified constraints.

Unlike general-purpose tag repair, which is triggered by unexpected closing tags, schema-driven
tag repair is triggered by unexpected opening tags, so the two different repair models interoperate
cleanly. In the worst case, schema-driven tag repair may, as directed by the governing schema for
the document being loaded, automatically close an element sooner than that element is explicitly
closed in the document itself. This case only occurs when the relationship between elements in the
document is at odds with the constraints described in the schema, in which case the schema is
used as the dominating decision factor.

The following is an example of a schema that specifies the following constraints:

• <book> elements in the http://www.mydomain.com/sgml namespace can only contain
<section> elements.

• <section> elements in the http://www.mydomain.com/sgml namespace can only contain
<para> elements.

• <para> elements in the http://www.mydomain.com/sgml namespace can only contain text.

MarkLogic Server Repairing XML Content During Loading

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 42

<xs:schema
 targetNamespace="http://www.mydomain.com/sgml"
 xsi:schemaLocation="http://www.w3.org/2001/XMLSchema XMLSchema.xsd"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <xs:complexType name="book">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="section"/>
 </xs:choice>
 </xs:complexType>

 <xs:complexType name="section">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="para"/>
 </xs:choice>
 </xs:complexType>

 <xs:element name="book" type="book"/>
 <xs:element name="section" type="section"/>
 <xs:element name="para" type="xs:string"/>
</xs:schema>

If the sample SGML document shown above is loaded under the control of this simple schema, it
is corrected as specified.

To make this happen, two things are required:

• The schema must be loaded into MarkLogic Server.

• The content to be loaded must properly reference this schema at load-time.

8.5.2 How to Invoke Schema-Driven Tag Repair
There are multiple ways to do schema-driven correction. The recommended procedure is the
following:

1. Write an XML schema that describes the relationships between the elements.

2. Load the schema into MarkLogic Server. See Loading Schemas in the Application
Developer’s Guide for instructions.

3. In the content that you need to load, ensure that the root element properly references the
appropriate schema. See “Invoking Empty Tag Auto-Close Repair” on page 37 for
examples of referencing the XML schema from inside the content.

4. Load the content using xdmp:document-load or any of the other available document
insertion methods.

MarkLogic Server Repairing XML Content During Loading

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 43

After the content is loaded, you can inspect it to see that the content repair was performed. If the
appropriate content repair did not occur, then you should troubleshoot the placement, naming and
cross-referencing of your schema.

If it is not feasible to modify the content so that it properly references the XML schema in its root
element, there are other approaches that can yield the same result:

1. Write a schema that describes the relationships between the elements, and omit a
targetNamespace attribute from its xs:schema root element.

2. Load the schema into MarkLogic Server, remembering the URI name under which you
store the schema. See Loading Schemas for instructions on properly loading schema in
MarkLogic Server.

3. Construct an XQuery statement that temporarily imports the schema into the appropriate
namespace and loads the content within that context. Following is a simple example of
importing a schema into the unnamed namespace:

xquery version "0.9-ml"
import schema namespace "myNS" at "schema-uri-you-specified-in-step-1";
xdmp:document-load("content-to-be-repaired.sgml", ...)

Be careful to restrict the content loading operations you carry out within the context of this
import schema directive, as all documents loaded are filtered through the same
schema-driven content repair algorithm.

Note: The target namespace specified in the import schema prolog statement and in the
schema document itself must be the same, otherwise the schema import fails
silently.

4. Run the query shown above to load and repair the content.

8.5.3 Scope of Application
Once a schema has been configured and loaded for schema-driven tag repair, any content that
references that schema and is loaded from an external source is automatically repaired as directed
by that schema.

8.5.4 Disabling Schema-Driven Tag Repair
There are several ways to turn off load-time schema-driven tag repair:

1. Disable content repair at load-time using the appropriate parameter for your chosen
content loading mechanism.

2. Remove the corresponding schema from the database and ensure that none of the content
loaded in the future references that schema.

