
Copyright © 2022 MarkLogic Corporation. All rights reserved.

MarkLogic Server

 Application Developer’s Guide
1Application Developer’s Guide

MarkLogic 10
May, 2019

Last Revised: 10.0-9, February, 2022

MarkLogic Server Table of Contents

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 2

Table of Contents

 Application Developer’s Guide

1.0 Developing Applications in MarkLogic Server ...16
1.1 Overview of MarkLogic Server Application Development16
1.2 Skills Needed to Develop MarkLogic Server Applications16
1.3 Where to Find Specific Information ...17

2.0 Loading Schemas ...19
2.1 Configuring Your Database ..19
2.2 Loading Your Schema ..20
2.3 Referencing Your Schema ..21
2.4 Working With Your Schema ..21
2.5 Validating XML and JSON Data Against a Schema ..22

2.5.1 Validating Schemas using Schematron ...22
2.5.2 Validating Schemas using the XQuery validate Expression25
2.5.3 Validating JSON Documents against JSON Schemas26

3.0 Understanding Transactions in MarkLogic Server28
3.1 Terms and Definitions ..29
3.2 Overview of MarkLogic Server Transactions ..31

3.2.1 Key Transaction Attributes ...32
3.2.2 Understanding Statement Boundaries ...33
3.2.3 Single-Statement Transaction Concept Summary35
3.2.4 Multi-Statement Transaction Concept Summary36

3.3 Commit Mode ...37
3.4 Transaction Type ..38

3.4.1 Transaction Type Overview ..38
3.4.2 Controlling Transaction Type in XQuery ...39
3.4.3 Controlling Transaction Type in JavaScript ...42
3.4.4 Query Transactions: Point-in-Time Evaluation ..44
3.4.5 Update Transactions: Readers/Writers Locks ...45
3.4.6 Example: Query and Update Transaction Interaction48

3.5 Single vs. Multi-statement Transactions ...48
3.5.1 Single-Statement, Automatically Committed Transactions49
3.5.2 Multi-Statement, Explicitly Committed Transactions49
3.5.3 Semi-Colon as a Statement Separator ...54

3.6 Transaction Mode ...56
3.6.1 Transaction Mode Overview ..56
3.6.2 Auto Transaction Mode ..58
3.6.3 Query Transaction Mode ..59

MarkLogic Server Table of Contents

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 3

3.6.4 Update Transaction Mode ...59
3.6.5 Query-Single-Statement Transaction Mode ...60
3.6.6 Multi-Auto Transaction Mode ..61

3.7 Interactions with xdmp:eval/invoke ..61
3.7.1 Isolation Option to xdmp:eval/invoke ..61
3.7.2 Preventing Deadlocks ...63
3.7.3 Seeing Updates From eval/invoke Later in the Transaction65
3.7.4 Running Multi-Statement Transactions under xdmp:eval/invoke66

3.8 Functions With Non-Transactional Side Effects ..67
3.9 Reducing Blocking with Multi-Version Concurrency Control68
3.10 Administering Transactions ..68
3.11 Transaction Examples ...69

3.11.1 Example: Multi-statement Transactions and Same-statement Isolation ...69
3.11.2 Example: Multi-Statement Transactions and Different-transaction Isolation

70
3.11.3 Example: Generating a Transaction Report With xdmp:host-status72

4.0 Working With Binary Documents ...74
4.1 Terminology ..74
4.2 Loading Binary Documents ..75
4.3 Configuring MarkLogic Server for Binary Content ...75

4.3.1 Setting the Large Size Threshold ..75
4.3.2 Sizing and Scalability of Binary Content ...76
4.3.3 Selecting a Location For Binary Content ...77
4.3.4 Monitoring the Total Size of Large Binary Data in a Forest78
4.3.5 Detecting and Removing Orphaned Binaries ...79

4.4 Developing Applications That Use Binary Documents ..80
4.4.1 Adding Metadata to Binary Documents Using Properties80
4.4.2 Downloading Binary Content With HTTP Range Requests81
4.4.3 Creating Binary Email Attachments ...83

4.5 Useful Built-ins for Manipulating Binary Documents ...84

5.0 Importing XQuery Modules, XSLT Stylesheets, and Resolving Paths86
5.1 XQuery Library Modules and Main Modules ..86

5.1.1 Main Modules ...86
5.1.2 Library Modules ...87

5.2 Rules for Resolving Import, Invoke, and Spawn Paths ..87
5.3 Module Caching Notes ...89
5.4 Example Import Module Scenario ..90

6.0 Library Services Applications ..91
6.1 Understanding Library Services ...91
6.2 Building Applications with Library Services ...93
6.3 Required Range Element Indexes ...93
6.4 Library Services API ..94

MarkLogic Server Table of Contents

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 4

6.4.1 Library Services API Categories ..95
6.4.2 Managed Document Update Wrapper Functions95

6.5 Security Considerations of Library Services Applications96
6.5.1 dls-admin Role ..96
6.5.2 dls-user Role ...96
6.5.3 dls-internal Role ..97

6.6 Transactions and Library Services ..97
6.7 Putting Documents Under Managed Version Control ..97
6.8 Checking Out Managed Documents ...98

6.8.1 Displaying the Checkout Status of Managed Documents98
6.8.2 Breaking the Checkout of Managed Documents98

6.9 Checking In Managed Documents ..99
6.10 Updating Managed Documents ..99
6.11 Defining a Retention Policy ..100

6.11.1 Purging Versions of Managed Document ...100
6.11.2 About Retention Rules ..101
6.11.3 Creating Retention Rules ..101
6.11.4 Retaining Specific Versions of Documents ..103
6.11.5 Multiple Retention Rules ..104
6.11.6 Deleting Retention Rules ..106

6.12 Managing Modular Documents in Library Services ...107
6.12.1 Creating Managed Modular Documents ...107
6.12.2 Expanding Managed Modular Documents ...109
6.12.3 Managing Versions of Modular Documents ...110

7.0 Transforming XML Structures With a Recursive typeswitch Expression 113
7.1 XML Transformations ..113

7.1.1 XQuery vs. XSLT ...113
7.1.2 Transforming to XHTML or XSL-FO ..113
7.1.3 The typeswitch Expression ...114

7.2 Sample XQuery Transformation Code ...114
7.2.1 Simple Example ..115
7.2.2 Simple Example With cts:highlight ..116
7.2.3 Sample Transformation to XHTML ...117
7.2.4 Extending the typeswitch Design Pattern ...119

8.0 Document and Directory Locks ...120
8.1 Overview of Locks ..120

8.1.1 Write Locks ...120
8.1.2 Persistent ...120
8.1.3 Searchable ...121
8.1.4 Exclusive or Shared ..121
8.1.5 Hierarchical ...121
8.1.6 Locks and WebDAV ...121
8.1.7 Other Uses for Locks ..121

MarkLogic Server Table of Contents

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 5

8.2 Lock APIs ...121
8.3 Example: Finding the URI of Documents With Locks122
8.4 Example: Setting a Lock on a Document ...123
8.5 Example: Releasing a Lock on a Document ...123
8.6 Example: Finding the User to Whom a Lock Belongs124

9.0 Properties Documents and Directories ...125
9.1 Properties Documents ...125

9.1.1 Properties Document Namespace and Schema125
9.1.2 APIs on Properties Documents ...127
9.1.3 XPath property Axis ...128
9.1.4 Protected Properties ..129
9.1.5 Creating Element Indexes on a Properties Document Element129
9.1.6 Sample Properties Documents ..129
9.1.7 Standalone Properties Documents ..129

9.2 Using Properties for Document Processing ..130
9.2.1 Using the property Axis to Determine Document State130
9.2.2 Document Processing Problem ...131
9.2.3 Solution for Document Processing ...132
9.2.4 Basic Commands for Running Modules ...133

9.3 Directories ...133
9.3.1 Properties and Directories ...134
9.3.2 Directories and WebDAV Servers ..134
9.3.3 Directories Versus Collections ...135

9.4 Permissions On Properties and Directories ..135
9.5 Example: Directory and Document Browser ..135

9.5.1 Directory Browser Code ...136
9.5.2 Setting Up the Directory Browser ..137

10.0 Point-In-Time Queries ..139
10.1 Understanding Point-In-Time Queries ..139

10.1.1 Fragments Stored in Log-Structured Database139
10.1.2 System Timestamps and Merge Timestamps ...140
10.1.3 How the Fragments for Point-In-Time Queries are Stored140
10.1.4 Only Available on Query Statements, Not on Update Statements141
10.1.5 All Auxiliary Databases Use Latest Version ..141
10.1.6 Database Configuration Changes Do Not Apply to Point-In-Time Frag-

ments 142
10.2 Using Timestamps in Queries ...142

10.2.1 Enabling Point-In-Time Queries in the Admin Interface142
10.2.2 The xdmp:request-timestamp Function ..144
10.2.3 Requires the xdmp:timestamp Execute Privilege144
10.2.4 The Timestamp Parameter to xdmp:eval, xdmp:invoke, xdmp:spawn ..144
10.2.5 Timestamps on Requests in XCC ...145
10.2.6 Scoring Considerations ...145

MarkLogic Server Table of Contents

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 6

10.3 Specifying Point-In-Time Queries in xdmp:eval, xdmp:invoke, xdmp:spawn, and
XCC 146
10.3.1 Example: Query Old Versions of Documents Using XCC146
10.3.2 Example: Querying Deleted Documents ..146

10.4 Rolling Back a Forest to a Particular Timestamp ...147
10.4.1 Tradeoffs and Scenarios to Consider For Rolling Back Forests147
10.4.2 Setting the Merge Timestamp ...148
10.4.3 Notes About Performing an xdmp:forest-rollback Operation148
10.4.4 General Steps for Rolling Back One or More Forests149

11.0 System Plugin Framework ...151
11.1 How MarkLogic Server Plugins Work ...151

11.1.1 Overview of System Plugins ...151
11.1.2 System Plugins versus Application Plugins ..152
11.1.3 The plugin API ..152

11.2 Writing System Plugin Modules ...152
11.3 Password Plugin Sample ...153

11.3.1 Understanding the Password Plugin ...153
11.3.2 Modifying the Password Plugin ..154

12.0 Using the map Functions to Create Name-Value Maps156
12.1 Maps: In-Memory Structures to Manipulate in XQuery156
12.2 map:map XQuery Primitive Type ...156
12.3 Serializing a Map to an XML Node ..157
12.4 Map API ..157
12.5 Map Operators ..158
12.6 Examples ...158

12.6.1 Creating a Simple Map ...159
12.6.2 Returning the Values in a Map ...159
12.6.3 Constructing a Serialized Map ..160
12.6.4 Add a Value that is a Sequence ..160
12.6.5 Creating a Map Union ...161
12.6.6 Creating a Map Intersection ..162
12.6.7 Applying a Map Difference Operator ...163
12.6.8 Applying a Negative Unary Operator ...164
12.6.9 Applying a Div Operator ..165
12.6.10Applying a Mod Operator ...166

13.0 Function Values ..167
13.1 Overview of Function Values ...167
13.2 xdmp:function XQuery Primitive Type ..167
13.3 XQuery APIs for Function Values ..168
13.4 When the Applied Function is an Update from a Query Statement168
13.5 Example of Using Function Values ..168

MarkLogic Server Table of Contents

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 7

14.0 Reusing Content With Modular Document Applications171
14.1 Modular Documents ...171
14.2 XInclude and XPointer ...172

14.2.1 Example: Simple id ...173
14.2.2 Example: xpath() Scheme ...173
14.2.3 Example: element() Scheme ...173
14.2.4 Example: xmlns() and xpath() Scheme ...174

14.3 CPF XInclude Application and API ...174
14.3.1 XInclude Code and CPF Pipeline ...174
14.3.2 Required Security Privileges—xinclude Role ..175

14.4 Creating XML for Use in a Modular Document Application175
14.4.1 <xi:include> Elements ..176
14.4.2 <xi:fallback> Elements ...176
14.4.3 Simple Examples ..176

14.5 Setting Up a Modular Document Application ..178

15.0 Controlling App Server Access, Output, and Errors180
15.1 Creating Custom HTTP Server Error Pages ...180

15.1.1 Overview of Custom HTTP Error Handling ...180
15.1.2 Error Detail ...181
15.1.3 Configuring Custom Error Handlers ...182
15.1.4 Execute Permissions Are Needed On Error Handler Document for Modules

Databases 183
15.1.5 Example: Custom Error Handler ..183

15.2 Setting Up URL Rewriting for an HTTP App Server ..184
15.2.1 Overview of URL Rewriting ..184
15.2.2 Creating URL Rewrite Modules ...186
15.2.3 Prohibiting Access to Internal URLs ..188
15.2.4 URL Rewriting and Page-Relative URLs ...188
15.2.5 Using the URL Rewrite Trace Event ..189

15.3 Example: A Simple URL Rewriter ...190
15.3.1 Create the Example App Server ..190
15.3.2 Install the Example Content ..191
15.3.3 Install the Example Application Module ..191
15.3.4 Exercise the Example Application ..192
15.3.5 Install the Rewriter ..192
15.3.6 Configure the App Server to Use the Rewriter193
15.3.7 Exercise the Rewriter ..194

15.4 Outputting SGML Entities ..195
15.4.1 Understanding the Different SGML Mapping Settings195
15.4.2 Configuring SGML Mapping in the App Server Configuration196
15.4.3 Specifying SGML Mapping in an XQuery Program197

15.5 Specifying the Output Encoding ...197
15.5.1 Configuring App Server Output Encoding Setting197
15.5.2 XQuery Built-In For Specifying the Output Encoding198

MarkLogic Server Table of Contents

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 8

15.6 Specifying Output Options at the App Server Level ..199

16.0 Creating an Interpretive XQuery Rewriter to Support REST Web Services ...
200
16.1 Terms Used in this Chapter ..200
16.2 Overview of the REST Library ...201
16.3 A Simple XQuery Rewriter and Endpoint ..202
16.4 Notes About Rewriter Match Criteria ...204
16.5 The options Node ..206
16.6 Validating options Node Elements ...208
16.7 Extracting Multiple Components from a URL ...209
16.8 Handling Errors ...211
16.9 Handling Redirects ...211
16.10 Handling HTTP Verbs ..213

16.10.1Handling OPTIONS Requests ..214
16.10.2Handling POST Requests ...216

16.11 Defining Parameters ...217
16.11.1Parameter Types ...218
16.11.2Supporting Parameters Specified in a URL ..218
16.11.3Required Parameters ...219
16.11.4Default Parameter Value ...219
16.11.5Specifying a List of Values ...220
16.11.6Repeatable Parameters ..220
16.11.7Parameter Key Alias ...220
16.11.8Matching Regular Expressions in Parameters with the match and pattern At-

tributes 221
16.12 Adding Conditions ..223

16.12.1Authentication Condition ..224
16.12.2Accept Headers Condition ..224
16.12.3User Agent Condition ...224
16.12.4Function Condition ...225
16.12.5And Condition ...225
16.12.6Or Condition ...226
16.12.7Content-Type Condition ...226

16.13 Preparing to Run the Examples ..226
16.13.1Load the Example Data ...226
16.13.2Create the Example App Server ..227

17.0 Creating a Declarative XML Rewriter to Support REST Web Services ...229
17.1 Overview of the XML Rewriter ..229
17.2 Configuring an App Server to use the XML Rewriter ..230
17.3 Input and Output Contexts ..230

17.3.1 Input Context ..231
17.3.2 Output Context ..232

17.4 Regular Expressions (Regex) ..233

MarkLogic Server Table of Contents

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 9

17.5 Match Rules ..234
17.5.1 rewriter ..235
17.5.2 match-accept ...236
17.5.3 match-content-type ...237
17.5.4 match-cookie ...238
17.5.5 match-execute-privilege ..239
17.5.6 match-header ...240
17.5.7 match-method ...242
17.5.8 match-path ..243
17.5.9 match-query-param ...246
17.5.10match-role ...248
17.5.11match-string ..249
17.5.12match-user ...250

17.6 System Variables ..251
17.7 Evaluation Rules ...253

17.7.1 add-query-param ...254
17.7.2 set-database ...255
17.7.3 set-error-format ...256
17.7.4 set-error-handler ..257
17.7.5 set-eval ..258
17.7.6 set-modules-database ..259
17.7.7 set-modules-root ...260
17.7.8 set-path ..260
17.7.9 set-query-param ..261
17.7.10set-transaction ...262
17.7.11set-transaction-mode ...262
17.7.12set-var ..263
17.7.13trace ...264

17.8 Termination Rules ...265
17.8.1 dispatch ...265
17.8.2 error ...267

17.9 Simple Rewriter Examples ...268

18.0 Template Driven Extraction (TDE) ...271
18.1 Security on TDE Documents ..272
18.2 Template View Elements ..274
18.3 JSON Template Structure ...276

18.3.1 Collections ..278
18.3.2 Directories ...279
18.3.3 path-namespaces ...279
18.3.4 Context ..280
18.3.5 Variables ...283

18.4 Template Dialect and Data Transformation Functions284
18.4.1 Date and Time Functions ..284
18.4.2 Logical Functions and Data validation ...286
18.4.3 String Functions ..286

MarkLogic Server Table of Contents

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 10

18.4.4 Type Casting ...287
18.4.5 Mathematical Functions ..287
18.4.6 Data Hub Mapping Functions ...288
18.4.7 Hashing Functions ..290
18.4.8 Miscellaneous Functions ...290

18.5 Validating and Inserting a Template ...291
18.6 Templates and Non-Conforming Documents ...294
18.7 Enabling and Disabling Templates ...294
18.8 Deleting Templates ...295

19.0 Optic API for Multi-Model Data Access ...296
19.1 Differences between the JavaScript and XQuery Optic APIs298
19.2 Objects in an Optic Pipeline ...300
19.3 Data Access Functions ..303

19.3.1 fromView Examples ...304
19.3.2 fromTriples Example ..307
19.3.3 fromLexicons Examples ...308
19.3.4 fromLiterals Examples ..311
19.3.5 fromSQL Example ..313
19.3.6 fromSPARQL Example ..314
19.3.7 fromSearch Example ...314

19.4 Kinds of Optic Queries ...316
19.4.1 Basic Queries ..316
19.4.2 Aggregates and Grouping ...317
19.4.3 Row Joins ..320
19.4.4 Document Joins ...326
19.4.5 Union, Intersect, and Except ...329
19.4.6 Grouping Sets ...332
19.4.7 Document Queries ..333

19.5 Query DSL for Optic API ...333
19.5.1 Syntax ...334
19.5.2 Vocabulary ..335
19.5.3 Server APIs ...335
19.5.4 Processing Optic Output ...336

19.6 Expression Functions For Processing Column Values336
19.6.1 XQuery Libraries Required for Expression Functions341

19.7 Functions Equivalent to Boolean, Numeric, and String Operators344
19.8 Node Constructor Functions ...346
19.9 Best Practices and Performance Considerations ...348
19.10 Optic Execution Plan ..348
19.11 Parameterizing a Plan ...349
19.12 Exporting and Importing a Serialized Optic Query ..350
19.13 Sampling Data ...351
19.14 Query-Based Views ..352

MarkLogic Server Table of Contents

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 11

20.0 Machine Learning with the ONNX API ..357
20.1 Overview of Machine Learning ..357
20.2 Terms ..358
20.3 Types of Machine Learning ..364

20.3.1 Supervised Learning ...364
20.3.2 Unsupervised Learning ...364
20.3.3 Reinforcement Learning ...365

20.4 Why Using ONNX Runtime in MarkLogic Makes Sense365
20.5 Capabilities of the ONNX Runtime ..365
20.6 ONNX XQuery and JavaScript API ...366

20.6.1 New Types for the ONNX Runtime ...367
20.6.2 Exposed ONNX Runtime API ..367
20.6.3 Security ...368
20.6.4 Limitations ..368

20.7 Example ONNX Applications ..369
20.7.1 Example ONNX Application using JavaScript369
20.7.2 Example ONNX Application using XQuery ..370

21.0 Convert PyTorch Model to ONNX Model ..372
21.1 General Steps ..372
21.2 Case Study: Text Summarization with Bert ...372

21.2.1 How does the Converter Work? ..373
21.2.2 Prepare the Environment ..374

21.3 Export the Model to ONNX ..374
21.4 Running the Model in MarkLogic using Javascript ..382
21.5 Conclusion ..387

22.0 Working With JSON ..388
22.1 JSON, XML, and MarkLogic ...388
22.2 How MarkLogic Represents JSON Documents ...389
22.3 Traversing JSON Documents Using XPath ..390

22.3.1 What is XPath? ...391
22.3.2 Exploring the XPath Examples ...391
22.3.3 Selecting Nodes and Node Values ..392
22.3.4 Node Test Operators ...393
22.3.5 Selecting Arrays and Array Members ..395

22.4 Creating Indexes and Lexicons Over JSON Documents397
22.5 How Field Queries Differ Between JSON and XML ...398
22.6 Representing Geospatial, Temporal, and Semantic Data399

22.6.1 Geospatial Data ...399
22.6.2 Date and Time Data ..400
22.6.3 Semantic Data ...400

22.7 Character Set Restrictions ...401
22.8 Document Properties ...401
22.9 Serialization of Large Integer Values ...401

MarkLogic Server Table of Contents

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 12

22.10 Working With JSON in XQuery ...402
22.10.1Constructing JSON Nodes ..402
22.10.2Building a JSON Object from a Map ..404
22.10.3Interaction With fn:data ..404
22.10.4JSON Document Operations ...405
22.10.5Example: Updating JSON Documents ...406
22.10.6Searching JSON Documents ...408

22.11 Working With JSON in Server-Side JavaScript ...409
22.11.1Constructing JSON Nodes in JavaScript ..410
22.11.2Updating JSON Documents from JavaScript ...410
22.11.3Read-Only Access to JSON Document Contents412
22.11.4Using Node Update Functions on JSON Documents412

22.12 Converting JSON to XML and XML to JSON ...414
22.12.1Conversion Philosophy ...414
22.12.2Functions for Converting Between XML and JSON415
22.12.3Understanding the Configuration Strategies For Custom Transformations .

415
22.12.4Example: Conversion Using Basic Strategy ...416
22.12.5Example: Conversion Using Full Strategy ...416
22.12.6Example: Conversion Using Custom Strategy418

22.13 Low-Level JSON XQuery APIs and Primitive Types ..420
22.13.1Available Functions and Primitive Types ...421
22.13.2Example: Serializing to a JSON Node ..422
22.13.3Example: Parsing a JSON Node into a List of Items422

22.14 Loading JSON Documents ...423
22.14.1Loading JSON Document Using mlcp ...424
22.14.2Loading JSON Documents Using the Java Client API424
22.14.3Loading JSON Documents Using the Node.js Client API424
22.14.4Loading JSON Using the REST Client API ...424

23.0 Using Triggers to Spawn Actions ...426
23.1 Overview of Triggers ..426

23.1.1 Trigger Components ...426
23.1.2 Databases Used By Triggers ...427

23.2 Triggers and the Content Processing Framework ...428
23.3 Pre-Commit Versus Post-Commit Triggers ..429

23.3.1 Pre-Commit Triggers ..429
23.3.2 Post-Commit Triggers ...429

23.4 Trigger Events ...430
23.4.1 Database Events ..430
23.4.2 Data Events ...430

23.5 Trigger Scope ..431
23.6 Modules Invoked or Spawned by Triggers ...432

23.6.1 Difference in Module Behavior for Pre- and Post-Commit Triggers432
23.6.2 Module External Variables trgr:uri and trgr:trigger433

23.7 Creating and Managing Triggers With triggers.xqy ...433

MarkLogic Server Table of Contents

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 13

23.8 Simple Trigger Example ...434
23.9 Avoiding Infinite Trigger Loops (Trigger Storms) ...436

24.0 Using Native Plugins ...439
24.1 What is a Native Plugin? ..439
24.2 How MarkLogic Server Manages Native Plugins ..440
24.3 Building a Native Plugin Library ..440
24.4 Packaging a Native Plugin ..441
24.5 Installing a Native Plugin ...442
24.6 Uninstalling a Native Plugin ...443
24.7 Registering a Native Plugin at Runtime ...443
24.8 Versioning a Native Plugin ...444
24.9 Checking the Status of Loaded Plugins ..445
24.10 The Plugin Manifest ..446
24.11 Native Plugin Security Considerations ...447
24.12 Native Plugin Example ...448

25.0 Aggregate User-Defined Functions ...449
25.1 What Are Aggregate User-Defined Functions? ..449
25.2 In-Database MapReduce Concepts ...449

25.2.1 What is MapReduce? ..450
25.2.2 How In-Database MapReduce Works ..450

25.3 Implementing an Aggregate User-Defined Function ..451
25.3.1 Creating and Deploying an Aggregate UDF ...451
25.3.2 Implementing AggregateUDF::map ...452
25.3.3 Implementing AggregateUDF::reduce ...454
25.3.4 Implementing AggregateUDF::finish ...455
25.3.5 Registering an Aggregate UDF ...456
25.3.6 Aggregate UDF Memory Management ..457
25.3.7 Implementing AggregateUDF::encode and AggregateUDF::decode459
25.3.8 Aggregate UDF Error Handling and Logging ..460
25.3.9 Aggregate UDF Argument Handling ..461
25.3.10Type Conversions in Aggregate UDFs ...462

26.0 Redacting Document Content ..465
26.1 Terms and Definitions ..466
26.2 Introduction to Redaction ...467

26.2.1 What is Redaction? ...467
26.2.2 Express Redaction Requirements Through Rules468
26.2.3 Apply Rules Using Multiple Interfaces ..469
26.2.4 Protection of Redaction Logic ..469

26.3 Example: Getting Started With Redaction ..469
26.3.1 Installing the Source Documents ..470
26.3.2 Installing the Rules ...471
26.3.3 Understanding the Rules ...472

MarkLogic Server Table of Contents

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 14

26.3.4 Applying the Rules ...473
26.4 Security Considerations ..475
26.5 Defining Redaction Rules ...477

26.5.1 Rule Definition Basics ..477
26.5.2 Choosing a Redaction Strategy ...479
26.5.3 Choosing a Redaction Function ..480
26.5.4 Defining XML Namespace Prefix Bindings ...481
26.5.5 Limitations on XPath Expressions in Redaction Rules481
26.5.6 Defining Rules Usable on Multiple Document Formats482
26.5.7 XML Rule Syntax Reference ..484
26.5.8 JSON Rule Syntax Reference ...486

26.6 Installing Redaction Rules ..488
26.7 Applying Redaction Rules ..490

26.7.1 Overview ...490
26.7.2 Applying Rules Using mlcp ..491
26.7.3 Applying Rules Using XQuery ...491
26.7.4 Applying Rules Using JavaScript ...492
26.7.5 No Guaranteed Ordering of Rules ..493

26.8 Validating Redaction Rules ..493
26.9 Built-in Redaction Function Reference ..494

26.9.1 mask-deterministic ..496
26.9.2 mask-random ..499
26.9.3 conceal ..502
26.9.4 redact-number ...504
26.9.5 redact-us-ssn ...506
26.9.6 redact-us-phone ...509
26.9.7 redact-email ..512
26.9.8 redact-ipv4 ..513
26.9.9 redact-datetime ..515
26.9.10redact-regex ..516

26.10 Example: Using the Built-In Redaction Functions ...519
26.10.1Example Rule Summary ...520
26.10.2Install the XML Rules ...520
26.10.3Install the JSON Rules ..524
26.10.4Apply the Rules ..526
26.10.5Review the Results ..528

26.11 User-Defined Redaction Functions ...530
26.11.1Implementing a User-Defined Redaction Function530
26.11.2Installing a User-Defined Redaction Function531

26.12 Example: Using Custom Redaction Rules ..534
26.12.1Example: Custom Redaction Using JavaScript534
26.12.2Example: Custom Redaction Using XQuery ..540

26.13 Using Dictionary-Based Masking ...545
26.13.1Defining a Redaction Dictionary ..545
26.13.2Installing a Redaction Dictionary ...546
26.13.3Using a Redaction Dictionary ...546

MarkLogic Server Table of Contents

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 15

26.14 Example: Dictionary-Based Masking ...547
26.14.1Install the Dictionaries ..547
26.14.2Install the Rules ..549
26.14.3Apply the Rules ..552

26.15 Salting Masking Values for Added Security ..554
26.16 Preparing to Run the Examples ..557

27.0 Copyright ...561

28.0 Technical Support ..563

MarkLogic Server Developing Applications in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 16

1.0 Developing Applications in MarkLogic Server
18

This chapter describes application development in MarkLogic Server in general terms, and
includes the following sections:

• Overview of MarkLogic Server Application Development

• Skills Needed to Develop MarkLogic Server Applications

• Where to Find Specific Information

This Application Developer’s Guide provides general information about creating applications
using MarkLogic Server. For information about developing search application using the powerful
XQuery search features of MarkLogic Server, see the Search Developer’s Guide.

1.1 Overview of MarkLogic Server Application Development
MarkLogic Server provides a platform to build application that store all kinds of data, including
content, geospatial data, numeric data, binary data, and so on. Developers build applications using
XQuery and/or Server-Side JavaScript to search the content and as a programming language in
which to develop the applications. The applications can integrate with other environments via
client APIs (Java, Node.js, and REST), via other web services, or via an XCC interface from Java.
It is possible to create entire applications using only MarkLogic Server, programmed entirely in
XQuery or Server-Side JavaScript.

This Application Developer’s Guide focuses primarily on techniques, design patterns, and
concepts needed to use XQuery or Server-Side JavaScript to build content and search applications
in MarkLogic Server. If you are using the Java Client API, Node.js Client API, or the REST APIs,
some of the concepts in this guide might also be helpful, but see the guides about those APIs for
more specific guidance. For information about developing applications with the Java Client API,
see the Java Application Developer’s Guide. For information about developing applications with
the REST API, see REST Application Developer’s Guide. For information about developing
applications with the Node.js Client API, see Node.js Application Developer’s Guide.

1.2 Skills Needed to Develop MarkLogic Server Applications
The following are skills and experience useful in developing applications with MarkLogic Server.
You do not need to have all of these skills to get started, but these are skills that you can build over
time as you gain MarkLogic application development experience.

• Web development skills (xHTML, HTTP, cross-browser issues, CSS, Javascript, and so
on), especially if you are developing applications which run on an HTTP App Server.

• Overall understanding and knowledge of XML.

• XQuery skills. To get started with XQuery, see the XQuery and XSLT Reference Guide.

• JavaScript skills. For information about Server-Side JavaScript in MarkLogic, see the
JavaScript Reference Guide.

• Understanding of search engines and full-text queries.

MarkLogic Server Developing Applications in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 17

• Java, if you are using the Java Client API or XCC to develop applications. For details, see
the Java Application Developer’s Guide or the XCC Developer’s Guide.

• Node.js, if you use the Node.js Client to develop applications. For more details, see the
Node.js Application Developer’s Guide.

• General application development techniques, such as solidifying application requirements,
source code control, and so on.

• If you will be deploying large-scale applications, administration on operations techniques
such as creating and managing large filesystems, managing multiple machines, network
bandwidth issues, and so on.

1.3 Where to Find Specific Information
MarkLogic Server includes a full set of documentation, available at http://docs.marklogic.com. This
Application Developer’s Guide provides concepts and design patterns used in developing
MarkLogic Server applications. The following is a list of pointers where you can find technical
information:

• For information about installing and upgrading MarkLogic Server, see the Installation
Guide. Additionally, for a list of new features and any known incompatibilities with other
releases, see the Release Notes.

• For information about creating databases, forests, App Servers, users, privileges, and so
on, see the Administrator’s Guide.

• For information on how to use security in MarkLogic Server, see Security Guide.

• For information on creating pipeline processes for document conversion and other
purposes, see Content Processing Framework Guide.

• For syntax and usage information on individual XQuery functions, including the XQuery
standard functions, the MarkLogic Server built-in extension functions for updates, search,
HTTP server functionality, and other XQuery library functions, see the MarkLogic
XQuery and XSLT Function Reference.

• For information about Server-Side JavaScript in MarkLogic, see the JavaScript Reference
Guide.

• For information on using XCC to access content in MarkLogic Server from Java, see the
XCC Developer’s Guide.

• For information on how languages affect searches, see Language Support in MarkLogic

Server in the Search Developer’s Guide. It is important to understand how languages
affect your searches regardless of the language of your content.

• For information about developing search applications, see the Search Developer’s Guide.

• For information on what constitutes a transaction in MarkLogic Server, see
“Understanding Transactions in MarkLogic Server” on page 28 in this Application
Developer’s Guide.

http://docs.marklogic.com

MarkLogic Server Developing Applications in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 18

• For other developer topics, review the contents for this Application Developer’s Guide.

• For performance-related issues, see the Query Performance and Tuning Guide.

MarkLogic Server Loading Schemas

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 19

2.0 Loading Schemas
27

MarkLogic Server has the concept of a schema database. The schema database stores schema
documents that can be shared across many different databases within the same MarkLogic Server
cluster. This chapter introduces the basics of loading schema documents into MarkLogic Server,
and includes the following sections:

• Configuring Your Database

• Loading Your Schema

• Referencing Your Schema

• Working With Your Schema

• Validating XML and JSON Data Against a Schema

For more information about configuring schemas in the Admin Interface, see the “Understanding
and Defining Schemas” chapter of the Administrator’s Guide.

2.1 Configuring Your Database
MarkLogic Server automatically creates an empty schema database, named Schemas, at
installation time.

Every document database that is created references both a schema database and a security
database. By default, when a new database is created, it automatically references Schemas as its
schema database. In most cases, this default configuration (shown in the following figure) will be
correct:

MarkLogic Server Loading Schemas

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 20

In other cases, it may be desirable to configure your database to reference a different schema
database. It may be necessary, for example, to be able to have two different databases reference
different versions of the same schema using a common schema name. In these situations, simply
select the database from the drop-down schema database menu that you want to use in place of the
default Schemas database. Any database in the system can be used as a schema database.

In select cases, it may be efficient to configure your database to reference itself as the schema
database. This is a perfectly acceptable configuration which can be set up through the same
drop-down menu. In these situations, a single database stores both content and schema relevant to
a set of applications.

Note: To create a database that references itself as its schema database, you must first
create the database in a configuration that references the default Schemas database.
Once the new database has been created, you can change its schema database
configuration to point to itself using the drop-down menu.

2.2 Loading Your Schema
HTTP and XDBC Servers connect to document databases. Document insertion operations
conducted through those HTTP and XDBC Servers (using xdmp:document-load,
xdmp:document-insert and the various XDBC document insertion methods) insert documents into
the document databases connected to those servers.

This makes loading schemas slightly tricky. Because the system looks in the schema database
referenced by the current document database when requesting schema documents, you need to
make sure that the schema documents are loaded into the current database's schema database
rather than into the current document database.

There are several ways to accomplish this:

1. You can use the Admin Interface's load utility to load schema documents directly into a
schema database. Go to the Database screen for the schema database into which you want
to load documents. Select the load tab at top-right and proceed to load your schema as you
would load any other document.

2. You can create an XQuery program that uses the xdmp:eval built-in function, specifying
the <database> option to load a schema directly into the current database’s schema
database:

xdmp:eval('xdmp:document-load("sample.xsd")', (),
 <options xmlns="xdmp:eval">
 <database>{xdmp:schema-database()}</database>
 </options>)

3. You can create an XDBC or HTTP Server that directly references the schema database in
question as its document database, and then use any document insertion function to load
one or more schemas into that schema database. This approach is not necessary.

MarkLogic Server Loading Schemas

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 21

4. You can create a WebDAV Server that references the Schemas database and then
drag-and-drop schema documents in using a WebDAV client.

2.3 Referencing Your Schema
Schemas are automatically invoked by the server when loading documents (for conducting
content repair) and when evaluating queries (for proper data typing). For any given document,
the server looks for a matching schema in the schema database referenced by the current
document database.

1. If a schema with a matching target namespace is not found, a schema is not used in
processing the document.

2. If one matching schema is found, that schema is used for processing the document.

3. If there are more than one matching schema in the schema database, a schema is selected
based on the precedence rules in the order listed:

a. If the xsi:schemaLocation or xsi:noNamespaceSchemaLocation attribute of the document
root element specifies a URI, the schema with the specified URI is used.

b. If there is an import schema prolog expression with a matching target namespace, the
schema with the specified URI is used. Note that if the target namespace of the import
schema expression and that of the schema document referenced by that expression do not
match, the import schema expression is not applied.

c. If there is a schema with a matching namespace configured within the current HTTP or
XDBC Server's Schema panel, that schema is used. Note that if the target namespace
specified in the configuration panel does not match the target namespace of the schema
document, the Admin Interface schema configuration information is not used.

d. If none of these rules apply, the server uses the first schema that it finds. Given that
document ordering within the database is not defined, this is not generally a predictable
selection mechanism, and is not recommended.

2.4 Working With Your Schema
It is sometimes useful to be able to explicitly read a schema from the database, either to return it to
the outside world or to drive certain schema-driven query processing activities.

Schemas are treated just like any other document by the system. They can be inserted, read,
updated and deleted just like any other document. The difference is that schemas are usually
stored in a secondary schema database, not in the document database itself.

The most common activity developers want to carry out with schema is to read them. There are
two approaches to fetching a schema from the server explicitly:

MarkLogic Server Loading Schemas

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 22

1. You can create an XQuery that uses xdmp:eval with the <database> option to read a
schema directly from the current database’s schema database. For example, the following
expression will return the schema document loaded in the code example given above:

xdmp:eval('doc("sample.xsd")', (),
 <options xmlns="xdmp:eval">
 <database>{xdmp:schema-database()}</database>
 </options>)

The use of the xdmp:schema-database built-in function ensures that the sample.xsd
document is read from the current database’s schema database.

2. You can create an XDBC or HTTP Server that directly references the schema database in
question as its document database, and then submit any XQuery as appropriate to read,
analyze, update or otherwise work with the schemas stored in that schema database. This
approach is not necessary in most instances.

Other tasks that involve working with schema can be accomplished similarly. For example, if you
need to delete a schema, an approach modeled on either of the above (using
xdmp:document-delete("sample.xsd")) will work as expected.

2.5 Validating XML and JSON Data Against a Schema
This section describes two ways to validate your schemas:

• Validating Schemas using Schematron

• Validating Schemas using the XQuery validate Expression

• Validating JSON Documents against JSON Schemas

2.5.1 Validating Schemas using Schematron
You can use the Schematron feature in MarkLogic to validate your XML and JSON documents
against schemas. Schematron is a rule based validation language expressed in XM that uses XPath
to make assertions about the presence or absence of patterns in XML trees.

Schematron is an open source project on Github and licensed under MIT. MarkLogic supports the
latest version of Schematron, called the "skeleton" XSLT implementation of ISO Schematron. See
the Schematron XQuery and JavaScript API reference documentation for more information.

The open source XSLT based Schematron implementation can be found at:

https://github.com/Schematron/schematron.

https://github.com/Schematron/schematron

MarkLogic Server Loading Schemas

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 23

For example, to use Schematron to validate an XML schema, do the following:

1. Open Query Console, and use the following query to insert the example schema document
into the Schemas database.

Note: The queryBinding="xslt2" attribute in the schema file directs Schematron to make
use of the xslt 2.0 engine.

xdmp:document-insert("/userSchema.sch",
<sch:schema xmlns:sch="http://purl.oclc.org/dsdl/schematron"
 queryBinding="xslt2" schemaVersion="1.0">
<sch:title>user-validation</sch:title>
<sch:phase id="phase1">
 <sch:active pattern="structural"></sch:active>
</sch:phase>
<sch:phase id="phase2">
 <sch:active pattern="co-occurence"></sch:active>
</sch:phase>
<sch:pattern id="structural">
 <sch:rule context="user">
 <sch:assert test="@id">user element must have an id
attribute</sch:assert>
 <sch:assert test="count(*) = 5">
 user element must have 5 child elements: name, gender,
 age, score and result
 </sch:assert>
 <sch:assert test="score/@total">score element must have a total
attribute</sch:assert>
 <sch:assert test="score/count(*) = 2">score element must have two
child elements</sch:assert>
 </sch:rule>
</sch:pattern>
<sch:pattern id="co-occurence">
 <sch:rule context="score">
 <sch:assert test="@total = test-1 + test-2">
 total score must be a sum of test-1 and test-2 scores
 </sch:assert>
 <sch:assert test="(@total gt 30 and ../result = 'pass') or
 (@total le 30 and ../result = 'fail')" diagnostics="d1">
 if the score is greater than 30 then the result will be
 'pass' else 'fail'
 </sch:assert>
 </sch:rule>
</sch:pattern>
<sch:diagnostics>
<sch:diagnostic id="d1">the score does not match with the
result</sch:diagnostic>
</sch:diagnostics>
</sch:schema>)

MarkLogic Server Loading Schemas

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 24

2. Switch Query Console to the Documents database and use the following schematron:put
query to compile the userSchema.sch Schematron document and insert the generated
validator XSLT into the Modules database.

xquery version "1.0-ml";

import module namespace schematron =
"http://marklogic.com/xdmp/schematron"
 at "/MarkLogic/schematron/schematron.xqy";

let $params := map:map()
let $_put := map:put($params, 'phase', '#ALL')
let $_put := map:put($params, 'terminate', fn:false())
let $_put := map:put($params, 'generate-fired-rule', fn:true())
let $_put := map:put($params, 'generate-paths', fn:true())
let $_put := map:put($params, 'diagnose', fn:true())
let $_put := map:put($params, 'allow-foreign', fn:false())
let $_put := map:put($params, 'validate-schema', fn:true())
return schematron:put("/userSchema.sch", $params)

3. In the Documents database, insert a document to be validated against the userSchema.sch
schema.

xdmp:document-insert("user001.xml",
<user id="001">
 <name>Alan</name>
 <gender>Male</gender>
 <age>14</age>
 <score total="90">
 <test-1>50</test-1>
 <test-2>40</test-2>
 </score>
 <result>fail</result>
</user>)

MarkLogic Server Loading Schemas

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 25

4. In the Documents database, call the schematron:validate function to validate the
user001.xml document against the userSchema.sch schema.

xquery version "1.0-ml";

import module namespace schematron =
"http://marklogic.com/xdmp/schematron"
 at "/MarkLogic/schematron/schematron.xqy";

schematron:validate(fn:doc("user001.xml"),
 schematron:get("/userSchema.sch"))

2.5.2 Validating Schemas using the XQuery validate Expression
You can also use the XQuery validate expression to check if an element is valid according to a
schema. For details on the validate expression, see Validate Expression in the XQuery and XSLT
Reference Guide and see the W3C XQuery recommendation
(http://www.w3.org/TR/xquery/#id-validate).

If you want to validate a document before loading it, you can do so by first getting the node for
the document, validate the node, and then insert it into the database. For example:

xquery version "1.0-ml";

(:
 this will validate against the schema if it is in scope, but
 will validate it without a schema if there is no in-scope schema
:)
let $node := xdmp:document-get("c:/tmp/test.xml")
return
try { xdmp:document-insert("/my-valid-document.xml",
 validate lax { $node })
 }
catch ($e) { "Validation failed: ",
 $e/error:format-string/text() }

http://www.w3.org/TR/xquery/#id-validate

MarkLogic Server Loading Schemas

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 26

The following uses strict validation and imports the schema from which it validates:

xquery version "1.0-ml";
import schema "my-schema" at "/schemas/my-schema.xsd";

(:
 this will validate against the specified schema, and will fail
 if the schema does not exist (or if it is not valid according to
 the schema)
:)
let $node := xdmp:document-get("c:/tmp/test.xml")
return
try { xdmp:document-insert("/my-valid-document.xml",
 validate strict { $node })
 }
catch ($e) { "Validation failed: ",
 $e/error:format-string/text() }

2.5.3 Validating JSON Documents against JSON Schemas
You can use the xdmp:json-validate function to validate a JSON document against a JSON
schema in the Schemas database. For example, the following JSON schema is in the Schemas
database at the URL, /schemas/example.json:

{
 "language": "zxx",
 "$schema": "http://json-schema.org/draft-07/schema#",
 "properties": {
 "count": { "type":"integer", "minimum":0 },
 "items": { "type":"array",
 "items": {"type":"string", "minLength":1 } }
 }
}

You can validate the following node against the example.json schema as follows:

xdmp:json-validate(
 object-node{ "count": 3, "items": array-node{12} },
 "/schemas/example.json")

MarkLogic Server Loading Schemas

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 27

You can also use the xdmp:json-validate-node function to validate JSON documents against ad
hoc schema nodes. For example:

xdmp:json-validate-node(
 object-node{ "count": 3, "items": array-node{12} },
 object-node{
 "properties": object-node{
 "count": object-node{ "type":"integer", "minimum":0 },
 "items": object-node{ "type":"array",
 "items": object-node{"type":"string", "minLength":1 }
 }
 }
 }
)

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 28

3.0 Understanding Transactions in MarkLogic Server
73

MarkLogic Server is a transactional system that ensures data integrity. This chapter describes the
transaction model of MarkLogic Server, and includes the following sections:

• Terms and Definitions

• Overview of MarkLogic Server Transactions

• Commit Mode

• Transaction Type

• Single vs. Multi-statement Transactions

• Transaction Mode

• Interactions with xdmp:eval/invoke

• Functions With Non-Transactional Side Effects

• Reducing Blocking with Multi-Version Concurrency Control

• Administering Transactions

• Transaction Examples

For additional information about using multi-statement and XA/JTA transactions from XCC Java
applications, see the XCC Developer’s Guide.

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 29

3.1 Terms and Definitions
Although transactions are a core feature of most database systems, various systems support subtly
different transactional semantics. Clearly defined terminology is key to a proper and
comprehensive understanding of these semantics. To avoid confusion over the meaning of any of
these terms, this section provides definitions for several terms used throughout this chapter and
throughout the MarkLogic Server documentation. The definitions of the terms also provide a
useful starting point for describing transactions in MarkLogic Server.

Term Definition

statement An XQuery main module, as defined by the W3C XQuery standard, to
be evaluated by MarkLogic Server. A main module consists of an
optional prolog and a complete XQuery expression.

A Server-Side JavaScript program (or “script”) is considered a single
statement for transaction purposes.

Statements are either query statements or update statements,
determined statically through static analysis prior to beginning the
statement evaluation.

query statement A statement that contains no update calls.

Query statements have a read-consistent view of the database. Since a
query statement does not change the state of the database, the server
optimizes it to hold no locks or lightweight locks, depending on the
type of the containing transaction.

update statement A statement with the potential to perform updates (that is, it contains
one or more update calls).

A statement can be categorized as an update statement whether or not
the statement performs an update at runtime. Update statements run
with readers/writers locks, obtaining locks as needed for documents
accessed in the statement.

transaction A set of one or more statements which either all fail or all succeed.

A transaction is either an update transaction or a query (read-only)
transaction, depending on the transaction type and the kind of
statements in the transaction. A transaction is either a single-statement
transaction or a multi-statement transaction, depending on the commit
mode at the time it is created.

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 30

transaction mode Controls the transaction type and the commit semantics of newly
created transactions. If you need to control the transaction type and/or
commit semantics of a transaction, set them individually, rather than
setting transaction mode. For details, see “Transaction Mode” on
page 56.

single-statement
transaction

Any transaction created in auto commit mode. Single-statement
transactions always contain only one statement and are automatically
committed on successful completion or rolled back on error.

multi-statement
transaction

A transaction created in explicit commit mode, consisting of one or
more statements which commit or rollback together. Changes made by
one statement in the transaction are visible to subsequent statements in
the same transaction prior to commit. Multi-statement transactions
must be explicitly committed by calling xdmp:commit or xdmp.commit.

query transaction A transaction which cannot perform any updates; a read-only
transaction. A transaction consisting of a single query statement in
auto update mode, or any transaction created with query transaction
type. Attempting to perform an update in a query transaction raises
XDMP-UPDATEFUNCTIONFROMQUERY.

Instead of acquiring locks, query transactions run at a particular
system timestamp and have a read-consistent view of the database.

update transaction A transaction that can perform updates (make changes to the
database). A transaction consisting of a single update statement in
auto commit mode, or any transaction created with update transaction
type.

Update transactions run with readers/writers locks, obtaining locks as
needed for documents accessed in the transaction.

commit End a transaction and make the changes made by the transaction
visible in the database. Single-statement transactions are automatically
committed upon successful completion of the statement.
Multi-statement transactions are explicitly committed using
xdmp:commit, but the commit only occurs if and when the calling
statement successfully completes.

rollback Immediately terminate a transaction and discard all updates made by
the transaction. All transactions are automatically rolled back on error.
Multi-statement transactions can also be explicitly rolled back using
xdmp:rollback, or implicitly rolled back due to timeout or reaching the
end of the session without calling xdmp:commit.

Term Definition

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 31

3.2 Overview of MarkLogic Server Transactions
This section summarizes the following key transaction concepts in MarkLogic Server for quick
reference.

• Key Transaction Attributes

system timestamp A number maintained by MarkLogic Server that increases every time
a change or a set of changes occurs in any of the databases in a system
(including configuration changes from any host in a cluster). Each
fragment stored in a database has system timestamps associated with it
to determine the range of timestamps during which the fragment is
valid.

readers/writers locks A set of read and write locks that lock documents for reading and
update at the time the documents are accessed.

MarkLogic Server uses readers/writers locks during update
statements. Because update transactions only obtain locks as needed,
update statements always see the latest version of a document. The
view is still consistent for any given document from the time the
document is locked. Once a document is locked, any update
statements in other transactions wait for the lock to be released before
updating the document. For more details, see “Update Transactions:
Readers/Writers Locks” on page 45.

program The expanded version of some XQuery code that is submitted to
MarkLogic Server for evaluation, such as a query expression in a .xqy
file or XQuery code submitted in an xdmp:eval statement. The
program consists not only of the code in the calling module, but also
any imported modules that are called from the calling module, and any
modules they might call, and so on.

session A “conversation” with a database on a MarkLogic Server instance.
The session encapsulates state information such as connection
information, credentials, and transaction settings. The precise nature
of a session depends on the context of the conversation. For details,
see “Sessions” on page 53.

request Any invocation of a program, whether through an App Server, through
a task server, through xdmp:eval, or through any other means. In
addition, certain client calls to App Servers (for example, loading an
XML document through XCC, downloading an image through HTTP,
or locking a document through WebDAV) are also requests.

Term Definition

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 32

• Understanding Statement Boundaries

• Single-Statement Transaction Concept Summary

• Multi-Statement Transaction Concept Summary

The remainder of the chapter covers these concepts in detail.

3.2.1 Key Transaction Attributes
MarkLogic supports the following transaction models:

• Single-statement transactions, which are automatically committed at the end of a
statement. This is the default transaction model in MarkLogic.

• Multi-statement transactions, which can span multiple requests or statements and must be
explicitly committed.

Updates made by a statement in a multi-statement transaction are visible to subsequent statements
in the same transaction, but not to code running outside the transaction.

An application can use either or both transaction models. Single statement transactions are
suitable for most applications. Multi-statement transactions are powerful, but introduce more
complexity to your application. Focus on the concepts that match your chosen transactional
programming model.

In addition to being single or multi-statement, transactions are typed as either update or query.
The transaction type determines what operations are permitted and if, when, and how locks are
acquired. By default, MarkLogic automatically detects the transaction type, but you can also
explicitly specify the type.

The transactional model (single or multi-statement), commit mode (auto or explicit), and the
transaction type (auto, query, or update) are fixed at the time a transaction is created. For example,
if a block of code is evaluated by an xdmp:eval (XQuery) or xdmp.eval (JavaScript) call using
same-statement isolation, then it runs in the caller’s transaction context, so the transaction
configuration is fixed by the caller, even if the called code attempts to change the settings.

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 33

The default transaction semantics vary slightly between XQuery and Server-Side JavaScript. The
default behavior for each language is shown in the following table, along with information about
changing the behavior. For details, see “Transaction Type” on page 38.

A statement can be either a query statement (read only) or an update statement. In XQuery, the
first (or only) statement type determines the transaction type unless you explicitly set the
transaction type. The statement type is determined through static analysis. In JavaScript, query
statement type is assumed unless you explicitly set the transaction to update.

In the context of transactions, a “statement” has different meanings for XQuery and JavaScript.
For details, see “Understanding Statement Boundaries” on page 33.

3.2.2 Understanding Statement Boundaries
Since transactions are often described in terms of “statements”, you must understand what
constitutes a statement in your server-side programming language:

• Transactional Statements in XQuery

• Transactional Statements in Server-Side JavaScript

Langauge Default Transaction Behavior Alternative

XQuery single-statement, auto-commit, with
auto-detection of transaction type

Use the update prolog option to explicitly
set the transaction type to auto, update or
query. Use the commit option to set the
commit mode to auto (single-statement)
or explicit (multi-statement). Similar
controls are available through options on
functions such as xdmp:eval and
xdmp:invoke.

Server-Side
JavaScript

single-statement, auto-commit, with
query transaction type

Use the declareUpdate function to
explicitly set the transaction type to
update and control whether the commit
mode is auto (single-statement) or
explicit (multi-statement). Auto detection
of transaction type is not available.
Similar controls are available through
options on functions such as xdmp.eval
and xdmp.invoke.

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 34

3.2.2.1 Transactional Statements in XQuery
In XQuery, a statement for transaction purposes is one complete XQuery statement that can be
executed as a main module. You can use the semi-colon separator to include multiple statements
in a single block of code.

For example, the following code block contains two statements:

xquery version "1.0-ml";
xdmp:document-insert('/some/uri/doc.xml', <data/>);
(: end of statement 1 :)

xquery version "1.0-ml";
fn:doc('/some/uri/doc.xml');
(: end of statement 2 :)

By default, the above code executes as two auto-detect, auto-commit transactions.

If you evaluate this code as a multi-statement transaction, both statements would execute in the
same transaction; depending on the evaluation context, the transaction might remain open or be
rolled back at the end of the code since there is no explicit commit.

For more details, see “Semi-Colon as a Statement Separator” on page 54.

3.2.2.2 Transactional Statements in Server-Side JavaScript
In JavaScript, an entire script or main module is considered a statement for transaction purposes,
no matter how many JavaScript statements it contains. For example, the following code is one
transactional “statement”, even though it contains multiple JavaScript statements:

'use strict';
declareUpdate();
xdmp.documentInsert('/some/uri/doc.json', {property: 'value'});
console.log('I did something!');
// end of module

By default, the above code executes in a single transaction that completes at the end of the script.
If you evaluate this code in the context of a multi-statement transaction, the transaction remains
open after completion of the script.

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 35

3.2.3 Single-Statement Transaction Concept Summary
If you use the default model (single-statement, auto-commit), it is important to understand the
following concepts:

Single-Statement Transaction Concept Where to Learn More

Statements run in a transaction. Single vs. Multi-statement Transactions

A transaction contains exactly one statement. Single-Statement, Automatically Committed

Transactions

Transactions are automatically committed at
the end of every statement.

Single-Statement, Automatically Committed

Transactions

Transactions have either update or query type.
• Query transactions use a system time-

stamp instead of locks.
• Update transactions acquire locks.

Transaction Type

In XQuery, transaction type can be detected
by MarkLogic, or explicitly set.

In JavaScript, transaction type is assumed to
be query unless you explicitly set it to update.
Auto detection is not available.

Transaction Type

Updates made by a statement are not visible
until the statement (transaction) completes.

Update Transactions: Readers/Writers Locks

In XQuery, semi-colon can be used as a
statement/transaction separator to include
multiple statements in a main module.

Each JavaScript program is considered a
statement for transaction purposes, regardless
how many JavaScript statements it contains.

Understanding Statement Boundaries

Single-Statement, Automatically Committed

Transactions

Semi-Colon as a Statement Separator

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 36

3.2.4 Multi-Statement Transaction Concept Summary
If you use multi-statement transactions, it is important to understand the following concepts:

Multi-Statement Transaction Concept Where to Learn More

Statements run in a transaction. Single vs. Multi-statement Transactions

A transaction contains one or more statements
that either all succeed or all fail.

Multi-Statement, Explicitly Committed

Transactions

Multi-statement transactions must be
explicitly committed using xdmp:commit
(XQuery) or xdmp.commit (JavaScript).

Multi-Statement, Explicitly Committed

Transactions

Committing Multi-Statement Transactions

Rollback can be implicit or explicit. For
explicit rollback, use xdmp:rollback
(XQuery) or xdmp.rollback (JavaScript).

Multi-Statement, Explicitly Committed

Transactions

Rolling Back Multi-Statement Transactions

Transactions have either update or query type.
• Query transactions use a system time-

stamp instead of acquiring locks
• Update transactions acquire locks.

Transaction Type

In XQuery, transaction type can be detected
by MarkLogic, or explicitly set.

In JavaScript, transaction type is assumed to
be query unless you explicitly set it to update.
Auto detection is not available.

Transaction Type

Transactions run in a session. Sessions

Sessions have a transaction mode that affects
the following:
• transaction type
• commit semantics
• how many statements a transaction can

contain

Transaction Mode

Setting the commit mode to explicit always
creates a multi-statement transaction,
explicit-commit transaction.

Single vs. Multi-statement Transactions

Multi-Statement, Explicitly Committed

Transactions

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 37

3.3 Commit Mode
A transaction can run in either auto or explicit commit mode.

The default behavior for a single-statement transaction is auto commit, which means MarkLogic
commits the transaction at the end of a statement, as defined in “Understanding Statement
Boundaries” on page 33.

Explicit commit mode is intended for multi-statement transactions. In this mode, you must
explicitly commit the transaction by calling xdmp:commit (XQuery) or xdmp.commit (JavaScript),
or explicitly roll back the transaction by calling xdmp:rollback (XQuery) or xdmp.rollback
(JavaScript). This enables you to leave a transaction open across multiple statements or requests.

You can control the commit mode in the following ways:

• Set the XQuery prolog option xdmp:commit to auto or explicit.

• Call the JavaScript function declareUpdate with the explicitCommit option. Note that this
affects both the commit mode and the transaction type. For details, see “Controlling
Transaction Type in JavaScript” on page 42.

• Set the commit option when evaluating code with xdmp:eval (XQuery), xdmp.eval
(JavaScript), or another function in the eval/invoke family. See the table below for
complete list of functions supporting this option.

• Call xdmp:set-transaction-mode (XQuery) or xdmp.setTransactionMode (JavaScript).
Note that this sets both the commit mode and the query type. For details, see “Transaction
Mode” on page 56.

Updates made by a statement are not visible
until the statement completes.

Update Transactions: Readers/Writers Locks

Updates made by a statement are visible to
subsequent statements in the same transaction
while the transaction is still open.

Multi-Statement, Explicitly Committed

Transactions

In XQuery, semi-colon can be used as a
statement separator to include multiple
statements in a transaction.

Understanding Statement Boundaries

Semi-Colon as a Statement Separator

Multi-Statement Transaction Concept Where to Learn More

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 38

The following functions support commit and update options that enable you to control the commit
mode (explicit or auto) and transaction type (update, query, or auto). For details, see the function
reference for xdmp:eval or xdmp.eval.

3.4 Transaction Type
This section covers the following information related to transaction type. This information applies
to both single-statement and multi-statement transactions.

• Transaction Type Overview

• Controlling Transaction Type in XQuery

• Controlling Transaction Type in JavaScript

• Query Transactions: Point-in-Time Evaluation

• Update Transactions: Readers/Writers Locks

• Example: Query and Update Transaction Interaction

3.4.1 Transaction Type Overview
Transaction type determines the type of operations permitted by a transaction and whether or not
the transaction uses locks. Transactions have either update or query type. Statements also have
query or update type, depending on the type of operations they perform.

Update transactions and statements can perform both query and update operations. Query
transactions and statements are read-only and may not attempt update operations. A query
transaction can contain an update statement, but an error is raised if that statement attempts an
update operation at runtime; for an example, see “Query Transaction Mode” on page 59.

XQuery JavaScript

xdmp:eval xdmp.eval

xdmp:javascript-eval xdmp.xqueryEval

xdmp:invoke xdmp.invoke

xdmp:invoke-function xdmp.invokeFunction

xdmp:spawn xdmp.spawn

xdmp:spawn-function

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 39

MarkLogic Server determines transaction type in the following ways:

• Auto: (XQuery only) MarkLogic determines the transaction type through static analysis of
the first (or only) statement in the transaction. Auto is the default behavior in XQuery.

• Explicit: Your code explicitly specifies the transaction type as update or query through an
option, a call to xdmp:set-transaction-mode (XQuery) or xdmp.setTransactionMode
(JavaScript), or by calling declareUpdate (JavaScript only).

For more details, see “Controlling Transaction Type in XQuery” on page 39 or “Controlling
Transaction Type in JavaScript” on page 42.

Query transactions use a system timestamp to access a consistent snapshot of the database at a
particular point in time, rather than using locks. Update transactions use readers/writers locks. See
“Query Transactions: Point-in-Time Evaluation” on page 44 and “Update Transactions:
Readers/Writers Locks” on page 45.

The following table summarizes the interactions between transaction types, statements, and
locking behavior. These interactions apply to both single-statement and multi-statement
transactions.

3.4.2 Controlling Transaction Type in XQuery
You do not need to explicitly set transaction type unless the default auto-detection is not suitable
for your application. When the transaction type is “auto” (the default), MarkLogic determines the
transaction type through static analysis of your code. In a multi-statement transaction, MarkLogic
examines only the first statement when auto-detecting transaction type.

To explicitly set the transaction type:

• Declare the xdmp:update option in the XQuery prolog, or

• Call xdmp:set-transaction-mode prior to creating transactions that run in that mode, or

• Set the update option in the options node passed to functions such as xdmp:eval,
xdmp:invoke, or xdmp:spawn.

Transaction
Type

Statement Behavior

query query Point-in-time view of documents. No locking required.

update Runtime error.

update query Read locks acquired, as needed.

update Readers/writers locks acquired, as needed.

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 40

Use the xdmp:update prolog option when you need to set the transaction type before the first
transaction is created, such as at the beginning of a main module. For example, the following code
runs as a multi-statement update transaction because of the prolog options:

declare option xdmp:commit "explicit";
declare option xdmp:update "true";

let $txn-name := "ExampleTransaction-1"
return (
 xdmp:set-transaction-name($txn-name),
 fn:concat($txn-name, ": ",
 xdmp:host-status(xdmp:host())
 //hs:transaction[hs:transaction-name eq $txn-name]
 /hs:transaction-mode)
);
 xdmp:commit();

For more details, see xdmp:update and xdmp:commit in the XQuery and XSLT Reference Guide.

Setting transaction mode with xdmp:set-transaction-mode affects both the commit semantics
(auto or explicit) and the transaction type (auto, query, or update). Setting the transaction mode in
the middle of a transaction does not affect the current transaction. Setting the transaction mode
affects the transaction creation semantics for the entire session.

The following example uses xdmp:set-transaction-mode to demonstrate that the currently
running transaction is unaffected by setting the transaction mode to a different value. The
example uses xdmp:host-status to examine the mode of the current transaction. (The example
only uses xdmp:set-transaction-name to easily pick out the relevant transaction in the
xdmp:host-status results.)

xquery version "1.0-ml";

declare namespace hs="http://marklogic.com/xdmp/status/host";

(: The first transaction created will run in update mode :)
declare option xdmp:commit "explicit";
declare option xdmp:update "true";

let $txn-name := "ExampleTransaction-1"
return (
 xdmp:set-transaction-name($txn-name),
 xdmp:set-transaction-mode("query"), (: no effect on current txn :)
 fn:concat($txn-name, ": ",
 xdmp:host-status(xdmp:host())
 //hs:transaction[hs:transaction-name eq $txn-name]
 /hs:transaction-mode)
);

(: complete the current transaction :)
xdmp:commit();

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 41

(: a new transaction is created, inheriting query mode from above :)
declare namespace hs="http://marklogic.com/xdmp/status/host";
let $txn-name := "ExampleTransaction-2"
return (
 xdmp:set-transaction-name($txn-name),
 fn:concat($txn-name, ": ",
 xdmp:host-status(xdmp:host())
 //hs:transaction[hs:transaction-name eq $txn-name]
 /hs:transaction-mode)
);

If you paste the above example into Query Console, and run it with results displayed as text, you
see the first transaction runs in update mode, as specified by xdmp:transaction-mode, and the
second transaction runs in query mode, as specified by xdmp:set-transaction-mode:

ExampleTransaction-1: update
ExampleTransaction-2: query

You can include multiple option declarations and calls to xdmp:set-transaction-mode in your
program, but the settings are only considered at transaction creation. A transaction is implicitly
created just before evaluating the first statement. For example:

xquery version "1.0-ml";
declare option xdmp:commit "explicit";
declare option xdmp:update "true";

(: begin transaction :)
"this is an update transaction";
xdmp:commit();
(: end transaction :)

xquery version "1.0-ml";
declare option xdmp:commit "explicit";
declare option xdmp:update "false";

(: begin transaction :)
"this is a query transaction";
xdmp:commit();
(: end transaction :)

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 42

The following functions support commit and update options that enable you to control the commit
mode (explicit or auto) and transaction type (update, query, or auto). For details, see the function
reference for xdmp:eval or xdmp.eval.

3.4.3 Controlling Transaction Type in JavaScript
By default, Server-Side JavaScripts runs in a single-statement, auto-commit, query transaction.
You can control transaction type in the following ways:

• Use the declareUpdate function to set the transaction type to update and/or specify the
commit semantics, or

• Set the update option in the options node passed to functions such as xdmp.eval,
xdmp.invoke, or xdmp.spawn; or

• Call xdmp.setTransactionMode prior to creating transactions that will run in that mode.

3.4.3.1 Configuring a Transaction Using declareUpdate
By default, JavaScript runs in auto commit mode with query transaction type. You can use the
declareUpdate function to change the transaction type to update and/or the commit mode from
auto to explicit.

MarkLogic cannot use static analysis to determine whether or not JavaScript code performs
updates. If your JavaScript code makes updates, one of the following requirements must be met:

• You call the declareUpdate function to indicate your code will make updates.

• The caller of your code sets the transaction type to one that permits updates.

Calling declareUpdate with no arguments is equivalent to auto commit mode and update
transaction type. This means the code can make updates and runs as a single-statement
transaction. The updates are automatically committed when the JavaScript code completes.

XQuery JavaScript

xdmp:eval xdmp.eval

xdmp:javascript-eval xdmp.xqueryEval

xdmp:invoke xdmp.invoke

xdmp:invoke-function xdmp.invokeFunction

xdmp:spawn xdmp.spawn

xdmp:spawn-function

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 43

You can also pass an explicitCommit option to declareUpdate, as shown below. The default value
of explicitCommit is false.

declareUpdate({explicitCommit: boolean});

If you set explicitCommit to true, then your code starts a new multi-statement update transaction.
You must explicitly commit or rollback the transaction, either before returning from your
JavaScript code or in another context, such as the caller of your JavaScript code or another request
executing in the same transaction.

For example, you might use explicitCommit to start a multi-statement transaction in an ad-hoc
query request through XCC, and then subsequently commit the transaction through another
request.

If the caller sets the transaction type to update, then your code is not required to call
declareUpdate in order to perform updates. If you do call declareUpdate in this situation, then the
resulting mode must not conflict with the mode set by the caller.

For more details, see declareUpdate Function in the JavaScript Reference Guide.

3.4.3.2 Configuring Transactions in the Caller
The following are examples of cases in which the transaction type and commit mode might be set
before your code is called:

• Your code is called via an eval/invoke function such as the XQuery function
xdmp:javascript-eval or the JavaScript functions xdmp.eval, and the caller specifies the
commit, update, or transaction-mode option.

• Your code is a server-side import transformation for use with the mlcp command line tool.

• Your code is a server-side transformation, extension, or other customization called by the
Java, Node.js, or REST Client APIs. The pre-set mode depends on the operation which
causes your code to run.

• Your code runs in the context of an XCC session where the client sets the commit mode
and/or transaction type.

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 44

The following functions support commit and update options that enable you to control the commit
mode (explicit or auto) and transaction type (update, query, or auto). For details, see the function
reference for xdmp:eval (XQuery) or xdmp.eval (JavaScript).

3.4.4 Query Transactions: Point-in-Time Evaluation
Query transactions are read-only and never obtain locks on documents. This section explores the
following concepts related to query transactions:

• System Timestamps and Fragment Versioning

• Query Transactions Run at a Timestamp (No Locks)

• Query Transactions See Latest Version of Documents Up To Timestamp of Transaction

3.4.4.1 System Timestamps and Fragment Versioning
To understand how transactions work in MarkLogic Server, it is important to understand how
documents are stored. Documents are made up of one or more fragments. After a document is
created, each of its fragments are stored in one or more stands. The stands are part of a forest, and
the forest is part of a database. A database contains one or more forests.

Each fragment in a stand has system timestamps associated with it, which correspond to the range
of system timestamps in which that version of the fragment is valid. When a document is updated,
the update process creates new versions of any fragments that are changed. The new versions of
the fragments are stored in a new stand and have a new set of valid system timestamps associated
with them. Eventually, the system merges the old and new stands together and creates a new stand
with only the latest versions of the fragments. Point-in-time queries also affect which versions of
fragments are stored and preserved during a merge. After the merge, the old stands are deleted.

XQuery JavaScript

xdmp:eval xdmp.eval

xdmp:javascript-eval xdmp.xqueryEval

xdmp:invoke xdmp.invoke

xdmp:invoke-function xdmp.invokeFunction

xdmp:spawn xdmp.spawn

xdmp:spawn-function

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 45

The range of valid system timestamps associated with fragments are used when a statement
determines which version of a document to use during a transaction. For more details about
merges, see Understanding and Controlling Database Merges in the Administrator’s Guide. For more
details on how point-in-time queries affect which versions of documents are stored, see
“Point-In-Time Queries” on page 139.

3.4.4.2 Query Transactions Run at a Timestamp (No Locks)
Query transactions run at the system timestamp corresponding to transaction creation time. Calls
to xdmp:request-timestamp return the same system timestamp at any point during a query
transaction; they never return the empty sequence. Query transactions do not obtain locks on any
documents, so other transactions can read or update the document while the transaction is
executing.

3.4.4.3 Query Transactions See Latest Version of Documents Up To
Timestamp of Transaction

When a query transaction is created, MarkLogic Server gets the current system timestamp (the
number returned when calling the xdmp:request-timestamp function) and uses only the latest
versions of documents whose timestamp is less than or equal to that number. Even if any of the
documents that the transaction accesses are updated or deleted outside the transaction while the
transaction is open, the use of timestamps ensures that all statements in the transaction always see
a consistent view of the documents the transaction accesses.

3.4.5 Update Transactions: Readers/Writers Locks
Update transactions have the potential to change the database, so they obtain locks on documents
to ensure transactional integrity. Update transactions run with readers/writers locks, not at a
timestamp like query transactions. This section covers the following topics:

• Identifying Update Transactions

• Locks Are Acquired on Demand and Held Throughout a Transaction

• Visibility of Updates

3.4.5.1 Identifying Update Transactions
When MarkLogic creates a transaction in auto-detect mode, the transaction type is determined
through static analysis of the first (or only) statement in the transaction. If MarkLogic detects the
potential for updates during static analysis, then the transaction is considered an update
transaction.

Depending on the specific logic of the transaction, it might not actually update anything, but a
transaction that MarkLogic determines to be an update transaction always runs as an update
transaction, not a query transaction.

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 46

For example, the following transaction runs as an update transaction even though the
xdmp:document-insert can never occur:

if (1 = 2)
then (xdmp:document-insert("fake.xml", <a/>))
else ()

In a multi-statement transaction, the transaction type always corresponds to the transaction type
settings in effect when the transaction is created. If the transaction type is explicitly set to update,
then the transaction is an update transaction, even if none of the contained statements perform
updates. Locks are acquired for all statements in an update transaction, whether or not they
perform updates.

Similarly, if you use auto-detect mode and MarkLogic determines the first statement in a
multi-statement transaction is a query statement, then the transaction is created as a query
transaction. If a subsequent statement in the transaction attempts an update operation, MarkLogic
throws an exception.

Calls to xdmp:request-timestamp always return the empty sequence during an update transaction;
that is, if xdmp:request-timestamp returns a value, the transaction is a query transaction, not an
update transaction.

3.4.5.2 Locks Are Acquired on Demand and Held Throughout a
Transaction

Because update transactions do not run at a set timestamp, they see the latest view of any given
document at the time it is first accessed by any statement in the transaction. Because an update
transaction must successfully obtain locks on all documents it reads or writes in order to complete
evaluation, there is no chance that a given update transaction will see “half” or “some” of the
updates made by some other transactions; the statement is indeed transactional.

Once a lock is acquired, it is held until the transaction ends. This prevents other transactions from
updating the read locked document and ensures a read-consistent view of the document. Query
(read) operations require read locks. Update operations require readers/writers locks.

When a statement in an update transaction wants to perform an update operation, a readers/writers
lock is acquired (or an existing read lock is converted into a readers/writers lock) on the
document. A readers/writers lock is an exclusive lock. The readers/writers lock cannot be
acquired until any locks held by other transactions are released.

Lock lifetime is an especially important consideration in multi-statement transactions. Consider
the following single-statement example, in which a readers/writers lock is acquired only around
the call to xdmp:node-replace:

 (: query statement, no locks needed :)
fn:doc("/docs/test.xml");
 (: update statement, readers/writers lock acquired :)
xdmp:node-replace(fn:doc("/docs/test.xml")/node(), <a>hello);

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 47

 (: readers/writers lock released :)
 (: query statement, no locks needed :)
fn:doc("/docs/test.xml");

If the same example is rewritten as a multi-statement transaction, locks are held across all three
statements:

declare option xdmp:transaction-mode “update”;

 (: read lock acquired :)
fn:doc("/docs/test.xml");
 (: the following converts the lock to a readers/writers lock :)
xdmp:node-replace(fn:doc("/docs/test.xml")/node(), <a>hello);
 (: readers/writers lock still held :)
fn:doc("/docs/test.xml");

 (: after the following statement, txn ends and locks released :)
xdmp:commit()

3.4.5.3 Visibility of Updates
Updates are only visible within a transaction after the updating statement completes; updates are
not visible within the updating statement. Updates are only visible to other transactions after the
updating transaction commits. Pre-commit triggers run as part of the updating transaction, so they
see updates prior to commit. Transaction model affects the visibility of updates, indirectly,
because it affects when commit occurs.

In the default single-statement transaction model, the commit occurs automatically when the
statement completes. To use a newly updated document, you must separate the update and the
access into two single-statement transactions or use multi-statement transactions.

In a multi-statement transaction, changes made by one statement in the transaction are visible to
subsequent statements in the same transaction as soon as the updating statement completes.
Changes are not visible outside the transaction until you call xdmp:commit.

An update statement cannot perform an update to a document that will conflict with other updates
occurring in the same statement. For example, you cannot update a node and add a child element
to that node in the same statement. An attempt to perform such conflicting updates to the same
document in a single statement will fail with an XDMP-CONFLICTINGUPDATES exception.

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 48

3.4.6 Example: Query and Update Transaction Interaction
The following figure shows three different transactions, T1, T2, and T3, and how the transactional
semantics work for each one:

Assume T1 is a long-running update transaction which starts when the system is at timestamp 10
and ends up committing at timestamp 40 (meaning there were 30 updates or other changes to the
system while this update statement runs).

When T2 reads the document being updated by T1 (doc.xml), it sees the latest version that has a
system timestamp of 20 or less, which turns out to be the same version T1 uses before its update.

When T3 tries to update the document, it finds that T1 has readers/writers locks on it, so it waits
for them to be released. After T1 commits and releases the locks, then T3 sees the newly updated
version of the document, and performs its update which is committed at a new timestamp of 41.

3.5 Single vs. Multi-statement Transactions
This section discusses the details of and differences between the two transaction programming
models supported by MarkLogic Server, single-statement and multi-statement transactions. The
following topics are covered:

• Single-Statement, Automatically Committed Transactions

• Multi-Statement, Explicitly Committed Transactions

• Semi-Colon as a Statement Separator

System Timestamp
10 20 30 40 50

T1 (update)
updates doc.xml
commits at
timestamp 40

T2 (query)
reads doc.xml
sees version
before T1

T1 (update)
commits

T3 (update)
updates doc.xml
waits for T1
to commit

T3 (update)
commits doc.xml based
on the new version.
T1 committed at
timestamp 40, so T3 doc.xml

commits at timestamp
41 or later

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 49

3.5.1 Single-Statement, Automatically Committed Transactions
By default, all transactions in MarkLogic Server are single-statement, auto-commit transactions.
In this default model, MarkLogic creates a transaction to evaluate each statement. When the
statement completes, MarkLogic automatically commits (or rolls back, in case of error) the
transaction, and then the transaction ends.

In Server-Side JavaScript, a JavaScript program (or “script”) is considered a single “statement” in
the transactional sense. For details, see “Understanding Statement Boundaries” on page 33.

In a single statement transaction, updates made by a statement are not visible outside the
statement until the statement completes and the transaction is committed.

The single-statement model is suitable for most applications. This model requires less familiarity
with transaction details and introduces less complexity into your application:

• Statement and transaction are nearly synonymous.

• The server determines the transaction type through static analysis.

• If the statement completes successfully, the server automatically commits the transaction.

• If an error occurs, the server automatically rolls back any updates made by the statement.

Updates made by a single-statement transaction are not visible outside the statement until the
statement completes. For details, see “Visibility of Updates” on page 47.

Use the semi-colon separator extension in XQuery to include multiple single-statement
transactions in your program. For details, see “Semi-Colon as a Statement Separator” on page 54.

Note: In Server-Side JavaScript, you need to use the declareUpdate() function to run an
update. For details, see “Controlling Transaction Type in JavaScript” on page 42.

3.5.2 Multi-Statement, Explicitly Committed Transactions
When a transaction is created in a context in which the commit mode is set to “explicit”, the
transaction will be a multi-statement transaction. This section covers the following related topics:

• Characteristics of Multi-Statement Transactions

• Committing Multi-Statement Transactions

• Rolling Back Multi-Statement Transactions

• Sessions

For details on setting the transaction type and commit mode, see “Transaction Type” on page 38.

For additional information about using multi-statement transactions in Java, see “Multi-Statement
Transactions” in the XCC Developer’s Guide.

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 50

3.5.2.1 Characteristics of Multi-Statement Transactions
Using multi-statement transactions introduces more complexity into your application and requires
a deeper understanding of transaction handling in MarkLogic Server. In a multi-statement
transaction:

• In XQuery, semi-colon acts as a separator between statements in the same transaction.

• In Server-Side JavaScript, the entire program (script) is considered a single transactional
statement, regardless how many JavaScript statements it contains.

• Each statement in the transaction sees changes made by previously evaluated statements
in the same transaction.

• The statements in the transaction either all commit or all fail.

• You must use xdmp:commit (XQuery) or xdmp.commit (JavaScript) to commit the
transaction.

• You can use xdmp:rollback (XQuery) or xdmp.rollback (JavaScript) to abort the
transaction.

A multi-statement transaction is bound to the database in which it is created. You cannot use a
transaction id created in one database context to perform an operation in the same transaction on
another database.

The statements in a multi-statement transaction are serialized, even if they run in different
requests. That is, one statement in the transaction completes before another one starts, even if the
statements execute in different requests.

A multi-statement transaction ends only when it is explicitly committed using xdmp:commit or
xdmp.commit, when it is explicitly rolled back using xdmp:rollback or xdmp.rollback, or when it is
implicitly rolled back through timeout, error, or session completion. Failure to explicitly commit
or roll back a multi-statement transaction might retain locks and keep resources tied up until the
transaction times out or the containing session ends. At that time, the transaction rolls back. Best
practice is to always explicitly commit or rollback a multi-statement transaction.

The following example contains 3 multi-statement transactions (because of the use of the commit
prolog option). The first transaction is explicitly committed, the second is explicitly rolled back,
and the third is implicitly rolled back when the session ends without a commit or rollback call.
Running the example in Query Console is equivalent to evaluating it using xdmp:eval with
different transaction isolation, so the final transaction rolls back when the end of the query is
reached because the session ends. For details about multi-statement transaction interaction with
sessions, see “Sessions” on page 53.

xquery version "1.0-ml";

declare option xdmp:commit "explicit";
(: Begin transaction 1 :)
xdmp:document-insert('/docs/mst1.xml', <data/>);
(: This statement runs in the same txn, so sees /docs/mst1.xml :)

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 51

xdmp:document-insert('/docs/mst2.xml', fn:doc('/docs/mst1.xml'));
xdmp:commit();
(: Transaction ends, updates visible in database :)

declare option xdmp:commit "explicit";
(: Begin transaction 2 :)
xdmp:document-delete('/docs/mst1.xml');
xdmp:rollback();
(: Transaction ends, updates discarded :)

declare option xdmp:commit "explicit";
(: Begin transaction 3 :)
xdmp:document-delete('/docs/mst1.xml');
(: Transaction implicitly ends and rolls back due to
 : reaching end of program without a commit :)

As discussed in “Update Transactions: Readers/Writers Locks” on page 45, multi-statement
update transactions use locks. A multi-statement update transaction can contain both query and
update operations. Query operations in a multi-statement update transaction acquire read locks as
needed. Update operations in the transaction will upgrade such locks to read/write locks or
acquire new read/write locks if needed.

Instead of acquiring locks, a multi-statement query transaction uses a system timestamp to give all
statements in the transaction a read consistent view of the database, as discussed in “Query
Transactions: Point-in-Time Evaluation” on page 44. The system timestamp is determined when
the query transaction is created, so all statements in the transaction see the same version of
accessed documents.

3.5.2.2 Committing Multi-Statement Transactions
Multi-statement transactions are explicitly committed by calling xdmp:commit. If a multi-statement
update transaction does not call xdmp:commit, all its updates are lost when the transaction ends.
Leaving a transaction open by not committing updates ties up locks and other resources.

Once updates are committed, the transaction ends and evaluation of the next statement continues
in a new transaction. For example:

xquery version "1.0-ml";

declare option xdmp:commit "explicit";

(: Begin transaction 1 :)
xdmp:document-insert('/docs/mst1.xml', <data/>);
(: This statement runs in the same txn, so sees /docs/mst1.xml :)
xdmp:document-insert('/docs/mst2.xml', fn:doc('/docs/mst1.xml'));
xdmp:commit();
(: Transaction ends, updates visible in database :)

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 52

Calling xdmp:commit commits updates and ends the transaction only after the calling statement
successfully completes. This means updates can be lost even after calling xdmp:commit, if an error
occurs before the committing statement completes. For this reason, it is best practice to call
xdmp:commit at the end of a statement.

The following example preserves updates even in the face of error because the statement calling
xdmp:commit always completes.:

xquery version "1.0-ml";

declare option xdmp:commit "explicit";

(: transaction created :)
xdmp:document-insert("not-lost.xml", <data/>)
, xdmp:commit();
fn:error(xs:QName("EXAMPLE-ERROR"), "An error occurs here");
(: end of session or program :)

(: ==> Insert is retained because the statement
 calling commit completes successfully. :)

By contrast, the update in this example is lost because the error occurring in the same statement as
the xdmp:commit call prevents successful completion of the committing statement:

xquery version "1.0-ml";

declare option xdmp:commit "explicit";

(: transaction created :)
xdmp:document-insert("lost.xml", <data/>)
, xdmp:commit()
, fn:error(xs:QName("EXAMPLE-ERROR"), "An error occurs here");
(: end of session or program :)

(: ==> Insert is lost because the statement
 terminates with an error before commit can occur. :)

Uncaught exceptions cause a transaction rollback. If code in a multi-statement transaction might
raise an exception that must not abort the transaction, wrap the code in a try-catch block and take
appropriate action in the catch handler. For example:

xquery version "1.0-ml";

declare option xdmp:commit "explicit";

xdmp:document-insert("/docs/test.xml", <a>hello);
try {
 xdmp:document-delete("/docs/nonexistent.xml")
} catch ($ex) {
 (: handle error or rethrow :)
 if ($ex/error:code eq 'XDMP-DOCNOTFOUND') then ()

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 53

 else xdmp:rethrow()
}, xdmp:commit();
(: start of a new txn :)
fn:doc("/docs/test.xml")//a/text()

3.5.2.3 Rolling Back Multi-Statement Transactions
Multi-statement transactions are rolled back either implicitly (on error or when the containing
session terminates), or explicitly (using xdmp:rollback or xdmp.rollback). Calling xdmp:rollback
immediately terminates the current transaction. Evaluation of the next statement continues in a
new transaction. For example:

xquery version "1.0-ml";

declare option xdmp:commit "explicit";
 (: begin transaction :)
xdmp:document-insert("/docs/mst.xml", <data/>);
xdmp:commit()
, "this expr is evaluated and committed";
 (: end transaction :)
 (:begin transaction :)
declare option xdmp:commit "explicit";
xdmp:document-insert("/docs/mst.xml", <data/>);
xdmp:rollback() (: end transaction :)
, "this expr is never evaluated";
 (:begin transaction :)
"execution continues here, in a new transaction"
 (: end transaction :)

The result of a statement terminated with xdmp:rollback is always the empty sequence.

Best practice is to explicitly rollback when necessary. Waiting on implicit rollback at session end
leaves the transaction open and ties up locks and other resources until the session times out. This
can be a relatively long time. For example, an HTTP session can span multiple HTTP requests.
For details, see “Sessions” on page 53.

3.5.2.4 Sessions
A session is a “conversation” with a database in a MarkLogic Server instance. A session
encapsulates state about the conversation, such as connection information, credentials, and
transaction settings. When using multi-statement transactions, you must understand when
evaluation might occur in a different session because:

• transaction mode is an attribute of a session.

• uncommitted transactions automatically roll back when the containing session ends.

For example, since a query evaluated by xdmp:eval (XQuery) or xdmp.eval (JavaScript) with
different-transaction isolation runs in its own session, it does not inherit the transaction mode
setting from the caller. Also, if the transaction is still open (uncommitted) when evaluation
reaches the end of the eval’d query, the transaction automatically rolls back.

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 54

By contrast, in an HTTP session, the transaction settings might apply to queries run in response to
multiple HTTP requests. Uncommitted transactions remain open until the HTTP session times
out, which can be a relatively long time.

The exact nature of a session depends on the “conversation” context. The following table
summarizes the most common types of sessions encountered by a MarkLogic Server application
and their lifetimes:

Session timeout is an App Server configuration setting. For details, see
admin:appserver-set-session-timeout in XQuery and XSLT Reference Guide or the Session
Timeout configuration setting in the Admin Interface for the App Server.

3.5.3 Semi-Colon as a Statement Separator
MarkLogic Server extends the XQuery language to include the semi-colon (;) in the XQuery
body as a separator between statements. Statements are evaluated in the order in which they
appear. Each semi-colon separated statement in a transaction is fully evaluated before the next
statement begins.

 Session Type Session Lifetime

HTTP

An HTTP client talking to an HTTP App
Server.

A session is created when the first HTTP
request is received from a client for which no
session already exists. The session persists
across requests until the session times out.

XCC

An XCC Java application talking to an
XDBC App Server

A session is created when a Session object is
instantiated and persists until the Session object
is finalized, you call Session.close(), or the
session times out.

Standalone query evaluated:

• by xdmp:eval or xdmp:invoke with
different-transaction isolation

• by xdmp:spawn

• as task on the Task Server)

A session is created to evaluate the
eval/invoke/spawn’d query or task and ends
when the query or task completes.

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 55

In a single-statement transaction, the statement separator is also a transaction separator. Each
statement separated by a semi-colon is evaluated as its own transaction. It is possible to have a
program where some semi-colon separated parts are evaluated as query statements and some are
evaluated as update statements. The statements are evaluated in the order in which they appear,
and in the case of update statements, one statement commits before the next one begins.

Semi-colon separated statements in auto commit mode (the default) are not multi-statement
transactions. Each statement is a single-statement transaction. If one update statement commits
and the next one throws a runtime error, the first transaction is not rolled back. If you have logic
that requires a rollback if subsequent transactions fail, you must add that logic to your XQuery
code, use multi-statement transactions, or use a pre-commit trigger. For information about
triggers, see “Using Triggers to Spawn Actions” on page 426.

In a multi-statement transaction, the semi-colon separator does not act as a transaction separator.
The semi-colon separated statements in a multi-statement transaction see updates made by
previous statements in the same transaction, but the updates are not committed until the
transaction is explicitly committed. If the transaction is rolled back, updates made by previously
evaluated statements in the transaction are discarded.

The following diagram contrasts the relationship between statements and transactions in single
and multi-statement transactions:

Multi-statement transactions:
A program containing
multiple, multi-statement
transactions.

Default model: A program
containing one single
statement, auto commit
transaction.

Default model: A program
containing multiple single
statement transactions.

Program

Transaction

statement

(auto commit)

Program

Transaction

statement;

(auto commit)

Transaction

statement;

(auto commit)

Program

Transaction

statement;

statement;

xdmp:commit;

Transaction

statement;
...

...

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 56

3.6 Transaction Mode
This section covers the following topics related to transaction mode:

• Transaction Mode Overview

• Auto Transaction Mode

• Query Transaction Mode

• Update Transaction Mode

• Query-Single-Statement Transaction Mode

• Multi-Auto Transaction Mode

3.6.1 Transaction Mode Overview
Transaction mode combines the concepts of commit mode (auto or explicit) and transaction type
(auto, update, or query). The transaction mode setting is session wide. You can control transaction
mode in the following ways:

• Call the xdmp:set-transaction-mode XQuery function or the xdmp.setTransactionMode
JavaScript function.

• Deprecated: Use the transaction-mode option of xdmp:eval (XQuery) or xdmp.eval
(JavaScript) or related functions eval/invoke/spawn functions. Use the commit and update
options instead.

• Deprecated: Use the XQuery prolog option xdmp:transaction-mode. Use the
xdmp:commit and xdmp:update XQuery prolog options instead.

Be aware that the xdmp:commit and xdmp:update XQuery prolog options affect only the next
transaction created after their declaration; they do not affect an entire session. Use
xdmp:set-transaction-mode or xdmp.setTransactionMode if you need to change the settings at the
session level.

Use the more specific commit mode and transaction type controls instead of setting transaction
mode. These controls provide finer grained control over transaction configuration.

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 57

For example, use the following table to map the xdmp:transaction-mode XQuery prolog options
to the xdmp:commit and xdmp:update prolog options. For more details, see “Controlling
Transaction Type in XQuery” on page 39.

Use the following table to map between the transaction-mode option and the commit and update
options for xdmp:eval and related eval/invoke/spawn functions.

xdmp:transaction-mode
Value

Equivalent xdmp:commit and xdmp:update Option Settings

"auto" declare option xdmp:commit "auto";
declare option xdmp:update "auto";

"update-auto-commit" declare option xdmp:commit "auto";
declare option xdmp:update "true";

"query-single-statement" declare option xdmp:commit "auto";
declare option xdmp:update "false";

"multi-auto" declare option xdmp:commit "explicit";
declare option xdmp:update "auto";

"update" declare option xdmp:commit "explicit";
declare option xdmp:update "true";

"query" declare option xdmp:commit "explicit";
declare option xdmp:update "false";

transaction-mode
Option Value

Equivalent commit and update Option Values

auto commit: "auto"
update: "auto"

update-auto-commit commit: "auto"
update: "true"

query-single-statement commit: "auto"
update: "false"

multi-auto commit: "explicit"
update: "auto"

update commit: "explicit"
update: "true"

query commit "explicit"
update "false"

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 58

Server-Side JavaScript modules use the declareUpdate function to indicate when the transaction
mode is update-auto-commit or update. For more details, see “Controlling Transaction Type in
JavaScript” on page 42.

To use multi-statement transactions in XQuery, you must explicitly set the transaction mode to
multi-auto, query, or update. This sets the commit mode to “explicit” and specifies the
transaction type. For details, see “Transaction Type” on page 38.

Selecting the appropriate transaction mode enables the server to properly optimize your queries.
For more information, see “Multi-Statement, Explicitly Committed Transactions” on page 49.

The transaction mode is only considered during transaction creation. Changing the mode has no
effect on the current transaction.

Explicitly setting the transaction mode affects only the current session. Queries run under
xdmp:eval or xdmp.eval or a similar function with different-transaction isolation, or under
xdmp:spawn do not inherit the transaction mode from the calling context. See “Interactions with
xdmp:eval/invoke” on page 61.

3.6.2 Auto Transaction Mode
The default transaction mode is auto. This is equivalent to “auto” commit mode and “auto”
transaction type. In this mode, all transactions are single-statement transactions. See
“Single-Statement, Automatically Committed Transactions” on page 49.

Most XQuery applications use auto transaction mode. Using auto transaction mode allows the
server to optimize each statement independently and minimizes locking on your files. This leads
to better performance and decreases the chances of deadlock, in most cases.

Most Server-Side JavaScript applications use auto mode for code that does not perform updates,
and update-auto-commit mode for code that performs updates. Calling declareUpdate with no
arguments activates update-auto-commit mode; for more details, see “Controlling Transaction
Type in JavaScript” on page 42..

In auto transaction mode:

• All transactions are single-statement transactions, so a new transaction is created for each
statement.

• Static analysis of the statement prior to evaluation determines whether the created
transaction runs in update or query mode.

• The transaction associated with a statement is automatically committed when statement
execution completes, or automatically rolled back if an error occurs.

The update-auto-commit differs only in that the transaction is always an update transaction.

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 59

In XQuery, you can set the mode to auto explicitly with xdmp:set-transaction-mode or the
xdmp:transaction-mode prolog option, but this is not required unless you’ve previously explicitly
set the mode to update or query.

3.6.3 Query Transaction Mode
Query transaction mode is equivalent to explicit commit mode plus query transaction type.

In XQuery, query transaction mode is only in effect when you explicitly set the mode using
xdmp:set-transaction-mode or the xdmp:transaction-mode prolog option. Transactions created in
this mode are always multi-statement transactions, as described in “Multi-Statement, Explicitly
Committed Transactions” on page 49.

You cannot create a multi-statement query transaction from Server-Side JavaScript.

In query transaction mode:

• Transactions can span multiple statements.