MarkLogic Server Repairing XML Content During Loading

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 44

3. Modify the referenced schema to remove the empty tag definitions.

Removing the schema from the database does not impact documents already loaded under the
rubric of that schema. To the extent that the schema in question contains other information about
the content that is used during query processing, you should consider the removal of the schema
from the database carefully.

8.6 Load-Time Default Namespace Assignment
When documents are loaded into MarkLogic, every element is stored with a QName comprised of
a namespace URI and a local name.

However, many XML files are authored without specifying a default namespace or a namespace
for any of their elements. When these files are loaded from external sources , MarkLogic applies
the default unnamed namespace to all the nodes that do not have an associated namespace.

In some situations this is not the desired result. Once the document is loaded without a specified
namespace, it is difficult to remap each QName to a different namespace. It is better to load the
document into MarkLogic Server with the correct default namespace in the first place.

The best way to specify a default namespace for a document is to add a default namespace
attribute to the document’s root node directly. When that is not possible, MarkLogic's load-time
namespace substitution capability offers a good solution. If you are using XQuery or XCC for
your document loading, you can specify a default namespace for the document at load-time,
provided that the document root node does not already contain a default namespace specification.

Note: This function is performed as described below if a default namespace is specified
at load time, even if content repair is turned off.

Note: The REST and Java client APIs do not provide a default namespace option. When
you use these APIs for your document loading, it is best to add the appropriate
namespace attribute to your documents before loading them to the database.

8.6.1 How Default Namespace Assignments Work
The xdmp:document-load function and the XCC setNamespace method (in the
ContentCreateOptions class) allow you to optionally specify a namespace as the default
namespace for an individual document loading operation.

MarkLogic uses that namespace definition as follows:

Rule 1: If the root node of the document does not contain the default namespace attribute, the
server uses the provided namespace as the default namespace for the root node. The appropriate
namespaces of descendant nodes are then determined through the standard namespace rules.

Rule 2: If the root node of the document incorporates a default namespace attribute, the server
ignores the provided namespace.

MarkLogic Server Repairing XML Content During Loading

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 45

Note that rule 2 means that the default namespace provided at load time cannot be used to
override an explicitly specified default namespace at the root element

8.6.2 Scope of Application
You can specify default namespaces at load-time when you use XQuery or XCC to load content.
See the corresponding documentation for further details.

8.7 Load-Time Namespace Prefix Binding
The original XML specifications allow the use of colons in element names, for example,
<myprefix:a>. However, according to the XML Namespace specifications (developed after the
initial XML specifications), the string before a colon in an element name is interpreted as a
namespace prefix. The use of prefixes that are not bound to namespaces is deemed as
non-compliant with the XML Namespace specifications.

Prior to version 2.1, MarkLogic Server dropped unresolved prefixes from documents loaded into
the database in order to conform to the XML Namespace specifications. Consider a document
named mybook.xml that contains the following content:

<publisher:book>
 <section>
 This is a section.
 </section>
</publisher:book>

If publisher is not bound to any namespace, mybook.xml is loaded into the database as:

<book>
 <section>
 This is a section.
 </section>
<book>

Starting in 2.1, MarkLogic Server supports more powerful correction of XML documents with
unresolved namespace bindings. If content repair is on, mybook.xml is loaded with a namespace
binding added for the publisher prefix.

<publisher:book
 xmlns:publisher="appropriate namespace-see details below">
 <section>
 This is a section.
 </section>
</publisher:book>

If content repair is off, MarkLogic Server returns an error if unresolved namespace prefixes are
encountered at load time.

MarkLogic Server Repairing XML Content During Loading

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 46

8.7.1 How Load-Time Namespace Prefix Binding Works
If content repair is enabled, MarkLogic can create namespace bindings at load time for namespace
prefixes that would otherwise be unresolved.

Namespace prefixes are resolved using the rules below. The rules are listed in order of
precedence:

Rule 1: When the prefix is specified in the document, that binding is retained. In the following
example, the binding for publisher to "http://publisherA.com" is specified in the document and
is retained.