• The transaction is assumed to be read-only, so no locks are acquired. MarkLogic executes
all statements in the transaction as point-in-time queries, using the system timestamp at
the start of the transaction.

• All statements in the transaction must functionally be query (read-only) statements.
MarkLogic raises an error at runtime if an update operation is attempted.

• Transactions which are not explicitly committed using xdmp:commit roll back when the
session times out. However, since there are no updates to commit, rollback is only
distinguishable if an explicit rollback occurs before statement completion.

An update statement can appear in a multi-statement query transaction, but it must not actually
make any update calls at runtime. If a transaction running in query mode attempts an update
operation, XDMP-UPDATEFUNCTIONFROMQUERY is raised. For example, no exception is raised by the
following code because the program logic causes the update operation not to run:

xquery version "1.0-ml";
declare option xdmp:transaction-mode "query";

if (fn:false())then
 (: XDMP-UPDATEFUNCTIONFROMQUERY only if this executes :)
 xdmp:document-insert("/docs/test.xml", <a/>)
else ();
xdmp:commit();

3.6.4 Update Transaction Mode
Update transaction mode is equivalent to explicit commit mode plus update transaction type.

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 60

In XQuery, update transaction mode is only in effect when you explicitly set the mode using
xdmp:set-transaction-mode or the xdmp:transaction-mode prolog option. Transactions created in
update mode are always multi-statement transactions, as described in “Multi-Statement,
Explicitly Committed Transactions” on page 49.

In Server-Side JavaScript, setting explicitCommit to true when calling declareUpdate puts the
transaction into update mode.

In update transaction mode:

• Transactions can span multiple statements.

• The transaction is assumed to change the database, so readers/writers locks are acquired as
needed.

• Statements in an update transaction can be either update or query statements.

• Transactions which are not explicitly committed using xdmp:commit roll back when the
session times out.

Update transactions can contain both query and update statements, but query statements in update
transactions still acquire read locks rather than using a system timestamp. For more information,
see “Update Transactions: Readers/Writers Locks” on page 45.

3.6.5 Query-Single-Statement Transaction Mode
The query-single-statement transaction mode is equivalent to auto commit mode plus query
transaction type.

In XQuery, this transaction mode is only in effect when you explicitly set the mode using
xdmp:set-transaction-mode or the xdmp:transaction-mode prolog option. Transactions created in
this mode are always single-statement transactions, as described in “Single-Statement Transaction
Concept Summary” on page 35.

You cannot explicitly create a single-statement query-only transaction from Server-Side
JavaScript, but this is the default transaction mode when declareUpdate is not present.

In this transaction mode:

• All transactions are single-statement transactions, so a new transaction is created for each
statement.

• The transaction is assumed to be read-only, so no locks are acquired. The statement is
evaluated as a point-in-time query, using the system timestamp at the start of the
transaction.

• An error is raised at runtime if an update operation is attempted by the transaction.

• The transaction is automatically committed when statement execution completes, or
automatically rolled back if an error occurs.

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 61

An update operation can appear in a this type of transaction, but it must not actually make any
updates at runtime. If a transaction running in query mode attempts an update operation,
XDMP-UPDATEFUNCTIONFROMQUERY is raised.

3.6.6 Multi-Auto Transaction Mode
Setting transaction mode to multi-auto is equivalent to explicit commit mode plus auto
transaction type. In this mode, all transactions are multi-statement transactions, and MarkLogic
determines for you whether the transaction type is query or update.

In multi-auto transaction mode:

• Transactions can span multiple statements.

• Static analysis of the first statement in the transaction determines whether the transaction
type is query or update.

• Transactions which are not explicitly committed using xdmp:commit or xdmp.commit roll
back when the session times out.

In XQuery, multi-auto transaction mode is only in effect when you explicitly set the mode using
xdmp:set-transaction-mode or the xdmp:transaction-mode prolog option.

There is no equivalent to multi-auto transaction mode for Server-Side JavaScript.

3.7 Interactions with xdmp:eval/invoke
The xdmp:eval and xdmp:invoke family of functions enable you to start one transaction from the
context of another. The xdmp:eval XQuery function and the xdmp.eval JavaScript function submit
a string to be evaluated. The xdmp:invoke XQuery function and the xdmp.invoke JavaScript
function evaluate a stored module. You can control the semantics of eval and invoke with options
to the functions, and this can subtly change the transactional semantics of your program. This
section describes some of those subtleties and includes the following parts:

• Isolation Option to xdmp:eval/invoke

• Preventing Deadlocks

• Seeing Updates From eval/invoke Later in the Transaction

• Running Multi-Statement Transactions under xdmp:eval/invoke

3.7.1 Isolation Option to xdmp:eval/invoke
The xdmp:eval and xdmp:invoke XQuery functions and their JavaScript counterparts accept a set
of options as an optional third parameter. The isolation option determines the behavior of the
transaction that results from the eval/invoke operation, and it must be one of the following values:

• same-statement

• different-transaction

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 62

In same-statement isolation, the code executed by eval or invoke runs as part of the same
statement and in the same transaction as the calling statement. Any updates done in the
eval/invoke operation with same-statement isolation are not visible to subsequent parts of the
calling statement. However, when using multi-statement transactions, those updates are visible to
subsequent statements in the same transaction.

You may not perform update operations in code run under eval/invoke in same-statement
isolation called from a query transaction. Since query transactions run at a timestamp, performing
an update would require a switch between timestamp mode and readers/writers locks in the
middle of a transaction, and that is not allowed. Statements or transactions that do so will throw
XDMP-UPDATEFUNCTIONFROMQUERY.

You may not use same-statement isolation when using the database option of eval or invoke to
specify a different database than the database in the calling statement’s context. If your
eval/invoke code needs to use a different database, use different-transaction isolation.

When you set the isolation to different-transaction, the code that is run by eval/invoke runs in
a separate session and a separate transaction from the calling statement. The eval/invoke session
and transaction will complete before continuing the rest of the caller’s transaction. If the calling
transaction is an update transaction, any committed updates done in the eval/invoke operation
with different-transaction isolation are visible to subsequent parts of the calling statement and
to subsequent statements in the calling transaction. However, if you use different-transaction
isolation (which is the default isolation level), you need to ensure that you do not get into a
deadlock situation (see “Preventing Deadlocks” on page 63).

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 63

The following table shows which isolation options are allowed from query statements and update
statements.

Note: This table is slightly simplified. For example, if an update statement calls a query
statement with same-statement isolation, the “query statement” is actually run as
part of the update statement (because it is run as part of the same transaction as the
calling update statement), and it therefore runs with readers/writers locks, not in a
timestamp.

3.7.2 Preventing Deadlocks
A deadlock is where two processes or threads are each waiting for the other to release a lock, and
neither process can continue until the lock is released. Deadlocks are a normal part of database
operations, and when the server detects them, it can deal with them (for example, by retrying one
or the other transaction, by killing one or the other or both requests, and so on).

There are, however, some deadlock situations that MarkLogic Server cannot do anything about
except wait for the transaction to time out. When you run an update statement that calls an
xdmp:eval or xdmp:invoke statement, and the eval/invoke in turn is an update statement, you run
the risk of creating a deadlock condition. These deadlocks can only occur in update statements;
query statements will never cause a deadlock.

Calling Statement

Called Statement (xdmp:eval, xdmp:invoke)

same-statement isolation different-transaction isolation

query statement
update

statement
query statement

update
statement

query statement
(timestamp mode)

Yes Yes, if no
update takes
place. If an
update takes
place, throws
exception.

Yes Yes

update statement
(readers/writers
locks mode)

Yes (see Note) Yes Yes Yes (possible
deadlock if
updating a
document with
any lock)

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 64

A deadlock condition occurs when a transaction acquires a lock of any kind on a document and
then an eval/invoke statement called from that transaction attempts to get a write lock on the same
document. These deadlock conditions can only be resolved by cancelling the query or letting the
query time out.

To be completely safe, you can prevent these deadlocks from occurring by setting the
prevent-deadlocks option to true, as in the following example:

xquery version "1.0-ml";
(: the next line ensures this runs as an update statement :)
declare option xdmp:update "true";
xdmp:eval("xdmp:node-replace(doc('/docs/test.xml')/a,
goodbye)",
 (),
 <options xmlns="xdmp:eval">
 <isolation>different-transaction</isolation>
 <prevent-deadlocks>true</prevent-deadlocks>
 </options>) ,
doc("/docs/test.xml")

This statement will then throw the following exception:

XDMP-PREVENTDEADLOCKS: Processing an update from an update with
 different-transaction isolation could deadlock

In this case, it will indeed prevent a deadlock from occurring because this statement runs as an
update statement, due to the xdmp:document-insert call, and therefore uses readers/writers locks.
In line 2, a read lock is placed on the document with URI /docs/test.xml. Then, the xdmp:eval
statement attempts to get a write lock on the same document, but it cannot get the write lock until
the read lock is released. This creates a deadlock condition. Therefore the prevent-deadlocks
option stopped the deadlock from occurring.

If you remove the prevent-deadlocks option, then it defaults to false (that is, it will allow
deadlocks). Therefore, the following statement results in a deadlock:

Warning This code is for demonstration purposes; if you run this code, it will cause a
deadlock and you will have to cancel the query or wait for it to time out to clear the
deadlock.

(: the next line ensures this runs as an update statement :)
if (1 = 2) then (xdmp:document-insert("foobar", <a/>)) else (),
doc("/docs/test.xml"),
xdmp:eval("xdmp:node-replace(doc('/docs/test.xml')/a,
goodbye)",
 (),
 <options xmlns="xdmp:eval">
 <isolation>different-transaction</isolation>
 </options>) ,
doc("/docs/test.xml")

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 65

This is a deadlock condition, and the deadlock will remain until the transaction either times out, is
manually cancelled, or MarkLogic is restarted. Note that if you take out the first call to
doc("/docs/test.xml") in line 2 of the above example, the statement will not deadlock because
the read lock on /docs/test.xml is not called until after the xdmp:eval statement completes.

3.7.3 Seeing Updates From eval/invoke Later in the Transaction
If you are sure that your update statement in an eval/invoke operation does not try to update any
documents that are referenced earlier in the calling statement (and therefore does not result in a
deadlock condition, as described in “Preventing Deadlocks” on page 63), then you can set up your
statement so updates from an eval/invoke are visible from the calling transaction. This is most
useful in transactions that have the eval/invoke statement before the code that accesses the newly
updated documents.

Note: If you want to see the updates from an eval/invoke operation later in your
statement, the transaction must be an update transaction. If the transaction is a
query transaction, it runs in timestamp mode and will always see the version of the
document that existing before the eval/invoke operation committed.

For example, consider the following example, where doc("/docs/test.xml") returns
<a>hello before the transaction begins:

(: doc("/docs/test.xml") returns <a>hello before running this :)
(: the next line ensures this runs as an update statement :)
if (1 = 2) then (xdmp:document-insert("fake.xml", <a/>)) else (),
xdmp:eval("xdmp:node-replace(doc('/docs/test.xml')/node(),
goodbye)", (),
 <options xmlns="xdmp:eval">
 <isolation>different-transaction</isolation>
 <prevent-deadlocks>false</prevent-deadlocks>
 </options>) ,
doc("/docs/test.xml")

The call to doc("/docs/test.xml") in the last line of the example returns <a>goodbye, which
is the new version that was updated by the xdmp:eval operation.

You can often solve the same problem by using multi-statement transactions. In a multi-statement
transaction, updates made by one statement are visible to subsequent statements in the same
transaction. Consider the above example, rewritten as a multi-statement transaction. Setting the
transaction mode to update removes the need for “fake” code to force classification of statements
as updates, but adds a requirement to call xdmp:commit to make the updates visible in the database.

declare option xdmp:transaction-mode "update";

(: doc("/docs/test.xml") returns <a>hello before running this :)
xdmp:eval("xdmp:node-replace(doc('/docs/test.xml')/node(),
goodbye)", (),
 <options xmlns="xdmp:eval">
 <isolation>different-transaction</isolation>
 <prevent-deadlocks>false</prevent-deadlocks>

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 66

 </options>);
(: returns <a>goodbye within this transaction :)
doc("/docs/test.xml"),
(: make updates visible in the database :)
xdmp:commit()

3.7.4 Running Multi-Statement Transactions under xdmp:eval/invoke
When you run a query using xdmp:eval or xdmp:invoke or their JavaScript counterparts with
different-transaction isolation, or via xdmp:spawn or xdmp.spawn, a new transaction is created to
execute the query, and that transaction runs in a newly created session. This has two important
implications for multi-statement transactions evaluated with xdmp:eval or xdmp:invoke:

• Transaction mode is not inherited from the caller.

• Uncommitted updates are automatically rolled back when an eval/invoke’d or spawned
query completes.

Therefore, when using multi-statement transactions in code evaluated under eval/invoke with
different-transaction isolation or under xdmp:spawn or xdmp.spawn:

• Set the commit option to “explicit” in the options node if the transaction must run as a
multi-statement transaction or use the XQuery xdmp:commit prolog option or JavaScript
declareUpdate function to specify explicit commit mode.

• Always call xdmp:commit or xdmp.commit inside an eval/invoke’d multi-statement query if
updates must be preserved.

Setting the commit mode in the XQuery prolog of the eval/invoke’d query is equivalent to setting
it by passing an options node to xdmp:eval/invoke with commit set to explicit. Setting the mode
through the options node enables you to set the commit mode without modifying the
eval/invoke’d query.

For an example of using multi-statement transactions with different-transaction isolation, see
“Example: Multi-Statement Transactions and Different-transaction Isolation” on page 70.

The same considerations apply to multi-statement queries evaluated using xdmp:spawn or
xdmp.spawn.

Transactions run under same-statement isolation run in the caller’s context, and so use the same
transaction mode and benefit from committing the caller’s transaction. For a detailed example,
see “Example: Multi-statement Transactions and Same-statement Isolation” on page 69.

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 67

3.8 Functions With Non-Transactional Side Effects
Update transactions use various update built-in functions which, at the time the transaction
commits, update documents in a database. These updates are technically known as side effects,
because they cause a change to happen outside of what the statements in the transaction return.
The side effects from the update built-in functions (xdmp:node-replace, xdmp:document-insert,
and so on) are transactional in nature; that is, they either complete fully or are rolled back to the
state at the beginning of the update statement.

Some functionsevaluate asynchronously as soon as they are called, whether called from an update
transaction or a query transaction. These functions have side effects outside the scope of the
calling statement or the containing transaction (non-transactional side effects). The following are
some examples of functions that can have non-transactional side effects:

• xdmp:spawn (XQuery) or xdmp.spawn (JavaScript)

• xdmp:http-get (XQuery) or xdmp.httpGet (JavaScript)

• xdmp:log (XQuery) or xdmp.log (JavaScript)

When evaluating a module that performs an update transaction, it is possible for the update to
either fail or retry. That is the normal, transactional behavior, and the database will always be left
in a consistent state if a transaction fails or retries. However, if your update transaction calls a
function with non-transactional side effects, that function evaluates even if the calling update
transaction fails and rolls back.

Use care or avoid calling any of these functions from an update transaction, as they are not
guaranteed to only evaluate once (or to not evaluate if the transaction rolls back). If you are
logging some information with xdmp:log or xdmp.log in your transaction, it might or might not be
appropriate for that logging to occur on retries (for example, if the transaction is retried because a
deadlock is detected). Even if it is not what you intended, it might not do any harm.

Other side effects, however, can cause problems in updates. For example, if you use xdmp:spawn
or xdmp.spawn in this context, the action might be spawned multiple times if the calling transaction
retries, or the action might be spawned even if the transaction fails; the spawn call evaluates
asynchronously as soon as it is called. Similarly, if you are calling a web service with
xdmp:http-get or xdmp.httpGet from an update transaction, it might evaluate when you did not
mean for it to evaluate.

If you do use these functions in updates, your application logic must handle the side effects
appropriately. These types of use cases are usually better suited to triggers and the Content
Processing Framework. For details, see “Using Triggers to Spawn Actions” on page 426 and the
Content Processing Framework Guide manual.

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 68

3.9 Reducing Blocking with Multi-Version Concurrency Control
You can set the “multi-version concurrency control” App Server configuration parameter to
nonblocking to minimize transaction blocking, at the cost of queries potentially seeing a less
timely view of the database. This option controls how the timestamp is chosen for lock-free
queries. For details on how timestamps affect queries, see “Query Transactions: Point-in-Time
Evaluation” on page 44.

Nonblocking mode can be useful for your application if:

• Low query latency is more important than update latency.

• Your application participates in XA transactions. XA transactions can involve multiple
participants and non-MarkLogic Server resources, so they can take longer than usual.

• Your application accesses a replica database which is expected to significantly lag the
master. For example, if the master becomes unreachable for some time.

The default multi-version concurrency control is contemporaneous. In this mode, MarkLogic
Server chooses the most recent timestamp for which any transaction is known to have committed,
even if other transactions have not yet fully committed for that timestamp. Queries can block
waiting for the contemporaneous transactions to fully commit, but the queries will see the most
timely results. The block time is determined by the slowest contemporaneous transaction.

In nonblocking mode, the server chooses the latest timestamp for which all transactions are
known to have committed, even if there is a slightly later timestamp for which another transaction
has committed. In this mode, queries do not block waiting for contemporaneous transactions, but
they might not see the most up to date results.

You can run App Servers with different multi-version concurrency control settings against the
same database.

3.10 Administering Transactions
The MarkLogic Server XQuery API include built-in functions helpful for debugging, monitoring,
and administering transactions.

Use xdmp:host-status to get information about running transactions. The status information
includes a <transactions> element containing detailed information about every running
transaction on the host. For example:

<transactions xmlns="http://marklogic.com/xdmp/status/host">
 <transaction>
 <transaction-id>10030469206159559155</transaction-id>
 <host-id>8714831694278508064</host-id>
 <server-id>4212772872039365946</server-id>
 <name/>
 <mode>query</mode>
 <timestamp>11104</timestamp>
 <state>active</state>

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 69

 <database>10828608339032734479</database>
 <canceled>false</canceled>
 <start-time>2011-05-03T09:14:11-07:00</start-time>
 <time-limit>600</time-limit>
 <max-time-limit>3600</max-time-limit>
 <user>15301418647844759556</user>
 <admin>true</admin>
 </transaction>
 ...
</transactions>

In a clustered installation, transactions might run on remote hosts. If a remote transaction does not
terminate normally, it can be committed or rolled back remotely using xdmp:transaction-commit
or xdmp:transaction-rollback. These functions are equivalent to calling xdmp:commit and
xdmp:rollback when xdmp:host is passed as the host id parameter. You can also rollback a
transaction through the Host Status page of the Admin Interface. For details, see Rolling Back a

Transaction in the Administrator’s Guide.

Though a call to xdmp:transaction-commit returns immediately, the commit only occurs after the
currently executing statement in the target transaction successfully completes. Calling
xdmp:transaction-rollback immediately interrupts the currently executing statement in the target
transaction and terminates the transaction.

For an example of using these features, see “Example: Generating a Transaction Report With
xdmp:host-status” on page 72. For details on the built-ins, see the XQuery & XSLT API Reference.

3.11 Transaction Examples
This section includes the following examples:

• Example: Multi-statement Transactions and Same-statement Isolation

• Example: Multi-Statement Transactions and Different-transaction Isolation

3.11.1 Example: Multi-statement Transactions and Same-statement
Isolation

The following example demonstrates the interactions between multi-statement transactions and
same-statement isolation, discussed in “Interactions with xdmp:eval/invoke” on page 61.

The goal of the sample is to insert a document in the database using xdmp:eval, and then examine
and modify the results in the calling module. The inserted document will be visible to the calling
module immediately, but not visible outside the module until transaction completion.

xquery version "1.0-ml";
declare option xdmp:transaction-mode "update";

(: insert a document in the database :)
let $query :=
 'xquery version "1.0-ml";

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 70

 xdmp:document-insert("/examples/mst.xml", <myData/>)
 '
return xdmp:eval(
 $query, (),
 <options xmlns="xdmp:eval">
 <isolation>same-statement</isolation>
 </options>);

(: demonstrate that it is visible to this transaction :)
if (fn:empty(fn:doc("/examples/mst.xml")//myData))
then ("NOT VISIBLE")
else ("VISIBLE");

(: modify the contents before making it visible in the database :)
xdmp:node-insert-child(doc('/examples/mst.xml')/myData, <child/>),
xdmp:commit()

(: result: VISIBLE :)

The same operation (inserting and then modifying a document before making it visible in the
database) cannot be performed as readily using the default transaction model. If the module
attempts the document insert and child insert in the same single-statement transaction, an
XDMP-CONFLICTINGUPDATES error occurs. Performing these two operations in different
single-statement transactions makes the inserted document immediately visible in the database,
prior to inserting the child node. Attempting to perform the child insert using a pre-commit trigger
creates a trigger storm, as described in “Avoiding Infinite Trigger Loops (Trigger Storms)” on
page 436.

The eval’d query runs as part of the calling module’s multi-statement update transaction since the
eval uses same-statement isolation. Since transaction mode is not inherited by transactions
created in a different context, using different-transaction isolation would evaluate the eval’d
query as a single-statement transaction, causing the document to be immediately visible to other
transactions.

The call to xdmp:commit is required to preserve the updates performed by the module. If
xdmp:commit is omitted, all updates are lost when evaluation reaches the end of the module. In this
example, the commit must happen in the calling module, not in the eval’d query. If the
xdmp:commit occurs in the eval’d query, the transaction completes when the statement containing
the xdmp:eval call completes, making the document visible in the database prior to inserting the
child node.

3.11.2 Example: Multi-Statement Transactions and Different-transaction
Isolation

The following example demonstrates how different-transaction isolation interacts with
transaction mode for multi-statement transactions. The same interactions apply to queries
executed with xdmp:spawn. For more background, see “Transaction Mode” on page 56 and
“Interactions with xdmp:eval/invoke” on page 61.

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 71

In this example, xdmp:eval is used to create a new transaction that inserts a document whose
content includes the current transaction id using xdmp:transaction. The calling query prints its
own transaction id and the transaction id from the eval’d query.

xquery version "1.0-ml";

(: init to clean state; runs as single-statement txn :)
xdmp:document-delete("/docs/mst.xml");

(: switch to multi-statement transactions :)
declare option xdmp:transaction-mode "query";

let $sub-query :=
 'xquery version "1.0-ml";
 declare option xdmp:transaction-mode "update"; (: 1 :)

 xdmp:document-insert("/docs/mst.xml", <myData/>);

 xdmp:node-insert-child(
 fn:doc("/docs/mst.xml")/myData,
 <child>{xdmp:transaction()}</child>
);
 xdmp:commit() (: 2 :)
 '
return xdmp:eval($sub-query, (),
 <options xmlns="xdmp:eval">
 <isolation>different-transaction</isolation>
 </options>);

(: commit to end this transaction and get a new system
 : timestamp so the updates by the eval'd query are visible. :)
xdmp:commit(); (: 3 :)

(: print out my transaction id and the eval'd query transaction id :)
fn:concat("My txn id: ", xdmp:transaction()), (: 4 :)
fn:concat("Subquery txn id: ", fn:doc("/docs/mst.xml")//child)

Setting the transaction mode in statement (: 1 :) is required because different-transaction
isolation makes the eval’d query a new transaction, running in its own session, so it does not
inherit the transaction mode of the calling context. Omitting xdmp:transaction-mode in the eval’d
query causes the eval’d query to run in the default, auto, transaction mode.

The call to xdmp:commit at statement (: 2 :)is similarly required due to different-transaction
isolation. The new transaction and the containing session end when the end of the eval’d query is
reached. Changes are implicitly rolled back if a transaction or the containing session end without
committing.

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 72

The xdmp:commit call at statement (: 3 :) ends the multi-statement query transaction that called
xdmp:eval and starts a new transaction for printing out the results. This causes the final transaction
at statement (: 4 :) to run at a new timestamp, so it sees the document inserted by xdmp:eval.
Since the system timestamp is fixed at the beginning of the transaction, omitting this commit
means the inserted document is not visible. For more details, see “Query Transactions:
Point-in-Time Evaluation” on page 44.

If the query calling xdmp:eval is an update transaction instead of a query transaction, the
xdmp:commit at statement (: 3 :) can be omitted. An update transaction sees the latest version of
a document at the time the document is first accessed by the transaction. Since the example
document is not accessed until after the xdmp:eval call, running the example as an update
transaction sees the updates from the eval’d query. For more details, see “Update Transactions:
Readers/Writers Locks” on page 45.

3.11.3 Example: Generating a Transaction Report With xdmp:host-status
Use the built-in xdmp:host-status to generate a list of the transactions running on a host, similar
to the information available through the Host Status page of the Admin Interface.

This example generates a simple HTML report of the duration of all transactions on the local host:

xquery version "1.0-ml";

declare namespace html = "http://www.w3.org/1999/xhtml";
declare namespace hs="http://marklogic.com/xdmp/status/host";

<html>
 <body>
 <h2>Running Transaction Report for {xdmp:host-name()}</h2>
 <table border="1" cellpadding="5">
 <tr>
 <th>Transaction Id</th>
 <th>Database</th><th>State</th>
 <th>Duration</th>
 </tr>
 {
 let $txns:= xdmp:host-status(xdmp:host())//hs:transaction
 let $now := fn:current-dateTime()
 for $t in $txns
 return
 <tr>
 <td>{$t/hs:transaction-id}</td>
 <td>{xdmp:database-name($t/hs:database-id)}</td>
 <td>{$t/hs:transaction-state}</td>
 <td>{$now - $t/hs:start-time}</td>
 </tr>
 }
 </table>
 </body>
</html>

MarkLogic Server Understanding Transactions in MarkLogic Server

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 73

If you paste the above query into Query Console and run it with HTML output, the query
generates a report similar to the following:

Many details about each transaction are available in the xdmp:host-status report. For more
information, see xdmp:host-status in the XQuery & XSLT API Reference.

If we assume the first transaction in the report represents a deadlock, we can manually cancel it by
calling xdmp:transaction-rollback and supplying the transaction id. For example:

xquery version "1.0-ml";
xdmp:transaction-rollback(xdmp:host(), 6335215186646946533)

You can also rollback transactions from the Host Status page of the Admin Interface.

MarkLogic Server Working With Binary Documents

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 74

4.0 Working With Binary Documents
85

This section describes configuring and managing binary documents in MarkLogic Server. Binary
documents require special consideration because they are often much larger than text or XML
content. The following topics are included:

• Terminology

• Loading Binary Documents

• Configuring MarkLogic Server for Binary Content

• Developing Applications That Use Binary Documents

• Useful Built-ins for Manipulating Binary Documents

4.1 Terminology
The following table describes the terminology used related to binary document support in
MarkLogic Server.

Term Definition

small binary
document

A binary document whose contents are managed by the server and
whose size does not exceed the large size threshold.

large binary document A binary document whose contents are managed by the server and
whose size exceeds the large size threshold.

external binary
document

A binary document whose contents are not managed by the server.

large size threshold A database configuration setting defining the upper bound on the size
of small binary documents. Binary documents larger than the
threshold are automatically classified as large binary documents.

Large Data Directory The per-forest area where the contents of large binary documents are
stored.

static content Content stored in the modules database of the App Server. MarkLogic
Server responds directly to HTTP range requests (partial GETs) of
static content. See “Downloading Binary Content With HTTP Range
Requests” on page 81.

dynamic content Dynamic content is content generated by your application, such as
results returned by XQuery modules. MarkLogic Server does not
respond directly to HTTP range requests (partial) GET requests for
dynamic content. See “Downloading Binary Content With HTTP
Range Requests” on page 81.

MarkLogic Server Working With Binary Documents

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 75

4.2 Loading Binary Documents
Loading small and large binary documents into a MarkLogic database does not require special
handling, other than potentially explicitly setting the document format. See Choosing a Binary

Format in the Loading Content Into MarkLogic Server Guide.

External binaries require special handling at load time because they are not managed by
MarkLogic. For more information, see Loading Binary Documents.

4.3 Configuring MarkLogic Server for Binary Content
This section covers the MarkLogic Server configuration and administration of binary documents.

• Setting the Large Size Threshold

• Sizing and Scalability of Binary Content

• Selecting a Location For Binary Content

• Monitoring the Total Size of Large Binary Data in a Forest

• Detecting and Removing Orphaned Binaries

4.3.1 Setting the Large Size Threshold
The large size threshold database setting defines the maximum size of a small binary, in
kilobytes. Any binary documents larger than this threshold are large and are stored in the Large
Data Directory, as described in Choosing a Binary Format. The threshold has no effect on external
binaries.

For example, a threshold of 1024 sets the size threshold to 1 MB. Any (managed) binary
document larger than 1 MB is automatically handled as a large binary object.

The range of acceptable threshold values on a 64-bit machine is 32 KB to 512 MB, inclusive.

Many factors must be considered in choosing the large size threshold, including the data
characteristics, the access patterns of the application, and the underlying hardware and operating
system. Ideally, set the threshold such that smaller, frequently accessed binary content such as
thumbnails and profile images are classified as small for efficient access, while larger documents
such as movies and music, which may be streamed by the application, are classified as large for
efficient memory usage.

The threshold may be set through the Admin Interface or by calling an admin API function. To set
the threshold through the Admin Interface, use the large size threshold setting on the database
configuration page.To set the threshold programmatically, use the XQuery built-in
admin:database-set-large-size-threshold:

xquery version "1.0-ml";

import module namespace admin = "http://marklogic.com/xdmp/admin"

MarkLogic Server Working With Binary Documents

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 76

 at "/MarkLogic/admin.xqy";

let $config := admin:get-configuration()
return
 admin:save-configuration(
 admin:database-set-large-size-threshold(
 $config, xdmp:database("myDatabase"),2048)

When the threshold changes, the reindexing process automatically moves binary documents into
or out of the Large Data Directory as needed to match the new setting.

4.3.2 Sizing and Scalability of Binary Content
This section covers the following topics:

• Determining the In Memory Tree Size

• Effect of External Binaries on E-node Compressed Tree Cache Size

• Forest Scaling Considerations

For more information on sizing and scalability, see the Scalability, Availability, and Failover
Guide and the Query Performance and Tuning Guide.

4.3.2.1 Determining the In Memory Tree Size
The in memory tree size database setting must be at least 1 to 2 megabytes greater than the larger
of the large size threshold setting or the largest non-binary document you plan to load into the
database. That is, 1-2 MB larger than:

max(large-size-threshold, largest-expected-non-binary-document)

As described in “Selecting a Location For Binary Content” on page 77, the maximum size for
small binary documents is 512 MB on a 64-bit system. Large and external binary document size is
limited only by the maximum file size supported by the operating system.

To change the in memory tree size setting, see the Database configuration page in the Admin
Interface or admin:database-set-in-memory-limit in the XQuery and XSLT Reference Guide.

4.3.2.2 Effect of External Binaries on E-node Compressed Tree Cache Size
If your application makes heavy use of external binary documents, you may need to increase the
compressed tree cache size Group setting.

When a small binary is cached, the entire document is cached in memory. When a large or
external binary is cached, the content is fetched into the compressed tree cache in chunks, as
needed.

MarkLogic Server Working With Binary Documents

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 77

The chunks of a large binary are fetched into the compressed tree cache of the d-node containing
the fragment or document. The chunks of an external binary are fetched into the compressed tree
cache of the e-node evaluating the accessing query. Therefore, you may need a larger compressed
tree cache size on e-nodes if your application makes heavy use of external binary documents.

To change the compressed tree cache size, see the Groups configuration page in the Admin
Interface or admin:group-set-compressed-tree-cache-size in the XQuery and XSLT Reference
Guide.

4.3.2.3 Forest Scaling Considerations
When considering forest scaling guidelines, include all types of binary documents in fragment
count estimations. Since large and external binaries are not fully cached in memory on access,
memory requirements are lower. Since large and external binaries are not copied during merges,
you may exclude large and external binary content size from maximum forest size calculation.

For details on sizing and scalability, see Scalability Considerations in MarkLogic Server in the
Scalability, Availability, and Failover Guide.

4.3.3 Selecting a Location For Binary Content
Each forest contains a Large Data Directory that holds the binary contents of all large binary
documents in the forest. The default physical location of the Large Data Directory is inside the
forest. The location is configurable during forest creation. This flexibility allows different
hardware to serve small and large binary documents. The Large Data Directory must be accessible
to the server instance containing the forest. to specify an arbitrary location for the Large Data
Directory, use the $large-data-directory parameter of admin:forest-create or the large data
directory forest configuration setting in the Admin Interface. We will need to document the best
practice for configuring forest Large data directories which is to put them somewhere other than
the default of /var/opt/MarkLogic. In other words, using non-default directories for forest large
data directories is considered a good practice.

The external file associated with an external binary document must be located outside the forest
containing the document. The external file must be accessible to any server instance evaluating
queries that manipulate the document. That is, the external file path used when creating an
external-binary node must be resolvable on any server instance running queries against the
document.

External binary files may be shared across a cluster by placing them on a network shared file
system, as long as the files are accessible along the same path from any e-node running queries
against the external binary documents. The reference fragment containing the associated
external-binary node may be located on a remote d-node that does not have access to the
external storage.

MarkLogic Server Working With Binary Documents

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 78

The diagram below demonstrates sharing external binary content across a cluster with different
host configurations. On the left, the evaluator node (e-node) and data node (d-node) are separate
hosts. On the right, the same host serves as both an evaluator and data node. The database in both
configurations contains an external binary document referencing /images/my.jpg. The JPEG
content is stored on shared external storage, accessible to the evaluator nodes through the external
file path stored in the external binary document in the database.

4.3.4 Monitoring the Total Size of Large Binary Data in a Forest
Use xdmp:forest-status or the Admin Interface to check the disk space consumed by large binary
documents in a forest. The size is reported in megabytes. For more details on MarkLogic Server’s
monitoring capability, see the Monitoring MarkLogic Guide.

To check the size of the Large Data Directory using the Admin Interface:

1. Open the Admin Interface in your browser. For example, http:yourhost:8001.

2. Click Forests in the left tree menu. The Forest summary is displayed.

3. Click the name of a forest to display the forest configuration page.

4. Click the Status tab at the top to display the forest status page.

5. Observe the “Large Data Size” status, which reflects the total size of the contents of the
large data directory.

The following example uses xdmp:forest-status to retrieve the size of the Large Data Directory:

xquery version "1.0-ml";
declare namespace fs = "http://marklogic.com/xdmp/status/forest";
fn:data(

ref frag for
/images/my.jpg

evaluator node

data node

forest

external file system

my.jpg
ref frag for

/images/my.jpg

forest

evaluator
&

data node
accessible as

/images
accessible as

/images

MarkLogic Server Working With Binary Documents

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 79

 xdmp:forest-status(
 xdmp:forest("samples-1"))/fs:large-data-size)

4.3.5 Detecting and Removing Orphaned Binaries
Large and external binary content may require special handling to detect and remove orphaned
binary data no longer associated with a document in the database. This section covers the
following topics related to managing orphaned binary content:

• Detecting and Removing Orphaned Large Binary Content

• Detecting and Removing Orphaned External Binary Content

4.3.5.1 Detecting and Removing Orphaned Large Binary Content
As discussed in Choosing a Binary Format in the Loading Content Into MarkLogic Server Guide,
the binary content of a large binary document is stored in the Large Data Directory.

Normally, the server ensures that the binary content is removed when the containing forest no
longer contains references to the data. However, content may be left behind in the Large Data
Directory under some circumstances, such as a failover in the middle of inserting a binary
document. Content left behind in the Large Data Directory with no corresponding database
reference fragment is an orphaned binary.

If your data includes large binary documents, periodically check for and remove orphaned
binaries. Use xdmp:get-orphaned-binaries and xdmp:remove-orphaned-binary to perform this
cleanup. For example:

xquery version "1.0-ml";

for $fid in xdmp:forests()
 for $orphan in xdmp:get-orphaned-binaries($fid)
 return xdmp:remove-orphaned-binary($fid, $orphan)

4.3.5.2 Detecting and Removing Orphaned External Binary Content
Since the external file associated with an external binary document is not managed by MarkLogic
Server, such documents may be associated with non-existent external files. For example, the
external file may be removed by an outside agency. The XQuery API includes several builtins to
help you check for and remove such documents in the database.

For example, to remove all external binary documents associated with the external binary file
/external/path/sample.jpg, use xdmp:external-binary-path:

xquery version "1.0-ml";
for $doc in fn:collection()/binary()
where xdmp:external-binary-path($doc) = "/external/path/sample.jpg"
return xdmp:document-delete(xdmp:node-uri($doc))

MarkLogic Server Working With Binary Documents

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 80

To identify external binary documents with non-existent external files, use
xdmp:filesystem-file-exists. Note, however, that xdmp:filesystem-file-exists queries the
underlying filesystem, so it is a relatively expensive operation. The following example generates
a list of document URIs for external binary documents with a missing external file:

xquery version "1.0-ml";
for $doc in fn:collection()/binary()
where xdmp:binary-is-external($doc)
return
 if (xdmp:filesystem-file-exists(xdmp:external-binary-path($doc)))
 then xdmp:node-uri($doc)
 else ()

4.4 Developing Applications That Use Binary Documents
This section covers the following topics of interest to developers creating applications that
manipulate binary content:

• Adding Metadata to Binary Documents Using Properties

• Downloading Binary Content With HTTP Range Requests

• Creating Binary Email Attachments

4.4.1 Adding Metadata to Binary Documents Using Properties
Small, large, and external binary documents may be annotated with metadata using properties.
Any document in the database may have an associated properties document for storing additional
XML data. Unlike binary data, properties documents may participate in element indexing. For
more information about using properties, see “Properties Documents and Directories” on
page 125.

MarkLogic Server offers the XQuery built-in, xdmp:document-filter, and JavaScript method,
xdmp.documentFilter, to assist with adding metadata to binary documents. These functions
extract metadata and text from binary documents as a node, each of whose child elements
represent a piece of metadata. The results may be used as document properties. The text extracted
contains little formatting or structure, so it is best used for search, classification, or other text
processing.

For example, the following code creates properties corresponding to just the metadata extracted
by xdmp:document-filter from a Microsoft Word document:

xquery version "1.0-ml";
let $the-document := "/samples/sample.docx"
return xdmp:document-set-properties(
 $the-document,
 for $meta in xdmp:document-filter(fn:doc($the-document))//*:meta
 return element {$meta/@name} {fn:string($meta/@content)}
)

MarkLogic Server Working With Binary Documents

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 81

The result properties document contains properties such as Author, AppName, and
Creation_Date, extracted by xdmp:document-filter:

<prop:properties xmlns:prop="http://marklogic.com/xdmp/property">
 <content-type>application/msword</content-type>
 <filter-capabilities>text subfiles HD-HTML</filter-capabilities>
 <AppName>Microsoft Office Word</AppName>
 <Author>MarkLogic</Author>
 <Company>Mark Logic Corporation</Company>
 <Creation_Date>2011-09-05T16:21:00Z</Creation_Date>
 <Description>This is my comment.</Description>
 <Last_Saved_Date>2011-09-05T16:22:00Z</Last_Saved_Date>
 <Line_Count>1</Line_Count>
 <Paragraphs_Count>1</Paragraphs_Count>
 <Revision>2</Revision>
 <Subject>Creating binary doc props</Subject>
 <Template>Normal.dotm</Template>
 <Typist>MarkLogician</Typist>
 <Word_Count>7</Word_Count>
 <isys>SubType: Word 2007</isys>
 <size>10047</size>
 <prop:last-modified>2011-09-05T09:47:10-07:00</prop:last-modified>
</prop:properties>

4.4.2 Downloading Binary Content With HTTP Range Requests
HTTP applications often use range requests (sometimes called partial GET) to serve large data,
such as videos. MarkLogic Server directly supports HTTP range requests for static binary
content. Static binary content is binary content stored in the modules database of the App Server.
Range requests for dynamic binary content are not directly supported, but you may write
application code to service such requests. Dynamic binary content is any binary content generated
by your application code.

This section covers the following topics related to serving binary content in response to range
requests:

• Responding to Range Requests with Static Binary Content

• Responding to Range Requests with Dynamic Binary Content

4.4.2.1 Responding to Range Requests with Static Binary Content
When an HTTP App Server receives a range request for a binary document in the modules
database, it responds directly, with no need for additional application code. Content in the
modules database is considered “static” content. You can configure an App Server to use any
database as modules database, enabling MarkLogic to respond to directly to range requests for
static binary content.

MarkLogic Server Working With Binary Documents

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 82

For example, suppose your database contains a large binary document with the URI
“/images/really_big.jpg” and you create an HTTP App Server on port 8010 that uses this database
as its modules database. Sending a GET request of the following form to port 8010 directly
fetches the binary document:

GET http://host:8010/images/really_big.jpg

If you include a range in the request, then you can incrementally stream the document out of the
database. For example:

GET http://host:8010/images/really_big.jpg
Range: bytes=0-499

MarkLogic returns the first 500 byes of the document /images/really_big.jpg in a Partial
Content response with a 206 (Partial Content) status, similar to the following (some headers are
omitted for brevity):

HTTP/1.0 206 Partial Content
Accept-Ranges: bytes
Content-Length: 500
Content-Range: bytes 0-499/3980
Content-Type: image/jpeg

[first 500 bytes of /images/really_big.jpg]

If the range request includes multiple non-overlapping ranges, the App Server responds with a
206 and a multi-part message body with media type “multipart/byteranges”.

If a range request cannot be satisfied, the App Server responds with a 416 status (Requested
Range Not Satisfiable).

The following request types are directly supported on static content:

• Single range requests

• Multiple range requests

• If-Range requests with an HTTP-date

If-Range requests with an entity tag are unsupported.

4.4.2.2 Responding to Range Requests with Dynamic Binary Content
The HTTP App Server does not respond directly to HTTP range requests for dynamic content.
That is, content generated by application code. Though the App Server ignores range requests for
dynamic content, your application XQuery code may still process the Range header and respond
with appropriate content.

The following code demonstrates how to interpret a Range header and return dynamically
generated content in response to a range request:

MarkLogic Server Working With Binary Documents

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 83

xquery version "1.0-ml";

(: This code assumes a simple range like 1000-2000; your :)
(: application code may support more complex ranges. :)

let $data := fn:doc(xdmp:get-request-field("uri"))/binary()
let $range := xdmp:get-request-header("Range")
return
 if ($range)
 then
 let $range := replace(normalize-space($range), "bytes=", "")
 let $splits := tokenize($range, "-")
 let $start := xs:integer($splits[1])
 let $end := if ($splits[2] eq "")
 then xdmp:binary-size($data)-1
 else xs:integer($splits[2])
 let $ranges :=
 concat("bytes ", $start, "-", $end, "/",
 xdmp:binary-size($data))
 return (xdmp:add-response-header("Content-Range", $ranges),
 xdmp:set-response-content-type("image/JPEG"),
 xdmp:set-response-code(206, "Partial Content"),
 xdmp:subbinary($data, $start+1, $end - $start + 1))
 else $data

If the above code is in an XQuery module fetch-bin.xqy, then a request such the following returns
the first 100 bytes of a binary. (The -r option to the curl command specifies a byte range).

$ curl -r "0-99" http://myhost:1234/fetch-bin.xqy?uri=sample.jpg

The response to the request is similar to the following:

HTTP/1.1 206 Partial Content
Content-Range: bytes 0-99/1442323
Content-type: image/JPEG
Server: MarkLogic
Content-Length: 100

[first 100 bytes of sample.jpg]

4.4.3 Creating Binary Email Attachments
To generate an email message with a binary attachment, use xdmp:email and set the content type
of the message to multipart/mixed. The following example generates an email message with a
JPEG attachment:

xquery version "1.0-ml";

(: generate a random boundary string :)
let $boundary := concat("blah", xdmp:random())
let $newline := "
"
let $content-type := concat("multipart/mixed; boundary=",$boundary)

MarkLogic Server Working With Binary Documents

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 84

let $attachment1 := xs:base64Binary(doc("/images/sample.jpeg"))
let $content := concat(
 "--",$boundary,$newline,
 $newline,
 "This is a test email with an image attached.", $newline,
 "--",$boundary,$newline,
 "Content-Type: image/jpeg", $newline,
 "Content-Disposition: attachment; filename=sample.jpeg", $newline,
 "Content-Transfer-Encoding: base64", $newline,
 $newline,
 $attachment1, $newline,
 "--",$boundary,"--", $newline)

return
 xdmp:email(
 <em:Message
 xmlns:em="URN:ietf:params:email-xml:"
 xmlns:rf="URN:ietf:params:rfc822:">
 <rf:subject>Sample Email</rf:subject>
 <rf:from>
 <em:Address>
 <em:name>Myself</em:name>
 <em:adrs>me@somewhere.com</em:adrs>
 </em:Address>
 </rf:from>
 <rf:to>
 <em:Address>
 <em:name>Somebody</em:name>
 <em:adrs>somebody@somewhere.com</em:adrs>
 </em:Address>
 </rf:to>
 <rf:content-type>{$content-type}</rf:content-type>
 <em:content xml:space="preserve">
 {$content}
 </em:content>
 </em:Message>)

4.5 Useful Built-ins for Manipulating Binary Documents
The following XQuery built-ins are provided for working with binary content. For details, see the
XQuery and XSLT Reference Guide.

• xdmp:subbinary

• xdmp:binary-size

• xdmp:external-binary

• xdmp:external-binary-path

• xdmp:binary-is-small

• xdmp:binary-is-large

• xdmp:binary-is-external

In addition, the following XQuery built-ins may be useful when creating or testing the integrity of
external binary content:

MarkLogic Server Working With Binary Documents

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 85

• xdmp:filesystem-file-length

• xdmp:filesystem-file-exists

MarkLogic Server Importing XQuery Modules, XSLT Stylesheets, and

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 86

5.0 Importing XQuery Modules, XSLT Stylesheets, and
Resolving Paths

90

You can import XQuery into other XQuery and/or Server-Side JavaScript modules. Similarly, you
can import XSLT stylesheets into other stylesheets, you can import XQuery modules into XSLT
stylesheets, and you can import XSLT stylesheets into XQuery modules.

This chapter describes the two types of XQuery modules and specifies the rules for importing
modules and resolving URI references. To import XQuery into Server-Side JavaScript modules,
see Using XQuery Functions and Variables in JavaScript in the JavaScript Reference Guide.

This chapter covers the following topics:

• XQuery Library Modules and Main Modules

• Rules for Resolving Import, Invoke, and Spawn Paths

• Module Caching Notes

• Example Import Module Scenario

For details on importing XQuery library modules into XSLT stylesheets and vice-versa, see Notes

on Importing Stylesheets With <xsl:import> and Importing a Stylesheet Into an XQuery Module in the
XQuery and XSLT Reference Guide.

5.1 XQuery Library Modules and Main Modules
There are two types of XQuery modules (as defined in the XQuery specification,
http://www.w3.org/TR/xquer//#id-query-prolog):

• Main Modules

• Library Modules

For more details about the XQuery language, see the XQuery and XSLT Reference Guide.

5.1.1 Main Modules
A main module can be executed as an XQuery program, and must include a query body consisting
of an XQuery expression (which in turn can contain other XQuery expressions, and so on). The
following is a simple example of a main module:

"hello world"

Main modules can have prologs, but the prolog is optional. As part of a prolog, a main module can
have function definitions. Function definitions in a main module, however, are only available to
that module; they cannot be imported to another module.

http://www.w3.org/TR/xquery/#id-query-prolog

MarkLogic Server Importing XQuery Modules, XSLT Stylesheets, and

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 87

5.1.2 Library Modules
A library module has a namespace and is used to define functions. Library modules cannot be
evaluated directly; they are imported, either from other library modules or from main modules
with an import statement. The following is a simple example of a library module:

xquery version "1.0-ml";
module namespace hello = "helloworld";

declare function helloworld()
{
 "hello world"
};

If you insert the module into the modules database of your App Server or save it on the filesystem
under the modules root directory of your App Server, then you can import the module and call the
“helloworld” function.

For example, suppose you save the above module to the filesystem with the pathname
/my/app/helloworld.xqy. If you configure an App Server to use “Modules” as the modules
database and “/” as the modules root, then you can store the module in the modules database as
follows:

xquery version "1.0-ml";
xdmp:eval('xdmp:document-load("/space/rest/helloworld.xqy")', (),
 <options xmlns='xdmp:eval'>
 <database>{xdmp:database('Modules')}</database>
 </options>)

The inserted module has the URI /my/app/helloworld.xqy. Now, you can import the module in a
main module or library module and call the “helloworld” function as follows:

xquery version "1.0-ml";
import module namespace hw="helloworld" at "/my/app/helloworld.xqy";

hw:helloworld()

The same import statement works if you configure an App server to use the filesystem as the
modules “database” and “/” as the modules root. In this case, the query imports the module from
the filesystem instead of from the modules database.

5.2 Rules for Resolving Import, Invoke, and Spawn Paths
In order to call a function that resides in an XQuery library module, you need to import the
module with its namespace. MarkLogic Server resolves the library paths similar to the way other
HTTP and application servers resolve their paths. Similarly, if you use xdmp:invoke or xdmp:spawn
to run a module, you specify access to the module with a path. These rules also apply to the path
to an XSLT stylesheet when using xdmp:xslt-invoke, as well as to stylesheet imports in the
<xsl:import> or <xsl:include> instructions.

MarkLogic Server Importing XQuery Modules, XSLT Stylesheets, and

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 88

The XQuery module that is imported/invoked/spawned can reside in any of the following places:

• In the Modules directory.

• In a directory relative to the calling module.

• Under the App Server root, which is either the specified directory in the Modules database
(when the App Server is set to a Modules database) or the specified directory on the
filesystem (when the App Server is set to find modules in the filesystem).

When resolving import/invoke/spawn paths, MarkLogic first resolves the root of the path, and then
looks for the module under the Modules directory first and the App Server root second, using the
first module it finds that matches the path.

The paths in import/invoke/spawn expressions are resolved as follows:

1. When an import/invoke/spawn path starts with a leading slash, first look under the
Modules directory (on Windows, typically c:\Program Files\MarkLogic\Modules). For
example:

import module "foo" at "/foo.xqy";

In this case, it would look for the module file with a namespace foo in
c:\Program Files\MarkLogic\Modules\foo.xqy.

2. If the import/invoke/spawn path starts with a slash, and it is not found under the Modules
directory, then start at the App Server root. For example, if the App Server root is
/home/mydocs/, then the following import:

import module "foo" at "/foo.xqy";

will look for a module with namespace foo in /home/mydocs/foo.xqy.

Note that you start at the App Server root, both for filesystem roots and Modules database
roots. For example, in an App Server configured with a modules database and a root of
http://foo/:

import module "foo" at "/foo.xqy";

will look for a module with namespace foo in the modules database with a URI
http://foo/foo.xqy (resolved by appending the App Server root to foo.xqy).

3. If the import/invoke/spawn path does not start with a slash, first look under the Modules
directory. If the module is not found there, then look relative to the location of the module

MarkLogic Server Importing XQuery Modules, XSLT Stylesheets, and

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 89

that called the function. For example, if a module at /home/mydocs/bar.xqy has the
following import:

import module "foo" at "foo.xqy";

it will look for the module with namespace foo at /home/mydocs/foo.xqy.

Note that you start at the calling module location, both for App Servers configured to use
the filesystem and for App Servers configured to use modules databases. For example, a
module with a URI of http://foo/bar.xqy that resides in the modules database and has
the following import statement:

import module "foo" at "foo.xqy";

will look for the module with the URI http://foo/foo.xqy in the modules database.

4. If the import/invoke/spawn path contains a scheme or network location, then the server
throws an exception. For example:

import module "foo" at "http://foo/foo.xqy";

will throw an invalid path exception. Similarly:

import module "foo" at "c:/foo/foo.xqy";

will throw an invalid path exception.

5.3 Module Caching Notes
When XQuery modules (or XSLT files) are stored in the root for an App Server configured in
MarkLogic Server, when they are first accessed, each module is parsed and then cached in
memory so that subsequent access to the module is faster. If a module is updated, the cache is
invalidated and each module for that App Server requires parsing again the next time it is
evaluated. The module caching is automatic and therefore is transparent to developers. When
considering the naming of modules, however, note the following:

• The best practice is to use a file extension for a module corresponding to
application/vnd.marklogic-xdmp or application/xslt+xml mimetypes. By default, this
includes the extensions xqy, xq, and xslt. You can add other extensions to these
mimetypes using the mimetypes configuration in the Admin Interface.

• Any changes to modules that do not have a mimetype extension corresponding to
application/vnd.marklogic-xdmp or application/xslt+xml will not invalidate the module
cache, and therefore you must reload the cache on each host (for example, by restarting
the server or modifying a module with the proper extension) to see changes in a module
that does not have the correct extension.

MarkLogic Server Importing XQuery Modules, XSLT Stylesheets, and

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 90

5.4 Example Import Module Scenario
Consider the following scenario:

• There is an HTTP server with a root defined as c:/mydir.

• In a file called c:/mydir/lib.xqy, there is a library module with the function to import.
The contents of the library module are as follows:

xquery version "1.0-ml";
module namespace hw="http://marklogic.com/me/my-module";

declare function hello()
{
"hello"
};

• In a file called c:/mydir/main.xqy, there is an XQuery main module that imports a
function from the above library module. This code is as follows:

xquery version "1.0-ml";

declare namespace my="http://marklogic.com/me/my-module";
import module "http://marklogic.com/me/my-module" at "lib.xqy";

my:hello()

The library module lib.xqy is imported relative to the App Server root (in this case, relative to
c:/mydir).

MarkLogic Server Library Services Applications

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 91

6.0 Library Services Applications
112

This chapter describes how to use Library Services, which enable you to create and manage
versioned content in MarkLogic Server in a manner similar to a Content Management System
(CMS). This chapter includes the following sections:

• Understanding Library Services

• Building Applications with Library Services

• Required Range Element Indexes

• Library Services API

• Security Considerations of Library Services Applications

• Transactions and Library Services

• Putting Documents Under Managed Version Control

• Checking Out Managed Documents

• Checking In Managed Documents

• Updating Managed Documents

• Defining a Retention Policy

• Managing Modular Documents in Library Services

6.1 Understanding Library Services
The Library Services enable you to create and maintain versions of managed documents in
MarkLogic Server. Access to managed documents is controlled using a check-out/check-in
model. You must first check out a managed document before you can perform any update
operations on the document. A checked out document can only be updated by the user who
checked it out; another user cannot update the document until it is checked back in and then
checked out by the other user.

Note: Documents must be stored in a database to be versioned. If a document is created
by a CPF application, such as entity enrichment, modular documents, conversion,
or a custom CPF application, then the document will only be versioned if the CPF
application uses Library Services to insert it into the database. By default, the CPF
applications supplied by MarkLogic do not create managed documents.

When you initially put a document under Library Services management, it creates Version 1 of the
document. Each time you update the document, a new version of the document is created. Old
versions of the updated document are retained according to your retention policy, as described in
“Defining a Retention Policy” on page 100.

MarkLogic Server Library Services Applications

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 92

The Library Services include functions for managing modular documents so that various versions
of linked documents can be created and managed, as described in “Managing Modular
Documents in Library Services” on page 107.

The following diagram illustrates the workflow of a typical managed document. In this example,
the document is added to the database and placed under Library Services management. The
managed document is checked out, updated several times, and checked in by Jerry. Once the
document is checked in, Elaine checks out, updates, and checks in the same managed document.
Each time the document is updated, the previous versions of the document are purged according
to the retention policy.

Add Document
to Database

 Manage

Jerry
Checkout Document

Update Document Update Document Update Document

Version 2 Version 3 Version 4

Version 1

Checkin Document

Version 4

Document

Checkout Document

Update Document

Version 5

Version 4

Checkin Document

Version 6

Update Document

Version 6

Elaine

Library Services

MarkLogic Server Library Services Applications

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 93

6.2 Building Applications with Library Services
The Library Services API provides the basic tools for implementing applications that store and
extract specific drafts of a document as of a particular date or version. You can also use the
Library Services API, along with the other MarkLogic Server APIs, to provide structured
workflow, version control, and the ability to partition a document into individually managed
components. The security API provides the ability to associate user roles and responsibilities with
different document types and collections. And the search APIs provide the ability to implement
powerful content retrieval features.

6.3 Required Range Element Indexes
The range element indexes shown in the table and figure below must be set for the database that
contains the documents managed by the Library Services. These indexes are automatically set for
you when you create a new database. However, if you want to enable the Library Services for a
database created in an earlier release of MarkLogic Server, you must manually set them for the
database.

Scalar Type Namespace URI Local Name Range Value Position

dateTime http://marklogic.com/xdmp/dls created false

unsignedLong http://marklogic.com/xdmp/dls version-id false

MarkLogic Server Library Services Applications

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 94

6.4 Library Services API
This section describes the Library Services API and contains the following sections:

• Library Services API Categories

• Managed Document Update Wrapper Functions

MarkLogic Server Library Services Applications

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 95

6.4.1 Library Services API Categories
The Library Services functions are described in the MarkLogic XQuery and XSLT Function
Reference. The Library Services functions fall into the following categories:

• Document management functions for putting documents under version management,
checking documents in and out of version management, and so on. For usage information,
see “Putting Documents Under Managed Version Control” on page 97, “Checking Out
Managed Documents” on page 98 and “Checking In Managed Documents” on page 99.

• Document update functions for updating the content of documents and their properties.
For usage information, see “Updating Managed Documents” on page 99 and “Managed
Document Update Wrapper Functions” on page 95.

• Retention policy functions for managing when particular document versions are purged.
For usage information, see “Defining a Retention Policy” on page 100.

• XInclude functions for creating and managing linked documents. For usage information,
see “Managing Modular Documents in Library Services” on page 107.

• cts:query constructor functions for use by cts:search, Library Services XInclude
functions, and when defining retention rules. For usage information, see “Defining a
Retention Policy” on page 100.

6.4.2 Managed Document Update Wrapper Functions
All update and delete operations on managed documents must be done through the Library
Services API. The Library Services API includes the following “wrapper” functions that enable
you to make the same updates on managed documents as you would on non-managed document
using their XDMP counterparts:

• dls:document-add-collections

• dls:document-add-permissions

• dls:document-add-properties

• dls:document-set-collections

• dls:document-set-permissions

• dls:document-set-properties

• dls:document-remove-properties

• dls:document-remove-permissions

• dls:document-remove-collections

• dls:document-set-property

• dls:document-set-quality

MarkLogic Server Library Services Applications

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 96

Note: If you only change the collection or property settings on a document, these settings
will not be maintained in version history when the document is checked in. You
must also change the content of the document to version changes to collections or
properties.

6.5 Security Considerations of Library Services Applications
There are two pre-defined roles designed for use in Library Services applications, as well as an
internal role that the Library Services API uses:

• dls-admin Role

• dls-user Role

• dls-internal Role

Note: Do not log in with the Admin role when inserting managed documents into the
database or when testing your Library Services applications. Instead create test
users with the dls-user role and assign them the various permissions needed to
access the managed documents. When testing your code in Query Console, you
must also assign your test users the qconsole-user role.

6.5.1 dls-admin Role
The dls-admin role is designed to give administrators of Library Services applications all of the
privileges that are needed to use the Library Services API. It has the needed privileges to perform
operations such as inserting retention policies and breaking checkouts, so only trusted users (users
who are assumed to be non-hostile, appropriately trained, and follow proper administrative
procedures) will be granted the dls-admin role. Assign the dls-admin role to administrators of
your Library Services application.

6.5.2 dls-user Role
The dls-user role is a minimally privileged role. It is used in the Library Services API to allow
regular users of the Library Services application (as opposed to dls-admin users) to be able to
execute code in the Library Services API. It allows users, with document update permission, to
manage, checkout, and checkin managed documents.

The dls-user role only has privileges that are needed to run the Library Services API; it does not
provide execute privileges to any functions outside the scope of the Library Services API. The
Library Services API uses the dls-user role as a mechanism to amp more privileged operations in
a controlled way. It is therefore reasonably safe to assign this role to any user whom you trust to
use your Library Services application. Assign the dls-user role to all users of your Library
Services application.

MarkLogic Server Library Services Applications

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 97

6.5.3 dls-internal Role
The dls-internal role is a role that is used internally by the Library Services API, but donot
explicitly grant it to any user or role. This role is used to amp special privileges within the context
of certain functions of the Library Services API. Assigning this role to users would give them
privileges on the system that you typically do not want them to have; do not assign this role to any
users.

6.6 Transactions and Library Services
The dls:document-checkout, dls:document-update, and dls:document-checkin functions must be
executed in separate transactions. If you want to complete a checkout, update, and checkin in a
single transaction, use the dls:document-checkout-update-checkin function.

6.7 Putting Documents Under Managed Version Control
In order to put a document under managed version control, it must be in your content database.
Once the document is in the database, users assigned the dls-user role can use the
dls:document-manage function to place the document under management. Alternatively, you can
use the dls:document-insert-and-manage function to both insert a document into the database and
place it under management.

When inserting a managed document, specify at least read and update permissions to the roles
assigned to the users that are to manage the document. If no permissions are supplied, the default
permissions of the user inserting the managed document are applied. The default permissions can
be obtained by calling the xdmp:default-permissions function. When adding a collection to a
document, as shown in the example below, the user will also need the unprotected-collections
privilege.

For example, the following query inserts a new document into the database and places it under
Library Services management. This document can only be read or updated by users assigned the
writer and/or editor role and have permission to read and update the
http://marklogic.com/engineering/specs collection.

(: Insert a new managed document into the database. :)
xquery version "1.0-ml";

import module namespace dls = "http://marklogic.com/xdmp/dls"
 at "/MarkLogic/dls.xqy";

dls:document-insert-and-manage(
 "/engineering/beta_overview.xml",
 fn:true(),
 <TITLE>Project Beta Overview</TITLE>,
 "Manage beta_overview.xml",
 (xdmp:permission("writer", "read"),
 xdmp:permission("writer", "update"),
 xdmp:permission("editor", "read"),
 xdmp:permission("editor", "update")),
 ("http://marklogic.com/engineering/specs"))

MarkLogic Server Library Services Applications

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 98

6.8 Checking Out Managed Documents
You must first use the dls:document-checkout function to check out a managed document before
performing any update operations. For example, to check out the beta_overview.xml document,
along with all of its linked documents, specify the following:

xquery version "1.0-ml";

import module namespace dls = "http://marklogic.com/xdmp/dls"
 at "/MarkLogic/dls.xqy";

dls:document-checkout(
 "/engineering/beta_overview.xml",
 fn:true(),
 "Updating doc")

You can specify an optional timeout parameter to dls:document-checkout that specifies how long
(in seconds) to keep the document checked out. For example, to check out the beta_overview.xml
document for one hour, specify the following:

dls:document-checkout(
 "/engineering/beta_overview.xml",
 fn:true(),
 "Updating doc",
 3600)

6.8.1 Displaying the Checkout Status of Managed Documents
You can use the dls:document-checkout-status function to report the status of a checked out
document. For example:

dls:document-checkout-status("/engineering/beta_overview.xml")

Returns output similar to:

<dls:checkout xmlns:dls="http://marklogic.com/xdmp/dls">
 <dls:document-uri>/engineering/beta_overview.xml</dls:document-uri>
 <dls:annotation>Updating doc</dls:annotation>
 <dls:timeout>0</dls:timeout>
 <dls:timestamp>1240528210</dls:timestamp>
 <sec:user-id xmlns:sec="http://marklogic.com/xdmp/security">
 10677693687367813363
 </sec:user-id>
</dls:checkout>

6.8.2 Breaking the Checkout of Managed Documents
Users with dls-admin role can call dls:break-checkout to “un-checkout” documents. For
example, if a document was checked out by a user who has since moved on to other projects, the
Administrator can break the existing checkout of the document so that other users can check it
out.

MarkLogic Server Library Services Applications

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 99

6.9 Checking In Managed Documents
Once you have finished updating the document, use the dls:document-checkin function to check
it, along with all of its linked documents, back in:

dls:document-checkin(
 "/engineering/beta_overview.xml",
 fn:true())

6.10 Updating Managed Documents
You can call the dls:document-update function to replace the contents of an existing managed
document. Each time you call the dls:document-update function on a document, the document’s
version is incremented and a purge operation is initiated that removes any versions of the
document that are not retained by the retention policy, as described in “Defining a Retention
Policy” on page 100.

Note: You cannot use node update functions, such as xdmp:node-replace, with managed
documents. Updates to the document must be done in memory before calling the
dls:document-update function. For information on how to do in-memory updates
on document nodes, see “Transforming XML Structures With a Recursive
typeswitch Expression” on page 113.

For example, to update the “Project Beta Overview” document, enter:

let $contents :=
<BOOK>
 <TITLE>Project Beta Overview</TITLE>
 <CHAPTER>
 <TITLE>Objectives</TITLE>
 <PARA>
 The objective of Project Beta, in simple terms, is to corner
 the widget market.
 </PARA>
 </CHAPTER>
</BOOK>

return
 dls:document-update(
 "/engineering/beta_overview.xml",
 $contents,
 "Roughing in the first chapter",
 fn:true())

Note: The dls:document-update function replaces the entire contents of the document.

MarkLogic Server Library Services Applications

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 100

6.11 Defining a Retention Policy
A retention policy specifies what document versions are retained in the database following a
purge operation. A retention policy is made up of one or more retention rules. If you do not define
a retention policy, then none of the previous versions of your documents are retained.

This section describes:

• Purging Versions of Managed Document

• About Retention Rules

• Creating Retention Rules

• Retaining Specific Versions of Documents

• Multiple Retention Rules

• Deleting Retention Rules

6.11.1 Purging Versions of Managed Document
Each update of a managed document initiates a purge operation that removes the versions of that
document that are not retained by your retention policy. You can also call dls:purge to purge all
of the documents or dls:document-purge to run purge on a specific managed document.

You can also use dls:purge or dls:document-purge to determine what documents would be
deleted by the retention policy without actually deleting them. This option can be useful when
developing your retention rules. For example, if you change your retention policy and want to
determine specifically what document versions will be deleted as a result, you can use:

xquery version "1.0-ml";
import module namespace dls="http://marklogic.com/xdmp/dls"
 at "/MarkLogic/dls.xqy";

dls:purge(fn:false(), fn:true())

MarkLogic Server Library Services Applications

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 101

6.11.2 About Retention Rules
Retention rules describe which versions of what documents are to be retained by the purge
operation. When using dls:document-update or dls:document-extract-part to create a new
version of a document, previous versions of the document that do not match the retention policy
are purged.

You can define retention rules to keep various numbers of document versions, to keep documents
matching a cts-query expression, and/or to keep documents for a specified period of time.
Restrictions in a retention rule are combined with a logical AND, so that all of the expressions in
the retention rule must be true for the document versions to be retained. When you combine
separate retention rules, the resulting retention policy is an OR of the combined rules (that is, the
document versions are retained if they are matched by any of the rules). Multiple rules do not
have an order of operation.

Warning The retention policy specifies what is retained, not what is purged. Therefore,
anything that does not match the retention policy is removed.

6.11.3 Creating Retention Rules
You create a retention rule by calling the dls:retention-rule function. The
dls:retention-rule-insert function inserts one or more retention rules into the database.

For example, the following retention rule retains all versions of all documents because the empty
cts:and-query function matches all documents:

xquery version "1.0-ml";
import module namespace dls="http://marklogic.com/xdmp/dls"
 at "/MarkLogic/dls.xqy";

dls:retention-rule-insert(
dls:retention-rule(
 "All Versions Retention Rule",
 "Retain all versions of all documents",
 (),
 (),
 "Locate all of the documents",
 cts:and-query(())))

MarkLogic Server Library Services Applications

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 102

The following retention rule retains the last five versions of all of the documents located under the
/engineering/ directory:

xquery version "1.0-ml";
import module namespace dls="http://marklogic.com/xdmp/dls"
 at "/MarkLogic/dls.xqy";

dls:retention-rule-insert(
dls:retention-rule(
 "Engineering Retention Rule",
 "Retain the five most recent versions of Engineering docs",
 5,
 (),
 "Locate all of the Engineering documents",
 cts:directory-query("/engineering/", "infinity")))

The following retention rule retains the latest three versions of the engineering documents with
“Project Alpha” in the title that were authored by Jim:

xquery version "1.0-ml";
import module namespace dls="http://marklogic.com/xdmp/dls"
 at "/MarkLogic/dls.xqy";

dls:retention-rule-insert(
dls:retention-rule(
 "Project Alpha Retention Rule",
 "Retain the three most recent engineering documents with
 the title ‘Project Alpha’ and authored by Jim.",
 3,
 (),
 "Locate the engineering docs with 'Project Alpha' in the
 title authored by Jim",
 cts:and-query((
 cts:element-word-query(xs:QName("TITLE"), "Project Alpha"),
 cts:directory-query("/engineering/", "infinity"),
 dls:author-query(xdmp:user("Jim"))))))

MarkLogic Server Library Services Applications

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 103

The following retention rule retains the five most recent versions of documents in the “specs”
collection that are no more than thirty days old:

xquery version "1.0-ml";
import module namespace dls="http://marklogic.com/xdmp/dls"
 at "/MarkLogic/dls.xqy";

dls:retention-rule-insert(
dls:retention-rule(
 "Specs Retention Rule",
 "Keep the five most recent versions of documents in the ‘specs’
 collection that are 30 days old or newer",
 5,
 xs:duration("P30D"),
 "Locate documents in the 'specs' collection",
 cts:collection-query("http://marklogic.com/documents/specs")))

6.11.4 Retaining Specific Versions of Documents
The dls:document-version-query and dls:as-of-query constructor functions can be used in a
retention rule to retain snapshots of the documents as they were at some point in time. A snapshot
may be of specific versions of documents or documents as of a specific date.

For example, the following retention rule retains the latest versions of the engineering documents
created before 5:00pm on 4/23/09:

xquery version "1.0-ml";
import module namespace dls="http://marklogic.com/xdmp/dls"
 at "/MarkLogic/dls.xqy";

dls:retention-rule-insert(
dls:retention-rule(
 "Draft 1 of the Engineering Docs",
 "Retain each engineering document that was update before
 5:00pm, 4/23/09",
 (),
 (),
 (),
 cts:and-query((
 cts:directory-query("/documentation/", "infinity"),
 dls:as-of-query(xs:dateTime("2009-04-23T17:00:00-07:00"))))))

If you want to retain two separate snapshots of the engineering documents, you can add a
retention rule that contains a different cts:or-query function. For example:

cts:and-query((
 cts:directory-query("/documentation/", "infinity"),
 dls:as-of-query(xs:dateTime("2009-25-12T09:00:01-07:00"))))

MarkLogic Server Library Services Applications

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 104

6.11.5 Multiple Retention Rules
In some organizations, it might make sense to create multiple retention rules. For example, the
Engineering and Documentation groups may share a database and each organization wants to
create and maintain their own retention rule.

Consider the two rules shown below. The first rule retains the latest 5 versions of all of the
documents under the /engineering/ directory. The second rule, retains that latest 10 versions of
all of the documents under the /documentation/ directory. The ORed result of these two rules
does not impact the intent of each individual rule and each rule can be updated independently
from the other.

xquery version "1.0-ml";
import module namespace dls="http://marklogic.com/xdmp/dls"
 at "/MarkLogic/dls.xqy";

dls:retention-rule-insert((
dls:retention-rule(
 "Engineering Retention Rule",
 "Retain the five most recent versions of Engineering docs",
 5,
 (),
 "Apply to all of the Engineering documents",
 cts:directory-query("/engineering/", "infinity")),

dls:retention-rule(
 "Documentation Retention Rule",
 "Retain the ten most recent versions of the documentation",
 10,
 (),
 "Apply to all of the documentation",
 cts:directory-query("/documentation/", "infinity"))))

MarkLogic Server Library Services Applications

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 105

As previously described, multiple retention rules define a logical OR between them, so there may
be circumstances when multiple retention rules are needed to define the desired retention policy
for the same set of documents.

For example, you want to retain the last five versions of all of the engineering documents, as well
as all engineering documents that were updated before 8:00am on 4/24/09 and 9:00am on 5/12/09.
The following two retention rules are needed to define the desired retention policy:

xquery version "1.0-ml";
import module namespace dls="http://marklogic.com/xdmp/dls"
 at "/MarkLogic/dls.xqy";

dls:retention-rule-insert((
dls:retention-rule(
 "Engineering Retention Rule",
 "Retain the five most recent versions of Engineering docs",
 5,
 (),
 "Retain all of the Engineering documents",
 cts:directory-query("/engineering/", "infinity")),

dls:retention-rule(
 "Project Alpha Retention Rule",
 "Retain the engineering documents that were updated before
 the review dates below.",
 (),
 (),
 "Retain all of the Engineering documents updated before
 the two dates",
 cts:and-query((
 cts:directory-query("/engineering/", "infinity"),
 cts:or-query((
 dls:as-of-query(xs:dateTime("2009-04-24T08:00:17.566-07:00")),
 dls:as-of-query(xs:dateTime("2009-05-12T09:00:01.632-07:00"))
))
)))))

MarkLogic Server Library Services Applications

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 106

It is important to understand the difference between the logical OR combination of the above two
retention rules and the logical AND within a single rule. For example, the OR combination of the
above two retention rules is not same as the single rule below, which is an AND between retaining
the last five versions and the as-of versions. The end result of this rule is that the last five versions
are not retained and the as-of versions are only retained as long as they are among the last five
versions. Once the revisions of the last five documents have moved past the as-of dates, the AND
logic is no longer true and you no longer have an effective retention policy, so no versions of the
documents are retained.

xquery version "1.0-ml";
import module namespace dls="http://marklogic.com/xdmp/dls"
 at "/MarkLogic/dls.xqy";

dls:retention-rule-insert(
dls:retention-rule(
 "Project Alpha Retention Rule",
 "Retain the 5 most recent engineering documents",
 5,
 (),
 "Retain all of the Engineering documents updated before
 the two dates",
 cts:and-query((
 cts:directory-query("/engineering/", "infinity"),
 cts:or-query((
 dls:as-of-query(xs:dateTime("2009-04-24T08:56:17.566-07:00")),
 dls:as-of-query(xs:dateTime("2009-05-12T08:59:01.632-07:00"))
))))))

6.11.6 Deleting Retention Rules
You can use the dls:retention-rule-remove function to delete retention rules. For example, to
delete the “Project Alpha Retention Rule,” use:

xquery version "1.0-ml";
import module namespace dls="http://marklogic.com/xdmp/dls"
 at "/MarkLogic/dls.xqy";

dls:retention-rule-remove("Project Alpha Retention Rule")

To delete all of your retention rules in the database, use:

xquery version "1.0-ml";
import module namespace dls="http://marklogic.com/xdmp/dls"
 at "/MarkLogic/dls.xqy";

dls:retention-rule-remove(fn:data(dls:retention-rules("*")//dls:name))

MarkLogic Server Library Services Applications

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 107

6.12 Managing Modular Documents in Library Services
As described in “Reusing Content With Modular Document Applications” on page 171, you can
create modular documents from the content stored in one or more linked documents. This section
describes:

• Creating Managed Modular Documents

• Expanding Managed Modular Documents

• Managing Versions of Modular Documents

6.12.1 Creating Managed Modular Documents
As described in “Reusing Content With Modular Document Applications” on page 171, you can
create modular documents from the content stored in one or more linked documents. The
dls:document-extract-part function provides a shorthand method for creating modular managed
documents. This function extracts a child element from a managed document, places the child
element in a new managed document, and replaces the extracted child element with an XInclude
reference.

For example, the following function call extracts Chapter 1 from the “Project Beta Overview”
document:

dls:document-extract-part("/engineering/beta_overview_chap1.xml",
 fn:doc("/engineering/beta_overview.xml")//CHAPTER[1],
 "Extracting Chapter 1",
 fn:true())

The contents of /engineering/beta_overview.xml is now as follows:

<BOOK>
 <TITLE>Project Beta Overview</TITLE>
 <xi:include href="/engineering/beta_overview_chap1.xml"/>
</BOOK>

The contents of /engineering/beta_overview_chap1.xml is as follows:

<CHAPTER>
 <TITLE>Objectives</TITLE>
 <PARA>
 The objective of Project Beta, in simple terms, is to corner
 the widget market.
 </PARA>
</CHAPTER>

Note: The newly created managed document containing the extracted child element is
initially checked-in and must be checked out before you can make any updates.

MarkLogic Server Library Services Applications

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 108

The dls:document-extract-part function can only be called once in a transaction for the same
document. There may be circumstances in which you want to extract multiple elements from a
document and replace them with XInclude statements. For example, the following query creates
separate documents for all of the chapters from the “Project Beta Overview” document and
replaces them with XInclude statements:

xquery version "1.0-ml";
import module namespace dls="http://marklogic.com/xdmp/dls"
 at "/MarkLogic/dls.xqy";

declare namespace xi="http://www.w3.org/2001/XInclude";

let $includes := for $chap at $num in
 doc("/engineering/beta_overview.xml")/BOOK/CHAPTER

return (
 dls:document-insert-and-manage(
 fn:concat("/engineering/beta_overview_chap", $num, ".xml"),
 fn:true(),
 $chap),

 <xi:include href="/engineering/beta_overview_chap{$num}.xml"
 xmlns:xi="http://www.w3.org/2001/XInclude"/>
)

let $contents :=
 <BOOK>
 <TITLE>Project Beta Overview</TITLE>
 {$includes}
 </BOOK>

return
 dls:document-update(
 "/engineering/beta_overview.xml",
 $contents,
 "Chapters are XIncludes",
 fn:true())

This query produces a “Project Beta Overview” document similar to the following:

<BOOK>
 <TITLE>Project Beta Overview</TITLE>
 <xi:include href="/engineering/beta_overview_chap1.xml"
 xmlns:xi="http://www.w3.org/2001/XInclude"/>
 <xi:include href="/engineering/beta_overview_chap1.xml"
 xmlns:xi="http://www.w3.org/2001/XInclude"/>
 <xi:include href="/engineering/beta_overview_chap2.xml"
 xmlns:xi="http://www.w3.org/2001/XInclude"/>
</BOOK>

MarkLogic Server Library Services Applications

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 109

6.12.2 Expanding Managed Modular Documents
Modular documents can be “expanded” so that you can view the entire node, complete with its
linked nodes, or a specific linked node. You can expand a modular document using
dls:node-expand, or a linked node in a modular document using dls:link-expand .

Note: When using the dls:node-expand function to expand documents that contain
XInclude links to specific versioned documents, specify the $restriction
parameter as an empty sequence.

For example, to return the expanded beta_overview.xml document, you can use:

xquery version "1.0-ml";
import module namespace dls="http://marklogic.com/xdmp/dls"
 at "/MarkLogic/dls.xqy";

let $node := fn:doc("/engineering/beta_overview.xml")

return dls:node-expand($node, ())

To return the first linked node in the beta_overview.xml document, you can use:

xquery version "1.0-ml";
import module namespace dls="http://marklogic.com/xdmp/dls"
 at "/MarkLogic/dls.xqy";

declare namespace xi="http://www.w3.org/2001/XInclude";

let $node := fn:doc("/engineering/beta_overview.xml")

return dls:link-expand(
 $node,
 $node/BOOK/xi:include[1],
 ())

The dls:node-expand and dls:link-expand functions allow you to specify a cts:query
constructor to restrict what document version is to be expanded. For example, to expand the most
recent version of the “Project Beta Overview” document created before 1:30pm on 4/6/09, you
can use:

xquery version "1.0-ml";
import module namespace dls="http://marklogic.com/xdmp/dls"
 at "/MarkLogic/dls.xqy";

let $node := fn:doc("/engineering/beta_overview.xml")

return dls:node-expand(
 $node,
 dls:as-of-query(
 xs:dateTime("2009-04-06T13:30:33.576-07:00")))

MarkLogic Server Library Services Applications

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 110

6.12.3 Managing Versions of Modular Documents
Library Services can manage modular documents so that various versions can be created for the
linked documents. As a modular document’s linked documents are updated, you might want to
take periodic snapshots of the entire node.

For example, as shown in “Creating Managed Modular Documents” on page 107, the “Project
Beta Overview” document contains three chapters that are linked as separate documents. The
following query takes a snapshot of the latest version of each chapter and creates a new version of
the “Project Beta Overview” document that includes the versioned chapters:

xquery version "1.0-ml";
import module namespace dls="http://marklogic.com/xdmp/dls"
 at "/MarkLogic/dls.xqy";

declare namespace xi="http://www.w3.org/2001/XInclude";

(: For each chapter in the document, get the URI :)
let $includes :=
 for $chap at $num in doc("/engineering/beta_overview.xml")
//xi:include/@href

(: Get the latest version of each chapter :)
let $version_number :=
 fn:data(dls:document-history($chap)//dls:version-id)[last()]

let $version := dls:document-version-uri($chap, $version_number)

(: Create an XInclude statement for each versioned chapter :)
 return
 <xi:include href="{$version}"/>

(: Update the book with the versioned chapters :)
let $contents :=
 <BOOK>
 <TITLE>Project Beta Overview</TITLE>
 {$includes}
 </BOOK>

return
 dls:document-update(
 "/engineering/beta_overview.xml",
 $contents,
 "Latest Draft",
 fn:true())

MarkLogic Server Library Services Applications

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 111

The above query results in a new version of the “Project Beta Overview” document that looks
like:

<BOOK>
 <TITLE>Project Beta Overview</TITLE>
 <xi:include
href="/engineering/beta_overview_chap1.xml_versions/4-beta_overview_
chap1.xml" xmlns:xi="http://www.w3.org/2001/XInclude"/>
 <xi:include
href="/engineering/beta_overview_chap2.xml_versions/3-beta_overview_
chap2.xml" xmlns:xi="http://www.w3.org/2001/XInclude"/>
 <xi:include
href="/engineering/beta_overview_chap3.xml_versions/3-beta_overview_
chap3.xml" xmlns:xi="http://www.w3.org/2001/XInclude"/>
</BOOK>

Note: When using the dls:node-expand function to expand modular documents that
contain XInclude links to specific versioned documents, specify the $restriction
parameter as an empty sequence.

MarkLogic Server Library Services Applications

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 112

You can also create modular documents that contain different versions of linked documents. For
example, in the illustration below, Doc R.xml, Version 1 contains the contents of:

• Doc A.xml, Version 1

• Doc B.xml, Version 2

• Doc C.xml, Version 2

While Doc X, Version 2 contains the contents of:

• Doc A.xml, Version 2

• Doc B.xml, Version 2

• Doc C.xml, Version 3

A.xml B.xml C.xml

Versions

1

2

3

R.xml

XInclude Doc A, Version 1

XInclude Doc B, Version 2

XInclude Doc C, Version 2

XInclude Doc A, Version 2

XInclude Doc B, Version 2

XInclude Doc C, Version 3

Versions

1

2

MarkLogic Server Transforming XML Structures With a Recursive

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 113

7.0 Transforming XML Structures With a Recursive
typeswitch Expression

119

A common task required with XML is to transform one structure to another structure. This
chapter describes a design pattern using the XQuery typeswitch expression which makes it easy
to perform complex XML transformations with good performance, and includes some samples
illustrating this design pattern. It includes the following sections:

• XML Transformations

• Sample XQuery Transformation Code

7.1 XML Transformations
Programmers are often faced with the task of converting one XML structure to another. These
transformations can range from very simple element name change transformations to extremely
complex transformations that reshape the XML structure and/or combine it with content from
other documents or sources. This section describes some aspects of XML transformations and
includes the following sections:

• XQuery vs. XSLT

• Transforming to XHTML or XSL-FO

• The typeswitch Expression

7.1.1 XQuery vs. XSLT
XSLT is commonly used in transformations, and it works well for many transformations. It does
have some drawbacks for certain types of transformations, however, especially if the
transformations are part of a larger XQuery application.

XQuery is a powerful programming language, and MarkLogic Server provides very fast access to
content, so together they work extremely well for transformations. MarkLogic Server is
particularly well suited to transformations that require searches to get the content which needs
transforming. For example, you might have a transformation that uses a lexicon lookup to get a
value with which to replace the original XML value. Another transformation might need to count
the number of authors in a particular collection.

7.1.2 Transforming to XHTML or XSL-FO
A common XML transformation is converting documents from some proprietary XML structure
to HTML. Since XQuery produces XML, it is fairly easy to write an XQuery program that returns
XHTML, which is the XML version of HTML. XHTML is, for the most part, just well-formed
HTML with lowercase tag and attribute names. So it is common to write XQuery programs that
return XHTML.

MarkLogic Server Transforming XML Structures With a Recursive

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 114

Similarly, you can write an XQuery program that returns XSL-FO, which is a common path to
build PDF output. Again, XSL-FO is just an XML structure, so it is easy to write XQuery that
returns XML in that structure.

7.1.3 The typeswitch Expression
There are other ways to perform transformations in XQuery, but the typeswitch expression used
in a recursive function is a design pattern that is convenient, performs well, and makes it very
easy to change and maintain the transformation code.

For the syntax of the typeswitch expression, see The typeswitch Expression in XQuery and XSLT
Reference Guide. The case clause allows you to perform a test on the input to the typeswitch and
then return something. For transformations, the tests are often what are called kind tests. A kind
test tests to see what kind of node something is (for example, an element node with a given
QName). If that test returns true, then the code in the return clause is executed. The return clause
can be arbitrary XQuery, and can therefore call a function.

Because XML is an ordered tree structure, you can create a function that recursively walks
through an XML node, each time doing some transformation on the node and sending its child
nodes back into the function. The result is a convenient mechanism to transform the structure
and/or content of an XML node.

7.2 Sample XQuery Transformation Code
This section provides some code examples that use the typeswitch expression. For each of these
samples, you can cut and paste the code to execute against an App Server. For a more complicated
example of this technique, see the Shakespeare Demo Application on
developer.marklogic.com/code.

The following samples are included:

• Simple Example

• Simple Example With cts:highlight

• Sample Transformation to XHTML

• Extending the typeswitch Design Pattern

http://developer.marklogic.com/code

MarkLogic Server Transforming XML Structures With a Recursive

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 115

7.2.1 Simple Example
The following sample code does a trivial transformation of the input node, but it shows the basic
design pattern where the default clause of the typeswitch expression calls a simple function
which sends the child nodes back into the original function.

xquery version "1.0-ml";

(: This is the recursive typeswitch function :)
declare function local:transform($nodes as node()*) as node()*
{
for $n in $nodes return
typeswitch ($n)
 case text() return $n
 case element (bar) return <barr>{local:transform($n/node())}</barr>
 case element (baz) return <bazz>{local:transform($n/node())}</bazz>
 case element (buzz) return
 <buzzz>{local:transform($n/node())}</buzzz>
 case element (foo) return <fooo>{local:transform($n/node())}</fooo>
 default return <temp>{local:transform($n/node())}</temp>
};

let $x :=
<foo>foo
 <bar>bar</bar>
 <baz>baz
 <buzz>buzz</buzz>
 </baz>
 foo
</foo>
return
local:transform($x)

This XQuery program returns the following:

<fooo>
 foo
 <barr>bar</barr>
 <bazz>baz
 <buzzz>buzz</buzzz>
 </bazz>
 foo
</fooo>

MarkLogic Server Transforming XML Structures With a Recursive

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 116

7.2.2 Simple Example With cts:highlight
The following sample code is the same as the previous example, except it also runs cts:highlight
on the result of the transformation. Using cts:highlight in this way is sometimes useful when
displaying the results from a search and then highlighting the terms that match the cts:query
expression. For details on cts:highlight, see Highlighting Search Term Matches in the Search
Developer’s Guide.

xquery version "1.0-ml";

(: This is the recursive typeswitch function :)
declare function local:transform($nodes as node()*) as node()*
{
for $n in $nodes return
typeswitch ($n)
 case text() return $n
 case element (bar) return <barr>{local:transform($n/node())}</barr>
 case element (baz) return <bazz>{local:transform($n/node())}</bazz>
 case element (buzz) return
 <buzzz>{local:transform($n/node())}</buzzz>
 case element (foo) return <fooo>{local:transform($n/node())}</fooo>
 default return <booo>{local:transform($n/node())}</booo>
};

let $x :=
<foo>foo
 <bar>bar</bar>
 <baz>baz
 <buzz>buzz</buzz>
 </baz>
 foo
</foo>
return
cts:highlight(local:transform($x), cts:word-query("foo"),
 {$cts:text})

This XQuery program returns the following:

<fooo>
 foo
 <barr>bar</barr>
 <bazz>baz
 <buzzz>buzz</buzzz>
 </bazz>
 foo
</fooo>

MarkLogic Server Transforming XML Structures With a Recursive

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 117

7.2.3 Sample Transformation to XHTML
The following sample code performs a very simple transformation of an XML structure to
XHTML. It uses the same design pattern as the previous example, but this time the XQuery code
includes HTML markup.

xquery version "1.0-ml";
declare default element namespace "http://www.w3.org/1999/xhtml";

(: This is the recursive typeswitch function :)
declare function local:transform($nodes as node()*) as node()*
{
for $n in $nodes return
typeswitch ($n)
 case text() return $n
 case element (a) return local:transform($n/node())
 case element (title) return <h1>{local:transform($n/node())}</h1>
 case element (para) return <p>{local:transform($n/node())}</p>
 case element (sectionTitle) return
 <h2>{local:transform($n/node())}</h2>
 case element (numbered) return {local:transform($n/node())}
 case element (number) return {local:transform($n/node())}
 default return <tempnode>{local:transform($n/node())}</tempnode>
};

let $x :=
<a>
 <title>This is a Title</title>
 <para>Some words are here.</para>
 <sectionTitle>A Section</sectionTitle>
 <para>This is a numbered list.</para>
 <numbered>
 <number>Install MarkLogic Server.</number>
 <number>Load content.</number>
 <number>Run very big and fast XQuery.</number>
 </numbered>

return
<html xmlns="http://www.w3.org/1999/xhtml">
<head><title>MarkLogic Sample Code</title></head>
<body>{local:transform($x)}</body>
</html>

This returns the following XHTML code:

MarkLogic Server Transforming XML Structures With a Recursive

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 118

<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>MarkLogic Sample Code</title>
 </head>
<body>
<h1>This is a Title</h1>
<p>Some words are here.</p>
<h2>A Section</h2>
<p>This is a numbered list.</p>

 Install MarkLogic Server.
 Load content.
 Run very big and fast XQuery.

</body>
</html>

If you run this code against an HTTP App Server (for example, copy the code to a file in the App
Server root and access the page from a browser), you will see results similar to the following:

Note that the return clauses of the typeswitch case statements in this example are simplified, and
look like the following:

case element (sectionTitle) return <h2>{local:passthru($x)}</h2>

In a more typical example, the return clause would call a function:

case element (sectionTitle) return local:myFunction($x)

The function can then perform arbitrarily complex logic. Typically, each case statement calls a
function with code appropriate to how that element needs to be transformed.

MarkLogic Server Transforming XML Structures With a Recursive

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 119

7.2.4 Extending the typeswitch Design Pattern
There are many ways you can extend this design pattern beyond the simple examples above. For
example, you can add a second parameter to the simple transform functions shown in the
previous examples. The second parameter passes some other information about the node you are
transforming.

Suppose you want your transformation to exclude certain elements based on the place in the XML
hierarchy in which the elements appear. You can then add logic to the function to exclude the
passed in elements, as shown in the following code snippet:

declare function transform($nodes as node()*, $excluded as element()*)
 as node()*
{
(: Test whether each node in $nodes is an excluded element, if so
 return empty, otherwise run the typeswitch expression.
:)
for $n in $nodes return
if (some $node in $excluded satisfies $n)
then ()
else (typeswitch ($n))
};

There are plenty of other extensions to this design pattern you can use. What you do depends on
your application requirements. XQuery is a powerful programming language, and therefore these
types of design patterns are very extensible to new requirements.

MarkLogic Server Document and Directory Locks

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 120

8.0 Document and Directory Locks
124

This chapter describes locks on documents and directories, and includes the following sections:

• Overview of Locks

• Lock APIs

• Example: Finding the URI of Documents With Locks

• Example: Setting a Lock on a Document

• Example: Releasing a Lock on a Document

• Example: Finding the User to Whom a Lock Belongs

Note: This chapter is about document and directory locks that you set explicitly, not
about transaction locks which MarkLogic sets implicitly. To understand
transactions, see “Understanding Transactions in MarkLogic Server” on page 28.

8.1 Overview of Locks
Each document and directory can have a lock. A lock is stored as a locks document in a
MarkLogic Server database. The locks document is separate from the document or directory to
which it is associated. Locks have the following characteristics:

• Write Locks

• Persistent

• Searchable

• Exclusive or Shared

• Hierarchical

• Locks and WebDAV

• Other Uses for Locks

8.1.1 Write Locks
Locks are write locks; they restrict updates from all users who do not have the locks. When a user
has an exclusive lock, no other users can get a lock and no other users can update or delete the
document. Attempts to update or delete documents that have locks raise an error. Other users can
still read documents that have locks, however.

8.1.2 Persistent
Locks are persistent in the database. They are not tied to a transaction. You can set locks to last a
specified time period or to last indefinitely. Because they are persistent, you can use locks to
ensure that a document is not modified during a multi-transaction operation.

MarkLogic Server Document and Directory Locks

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 121

8.1.3 Searchable
Because locks are persistent XML documents, they are therefore searchable XML documents,
and you can write queries to give information about locks in the database. For an example, see
“Example: Finding the URI of Documents With Locks” on page 122.

8.1.4 Exclusive or Shared
You can set locks as exclusive, which means only the user who set the lock can update the
associated database object (document, directory, or collection). You can also set locks as shared,
which means other users can obtain a shared lock on the database object; once a user has a shared
lock on an object, the user can update it.

8.1.5 Hierarchical
When you are locking a directory, you can specify the depth in a directory hierarchy you want to
lock. Specifying "0" means only the specified URI is locked, and specifying "infinity" means
the URI (for example, the directory) and all of its children are locked.

8.1.6 Locks and WebDAV
WebDAV clients use locks to lock documents and directories before updating them. Locking
ensures that no other clients will change the document while it is being saved. It is up to the
implementation of a WebDAV client as to how it sets locks. Some clients set the locks to expire
after a time period and some set them to last until they explicitly unlock the document.

8.1.7 Other Uses for Locks
Any application can use locks as part of its update strategy. For example, you can have a policy
that a developer sets a lock for 30 seconds before performing an update to a document or
directory. Locks are very flexible, so you can set up a policy that makes sense for your
environment, or you can choose not to use them at all.

If you set a lock on every document and directory in the database, that can have the effect of not
allowing any data to change in the database (except by the user who owns the lock). Combining a
application development practice of locking and using security permissions effectively can
provide a robust multi-user development environment.

8.2 Lock APIs
There are basically two kinds of APIs for locks: APIs to show locks and APIs to set/remove locks.
For detailed syntax for these APIs, see the online XQuery Built-In and Module Function
Reference.

The APIs to show locks are:

• xdmp:document-locks

• xdmp:directory-locks

• xdmp:collection-locks

MarkLogic Server Document and Directory Locks

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 122

The xdmp:document-locks function with no arguments returns a sequence of locks, one for each
document lock. The xdmp:document-locks function with a sequence of URIs as an argument
returns the locks for the specified document(s). The xdmp:directory-locks function returns locks
for all of the documents in the specified directory, and the xdmp:collection-locks function
returns all of the locks for documents in the specified collection.

You can set and remove locks on directories and documents with the following functions:

• xdmp:lock-acquire

• xdmp:lock-release

The basic procedure to set a lock on a document or a directory is to submit a query using the
xdmp:lock-acquire function, specifying the URI, the scope of lock requested (exclusive or
shared), the hierarchy affected by the lock (just the URI or the URI and all of its children), the
owner of the lock, the duration of the lock

Note: The owner of the lock is not the same as the sec:user-id of the lock. The owner can
be specified as an option to xdmp:lock-acquire. If owner is not explicitly specified,
then the owner defaults to the name of the user who issued the lock command. For
an example, see “Example: Finding the User to Whom a Lock Belongs” on
page 124.

8.3 Example: Finding the URI of Documents With Locks
If you call the XQuery built-in xdmp:node-uri function on a locks document, it returns the URI of
the document that is locked. The following query returns a document listing the URIs of all
documents in the database that have locks.

<root>
{
for $locks in xdmp:document-locks()
return <document-URI>{xdmp:node-uri($locks)}</document-URI>
}
</root>

For example, if the only document in the database with a lock has a URI
/document/myDocument.xml, then the above query would return the following.

<root>
 <document-URI>/documents/myDocument.xml</document-URI>
</root>

MarkLogic Server Document and Directory Locks

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 123

8.4 Example: Setting a Lock on a Document
The following example uses the xdmp:lock-acquire function to set a two minute (120 second)
lock on a document with the specified URI:

xdmp:lock-acquire("/documents/myDocument.xml",
 "exclusive",
 "0",
 "Raymond is editing this document",
 xs:unsignedLong(120))

You can view the resulting lock document with the xdmp:document-locks function as follows:

xdmp:document-locks("/documents/myDocument.xml")

=>

<lock:lock xmlns:lock="http://marklogic.com/xdmp/lock">
 <lock:lock-type>write</lock:lock-type>
 <lock:lock-scope>exclusive</lock:lock-scope>
 <lock:active-locks>
 <lock:active-lock>
 <lock:depth>0</lock:depth>
 <lock:owner>Raymond is editing this document</lock:owner>
 <lock:timeout>120</lock:timeout>
 <lock:lock-token>
 http://marklogic.com/xdmp/locks/4d0244560cc3726c
 </lock:lock-token>
 <lock:timestamp>1121722103</lock:timestamp>
 <sec:user-id xmlns:sec="http://marklogic.com/xdmp/security">
 8216129598321388485
 </sec:user-id>
 </lock:active-lock>
 </lock:active-locks>
</lock:lock>

8.5 Example: Releasing a Lock on a Document
The following example uses the xdmp:lock-release function to explicitly release a lock on a
document:

xdmp:lock-release("/documents/myDocument.xml")

If you acquire a lock with no timeout period, be sure to release the lock when you are done with it.
If you do not release the lock, no other users can update any documents or directories locked by
the xdmp:lock-acquire action.

MarkLogic Server Document and Directory Locks

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 124

8.6 Example: Finding the User to Whom a Lock Belongs
Because locks are documents, you can write a query that finds the user to whom a lock belongs.
For example, the following query searches through the sec:user-id elements of the lock
documents and returns a set of URI names and user IDs of the user who owns each lock:

for $x in xdmp:document-locks()//sec:user-id
return <lock>
 <URI>{xdmp:node-uri($x)}</URI>
 <user-id>{data($x)}</user-id>
 </lock>

A sample result is as follows (this result assumes there is only a single lock in the database):

<lock>
 <URI>/documents/myDocument.xml</URI>
 <user-id>15025067637711025979</user-id>
</lock>

MarkLogic Server Properties Documents and Directories

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 125

9.0 Properties Documents and Directories
138

This chapter describes properties documents and directories in MarkLogic Server. It includes the
following sections:

• Properties Documents

• Using Properties for Document Processing

• Directories

• Permissions On Properties and Directories

• Example: Directory and Document Browser

9.1 Properties Documents
A properties document is an XML document that shares the same URI with a document in a
database. Every document can have a corresponding properties document, although the properties
document is only created if properties are created. The properties document is typically used to
store metadata related to its corresponding document, although you can store any XML data in a
properties document, as long as it conforms to the properties document schema. A document
typically exists at a given URI in order to create a properties document, although it is possible to
create a document and add properties to it in a single transaction, and it is also possible to create a
property where no document exists. The properties document is stored in a separate fragment to
its corresponding document. This section describes properties documents and the APIs for
accessing them, and includes the following subsections:

• Properties Document Namespace and Schema

• APIs on Properties Documents

• XPath property Axis

• Protected Properties

• Creating Element Indexes on a Properties Document Element

• Sample Properties Documents

• Standalone Properties Documents

9.1.1 Properties Document Namespace and Schema
Properties documents are XML documents that must conform to the properties.xsd schema. The
properties.xsd schema is copied to the <install_dir>/Config directory at installation time.

The properties schema is assigned the prop namespace prefix, which is predefined in the server:

http://marklogic.com/xdmp/property

The following listing shows the properties.xsd schema:

MarkLogic Server Properties Documents and Directories

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 126

<xs:schema targetNamespace="http://marklogic.com/xdmp/property"
 xsi:schemaLocation="http://www.w3.org/2001/XMLSchema XMLSchema.xsd
 http://marklogic.com/xdmp/security security.xsd"
 xmlns="http://marklogic.com/xdmp/property"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xhtml="http://www.w3.org/1999/xhtml"
 xmlns:sec="http://marklogic.com/xdmp/security">

 <xs:complexType name="properties">
 <xs:annotation>
 <xs:documentation>
 A set of document properties.
 </xs:documentation>
 <xs:appinfo>
 </xs:appinfo>
 </xs:annotation>
 <xs:choice minOccurs="1" maxOccurs="unbounded">
 <xs:any/>
 </xs:choice>
 </xs:complexType>

 <xs:element name="properties" type="properties">
 <xs:annotation>
 <xs:documentation>
 The container for properties.
 </xs:documentation>
 <xs:appinfo>
 </xs:appinfo>
 </xs:annotation>
 </xs:element>

 <xs:simpleType name="directory">
 <xs:annotation>
 <xs:documentation>
 A directory indicator.
 </xs:documentation>
 <xs:appinfo>
 </xs:appinfo>
 </xs:annotation>
 <xs:restriction base="xs:anySimpleType">
 </xs:restriction>
 </xs:simpleType>

 <xs:element name="directory" type="directory">
 <xs:annotation>
 <xs:documentation>
 The indicator for a directory.
 </xs:documentation>
 <xs:appinfo>
 </xs:appinfo>
 </xs:annotation>
 </xs:element>

MarkLogic Server Properties Documents and Directories

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 127

 <xs:element name="last-modified" type="last-modified">
 <xs:annotation>
 <xs:documentation>
 The timestamp of last document modification.
 </xs:documentation>
 <xs:appinfo>
 </xs:appinfo>
 </xs:annotation>
 </xs:element>

 <xs:simpleType name="last-modified">
 <xs:annotation>
 <xs:documentation>
 A timestamp of the last time something was modified.
 </xs:documentation>
 <xs:appinfo>
 </xs:appinfo>
 </xs:annotation>
 <xs:restriction base="xs:dateTime">
 </xs:restriction>
 </xs:simpleType>

</xs:schema>

9.1.2 APIs on Properties Documents
The APIs for properties documents are XQuery functions which allow you to list, add, and set
properties in a properties document. The properties APIs provide access to the top-level elements
in properties documents. Because the properties are XML elements, you can use XPath to
navigate to any children or descendants of the top-level property elements. The properties
document is tied to its corresponding document and shares its URI; when you delete a document,
its properties document is also deleted.

The following APIs are available to access and manipulate properties documents:

• xdmp:document-properties

• xdmp:document-add-properties

• xdmp:document-set-properties

• xdmp:document-set-property

• xdmp:document-remove-properties

• xdmp:document-get-properties

• xdmp:collection-properties

• xdmp:directory

• xdmp:directory-properties

For the signatures and descriptions of these APIs, see the MarkLogic XQuery and XSLT Function
Reference.

MarkLogic Server Properties Documents and Directories

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 128

9.1.3 XPath property Axis
MarkLogic has extended XPath (available in both XQuery and XSLT) to include the property
axis. The property axis (property::) allows you to write an XPath expression to search through
items in the properties document for a given URI. These expression allow you to perform joins
across the document and property axes, which is useful when storing state information for a
document in a property. For details on this approach, see “Using Properties for Document
Processing” on page 130.

The property axis is similar to the forward and reverse axes in an XPath expression. For example,
you can use the child:: forward axis to traverse to a child element in a document. For details on
the XPath axes, see the XPath 2.0 specification and XPath Quick Reference in the XQuery and XSLT
Reference Guide.

The property axis contains all of the children of the properties document node for a given URI.

The following example shows how you can use the property axis to access properties for a
document while querying the document:

Create a test document as follows:

xdmp:document-insert("/test/123.xml",
 <test>
 <element>123</element>
 </test>)

Add a property to the properties document for the /test/123.xml document:

xdmp:document-add-properties("/test/123.xml",
 <hello>hello there</hello>)

If you list the properties for the /test/123.xml document, you will see the property you just
added:

xdmp:document-properties("/test/123.xml")
=>
<prop:properties xmlns:prop="http://marklogic.com/xdmp/property">
 <hello>hello there</hello>
</prop:properties>

You can now search through the property axis of the /test/123.xml document, as follows:

doc("/test/123.xml")/property::hello
=>
<hello>hello there</hello>

http://www.w3.org/TR/2003/WD-xpath20-20030502/#axes

MarkLogic Server Properties Documents and Directories

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 129

9.1.4 Protected Properties
The following properties are protected, and they can only be created or modified by the system:

• prop:directory

• prop:last-modified

These properties are reserved for use directly by MarkLogic Server; attempts to add or delete
properties with these names fail with an exception.

9.1.5 Creating Element Indexes on a Properties Document Element
Because properties documents are XML documents, you can create element (range) indexes on
elements within a properties document. If you use properties to store numeric or date metadata
about the document to which the properties document corresponds, for example, you can create
an element index to speed up queries that access the metadata.

9.1.6 Sample Properties Documents
Properties documents are XML documents that conform to the schema described in “Properties
Document Namespace and Schema” on page 125. You can list the contents of a properties
document with the xdmp:document-properties function. If there is no properties document at the
specified URI, the function returns the empty sequence. A properties document for a directory has
a single empty prop:directory element. For example, if there exists a directory at the URI
http://myDirectory/, the xdmp:document-properties command returns a properties document as
follows:

xdmp:document-properties("http://myDirectory/")
=>
<prop:properties xmlns:prop="http://marklogic.com/xdmp/property">
 <prop:directory/>
</prop:properties>

You can add whatever you want to a properties document (as long as it conforms to the properties
schema). If you run the function xdmp:document-properties with no arguments, it returns a
sequence of all the properties documents in the database.

9.1.7 Standalone Properties Documents
Typically, properties documents are created alongside the corresponding document that shares its
URI. It is possible, however, to create a properties document at a URI with no corresponding
document at that URI. Such a properties document is known as a standalone properties document.
To create a standalone properties document, use the xdmp:document-add-properties or
xdmp:document-set-properties APIs, and optionally add the xdmp:document-set-permissions,
xdmp:document-set-collections, and/or xdmp:document-set-quality APIs to set the permissions,
collections, and/or quality on the properties document.

MarkLogic Server Properties Documents and Directories

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 130

The following example creates a properties document and sets permissions on it:

xquery version "1.0-ml";

xdmp:document-set-properties("/my-props.xml", <my-props/>),
xdmp:document-set-permissions("/my-props.xml",
 (xdmp:permission("dls-user", "read"),
 xdmp:permission("dls-user", "update")))

If you then run xdmp:document-properties on the URI, it returns the new properties document:

xquery version "1.0-ml";

xdmp:document-properties("/my-props.xml")
(: returns:
<?xml version="1.0" encoding="ASCII"?>
<prop:properties xmlns:prop="http://marklogic.com/xdmp/property">
 <my-props/>
 <prop:last-modified>2010-06-18T18:19:10-07:00</prop:last-modified>
</prop:properties>
:)

Similarly, you can pass in functions to set the collections and quality on the standalone properties
document, either when you create it or after it is created.

9.2 Using Properties for Document Processing
When you need to update large numbers of documents, sometimes in multi-step processes, you
often need to keep track of the current state of each document. For example, if you have a content
processing application that updates millions of documents in three steps, you need to have a way
of programmatically determining which documents have not been processed at all, which have
completed step 1, which have completed step 2, and so on.

This section describes how to use properties to store metadata for use in a document processing
pipeline, it includes the following subsections:

• Using the property Axis to Determine Document State

• Document Processing Problem

• Solution for Document Processing

• Basic Commands for Running Modules

9.2.1 Using the property Axis to Determine Document State
You can use properties documents to store state information about documents that undergo
multi-step processing. Joining across properties documents can then determine which documents
have been processed and which have not. The queries that perform these joins use the property::
axis (for details, see “XPath property Axis” on page 128).

MarkLogic Server Properties Documents and Directories

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 131

Joins across the properties axis that have predicates are optimized for performance. For example,
the following returns foo root elements from documents that have a property bar:

foo[property::bar]

The following examples show the types of queries that are optimized for performance (where
/a/b/c is some XPath expression):

• Property axis in predicates:

/a/b/c[property::bar]

• Negation tests on property axis:

/a/b/c[not(property::bar = "baz")]

• Continuing path expression after the property predicate:

/a/b/c[property::bar and bob = 5]/d/e

• Equivalent FLWOR expressions:

for $f in /a/b/c
where $f/property::bar = "baz"
return $f

Other types of expressions will work but are not optimized for performance, including the
following:

• If you want the bar property of documents whose root elements are foo:

/foo/property::bar

9.2.2 Document Processing Problem
The approach outlined in this section works well for situations such as the following:

• “I have already loaded 1 million documents and now want to update all of them.” The
psuedo-code for this is as follows:

for $d in fn:doc()
return some-update($d)

These types of queries will eventually run out of tree cache memory and fail.

• When iterative calls of the following form become progressively slow:

for $d in fn:doc()[k to k+10000]
return some-update($d)

MarkLogic Server Properties Documents and Directories

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 132

For these types of scenarios, using properties to test whether a document needs processing is an
effective way of being able to batch up the updates into manageable chunks.

9.2.3 Solution for Document Processing
This content processing technique works in a wide variety of situations This approach satisfies the
following requirements:

• Works with large existing datasets.

• Does not require you to know before you load the datasets that you are going to need to
further processing to them later.

• This approach works in a situations in which data is still arriving (for example, new data is
added every day).

• Needs to be able to ultimately transition into a steady state “content processing” enabled
environment.

The following are the basic steps of the document processing approach:

1. Take an iterative strategy, but one that does not become progressively slow.

2. Split the reprocessing activity into multiple updates.

3. Use properties (or lack thereof) to identify the documents that (still) need processing.

4. Repeatedly call the same module, updating its property as well as updating the document:

for $p in fn:doc()/root[not(property::some-update)][1 to 10000]
return some-update($d)

5. If there are any documents that still need processing, invoke the module again.

6. The psuedo-code for the module that processes documents that do not have a specific
property is as follows:

let $docs := get n documents that have no properties
return
for $processDoc in $docs
return if (empty $processDoc)
 then ()
 else (process-document($processDoc),
 update-property($processDoc))
,
xdmp:spawn(process_module)

MarkLogic Server Properties Documents and Directories

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 133

This psuedo-code does the following:

• gets the URIs of documents that do not have a specific property

• for each URI, check if the specific property exists

• if the property exists, do nothing to that document (it has already been updated)

• if the property does not exist, do the update to the document and the update to the
property

• continue this for all of the URIs

• when all of the URIs have been processed, call the module again to get any new
documents (ones with no properties)

7. (Optional) Automate the process by setting up a Content Processing Pipeline.

9.2.4 Basic Commands for Running Modules
The following built-in functions are needed to perform automated content processing:

• To put a module on Task Server Queue:

xdmp:spawn($database, $root, $path)

• To evaluate an entire module (similar to xdmp:eval, but for modules):

xdmp:invoke($path, $external-vars)

xdmp:invoke-in($path, $database-id, $external-vars)

9.3 Directories
Directories have many uses, including organizing your document URIs and using them with
WebDAV servers. This section includes the following items about directories:

• Properties and Directories

• Directories and WebDAV Servers

• Directories Versus Collections

MarkLogic Server Properties Documents and Directories

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 134

9.3.1 Properties and Directories
When you create a directory, MarkLogic Server creates a properties document with a
prop:directory element. If you run the xdmp:document-properties command on the URI
corresponding to a directory, the command returns a properties document with an empty
prop:directory element, as shown in the following example:

xdmp:directory-create("/myDirectory/");

xdmp:document-properties("/myDirectory/")
=>
<prop:properties xmlns:prop="http://marklogic.com/xdmp/property">
 <prop:directory/>
</prop:properties>

Note: You can create a directory with any unique URI, but the convention is for directory
URIs to end with a forward slash (/). It is possible to create a document with the
same URI as a directory, but this is not recommended; the best practice is to
reserve URIs ending in slashes for directories.

Because xdmp:document-properties with no arguments returns the properties documents for all
properties documents in the database, and because each directory has a prop:directory element,
you can easily write a query that returns all of the directories in the database. Use the
xdmp:node-uri function to accomplish this as follows:

xquery version "1.0-ml";

for $x in xdmp:document-properties()/prop:properties/prop:directory
return <directory-uri>{xdmp:node-uri($x)}</directory-uri>

9.3.2 Directories and WebDAV Servers
Directories are needed for use in WebDAV servers. To create a document that can be accessed
from a WebDAV client, the parent directory must exist. The parent directory of a document is the
directory in which the URI is the prefix of the document (for example, the directory of the URI
http://myserver/doc.xml is http://myserver/). When using a database with a WebDAV server,
ensure that the directory creation setting on the database configuration is set to automatic (this
is the default setting), which causes parent directories to be created when documents are created.
For information on using directories in WebDAV servers, see WebDAV Servers in the
Administrator’s Guide.

MarkLogic Server Properties Documents and Directories

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 135

9.3.3 Directories Versus Collections
You can use both directories and collections to organize documents in a database. The following
are important differences between directories and collections:

• Directories are hierarchical in structure (like a filesystem directory structure). Collections
do not have this requirement. Because directories are hierarchical, a directory URI must
contain any parent directories. Collection URIs do not need to have any relation to
documents that belong to a collection. For example, a directory named
http://marklogic.com/a/b/c/d/e/ (where http://marklogic.com/ is the root) requires the
existence of the parent directories d, c, b, and a. With collections, any document
(regardless of its URI) can belong to a collection with the given URI.

• Directories are required for WebDAV clients to see documents. In other words, to see a
document with URI /a/b/hello/goodbye in a WebDAV server with /a/b/ as the root,
directories with the following URIs must exist in the database:

/a/b/

/a/b/hello/

Except for the fact that you can use both directories and collections to organize documents,
directories are unrelated to collections. For details on collections, see Collections in the Search
Developer’s Guide. For details on WebDAV servers, see WebDAV Servers in the Administrator’s
Guide.

9.4 Permissions On Properties and Directories
Like any document in a MarkLogic Server database, a properties document can have permissions.
Since a directory has a properties document (with an empty prop:directory element), directories
can also have permissions. Permissions on properties documents are the same as the permissions
on their corresponding documents, and you can list the permissions with the
xdmp:document-get-permissions function. Similarly, you can list the permissions on a directory
with the xdmp:document-get-permissions function. For details on permissions and on security,
see Security Guide.

9.5 Example: Directory and Document Browser
Using properties documents, you can build a simple application that lists the documents and
directories under a URI. The following sample code uses the xdmp:directory function to list the
children of a directory (which correspond to the URIs of the documents in the directory), and the
xdmp:directory-properties function to find the prop:directory element, indicating that a URI is
a directory. This example has two parts:

• Directory Browser Code

• Setting Up the Directory Browser

MarkLogic Server Properties Documents and Directories

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 136

9.5.1 Directory Browser Code
The following is sample code for a very simple directory browser.

xquery version "1.0-ml";
(: directory browser
 Place in Modules database and give execute permission :)

declare namespace prop="http://marklogic.com/xdmp/property";

(: Set the root directory of your AppServer for the
 value of $rootdir :)
let $rootdir := (xdmp:modules-root())
(: take all but the last part of the request path, after the
 initial slash :)
let $dirpath := fn:substring-after(fn:string-join(fn:tokenize(
 xdmp:get-request-path(), "/")[1 to last() - 1],
 "/"), "/")
let $basedir := if ($dirpath eq "")
 then ($rootdir)
 else fn:concat($rootdir, $dirpath, "/")
let $uri := xdmp:get-request-field("uri", $basedir)
return if (ends-with($uri, "/")) then
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>MarkLogic Server Directory Browser</title>
 </head>
 <body>
 <h1>Contents of {$uri}</h1>
<h3>Documents</h3>
{
 for $d in xdmp:directory($uri, "1")
 let $u := xdmp:node-uri($d)
 (: get the last two, and take the last non-empty string :)
 let $basename :=
 tokenize($u, "/")[last(), last() - 1][not(. = "")][last()]
 order by $basename
 return element p {
 element a {

(: The following will work for all $basedir values, as long
 as the string represented by $basedir is unique in the
 document URI :)
 attribute href { substring-after($u,$basedir) },
 $basename
 }
 }
}
 <h3>Directories</h3>
{
 for $d in xdmp:directory-properties($uri, "1")//prop:directory
 let $u := xdmp:node-uri($d)
 (: get the last two, and take the last non-empty string :)
 let $basename :=

MarkLogic Server Properties Documents and Directories

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 137

 tokenize($u, "/")[last(), last() - 1][not(. = "")][last()]
 order by $basename
 return element p {
 element a {
 attribute href { concat(
 xdmp:get-request-path(),
 "?uri=",
 $u) },
 concat($basename, "/")
 }
 }
}
</body>
</html>
else doc($uri)

(: browser.xqy :)

This application writes out an HTML document with links to the documents and directories in the
root of the server. The application finds the documents in the root directory using the
xdmp:directory function, finds the directories using the xdmp:directory-properties function,
does some string manipulation to get the last part of the URI to display, and keeps the state using
the application server request object built-in XQuery functions (xdmp:get-request-field and
xdmp:get-request-path).

9.5.2 Setting Up the Directory Browser
To run this directory browser application, perform the following:

1. Create an HTTP Server and configure it as follows:

a. Set the Modules database to be the same database as the Documents database. For
example, if the database setting is set to the database named my-database, set the modules
database to my-database as well.

b. Set the HTTP Server root to http://myDirectory/, or set the root to another value and
modify the $rootdir variable in the directory browser code so it matches your HTTP
Server root.

c. Set the port to 9001, or to a port number not currently in use.

2. Copy the sample code into a file named browser.xqy. If needed, modify the $rootdir
variable to match your HTTP Server root. Using the xdmp:modules-root function, as in the
sample code, will automatically get the value of the App Server root.

MarkLogic Server Properties Documents and Directories

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 138

3. Load the browser.xqy file into the Modules database at the top level of the HTTP Server
root. For example, if the HTTP Server root is http://myDirectory/, load the browser.xqy
file into the database with the URI http://myDirectory/browser.xqy. You can load the
document either via a WebDAV client (if you also have a WebDAV server pointed to this
root) or with the xdmp:document-load function.

4. Make sure the browser.xqy document has execute permissions. You can check the
permissions with the following function:

xdmp:document-get-permissions("http://myDirectory/browser.xqy")

This command returns all of the permissions on the document. It must have “execute”
capability for a role possessed by the user running the application. If it does not, you can
add the permissions with a command similar to the following:

xdmp:document-add-permissions("http://myDirectory/browser.xqy",
 xdmp:permission("myRole", "execute"))

where myRole is a role possessed by the user running the application.

5. Load some other documents into the HTTP Server root. For example, drag and drop some
documents and folders into a WebDAV client (if you also have a WebDAV server pointed
to this root).

6. Access the browser.xqy file with a web browser using the host and port number from the
HTTP Server. For example, if you are running on your local machine and you have set the
HTTP Server port to 9001, you can run this application from the URL
http://localhost:9001/browser.xqy.

You will see links to the documents and directories you loaded into the database. If you did not
load any other documents, you will just see a link to the browser.xqy file.

MarkLogic Server Point-In-Time Queries

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 139

10.0 Point-In-Time Queries
150

You can configure MarkLogic Server to retain old versions of documents, allowing you to
evaluate a query statement as if you had travelled back to a point-in-time in the past. When you
specify a timestamp at which a query statement must evaluate, that statement will evaluate against
the newest version of the database up to (but not beyond) the specified timestamp.

This chapter describes point-in-time queries and forest rollbacks to a point-in-time, and includes
the following sections:

• Understanding Point-In-Time Queries

• Using Timestamps in Queries

• Specifying Point-In-Time Queries in xdmp:eval, xdmp:invoke, xdmp:spawn, and XCC

• Rolling Back a Forest to a Particular Timestamp

10.1 Understanding Point-In-Time Queries
To best understand point-in-time queries, you need to understand a little about how different
versions of fragments are stored and merged out of MarkLogic Server. This section describes
some details of how fragments are stored and how that enables point-in-time queries, as well as
lists some other details important to understanding what you can and cannot do with point-in-time
queries:

• Fragments Stored in Log-Structured Database

• System Timestamps and Merge Timestamps

• How the Fragments for Point-In-Time Queries are Stored

• Only Available on Query Statements, Not on Update Statements

• All Auxiliary Databases Use Latest Version

• Database Configuration Changes Do Not Apply to Point-In-Time Fragments

For more information on how merges work, see the “Understanding and Controlling Database
Merges” chapter of the Administrator’s Guide. For background material for this chapter, see
“Understanding Transactions in MarkLogic Server” on page 28.

10.1.1 Fragments Stored in Log-Structured Database
A MarkLogic Server database consists of one or more forests. Each forest is made up of one or
more stands. Each stand contains one or more fragments. The number of fragments are
determined by several factors, including the number of documents and the fragment roots defined
in the database configuration.

MarkLogic Server Point-In-Time Queries

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 140

To maximize efficiency and improve performance, the fragments are maintained using a method
analogous to a log-structured filesystem. A log-structured filesystem is a very efficient way of
adding, deleting, and modifying files, with a garbage collection process that periodically removes
obsolete versions of the files. In MarkLogic Server, fragments are stored in a log-structured
database. MarkLogic Server periodically merges two or more stands together to form a single
stand. This merge process is equivalent to the garbage collection of log-structured filesystems.

When you modify or delete an existing document or node, it affects one or more fragments. In the
case of modifying a document (for example, an xdmp:node-replace operation), MarkLogic Server
creates new versions of the fragments involved in the operation. The old versions of the fragments
are marked as obsolete, but they are not yet deleted. Similarly, if a fragment is deleted, it is simply
marked as obsolete, but it is not immediately deleted from disk (although you will no longer be
able to query it without a point-in-time query).

10.1.2 System Timestamps and Merge Timestamps
When a merge occurs, it recovers disk space occupied by obsolete fragments. The system
maintains a system timestamp, which is a number that increases every time anything maintained
by MarkLogic Server is changed. In the default case, the new stand is marked with the current
timestamp at the time in which the merge completes (the merge timestamp). Any fragments that
became obsolete prior to the merge timestamp (that is, any old versions of fragments or deleted
fragments) are eliminated during the merge operation.

There is a control at the database level called the merge timestamp, set via the Admin Interface.
By default, the merge timestamp is set to 0, which sets the timestamp of a merge to the timestamp
corresponding to when the merge completes. To use point-in-time queries, you can set the merge
timestamp to a static value corresponding to a particular time. Then, any merges that occur after
that time will preserve all fragments, including obsolete fragments, whose timestamps are equal
to or later than the specified merge timestamp.

The effect of preserving obsolete fragments is that you can perform queries that look at an older
view of the database, as if you are querying the database from a point-in-time in the past. For
details on setting the merge timestamp, see “Enabling Point-In-Time Queries in the Admin
Interface” on page 142.

10.1.3 How the Fragments for Point-In-Time Queries are Stored
Just like any fragments, fragments with an older timestamp are stored in stands, which in turn are
stored in forests. The only difference is that they have an older timestamp associated with them.
Different versions of fragments can be stored in different stands or in the same stand, depending
on if they have been merged into the same stand.

The following figure shows a stand with a merge timestamp of 100. Fragment 1 is a version that
was changed at timestamp 110, and fragment 2 is a version of the same fragment that was
changed at timestamp 120.

MarkLogic Server Point-In-Time Queries

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 141

In this scenario, if you assume that the current time is timestamp 200, then a query at the current
time will see Fragment 2, but not Fragment 1. If you perform a point-in-time query at
timestamp 115, you will see Fragment 1, but not Fragment 2 (because Fragment 2 did not yet
exist at timestamp 115).

There is no limit to the number of different versions that you can keep around. If the merge
timestamp is set to the current time or a time in the past, then all subsequently modified fragments
will remain in the database, available for point-in-time queries.

10.1.4 Only Available on Query Statements, Not on Update Statements
You can only specify a point-in-time query statement; attempts to specify a point-in-time query
for an update statement will throw an exception. An update statement is any XQuery issued
against MarkLogic Server that includes an update function (xdmp:document-load,
xdmp:node-replace, and so on). For more information on what constitutes query statements and
update statements, see “Understanding Transactions in MarkLogic Server” on page 28.

10.1.5 All Auxiliary Databases Use Latest Version
The auxiliary databases associated with a database request (that is, the Security, Schemas,
Modules, and Triggers databases) all operate at the latest timestamp, even during a point-in-time
query. Therefore, any changes made to security objects, schemas, and so on since the time
specified in the point-in-time query are reflected in the query. For example, if the user you are
running as was deleted between the time specified in the point-in-time query and the latest
timestamp, then that query would fail to authenticate (because the user no longer exists).

Stand

Merge Timestamp: 100

Fragment 1

Fragment
Fragment ID: 1 Timestamp: 110

Fragment 2

Fragment
Fragment ID: 1 Timestamp: 120

MarkLogic Server Point-In-Time Queries

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 142

10.1.6 Database Configuration Changes Do Not Apply to Point-In-Time
Fragments

If you make configuration changes to a database (for example, changing database index settings),
those changes only apply to the latest versions of fragments. For example, if you make index
option changes and reindex a database that has old versions of fragments retained, only the latest
versions of the fragments are reindexed. The older versions of fragments, used for point-in-time
queries, retain the indexing properties they had at the timestamp in which they became invalid
(that is, from the timestamp when an update or delete occurred on the fragments). MarkLogic
recommends that you do not change database settings and reindex a database that has the merge
timestamp database parameter set to anything but 0.

10.2 Using Timestamps in Queries
By default, query statements are run at the system timestamp in effect when the statement
initiates. To run a query statement at a different system timestamp, you must set up your system to
store older versions of documents and then specify the timestamp when you issue a point-in-time
query statement. This section describes this general process and includes the following parts:

• Enabling Point-In-Time Queries in the Admin Interface

• The xdmp:request-timestamp Function

• Requires the xdmp:timestamp Execute Privilege

• The Timestamp Parameter to xdmp:eval, xdmp:invoke, xdmp:spawn

• Timestamps on Requests in XCC

• Scoring Considerations

10.2.1 Enabling Point-In-Time Queries in the Admin Interface
In order to use point-in-time queries in a database, you must set up merges to preserve old
versions of fragments. By default, old versions of fragments are deleted from the database after a
merge. For more information on how merges work, see the “Understanding and Controlling
Database Merges” chapter of the Administrator’s Guide.

In the Merge Policy Configuration page of the Admin Interface, there is a merge timestamp
parameter. When this parameter is set to 0 (the default) and merges are enabled, point-in-time
queries are effectively disabled. To access the Merge Policy Configuration page, click the
Databases > db_name > Merge Policy link from the tree menu of the Admin Interface.

MarkLogic Server Point-In-Time Queries

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 143

When deciding the value at which to set the merge timestamp parameter, the most likely value to
set it to is the current system timestamp. Setting the value to the current system timestamp will
preserve any versions of fragments from the current time going forward. To set the merge
timestamp parameter to the current timestamp, click the get current timestamp button on the
Merge Control Configuration page and then Click OK.

If you set a value for the merge timestamp parameter higher than the current timestamp,
MarkLogic Server will use the current timestamp when it merges (the same behavior as when set
to the default of 0). When the system timestamp grows past the specified merge timestamp
number, it will then start using the merge timestamp specified. Similarly, if you set a merge
timestamp lower than the lowest timestamp preserved in a database, MarkLogic Server will use
the lowest timestamp of any preserved fragments in the database, or the current timestamp,
whichever is lower.

You can also set a negative merge timestamp to protect fragments from being removed in merges
for a certain time period. See Setting a Negative Merge Timestamp to Preserve Fragments For a Rolling

Window of Time in the Administrator’s Guide.

Note: After the system merges when the merge timestamp is set to 0, all obsolete versions
of fragments will be deleted; that is, only the latest versions of fragments will
remain in the database. If you set the merge timestamp to a value lower than the
current timestamp, any obsolete versions of fragments will not be available
(because they no longer exist in the database). Therefore, if you want to preserve
versions of fragments, you must configure the system to do so before you update
the content.

MarkLogic Server Point-In-Time Queries

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 144

10.2.2 The xdmp:request-timestamp Function
MarkLogic Server has an XQuery built-in function, xdmp:request-timestamp, which returns the
system timestamp for the current request. MarkLogic Server uses the system timestamp values to
keep track of versions of fragments, and you use the system timestamp in the merge timestamp
parameter (described in “Enabling Point-In-Time Queries in the Admin Interface” on page 142) to
specify which versions of fragments remain in the database after a merge. For more details on the
xdmp:request-timestamp function, see the MarkLogic XQuery and XSLT Function Reference.

10.2.3 Requires the xdmp:timestamp Execute Privilege
In order to run a query at a timestamp other than the current timestamp, the user who runs the
query must belong to a group that has the xdmp:timestamp execute privilege. For details on
security and execute privileges, see Security Guide.

10.2.4 The Timestamp Parameter to xdmp:eval, xdmp:invoke,
xdmp:spawn

The xdmp:eval, xdmp:invoke, and xdmp:spawn functions all take an options node as the optional
third parameter. The options node must be in the xdmp:eval namespace. The options node has a
timestamp element which allows you to specify a system timestamp at which the query will run.
When you specify a timestamp value earlier than the current timestamp, you are specifying a
point-in-time query.

The timestamp you specify must be valid for the database. If you specify a system timestamp that
is less than the oldest timestamp preserved in the database, the statement will throw an
XDMP-OLDSTAMP exception. If you specify a timestamp that is newer than the current timestamp, the
statement will throw an XDMP-NEWSTAMP exception.

Note: If the merge timestamp is set to the default of 0, and if the database has completed
all merges since the last updates or deletes, query statements that specify any
timestamp older than the current system timestamp will throw the XDMP-OLDSTAMP
exception. This is because the merge timestamp value of 0 specifies that no
obsolete fragments are to be retained.

The following example shows an xdmp:eval statement with a timestamp parameter:

xdmp:eval("doc('/docs/mydocument.xml')", (),
 <options xmlns="xdmp:eval">
 <timestamp>99225</timestamp>
 </options>)

This statement will return the version of the /docs/mydocument.xml document that existed at
system timestamp 99225.

MarkLogic Server Point-In-Time Queries

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 145

10.2.5 Timestamps on Requests in XCC
The xdmp:eval, xdmp:invoke, and xdmp:spawn functions allow you to specify timestamps for a
query statement at the XQuery level. If you are using the XML Content Connector (XCC)
libraries to communicate with MarkLogic Server, you can also specify timestamps at the Java.

In XCC for Java, you can set options to requests with the RequestOptions class, which allows you
to modify the environment in which a request runs. The setEffectivePointInTime method sets the
timestamp in which the request runs. The core design pattern is to set up options for your requests
and then use those options when the requests are submitted to MarkLogic Server for evaluation.
You can also set request options on the Session object. The following Java code snippet shows the
basic design pattern:

// create a class and methods that use code similar to
// the following to set the system timestamp for requests

Session session = getSession();
BigInteger timestamp = session.getCurrentServerPointInTime();
RequestOptions options = new RequestOptions();

options.setEffectivePointInTime (timestamp);
session.setDefaultRequestOptions (options);

For an example of how you might use a Java environment to run point-in-time queries, see
“Example: Query Old Versions of Documents Using XCC” on page 146.

10.2.6 Scoring Considerations
When you store multiple versions of fragments in a database, it will subtly effect the scores
returned with cts:search results. The scores are calculated using document frequency as a
variable in the scoring formula (for the default score-logtfidf scoring method). The amount of
effect preserving older versions of fragments has depends on two factors:

• How many fragments have multiple versions.

• How many total fragments are in the database.

If the number of fragments with multiple versions is small compared with the total number of
fragments in the database, then the effect will be relatively small. If that ratio is large, then the
effect on scores will be higher.

For more details on scores and the scoring methods, see Relevance Scores: Understanding and

Customizing in the Search Developer’s Guide.

MarkLogic Server Point-In-Time Queries

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 146

10.3 Specifying Point-In-Time Queries in xdmp:eval, xdmp:invoke,
xdmp:spawn, and XCC

As described earlier, specifying a valid timestamp element in the options node of the xdmp:eval,
xdmp:invoke, or xdmp:spawn functions initiates a point-in-time query. Also, you can use XCC to
specify entire XCC requests as point-in-time queries. The query runs at the specified timestamp,
seeing a version of the database that existed at the point in time corresponding to the specified
timestamp. This section shows some example scenarios for point-in-time queries, and includes
the following parts:

• Example: Query Old Versions of Documents Using XCC

• Example: Querying Deleted Documents

10.3.1 Example: Query Old Versions of Documents Using XCC
When making updates to content in your system, you might want to add and test new versions of
the content before exposing the new content to your users. During this testing time, the users will
still see the old version of the content. Then, when the new content has been sufficiently tested,
you can switch the users over to the new content.

Point-in-time queries allow you to do this all within the same database. The only thing that you
need to change in the application is the timestamps at which the query statements run. XCC
provides a convenient mechanism for accomplishing this goal.

10.3.2 Example: Querying Deleted Documents
When you delete a document, the fragments for that document are marked as obsolete. The
fragments are not actually deleted from disk until a merge completes. Also, if the merge
timestamp is set to a timestamp earlier than the timestamp corresponding to when the document
was deleted, the merge will preserve the obsolete fragments.

This example demonstrates how you can query deleted documents with point-in-time queries. For
simplicity, assume that no other query or update activity is happening on the system for the
duration of the example. To follow along in the example, run the following code samples in the
order shown below.

1. First, create a document:

xdmp:document-insert("/docs/test.xml", <a>hello))

2. When you query the document, it returns the node you inserted:

doc("/docs/test.xml")
(: returns the node <a>hello :)

3. Delete the document:

xdmp:document-delete("/docs/test.xml")

MarkLogic Server Point-In-Time Queries

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 147

4. Query the document again. It returns the empty sequence because it was just deleted.

5. Run a point-in-time query, specifying the current timestamp (this is semantically the same
as querying the document without specifying a timestamp):

xdmp:eval("doc('/docs/test.xml')", (),
<options xmlns="xdmp:eval">
 <timestamp>{xdmp:request-timestamp()}</timestamp>
</options>)
(: returns the empty sequence because the document has been deleted :)

6. Run the point-in-time query at one less than the current timestamp, which is the old
timestamp in this case because only one change has happened to the database. The
following query statement returns the old document.

xdmp:eval("doc('/docs/test.xml')", (),
<options xmlns="xdmp:eval">
 <timestamp>{xdmp:request-timestamp()-1}</timestamp>
</options>)
(: returns the deleted version of the document :)

10.4 Rolling Back a Forest to a Particular Timestamp
In addition to allowing you to query the state of the database at a given point in time, setting a
merge timestamp and preserving deleted fragments also allows you to roll back the state of one or
more forests to a timestamp that is preserved. To roll back one or more forests to a given
timestamp, use the xdmp:forest-rollback function. This section covers the following topics about
using xdmp:forest-rollback to roll back the state of one or more forests:

• Tradeoffs and Scenarios to Consider For Rolling Back Forests

• Setting the Merge Timestamp

• Notes About Performing an xdmp:forest-rollback Operation

• General Steps for Rolling Back One or More Forests

10.4.1 Tradeoffs and Scenarios to Consider For Rolling Back Forests
In order to roll a forest back to a previous timestamp, you need to have previously set a merge
timestamp that preserved older versions of fragments in your database. Keeping deleted
fragments around will make your database grow in size faster, using more disk space and other
system resources. The advantage of keeping old fragments around is that you can query the older
fragments (using point-in-time queries as described in the previous sections) and also that you can
roll back the database to a previous timestamp. Consider the advantages (the convenience and
speed of bringing the state of your forests to a previous time) and the costs (disk space and system
resources, keeping track of your system timestamps, and so on) when deciding if it makes sense
for your system.

MarkLogic Server Point-In-Time Queries

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 148

A typical use case for forest rollbacks is to guard against some sort of data-destroying event,
providing the ability to get back to the point in time before that event without doing a full
database restore. If you wanted to allow your application to go back to some state within the last
week, for example, you can create a process whereby you update the merge timestamp every day
to the system timestamp from 7 days ago. This would allow you to go back any point in time in
the last 7 days. To set up this process, you would need to do the following:

• Maintain a mapping between the system timestamp and the actual time.

• Create a script (either a manual process or an XQuery script using the Admin API) to
update the merge timestamp for your database once every 7 days. The script would update
the merge timestamp to the system timestamp that was active 7 days earlier.

• If a rollback was needed, roll back all of the forests in the database to a time between the
current timestamp and the merge timestamp. For example:

xdmp:forest-rollback(
 xdmp:database-forests(xdmp:database("my-db")),
 3248432)
(: where 3248432 is the timestamp to which you want to roll back :)

Another use case to set up an environment for using forest rollback operations is if you are
pushing a new set of code and/or content out to your application, and you want to be able to roll it
back to the previous state. To set up this scenario, you would need to do the following:

• When your system is in a steady state before pushing the new content/code, set the merge
timestamp to the current timestamp.

• Load your new content/code.

• Are you are happy with your changes?

• If yes, then you can set the merge timestamp back to 0, which will eventually
merge out your old content/code (because they are deleted fragments).

• If no, then roll all of the forests in the database back to the timestamp that you set
in the merge timestamp.

10.4.2 Setting the Merge Timestamp
As described above, you cannot roll back forests in which the database merge timestamp has not
been set. By default, the merge timestamp is set to 0, which will delete old versions of fragments
during merge operations. For details, see “System Timestamps and Merge Timestamps” on
page 140.

10.4.3 Notes About Performing an xdmp:forest-rollback Operation
This section describes some of the behavior of xdmp:forest-rollback that you must understand
before setting up an environment in which you can roll back your forests. Note the following
about xdmp:forest-rollback operations:

MarkLogic Server Point-In-Time Queries

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 149

• An xdmp:forest-rollback will restart the specified forest(s). As a consequence, any failed
over forests will attempt to mount their primary host; that is, it will result in an un-failover
operation if the forest is failed over. For details on failover, see High Availability of Data

Nodes With Failover in the Scalability, Availability, and Failover Guide.

• Use caution when rolling back one or more forests that are in the context database (that is,
forests that belong to the database against which your query is evaluating against). When
in a forest in the context database, the xdmp:forest-rollback operation is run
asynchronously. The new state of the forest is not seen until the forest restart occurs,
Before the forest is unmounted, the old state will still be reflected. Additionally, any errors
that might occur as part of the rollback operation are not reported back to the query that
performs the operation (although, if possible, they are logged to the ErrorLog.txt file). As
a best practice, MarkLogic recommends running xdmp:forest-rollback operations against
forests not attached to the context database.

• If you do not specify all of the forests in a database to roll back, you might end up in a
state where the rolled back forest is not in a consistent state with the other forests. In most
cases, it is a good idea to roll back all of the forests in a database, unless you are sure that
the content of the forest being rolled back will not become inconsistent if other forests are
not rolled back to the same state (for example, if you know that all of content you are
rolling back is only in one forest).

• If your database indexing configuration has changed since the point in time to which you
are rolling back, and if you have reindexing enabled, a rollback operation will begin
reindexing as soon as the rollback operation completes. If reindexing is not enabled, then
the rolled backed fragments will remain indexed as they were at the time they were last
updated, which might be inconsistent with the current database configuration.

• As a best practice, MarkLogic recommends running a rollback operation only on forests
that have no update activity at the time of the operation (that is, the forests will be
quiesced).

10.4.4 General Steps for Rolling Back One or More Forests
To roll back the state of one or more forests, perform the following general steps:

1. At the state of the database to which you want to be able to roll back, set the merge
timestamp to the current timestamp.

2. Keep track of your system timestamps, as described in “System Timestamps and Merge
Timestamps” on page 140.

3. Perform updates to your application as usual. Old version of document will remain in the
database.

4. If you know you will not need to roll back to a time earlier, than the present, go back to
step 1.

MarkLogic Server Point-In-Time Queries

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 150

5. If you want to roll back, you can roll back to any time between the merge timestamp and
the current timestamp. When you perform the rollback, it is a good idea to do so from the
context of a different database. For example, to roll back all of the forests in the my-db
database, perform an operation similar to the following, which sets the database context to
a different one than the forests that are being rolled back:

xdmp:eval(
 'xdmp:forest-rollback(
 xdmp:database-forests(xdmp:database("my-db")),
 3248432)
 (: where 3248432 is the timestamp to which you want
 to roll back :)',
 (),
 <options xmlns="xdmp:eval">
 <database>{xdmp:database("Documents")}</database>
 </options>)

MarkLogic Server System Plugin Framework

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 151

11.0 System Plugin Framework
155

This chapter describes the system plugin framework in MarkLogic Server, and includes the
following sections:

• How MarkLogic Server Plugins Work

• Writing System Plugin Modules

• Password Plugin Sample

11.1 How MarkLogic Server Plugins Work
Plugins allow you to provide functionality to all of the applications in your MarkLogic Server
cluster without the application having to call any code. This section describes the system plugin
framework in MarkLogic Server and includes the following parts:

• Overview of System Plugins

• System Plugins versus Application Plugins

• The plugin API

11.1.1 Overview of System Plugins
Plugins are used to automatically perform some functionality before any request is evaluated. A
plugin is an XQuery main module, and it can therefore perform arbitrary work. The plugin
framework evaluates the main modules in the <marklogic-dir>/Plugins directory before each
request is evaluated.

Consider the following notes about how the plugin framework works:

• After MarkLogic starts up, each module in the Plugins directory is evaluated before the
first request against each App Server is evaluated on each node in the cluster. This process
repeats again after the Plugins directory is modified.

• When using a cluster, any files added to the Plugins directory must be added to the
Plugins directory on each node in a MarkLogic Server cluster.

• Any errors (for example, syntax errors) in a plugin module are thrown whenever any
request is made to any App Server in the cluster (including the Admin Interface). It is
therefore extremely important that you test the plugin modules before deploying them to
the <marklogic-dir>/Plugins directory. If there are any errors in a plugin module, you
must fix them before you will be able to successfully evaluate any requests against any
App Server.

MarkLogic Server System Plugin Framework

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 152

• Plugins are cached and, for performance reasons, MarkLogic Server only checks for
updates once per second, and only refreshes the cache after the Plugins directory is
modified; it does not check for modifications of the individual files in the Plugins
directory. If you are using an editor to modify a plugin that creates a new file (which in
turn modifies the directory) upon each update, then MarkLogic Server will see the update
within the next second. If your editor modifies the file in place, then you will have to
touch the directory to change the modification date for the latest changes to be loaded
(alternatively, you can restart MarkLogic Server). If you delete a plugin from the Plugins
directory, it remains registered on any App Servers that have already evaluated the plugin
until either you restart MarkLogic Server or another plugin registers with the same name
on each App Server.

11.1.2 System Plugins versus Application Plugins
There are two types of plugins in MarkLogic Server: system plugins and application plugins.

System plugins use the built-in plugin framework in MarkLogic Server along with the
xdmp:set-server-field and xdmp:get-server-field functions. As described in “Overview of
System Plugins” on page 151, system plugins are stored in the <marklogic-dir>/Plugins
directory and any errors in them are thrown on all App Servers in the cluster.

Application plugins are built on top of system plugins and are designed for use by applications.
Application plugins are stored in the <marklogic-dir>/Assets/plugins/marklogic/appservices
directory, and, unlike system plugins, they do not cause errors to other applications if the plugin
code contains errors.

11.1.3 The plugin API
The plugin:register function is the mechanism that a plugin module uses to make plugin
functionality available anywhere in a MarkLogic Server cluster. The other functions in the plugin
API are used to implement the register capability. The plugin API uses server fields (the
xdmp:set-server-field and xdmp:get-server-field family of functions) to register the ID and
capabilities of each plugin. This API, in combination with the plugin framework that scans the
Plugins directory, allows you to create functionality that is available to all App Servers in a
MarkLogic Server cluster.

With the plugin API, you can register a set of plugins, and then you can ask for all of the plugins
with a particular capability, and the functionality delivered by each plugin is available to your
application. For details about the plugin API, see the MarkLogic XQuery and XSLT Function
Reference.

11.2 Writing System Plugin Modules
A plugin module is just an XQuery main module, so in that sense, you can put any main module
in the Plugins directory and you have a plugin. So it really depends what you are trying to
accomplish.

MarkLogic Server System Plugin Framework

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 153

Warning Any errors in a system plugin module will cause all requests to hit the error. It is
therefore extremely important to test your plugins before deploying them in a
production environment.

To use a system plugin, you must deploy the plugin main module to the Plugins directory. To
deploy a plugin to a MarkLogic Server cluster, you must copy the plugin main module to the
plugin directory of each host in the cluster.

Warning Any system plugin module you write must have a unique filename. Do not modify
any of the plugin files that MarkLogic ships in the <marklogic-dir>/Plugins
directory. Any changes you make to MarkLogic-installed files in the Plugins
directory will be overridden after each upgrade of MarkLogic Server.

11.3 Password Plugin Sample
This section describes the password plugin and provides a sample of how to modify it, and
contains the following parts:

• Understanding the Password Plugin

• Modifying the Password Plugin

11.3.1 Understanding the Password Plugin
One use case for a system plugin is to check passwords for things like number of characters,
special characters, and so on. Included in the <marklogic-dir>/Samples/Plugins directory are
sample plugin modules for password checking.

When a password is set using the security XQuery library (security.xqy), it calls the plugin to
check the password using the plugin capability with the following URI:

http://marklogic.com/xdmp/security/password-check

When no plugins are registered with the above capability in the <marklogic-dir>/Plugins
directory, then no other work is done upon setting a password. If you include plugins that register
with the above password-check capability in the <marklogic-dir>/Plugins directory, then the
module(s) are run when you set a password. If multiple plugins are registered with that capability,
then they will all run. The order in which they run is undetermined, so the code must be designed
such that the order does not matter.

There is a sample included that checks for a minimum length and a sample included that checks to
see if the password contains digits. You can create your own plugin module to perform any sort of
password checking you require (for example, check for a particular length, the existence of
various special characters, repeated characters, upper or lower case, and so on).

MarkLogic Server System Plugin Framework

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 154

Additionally, you can write a plugin to save extra history in the Security database user document,
which stores information that you can use or update in your password checking code. The element
you can use to store information for password checking applications is sec:password-extra. You
can use the sec:user-set-password-extra and sec:user-set-password-extra functions (in
security.xqy) to modify the sec:password-extra element in the user document. Use these APIs
to create elements as children of the sec:password-extra element.

If you look at the <marklogic-dir>/Samples/Plugins/password-check-minimum-length.xqy file,
you will notice that it is a main module with a function that returns empty on success, and an error
message if the password is less than a minimum number of characters. In the body of the main
module, the plugin is registered with a map that includes its capability (it could register several
capabilities, but this only registers one) and a unique name (in this case, the name of the xqy file:

let $map := map:map(),
 $_ := map:put($map,
"http://marklogic.com/xdmp/security/password-check",
 xdmp:function(xs:QName("pwd:minimum-length")))
return
 plugin:register($map, "password-check-minimum-length.xqy")

This registers the function pwd:minimum-length with the
http://marklogic.com/xdmp/security/password-check capability, and this particular plugin is
called each time a password is set.

Note: Use a unique name to register your plugin (the second argument to
plugin:register). If the name is used by another plugin, only one of them will end
up being registered (because the other one will overwrite the registration).

If you want to implement your own logic that is performed when a password is checked (both on
creating a user and on changing the password), then you can write a plugin, as described in the
next section.

11.3.2 Modifying the Password Plugin
The following example shows how to use the sample plugins to check for a minimum password
length and to ensure that it contains at least one numeric character.

Warning Any errors in a plugin module will cause all requests to hit the error. It is therefore
extremely important to test your plugins before deploying them in a production
environment.

To use and modify the sample password plugins, perform the following steps:

1. Copy the <marklogic-dir>Samples/Plugins/password-check-*.xqy files to the Plugins
directory. For example:

MarkLogic Server System Plugin Framework

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 155

cd /opt/MarkLogic/Plugins
cp ../Samples/Plugins/password-check-*.xqy .

If desired, rename the files when you copy them.

2. If you want to modify any of the files (for example, password-check-minimum-length),
open them in a text editor.

3. Make any changes you desire. For example, to change the minimum length, find the
pwd:minimum-length function and change the 4 to a 6 (or to whatever you prefer). When
you are done, the body of the function looks as follows:

if (fn:string-length($password) < 6)
then "password too short"
else ()

This checks that the password contains at least 6 characters.

4. Optionally, if you have renamed the files, change the second parameter to
plugin:register to the name you called the plugin files in the first step. For example, if
you named the plugin file my-password-plugin.xqy, change the plugin:register call as
follows:

plugin:register($map, "my-password-plugin.xqy")

5. Save your changes to the file.

Warning If you made a typo or some other mistake that causes a syntax error in the plugin,
any request you make to any App Server will throw an exception. If that happens,
edit the file to correct any errors.

6. If you are using a cluster, copy your plugin to the Plugins directory on each host in your
cluster.

7. Test your code to make sure it works the way you intend.

The next time you try and change a password, your new checks will be run. For example, if you
try to make a single-character password, it will be rejected.

MarkLogic Server Using the map Functions to Create Name-Value Maps

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 156

12.0 Using the map Functions to Create Name-Value Maps
166

This chapter describes how to use the map functions and includes the following sections:

• Maps: In-Memory Structures to Manipulate in XQuery

• map:map XQuery Primitive Type

• Serializing a Map to an XML Node

• Map API

• Map Operators

• Examples

12.1 Maps: In-Memory Structures to Manipulate in XQuery
Maps are in-memory structures containing name-value pairs that you can create and manipulate.
In some programming languages, maps are implemented using hash tables. Maps are handy
programming tools, as you can conveniently store and update name-value pairs for use later in
your program. Maps provide a fast and convenient method for accessing data.

MarkLogic Server has a set of XQuery functions to create manipulate maps. Like the xdmp:set
function, maps have side-effects and can change within your program. Therefore maps are not
strictly functional like most other aspects of XQuery. While the map is in memory, its structure is
opaque to the developer, and you access it with the built-in XQuery functions. You can persist the
structure of the map as an XML node, however, if you want to save it for later use. A map is a
node and therefore has an identity, and the identity remains the same as long as the map is in
memory. However, if you serialize the map as XML and store it in a document, when you retrieve
it will have a different node identity (that is, comparing the identity of the map and the serialized
version of the map would return false). Similarly, if you store XML values retrieved from the
database in a map, the node in the in-memory map will have the same identity as the node from
the database while the map is in memory, but will have different identities after the map is
serialized to an XML document and stored in the database. This is consistent with the way
XQuery treats node identity.

The keys take xs:string types, and the values take item()* values. Therefore, you can pass a
string, an element, or a sequence of items to the values. Maps are a nice alternative to storing
values an in-memory XML node and then using XPath to access the values. Maps makes it very
easy to update the values.

12.2 map:map XQuery Primitive Type
Maps are defined as a map:map XQuery primitive type. You can use this type in function or
variable definitions, or in the same way as you use other primitive types in XQuery. You can also
serialize it to XML, which lets you store it in a database, as described in the following section.

MarkLogic Server Using the map Functions to Create Name-Value Maps

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 157

12.3 Serializing a Map to an XML Node
You can serialize the structure of a map to an XML node by placing the map in the context of an
XML element, in much the same way as you can serialize a cts:query (see Serializing a cts:query

as XML in the Composing cts:query Expressions chapter of the Search Developer’s Guide).
Serializing the map is useful if you want to save the contents of the map by storing it in the
database. The XML conforms to the <marklogic-dir>/Config/map.xsd schema, and has the
namespace http://marklogic.com/xdmp/map.

For example, the following returns the XML serialization of the constructed map:

let $map := map:map()
let $key := map:put($map, "1", "hello")
let $key := map:put($map, "2", "world")
let $node := <some-element>{$map}</some-element>
return $node/map:map

The following XML is returned:

<map:map xmlns:map="http://marklogic.com/xdmp/map"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <map:entry key="1">
 <map:value xsi:type="xs:string">hello</map:value>
 </map:entry>
 <map:entry key="2">
 <map:value xsi:type="xs:string">world</map:value>
 </map:entry>
</map:map>

12.4 Map API
The map API is quite simple. You can create a map either from scratch with the map:map function
or from the XML representation (map:map) of the map. The following are the map functions. For
the signatures and description of each function, see the MarkLogic XQuery and XSLT Function
Reference.

• map:clear

• map:count

• map:delete

• map:get

• map:keys

• map:map

• map:put

MarkLogic Server Using the map Functions to Create Name-Value Maps

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 158

12.5 Map Operators
Map operators perform a similar function to set operators. Just as sets can be combined in a
number of ways to produce another set, maps can be manipulated with map operators to create
combined results. The following table describes the different map operators:

12.6 Examples
This section includes example code that uses maps and includes the following examples:

• Creating a Simple Map

• Returning the Values in a Map

• Constructing a Serialized Map

• Add a Value that is a Sequence

Map Operator Description

+ The union of two maps. The result is the combination of the keys and
values of the first map (Map A) and the second map (Map B). For an
example, see “Creating a Map Union” on page 161.

* The intersection of two maps (similar to a set intersection). The result is
the key-value pairs that are common to both maps (Map A and Map B)
are returned. For an example, see “Creating a Map Intersection” on
page 162.

- The difference between two maps (similar to a set difference). The result
is the key-value pairs that exist in the first map (Map A) that do not exist
in the second map (Map B) are returned. For an example, see “Applying
a Map Difference Operator” on page 163.

This operator also works as an unary negative operator. When it is used
in this way, the keys and values become reversed. For an example, see
“Applying a Negative Unary Operator” on page 164.

div The inference that a value from a map matches the key of another map.
The result is the keys from the first map (Map A), and values from the
second map (Map B), where the value in Map A is equal to key in Map
B. For an example, see “Applying a Div Operator” on page 165.

mod The combination of the unary negative operation and inference between
maps. The result is the reversal of the keys in the first map (Map A) and
the values in Map B, where a value in Map A matches a key in Map B.

In summary, Map A mod Map B is equivalent to -Map A div Map B. For an
example, see “Applying a Mod Operator” on page 166.

MarkLogic Server Using the map Functions to Create Name-Value Maps

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 159

• Creating a Map Union

• Creating a Map Intersection

• Applying a Map Difference Operator

• Applying a Negative Unary Operator

• Applying a Div Operator

• Applying a Mod Operator

12.6.1 Creating a Simple Map
The following example creates a map, puts two key-value pairs into the map, and then returns the
map.

let $map := map:map()
let $key := map:put($map, "1", "hello")
let $key := map:put($map, "2", "world")
return $map

This returns a map with two key-value pairs in it: the key “1” has a value “hello”, and the key “2”
has a value “world”.

12.6.2 Returning the Values in a Map
The following example creates a map, then returns its values ordering by the keys:

let $map := map:map()
let $key := map:put($map, "1", "hello")
let $key := map:put($map, "2", "world")
return
 for $x in map:keys($map)
 order by $x return
 map:get($map, $x)
(: returns hello world :)

MarkLogic Server Using the map Functions to Create Name-Value Maps

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 160

12.6.3 Constructing a Serialized Map
The following example creates a map like the previous examples, and then serializes the map to
an XML node. It then makes a new map out of the XML node and puts another key-value pair in
the map, and finally returns the new map.

let $map := map:map()
let $key := map:put($map, "1", "hello")
let $key := map:put($map, "2", "world")
let $node := <some-element>{$map}</some-element>
let $map2 := map:map($node/map:map)
let $key := map:put($map2, "3", "fair")
return $map2

This returns a map with three key-value pairs in it: the key “1” has a value “hello”, the key “2” has
a value “world”, and the key “3” has a value “fair”. Note that the map bound to the $map variable
is not the same as the map bound to $map2. After it was serialized to XML, a new map was
constructed in the $map2 variable.

12.6.4 Add a Value that is a Sequence
The values that you can put in a map are typed as an item()*, which means you can add arbitrary
sequences as the value for a key. The following example includes some string values and a
sequence value, and then outputs each results in a <result> element:

let $map := map:map()
let $key := map:put($map, "1", "hello")
let $key := map:put($map, "2", "world")
let $seq := ("fair",
 <some-xml>
 <another-tag>with text</another-tag>
 </some-xml>)
let $key := map:put($map, "3", $seq)
return
 for $x in map:keys($map) return
 <result>{map:get($map, $x)}</result>

This returns the following elements:

<result>fair
 <some-xml>
 <another-tag>with text</another-tag>
 </some-xml>
</result>
<result>world</result>
<result>hello</result>

MarkLogic Server Using the map Functions to Create Name-Value Maps

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 161

12.6.5 Creating a Map Union
The following creates a union between two maps and returns the key-value pairs:

let $mapA := map:map(
<map:map xmlns:map="http://marklogic.com/xdmp/map">
 <map:entry>
 <map:key>1</map:key>
 <map:value>1</map:value>
 </map:entry>
 <map:entry>
 <map:key>3</map:key>
 <map:value>3</map:value>
 </map:entry>
</map:map>)
let $mapB := map:map(
<map:map xmlns:map="http://marklogic.com/xdmp/map">
 <map:entry>
 <map:key>2</map:key>
 <map:value>2</map:value>
 </map:entry>
 <map:entry>
 <map:key>3</map:key>
 <map:value>3</map:value>
 <map:value>3.5</map:value>
 </map:entry>
 </map:map>)
return $mapA + $mapB

Any key-value pairs common to both maps are included only once. This returns the following:

<xml version="1.0" encoding="UTF-8">
<results warning="atomic item">
 <map:map xmlns:map="http://marklogic.com/xdmp/map"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <map:entry key="1">
 <map:value>1</map:value>
 </map:entry>
 <map:entry key="2">
 <map:value>2</map:value>
 </map:entry>
 <map:entry key="3">
 <map:value>3</map:value>
 <map:value>3.5</map:value>
 </map:entry>
 </map:map>
</results>

MarkLogic Server Using the map Functions to Create Name-Value Maps

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 162

12.6.6 Creating a Map Intersection
The following example creates an intersection between two maps:

xquery version "1.0-ml";
let $mapA := map:map(
<map:map xmlns:map="http://marklogic.com/xdmp/map">
 <map:entry>
 <map:key>1</map:key>
 <map:value>1</map:value>
 </map:entry>
 <map:entry>
 <map:key>3</map:key>
 <map:value>3</map:value>
 </map:entry>
 </map:map>)
let $mapB := map:map(
<map:map xmlns:map="http://marklogic.com/xdmp/map">
 <map:entry>
 <map:key>2</map:key>
 <map:value>2</map:value>
 </map:entry>
 <map:entry>
 <map:key>3</map:key>
 <map:value>3</map:value>
 <map:value>3.5</map:value>
 </map:entry>
</map:map>)
return $mapA * $mapB

The key-value pairs common to both maps are returned. This returns the following:

<xml version="1.0" encoding="UTF-8">
<results warning="atomic item">
 <map:map xmlns:map="http://marklogic.com/xdmp/map"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <map:entry key="3">
 <map:value>3</map:value>
 </map:entry>
 </map:map>
</results>

MarkLogic Server Using the map Functions to Create Name-Value Maps

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 163

12.6.7 Applying a Map Difference Operator
The following example returns the key-value pairs that are in Map A but not in Map B:

let $mapA := map:map(
<map:map xmlns:map="http://marklogic.com/xdmp/map">
 <map:entry>
 <map:key>1</map:key>
 <map:value>1</map:value>
 </map:entry>
 <map:entry>
 <map:key>3</map:key>
 <map:value>3</map:value>
 </map:entry>
</map:map>)
let $mapB := map:map(
<map:map xmlns:map="http://marklogic.com/xdmp/map">
 <map:entry>
 <map:key>2</map:key>
 <map:value>2</map:value>
 </map:entry>
 <map:entry>
 <map:key>3</map:key>
 <map:value>3</map:value>
 <map:value>3.5</map:value>
 </map:entry>
 </map:map>)
return $mapA - $mapB

This returns the following:

<xml version="1.0" encoding="UTF-8">
<results warning="atomic item">
 <map:map xmlns:map="http://marklogic.com/xdmp/map"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <map:entry key="1">
 <map:value>1</map:value>
 </map:entry>
 </map:map>
</results>

MarkLogic Server Using the map Functions to Create Name-Value Maps

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 164

12.6.8 Applying a Negative Unary Operator
The following example uses the map difference operator as a negative unary operator to reverse
the keys and values in a map:

xquery version "1.0-ml";
let $mapA := map:map(
<map:map xmlns:map="http://marklogic.com/xdmp/map">
 <map:entry>
 <map:key>1</map:key>
 <map:value>1</map:value>
 </map:entry>
 <map:entry>
 <map:key>3</map:key>
 <map:value>3</map:value>
 </map:entry>
 </map:map>)
let $mapB := map:map(
<map:map xmlns:map="http://marklogic.com/xdmp/map">
 <map:entry>
 <map:key>2</map:key>
 <map:value>2</map:value>
 </map:entry>
 <map:entry>
 <map:key>3</map:key>
 <map:value>3</map:value>
 <map:value>3.5</map:value>
 </map:entry>
</map:map>)
return -$mapB

This returns the following:

<xml version="1.0" encoding="UTF-8">
<results warning="atomic item">
 <map:map xmlns:map="http://marklogic.com/xdmp/map"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <map:entry key="3.5">
 <map:value>3</map:value>
 </map:entry>
 <map:entry key="2">
 <map:value>2</map:value>
 </map:entry>
 <map:entry key="3">
 <map:value>3</map:value>
 </map:entry>
 </map:map>
</results>

MarkLogic Server Using the map Functions to Create Name-Value Maps

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 165

12.6.9 Applying a Div Operator
The following example applies the inference rule that returns the keys from Map A and the values
in Map B, where a value of Map A is equal to a key in Map B:

xquery version "1.0-ml";
let $mapA := map:map(
<map:map xmlns:map="http://marklogic.com/xdmp/map">
 <map:entry>
 <map:key>1</map:key>
 <map:value>1</map:value>
 </map:entry>
 <map:entry>
 <map:key>3</map:key>
 <map:value>3</map:value>
 </map:entry>
 </map:map>)
let $mapB := map:map(
<map:map xmlns:map="http://marklogic.com/xdmp/map">
 <map:entry>
 <map:key>2</map:key>
 <map:value>2</map:value>
 </map:entry>
 <map:entry>
 <map:key>3</map:key>
 <map:value>3</map:value>
 <map:value>3.5</map:value>
 </map:entry>
</map:map>)
return $mapA div $mapB

This returns the following:

<xml version="1.0" encoding="UTF-8">
<results warning="atomic item">
 <map:map xmlns:map="http://marklogic.com/xdmp/map"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <map:entry key="3">
 <map:value>3</map:value>
 <map:value>3.5</map:value>
 </map:entry>
 </map:map>
</results>

MarkLogic Server Using the map Functions to Create Name-Value Maps

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 166

12.6.10 Applying a Mod Operator
The following example perform two of the operations mentioned. First, the keys and values are
reversed in Map A. Next, the inference rule is applied to match a value in Map A to a key in Map
B and return the values in Map B.

xquery version "1.0-ml";
let $mapA := map:map(
<map:map xmlns:map="http://marklogic.com/xdmp/map">
 <map:entry>
 <map:key>1</map:key>
 <map:value>1</map:value>
 </map:entry>
 <map:entry>
 <map:key>3</map:key>
 <map:value>3</map:value>
 </map:entry>
 </map:map>)
let $mapB := map:map(
<map:map xmlns:map="http://marklogic.com/xdmp/map">
 <map:entry>
 <map:key>2</map:key>
 <map:value>2</map:value>
 </map:entry>
 <map:entry>
 <map:key>3</map:key>
 <map:value>3</map:value>
 <map:value>3.5</map:value>
 </map:entry>
</map:map>)
return $mapA mod $mapB

This returns the following:

<xml version="1.0" encoding="UTF-8">
<results warning="atomic item">
 <map:map xmlns:map="http://marklogic.com/xdmp/map"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <map:entry key="3.5">
 <map:value>3</map:value>
 </map:entry>
 <map:entry key="3">
 <map:value>3</map:value>
 </map:entry>
 </map:map>
</results>

MarkLogic Server Function Values

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 167

13.0 Function Values
170

This chapter describes how to use function values, which allow you to pass function values as
parameters to XQuery functions. It includes the following sections:

• Overview of Function Values

• xdmp:function XQuery Primitive Type

• XQuery APIs for Function Values

• When the Applied Function is an Update from a Query Statement

• Example of Using Function Values

13.1 Overview of Function Values
XQuery functions take parameters, and those parameters can be any XQuery type. Typically,
parameters are strings, dates, numbers, and so on, and XQuery has many types to provide robust
typing support. Sometimes, however, it is convenient to pass a pointer to a named function as a
parameter to another function. These function pointers are known as function values, and they
allow you to write code that can be more robust and more easily maintainable. Programming
languages that support passing functions as parameters sometimes call those higher order
functions. MarkLogic Server function values do most things that higher order functions in other
languages do, except you cannot output a function and you cannot create anonymous functions;
instead, you can output or input a function value, which is implemented as an XQuery primitive
type.

You pass a function value to another function by telling it the name of the function you want to
pass. The actual value returned by the function is evaluated dynamically during query runtime.
Passing these function values allows you to define an interface to a function and have a default
implementation of it, while allowing callers of that function to implement their own version of the
function and specify it instead of the default version.

13.2 xdmp:function XQuery Primitive Type
Function values are defined as an xdmp:function XQuery primitive type. You can use this type in
function or variable definitions, or in the same way as you use other primitive types in XQuery.
Unlike some of the other MarkLogic Server XQuery primitive types (cts:query and map:map, for
example), there is no XML serialization for the xdmp:function XQuery primitive type.

MarkLogic Server Function Values

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 168

13.3 XQuery APIs for Function Values
The following XQuery built-in functions are used to pass function values:

• xdmp:function

• xdmp:apply

You use xdmp:function to specify the function to pass in, and xdmp:apply to run the function that
is passed in. For details and the signature of these APIs, see the MarkLogic XQuery and XSLT
Function Reference.

13.4 When the Applied Function is an Update from a Query Statement
When you apply a function using xdmp:function, MarkLogic Server does not know the contents
of the applied function at query compilation time. Therefore, if the statement calling xdmp:apply
is a query statement (that is, it contains no update expressions and therefore runs at a timestamp),
and the function being applied is performing an update, then it will throw an
XDMP-UDATEFUNCTIONFROMQUERY exception.

If you have code that you will apply that performs an update, and if the calling query does not
have any update statements, then you must make the calling query an update statement. To change
a query statement to be an update statement, either use the xdmp:update prolog option or put an
update call somewhere in the statement. For example, to force a query to run as an update
statement, you can add the following to your XQuery prolog:

declare option xdmp:update "true";

Without the prolog option, any update expression in the query will force it to run as an update
statement. For example, the following expression will force the query to run as an update
statement and not change anything else about the query:

if (fn:true())
then ()
else xdmp:document-insert("fake.xml", <fake/>)

For details on the difference between update statements and query statements, see “Understanding
Transactions in MarkLogic Server” on page 28.

13.5 Example of Using Function Values
The following example shows a recursive function, my:sum:sequences, that takes an
xdmp:function type, then applies that function call recursively until it reaches the end of the
sequence. It shows how the caller can supply her own implementation of the my:add function to
change the behavior of the my:sum-sequences function. Consider the following library module
named /sum.xqy:

xquery version "1.0-ml";
module namespace my="my-namespace";

(: Sum a sequence of numbers, starting with the

MarkLogic Server Function Values

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 169

 starting-number (3rd parameter) and at the
 start-position (4th parameter). :)
declare function my:sum-sequence(
 $fun as xdmp:function,
 $items as item()*,
 $starting-number as item(),
 $start-position as xs:unsignedInt)
as item()
{
 if ($start-position gt fn:count($items)) then $starting-number
 else
 let $new-value := xdmp:apply($fun,$starting-number,
 $items[$start-position])
 return
 my:sum-sequence($fun,$items,$new-value,$start-position+1)
};

declare function my:add($x,$y) {$x+ $y};
(: /sum.xqy :)

Now call this function with the following main module:

xquery version "1.0-ml";
import module namespace my="my-namespace" at "/sum.xqy";

let $fn := xdmp:function(xs:QName("my:add"))
return my:sum-sequence($fn,(1 to 100), 2, 1)

This returns 5052, which is the sum of all of the numbers between 2 and 100.

If you want to use a different formula for adding up the numbers, you can create an XQuery
library module with a different implementation of the same function and specify it instead. For
example, assume you want to use a different formula to add up the numbers, and you create
another library module named /my.xqy that has the following code (it multiplies the second
number by two before adding it to the first):

xquery version "1.0-ml";
module namespace my="my-namespace";

declare function my:add($x,$y) {$x+ (2 * $y)};
(: /my.xqy :)

You can now call the my:sum-sequence function specifying your new implementation of the
my:add function as follows:

xquery version "1.0-ml";
import module namespace my="my-namespace" at "/sum.xqy";

let $fn := xdmp:function(xs:QName("my:add"), "/my.xqy")
return my:sum-sequence($fn,(1 to 100), 2, 1)

MarkLogic Server Function Values

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 170

This returns 10102 using the new formula. This technique makes it possible for the caller to
specify a completely different implementation of the specified function that is passed.

MarkLogic Server Reusing Content With Modular Document Applications

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 171

14.0 Reusing Content With Modular Document Applications
179

This chapter describes how to create applications that reuse content by using XML that includes
other content. It contains the following sections:

• Modular Documents

• XInclude and XPointer

• CPF XInclude Application and API

• Creating XML for Use in a Modular Document Application

• Setting Up a Modular Document Application

14.1 Modular Documents
A modular document is an XML document that references other documents or parts of other
documents for some or all of its content. If you fetch the referenced document parts and place
their contents as child elements of the elements in which they are referenced, then that is called
expanding the document. If you expand all references, including any references in expanded
documents (recursively, until there is nothing left to expand), then the resulting document is
called the expanded document. The expanded document can then be used for searching, allowing
you to get relevance-ranked results where the relevance is based on the entire content in a single
document. Modular documents use the XInclude W3C recommendation as a way to specify the
referenced documents and document parts.

Modular documents allow you to manage and reuse content. MarkLogic Server includes a
Content Processing Framework (CPF) application that expands the documents based on all of the
XInclude references. The CPF application creates a new document for the expanded document,
leaving the original documents untouched. If any of the parts are updated, the expanded document
is recreated, automatically keeping the expanded document up to date.

The CPF application for modular documents takes care of all of the work involved in expanding
the documents. All you need to do is add or update documents in the database that have XInclude
references, and then anything under a CPF domain is automatically expanded. For details on CPF,
see the Content Processing Framework Guide.

Content can be reused by referencing it in multiple documents. For example, imagine you are a
book publisher and you have boilerplate passages such as legal disclaimers, company
information, and so on, that you include in many different titles. Each book can then reference the
boilerplate documents. If you are using the CPF application, then if the boilerplate is updated, all
of the documents are automatically updated. If you are not using the CPF application, you can still
update the documents with a simple API call.

MarkLogic Server Reusing Content With Modular Document Applications

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 172

14.2 XInclude and XPointer
Modular documents use XInclude and XPointer technologies:

• XInclude: http://www.w3.org/TR/xinclude/

• XPointer: http://www.w3.org/TR/WD-xptr

XInclude provides a syntax for including XML documents within other XML documents. It
allows you to specify a relative or absolute URI for the document to include. XPointer provides a
syntax for specifying parts of an XML document. It allows you to specify a node in the document
using a syntax based on (but not quite the same as) XPath. MarkLogic Server supports the
XPointer framework, and the element() and xmlns() schemes of XPointer, as well as the xpath()
scheme:

• element() Scheme: http://www.w3.org/TR/2002/PR-xptr-element-20021113/

• xmlns() Scheme: http://www.w3.org/TR/2002/PR-xptr-xmlns-20021113/

• xpath() Scheme, which is not a W3C recommendation, but allows you to use simple
XPath to specify parts of a document.

The xmlns() scheme is used for namespace prefix bindings in the XPointer framework, the
element() scheme is one syntax used to specify which elements to select out of the document in
the XInclude href attribute, and the xpath() scheme is an alternate syntax (which looks much
more like XPath than the element() scheme) to select elements from a document.

Each of these schemes is used within an attribute named xpointer. The xpointer attribute is an
attribute of the <xi:include> element. If you specify a string corresponding to an idref, then it
selects the element with that id attribute, as shown in “Example: Simple id” on page 173.

The examples that follow show XIncludes that use XPointer to select parts of documents:

• Example: Simple id

• Example: xpath() Scheme

• Example: element() Scheme

• Example: xmlns() and xpath() Scheme

http://www.w3.org/TR/xinclude/
http://www.w3.org/TR/WD-xptr
http://www.w3.org/TR/2002/PR-xptr-element-20021113/
http://www.w3.org/TR/2002/PR-xptr-xmlns-20021113/

MarkLogic Server Reusing Content With Modular Document Applications

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 173

14.2.1 Example: Simple id
Given a document /test2.xml with the following content:

<el-name>
 <p id="myID">This is the first para.</p>
 <p>This is the second para.</p>
</el-name>

The following selects the element with an id attribute with a value of myID from the /test2.xml
document:

<xi:include href="/test2.xml" xpointer="myID" />

The expansion of this <xi:include> element is as follows:

<p id="myID" xml:base="/test2.xml">This is the first para.</p>

14.2.2 Example: xpath() Scheme
Given a document /test2.xml with the following content:

<el-name>
 <p id="myID">This is the first para.</p>
 <p>This is the second para.</p>
</el-name>

The following selects the second p element that is a child of the root element el-name from the
/test2.xml document:

<xi:include href="/test2.xml" xpointer="xpath(/el-name/p[2])" />

The expansion of this <xi:include> element is as follows:

<p xml:base="/test2.xml">This is the second para.</p>

14.2.3 Example: element() Scheme
Given a document /test2.xml with the following content:

<el-name>
 <p id="myID">This is the first para.</p>
 <p>This is the second para.</p>
</el-name>

The following selects the second p element that is a child of the root element el-name from the
/test2.xml document:

<xi:include href="/test2.xml" xpointer="element(/1/2)" />

The expansion of this <xi:include> element is as follows:

MarkLogic Server Reusing Content With Modular Document Applications

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 174

<p xml:base="/test2.xml">This is the second para.</p>

14.2.4 Example: xmlns() and xpath() Scheme
Given a document /test2.xml with the following content:

<pref:el-name xmlns:pref="pref-namespace">
 <pref:p id="myID">This is the first para.</pref:p>
 <pref:p>This is the second para.</pref:p>
</pref:el-name>

The following selects the first pref:p element that is a child of the root element pref:el-name
from the /test2.xml document:

<xi:include href="/test2.xml"
 xpointer="xmlns(pref=pref-namespace)
 xpath(/pref:el-name/pref:p[1])" />

The expansion of this <xi:include> element is as follows:

<pref:p id="myID" xml:base="/test2.xml"
 xmlns:pref="pref-namespace">This is the first para.</pref:p>

Note that the namespace prefixes for the XPointer must be entered in an xmlns() scheme; it does
not inherit the prefixes from the query context.

14.3 CPF XInclude Application and API
This section describes the XInclude CPF application code and includes the following parts:

• XInclude Code and CPF Pipeline

• Required Security Privileges—xinclude Role

14.3.1 XInclude Code and CPF Pipeline
You can either create your own modular documents application or use the XInclude pipeline in a
CPF application. For details on CPF, see the Content Processing Framework Guide. The
following are the XQuery libraries and CPF components used to create modular document
applications:

• The XQuery module library xinclude.xqy. The key function in this library is the
xinc:node-expand function, which takes a node and recursively expands any XInclude
references, returning the fully expanded node.

• The XQuery module library xpointer.xqy.

• The XInclude pipeline and its associated actions.

MarkLogic Server Reusing Content With Modular Document Applications

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 175

• You can create custom pipelines based on the XInclude pipeline that use the following
<options> to the XInclude pipeline. These options control the expansion of XInclude
references for documents under the domain to which the pipeline is attached:

• <destination-root> specifies the directory in which the expanded version of
documents are saved. This must be a directory path in the database, and the
expanded document will be saved to the URI that is the concatenation of this root
and the base name of the unexpanded document. For example, if the URI of the
unexpanded document is /mydocs/unexpanded/doc.xml, and the destination-root is
set to /expanded-docs/, then this document is expanded into a document with the
URI /expanded-docs/doc.xml.

• <destination-collection> specifies the collection in which to put the expanded
version. You can specify multiple collections by specifying multiple
<destination-collection> elements in the pipeline.

• <destination-quality> specifies the document quality for the expanded version.
This must be an integer value, and higher positive numbers increase the relevance
scores for matches against the document, while lower negative numbers decrease
the relevance scores. The default quality on a document is 0, which does not
change the relevance score.

• The default is to use the same values as the unexpanded source.

14.3.2 Required Security Privileges—xinclude Role
The XInclude code requires the following privileges:

• xdmp:with-namespaces

• xdmp:value

Therefore, any users who will be expanding documents require these privileges. There us a
predefined role called xinclude that has the needed privileges to execute this code. You must
either assign the xinclude role to your users or they must have the above execute privileges in
order to run the XInclude code used in the XInclude CPF application.

14.4 Creating XML for Use in a Modular Document Application
The basic syntax for using XInclude is relatively simple. For each referenced document, you
include an <xi:include> element with an href attribute that has a value of the referenced
document URI, either relative to the document with the <xi:include> element or an absolute URI
of a document in the database. When the document is expanded, the document referenced
replaces the <xi:include> element. This section includes the following parts:

• <xi:include> Elements

• <xi:fallback> Elements

• Simple Examples

MarkLogic Server Reusing Content With Modular Document Applications

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 176

14.4.1 <xi:include> Elements
Element that have references to content in other documents are <xi:include> elements, where xi
is bound to the http://www.w3.org/2001/XInclude namespace. Each xi:include element has an
href attribute, which has the URI of the included document. The URI can be relative to the
document containing the <xi:include> element or an absolute URI of a document in the database.

14.4.2 <xi:fallback> Elements
The XInclude specification has a mechanism to specify fallback content, which is content to use
when expanding the document when the XInclude reference is not found. To specify fallback
content, you add an <xi:fallback> element as a child of the <xi:include> element. Fallback
content is optional, but it is good practice to specify it. As long as the xi:include href attributes
resolve correctly, documents without <xi:fallback> elements will expand correctly. If an
xi:include href attribute does not resolve correctly, however, and if there are no <xi:fallback>
elements for the unresolved references, then the expansion will fail with an XI-BADFALLBACK
exception.

The following is an example of an <xi:include> element with an <xi:fallback> element
specified:

<xi:include href="/blahblah.xml">
 <xi:fallback><p>NOT FOUND</p></xi:fallback>
</xi:include>

The <p>NOT FOUND</p> will be substituted when expanding the document with this <xi:include>
element if the document with the URI /blahblah.xml is not found.

You can also put an <xi:include> element within the <xi:fallback> element to fallback to some
content that is in the database, as follows:

<xi:include href="/blahblah.xml">
 <xi:fallback><xi:include href="/fallback.xml" /></xi:fallback>
</xi:include>

The previous element says to include the document with the URI /blahblah.xml when expanding
the document, and if that is not found, to use the content in /fallback.xml.

14.4.3 Simple Examples
The following is a simple example which creates two documents, then expands the one with the
XInclude reference:

xquery version "1.0-ml";
declare namespace xi="http://www.w3.org/2001/XInclude";

xdmp:document-insert("/test1.xml", <document>
 <p>This is a sample document.</p>
 <xi:include href="test2.xml"/>
</document>);

MarkLogic Server Reusing Content With Modular Document Applications

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 177

xquery version "1.0-ml";

xdmp:document-insert("/test2.xml",
 <p>This document will get inserted where
 the XInclude references it.</p>);

xquery version "1.0-ml";
import module namespace xinc="http://marklogic.com/xinclude"
 at "/MarkLogic/xinclude/xinclude.xqy";

xinc:node-expand(fn:doc("/test1.xml"))

The following is the expanded document returned from the xinc:node-expand call:

<document>
 <p>This is a sample document.</p>
 <p xml:base="/test2.xml">This document will get inserted where
 the XInclude references it.</p>
</document>

The base URI from the URI of the included content is added to the expanded node as an xml:base
attribute.

You can include fallback content as shown in the following example:

xquery version "1.0-ml";
declare namespace xi="http://www.w3.org/2001/XInclude";

xdmp:document-insert("/test1.xml", <document>
 <p>This is a sample document.</p>
 <xi:include href="/blahblah.xml">
 <xi:fallback><p>NOT FOUND</p></xi:fallback>
 </xi:include>
</document>);

xquery version "1.0-ml";

xdmp:document-insert("/test2.xml",
 <p>This document will get inserted where the XInclude references
it.</p>);

xquery version "1.0-ml";

xdmp:document-insert("/fallback.xml",
 <p>Sorry, no content found.</p>);

xquery version "1.0-ml";
import module namespace xinc="http://marklogic.com/xinclude"
 at "/MarkLogic/xinclude/xinclude.xqy";

xinc:node-expand(fn:doc("/test1.xml"))

MarkLogic Server Reusing Content With Modular Document Applications

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 178

The following is the expanded document returned from the xinc:node-expand call:

<document>
 <p>This is a sample document.</p>
 <p xml:base="/test1.xml">NOT FOUND</p>
</document>

14.5 Setting Up a Modular Document Application
To set up a modular documents CPF application, you need to install CPF and create a domain
under which documents with XInclude links will be expanded. For detailed information about the
Content Processing Framework, including procedures for how to set it up and information about
how it works, see the Content Processing Framework Guide.

To set up an XInclude modular document application, perform the following steps:

1. Install Content Processing in your database, if it is not already installed. For example, if
your database is named modular, In the Admin Interface click the Databases > modular >
Content Processing link. If it is not already installed, the Content Processing Summary
page will indicate that it is not installed. If it is not installed, click the Install tab and click
install (you can install it with or without enabling conversion).

2. Click the domains link from the left tree menu. Either create a new domain or modify an
existing domain to encompass the scope of the documents you want processed with the
XInclude processing. For details on domains, see the Content Processing Framework
Guide.

3. Under the domain you have chosen, click the Pipelines link from the left tree menu.

4. Check the Status Change Handling and XInclude Processing pipelines. You can also
attach other pipelines or detach other pipelines, depending if they are needed for your
application.

Note: If you want to change any of the <options> settings on the XInclude Processing
pipeline, copy that pipeline to another file, make the changes (make sure to change
the value of the <pipeline-name> element as well), and load the pipeline XML file.
It will then be available to attach to a domain. For details on the options for the
XInclude pipeline, see “CPF XInclude Application and API” on page 174.

MarkLogic Server Reusing Content With Modular Document Applications

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 179

5. Click OK. The Domain Pipeline Configuration screen shows the attached pipelines.

Any documents with XIncludes that are inserted or updated under your domain will now be
expanded. The expanded document will have a URI ending in _expanded.xml. For example, if you
insert a document with the URI /test.xml, the expanded document will be created with a URI of
/test_xml_expanded.xml (assuming you did not modify the XInclude pipeline options).

Note: If there are existing XInclude documents in the scope of the domain, they will not
be expanded until they are updated.

MarkLogic Server Controlling App Server Access, Output, and Errors

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 180

15.0 Controlling App Server Access, Output, and Errors
199

MarkLogic Server evaluates XQuery programs against App Servers. This chapter describes ways
of controlling the output, both by App Server configuration and with XQuery built-in functions.
Primarily, the features described in this chapter apply to HTTP App Servers, although some of
them are also valid with XDBC Servers and with the Task Server. This chapter contains the
following sections:

• Creating Custom HTTP Server Error Pages

• Setting Up URL Rewriting for an HTTP App Server

• Example: A Simple URL Rewriter

• Outputting SGML Entities

• Specifying the Output Encoding

• Specifying Output Options at the App Server Level

15.1 Creating Custom HTTP Server Error Pages
This section describes how to use the HTTP Server error pages and includes the following parts:

• Overview of Custom HTTP Error Handling

• Error Detail

• Configuring Custom Error Handlers

• Execute Permissions Are Needed On Error Handler Document for Modules Databases

• Example: Custom Error Handler

15.1.1 Overview of Custom HTTP Error Handling
A custom HTTP Server error page is a way to redirect application exceptions to an error handler
module. When any 400 or 500 HTTP exception is thrown (except for a 503 error), the error
handler is evaluated and the results are returned to the client. Custom error pages typically
provide more user-friendly messages to the end-user, but because the error page is generated by a
code module, you can perform arbitrary work.

You can implement a custom error handler module in either XQuery or Server-Side JavaScript.
The language you choose is independent from the language(s) in which you implement your
application.

The error handler module can get the HTTP error code and the contents of the HTTP response
using the xdmp:get-response-code (XQuery) or xdmp.getResponseCode (JavaScript) function.

The error handler module also has access to additional error details, including stack trace
information, when available. For details, see “Error Detail” on page 181.

MarkLogic Server Controlling App Server Access, Output, and Errors

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 181

If the error is a 503 (unavailable) error, then the error handler is not invoked and the 503
exception is returned to the client.

If the error handler itself throws an exception, that exception is passed to the client with the error
code from the error handler. It will also include a stack trace that includes the original error code
and exception.

15.1.2 Error Detail
If you implement your error handler in XQuery, MarkLogic makes detailed information about the
current error available to the error handler. If your handler is implemented in XQuery, MarkLogic
makes the error detail available as an XML element. If the handler is implemented in Server-Side
JavaScript object, MarkLogic makes the error detail available as a JSON node. See the following
topics for details:

• XML Detail Format

• JavaScript Error Detail Format

15.1.2.1 XML Detail Format
An XQuery error handler receives detailed error information as an XML element node
conforming to the error.xsd schema. The detail includes any exceptions thrown, line numbers,
XQuery version (when appropriate), and a stack trace (when available).

An error handler accesses the error detail through a special $error:errors external variable that
MarkLogic populates. To access the error details, include a declaration of the following form in
your error handler:

declare variable $error:errors as node()* external;

The following is a sample error detail node, generated by an XQuery module with a syntax error
that caused MarkLogic to raise an XDMP-CONTEXT exception:

<error:error xsi:schemaLocation="http://marklogic.com/xdmp/error
 error.xsd"
 xmlns:error="http://marklogic.com/xdmp/error"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <error:code>XDMP-CONTEXT</error:code>
 <error:name>err:XPDY0002</error:name>
 <error:xquery-version>1.0-ml</error:xquery-version>
 <error:message>Expression depends on the context where none
 is defined</error:message>
 <error:format-string>XDMP-CONTEXT: (err:XPDY0002) Expression
 depends on the context where none is defined</error:format-string>
 <error:retryable>false</error:retryable>
 <error:expr/> <error:data/>
 <error:stack>
 <error:frame>
 <error:uri>/blaz.xqy</error:uri>

MarkLogic Server Controlling App Server Access, Output, and Errors

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 182

 <error:line>1</error:line>
 <error:xquery-version>1.0-ml</error:xquery-version>
 </error:frame>
 </error:stack>
</error:error>

15.1.2.2 JavaScript Error Detail Format
A Server-Side JavaScript error handler receives detailed error information through a variable
named “error” that MarkLogic puts in the global scope. The detail includes any exceptions
thrown, line numbers, XQuery version (when appropriate), and a stack trace (when available).