<publisher:book xmlns:publisher="http://publisherA.com">
 <section>
 This is a section.
 </section>
</publisher:book>

Rule 2: When the prefix is declared in the XQuery environment, that binding is used. For
example, suppose that mybook.xml, the document being loaded, contains the following content:

<publisher:book>
 <section>
 This is a section.
 </section>
</publisher:book>

In addition, suppose that publisher is bound to http://publisherB.com in the XQuery
environment:

declare namespace publisher = "http://publisherB.com"

xdmp:document-load("mybook.xml")

The code snippet loads the mybook.xml as:

<publisher:book xmlns:publisher="http://publisherB.com">
 <section>
 This is a section.
 </section>
</publisher:book>

Note: This rule only applies in the XQuery environment.

MarkLogic Server Repairing XML Content During Loading

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 47

Rule 3: If the prefix is declared in the Admin Interface for the HTTP or XDBC server through
which the document is loaded, that binding is used.

For example, imagine a scenario in which the namespace prefix publisher is defined on
the HTTP server named Test.

Then, suppose that the following code snippet is executed on Test:

xdmp:document-load("mybook.xml")

The initial document mybook.xml as shown in the second case is loaded as:

<publisher:book xmlns:publisher="http://publisherC.com">
 <section>
 This is a section.
 </section>
</publisher:book>

Rule 4: If no binding for the prefix is found, the server creates a namespace that is the same as the
prefix and binds it to the prefix. In this instance, mybook.xml is loaded as:

<publisher:book xmlns:publisher="publisher">
 <section>
 This is a section.
 </section>
</publisher:book>

8.7.2 Interaction with Load-Time Default Namespace Assignment
While both load-time default namespace assignment and load-time namespace prefix binding
involve document namespaces, the two features work independently. The former allows the
assignment of a default namespace at the root element level, while the latter creates bindings for
namespaces that are otherwise unresolved.

MarkLogic Server Repairing XML Content During Loading

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 48

Consider the examples below:

1. This document has neither a binding for the publisher prefix, nor a default namespace.

<publisher:book>
 <section>
 This is a section.
 </section>
</publisher:book>

Suppose a default namespace http://publisher.com/default-namespace is specified at
load time, and the publisher prefix resolves to http://publisher.com/prefix according to
the rules described in the previous section. The document is loaded as:

<publisher:book xmlns:publisher="http://publisher.com/prefix"
 xmlns="http://publisher.com/default-namespace">
 <section>
 This is a section.
 </section>
</publisher:book>

In this case, <book> is in the "http://publisher.com/prefix" namespace, while <section>
is in the "http://publisher.com/default-namespace" namespace.

2. This document has a binding for the publisher prefix, but does not specify a default
namespace in the root node.

<publisher:book xmlns:publisher="http://publisher.com/prefix">
 <section>
 This is a section.
 </section>
</publisher:book>

If http://publisher.com/default-namespace is specified as the default namespace at load
time, the loaded document is the same as the document loaded in the example above.

3. This document specifies a default namespace, but does not contain a binding for the
publisher prefix, this time, associated with the <section> element.

<book xmlns="http://publisher.com/original-namespace">
 <publisher:section>
 This is a section.
 <paragraph>
 This is a paragraph.
 </paragraph>

MarkLogic Server Repairing XML Content During Loading

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 49

 </publisher:section>
</book>

If a default namespace http://publisher.com/default-namespace is specified at load
time, it is ignored. Assume that publisher resolves to publisher. The document is loaded
as shown below:

<book xmlns="http://publisher.com/original-namespace">
 <publisher:section xmlns:publisher="publisher">
 This is a section.
 <paragraph>
 This is a paragraph.
 </paragraph>
 </publisher:section>
</book>

In this case, the <book> and <paragraph> elements are in the default namespace
http://publisher.com/original-namespace, while the <section> element is in the publisher
namespace.

8.7.3 Scope of Application
If content repair is enabled, MarkLogic attempts to create bindings for unresolved namespace
prefixes as a form of content repair for all documents loaded from external sources according to
the rules described in “How Load-Time Namespace Prefix Binding Works” on page 46.