The following is an example error detail object resulting from a JavaScript module that caused
MarkLogic to throw an XDMP-DOCNOTFOUND exception:

{ "code": "XDMP-DOCNOTFOUND",
 "name": "",
 "message": "Document not found",
 "retryable": "false",
 "data": [],
 "stack": "XDMP-DOCNOTFOUND:xdmp.documentDelete(\"nonexistent.json\")
 -- Document not found\n
 in /eh-ex/eh-app.sjs, at 3:7, in panic() [javascript]\n
 in /eh-ex/eh-app.sjs, at 6:0 [javascript]\n
 in /eh-ex/eh-app.sjs [javascript]",
 "stackFrames": [
 {
 "uri": "/eh-ex/eh-app.sjs",
 "line": "3",
 "column": "7",
 "operation": "panic()"
 }, {
 "uri": "/eh-ex/eh-app.sjs",
 "line": "6",
 "column": "0"
 }, {
 "uri": "/eh-ex/eh-app.sjs"
 }
]
}

15.1.3 Configuring Custom Error Handlers
To configure a custom error handler for an HTTP App Server, enter the path to the XQuery or
Server-Side JavaScript module in the Error Handler field of an HTTP Server. If the path does not
start with a slash (/), then it is relative to the App Server root. If it does start with a slash (/), then
it follows the import rules described in “Importing XQuery Modules, XSLT Stylesheets, and
Resolving Paths” on page 86.

MarkLogic Server Controlling App Server Access, Output, and Errors

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 183

15.1.4 Execute Permissions Are Needed On Error Handler Document for
Modules Databases

If your App Server is configured to use a modules database (that is, it stores and executes its
application modules in a database), you must put an execute permission on the error handler
module document. The execute permission is paired to a role, and all users of the App Server
must have that role in order to execute the error handler; if a user does not have the role, then that
user will not be able to execute the error handler module, and it will get a 401 (unauthorized) error
instead of having the error be caught and handled by the error handler.

As a consequence of needing the execute permission on the error handler, if a user who is actually
not authorized to run the error handler attempts to access the App Server, that user runs as the
default user configured for the App Server until authentication. If authentication fails, then the
error handler is called as the default user, but because that default user does not have permission
to execute the error handler, the user is not able to find the error handler and a 404 error (not
found) is returned. Therefore, if you want all users (including unauthorized users) to have
permission to run the error handler, give the default user a role (it does not need to have any
privileges on it) and assign an execute permission to the error handler paired with that role.

15.1.5 Example: Custom Error Handler
The following example is a very simple error handler that simply returns all of the error detail.

In a typical error page, you would use some or all of the information to create a user-friendly
representation of the error to display to users. Since you can write arbitrary code in the error
handler, you can do a wide variety of things, such as sending an email to the application
administrator or redirecting it to a different page.

Language Example

XQuery xquery version "1.0-ml";

declare variable $error:errors as node()* external;

xdmp:set-response-content-type("text/plain"),
xdmp:get-response-code(),
$error:errors

Server-Side
JavaScript

var error;
const resp = xdmp.getResponseCode().toArray();

let response = 'Code: ' + resp[0] + '\nMessage: ' + resp[1];
if (error != undefined) {
 response += '\n' + error.toString();
}

xdmp.setResponseContentType('text/plain');
response;

MarkLogic Server Controlling App Server Access, Output, and Errors

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 184

15.2 Setting Up URL Rewriting for an HTTP App Server
This section describes how to use the HTTP Server URL Rewriter feature. For additional
information on URL rewriting, see “Creating an Interpretive XQuery Rewriter to Support REST
Web Services” on page 200.

This section includes the following topics:

• Overview of URL Rewriting

• Creating URL Rewrite Modules

• Prohibiting Access to Internal URLs

• URL Rewriting and Page-Relative URLs

• Using the URL Rewrite Trace Event

15.2.1 Overview of URL Rewriting
You can access any MarkLogic Server resource with a URL, which is a fundamental characteristic
of Representational State Transfer (REST) services. In its raw form, the URL must either reflect
the physical location of the resource (if a document in the database), or it must be of the form:

http://<dispatcher-program.xqy>?instructions=foo

Users of web applications typically prefer short, neat URLs to raw query string parameters. A
concise URL, also referred to as a “clean URL,” is easy to remember, and less time-consuming to
type in. If the URL can be made to relate clearly to the content of the page, then errors are less
likely to happen. Also crawlers and search engines often use the URL of a web page to determine
whether or not to index the URL and the ranking it receives. For example, a search engine may
give a better ranking to a well-structured URL such as:

http://marklogic.com/technical/features.html

than to a less-structured, less-informative URL like the following:

http://marklogic.com/document?id=43759

In a “RESTful” environment, URLs must be well-structured, predictable, and decoupled from the
physical location of a document or program. When an HTTP server receives an HTTP request
with a well-structured, external URL, it must be able to transparently map that to the internal URL
of a document or program.

The URL Rewriter feature allows you to configure your HTTP App Server to enable the rewriting
of external URLs to internal URLs, giving you the flexibility to use any URL to point to any
resource (web page, document, XQuery program and arguments). The URL Rewriter
implemented by MarkLogic Server operates similarly to the Apache mod_rewrite module, except
you write an XQuery or Server-Side JavaScript program to perform the rewrite operation.

MarkLogic Server Controlling App Server Access, Output, and Errors

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 185

The URL rewriting happens through an internal redirect mechanism so the client is not aware of
how the URL was rewritten. This makes the inner workings of a web site's address opaque to
visitors. The internal URLs can also be blocked or made inaccessible directly if desired by
rewriting them to non-existent URLs, as described in “Prohibiting Access to Internal URLs” on
page 188.

For an end to end example of a simple rewriter, see “Example: A Simple URL Rewriter” on
page 190.

For information about creating a URL rewriter to directly invoke XSLT stylesheets, see Invoking

Stylesheets Directly Using the XSLT Rewriter in the XQuery and XSLT Reference Guide.

Note: If your application code is in a modules database, the URL rewriter needs to have
permissions for the default App Server user (nobody by default) to execute the
module. This is the same as with an error handler that is stored in the database, as
described in “Execute Permissions Are Needed On Error Handler Document for
Modules Databases” on page 183.

MarkLogic Server Controlling App Server Access, Output, and Errors

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 186

15.2.2 Creating URL Rewrite Modules
This section describes how to create simple URL rewrite modules. For more robust URL
rewriting solutions, see “Creating an Interpretive XQuery Rewriter to Support REST Web
Services” on page 200.

You can implement a rewrite module in XQuery or Server-Side JavaScript. The language you
choose for the rewriter implementation is independent of the implementation language of any
module the rewriter may redirect to. For example, you can create a JavaScript rewriter that
redirects a request to an XQuery application module, and vice versa.

You can use the pattern matching features in regular expressions to create flexible URL rewrite
modules. For example, you want the user to only have to enter / after the scheme and network
location portions of the URL (for example, http://localhost:8060/) and have it rewritten as
/app.xqy:

The following example converts a portion of the original URL into a request parameter of a new
dynamic URL:

The product ID can be any number. For example, the URL /product-12.html is converted to
/product.xqy?id=12 and /product-25.html is converted to /product.xqy?id=25.

Language Example

XQuery xquery version "1.0-ml";
let $url := xdmp:get-request-url()
return fn:replace($url,"^/$", "/app.xqy")

Server-Side
JavaScript

const url = xdmp.getRequestUrl();
url.replace(/^\/$/, '/app.xqy')

Language Example

XQuery xquery version "1.0-ml";
let $url := xdmp:get-request-url()
return fn:replace($url,
 "^/product-([0-9]+)\.html$",
 "/product.xqy?id=$1")

Server-Side
JavaScript

const url = xdmp.getRequestUrl();
url.replace(/^\/product-(\d+).html$/, '\/product\?id=$1')

MarkLogic Server Controlling App Server Access, Output, and Errors

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 187

Search engine optimization experts suggest displaying the main keyword in the URL. In the
following URL rewriting technique you can display the name of the product in the URL:

The product name can be any string. For example, /product/canned_beans/12.html is converted
to /product.xqy?id=12 and /product/cola_6_pack/8.html is converted to /product.xqy?id=8.

If you need to rewrite multiple pages on your HTTP server, you can create a URL rewrite script
like the following:

Language Example

XQuery xquery version "1.0-ml";
let $url := xdmp:get-request-url()
return fn:replace($url,
 "^/product/([a-zA-Z0-9_-]+)/([0-9]+)\.html$",
 "/product.xqy?id=$2")

Server-Side
JavaScript

const url = xdmp.getRequestUrl();
url.replace(/^\/product\/([\w\d-]+)\/(\d+).html$/, '\/product\?id=$2')

Language Example

XQuery xquery version "1.0-ml";
let $url := xdmp:get-request-url()
let $url := fn:replace($url, "^/Shrew$", "/tame.xqy")
let $url := fn:replace($url, "^/Macbeth$", "/mac.xqy")
let $url := fn:replace($url, "^/Tempest$", "/tempest.xqy")
return $url

Server-Side
JavaScript

const url = xdmp.getRequestUrl();
url.replace(/^\/Shrew$/, '/tame.xqy')
 .replace(/^\/Macbeth$/, '/mac.xqy')
 .replace(/^\/Tempest$/, '/tempest.xqy');

MarkLogic Server Controlling App Server Access, Output, and Errors

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 188

15.2.3 Prohibiting Access to Internal URLs
The URL Rewriter feature also enables you to block user’s from accessing internal URLs. For
example, to prohibit direct access to customer_list.html, your URL rewrite script might look like
the following:

Where /nowhere.html is a non-existent page for which the browser returns a “404 Not Found”
error. Alternatively, you could redirect to a URL consisting of a random number generated using
xdmp:random (XQuery) or xdmp.random (JavaScript), or some other scheme guaranteed to
generate non-existent URLs.

15.2.4 URL Rewriting and Page-Relative URLs
You may encounter problems when rewriting a URL to a page that makes use of page-relative
URLs because relative URLs are resolved by the client. If the directory path of the external URL
used by the client differs from the internal URL at the server, then the page-relative links are
incorrectly resolved.

If you are going to rewrite a URL to a page that uses page-relative URLs, convert the
page-relative URLs to server-relative or canonical URLs. For example, if your application is
located in C:\Program Files\MarkLogic\myapp and the page builds a frameset with page-relative
URLs, like:

<frame src="top.html" name="headerFrame">

Change the URLs to server-relative:

<frame src="/myapp/top.html" name="headerFrame">

or canonical:

<frame src="http://127.0.0.1:8000/myapp/top.html" name="headerFrame">

Language Example

XQuery xquery version "1.0-ml";
let $url := xdmp:get-request-url()
return
 if (fn:matches($url,"^/customer_list.html$"))
 then "/nowhere.html"
 else fn:replace($url,"^/price_list.html$", "/prices.html")

Server-Side
JavaScript

const url = xdmp.getRequestUrl();
url.match(/^\/customer_list.html/)
 ? 'nowhere.html'
 : url.replace(/^\/price_list.html$/, 'prices.html')

MarkLogic Server Controlling App Server Access, Output, and Errors

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 189

15.2.5 Using the URL Rewrite Trace Event
You can use the URL Rewrite trace event to help you debug your URL rewrite modules. To use
the URL Rewrite trace event, you must enable tracing (at the group level) for your configuration
and set the event:

1. Log into the Admin Interface.

2. Select Groups > group_name > Diagnostics.

The Diagnostics Configuration page appears.

3. Click the true button for trace events activated.

4. In the [add] field, enter: URL Rewrite

5. Click the OK button to activate the event.

MarkLogic Server Controlling App Server Access, Output, and Errors

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 190

After you configure the URL Rewrite trace event, when any URL Rewrite script is invoked, a
line, like that shown below, is added to the ErrorLog.txt file, indicating the URL received from
the client and the converted URL from the URL rewriter:

2009-02-11 12:06:32.587 Info: [Event:id=URL Rewrite] Rewriting URL
/Shakespeare to /frames.html

Note: The trace events are designed as development and debugging tools, and they might
slow the overall performance of MarkLogic Server. Also, enabling many trace
events will produce a large quantity of messages, especially if you are processing a
high volume of documents. When you are not debugging, disable the trace event
for maximum performance.

15.3 Example: A Simple URL Rewriter
This example walks you through creating a simple URL rewriter that enables you to use an
“intuitive” URL to serve an XML document out of a MarkLogic database. The request for the
documents is serviced by an example application module installed in MarkLogic. The example
rewriter rewrites the external URL to reference the application module, internally.

Follow these steps to run the example:

• Create the Example App Server

• Install the Example Content

• Install the Example Application Module

• Exercise the Example Application

• Install the Rewriter

• Configure the App Server to Use the Rewriter

• Exercise the Rewriter

15.3.1 Create the Example App Server
This example requires you to create an HTTP App Server on which to exercise the sample
rewriter. Do not run this example on the default port 8000 App Server as that App Server uses a
special purpose MarkLogic rewriter.

MarkLogic Server Controlling App Server Access, Output, and Errors

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 191

The example assumes the existence of an HTTP App Server with the following characteristics. If
you choose to use different settings, you will need to modify the subsequent instructions to match.
For instructions on creating an HTTP App Server, see Creating a New HTTP Server in the
Administrator’s Guide.

Accept the defaults for all other configuration settings.

15.3.2 Install the Example Content
Run the following code in Query Console to insert the example document in the content database
of your HTTP App Server (Modules).

Before running the code, set the Database to Documents and the Query Type as appropriate
Query Console.

15.3.3 Install the Example Application Module
Run the following code in Query Console to insert the example application module into the
modules database of your App Server (Modules).

Setting Recommended Value

server name rewriter-ex

root /

port 8020

modules Modules

database Documents

Language Example

XQuery (: Insert example content to fetch using example app :)
xquery version "1.0-ml";
xdmp:document-insert('rewriter-ex.xml',
 <example>This is the rewriter example document.</example>)

Server-Side
JavaScript

// Insert example content to fetch using example app :)
declareUpdate();
xdmp.documentInsert('rewriter-ex.xml',
 new NodeBuilder()
 .addElement('example', 'This is the rewriter example document.')
 .toNode());

MarkLogic Server Controlling App Server Access, Output, and Errors

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 192

Before running the code, set the Database to Modules and the Query Type as appropriate in
Query Console.

15.3.4 Exercise the Example Application
Use this step to confirm that the example application is properly installed.

If you used the XQuery example app, navigate to the following URL, assuming MarkLogic is
installed on localhost:

http://localhost:8020/rewriter-ex/app.xqy

If you used the Server-Side JavaScript example app, navigate to the following URL, assuming
MarkLogic is installed on localhost:

http://localhost:8020/rewriter-ex/app.sjs

The example document from “Install the Example Content” on page 191 will appear. If you get a
404 (Page Not Found) error, use Query Console to confirm that you correctly installed the
example application module in the Modules database, and not in the Documents database.

15.3.5 Install the Rewriter
This step inserts an example rewriter into the modules database associated with your App Server
(Modules). The example rewriter intercepts the inbound URL and use the replace function to
change the request path to point to the example app module.

Language Example

XQuery (: Insert example app module with URI /rewriter-ex/app.xqy :)
xquery version "1.0-ml";
xdmp:document-insert('/rewriter-ex/app.xqy',
 text {'xquery version "1.0-ml";
 xdmp:set-response-content-type("text/xml"),
 fn:doc("rewriter-ex.xml")'}
)

Server-Side
JavaScript

// Insert example app module with URI /rewriter-ex/app.sjs
declareUpdate();
xdmp.documentInsert('/rewriter-ex/app.sjs',
 new NodeBuilder().addText(
 'xdmp.setResponseContentType("text/xml");cts.doc("rewriter-ex.xml");'
).toNode()
);

MarkLogic Server Controlling App Server Access, Output, and Errors

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 193

Run the following code in Query Console to insert the rewriter into the modules database. Set the
Database to Modules and the Query Type as appropriate in Query Console.

The example rewriter uses xdmp:get-request-url in XQuery and xdmp.getRequestUrl in
JavaScript to access the portion of the URL following the scheme and network location (domain
name or host_name:port_number). For example, if the original request URL is
http://localhost:8020/test-rewriter, this function returns /test-rewriter.

Note that this xdmp:get-request-rule and xdmp.getRequestUrl also return any request parameters
(fields). You rewriter can modify the request parameters. For example, you could add a
parameter, changing the URL to test-rewriter/someparam=value. If you just want the request
path (/test-rewriter, here), you can use xdmp:get-request-path (XQuery) or
xdmp.getRequestPath (JavaScript).

You can create more elaborate URL rewrite modules, as described in “Creating URL Rewrite
Modules” on page 186 and “Creating an Interpretive XQuery Rewriter to Support REST Web
Services” on page 200.

15.3.6 Configure the App Server to Use the Rewriter
Now that you have installed the rewriter module, you can change the App Server configuration to
reference it.

In the Admin Interface, go to the configuration page for the rewriter-ex App Server you created in
“Create the Example App Server” on page 190.

Language Example

XQuery (: Insert rewriter with URI /rewriter-ex/rewriter.xqy :)
xquery version "1.0-ml";
xdmp:document-insert('/rewriter-ex/rewriter.xqy',
 text {'xquery version "1.0-ml";
 fn:replace(
 xdmp:get-request-url(),
 "^/test-rewriter$","/rewriter-ex/app.xqy")'}
)

Server-Side
JavaScript

// Insert rewriter with URI /rewriter-ex/rewriter.sjs
declareUpdate();
const rewriter =
 'const url = xdmp.getRequestUrl();' +
 'url.replace(/^\\/test-rewriter$/, \'rewriter-ex/app.sjs\')';
xdmp.documentInsert('/rewriter-ex/rewriter.sjs',
 new NodeBuilder().addText(rewriter).toNode()
);

MarkLogic Server Controlling App Server Access, Output, and Errors

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 194

Find the url rewriter configuration setting. Set the rewriter to one of the following paths,
depending on whether you’re using the XQuery or JavaScript example rewriter:

• XQuery: /rewriter-ex/rewriter.xqy

• JavaScript: /rewriter-ex/rewriter.sjs

Click OK at the top or bottom of the App Server configuration page to save your change.

You can also configure the rewriter for an App Server using the Admin library function
admin:appserver-set-url-rewriter, or the REST Management API.

15.3.7 Exercise the Rewriter
In your browser, navigate to the following URL:

http://localhost:8020/test-rewriter

Your request will return the same test document as when you queried the example application
directly using http://localhost:8020/rewriter-ex/rewriter.xqy. or
http://localhost:8020/rewriter-ex/rewriter.sjs in “Exercise the Example Application” on
page 192.

Notice that the URL displayed in the browser remains http://localhost:8020/test-rewriter,
even though it has been internally rewritten to http://localhost:8020/rewriter-ex/app.xqy (or
http://localhost:8020/rewriter-ex/app.sjs, depending on your implementation language of
choice).

MarkLogic Server Controlling App Server Access, Output, and Errors

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 195

15.4 Outputting SGML Entities
This section describes the SGML entity output controls in MarkLogic Server, and includes the
following parts:

• Understanding the Different SGML Mapping Settings

• Configuring SGML Mapping in the App Server Configuration

• Specifying SGML Mapping in an XQuery Program

15.4.1 Understanding the Different SGML Mapping Settings
An SGML character entity is a name separated by an ampersand (&) character at the beginning
and a semi-colon (;) character at the end. The entity maps to a particular character. This markup
is used in SGML, and sometimes is carried over to XML. MarkLogic Server allows you to control
if SGML character entities upon serialization of XML on output, either at the App Server level
using the Output SGML Character Entities drop down list or using the
<output-sgml-character-entities> option to the built-in functions xdmp:quote or xdmp:save.
When SGML characters are mapped (for an App Server or with the built-in functions), any
unicode characters that have an SGML mapping will be output as the corresponding SGML
entity. The default is none, which does not output any characters as SGML entities.

The mappings are based on the W3C XML Entities for Characters specification:

• http://www.w3.org/TR/2008/WD-xml-entity-names-20080721/

with the following modifications to the specification:

• Entities that map to multiple codepoints are not output, unless there is an alternate
single-codepoint mapping available. Most of these entities are negated mathematical
symbols (nrarrw from isoamsa is an example).

• The gcedil set is also included (it is not included in the specification).

http://www.w3.org/TR/2008/WD-xml-entity-names-20080721/

MarkLogic Server Controlling App Server Access, Output, and Errors

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 196

The following table describes the different SGML character mapping settings:

Note: In general, the <repair>full</repair> option on xdmp:document-load and the
"repair-full" option on xdmp:unquote do the opposite of the Output SGML
Character Entities settings, as the ingestion APIs map SGML entities to their
codepoint equivalents (one or more codepoints). The difference with the output
options is that the output options perform only single-codepoint to entity mapping,
not multiple codepoint to entity mapping.

15.4.2 Configuring SGML Mapping in the App Server Configuration
To configure SGML output mapping for an App Server, perform the following steps:

1. In the Admin Interface, navigate to the App Server you want to configure (for example,
Groups > Default > App Servers > MyAppServer).

2. Select the Output Options page from the left tree menu. The Output Options Configuration
page appears.

3. Locate the Output SGML Entity Characters drop list (it is towards the top).

SGML Character
Mapping Setting

Description

none The default. No SGML entity mapping is performed on the output.

normal Converts unicode codepoints to SGML entities on output. The
conversions are made in the default order. The only difference between
normal and the math and pub settings is the order that it chooses to map
entities, which only affects the mapping of entities where there are
multiple entities mapped to a particular codepoint.

math Converts unicode codepoints to SGML entities on output. The
conversions are made in an order that favors math-related entities. The
only difference between math and the normal and pub settings is the order
that it chooses to map entities, which only affects the mapping of entities
where there are multiple entities mapped to a particular codepoint.

pub Converts unicode codepoints to SGML entities on output. The
conversions are made in an order favoring entities commonly used by
publishers. The only difference between pub and the normal and math
settings is the order that it chooses to map entities, which only affects the
mapping of entities where there are multiple entities mapped to a
particular codepoint.

MarkLogic Server Controlling App Server Access, Output, and Errors

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 197

4. Select the setting you want. The settings are described in the table in the previous section.

5. Click OK.

Codepoints that map to an SGML entity will now be serialized as the entity by default for requests
against this App Server.

15.4.3 Specifying SGML Mapping in an XQuery Program
You can specify SGML mappings for XML output in an XQuery program using the
<output-sgml-character-entities> option to the following XML-serializing APIs:

• xdmp:quote

• xdmp:save

For details, see the MarkLogic XQuery and XSLT Function Reference for these functions.

15.5 Specifying the Output Encoding
By default, MarkLogic Server outputs content in utf-8. You can specify a different output
encodings, both on an App Server basis and on a per-query basis. This section describes those
techniques, and includes the following parts:

• Configuring App Server Output Encoding Setting

• XQuery Built-In For Specifying the Output Encoding

15.5.1 Configuring App Server Output Encoding Setting
You can set the output encoding for an App Server using the Admin Interface or with the Admin
API. You can set it to any supported character set (see Collations and Character Sets By Language in
the Encodings and Collations chapter of the Search Developer’s Guide).

To configure output encoding for an App Server using the Admin Interface, perform the following
steps:

1. In the Admin Interface, navigate to the App Server you want to configure (for example,
Groups > Default > App Servers > MyAppServer).

2. Select the Output Options page from the left tree menu. The Output Options Configuration
page appears.

3. Locate the Output Encoding drop list (it is towards the top).

MarkLogic Server Controlling App Server Access, Output, and Errors

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 198

4. Select the encoding you want. The settings correspond to different languages, as described
in the table in Collations and Character Sets By Language in the Encodings and Collations
chapter of the Search Developer’s Guide.

5. Click OK.

By default, queries against this App Server will now be output in the specified encoding.

15.5.2 XQuery Built-In For Specifying the Output Encoding
Use the following built-in functions to get and set the output encoding on a per-request basis:

• xdmp:get-response-encoding

• xdmp:set-response-encoding

Additionally, you can specify the output encoding for XML output in an XQuery program using
the <output-encoding> option to the following XML-serializing APIs:

• xdmp:quote

• xdmp:save

For details, see the MarkLogic XQuery and XSLT Function Reference for these functions.

MarkLogic Server Controlling App Server Access, Output, and Errors

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 199

15.6 Specifying Output Options at the App Server Level
You can specify defaults for an array of output options using the Admin Interface. Each App
Server has an Output Options Configuration page.

This configuration page allows you to specify defaults that correspond to the XSLT output options
(http://www.w3.org/TR/xslt20#serialization) as well as some MarkLogic-specific options. For details
on these options, see xdmp:output in the XQuery and XSLT Reference Guide. For details on
configuring default options for an App Server, see Setting Output Options for an HTTP Server in the
Administrator’s Guide.

http://www.w3.org/TR/xslt20#serialization

MarkLogic Server Creating an Interpretive XQuery Rewriter to Support

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 200

16.0 Creating an Interpretive XQuery Rewriter to Support
REST Web Services

228

The REST Library enables you to create RESTful functions that are independent of the language
used in applications.

Note: The procedures in this chapter assume you performed the steps described in
“Preparing to Run the Examples” on page 226.

The topics in this section are:

• Terms Used in this Chapter

• Overview of the REST Library

• A Simple XQuery Rewriter and Endpoint

• Notes About Rewriter Match Criteria

• The options Node

• Validating options Node Elements

• Extracting Multiple Components from a URL

• Handling Errors

• Handling Redirects

• Handling HTTP Verbs

• Defining Parameters

• Adding Conditions

16.1 Terms Used in this Chapter

• REST stands for Representational State Transfer, which is an architecture style that, in the
context of monitoring MarkLogic Server, describes the use of HTTP to make calls
between a monitoring application and monitor host.

• A Rewriter interprets the URL of the incoming request and rewrites it to an internal URL
that services the request. A rewriter can be implemented as an XQuery module as
described in this chapter, or as an XML file as described in “Creating a Declarative XML
Rewriter to Support REST Web Services” on page 229.

• An Endpoint is an XQuery module on MarkLogic Server that is invoked by and responds
to an HTTP request.

MarkLogic Server Creating an Interpretive XQuery Rewriter to Support

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 201

16.2 Overview of the REST Library
The REST Library consists of a set of XQuery functions that support URL rewriting and endpoint
validation and a MarkLogic REST vocabulary that simplifies the task of describing web service
endpoints. The REST vocabulary is used to write declarative descriptions of the endpoints. These
descriptions include the mapping of URL parts to parameters and conditions that must be met in
order for the incoming request to be mapped to an endpoint.

The REST Library contains functions that simplify:

• Creating a URL rewriter for mapping incoming requests to endpoints

• Validating that applications requesting resources have the necessary access privileges

• Validating that incoming requests can be handled by the endpoints

• Reporting errors

The REST vocabulary allows you to use same description for both the rewriter and the endpoint.

When you have enabled RESTful access to MarkLogic Server resources, applications access
these resources by means of a URL that invokes an endpoint module on the target MarkLogic
Server host.

The REST library does the following:

1. Validates the incoming HTTP request.

2. Authorizes the user.

3. Rewrites the resource path to one understood internally by the server before invoking the
endpoint module.

If the request is valid, the endpoint module executes the requested operation and returns any data
to the application. Otherwise, the endpoint module returns an error message.

Note: The API signatures for the REST Library are documented in the MarkLogic
XQuery and XSLT Function Reference. For additional information on URL
rewriting, see “Setting Up URL Rewriting for an HTTP App Server” on page 184.

http://host:port/external-path/ REST Endpoint

 Application

Returned Content

MarkLogic Server

/internal-path
ModuleLibrary

MarkLogic Server Creating an Interpretive XQuery Rewriter to Support

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 202

16.3 A Simple XQuery Rewriter and Endpoint
This section describes a simple rewriter script that calls a single endpoint.

Navigate to the /<MarkLogic_Root>/bill directory and create the following files with the
described content.

Create a module, named requests.xqy, with the following content:

xquery version "1.0-ml";

module namespace
 requests="http://marklogic.com/appservices/requests";

import module namespace rest = "http://marklogic.com/appservices/rest"
 at "/MarkLogic/appservices/utils/rest.xqy";

declare variable $requests:options as element(rest:options) :=
 <options xmlns="http://marklogic.com/appservices/rest">
 <request uri="^/(.+)$" endpoint="/endpoint.xqy">
 <uri-param name="play">$1.xml</uri-param>
 </request>
 </options>;

Create a module, named url_rewriter.xqy, with the following content:

xquery version "1.0-ml";

import module namespace rest = "http://marklogic.com/appservices/rest"
 at "/MarkLogic/appservices/utils/rest.xqy";

import module namespace requests =
 "http://marklogic.com/appservices/requests"
 at "requests.xqy";

rest:rewrite($requests:options)

MarkLogic Server Creating an Interpretive XQuery Rewriter to Support

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 203

Create a module, named endpoint.xqy, with the following content:

xquery version "1.0-ml";

import module namespace rest = "http://marklogic.com/appservices/rest"
 at "/MarkLogic/appservices/utils/rest.xqy";

import module namespace requests =
 "http://marklogic.com/appservices/requests" at "requests.xqy";

let $request := $requests:options/rest:request
 [@endpoint = "/endpoint.xqy"][1]

let $map := rest:process-request($request)
let $play := map:get($map, "play")

return
 fn:doc($play)

Enter the following URL, which uses the bill App Server created in “Preparing to Run the
Examples” on page 226:

http://localhost:8060/macbeth

MarkLogic Server Creating an Interpretive XQuery Rewriter to Support

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 204

The rest:rewrite function in the rewriter uses an options node to map the incoming request to an
endpoint. The options node includes a request element with a uri attribute that specifies a
regular expression and an endpoint attribute that specifies the endpoint module to invoke in the
event the URL of an incoming request matches the regular expression. In the event of a match, the
portion of the URL that matches (.+) is bound to the $1 variable. The uri-param element in the
request element assigns the value of the $1 variable, along with the .xml extension, to the play
parameter.

<rest:options xmlns="http://marklogic.com/appservices/rest">
 <rest:request uri="^/(.+)" endpoint="/endpoint.xqy">
 <uri-param name="play">$1.xml</uri-param>
 </rest:request>
</rest:options>

In the example rewriter module above, this options node is passed to the rest:rewrite function,
which outputs a URL that calls the endpoint module with the parameter play=macbeth.xml:

/endpoint.xqy?play=macbeth.xml

The rest:process-request function in the endpoint locates the first request element associated
with the endpoint.xqy module and uses it to identify the parameters defined by the rewriter. In
this example, there is only a single parameter, play, but for reasons described in “Extracting
Multiple Components from a URL” on page 209, when there are multiple request elements for
the same endpoint, the request element that extracts the greatest number of parameters from a
URL will be listed in the options node ahead of those that extract fewer parameters.

let $request := $requests:options/rest:request
 [@endpoint = "/endpoint.xqy"][1]

The rest:process-request function in the endpoint uses the request element to parse the
incoming request and return a map that contains all of the parameters as typed values. The
map:get function extracts each parameter from the map, which is only one in this example.

let $map := rest:process-request($request)
let $play := map:get($map, "play")

16.4 Notes About Rewriter Match Criteria
The default behavior for the rewriter is to match the request against all of the criteria: URI, accept
headers, content-type, conditions, method, and parameters. This assures that no endpoint will ever
be called except in circumstances that perfectly match what is expected. It can sometimes,
however, lead to somewhat confusing results. Consider the following request node:

<request uri="/path/to/resource" endpoint="/endpoint.xqy">
 <param name="limit" as="decimal"/>
</request>

MarkLogic Server Creating an Interpretive XQuery Rewriter to Support

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 205

An incoming request of the form:

/path/to/resource?limit=test

does not match that request node (because the limit is not a decimal). If there are no other request
nodes which match, then the request will return 404 (not found).

That may be surprising. Using additional request nodes to match more liberally is one way to
address this problem. However, as the number and complexity of the requests grows, it may
become less attractive. Instead, the rewriter can be instructed to match only on specific parts of
the request. In this way, error handling can be addressed by the called module.

The match criteria are specified in the call to rest:rewrite. For example:

rest:rewrite($options, ("uri", "method"))

In this case, only the URI and HTTP method will be used for the purpose of matching.

The criteria allowed are:

• uri = match on the URI

• accept = match on the accept headers

• content-type = match on the content type

• conditions = match on the conditions

• method = match on the HTTP method

• params = match on the params

The request must match all of the criteria specified in order to be considered a match.

MarkLogic Server Creating an Interpretive XQuery Rewriter to Support

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 206

16.5 The options Node
The REST Library uses an options node to map incoming requests to endpoints. The options
node must be declared as type element(rest:options) and must be in the
http://marklogic.com/appservices/rest namespace.

Below is a declaration of a very simple options node:

declare variable $options as element(rest:options) :=
 <rest:options xmlns="http://marklogic.com/appservices/rest">
 <rest:request uri="^/(.+)" endpoint="/endpoint.xqy">
 <uri-param name="play">$1.xml</uri-param>
 </rest:request>
 </rest:options>;

The table below summarizes all of the possible elements and attributes in an options node. On the
left are the elements that have attributes and/or child elements. Attributes for an element are listed
in the Attributes column. Attributes are optional, unless designated as ‘(required)’. Any first-level
elements of the element listed on the left are listed in the Child Elements column. The difference
between the user-params="allow" and user-params="allow-dups" attribute values is that allow
permits a single parameter for a given name, and allow-dups permits multiple parameters for a
given name.

Element Attributes
Child

Elements

Number
of

Children
For More Information

options user-params = ignore
 | allow
 | allow-dups
 | forbid

request 0..n “A Simple XQuery
Rewriter and Endpoint” on
page 202

request uri=string

endpoint=string

user-params = ignore
 | allow
 | allow-dups
 | forbid

uri-param

param

http

auth

function

accept

user-agent

and

or

0..n

0..n

0..n

0..n

0..n

0..n

0..n

0..n

0..n

“A Simple XQuery
Rewriter and Endpoint” on
page 202

“Extracting Multiple
Components from a URL”
on page 209

“Adding Conditions” on
page 223

MarkLogic Server Creating an Interpretive XQuery Rewriter to Support

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 207

uri-param name=string (required)

as=string

“Extracting Multiple
Components from a URL”
on page 209

“Defining Parameters” on
page 217

param name=string (required)

as=string

values=string

match=string

default=string

required = true
 | false

repeatable = true
 | false

pattern = <regex>

“Defining Parameters” on
page 217

“Supporting Parameters
Specified in a URL” on
page 218.

“Matching Regular
Expressions in Parameters
with the match and pattern
Attributes” on page 221

http method = string
(required)

user-params = ignore
 | allow
 | allow-dups
 | forbid

param

auth

function

accept

user-agent

and

or

0..n

0..n

0..n

0..n

0..n

0..n

0..n

 “Handling HTTP Verbs” on
page 213

“Adding Conditions” on
page 223.

auth privilege

kind

0..n

0..n

“Authentication Condition”
on page 224

function ns=string (required)

apply=string (required)

at=string (required)

“Function Condition” on
page 225

Element Attributes
Child

Elements

Number
of

Children
For More Information

MarkLogic Server Creating an Interpretive XQuery Rewriter to Support

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 208

16.6 Validating options Node Elements
You can use the rest:check-options function to validate an options node against the REST
schema. For example, to validate the options node defined in the requests.xqy module described
in “A Simple XQuery Rewriter and Endpoint” on page 202, you would do the following:

xquery version "1.0-ml";

import module namespace rest = "http://marklogic.com/appservices/rest"
 at "/MarkLogic/appservices/utils/rest.xqy";

import module namespace requests =
 "http://marklogic.com/appservices/requests" at "requests.xqy";

rest:check-options($requests:options)

An empty sequence is returned if the options node is valid. Otherwise an error is returned.

You can also use the rest:check-request function to validate request elements in an options
node. For example, to validate all of the request elements in the options node defined in the
requests.xqy module described in “A Simple XQuery Rewriter and Endpoint” on page 202, you
would do the following:

xquery version "1.0-ml";

import module namespace rest = "http://marklogic.com/appservices/rest"
 at "/MarkLogic/appservices/utils/rest.xqy";

declare option xdmp:mapping "false";

rest:check-request($requests:options/rest:request)

An empty sequence is returned if the request elements are valid. Otherwise an error is returned.

Note: Before calling the rest:check-request function, you must set xdmp:mapping to
false to disable function mapping.

MarkLogic Server Creating an Interpretive XQuery Rewriter to Support

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 209

16.7 Extracting Multiple Components from a URL
An options node may include one or more request elements, each of which may contain one or
more uri-param elements that assign parameters to parts of the request URL. The purpose of each
request element is to detect a particular URL pattern and then call an endpoint with one or more
parameters. Extracting multiple components from a URL is simply a matter of defining a request
element with a regular expression that recognizes particular URL pattern and then binding the
URL parts of interest to variables.

For example, you want expand the capability of the rewriter described in “A Simple XQuery
Rewriter and Endpoint” on page 202 and add the ability to use a URL like the one below to
display an individual act in a Shakespeare play:

http://localhost:8060/macbeth/act3

The options node in requests.xqy might look like the one below, which contains two request
elements. The rewriter employs a “first-match” rule, which means that it tries to match the
incoming URL to the request elements in the order they are listed and selects the first one
containing a regular expression that matches the URL. In the example below, if an act is specified
in the URL, the rewriter uses the first request element. If only a play is specified in the URL,
there is no match in the first request element, but there is in the second request element.

Note: The default parameter type is string. Non-string parameters must be explicitly
typed, as shown for the act parameter below. For more information on typing
parameters, see “Parameter Types” on page 218.

<options>
 <request uri="^/(.+)/act(\d+)$" endpoint="/endpoint.xqy">
 <uri-param name="play">$1.xml</uri-param>
 <uri-param name="act" as="integer">$2</uri-param>
 </request>
 <request uri="^/(.+)/?$" endpoint="/endpoint.xqy">
 <uri-param name="play">$1.xml</uri-param>
 </request>
</options>

When an act is specified in the incoming URL, the first request element binds macbeth and 3 to
the variables $1 and $2, respectively, and then assigns them to the parameters named, play and
act. The URL rewritten by the rest:rewrite function looks like:

/endpoint.xqy?play=macbeth.xml&act=3

MarkLogic Server Creating an Interpretive XQuery Rewriter to Support

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 210

The following is an example endpoint module that can be invoked by a rewriter that uses the
options node shown above. As described in “A Simple XQuery Rewriter and Endpoint” on
page 202, the rest:process-request function in the endpoint uses the request element to parse
the incoming request and return a map that contains all of the parameters as typed values. Each
parameter is then extracted from the map by means of a map:get function. If the URL that invokes
this endpoint does not include the act parameter, the value of the $num variable will be an empty
sequence.

Note: The first request element that calls the endpoint.xqy module is used in this
example because, based on the first-match rule, this element is the one that
supports both the play and act parameters.

xquery version "1.0-ml";

import module namespace rest = "http://marklogic.com/appservices/rest"
 at "/MarkLogic/appservices/utils/rest.xqy";

import module namespace requests =
 "http://marklogic.com/appservices/requests" at "requests.xqy";

 let $request := $requests:options/rest:request
 [@endpoint = "/endpoint.xqy"][1]

 let $map := rest:process-request($request)
 let $play := map:get($map, "play")
 let $num := map:get($map, "act")

return
 if (empty($num))
 then
 fn:doc($play)
 else
 fn:doc($play)/PLAY/ACT[$num]

MarkLogic Server Creating an Interpretive XQuery Rewriter to Support

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 211

16.8 Handling Errors
The REST endpoint library includes a rest:report-error function that performs a simple
translation of MarkLogic Server error markup to HTML. You can invoke it in your modules to
report errors:

try {
 let $params := rest:process-request($request)
 return
 ...the non-error case...
} catch ($e) {
 rest:report-error($e)
}

If the user agent making the request accepts text/html, a simple HTML-formatted response is
returned. Otherwise, it returns the raw error XML.

You can also use this function in an error handler to process all of the errors for a particular
application.

16.9 Handling Redirects
As shown in the previous sections of this chapter, the URL rewriter translates the requested URL
into a new URL for dispatching within the server. The user agent making the request is totally
unaware of this translation. As REST Librarys mature and expand, it is sometimes useful to use
redirection to respond to a request by telling the user agent to reissue the request at a new URL.

For example, previous users accessed the macbeth play using the following URL pattern:

http://localhost:8060/Shakespeare/macbeth

You want to redirect the URL to:

http://localhost:8060/macbeth

The user can tell that this redirection happened because the URL in the browser address bar
changes from the old URL to the new URL, which can then be bookmarked by the user.

MarkLogic Server Creating an Interpretive XQuery Rewriter to Support

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 212

You can support such redirects by adding a redirect.xqy module like this one to your application:

xquery version "1.0-ml";

import module namespace rest="http://marklogic.com/appservices/rest"
 at "/MarkLogic/appservices/utils/rest.xqy";

import module namespace requests =
 "http://marklogic.com/appservices/requests" at "requests.xqy";

(: Process requests to be handled by this endpoint module. :)
let $request := $requests:options/rest:request
 [@endpoint = "/redirect.xqy"][1]

let $params := rest:process-request($request)

(: Get parameter/value map from request. :)
let $query := fn:string-join(
 for $param in map:keys($params)
 where $param != "__ml_redirect__"
 return
 for $value in map:get($params, $param)
 return
 fn:concat($param, "=", fn:string($value)),
 "&")

(: Return the name of the play along with any parameters. :)
let $ruri := fn:concat(map:get($params, "__ml_redirect__"),
 if ($query = "") then ""
 else fn:concat("?", $query))

(: Set response code and redirect to new URL. :)
return
 (xdmp:set-response-code(301, "Moved permanently"),
 xdmp:redirect-response($ruri))

In the options node in requests.xqy, add the following request elements to perform the redirect:

<request uri="^/shakespeare/(.+)/(.+)" endpoint="/redirect.xqy">
 <uri-param name="__ml_redirect__">/$1/$2</uri-param>
</request>
<request uri="^/shakespeare/(.+)" endpoint="/redirect.xqy">
 <uri-param name="__ml_redirect__">/$1</uri-param>
</request>

MarkLogic Server Creating an Interpretive XQuery Rewriter to Support

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 213

Your options node will look like the following one shown. Note that the request elements for the
redirect.xqy module are listed before those for the endpoint.xqy module. This is because of the
“first-match” rule described in “Extracting Multiple Components from a URL” on page 209.

<options xmlns="http://marklogic.com/appservices/rest">
 <request uri="^/shakespeare/(.+)/(.+)" endpoint="/redirect.xqy">
 <uri-param name="__ml_redirect__">/$1/$2</uri-param>
 </request>
 <request uri="^/shakespeare/(.+)" endpoint="/redirect.xqy">
 <uri-param name="__ml_redirect__">/$1</uri-param>
 </request>
 <request uri="^/(.+)/act(\d+)" endpoint="/endpoint.xqy">
 <uri-param name="play">$1.xml</uri-param>
 <uri-param name="act" as="integer">$2</uri-param>
 </request>
 <request uri="^/(.+)$" endpoint="/endpoint.xqy">
 <uri-param name="play">$1.xml</uri-param>
 </request>
</options>

You can employ as many redirects as you want through the same redirect.xqy module by
changing the value of the __ml_redirect__ parameter.

16.10 Handling HTTP Verbs
A request that doesn't specify any verbs only matches HTTP GET requests. If you want to match
other verbs, simply list them by using the http element with a method attribute in the request
element:

<request uri="^/(.+?)/?$" endpoint="/endpoint.xqy">
 <uri-param name="play">$1.xml</uri-param>
 <http method="GET"/>
 <http method="POST"/>
</request>

This request will match (and validate) if the request method is either an HTTP GET or an HTTP
POST.

The following topics describe use cases for mapping requests with verbs and simple endpoints
that service those requests:

• Handling OPTIONS Requests

• Handling POST Requests

MarkLogic Server Creating an Interpretive XQuery Rewriter to Support

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 214

16.10.1 Handling OPTIONS Requests
You may find it useful to have a mechanism that returns the options node or a specific request
element in the options node. For example, you could automate some aspects of unit testing based
on the ability to find the request element that matches a given URL. You can implement this type
of capability by supporting the OPTIONS method.

Below is a simple options.xqy module that handles requests that specify an OPTIONS method. If
the request URL is /, the options.xqy module returns the entire options element, exposing the
complete set of endpoints. When the URL is not /, the module returns the request element that
matches the URL.

xquery version "1.0-ml";

import module namespace rest="http://marklogic.com/appservices/rest"
 at "/MarkLogic/appservices/utils/rest.xqy";

import module namespace requests =
 "http://marklogic.com/appservices/requests" at "requests.xqy";

(: Process requests to be handled by this endpoint module. :)
let $request := $requests:options/rest:request
 [@endpoint = "/options.xqy"][1]

(: Get parameter/value map from request. :)
let $params := rest:process-request($request)
let $uri := map:get($params, "__ml_options__")
let $accept := xdmp:get-request-header("Accept")
let $params := map:map()

(: Get request element that matches the specified URL. :)
let $request := rest:matching-request($requests:options,
 $uri,
 "GET",
 $accept,
 $params)

(: If URL is ‘/’, return options node. Otherwise, return request
 element that matches the specified URL. :)
return
 if ($uri = "/")
 then
 $requests:options
 else
 $request

MarkLogic Server Creating an Interpretive XQuery Rewriter to Support

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 215

Add the following request element to requests.xqy to match any HTTP request that includes an
OPTIONS method.

<request uri="^(.+)$" endpoint="/options.xqy" user-params="allow">
 <uri-param name="__ml_options__">$1</uri-param>
 <http method="OPTIONS"/>
</request>

Open Query Console and enter the following query, replacing name and password with your login
credentials:

xdmp:http-options("http://localhost:8011/",
<options xmlns="xdmp:http">
 <authentication method="digest">
 <username>name</username>
 <password>password</password>
 </authentication>
</options>)

Because the request URL is /, the entire options node will be returned. To see the results when
another URL is used, enter the following query in Query Console:

xdmp:http-options("http://localhost:8011/shakespeare/macbeth",
<options xmlns="xdmp:http">
 <authentication method="digest">
 <username>name</username>
 <password>password</password>
 </authentication>
</options>)

Rather than the entire options node, the request element that matches the given URL is returned:

<request uri="^/shakespeare/(.+)" endpoint="/redirect.xqy"
 xmlns="http://marklogic.com/appservices/rest">
 <uri-param name="__ml_redirect__">/$1</uri-param>
</request>

You can use it by adding the following request to the end of your options:

<request uri="^(.+)$" endpoint="/options.xqy" user-params="allow">
 <uri-param name="__ml_options__">$1</uri-param>
 <http method="OPTIONS"/>
</request>

If some earlier request directly supports OPTIONS then it will have priority for that resource.

MarkLogic Server Creating an Interpretive XQuery Rewriter to Support

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 216

16.10.2 Handling POST Requests
You may want the ability to support the POST method to implement RESTful content management
features, such as loading content into a database.

Below is a simple post.xqy module that accepts requests that include the POST method and inserts
the body of the request into the database at the URL specified by the request.

xquery version "1.0-ml";

import module namespace rest="http://marklogic.com/appservices/rest"
 at "/MarkLogic/appservices/utils/rest.xqy";

import module namespace requests =
 "http://marklogic.com/appservices/requests" at "requests.xqy";

(: Process requests to be handled by this endpoint module. :)
let $request := $requests:options/rest:request
 [@endpoint = "/post.xqy"][1]

(: Get parameter/value map from request. :)
let $params := rest:process-request($request)
let $posturi := map:get($params, "_ml_post_")
let $type := xdmp:get-request-header('Content-Type')

(: Obtain the format of the content. :)
let $format :=
 if ($type = 'application/xml' or ends-with($type, '+xml'))
 then
 "xml"
 else
 if (contains($type, "text/"))
 then "text"
 else "binary"

(: Insert the content of the request body into the database. :)
let $body := xdmp:get-request-body($format)

return
 (xdmp:document-insert($posturi, $body),
 concat("Successfully uploaded: ", $posturi, "
"))

Add the following request element to requests.xqy. If the request URL is /post/filename, the
rewriter will issue an HTTP request to the post.xqy module that includes the POST method.

<request uri="^/post/(.+)$" endpoint="/post.xqy">
 <uri-param name="_ml_post_">$1</uri-param>
 <http method="POST"/>
</request>

MarkLogic Server Creating an Interpretive XQuery Rewriter to Support

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 217

To test the post.xqy endpoint, open Query Console and enter the following query, replacing
‘name’ and ‘password’ with your MarkLogic Server login credentials:

let $document:= xdmp:quote(
 <html>
 <title>My Document</title>
 <body>
 This is my document.
 </body>
 </html>)

return
 xdmp:http-post("http://localhost:8011/post/mydoc.xml",
 <options xmlns="xdmp:http">
 <authentication method="digest">
 <username>name</username>
 <password>password</password>
 </authentication>
 <data>{$document}</data>
 <headers>
 <content-type>text/xml</content-type>
 </headers>
 </options>)

Click the Query Console Explore button and locate the /mydoc.xml document in the Documents
database.

16.11 Defining Parameters
This section details the uri-param and param elements in a request element. The topics in this
section are:

• Parameter Types

• Supporting Parameters Specified in a URL

• Required Parameters

• Default Parameter Value

• Specifying a List of Values

• Repeatable Parameters

• Parameter Key Alias

• Matching Regular Expressions in Parameters with the match and pattern Attributes

MarkLogic Server Creating an Interpretive XQuery Rewriter to Support

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 218

16.11.1 Parameter Types
By default, a parameter is typed as a string. Other types of parameters, such as integers or
booleans, must be explicitly typed in the request element. Using the example request element
from “Extracting Multiple Components from a URL” on page 209, the act parameter must be
explicitly defined as an integer.

 <request uri="^/(.+)/act(\d+)$" endpoint="/endpoint.xqy">
 <uri-param name="play">$1.xml</uri-param>
 <uri-param name="act" as="integer">$2</uri-param>
 </request>

You can define a parameter type using any of the types supported by XQuery, as described in the
specification, XML Schema Part 2: Datatypes Second Edition:

http://www.w3.org/TR/xmlschema-2/

16.11.2 Supporting Parameters Specified in a URL
The REST Library supports parameters entered after the URL path with the following format:

http://host:port/url-path?param=value

For example, you want the endpoint.xqy module to support a "scene" parameter, so you can enter
the following URL to return Macbeth, Act 4, Scene 2:

http://localhost:8011/macbeth/act4?scene=2

To support the scene parameter, modify the first request element for the endpoint module as
shown below. The match attribute in the param element defines a subexpression, so the parameter
value is assigned to the $1 variable, which is separate from the $1 variable used by the uri_param
element.

<request uri="^/(.+)/act(\d+)$" endpoint="/endpoint.xqy">
 <uri-param name="play">$1.xml</uri-param>
 <uri-param name="act" as="integer">$2</uri-param>
 <param name="scene" as="integer" match="(.+)">$1</param>
</request>

http://www.w3.org/TR/xmlschema-2/

MarkLogic Server Creating an Interpretive XQuery Rewriter to Support

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 219

Rewrite the endpoint.xqy module as follows to add support for the scene parameter:

xquery version "1.0-ml";

import module namespace rest = "http://marklogic.com/appservices/rest"
 at "/MarkLogic/appservices/utils/rest.xqy";

import module namespace requests =
 "http://marklogic.com/appservices/requests" at "requests.xqy";

let $request := $requests:options/rest:request
 [@endpoint = "/requests.xqy"][1]

let $map := rest:process-request($request)
let $play := map:get($map, "play")
let $num := map:get($map, "act")
let $scene := map:get($map, "scene")

return
 if (empty($num))
 then
 fn:doc($play)
 else if (empty($scene))
 then
 fn:doc($play)/PLAY/ACT[$num]
 else
 fn:doc($play)/PLAY/ACT[$num]/SCENE[$scene]

Now the rewriter and the endpoint will both recognize a scene parameter. You can define any
number of parameters in a request element.

16.11.3 Required Parameters
By default parameters defined by the param element are optional. You can use the required
attribute to make a parameter required. For example, you can use the required attribute as shown
below to make the scene parameter required so that a request URL that doesn't have a scene will
not match and an attempt to call the endpoint without a scene raises an error.

<param name="scene" as="integer" match="(.+)" required="true">
 $1
</param>

16.11.4 Default Parameter Value
You can provide a default value for a parameter. In the example below, a request for an act
without a scene parameter will return scene 1 of that act:

<param name="scene" as="integer" match="(.+)" default="1">
 $1
</param>

MarkLogic Server Creating an Interpretive XQuery Rewriter to Support

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 220

16.11.5 Specifying a List of Values
For parameters like scene, you may want to specify a delimited list of values. For example, to
support only requests for scenes 1, 2, and 3, you would do the following:

<param name="scene" as="integer" values="1|2|3" default="1"/>

16.11.6 Repeatable Parameters
You can mark a parameter as repeatable. For example, you want to allow a css parameter to
specify additional stylesheets for a particular play. You might want to allow more than one, so you
could add a css parameter like this:

<param name="css" repeatable="true"/>

In the rewriter, this would allow any number of css parameters. In the endpoint, there would be a
single css key in the parameters map but its value would be a list.

16.11.7 Parameter Key Alias
There may be circumstances in which you want to interpret different key values in the incoming
URL as a single key value.

For example, jQuery changes the key names if the value of a key is an array. So, if you ask
JQuery to invoke a call with { "a": "b", "c": ["d", "e"] }, you get the following URL:

http://whatever/endpoint?a=b&c[]=d&c[]=e

You can use the alias attribute as shown below so that the map you get back from the
rest:process-request function will have a key value of "c" regardless of whether the incoming
URL uses c= or c[]= in the parameters:

<param name="c" alias="c[]" repeatable="true"/

MarkLogic Server Creating an Interpretive XQuery Rewriter to Support

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 221

16.11.8 Matching Regular Expressions in Parameters with the match and
pattern Attributes

As shown in “Supporting Parameters Specified in a URL” on page 218, you can use the match
attribute to perform the sort of match and replace operations on parameter values that you can
perform on parts of the URL using the uri attribute in the request element. You can use the
pattern attribute to test the name of the parameter. This section goes into more detail on the use of
the match attribute and the pattern attribute. This section has the following parts:

• match Attribute

• pattern Attribute

16.11.8.1match Attribute
The match attribute in the param element defines a subexpression with which to test the value of
the parameter, so the captured group in the regular expression is assigned to the $1 variable.

You can use the match attribute to translate parameters. For example, you want to translate a
parameter that contains an internet media type and you want to extract part of that value using the
match attribute. The following will translate format=application/xslt+xml to format=xslt.

<param name="format" match="^application/(.*?)(\+xml)?$">
 $1
</param>

If you combine matching in parameters with validation, make sure that you validate against the
transformed value. For example, this parameter will never match:

<param name="test" values="foo|bar" match="^(.+)$">
 baz-$1
</param>

Instead, write it this way:

<param name="test" values="baz-foo|baz-bar" match="^(.+)$">
 baz-$1
</param>

In other words, the value that is validated is the transformed value.

MarkLogic Server Creating an Interpretive XQuery Rewriter to Support

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 222

16.11.8.2pattern Attribute
The param element supports a pattern attribute, which uses the specified regular expression to
match the name of the parameter. This allows you to specify a regular expression for matching
parameter names, for example:

pattern='xmlns:.+'

pattern='val[0-9]+'

Exactly one of name or pattern must be specified. It is an error if the name of a parameter passed
to the endpoint matches more than one pattern.

MarkLogic Server Creating an Interpretive XQuery Rewriter to Support

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 223

16.12 Adding Conditions
You can add conditions, either in the body of the request, in which case they apply to all verbs, or
within a particular verb. For example, the request element below contains an auth condition for
the POST verb and a user-agent condition for both GET and POST verbs.

<request uri="^/slides/(.+?)/?$" endpoint="/slides.xqy">
 <uri-param name="play">$1.xml</uri-param>
 <http method="GET"/>
 <http method="POST">
 <auth>
 <privilege>http://example.com/privs/editor</privilege>
 <kind>execute</kind>
 </auth>
 </http>
 <user-agent>ELinks</user-agent>
</request>

With this request, only users with the specified execute privilege can POST to that URL. If a user
without that privilege attempts to post, this request won't match and control will fall through to
the next request. In this way, you can provide fallbacks if you wish.

In a rewriter, failing to match a condition causes the request not to match. In an endpoint, failing
to match a condition raises an error.

The topics in this section are:

• Authentication Condition

• Accept Headers Condition

• User Agent Condition

• Function Condition

• And Condition

• Or Condition

• Content-Type Condition

MarkLogic Server Creating an Interpretive XQuery Rewriter to Support

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 224

16.12.1 Authentication Condition
You can add an auth condition that checks for specific privileges using the following format:

<auth>
 <privilege>privilege-uri</privilege>
 <kind>kind</kind>
</auth>

For example, the request element described for POST requests in “Handling POST Requests” on
page 216 allows any user to load documents into the database. To restrict this POST capability to
users with infostudio execute privilege, you can add the following auth condition to the request
element:

<request uri="^/post/(.+)$" endpoint="/post.xqy">
 <uri-param name="_ml_post_">$1</uri-param>
 http method="POST">
 <auth>
 <privilege>
 http://marklogic.com/xdmp/privileges/infostudio
 </privilege>
 <kind>execute</kind>
 </auth>
 </http>
</request>

The privilege can be any specified execute or URL privilege. If unspecified, kind defaults to
execute.

16.12.2 Accept Headers Condition
When a user agent requests a URL, it can also specify the kinds of responses that it is able to
accept. These are specified in terms of media types. You can specify the media type(s) that are
acceptable with the accept header.

For example, to match only user agent requests that can accept JSON responses, specify the
following accept condition in the request:

<accept>application/json</accept>

16.12.3 User Agent Condition
You can also match on the user agent string. A request that specifies the user-agent shown below
will only match user agents that identify as the ELinks browser.

<user-agent>ELinks</user-agent>

MarkLogic Server Creating an Interpretive XQuery Rewriter to Support

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 225

16.12.4 Function Condition
The function condition gives you the ability to test for arbitrary conditions. By specifying the
namespace, local name, and module of a function, you can execute arbitrary code:

<function ns="http://example.com/module"
 apply="my-function"
 at="utils.xqy"/>

A request that specifies the function shown above will only match requests for which the
specified function returns true. The function will be passed the URL string and the function
condition element.

16.12.5 And Condition
An and condition must contain only conditions. It returns true if and only if all of its child
conditions return true.

<and>
 ...conditions...
</and>

If more than one condition is present at the top level in a request, they are treated as they occurred
in an and.

For example, the following condition matches only user agent requests that can accept responses
in HTML from an ELinks browser:

<and>
 <accept>text/html</accept>
 <user-agent>ELinks</user-agent>
</and>

Note: There is no guarantee that conditions will be evaluated in any particular order or
that all conditions will be evaluated.

MarkLogic Server Creating an Interpretive XQuery Rewriter to Support

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 226

16.12.6 Or Condition
An or condition must contain only conditions. It returns true if and only if at least one of its child
conditions return true.

<or>
 ...conditions...
</or>

For example, the following condition matches only user agent requests that can accept responses
in HTML or plain text:

<or>
 <accept>text/html</accept>
 <accept>text/plain</accept>
</or>

Note: There is no guarantee that conditions will be evaluated in any particular order or
that all conditions will be evaluated.

16.12.7 Content-Type Condition
A content-type condition is a condition that returns true if the request has a matching content
type. The content-type condition is allowed everywhere that conditions are allowed.

16.13 Preparing to Run the Examples
Before you can run the examples in this chapter, you must perform the following steps:

• Load the Example Data

• Create the Example App Server

16.13.1 Load the Example Data
The examples in this chapter assume you have the Shakespeare plays in the form of XML files
loaded into a database. The easiest way to load the XML content into the Documents database is to
do the following:

• Open Query Console and set the Database to Documents.

• Copy the query below into a Query Console window.

• Set the Query Type to XQuery.

• Click Run to run the query.

The following query loads the current database with the XML files in a zip file containing the
plays of Shakespeare:

xquery version "1.0-ml";

MarkLogic Server Creating an Interpretive XQuery Rewriter to Support

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 227

import module namespace ooxml= "http://marklogic.com/openxml"
 at "/MarkLogic/openxml/package.xqy";

xdmp:set-response-content-type("text/plain"),
let $zip-file :=
 xdmp:document-get("http://www.ibiblio.org/bosak/xml/eg/shaks200.zip")

return for $play in ooxml:package-uris($zip-file)
 where fn:contains($play , ".xml")
 return (let $node := xdmp:zip-get ($zip-file, $play)
 return xdmp:document-insert($play, $node))

Note: The XML source for the Shakespeare plays is subject to the copyright stated in the
shaksper.htm file contained in the zip file.

16.13.2 Create the Example App Server
Follow this procedure to create an HTTP App Server with which to exercise the examples in this
chapter.

1. In the Admin Interface, click the Groups icon in the left tree menu.

2. Click the group in which you want to define the HTTP server (for example, Default).

3. Click the App Servers icon on the left tree menu and create a new HTTP App Server.

4. Name the HTTP App Server bill, assign it port 8060, specify bill as the root directory,
and Documents as the database.

MarkLogic Server Creating an Interpretive XQuery Rewriter to Support

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 228

5. Create a new directory under the MarkLogic root directory, named bill to hold the
modules you will create as part of the examples in this chapter.

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 229

17.0 Creating a Declarative XML Rewriter to Support REST
Web Services

270

The Declarative XML Rewriter serves the same purpose as the Interpretive XQuery Rewriter
described in “Creating an Interpretive XQuery Rewriter to Support REST Web Services” on
page 200. The XML rewriter has many more options for affecting the request environment than
the XQuery rewriter. However, because it is designed for efficiency, XML rewriter doesn’t have
the expressive power of the XQuery rewriter or access to the system function calls. Instead a
select set of match and evaluation rules are available to support a large set of common cases.

The topics in this chapter are:

• Overview of the XML Rewriter

• Configuring an App Server to use the XML Rewriter

• Input and Output Contexts

• Regular Expressions (Regex)

• Match Rules

• System Variables

• Evaluation Rules

• Termination Rules

• Simple Rewriter Examples

17.1 Overview of the XML Rewriter
The XML rewriter is an XML file that contains rules for matching request values and preparing
an environment for the request. If all the requested updates are accepted, then the request precedes
with the updated environment, otherwise an error or warning is logged. The XQuery rewriter can
only affect the request URI (Path and Query parameters). The XML rewriter, on the other hand,
can change the content database, modules database, transaction ID, and other settings that would
normally require an eval-into in an XQuery application. In some cases (such as requests for
static content) the need for using XQuery code can be eliminated entirely for that request while
still intercepting requests for dynamic content.

The XML rewriter enables XCC clients to communicate on the same port as REST and HTTP
clients. You can also execute requests with the same features as XCC but without using the XCC
library.

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 230

17.2 Configuring an App Server to use the XML Rewriter
To use an XML rewriter simply specify the XML rewriter (a file with an .xml extension) in the
rewriter field for the server configuration of any HTTP server.

For example, the XML rewriter for the App-Services server at port 8000 is located in:

<marklogic-dir>/Modules/MarkLogic/rest-api/8000-rewriter.xml

17.3 Input and Output Contexts
The rewriter is invoked with a defined input context. A predefined set of modifications to the
context is applied to the output context. These modifications are returned to the request handler
for validation and application. The rewriter itself does not directly implement any changes to the
input or output contexts.

The topics in this section are:

• Input Context

• Output Context

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 231

17.3.1 Input Context
The rewriter input context consists of a combination of matching properties accessible by the
match rules described in “Match Rules” on page 234, or global system variables described in
“System Variables” on page 251. When a matching rule for a property is evaluated, it produces
locally scoped variables for the results of the match, which can be used by child rules.

The properties listed in the table below are available as the context of a match rule. Where
"regex" is indicated, a match is done by a regular expression. Otherwise matches are “equals” of
one or more components of the property.

Property / Description Will Support Match by

path regex

param name
[value]

HTTP header name
[value]

HTTP method name in list

user name or id

default user is default user

execute privilege in list

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 232

17.3.2 Output Context
The output context consists of values and actions that the rewriter is able (and allowed) to
perform. These can be expressed as a set of context values and rewriter commands allowed on
those values. Any of the output context properties can be omitted, in which case the
corresponding input context is not modified. The simple case is no output from the rewriter and
no changes to the input context. For example, if the output specifies a new database ID but it is the
same as the current database, then no changes are required. The rewriter will not generate any
conflicting output context, but it is ultimately up to the request handler to validate the changes for
consistency as well as any other constraints, such as permissions. If the rewriter results in actions
that are disallowed or invalid, such as setting to a nonexistent database or rewriting to an endpoint
to which the user does not have permissions, then error handling is performed.

The input context properties, external path and external query, can be modified in the output
context. There are other properties that can be added to the output context, such as to direct the
request to a particular database or to set up a particular transaction, as shown in the table below.

* These are modified from the input context.

Property Description

path* Rewritten path component of the URI

query* Rewritten query parameters

module-database Modules Database

root Modules Root path

database Database

eval True if to evaluate path
False for direct access

transaction Transaction ID

transaction mode Specify a query or update transaction mode.

error format Specifies the error format for server generated errors

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 233

17.4 Regular Expressions (Regex)
A common use case for paths in particular is the concept of "Match and Extract" (or "Match /
Capture") using a regular expression.

As is the case with the regular expression rules for the fn:replace XQuery function, only the first
(non overlapping) match in the string is processed and the rest ignored.

For example given the path shown below, you may want to both match the general form and at the
same time extract components in one expression.

/admin/v2/meters/databases/12345/total/file.xqy

The following path match rule regex matches the above path and also extracts the desired
components ("match groups") and sets them into the local context as numbered variables, as
shown in the table below.

<match-path matches="/admin/v(.)/([a-z]+)/([a-z]+)/([0-9]+)/([a-z]+)/.+\.xqy">

The extracted values could then be used to construct output values such as additional query
parameters.

Note: No anchors (“^$”) are used in this example, so the expression could also match
a string, such as the one below and provide the same results.

somestuff/admin/v2/meters/databases/12345/total/file.xqy/morestuff

Wherever a rule that matches a regex (indicated by the matches attribute) a flags option is
allowed. Only the "i" flag (case insensitive) is currently supported.

Variable Value

$0 /admin/v2/meters/databases/12345/total/file.xqy

$1 2

$2 meters

$3 databases

$4 12345

$5 total

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 234

17.5 Match Rules
Match rules control the evaluator execution flow. They are evaluated in several steps:

1. An Eval is performed on the rule to determine if it is a match

2. If it is a match, then the rule may produce zero or more "Eval Expressions" (local
variables $*,$0 ... $n)

3. If it is a match then the evaluator descends into the match rule, otherwise the match is
considered "not match" and the evaluator continues onto the next sibling.

4. If this is the last sibling then the evaluator "ascends" to the parent

Descending: When descending a match rule on match the following steps occur:

1. If "scoped" (attribute scoped=true) the current context (all in-scope user-defined variables
and all currently active modification requests) is pushed.

2. Any Eval Expressions from the parent are cleared ($*,$0..$n) and replaced with the Eval
Expressions produced by the matching node.

3. Evaluation proceeds at the first child node.

Ascending: When Ascending (after evaluating the last of the siblings) the evaluator Ascends to
the parent node. The following steps occur:

1. If the parent was scoped (attribute scoped=true) then the current context is popped and
replaced by the context of the parent node. Otherwise the context is left unchanged.

2. Eval Expressions ($*,$0...) popped and replaced with the parents in-scope eval
expressions.

Note: This is unaffected by the scoped attribute, Eval expressions are always scoped to
only the immediate children of the match node that produced them.)

3. Evaluation proceeds at the next sibling of the parent node.

Note: Ascending is a rare case and must be avoided, if possible.

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 235

The table below summarizes the match rules. A detailed description of each rule follows.

17.5.1 rewriter
Root element of the rewriter rule tree.

Attributes: none

Example:

Simple rewriter that redirects anything to /home/** to the module gohome.xqy otherwise passes
through the request

<rewriter xmlns="http://marklogic.com/xdmp/rewriter">
 <match-path prefix="/home/">
 <dispatch>gohome.xqy</dispatch>
 </match-path>
</rewriter>

Element Description

rewriter Root element of the rewriter rule tree.

match-accept Matches on an HTTP Accept header

match-content-type Matches on an HTTP Content-Type header

match-cookie Match on a cookie

match-execute-privilege Match on the users execute privileges

match-header Match on an HTTP Header

match-method Match on the HTTP Method

match-path Match on the request path

match-role Match on the users assigned roles

match-string Matches a string value against a regular expression

match-query-param Match on a uri parameter (query parameter)

match-user Match on a user name, id or default user

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 236

17.5.2 match-accept
Matches on the Accept HTTP Header.

Attributes

Child Context Modifications

Note: The match is performed as a case sensitive match against the literal strings of the
type/subtype. No evaluation of expanding subtype, media ranges or quality factors
are performed.

Example:

Dispatch to /handle-text.xqy if the media types application/xml or text/plain are specified in
the Accept header.

<match-accept any-of="application/xml text/html">
 <dispatch>/handle-text.xqy</dispatch>
</match-accept>

Name Type Required Purpose

@any-of list of strings yes Matches if the Accept header contains any of
media types specified.

@scoped boolean no
default false

Indicates this rule creates a new "scope" context
for its children.

@repeated boolean no
default false

If false then repeated matches are an immediate
error.

Variable Type Value

$0 string The media types matched as a string

$* list of strings The media types matched as a List of String

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 237

17.5.3 match-content-type
Matches on the Content-Type HTTP Header.

Attributes

Child Context Modifications

Note: The match is performed as a case sensitive match against the literal strings of the
type/subtype. No evaluation of expanding subtype, media ranges or quality factors
are performed.

Example:

Dispatch to /handle-text.xqy if the media types application/xml or text/plain are specified in
the Content-Type header.

<match-content-type any-of="application/xml text/html">
 <dispatch>/handle-text.xqy</dispatch>
</match-content-type>

Name Type Required Purpose

@any-of list of strings yes Matches if the Content-Type header
contains any of types specified.

@scoped boolean no
default false

Indicates this rule creates a new "scope"
context for its children.

Variable Type Value

$0 string The first types matched as a string.

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 238

17.5.4 match-cookie
Matches on a cookie by name. Cookies are an HTTP Header with a well-known structured
format.

Attributes

Child Context Modifications

Example:

Set the variable $session to the cookie value SESSIONID, if it exists:

<match-cookie name="SESSIONID">
 <set-var name="session">$0</set-var>

</match-cookie>

Name Type Required Purpose

@name string yes Matches if the cookie of the specified name exists.

Cookie names are matched in a case-insensitive
manner.

@scoped boolean no

default false

Indicates this rule creates a new "scope" context
for its children.

Variable Type Value

$0 string The text value of the matching cookie.

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 239

17.5.5 match-execute-privilege
Match on the users execute privileges

Attributes

* Exactly One of @any-of or @all-of of is required

Note: The execute privilege must be the URI not the name. See the example.

Child Context modifications:

Example:

Dispatches if the user has either the admin-module-read or admin-ui privilege.

<match-execute-privilege
 any-of="http://marklogic.com/xdmp/privileges/admin-module-read
 http://marklogic.com/xdmp/privileges/admin-ui">
 <dispatch/>
</match-execute-privilege>

Note: In the XML format you can use newlines in the attribute

Name Type Required Purpose

@any-of list of uris no* Matches if the user has at least one of the specified
execute privileges

@all-of list of uris no* Matches if the user has all of the specified execute
privileges

@scoped boolean no
default false

Indicates this rule creates a new "scope" context for
its children.

Variable Type Value

$0 string The matching privileges. For more than one match it is converted
to a space delimited string

$* list of strings All of the matching privileges as a List of String

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 240

17.5.6 match-header
Match on an HTTP Header

Attributes

Only one of @value or @matches is allowed but both may be omitted.

Child Context modifications:

If @value is specified, then $0 is set to the matching value

If there is no @matches or @value attribute, then $0 is the entire text content of the header of that
name. If more than one header matches, then @repeated indicates if this is an error or allowed. If
allowed (true), then $* is set to each individual value and $0 to the space delimited concatenation
of all headers. If false (default) multiple matches generates an error.

Name Type Required Purpose

@name string yes Matches if a header exists equal to the name.

HTTP Header names are matched with a case
insensitive string equals.

@value string no Matches if a header exists with the name and
value.

The name is compared case insensitive, the value
is case sensitive.

@matches regex no Matches by regex

@flags string no Optional regex flags.

"i" for case insensitive.

@scoped boolean no

default false

Indicates this rule creates a new "scope" context
for its children.

@repeated boolean no

default false

If false then repeated matches are an error.

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 241

If @matches is specified then, as with match-path and match-string, $0 .. $N are the results of the
regex match

Example:

Adds a query-parameter if the User agent contains Chrome/78 or Chrome/80:

<match-header name="User-Agent" matches="Chrome/78\.0">
 <add-query-param name="do-Chrome">yes</add-query-param>
 ...
</match-header>

Variable Type Value

$0 string The value of the matched header

$1....$N string Each matching group

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 242

17.5.7 match-method
Match on the HTTP Method

Attributes

At least one method name must be specified.

Child Context modifications: none

The value of the HTTP method is a system global variable, $_method, as described in “System
Variables” on page 251.

Example:

Dispatches if the method is either GET HEAD or OPTIONS AND if the user has the execute
privilege http://marklogic.com/xdmp/privileges/manage

<match-method any-of="GET HEAD OPTIONS">
 <match-execute-privilege
 any-of="http://marklogic.com/xdmp/privileges/manage">
 <set-path>/history/endpoints/resources.xqy</set-path>
 <dispatch/>
 </match-execute-privilege>
</match-method>

Name Type Required Purpose

@any-of string list yes Matches if the HTTP method is one of the
values in the list. Method names are Case
Sensitive matches.

@scoped boolean no

default false

Indicates this rule creates a new "scope"
context for its children.

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 243

17.5.8 match-path
Match on the request path. The "path" refers to the "path" component of the request URI as per
RFC3986 [https://tools.ietf.org/html/rfc3986] . Simply, this is the part of the URL after the
scheme, and authority section, starting with a "/' (even if none were given) up to but not including
the Query Param separator "?" and not including any fragment ("#").

The Path is NOT URL Decoded for the purposes of match-path, but query parameter values are
decoded (as per HTTP specifications). This is intentional so that path components can contain
what would otherwise be considered path component separates, and because HTTP specifications
make the intent clear that path components are only to be encode when the 'purpose' of the path is
ambiguous without encoding, therefore characters in a path are only supposed to be URL encoded
in the case they are intended to NOT be considered as path separator components (or reserved
URL characters).

For example, the URL:

http://localhost:8040//root%2Ftestme.xqy?name=%2Ftest

is received by the server as the HTTP request:

GET /root%2Ftestme.xqy?name=%2Ftest

This is parsed as:

PATH: /root%2Ftestme.xqy

Query (name/value pairs decoded) : ("name" , "/test")

A match-path can be used to distinguish this from a URL such as:

http://localhost:8040//root/testme.xqy?name=%2Ftest

Which would be parsed as:

PATH: /root/testme.xqy

For example, <match-path matches="/root([^/].*)"> would match the first URL but not the
second, even though they would decode to the same path.

When match results are placed into $0..$n then the default behavior is to decode the results so that
in the above case, $1 would be "/testme.xqy". This is to handle consistency with other values
which also are in decoded form, in particular when a value is set as a query parameter it is then
URL encoded as part of the rewriting. If the value was in encoded form already it would be
encoded twice resulting in the wrong value.

In the (rare) case where it is not desired for path-match to decode the results after a match the
attribute @uri-decode can be specified and set to false.

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 244

Attributes

Only one of @matches or @prefix or @any-of is allowed.

If supplied, @matches, @prefix, or @any-of must be non-empty.

@flags only applies to @matches (not @prefix or @any-of).

If none of @matches, @prefix or @any-of is specified then match-path matches all paths.

To match an empty path use matches="^$" (not matches="" which will match anything)

To match all paths omit @matches, @prefix and @any-of

Name Type Required Purpose

@matches regex no* Matches if the path matches the regular
expression

@prefix string no* Matches if the path starts with the prefix
(literal string)

@flags string no* Optional regex flags.

"i" for case insensitive.

@any-of list of strings no* Matches if the path is one of the list of
exact matches.

@url-decode boolean no

default true

If true (default) then results are URL
Decoded after extracted from the matching
part of the path

@scoped boolean no

default false

Indicates this rule creates a new "scope"
context for its children.

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 245

Child Context modifications:

Example:

<match-path
 matches="^/manage/(v2|LATEST)/meters/labels/([^F$*/?&]+)/?$">
 <add-query-param name="version">$1</add-query-param>
 <add-query-param name="label-id">$2</add-query-param>
 <set-path>/history/endpoints/labels-item.xqy</set-path>
 ...
</match-path>

Variable Type Value

$0 string The entire portion of the path that matched. For matches this is the full
matching text.

For @prefix this is the prefix pattern.

For @any-of this is which of the strings in the list matched.

$1 ... $N string Only for @matches.

The value of the numeric match group as defined by the XQuery
function fn:replace()

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 246

17.5.9 match-query-param
Match on a query parameter.

Query parameters can be matched exactly (by name and value quality) or partially (by only
specifying a name match). For exact matches only one name/value pair is matched. For partial
matches it is possible to match multiple name/value pairs with the same name when the query
parameter has multiple parameters with the same name. The repeated attribute specifies if this is
an error or not, the default (false) indicates repeated matching parameters are an error.

Attributes:

Note: If a @value parameter that is present but empty is valid and is a match for the
presence of query parameter with an empty value.

Child Context modifications:

Name Type Required Purpose

@name string yes Matches if a query parameter exists with the name

@value string no Matches if a query parameter exists with the name
and value.

@scoped boolean no

default false

Indicates this rule creates a new "scope" context for
its children.

@repeated boolean no

default false

If false then repeated matches are an immediate error.

Variable Type Value

$0 String The value(s) of the matched query parameter.

If the query parameter has multiple values that matched (due to
multiple parameters of the same name) then the matched values
are converted to a space delimited String.

$* list of strings A list of all the matched values as in $0 except as a List of String

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 247

Example:

If the query param user has the value "admin" verify AND they have execute privilege
http://marklogic.com/xdmp/privileges/manage then dispatch to /admin.xqy.

<match-query-param name="user" value="admin">
 <match-execute-privilege
 any-of="http://marklogic.com/xdmp/privileges/manage">
 <dispatch>/admin.xqy</dispatch>
 /match-execute-privilege>
</match-query-param>

If the query parameter contains a transaction then set the transaction ID.

<match-query-param name="transaction">
 <set-transaction>$0</set-transaction>
 ...
</match-query-param>

Test for the existence of an empty query parameter.

For the URI: /query.xqy?a=has-value&b=&c=cvalue

This rule will set the value of "b" to "default" if it is empty.

<match-query-param name="b" value="">
 <set-query-param name="b" value="default"/>
</match-query-param>

See match-string for an example of multiple query parameters with the same name.

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 248

17.5.10 match-role
Match on the users assigned roles

Attributes

* Exactly One of @any-of or @all-of is required

Child Context modifications:

Example:

Matches if the user has both of the roles infostudio-user AND rest-user

<match-role all-of="infostudio-user rest-user">
 ...
</match-role>

Name Type Required Purpose

@any-of list of role names (strings) no* Matches if the user has the at least
one of the specified roles

@all-of list of role names (strings) no* Matches if the user has all of the
specified roles

@scoped boolean no

default false

Indicates this rule creates a new
"scope" context for its children.

Variable Type Value

$0 string For any-of the first role that matched.

Otherwise unset, (if all-of matched, its known what those roles
are, the contents of @all-of).

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 249

17.5.11 match-string
Matches a string expression against a regular expression. If the value matches then the rule
succeeds and its children are descended.

This rule is intended to fill in gaps where the current rules are not sufficient or would be overly
complex to implement additional regular expression matching to all rules. Avoid using this rule
unless it is absolutely necessary.

Attributes

Child Context modifications:

See Regex (Regular Expressions)

Repeated matches: Regular expressions can match multiple non-overlapping portions of a string,
if the regex is not anchored to the begin and end of the string.

Name Type Required Purpose

@value string yes The value to match against. May be a literal string
or may be a single variable expression.

@matches regex string yes Matches if the value matches the regular
expression

@flags string no Optional regex flags. "i" for case insensitive.

@scoped boolean no

default false

Indicates this rule creates a new "scope" context
for its children.

@repeated boolean false If false then repeated matches are an error.

Variable Type Value

$0 string The entire portion of the value that matched.

$1 ... $N string The value of the numeric match group

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 250

17.5.12 match-user
Match on a user name or default user.

To match the user, use only one of @name.

To match if the user is the default user, use @default-user.

You can match both by supplying both a @name and a @default-user.

@default-user defaults to false.

If @default-user is false, no check is made for the value of @default-user.

Attributes

Child Context modifications: None: One of name or default-user available as system variables;
See System Variables

Examples:

Matches the default user (note that there is no need to specify the “name’ attribute in this case):

<match-user default-user="true">
 ...
</match-user>

Matches the non-default user “grace”:

<match-user default-user="false" name="grace" >
 ...
</match-user>

Name Type Required Purpose

@name string no* Matches the user name

@default-user boolean
(true | false)

no*

default false

If true, matches if the user is the
default user. If false, checks to see if
@name matches the user name, but
does not check the value of
@default-user.

@scoped boolean no

default false

Indicates this rule creates a new
"scope" context for its children.

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 251

17.6 System Variables
This section describes the predefined system variables that compose the initial input context.
These are available in the context of any variable substitution expression.

System variables are used to substitute for the mechanism used by the XQuery rewriter which can
get this information (and much more) by calling any of our XQuery APIs. The Declarative
rewriter does not expose any API calls so in cases where the values may be needed in outputs they
are made available as global variables. There is some overlap in these variables and the Match
rules to simplify the case where you simply need to set a value but don't need to match on it. For
example the set-database rule may want to set the database to the current modules database (to
allow GET and PUT operations on module files). By supplying a system variable for the
modules database ($_modules-database) there is no need for a matching rule on
modules-database for the sole purpose of extracting the value.

System variables use a reserved prefix "_" to avoid accidental use in current or future code if new
variables are added. Overwriting a system variable is only set in the current scope and does not
produce changes to the system.

The period (".") is a convention that suggests the idea of property access but is really just part of
the variable name. Where variables start with the same prefix but have ".<name>" as a suffix this
is a convention that the name without the dot evaluates to the most useful value and the name with
the dot specifics a specific property or type for that variable. For example $_database is the
database Name, $_database.id is the database ID.

As noted in Variables and Types the actual type of all variable is a String (or List of String), the
Type column in the table below is to indicate what range of values is possible for that variable.
For example a database id originates as an unsigned long so can be safely used in any expression
that expects a number.

Note:

• [name] means that name is optional.

• <name> means that name is not a predefined constant but is required

Variable Type(s) Desc / Notes

$_cookie.<name> string The value of the cookie <name>. Only the text
value of the cookie is returned, not the extra
metadata (path, domain, expires etc.). If the cookie
does not exist evaluates as "" Cookie names
matched and compared case insensitive.

Future: may expose substructure of the cookie
header

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 252

Set the filesystem for modules:

<set-database>$_modules-database</set-database>

Set the transaction to the cookie TRANSACTION_ID:

<set-transaction>$_cookie.TRANSACTION_ID</set-transaction>

$_database[.name] string The name of the content database.

$_database.id integer The ID of the content database.

$_defaultuser boolean True if the authenticated user is the default user.

$_method string HTTP Method name.

$_modules-database[.name] string Modules database name. If no name is given, the
file system is used for the modules.

$_modules-database.id integer Modules database ID. Set the ID to 0 to use the file
system for modules.

$_modules-root string Modules root path.

$_path string The HTTP request path Not including the query
string.

$_query-param.<name> list of
strings

The query parameters matching the name as a list
of strings.

$_request-url string The original request URI, including the path and
query parameters.

$_user[.name] string The user name.

$_user.id integer The user ID.

Variable Type(s) Desc / Notes

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 253

17.7 Evaluation Rules
Eval rules have no effect on the execution control of the evaluator. They are evaluated when
reached and only can affect the current context, not control the execution flow.

There are two types of eval rules: Set rules and assign rules.

Set Rules are rules that create a rewriter command (a request to change the output context in some
way). Assign rules are rules that set locally scoped variables but do not produce any rewriter
commands.

Variable and rewriter commands are placed into the current scope.

Element Description

add-query-param Adds a query parameter (name/value) to the query parameters

set-database Sets the database

set-error-format Sets the error format for system generated errors

set-error-handler Sets the error handler

set-eval Sets the evaluation mode (eval or direct)

set-modules-database Sets the modules database

set-modules-root Sets the modules root path

set-path Sets the URI path

set-query-param Sets a query parameter

set-transaction Sets the transaction

set-transaction-mode Sets the transaction mode

set-var Sets a variable in the local scope

trace Log a trace message

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 254

17.7.1 add-query-param
Adds (appends) a query parameter (name/value) to the query parameters

Attributes

Children:

Expression which evaluates to the value of the parameter

An empty element or list will still append a query parameter with an empty value (equivalent to a
URL like http://company.com?a=)

If the expression is a List then the query parameter is duplicated once for each value in the list.

Example:

If the path matches then append to query parameters

• version= the version matched

• label-id =the label id matched

<match-path
 matches="^/manage/(v2|LATEST)/meters/labels/([^/?&]+)/?$">
 <add-query-param name="version">$1</add-query-param>
 <add-query-param name="label-id">$2</add-query-param>
</match-path>

Name Type Required Purpose

@name string yes Name of the parameter

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 255

17.7.2 set-database
Sets the Database.

This will change the context Database for the remainder of request.

Attributes

Children:

An expression which evaluates to either a database ID or database name.

It is an immediate error to set the value using an expression evaluating to a list of values.

See Database (Name or ID) for a description of how Database references are interpreted.

 Notes on @checked flag.

The @checked flag is interpreted during the rewriter modification result phase, by implication
this means that only the last set-database that successfully evaluated before a dispatch is used.

If the @checked flag is true AND if the database is different than the App Server defined database
then the user must have the eval-in privilege.

Examples:

Set the database to "SpecialDocuments":

<set-database>SpecialDocuments</set-database>

Set the database to the current modules database:

<set-database>$_modules-database</set-database>

Name Type Required Purpose

@checked boolean

[true,1 | false,0]

no If true then the eval-in privilege of the user is
checked to verify the change is allowed.

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 256

17.7.3 set-error-format
Sets the error format used for all system generated errors. This is the format (content-type) of the
body of error messages for a non-successful HTTP response.

This overwrites the setting from the application server configuration and takes effect immediately
after validation of the rewriter rules have succeeded.

Attributes: None

Children: An expression which evaluates to one of the following error formats.

• html

• json

• xml

• compatible

The "compatible" format indicates for the system to match as closely as possible the format used
in prior releases for the type of request and error. For example, if dispatch indicates "xdbc" then
"compatible" will produce errors in the HTML format, which is compatible with XCC client
library.

It is an immediate error to set the value using an expression evaluating to a list of values.

Note: This setting does not affect any user defined error handler, which is free to output
any format and body.

Example:

Set the error format for json responses

<set-error-format>json </set-database>

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 257

17.7.4 set-error-handler
Sets the error handler

Attributes: None

Children: An expression which evaluates to a Path (non blank String).

Example:

<set-error-handler >/myerror-handler.xqy</set-modules-root>

If error occurs during the rewriting process then the error handler which is associated with the
application server is used for error handling. After a successful rewrite if the set-error-handler
specifies a new error handler then it will be used for handling errors.

The modules database and modules root used to locate the error handler is the modules database
and root in effect at the time of the error.

Setting the error handler to the empty string will disable the use of any user defined error handler
for the remainder of the request.

It is an immediate error to set the value using an expression evaluating to a list of values.

For example, if in addition the set-modules-database rule was used, then the new error handler
will be search for in the rewritten modules database (and root set with set-modules-root)
otherwise the error handler will be searched for in the modules database configured in the app
server.

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 258

17.7.5 set-eval
Sets the Evaluation mode (eval or direct).

The Evaluation mode is used in the request handler to determine if a path is to be evaluated
(XQuery or JavaScript) or to be directly accessed (PUT/GET).

In order to be able to read and write to evaluable documents (in the modules database), the
evaluation mode needs to be set to direct and the Database needs to be set to a Modules database.

Attributes: None

Children: An expression evaluating to either "eval" or "direct"

Example:

Forces a direct file access instead of an evaluation if the filename ends in .xqy

<match-path matches=".*\.xqy$">
 <set-eval>direct</set-eval>
</match-user>

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 259

17.7.6 set-modules-database
Sets the Modules database.

This sets the modules database for the request.

Attributes

Children:

An expression which evaluates to either a database ID or database name. An empty value,
expression or expression evaluating to "0" indicates "Filesystem", otherwise the value is
interpreted as a database Name, or ID.

See Database (Name or ID) for a description of how Database references are interpreted.

It is an immediate error to set the value using an expression evaluating to a list of values.

Notes on @checked flag.

The @checked flag is interpreted during the rewriter modification result phase, by implication
this means that only the last set-database that successfully evaluated before a dispatch is used.

If the @checked flag is true AND if the database is different than the App Server defined modules
database then the user must have the eval-in privilege.

Example:

Sets the database to "SpecialDocuments"

<match-user name="admin">
 <set-modules-database>SpecialModules</set-modules-database>
 ...
</match-user>

Name Type Required Purpose

@checked boolean
[true,1 | false,0]

default false

no If true then the permissions of the user are checked
for the eval-in privilege verify the change is
allowed.

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 260

17.7.7 set-modules-root
Sets the modules root path

Attributes: None

Children: An expression which evaluates to a Path (non blank String).

It is an immediate error to set the value using an expression evaluating to a list of values.

Example:

Sets the modules root path to /myapp

<set-modules-root>/myapp</set-modules-root>

17.7.8 set-path
Sets the URI path for the request.

Often this is the primary use case for the rewriter.

Attributes: None

Children:

An expression which evaluates to a Path (non blank String).

It is an immediate error to set the value using an expression evaluating to a list of values.

Example:

If the user name is "admin" then set the path to /admin.xqy

Then if the method is either GET , HEAD, OPTIONS dispatch otherwise if the method is POST
then set a query parameter "verified" to true and dispatch.

<match-user name="admin">
 <set-path>/admin.xqy</set-path>
 <match-method any-of="GET HEAD OPTIONS">
 <dispatch/>
 </match-method>
 <match-method any-of="POST">
 <set-query-param name="verified">true</set-query-param>
 <dispatch/>
 </match-method>
</match-user>

See 4.1.5.6.1for a way to set-path and dispatch in the same rule.

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 261

17.7.9 set-query-param
Sets (overwrites) a query parameter. If the query parameter previously existed all of its values are
replaced with the new value(s).

Attributes

Children

An expression which evaluates to the value of the query parameter to be set. If the expression is a
List then the query parameter is duplicated once for each value in the list.

An empty element, empty string value or empty list value will still set a query parameter with an
empty value (equivalent to a URL like http://company.com?a=)

Examples:

If the user is admin then set the query parameter user to be admin, overwriting any previous
values it may have had.

<match-user name="admin">
 <set-query-param name="user">admin</set-query-param>
</match-user>

Copy all the values from the query param "ids" to a new query parameter "app-ids" replacing any
values it may have had.

<match-query-param name="ids">
 <set-query-param name="app-ids">$*</set-query-param>
</match-query-param>

This can be used to "pass through" query parameters by name when
@include-request-query-params is specified in the <dispatch> rule.

The following rules will copy all query parameter (0 or more) named "special" to result without
passing through other parameters.

<match-query-param name="special" repeated="true">
 <set-query-param name=" special">$*</set-query-param>
</match-query-param>
<dispatch include-request-query-params="false"/>

Name Type Required Purpose

@name string yes Name of the parameter

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 262

17.7.10 set-transaction
Sets the current transaction. If specified, set-transaction-mode must also be set.

Attributes: None

Children: An expression which evaluates to the transaction ID.

Example:

Set the transaction to the value of the cookie TRANSACTION_ID.

<set-transaction>$_cookie.TRANSACTION_ID</set-transaction>

Note: If the expression for set-transaction is empty, such as when the cookie doesn't
exist, then the transaction is unchanged.

It is an immediate error (during rewriter parsing) to set the value using an expression evaluating to
a list of values or to 0.

17.7.11 set-transaction-mode
Sets the transaction mode for the current transaction. If specified, set-transaction must also be set.

Attributes: None

Children: An expression evaluating to a transaction mode specified by exactly one of the strings

 ("auto" | "query" | "update")

Example:

Set the transaction mode to the value of the query param "trmode" if it exists.

<match-query-param name="trmode">
 <set-transaction-mode>$0</set-transaction-mode>
</match-query-param>

Note: It is an error if the value for transaction mode is not one of "auto," "query," or
"update." It is also an error to set the value using an expression evaluating to a list
of values.

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 263

17.7.12 set-var
Sets a variable in the local scope

This is an Assign Rule. It does not produce rewriter commands instead it sets a variable.

The assignment only affects the current scope (which is the list of variables pushed by the parent).
The variable is visible to following siblings as well as children of following siblings.

Allowed user defined variable names must start with a letter and followed by zero or more letters,
numbers, underscore or dash.

Specifically the name must match the regex pattern "[a-zA-Z][a-zA-Z0-9_-]*"

This implies that set-var cannot set either system defined variables, property components or
expression variables.

Attributes

Children:

An expression which is evaluated to value to set the variable.

Examples:

Sets the variable $dir1 to the first component of the matching path, and $dir2 to the second
component.

<match-path matches="^/([a-z]+)/([a-z]+)/.*">
 <set-var name="dir1">$1</set-var>
 <set-var name="dir2">$2</set-var>
 ...
</match-path

If the Modules Database name contains the string "User" then set the variable usedb to the full
name of the Modules DB.

<match-string value="$_modules-database" matches=".*User.*">
 <set-var name="usedb">$0</set-var>
</match-string>

Name Type Required Purpose

@name string yes Name of the variable to set (without the "$")

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 264

Matches all of the values of a query parameter named "ids" if any of them is fully numeric.