8.7.4 Disabling Load-Time Namespace Prefix Binding
MarkLogic enables you to disable content repair during any individual document load using a
language specific repair parameter. See “Programming Interfaces and Supported Content Repair
Capabilities” on page 31.

8.8 Query-Driven Content Repair
The content repair models described above influence the content as it is loaded, trying to ensure
that the structure of the poorly or inconsistently formatted content is as close to the author's intent
as possible when it is first stored in the database.

When a situation requires content repair that is beyond the scope of some combination of these
four approaches, MarkLogic's schema-independent core makes XQuery itself a powerful content
repair mechanism.

Once a document is loaded into MarkLogic, queries can be written to specifically restructure the
content as required, without needing to reconfigure the database. Two approaches to query-driven
content repair -- point repair and document walkers -- are described in the following sections. If
you want to do something similar from other languages, use a transformation, a feature of the
REST and Java client API's that lets you install XQuery or XSLT that you can use during
document loading and retrieval.

MarkLogic Server Repairing XML Content During Loading

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 50

8.8.1 Point Repair
Point repair uses XPath-based queries to identify document subtrees of interest, create repaired
content structures from the source content, and then call xdmp:node-replace to replace the
document subtree of interest. A simple example of such a query follows:

for $node-to-be-repaired in doc($uri-to-be-repaired)//italic
return
 xdmp:node-replace($node-to-be-repaired,
 <i>{ $node-to-be-repaired/* }</i>)

This example code finds every element with local name italic in the default element namespace
and changes its QName to local name i in the default element namespace. All of the element's
attributes and descendants are inherited as is.

An important constraint of the XQuery shown above lies in its assumption that italic elements
cannot be descendants of other italic elements, a constraint that should be enforced at load-time
using schema-driven content repair. If such a situation occurs in the document specified by
$uri-to-be-repaired, the above XQuery generates an error.

8.8.2 Document Walkers
Document walkers use recursive descent document processing functions written in XQuery to
traverse either the entire document or a subtree within it, create a transformed (and appropriately
repaired) version of the document, and then call xdmp:document-insert or xdmp:node-replace to
place the repaired content back into the database.

Queries involving document traversal are typically more complex than point repair queries,
because they deal with larger overall document context. Because they can also traverse the entire
document, the scope of repairs that they can address is also significantly broader.

The walk-tree function shown here uses a recursive descent parser to traverse the entire
document:

xquery version "1.0-ml";
declare function local:walk-tree(
 $node as node())
as node()
{
 if (xdmp:node-kind($node) = "element") then
 (: Reconstruct node and its attributes; descend to its children :)
 element { fn:node-name($node) } {
 $node/@*,
 for $child-node in $node/node()
 return
 local:walk-tree($child-node)
 }
 else if (xdmp:node-kind($node) = "comment" or
 xdmp:node-kind($node) = "processing-instruction" or
 xdmp:node-kind($node) = "text") then

MarkLogic Server Repairing XML Content During Loading

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 51

 (: Return the node as is :)
 $node
 else if (xdmp:node-kind($node) = "document") then
 document {
 (: Start descent from the document node's children :)
 for $child-node in $node/node()
 return
 local:walk-tree($child-node)
 }
 else
 (: Should never get here :)
 fn:error(
 fn:concat("Error: Could not process node of type '",
 xdmp:node-kind($node), "'")
)
};

let $node := text {"hello"}
return
local:walk-tree($node)
(: returns the text node containing the string "hello" :)

This function can be used as the starting point for any content repair query that needs to walk the
entire document in order to perform its repair. By inserting further checks in each of the various
clauses, this function can transform both the structure and the content. For example, consider the
following modification of the first if clause:

if (xdmp:node-kind($node) = "element") then
 (: Reconstruct node and its attributes; descend to its children :)
 element {
 if (fn:local-name($node) != "italic") then
 fn:node-name($node)
 else
 fn:QName(fn:namespace-uri($node), "i")
 } {
 $node/@*,
 for $child-node in $node/node()
 return
 local:walk-tree($child-node)
 }

Inserting this code into the walk-tree function enables the function to traverse a document,
finding any element whose local-name is italic, regardless of that element’s namespace, and
change that element’s local-name to i, keeping its namespace unchanged.