<match-query-param name="ids">
 <match-string value="$*" matches="[0-9]+">

 </match-string>
</match-query-param>

17.7.13 trace
Log a trace message

The trace rule can be used anywhere an eval rule is allowed. It logs a trace message similar to
fn:trace.

The event attribute specifies the Trace Event ID. The body of the trace element is the message to
log.

Attributes

Child Content: Trace message or expression.

Child Elements: None

Child Context modifications: None

Example:

<match-path prefix="/special">
 <trace event="AppEvent1">
 The following trace contains the matched path.
 </trace>
 <trace event="AppEvent2">
 $0
 </trace>
</match-path>

Name Type Required Purpose

@event string yes Specifies the trace event

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 265

17.8 Termination Rules
Termination rules (dispatch, error) unconditionally stop the evaluator at the current rule. No
further evaluation occurs. The dispatch rule will return out of the evaluator with all accumulated
rewriter commands in scope. The error rule discards all command and returns with the error
condition.

17.8.1 dispatch
Stop evaluation and dispatch with all rewrite commands.

The dispatch element is required as the last child of any match rule which contains no match
rules.

Attributes

The attribute include-request-query-params specifies whether the initial request query
parameters are included in the rewriter result If true (or absent) then the rewriter modifications
start with the initial query parameters and then are augmented (added or reset) by any
set-query-param and add-query-param rules which are in scope at the time of dispatch.

If set to false then the initial request parameters are not included and only the parameters set or
added by any set-query-param and add-query-param rules are included in the result.

If xdbc is specified and true then the built-in xdbc handlers will be used for the request. If xdbc
support is enabled then the final path (possibly rewritten) MUST BE one of the paths supported
by the xdbc built-in handlers.

Child Content:

Element Description

dispatch Stop evaluation and dispatch with all rewrite commands

error Terminates evaluation with an error

Name Type Required Purpose

@include-request-
query-params

boolean

default true

no If true then the original request query
params are used as the initial set of query
params before applying any rewrites

@xdbc boolean

default false

no If true then the built-in XDBC handlers
are used for the request.

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 266

Empty or an expression

Child Elements:

If the child element is not empty or blank then it is evaluated and used for the rewrite path.

Child Context modifications:

Examples:

<set-path>/a/path.xqy
 <dispatch/>
</set-path>

Is equivalent to:

<dispatch>/a/path.xqy</dispatch>

If the original URL is /test?a=a&b=b, the rewriter:

<set-query-param name="a">a1</set-query-param>
<dispatch include-request-query-params="false">/run.xqy</dispatch>

rewrites to path /run.xqy and the query parameters are:

a=a1

The following rewriter:

<set-query-param name="a">a1</set-query-param>
<dispatch>run.xqy</dispatch>

rewrites to path /run.xqy and the query parameters are:

a=a1
b=b

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 267

An example of a minimal rewriter rule that dispatches to XDBC is as follows:

<match-path any-of="/eval /invoke /spawn /insert">
 <dispatch xdbc="true">$0</dispatch>
<match-path>

17.8.2 error
Terminate evaluation with an error.

The error rule terminates the evaluation of the entire rewriter and returns and error to the request
handler. This error is then handled by the request handler, passing to the error-handler if there is
one.

The code (optional) optional message data are supplied as attributes.

Attributes:

Child Content:

None

Child Elements:

None

Child Context modifications: none

Example:

<error code="XDMP-BAD" data1="this" data2="that"/>

Name Type Required Purpose

@code string yes Specifies the error code

@data1 string no Error message, first part

@data2 string no Error message, second part

@data3 string no Error message, third part

@data4 string no Error message, fourth part

@data5 string no Error message, fifth part

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 268

17.9 Simple Rewriter Examples
Some examples of simple rewriters:

Redirect a request by removing the prefix, /dir.

<rewriter xmlns="http://marklogic.com/xdmp/rewriter">
 <match-path matches="^/dir(/.+)">
 <dispatch>$1</dispatch>
 </match-path>
</rewriter>

For GET and PUT requests only, if the a query parameter named path is exactly /admin then
redirect to /private/admin.xqy otherwise use the value of the parameter for the redirect.

If no path query parameter then do not change the request

<rewriter xmlns="http://marklogic.com/xdmp/rewriter">
 <match-method any-of="GET PUT">
 <!-- match by name/value -->
 <match-query-param name="path" value="/admin">
 <dispatch>/private/admin.xqy</dispatch>:
 </match-query-param>
 <!-- match by name use value -->
 <match-query-param name="path">
 <dispatch>$0</dispatch>:
 </match-query-param>
 </match-method>
</rewriter>

If a parameter named data is present in the URI then set the database to UserData. If a query
parameter module is present then set the modules database to UserModule. If the path starts with
/users/ and ends with /version<versionID> then extract the next path component ($1), append it
to /app and add a query parameter version with the versionID.

<rewriter xmlns="http://marklogic.com/xdmp/rewriter">
 <match-query-param name="data">
 <set-database>UserData</set-database>
 </match-query-param>
 <match-query-param name="module">
 <set-modules-database>UserModule</set-modules-database>
 </match-query-param>
 <match-path match="^/users/([^/]+)/version(.+)%">
 <set-path>/app/$1</set-path>
 <add-query-param name="version">$2</add-query-param>
 </match-path>
 <dispatch/>
</rewriter>

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 269

Match users by name and default user and set or overwrite a query parameter.

<rewriter xmlns="http://marklogic.com/xdmp/rewriter">
 <set-query-param name="default">
 default-user no match
 </set-query-param>
 <match-user name="admin">
 <add-query-param name="user">admin matched</add-query-param>
 </match-user>
 <match-user name="infostudio-admin">
 <add-query-param name="user">
 infostudio-admin matced
 </add-query-param>
 </match-user>
 <match-user default-user="true">
 <set-query-param name="default">
 default-user matched
 </set-query-param>
 </match-user>
 <dispatch>/myapp.xqy</dispatch>
</rewriter>

Matching cookies. This properly parses the cookie HTTP header structure so matches can be
performed reliably. In this example, the SESSIONID cookie is used to conditionally set the current
transaction.

<rewriter xmlns="http://marklogic.com/xdmp/rewriter">
 <match-cookie name="SESSIONID">
 <set-transaction>$0</set-transaction>
 </match-cookie>
</rewriter>

User defined variables with local scoping. Set an initial value to the user variable “test”. If the
patch starts with /test/ and contains atleast 2 more path components then reset the “test” variable
to the first matching path, and add a query param “var1″ to the second matching path. If the role
of the user also contains either “admin-builtins” or “app-builder” then rewrite to the path
‘/admin/secret.xqy’, otherwise add a query param “var2″ with the value of the “test” user variable
and rewrite to “/default.xqy”

MarkLogic Server Creating a Declarative XML Rewriter to Support REST

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 270

If you change the scoped attribute from true to false, (or remove it), then all the changes within
that condition are discarded if the final dispatch to /admin/secret.xqy is not reached, leaving intact
the initial value for the “test” variable, not adding the “var1″ query parameter and dispatching to
/default.xqy

<rewriter xmlns="http://marklogic.com/xdmp/rewriter" >
 <set-var name="test">initial</set-var>
 <match-path matches="^/test/(\w+)/(\w+).*" scoped="true">
 <set-var name="test">$1</set-var>
 <set-query-param name="var1">$2</set-query-param>
 <match-role any-of="admin-builtins app-builder">
 <dispatch>/admin/secret.xqy</dispatch>
 </match-role>
 </match-path>
 <add-query-param name="var2">$test</add-query-param>
 <dispatch>/default.xqy</dispatch>
</rewriter>

MarkLogic Server Template Driven Extraction (TDE)

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 271

18.0 Template Driven Extraction (TDE)
295

Template Driven Extraction (TDE) enables you to define a relational lens over your document
data, so you can query parts of your data using SQL or the Optic API. Templates let you specify
which parts of documents make up rows in a view. You can also use templates to define a
semantic lens, specifying which values from a document make up triples in the triple index.

TDE enables you to generate rows and triples from ingested documents based on predefined
templates that describe the following:

• The input data to match

• The data transformations that apply to the matched data

• The final data projections that are translated into indexed data.

TDE enables you to access the data in your documents in several ways, without changing the
documents themselves. A relational lens is useful when you want to let SQL-savvy users access
your data and when users want to create reports and visualizations using tools that communicate
using SQL. It is also useful when you want to join entities and perform aggregates across
documents. A semantic lens is useful when your documents contain some data that is naturally
represented and queried as triples, using SPARQL.

TDE is applied during indexing at ingestion time and serves the following purposes:

• SQL/Relation indexing. TDE allows the user to map parts of an XML or JSON document
into SQL rows. With a TDE template instance, users can create different rows and
describe how each column in a row is constructed using the extracted data from a
document. For details, see Creating Template Views in the SQL Data Modeling Guide.

• Custom Embedded Triple Extraction. TDE enables users to ingest triples that do not
follow the sem:triple schema. A user can define many triple projections in a single
template, where each projection specifies the different parts of a document that are
mapped to subjects, predicates or objects. For details, see Using a Template to Identify Triples

in a Document in the Semantic Graph Developer’s Guide.

• Entity Services Data Models. For details, see Creating and Managing Models in the Entity
Services Developer’s Guide.

TDE data is also used by the Optic API, as described in “Optic API for Multi-Model Data
Access” on page 296.

Note: The tde-admin role is required in order to insert a template into the schema
database.

MarkLogic Server Template Driven Extraction (TDE)

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 272

The main topics in this chapter are:

• Security on TDE Documents

• Template View Elements

• JSON Template Structure

• Template Dialect and Data Transformation Functions

• Validating and Inserting a Template

• Templates and Non-Conforming Documents

• Enabling and Disabling Templates

• Deleting Templates

18.1 Security on TDE Documents
Operations on template documents are controlled by:

The http://marklogic.com/xdmp/tde collection, which is a protected collection that contains
TDE template documents.

The tde-admin role, which is required to access the TDE protected collection.

The tde-view role, which is required to view documents in the TDE protected collection. Access
to views can be further restricted by setting additional permissions on the template documents that
define the views. Since the same view can be declared in multiple templates loaded with different
permissions, the access to views must be controlled at the column level as follows:

Column level read permissions are implicit by default and are derived from the read permissions
set on the template documents. Permissions can also be explicitly set on a column using the
permissions element. Permissions on a column are not required to be identical and are ORed
together. A user with a role that has at least one of the read permissions set on a column will be
able to see the column.

If a user does not have permissions on any of the view’s columns, the view itself is not visible.

MarkLogic Server Template Driven Extraction (TDE)

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 273

For example, as shown in the illustration below:

• Template document TD1 creates view View 1 with column C1 and C2. Template document
TD1 was loaded with Read Permission 1.

• Template document TD2 creates view View 1 with column C1 and C3. Template document
TD2 was loaded with Read Permission 2.

• Users with Permission 1 have access to columns C1 and C2 at query time.

• Users with Permission 2 have access to columns C1 and C3 at query time.

• Users without Permission 1 or Permission 2 will not have access to View 1 or any of its
columns.

View 1: Read Permission 1

C1 C2

View 1: Read Permission 2

C1 C3

Read Permission 1 Read Permission 2No Permission

TDE Document

<element1>

</element1>
Foo

<element2>

</element2>
Bar

<element3>

</element3>
Baz

MarkLogic Server Template Driven Extraction (TDE)

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 274

With this design:

• Users can see columns referenced in templates they have access to.

• Users cannot see additional columns referenced in templates they do not have access to.

If a document in a TDE protected collection makes use of Element Level Security, both
unprotected and protected elements will be extracted. For details on Element Level Security, see
Element Level Security in the Security Guide.

18.2 Template View Elements
A template contains the elements and child elements shown in the table below.

Note: When creating a JSON template, substitute the dash (-) with an upper-case
character. For example, collections-and becomes collectionsAnd. For the
complete structure of a JSON template, see JSON Template Structure

Element Description

description Optional description of the template.

collections
 collection
 collections-and
 collection

Optional collection scopes. Multiple collection scopes can be
ORed or ANDed. See “Collections” on page 278.

directories
 directory

Optional directory scopes. Multiple directory scopes are ORed
together. See “Directories” on page 279.

vars
 var

Optional intermediate variables extracted at the current context
level. See “Variables” on page 283.

MarkLogic Server Template Driven Extraction (TDE)

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 275

rows
 row
 schema-name
 view-name
 view-layout
 sparse
 identical
 columns
 column
 name
 scalar-type
 val
 nullable
 permissions
 role-name
 default
 invalid-values
 ignore
 reject
 reindexing
 hidden
 visible
 collation

These elements are used for template views, as described in
Creating Template Views in the SQL Data Modeling Guide.

rows is a sequence of row descriptions and mappings, as described
in Row in the SQL Data Modeling Guide.

columns is sequence of column descriptions and mappings, as
described in Columns in the SQL Data Modeling Guide.

scalar-type is the type for the val. See “Type Casting” on
page 287.

triples
 triple
 subject
 val
 invalid-values
 predicate
 val
 invalid-values
 object
 val
 invalid-values

These elements are used for triple-extraction templates, as
described in Using a Template to Identify Triples in a Document in the
Semantic Graph Developer’s Guide.

triples contains a sequence of triple extraction descriptions.
Each triple description defines the data mapping for the subject,
predicate and object.

An extracted triple's graph cannot be specified through the
template. The graph is implicitly defined by the document's
collection similar to embedded triples.

templates
 template

Optional sequence of sub-templates. For details, see Creating

Views from Multiple Templates and Creating Views from Nested

Templates in the SQL Data Modeling Guide.

path-namespaces
 path-namespace

Optional sequence of namespace bindings. See
“path-namespaces” on page 279.

context
 invalid-values

The lookup node that is used for template activation and data
extraction. See “Context” on page 280.

enabled A boolean that specifies whether the template is enabled (true) or
disabled (false). Default value is true.

Element Description

MarkLogic Server Template Driven Extraction (TDE)

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 276

The context, vars, and columns identify XQuery elements or JSON properties by means of path
expressions. Path expressions are based on XPath, which is described in XPath Quick Reference in
the XQuery and XSLT Reference Guide and “Traversing JSON Documents Using XPath” on
page 390.

18.3 JSON Template Structure
Below is the structure of a view template in JSON.

{
 "template":{
 "description":"test template",
 "context":"context1",
 "pathNamespace":[
 {
 "prefix":"sem",
 "namespaceUri":"http://semantics"
 },
 {
 "prefix":"tde",
 "namespaceUri":"http://tde"
 }
],
 "collections":[
 "colc1",
 "colc4",
 { "collectionsAnd":["colc2","colc3"]},
 { "collectionsAnd":["colc5","colc6"]}
],
 "directories":["dir1","dir2"],
 "vars":[
 {
 "name":"myvar1",
 "val":"someVal"
 }
],
 "rows":[
 {
 "schemaName":"schemaA",
 "viewName":"viewA",
 "viewLayout":"sparse",
 "columns":[
 {
 "name":"A",
 "scalarType":"int",
 "val":"someVal",
 "nullable":false,
 "default":"'1'",
 "invalidValues":"ignore"
 },
 {
 "name":"B",
 "scalarType":"int",

MarkLogic Server Template Driven Extraction (TDE)

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 277

 "val":"someVal",
 "nullable":true,
 "invalidValues":"ignore"
 }
]
 },
 {
 "schemaName": ...
 ...
 }
],
 "triples":[
 {
 "subject":{
 "val":"someVal",
 "invalidValues":"ignore"
 },
 "predicate":{
 "val":"someVal"
 },
 "object":{
 "val":"someVal"
 }
 },
 {
 "subject": ...
 ...
 }
],
 "templates":[
 {
 "context":"context2",
 "vars":[
 {
 "name":"myvar2",
 "val":"someval"
 }
],
 "rows":[
 {
 "schemaName":"schemaA",
 "viewName":"viewC",
 "viewLayout":"sparse",
 "columns":[
 {
 "name":"A",
 "scalarType":"string",
 "val":"someVal",
 "collation":"http://marklogic.com/collation/fr"
 },
 {
 "name":"B",
 "scalarType":"int",
 "val":"someVal"

MarkLogic Server Template Driven Extraction (TDE)

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 278

 }
]
 }
]
 }
]
 }
}

18.3.1 Collections
A <collections> section defines the scope of the template to be confined only to documents in
specific collections. The <collections> section is a top level OR of a sequence of:

• <collection> that scope the template to a specific collection.

• <collections-and> that contains a sequence of <collection> that are ANDed together.

The following collection logical combinations are possible:

ORed collections:

<collections>
 <collection>A</collection>
 <collection>B</collection>
</collections>

ANDed collections:

<collections>
 <collections-and>
 <collection>A</collection>
 <collection>B</collection>
 </collections-and>
</collections>

OR of ANDed collections:

<collections>
 <collection>A</collection>
 <collection>B</collection>
 <collections-and>
 <collection>C</collection>
 <collection>D</collection>
 </collections-and>
 <collections-and>
 <collection>E</collection>
 <collection>F</collection>
 </collections-and>
</collections>

MarkLogic Server Template Driven Extraction (TDE)

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 279

18.3.2 Directories
A <directories> section defines the scope of the template to be confined only to documents in
specific directories. The <directories> section is a top level OR of a sequence of <directory>
elements that scope the template to a specific directory.

18.3.3 path-namespaces
A <path-namespaces> section is a top level of one or more <path-namespace> elements, which
contain:

• <prefix> the namespace prefix.

• <namespace-uri> the namespace URI.

For example, a path namespace binding can be specified in the template as follows:

<path-namespaces>
 <path-namespace>
 <prefix>wb</prefix>
 <namespace-uri>http://marklogic.com/wb</namespace-uri>
 </path-namespace>
</path-namespaces>

The namespace prefix definitions are stored in the template documents and not in the
configuration of the target database. Otherwise, templates cannot be compiled into code without
knowing the target database configuration that uses them.

MarkLogic Server Template Driven Extraction (TDE)

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 280

18.3.4 Context
The context tag defines the lookup node that is used for template activation and data extraction.
Path expressions occurring inside vars, rows, or triples are relative to the context element of
their parent template. The context defines an anchor in the XML/JSON tree where data is
collected by walking up and down the tree relative to the anchor. Any indexable path expression is
valid in the context element, therefore predicates are allowed. The context element of a
sub-template is relative to the context element of its parent template.

For example:

<context>/Employee</context>

<context>/MedlineCitation/Article</context>

For performance and security reasons, your path expressions are limited to a subset of XPath. For
more details, see Template Driven Extraction (TDE) in the XQuery and XSLT Reference Guide.

You can specify an invalid-values element to control the behavior when the context expression
cannot be evaluated. The possible invalid-values settings are:

• ignore — The extraction will be skipped for the node that resulted in an exception thrown
during the evaluation of the context expression.

• reject — The server will generate an error when the document is inserted and reject the
document. This is the default setting.

It is important to understand that context defines the node from which to extract a single row. If
you want to extract multiple rows from the document, the context must be set to the parent
element of those rows. For example, you have “order” documents that are as structured as
follows:

<order>
 <order-num>10663</order-num>
 <order-date>2017-01-15</order-date>
 <items>
 <item>
 <product>SpeedPro Ultimate</product>
 <price>999</price>
 <quantity>1</quantity>
 </item>
 <item>
 <product>Ladies Racer Helmet</product>
 <price>115</price>
 <quantity>1</quantity>
 </item>
 </items>
</order>

MarkLogic Server Template Driven Extraction (TDE)

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 281

Each order document contains one or more <item> nodes. You want to create a view template that
extracts the <product>, <price>, and <quantity> values from each <item> node. A context of
/order and column values, such as items/item/product, will trigger a single row extraction for
the entire document, so the only way this will work is if the document has only one <item> node.
To extract the content of all of the <item> nodes as multiple rows, the context must be
/order/items/item. In this case, if you wanted to also extract <order-num>, the column value
would be ../../order-num.

Note: The context can be any path validated by cts:valid-tde-context. It may contain
wildcards, such as ‘*’, but, for performance reasons, do not use wildcards unless
their value outweighs the performance costs. It is best to use collection or directory
scoping when wildcards are used in the context.

Below is the complete grammar for the Restricted XPath, including all the supported constructs.

RestrictedPathExpr ::= "/" |(PathExpr)* (("/" | "//") LeafExpr Predicates)
 | SpecialFunctionExpr
SpecialFunctionExpr::= ("fn:doc(" ArgsExpr ")")
 | ("xdmp:document-properties(" ArgsExpr ")")
 | ("xdmp:document-locks(" ArgsExpr ")")
LeafExpr ::= "(" UnionExpr ")" | LeafStep
PathExpr ::= ("/" RelativePathExpr?) | ("//" RelativePathExpr)
 | RelativePathExpr
RelativePathExpr ::= UnionExpr | "(" UnionExpr ")"
UnionExpr ::= GeneralStepExpr ("|" GeneralStepExpr)*
GeneralStepExpr ::= ("/" | "//")? StepExpr (("./" | ".//")? StepExpr)*
StepExpr ::= ForwardStep Predicates
ForwardStep ::= (ForwardAxis AbbreviatedForwardStep)
 | AbbreviatedForwardStep
AbbreviatedForwardStep ::= "." | ("@" NameTest) | NameTest | KindTest
LeafStep ::= ("@"QName) | QName
NameTest ::= QName | Wildcard
Wildcard ::= "*" | "<" NCName ":" "*" ">" | "<" "*" ":" NCName ">"
QName ::= PrefixedName | UnprefixedName
PrefixedName ::= Prefix ":" LocalPart
UnprefixedName ::= LocalPart
Prefix ::= NCName
LocalPart ::= NCName
NCName ::= Name - (Char* ":" Char*)/* An XML Name, minus the ":" */
Name ::= NameStartChar (NameChar)*

Predicates ::= Predicate*
Predicate ::= PredicateExpr | "[" Digit+ "]"
Digit ::= [0-9]
PredicateExpr ::= "[" PredicateExpr "and" PredicateExpr "]"
 | "[" PredicateExpr "or" PredicateExpr "]"
 | "[" ComparisonExpr "]" | "[" FunctionExpr "]"
ComparisonExpr ::= RelativePathExpr GeneralComp SequenceExpr
 | RelativePathExpr ValueComp Literal
 | PathExpr
FunctionExpr ::= FunctionCall GeneralComp SequenceExpr

MarkLogic Server Template Driven Extraction (TDE)

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 282

 | FunctionCall ValueComp Literal
 | FunctionCall
GeneralComp ::= "=" | "!=" | "<" | "<=" | ">" | ">="
ValueComp ::= "eq" | "ne" | "lt" | "le" | "gt" | "ge"
SequenceExpr ::= Literal+
Literal ::= NumericLiteral | StringLiteral

KindTest ::= ElementTest
 | AttributeTest
 | CommentTest
 | TextTest
 | ArrayNodeTest
 | ObjectNodeTest
 | BooleanNodeTest
 | NumberNodeTest
 | NullNodeTest
 | AnyKindTest
 | DocumentTest
 | SchemaElementTest
 | SchemaAttributeTest
 | PITest
TextTest ::= "text" "(" ")"
CommentTest ::= "comment" "(" ")"
AttributeTest := "attribute" "(" (QNameOrWildcard ("," QName)?)? ")"
ElementTest ::= "element" "(" (QNameOrWildcard ("," QName "?"?)?)? ")"

ArrayNodeTest ::= "array-node" "(" NCName? ")"
ObjectNodeTest ::= "object-node" "(" NCName? ")"
BooleanNodeTest ::= "boolean-node" "(" ")"
NumberNodeTest ::= "number-node" "(" ")"
NullNodeTest ::= "null-node" "(" ")"
AnyKindTest ::= "node" "(" ")"
DocumentTest ::= "document-node" "(" (ElementTest | SchemaElementTest)
 ? ")"
SchemaElementTest ::= "schema-element" "(" QName ")"
SchemaAttributeTest::= "schema-attribute" "(" QName ")"
PITest ::= "processing-instruction" "("(NCName | StringLiteral)
 ? ")"
QNameOrWildcard ::= QName | "*"

MarkLogic Server Template Driven Extraction (TDE)

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 283

18.3.5 Variables
Variables are intermediate data projections needed for data transformation and are defined under
var elements. Variables can reference other variables inside their transformation section val, for
the cases where several intermediate projection/transformations are needed before the last
projection into the column/triple. The expression inside the val code is relative to the context
element of the current template in which the var is defined. See “Template Dialect and Data
Transformation Functions” on page 284 for the types of expressions allowed in a val.

For example:

<context>/northwind/Orders/Order</context>

.......

<vars>
 <var>
 <name>OrderID</name>
 <val>./@OrderID</val>
 </var>
</vars>

.......

<column>
 <name>OrderID</name>
 <scalar-type>long</scalar-type>
 <val>$OrderID</val>
</column>

Note: You do not type variable values in the var description. Rather, the variable value is
typed in the column description.

MarkLogic Server Template Driven Extraction (TDE)

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 284

18.4 Template Dialect and Data Transformation Functions
Templates support a dialect using a subset of XQuery with limited functionalities where only a
subset of functions are available.

The template dialect supports the following types of expressions described in the Expressions
section of the An XML Query Language specification:

• Path Expressions

• Sequence Expressions

• Arithmetic Expressions

• Comparison Expressions

• Logical Expressions

• Conditional Expressions

• Expressions on SequenceTypes

More complex operations like looping, FLWOR statements, iterations, and XML construction are
not supported within the dialect. The property axis property:: is also not supported.

The supported XQuery functions are listed in the following sections:

• Date and Time Functions

• Logical Functions and Data validation

• String Functions

• Type Casting

• Mathematical Functions

• Data Hub Mapping Functions

• Miscellaneous Functions

Note: Templates only support XQuery functions. JavaScript functions are not supported.

18.4.1 Date and Time Functions
• fn:adjust-date-to-timezone

• fn:adjust-dateTime-to-timezone

• fn:adjust-time-to-timezone

• fn:current-date

• fn:month-from-date

• fn:month-from-dateTime

• fn:months-from-duration

• fn:seconds-from-dateTime

https://www.w3.org/TR/xquery/#id-expressions
https://www.w3.org/TR/xquery/
https://www.w3.org/TR/xquery/#id-expressions-on-datatypes
https://www.w3.org/TR/xquery/#id-path-expressions
https://www.w3.org/TR/xquery/#id-sequence-expressions
https://www.w3.org/TR/xquery/#id-arithmetic
https://www.w3.org/TR/xquery/#id-comparisons
https://www.w3.org/TR/xquery/#id-logical-expressions
https://www.w3.org/TR/xquery/#id-conditionals

MarkLogic Server Template Driven Extraction (TDE)

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 285

• fn:seconds-from-duration

• fn:seconds-from-time

• fn:minutes-from-dateTime

• fn:minutes-from-duration

• fn:minutes-from-time

• fn:timezone-from-date

• fn:timezone-from-dateTime

• fn:timezone-from-time

• fn:year-from-date

• fn:year-from-dateTime

• fn:years-from-duration

• fn:day-from-date

• fn:day-from-dateTime

• fn:days-from-duration

• fn:format-date

• fn:format-dateTime

• fn:format-time

• fn:hours-from-dateTime

• fn:hours-from-duration

• fn:hours-from-time

• xdmp:dayname-from-date

• xdmp:quarter-from-date

• xdmp:week-from-date

• xdmp:weekday-from-date

• xdmp:yearday-from-date

• sql:dateadd

• sql:datediff

• sql:datepart

• sql:day

• sql:seconds

• sql:dayname

• sql:timestampadd

• sql:hours

• sql:timestampdiff

• sql:minutes

• sql:week

• sql:month

• sql:weekday

• sql:monthname

• sql:year

MarkLogic Server Template Driven Extraction (TDE)

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 286

• sql:quarter

• sql:yearday

• xdmp:parse-dateTime

• xdmp:parse-yymmdd

18.4.2 Logical Functions and Data validation
• fn:boolean

• fn:empty

• fn:exists

• fn:false

• fn:not

• fn:true

18.4.3 String Functions
• fn:codepoint-equal

• fn:codepoints-to-string

• fn:compare

• fn:concat

• fn:contains

• fn:encode-for-uri

• fn:ends-with

• fn:escape-html-uri

• fn:escape-uri

• fn:format-number

• fn:insert-before

• fn:iri-to-uri

• fn:last

• fn:lower-case

• fn:matches

• fn:normalize-space

• fn:normalize-unicode

• fn:position

• fn:remove

• fn:replace

• fn:reverse

• fn:starts-with

• fn:string-join

• fn:string-length

• fn:string-to-codepoints

• fn:subsequence

MarkLogic Server Template Driven Extraction (TDE)

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 287

• fn:substring

• fn:substring-after

• fn:substring-before

• fn:tokenize

• fn:translate

• fn:upper-case

18.4.4 Type Casting
• number

• string

• decimal

• integer

• long

• int

• short

• byte

• float

• double

• boolean

• date

• time

• dateTime

• gDay

• gMonth

• gYear

• gYearMonth

• gMonthDay

• duration

• dayTimeDuration

• yearMonthDuration

• castable-as

• anyURI

• IRI (Internationalized Resource Identifier)

18.4.5 Mathematical Functions
• fn:abs

• fn:round

• fn:ceiling

• fn:round-half-to-even

• fn:floor

MarkLogic Server Template Driven Extraction (TDE)

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 288

And all the math (http://marklogic.com/xdmp/math namespace) built-in functions except
aggregate functions like variance and stddev.

18.4.6 Data Hub Mapping Functions
• fn:abs

• fn:adjust-date-to-timezone

• fn:adjust-dateTime-to-timezone

• fn:adjust-time-to-timezone

• fn:avg

• fn:boolean

• fn:ceiling

• fn:codepoint-equal

• fn:codepoints-to-string

• fn:compare

• fn:concat

• fn:contains

• fn:count

• fn:current-date

• fn:current-dateTime

• fn:current-time

• fn:data

• fn:day-from-date

• fn:day-from-dateTime

• fn:days-from-duration

• fn:empty

• fn:encode-for-uri

• fn:ends-with

• fn:escape-html-uri

• fn:escape-uri

• fn:exists

• fn:false

• fn:floor

• fn:format-date

• fn:format-dateTime

• fn:format-number

• fn:format-time

• fn:generate-id

• fn:head

• fn:hours-from-dateTime

• fn:hours-from-duration

MarkLogic Server Template Driven Extraction (TDE)

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 289

• fn:hours-from-time

• fn:implicit-timezone

• fn:insert-before

• fn:iri-to-uri

• fn:lang

• fn:last

• fn:local-name

• fn:lower-case

• fn:matches

• fn:max

• fn:min

• fn:minutes-from-dateTime

• fn:minutes-from-duration

• fn:minutes-from-time

• fn:month-from-date

• fn:month-from-dateTime

• fn:months-from-duration

• fn:name

• fn:namespace-uri

• fn:namespace-uri-for-prefix

• fn:node-name

• fn:normalize-space

• fn:normalize-unicode

• fn:not

• fn:number

• fn:position

• fn:remove

• fn:replace

• fn:resolve-QName

• fn:reverse

• fn:root

• fn:round

• fn:round-half-to-even

• fn:seconds-from-dateTime

• fn:seconds-from-duration

• fn:seconds-from-time

• fn:starts-with

• fn:string

• fn:string-join

• fn:string-length

MarkLogic Server Template Driven Extraction (TDE)

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 290

• fn:string-to-codepoints

• fn:subsequence

• fn:substring

• fn:substring-after

• fn:substring-before

• fn:sum

• fn:tail

• fn:timezone-from-date

• fn:timezone-from-dateTime

• fn:timezone-from-time

• fn:tokenize

• fn:translate

• fn:true

• fn:upper-case

• fn:year-from-date

• fn:year-from-dateTime

• fn:years-from-duration

18.4.7 Hashing Functions
• xdmp:hash32

• xdmp:hash64

• xdmp:md5

• xdmp:sha1

• xdmp:sha256

• xdmp:sha384

• xdmp:sha512

• xdmp:hmac-md5

• xdmp:hmac-sha1

• xdmp:hmac-sha256

• xdmp:hmac-sha512

18.4.8 Miscellaneous Functions
• xdmp:node-uri

• xdmp:node-kind

• xdmp:path

• xdmp:type

• xdmp:node-metadata-value

• xdmp:node-metadata

• sem:uuid

• sem:uuid-string

MarkLogic Server Template Driven Extraction (TDE)

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 291

• sem:bnode

• sem:datatype

• sem:sameTerm

• sem:lang

• sem:iri-to-QName

• sem:iri

• sem:QName-to-iri

• sem:unknown

• sem:unknown-datatype

• sem:invalid

• sem:invalid-datatype

• sem:typed-literal

• cts:point

• fn:head

• fn:tail

• fn:base-uri

• fn:document-uri

• fn:lang

• fn:local-name

• fn:name

• fn:namespace-uri

• fn:node-name

• fn:number

• fn:root

• fn:min

• fn:max

• fn:sum

• fn:count

• fn:avg

18.5 Validating and Inserting a Template

Note: The tde-admin role is required in order to insert a template into the schema
database.

Note: The default collation for string values in a TDE template is codepoint. If you are
having problems joining columns that use a different collation, you will need to
change the TDE template to use a matching collation, or change the appropriate
range indexes to use codepoint.

Warning For best performance, it is recommended that you do not configure your content
database to use the default Schemas database and instead create your own schemas

MarkLogic Server Template Driven Extraction (TDE)

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 292

database for your template documents. If you create multiple content databases to
hold documents to be extracted by TDE, each content database must have its own
schema database. Failure to do so may result in unexpected indexing behavior on
the content databases.

Always validate your template before inserting your view into a schema database. To validate
your view, use the tde:validate function as follows:

let $viewTemplate :=
<template xmlns="http://marklogic.com/xdmp/tde">

</template>

return tde:validate($viewTemplate)

A valid template will return the following:

<map:map xmlns:map="http://marklogic.com/xdmp/map"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <map:entry key="valid">
 <map:value xsi:type="xs:boolean">true</map:value>
 </map:entry>
</map:map>

Note: Do not use xdmp:validate to validate your template, as this function may miss
some validation steps.

After you have confirmed that the view template is valid, you can insert your view template into
the schema database used by the content database holding the document data. You can use any
method for inserting documents into the database to insert a view template, but you must insert
the template document into the http://marklogic.com/xdmp/tde collection.

The tde:template-insert function is a convenience that validates the template, inserts the
template document into the tde collection in the schema database (if executed on the content
database) with the default permissions, and triggers a re-index of the database. The
tde:template-batch-insert function is designed to insert multiple templates.

Note: When a template is inserted, only those document fragments affected by the
template are re-indexed.

MarkLogic Server Template Driven Extraction (TDE)

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 293

For example, to define and insert a view template, you would enter the following:

xquery version "1.0-ml";

import module namespace tde = "http://marklogic.com/xdmp/tde"
 at "/MarkLogic/tde.xqy";

let $ClinicalView :=
<template xmlns="http://marklogic.com/xdmp/tde">
 <description>populates patients' data</description>
 <context>/Citation/Article</context>
 <rows>
 <row>
 <schema-name>Medical2</schema-name>
 <view-name>Publications</view-name>
 <columns>
 <column>
 <name>ID</name>
 <scalar-type>long</scalar-type>
 <val>../ID</val>
 </column>
 <column>
 <name>ISSN</name>
 <scalar-type>string</scalar-type>
 <val>Journal/ISSN</val>
 </column>
 </columns>
 </row>
 </rows>
</template>

return tde:template-insert("/Template.xml", $ClinicalView)

If you use an alternative insert operation, you must explicitly insert the template document into
the http://marklogic.com/xdmp/tde collection of the schema database used by your content
database. For example:

return xdmp:document-insert(
 "/Template.xml",
 $ClinicalView,
 (),
 "http://marklogic.com/xdmp/tde")

MarkLogic Server Template Driven Extraction (TDE)

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 294

18.6 Templates and Non-Conforming Documents
Once you have inserted a TDE template for a content database, an attempt to insert a document
that does not conform to the template may generate and error.

“Doesn’t conform” might mean that the template says you must have a price element at some
path and the column is not nullable, and there is no default value. But the inserted document has
no price element at that path, or perhaps there is a price in the document but it can’t be cast to the
type of the column.

If the document is already in the database and you add the template, you may not want to delete
the non-conforming document, but you do want to be aware of its existence. If you set the group
file log level to debug, then in the case where you added a template and some existing documents
are non-conforming, you’ll get an error in the system error log for each document that doesn’t get
indexed. For details on setting the log level, see Understanding the Log Levels in the Administrator’s
Guide.

If the template is already in place and you try to insert the non-conforming document, there are
two possible outcomes:

• The insert fails with an error

• The insert succeeds, but the row with the missing price column is skipped (it doesn’t get
added to the index)

You can control the outcome by setting invalid-values in the template to reject (reject the
non-conforming document and throw an error) or ignore (allow the document insert and ignore
that row for indexing purposes).

18.7 Enabling and Disabling Templates
Templates can be enabled and disabled by modifying the <enabled> flag on the template. Set the
<enabled> flag to true to enable the template or false to disable,

For example, to disable the template set the <enabled> flag to false, as follows:

<template xmlns="http://marklogic.com/xdmp/tde">
 <context>/foo/bar</context>
 <enabled>false</enabled>
 ...
</template>

Reindexing will start automatically every time a template is enabled or disabled.

MarkLogic Server Template Driven Extraction (TDE)

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 295

18.8 Deleting Templates
Template documents can be safely deleted once they have been disabled and after enough time
has elapsed to make sure that the reindexing related to the disabled template has completed.

Accidental deletion of a template can be fixed by:

1. Reinserting the template in a disabled state.

2. Reusing the same template document URI for a new template.

3. Manually reindexing the database.

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 296

19.0 Optic API for Multi-Model Data Access
356

The MarkLogic Optic API makes it possible to perform relational operations on indexed values
and documents. The Optic API is not a single API, but rather a set of APIs exposed within the
XQuery, JavaScript, and Java languages.

The Optic API can read any indexed value, whether the value is in a range index, the triple index,
or rows extracted by a template. The extraction templates, such as those used to create template
views described in Creating Template Views in the SQL Data Modeling Guide, are a simple,
powerful way to specify a relational lens over documents, making parts of your document data
accessible via SQL. Optic gives you access to the same relational operations, such as joins and
aggregates, over rows. The Optic API also enables document search to match rows projected from
documents, joined documents as columns within rows, and dynamic document structures, all
performed efficiently within the database and accessed programmatically from your application.

The Optic API allows you to use your data as-is and makes it possible to make use of MarkLogic
document and search features using JavaScript or XQuery syntax, incorporating common SQL
concepts, regardless of the structure of your data. Unlike SQL, Optic is well suited for building
applications and accessing the full range of MarkLogic NoSQL capabilities. Because Optic is
integrated into common application languages, it can perform queries within the context of
broader applications that perform updates to data and process results for presentation to end users.

The Optic API supports:

• Joins: Integrating documents that are frequently updated or that have many relations with
a declarative query instead of with a denormalized write

• Grouping: Summarizing aggregate properties over many documents

• Exact matches over repeated structures in documents

• Joining Triples: Incorporating semantic triples to enrich row data or to link documents and
rows

• Document Joins: Returning the entire source document to provide context to row data

• Document Query: Performing rich full text search to constrain rows in addition to
relational filtering

As in the SQL and SPARQL interfaces, you can use the Optic API to build a query from standard
operations such as where, groupBy, orderBy, union, and join by expressing the operations through
calls to JavaScript and XQuery functions. The Optic API enables you to work in the environment
of the programming language, taking advantage of variables and functions for benefits such as
modularizing plan construction and avoiding the parse errors and injection attacks associated with
assembling a query by concatenating strings.

Note: Unlike in SQL, column order is indeterminate in Optic. Notable exceptions of the
sort order keys in orderby and grouping keys in groupby, which specify priority.

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 297

There is also an Optic Java Client API, which is described in Optic Java API for Relational

Operations in the Developing Applications With the Java Client API guide.

This chapter has the following main sections:

• Differences between the JavaScript and XQuery Optic APIs

• Objects in an Optic Pipeline

• Data Access Functions

• Kinds of Optic Queries

• Query DSL for Optic API

• Processing Optic Output

• Expression Functions For Processing Column Values

• Functions Equivalent to Boolean, Numeric, and String Operators

• Node Constructor Functions

• Best Practices and Performance Considerations

• Optic Execution Plan

• Parameterizing a Plan

• Exporting and Importing a Serialized Optic Query

• Sampling Data

• Query-Based Views

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 298

19.1 Differences between the JavaScript and XQuery Optic APIs

Note: Libraries can be imported as JavaScript MJS modules. This is the preferred import
method.

Warning Resource service extensions, transforms, row mappers and reducers, and other
hooks cannot be implemented as JavaScript MJS modules.

The XQuery Optic API and JavaScript Optic API are functionally equivalent. Each is adapted to
the features and practices of their respective language conventions, but otherwise both are as
consistent as possible and have the same performance profile. Use the language that best suits
your skills and programming environment.

The following table highlights the differences between the JavaScript and XQuery versions of the
Optic API.

Characteristi
c

JavaScript XQuery

Namespaces
for proxy
functions

Nested namespaces
(such as
op.fn.min)

A module in a separate namespace conforming to the
following template (for a prefix, such as ofn:min):

import module namespace
 ofn="http://marklogic.com/optic/expression/fn"
 at "/MarkLogic/optic/optic-fn.xqy";

For details, see “XQuery Libraries Required for
Expression Functions” on page 341.

Fluent object
chaining

Methods that
return objects

Functions take a state object as the first parameter and
return a state object, enabling use of the XQuery =>
chaining operator. These black-box objects hold the state
of the plan being built in the form of a map. Because
these state objects might change in a future release, they
must not be modified, serialized or persisted. Chained
functions always create a new map instead of modifying
the existing map.

Naming
convention

camelCase Hyphen-separated naming convention with the exception
of proxy functions for a camelcase original function
(such as the fn:current-dateTime function).

Unbounded
parameters

Allowed Supported as a single sequence parameter. The sole
examples at present are the proxy functions for fn:concat
and sem:coalesce.

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 299

Result types Returns a sequence
of objects, with the
option to return a
sequence of arrays

Returns a map of sql:rows, with the option to return an
array consisting of a header and rows.

Characteristi
c

JavaScript XQuery

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 300

19.2 Objects in an Optic Pipeline
The following graphic illustrates the objects that are used as input and output by the methods in an
Optic pipeline.

An Optic query creates a pipeline that applies a sequence of relational operations to a row set. The
following are the basic characteristics of the functions and methods used in an Optic query:

• All data access functions (any from* function) produce an output row set in the form of an
AccessPlan object.

col()

joinInner() => ModifyPlan
joinLeftOuter() => ModifyPlan
joinCrossProduct() => ModifyPlan

union() => ModifyPlan
where() => ModifyPlan
whereDistinct() => ModifyPlan
orderBy() => ModifyPlan
groupBy() => ModifyPlan
select() => ModifyPlan
offset() => ModifyPlan

joinDoc() => ModifyPlan
joinDocUri() => ModifyPlan

prepare() => PreparePlan

reduce() => IteratePlan
map() => IteratePlan

result()
export()

AccessPlan
ModifyPlan

PreparePlan

IteratePlan

Optic Objects and Associated Methods

op.fromLexicons()
op.fromLiterals()
op.fromTriples()
op.fromView()

=> AccessPlan

limit() => ModifyPlan
offsetLimit() => ModifyPlan

explain()

except() => ModifyPlan
intersect() => ModifyPlan

op.fromSQL()
op.fromSPARQL()

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 301

• All modifier operations, such as ModifyPlan.prototype.where, take an input row set and
produce an output row set in the form of a ModifyPlan object.

• All composer operations, such as ModifyPlan.prototype.joinInner, take two input row
sets and produce one output row set in the form of a ModifyPlan object.

• The last output row set is the result of the plan.

• The order of operations is constrained only in that the pipeline starts with an accessor
operation. For example, you can specify:

• select before a groupBy that applies a formula to two columns to specify the input
for a sum function.

• select after a groupBy that applies a formula on the columns that are the output
from two sum aggregates.

The following is simple example that selects specific columns from the rows in a view and
outputs them in a particular order. The pipeline created by this query is illustrated below.

const op = require('/MarkLogic/optic');

op.fromView('main', 'employees')
 .select(['EmployeeID', 'FirstName', 'LastName'])
 .orderBy('EmployeeID')
 .result();

1. The op.fromView function outputs an AccessPlan object that can be used by all of the API
methods.

2. The AccessPlan.prototype.select method outputs a ModifyPlan object.

3. The ModifyPlan.prototype.orderBy method outputs another ModifyPlan object.

4. The ModifyPlan.prototype.result method consumes the ModifyPlan object and executes
the plan.

op.fromView

select
ModifyPlan

orderBy
ModifyPlan

result

output

AccessPlan

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 302

The following example calculates the total expenses for each employee and returns the results in
order of employee number.

const op = require('/MarkLogic/optic');
const employees = op.fromView('main', 'employees');
const expenses = op.fromView('main', 'expenses');

const Plan =
employees.joinInner(expenses, op.on(employees.col('EmployeeID'),
 expenses.col('EmployeeID')))
 .groupBy(employees.col('EmployeeID'), ['FirstName','LastName',
 op.sum('totalexpenses', expenses.col('Amount'))])
 .orderBy('EmployeeID')
Plan.result();

Note: The absence of .select is equivalent to a SELECT * in SQL, retrieving all columns
in a view.

1. The op.fromView functions outputs AccessPlan objects that are used by the op.on function
and AccessPlan.prototype.col methods to direct the ModifyPlan.prototype.joinInner
method to join the row sets from both views, which then ouputs them as a single row set in
the form of a ModifyPlan object.

2. The ModifyPlan.prototype.groupBy method calculates the total expenses for each
employee and collapes the results into single rows.

3. The ModifyPlan.prototype.orderBy method sorts the results and outputs another
ModifyPlan object.

4. The ModifyPlan.prototype.result method consumes the ModifyPlan object and executes
the plan.

op.fromView

joinInner
ModifyPlan

groupBy
ModifyPlan result

output

ModifyPlan

orderBy ModifyPlan

col

op.fromView col

AccessPlan

Aggregate
“Amount” columns
for each employee

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 303

19.3 Data Access Functions
The following functions access data indexed as rows, triples, and lexicons, as well as literal row
sets constructed in the program:

The op.fromView function accesses indexes created by a template view, as described in Creating

Template Views in the SQL Data Modeling Guide.

The op.fromTriples function accesses semantic triple indexes and abstracts them as rows and
columns. Note, however, that the columns of rows from an RDF graph may have varying data
types, which could affect joins.

The op.fromLexicons function dynamically constructs a view with columns on range-indexes,
URI lexicons, and collection lexicons. Lexicons are often joined to enrich data indexed in views.
Accessing lexicons from Optic may be useful if your application already has range indexes
defined, or if URI or collection information is required for your query.

The op.fromLiterals function constructs a literal row set that is similar to the results from a SQL
VALUES or SPARQL VALUES statement. This allows you to provide alternative columns to join
with an existing view.

The op.fromSQL and op.fromSPARQL functions dynamically construct a row set based on a
SELECT queries, template views, and triples, respectively.

The op.fromSearch accessor function exposes the plan:search function. It supports document
matching and relevance by constructing rows with document fragment id and relevance columns.

The following sections provide examples of the different data access functions:

• fromView Examples

• fromTriples Example

• fromLexicons Examples

JavaScript XQuery

op.fromView op:from-view

op.fromTriples op:from-triples

op.fromLiterals op:from-literals

op.fromLexicons op:from-lexicons

op.fromSQL op:from-sql

op.fromSPARQL op:from-sparql

op.fromSearch op:from-search

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 304

• fromLiterals Examples

• fromSQL Example

• fromSPARQL Example

• fromSearch Example

19.3.1 fromView Examples
Queries using fromView retrieve indexed rows exposed over documents. The examples in this
section are based on documents and template views described in the SQL on MarkLogic Server

Quick Start chapter in the SQL Data Modeling Guide.

List all of the employees in order of ID number.

JavaScript:

const op = require('/MarkLogic/optic');

op.fromView('main', 'employees')
 .select(['EmployeeID', 'FirstName', 'LastName'])
 .orderBy('EmployeeID')
 .result();

XQuery:

xquery version "1.0-ml";

import module namespace op="http://marklogic.com/optic"
 at "/MarkLogic/optic.xqy";

op:from-view("main", "employees")
 => op:select(("EmployeeID", "FirstName", "LastName"))
 => op:order-by("EmployeeID")
 => op:result()

You can use Optic to filter rows for specific data of interest. For example, the following query
returns the ID and name for employee 3.

JavaScript:

const op = require('/MarkLogic/optic');

op.fromView('main', 'employees')
 .where(op.eq(op.col('EmployeeID'), 3))
 .select(['EmployeeID', 'FirstName', 'LastName'])
 .orderBy('EmployeeID')
 .result();

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 305

XQuery:

xquery version "1.0-ml";

import module namespace op="http://marklogic.com/optic"
 at "/MarkLogic/optic.xqy";

op:from-view("main", "employees")
 => op:where(op:eq(op:col("EmployeeID"), 3))
 => op:select(("EmployeeID", "FirstName", "LastName"))
 => op:order-by("EmployeeID")
 => op:result()

The following query returns all of the expenses and expense categories for each employee and
return results in order of employee number. Because some information is contained only on the
expense reports and some data is only in the employee record, a row join on EmployeeID is used to
pull data from both sets of documents and produce a single, integrated row set.

JavaScript:

const op = require('/MarkLogic/optic');

const employees = op.fromView('main', 'employees');
const expenses = op.fromView('main', 'expenses');

const Plan =
 employees.joinInner(expenses, op.on(employees.col('EmployeeID'),
 expenses.col('EmployeeID')))
 .select([employees.col('EmployeeID'), 'FirstName', 'LastName',
 'Category', 'Amount'])
 .orderBy(employees.col('EmployeeID'))
Plan.result();

XQuery:

xquery version "1.0-ml";

import module namespace op="http://marklogic.com/optic"
 at "/MarkLogic/optic.xqy";

let $employees := op:from-view("main", "employees")
let $expenses := op:from-view("main", "expenses")

return $employees
 => op:join-inner($expenses, op:on(
 op:view-col("employees", "EmployeeID"),
 op:view-col("expenses", "EmployeeID")))
 => op:select((op:view-col("employees", "EmployeeID"),
 "FirstName", "LastName", "Category", "Amount"))
 => op:order-by(op:view-col("employees", "EmployeeID"))
 => op:result()

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 306

Locate employee expenses that exceed the allowed limit. The where operation in this example
demonstrates the nature of the Optic chaining pipeline, as it applies to all of the preceding rows.

JavaScript:

const op = require('/MarkLogic/optic');

const employees = op.fromView('main', 'employees');
const expenses = op.fromView('main', 'expenses');
const expenselimit = op.fromView('main', 'expenselimit');

const Plan =
 employees.joinInner(expenses, op.on(employees.col('EmployeeID'),
 expenses.col('EmployeeID')))
 .joinInner(expenselimit, op.on(expenses.col('Category'),
 expenselimit.col('Category')))
 .where(op.gt(expenses.col('Amount'), expenselimit.col('Limit')))
 .select([employees.col('EmployeeID'), 'FirstName', 'LastName',
 expenses.col('Category'), expenses.col('Amount'),
 expenselimit.col('Limit')])
 .orderBy(employees.col('EmployeeID'))
Plan.result();

XQuery:

xquery version "1.0-ml";

import module namespace op="http://marklogic.com/optic"
 at "/MarkLogic/optic.xqy";

let $employees := op:from-view("main", "employees")
let $expenses := op:from-view("main", "expenses")
let $expenselimit := op:from-view("main", "expenselimit")

return $employees
 => op:join-inner($expenses, op:on(
 op:view-col("employees", "EmployeeID"),
 op:view-col("expenses", "EmployeeID")))
 => op:join-inner($expenselimit, op:on(
 op:view-col("expenses", "Category"),
 op:view-col("expenselimit", "Category")))
 => op:where(op:gt(op:view-col("expenses", "Amount"),
 op:view-col("expenselimit", "Limit")))
 => op:select((op:view-col("employees", "EmployeeID"),
 "FirstName", "LastName",
 op:view-col("expenses", "Category"),
 op:view-col("expenses", "Amount"),
 op:view-col("expenselimit", "Limit")))
 => op:order-by(op:view-col("employees", "EmployeeID"))
 => op:result()

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 307

19.3.2 fromTriples Example
The following example returns a list of the people who were born in Brooklyn in the form of a
table with two columns, person and name. This is executed against the example dataset described
in Loading Triples in the Semantic Graph Developer’s Guide.

JavaScript:

const op = require('/MarkLogic/optic');
// prefixer is a factory for sem:iri() constructors in a namespace
const resource = op.prefixer('http://dbpedia.org/resource/');
const foaf = op.prefixer('http://xmlns.com/foaf/0.1/');
const onto = op.prefixer('http://dbpedia.org/ontology/');

const person = op.col('person');

const Plan =
 op.fromTriples([
 op.pattern(person, onto('birthPlace'), resource('Brooklyn')),
 op.pattern(person, foaf("name"), op.col("name"))
])
Plan.result();

XQuery:

xquery version "1.0-ml";

import module namespace op="http://marklogic.com/optic"
 at "/MarkLogic/optic.xqy";

let $resource := op:prefixer("http://dbpedia.org/resource/")
let $foaf := op:prefixer("http://xmlns.com/foaf/0.1/")
let $onto := op:prefixer("http://dbpedia.org/ontology/")
let $person := op:col("person")

return op:from-triples((
 op:pattern($person, $onto("birthPlace"), $resource("Brooklyn")),
 op:pattern($person, $foaf("name"), op:col("name"))))
 => op:result()

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 308

19.3.3 fromLexicons Examples
The fromLexicons function may be useful if you already have range indexes defined for use
elsewhere in your application. This data access function enables you to incorporate lexicons as
another source of data for your query pipeline.

The examples in this section operate on the documents described in Load the Data in the SQL Data
Modeling Guide.

Note: The fromLexicons function queries on range index names, rather than column
names in a view. For example, for the employee documents, rather than query on
EmployeeID, you create a range index, named ID, and query on ID.

First, in the database holding your data, create element range indexes for the following elements:
ID, Position, FirstName, and LastName. For details on how to create range indexes, see Defining

Element Range Indexes in the Administrator’s Guide.

The following example returns the EmployeeID for each employee. The text, myview, is prepended
to each column name.

JavaScript:

const op = require('/MarkLogic/optic');

const Plan =
op.fromLexicons(
 {EmployeeID: cts.elementReference(xs.QName('ID'))});
Plan.result();

XQuery:

xquery version "1.0-ml";

import module namespace op="http://marklogic.com/optic"
 at "/MarkLogic/optic.xqy";

op:from-lexicons(
 map:entry(
 "EmployeeID", cts:element-reference(xs:QName("ID"))),
 "myview")
=> op:result()

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 309

The following example returns the EmployeeID, FirstName, LastName, and the URI of the
document holding the data for each employee.

JavaScript:

const op = require('/MarkLogic/optic');

const Plan =
op.fromLexicons({
 EmployeeID: cts.elementReference(xs.QName('ID')),
 FirstName: cts.elementReference(xs.QName('FirstName')),
 LastName: cts.elementReference(xs.QName('LastName')),
 URI: cts.uriReference()});
Plan.result();

XQuery:

xquery version "1.0-ml";

import module namespace op="http://marklogic.com/optic"
 at "/MarkLogic/optic.xqy";

op:from-lexicons(
map:entry("EmployeeID", cts:element-reference(xs:QName("ID")))
=> map:with("FirstName", cts:element-reference(xs:QName("FirstName")))
=> map:with("LastName", cts:element-reference(xs:QName("LastName")))
=> map:with("uri", cts:uri-reference()))
=> op:result()

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 310

Every view contains a fragment ID. The fragment ID generated from op.fromLexicons can be
used to join with the fragment ID of a view. For example, the following returns the EmployeeID,
FirstName, LastName, Position, and document URI for each employee.

JavaScript:

const op = require('/MarkLogic/optic');

const empldocid = op.fragmentIdCol('empldocid');
const uridocid = op.fragmentIdCol('uridocid');
const employees = op.fromView('main', 'employees', null, empldocid);
const DFrags = op.fromLexicons({'URI': cts.uriReference()},
 null, uridocid)

const Plan =
 employees.joinInner(DFrags, op.on(empldocid, uridocid))
 .select(['URI', 'EmployeeID', 'FirstName',
 'LastName', 'Position']);
Plan.result() ;

XQuery:

xquery version "1.0-ml";

import module namespace op="http://marklogic.com/optic"
 at "/MarkLogic/optic.xqy";

let $empldocid := op:fragment-id-col("empldocid")
let $uridocid := op:fragment-id-col("uridocid")
let $employees := op:from-view("main", "employees", (), $empldocid)
let $DFrags := op:from-lexicons(map:entry("URI", cts:uri-reference()),
 (), $uridocid)

return $employees
 => op:join-inner($DFrags, op:on($empldocid, $uridocid))
 => op:select((op:view-col("employees", "EmployeeID"),
 ("URI", "FirstName", "LastName", "Position")))
 => op:result()

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 311

19.3.4 fromLiterals Examples
The fromLiterals function enables you to dynamically generate rows based on run-time input of
arrays and objects of strings. This data access function is helpful for testing and debugging.

Build a table with two rows and return the row that matches the id column value of 1:

JavaScript:

const op = require('/MarkLogic/optic');
op.fromLiterals([
 {id:1, name:'Master 1', date:'2015-12-01'},
 {id:2, name:'Master 2', date:'2015-12-02'}
])
 .where(op.eq(op.col('id'),1))
 .result();

XQuery:

xquery version "1.0-ml";

import module namespace op="http://marklogic.com/optic"
 at "/MarkLogic/optic.xqy";

op:from-literals(
 map:entry("columnNames",
 json:to-array(("id", "name", "date")))
 => map:with("rowValues", (
 json:to-array((1, "Master 1", "2015-12-01")),
 json:to-array((2, "Master 2", "2015-12-02")))))
 => op:where(op:eq(op:col("id"), 1))
 => op:result()

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 312

Build a table with five rows and return the average values for group 1 and group 2:

JavaScript:

const op = require('/MarkLogic/optic');
op.fromLiterals([
 {group:1, val:2},
 {group:1, val:4},
 {group:2, val:3},
 {group:2, val:5},
 {group:2, val:7}
])
 .groupBy('group', op.avg('valAvg', 'val'))
 .orderBy('group')
 .result()

XQuery:

xquery version "1.0-ml";

import module namespace op="http://marklogic.com/optic"
 at "/MarkLogic/optic.xqy";

op:from-literals((
 map:entry("group", 1) => map:with("val", 2),
 map:entry("group", 1) => map:with("val", 4),
 map:entry("group", 2) => map:with("val", 3),
 map:entry("group", 2) => map:with("val", 5),
 map:entry("group", 2) => map:with("val", 7)
))
 => op:group-by("group", op:avg("valAvg", "val"))
 => op:order-by("group")
 => op:result()

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 313

19.3.5 fromSQL Example
The fromSQL function enables you to dynamically generate rows based on a SQL SELECT query.

List all of the employees in the employees view:

JavaScript:

const op = require('/MarkLogic/optic');

op.fromSQL('SELECT employees.FirstName, employees.LastName \
 FROM employees')
 .result();

XQuery:

xquery version "1.0-ml";

import module namespace op="http://marklogic.com/optic"
 at "/MarkLogic/optic.xqy";

op:from-sql('SELECT employees.FirstName, employees.LastName
 FROM employees')
 => op:result()

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 314

19.3.6 fromSPARQL Example
The fromSPARQL function enables you to dynamically generate rows based on a SPARQL SELECT
query.

List all of the people born in Brooklyn:

JavaScript:

'use strict';
const op = require('/MarkLogic/optic');

op.fromSPARQL(`PREFIX db: <http://dbpedia.org/resource/>
 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
 PREFIX onto: <http://dbpedia.org/ontology/>
 SELECT ?person ?name
 WHERE {WHERE { ?person onto:birthPlace db:Brooklyn;
 foaf:name ?name .}`)
.result()

XQuery:

xquery version "1.0-ml";

import module namespace op="http://marklogic.com/optic"
 at "/MarkLogic/optic.xqy";

op:from-sparql('PREFIX db: <http://dbpedia.org/resource/>
 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
 PREFIX onto: <http://dbpedia.org/ontology/>
 SELECT ?person ?name
 WHERE { ?person onto:birthPlace db:Brooklyn;
 foaf:name ?name .}')
=> op:result()

19.3.7 fromSearch Example
The fromSearch accessor function exposes exposes the plan:search function. It supports
document matching and relevance by constructing rows with document fragment id and relevance
columns. The plan will typically join the rows on the document fragment id with the content of
documents or with rows, triples, or lexicons indexed on the documents (where the lexicons
include range indexes, the document URI lexicon, and the collection lexicon).

JavaScript:

To get the document uris and content with the most relevance:

op.fromSearch('criteria')
 .joinDocUri('uri', op.fragmentIdCol('fragmentId'))
 .orderBy(op.desc('score'))
 .limit(100)

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 315

 .joinDoc('doc', op.fragmentIdCol('fragmentId'))
 ... operations to filter, project, aggregate, sort, or join on other
data ...

To get the rows with the most relevance:

op.fromSearch('criteria')
 .joinInner(
 op.fromView(null, viewName, null, op.fragmentIdCol('viewDocId')),
 op.on('fragmentId', 'viewDocId')
)
 .orderBy(op.desc('score'))
 .limit(100)
 ... operations to filter, project, aggregate, sort, or join on other
data ...

To get the triples with the most relevance:

op.fromSearch('criteria')
 .joinInner(
 op.fromTriples(
 op.pattern(op.col('s'), predicateIri, op.col('o'),
 op.fragmentIdCol('patternDocId'))
),
 op.on('fragmentId', 'patternDocId')
)
 .orderBy(op.desc('score'))
 .limit(100)
 ... operations to filter, project, aggregate, sort, or join on other
data ...

 To get the lexicon values with the most relevance:

op.fromSearch('criteria')
 .joinInner(
 op.fromLexicons({
 uri: cts.uriReference(),
 collection: cts.collectionReference(),
 ... references to range indexes on the relevant documents ...
 }, null, op.fragmentIdCol('lexiconsDocId')
),
 op.on('fragmentId', 'lexiconsDocId')
)
 .orderBy(op.desc('score'))
 .limit(100)
 ... operations to filter, project, aggregate, sort, or join on other
data ...

When there is no need to sort on score or other relevance factors, retrieving only the fragment id is
an efficient way to access documents -- as in:

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 316

 op.fromSearch(cts.wordQuery('criteria'), ['fragmentId'])
 .joinDoc('doc', op.fragmentIdCol('fragmentId'))

19.4 Kinds of Optic Queries
This section describes some of the kinds of Optic queries. The examples in this section are based
on documents and template views described in the SQL on MarkLogic Server Quick Start chapter in
the SQL Data Modeling Guide.

The topics are:

• Basic Queries

• Aggregates and Grouping

• Row Joins

• Document Joins

• Union, Intersect, and Except

• Grouping Sets

• Document Queries

19.4.1 Basic Queries
Begin using the Optic API by performing a basic query on a view over documents. Querying the
view will return rows.

For example, the following lists all of the employee IDs and names in order of ID number.

JavaScript:

const op = require('/MarkLogic/optic');

op.fromView('main', 'employees')
 .select(['EmployeeID', 'FirstName', 'LastName'])
 .orderBy('EmployeeID')
 .result();

XQuery:

xquery version "1.0-ml";

import module namespace op="http://marklogic.com/optic"
 at "/MarkLogic/optic.xqy";

op:from-view("main", "employees")
 => op:select(("EmployeeID", "FirstName", "LastName"))
 => op:order-by("EmployeeID")
 => op:result()

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 317

Where select() can project a subset of existing columns and/or modify existing columns and/or
add new columns, bind() can modify existing columns and/or add new columns but preserves
unmodified existing columns.

JavaScript:

const op = require('/MarkLogic/optic');

op.fromView('main', 'expenses')
.bind([
 op.as('Ceiling', op.multiply(op.col('Amount'), 1.1)),
 op.as('Floor', op.multiply(op.col('Amount'), 0.9))
])
 .result();

XQuery:

xquery version "1.0-ml";
import module namespace op="http://marklogic.com/optic"
 at "/MarkLogic/optic.xqy";

op:from-view("main", "expenses")
=> op:bind((
 op:as("Ceiling", op:multiply(op:col("Amount"), 1.1)),
 op:as("Floor", op:multiply(op:col("Amount"), 0.9))
))
 => op:result()

19.4.2 Aggregates and Grouping
Use the MarkLogic Optic API to conveniently perform aggregate functions on values across
documents. The following examples perform several operations to get a sense of basic statistics
about employee expenses. For information on the op.math.trunc and omath:trunc proxy
functions used in these examples, see “Expression Functions For Processing Column Values” on
page 336.

Grouping in Optic differs from SQL. In SQL, the grouping keys are in the GROUP BY statement
and the aggregates are separately declared in the SELECT. In an Optic group-by operation, the
grouping keys are the first parameter and the aggregates are an optional second parameter. In this
way, Optic enables you to aggregate sequences and arrays in a group-by operation and then call
expression functions that operate on these sequences and arrays. For example, many of the math:*
functions, described in “Expression Functions For Processing Column Values” on page 336, take
a sequence.

In Optic, instead of applying aggregate functions to the group, a simple column can be supplied.
Optic will sample the value of the column for one arbitrary row within the group. This can be
useful when the column has the same value in every row within the group; for example, when
grouping on a department number but sampling on the department name.

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 318

JavaScript:

const op = require('/MarkLogic/optic');

op.fromView('main', 'expenses')
 .groupBy(null, [
 op.count('ExpenseReports', 'EmployeeID'),
 op.min('minCharge', 'Amount'),
 op.avg('average', 'Amount'),
 op.max('maxCharge', 'Amount')
])
 .select(['ExpenseReports',
 'minCharge',
 op.as('avgCharge', op.math.trunc(op.col('average'))),
 'maxCharge'])
 .result();

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 319

XQuery:

xquery version "1.0-ml";

import module namespace op="http://marklogic.com/optic"
 at "/MarkLogic/optic.xqy";

import module namespace
 omath="http://marklogic.com/optic/expression/math"
 at "/MarkLogic/optic/optic-math.xqy";

let $expenses := op:from-view("main", "expenses")

return $expenses
 => op:group-by((), (
 op:count("ExpenseReports", "EmployeeID"),
 op:min("minCharge", "Amount"),
 op:avg("average", "Amount"),
 op:max("maxCharge", "Amount")
))
 => op:select(("ExpenseReports", "minCharge",
 op:as("avgCharge", omath:trunc(op:col("average"))),
 "maxCharge"))
 => op:result();

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 320

19.4.3 Row Joins
Optic supports the following types of row joins:

The examples in this section join the employees and expenses views to return more information
on employee expenses and their categories than what is available on individual documents.

Method Description

joinInner Creates one output row set that concatenates one left row and one right
row for each match between the keys in the left and right row sets.

joinLeftOuter Creates one output row set with all of the rows from the left row set with
the matching rows in the right row set, or NULL when there is no match.

joinCrossProduct Creates one output row set that concatenates every left row with every
right row.

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 321

19.4.3.1 joinInner
The following queries make use of the AccessPlan.prototype.joinInner and op:join-inner
functions to return all of the expenses and expense categories for each employee in order of
employee number. The join will supplement employee data with information stored in separate
expenses documents. The inner join acts as a filter and will only include those employees with
expenses.

JavaScript:

const op = require('/MarkLogic/optic');

const employees = op.fromView('main', 'employees');
const expenses = op.fromView('main', 'expenses');

const Plan =
 employees.joinInner(expenses, op.on(employees.col('EmployeeID'),
 expenses.col('EmployeeID')))
 .select([employees.col('EmployeeID'), 'FirstName', 'LastName',
 expenses.col('Category'), 'Amount'])
 .orderBy(employees.col('EmployeeID'))
Plan.result();

XQuery:

xquery version "1.0-ml";

import module namespace op="http://marklogic.com/optic"
 at "/MarkLogic/optic.xqy";

let $employees := op:from-view("main", "employees")
let $expenses := op:from-view("main", "expenses")

return $employees
 => op:join-inner($expenses, op:on(
 op:view-col("employees", "EmployeeID"),
 op:view-col("expenses", "EmployeeID")))
 => op:select((op:view-col("employees", "EmployeeID"),
 "FirstName", "LastName", "Category"))
 => op:order-by(op:view-col("employees", "EmployeeID"))
 => op:result()

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 322

Use the AccessPlan.prototype.where and op:where functions to locate employee expenses that
exceed the allowed limit. Join the employees, expenses, and category limits to get a 360 degree
view of employee expenses.

JavaScript:

const op = require('/MarkLogic/optic');

const employees = op.fromView('main', 'employees');
const expenses = op.fromView('main', 'expenses');
const expenselimit = op.fromView('main', 'expenselimit');

const Plan =
 employees.joinInner(expenses, op.on(employees.col('EmployeeID'),
 expenses.col('EmployeeID')))
 .joinInner(expenselimit, op.on(expenses.col('Category'),
 expenselimit.col('Category')))
 .where(op.gt(expenses.col('Amount'), expenselimit.col('Limit')))
 .select([employees.col('EmployeeID'), 'FirstName', 'LastName',
 expenses.col('Category'), expenses.col('Amount'),
 expenselimit.col('Limit')])
 .orderBy(employees.col('EmployeeID'))
Plan.result();

XQuery:

xquery version "1.0-ml";

import module namespace op="http://marklogic.com/optic"
 at "/MarkLogic/optic.xqy";

let $employees := op:from-view("main", "employees")
let $expenses := op:from-view("main", "expenses")
let $expenselimit := op:from-view("main", "expenselimit")

return $employees
 => op:join-inner($expenses, op:on(
 op:view-col("employees", "EmployeeID"),
 op:view-col("expenses", "EmployeeID")))
 => op:join-inner($expenselimit, op:on(
 op:view-col("expenses", "Category"),
 op:view-col("expenselimit", "Category")))
 => op:where(op:gt(op:view-col("expenses", "Amount"),
 op:view-col("expenselimit", "Limit")))
 => op:select((op:view-col("employees", "EmployeeID"),
 "FirstName", "LastName",
 op:view-col("expenses", "Category"),
 op:view-col("expenses", "Amount"),
 op:view-col("expenselimit", "Limit")))
 => op:order-by(op:view-col("employees", "EmployeeID"))
 => op:result()

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 323

19.4.3.2 joinLeftOuter
The following queries make use of the AccessPlan.prototype.joinLeftOuter and
op:join-left-outer functions to return all of the expenses and expense categories for each
employee in order of employee number, or null values for employees without matching expense
records.

JavaScript:

const op = require('/MarkLogic/optic');

const employees = op.fromView('main', 'employees');
const expenses = op.fromView('main', 'expenses');

const Plan =
 employees.joinLeftOuter(expenses, op.on(employees.col('EmployeeID'),
 expenses.col('EmployeeID')))
 .orderBy(employees.col('EmployeeID'))
Plan.result();

XQuery:

xquery version "1.0-ml";

import module namespace op="http://marklogic.com/optic"
 at "/MarkLogic/optic.xqy";

let $employees := op:from-view("main", "employees")
let $expenses := op:from-view("main", "expenses")

return $employees
 => op:join-left-outer($expenses, op:on(
 op:view-col("employees", "EmployeeID"),
 op:view-col("expenses", "EmployeeID")))
 => op:order-by(op:view-col("employees", "EmployeeID"))
 => op:result()

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 324

19.4.3.3 joinCrossProduct
The following queries make use of the AccessPlan.prototype.joinCrossProduct and
op:join-cross-product functions to return all of the expenses and expense categories for each
employee title (Position) in order of expense Category. If employees with a particular position do
not have any expenses under a category, the reported expense is 0.

JavaScript:

const op = require('/MarkLogic/optic');

const employees = op.fromView('main', 'employees');
const expenses = op.fromView('main', 'expenses');

expenses.groupBy ('Category')
 .joinCrossProduct(employees.groupBy('Position'))
 .select(null, 'all')
 .joinLeftOuter(
 expenses.joinInner(employees,
 op.on(employees.col('EmployeeID'),
 expenses.col('EmployeeID'))
)
 .groupBy(['Category', 'Position'],
 op.sum('rawExpense', expenses.col('Amount'))
)
 .select(null, 'expensed'),
 [op.on(op.viewCol('expensed', 'Category'),
 op.viewCol('all', 'Category')),
 op.on(op.viewCol('expensed', 'Position'),
 op.viewCol('all', 'Position'))]
)
 .select([op.viewCol('all', 'Category'),
 op.viewCol('all', 'Position'),
 op.as('expense', op.sem.coalesce(op.col('rawExpense'), 0))
])
 .orderBy(['Category', 'Position'])
 .result();

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 325

XQuery:

xquery version "1.0-ml";

import module namespace op="http://marklogic.com/optic"
 at "/MarkLogic/optic.xqy";
import module namespace
 osem="http://marklogic.com/optic/expression/sem"
 at "/MarkLogic/optic/optic-sem.xqy";

let $employees := op:from-view("main", "employees")
let $expenses := op:from-view("main", "expenses")
let $rawExpense := op:col("rawExpense")

return $expenses
 => op:group-by('Category')
 => op:join-cross-product($employees => op:group-by("Position"))
 => op:select((), 'all')
 => op:join-left-outer(
 $expenses
 => op:join-inner($employees, op:on(
 op:col($employees, "EmployeeID"),
 op:col($expenses, "EmployeeID")
))
 => op:group-by(("Category", "Position"),
 op:sum("rawExpense", op:col($expenses, "Amount")))
 => op:select((), "expensed"),
 (op:on(op:view-col("expensed", "Category"),
 op:view-col("all", "Category")),
 op:on(op:view-col("expensed", "Position"),
 op:view-col("all", "Position")))
)
 => op:select((op:view-col("all", "Category"),
 op:view-col("all", "Position"),
 op:as("expense",
 osem:coalesce((op:col("rawExpense"), 0)))))
 => op:order-by(("Category", "Position"))
 => op:result();

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 326

19.4.4 Document Joins
The Optic API provides access not only to rows within views, but also to documents themselves.

Optic support the following types of document joins:

Note: Minimize the number of documents retrieved by filtering or limiting rows before
joining documents.

Method Description

joinDoc Joins the source documents for rows (especially when the source
documents have detail that's not projected into rows). In this case, name
the fragment ID column and use it in the join

joinDocUri Joins related documents based on document URIs. The
AccessPlan.prototype.joinDocUri method provides a convenient way to
join documents by their URIs. However, if you need more control (for
example, left outer joins on related documents), you can use the explicit
join with the cts.uriReference lexicon to get the fragment id and join
the documents on the fragment id. After joining documents, you can use
the op.xpath function to project or an xdmp:* function to add columns
with the metadata for documents.

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 327

19.4.4.1 joinDoc
In the examples below, the ‘employee’ and ‘expense’ source documents are returned by the
AccessPlan.prototype.joinDoc or op:join-doc function after the row data. The join is done on
the document fragment ids returned by op.fromView.

JavaScript:

const op = require('/MarkLogic/optic');

const empldocid = op.fragmentIdCol('empldocid');
const expdocid = op.fragmentIdCol('expdocid');
const employees = op.fromView('main', 'employees', null, empldocid);
const expenses = op.fromView('main', 'expenses', null, expdocid);

const Plan =
 employees.joinInner(expenses, op.on(employees.col('EmployeeID'),
 expenses.col('EmployeeID')))
 .joinDoc('Employee', empldocid)
 .joinDoc('Expenses', expdocid)
 .select([employees.col('EmployeeID'),'FirstName',
 'LastName', expenses.col('Category'), 'Amount',
 'Employee', 'Expenses'])
 .orderBy(employees.col('EmployeeID'))
Plan.result();

XQuery:

xquery version "1.0-ml";

import module namespace op="http://marklogic.com/optic"
 at "/MarkLogic/optic.xqy";

let $empldocid := op:fragment-id-col("empldocid")
let $expdocid := op:fragment-id-col("expdocid")
let $employees := op:from-view("main", "employees", (), $empldocid)
let $expenses := op:from-view("main", "expenses", (), $expdocid)

return $employees
 => op:join-inner($expenses, op:on(
 op:view-col("employees", "EmployeeID"),
 op:view-col("expenses", "EmployeeID")))
 => op:join-doc("Employee", $empldocid)
 => op:join-doc("Expenses", $expdocid)
 => op:select((op:view-col("employees", "EmployeeID"),
 "FirstName", "LastName",
 op:view-col("expenses", "Category"),
 op:view-col("expenses", "Amount"),
 "Employee", "Expenses"))
 => op:order-by(op:view-col("employees", "EmployeeID"))
 => op:result()

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 328

19.4.4.2 joinDocUri
The following examples show how the AccessPlan.prototype.joinDocUri or op:join-doc-uri
function can be used to return the document URI along with the row data.

JavaScript:

const op = require('/MarkLogic/optic');
const empldocid = op.fragmentIdCol('empldocid');
const employees = op.fromView('main', 'employees', null, empldocid);

employees.joinDocUri(op.col('uri'), empldocid)
 .result();

XQuery:

xquery version "1.0-ml";

import module namespace op="http://marklogic.com/optic"
 at "/MarkLogic/optic.xqy";

let $empldocid := op:fragment-id-col("empldocid")
return op:from-view("main", "employees", (), $empldocid)
 => op:join-doc-uri(op:col("uri"), $empldocid)
 => op:result()

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 329

19.4.5 Union, Intersect, and Except
Optic supports the following ways to combine data into new rows:

The examples in this section operate on the employees and expenses views to return more
information on employee expenses and their categories than what is available on individual
documents.

19.4.5.1 union
The following queries make use of the AccessPlan.prototype.union and op:union functions to
return all of the expenses and expense categories for each employee in order of employee number.

JavaScript:

const op = require('/MarkLogic/optic');

const employees = op.fromView('main', 'employees');
const expenses = op.fromView('main', 'expenses');

const Plan =
 employees.union(expenses)
 .whereDistinct()
 .orderBy([employees.col('EmployeeID')])
Plan.result();

Method Description

union Combines all of the rows from the input row sets. Columns that are
present only in some input row sets effectively have a null value in the
rows from the other row sets.

intersect Creates one output row set from the rows that have the same columns and
values in both the left and right row sets.

except Creates one output row set from the rows that have the same columns in
both the left and right row sets, but the column values in the left row set
do not match the column values in the right row set.

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 330

XQuery:

xquery version "1.0-ml";

import module namespace op="http://marklogic.com/optic"
 at "/MarkLogic/optic.xqy";

let $employees := op:from-view("main", "employees")
let $expenses := op:from-view("main", "expenses")

return $employees
 => op:union($expenses)
 => op:where-distinct()
 => op:order-by(op:view-col("employees", "EmployeeID"))
 => op:result()

19.4.5.2 intersect
The following queries make use of the AccessPlan.prototype.intersect and op:intersect
functions to return the matching columns and values in the tables, tab1 and tab2.

Note: The op.fromLiterals function is used for this example because the data set does
not contain redundant columns and values.

JavaScript:

const op = require('/MarkLogic/optic');

const tab1 = op.fromLiterals([
 {id:1, val:'a'},
 {id:2, val:'b'},
 {id:3, val:'c'}
]);

const tab2 = op.fromLiterals([
 {id:1, val:'x'},
 {id:2, val:'b'},
 {id:3, val:'c'}
]);

tab1.intersect(tab2)
 .orderBy('id')
 .result();

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 331

XQuery:

xquery version "1.0-ml";

import module namespace op="http://marklogic.com/optic"
 at "/MarkLogic/optic.xqy";

let $tab1 := op:from-literals((
 map:entry("id", 1) => map:with("val", "a"),
 map:entry("id", 2) => map:with("val", "b"),
 map:entry("id", 3) => map:with("val", "c")
))

let $tab2 := op:from-literals((
 map:entry("id", 1) => map:with("val", "x"),
 map:entry("id", 2) => map:with("val", "b"),
 map:entry("id", 3) => map:with("val", "c")
))

return $tab1
 => op:intersect($tab2)
 => op:order-by("id")
 => op:result()

19.4.5.3 except
The following queries make use of the AccessPlan.prototype.except and op:except functions to
return the columns and values in tab1 that do not match those in tab2.

Note: The op.fromLiterals function is used for this example because the data set does
not contain redundant columns and values.

JavaScript:

const op = require('/MarkLogic/optic');

const tab1 = op.fromLiterals([
 {id:1, val:'a'},
 {id:2, val:'b'},
 {id:3, val:'c'}
]);

const tab2 = op.fromLiterals([
 {id:1, val:'x'},
 {id:2, val:'b'},
 {id:3, val:'c'}
]);

tab1.except(tab2)
 .orderBy('id')
 .result();

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 332

XQuery:

xquery version "1.0-ml";

import module namespace op="http://marklogic.com/optic"
 at "/MarkLogic/optic.xqy";

let $tab1 := op:from-literals((
 map:entry("id", 1) => map:with("val", "a"),
 map:entry("id", 2) => map:with("val", "b"),
 map:entry("id", 3) => map:with("val", "c")
))

let $tab2 := op:from-literals((
 map:entry("id", 1) => map:with("val", "x"),
 map:entry("id", 2) => map:with("val", "b"),
 map:entry("id", 3) => map:with("val", "c")
))

return $tab1
 => op:except($tab2)
 => op:order-by("id")
 => op:result()

19.4.6 Grouping Sets
The Optic API for grouping sets include the AccessPlan.prototype.groupToArrays() and
op:group-to-arrays convenience functions. While useful for row-oriented processing in the plan,
grouping row sets can be inconvenient for processing in SJS or XQuery scripting on the enode or
in an HTTP response on the client. The AccessPlan.prototype.groupToArrays()convenience
function addresses those use cases with a facade over the groupByUnion function.

The AccessPlan.prototype.groupToArrays function has the following signature:

groupToArrays(namedGroup+, aggregateCol*)

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 333

19.4.7 Document Queries
The MarkLogic Optic API can be combined with other types of queries. Developers can restrict
rows based on a document query, even if there are parts of the document that are not part of the
row view. The following demonstrates the use of the AccessPlan.prototype.where and op:where
functions to express a document query within the Optic API:

JavaScript:

const op = require('/MarkLogic/optic');

op.fromView('main', 'employees')
 .where(cts.andQuery([cts.wordQuery('Senior'),
 cts.wordQuery('Researcher')]))
 .select(['FirstName', 'LastName', 'Position'])
 .result();

XQuery:

xquery version "1.0-ml";

import module namespace op="http://marklogic.com/optic"
 at "/MarkLogic/optic.xqy";

let $employees := op:from-view("main", "employees")

return $employees
 => op:where(cts:and-query((cts:word-query("Senior"),
 cts:word-query("Researcher"))))
 => op:select(("FirstName", "LastName", "Position"))
 => op:result()

19.5 Query DSL for Optic API
Query DSL is a human-editable query language representation for the Optic API, added to the
/v1/rows endpoint in MarkLogic 10.0-6. Query DSL creates a human readable textual
representation of an Optic query without limiting the query capabilities. The human-oriented
representation can be edited with text editors, displayed in diagnostic views, and so on.

If you need to write a query on the client, consider using a Query DSL.

This section contains the following topics:

• Syntax

• Vocabulary

• Server APIs

• Processing Optic Output

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 334

Optic supports an AST (Abstract Syntax Tree) in JSON format that provides a machine-oriented
representation of an Optic query. The DSL adds a human-oriented textual representation of an
Optic query without limiting the query capabilities. The Optic API supports lossless conversion
between the machine-oriented AST and human-oriented DSL representations of an Optic query.

Note: Prior to MarkLogic 10.0-6, the /v1/rows endpoint was only available by using
MarkLogic client APIs or previously exported ASTs. The REST API support for
Optic queries was machine-oriented, but with the Query DSL enhancement it is
now accessable via human-readable queries.

The Query DSL has the same syntax and vocabulary as the Optic builder in SJS. It looks like an
eval but without raising the security concerns.

Here is an example of complete query:

const currentYear = fn.yearFromDate(fn.currentDate())

op.fromView(null, ‘musician’)
 .where($c.dob > xs.date(fn.concat(currentYear - 100, ‘-01-01’)))
 .select([op.as(‘age’, currentYear - fn.yearFromDate($c.dob)),
$c.lastName, $c.firstName])
 .orderBy([$c.age, $c.lastName, $c.firstName])

For cut-and-paste compatibility with VSCode and Query Console, the Query DSL supports the
representation of an Optic query built in SJS without changes.

The Query DSL also supports shortcuts to improve usability for the JavaScript user (including
eliminating the difference between expressions executed at build time and expressions executed at
query time based on the inputs to the expression).

19.5.1 Syntax
The complete syntax for Query DSL includes:

• primitive literals for string, numeric, boolean and null values - but not the undefined (void
0) literal value; use op.isDefined() instead

• object and array literals

• arithmetic, comparison, and boolean operators (including == and != equality) - but not ===
or !=== identity or string concatenation (+); use fn.concat() instead

• the ternary operator: testExpression ? consequentExpression : alternateExpression

• parenthetical grouping of expressions

• comma separation of expressions

• constant assignment and evaluation - for reuse of query fragments

• member evaluation - including namespaced functions

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 335

• functions calls - including functional composition and chained calls

A Query DSL can have any number of constant assignments followed by exactly one query
builder expression.

19.5.2 Vocabulary
Here is the complete vocabulary for Query DSL:

• The cts, fn, geo, json, map, math, op, rdf, sem, spell, sql, xdmp, and xs namespaces

• The cts.query and sem.store constructors

• The side-effect-free expression functions in the cts, fn, geo, json, map, math, rdf, sem,
spell, sql, xdmp, and xs namespaces supported by the Optic API
see https://docs.marklogic.com/guide/app-dev/OpticAPI#id_69308 .

• The functions of the Optic query builder exclusive of the result(), explain(), export(),
and generateView() operations on the built query
see https://docs.marklogic.com/js/op .

• The $c.schemaName.viewName.colName, $c.viewName.colName, and $c.colName shortcut
for specifying columns; use op.schemaCol(), op.viewCol(), or op.col() if any name
contains a period.

The operation on the Query DSL is specified by the request instead of as part of the query.

19.5.3 Server APIs
To avoid incurring the import of the JavaScript parser in the existing Optic library, a new
MarkLogic/optic-dsl-js.mjs library provides one new function:

• import() takes a Query DSL as a string and returns an Optic query ready for execution,
explanation, or export.

The imported Optic query can be:

• executed with the existing Optic results() method

• analyzed with the existing Optic explain() method

• converted to the AST with the existing Optic export() method

• wrapped as a view by the existing Optic generateView() method

• serialized to Optic SJS source (and thus to the Query DSL without shortcuts) with the the
existing Optic toSource() function

Note: Because the toSource() function doesn’t apply any shortcuts in the serialization,
editors that want to provide the original textual representation of a query should
take a typical approach for such cases and save the original textual representation
instead of relying on generating an equivalent textual representation.

https://docs.marklogic.com/js/op
https://docs.marklogic.com/guide/app-dev/OpticAPI#id_69308

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 336

The existing /v1/rows endpoint of the REST API, and (for completeness) the Java and Node.js
Client APIs, can take the Optic DSL as an alternative to the AST representation of an Optic query.
The content-type header for the request must specify a mime type of
application/vnd.marklogic.querydsl+javascript

The operation on the query DSL is specified by the request instead of as part of the query.

19.5.4 Processing Optic Output
Optic JavaScript queries in Query Console output results in the form of serialized JSON objects.
In most cases, you will want to have some code that consumes the Optic output. For example, the
following query maps the Optic output to an HTML table.

const op = require('/MarkLogic/optic');

let keys = null;
const rowItr = op.fromView('main', 'employees')
 .map(row => {
 if (keys === null) {
 keys = Object.keys(row);
 }
 return `<tr>${keys.map(key => `<td>${row[key]}</td>`)}</tr>`;
 })
 .result();

const rows = Array.from(rowItr).join('\n');
const header = `<tr>${keys.map(key => `<th>${key}</th>`)}</tr>`;
const report = `<table>\n${header}\n${rows}\n</table>`;
report;

To view the output as a table in Query Console, select HTML from the String as menu.

19.6 Expression Functions For Processing Column Values
Optic supports expression functions that represent builtin functions to process column values
returned by op.col and op:col. These include datatype constructors, datetime, duration, numeric,
sequence, and string functions. Expression functions are both

• A proxy for a deferred call to a builtin function on the value of a column in each row.

• Nestable for powerful expressions that transform values.

For example, the math.trunc function is expressed by the op.math.trunc expression function in
JavaScript and as omath:trunc in XQuery.

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 337

For example, the truncate to decimal portion of the returned 'average' value, do the following:

op.math.trunc(op.col('average')) // JavaScript

omath:trunc(op:col('average')) (: XQuery :)

The list of JavaScript functions supported by expression functions is shown in the table below.
Their XQuery equivalents are also supported, but you must import the respective module libraries
listed in “XQuery Libraries Required for Expression Functions” on page 341.

Most every value processing built-in function you would want to use is listed below. In the
unlikely event that you want to call a function that is not listed, the Optic API provides a
general-purpose op.call constructor for deferred calls:

op.call(moduleUri, functionName, arg*) => expression

op.call({uri:..., name:..., args:*}) => expression

Use the op.call function with care because some builtins could adversely affect performance or
worse. You cannot call JavaScript or XQuery functions using this function. Instead, provide a map
or reduce function to postprocess the results.