You can use the above document walker as the basis for complex content transformations,
effecting content repair using the database itself as the repair tool once the content has been
loaded into the database.

MarkLogic Server Repairing XML Content During Loading

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 52

Another common design pattern for recursive descent is to use a typeswitch expression. For
details, see Transforming XML Structures With a Recursive typeswitch Expression in the Application
Developer’s Guide.

MarkLogic Server Modifying Content During Loading

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 53

9.0 Modifying Content During Loading
54

Content can go through many stages before it is ready to use in an application. These stages might
include modifying the content so that it is well-formed XML, transforming one XML structure to
another, or combining the content with other content or information. The process of content going
from one stage to another is called content processing.

Content processing can be very simple or extremely complex. You might decide to add a
timestamp to a document and define a content processing stage to add the timestamp. You might
have a process that translates the text from one language to another. Often, many of these stages
combined together form an overall set of content processing work you need to do on a document.

While the range of problems that can be addressed is virtually unlimited, there are several core
content processing capabilities required to address many of the wide-ranging issues:

• The ability to change the content from one form to another.

• The ability to tie together different pieces of content processing.

• The ability to separate different documents for different types of processing.

• The ability to automate the entire procedure so documents can move through complex
processing phases automatically.

• The ability to integrate manual steps or long-running, asynchronous operations in
applications.

Flexibility is important in content processing, as both the starting points of documents and their
end results can vary significantly. Also, application requirements can evolve over time, forcing
the content processing application to change with the requirements. It is therefore necessary to
have a content processing environment that can allow for such change.

MarkLogic Server provides capabilities to modify content with workflows and pipelines. An
example of a content processing application is The Default Conversion Option, which uses the
components of the MarkLogic Content Processing Framework, and XQuery modules, to create a
unified conversion process that converts Microsoft Office, Adobe PDF, and HTML files to
well-structured XHTML and simplified DocBook format XML documents.

9.1 Converting Microsoft Office and Adobe PDF Into XML
The Default Conversion Option of the Content Processing Framework converts Microsoft Office,
Adobe PDF, and HTML files to XHTML and DocBook. The Default Conversion Option only
converts Microsoft Office 97 and newer documents; it cannot convert documents from Microsoft
Office 95 or earlier.

MarkLogic Server Modifying Content During Loading

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 54

9.2 Converting to XHTML
MarkLogic provides facilities for converting documents to XHTML as follows:

• xdmp:tidy converts HTML to XHTML

• Default Conversion Option of the Content Processing Framework converts Microsoft
Office, PDF, and HTML files to XHTML

• xdmp:pdf-convert converts a PDF file to XHTML

• xdmp:excel-convert converts a Microsoft Excel document to XHTML

9.3 Automating Metadata Extraction
MarkLogic provides facilities to extract and associate metadata from binary documents as
follows:

• xdmp:document-filter, a built-in XQuery function

• MarkLogic content pump provides commands to include or exclude metadata during
copy, export, and import

9.4 Transforming XML Structures
A common task sometimes required with XML is to transform one structure to another structure.
A design pattern using the XQuery typeswitch expression to transform XML to XHTML or
XSL-FO is described in Transforming XML Structures With a Recursive typeswitch Expression in the
Application Developer’s Guide.

MarkLogic Server Performance Considerations

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 55

10.0 Performance Considerations
This chapter covers the following topics:

• Understanding the Locking and Journaling Database Settings for Bulk Loads

• Fragmentation

56

10.1 Understanding the Locking and Journaling Database Settings for Bulk
Loads

When you load content, MarkLogic Server performs updates transactionally, locking documents
as needed and saving the content to disk in the journal before the transaction commits. By default,
all documents are locked during an update and the journal is set to preserve committed
transactions, even if the MarkLogic Server process ends unexpectedly.

The database settings locking and journaling control how fine-grained and robust you want this
transactional process to behave. By default, it is set up to be a good balance of speed and
data-integrity. All documents being loaded are locked, making it impossible for another
transaction to update the same document being loaded or updated in a different transaction, and
making it impossible to create duplicate URIs in your database.

There is a journal write to disk on transaction commit, and by default the system relies on the
operating system to perform the disk write. Therefore, even if the MarkLogic Server process ends,
the write to the journal occurs, unless the computer crashes before the operating system can
perform the disk write. Protecting against the MarkLogic Server process ending unexpectedly is
the fast setting for the journaling option. If you want to protect against the computer crashing
unexpectedly, you can set the journaling to strict. A setting of strict forces a filesystem sync
before the transaction is committed. This takes a little longer for each transaction, but protects
your transactions against the computer failing.

If you are sure that no other programs are updating content in the database, and if you are sure that
your program is not updating a URI more than one time, it is possible to turn the journaling
and/or locking database settings to off. Turning these off might make sense, for example, during
a bulk load. You should only do so if you are sure that no URIs are being updated more than once.
Be sure to turn the directory creation database setting to manual before disabling locking in a
database, as automatic directory creation creates directories if they do not already exist, and,
without locking, can result in duplicate directory URIs in some cases. The default locking option
of fast locks URIs for existing documents, but not for new documents, but this is safe because the
system knows where new documents will be placed and therefore does not need locks for new
documents, therefore it is both safe and fast.

Warning Use extreme caution when setting these parameters to off, as that will disable and
limit the transactional checks performed in the database, and doing so without
understanding how it works can result in inconsistent data.

MarkLogic Server Performance Considerations

MarkLogic 10—May, 2019 Loading Content Into MarkLogic Server—Page 56

The advantage of disabling the locking or journaling settings is that it makes the loads faster. For
bulk loads, where if something goes wrong you can simply start over, this might be a trade-off
worth considering.

For more details on how transactions work, see Understanding Transactions in MarkLogic Server.

10.2 Fragmentation
Proper fragmentation is important to performance. Before you specify how to fragment the XML
data being loaded, you need to plan your fragmentation strategy. For guidelines on fragmentation,
see Choosing a Fragmentation Strategy in the Administrator’s Guide.

MarkLogic Server Technical Support
11.0 Technical Support
58

MarkLogic provides technical support according to the terms detailed in your Software License
Agreement or End User License Agreement.

We invite you to visit our support website at http://help.marklogic.com to access information on
known and fixed issues, knowledge base articles, and more. For licensed customers with an active
maintenance contract, see the Support Handbook for instructions on registering support contacts
and on working with the MarkLogic Technical Support team.

Complete product documentation, the latest product release downloads, and other useful
information is available for all developers at http://developer.marklogic.com. For technical
questions, we encourage you to ask your question on Stack Overflow.
MarkLogic 10

http://help.marklogic.com/
https://stackoverflow.com/questions/tagged/marklogic
http://developer.marklogic.com
http://www.marklogic.com/files/Mark_Logic_Support_Handbook.pdf

MarkLogic Server Technical Support
MarkLogic 10—May, 2019 Administrator’s Guide—Page 58

MarkLogic Server Copyright
12.0 Copyright
999

MarkLogic Server 10.0 and supporting products.
Last updated: February, 2022

Copyright © 2022 MarkLogic Corporation. All rights reserved.
This technology is protected by U.S. Patent No. 7,127,469B2, U.S. Patent No. 7,171,404B2, U.S.
Patent No. 7,756,858 B2, and U.S. Patent No 7,962,474 B2, US 8,892,599, and US 8,935,267.

The MarkLogic software is protected by United States and international copyright laws, and
incorporates certain third party libraries and components which are subject to the attributions,
terms, conditions and disclaimers set forth below.