Built-in Functions Supported by Optic Expression Functions

cts.tokenize fn.roundHalfToEven math.variance xdmp.integerToOctal

cts.stem fn.secondsFromDateTime math.varianceP xdmp.keyFromQName

fn.abs fn.secondsFromDuration rdf.langString xdmp.lshift64

fn.adjustDateTimeToTimezone fn.secondsFromTime rdf.langStringLanguage xdmp.md5

fn.adjustDateToTimezone fn.startsWith sem.bnode xdmp.monthNameFromDate

fn.adjustTimeToTimezone fn.string sem.coalesce xdmp.mul64

fn.analyzeString fn.stringJoin sem.datatype xdmp.nodeCollections

fn.avg fn.stringLength sem.if xdmp.nodeMetadata

fn.baseUri fn.stringToCodepoints sem.invalid xdmp.nodeMetadataValue

fn.boolean fn.subsequence sem.invalidDatatype xdmp.nodeKind

fn.ceiling fn.substring sem.iri xdmp.nodePermissions

fn.codepointEqual fn.substringAfter sem.iriToQName xdmp.nodeUri

fn.codepointsToString fn.substringBefore sem.isBlank xdmp.not64

fn.compare fn.sum sem.isIRI xdmp.octalToInteger

fn.concat fn.tail sem.isLiteral xdmp.or64

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 338

fn.currentDateTime fn.timezoneFromDate sem.isNumeric xdmp.parseDateTime

fn.currentDate fn.timezoneFromDateTime sem.lang xdmp.parseYymmdd

fn.currentTime fn.timezoneFromTime sem.langMatches xdmp.path

fn.contains fn.tokenize sem.QNameToIri xdmp.position

fn.count fn.translate sem.random xdmp.QNameFromKey

fn.dateTime fn.true sem.sameTerm xdmp.quarterFromDate

fn.dayFromDate fn.unordered sem.timezoneString xdmp.random

fn.dayFromDateTime fn.upperCase sem.typedLiteral xdmp.resolveUri

fn.daysFromDuration fn.yearFromDate sem.unknown xdmp.rshift64

fn.deepEqual fn.yearFromDateTime sem.unknownDatatype xdmp.sha1

fn.defaultCollation fn.yearsFromDuration sem.uuid xdmp.sha256

fn.distinctValues json.array sem.uuidString xdmp.sha384

fn.documentUri json.arraySize spell.doubleMetaphone xdmp.sha512

fn.empty json.arrayValues spell.levenshteinDistance xdmp.step64

fn.encodeForUri json.object spell.romanize xdmp.strftime

fn.endsWith json.objectDefine sql.bitLength xdmp.timestampToWallclock

fn.escapeHtmlUri json.subarray sql.dateadd xdmp.toJSON

fn.exists json.toArray sql.datediff xdmp.type

fn.false map.contains sql.datepart xdmp.urlDecode

fn.floor map.count sql.day xdmp.urlEncode

fn.formatDate map.entry sql.dayname xdmp.wallclockToTimestamp

fn.formatDateTime map.get sql.hours xdmp.weekdayFromDate

fn.formatNumber map.keys sql.insert xdmp.weekFromDate

fn.formatTime map.map sql.left xdmp.xor64

fn.generateId map.new sql.minutes xdmp.yeardayFromDate

fn.head math.acos sql.month xs.anyURI

fn.hoursFromDateTime math.asin sql.monthname xs.boolean

fn.hoursFromDuration math.atan sql.octetLength xs.byte

fn.hoursFromTime math.atan2 sql.quarter xs.date

Built-in Functions Supported by Optic Expression Functions

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 339

fn.implicitTimezone math.ceil sql.rand xs.dateTime

fn.indexOf math.correlation sql.repeat xs.dayTimeDuration

fn.inScopePrefixes math.cos sql.right xs.decimal

fn.insertBefore math.cosh sql.seconds xs.double

fn.iriToUri math.cot sql.sign xs.duration

fn.lang math.covariance sql.space xs.float

fn.localName math.covarianceP sql.timestampadd xs.gDay

fn.localNameFromQName math.degrees sql.timestampdiff xs.gMonth

fn.lowerCase math.exp sql.week xs.gMonthDay

fn.matches math.fabs sql.weekday xs.gYear

fn.max math.floor sql.year xs.gYearMonth

fn.min math.fmod sql.yearday xs.hexBinary

fn.minutesFromDateTime math.frexp xdmp.add64 xs.int

fn.minutesFromDuration math.ldexp xdmp.and64 xs.integer

fn.minutesFromTime math.linearModel xdmp.base64Decode xs.language

fn.monthFromDate math.linearModelCoeff xdmp.base64Encode xs.long

fn.monthFromDateTime math.linearModelIntercept xdmp.castableAs xs.Name

fn.monthsFromDuration math.linearModelRsquared xdmp.crypt xs.NCName

fn.name math.log xdmp.crypt2 xs.NMTOKEN

fn.namespaceUriFromQName math.log10 xdmp.daynameFromDate xs.negativeInteger

fn.namespaceUri math.median xdmp.decodeFromNCName xs.nonNegativeInteger

fn.namespaceUriForPrefix math.mode xdmp.describe xs.nonPositiveInteger

fn.nilled math.modf xdmp.diacriticLess xs.normalizedString

fn.nodeName math.percentile xdmp.elementContentType xs.numeric

fn.normalizeSpace math.percentRank xdmp.encodeForNCName xs.positiveInteger

fn.normalizeUnicode math.pi xdmp.formatNumber xs.QName

fn.not math.pow xdmp.fromJSON xs.short

fn.number math.radians xdmp.getCurrentUser xs.string

fn.prefixFromQName math.rank xdmp.hash32 xs.time

Built-in Functions Supported by Optic Expression Functions

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 340

fn.QName math.sin xdmp.hash64 xs.token

fn.remove math.sinh xdmp.hexToInteger xs.unsignedByte

fn.replace math.sqrt xdmp.hmacMd5 xs.unsignedInt

fn.resolveQName math.stddev xdmp.hmacSha1 xs.unsignedLong

fn.resolveUri math.stddevP xdmp.hmacSha256 xs.unsignedShort

fn.reverse math.tan xdmp.hmacSha512 xs.yearMonthDuration

fn.root math.tanh xdmp.initcap xs.base64Binary

fn.round math.trunc xdmp.integerToHex xs.untypedAtomic

sql.bucket sql.collated-string sql.glob sql.ifnull

sql.instr sql.like sql.ltrim sql.nullif

sql.rtrim sql.rowID sql.soundex sql.strpos

sql.trim sem.default-graph-iri sem.ruleset-store sem.store

geo.approx-center geo.arc-intersection geo.bearing geo.bounding-boxes

geo.box-intersects geo.circle-intersects geo.circle-polygon geo.count-distinct-vertice
s

geo.count-vertices geo.destination geo.distance geo.distance-convert

geo.ellipse-polygon geo.geohash-decode geo.geohash-decode-point geo.geohash-encode

geo.geohash-neighbors geo.geohash-precision-dim
ensions

geo.geohash-subhashes geo.interior-point

geo.parse-wkt geo.region-affine-transfo
rm

geo.region-approximate geo.region-clean

geo.region-contains geo.region-de9im geo.region-intersects geo.region-relate

geo.remove-duplicate-vertic
es

geo.shortest-distance geo.to-wkt geo.validate-wkt

cts.part-of-speech cts.after-query cts.and-not-query cts.and-query

cts.before-query cts.boost-query cts.collection-query cts.column-range-query

cts.directory-query cts.document-fragment-que
ry

cts.document-query cts.element-attribute-pair
-geospatial-query

cts.element-attribute-range
-query

cts.element-attribute-val
ue-query

cts.element-attribute-word
-query

cts.element-child-geospati
al-query

cts.element-geospatial-quer
y

cts.element-pair-geospatial-
query

cts.element-query cts.element-range-query

Built-in Functions Supported by Optic Expression Functions

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 341

19.6.1 XQuery Libraries Required for Expression Functions
In XQuery, the following libraries must be imported to use the expression functions for the
respective built-in functions.

cts functions:

import module namespace octs="http://marklogic.com/optic/expression/cts"
 at "/MarkLogic/optic/optic-cts.xqy";

fn functions:

import module namespace ofn="http://marklogic.com/optic/expression/fn"
 at "/MarkLogic/optic/optic-fn.xqy";

json functions:

cts.element-value-query cts.element-word-query cts.false-query cts.field-range-query

cts.field-value-query cts.field-word-query cts.geospatial-region-quer
y

cts.json-property-child-ge
ospatial-query

cts.json-property-geospatia
l-query

cts.json-property-pair-ge
ospatial-query

cts.json-property-range-qu
ery

cts.json-property-scope-qu
ery

cts.json-property-value-que
ry

cts.json-property-word-qu
ery

cts.locks-fragment-query cts.lsqt-query

cts.near-query cts.not-in-query cts.not-query cts.or-query

cts.path-geospatial-query cts.path-range-query cts.period-compare-query cts.period-range-query

cts.properties-fragment-que
ry

cts.range-query cts.triple-range-query cts.true-query

cts.word-query cts.period cts.box cts.circle

cts.box cts.circle cts.complex-polygon cts.linestring

cts.point cts.polygon cts.box-west cts.box-north

cts.box-east cts.box-south cts.circle-center cts.ircle-radius

cts.point-latitude cts.point-longitude cts.collection-reference cts.element-attribute-refe
rence

cts.element-reference cts.field-reference cts.json-property-referenc
e

cts.geospatial-path-refere

nce

cts.geospatial-region-path-
reference

cts.path-reference cts.uri-reference

Built-in Functions Supported by Optic Expression Functions

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 342

import module namespace ojson="http://marklogic.com/optic/expression/json"
 at "/MarkLogic/optic/optic-json.xqy";

map functions:

import module namespace omap="http://marklogic.com/optic/expression/map"
 at "/MarkLogic/optic/optic-map.xqy";

math functions:

import module namespace omath="http://marklogic.com/optic/expression/math"
 at "/MarkLogic/optic/optic-math.xqy";

rdf functions:

import module namespace ordf="http://marklogic.com/optic/expression/rdf"
 at "/MarkLogic/optic/optic-rdf.xqy";

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 343

sem functions:

import module namespace osem="http://marklogic.com/optic/expression/sem"
 at "/MarkLogic/optic/optic-sem.xqy";

spell functions:

import module namespace ospell="http://marklogic.com/optic/expression/spell"
 at "/MarkLogic/optic/optic-spell.xqy";

sql functions:

import module namespace osql="http://marklogic.com/optic/expression/sql"
 at "/MarkLogic/optic/optic-sql.xqy";

xdmp functions:

import module namespace oxdmp="http://marklogic.com/optic/expression/xdmp"
 at "/MarkLogic/optic/optic-xdmp.xqy";

xs functions:

import module namespace oxs="http://marklogic.com/optic/expression/xs"
 at "/MarkLogic/optic/optic-xs.xqy";

Expression functions can be nested for powerful expressions that transform values. For example:

.select(['countUsers', 'minReputation',
 op.as('avgReputation', op.math.trunc(op.col('aRep'))), 'maxReputation',
 op.as('locationPercent',
 op.fn.formatNumber(op.xs.double(
 op.divide(op.col('locationCount'),
 op.col('countUsers'))),'##%'))
])

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 344

19.7 Functions Equivalent to Boolean, Numeric, and String Operators

Function SPARQL SQL Comments

eq(valueExpression, valueExpression)
=> booleanExpression

eq({left:..., right:...}) =>
booleanExpression

= =

==

In expressions, the call will
pass a op.col value to
identify a column.

gt(valueExpression, valueExpression)
=> booleanExpression

gt({left:..., right:...}) =>
booleanExpression

> >

ge(valueExpression, valueExpression)
=> booleanExpression

ge({left:..., right:...}) =>
booleanExpression

>= >=

lt(valueExpression, valueExpression)
=> booleanExpression

lt({left:..., right:...}) =>
booleanExpression

< <

le(valueExpression, valueExpression)
=> booleanExpression

le({left:..., right:...}) =>
booleanExpression

<= <=

ne(valueExpression, valueExpression)
=> booleanExpression

ne({left:..., right:...}) =>
booleanExpression

!= !=

and(booleanExpression+) =>
booleanExpression

and({list:...}) => booleanExpression

&& AND

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 345

or(booleanExpression+) =>
booleanExpression

or({list:...}) => booleanExpression

|| OR

not(booleanExpression) =>
booleanExpression

not({condition:...}) =>
booleanExpression

! NOT

case(whenExpression+,
valueExpression) => valueExpression

case({list:..., otherwise:...}) =>
valueExpression

IF CASE
WHEN
ELSE

when(booleanExpression,
valueExpression) => whenExpression

when({condition:..., value:...}) =>
whenExpression

WHEN

isDefined(col) => booleanExpression

isDefined({column: ...}) =>
booleanExpression

BOUND IS
NULL

add(numericExpression,
numericExpression) =>
numericExpression

add({left:..., right:...}) =>
numericExpression

+ + A column must be named
with an op.col value.

divide(numericExpression,
numericExpression) =>
numericExpression

divide({left:..., right:...}) =>
numericExpression

/ /

Function SPARQL SQL Comments

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 346

Note: Expressions that use rows returned from a subplan (similar to SQL or SPARQL
EXISTS) are not supported.

19.8 Node Constructor Functions
Optic provides node constructor functions that enable you to build tree structures. Node
constructor functions can:

• Create JSON objects whose properties come from column values or XML elements whose
content or attribute values come from column values.

• Insert documents or nodes extracted via op.xpath into constructed nodes.

• Create JSON arrays from aggregated arrays of nodes or XML elements from aggregated
sequences of nodes.

The table below summarizes the Optic node constructor functions. For details on each function,
see the Optic API reference documentation.

modulo(numericExpression,
numericExpression) =>
numericExpression

modulo({left:..., right:...}) =>
numericExpression

%

multiply(numericExpression,
numericExpression) =>
numericExpression

multiply({left:..., right:...}) =>
numericExpression

* *

subtract(numericExpression,
numericExpression) =>
numericExpression

subtract({left:..., right:...}) =>
numericExpression

- -

op:in($testValue as item(),
$candidateValues as item()+) as
xs:boolean

op.in(testValue, [candidateValue1,
candidateValue2, ... candidateValueN])

IN IN Returns true if the test value
equals any of the candidate
values.

Function SPARQL SQL Comments

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 347

Function Description

op.jsonArray Constructs a JSON array with the specified JSON nodes as items.

op.jsonBoolean Constructs a JSON boolean node with a specified value.

op.jsonDocument Constructs a JSON document with the root content, which must be
exactly one JSON object or array node.

op.jsonNull Constructs a JSON null node.

op.jsonNumber Constructs a JSON number node with a specified value.

op.jsonObject Constructs a JSON object with the specified properties.

The properties argument is constructed with the prop() function.

op.jsonString Constructs a JSON text node with the specified value.

op.prop Specifies a key expression and value content for a JSON property of a
JSON object.

op.xmlAttribute Constructs an XML attribute with a name and atomic value.

op.xmlComment Constructs an XML comment with an atomic value.

op.xmlDocument Constructs an XML document with a root content.

op.xmlElement Constructs an XML element with a name, zero or more attribute nodes,
and child content.

op.xmlPI Constructs an XML processing instruction with an atomic value.

op.xmlText Constructs an XML text node.

op.xpath Extracts a sequence of child nodes from a column with node values.

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 348

For example, the following query constructs JSON documents, like the one shown below:

const op = require('/MarkLogic/optic');
const employees = op.fromView('main', 'employees');

employees.select(op.as('Employee', op.jsonDocument(
 op.jsonObject([op.prop('ID and Name',
 op.jsonArray([
 op.jsonNumber(op.col('EmployeeID')),
 op.jsonString(op.col('FirstName')),
 op.jsonString(op.col('LastName'))
])),
 op.prop('Position',
 op.jsonString(op.col('Position')))
])
)))
.result();

This query will produce output that looks like the following:

{
 "Employee": {
 "ID and Name": [
 42,
 "Debbie",
 "Goodall"
],
 "Position": "Senior Widget Researcher"
 }
}

19.9 Best Practices and Performance Considerations
Optic does not have a default/implicit limit for the rows or documents returned. Creating plans
that return large result sets, such as tens of thousands of rows, may perform poorly. If you
experience performance problems, it is a best practice to page the results using the
AccessPlan.prototype.offsetLimit method or a combination of AccessPlan.prototype.offset
and AccessPlan.prototype.limit methods.

19.10 Optic Execution Plan
An Optic Execution Plan expresses a logical dataflow with a sequence of atomic operations. You
use the Optic API to build up a plan definition, creating and modifying objects in a pipeline and
then executing the plan with the PreparePlan.prototype.result function.

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 349

You can use the PreparePlan.prototype.explain function to view or save an execution plan. The
execution plan definition consists of operations on a row set. These operations fall into the
following categories:

• data access - an execution plan can read a row set from a view, graph, or literals where a
view can access the triple index or the cross-product of the co-occurrence of range index
values in documents.

• row set modification - an execution plan can filter with where, order by, group, project
with select, and limit a row set to yield a modified row set.

• row set composition - an execution plan can combine multiple row sets with join, union,
intersect, or except to yield a single row set.

• row result processing - an execution plan can specify operations to perform on the final
row set including mapping or reducing.

When a view is opened as an execution plan, it has a special property that has an object with a
property for each column in the view. The name of the property is the column name and the value
of the property is a name object. To prevent ambiguity for columns with the same name in
different views, the column name for a view column is prefixed with the view name and a
separating period.

The execution plan result can be serialized to CSV, line-oriented XML or JSON, depending on the
output mime type. For details on how to read an execution plan, see Execution Plan in the SQL
Data Modeling Guide.

19.11 Parameterizing a Plan
You use the op.param function to create a placeholder that can be substituted for any value. You
must specify the value of the parameter when executing the plan.

Because the plan engine caches plans, parameterizing a plan executed previously is more efficient
than submitting a new plan.

For example, the following query uses a start and length parameter to set the offsetLimit and
an increment parameter to increment the value of EmployeeID.

const op = require('/MarkLogic/optic');

const employees = op.fromView('main', 'employees');

employees.offsetLimit(op.param('start'), op.param('length'))
 .select(['EmployeeID',
 op.as('incremented', op.add(op.col('EmployeeID'),
 op.param('increment')))])
 .result(null, {start:1, length:2, increment:1});

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 350

19.12 Exporting and Importing a Serialized Optic Query
You can use the IteratePlan.prototype.export method or op:export function to export a
serialized form of an Optic query. This enables the plan to be stored as a file and later imported by
the op.import or op:import function or to be used by the /v1/rows REST call as a payload. You
can recreate the source code used to create an exported plan by means of the op.toSource or
op:to-source function.

For example, to export an Optic query to a file, do the following:

JavaScript:

const op = require('/MarkLogic/optic');

const EmployeePlan =
 op.fromView('main', 'employees')
 .select(['EmployeeID', 'FirstName', 'LastName'])
 .orderBy('EmployeeID')
const planObj = EmployeePlan.export();

xdmp.documentInsert("plan.json", planObj)

XQuery:

xquery version "1.0-ml";

import module namespace op="http://marklogic.com/optic"
 at "/MarkLogic/optic.xqy";

let $plan := op:from-view("main", "employees")
 => op:select(("EmployeeID", "FirstName", "LastName"))
 => op:order-by("EmployeeID")
 => op:export()

return xdmp:document-insert("plan.json", xdmp:to-json($plan))

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 351

To import an Optic query from a file and output the results, do the following:

JavaScript:

const op = require('/MarkLogic/optic');

op.import(cts.doc('plan.json').toObject())
 .result();

XQuery:

xquery version "1.0-ml";

import module namespace op="http://marklogic.com/optic"
 at "/MarkLogic/optic.xqy";

op:import(fn:doc("plan.json")/node())
 => op:result()

To view the source code representation of a plan, do the following:

JavaScript:

const op = require('/MarkLogic/optic');

op.toSource(cts.doc('plan.json'))

XQuery:

xquery version "1.0-ml";

import module namespace op="http://marklogic.com/optic"
 at "/MarkLogic/optic.xqy";

op:to-source(fn:doc("plan.json"))

19.13 Sampling Data
The Optic API provides a way to sample data.
The following example illustrates the technique for efficient sampling using the op.fromView()
accessor where each row is produced from a single document:

const op = require('/MarkLogic/optic');
op.fromView(...)
 .where(...column filters...)
 .select([...projected columns...,
op.as('randomNumberCol',op.sql.rand())])
 .orderBy('randomNumberCol')
 .limit(10)
 ... optional inner or left joins on other accessors ...
 ... optional select expressions constructing column values from multiple

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 352

accessors ...
 ... optional grouping on rows from other accessors ...
 .result();

The same technique works for the op.fromLexicons() accessor.

The technique also works for the op.fromSQL() accessor when each row is produced from a single
document.

The technique also works for the op.fromTriples() or op.fromSPARQL() accessors when each
result is produced from a single document.

19.14 Query-Based Views
A Query-based view is a view that has been created from an Optic query that can be referenced in
subsequent calls to SQL or Optic. This feature is made available in MarkLogic 10.0-7.

The Query-based view (QBV) feature enables you to create SQL views that reference Template
(TDE) views, lexicons, and SPARQL queries. SQL CREATE VIEW and a new Optic API
(op.generateView) allow you to create custom views. The Query-based views you generate will
be stored in the Schemas database and can be shared with privileged users.

Using SQL, you create a view with a statement like this:

CREATE VIEW customers.best_customers WITH ROLE
 optic_role CAN READ, UPDATE as
 SELECT name, address, sum(purchase) as total_spent
 FROM customer
 ORDER BY total_spent;

This creates a table with the information in columns (name, address, and total_spent) with rows
for each entry that users with the optic_role can view.

SELECT * FROM best_customers,

Note: You can supply N number of [WITH ROLE CAN] statements along with CREATE VIEW
to grant N role privileges to the view.

Note: READ privilege grants users the ability to query from the view, while UPDATE allows
users to update or drop the view.

Note: You must supply UPDATE permissions while creating a view, otherwise the
XDMP-MUSTHAVEUPDATE error will be thrown.

Note: You must have the role query-view-admin to create a view. Non-privileged users
can use CREATE TEMP VIEW to create a view, but these views will not persist across
SQL connections.

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 353

Note: The CREATE VIEW statement inserts a document into the Schemas database as
http://marklogic.com/qbv/schemaName/viewName.

To use the op.generateView function in the Optic API, you create an Optic query as usual, but
instead of returning the result, you call op.generateView and supply a schema and view name for
the QBV. Here is an example of creating a view using the Optic API and op.generateView:

const op = require('/MarkLogic/optic');

const trade = op.fromView('Trades','trade')

const customer = op.fromView('customers','customer')

const qbv = trade.joinInner(customer, op.on(op.viewCol('customer',
'customerid'),op.viewCol('trade','customerid')))
 .select([op.viewCol('customer','customerid'),
opcol('name')])
 .orderBy(op.col('name'))
 .limit(10)
 .generateView('trades','customer_trade')

qbv;

The generateView outputs an XML serializable version of the query plan.

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 354

You can insert this XML as a file in your Schemas database. The server will discover this new
view, allowing you to query from it. Using query-based views, you can create a view from any
Optic or SQL query, and that view will persist across SQL connections, enabling privileged users
to query from it.

Query-based views have their own security model, allowing you to assign roles to the views,
dictating which users can see a view. QBVs also inherit document-level, template-level,
column-level, and element-level security from the data they are based on.

If you want to query the same columns from existing tables with certain filters applied repeatedly,
you can create a QBV and query from that view with a simple SELECT * statement.

Note: it is not recommended to manually edit the XML output from op.generateView().
This may cause errors and will break the view.

Query-based views can be shared. You can create a view that contains sensitive data for another
user to query. The other user can query from the QBV you created, but only see the results that
they have the privileges to see. Users can only see data for which they have the appropriate
permissions, based on the policies of existing security features, ie. document-level, element-level,
column-level security.

The Optic API also allows you to query from triples, which are usually queried from SPARQL.
The QBV enables you to run SQL statements against SPARQL results, in turn providing the
ability to visualize your triple data in Tableau, PowerBI, or your favorite BI tool.

'use strict';
const op = require('/MarkLogic/optic');

const query =
`
PREFIX demov: http://demo/verb#
PREFIX vcard: http://www.w3.org/2006/vcard/ns#

SELECT ?country (MAX (?sales) AS ?max_sales)
FROM http://marklogic.com/semantics/sb/COMPANIES100/
WHERE {
 ?company a vcard:Organization .
 ?company demov:sales ?sales .
 ?company vcard:hasAddress [vcard:country-name ?country]
}
GROUP BY ?country
ORDER BY ASC(?max_sales) ?country
`
var view = op.fromSPARQL(query)
 .limit(10)
 .generateView('sparql','qbv', [
 { name:'country',
 type:'string',
 invalidValues:'reject',
 nullable:false,

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 355

 collation:'http://marklogic
.com/collation/codepoint'
 },
 { name:'max_sales',
 type:'int',
 invalidValues: 'skip',
 nullable:true
 }
])
xdmp.eval(
 `declareUpdate();
 xdmp.documentInsert("sparql-qbv.xml", xmlView,
 { permissions: [xdmp.permission("optic-user", "read"),
xdmp.permission("optic-user", "update")],
 collections: "http://marklogic.com/xdmp/qbv" })`,
{ xmlView : view},
{ database: xdmp.database('custom-schemas') })

In this example code, the XML output from generateView is stored in the variable view and gets
passed to xdmp.eval. This call executes xdmp.documentInsert against the custom-schemas
database. This saves the XML serialization as a document under the name sparql-qbv.xml. In this
example, we provided users with the optic-role the ability to read and update the view.

Users with read permissions on a view can query from it. Users with update permissions can edit
or delete the view. The collection http://marklogic.com/xdmp/qbv is a protected collection. Only
users with the built-in role query-view-admin can insert documents into this collection. In order
for the view to be query-able, it must belong to this collection.

If creating a query-based view from a SPARQL query, it is necessary to define types for the
columns. This is because SPARQL variables are largely untyped, while SQL columns are typed.

We provide the facility to do this, in order to assign the correct type to a QBV column while
connecting via ODBC. BI tools use this type to show accurate analytics on your data.

The optional fourth argument to op.generateView() allows you to define types for columns that
you see necessary. In the figure above, there is an example of providing a map to define column
types for the QBV.

In the map, you provide

• name - the name of the column in the QBV (required)

• type - the type to define the column as. Any TDE column type is valid for this field.
(required)

• nullable - true or false. If you expect “null” results in this column, set this field to true.
(optional - default is true)

• collation - this is specifically for string types. Provide the collation you expect the result to
be (optional - default is no collation)

MarkLogic Server Optic API for Multi-Model Data Access

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 356

• invalidValues - provide “skip” or “reject” to this field. If “skip” is provided, the engine
skips rows that contain values whose type, nullability, or collation don't match your
specification. If “reject” is provided, an error is thrown if a value that does not match the
column criteria is found (optional - default is “skip”)

It is advisable to create a QBV with all invalidValues fields as “reject” while in development. This
is so you can try out the QBV and see if you need to edit the query that generates the view (for
example, add a filter).

If you are fine with the engine skipping rows that don’t meet the column specification, set
invalidValues to “skip”. This may produce unexpected empty results, so try “reject” first to see
which column doesn’t meet your criteria.

You can delete a view using a SQL query or a call to xdmp.documentDelete. Supply the name of
the query-based view document in the Schemas database to this function in order to delete it. You
can only query against,or drop query-based views for which you have the appropriate
permissions.

MarkLogic Server Machine Learning with the ONNX API
20.0 Machine Learning with the ONNX API
371

This chapter contains the following sections:

• Overview of Machine Learning

• Terms

• Types of Machine Learning

• Why Using ONNX Runtime in MarkLogic Makes Sense

• Capabilities of the ONNX Runtime

• ONNX XQuery and JavaScript API

• Example ONNX Applications

20.1 Overview of Machine Learning
The MarkLogic approach to machine learning is to accelerate and improve the data curation life
cycle by developing models using high quality data. Bad inputs result in bad outputs (garbage in =
garbage out). In the case of machine learning, the model used to convert input to output is written
by the machine itself during training, and that is based on the training input. Bad training data can
damage the model in ways you cannot understand, rendering it useless. Because the models are
opaque, you may not even know they are damaged. You don't use machine learning to solve easy
problems and hard questions answered wrong are hard to identify. MarkLogic has many features,
such as the Data Hub Framework and Entity Services, you can leverage to ensure the quality of
the data used to create your models.

Machine learning can be conveniently perceived as a function approximator. There is an
indescribable law that determines if a picture is a picture of a cat, or if the price of a stock will go
up tomorrow, and machine learning can approximate that law (with various degrees of accuracy).
The law itself is a black box that takes input and produces output. For image classification, the
input is pixel values and the output is cat or not; for a stock price, the input is stock trades and the
output is price. A machine learning model takes input in a form understandable by the machine
(high dimensional matrix of numbers, called tensors), performs a series of computation on the
input, and then produces an output. The machine learns from comparing its output to the ground
truth (the output of that law), and adjust its computations of the input, to produce better output
that is closer to the ground truth.

Consider again the example of image classification. A simple machine learning model can be like
this: convert the image into a matrix of pixel values x; multiply it with another matrix W. If the
result Wx is larger than a Threshold, it’s a cat, otherwise it’s not. For the model to succeed, it needs
labeled training data of images. The model starts with a totally random matrix W, and produces
output on all training images. It will make lots of mistakes, and for every mistake it makes, it
adjusts W so that the output Wx is closer to the ground truth label. The precise amount of adjustment
of W is determined through a process called error back propagation. In the example described
here, the computation is a simple one matrix multiplication; however, in real world applications,
you can have hundreds of layers of computations, with millions of different W parameters.
MarkLogic 10—May, 2019 Application Developer’s Guide—Page 357

MarkLogic Server Machine Learning with the ONNX API
20.2 Terms
The material in this guide assumes you are familiar with the basic concepts of machine learning.
Some terms have ambiguous popular definitions, so they are described below.

Term Definition

Artificial
Intelligence

Any technique which enables computers to mimic human behavior

Machine
Learning

Subset of AI techniques which use mathematical methods (commonly
statistics or liner algebra) to modify behavior with execution.

Deep Learning Subset of Machine Learning which makes the computation of neural
networks feasible.

Deep Learning is associated with a machine learning algorithm (Artificial
Neural Network, ANN) which uses the concept of human brain to facilitate
the modeling of arbitrary functions. ANN requires a vast amount of data
and this algorithm is highly flexible when it comes to model multiple
outputs simultaneously. To understand ANN in detail, see https://

www.analyticsvidhya.com/blog/2014/10/ann-work-simplified/.

Accuracy Accuracy is a metric by which one can examine how good is the machine
learning model. Let us look at the confusion matrix to understand it in a
better way:

So, the accuracy is the ratio of correctly predicted classes to the total
classes predicted. Here, the accuracy will be:

True Positive + True Negatives

True Positive + True Negatives + False Positives + False
Negatives
MarkLogic 10—May, 2019 Application Developer’s Guide—Page 358

https://www.analyticsvidhya.com/blog/2014/10/ann-work-simplified/
https://www.analyticsvidhya.com/blog/2014/10/ann-work-simplified/

MarkLogic Server Machine Learning with the ONNX API
Autoregression Autoregression is a time series model that uses observations from previous
time steps as input to a regression equation to predict the value at the next
time step. The autoregressive model specifies that the output variable
depends linearly on its own previous values. In this technique input
variables are taken as observations at previous time steps, called lag
variables.

For example, we can predict the value for the next time step (t+1) given the
observations at the last two time steps (t-1 and t-2). As a regression model,
this would look as follows:

X(t+1) = b0 + b1*X(t-1) + b2*X(t-2)

Since the regression model uses data from the same input variable at
previous time steps, it is referred to as an autoregression.

Back
Propagation

In neural networks, if the estimated output is far away from the actual
output (high error), we update the biases and weights based on the error.
This weight and bias updating process is known as Back Propagation.
Back-propagation (BP) algorithms work by determining the loss (or error)
at the output and then propagating it back into the network. The weights
are updated to minimize the error resulting from each neuron. The first step
in minimizing the error is to determine the gradient (Derivatives) of each
node with respect to the final output.

Term Definition
MarkLogic 10—May, 2019 Application Developer’s Guide—Page 359

MarkLogic Server Machine Learning with the ONNX API
Bayes' Theorem Bayes’ theorem is used to calculate the conditional probability. Conditional
probability is the probability of an event ‘B’ occurring given the related
event ‘A’ has already occurred.

For example, a clinic wants to cure cancer of the patients visiting the clinic.

• A = an event “Person has cancer”

• B = an event “Person is a smoker”

The clinic wishes to calculate the proportion of smokers from the ones
diagnosed with cancer.

Use the Bayes’ Theorem (also known as Bayes’ rule) as follows:

To understand Bayes’ Theorem in detail, refer to http://

faculty.washington.edu/tamre/BayesTheorem.pdf.

Classification
Threshold

Classification threshold is the value which is used to classify a new
observation as 1 or 0. When we get an output as probabilities and have to
classify them into classes, we decide some threshold value and if the
probability is above that threshold value we classify it as 1, and 0
otherwise. To find the optimal threshold value, one can plot the AUC-ROC
and keep changing the threshold value. The value which will give the
maximum AUC will be the optimal threshold value.

Clustering Clustering is an unsupervised learning method used to discover the
inherent groupings in the data. For example: Grouping customers on the
basis of their purchasing behavior which is further used to segment the
customers. And then the companies can use the appropriate marketing
tactics to generate more profits.

Example of clustering algorithms: K-Means, hierarchical clustering, etc.

Confidence
Interval

A confidence interval is used to estimate what percent of a population fits a
category based on the results from a sample population. For example, if 70
adults own a cell phone in a random sample of 100 adults, we can be fairly
confident that the true percentage amongst the population is somewhere
between 61% and 79%. For more information, see https://

www.analyticsvidhya.com/blog/2015/09/hypothesis-testing-explained/.

Term Definition
MarkLogic 10—May, 2019 Application Developer’s Guide—Page 360

http://faculty.washington.edu/tamre/BayesTheorem.pdf
http://faculty.washington.edu/tamre/BayesTheorem.pdf
https://www.analyticsvidhya.com/blog/2015/09/hypothesis-testing-explained/
https://www.analyticsvidhya.com/blog/2015/09/hypothesis-testing-explained/

MarkLogic Server Machine Learning with the ONNX API
Convergence Convergence refers to moving towards union or uniformity. An iterative
algorithm is said to converge when as the iterations proceed the output gets
closer and closer to a specific value.

Correlation Correlation is the ratio of covariance of two variables to a product of
variance (of the variables). It takes a value between +1 and -1. An extreme
value on both the side means they are strongly correlated with each other.
A value of zero indicates a NIL correlation but not a non-dependence.
You’ll understand this clearly in one of the following answers.

The most widely used correlation coefficient is Pearson Coefficient. Here
is the mathematical formula to derive Pearson Coefficient.

Decision
Boundary

In a statistical-classification problem with two or more classes, a decision
boundary or decision surface is a hyper surface that partitions the
underlying vector space into two or more sets, one for each class. How well
the classifier works depends upon how closely the input patterns to be
classified resemble the decision boundary. In the example sketched below,
the correspondence is very close, and one can anticipate excellent
performance.

Here the lines separating each class are decision boundaries.

Term Definition
MarkLogic 10—May, 2019 Application Developer’s Guide—Page 361

MarkLogic Server Machine Learning with the ONNX API
Dimensionality
Reduction

Dimensionality Reduction is the process of reducing the number of random
variables under consideration by obtaining a set of principal variables.
Dimension Reduction refers to the process of converting a set of data
having vast dimensions into data with lesser dimensions ensuring that it
conveys similar information concisely. Some of the benefits of
dimensionality reduction:

• It helps in data compressing and reducing the storage space
required

• It fastens the time required for performing same computations

• It takes care of multicollinearity that improves the model
performance. It removes redundant features

• Reducing the dimensions of data to 2D or 3D may allow us to plot
and visualize it precisely

• It is helpful in noise removal also and as result of that we can
improve the performance of models

Datasets Training data is used to train a model. It means that ML model sees that
data and learns to detect patterns or determine which features are most
important during prediction.

Validation data is used for tuning model parameters and comparing
different models in order to determine the best ones. The validation data
must be different from the training data, and must not be used in the
training phase. Otherwise, the model would overfit, and poorly generalize
to the new (production) data.

Test data is used once the final model is chosen to simulate the model’s
behavior on a completely unseen data, i.e. data points that weren’t used in
building models or even in deciding which model to choose.

Ground Truth The reality you want your model to predict.

Model A machine-created object that takes input in a form understandable by the
machine, performs a series of computation on the input, and then produces
an output. The model is built from repeatedly comparing its output to the
ground truth and adjusting its computations of the input to produce better
output that is closer to the ground truth.

Term Definition
MarkLogic 10—May, 2019 Application Developer’s Guide—Page 362

MarkLogic Server Machine Learning with the ONNX API
Neural Network Neural Networks is a very wide family of Machine Learning models. The
main idea behind them is to mimic the behavior of a human brain when
processing data. Just like the networks connecting real neurons in the
human brain, artificial neural networks are composed of layers. Each layer
is a set of neurons, all of which are responsible for detecting different
things. A neural network processes data sequentially, which means that
only the first layer is directly connected to the input. All subsequent layers
detect features based on the output of a previous layer, which enables the
model to learn more and more complex patterns in data as the number of
layers increases. When a number of layers increases rapidly, the model is
often called a Deep Learning model. It is difficult to determine a specific
number of layers above which a network is considered deep, 10 years ago
it used to be 3 and now is around 20.

There are many types of Neural Networks. A list of the most common can
be found https://en.wikipedia.org/wiki/Types_of_artificial_neural_networks.

Term Definition
MarkLogic 10—May, 2019 Application Developer’s Guide—Page 363

https://en.wikipedia.org/wiki/Types_of_artificial_neural_networks

MarkLogic Server Machine Learning with the ONNX API
20.3 Types of Machine Learning
This section describes the types of machine learning:

• Supervised Learning

• Unsupervised Learning

• Reinforcement Learning

20.3.1 Supervised Learning
Supervised learning is a family of Machine Learning models that teach themselves by example.
This means that data for a supervised ML task needs to be labeled (assigned the right, ground-
truth class). For instance, if we would like to build a Machine Learning model for recognizing if a
given text is about marketing, we need to provide the model with a set of labeled examples (text +
information if it is about marketing or not). Given a new, unseen example, the model predicts its
target, such as for the stated example, a label (for example, 1 if a text is about marketing and 0
otherwise).

20.3.2 Unsupervised Learning
Contrary to Supervised Learning, Unsupervised Learning models teach themselves by
observation. The data provided to that kind of algorithms is unlabeled (there is no ground truth
value given to the algorithm). Unsupervised learning models are able to find the structure or
relationships between different inputs. The most important kind of unsupervised learning
techniques is “clustering”. In clustering, given the data, the model creates different clusters of
inputs (where “similar” inputs are in the same clusters) and is able to put any new, previously
unseen input in the appropriate cluster.

Threshold A threshold is a numeric value used to determine whether the computed
output is a match.

Most of the time the value of a threshold is obtained through training. The
initial value can be chosen randomly, for example 2.2, then the training
algorithm finds out that most of the predictions are wrong (cats classified
as dogs), then the training algorithm adjusts the value of the threshold, so
that the prediction can be more accurate.

Sometimes the threshold is determined manually, like in our current smart
mastering implementation. They have a combined score, describing
similarity between two entities. If the score is larger than a threshold, the
two entities can be considered a match. That threshold is pre-determined,
manually. No training is involved.

Term Definition
MarkLogic 10—May, 2019 Application Developer’s Guide—Page 364

MarkLogic Server Machine Learning with the ONNX API
20.3.3 Reinforcement Learning
Reinforcement Learning (RL) differs in its approach from the approaches we’ve described earlier.
In RL the algorithm plays a “game”, in which it aims to maximize the reward. The algorithm tries
different approaches “moves” using trial-and-error and sees which one boost the most profit. The
most commonly known use cases of RL are teaching a computer to solve a Rubik’s Cube or play
chess, but there is more to Reinforcement Learning than just games. Recently, there is an
increasing number of RL solutions in Real Time Bidding, where the model is responsible for
bidding a spot for an ad and its reward is the client’s conversion rate.

20.4 Why Using ONNX Runtime in MarkLogic Makes Sense
As a MarkLogic developer, there are many advantages to using ONNX for creating Machine
Learning applications. For instance:

1. Different development teams throughout your enterprise may each use any Machine
Learning stack of their choice to create their models. They may then export these models
the ONNX format and use them all within a MarkLogic application.

2. In some cases, they can use their models as they are, because ONNX currently has native
support for PyTorch, CNTK, MXNet, and Caffe2.

3. There are also converters available for TensorFlow and CoreML.

4. By using ONNX on MarkLogic, your Machine Learning applications are safe from vendor
lock-in.

20.5 Capabilities of the ONNX Runtime
ONNX stands for Open Neural Network eXchange. As per its official website:

ONNX is an open format to represent deep learning models. With ONNX, AI developers can more
easily move models between state-of-the-art tools and choose the combination that is best for
them. ONNX is developed and supported by a community of partners.

It is an open source project with an MIT license, with its development led by Microsoft.

A machine learning model can be represented as a computation network, where nodes in the
network represent mathematical operations (operators). There are many different machine
learning frameworks out there (tensorflow, PyTorch, MXNet, CNTK, etc), all of which have their
own representation of a computation network. You cannot simply load a model trained by
PyTorch into tensorflow to perform inference. This creates barriers in collaboration. ONNX is
designed to solve this problem. Although different frameworks have different representation of a
model, they use a very similar set of operators. After all, they are all based on the same
mathematical concepts. ONNX supports a wide set of operators, and has both official and
unofficial converters for other frameworks. For example, a tensorflow-onnx converter has the
ability of taking a tensorflow model, do a traversal of the computation network (it's a just a
graph), reconstruct the graph replacing all operators with their ONNX equivalent. Ideally, if all
MarkLogic 10—May, 2019 Application Developer’s Guide—Page 365

https://onnx.ai/

MarkLogic Server Machine Learning with the ONNX API
operators supported by tensorflow are also supported by ONNX, we can have a perfect converter,
being able to convert any tensorflow model to ONNX format. However this is not the case for
most machine learning frameworks. All these frameworks are constantly adding new operators
(with some being highly specialized), and it's very hard to keep up with all frameworks. ONNX is
under active development, with new operator support added in each release, trying to catch up
with the super set of all operators supported by all framework.

ONNX runtime is a high efficiency inference engine for ONNX models. Per its github page :

ONNX Runtime is a performance-focused complete scoring engine for Open Neural Network Exchange
(ONNX) models, with an open extensible architecture to continually address the latest developments in AI
and Deep Learning. ONNX Runtime stays up to date with the ONNX standard with complete
implementation of all ONNX operators, and supports all ONNX releases (1.2+) with both future and
backwards compatibility.

ONNX runtime's capability can be summarized as:

1. Load an ONNX model.

2. Define input values.

3. Perform inference of the model on the input values.

For (1), ONNX runtime supports loading a model from the filesystem or from a byte array in
memory, which is convenient for us; For (2), we need to construct values in CPU memory; For
(3), ONNX runtime automatically uses available accelerators and runtimes available on the host
machine. An abstraction of a runtime is called an execution provider. Current execution providers
include CUDA, TensorRT, Intel MKL, etc. ONNX runtime partitions the computation network
(the model) into subgraphs, and run each sub-graph on the most efficient execution provider. A
default fallback execution provider (the CPU) is guaranteed able to run all operators, so that even
if no special accelerator or runtime (GPU, etc.) exists, ONNX runtime can still perform inference
on an ONNX model, albeit at a much slower speed.

Beginning with version 10.0-3, MarkLogic server includes version 1.0.0 of the ONNX runtime.

20.6 ONNX XQuery and JavaScript API
The ONNX runtime is under active development, and its C API changes frequently. For this
reason, we only provide core functionalities to allow you to achieve all of your objectives with
only a minimal knowledge of the C API underneath.

We chose to expose a very small subset of the C API of onnxruntime representing the core
functionality. The rest of the C APIs are implemented as options passed to those core APIs.

• New Types for the ONNX Runtime

• Exposed ONNX Runtime API
MarkLogic 10—May, 2019 Application Developer’s Guide—Page 366

https://github.com/microsoft/onnxruntime

MarkLogic Server Machine Learning with the ONNX API
• Security

• Limitations

20.6.1 New Types for the ONNX Runtime
We have introduced two opaque types: ort:session and ort:value. An ort:session represents an
inference session based on one loaded model and other options. An ort:value represents an input
or output value. ort:values can be used as input values in an inference session, or they can be the
return value of a run of an inference session. There are converters between other numeric XQuery
data types and ort:value. All options and configurations to ort functions are represented as
map:map.

20.6.2 Exposed ONNX Runtime API
All onnxruntime APIs are under the ort namespace. Following is a list of exposed onnxruntime
APIs:

Table 1: ONNX Runtime APIs

JavaScript XQuery Description

ort.run ort:run Perform inference of a session, based on
supplied input values. Returns an Object of
output names and their values.

ort.session ort:session Load an ONNX model from the database, as
an inference session. The user can then per-
form runs of this session, with different
input values/settings.

ort.sessionInputCount ort:session-input-count Returns the number of inputs of a session.

ort.sessionInputName ort:session-input-name Returns the name of an input of a session,
specified by an index.

ort.sessionInputType ort:session-input-type Returns a Map containing the type informa-
tion of an input of a session, specified by an
index

ort.sessionOutputCount ort:session-output-count Returns the number of outputs of a session.

ort.sessionOutputName ort:session-output-name Returns the name of an output of a session,
specified by an index.

ort.sessionOutputType ort:session-output-type Returns a Map containing the type informa-
tion of an output of a session, specified by
an index.
MarkLogic 10—May, 2019 Application Developer’s Guide—Page 367

../../ort.run
../../ort:run
../../ort.session
../../ort:session
../../ort.sessionInputCount
../../ort:session-input-count
../../ort.sessionInputName
../../ort:session-input-name
../../ort.sessionInputType
../../ort:session-input-type
../../ort.sessionOutputCount
../../ort:session-output-count
../../ort.sessionOutputName
../../ort:session-output-name
../../ort.sessionOutputType
../../ort:session-output-type

MarkLogic Server Machine Learning with the ONNX API
20.6.3 Security
The onnxruntime does not read or write to the database or the file system.

The following functions require special privileges:

These privileges are assigned to the ort-user role. A user must have the ort-user role to execute
these functions.

20.6.4 Limitations
We do not support custom operators, due to ONNX runtime listing them as “Experimental APIs”.

There is no distributed inference in the ONNX runtime. This is partly because an inference
session runs relatively fast: the runtime performs just one forward pass of the model, without
auto-differential, and with no need for millions of iterations. In addition, multiple inference
sessions can be executed under a single ONNX runtime.

An ort:value is required to fit into existing memory.

ort.value ort:value Constructs an ort.value to be supplied to an
ort.vession to perform inference.

ort.valueGetArray ort:value-get-array Returns the tensor represented by the
ort.value as a flattened one-dimensional
Array.

ort.valueGetShape ort:value-get-shape Returns the shape of the ort.value as an
Array.

ort.valueGetType ort:value-get-type Returns the tensor element type of the
ort.value as a String.

Table 2: ONNX Runtime Privileges

Function Privilege Name Privilege Action Privilege Type

ort:session ort-session http://marklogic.com/ort/privileges/ort-session execute

ort:run ort-run http://marklogic.com/ort/privileges/ort-run execute

Table 1: ONNX Runtime APIs

JavaScript XQuery Description
MarkLogic 10—May, 2019 Application Developer’s Guide—Page 368

../../ort.value
../../ort:value
../../ort.valueGetArray
../../ort:value-get-array
../../ort.valueGetShape
../../ort:value-get-shape
../../ort.valueGetType
../../ort:value-get-type

MarkLogic Server Machine Learning with the ONNX API
20.7 Example ONNX Applications
This section describes two example ONNX applications:

• Example ONNX Application using JavaScript

• Example ONNX Application using XQuery

20.7.1 Example ONNX Application using JavaScript
Download the ONNX sample model file from the the ONNX Model Zoo page at:

https://s3.amazonaws.com/onnx-model-zoo/squeezenet/squeezenet1.1/squeezenet1.1.onnx

Use the Query Console to load it into the Documents database. This may be run by using the Query
Console, select Documents as the Database and JavaScript as the Query Type.

declareUpdate();
xdmp.documentLoad('c:\\temp\\squeezenet1.1.onnx',
 {
 uri : '/squeezenet.onnx',
 permissions : xdmp.defaultPermissions(),
 format : 'binary'
});

Using the Query Console, select Documents as the Database and JavaScript as the Query Type
and run the following query to load a model, define some runtime values, and perform an
evaluation:

'use strict';

const session = ort.session(cts.doc("/squeezenet.onnx"))
const inputCount = ort.sessionInputCount(session)
const outputCount = ort.sessionOutputCount(session)
var inputNames = []
var i,j
for (i=0;i<inputCount;i++){
 inputNames.push(ort.sessionInputName(session, i))
}
var outputNames = []
for (i=0;i<outputCount;i++){
 outputNames.push(ort.sessionOutputName(session, i))
}
var inputTypes = []
for (i=0;i<inputCount;i++){
 inputTypes.push(ort.sessionInputType(session, i))
}
var outputTypes = []
for (i=0;i<outputCount;i++){
 outputTypes.push(ort.sessionOutputType(session, i))
}

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 369

https://s3.amazonaws.com/onnx-model-zoo/squeezenet/squeezenet1.1/squeezenet1.1.onnx

MarkLogic Server Machine Learning with the ONNX API
var inputValues = []
for (i=0;i<inputCount;i++){
 var p = 1
 for(j=0;j<inputTypes[i]["shape"].length;j++){
 p *= inputTypes[i]["shape"][j]
 }
 var data = []
 for(j=0;j<p;j++){
 data.push(j);
 }
 inputValues.push(ort.value(data, inputTypes[i]["shape"], "float"))
}
var inputMap = {}
for (i=0;i<inputCount;i++){
 inputMap[inputNames[i]] = inputValues[i]
}
ort.run(session, inputMap)

The output will look like the following:

{
"softmaxout_1": "OrtValue(Shape:[1, 1000, 1, 1], Type: FLOAT)"
}

20.7.2 Example ONNX Application using XQuery
The following example performs the same actions as the previous example, but in the XQuery
language:

xquery version "1.0-ml";

let $session := ort:session(fn:doc("/squeezenet.onnx"))
let $input-count := ort:session-input-count($session)
let $output-count := ort:session-output-count($session)
let $input-names :=
 for $i in (0 to $input-count - 1) return ort:session-input-
name($session, $i)
let $output-names :=
 for $i in (0 to $output-count - 1) return ort:session-output-
name($session, $i)
let $input-types :=
 for $i in (0 to $input-count - 1) return ort:session-input-
type($session, $i)
let $output-types :=
 for $i in (0 to $output-count - 1) return ort:session-output-
type($session, $i)

let $input-values :=
 for $i in (1 to $input-count)
 (: generate some arbitrary input data. :)
 let $data := (1 to fn:fold-left(function($a, $b) { $a * $b }, 1,
map:get($input-types, "shape")))
 return ort:value($data, map:get($input-types, "shape"),
MarkLogic 10—May, 2019 Application Developer’s Guide—Page 370

MarkLogic Server Machine Learning with the ONNX API
map:get($input-types, "tensor-type"))

let $input-map := map:map()
let $input-maps :=
 for $i in (1 to $input-count)
 return map:with($input-map, $input-names[$i], $input-values[$i])
let $input-map := $input-maps[$input-count]
return ort:run($session, $input-map)

The output will look like the following:

<map:map xmlns:map="http://marklogic.com/xdmp/map" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" xmlns:xs="http://www.w3.org/2001/
XMLSchema">

<map:entry key="softmaxout_1">
<map:value xsi:type="ort:value" xmlns:ort="http://marklogic.com/

onnxruntime">OrtValue(Shape:[1, 1000, 1, 1], Type: FLOAT)</map:value>
</map:entry>

</map:map>
MarkLogic 10—May, 2019 Application Developer’s Guide—Page 371

MarkLogic Server Convert PyTorch Model to ONNX Model
21.0 Convert PyTorch Model to ONNX Model
387

This chapter contains the following sections:

• General Steps

• Case Study: Text Summarization with Bert

• Export the Model to ONNX

• Running the Model in MarkLogic using Javascript

• Conclusion

Before reading this guide, it is strongly advised that the reader get familiar with PyTorch and the
official PyTorch documentation on ONNX conversion first: guide 1, guide 2.

21.1 General Steps
To convert a PyTorch model to an ONNX model, you need both the PyTorch model and the
source code that generates the PyTorch model. Then you can load the model in Python using
PyTorch, define dummy input values for all input variables of the model, and run the ONNX
exporter to get an ONNX model.

21.2 Case Study: Text Summarization with Bert
ONNX support is built into PyTorch as a first class citizen. You don't need to look for third party
converters like you would do with tensorflow. However, even with built-in ONNX conversion
capability, some models are still difficult to export. In general, there are three possible road
blockers:

• unsupported operators

• control flow

• PyTorch internal bugs

For unsupported operators, you can either wait for them to be added to PyTorch, or you can do it
yourself. For many cases, this is easier than you think. For example, in the following example, we
need operator bitwise-or, but it's not supported in PyTorch 1.4.0. A simple Google search reveals
that support for this operator is already in the master branch of PyTorch, it just didn't make it to
the latest official release (1.4.0). Simply adding the following code to the file /Library/
Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/torch/onnx/

symbolic_opset9.py (this path is different on different operating systems/python installs):

@parse_args('v')
def bitwise_not(g, inp):

if inp.type().scalarType() != 'Bool':
return _unimplemented("bitwise_not", "non-bool tensor")

return g.op("Not", inp)

will add support for this operator.
MarkLogic 10—May, 2019 Application Developer’s Guide—Page 372

https://pytorch.org/
https://pytorch.org/tutorials/advanced/super_resolution_with_onnxruntime.html
https://pytorch.org/docs/stable/onnx.html

MarkLogic Server Convert PyTorch Model to ONNX Model
For PyTorch internal bugs, you can either fix it yourself or wait for the PyTorch team to fix it.
Fortunately, this case is very rare.

For control flow, we will explain in detail in the following example.

We will look at this example: Text Summarization with Bert. We will convert this particular PyTorch
model to ONNX format, completely from scratch.

21.2.1 How does the Converter Work?
Intuitively speaking, the PyTorch to ONNX converter is a tracer. It takes a loaded model, and a
dummy input for the model. It then runs the model based on the provided input data, recording
what happens internally in the model. It then reconstruct an ONNX model that does exactly the
same thing, and save the ONNX model to disk. For many types of models, this method works just
fine. However, whenever a model contains control flow, like for loops or if statements, the tracer
method will fail, simply because the tracer is never aware of the existence of the control flow
statements, it faithfully records the flow based on the supplied input. For example, if the model
contains a for loop that loops for max_step number of times, in a tracer based exporter, the for
loop will simply be expanded max_step times, whichever value max_step happens to be in the
supplied input to the exporter (let's say the value is a). When we run the exported model with a
different value of max_step (let's say now the value is b), the model will ignore that, and simply
run the loop for a times, rendering the result useless in most times.

To solve this issue, PyTorch has another method completely different to the tracer based method
to export models with control flow. It's called a script based method. Intuitively what happens is
that the model source code is 'compiled', and analyzed. The PyTorch 'compiler' will correctly
capture any control flow, and correctly export the model to ONNX format. This sounds like a
proper solution to the problem, however currently the script based method has significant
limitation on language feature support of the model source code, meaning that there are certain
Python language features (for example lambda) you cannot use when defining your model. Unless
the model is coded with the mission 'exporting to ONNX' in mind, it is generally very difficult to
rewrite the model source code to comply with the requirements of a script based method.

MarkLogic is a document database, we naturally want to work with models that handle text.
Unfortunately, almost all models that handle text contains control flow (with a small number of
exceptions), because most models construct the output in a recursive/iterative way (for example,
for each word in the input document, generate the next output word). This makes exporting these
PyTorch models to ONNX more challenging.

Fortunately, with a good understanding of the model, the exporting mechanism and some coding,
and ever growing ONNX operator support, we can convert lots of text-handling models to
ONNX.

Let's now look at the example.
MarkLogic 10—May, 2019 Application Developer’s Guide—Page 373

https://github.com/nlpyang/PreSumm

MarkLogic Server Convert PyTorch Model to ONNX Model
21.2.2 Prepare the Environment
Text summarization is an important task in Natural Language Processing (NLP). The objective is
to take a long article and return a short summarization. There are plenty of research results on this
topic. We pick the most recent one Text Summarization with Pretrained Encoders to demonstrate the
conversion process from a model produced by PyTorch (with no intention to be converted later) to
ONNX. It's worth noticing that this model is based on BERT which is a highly sophisticated
pretrained language model trained on massive text corpus on massive amount of computation
power by Google, to be used as a bootstrap model for other NLP related tasks. Success of
converting this model to ONNX will demonstrate that the ONNX format is quite capable, and
with ONNX support in MarkLogic, many of your pretrained model can work properly in the
MarkLogic database. With these in mind, let's start with preparing the environment.

Install Python3 (if you don't have it), it most certainly comes with pip. Notice that for macOS users
and some Linux users, you need to make sure you're using the correct Python, since your
operating system comes with one pre-installed. For this particular task, we need at least Python
3.6.

Clone this git repo for the paper, then install the prerequisites by executing

pip3 install --user -r requirements.txt

Although "torch==1.1.0" is specified, we still want to try the latest PyTorch (1.4.0 as of this
writing) first, due to possibly better ONNX operator coverage, and overall improved
functionality. If the newest version of PyTorch failed, we then revert to the version specified in the
requirements. You can install the latest PyTorch here.

Now follow the instruction described by the git repo, to download pretrained models, and
training/testing datasets. We will be using CNN/DM BertExtAbs, the Abstractive Summarization
model based on Bert, trained with CNN/DM dataset. For datasets, we use the prepared data.

After downloading and decompressing those files, move the model file to models directory, and
move the datasets to bert_data directory. After those steps, in addition to the cloned source code,
your models directory should contain a file model_step_148000.pt, and your bert_data directory
should contain lots of files with name similar to cnndm.test.0.bert.pt.

We are now ready to edit the source code to add a function to export the model to ONNX format.

21.3 Export the Model to ONNX
At this point, we need to read through the source code that generates the model first. Since our
goal is to convert this model to ONNX format, load it into MarkLogic and perform summarization
on a piece of article, we need to understand how that is done in PyTorch first. Understanding the
model is always the most important and most difficult part of the conversion. For this particular
MarkLogic 10—May, 2019 Application Developer’s Guide—Page 374

https://arxiv.org/abs/1908.08345
https://arxiv.org/abs/1810.04805
https://www.python.org/downloads/
https://pip.pypa.io/en/stable/installing/
https://github.com/nlpyang/PreSumm
https://pytorch.org/get-started/locally/
https://drive.google.com/file/d/1-IKVCtc4Q-BdZpjXc4s70_fRsWnjtYLr/view
https://drive.google.com/file/d/1DN7ClZCCXsk2KegmC6t4ClBwtAf5galI/view

MarkLogic Server Convert PyTorch Model to ONNX Model
model, in order to summarize a raw piece of text, notice that the author suggests using -mode
test_text -text_src $text_file -test_from $ckpt_file -mode abs. Following the code path
we understand that the function test_text_abs in file train_abstractive.py is our main guy. The
function mostly does the following things:

• construct and load the pretrained model

• load and preprocess input text data

• run the model based on the input

• post-process the output to generate the summarization.

Let's start by trying to export the loaded model without any post-processing first, just to be sure
that all operators are supported. We modify the train.py file to add a new mode called
onnx_export, and then create a new file onnx_export.py under src. Put the following code in
onnx_export.py:

import torch
from models import data_loader, model_builder
from models.data_loader import load_dataset
from models.model_builder import AbsSummarizer

model_flags = ['hidden_size', 'ff_size', 'heads', 'emb_size',
'enc_layers', 'enc_hidden_size', 'enc_ff_size',
'dec_layers', 'dec_hidden_size', 'dec_ff_size', 'encoder',
'ff_actv', 'use_interval']

def onnx_export(args):
device = "cpu"
checkpoint = torch.load(

args.test_from, map_location=lambda storage, loc: storage)
opt = vars(checkpoint['opt'])
for k in opt.keys():

if (k in model_flags):
setattr(args, k, opt[k])

model = AbsSummarizer(args, device, checkpoint)
model.eval()

test_iter = data_loader.Dataloader(
args,
load_dataset(args, 'test', shuffle=False),
args.test_batch_size,
device,
shuffle=False,
is_test=True)

for input_data in test_iter:
dummy_input = (

input_data.src.index_select(0, torch.tensor([0])),
input_data.tgt.index_select(0, torch.tensor([0])),
input_data.segs.index_select(0, torch.tensor([0])),
input_data.clss.index_select(0, torch.tensor([0])),
MarkLogic 10—May, 2019 Application Developer’s Guide—Page 375

MarkLogic Server Convert PyTorch Model to ONNX Model
input_data.mask_src.index_select(0, torch.tensor([0])),
input_data.mask_tgt.index_select(0, torch.tensor([0])),
input_data.mask_cls.index_select(0, torch.tensor([0]))

)
torch.onnx.export(

model,
dummy_input,
"AbsSummarizer.onnx",
opset_version=11)

break

The gist of the above code is to load the model just like when doing summarization from raw text,
and using the first batch of input data as dummy input, export the model to ONNX format. The
construction of dummy_input is dictated by the AbsSummarizer class's forward function. All
PyTorch model has a forward function, the signature of which determines the input and output of
the model. We then extract the required input data from the first batch, feed it to the ONNX
exporter and try to export the model as ONNX model.

Run

python3 train.py -mode onnx_export -task abs -test_from
../models/model_step_148000.pt -bert_data_path ../bert_data/cnndm

under directory src. Unsurprisingly, we are greeted with an error:

RuntimeError: Subtraction, the `-` operator, with a bool tensor is not
supported. If you are trying to invert a mask, use the `~` or
`logical_not()` operator instead.

This is an easy fix. Just do as the error message suggests and fix the code, and try again.

We're now greeted with another error message:

RuntimeError: Only tuples, lists and Variables supported as JIT inputs
/outputs. Dictionaries and strings are also accepted but their usage is
not recommended. But got unsupported type NoneType

Looking at the definition of AbsSummarizer class in model_builder.py, you will notice that the
model returns two output, one of which is None. That's our culprit! Simply deleting the None, and
let's try again.

This time it's successful! The command finishes without error, and there is a new file
AbsSummarizer.onnx which is 843 MB in our src directory. However, notice that we do have a
couple of Warnings:

PreSumm/src/models/encoder.py:42: TracerWarning: Converting a tensor to
a Python index might cause the trace to be incorrect. We can't record
the data flow of Python values, so this value will be treated as a
constant in the future. This means that the trace might not generalize
MarkLogic 10—May, 2019 Application Developer’s Guide—Page 376

MarkLogic Server Convert PyTorch Model to ONNX Model
to other inputs!
emb = emb + self.pe[:, :emb.size(1)]

PreSumm/src/models/decoder.py:64: TracerWarning: Converting a tensor to
a Python index might cause the trace to be incorrect. We can't record
the data flow of Python values, so this value will be treated as a
constant in the future. This means that the trace might not generalize
to other inputs!

:tgt_pad_mask.size(1)], 0)

Warnings like these are pretty self-explanatory: A variable is being treated as constant. So when
you run the exported model with a different set of inputs, the result will not change, it'll still be the
result based on the input we used during exporting, just like the case with control flows, rendering
the exported model completely useless!

To get around this issue, use torch.index_select instead of converting torch.tensor to Python
index. Do notice that different fixes are required for different scenarios, index_select is just one
of the fixes which works in this case. So this code in question:

emb = emb + self.pe[:, :emb.size(1)]

becomes

emb = emb+self.pe.index_select(1, torch.arange(emb.size(1)))

Do the same with the other warning, we can now export the base AbsSummarizer model to
ONNX format warning free.

Now that we know the base model, without post processing, can be exported successfully.
However, notice that in the definition of the base model, it only does a single round of
computation, generating one 'word' of the output summarization. In order to generate the full
summarization, we need to imitate the predictor.translate function call, to construct a real
working ONNX summarization model.

Now we need to look at the translate and _fast_translate_batch functions in predictor.py.
Unsurprisingly, in _fast_translate_batch function which does the real work of generating the
summarization, we see a for loop:

for step in range(max_length):

Here max_length is the maximum length (in terms of word) of the summarization, and step is the
length of current work-in-progress summarization. Recall that to export control flow we can use
the script based exporter, but since this piece of code contains many advanced Python features
that are not supported by the script based exporter, this option becomes unpractical (but still
possible, you can always rewrite the code from scratch).
MarkLogic 10—May, 2019 Application Developer’s Guide—Page 377

MarkLogic Server Convert PyTorch Model to ONNX Model
From here on there is no official way to proceed. In this particular case we choose to export two
models, one representing initialization and the first loop, the other representing the loop body. We
take the control flow outside of the model, to be handled by application code(in other words, in
XQuery or javascript in MarkLogic). In this case, the original application (pseudo)code
transforms from a single ort.run:

// pseudocode, it doesn't run!

let session = ort.session("text_summarization_all_in_one.onnx")
let input = article("Lorem ipsum dolor sit amet, consectetur adipiscing

elit, sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua.")
return ort.run(session, input)

To a slightly more complicated one with a for loop:

// pseudocode, it doesn't run!
let init_loop = ort.session(init_loop.onnx)
let loop_body = ort.session(loop_body.onnx)
let init_loop_input = article("Lorem ipsum dolor sit amet, consectetur
adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore
magna aliqua.")
let init_loop_output = ort.run(init_loop, init_loop_input)
let loop_body_input = init_loop_output
let loop_body_output
for step in range(max_step):

loop_body_output = ort.run(loop_body, loop_body_input)
loop_body_input = loop_body_output

return loop_body_output

To do this, we need to analyze what's happening inside _fast_translate_batch function, and
define our own two models. It takes quite a while and does needs a good understanding of the
model building and evaluation process, involving many more error and warning messages, whose
details will be omitted here. Eventually we end up with the following two new model definitions
in model_builder.py (this is far from an optimal definition; the objective here is to make as few
modifications to the original code as possible to make it work):

class InitLoopModel(nn.Module):
def __init__(self, args, device, checkpoint):

super(InitLoopModel, self).__init__()
self.args = args
self.device = device
self.bert = Bert(args.large, args.temp_dir, args.finetune_bert)
self.vocab_size = self.bert.model.config.vocab_size
tgt_embeddings = nn.Embedding(

self.vocab_size, self.bert.model.config.hidden_size,
padding_idx=0)

self.decoder = TransformerDecoder(self.args.dec_layers,
self.args.dec_hidden_size,
MarkLogic 10—May, 2019 Application Developer’s Guide—Page 378

MarkLogic Server Convert PyTorch Model to ONNX Model
heads=self.args.dec_heads,
d_ff=self.args.dec_ff_size,
dropout=self.args.dec_dropout,
embeddings=tgt_embeddings)

self.generator = get_generator(
self.vocab_size, self.args.dec_hidden_size, device)

self.generator[0].weight = self.decoder.embeddings.weight
self.load_state_dict(checkpoint['model'], strict=False)
self.to(device)

def forward(self, src, segs, step):
min_length = self.args.min_length
beam_size = self.args.beam_size
mask_src = ~(src == 0)
batch_size = src.size(0)
src_features = self.bert(src, segs, mask_src)
device = src_features.device
dec_states = self.decoder.init_decoder_state(

src, src_features, with_cache=False)
dec_states.src = tile(dec_states.src, beam_size, 0)
src_features = tile(src_features, beam_size, dim=0)
beam_offset = torch.arange(

0, batch_size * beam_size, step=beam_size, dtype=torch.long,
device=device)

alive_seq = torch.full([batch_size * beam_size, 1],
1, dtype=torch.long, device=device)

const_topk_log_probs = torch.tensor(
[0.0] + [float("-inf")] * (beam_size - 1), device=device)

topk_log_probs = (const_topk_log_probs.repeat(batch_size))
decoder_input = alive_seq[:, -1].view(1, -1)
decoder_input = decoder_input.transpose(0, 1)
dec_out, dec_states = self.decoder(

decoder_input, src_features, dec_states, step=step)
log_probs = self.generator.forward(dec_out.transpose(0,

1).squeeze(0))
vocab_size = log_probs.size(-1)
endprob = torch.tensor([-1e20]).repeat(log_probs.size(0))
new_log_probs = torch.cat([log_probs.index_select(-1,

torch.arange(2)), endprob.view(-1).unsqueeze(
1), log_probs.index_select(-1, torch.arange(start=3,
end=log_probs.size(1)))], -1) + topk_log_probs.view(
-1).unsqueeze(1)

alpha = self.args.alpha
length_penalty = ((5.0 + (1)) / 6.0) ** alpha
curr_scores = new_log_probs / length_penalty
curr_scores = curr_scores.reshape(-1, beam_size * vocab_size)
topk_scores, topk_ids = curr_scores.topk(beam_size, dim=-1)
topk_log_probs = topk_scores * length_penalty
topk_beam_index = topk_ids.div(vocab_size)
topk_ids = topk_ids.fmod(vocab_size)
batch_index = (topk_beam_index + beam_offset.index_select(0,

torch.arange(topk_beam_index.size(0))).unsqueeze(1))
select_indices = batch_index.view(-1)
MarkLogic 10—May, 2019 Application Developer’s Guide—Page 379

MarkLogic Server Convert PyTorch Model to ONNX Model
alive_seq = torch.cat([alive_seq.index_select(
0, select_indices), topk_ids.view(-1, 1)], -1)

src_features = src_features.index_select(0, select_indices)
dec_states.src = dec_states.src.index_select(0, select_indices)
return src_features, dec_states.src, dec_states.previous_input,

dec_states.previous_layer_inputs, alive_seq, topk_log_probs

class LoopBodyModel(nn.Module):
def __init__(self, args, device, checkpoint):

super(LoopBodyModel, self).__init__()
self.args = args
self.device = device
self.bert = Bert(args.large, args.temp_dir, args.finetune_bert)
self.vocab_size = self.bert.model.config.vocab_size
tgt_embeddings = nn.Embedding(

self.vocab_size, self.bert.model.config.hidden_size,
padding_idx=0)

self.decoder = TransformerDecoder(self.args.dec_layers,
self.args.dec_hidden_size,
heads=self.args.dec_heads,
d_ff=self.args.dec_ff_size,
dropout=self.args.dec_dropout,
embeddings=tgt_embeddings)

self.generator = get_generator(
self.vocab_size, self.args.dec_hidden_size, device)

self.generator[0].weight = self.decoder.embeddings.weight
self.load_state_dict(checkpoint['model'], strict=False)
self.to(device)

def forward(self, step, min_length, src_features, decoder_state_src,
decoder

beam_size = self.args.beam_size
batch_size = src_features.size(0).div(beam_size)
beam_offset = torch.arange(

0, batch_size * beam_size, step=beam_size, dtype=torch.long,
device=self.device)

decoder_input = alive_seq[:, -1].view(1, -1)
decoder_input = decoder_input.transpose(0, 1)
dec_states = TransformerDecoderState(decoder_state_src)
dec_states.previous_input = decoder_state_previous_input
dec_states.previous_layer_inputs =

decoder_state_previous_layer_inputs
dec_out, dec_states = self.decoder(

decoder_input, src_features, dec_states, step=step)
log_probs = self.generator.forward(dec_out.transpose(0,

1).squeeze(0))
vocab_size = log_probs.size(-1)
small = torch.tensor([-1e20])
tooshort = small*torch.lt(step, min_length).float()
longenough = log_probs[:, 2]*((~step.lt(min_length)).float())
endprob = tooshort + longenough
new_log_probs = torch.cat([log_probs.index_select(-1,
MarkLogic 10—May, 2019 Application Developer’s Guide—Page 380

MarkLogic Server Convert PyTorch Model to ONNX Model
torch.arange(2)
, endprob.view(-1).unsqueeze(1),
log_probs.index_select(-1,

torch.arange(start=3,
end=log_probs.size(1)))], -1) +

topk_log_probs.view(-1).unsqueeze(1)
alpha = self.args.alpha
length_penalty = ((5.0 + (step + 1)) / 6.0) ** alpha
curr_scores = new_log_probs / length_penalty
curr_scores = curr_scores.reshape(-1, beam_size * vocab_size)
topk_scores, topk_ids = curr_scores.topk(beam_size, dim=-1)
topk_log_probs = topk_scores * length_penalty
topk_beam_index = topk_ids.div(vocab_size)
topk_ids = topk_ids.fmod(vocab_size)
batch_index = topk_beam_index + \

beam_offset.index_select(0, torch.arange(
topk_beam_index.size(0))).unsqueeze(1)

select_indices = batch_index.view(-1)
alive_seq = torch.cat([alive_seq.index_select(

0, select_indices), topk_ids.view(-1, 1)], -1)
src_features = src_features.index_select(0, select_indices)
dec_states.src = dec_states.src.index_select(0, select_indices)
results = alive_seq.index_select(

0, select_indices.index_select(0, torch.tensor(0)))
return src_features, dec_states.src, dec_states.previous_input,

dec_states.previous_layer_inputs, alive_seq, topk_log_probs,
results, endprob

And our export code in onnx_export.py becomes:

init_model = InitLoopModel(args, device, checkpoint)
init_model.eval()
test_iter = data_loader.Dataloader(args, load_dataset(args, 'test',

shuffle=False),
args.test_batch_size, device,
shuffle=False, is_test=True)

loop_body_model = LoopBodyModel(args, device, checkpoint)
loop_body_model.eval()
for batch in test_iter:

init_inputs = (batch.src.index_select(0, torch.tensor([0])),
batch.segs.index_select(0, torch.tensor([0])),
torch.tensor([0]))

torch.onnx.export(init_model, init_inputs, "init_loop.onnx",
verbose=False,
input_names=["src", "segs", "step"],
output_names=["src_features",

"decoder_states_src",
"decoder_states_previous_input",

"decoder_states_previous_layer_inputs",
"alive_seq", "topk_log_probs"],

pset_version=11,
dynamic_axes={"src": {0: "batch"}, "segs": {0:
MarkLogic 10—May, 2019 Application Developer’s Guide—Page 381

MarkLogic Server Convert PyTorch Model to ONNX Model
"batch"}, "src_features": {0: "batchXbeam"},
"decoder_states_src": {0: "batchXbeam"},
"decoder_states_previous_input": {0:
"batchXbeam"},
"decoder_states_previous_layer_inputs": {0:
"batch", 1: "batchXbeam"}, "alive_seq": {0:
"batchXbeam"}, "topk_log_probs": {0: "batch"}})

src_features, decoder_state_src, decoder_state_previous_input,
decoder_state_previous_layer_inputs, alive_seq, topk_log_probs =
init_model.forward(

batch.src.index_select(0, torch.tensor([0])),
batch.segs.index_select(0, torch.tensor([0])),
torch.tensor([0]))

loop_inputs = (torch.tensor(1), torch.tensor(20), src_features,
decoder_state_src,
decoder_state_previous_input, decoder_state_previous_layer_inputs,
alive_seq, topk_log_probs)

torch.onnx.export(loop_body_model, loop_inputs, "loop_body.onnx",
verbose=False,
input_names=["step", "min_length", "src_features_in",

"decoder_states_src_in", "decoder_states_previous_input_in",
"decoder_states_previous_layer_inputs_in", "alive_seq_in",
"topk_log_probs_in"],

output_names=["src_features_out",
"decoder_states_src_out", "decoder_states_previous_input_out",
"decoder_states_previous_layer_inputs_out", "alive_seq_out",
"topk_log_probs_out", "results", "endprob"],

opset_version=11,
dynamic_axes={"src_features_in": {0: "batchXbeam"},

"decoder_states_src_in": {0: "batchXbeam"},
"decoder_states_previous_input_in": {0: "batchXbeam"},
"decoder_states_previous_layer_inputs_in": {0: "batch", 1:
"batchXbeam", 2: "prev_step"}, "alive_seq_in": {0: "batchXbeam",
1: "prev_step"}, "topk_log_probs_in": {0: "batch"},
"src_features_out": {0: "batchXbeam"}, "decoder_states_src_out":
{0: "batchXbeam"}, "decoder_states_previous_input_out": {0:
"batchXbeam", 1: "step"},
"decoder_states_previous_layer_inputs_out": {0: "batch", 1:
"batchXbeam", 2: "step"}, "alive_seq_out": {0: "batchXbeam", 1:
"step"}, "topk_log_probs_out": {0: "batch"}, "results": {0:
"batch", 2: "step"}})

break

21.4 Running the Model in MarkLogic using Javascript
After exporting the two models, for them to work properly in MarkLogic, we need to also
transform the preprocessing and postprocessing code to XQuery or Javascript. This is much easier
than exporting the model, and a final working example looks like this (again, not the most optimal
code, the objective is to faithfully translate the original python code to javascript):
MarkLogic 10—May, 2019 Application Developer’s Guide—Page 382

MarkLogic Server Convert PyTorch Model to ONNX Model
'use strict';
function whitespace_tokenize(s) {

return s.split(" ")
}

function wordpiece_tokenize(s, vocab) {
let output = []
let wstokens = whitespace_tokenize(s)
for (let i = 0; i < wstokens.length; i++) {

let token = wstokens[i]
if (token.length > 100)

{output.push("[UNK]")
continue

}
let is_bad = false
let start = 0
let sub_tokens = []
while (start < token.length) {

let end = token.length
let cur_substr = null
while (start < end) {
let substr = token.substr(start, end - start)
if (start > 0)

substr = "##" + substr
if (vocab.hasOwnProperty(substr)) {

cur_substr = substr
break

}
end -= 1

}
if (cur_substr == null) {
is_bad = true
break

}
sub_tokens.push(cur_substr)
start = end

}
if (is_bad) {

output.push("[UNK]")
}
else {

for (let j = 0; j < sub_tokens.length; j++) {
output.push(sub_tokens[j])

}
}

}
return output

}

function tokenize(s, vocab) {
s = s.trim().toLowerCase()
let pretokens = s.split(" ")
let tokens = ["[CLS]"]
for (let i = 0; i < pretokens.length; i++) {
MarkLogic 10—May, 2019 Application Developer’s Guide—Page 383

MarkLogic Server Convert PyTorch Model to ONNX Model
let t = pretokens[i]
let subtokens = wordpiece_tokenize(t, vocab)
for (let j = 0; j < subtokens.length; j++) {

let token = subtokens[j]
tokens.push(token)
if (tokens.length >= 511) {
break;

}
}
if (tokens.length >= 511) {

break;
}

}
tokens.push("[SEP]")
return tokens

}

function preprocess(s, vocab) {
var tokens = tokenize(s, vocab)
var src = []
var segs = []
for (var i = 0; i < 512; i++) {

if (i < tokens.length) {
src.push(vocab[tokens[i]])
segs.push(0)

} else {
src.push(0)
segs.push(1)

}
}
return [src, segs]

}

function getSummarization(result, reverse_vocab) {
let s = ""
for (let i = 0; i < result.length; i++) {

s += reverse_vocab[result[i]]
if (i != result.length - 1) {

s += " "
}

}
return s

}

function postprocess(s) {
s = s.replace(/ ##/g, "")
s = s.replace(/\[unused0\]/g, "")
s = s.replace(/\[unused1\]/g, "")
s = s.replace(/\[unused2\]/g, "")
s = s.replace(/\[unused3\]/g, "")
s = s.replace(/\[PAD\]/g, "")
s = s.replace(/ +/g, " ")
s = s.trim()
return s
MarkLogic 10—May, 2019 Application Developer’s Guide—Page 384

MarkLogic Server Convert PyTorch Model to ONNX Model
}

let vocab = cts.doc("vocab.json").toObject()
let reverse_vocab = cts.doc("reverse_vocab.json").toObject()
let article = "(CNN) An Iranian chess referee says she is frightened to

return home after she was criticized online for not wearing the
appropriate headscarf during an international tournament. Currently
the chief adjudicator at the Women's World Chess Championship held in
Russia and China, Shohreh Bayat says she fears arrest after a
photograph of her was taken during the event and was then circulated
online in Iran. \"They are very sensitive about the hijab when we are
representing Iran in international events and even sometimes they
send a person with the team to control our hijab,\" Bayat told CNN
Sport in a phone interview Tuesday. The headscarf, or the hijab, has
been a mandatory part of women's dress in Iran since the 1979 Islamic
revolution but, in recent years, some women have mounted opposition
and staged protests about headwear rules. Bayat said she had been
wearing a headscarf at the tournament but that certain camera angles
had made it look like she was not. \"If I come back to Iran, I think
there are a few possibilities. It is highly possible that they arrest
me [...] or it is possible that they invalidate my passport,\" added
Bayat. \"I think they want to make an example of me.\" The
photographs were taken at the first stage of the chess championship
in Shanghai, China, but Bayat has since flown to Vladivostok, Russia,
for the second leg between Ju Wenjun and Aleksandra Goryachkina. She
was left \"panicked and shocked\" when she became aware of the
reaction in Iran after checking her phone in the hotel room. The 32-
year-old said she felt helpless as websites reportedly condemned her
for what some described as protesting the country's compulsory law.
Subsequently, Bayat has decided to no longer wear the headscarf.
\"I'm not wearing it anymore because what is the point? I was just
tolerating it, I don't believe in the hijab,\" she added. \"People
must be free to choose to wear what they want, and I was only wearing
the hijab because I live in Iran and I had to wear it. I had no other
choice.\" Bayat says she sought help from the country's chess
federation. She says the federation told her to post an apology on
her social media channels. She agreed under the condition that the
federation would guarantee her safety but she said they refused. \"My
husband is in Iran, my parents are in Iran, all my family members are
in Iran. I don't have anyone else outside of Iran. I don't know what
to say, this is a very hard situation,\" she said. CNN contacted the
Iranian Chess Federation on Tuesday but has yet to receive a
response."

let processed = preprocess(article, vocab)
let src = processed[0]
let segs = processed[1]

let initLoop = ort.session(cts.doc("init_loop.onnx"))
let loopBody = ort.session(cts.doc("loop_body.onnx"))

let srcName = "src"
let segsName = "segs"
let stepName = "step"
let batchSize = 1
MarkLogic 10—May, 2019 Application Developer’s Guide—Page 385

MarkLogic Server Convert PyTorch Model to ONNX Model
let inputs = {}

for (let i = 0; i < ort.sessionInputCount(initLoop); i++) {
let name = ort.sessionInputName(initLoop, i)
if (name == srcName) {

let shape = ort.sessionInputType(initLoop, i)["shape"]
shape[0] = batchSize
inputs[name] = ort.value(src, shape,

ort.sessionInputType(initLoop, i)["tensorType"])
} else if (name == segsName) {

let shape = ort.sessionInputType(initLoop, i)["shape"]
shape[0] = batchSize
inputs[name] = ort.value(segs, shape,

ort.sessionInputType(initLoop, i)["tensorType"])
} else if (name == stepName) {

inputs[name] = ort.value([0], [1], "INT64")
}

}

let initOutputs = ort.run(initLoop, inputs)
let names = []
for (let i = 0; i < ort.sessionOutputCount(initLoop); i++) {

names.push(ort.sessionOutputName(initLoop, i))
}

let loopBodyInputs = {}
for (let i = 0; i < names.length; i++) {

loopBodyInputs[names[i] + "_in"] = initOutputs[names[i]]
}

let step = 0
let maxStep = 50
let loopBodyOutputs
let result
let minLengthVal = ort.value([20], [1], "INT64")

while (step < maxStep) {
let stepVal = ort.value([step], [1], "INT64")
loopBodyInputs["step"] = stepVal
loopBodyInputs["min_length"] = minLengthVal
loopBodyOutputs = ort.run(loopBody, loopBodyInputs)
for (let i = 0; i < names.length; i++) {

loopBodyInputs[names[i] + "_in"] = loopBodyOutputs[names[i] +
"_out"]

}
step++
let resultVal = loopBodyOutputs["results"]
result = ort.valueGetArray(resultVal)
if (result[result.length - 1] == vocab["[unused2]"]) {

break;
}

}
let summarization = postprocess(getSummarization(result,
MarkLogic 10—May, 2019 Application Developer’s Guide—Page 386

MarkLogic Server Convert PyTorch Model to ONNX Model
reverse_vocab))
summarization

And the summarization looks like this:

shohreh bayat says she fears arrest after a photograph of her was
circulated online

21.5 Conclusion
Above is just one example of trying to convert a state-of-the-art PyTorch NLP model to ONNX. It
is true that the conversion is not a one-click solution; it actually requires a rather good
understanding of PyTorch and the model itself and some non-trivial problem-solving through
debugging/coding. However, this should be expected given the complex nature of the model.
BERT is a very significant step forward for NLP, and very widely used. It is actually used in
Google search today. Also this model is not authored with conversion to ONNX in mind, making
the job more difficult. Given the deep integration of PyTorch and ONNX, if the author of a model
writes code with ONNX in mind, the conversion process would be much smoother.

Again, the code in this example is far from optimal or even idiomatic. This is just one way to
make it work, as a proof of concept. With a better understanding of PyTorch and the model, there
would definitely be much better solutions.

A summary of the above working code is available as a git patch to the original source code.
MarkLogic 10—May, 2019 Application Developer’s Guide—Page 387

https://www.blog.google/products/search/search-language-understanding-bert/
https://developer.marklogic.com/download/binaries/10.0/example_PyTorch_conversion_to_ONNX.zip

MarkLogic Server Working With JSON

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 388

22.0 Working With JSON
425

This chapter describes how to work with JSON in MarkLogic Server, and includes the following
sections:

• JSON, XML, and MarkLogic

• How MarkLogic Represents JSON Documents

• Traversing JSON Documents Using XPath

• Creating Indexes and Lexicons Over JSON Documents

• How Field Queries Differ Between JSON and XML

• Representing Geospatial, Temporal, and Semantic Data

• Serialization of Large Integer Values

• Character Set Restrictions

• Document Properties

• Working With JSON in XQuery

• Working With JSON in Server-Side JavaScript

• Converting JSON to XML and XML to JSON

• Low-Level JSON XQuery APIs and Primitive Types

• Loading JSON Documents

22.1 JSON, XML, and MarkLogic
JSON (JavaScript Object Notation) is a data-interchange format originally designed to pass data
to and from JavaScript. It is often necessary for a web application to pass data back and forth
between the application and a server (such as MarkLogic Server), and JSON is a popular format
for doing so. JSON, like XML, is designed to be both machine- and human-readable. For more
details about JSON, see json.org.

MarkLogic Server supports JSON documents. You can use JSON to store documents or to deliver
results to a client, whether or not the data started out as JSON. The following are some highlights
of the MarkLogic JSON support:

• You can perform document operations and searches on JSON documents within
MarkLogic Server using JavaScript, XQuery, or XSLT. You can perform document
operations and searches on JSON documents from client applications using the Node.js,
Java, and REST Client APIs.

• The client APIs all have options to return data as JSON, making it easy for client-side
application developers to interact with data from MarkLogic.

http://www.json.org

MarkLogic Server Working With JSON

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 389

• The REST Client API and the REST Management API accept both JSON and XML input.
For example, you can specify queries and configuration information in either format.

• The MarkLogic client APIs provide full support for loading and querying JSON
documents. This allows for fine-grained access to the JSON documents, as well as the
ability to search and facet on JSON content.

• You can easily transform data from JSON to XML or from XML to JSON. There is a rich
set of APIs to do these transformations with a large amount of flexibility as to the
specification of the transformed XML and/or the specification of the transformed JSON.
The supporting low-level APIs are built into MarkLogic Server, allowing for extremely
fast transformations.

22.2 How MarkLogic Represents JSON Documents
MarkLogic Server models JSON documents as a tree of nodes, rooted at a document node.
Understanding this model will help you understand how to address JSON data using XPath and
how to perform node tests. When you work with JSON documents in JavaScript, you can often
handle the contents like a JavaScript object, but you still need to be aware of the differences
between a document and an object.

For a JSON document, the nodes below the document node represent JSON objects, arrays, and
text, number, boolean, and null values. Only JSON documents contain object, array, number,
boolean, and null node types.

For example, the following picture shows a JSON object and its tree representation when stored in
the database as a JSON document. (If the object were an in-memory construct rather than a
document, the root document node would not be present.)

MarkLogic Server Working With JSON

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 390

The name of a node is the name of the innermost JSON property name. For example, in the node
tree above, "property2" is the name of both the array node and each of the array member nodes.

fn:node-name(fn:doc($uri)/property2/array-node()) ==> "property2"
fn:node-name(fn:doc($uri)/property2[1]) ==> "property2"

Nodes which do not have an enclosing property are unnamed nodes. For example, the following
array node has no name, so neither do its members. Therefore, when you try to get the name of the
node in XQuery using fn:node-name, an empty sequence is returned.

let $node := array-node { 1, 2 }
return fn:node-name($node//number-node[. eq 1])
==> an empty sequence

22.3 Traversing JSON Documents Using XPath
This section describes how to access parts of a JSON document or node using XPath. You can use
XPath on JSON data anywhere you can use it on XML data, including from JavaScript and
XQuery code.

The following topics are covered:

• What is XPath?

name: property1

node kind: text

"value"

name: property2

node kind: array

name: property3

node kind: boolean

true

name: property4

node kind: null

(null)

name: property2

node kind: number

1

name: (none)

node kind: object

name: property2

node kind: number

2

Document node
{ "property1" : "value",

"property2" : [1, 2],
"property3" : true,
"property4" : null

}

MarkLogic Server Working With JSON

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 391

• Exploring the XPath Examples

• Selecting Nodes and Node Values

• Node Test Operators

• Selecting Arrays and Array Members

22.3.1 What is XPath?
XPath is an expression language originally designed for addressing nodes in an XML data
structure. In MarkLogic Server, you can use XPath to traverse JSON as well as XML. You can
use XPath expressions for constructing queries, creating indexes, defining fields, and selecting
nodes in a JSON document.

XPath is defined in the following specification:

http://www.w3.org/TR/xpath20/#id-sequence-expressions

For more details, see XPath Quick Reference in the XQuery and XSLT Reference Guide.

22.3.2 Exploring the XPath Examples
XPath expressions can be used in many different contexts, including explicit node traversal, query
construction, and index configuration. As such, many of the XPath examples in this chapter
include just an XPath expression, with no execution context.

If you want to use node traversal to explore what is selected by an XPath expression, you can use
one of the following patterns as a template in Query Console:

The results are wrapped in a call to xdmp:describe in XQuery and xdmp.describe in JavaScript to
clearly illustrate the result type, independent of Query Console formatting.

Note that in XQuery you can apply an XPath expression directly to a node, but in JavaScript, you
must use the Node.xpath method. For example, $node/a vs. node.xpath('/a/b'). Note also that
the xpath method returns a Sequence in JavaScript, so you may need to iterate over the results
when using this method in your application.

Language Template

XQuery xquery version "1.0-ml";
let $node := xdmp:unquote(json_literal)
return xdmp:describe($node/xpath_expr)

Server-Side
JavaScript

const node = xdmp.toJSON(jsObject);
xdmp.describe(node.xpath(xpathExpr));

http://www.w3.org/TR/xpath20/#id-sequence-expressions

MarkLogic Server Working With JSON

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 392

For example, if you want to explore what happens if you apply the XPath expression “/a” to a
JSON node that contains the data {"a": 1}, then you can run one following examples in Query
Console:

22.3.3 Selecting Nodes and Node Values
In most cases, an XPath expression selects one or more nodes. Use data() to access the value of
the node. For example, contrast the following XPath expressions. If you have a JSON object node
containing { "a" : 1 }, then first expression selects the number node with name “a”, and the
second expression selects the value of the node.

(: XQuery :)
$node/a ==> number-node { 1 }
$node/a/data() ==> 1

// JavaScript
node.xpath('/a') ==> number-node { 1 }
node.xpath('/a/data()') ==> 1

You can use node test operators to limit selected nodes by node type or by node type and name;
for details, see “Node Test Operators” on page 393.

A JSON array is treated like a sequence by default when accessed with XPath. For details, see
“Selecting Arrays and Array Members” on page 395.

Assume the following JSON object node is in a variable named $node.

{ "a": {
 "b": "value",
 "c1": 1,
 "c2": 2,
 "d": null,
 "e": {
 "f": true,
 "g": ["v1", "v2", "v3"]
 }
} }

Language Template

XQuery xquery version "1.0-ml";
let $node := xdmp:unquote('{"a": 1}')
return xdmp:describe($node/a)

Server-Side
JavaScript

const node = xdmp.toJSON({a: 1});
xdmp.describe(node.xpath('/a'));

MarkLogic Server Working With JSON

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 393

Then the table below demonstrates what node is selected by of several XPath expressions applied
to the object. You can try these examples in Query Console using the pattern described in
“Exploring the XPath Examples” on page 391.

22.3.4 Node Test Operators
You can constrain node selection by node type using the following node test operators.

• object-node()

• array-node()

• number-node()

• boolean-node()

• null-node()

• text()

XPath Expression Result

$node/a/b "value"

$node/a/c1 A number node named "c1"
with value 1:

number-node{ 1 }

$node/a/c1/data() 1

$node/a/d null-node { }

$node/a/e/f boolean-node{ fn:true() }

$node/a/e/f/data() true

$node/a/e/g A sequence containing 3
values:

("v1", "v2", "v3")

$node/a/e/g[2] "v2"

$node/a[c1=1] An object node equivalent
to the following JSON:

{
 "b": "value”,
 "c1": 1,
 "c2": 2,
...
}

MarkLogic Server Working With JSON

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 394

All node test operators accept an optional string parameter for specifying a JSON property name.
For example, the following expression matches any boolean node named “a”:

boolean-node("a")

Assume the following JSON object is in the in-memory object $node.

{ "a": {
 "b": "value",
 "c1": 1,
 "c2": 2,
 "d": null,
 "e": {
 "f": true,
 "g": ["v1", "v2", "v3"]
 }
} }

Then following table contains several examples of XPath expressions using node test operators.
You can try these examples in Query Console using the pattern described in “Exploring the XPath
Examples” on page 391.

XPath Expression Result

$node//number-node()

$node/a/number-node()

A sequence containing two number nodes,
one named "c1" and one named "c2":

(number-node{1}, number-node{2})

$node//number-node()/data() A sequence containing 2 numbers:

(1,2)

$node/a/number-node("c2") The number node named "c2":

number-node{2}

$node//text() ("value", "v1", "v2", "v3")

MarkLogic Server Working With JSON

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 395

22.3.5 Selecting Arrays and Array Members
References to arrays in XPath expressions are treated as sequences by default. This means that
nested arrays are flattened by default, so [1, 2, [3, 4]] is treated as [1, 2, 3, 4] and the []
operator returns sequence member values.

To access an array as an array rather than a sequence, use the array-node() operator. To access an
item in an array rather than the associated node, use the data() operator.

Note: Unlike native JavaScript arrays, sequence (array) indices in XPath expressions
begin with 1, rather than 0. That is, an XPath expression such as /someArray[1]
addresses the first item in a JSON array.

Note that the “descendant-or-self” axis (“//”) can select both the array node and the array items if
you are not explicit about the node type. For example, given a document of the following form:

{ "a" : [1, 2] }

The XPath expression //node("a") selects both the array node and two number nodes for the item
values 1 and 2.

Assume the following JSON object is in the in-memory object $node.

{
 "a": [1, 2],
 "b": [3, 4, [5, 6]],

$node/a/text("b") "value"

$node//object-node() A sequence of object nodes equivalent
to the following JSON objects:

{"a": {"b": "value", ... } }
{"b": "value", "c1": 1, ...}
{"f": true, "g": ["v1", "v2", "v3"]}

$node/a/e/array-node("g") An array node equivalent to the
following JSON array:

["s1", "s2", "s3"]

$node//node("g") An array node, plus a text node for each
item in the array.

["s1", "s2", "s3"]
"s1"
"s2"
"s3"

XPath Expression Result

MarkLogic Server Working With JSON

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 396

 "c": [
 { "c1": "cv1" },
 { "c2": "cv2" }
]
}

Then following table contains examples of XPath expressions accessing arrays and array
members. You can try these examples in Query Console using the pattern described in “Exploring
the XPath Examples” on page 391.

XPath Expression Result

$node/a A sequence of number nodes:

(number-node{1}, number-node{2})

$node/a/data() A sequence of numbers:

(1, 2)

$node/array-node("a") An array-node with number nodes
children, equivalent to the
following JSON array:

[1, 2]

$node/node("a") An array-node with number nodes
children, equivalent to the
following JSON array:

[1, 2]

$node//node("a") A sequence of nodes consisting of
an array node, and a number node
for each item in "a".

$node/a[1] number-node{1}

$node/a[1]/data() 1

$node/b/data() A sequence of numbers. The inner
array is flattened when the value
is converted to a sequence.

(3, 4, 5, 6)

$node/array-node("b") All array nodes with name "b".
Equivalent to the following JSON
array:

[3, 4, [5, 6]]

MarkLogic Server Working With JSON

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 397

22.4 Creating Indexes and Lexicons Over JSON Documents
You can create path, range, and field indexes on JSON documents. For purposes of indexing, a
JSON property (name-value pair) is roughly equivalent to an XML element. For example, to
create a JSON property range index, use the APIs and interfaces for creating an XML element
range index.

Indexing for JSON documents differs from that of XML documents in the following ways:

• JSON string values are represented as text nodes and indexed as text, just like XML text
nodes. However, JSON number, boolean, and null values are indexed separately, rather
than being indexed as text.

• Each JSON array member value is considered a value of the associated property. For
example, a document containing {"a":[1,2]} matches a value query for a property "a"
with a value of 1 and a value query for a property "a" with a value of 2.

$node/array-node("b")/array-node() All array nodes contained inside
the array named "b". Equivalent to
the following JSON array:

[5, 6]

$node/b[3] number-node{5}

$node/c An object node equivalent to the
following JSON object:

({"c1": "cv1"}, {"c2": "cv2"})

$node/c[1] An object node equivalent to the
following JSON:

{ "c1": "cv1" }

$node//array-node()/number-node()[data()=2] All number nodes with the value 2
that are children of an array
node.

number-node{2}

$node//array-node()[number-node()/data()=2] All array nodes that contain a
number node with a value of 2.

[1, 2]

$node//array-node()[./node()/text() = "cv2"] All array nodes that contain a
member with a text value of "cv2".

[{"c1": "cv1"}, {"c2": "cv2"}]

XPath Expression Result

MarkLogic Server Working With JSON

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 398

• You cannot define fragment roots for JSON documents.

• You cannot define a phrase-through or a phrase-around on JSON documents.

• You can switch languages within a JSON document (see Language Support in JSON), but
the default-language option on xdmp:document-load (XQuery) or xdmp.documentLoad
(JavaScript) is ignored when loading JSON documents.

• No string value is defined for a JSON object node. This means that field value and field
range queries do not traverse into object nodes. For details, see “How Field Queries Differ
Between JSON and XML” on page 398.

For more details, see Range Indexes and Lexicons in the Administrator’s Guide.

22.5 How Field Queries Differ Between JSON and XML
Field word queries work the same way on both XML and JSON, but field value queries and field
range queries behave differently for JSON than for XML due to the indexing differences
described in “Creating Indexes and Lexicons Over JSON Documents” on page 397.

A complex XML node has a string value for indexing purposes that is the concatenation of the
text nodes of all its descendant nodes. There is no equivalent string value for a JSON object node.

For example, in XML, a field value query for “John Smith” matches the following document if
the field is defined on the path /name and excludes “middle”. The value of the field for the
following document is “John Smith” because of the concatenation of the included text nodes.

<name>
 <first>John</first>
 <middle>NMI</middle>
 <last>Smith</last>
<name>

You cannot construct a field that behaves the same way for JSON because there is no
concatenation. The same field over the following JSON document has values “John” and
“Smith”, not “John Smith”.

{ "name": {
 "first": "John",
 "middle": "NMI",
 "last": "Smith"
}

Also, field value and field range queries do not traverse into JSON object nodes. For example, if a
path field named “myField” is defined for the path /a/b, then the following query matches the
document “my.json”:

xdmp:document-insert("my.json",
 xdmp:unquote('{"a": {"b": "value"}}'));
cts:search(fn:doc(), cts:field-value-query("myField", "value"));

https://docs.marklogic.com/10.0/guide/search-dev/languages#id_77938

MarkLogic Server Working With JSON

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 399

However, the following query will not match “my.json” because /a/b is an object node
({"c":"example"}), not a string value.

xdmp:document-insert("my.json",
 xdmp:unquote('{"a": {"b": {"c": "value"}}}'));
cts:search(fn:doc(), cts:field-value-query("myField", "value"));

To learn more about fields, see Overview of Fields in the Administrator’s Guide.

22.6 Representing Geospatial, Temporal, and Semantic Data
To take advantage of MarkLogic Server support for geospatial, temporal, and semantic data in
JSON documents, you must represent the data in specific ways.

• Geospatial Data

• Date and Time Data

• Semantic Data

22.6.1 Geospatial Data
Geospatial data represents a set of latitude and longitude coordinates defining a point or region.
You can define indexes and perform queries on geospatial values. Your geospatial data must use
one of the coordinate systems recognized by MarkLogic.

A point can be represented in the following ways in JSON:

• The coordinates in a GeoJSON object; see http://geojson.org. For example: {"geometry":
{"type": "Point", "coordinates": [37.52, 122.25]}}

• A JSON property whose value is an array of numbers, where the first 2 members represent
the latitude and longitude (or vice versa) and all other members are ignored. For example,
the value of the coordinates property of the following object:{"location": {"desc":
"somewhere", "coordinates": [37.52, 122.25]}}

• A pair of JSON properties, one whose value represents latitude, and the other whose value
represents the longitude. For example: {"lat": 37.52, "lon": 122.25}

• A string containing two numbers separated by a space. For example, "37.52 122.25”.

You can create indexes on geospatial data in JSON documents, and you can search geospatial data
using queries such as cts:json-property-geospatial-query,
cts:json-property-child-geospatial-query, cts:json-property-pair-geospatial-query, and
cts:path-geospatial-query (or their JavaScript equivalents). The Node.js, Java, and REST
Client APIs support similar queries.

Only 2D points are supported.

http://geojson.org

MarkLogic Server Working With JSON

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 400

Note that GeoJSON regions all have the same structure (a type and a coordinates property). Only
the type property differentiates between kinds of regions, such as points vs. polygons. Therefore,
when defining indexes for GeoJSON data, we recommend you use a geospatial path range index
that includes a predicate on type in the path expression.

For example, to define an index that covers only GeoJSON points ("type": "Point"), you can use
a path expressions similar to the following when defining the index. Then, search using
cts:path-geospatial-query or the equivalent structured query (see geo-path-query in the Search
Developer’s Guide).

/whatever/geometry[type="Point"]/array-node("coordinates")

22.6.2 Date and Time Data
MarkLogic Server uses date, time, and dateTime data types in features such as Temporal Data
Management, Tiered Storage, and range indexes.

A JSON string value in a recognized date-time format can be used in the same contexts as the
equivalent text in XML. MarkLogic Server recognizes the date and time formats defined by the
XML Schema, based on ISO-8601 conventions. For details, see the following document:

http://www.w3.org/TR/xmlschema-2/#isoformats

To create range indexes on a temporal data type, the data must be stored in your JSON documents
as string values in the ISO-8601 standard XSD date format. For example, if your JSON
documents contain data of the following form:

{ "theDate" : "2014-04-21T13:00:01Z" }

Then you can define an element range index on theDate with dateTime as the “element” type, and
perform queries on the theDate that take advantage of temporal data characteristics, rather than
just treating the data as a string.

22.6.3 Semantic Data
You can load semantic triples into the database in any of the formats described in Supported RDF

Triple Formats in the Semantic Graph Developer’s Guide, including RDF/JSON.

An embedded triple in a JSON document is indexed if it is in the following format:

{ "triple": {
 "subject": IRI_STRING,
 "predicate": IRI_STRING,
 "object": STRING_PRESENTATION_OF_RDF_VALUE
} }

For example:

http://www.w3.org/TR/xmlschema-2/#isoformats

MarkLogic Server Working With JSON

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 401

{
 "my" : "data",
 "triple" : {
 "subject": "http://example.org/ns/dir/js",
 "predicate": "http://xmlns.com/foaf/0.1/firstname",
 "object": {"value": "John", "datatype": "xs:string"}
 }
}

For more details, see Loading Semantic Triples in the Semantic Graph Developer’s Guide.

22.7 Character Set Restrictions
You cannot use any characters in a JSON document that are forbidden characters in XML 1.1.
The following characters are forbidden:

• 0x0

• 0xD800 - 0xDFFF

• 0xFFFE, 0xFFFF, and characters above 0x10FFF

22.8 Document Properties
A JSON document can have a document property fragment, but the document properties must be
in XML.

22.9 Serialization of Large Integer Values
MarkLogic can represent integer values larger than JSON supports. For example, the
xs:unsignedLong XSD type includes values that cannot be expressed as an integer in JSON.

When MarkLogic serializes an xs:unsignedLong value that is too large for JSON to represent, the
value is serialized as a string. Otherwise, the value is serialized as a number. This means that the
same operation can result in either a string value or a number, depending on the input.

For example, the following code produces a JSON object with one property value that is a number
and one property value that is a string:

xquery version "1.0-ml";
object-node {
 "notTooBig": 1111111111111,
 "tooBig":11111111111111111
}

The object node created by this code looks like the following, where "notTooBig" is a number
node and "tooBig" is a text node.

{"notTooBig":1111111111111, "tooBig":"11111111111111111"}

MarkLogic Server Working With JSON

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 402

Code that works with serialized JSON data that may contain large numbers must account for this
possibility.

22.10 Working With JSON in XQuery
This section provides tips and examples for working with JSON documents using XQuery. The
following topics are covered:

• Constructing JSON Nodes

• Building a JSON Object from a Map

• Interaction With fn:data

• JSON Document Operations

• Example: Updating JSON Documents

• Searching JSON Documents

Interfaces are also available to work with JSON documents using Java, JavaScript, and REST. See
the following guides for details:

• JavaScript Reference Guide

• Node.js Application Developer’s Guide

• Java Application Developer’s Guide

• REST Application Developer’s Guide

22.10.1 Constructing JSON Nodes
The following element constructors are available for building JSON objects and lists:

• object-node

• array-node

• number-node

• boolean-node

• null-node

• text

Each constructor creates a JSON node. Constructors can be nested inside one another to build
arbitrarily complex structures. JSON property names and values can be literals or XQuery
expressions.

MarkLogic Server Working With JSON

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 403

The table below provides several examples of JSON constructor expressions, along with the
corresponding serialized JSON.

You can also create JSON nodes from string using xdmp:unquote. For example, the following
creates a JSON document that contains {"a": "b"}.

xdmp:document-insert("my.json", xdmp:unquote('{"a": "b"}'))

You can also create a JSON document node using xdmp:to-json, which accepts as input all the
nodes types you can create with a constructor, as well as a map:map representation of name-value
pairs. For details, see “Building a JSON Object from a Map” on page 404 and “Low-Level JSON
XQuery APIs and Primitive Types” on page 420.

xquery version "1.0-ml";
let $object := json:object()
let $array := json:to-array((1, 2, "three"))
let $dummy := (
 map:put($object, "name", "value"),
 map:put($object, "an-array", $array))
return xdmp:to-json($object)
==> {"name":"value", "an-array": [1,2,"three"]}

JSON Constructor Expression(s)

{ "key": "value" } object-node { "key" : "value" }

{ "key" : 42 } object-node {"key" : 42 }
object-node { "key" : number-node { 42 } }

{ "key" : true } object-node { "key" : fn:true() }
object-node { "key" : boolean-node { "true" } }

{ "key" : null } object-node { "key" : null-node { } }

{ "key" : {
 "child1" : "one",
 "child2" : "two"
} }

object-node {
 "key" : object-node {
 "child1" : "one",
 "child2" : "two"
 }
}

{ "key" : [1, 2, 3] } object-node { "key" : array-node { 1, 2, 3 } }

{ "date" : "06/24/14" object-node {
 "date" :
 fn:format-date(
 fn:current-date(),"[M01]/[D01]/[Y01]")
}

MarkLogic Server Working With JSON

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 404

22.10.2 Building a JSON Object from a Map
You can create a JSON document with a JSON object root node by building up a map:map and
then applying xdmp:to-json to the map. You might find this approach easier than using the JSON
node constructors in some contexts.

For example, the following code creates a document node that contains a JSON object with one
property with atomic type (“a”), one property with array type (“b”), and one property with
object-node type:

xquery version "1.0-ml";
let $map := map:map()
let $_ := $map => map:with('a', 1)
 => map:with('b', (2,3,4))
 => map:with('c', map:map() => map:with('c1', 'one')
 => map:with('c2', 'two'))
return xdmp:to-json($map)

This code produces the following JSON document node:

{ "a":1,
 "b":[2, 3, 4],
 "c":{"c1":"one", "c2":"two"}
}

A json:object is a special type of map:map that represents a JSON object. You can combine map
operations and json:* functions. The following example uses both json:* functions such as
json:object and json:to-array and map:map operations like map:with.

xquery version "1.0-ml";
let $object := json:object()
let $array := json:to-array((1, 2, "three"))
let $_ := (
 map:put($object, "name", "value"),
 map:put($object, "an-array", $array))
return xdmp:to-json($object)

This code produces the following JSON document node:

{"name":"value", "an-array": [1,2,"three"]}

To use JSON node constructors instead, see “Constructing JSON Nodes” on page 402.

22.10.3 Interaction With fn:data
Calling fn:data on a JSON node representing an atomic type such as a number-node,
boolean-node, text-node, or null-node returns the value. Calling fn:data on an object-node or
array-node returns the XML representation of that node type, such as a <json:object/> or
<json:array/> element, respectively.

MarkLogic Server Working With JSON

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 405

You can probe this behavior using a query similar to the following in Query Console:

xquery version "1.0-ml";
xdmp:describe(
 fn:data(
 array-node {(1,2)}
))

In the above example, the fn:data call is wrapped in xdmp:describe to more accurately represent
the in-memory type. If you omit the xdmp:describe wrapper, serialization of the value for display
purposes can obscure the type. For example, the array example returns [1,2] if you remove the
xdmp:describe wrapper, rather than a <json:array/> node.

22.10.4 JSON Document Operations
Create, read, update and delete JSON documents using the same functions you use for other
document types, including the following builtin functions:

• xdmp:document-insert

• xdmp:document-load

• xdmp:document-delete

Example Call Result

fn:data(
 object-node {"a": "b"}
)

<json:object ...
 xmlns:json="http://marklogic.com/xdmp/json">
 <json:entry key="a">
 <json:value>b</json:value>
 </json:entry>
</json:object>

fn:data(
 array-node {(1,2)}
)

<json:array ...
 xmlns:json="http://marklogic.com/xdmp/json">
 <json:value xsi:type="xs:integer">1</json:value>
 <json:value xsi:type="xs:integer">2</json:value>
</json:array>

fn:data(
 number-node { 1 }
)

1

fn:data(
 boolean-node { true }
)

true

fn:data(
 null-node { }
)

()

MarkLogic Server Working With JSON

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 406

• xdmp:node-replace

• xdmp:node-insert-child

• xdmp:node-insert-before

Use the node constructors to build JSON nodes programmatically; for details, see “Constructing
JSON Nodes” on page 402.

Note: A node to be inserted into an object node must have a name. A node to be inserted
in an array node can be unnamed.

Use xdmp:unquote to convert serialized JSON into a node for insertion into the database. For
example:

xquery version "1.0-ml";
let $node := xdmp:unquote('{"name" : "value"}')
return xdmp:document-insert("/example/my.json", $node)

Similar document operations are available through the Java, JavaScript, and REST APIs. You can
also use the mlcp command line tool for loading JSON documents into the database.

22.10.5 Example: Updating JSON Documents
The table below provides examples of updating JSON documents using xdmp:node-replace,
xdmp:node-insert, xdmp:node-insert-before, and xdmp:node-insert-after. Similar capabilities
are available through other language interfaces, such as JavaScript, Java, and REST.

The table below contains several examples of updating a JSON document.

Update Operation Results

Replace a string value in a
name-value pair.

xdmp:node-replace(
 fn:doc("my.json")/a/b,
 text { "NEW" }
)

Before {"a":{"b":"OLD"}}

After {"a":{"b":"NEW"}}

Replace a string value in an array.

xdmp:node-replace(
 fn:doc("my.json")/a[2],
 text { "NEW" }
)

Before {"a": ["v1","OLD","v3"] }

After {"a": ["v1", "NEW", "v3"] }

MarkLogic Server Working With JSON

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 407

Notice that when inserting one object into another, you must pass the named object node to the
node operation. That is, if inserting a node of the form object-node {"c": "NEW"} you cannot pass
that expression directly into an operation like xdmp:node-insert-child. Rather, you must pass in
the associated named node, object-node {"c": "NEW"}/c.

Insert an object.

xdmp:node-insert-child(
 fn:doc("my.json")/a,
 object-node {"c": "NEW" }/c
)

Before {"a": {"b":"val"} }

After { "a": {"b":"val","c":"NEW"} }

Insert an array member.

xdmp:node-insert-child(
 fn:doc("my.json")/array-node("a"),
 text { "NEW" }
)

Before { "a": ["v1", "v2"] }

After { "a": ["v1", "v2", "NEW"] }

Insert an object before another
node.

xdmp:node-insert-before(
 fn:doc("my.json")/a/b,
 object-node { "c": "NEW" }/c
)

Before { "a": {"b":"val"} }

After { "a": {"c":"NEW","b":"val"} }

Insert an array member before
another member.

xdmp:node-insert-before(
 fn:doc("my.json")/a[2],
 text { "NEW" }
)

Before { "a": ["v1", "v2"] }

After { "a": ["v1", "NEW", "v2"] }

Insert an object after another
node.

xdmp:node-insert-after(
 fn:doc("my.json")/a/b,
 object-node { "c": "NEW" }/c
)

Before { "a": {"b":"val"} }

After { "a": {"b":"val","c":"NEW"} }

Insert an array member after
another member.

xdmp:node-insert-after(
 fn:doc("my.json")/a[2],
 text { "NEW" })

Before { "a": ["v1", "v2"] }

After { "a": ["v1", "v2", "NEW"] }

Update Operation Results

MarkLogic Server Working With JSON

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 408

For example, assuming fn:doc("my.json")/a/b targets a object node, then the following
generates an XDMP-CHILDUNNAMED error:

xdmp:node-insert-after(
 fn:doc("my.json")/a/b,
 object-node { "c": "NEW" }
)

22.10.6 Searching JSON Documents
Searches generally behave the same way for both JSON and XML content, except for any
exceptions noted here. This section covers the following search related topics:

• Available cts Query Functions

• cts Query Serialization

You can also search JSON documents with string query, structured query, and QBE through the
client APIs. For details, see the following references:

• Search Developer’s Guide

• Node.js Application Developer’s Guide

• Java Application Developer’s Guide

• MarkLogic REST API Reference

22.10.6.1Available cts Query Functions
A name-value pair in a JSON document is called a property. You can perform CTS queries on
JSON properties using the following query constructors and cts:search:

• cts:json-property-word-query

• cts:json-property-value-query

• cts:json-property-range-query

• cts:json-property-scope-query

• cts:json-property-geospatial-query

• cts:json-property-child-geospatial-query

• cts:json-property-pair-geospatial-query

You can also use the following lexicon functions:

• cts:json-property-words

• cts:json-property-word-match

• cts:values

MarkLogic Server Working With JSON

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 409

• cts:value-match

Constructors for JSON index references are also available, such as cts:json-property-reference.

The Search API and MarkLogic client APIs (REST, Java, Node.js) also support queries on JSON
documents using string and structured queries and QBE. For details, see the following:

• Querying Documents and Metadata in the Node.js Application Developer’s Guide

• Searching in the Java Application Developer’s Guide

• Search Developer’s Guide

• Using and Configuring Query Features in the REST Application Developer’s Guide

When creating indexes and lexicons on JSON documents, use the interfaces for creating indexes
and lexicons on XML elements. For details, see “Creating Indexes and Lexicons Over JSON
Documents” on page 397.

22.10.6.2cts Query Serialization
A CTS query can be serialized as either XML or JSON. The proper form is chosen based on the
parent node and the calling language.

If the parent node is an XML element node, the query is serialized as XML. If the parent node is a
JSON object or array node, the query is serialized as JSON. Otherwise, a query is serialized based
on the calling language. That is, as JSON when called from JavaScript and as XML otherwise.

If the value of a JSON query property is an array and the array is empty, the property is omitted
from the serialized query. If the value of a property is an array containing only one item, it is still
serialized as an array.

22.11 Working With JSON in Server-Side JavaScript
When you access a JSON document in the database from Server-Side JavaScript, you get an
immutable document object. We recommend you manipulate JSON documents in Server-Side
JavaScript as JavaScript objects or arrays.

MarkLogic provides a toObject method on JSON document nodes for easy conversion from a
JSON node to its natural JavaScript representation. However, you still need to be aware of the
document model described in “How MarkLogic Represents JSON Documents” on page 389.

See the following topics for more detail:

• Constructing JSON Nodes in JavaScript

• Updating JSON Documents from JavaScript

• Read-Only Access to JSON Document Contents

• Using Node Update Functions on JSON Documents

MarkLogic Server Working With JSON

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 410

22.11.1 Constructing JSON Nodes in JavaScript
Use the NodeBuilder interface when you need to programmatically construct a JSON node. You
must use the NodeBuilder interface to construct text, number, boolean, and null nodes. For
example:

// construct a number node
const nb = new NodeBuilder();
nb.addNumber(42).toNode();

// construct a text node
const nb = new NodeBuilder();
nb.addText('someString').toNode();

Using a NodeBuilder is optional when passing a JSON object node or array node into a function
that expects a node because MarkLogic implicitly converts native JavaScript object and array
parameter values into JSON object nodes and array nodes. For example:

// Create a JSON document from a native JavaScript object
declareUpdate();
const nb = new NodeBuilder();
xdmp.documentInsert('some.json', {a: 1, b: 2});

// Create a JSON document from a native JavaScript array
declareUpdate();
const nb = new NodeBuilder();
xdmp.documentInsert('some.json', [1,2,3]);

// Create a JSON document from a constructed object node
declareUpdate();
const nb = new NodeBuilder();
xdmp.documentInsert('some.json', nb.addNode({a: 10, b: 20}).toNode());

For more details on programmatically constructing nodes, see NodeBuilder API in the JavaScript
Reference Guide.

22.11.2 Updating JSON Documents from JavaScript
To make changes to a JSON document whose root node is a JSON object node or array node,
convert the immutable document node into its mutable JavaScript representation using the
following technique.

1. Use the toObject method of the document node to convert it into an in-memory JavaScript
representation.

2. Apply your changes to the JavaScript object or array.

3. Update the JSON document using the JavaScript object or array.

MarkLogic Server Working With JSON

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 411

The following example applies the toObject technique to a document with an object node root.
The example inserts, updates, and deletes JSON properties on a mutable object, and then updates
the original document using xdmp.nodeReplace.

declareUpdate();

// assume my.json contains {a: 1, b: 2, c: 3}

const doc = cts.doc('my.json');
let obj = doc.toObject(); // create mutable representation

obj.d = 4; // insert a new property
obj.a = 10; // update a property
delete obj.b; // delete a property

xdmp.nodeReplace(doc, obj);

// resulting document contains {a: 10, c: 3, d: 4}

The example uses xdmp.nodeReplace rather than xdmp.documentInsert to update the original
document because xdmp.nodeReplace preserves document metadata such as collections and
permissions. However, you can use whatever update/insert function meets the needs of your
application.

You can use this technique even when the root node of the document is not an object node. The
following example applies the same toObject technique to update a document with an array node
as its root.

declareUpdate();

// assume myArr.json contains [1,2,3]

const doc = cts.doc('myArr.json');
let arr = doc.toObject();
arr[1] = 20;
xdmp.nodeReplace(doc, arr);

// Result: [1, 20, 3]

If you attempt to modify a JSON document node without converting it to its mutable JavaScript
representation using toObject, you will get an error. For example, the following code would
produce an error because it attempts to change the value of a property named “a” on the
immutable document node:

declareUpdate();

const doc = cts.doc('my.json');
doc.a = 10; // error because doc is immutable

MarkLogic Server Working With JSON

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 412

22.11.3 Read-Only Access to JSON Document Contents
We recommend you use the technique described in “Updating JSON Documents from JavaScript”
on page 410 to work with JSON document contents from Server-Side JavaScript. That is, use the
toObject method to first convert the document node into its logical native JavaScript
representation so that you can manipulate it in a natural way. For example:

// assume my.json contains an object node of the form {"child": 1}
const doc = cts.doc('my.json');
const obj = doc.toObject(); // convert to a JavaScript object

console.log('The value of child is: ' + obj.child);

This technique applies even if the root node of the document is not an object node. For example,
the following code retrieves the first item from a JSON document whose root node is an array
node:

// assume arr.json contains an array node of the form [1,2,3]
const doc = cts.doc('arr.json');
'The first array item value is: ' + doc.toObject()[0];

The following example uses a JSON document whose root node is a number node:

// assume num.json contains a number with the value 42
const doc = cts.doc('num.json');
'The answer is: ' + (doc.toObject() + 5)

If you cannot read the entire document into memory for some reason, you can also access its
contents through the document node root property. For example:

const docNode = cts.doc('my.json');
console.log('The value of child is: ' + docNode.root.child);

However, using toObject is the recommended approach.

For more details, see Document Object in the JavaScript Reference Guide.

22.11.4 Using Node Update Functions on JSON Documents
In most cases, you can use the technique described “Updating JSON Documents from JavaScript”
on page 410 to modify JSON documents from Server-Side JavaScript. If you cannot use that
technique for some reason, MarkLogic provides the following functions for updating individual
nodes within a JSON or XML document.

• xdmp.nodeReplace

• xdmp.nodeInsertChild

• xdmp.nodeInsertBefore

• xdmp.nodeInsertAfter

MarkLogic Server Working With JSON

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 413

• xdmp.nodeDelete

You can only use the insert and replace functions in contexts in which you can construct a suitable
node to insert or replace. For example, inserting or updating array items, or updating the value of
an existing JSON property.

You cannot construct a node that represents just a JSON property, so you cannot use
xdmp.nodeInsertAfter, xdmp.nodeInsertChild, or xdmp.nodeInsertBefore to insert a new JSON
property into an object node. Instead, use the technique described in “Updating JSON Documents
from JavaScript” on page 410.

To replace the value of an array node, you must address the array node, not one of the array items.
For example, use a path expression with an array-node or node expression in its leaf step. For
more details, see “Selecting Arrays and Array Members” on page 395.

Keep the following points in mind when passing new or replacement nodes into the update
functions. For more details, see “Constructing JSON Nodes in JavaScript” on page 410.

• You are not required to programmatically construct object and array nodes because
MarkLogic implicitly converts a native JavaScript object or array into its corresponding
JSON node during parameter passing.

• Any other node type must be constructed. For example, use a NodeBuilder to create a
number, boolean, text, or null node.

The following examples illustrate using the node update functions on JSON documents. For more
information on using XPath on JSON documents, see “Traversing JSON Documents Using
XPath” on page 390.

// Replace a non-array node with an object node
xdmp.nodeReplace(someDoc.xpath('/target'), {my: 'NewValue'});

// Replace a non-array node with an array node
xdmp.nodeReplace(someDoc.xpath('/target'), [10,20,30]);

// Replace a non-array node with a constructed node (here, a text node)
xdmp.nodeReplace(someDoc.xpath('/target'),
 new NodeBuilder().addText('newValue').toNode());

// Replace an array node with another array node
xdmp.nodeReplace(someDoc.xpath('/array-node("target")'), [10,20,30]);

// Replace the first item in an array with a number
xdmp.nodeReplace(someDoc.xpath('/target[1]'),
 new NodeBuilder().addNumber(42).toNode());

// Insert a new item after the first item in an array
xdmp.nodeInsertAfter(someDoc.xpath('/target[1]'),
 new NodeBuilder().addNumber(11).toNode());

// Insert a new item before the first item in an array

MarkLogic Server Working With JSON

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 414

xdmp.nodeInsertAfter(someDoc.xpath('/target[1]'),
 new NodeBuilder().addNumber(10).toNode());

// Insert a new item at the end of an array
xdmp.nodeInsertAfter(someDoc.xpath('/array-node("target")'),
 new NodeBuilder().addNumber(20).toNode());

// Delete a non-array node
xdmp.nodeDelete(someDoc.xpath('/target'));

// Delete an array node
xdmp.nodeDelete(someDoc.xpath('/array-node("target")'));

22.12 Converting JSON to XML and XML to JSON
You can use MarkLogic APIs to seamlessly and efficiently convert a JSON document to XML
and vice-versa without losing any semantic meaning. This section describes how to perform these
conversions and includes the following parts:

The JSON XQuery library module converts documents to and from JSON and XML. To ensure
fast transformations, it uses the underlying low-level APIs described in “Low-Level JSON
XQuery APIs and Primitive Types” on page 420. This section describes how to use the XQuery
library and includes the following parts:

• Conversion Philosophy

• Functions for Converting Between XML and JSON

• Understanding the Configuration Strategies For Custom Transformations

• Example: Conversion Using Basic Strategy

• Example: Conversion Using Full Strategy

• Example: Conversion Using Custom Strategy

22.12.1 Conversion Philosophy
To understand how the JSON conversion features in MarkLogic work, it is useful to understand
the following goals that MarkLogic considered when designing the conversion:

• Make it easy and fast to perform simple conversions using default conversion parameters.

• Make it possible to do custom conversions, allowing custom JSON and/or custom XML as
either output or input.

• Enable both fast key/value lookup and fine-grained search on JSON documents.

• Make it possible to perform semantically lossless conversions.

Because of these goals, the defaults are set up to make conversion both fast and easy. Custom
conversion is possible, but will take a little more effort.

MarkLogic Server Working With JSON

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 415

22.12.2 Functions for Converting Between XML and JSON
The main function to convert from JSON to XML is:

• XQuery: json:transform-from-json

• Server-Side JavaScript: json.transformFromJson

The main function to convert from XML to JSON is:

• XQuery: json:transform-to-json

• Server-Side JavaScript: json.transformToJson

For examples, see the following sections:

• Example: Conversion Using Basic Strategy

• Example: Conversion Using Full Strategy

• Example: Conversion Using Custom Strategy

22.12.3 Understanding the Configuration Strategies For Custom
Transformations

There are three strategies available for JSON conversion:

• basic

• full

• custom

A strategy is a piece of configuration that tells the JSON conversion library how you want the
conversion to behave. The basic conversion strategy is designed for conversions that start in
JSON, and then get converted back and forth between JSON, XML, and back to JSON again. The
full strategy is designed for conversion that starts in XML, and then converts to JSON and back
to XML again. The custom strategy allows you to customize the JSON and/or XML output.

To use any strategy except the basic strategy, you can set and check the configuration options
using the following functions:

• json:config (XQuery) or json.config (Server-Side JavaScript)

• json:check-config

• XQuery: json:config and json:check-config

• Server-Side JavaScript: json.config and json.checkConfig

For the custom strategy, you can tailer the conversion to your requirements. For details on the
properties you can set to control the transformation, see json:config in the MarkLogic XQuery
and XSLT Function Reference.

MarkLogic Server Working With JSON

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 416

22.12.4 Example: Conversion Using Basic Strategy
The following uses the basic (which is the default) strategy for transforming a JSON string to
XML and then back to JSON. You can also pass in a JSON object or array node.

xquery version '1.0-ml';
import module namespace json = "http://marklogic.com/xdmp/json"
 at "/MarkLogic/json/json.xqy";

declare variable $j := '{
 "blah":"first value",
 "second Key":["first item","second item",null,"third item",false],
 "thirdKey":3,
 "fourthKey":{"subKey":"sub value",
 "boolKey" : true, "empty" : null }
 ,"fifthKey": null,
 "sixthKey" : []
}' ;

let $x := json:transform-from-json($j)
let $jx := json:transform-to-json($x)
return ($x, $jx)

=>
<json type="object" xmlns="http://marklogic.com/xdmp/json/basic">
 <blah type="string">first value</blah>
 <second_20_Key type="array">
 <item type="string">first item</item>
 <item type="string">second item</item>
 <item type="null"/>
 <item type="string">third item</item>
 <item type="boolean">false</item>
 </second_20_Key>
 <thirdKey type="number">3</thirdKey>
 <fourthKey type="object">
 <subKey type="string">sub value</subKey>
 <boolKey type="boolean">true</boolKey>
 <empty type="null"/>
 </fourthKey>
 <fifthKey type="null"/>
 <sixthKey type="array"/>
</json>
{"blah":"first value",
 "second Key":["first item","second item",null,"third item",false],
 "thirdKey":3,
 "fourthKey":{"subKey":"sub value", "boolKey":true, "empty":null},
 "fifthKey":null, "sixthKey":[]}

22.12.5 Example: Conversion Using Full Strategy
The following uses the full strategy for transforming a XML element to a JSON string. The full
strategy outputs a JSON string with properties named in a consistent way. To transform the XML
into a JSON object node instead of a string, use json:transform-to-json-object.

MarkLogic Server Working With JSON

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 417

Suppose the database contains the following XML document with the URI “booklist.xml”:

<BOOKLIST>
 <BOOKS>
 <ITEM CAT="MMP">
 <TITLE>Pride and Prejudice</TITLE>
 <AUTHOR>Jane Austen</AUTHOR>
 <PUBLISHER>Modern Library</PUBLISHER>
 <PUB-DATE>2002-12-31</PUB-DATE>
 <LANGUAGE>English</LANGUAGE>
 <PRICE>4.95</PRICE>
 <QUANTITY>187</QUANTITY>
 <ISBN>0679601686</ISBN>
 <PAGES>352</PAGES>
 <DIMENSIONS UNIT="in">8.3 5.7 1.1</DIMENSIONS>
 <WEIGHT UNIT="oz">6.1</WEIGHT>
 </ITEM>
 </BOOKS>
</BOOKLIST>

Then the following code converts the contents from XML to JSON and back again.

The example produces the following output:

{"BOOKLIST": { "_children": [
 {"BOOKS": { "_children": [{
 "ITEM": {
 "_attributes": { "CAT": "MMP" },
 "_children": [
 {"TITLE": { "_children": ["Pride and Prejudice"] } },

Language Example

XQuery xquery version "1.0-ml";
import module namespace json = "http://marklogic.com/xdmp/json"
 at "/MarkLogic/json/json.xqy";

let $c := json:config("full")
 => map:with("whitespace", "ignore"),
 $j := json:transform-to-json(fn:doc("booklist.xml", $c),
 $xj := json:transform-from-json($j,$c)
return ($j, $xj)

JavaScript const json = require('/MarkLogic/json/json.xqy');

let config = json.config('full');
config.whitespace = 'ignore';

const j = json.transformToJson(cts.doc('booklist.xml'), config);
const xj = json.transformFromJson(j, config);
[j, xj]

MarkLogic Server Working With JSON

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 418

 {"AUTHOR": { "_children": ["Jane Austen"] } },
 {"PUBLISHER": { "_children": ["Modern Library"] } },
 {"PUB-DATE": { "_children": ["2002-12-31"] } },
 {"LANGUAGE": { "_children": ["English"] } },
 {"PRICE": { "_children": ["4.95"] } },
 {"QUANTITY": { "_children": ["187"] } },
 {"ISBN": { "_children": ["0679601686"] } },
 {"PAGES": { "_children": ["352"] } },
 {"DIMENSIONS": {
 "_attributes": { "UNIT": "in" },
 "_children": ["8.3 5.7 1.1"]
 }},
 {"WEIGHT": {
 "_attributes": { "UNIT": "oz" },
 "_children": ["6.1"]
 }
}]}}]}}]}}
<BOOKLIST>
 <BOOKS>
 <ITEM CAT="MMP">
 <TITLE>Pride and Prejudice</TITLE>
 <AUTHOR>Jane Austen</AUTHOR>
 <PUBLISHER>Modern Library</PUBLISHER>
 <PUB-DATE>2002-12-31</PUB-DATE>
 <LANGUAGE>English</LANGUAGE>
 <PRICE>4.95</PRICE>
 <QUANTITY>187</QUANTITY>
 <ISBN>0679601686</ISBN>
 <PAGES>352</PAGES>
 <DIMENSIONS UNIT="in">8.3 5.7 1.1</DIMENSIONS>
 <WEIGHT UNIT="oz">6.1</WEIGHT>
 </ITEM>
 </BOOKS>
</BOOKLIST>

22.12.6 Example: Conversion Using Custom Strategy
The following uses the custom strategy to carefully control both directions of the conversion. The
example converts a Search API XML options node into JSON and back again. The REST Client
API uses a similar approach to transform options nodes back and forth between XML and JSON.

The following code is an XQuery example. The equivalent Server-Side JavaScript example
follows.

xquery version "1.0-ml";
import module namespace json = "http://marklogic.com/xdmp/json"
 at "/MarkLogic/json/json.xqy";

declare namespace search="http://marklogic.com/appservices/search" ;
declare variable $doc :=
<search:options xmlns:search="http://marklogic.com/appservices/search">
 <search:constraint name="decade">
 <search:range facet="true" type="xs:gYear">

MarkLogic Server Working With JSON

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 419

 <search:bucket ge="1970" lt="1980" name="1970s">1970s</search:bucket>
 <search:bucket ge="1980" lt="1990" name="1980s">1980s</search:bucket>
 <search:bucket ge="1990" lt="2000" name="1990s">1990s</search:bucket>
 <search:bucket ge="2000" name="2000s">2000s</search:bucket>
 <search:facet-option>limit=10</search:facet-option>
 <search:attribute ns="" name="year"/>
 <search:element ns="http://marklogic.com/wikipedia" name="nominee"/>
 </search:range>
 </search:constraint>
</search:options>
 ;

let $c := json:config("custom")
 => map:with("whitespace", "ignore")
 => map:with("array-element-names",
xs:QName("search:bucket"))
 => map:with("attribute-names",
 ("facet","type","ge","lt","name","ns"))
 => map:with("text-value", "label")
 => map:with("camel-case", fn:true())
 => map:with("element-namespace",
 "http://marklogic.com/appservices/search")
let $j := json:transform-to-json($doc ,$c)
let $x := json:transform-from-json($j,$c)
return ($j, $x)

The following code is a Server-Side JavaScript example.

'use strict';
const json = require('/MarkLogic/json/json.xqy');

const doc = fn.head(xdmp.unquote(
`<search:options xmlns:search="http://marklogic.com/appservices/search">
 <search:constraint name="decade">
 <search:range facet="true" type="xs:gYear">
 <search:bucket ge="1970" lt="1980" name="1970s">1970s</search:bucket>
 <search:bucket ge="1980" lt="1990" name="1980s">1980s</search:bucket>
 <search:bucket ge="1990" lt="2000" name="1990s">1990s</search:bucket>
 <search:bucket ge="2000" name="2000s">2000s</search:bucket>
 <search:facet-option>limit=10</search:facet-option>
 <search:attribute ns="" name="year"/>
 <search:element ns="http://marklogic.com/wikipedia" name="nominee"/>
 </search:range>
 </search:constraint>
</search:options>`
)) ;

let config = json.config('custom');
config['whitespace'] = 'ignore';
config['array-element-names'] = Sequence.from([
 fn.QName('http://marklogic.com/appservices/search', 'search:bucket')
]);
config['attribute-names'] = Sequence.from([

MarkLogic Server Working With JSON

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 420

 'facet', 'type', 'ge', 'lt', 'name', 'ns'
]);
config['text-value'] = 'label';
config['camel-case'] = true;
config['element-namespace'] = 'http://marklogic.com/appservices/search';

let j = json.transformToJson(doc ,config);
let x = json.transformFromJson(j,config);
[j, x]

The examples produce the following output:

{"options":
 {"constraint":
 {"name":"decade",
 "range":{"facet":true, "type":"xs:gYear",
 "bucket":[{"ge":"1970", "lt":"1980", "name":"1970s",
 "label":"1970s"},
 {"ge":"1980", "lt":"1990", "name":"1980s","label":"1980s"},
 {"ge":"1990", "lt":"2000", "name":"1990s", "label":"1990s"},
 {"ge":"2000", "name":"2000s", "label":"2000s"}],
 "facetOption":"limit=10",
 "attribute":{"ns":"", "name":"year"},
 "element":{"ns":"http:\/\/marklogic.com\/wikipedia",
 "name":"nominee"}
}}}}
<options xmlns="http://marklogic.com/appservices/search">
 <constraint name="decade">
 <range facet="true" type="xs:gYear">
 <bucket ge="1970" lt="1980" name="1970s">1970s</bucket>
 <bucket ge="1980" lt="1990" name="1980s">1980s</bucket>
 <bucket ge="1990" lt="2000" name="1990s">1990s</bucket>
 <bucket ge="2000" name="2000s">2000s</bucket>
 <facet-option>limit=10</facet-option>
 <attribute ns="" name="year"/>
 <element ns="http://marklogic.com/wikipedia" name="nominee"/>
 </range>
 </constraint>
</options>

22.13 Low-Level JSON XQuery APIs and Primitive Types
There are several JSON APIs that are built into MarkLogic Server, as well as several primitive
XQuery/XML types to help convert back and forth between XML and JSON. The APIs do the
heavy work of converting between an XQuery/XML data model and a JSON data model. The
higher-level JSON library module functions use these lower-level APIs. If you use the JSON
library module, you will likely not need to use the low-level APIs.

This section covers the following topics:

• Available Functions and Primitive Types

MarkLogic Server Working With JSON

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 421

• Example: Serializing to a JSON Node

• Example: Parsing a JSON Node into a List of Items

22.13.1 Available Functions and Primitive Types
There are two APIs devoted to serialization of JSON properties: one to serialize XQuery to JSON,
and one to read a JSON string and create an XQuery data model from that string:

• xdmp:to-json

• xdmp:from-json

These APIs make the data available to XQuery as a map, and serialize the XML data as a JSON
string. Most XQuery types are serialized to JSON in a way that they can be round-tripped
(serialized to JSON and parsed from JSON back into a series of items in the XQuery data model)
without any loss, but some types will not round-trip without loss. For example, an xs:dateTime
value will serialize to a JSON string, but that same string would have to be cast back into an
xs:dateTime value in XQuery in order for it to be equivalent to its original. The high-level API
can take care of most of those problems.

There are also a set of low-level APIs that are extensions to the XML data model, allowing
lossless data translations for things such as arrays and sequences of sequences, neither of which
exists in the XML data model. The following functions support these data model translations:

• json:array

• json:array-pop

• json:array-push

• json:array-resize

• json:array-values

• json:object

• json:object-define

• json:set-item-at

• json:subarray

• json:to-array

Additionally, there are primitive XQuery types that extend the XQuery/XML data model to
specify a JSON object (json:object), a JSON array (json:array), and a type to make it easy to
serialize an xs:string to a JSON string when passed to xdmp:to-json (json:unquotedString).

To further improve performance of the transformations to and from JSON, the following built-ins
are used to translate strings to XML NCNames:

• xdmp:decode-from-NCName

• xdmp:encode-for-NCName

MarkLogic Server Working With JSON

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 422

The low-level JSON APIs, supporting XQuery functions, and primitive types are the building
blocks to make efficient and useful applications that consume and or produce JSON. While these
APIs are used for JSON translation to and from XML, they are at a lower level and can be used
for any kind of data translation. But most applications will not need the low-level APIs; instead
use the XQuery library API (and the REST and Java Client APIs that are built on top of the it),
described in “Converting JSON to XML and XML to JSON” on page 414.

For the signatures and description of each function, see the MarkLogic XQuery and XSLT
Function Reference.

22.13.2 Example: Serializing to a JSON Node
The following code returns a JSON array node that includes a map, a string, and an integer.

let $map := map:map()
let $put := map:put($map, "some-prop", 45683)
let $string := "this is a string"
let $int := 123
return
xdmp:to-json(($map, $string, $int))

(:
returns:
[{"some-prop":45683}, "this is a string", 123]
:)

For details on maps, see “Using the map Functions to Create Name-Value Maps” on page 156.

22.13.3 Example: Parsing a JSON Node into a List of Items
Consider the following, which is the inverse of the previous example:

let $json :=
 xdmp:unquote('[{"some-prop":45683}, "this is a string", 123]')
return
xdmp:from-json($json)

This returns the following items:

json:array(
<json:array xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:json="http://marklogic.com/xdmp/json">
 <json:value>
 <json:object>
 <json:entry key="some-prop">
 <json:value xsi:type="xs:integer">45683
 </json:value>
 </json:entry>
 </json:object>
 </json:value>

MarkLogic Server Working With JSON

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 423

 <json:value xsi:type="xs:string">this is a string
 </json:value>
 <json:value xsi:type="xs:integer">123</json:value>
</json:array>)

Note that what is shown above is the serialization of the json:array XML element. You can also
use some or all of the items in the XML data model. For example, consider the following, which
adds to the json:object based on the other values (and prints out the resulting JSON string):

xquery version "1.0-ml";
let $json :=
 xdmp:unquote('[{"some-prop":45683}, "this is a string", 123]')
let $items := xdmp:from-json($json)
let $put := map:put($items[1], xs:string($items[3]), $items[2])
return
($items[1], xdmp:to-json($items[1]))

(: returns the following json:array and JSON string:
json:object(
<json:object xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:json="http://marklogic.com/xdmp/json">
 <entry key="some-prop">
 <json:value xsi:type="xs:integer">45683</json:value>
 </entry>
 <entry key="123">
 <json:value xsi:type="xs:string">this is a string</json:value>
 </entry>
</json:object>)
{"some-prop":45683, "123":"this is a string"}

This query uses the map functions to modify the first json:object
in the json:array.
:)

In the above query, the first item ($items[1]) returned from the xdmp:from-json call is a
json:array, and the you can use the map functions to modify the json:array, and the query then
returns the modified json:array. You can treat a json:array like a map, as the main difference is
that the json:array is ordered and the map:map is not. For details on maps, see “Using the map
Functions to Create Name-Value Maps” on page 156.

22.14 Loading JSON Documents
This section provides examples of loading JSON documents using a variety of MarkLogic tools
and interfaces. The following topics are covered:

• Loading JSON Document Using mlcp

• Loading JSON Documents Using the Java Client API

• Loading JSON Documents Using the Node.js Client API

MarkLogic Server Working With JSON

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 424

• Loading JSON Using the REST Client API

22.14.1 Loading JSON Document Using mlcp
You can ingest JSON documents with mlcp just as you can XML, binary, and text documents. If
the file extension is “.json”, MarkLogic automatically recognizes the content as JSON.

For details, see Loading Content Using MarkLogic Content Pump in the Loading Content Into
MarkLogic Server Guide.

22.14.2 Loading JSON Documents Using the Java Client API
The Java Client API enables you to interact with MarkLogic Server from a Java application. For
details, see the Java Application Developer’s Guide.

Use the class com.marklogic.client.document.DocumentManager to create a JSON document in a
Java application. The input data can come from any source supported by the Java Client API
handle interfaces, including a file, a string, or from Jackson. For details, see Document Creation in
the Java Application Developer’s Guide.

You can also use the Java Client API to create JSON documents that represent POJO domain
objects. For details, see POJO Data Binding Interface in the Java Application Developer’s Guide.

22.14.3 Loading JSON Documents Using the Node.js Client API
The Node.js Client API enables you to handle JSON data in your client-side code as JavaScript
objects. You can create a JSON document in the database directly from such objects, using the
DatabaseClient.documents interface.

For details, see Loading Documents into the Database in the Node.js Application Developer’s Guide.

22.14.4 Loading JSON Using the REST Client API
You can load JSON documents into MarkLogic Server using REST Client API. The following
example shows how to use the REST Client API to load a JSON document in MarkLogic.

Consider a JSON file names test.json with the following contents:

{
"key1":"value1",
"key2":{
 "a":"value2a",
 "b":"value2b"
 }
}

Run the following curl command to use the documents endpoint to create a JSON document:

MarkLogic Server Working With JSON

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 425

curl --anyauth --user user:password -T ./test.json -D - \
 -H "Content-type: application/json" \
 http://my-server:5432/v1/documents?uri=/test/keys.json

The document is created and the endpoint returns the following:

HTTP/1.1 100 Continue

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Digest realm="public", qop="auth",
 nonce="b4475e81fe81b6c672a5
 d105f4d8662a", opaque="de72dcbdfb532a0e"
Server: MarkLogic
Content-Type: text/xml; charset=UTF-8
Content-Length: 211
Connection: close

HTTP/1.1 100 Continue

HTTP/1.1 201 Document Created
Location: /test/keys.json
Server: MarkLogic
Content-Length: 0
Connection: close

You can then retrieve the document from the REST Client API as follows:

$ curl --anyauth --user admin:password -X GET -D - \
 http://my-server:5432/v1/documents?uri=/test/keys.json
==>
HTTP/1.1 401 Unauthorized
WWW-Authenticate: Digest realm="public", qop="auth",
 nonce="2aaee5a1d206cbb1b894
 e9f9140c11cc", opaque="1dfded750d326fd9"
Server: MarkLogic
Content-Type: text/xml; charset=UTF-8
Content-Length: 211
Connection: close

HTTP/1.1 200 Document Retrieved
vnd.marklogic.document-format: json
Content-type: application/json
Server: MarkLogic
Content-Length: 56
Connection: close

{"key1":"value1", "key2":{"a":"value2a", "b":"value2b"}}

For details about the REST Client API, see REST Application Developer’s Guide.

MarkLogic Server Using Triggers to Spawn Actions

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 426

23.0 Using Triggers to Spawn Actions
438

MarkLogic Server includes pre-commit and post-commit triggers. This chapter describes how
triggers work in MarkLogic Server and includes the following sections:

• Overview of Triggers

• Triggers and the Content Processing Framework

• Pre-Commit Versus Post-Commit Triggers

• Trigger Events

• Trigger Scope

• Modules Invoked or Spawned by Triggers

• Creating and Managing Triggers With triggers.xqy

• Simple Trigger Example

• Avoiding Infinite Trigger Loops (Trigger Storms)

23.1 Overview of Triggers
Conceptually, a trigger listens for certain events (document create, delete, update, or the database
coming online) to occur, and then invokes an XQuery module to run after the event occurs. The
trigger definition determines whether the action module runs before or after committing the
transaction which causes the trigger to fire.

Creating a robust trigger framework is complex, especially if your triggers need to maintain state
or recover gracefully from service interruptions. Before creating your own custom triggers,
consider using the Content Processing Framework. CPF provides a rich, reliable framework
which abstracts most of the event management complexity from your application. For more
information, see “Triggers and the Content Processing Framework” on page 428.

Note: Triggers run as the user performing the update transaction that caused the trigger.
The programmer is free to call amped library functions in triggers if the use case
requires certain roles to work correctly. The only exception here is the
database-online trigger, because in that case there is no triggering update
transaction, and hence no user. For database-online trigger the user is specified by
the trigger itself. Some customization of CPF installation scripts is required in
order to insure that this event is run as an existing administrative user.

23.1.1 Trigger Components
A trigger definition is stored as an XML document in a database, and it contains information
about the following:

• The event definition, which describes:

• the conditions under which the trigger fires

MarkLogic Server Using Triggers to Spawn Actions

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 427

• the scope of the watched content

• The XQuery module to invoke or spawn when the event occurs.

A trigger definition is created and installed by calling trgr:create-trigger. To learn more about
trigger event definitions, see “Trigger Events” on page 430.

23.1.2 Databases Used By Triggers
A complete trigger requires monitored content, a trigger definition, and an action module. These
components involve 3 databases:

• The content database monitored by the trigger.

• The triggers database, where the trigger definition is stored by trgr:create-trigger. This
must be the triggers database configured for the content database.

• The module database, where the trigger action module is stored. This need not be the
modules database configured for your App Server.

The following diagram shows the relationships among these databases and the trigger
components:

Usually, the content, triggers and module databases are different physical databases, but there is
no requirement that they be separate. A database named Triggers is installed by MarkLogic
Server for your convenience, but any database may serve as the content, trigger, or module
database. The choice is dependent on the needs of your application.

For example, if you want your triggers backed up with the content to which they apply, you might
store trigger definitions and their action modules in your content database. If you want to share a
trigger action module across triggers that apply to multiple content databases, you would use a
separate trigger modules database.

Note: Most trigger API function calls must be evaluated in the context of the triggers
database.

<trgr:trigger>
 <trgr:module>
 ...
</trgr:trigger>

(: action.xqy :)
xquery version...
...

<myContent>
...
<myContent>

monitored content trigger definition
trigger action

module

trgr:create-trigger(...) xdmp:document-insert(...)

content database triggers database trigger module database

configure
trigger db of
content db

ref’d in
trigger defn

MarkLogic Server Using Triggers to Spawn Actions

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 428

23.2 Triggers and the Content Processing Framework
The Content Processing Framework uses triggers to capture events and then set states in content
processing pipelines. Since the framework creates and manages the triggers, you only need to
configure the pipeline and supply the action modules.

In a pipeline used with the Content Processing Framework, a trigger fires after one stage is
complete (from a document update, for example) and then the XQuery module specified in the
trigger is executed. When it completes, the next trigger in the pipeline fires, and so on. In this way,
you can create complex pipelines to process documents.

The Status Change Handling pipeline, installed when you install Content Processing in a
database, creates and manages all of the triggers needed for your content processing applications,
so it is not necessary to directly create or manage any triggers in your content applications.

When you use the Content Processing Framework instead of writing your own triggers:

• Actions may easily be chained together through pipelines.

• You only need to create and install your trigger action module.

• CPF handles recovery from interruptions for you.

• CPF automatically makes state available to your module and across stages of the pipeline.

Applications using the Content Processing Framework Status Change Handling pipeline do not
need to explicitly create triggers, as the pipeline automatically creates and manages the triggers as
part of the Content Processing installation for a database. For details, see the Content Processing
Framework Guide manual.

MarkLogic Server Using Triggers to Spawn Actions

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 429

23.3 Pre-Commit Versus Post-Commit Triggers
There are two ways to configure the transactional semantics of a trigger: pre-commit and
post-commit. This section describes each type of trigger and includes the following parts:

• Pre-Commit Triggers

• Post-Commit Triggers

23.3.1 Pre-Commit Triggers
The module invoked as the result of a pre-commit trigger is evaluated as part of the same
transaction that produced the triggering event. It is evaluated by invoking the module on the same
App Server in which the triggering transaction is run. It differs from invoking the module with
xdmp:invoke in one way, however; the module invoked by the pre-commit trigger sees the updates
made to the triggering document.

Therefore, pre-commit triggers and the modules from which the triggers are invoked execute in a
single context; if the trigger fails to complete for some reason (if it throws an exception, for
example), then the entire transaction, including the triggering transaction, is rolled back to the
point before the transaction began its evaluation.

This transactional integrity is useful when you are doing something that does not make sense to
break up into multiple asynchronous steps. For example, if you have an application that has a
trigger that fires when a document is created, and the document needs to have an initial property
set on it so that some subsequent processing can know what state the document is in, then it makes
sense that the creation of the document and the setting of the initial property occur as a single
transaction. As a single transaction (using a pre-commit trigger), if something failed while adding
the property, the document creation would fail and the application could deal with that failure. If it
were not a single transaction, then it is possible to get in a situation where the document is
created, but the initial property was never created, leaving the content processing application in a
state where it does not know what to do with the new document.

23.3.2 Post-Commit Triggers
The task spawned as the result of a post-commit trigger is evaluated as a separate transaction. The
task is compiled before the original transaction commits and is queued on the task server and run
some time after the original transaction commits. Static errors that occur compiling a post-commit
trigger task cause the original transaction to roll back. Dynamic errors that occur running a
post-commit trigger task do not cause the original transaction to roll back. There is no guarantee
that the post-commit trigger task will complete.

When a post-commit trigger spawns an XQuery module, it is put in the queue on the task server.
The task server maintains this queue of tasks, and initiates each task in the order it was received.
The task server has multiple threads to service the queue. There is one task server per group, and
you can set task server parameters in the Admin Interface under Groups > group_name > Task
Server.

MarkLogic Server Using Triggers to Spawn Actions

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 430

Because post-commit triggers are asynchronous, the code that calls them must not rely on
something in the trigger module to maintain data consistency. For example, the state transitions in
the Content Processing Framework code uses post-commit triggers. The code that initiates the
triggering event updates the property state before calling the trigger, allowing a consistent state in
case the trigger code does not complete for some reason. Asynchronous processing has many
advantages for state processing, as each state might take some time to complete. Asynchronous
processing (using post-commit triggers) allows you to build applications that will not lose all of
the processing that has already occurred if something happens in the middle of processing your
pipeline. When the system is available again, the Content Processing Framework will simply
continue the processing where it left off.

23.4 Trigger Events
The trigger event definition describes the conditions under which a trigger fires and the content to
which it applies. There are two kinds of trigger events: data events and database events. Triggers
can listen for the following events:

• document create

• document update

• document delete

• any property change (does not include MarkLogic Server-controlled properties such as
last-modified and directory)

• specific (named) property change

• database coming online

23.4.1 Database Events
The only database event is a database coming online event. The module for a database online
event runs as soon as the watched database comes online. A database online event definition
requires only the name of the user under which the action module runs.

23.4.2 Data Events
Data events apply to changes to documents and properties. A trigger data event has the following
parts:

• The trigger scope defines the set of documents to which the event applies. Use
trgr:*-scope functions such as trgr:directory-scope to create this piece. For more
information, see “Trigger Scope” on page 431.

• The content condition defines the triggering operation, such as document creation, update
or deletion, or property modification. Use the trgr:*-content functions such as
trgr:document-content to create this piece.

To watch more than one operation, you must use multiple trigger events and define
multiple triggers.

MarkLogic Server Using Triggers to Spawn Actions

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 431

• The timing indicator defines when the trigger action occurs relative to the transaction that
matches the event condition, either pre-commit or post-commit. Use trgr:*-commit
functions such as trgr:post-commit to create this piece. For more information, see
“Pre-Commit Versus Post-Commit Triggers” on page 429.

The content database to which an event applies is not an explicit part of the event or the trigger
definition. Instead, the association is made through the triggers database configured for the
content database.

Whether the module that the trigger invokes commits before or after the module that produced the
triggering event depends upon whether the trigger is a pre-commit or post-commit trigger.
Pre-commit triggers in MarkLogic Server listen for the event and then invoke the trigger module
before the transaction commits, making the entire process a single transaction that either all
completes or all fails (although the module invoked from a pre-commit trigger sees the updates
from the triggering event).

Post-commit triggers in MarkLogic Server initiate after the event is committed, and the module
that the trigger spawns is run in a separate transaction from the one that updated the document.
For example, a trigger on a document update event occurs after the transaction that updates the
document commits to the database.

Because the post-commit trigger module runs in a separate transaction from the one that caused
the trigger to spawn the module (for example, the create or update event), the trigger module
transaction cannot, in the event of a transaction failure, automatically roll back to the original
state of the document (that is, the state before the update that caused the trigger to fire). If this will
leave your document in an inconsistent state, then the application must have logic to handle this
state.

For more information on pre- and post-commit triggers, see “Pre-Commit Versus Post-Commit
Triggers” on page 429.

23.5 Trigger Scope
The trigger scope is the scope with which to listen for create, update, delete, or property change
events. The scope represents a portion of the database corresponding to one of the trigger scope
values: document, directory, or collection.

A document trigger scope specifies a given document URI, and the trigger responds to the
specified trigger events only on that document.

A collection trigger scope specifies a given collection URI, and the trigger responds to the
specified trigger events for any document in the specified collection.

A directory scope represents documents that are in a specified directory, either in the immediate
directory (depth of 1); or in the immediate or any recursive subdirectory of the specified directory.
For example, if you have a directory scope of the URI / (a forward-slash character) with a depth
of infinity, that means that any document in the database with a URI that begins with a

MarkLogic Server Using Triggers to Spawn Actions

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 432

forward-slash character (/) will fire a trigger with this scope upon the specified trigger event.
Note that in this directory example, a document called hello.xml is not included in this trigger
scope (because it is not in the / directory), while documents with the URIs /hello.xml or
/mydir/hello.xml are included.

23.6 Modules Invoked or Spawned by Triggers
Trigger definitions specify the URI of a module. This module is evaluated when the trigger is
fired (when the event completes). The way this works is different for pre-commit and
post-commit triggers. This section describes what happens when the trigger modules are invoked
and spawned and includes the following subsections:

• Difference in Module Behavior for Pre- and Post-Commit Triggers

• Module External Variables trgr:uri and trgr:trigger

23.6.1 Difference in Module Behavior for Pre- and Post-Commit Triggers
For pre-commit triggers, the module is invoked when the trigger is fired (when the event
completes). The invoked module is evaluated in an analogous way to calling xdmp:invoke in an
XQuery statement, and the module evaluates synchronously in the same App Server as the calling
XQuery module. The difference is that, with a pre-commit trigger, the invoked module sees the
result of the triggering event. For example, if there is a pre-commit trigger defined to fire upon a
document being updated, and the module counts the number of paragraphs in the document, it
will count the number of paragraphs after the update that fired the trigger. Furthermore, if the
trigger module fails for some reason (a syntax error, for example), then the entire transaction,
including the update that fired the trigger, is rolled back to the state before the update.

For post-commit triggers, the module is spawned onto the task server when the trigger is fired
(when the event completes). The spawned module is evaluated in an analogous way to calling
xdmp:spawn in an XQuery statement, and the module evaluates asynchronously on the task server.
Once the post-commit trigger module is spawned, it waits in the task server queue until it is
evaluated. When the spawned module evaluates, it is run as its own transaction. Under normal
circumstances the modules in the task server queue will initiate in the order in which they were
added to the queue. Because the task server queue does not persist in the event of a system
shutdown, however, the modules in the task server queue are not guaranteed to run.

MarkLogic Server Using Triggers to Spawn Actions

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 433

23.6.2 Module External Variables trgr:uri and trgr:trigger
There are two external variables that are available to trigger modules:

• trgr:uri as xs:string

• trgr:trigger as node()

The trgr:uri external variable is the URI of the document which caused the trigger to fire (it is
only available on triggers with data events, not on triggers with database online events). The
trgr:trigger external variable is the trigger XML node, which is stored in the triggers database
with the URI http://marklogic.com/xdmp/triggers/trigger_id, where trigger_id is the ID of the
trigger. You can use these external variables in the trigger module by declaring them in the prolog
as follows:

xquery version "1.0-ml";
import module namespace trgr='http://marklogic.com/xdmp/triggers'
 at '/MarkLogic/triggers.xqy';

declare variable $trgr:uri as xs:string external;
declare variable $trgr:trigger as node() external;

23.7 Creating and Managing Triggers With triggers.xqy
The <install_dir>/Modules/MarkLogic/triggers.xqy XQuery module file contains functions to
create, delete, and manage triggers. If you are using the Status Change Handling pipeline, the
pipeline takes care of all of the trigger details; you do not need to create or manage any triggers.
For details on the trigger functions, see the MarkLogic XQuery and XSLT Function Reference.

For real-world examples of XQuery code that creates triggers, see the
<install_dir>/Modules/MarkLogic/cpf/domains.xqy XQuery module file. For a sample trigger
example, see “Simple Trigger Example” on page 434. The functions in this module are used to
create the needed triggers when you use the Admin Interface to create a domain.

MarkLogic Server Using Triggers to Spawn Actions

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 434

23.8 Simple Trigger Example
The following example shows a simple trigger that fires when a document is created.

1. Use the Admin Interface to set up the database to use a triggers database. You can specify
any database as the triggers database. The following screenshot shows the database named
Documents as the content database and Triggers as the triggers database.

2. Create a trigger that listens for documents that are created under the directory /myDir/
with the following XQuery code. Note that this code must be evaluated against the triggers
database for the database in which your content is stored.

xquery version "1.0-ml";
import module namespace trgr="http://marklogic.com/xdmp/triggers"
 at "/MarkLogic/triggers.xqy";

trgr:create-trigger("myTrigger", "Simple trigger example",
 trgr:trigger-data-event(
 trgr:directory-scope("/myDir/", "1"),
 trgr:document-content("create"),
 trgr:post-commit()),
 trgr:trigger-module(xdmp:database("Documents"),
 "/modules/", "log.xqy"), fn:true(),
 xdmp:default-permissions())

This code returns the ID of the trigger. The trigger document you just created is stored in
the document with the URI http://marklogic.com/xdmp/triggers/trigger_id, where
trigger_id is the ID of the trigger you just created.

3. Load a document whose contents is the XQuery module of the trigger action. This is the
module that is spawned when the when the previously specified create trigger fires. For

MarkLogic Server Using Triggers to Spawn Actions

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 435

this example, the URI of the module must be /modules/log.xqy in the database named
Documents (from the trgr:trigger-module part of the trgr:create-trigger code above).
Note that the document you load, because it is an XQuery document, must be loaded as a
text document and it must have execute permissions. For example, create a trigger module
in the Documents database by evaluating the following XQuery against the modules
database for the App Server in which the triggering actions will be evaluated:

xquery version '1.0-ml';
(: evaluate this against the database specified
 in the trigger definition (Documents in this example)
:)
xdmp:document-insert("/modules/log.xqy",
 text{ "
xquery version '1.0-ml';
import module namespace trgr='http://marklogic.com/xdmp/triggers'
 at '/MarkLogic/triggers.xqy';

declare variable $trgr:uri as xs:string external;

xdmp:log(fn:concat('*****Document ', $trgr:uri, ' was created.*****'))"
}, xdmp:permission('app-user', 'execute'))

4. The trigger will now fire when you create documents in the database named Documents in
the /myDir/ directory. For example, the following:

xdmp:document-insert("/myDir/test.xml", <test/>)

will write a message to the ErrorLog.txt file similar to the following:

2007-03-12 20:14:44.972 Info: TaskServer: *****Document /myDir/test.xml
was created.*****

Note: This example only fires the trigger when the document is created. If you want it to
fire a trigger when the document is updated, you will need a separate trigger with a
trgr:document-content of "modify".

MarkLogic Server Using Triggers to Spawn Actions

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 436

23.9 Avoiding Infinite Trigger Loops (Trigger Storms)
If you create a trigger for a document to update itself, the result is an infinite loop, which is also
known as a “trigger storm.”

When a pre-commit trigger fires, its actions are part of the same transaction. Therefore, any
updates performed in the trigger will not fire the same trigger again. To do so is to guarantee
trigger storms, which generally result in an XDMP-MAXTRIGGERDEPTH error message.

In the following example, we create a trigger that calls a module when a document in the /storm/
directory is modified the database. The triggered module attempts to update the document with a
new child node. This triggers another update of the document, which triggers another update, and
so on, ad infinitum. The end result is an XDMP-MAXTRIGGERDEPTH error message and no updates to
the document.

To create a trigger storm, do the following:

1. In the Modules database, create a storm.xqy module to be called by the trigger:

xquery version "1.0-ml";

import module namespace trgr="http://marklogic.com/xdmp/triggers"
 at "/MarkLogic/triggers.xqy";

if (xdmp:database() eq xdmp:database("Modules"))
 then ()
 else error((), 'NOTMODULESDB', xdmp:database()) ,

xdmp:document-insert('/triggers/storm.xqy', text {
 <code>
 xquery version "1.0-ml";
 import module namespace trgr='http://marklogic.com/xdmp/triggers'
 at '/MarkLogic/triggers.xqy';

 declare variable $trgr:uri as xs:string external;
 declare variable $trgr:trigger as node() external;

 xdmp:log(text {{
 'storm:',
 $trgr:uri,
 xdmp:describe($trgr:trigger)
 }}) ,

 let $root := doc($trgr:uri)/*
 return xdmp:node-insert-child(
 $root,
 element storm
 {{ count($root/*) }})
 </code>
})

MarkLogic Server Using Triggers to Spawn Actions

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 437

2. In the Triggers database, create the following trigger to call the storm.xqy module each
time a document in the /storm/ directory in the database is modified:

xquery version "1.0-ml";

import module namespace trgr="http://marklogic.com/xdmp/triggers"
 at "/MarkLogic/triggers.xqy";

if (xdmp:database() eq xdmp:database("Triggers"))
 then ()
 else error((), 'NOTTRIGGERSDB', xdmp:database()) ,

trgr:create-trigger(
 "storm",
 "storm",
 trgr:trigger-data-event(trgr:directory-scope("/storm/", "1"),
 trgr:document-content("modify"),
 trgr:pre-commit()),
 trgr:trigger-module(
 xdmp:database("Modules"),
 "/triggers/",
 "storm.xqy"),
 fn:true(),
 xdmp:default-permissions(),
 fn:true())

3. Now insert a document twice into any database that uses Triggers as its triggers database:

xquery version "1.0-ml";

xdmp:document-insert('/storm/test', <test/>)

4. The second attempt to insert the document will fire the trigger, which will result in an
XDMP-MAXTRIGGERDEPTH error message and repeated messages in ErrorLog.txt that look
like the following:

2010-08-12 15:04:42.176 Info: Docs: storm: /storm/test
<trgr:trigger xmlns:trgr="http://marklogic.com/xdmp/triggers">
 <trgr:trigger-id>1390446271155923614</trgr:trigger-id>
<trgr:trig...</trgr:trigger>

MarkLogic Server Using Triggers to Spawn Actions

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 438

If you encounter similar circumstances in your application and it’s not possible to modify your
application logic, you can avoid trigger storms by setting the $recursive parameter in the
trgr:create-trigger function to fn:false(). So your new trigger would look like:

trgr:create-trigger(
 "storm",
 "storm",
 trgr:trigger-data-event(trgr:directory-scope("/storm/", "1"),
 trgr:document-content("modify"),
 trgr:pre-commit()),
 trgr:trigger-module(
 xdmp:database("Modules"),
 "/triggers/",
 "storm.xqy"),
 fn:true(),
 xdmp:default-permissions(),
 fn:false())

The result will be a single update to the document and no further recursion.

MarkLogic Server Using Native Plugins

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 439

24.0 Using Native Plugins
448

A native plugin is a C++ dynamically loaded library that provides one or more plugin
implementations to MarkLogic. This chapter covers how to create, install, and manage native
plugins.

• What is a Native Plugin?

• How MarkLogic Server Manages Native Plugins

• Building a Native Plugin Library

• Packaging a Native Plugin

• Installing a Native Plugin

• Uninstalling a Native Plugin

• Registering a Native Plugin at Runtime

• Versioning a Native Plugin

• Checking the Status of Loaded Plugins

• The Plugin Manifest

• Native Plugin Security Considerations

• Native Plugin Example

24.1 What is a Native Plugin?
A native plugin is a dynamically linked library that contains one or more UDF (User Defined

Function) implementations. When you package and deploy a native plugin in the expected way,
MarkLogic distributes your code across the cluster and makes it available for execution through
specific extension points.

The UDF interfaces define the extension points that can take advantage of a native plugin.
MarkLogic currently supports the following UDFs:

• AggregateUDF: Use the map-reduce capabilities of MarkLogic to analyze values in
lexicons and range indexes. For more details, see “Aggregate User-Defined Functions” on
page 449.

• LexerUDF: Define a custom tokenizer for a language. For more details, see User-Defined

Lexer Plugins in the Search Developer’s Guide.

• StemmerUDF: Define a custom stemmer for a language. For more details, see Using a

User-Defined Stemmer Plugin in the Search Developer’s Guide.

The implementation requirement for each UDF varies, but they all use the native plugin
mechanism for packaging, deployment, and version.

MarkLogic Server Using Native Plugins

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 440

24.2 How MarkLogic Server Manages Native Plugins
Native plugins are deployed as dynamically loaded libraries that MarkLogic Server loads
on-demand when referenced by an application. The User-Defined Functions (UDFs) implemented
by a native plugin are identified by the relative path to the plugin and the name of the UDF. For a
list of the supported kinds of UDFs, see “What is a Native Plugin?” on page 439.

When you install a native plugin library, MarkLogic Server stores it in the Extensions database. If
the MarkLogic Server instance in which you install the plugin is part of a cluster, your plugin
library is automatically propagated to all the nodes in the cluster.

There can be a short delay between installing a plugin and having the new version available.
MarkLogic Server only checks for changes in plugin state about once per second. Once a change
is detected, the plugin is copied to hosts with an older version.

In addition, each host has a local cache from which to load the native library, and the cache cannot
be updated while a plugin is in use. Once the plugin cache starts refreshing, operations that try use
a plugin are retried until the cache update completes.

MarkLogic Server loads plugins on-demand. A native plugin library is not dynamically loaded
until the first time an application calls a UDF implemented by the plugin. A plugin can only be
loaded or unloaded when no plugins are in use on a host.

24.3 Building a Native Plugin Library
Native plugins run in the same process context as the MarkLogic Server core, so you must
compile and link your library in a manner compatible with the MarkLogic Server executable.
Follow these basic steps to build your library:

• Compile your library with a C++ compiler and standard libraries compatible with
MarkLogic Server. See the table below. This is necessary because C++ is not guaranteed
binary compatible across compiler versions.

• Compile your C++ code with the options your platform requires for creating shared
objects. For example, on Linux, compile with the -fPIC option.

• Build a 64-bit library (32-bit on Windows).

The sample plugin in marklogic_dir/Samples/NativePlugins includes a Makefile usable with
GNU make on all supported platforms. Use this makefile as the basis for building your own
plugins as it includes all the required compiler options.

The makefile builds a shared library, generates a manifest, and zips up the library and manifest
into an install package. The makefile is easily customized for your own plugin by changing a few
make variables at the beginning of the file:

PLUGIN_NAME = sampleplugin
PLUGIN_VERSION = 0.1
PLUGIN_PROVIDER = MarkLogic

MarkLogic Server Using Native Plugins

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 441

PLUGIN_DESCRIPTION = Example native plugin

PLUGIN_SRCS = \
 SamplePlugin.cpp

The table below shows the compiler and standard library versions used to build MarkLogic
Server. You must build your native plugin with compatible tools.

24.4 Packaging a Native Plugin
You must package a native plugin into a zip file to install it. The installation zip file must contain:

• A C++ shared library implementing the plugin interface(s), such as
marklogic::AggregateUDF, and the registration function marklogicPlugin.

• A plugin manifest file called manifest.xml. See “The Plugin Manifest” on page 446.

• Optionally, additional shared libraries required by the plugin implementation.

Including dependent libraries in your plugin zip file gives you explicit control over which library
versions are used by your plugin and ensures the dependent libraries are available to all nodes in
the cluster in which the plugin is installed.

The following example creates the plugin package sampleplugin.zip from the plugin
implementation, libsampleplugin.so, a dependent library, libdep.so, and the plugin manifest.

$ zip sampleplugin.zip libsampleplugin.so libdep.so manifest.xml

If the plugin contents are organized into subdirectories, include the subdirectories in the paths in
the manifest. For example, if the plugin components are organized as follows in the zip file:

$ unzip -l sampleplugin.zip
Archive: sampleplugin.zip
 Length Date Time Name
 -------- ---- ---- ----
 28261 06-28-12 12:54 libsampleplugin.so
 334 06-28-12 12:54 manifest.xml
 0 06-28-12 12:54 deps/
 28261 06-28-12 12:54 deps/libdep.so
 -------- -------
 56856 4 files

Platform Compiler

Linux gcc 4.8.3

Windows Microsoft Visual Studio 9 SP1

MacOS gcc 4.2.1

MarkLogic Server Using Native Plugins

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 442

Then manifest.xml for this plugin must include deps/ in the dependent library path:

<?xml version="1.0" encoding="UTF-8"?>
<plugin xmlns="http://marklogic.com/extension/plugin">
 <name>sampleplugin-name</name>
 <id>sampleplugin-id</id>
 ...
 <native>
 <path>libsampleplugin.so</path>
 <dependency>deps/libdep1.so</dependency>
 </native>
</plugin>

24.5 Installing a Native Plugin
After packaging your native plugin as described in “Packaging a Native Plugin” on page 441,
install or update your plugin using the XQuery function plugin:install-from-zip.

For example, the following code installs a native plugin contained in the file
/space/plugins/sampleplugin.zip. The relative plugin path in the Extensions directory is
“native”.

If the plugin was already installed on MarkLogic Server, the new version replaces the old.

An installed plugin is identified by its “path”. The path is of the form scope/plugin-id, where
scope is the first parameter to plugin:install-from-zip, and plugin-id is the ID in the <id/>
element of the plugin manifest. For example, if the manifest for the above plugin contains
<id>sampleplugin-id</id>, then the path is native/sampleplugin-id.

The plugin zip file can be anywhere on the filesystem when you install it, as long as the file is
readable by MarkLogic Server. The installation process deploys your plugin to the Extensions
database and creates a local on-disk cache inside your MarkLogic Server directory.

Installing or updating a native plugin on any host in a MarkLogic Server cluster updates the
plugin for the whole cluster. However, the new or updated plugin may not be available
immediately. For details, see “How MarkLogic Server Manages Native Plugins” on page 440.

Language Example

XQuery xquery version "1.0-ml";
import module namespace plugin =
"http://marklogic.com/extension/plugin"
 at "MarkLogic/plugin/plugin.xqy";

plugin:install-from-zip("native",
 xdmp:document-get("/space/plugins/sampleplugin.zip")/node())

MarkLogic Server Using Native Plugins

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 443

24.6 Uninstalling a Native Plugin
To uninstall a native plugin, call the XQuery function plugin:uninstall. In the first parameter,
pass the scope with which you installed the plugin. In the second parameter, pass the plugin ID
(the <id/> in the manifest). For example:

The plugin is removed from the Extensions database and unloaded from memory on all nodes in
the cluster. There can be a slight delay before the plugin is uninstalled on all hosts. For details, see
“How MarkLogic Server Manages Native Plugins” on page 440. There can be a slight delay

24.7 Registering a Native Plugin at Runtime
When you install a native plugin, it becomes available for use. The plugin is loaded on demand.
When a plugin is loaded, MarkLogic Server uses a registration handshake to cache details about
the plugin, such as the version and what UDFs the plugin implements.

Every C++ native plugin library must implement an extern "C" function called marklogicPlugin
to perform this load-time registration. The function interface is:

using namespace marklogic;
extern "C" void marklogicPlugin(Registry& r) {...}

When MarkLogic Server loads your plugin library, it calls marklogicPlugin so your plugin can
register itself. The exact requirements for registration depend on the interfaces implemented by
your plugin, but must include at least the following:

• Register the version of your plugin by calling marklogic::Registry::version.

• Register the interface(s) your plugin implements by calling the appropriate
marklogic::Registry registration method. For example, Registry::registerAggregate
for implementations of marklogic::AggregateUDF.

Declare marklogicPlugin as required by your platform to make it accessible outside your library.
For example, on Microsoft Windows, include the extended attribute dllexport in your
declaration:

extern "C" __declspec(dllexport) void marklogicPlugin(Registry& r)...

Language Example

XQuery xquery version "1.0-ml";
import module namespace plugin =
"http://marklogic.com/extension/plugin"
 at "MarkLogic/plugin/plugin.xqy";

plugin:uninstall("native", "sampleplugin-id")

MarkLogic Server Using Native Plugins

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 444

For example, the following code registers two AggregateUDF implementations. For a complete
example, see marklogic_dir/Samples/NativePlugins.

#include “MarkLogic.h”
using namespace marklogic;

class Variance : public AggregateUDF {...};
class MedianTest : public AggregateUDF {...};

extern "C" void marklogicPlugin(Registry& r)
{
 r.version();
 r.registerAggregate<Variance>("variance");
 r.registerAggregate<MedianTest>("median-test");
}

24.8 Versioning a Native Plugin
Your implementation of the registration function marklogicPlugin must include a call to
marklogic::Registry::version to register your plugin version. MarkLogic Server uses this
information to maintain plugin version consistency across a cluster.

When you deploy a new plugin version, both the old and new versions of the plugin can be
present in the cluster for a short time. If MarkLogic Server detects this state when your plugin is
used, MarkLogic Server reports XDMP-BADPLUGINVERSION and retries the operation until the plugin
versions synchronize.

Calling Registry::version with no arguments uses a default version constructed from the
compilation date and time (__DATE__ and __TIME__). This ensures the version number changes
every time you compile your plugin. The following example uses the default version number:

extern "C" void marklogicPlugin(Registry& r)
{
 r.version();
 ...
}

You can override this behavior by passing an explicit version to Registry::version. The version
must be a numeric value. For example:

extern "C" void marklogicPlugin(Registry& r)
{
 r.version(1);
 ...
}

The MarkLogic Server native plugin API (marklogic_dir/include/MarkLogic.h) is also
versioned. You cannot compile your plugin library against one version of the API and deploy it to
a MarkLogic Server instance running a different version. If MarkLogic Server detects this
mismatch, an XDMP-BADAPIVERSION error occurs.

MarkLogic Server Using Native Plugins

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 445

24.9 Checking the Status of Loaded Plugins
Using the Admin Interface or the xdmp:host-status function, you can monitor which native
plugin libraries are loaded into MarkLogic Server, as well as their versions and UDF capabilities.

Note: Native plugin libraries are demand loaded when an application uses one of the
UDFs implemented by the plugin. Plugins that are installed but not yet loaded will
not appear in the host status.

To monitor loaded plugins using the Admin Interface:

1. In your browser, navigate to the Admin Interface: http://yourhost:8001.

2. Click the name of the host you want to monitor, either on the tree menu or the summary
page. The host summary page appears.

3. Click the Status tab at the top right. The host status page appears.

4. Scroll down to the native plugin status section.

To examine loaded programmatically, open Query Console and run a query similar to the
following:

Language Example

XQuery xquery version "1.0-ml";
(: List native plugins loaded on this host :)
xdmp:host-status(xdmp:host())//*:native-plugins

MarkLogic Server Using Native Plugins

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 446

You will see output similar to the following if there are plugins loaded. The XQuery code emits
XML. This output is the result of installing and loading the sample plugin in
MARKLOGIC_DIR/Samples/NativePlugin, which implements several aggregate UDFs (“max”,
“min”, etc.), a lexer UDF, and a stemmer UDF.

24.10 The Plugin Manifest
A native plugin zip file must include a manifest file called manifest.xml. The manifest file must
contain the plugin name, plugin id, and a <native> element for each native plugin implementation
library in the zip file. The manifest file can also include optional metadata such as provider and
plugin description. For full details, see the schema in MARKLOGIC_INSTALL_DIR/Config/plugin.xsd.

Paths to the plugin library and dependent libraries must be relative.

You can use the same manifest on multiple platforms by specifying the native plugin library
without a file extension or, on Unix, lib prefix. If this is the case, then MarkLogic Server forms
the library name in a platform specific fashion, as shown below:

• Windows: Add a .dll extension

• Linux: Add a lib prefix and a .so extension

• Mac OS X: Add a lib prefix and a .dylib extension

The following example is the manifest for a native plugin with the ID “sampleplugin-id”,
implemented by the shared library libsampleplugin.so.

<?xml version="1.0" encoding="UTF-8"?>
<plugin xmlns="http://marklogic.com/extension/plugin">

Language Example

XQuery <native-plugins xmlns="http://marklogic.com/xdmp/status/host">
 <native-plugin>
 <path>native/sampleplugin/libsampleplugin.so</path>
 <version>356528850</version>
 <capabilities>
 <aggregate>max</aggregate>
 <aggregate>min_point</aggregate>
 <aggregate>min</aggregate>
 <aggregate>variance</aggregate>
 <aggregate>median-test</aggregate>
 <aggregate>max_dateTime</aggregate>
 <aggregate>max_string</aggregate>
 <lexer>sample_lexer</lexer>
 <stemmer>sample_stemmer</stemmer>
 </capabilities>
 </native-plugin>
</native-plugins>

MarkLogic Server Using Native Plugins

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 447

 <name>sampleplugin-name</name>
 <id>sampleplugin-id</id>
 <version>1.0</version>
 <provider-name>MarkLogic</provider-name>
 <description>Example native plugin</description>
 <native>
 <path>libsampleplugin.so</path>
 </native>
</plugin>

If the plugin package includes dependent libraries, list them in the <native> element. For
example:

<?xml version="1.0" encoding="UTF-8"?>
<plugin xmlns="http://marklogic.com/extension/plugin">
 <name>sampleplugin-name</name>
 ...
 <native>
 <path>libsampleplugin.so</path>
 <dependency>libdep1.so</dependency>
 <dependency>libdep2.so</dependency>
 </native>
</plugin>

24.11 Native Plugin Security Considerations
Administering (installing, updating or uninstalling) a native plugin requires the following:

• The http://marklogic.com/xdmp/privileges/plugin-register privilege, or

• The application-plugin-registrar role.

Loading and running a native plugin can be controlled in two ways:

• The native-plugin privilege (http://marklogic.com/xdmp/privileges/native-plugin)
enables the use of all native plugins.

• You can define a plugin-specific privilege of the form
http://marklogic.com/xdmp/privileges/native-plugin/plugin-path to enable users to
use a specific privilege.

The plugin-path is same plugin library path you use when invoking the plugin. For example, if
you install the following plugin and its manifest specifies the plugin path as “sampleplugin”, then
the plugin-specific privilege would be
http://marklogic.com/xdmp/privileges/native-plugin/native/sampleplugin.

plugin:install-from-zip("native",
 xdmp:document-get("/space/udf/sampleplugin.zip")/node())

The plugin-specific privilege is not pre-defined for you. You must create it. However, MarkLogic
Server will honor it if it is present.

MarkLogic Server Using Native Plugins

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 448

24.12 Native Plugin Example
You can explore a sample native plugin through the source code and makefile in
MARKLOGIC_DIR/Samples/NativePlugins. This example implements several kinds of UDF.

The sample Makefile will lead you through compiling, linking, and packaging the native plugin.
The README.txt provides instructions for installing and exercising the plugin library.

MarkLogic Server Aggregate User-Defined Functions

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 449

25.0 Aggregate User-Defined Functions
464

This chapter describes how to create user-defined aggregate functions. This chapter includes the
following sections:

• What Are Aggregate User-Defined Functions?

• In-Database MapReduce Concepts

• Implementing an Aggregate User-Defined Function

25.1 What Are Aggregate User-Defined Functions?
Aggregate functions are functions that take advantage of the MapReduce capabilities of
MarkLogic Server to analyze values in lexicons and range indexes. For example, computing a
sum or count over an element, attribute, or field range index. Aggregate functions are best used
for analyses that produce a small number of results, rather than analyses that produce results in
proportion to the number of range index values or the number of documents processed.

MarkLogic Server provides a C++ interface for defining your own aggregate functions. You build
your aggregate user-defined functions (UDFs) into a dynamically linked library, package it as a
native plugin, and install the plugin in MarkLogic Server. To learn more about native plugins, see
“Using Native Plugins” on page 439.

A native plugin is automatically distributed throughout your MarkLogic cluster. When an
application calls your aggregate UDF, your library is dynamically loaded into MarkLogic Server
on each host in the cluster that participates in the analysis. To understand how your aggregate
function runs across a cluster, see “How In-Database MapReduce Works” on page 450.

This chapter covers how to implement an aggregate UDF. For information on using aggregate
UDFs, see Using Aggregate User-Defined Functions in the Search Developer’s Guide.

25.2 In-Database MapReduce Concepts
MarkLogic Server uses In-Database MapReduce to efficiently parallelize analytics processing
across the hosts in a MarkLogic cluster, and to move that processing close to the data.

This section covers the following topics:

• What is MapReduce?

• How In-Database MapReduce Works

You can explicitly leverage In-Database MapReduce efficiencies by using builtin and
user-defined aggregate functions. For details, see Using Aggregate Functions in the Search
Developer’s Guide.

MarkLogic Server Aggregate User-Defined Functions

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 450

25.2.1 What is MapReduce?
MapReduce is a distributed, parallel programming model in which a large data set is split into
subsets that are independently processed by passing each data subset through parallel map and
reduce tasks. Usually, the map and reduce tasks are distributed across multiple hosts.

Map tasks calculate intermediate results by passing the input data through a map function. Then,
the intermediate results are processed by reduce tasks to produce final results.

MarkLogic Server supports two types of MapReduce:

• In-database MapReduce distributes processing across a MarkLogic cluster when you use
qualifying functions, such as builtin or user-defined aggregate functions. For details, see
“How In-Database MapReduce Works” on page 450.

• External MapReduce distributes work across an Apache Hadoop cluster while using
MarkLogic Server as the data source or result repository. For details, see the MarkLogic
Connector for Hadoop Developer’s Guide.

25.2.2 How In-Database MapReduce Works
In-Database MapReduce takes advantage of the internal structure of a MarkLogic Server database
to do analysis close to the data. When you invoke an Aggregate User-Defined Function,
MarkLogic Server executes it using In-Database MapReduce.

MarkLogic Server stores data in structures called forests and stands. A large database is usually
stored in multiple forests. The forests can be on multiple hosts in a MarkLogic Server cluster.
Data in a forest can be stored in multiple stands. For more information on how MarkLogic Server
organizes content, see Understanding Forests in the Administrator’s Guide and Clustering in

MarkLogic Server in the Scalability, Availability, and Failover Guide.

In-Database MapReduce analysis works as follows:

1. Your application calls an In-Database MapReduce function such as cts:sum-aggregate or
cts:aggregate. The e-node where the function is evaluated begins a MapReduce job.

2. The originating e-node distributes the work required by the job among the local and
remote forests of the target database. Each unit of work is a task in the job.

3. Each participating host runs map tasks in parallel to process data on that host. There is at
least one map task per forest that contains data needed by the job.

4. Each participating host runs reduce tasks to roll up the local per stand map results, then
returns this intermediate result to the originating e-node.

5. The originating e-node runs reduce tasks to roll up the results from each host.

6. The originating e-node runs a “finish” operation to produce the final result.

MarkLogic Server Aggregate User-Defined Functions

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 451

25.3 Implementing an Aggregate User-Defined Function
You can create an aggregate user-defined function (UDF) by implementing a subclass of the
marklogic::AggregateUDF C++ abstract class and deploying it as a native plugin.

The section covers the following topics:

• Creating and Deploying an Aggregate UDF

• Implementing AggregateUDF::map

• Implementing AggregateUDF::reduce

• Implementing AggregateUDF::finish

• Registering an Aggregate UDF

• Aggregate UDF Memory Management

• Implementing AggregateUDF::encode and AggregateUDF::decode

• Aggregate UDF Error Handling and Logging

• Aggregate UDF Argument Handling

• Type Conversions in Aggregate UDFs

25.3.1 Creating and Deploying an Aggregate UDF
An aggregate user-defined function (UDF) is a C++ class that performs calculations across
MarkLogic range index values or index value co-occurrences. When you implement a subclass of
marklogic::AggregateUDF, you write your own in-database map and reduce functions usable by an
XQuery, Java, or REST application. The MarkLogic Server In-Database MapReduce framework
handles distributing and parallelizing your C++ code, as described in “How In-Database
MapReduce Works” on page 450.

Note: An aggregate UDF runs in the same memory and process space as MarkLogic
Server, so errors in your plugin can crash MarkLogic Server. Before deploying an
aggregate UDF, read and understand “Using Native Plugins” on page 439.

To create and deploy an aggregate UDF:

1. Implement a subclass of the C++ class marklogic::AggregateUDF. See
marklogic_dir/include/MarkLogic.h for interface details.

2. Implement an extern "C" function called marklogicPlugin to perform plugin registration.
See “Registering a Native Plugin at Runtime” on page 443.

3. Package your implementation into a native plugin. See “Packaging a Native Plugin” on
page 441.

MarkLogic Server Aggregate User-Defined Functions

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 452

4. Install the plugin by calling the XQuery function plugin:install-from-zip. See
“Installing a Native Plugin” on page 442.

A complete example is available in marklogic_dir/Samples/NativePlugins. Use the sample
Makefile as the basis for building your plugin. For more details, see “Building a Native Plugin
Library” on page 440.

The table below summarizes the key methods of marklogic::AggregateUDF that you must
implement:

25.3.2 Implementing AggregateUDF::map
AggregateUDF::map has the following signature:

virtual void map(TupleIterator&, Reporter&);

Method
Name

Description

start Initialize the state of a job and process arguments. Called once per job, on the
originating e-node.

map Perform the map calculations. Called once per map task (at least once per stand
of the database containing target content). May be called on local and remote
objects. For example, in a mean aggregate, calculate a sum and count per stand.

reduce Perform reduce calculations, rolling up the map results. Called N-1 times,
where N = # of map tasks. For example, in a mean aggregate, calculate a total
sum and count across the entire input data set.

finish Generate the final results returned to the calling application. Called once per
job, on the originating e-node. For example, in a mean aggregate, calculate the
mean from the sum and count.

clone Create a copy of an aggregate UDF object. Called at least once per map task to
create an object to execute your map and reduce methods.

close Notify your implementation that a cloned object is no longer needed.

encode Serialize your aggregate UDF object so it can be transmitted to a remote host in
the cluster.

decode Deserialize your aggregate UDF object after it has been transmitted to/from a
remote host.

MarkLogic Server Aggregate User-Defined Functions

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 453

Use the marklogic::TupleIterator to access the input range index values. Store your map results
as members of the object on which map is invoked. Use the marklogic::Reporter for error
reporting and logging; see “Aggregate UDF Error Handling and Logging” on page 460.

This section covers the following topics:

• Iterating Over Index Values with TupleIterator

• Controlling the Ordering of Map Input Tuples

25.3.2.1 Iterating Over Index Values with TupleIterator
The marklogic::TupleIterator passed to AggregateUDF::map is a sequence of the input range
index values assigned to one map task. You can do the following with a TupleIterator:

• Iterate over the tuples using TupleIterator::next and TupleIterator::done. T

• Determine the number of values in each tuple using TupleIterator::width.

• Access the values in each tuple using TupleIterator::value.

• Query the type of a value in a tuple using TupleIterator::type.

If your aggregate UDF is invoked on a single range index, then each tuple contains only one
value. If your aggregate UDF is invoked on N indexes, then each tuple represents one N-way
co-occurrence and contains N values, one from each index. For more information, see Value

Co-Occurrences Lexicons in the Search Developer’s Guide.

The order of values within a tuple corresponds to the order of the range indexes in the invocation
of your aggregate UDF. The first index contributes the first value in each tuple, and so on. Empty
(null) tuple values are possible.

If you try to extract a value from a tuple into a C++ variable of incompatible type, MarkLogic
Server throws an exception. For details, see “Type Conversions in Aggregate UDFs” on page 462.

In the following example, the map method expects to work with 2-way co-occurrences of <name>
(string) and <zipcode> (int). Each tuple is a (name, zipcode) value pair. The name is the 0th item
in each tuple; the zipcode is the 1st item.

#include "MarkLogic.h"
using namespace marklogic;
...
void myAggregateUDF::map(TupleIterator& values, Reporter& r)
{
 if (values.width() != 2) {
 r.error("Unexpected number of range indexes.");
 // does not return
 }
 for (; !values.done(); values.next()) {
 if (!values.null(0) && !values.null(1)) {
 String name;

MarkLogic Server Aggregate User-Defined Functions

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 454

 int zipcode;

 values.value(0, name);
 values.value(1, zipcode);
 // work with this tuple...
 }
}

25.3.2.2 Controlling the Ordering of Map Input Tuples
MarkLogic Server passes input data to your map function through a marklogic::TupleIterator.
By default, the tuples covered by the iterator are in descending order. You can control the ordering
by overriding AggregateUDF::getOrder.

The following example causes input tuples to be delivered in ascending order:

#include "MarkLogic.h"
using namespace marklogic;
...
RangeIndex::getOrder myAggregateUDF::getOrder() const
{
 return RangeIndex::ASCENDING;
}

25.3.3 Implementing AggregateUDF::reduce
AggregateUDF::reduce folds together the intermediate results from two of your aggregate UDF
objects. The object on which reduce is called serves as the accumulator.