For all copyright notices, including third-party copyright notices, see the Combined Product
Notices for your version of MarkLogic.
MarkLogic 10

MarkLogic Server Copyright
MarkLogic 10—May, 2019 Administrator’s Guide—Page 60

	Loading Content Into MarkLogic Server
	Table of Contents
	1.0 Designing a Content Loading Strategy
	1.1 Available Content Loading Interfaces
	1.2 Loading Activities
	1.3 What to Consider Before Loading Content
	1.3.1 Setting Document Permissions
	1.3.2 Schemas
	1.3.3 Fragments
	1.3.4 Indexing

	2.0 Controlling Document Format
	2.1 Terminology
	2.2 Supported Document Formats
	2.2.1 JSON Format
	2.2.2 XML Format
	2.2.3 Binary Format
	2.2.4 Text (CLOB) Format

	2.3 Choosing a Binary Format
	2.3.1 Loading Binary Documents
	2.3.2 Configuring MarkLogic Server for Binary Documents

	2.4 Implicitly Setting the Format Based on the MIME Type
	2.5 Explicitly Setting the Format
	2.6 Determining the Format of a Document

	3.0 Specifying Encoding and Language
	3.1 Understanding Character Encoding
	3.2 Explicitly Specifying Character Encoding While Loading
	3.3 Automatically Detecting the Encoding
	3.4 Inferring the Language and Encoding of a Node in XQuery with xdmp:encoding-language-detect
	3.5 Specifying the Default Language for XML Documents

	4.0 Loading Content Using XQuery
	4.1 Built-In Document Loading Functions
	4.2 Specifying a Forest in Which to Load a Document
	4.2.1 Consider If You Really Want to Specify a Forest
	4.2.2 Some Potential Advantages of Specifying a Forest
	4.2.3 Example: Examining a Document to Decide Which Forest to Specify
	4.2.4 More Examples

	4.3 Creating External Binary References Using XQuery

	5.0 Loading Content Using REST, Java or Node.js
	6.0 Loading Content Using MarkLogic Content Pump
	7.0 Loading Content Using WebDAV
	8.0 Repairing XML Content During Loading
	8.1 Programming Interfaces and Supported Content Repair Capabilities
	8.2 Enabling Content Repair
	8.3 General-Purpose Tag Repair
	8.3.1 How General-Purpose Tag Repair Works
	8.3.2 Pitfalls of General-Purpose Tag Repair
	8.3.3 Limitations
	8.3.4 Controlling General-Purpose Tag Repair

	8.4 Auto-Close Repair of Empty Tags
	8.4.1 What Empty Tag Auto-Close Repair Does
	8.4.2 Defining a Schema to Support Empty Tag Auto-Close Repair
	8.4.3 Invoking Empty Tag Auto-Close Repair
	8.4.4 Scope of Application
	8.4.5 Disabling Empty Tag Auto-Close

	8.5 Schema-Driven Tag Repair
	8.5.1 What Schema-Driven Tag Repair Does
	8.5.2 How to Invoke Schema-Driven Tag Repair
	8.5.3 Scope of Application
	8.5.4 Disabling Schema-Driven Tag Repair

	8.6 Load-Time Default Namespace Assignment
	8.6.1 How Default Namespace Assignments Work
	8.6.2 Scope of Application

	8.7 Load-Time Namespace Prefix Binding
	8.7.1 How Load-Time Namespace Prefix Binding Works
	8.7.2 Interaction with Load-Time Default Namespace Assignment
	8.7.3 Scope of Application
	8.7.4 Disabling Load-Time Namespace Prefix Binding

	8.8 Query-Driven Content Repair
	8.8.1 Point Repair
	8.8.2 Document Walkers

	9.0 Modifying Content During Loading
	9.1 Converting Microsoft Office and Adobe PDF Into XML
	9.2 Converting to XHTML
	9.3 Automating Metadata Extraction
	9.4 Transforming XML Structures

	10.0 Performance Considerations
	10.1 Understanding the Locking and Journaling Database Settings for Bulk Loads
	10.2 Fragmentation

	11.0 Technical Support
	12.0 Copyright