The reduce method has the following signature. Fold the data from the input AggregateUDF into
the object on which reduce is called. Use the Reporter to report errors and log messages; see
“Aggregate UDF Error Handling and Logging” on page 460.

virtual void reduce(const AggregateUDF*, Reporter&);

MarkLogic Server repeatedly invokes reduce until all the map results are folded together, and
then invokes finish to produce the final result.

For example, consider an aggregate UDF that computes the arithmetic mean of a set of values.
The calculation requires a sum of the values and a count of the number of values. The map tasks
accumulate intermediate sums and counts on subsets of the data. When all reduce tasks complete,
one object on the e-node contains the sum and the count. MarkLogic Server then invokes finish
on this object to compute the mean.

MarkLogic Server Aggregate User-Defined Functions

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 455

For example, if the input range index contains the values 1-9, then the mean is 5 (45/9). The
following diagram shows the map-reduce-finish cycle if MarkLogic Server distributes the index
values across 3 map tasks as the sequences (1,2,3), (4,5), and (6,7,8,9):

The following code snippet is an aggregate UDF that computes the mean of values from a range
index (sum/count). The map method (not shown) computes a sum and a count over a portion of the
range index and stores these values on the aggregate UDF object. The reduce method folds
together the sum and count from a pair of your aggregate UDF objects to eventually arrive at a
sum and count over all the values in the index:

#include "MarkLogic.h"
using namespace marklogic;

class Mean : public AggregateUDF
{
public:
 void reduce(const AggregateUDF* o, Reporter& r)
 sum += o->sum;
 count += o->count;
 }

 // finish computes the mean from sum and count

protected:
 double sum;
 double count;
};

For a complete example, see marklogic_dir/Samples/NativePlugin.

25.3.4 Implementing AggregateUDF::finish
AggregateUDF::finish performs final calculations and prepares the output sequence that is
returned to the calling application. Each value in the sequence can be either a simple value (int,
string, DateTime, etc.) or a key-value map (map:map in XQuery). MarkLogic Server invokes
finish on the originating e-node, once per job. MarkLogic Server invokes finish on the
aggregate UDF object that holds the cumulative reduce results.

(1,2,3)

(4,5)

(6,7,8,9)

(6,3)

(9,2)

(30,4)

(15,5)

(45,9) 5

map

(sum,count)

map

map

reduce

reduce
finish

input
map output

(sum,count)
reduce output

(sum,count)
reduce output

mean

MarkLogic Server Aggregate User-Defined Functions

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 456

AggregateUDF::finish has the following signature. Use the marklogic::OutputSequence to record
your final values or map(s). Use the marklogic::Reporter to report errors and log messages; see
“Aggregate UDF Error Handling and Logging” on page 460.

virtual void finish(OutputSequence&, Reporter&);

Use OutputSequence::writeValue to add a value to the output sequence. To add a value that is a
key-value map, bracket paired calls to OutputSequence::writeMapKey and
OutputSequence::writeValue between OutputSequence::startMap and OutputSequence::endMap.
For example:

void MyAggregateUDF::finish(OutputSequence& os, Reporter& r)
{
 // write a single value
 os.writeValue(int(this->sum/this-count));

 // write a map containing 2 key-value pairs
 os.startMap();
 os.writeMapKey("sum");
 os.writeValue(this->sum);
 os.writeMapKey("count");
 os.writeValue(this->count);
 os.endMap();
}

For information on how MarkLogic Server converts types between your C++ code and the calling
application, see “Type Conversions in Aggregate UDFs” on page 462.

25.3.5 Registering an Aggregate UDF
You must register your Aggregate UDF implementation with MarkLogic Server to make it
available to applications.

Register your implementation by calling marklogic::Registry::registerAggregate from
marklogicPlugin. For details on marklogicPlugin, see “Registering a Native Plugin at Runtime”
on page 443.

Calling Registry::registerAggregate gives MarkLogic Server a pointer to a function it can use
to create an object of your UDF class. MarkLogic Server calls this function whenever an
application invokes your aggregate UDF. For details, see “Aggregate UDF Memory
Management” on page 457.

Call the template version of marklogic::Registry::registerAggregate to have MarkLogic
Server use the default allocator and constructor. Call the virtual version to use your own object
factory. The following code snippet shows the two registration interfaces:

// From MarkLogic.h
namespace marklogic {

MarkLogic Server Aggregate User-Defined Functions

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 457

typedef AggregateUDF* (*AggregateFunction)();
class Registry
{
public:
 // Calls new T() to allocate an object of your UDF class
 template<class T> void registerAggregate(const char* name);

 // Calls your factory func to allocate an object of your UDF class
 virtual void registerAggregate(const char* name, AggregateFunction);
 ...
};
}

The string passed to Registry::registerAggregate is the name applications use to invoke your
plugin. For example, as the second parameter to cts:aggregate in XQuery:

cts:aggregate("pluginPath", "ex1", ...)

Or, as the value of the aggregate parameter to /values/{name} using the REST Client API:

GET /v1/values/theLexicon?aggregate=ex1&aggregatePath=pluginPath

The following example illustrates using the template function to register MyFirstAggregate with
the name “ex1” and the virtual member function to register a second aggregate that uses an object
factory, under the name “ex2”.

#include "MarkLogic.h"
using namespace marklogic;
...
AggregateUDF* mySecondAggregateFactory() {...}

extern "C" void marklogicPlugin(Registry& r)
{
 r.version();
 r.registerAggregate<MyFirstAggregate>("ex1");
 r.registerAggregate("ex2", &mySecondAggregateFactory);
}

25.3.6 Aggregate UDF Memory Management
This section gives an overview of how MarkLogic Server creates and destroys objects of your
aggregate UDF class.

• Aggregate UDF Object Lifetime

• Using a Custom Allocator With Aggregate UDFs

25.3.6.1 Aggregate UDF Object Lifetime
Objects of your aggregate UDF class are created in two ways:

MarkLogic Server Aggregate User-Defined Functions

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 458

• When you register your plugin, the registration function calls
marklogic::Registry::registerAggregate, giving MarkLogic Server a pointer to function
that creates objects of your AggregateUDF subclass. This function is called when an
application invokes one of your aggregate UDFs, prior to calling AggregateUDF::start.

• MarkLogic Server calls AggregateUDF::clone to create additional objects, as needed to
execute map and reduce tasks.

MarkLogic Server uses AggregateUDF::clone to create the transient objects that execute your
algorithm in map and reduce tasks when your UDF is invoked. MarkLogic Server creates at least
one clone per forest when evaluating your aggregate function.

When a clone is no longer needed, such as at the end of a task or job, MarkLogic Server releases
it by calling AggregateUDF::close.

The clone and close methods of your aggregate UDF may be called many times per job.

25.3.6.2 Using a Custom Allocator With Aggregate UDFs
If you want to use a custom allocator and manage your own objects, implement an object factory
function and supply it to marklogic::Registry::registerAggregate, as described in “Registering
an Aggregate UDF” on page 456.

The factory function is called whenever an application invokes your plugin. That is, once per call
to cts:aggregate (or the equivalent). Additional objects needed to execute map and reduce tasks
are created using AggregateUDF::clone.

The factory function must conform to the marklogic::AggregateFunction interface, shown below:

// From MarkLogic.h
namespace marklogic {

typedef AggregateUDF* (*AggregateFunction)();
}

The following example demonstrates passing an object factory function to
Registry::registerAggregate:

#include "MarkLogic.h"
using namespace marklogic;
...
AggregateUDF* myAggregateFactory() { ... }

extern "C" void marklogicPlugin(Registry& r)
{
 r.version();
 r.registerAggregate("ex2", &myAggregateFactory);
}

MarkLogic Server Aggregate User-Defined Functions

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 459

The object created by your factory function and AggregateUDF::clone must persist until
MarkLogic Server calls your AggregateUDF::close method.

Use the following entry points to control the allocation and deallocation of your your aggregate
UDF objects:

• The AggregateFunction you pass to Registry::registerAggregate.

• Your AggregateUDF::clone implementation

• Your AggregateUDF::close implementation

25.3.7 Implementing AggregateUDF::encode and AggregateUDF::decode
MarkLogic Server uses Aggregate::encode and Aggregate::decode to serialize and deserialize
your aggregate objects when distributing aggregate analysis across a cluster. These methods have
the following signatures:

class AggregateUDF
{
public:
 ...
 virtual void encode(Encoder&, Reporter&) = 0;
 virtual void decode(Decoder&, Reporter&) = 0;
 ...
};

You must provide implementations of encode and decode that adhere to the following guidelines:

• Encode/decode the implementation-specific state on your objects.

• You can encode data members in any order, but you must be consistent between encode
and decode. That is, you must decode members in the same order in which you encode
them.

Encode/decode your data members using marklogic::Encoder and marklogic::Decoder. These
classes provide helper methods for encoding and decoding the basic item types and an arbitrary
sequence of bytes. For details, see marklogic_dir/include/MarkLogic.h.

The following example demonstrates how to encode/decode an aggregate UDF with 2 data
members, sum and count. Notice that the data members are encoded and decoded in the same
order.

#include "MarkLogic.h"

using namespace marklogic;

class Mean : public AggregateUDF
{
public:
 ...

MarkLogic Server Aggregate User-Defined Functions

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 460

 void encode(Encoder& e, Reporter& r)
 {
 e.encode(this->sum);
 e.encode(this->count);
 }
 void decode(Decoder& d, Reporter& r)
 {
 d.decode(this->sum);
 d.decode(this->count);
 }
 ...
protected:
 double sum;
 double count;
};

25.3.8 Aggregate UDF Error Handling and Logging
Use marklogic::Reporter to log messages and notify MarkLogic Server of fatal errors. Your code
will not report errors to MarkLogic Server by throwing exceptions.

Report fatal errors using marklogic::Reporter::error. When you call Reporter::error, control
does not return to your code. The reporting task stops immediately, no additional related tasks are
created on that host, and the job stops prematurely. MarkLogic Server returns XDMP-UDFERR to the
application. Your error message is included in the XDMP-UDFERR error.

Note: The job does not halt immediately. The task that reports the error stops, but other
in-progress map and reduce tasks may still run to completion.

Report non-fatal errors and other messages using marklogic::Reporter::log. This method logs a
message to the MarkLogic Server error log, ErrorLog.txt, and returns control to your code. Most
methods of AggregateUDF have marklogic::Reporter input parameter.

The following example aborts the analysis if the caller does not supply a required parameter and
logs a warning if the caller supplies extra parameters:

#include "MarkLogic.h"
using namespace marklogic;
...
void ExampleUDF::start(Sequence& arg, Reporter& r)
{
 if (arg.done()) {
 r.error("Required parameter not found.");
 }
 arg.value(target_);
 arg.next();
 if (!arg.done()) {
 r.log(Reporter::Warning, "Ignoring extra parameters.");
 }
}

MarkLogic Server Aggregate User-Defined Functions

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 461

25.3.9 Aggregate UDF Argument Handling
This section covers the following topics:

• Passing Arguments to an Aggregate UDF

• Processing Arguments in AggregateUDF::start

• Example: Passing Arguments to an Aggregate UDF

25.3.9.1 Passing Arguments to an Aggregate UDF
Arguments can only be passed to aggregate UDFs from XQuery. The Java and REST client APIs
do not support argument passing.

From XQuery, pass an argument sequence in the 4th parameter of cts:aggregate. The following
example passes two arguments to the “count” aggregate UDF:

cts:aggregate(
 "native/samplePlugin",
 "count",
 cts:element-reference(xs:QName("name"),
 (arg1,arg2))

The arguments reach your plugin as a marklogic::Sequence passed to AggregateUDF::start. For
details, see “Processing Arguments in AggregateUDF::start” on page 461.

For a more complete example, see “Example: Passing Arguments to an Aggregate UDF” on
page 462.

25.3.9.2 Processing Arguments in AggregateUDF::start
MarkLogic Server makes your aggregate-specific arguments available through a
marklogic::Sequence passed to AggregateUDF::start.

class AggregateUDF
{
public:
 ...
 virtual void start(Sequence& arg, Reporter&) = 0;
 ...
};

The Sequence class has methods for iterating over the argument values (next and done), checking
the type of the current argument (type), and extracting the current argument value as one of
several native types (value).

Type conversions are applied during value extraction. For details, see “Type Conversions in
Aggregate UDFs” on page 462.

MarkLogic Server Aggregate User-Defined Functions

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 462

If you need to propagate argument data to your map and reduce methods, copy the data to a data
member of the object on which start is invoked. Include the data member in your encode and
decode methods to ensure the data is available to remote map and reduce tasks.

25.3.9.3 Example: Passing Arguments to an Aggregate UDF
Consider an aggregate UDF that counts the number of 2-way co-occurrences where one of the
index values matches a caller-supplied value. In the following example, the caller passes in the
value 95008 to cts:aggregate:

xquery version "1.0-ml";
cts:aggregate("native/sampleplugin", "count",
 (cts:element-reference(xs:QName("zipcode"))
 ,cts:element-reference(xs:QName("name"))
),
 95008
)

The start method shown below extracts the argument value from the input Sequence and stores it
in the data member ExampleUDF::target: The value is automatically propagated to all tasks in the
job when MarkLogic Server clones the object on which it invokes start.

using namespace marklogic;
...
void ExampleUDF::
start(Sequence& arg, Reporter& r)
{
 if (arg.done()) {
 r.error("Required argument not found.");
 } else {
 arg.value(this->target);
 arg.next();
 if (!arg.done()) {
 r.log(Reporter::Warning, "Ignoring extra arguments.");
 }
 }
}

25.3.10 Type Conversions in Aggregate UDFs
The MarkLogic native plugin API models XQuery values as equivalent C++ types, using either
primitive types or wrapper classes. You must understand these type equivalences and the type
conversions supported between them because values passed between your aggregate UDF and a
calling application pass through the MarkLogic Server XQuery evaluator core even if the
application is not implemented in XQuery.

• Where Type Conversions Apply

• Type Conversion Example

• C++ and XQuery Type Equivalences

MarkLogic Server Aggregate User-Defined Functions

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 463

25.3.10.1Where Type Conversions Apply
Your plugin interacts with native XQuery values in the following places:

• Arguments passed to your plugin from the calling application through
marklogic::Sequence.

• Range index values passed to AggregateUDF::map through marklogic::TupleIterator.

• Results returned to the application by AggregateUDF::finish through
marklogic::OutputSequence.

All these interfaces (Sequence, TupleIterator, OutputSequence) provide methods for either
inserting or extracting values as C++ types. For details, see marklogic_dir/include/Marklogic.h.

Where the C++ and XQuery types do not match exactly during value extraction, XQuery type
casting rules apply. If no conversion is available between two types, MarkLogic Server reports an
error such as XDMP-UDFBADCAST and aborts the job. For details on XQuery type casting, see:

http://www.w3.org/TR/xpath-functions/#Casting

25.3.10.2Type Conversion Example
In this example, the aggregate UDF expects an integer value and the application passes in a string
that can be converted to a numeric value using XQuery rules. You can extract the value directly as
an integer. If the calling application passes in "12345":

(: The application passes in the arg "12345" :)
cts:aggregate("native/samplePlugin", "count", "12345")

Then your C++ code can safely extract the arg directly as an integral value:

// Your plugin can safely extract the arg as int
void YourAggregateUDF::start(Sequence& arg, Reporter& r)
{
 int theNumber = 0;
 arg.value(theNumber);
}

If the application instead passes a non-numeric string such "dog", the call to Sequence::value
raises an exception and stops the job.

25.3.10.3C++ and XQuery Type Equivalences
The table below summarizes the type equivalences between the C++ and XQuery types supported
by the native plugin API. All C++ class types below are declared in
marklogic_dir/include/MarkLogic.h.

http://www.w3.org/TR/xpath-functions/#Casting

MarkLogic Server Aggregate User-Defined Functions

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 464

XQuery Type C++ Type

xs:int int

xs:unsignedInt unsigned

xs:long int64_t

xs:unsignedLong uint64_t

xs:float float

xs:double double

xs:boolean bool

xs:decimal marklogic::Decimal

xs:dateTime marklogic::DateTime

xs:time marklogic::Time

xs:date marklogic::Date

xs:gYearMonth marklogic::GYearMonth

xs:gYear marklogic::GYear

xs:gMonth marklogic::GMonth

xs:gDay marklogic::GDay

xs:yearMonthDuration marklogic::YearMonthDuration

xs:dayTimeDuration marklogic::DayTimeDuration

xs:string marklogic::String

xs:anyURI marklogic::String

cts:point marklogic::Point

map:map marklogic::Map

item()* marklogic::Sequence

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 465

26.0 Redacting Document Content
560

Redaction is the process of eliminating or obscuring portions of a document as you read it from
the database. For example, you can use redaction to eliminate or mask sensitive personal
information such as credit card numbers, phone numbers, or email addresses from documents.
This chapter describes redaction features you can use when reading a document from the
database.

Note: Advanced Security License option is required when using redaction.

This chapter covers the following topics:

• Terms and Definitions

• Introduction to Redaction

• Example: Getting Started With Redaction

• Security Considerations

• Defining Redaction Rules

• Installing Redaction Rules

• Applying Redaction Rules

• Validating Redaction Rules

• Built-in Redaction Function Reference

• Example: Using the Built-In Redaction Functions

• User-Defined Redaction Functions

• Example: Using Custom Redaction Rules

• Using Dictionary-Based Masking

• Example: Dictionary-Based Masking

• Salting Masking Values for Added Security

• Preparing to Run the Examples

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 466

26.1 Terms and Definitions
The following terms are used in this chapter:

Term Definition

redaction The process of modifying a document to obscure or conceal sensitive
information. You can redact XML and JSON documents.

redaction rule A specification of what portion of a document to redact and what
function to use to make the modification. Rules can be defined in XML
or JSON. For details, see “Defining Redaction Rules” on page 477.

rule document A document containing exactly one redaction rule. Rule documents must
be installed in the schema database and be part of a collection before you
can use them to redact content. For details, see “Installing Redaction
Rules” on page 488.

rule collection A database collection that only includes rule documents. A rule must be
part of a collection before you can use it to redact documents.

redaction function A function used to modify content during redaction. A redaction rule
must include a redaction function specification. MarkLogic provides
several built-in redaction functions. You can also create user-defined
redaction functions. For details, see “Built-in Redaction Function
Reference” on page 494 and “User-Defined Redaction Functions” on
page 530.

source document A database document to which you apply one or more redaction rules.
Redacting a document creates an in-memory copy. The source document
is unmodified.

masking A form of redaction in which the original value is replaced by a new
value. The new value may be deterministic or random.

deterministic
masking

A form of redaction in which the original value is replaced by a new
value, and the same input always yields the same output. For an example,
see “mask-deterministic” on page 496.

random masking A form of redaction in which the original value is replaced by a new,
random value. The same input does not result in the same output every
time. For an example, see “mask-random” on page 499.

dictionary-based
masking

A form of random or deterministic masking in which the new value is
drawn from a user-defined dictionary. For details, see “Using
Dictionary-Based Masking” on page 545.

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 467

26.2 Introduction to Redaction
This section provides a brief overview of the redaction feature. The following topics are covered:

• What is Redaction?

• Express Redaction Requirements Through Rules

• Apply Rules Using Multiple Interfaces

• Protection of Redaction Logic

26.2.1 What is Redaction?
The redaction feature covered in this chapter is a read transformation you can apply to XML and
JSON documents. A redacted document usually has selected portions removed, replaced, or
obscured when it is read from the database. For example, you might use redaction to eliminate
email addresses or obscure all but the last 4 digits of credit card numbers when exporting a
document from MarkLogic.

Note: Using redaction requires the Advanced Security License option.

Redaction is best suited for granular data hiding when you’re exporting content from the database.
For granular, real-time, in-application information hiding use Element Level Security; for more
details, see Element Level Security in the Security Guide. For document-level access control, use
security features such as document permissions and URI privileges. For more details on these and
other security features in MarkLogic, see the Security Guide.

Warning Redaction does not secure your documents within the database. For example, even
if you redact a document when it is read, applications can still search or modify the
content unless you properly secure the content with features such as document
permissions and Element Level Security.

redaction
dictionary

A specially formatted collection of values that can be used as a source for
dictionary-based masking. Redaction dictionaries must be installed in the
schemas database. You can define a dictionary using XML or JSON. For
details, see “Defining a Redaction Dictionary” on page 545.

concealment A form of redaction in which the original value is completely hidden.
The XML element or JSON property containing the redacted value is
usually hidden as well, depending on the semantics of the redaction
operation. For an example, see “conceal” on page 502.

Term Definition

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 468

The table below describes some of the techniques you can use to redact your content. The details
of what to redact and what techniques to apply depend on the requirements of your application.
For details, see “Choosing a Redaction Strategy” on page 479.

MarkLogic supports redaction through the mlcp command line tool and an XQuery library
module in the rdt namespace. You can also use the library module with Server-Side JavaScript.

The redaction feature includes built-in redaction functions for common redaction tasks such as
obscuring social security numbers and telephone numbers. You can also plug in your own
redaction functions.

26.2.2 Express Redaction Requirements Through Rules
MarkLogic uses rule-based redaction. A redaction rule tells MarkLogic how to locate the content
within a document that will be redacted and how to modify that portion. A rule expresses the
business logic, independent of the documents to be redacted.

Redaction
Type

Variations Description

 masking full The original value is completely obscured. For example,
123-45-6789 becomes ###-##-####.

partial A portion of the original value is retained. For example,
123-45-6789 becomes ###-##-6789.

deterministic The same input always results in the same redacted
output. For example, the value “12345” becomes “11111”
everywhere it appears in content selected for redaction.

random Each input results in a random redacted value. For
example, the value “12345” might be masked as
“1a2f578” in one place and “30da61b” in another.

dictionary-based A form of random or deterministic masking in which the
replacement value is drawn from a user-defined redaction
dictionary.

concealment The original value (and potentially the containing XML
element or JSON property) is entirely removed. For
example, if you conceal the value of /a/b, then
<a>12345 might become .

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 469

A key component of a redaction rule is a redaction function specification. This function is what
modifies the input nodes selected by the rule. MarkLogic provides several built-in redaction
functions that you can use in your rules. For example, there are built-in redaction functions for
redacting Social Security numbers, telephone numbers, and email addresses. You can also define
your own redaction functions.

For details, see “Defining Redaction Rules” on page 477.

Before you can apply a rule, you must install it in the Schemas database as part of a rule
collection. For details, see “Installing Redaction Rules” on page 488.

26.2.3 Apply Rules Using Multiple Interfaces
You can apply redaction rules when reading documents from MarkLogic using the following
tools and interfaces:

• mlcp command line tool

• rdt:redact XQuery function

• rdt.redact Server-Side JavaScript function

The rdt:redact and rdt.redact functions are primarily intended for testing redaction rules.

For details, see “Applying Redaction Rules” on page 490.

26.2.4 Protection of Redaction Logic
It is important that you design and implement security policies that properly protect your rules, as
well as your content.

The redaction workflow enables you to protect the business logic captured in a redaction rule
independent of the documents to be redacted. For example, the user who generates redacted
documents need not have privileges to modify or create rules, and the user who creates and
administers rules need not have privileges to read or modify the content to be redacted.

For more details, see “Security Considerations” on page 475.

26.3 Example: Getting Started With Redaction
This section walks you through a simple example of defining, installing, and applying a redaction
rule. The example uses the built-in redaction functions “redact-email” and “redact-us-phone”.

In this example, rules are installed and applied using Query Console. For a similar example based
on mlcp, see Example: Using mlcp for Redaction in the mlcp User Guide.

The walkthrough covers the following steps:

1. Installing the Source Documents

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 470

2. Installing the Rules

3. Understanding the Rules

4. Applying the Rules

26.3.1 Installing the Source Documents
Use the procedure in this section to install the sample documents into the Documents database
using XQuery and Query Console. Though this example uses XQuery, you do not need to be
familiar with XQuery to successfully complete the exercise.

When you complete these steps, your Documents database will contain the following documents.
The documents are also inserted in a collection named “gs-samples” for easy reference.

• /redact-gs/sample1.xml

• /redact-gs/sample2.json

Follow these steps to insert the sample documents:

1. Navigate to Query Console in your browser. For example, go to
http://localhost:8000/qconsole.

2. Paste the following script into a new query tab in Query Console.

xquery version "1.0-ml";
xdmp:document-insert("/redact-gs/sample1.xml",
 <personal>
 <name>Little Bopeep</name>
 <summary>Seeking lost sheep. Please call 123-456-7890.</summary>
 <id>12-3456789</id>
 </personal>,
 <options xmlns="xdmp:document-insert">
 <permissions>{xdmp:default-permissions()}</permissions>
 <collections>
 <collection>gs-samples</collection>
 </collections>
 </options>);

xquery version "1.0-ml";
xdmp:document-insert("/redact-gs/sample2.json", xdmp:unquote('
 {"personal": {
 "name": "Jack Sprat",
 "summary": "Free nutrition advice! Call (234)567-8901 now!",
 "id": "45-6789123"
 }}
'),
 <options xmlns="xdmp:document-insert">
 <permissions>{xdmp:default-permissions()}</permissions>
 <collections>

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 471

 <collection>gs-samples</collection>
 </collections>
 </options>
);

3. Select Documents in the Database dropdown.

4. Select XQuery in the Query Type dropdown.

5. Click the Run button. The sample documents are installed.

6. Optionally, click the Explore (eyeglass) icon next to the Database dropdown to explore the
database and confirm insertion of the sample documents.

26.3.2 Installing the Rules
Rules must be installed in the schemas database associated with your content database. Rules
must also be part of a collection before you can use them. This section installs rules in the
Schemas database, which is the default schemas database associated with the Documents
database.

You can install rules using any document insert technique. This example uses XQuery and Query
Console. You do not need to be familiar with XQuery to complete this exercise. For other rule
installation options, see “Installing Redaction Rules” on page 488.

When you complete this exercise, your schemas database will contain one rule defined in XML
one rule defined in JSON. The rules are inserted in a collection named “gs-rules”. The XML rule
uses the redact-us-phone built-in redaction function. The JSON rule uses the conceal built-in
redaction function.

Follow these steps to install the rules. For an explanation of what the rules do, see “Understanding
the Rules” on page 472.

1. Navigate to Query Console in your browser. For example, go to
http://localhost:8000/qconsole.

2. Paste the following script into a new query tab in Query Console.

(: Apply redact-us-phone to //summary :)
xquery version "1.0-ml";
xdmp:document-insert("/rules/gs/redact-phone.xml",
 <rule xml:lang="zxx" xmlns="http://marklogic.com/xdmp/redaction">
 <description>Obscure phone numbers.</description>
 <path>//summary</path>
 <method>
 <function>redact-us-phone</function>
 </method>
 <options>
 <level>partial</level>

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 472

 </options>
 </rule>,
 <options xmlns="xdmp:document-insert">
 <permissions>{xdmp:default-permissions()}</permissions>
 <collections>
 <collection>gs-rules</collection>
 </collections>
 </options>
);

(: Apply conceal to //id :)
xquery version "1.0-ml";
xdmp:document-insert("/rules/gs/conceal-id.json", xdmp:unquote('
 { "rule": {
 "description": "Remove customer ids.",
 "path": "//id",
 "method": { "function": "conceal" }
 }}
'),
 <options xmlns="xdmp:document-insert">
 <permissions>{xdmp:default-permissions()}</permissions>
 <collections>
 <collection>gs-rules</collection>
 </collections>
 </options>
);

3. Select Schemas in the Database dropdown.

4. Select XQuery in the Query Type dropdown.

5. Click the Run button. The rule documents are installed with the URIs
“/rules/gs/redact-phone.xml” and “/rules/gs/conceal-id.json”. added to the “custom-rules”
collection.

26.3.3 Understanding the Rules
The XML rule installed in “Installing the Rules” on page 471 has the following form:

<rule xml:lang="zxx" xmlns="http://marklogic.com/xdmp/redaction">
 <description>Obscure phone numbers.</description>
 <path>//summary</path>
 <method>
 <function>redact-us-phone</function>
 </method>
 <options>
 <level>partial</level>
 </options>
</rule>

The rule elements have the following effect:

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 473

• description - Optional metadata for informational purposes.

• path - Apply the redaction function specified by the rule to nodes selected by the path
expression “//summary”.

• method - Use the built-in redaction function redact-us-phone to redact the value in a
summary XML element or JSON property. By default, this function replaces all digits in a
phone number by the character “#”. You can tell this is a built-in function because method
has no module child.

• options - Pass a level parameter value of “partial” to redact-us-phone, causing the
function to leave the last 4 digits of the value unchanged.

The expected result of applying this rule is that any text in the value of a node named “summary”
that matches the pattern of a US phone number will be replaced. The replacement value uses the
“#” number to replace all but the last 4 digits. For example, a value such as 123-456-7890 is
redacted to ###-###-7890. For more details, see “redact-us-phone” on page 509.

The JSON rule installed in “Installing the Rules” on page 471 has the following form:

{ "rule": {
 "description": "Remove customer ids.",
 "path": "//id",
 "method": { "function": "conceal" }
}}

The rule properties have the following effect:

• description - Optional metadata for informational purposes.

• path - Apply the redaction function specified by the rule to nodes selected by the path
expression “//id”.

• method - Use the built-in redaction function conceal to redact the id XML element or
JSON property. This function will hide the nodes selected by path. You can tell this is a
built-in function because method has no module child.

The expected result of applying this rule is to remove nodes named id. For example, if //id
selects an XML element or JSON property, the element or property does not appear in the
redacted output. Note that, if //id selects array items in JSON, the items are eliminated, but the id
property might remain, depending on the structure of the document. For more details, see
“conceal” on page 502.

26.3.4 Applying the Rules
Follow the steps in this section to apply the rules in the collection “gs-rules” to the sample
documents. This example applies the rules using Query Console. You can also use the mlcp
command line tool to apply rules; for more details, see “Applying Redaction Rules” on page 490.

The user who applies the rules must have read permission on the source documents, the rule
documents, and the rule collection. For more details, see “Security Considerations” on page 475.

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 474

1. Navigate to Query Console in your browser. For example, go to
http://localhost:8000/qconsole.

2. If you want to use XQuery to apply the rules, perform the following steps:

a. Paste the following script into a new query tab in Query Console:

xquery version "1.0-ml";
import module namespace rdt = "http://marklogic.com/xdmp/redaction"
 at "/MarkLogic/redaction.xqy";
rdt:redact(fn:collection("gs-samples"), "gs-rules")

b. Select XQuery in the Query Type dropdown.

3. If you want to use Server-Side JavaScript to apply the rules, perform the following steps:

a. Paste the following script into a new query tab in Query Console:

const rdt = require('/MarkLogic/redaction');
rdt.redact(fn.collection('gs-samples'), ['gs-rules']);

b. Select JavaScript in the Query Type dropdown.

4. Select Documents in the Databases dropdown.

5. Click the Run button. The rules in the “gs-rules” collection are applied to the documents in
the “gs-samples” collection.

The following table shows the result of redacting the XML sample document. Notice that the
telephone number in the summary element has been partially redacted by the redact-us-phone
function. Also, the id element has been completely hidden by the conceal function. The affected
parts of the content are highlighted in the table.

Stage XML Content

Original
Document

<personal>
 <name>Little Bopeep</name>
 <summary>Seeking lost sheep. Please call 123-456-7890.</summary>
 <id>123456</id>
</personal>

Redacted
Result

<personal>
 <name>Little Bopeep</name>
 <summary>Seeking lost sheep. Please call ###-###-7890.</summary>
</personal>

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 475

The following table shows the result of redacting the JSON sample document. Notice that the
telephone number in the summary property has been partially redacted by the redact-us-phone
function. Also, the id property has been completely hidden by the conceal function.The affected
parts of the content are highlighted in the table.

26.4 Security Considerations
Redaction is a kind of read transformation, intended for use when exporting documents from the
database. Redaction does not secure your content within the database. For example, users with
sufficient document permissions can still search, read, and update documents containing the
information you wish to redact. Use security features such as Element Level Security, document
permissions, and URI privileges for real-time security. For more details, see the Security Guide.

Rule documents and rule collections are potentially sensitive information. Carefully consider the
access controls and security requirements applicable to your redaction rules and rule collections.

For example, implement security controls that limit exposures such as the following:

• An attacker who can read a rule has access to potentially sensitive business logic. Even if
the attacker lacks read access to your content, read access to rule logic can reveal the
structure of your content.

• An attacker who can modify a rule or change which rules are in a rule collection can affect
the outcome of a redaction operation, exposing data that would otherwise be redacted.

Consider the following actors when designing your security architecture:

• Rule Administrators: Users who need to be able to create, modify, and delete rules;
manage rule collections; and create and modify redaction dictionaries. You might have
multiple such users, with rights to administer different rule collections.

• Rule Users: Users who need to be able to apply rules but not create, modify, or delete rules
or manage rule collections. Different rule users might have access to different rules or rule
collections.

Stage JSON Content

Original
Document

{"personal": {
 "name": "Jack Sprat",
 "summary": "Free nutrition advice! Call (234)567-8901 now!",
 "id": 234567
}}

Redacted
Result

{"personal": {
 "name": "Jack Sprat",
 "summary": "Free nutrition advice! Call (###)###-8901 now!"
}}

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 476

• Other Users: Other users typically will not have access to or control over rule documents,
rule collections, or redaction dictionaries.

The following diagram illustrates high level redaction flow and the separation of responsibilities
between the rule administrator and the rule user:

The following table lists some common tasks around administering and using redaction rules, the
actor who usually performs this task, and the relevant security features available in MarkLogic.
The security features are discussed in more detail below the table.

Task Actor Supporting Security Feature

Create or modify rule documents Rule administrator Document Permissions

Control which rule documents are
in a rule collection

Rule administrator Protected Collections

Create or modify redaction
dictionaries

Rule administrator Document Permissions

Use rule collections to redact
documents

Rule user Document Permissions
The redaction-user security role

Rule

Schemas DB

collection

Doc
Orig

Content DB

Apply Rules

Redacted
Documents

Rule Admin Rule User

Insert Rules

Redaction Workflow

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 477

Document permissions enable you to control who can read, create, or update rule documents and
redaction dictionaries. A rule administrator will usually have read and update permissions on such
documents. Rule users will usually only have read permissions on rule documents and redaction
dictionaries. To learn more about document permissions, see Protecting Documents in the Security
Guide.

Placing rule documents in a protected collection enables you to control who can add documents to
or remove documents from the collection. Rule administrators will usually have update
permissions on a protected rule collection. Rule users will not have any special permissions on a
protected rule collection. A protected collection must be explicitly created before you can add
documents to it. To learn more about protected collections, see Collections and Security in the
Search Developer’s Guide.

Note: A protected collection cannot be used to control who can read or modify the
contents of documents in the collection; you must rely on document permissions
for this control. Protected collections also cannot be used to control who can see
which documents are in the collection.

MarkLogic predefines a redaction-user role. This role (or equivalent privileges) is required to
validate rules and redact documents. That is, you must have this role to use the XQuery functions
rdt:redact and rdt:rule-validate, the JavaScript functions rdt.redact and rdt.ruleValidate,
or the -redaction option of mlcp.

To learn more about security features in MarkLogic, see the Security Guide.

26.5 Defining Redaction Rules
This section covers details related to authoring redaction rules. The following topics are covered:

• Rule Definition Basics

• Choosing a Redaction Strategy

• Choosing a Redaction Function

• Defining XML Namespace Prefix Bindings

• Limitations on XPath Expressions in Redaction Rules

• Defining Rules Usable on Multiple Document Formats

• XML Rule Syntax Reference

• JSON Rule Syntax Reference

26.5.1 Rule Definition Basics
You can define redaction rules in XML or JSON. The format of a rule (XML or JSON) has no
effect on the type of document to which it can be applied.

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 478

A rule definition must include at least the following:

• An XPath expression defining the document components to which the rule applies. Some
restrictions apply; for details, see “Limitations on XPath Expressions in Redaction Rules”
on page 481.

• A descriptor specifying either a built-in or user-defined redaction function. The function
performs the redaction on the node(s) selected by the path expression.

A rule definition can include additional data, such as a description or options. For details, see
“XML Rule Syntax Reference” on page 484 or “JSON Rule Syntax Reference” on page 486.

Designing a rule includes the following tasks:

• Choose a redaction strategy. For example, decide whether to mask or conceal redacted
values. For details, see “Choosing a Redaction Strategy” on page 479.

• Determine whether to use a built-in or user-defined redaction function. For details, see
“Choosing a Redaction Function” on page 480.

The following example rule specifies that the built-in redaction function redact-us-ssn will be
applied to nodes matching the XPath expression //ssn. The redact-us-ssn function accepts a
level parameter that specifies how much of the SSN to mask (full or partial). Use the options
section of the rule definition to specify the level.

If you apply these rules to example documents from “Preparing to Run the Examples” on
page 557, you will see the ssn XML element and JSON property values such as the following:

Format Example Rule

XML <rdt:rule xml:lang="zxx"
 xmlns:rdt="http://marklogic.com/xdmp/redaction">
 <rdt:description>Mask SSNs</rdt:description>
 <rdt:path>//ssn</rdt:path>
 <rdt:method>
 <rdt:function>redact-us-ssn</rdt:function>
 </rdt:method>
 <rdt:options>
 <rdt:level>partial</rdt:level>
 </rdt:options>
</rdt:rule>

JSON {"rule": {
 "description": "Mask SSNs",
 "path": "//ssn",
 "method": { "function": "redact-us-ssn" },
 "options": { "level": "partial" }
}}

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 479

###-##-7890
###-##-9012
###-##-6789
###-##-8901

You can also create your own XQuery or Server-Side JavaScript redaction functions and define
rules that apply them. A user-defined function is identified in the method XML element or JSON
property by function name, URI of the implementing module, and the module namespace URI (if
your function is implemented in XQuery). For details, see “User-Defined Redaction Functions”
on page 530.

The following example specifies that the user-defined redaction function “redact-name” will be
applied to nodes matching the XPath expression //name. For more details and examples, see
“User-Defined Redaction Functions” on page 530.

26.5.2 Choosing a Redaction Strategy
Redaction usually changes content in one of the following ways:

• Partial masking: Replace only a portion of the redacted value. For example, replace all but
the last 4 digits in a credit card number with the character “#”.

• Full masking: Replace the entire redacted value with a new value. For example, replace all
characters in an account number with a random string of characters.

• Concealment: Completely eliminate the redacted value or node.

Format Example Rule

XML <rdt:rule xml:lang="zxx"
 xmlns:rdt="http://marklogic.com/xdmp/redaction">
 <rdt:description>Mask names</rdt:description>
 <rdt:path>//name</rdt:path>
 <rdt:method>
 <rdt:function>redact</rdt:function>
 <rdt:module>/example/redact-name.xqy</rdt:module>
 <rdt:module-namespace>
 http://marklogic.com/example/redaction
 </rdt:module-namespace>
 </rdt:method>
</rdt:rule>

JSON {"rule": {
 "description": "Mask names",
 "path": "//name",
 "method": {
 "function": "redact",
 "module": "/example/redact-name.sjs"
 }
}}

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 480

When using masking, also consider the following points:

• Do I want the replacement value to always be the same for a given input (deterministic), or
do I want it to be randomized?

Deterministic masking can preserve relationships between values and facilitate searches,
which can be either beneficial or undesirable, depending on the application.

• Do I want the replacement value to be drawn from a known list of values (a dictionary)?

When you do not use a dictionary, the replacement value is either a randomly generated or
repeating set of characters, depending on whether you choose random or deterministic
masking. A redaction dictionary enables you to source replacement values from a
pre-defined set of values instead.

• Is it important to preserve or obscure the “shape” of the input data?

For example, when you redact “John Smith”, must the resulting value be two words or
one? Must the word length of the original input be preserved, or must it be normalized to
something such as “FIRSTNAME LASTNAME”?

Once you determine the privacy requirements of your application, you can select an appropriate
built-in redaction function or create one of your own.

26.5.3 Choosing a Redaction Function
A redaction function implements the logic of a given redaction rule, such as determining whether
or not a node needs to be modified, generating a replacement value, or hiding a value or node.
You can use one of the built-in redaction functions or create a user-defined redaction function.

The following built-in redaction functions are installed with MarkLogic. These functions meet the
needs of most applications. These functions are discussed in detail in “Built-in Redaction
Function Reference” on page 494. Examples are included with each function description.

• mask-deterministic

• mask-random

• conceal

• redact-number

• redact-regex

• redact-us-ssn

• redact-us-phone

• redact-email

• redact-ipv4

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 481

• redact-datetime

If the built-in functions do not meet the needs of your application, you can create your own
redaction function using XQuery or Server-Side JavaScript. For example, you might need a
user-defined function to implement conditional redaction such as “redact the name if the customer
is a minor”. For more details, see “User-Defined Redaction Functions” on page 530.

26.5.4 Defining XML Namespace Prefix Bindings
If you need to use namespace prefixes in the path XPath expression, define the namespace prefix
binding by adding a namespaces component to your rule. For example, the following rule snippet
uses an “emp” namespace prefix in its path value, and then defines a binding between the “emp”
prefix and the namespace URI “http://my/employees”.

26.5.5 Limitations on XPath Expressions in Redaction Rules
Redaction rules applied to XML documents are restricted to the subset of XPath supported by
XSLT. For example, you cannot use backward axes such as parent::*. The supported subset is
defined in https://www.w3.org/TR/xslt#patterns.

Redaction rules applied to JSON documents have no such restrictions. However, if you apply
rules to a mix of XML and JSON documents, limit your rules to the supported XPath subset.

Rule Format Rule Snippet

XML <rdt:rule ...>
 <rdt:path>//emp:ssn</rdt:path>
 <rdt:namespaces>
 <rdt:namespace>
 <rdt:prefix>emp</rdt:prefix>
 <rdt:namespace-uri>http://my/employees</rdt:namespace-uri>
 </rdt:namespace>
 <rdt:namespace>...</rdt:namespace>
 </rdt:namespaces>
 <rdt:method>...</rdt:method>
</rdt:rule>

JSON {"rule": {
 "path": "//emp:ssn",
 "namespaces": [
 {"namespace": {
 "prefix": "emp"
 "namespace-uri": "http://my/employees"
 }}, ...
],
 "method": { ... }
}}

https://www.w3.org/TR/xslt#patterns

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 482

Rule validation does not check the rule path for conformance to this limitation because it cannot
know if the rule will ever be applied to an XML document. If you apply a rule to an XML
document with an invalid path, the exception RDT-INVALIDRULEPATH is raised.

26.5.6 Defining Rules Usable on Multiple Document Formats
This section discusses important considerations when defining rules you expect to apply to both
XML and JSON documents.

The XPath expression in the path XML element or JSON property of a rule is restricted to the
subset of XPath supported by XSLT when the rule is applied to XML documents. Therefore, you
must restrict your rule paths when redacting a mixture of XML and JSON context. For more
details, see “Limitations on XPath Expressions in Redaction Rules” on page 481.

You must understand the interactions between XPath and the document model to ensure proper
selection of nodes by a redaction rule. The XML and JSON document models differ in ways that
can be surprising if you are not familiar with the models. For example, a simple path expression
such as “//id” might match an element in an XML document, but all the items in an array value in
JSON.

The built-in redaction functions compensate for differences in the JSON and XML document
models in most cases, so they behave in a consistent way regardless of document type. If you
write your own redaction functions, you might need to make similar adjustments.

You can write a single XPath expression that selects nodes in both XML and JSON documents,
but if you do not understand the document models thoroughly, it might not select the nodes you
expect. Keep the following tips in mind:

• XML and JSON contain different node types. Only XML documents contain element and
attribute nodes; only JSON documents contain object, text, number, boolean, and null
nodes. Thus, an expression such as “//@color” will never match nodes in a JSON
document, even if the document contains a “color” property.

• There is no “JSON property node”. A JSON document such as {"a": 42} is modeled as an
unnamed root object node with a single number node child. The number node is named
“a” and has the value 42. You can change the value of the number node, but you can only
conceal the property by manipulating the parent object node.

• Each item in a JSON array is a node with same name. For example, given {"a": [1,2]},
the path expression “//a” selects two number nodes, not the containing array node.
Selecting the array node requires a JSON specific path expression such as
//array-node('a'). Thus, concealing an array-valued property requires a different
strategy than concealing, say, a string-valued property.

• A JSON property node whose name is not a valid XML element local name, such as one
that contains whitespace, can only be selected using a node test operator such as
node(name). For example, given a document such as {"aa bb": "value"}, use the path
expression /node('aa bb') to select the property named “aa bb”.

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 483

• The fn:data() function aggregates text children of XML elements, but does not do so for
JSON properties. See the example in the table below.

For more details, see “Working With JSON” on page 388.

Any redaction function that can receive input from both XML and JSON must be prepared to
handle multiple node types. For example, the same XPath expression might select an element
node in XML, but an object node in JSON.

The rest of this section demonstrates some of the XML and JSON document model differences to
be aware of. For a more detailed discussion of XPath over JSON, see “Traversing JSON
Documents Using XPath” on page 390.

Suppose you are redacting the following example documents:

XML JSON

<person>
 <name>
 <first>John</first>
 <last>Smith</last>
 </name>
 <id>1234</id>
 <alias>Johnboy</alias>
 <alias>Smitty</alias>
</person>

{ "person": {
 "name": {
 "first": "John",
 "last": "Smith"
 },
 "id": 1234,
 "alias": ["Johnboy", "Smitty"],
 "home phone": "123-4567"
}}

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 484

Then the following table summarizes the nodes selected by several XPath expressions.

26.5.7 XML Rule Syntax Reference
A redaction rule expressed in XML has the following form. All rule elements must be in the
default namespace http://marklogic.com/xdmp/redaction and must not use namespace
prefixes. For JSON syntax, see “JSON Rule Syntax Reference” on page 486.

<rule xml:lang="zxx" xmlns="http://marklogic.com/xdmp/redaction">
 <description>any text</description>
 <path>XPath expression</path>
 <namespaces>
 <namespace>

XPath Selected XML Nodes Selected JSON Nodes

//id an element node:
 <id>1234</id>

a number node equivalent to
the constructor expression:

number-node {"id":1234}

//alias two element nodes
 <alias>Johnboy</alias>
 <alias>Smitty</alias>

two text nodes, equivalent to
the constructor expression:

text {"Johnboy"}
text {"Smitty"}

//node("alias") two element nodes
 <alias>Johnboy</alias>
 <alias>Smitty</alias>

An array node and two text
nodes, equivalent to the
constructor expressions:

array-node {"Johnboy", "Smitty"}
text {"Johnboy"}
text {"Smitty"}

//array-node("alias") no match An array node, equivalent to
the constructor expression:

array-node {"Johnboy", "Smitty"}

//alias/text() two text nodes no match

//name/data() a string:
 "JohnSmith"

an object node:
 {
 "first": "John",
 "last": "Smith"
 }

//node("home phone") N/A - invalid XML
localname

a text node, equivalent to
the constructor expression:

text {"123-4567"}

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 485

 <prefix>namespace prefix</prefix>
 <namespace-uri>uri</namespace-uri>
 </namespace>
 </namespaces>
 <method>
 <function>redaction function name</function>
 <module>user-defined module URI</module>
 <module-namespace>user-defined module namespace</module-namespace>
 </method>
 <options>params as elements</options>
</rule>

Note the presence of rule/@xml:lang. The @lang value “zxx” is not a valid language. Rather,
“zxx” is a special value that tells MarkLogic not to tokenize, stem, and index this element.
Though you are not required to include this setting in your rules, it is strongly recommended that
you do so because rules are configuration information and not meant to be searchable.

The following table provides more detail on the rule child elements.

Element Description

description Optional. A description of this rule.

path Required. An XPath expression identifying the content to redact. The
expression must be an absolute path (begin with “/”) that selects an XML
and/or JSON node, such as a element, attribute, object, array, text, boolean,
number, or null node. It must not select a document node. Additional
restrictions may apply; for details, see “Limitations on XPath Expressions in
Redaction Rules” on page 481.

namespaces Optional. If the XPath expression in path uses namespace prefixes, define the
prefix-namespace URI bindings here. For details, see “Defining XML
Namespace Prefix Bindings” on page 481.

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 486

26.5.8 JSON Rule Syntax Reference
A redaction rule expressed in JSON has the following form. For XML syntax, see “XML Rule
Syntax Reference” on page 484.

{"rule": {
 "description": "any text",
 "path": "XPath expression",
 "method": {
 "function": "redaction function name",
 "module": "user-defined module URI",
 "moduleNamespace": "user-defined module namespace URI",
 },

method Required. The specification of the redaction function to apply to content
matching path. The function child element is required. The module and
module-namespace child elements only used to specify a user-defined
redaction function, as shown below.

Use this form to apply a built-in redaction function. For details, see “Built-in
Redaction Function Reference” on page 494.

<method>
 <function>builtInFuncName</function>
</method>

Use this form to apply a user-defined function implemented in JavaScript:

<method>
 <function>userDefinedFuncName</function>
 <module>javascriptModuleURI</module>
</method>

Use this form to apply a user-defined function implemented in XQuery:

<method>
 <function>userDefinedFuncLocalName</function>
 <module>xqueryModuleURI</module>
 <module-namespace>moduleNSURI</module-namespace>
</method>

For details, see “User-Defined Redaction Functions” on page 530.

options Optional. Specify data to pass to the redaction function. Each child element
becomes a map entry (XQuery) or object property (JavaScript) in the options
parameter passed to the redaction function. The element name is the map key
or property name.

Element Description

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 487

 "namespaces": [
 {"namespace": {
 "prefix": "namespace prefix",
 "namespace-uri": "uri"
 }, ...
],
 "options": {
 "anyPropName": anyValue
 }
} }

The following table provides more detail on each element.

Element Description

description Optional. A description of this rule.

path Required. An XPath expression identifying the content to redact. The
expression must be an absolute path (begin with “/”) that selects an XML
and/or JSON node, such as a element, attribute, object, array, text, boolean,
number, or null node. The path must not select a document node. Additional
restrictions may apply; for details, see “Limitations on XPath Expressions in
Redaction Rules” on page 481.

namespaces Optional. If the XPath expression in path uses namespace prefixes, define the
prefix-namespace URI bindings here. For details, see “Defining XML
Namespace Prefix Bindings” on page 481.

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 488

26.6 Installing Redaction Rules
Before you can use a redaction rule, it must be installed as a document in the schema database
associated with the database containing the documents to be redacted.

A rule document can only contain one rule and must not contain any non-rule data. A rule
collection can contain multiple rule documents, but must not contain any non-rule documents.
Every rule document must be associated with at least one collection because rules are specified by
collection to redaction operations.

Use any MarkLogic document insertion APIs to insert rules into the schema database, such as the
xdmp:document-insert XQuery function, the xdmp.documentInsert Server-Side JavaScript
function, or the document creation features of the Node.js, Java, or REST Client APIs. You can
assign rules to a collection at insertion time or as a separate operation.

method Required. The specification of the redaction function to apply to content
matching path. This element must have one of the forms shown below.

Use this form to apply a built-in redaction function. For details, see “Built-in
Redaction Function Reference” on page 494.

"method": { "function": "builtInFuncName" }

Use this form to apply a user-defined function implemented in JavaScript:

"method": {
 "function": "userDefinedFuncName",
 "module": "javascriptModuleURI"
}

Use this form to apply a user-defined function implemented in XQuery:

"method": {
 "function": "userDefinedFuncName",
 "module": "xqueryModuleURI",
 "moduleNamespace": "xqueryModuleNSURI"
}

For details, see “User-Defined Redaction Functions” on page 530.

options Optional. Specify data to pass to the redaction function. This becomes the
value of the options input parameter of the redaction function. For a
redaction function implemented in XQuery, the options are passed to the
function as a map:map, using the property names as map keys.

Element Description

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 489

If you run one of the following examples in Query Console using your schema database as the
context database, a rule document is inserted into the database and assigned to two collections,
“pii-rules” and “security-rules”.

Set permissions on your rule documents to constrain who can access or modify the rules. For
more details, see “Security Considerations” on page 475.

Language Example

XQuery xquery version "1.0-ml";
xdmp:document-insert("/redactionRules/ssn.xml",
 <rule xml:lang="zxx"
 xmlns="http://marklogic.com/xdmp/redaction">
 <description>hide SSNs</description>
 <path>//ssn</path>
 <method>
 <function>redact-us-ssn</function>
 </method>
 <options>
 <pattern>partial</pattern>
 </options>
 </rule>,
 <options xmlns="xdmp:document-insert">
 <permissions>{xdmp:default-permissions()}</permissions>
 <collections>
 <collection>security-rules</collection>
 <collection>pii-rules</collection>
 </collections>
 </options>
)

Server-Side
JavaScript

declareUpdate();

xdmp.documentInsert(
 '/redactionRules/ssn.json',
 { rule: {
 description: 'hide SSNs',
 path: '//ssn',
 method: { function: 'redact-us-ssn' },
 options: { pattern: 'partial' }
 }},
 { permissions: xdmp.defaultPermissions(),
 collections: ['security-rules','pii-rules']});

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 490

26.7 Applying Redaction Rules
This section discusses applying redaction rules once rule collections have been installed on
MarkLogic. The following topics are covered:

• Overview

• Applying Rules Using mlcp

• Applying Rules Using XQuery

• Applying Rules Using JavaScript

• No Guaranteed Ordering of Rules

The mlcp command line tool is the recommended interface because it can efficiently apply
redaction to large numbers of documents when you export them from the database or copy them
between databases. To learn more about mlcp, see the mlcp User Guide.

The rdt:redact and rdt.redact functions are suitable for debugging redaction rules or redacting
small sets of documents.

26.7.1 Overview
Once you install one or more rule documents in the Schemas database and assign them to a
collection, you can redact documents in the following ways:

• Exporting documents from a database using the mlcp command line tool.

• Copying documents between databases using the mlcp command line tool.

• Calling the XQuery function rdt:redact function.

• Calling the Server-Side JavaScript function rdt.redact.

The mlcp command line tool will provide the highest throughput, but you may find rdt:redact or
rdt.redact convenient when developing and debugging rules.

Regardless of the redaction method you use, you select a set of documents to be redacted and one
or more rule collections to apply to those documents.

Be aware of the following restrictions and guidelines when using redaction:

• You can redact both XML and JSON documents in the same operation.

• You can apply rules defined in XML to JSON documents and vice versa.

• You can only apply redaction rules to XML and JSON documents.

• You cannot redact document metadata such as document properties.

• You cannot rely on the order in which rules are applied. For details, see “No Guaranteed
Ordering of Rules” on page 493.

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 491

• You must have read permissions for both the documents to be redacted and the redaction
rules.

• If you apply a rule that uses a user-defined redaction function, you must have execute
permissions for the module that contains the implementation. For details, see “Security
Considerations” on page 475.

Your redaction operation will fail if any of the rule collections contain an invalid rule or no rules.
You can use the rdt:rule-validate XQuery function or the rdt.ruleValidate JavaScript
function to verify your rule collections before applying them. For details, see “Validating
Redaction Rules” on page 493.

26.7.2 Applying Rules Using mlcp
You can apply redaction rules when using the mlcp export and copy commands. Use the
-redaction option to specify one or more rule collections to apply to the documents as they are
read from the source database. The redaction is performed by MarkLogic on the source host.

The following example command applies the rules in the collections with URIs “pii-rules” and
“hipaa-rules” to documents in the database directory “/employees/” on export.

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh export -host localhost -port 8000 -username user \
 -password password -mode local -output_file_path \
 /example/exported/files -directory_filter /employees/ \
 -redaction "pii-rules,hipaa-rules"

The following example applies the same rules during an mlcp copy operation:

$ mlcp.sh copy -mode local -input_host srchost -input_port 8000 \
 -input_username user1 -input_password password1 \
 -output_host desthost -output_port 8000 -output_username user2 \
 -output_password password2 -directory_filter /employees/ \
 -redaction "pii-rules,hipaa-rules"

For more details, see Redacting Content During Export or Copy Operations in the mlcp User Guide.

26.7.3 Applying Rules Using XQuery
Use the rdt:redact XQuery library function to create redacted in-memory copies of documents
on MarkLogic Server. This function is best suited for testing and debugging your rules or for
redacting a small number of documents. To extract large sets of redacted documents from
MarkLogic, use the mlcp command line tool instead.

The following example applies the redaction rules in the collections with URIs “pii-rules” and
“hipaa-rules” to the documents in the collection “personnel”:

xquery version "1.0-ml";
import module namespace rdt = "http://marklogic.com/xdmp/redaction"

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 492

 at "/MarkLogic/redaction.xqy";
rdt:redact(fn:collection("personnel"), ("pii-rules","hipaa-rules"))

The output is a sequence of document nodes, where each document is the result of applying the
rules in the rule collections. The results includes both documents modified by the redaction rules
and unmodified documents that did not match any rules or were not changed by the redaction
functions.

If any of the rule collections passed to rdt:redact is empty, an RDT-NORULE exception is thrown.
This protects you from accidentally failing to apply any rules, leading to unredacted content.

An exception is also thrown if any of the rule collections contain non-rule documents, if any of
the rules are invalid, or if the path expression for a rule selects something other than a node. You
can use rdt:rule-validate to test the validity of your rules before calling rdt:redact.

26.7.4 Applying Rules Using JavaScript
Use the rdt.redact JavaScript function to create redacted in-memory copies of documents on
MarkLogic Server. This function is best suited for testing and debugging your rules or for
redacting a small number of documents. To extract large sets of redacted documents from
MarkLogic, use the mlcp command line tool instead.

You must use a require statement to bring the redaction functions into scope in your application.
These functions are implemented by the XQuery library module /MarkLogic/redaction.xqy. For
example:

const rdt = require('/MarkLogic/redaction');

The following example applies the redaction rules in the collections with URIs “pii-rules” and
“hipaa-rules” to the documents in the collection “personnel”:

const rdt = require('/MarkLogic/redaction');
rdt.redact(fn.collection('personnel'), ['pii-rules','hipaa-rules'])

The output is a Sequence of document nodes, where each document is the result of applying the
rules in the rule collections. A Sequence is an Iterable. For example, you can process your results
with a for-of loop similar to the following:

const rdt = require('/MarkLogic/redaction');
const redacted =
 rdt.redact(fn.collection('personnel'), ['my-rules']);
for (let doc of redacted) {
 // do something with the redacted document
}

The results includes both documents modified by the redaction rules and unmodified documents
that did not match any rules or were not changed by the redaction functions.

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 493

If any of the rule collections passed to rdt.redact is empty, an RDT-NORULE exception is thrown.
This protects you from accidentally failing to apply any rules, leading to unredacted content. An
exception is also thrown if any of the rule collections contain non-rule documents, if any of the
rules are invalid, or if the path expression for a rule selects something other than a node.

You can use rdt.ruleValidate to test the validity of your rules before calling rdt.redact. For
details, see “Validating Redaction Rules” on page 493.

26.7.5 No Guaranteed Ordering of Rules
The order in which rules are applied is undefined. You cannot rely on the order in which rules
within a rule collection are run, nor on the ordering of rules across multiple rule collections used
in the same redaction operation.

In addition, the final redacted result for a given reflects the result of at most one rule. If you have
multiple rules that select the same node, they will all run, but the final document produced by
redaction reflects the result of at most one of these rules.

Therefore, do not have multiple rules in the same redaction operation that redact or examine the
same nodes.

For example, suppose you have two rule collections, A and B, with the following characteristics:

Collection A contains:
 ruleA1 using path //id
 ruleA2 using path //id
Collection B contains:
 ruleB1 using path //id

If you apply both rule collections to a set of documents, you cannot know or rely on the order in
which ruleA1, ruleA2, and ruleB1 are applied to any selected id node. In addition, the output only
reflect the changes to //id made by one of ruleA1, ruleA2, and ruleB1.

26.8 Validating Redaction Rules
You can use the rdt:rule-validate XQuery function or the rdt.ruleValidate Server-Side
JavaScript function to test your rule collections for validity before using them. Validate your rules
before deploying them to production because an invalid rule or an empty rule collection will
cause a redaction operation to fail.

Validation confirms that your rule(s) and rule collection(s) conforms to the expected structure and
does not rely on any non-existent code, such as an undefined redaction function.

Note that a successfully validated rule can still cause runtime errors. For example, rule validation
does not include dictionary validation if your rule uses dictionary-based masking. Similarly,
validation does not verify that the XPath expression in a rule conforms to the limitations
described in “Limitations on XPath Expressions in Redaction Rules” on page 481.

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 494

If all the rules in the input rule collections are valid, the validation function returns the URIs of all
validated rules. Otherwise, an exception is thrown when the first validation error is encountered.

The following example validates the rules in two rule collections with URIs “pii-rules” and
“hipaa-rules”.

26.9 Built-in Redaction Function Reference
MarkLogic provides several built-in redaction functions for use in your redaction rules. To use
one of these functions, create a rule with a method child XML element or JSON property of the
following form.

If the built-in accepts configuration parameters, specify them in the options child XML element
or JSON property of the rule. For syntax, see “Defining Redaction Rules” on page 477. For
parameter specifics and examples, see the reference section for each built-in.

Language Example

XQuery xquery version "1.0-ml";
import module namespace rdt =
 "http://marklogic.com/xdmp/redaction"
 at "/MarkLogic/redaction.xqy";
rdt:rule-validate(("pii-rules", "hipaa-rules"))

JavaScript const rdt = require('/MarkLogic/redaction.xqy');
rdt.ruleValidate(["pii-rules", "hipaa-rules"])

XML JSON

<method>
 <function>builtInName</function>
</method>

"method": {
 "function": "builtInFuncName"
}

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 495

The following table summarizes the built-in redaction functions and expected input parameters.
Refer to the section on each function for more details and examples.

For a complete example of using all the built-in functions, see “Example: Using the Built-In
Redaction Functions” on page 519.

Function Name Description

mask-deterministic Replace values with masking text that is deterministic. That is, a
given input generates the same mask value every time it is applied.
You can control features such as the length and type of the generated
value.

mask-random Replace values with random text. The masking value can vary across
repeated application to the same input value. You can control the
length of the generated value and type of replacement text (numbers
or letters).

conceal Remove the value to be masked.

redact-number Replace values with random numbers. You can control the data type,
range, and format of the masking values.

redact-us-ssn Redact data that matches the pattern of a US Social Security Number
(SSN). You can control whether or not to preserve the last 4 digits
and what character to use as a masking character.

redact-us-phone Redact data that matches the pattern of a US telephone number. You
can control whether or not to preserve the last 4 digits and what
character to use as a masking character.

redact-email Redact data that matches the pattern of an email address. You can
control whether to mask the entire address, only the username, or
only the domain name.

redact-ipv4 Redact data that matches the pattern of an IPv4 address. You can
control what character to use as a masking character.

redact-datetime Redact data that matches the pattern of a dateTime value. You can
control the expected input format and the masking dateTime format.

redact-regex Redact data that matches a given regular expression. You must
specify the regular expression and the masking text.

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 496

26.9.1 mask-deterministic
Use this built-in to mask a value with a consistent masked value. That is, with deterministic
masking, a given input always produces the same output. The original value is not derivable from
the masked value.

Deterministic masking can be useful for preserving relationships across records. For example,
you could mask the names in a social network, yet still be able to trace relationships between
people (X knows Y, and Z knows Y).

Use the following parameters to configure the behavior of this function. Set parameters in the
options section of a rule.

• length: The length, in characters, of the output value to generate. Optional. Default: 64.
You cannot use this option with the dictionary option.

• character: The class of character(s) to use when constructing the masked value. Allowed
values: any (default), alphanumeric, numeric, alphabetic. You cannot use this option with
the dictionary option.

• dictionary: The URI of a redaction dictionary. Use the dictionary as the source of
replacement values. You cannot use this option with any other options.

• salt: A salt to apply when generating masking values. MarkLogic applies the salt even
when drawing replacement values from a dictionary. The default behavior is no salt.

• extend-salt: Whether/how to extend the salt with runtime information. You can extend
the salt with the rule set collection name or the cluster id. Allowed values: none,
collection, cluster-id (default).

When you use dictionary-based masking, a given input will always map to the same redaction
dictionary entry. If you modify the dictionary, then the dictionary mapping will also change.

The salt and extend-salt options introduce rule and/or cluster-specific randomness to the
generated masking values. Each masking value is still deterministic when salted: The same input
produces the same output. However, the same input with different salts produces different output.
For details, see “Salting Masking Values for Added Security” on page 554.

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 497

The following example rule applies deterministic masking to nodes selected by the XPath
expression “//name”. The replacement value will be 10 characters long because of the length
option.

The following table illustrates the effect of applying mask-deterministic to several different
types of nodes. For an end-to-end example, see “Example: Using the Built-In Redaction
Functions” on page 519.

XML JSON

<rule xml:lang="zxx"
 xmlns="http://marklogic.com/xdmp/redaction">
 <path>//name</path>
 <method>
 <function>
 mask-deterministic
 </function>
 </method>
 <options>
 <length>10</length>
 </options>
</rule>

{"rule": {
 "path": "//name",
 "method": {
 "function": "mask-deterministic",
 },
 "options": {
 "length": 10
 }
} }

Path Expr Fmt Original Document Redacted Result

//name

Simple
atomic
value

XML <person>
 <name>Little Bopeep</name>
</person>

<person>
 <name>8d1f713a30</name>
</person>

JSON {
 "name": "Georgie Porgie"
}

{
 "name": "34fe55c66a"
}

//alias

Multiple
items
(array in
JSON)

XML <person>
 <alias>Peepers</alias>
 <alias>Bo</alias>
</person>

<person>
 <alias>7a4fabd518</alias>
 <alias>850517542f</alias>
</person>

JSON { "alias": ["George", "GP"] } { "alias": [
 "ef36ccc0c8",
 "fa6f1defad"
] }

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 498

In most cases, the entire value of the node is replaced by the redacted value, even if the original
contents are complex, such as the //address example, above.

However, notice the //alias example above, which selects individual alias array items in the
JSON example, rather than the entire array. If you want to redact the entire array value, you need
a rule with a JSON-specific path selector. For example, a rule path such as
//array-node('alias') selects the entire array in the JSON documents, resulting in a value such
as the following for the “alias” property:

"alias": "6b162c290e"

For more details, see “Defining Rules Usable on Multiple Document Formats” on page 482.

To illustrate the effects of the various character option settings, assume a length option of 10 and
the following input targeted for redaction:

<pii>
 <priv>redact me</priv>
 <priv>redact me</priv>
 <priv>redact me too</priv>
</pii>

//address

Complex
value

XML <person>
 <address>
 <street>
 100 Nursery Lane
 </street>
 <city>Hometown</city>
 <country>
 Neverland
 </country>
 </address>
</person>

<person>
 <address>
 8d1f713a30
 </address>
</person>

JSON {"address": {
 "street": "300 Nursery Lane",
 "city": "Hometown",
 "country": "Neverland"
}}

{ "address": "fc1f5fcb6d"}

Path Expr Fmt Original Document Redacted Result

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 499

Then the following table shows the result of applying each possible value of the character option.

26.9.2 mask-random
Use this built-in to replace a value with a random masking value. A given input produces different
output each time it is applied. The original value is not derivable from the masked value. Random
masking can be useful for obscuring relationships across records.

Use the following parameters to configure the behavior of this function. Set parameters in the
options section of a rule.

• length: The length, in characters, of the output value to generate. Optional. Default: 64.
You cannot use this option with the dictionary option.

• character: The type of character(s) to use when constructing the masked value. Allowed
values: any (default), alphanumeric, numeric, alphabetic. You cannot use this option with
the dictionary option.

• dictionary: The URI of a redaction dictionary. Use the dictionary as the source of
replacement values. You cannot use this option with any other options.

character Setting Redacted Value

any (default) <pii>
 <priv>3ba1a188e6</priv>
 <priv>3ba1a188e6</priv>
 <priv>a62597fd0c</priv>
</pii>

alphanumeric <pii>
 <priv>F1Fp64Cnox</priv>
 <priv>F1Fp64Cnox</priv>
 <priv>LiN5mrmG0g</priv>
</pii>

numeric <pii>
 <priv>1838664450</priv>
 <priv>1838664450</priv>
 <priv>5771438029</priv>
</pii>

alphabetic <pii>
 <priv>PQXWBHfASy</priv>
 <priv>PQXWBHfASy</priv>
 <priv>ZroFQNkNqi</priv>
</pii>

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 500

The following example rule applies random masking to nodes selected by the XPath expression
“//name”. The replacement value will be 10 characters long because of the length option.

The following table illustrates the effect of applying mask-random to several different types of
nodes. For an end-to-end example, see “Example: Using the Built-In Redaction Functions” on
page 519.

XML JSON

<rule xml:lang="zxx"
 xmlns="http://marklogic.com/xdmp/redaction">
 <path>//name</path>
 <method>
 <function>
 mask-random
 </function>
 </method>
 <options>
 <length>10</length>
 </options>
</rule>

{"rule": {
 "path": "//name",
 "method": {
 "function": "mask-random",
 },
 "options": {
 "length": 10
 }
} }

Path Expr Fmt Original Document Redacted Result

//name

Simple
atomic
value

XML <person>
 <name>Little Bopeep</name>
</person>

<person>
 <name>8d1f713a30</name>
</person>

JSON {
 "name": "Georgie Porgie"
}

{
 "name": "34fe55c66a"
}

//alias

Multiple
items
(array in
JSON)

XML <person>
 <alias>Peepers</alias>
 <alias>Bo</alias>
</person>

<person>
 <alias>7a4fabd518</alias>
 <alias>850517542f</alias>
</person>

JSON { "alias": ["George", "GP"] } { "alias": [
 "ef36ccc0c8",
 "fa6f1defad"
] }

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 501

In most cases, the entire value of the node is replaced by the redacted value, even if the original
contents are complex, such as the //address example, above.

However, notice the //alias example above, which selects individual alias array items in the
JSON example, rather than the entire array. If you want to redact the entire array value, you need
a rule with a JSON-specific path selector. For example, a rule path such as
//array-node('alias') selects the entire array in the JSON documents, resulting in a value such
as the following for the “alias” property:

"alias": "6b162c290e"

For more details, see “Defining Rules Usable on Multiple Document Formats” on page 482.

To illustrate the effects of the various character option settings, assume a length option of 10 and
the following input targeted for redaction:

<pii>
 <priv>redact me</priv>
 <priv>redact me</priv>
 <priv>redact me too</priv>
</pii>

//address

Complex
value

XML <person>
 <address>
 <street>
 100 Nursery Lane
 </street>
 <city>Hometown</city>
 <country>
 Neverland
 </country>
 </address>
</person>

<person>
 <address>
 8d1f713a30
 </address>
</person>

JSON {"address": {
 "street": "300 Nursery Lane",
 "city": "Hometown",
 "country": "Neverland"
}}

{ "address": "fc1f5fcb6d"}

Path Expr Fmt Original Document Redacted Result

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 502

Then the following table shows the result of applying each possible value of the character option.

26.9.3 conceal
Use this built-in to entirely remove a selected value.

The following example rule applies concealment to values selected by the path expression //name.

character Setting Redacted Value

any (default) <pii>
 <priv>2457f4f294</priv>
 <priv>f18e883ba9</priv>
 <priv>e5b253aea9</priv>
</pii>

alphanumeric <pii>
 <priv>qIEsmeJua6</priv>
 <priv>WfVLAAckzu</priv>
 <priv>P8BGgCdt5s</priv>
</pii>

numeric <pii>
 <priv>7902282158</priv>
 <priv>8313199931</priv>
 <priv>2026296703</priv>
</pii>

alphabetic <pii>
 <priv>rZimfgZwSG</priv>
 <priv>knqbTrKTdl</priv>
 <priv>wKYeTkVjLC</priv>
</pii>

XML JSON

<rule xml:lang="zxx"
 xmlns="http://marklogic.com/xdmp/redaction">
 <path>//name</path>
 <method>
 <function>conceal</function>
 </method>
</rule>

{"rule": {
 "path": "//name",
 "method": {
 "function": "conceal",
 }
} }

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 503

The following table illustrates the effect of applying conceal to several different types of nodes.
For an end-to-end example, see “Example: Using the Built-In Redaction Functions” on page 519.

Path Expr Fmt Original Document Redacted Result

//name

Simple atomic
value

XML <person>
 <name>
 Little Bopeep
 </name>
 <id>12-3456789</id>
</person>

<person>
 <id>12-3456789</id>
</person>

JSON { "name":"Jack Sprat",
 "id": "45-6789123"
}

{ "id": "45-6789123" }

//alias

Multiple
items (array
in JSON)

XML <person>
 <alias>Peepers</alias>
 <alias>Bo</alias>
 <id>12-3456789</id>
</person>

<person>
 <id>12-3456789</id>
</person>

JSON { "alias": [
 "George",
 "G.P."
],
 "id": "45-6789123"
}

{ "alias": [],
 "id": "45-6789123"
}

//address

Complex value

XML <person>
 <address>
 <street>
 100 Nursery Lane
 </street>
 <city>Hometown</city>
 <country>
 Neverland
 </country>
 </address>
 <id>12-3456789</id>
</person>

<person>
 <id>12-3456789</id>
</person>

JSON {"address": {
 "street": "300 Nursery
Lane",
 "city": "Hometown",
 "country": "Neverland"
 },
 "id": "45-6789123"
}

{ "id": "45-6789123" }

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 504

In most cases, the entire selected node is concealed, even if the original contents are complex,
such as the //address example, above.

However, note that a path such as //alias, above, conceals each array item in the JSON sample,
rather than concealing the entire array. This is because the alias path step matches each array
item individually; for details, see “Defining Rules Usable on Multiple Document Formats” on
page 482 and “Traversing JSON Documents Using XPath” on page 390.

If you want to redact the entire array value, you need a rule with a JSON-specific path selector,
such as //array-node('alias'). For more details, see “Defining Rules Usable on Multiple
Document Formats” on page 482.

26.9.4 redact-number
Use this built-in to mask values with a random number that conforms to a configurable range and
format.

This function differs from the mask-random function in that it provides finer control over the
masking value. Also, mask-random always generates a text node, while redact-number generates
either a number node or a text node, depending on the configuration.

The redact-number function enables you to control the following aspects of the masking value:

• Constrain the value to a range by specifying a min and/or max value.

• Constrain the value to a specific numeric type (integer, decimal, or double).

• Specify a format for the value using a “picture string”. For example, limit the number of
digits after the decimal point or include a currency symbol such as a dollar sign.

Use the following options to configure the behavior of this function:

• min: The minimum acceptable masking value, inclusive. This function will not generate a
masking value less than the min value. Optional. Default: 0.

• max: The maximum acceptable masking value, inclusive. This function will not generate a
masking value greater than the max value. Optional. Default: 18446744073709551615.

• format: Special formatting to apply to the replacement value. Optional. Default: No
special formatting. The format string must conform to the syntax for an XSLT “picture
string”, as described in the function reference for fn:format-number (XQuery) or
fn.formatNumber (JavaScript) and in https://www.w3.org/TR/xslt20/#function-format-number.
If you specify a format, the replacement value is a text node in JSON documents instead of
a number node. Note: If you specify a format, then the values in the range defined by min
and max must be convertible to decimal.

• type: The data type of the replacement value. Optional. Allowed values: integer, decimal,
double. Default: integer. The values specified in the min and max options are subject to the
specified type restriction.

https://www.w3.org/TR/xslt20/#function-format-number

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 505

The following example rule applies redact-number to values selected by the XPath expression
//balance. The matched values will be replaced by decimal values in the range 0.0 to 100000.00,
with two digits after the decimal point. The rule generates replacement values such as 3.55, 19.79,
82.96.

When applied to a JSON document, the node replaced by redaction can be either a text node or a
number node, depending on whether or not you use the format option. With no explicit
formatting, redaction produces a number node for JSON. With explicit formatting, redaction
produces a text node. For example, redact-number might affect the value of a JSON property
named “key” as follows:

no format option
"key": 61.4121623617221

format option value "0.00"
"key": "61.41"

The value range defined by a redact-number rule must be valid for the data type. For example, the
following set of options is invalid because the specified range does not express a meaningful
integer range from which to generate values:

min: 0.1
max: 0.9
type: integer

The values of min and max must be castable to the specified type.

XML JSON

<rdt:rule xml:lang="zxx"
 xmlns:rdt="http://marklogic.com/xdmp/redaction">
 <rdt:path>//balance</rdt:path>
 <rdt:method>
 <rdt:function>redact-number</rdt:function>
 </rdt:method>
 <rdt:options>
 <min>1</min>
 <max>100000</max>
 <format>0.00</format>
 <type>decimal</type>
 </rdt:options>
</rdt:rule>

{"rule": {
 "path": "//balance",
 "method": {
 "function": "redact-number",
 },
 "options": {
 "min": 1,
 "max": 100000,
 "format": "0.00",
 "type": "decimal
 }
} }

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 506

The following table illustrates the effect of applying redact-number with various option
combinations. For an end-to-end example, see “Example: Using the Built-In Redaction
Functions” on page 519.

26.9.5 redact-us-ssn
Use this built-in to mask values that conform to one of the following patterns. These patterns
correspond to typical representations for US Social Security Numbers (SSNs). The character N in
these patterns represents a single digit in the range 0 - 9.

• NNN-NN-NNNN (dash separator)

• NNN.NN.NNNN (dot separator)

• NNN NN NNNN (space separator)

• NNNNNNNNN

When a pattern match is found, every redacted digit is replaced with the same character. For
example, a value such as “123-45-6789” might become “XXX-XX-XXXX”, depending on the
rule configuration.

Option Configuration Fmt Example Redaction Result

default
(no options)

XML <balance>8137497966986464072</balance>
<balance>2363247638359197582</balance>

JSON "balance": 8137497966986464072
"balance": 2363247638359197582

min: 100
max: 10000

XML <balance>3842</balance>
<balance>6622</balance>

JSON "balance": 3842
"balance": 6622

min: 100
max: 10000
type: decimal

XML <balance>100.82</balance>
<balance>269.419736229</balance>

JSON "balance": 100.82
"balance": 269.419736229

min: 100
max: 10000
type: decimal
format: 0.00

XML <balance>102.77</balance>
<balance>9596.90</balance>

JSON "balance": "102.77"
"balance": "9596.90"

Note that masking values are text nodes due to
the use of the format option.

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 507

You can use the following parameters to configure the behavior of this function. Set parameters in
the options section of a rule.

• level: How much to redact. Optional. This option can have the following values:

• full: Default. Replace all digits with the character specified by the character
option.

• partial: Retain the last 4 digits; replace all other digits with the character
specified by the character option.

• full-random: Replace all digits with random digits. The character option is
ignored. You will get a different value each time you redact a given value.

• character: The character with which to replace each redacted digit when level is full or
partial. Optional. Default: “#”.

The following example redacts SSNs selected by the path expression //id. The parameters
specify that last 4 digits of the SSN are preserved and the remaining digits are replaced with the
character “X”.

XML JSON

<rule xml:lang="zxx"
 xmlns="http://marklogic.com/xdmp/redaction">
 <path>//id</path>
 <method>
 <function>redact-us-ssn</function>
 </method>
 <options>
 <level>partial</level>
 <character>X</character>
 </options>
</rule>

{"rule": {
 "path": "//id",
 "method": {
 "function": "redact-us-ssn",
 },
 "options": {
 "level": "partial",
 "character": "X"
 }
} }

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 508

The following table illustrates the effect of applying redact-us-ssn with various input values and
configuration parameters. For a complete example, see “Example: Using the Built-In Redaction
Functions” on page 519.

Configuration Fmt Original Document Redacted Result

Path: //ssn
Level: full
Char: #
(default)

XML <pii>
 <ssn>123-45-6789</ssn>
 <ssn>123.45.6789</ssn>
 <ssn>123456789</ssn>
</pii>

<pii>
 <ssn>###-##-####</ssn>
 <ssn>###.##.####</ssn>
 <ssn>#########</ssn>
</pii>

JSON {"pii": {
 ssn: [
 "123-45-6789",
 "123.45.6789",
 "123456789"
]
} }

{"pii": {
 ssn: [
 "###-##-####",
 "###.##.####",
 "#########"
]
} }

Path: //ssn
Level: partial

XML <pii>
 <ssn>123-45-6789</ssn>
 <ssn>123.45.6789</ssn>
 <ssn>123456789</ssn>
</pii>

<pii>
 <ssn>###-##-6789</ssn>
 <ssn>###.##.6789</ssn>
 <ssn>#####6789</ssn>
</pii>

JSON {"pii": {
 ssn: [
 "123-45-6789",
 "123.45.6789",
 "123456789"
]
} }

{"pii": {
 ssn: [
 "###-##-6789",
 "###.##.6789",
 "#####6789"
]
} }

Path: //ssn
Level:
full-random

XML <pii>
 <ssn>123-45-6789</ssn>
 <ssn>123.45.6789</ssn>
 <ssn>123456789</ssn>
</pii>

<pii>
 <ssn>492-54-3352</ssn>
 <ssn>441.65.4885</ssn>
 <ssn>501965954</ssn>
</pii>

JSON {"pii": {
 ssn: [
 "123-45-6789",
 "123.45.6789",
 "123456789"
]
} }

{"pii": {
 ssn: [
 "492-54-3352",
 "441.65.4885",
 "501965954"
]
} }

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 509

26.9.6 redact-us-phone
Use this built-in to mask values that conform to one of the following patterns. These patterns
correspond to typical representations for US telephone numbers. The character N in these patterns
represents a single digit in the range 0 - 9.

• NNN-NNN-NNNN (“-” separator)

• NNN.NNN.NNNN (“.” separator)

• (NNN)NNN-NNNN (no whitespace allowed)

• NNNNNNNNNN

When a pattern match is found, every redacted digit is replaced with the same character. For
example, a value such as “123-456-7890” might become “XXX-XXX-XXXX”, depending on the
configuration of the rule.

You can use the following parameters to configure the behavior of this function. Set parameters in
the options section of a rule.

• level: How much to redact. Optional. This option can have the following values:

• full: Default. Replace all digits with the character specified by the character
option.

• partial: Retain the last 4 digits; replace all other digits with the character
specified by the character option.

• full-random: Replace all digits with random digits. The character option is
ignored. You will get a different random value each time you redact a given input.

• character: The character with which to replace each redacted digit when level is full or
partial. Optional. Default: “#”.

Path: //ssn
Level: full
Character: X

XML <pii>
 <ssn>123-45-6789</ssn>
 <ssn>123.45.6789</ssn>
 <ssn>123456789</ssn>
</pii>

<pii>
 <ssn>XXX-XX-XXXX</ssn>
 <ssn>XXX.XX.XXXX</ssn>
 <ssn>XXXXXXXXX</ssn>
</pii>

JSON {"pii": {
 ssn: [
 "123-45-6789",
 "123.45.6789",
 "123456789"
]
} }

{"pii": {
 ssn: [
 "XXX-XX-XXXX",
 "XXX.XX.XXXX",
 "XXX.XX.XXXX"
]
} }

Configuration Fmt Original Document Redacted Result

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 510

The following example masks telephone numbers selected by the path expression //ph. The
parameters specify that last 4 digits of the telephone number are preserved and the remaining
digits are replaced with the character “X”.

The following table illustrates the effect of applying redact-us-phone with various input values
and configuration parameters. For a complete example, see “Example: Using the Built-In
Redaction Functions” on page 519.

XML JSON

<rule xml:lang="zxx"
 xmlns="http://marklogic.com/xdmp/redaction">
 <path>//ph</path>
 <method>
 <function>redact-us-phone</function>
 </method>
 <options>
 <level>partial</level>
 <character>X</character>
 </options>
</rule>

{"rule": {
 "path": "//ph",
 "method": {
 "function": "redact-us-phone",
 },
 "options": {
 "level": "partial",
 "character": "X"
 }
} }

Configuration Fmt Original Document Redacted Result

Path: //ph
Level: full
Char: #
(default)

XML <pii>
 <ph>123-456-7890</ph>
 <ph>123.456.7890</ph>
 <ph>(123)456-7890</ph>
 <ph>1234567890</ph>
</pii>

<pii>
 <ph>###-###-####</ph>
 <ph>###.###.####</ph>
 <ph>(###)###-####</ph>
 <ph>##########</ph>
</pii>

JSON {"pii": {
 "ph": [
 "123-456-7890",
 "123.456.7890",
 "(123)456-7890",
 "1234567890"
]
} }

{"pii": {
 "ph": [
 "###-###-####",
 "###.###.####",
 "(###)###-####",
 "##########"
]
} }

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 511

Path: //ph
Level:
partial
Char: #

XML <pii>
 <ph>123-456-7890</ph>
 <ph>123.456.7890</ph>
 <ph>(123)456-7890</ph>
 <ph>1234567890</ph>
</pii>

<pii>
 <ph>###-###-7890</ph>
 <ph>###.###.7890</ph>
 <ph>(###)###-7890</ph>
 <ph>######7890</ph>
</pii>

JSON {"pii": {
 "ph": [
 "123-456-7890",
 "123.456.7890",
 "(123)456-7890",
 "1234567890"
]
} }

{"pii": {
 "ph": [
 "###-###-7890",
 "###.###.7890",
 "(###)###-7890",
 "######7890"
]
} }

Path: //ph
Level:
full-random
Char: #

XML <pii>
 <ph>123-456-7890</ph>
 <ph>123.456.7890</ph>
 <ph>(123)456-7890</ph>
 <ph>1234567890</ph>
</pii>

<pii>
 <ph>291-826-5242</ph>
 <ph>121.350.3951</ph>
 <ph>(804)380-8192</ph>
 <ph>9644991161</ph>
</pii>

JSON {"pii": {
 "ph": [
 "123-456-7890",
 "123.456.7890",
 "(123)456-7890",
 "1234567890"
]
} }

{"pii": {
 "ph": [
 "291-826-5242",
 "121.350.3951",
 "(804)380-8192",
 "9644991161"
]
} }

Path: //ph
Level: full
Character: X

XML <pii>
 <ph>123-456-7890</ph>
 <ph>123.456.7890</ph>
 <ph>(123)456-7890</ph>
 <ph>1234567890</ph>
</pii>

<pii>
 <ph>XXX-XXX-XXXX</ph>
 <ph>XXX.XXX.XXXX</ph>
 <ph>(XXX)XXX-XXXX</ph>
 <ph>XXXXXXXXXX</ph>
</pii>

JSON {"pii": {
 "ph": [
 "123-456-7890",
 "123.456.7890",
 "(123)456-7890",
 "1234567890"
]
} }

{"pii": {
 "ph": [
 "XXX-XXX-XXXX",
 "XXX.XXX.XXXX",
 "(XXX)XXX-XXXX",
 "XXXXXXXXXX"
]
} }

Configuration Fmt Original Document Redacted Result

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 512

26.9.7 redact-email
Use this built-in to mask values that conform to the pattern of an email address. The function
assumes an email has the form name@domain.

Use the following parameters to configure the behavior of this function. Set parameters in the
options section of a rule.

• level: How much of each email address to redact. Allowed values: full, name, domain.
Optional. Default: full.

Redacting the username portion of an email address replaces the username with “NAME”.
Redacting the domain portion of an email address replaces the domain name with “DOMAIN”.
Thus, full redaction on the email address “jsmith@example.com” produces the replacement value
“NAME@DOMAIN”.

The following example rule fully redacts email addresses selected by the path expression
“//email”.

XML JSON

<rule xml:lang="zxx"
 xmlns="http://marklogic.com/xdmp/redaction">
 <path>//email</path>
 <method>
 <function>redact-email</function>
 </method>
 <options>
 <level>full</level>
 </options>
</rule>

{"rule": {
 "path": "//email",
 "method": {
 "function": "redact-email",
 },
 "options": {
 "level": "full"
 }
} }

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 513

The following table illustrates the effect of applying redact-email with various levels of
redaction. For a complete example, see “Example: Using the Built-In Redaction Functions” on
page 519.

26.9.8 redact-ipv4
Use this built-in to mask values that conform to the pattern of an IP address. This function only
redacts IPv4 addresses. That is, a value is redacted if it conforms to the following pattern, where N
represents a decimal digit (0-9).

• Four blocks of 1-3 decimal digits, separated by period (“.”). The value of each block of
digits must less than or equal to 255. For example: 123.201.098.112, 123.45.678.0.

The redacted IP address is normalized to contain characters for the maximum number of digits.
That is, an IP address such as 123.4.56.7 is masked as “###.###.###.###”.

Configuration Fmt Original Document Redacted Result

//email

level: full
(default)

XML <person>
 <email>
 bopeep@mothergoose.com
 </email>
</person>

<person>
 <email>
 NAME@DOMAIN
 </email>
</person>

JSON {"email":
 "gp@mothergoose.com"
}

{"email": "NAME@DOMAIN" }

//email

level: name

XML <person>
 <email>
 bopeep@mothergoose.com
 </email>
</person>

<person>
 <email>
 NAME@mothergoose.com
 </email>
</person>

JSON {"email":
 "gp@mothergoose.com"
}

{"email":
 "NAME@mothergoose.com"
}

//email

level:
domain

XML <person>
 <email>
 bopeep@mothergoose.com
 </email>
</person>

<person>
 <email>
 bopeep@DOMAIN
 </email>
</person>

JSON {"email":
 "gp@mothergoose.com"
} }

{"email": "gp@DOMAIN"}

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 514

Use the following options to configure the behavior of this function. Set parameters in the options
section of a rule.

• character: The character with which to replace each redacted digit. Optional. Default:
“#”.

The following example rule redacts IP addresses selected by the path expression //ip. The
character parameter specifies the digits of the redacted IP address are replaced with “X”.

The following table illustrates the effect of applying redact-ipv4 with various configuration
options. For a complete example, see “Example: Using the Built-In Redaction Functions” on
page 519.

XML JSON

<rule xml:lang="zxx"
 xmlns="http://marklogic.com/xdmp/redaction">
 <path>//ip</path>
 <method>
 <function>redact-ipv4</function>
 </method>
 <options>
 <character>X</character>
 </options>
</rule>

{"rule": {
 "path": "//ip",
 "method": {
 "function": "redact-ipv4",
 },
 "options": {
 "character": "X"
 }
} }

Configuration Fmt Original Document Redacted Result

//ip

default

XML <person>
 <ip>123.45.6.78</ip>
</person>

<person>
 <ip>###.###.###.###</ip>
</person>

JSON {"ip": "123.45.6.78"} {"ip": "###.###.###.###"}

//ip

character: X

XML <person>
 <ip>123.45.6.78</ip>
 <ip>123.145.167.189</ip>
</person>

<person>
 <ip>XXX.XXX.XXX.XXX</ip>
 <ip>XXX.XXX.XXX.XXX</ip>
</person>

JSON {"ip": [
 "123.45.6.78",
 "123.145.167.189"
]}

{"ip": [
 "XXX.XXX.XXX.XXX",
 "XXX.XXX.XXX.XXX"
]}

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 515

26.9.9 redact-datetime
Use this built-in to mask values that represent a dateTime value. You can use this function to
mask dateTime value in one of two ways:

• Parse the input dateTime value and replace it with a masking value derived from applying
a dateTime picture string to the input dateTime components. For example, redact the value
“2012-05-23” by obscuring the month and date, producing a masking value such as
“2012-MM-DD”. You can only use this type of dateTime redaction to redact values that
can be parsed by fn:parse-dateTime or fn.parseDateTime.

• Replace any value with a random dateTime value, formatted according to a specified
picture string. You can restrict the value to a particular year range.

You can use the following parameters to configure the behavior of this function. Set parameters in
the options section of a rule.

• level: The type of dateTime redaction. Required. Allowed values: parsed, random.

• format: A dateTime picture string describing how to format the masking value. Required.

• picture: A dateTime picture string describing the required input value format. This option
is required when level is parsed and ignored otherwise. Any input value that does not
conform to the expected format is not redacted.

• range: A comma separated pair of years, used to constrain the masking value range when
level is random. Optional. This option is ignored if level is not random. For example, a
range value of “1900,1999” will only generate masking values for the years 1900 through
1999, inclusive.

Note: When you apply redact-datetime with a picture option, the content selected by
your rule path must serialize to text whose leading characters conform to the
picture string. If there are other leading characters in the serialized content,
redaction fails with an error.

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 516

The following example rule redacts dateTime values using the parsed method. The picture option
specifies that only input values of the form YYYY-MM-DD are redacted. The format option
specifies that the masking value is of the form MM-DD-YYYY, with the day portion replaced by
the literal value “NN”.

If you apply the above rules to a value such as “2012-11-09”, the redacted value becomes
“NN-NN-2012”.

The following example rule redacts values using the random method. The format option specifies
that the masking value be of the form YYYY-MM-DD, and that the masking values be in the year
range 1900 to 1999, inclusive. The format of the value to be redacted does not matter.

For a complete example, see “Example: Using the Built-In Redaction Functions” on page 519.

26.9.10 redact-regex
Use this built-in to mask values that match a regular expression. The regular expression and the
replacement text are configurable.

XML JSON

<rule xml:lang="zxx"
 xmlns="http://marklogic.com/xdmp/redaction">
 <path>//deathdate</path>
 <method>
 <function>redact-datetime</function>
 </method>
 <options>
 <level>parsed</level>
 <picture>[Y0001]-[M01]-[D01]</picture>
 <format>NN-NN-[Y0001]</format>
 </options>
</rule>

{"rule": {
 "path": "//deathdate",
 "method": {
 "function": "redact-datetime",
 },
 "options": {
 "level": "parsed"
 "picture":"[Y0001]-[M01]-[D01]",
 "format": "NN-NN-[Y0001]"
 }
} }

XML JSON

<rule xml:lang="zxx"
 xmlns="http://marklogic.com/xdmp/redaction">
 <path>//deathdate</path>
 <method>
 <function>redact-datetime</function>
 </method>
 <options>
 <level>random</level>
 <format>[Y0001]-[M01]-[D01]</format>
 <range>1900,1999</format>
 </options>
</rule>

{"rule": {
 "path": "//deathdate",
 "method": {
 "function": "redact-datetime",
 },
 "options": {
 "level": "random"
 "format":"[Y0001]-[M01]-[D01]",
 "range": "1900,1999"
 }
} }

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 517

Use the following options to configure the behavior of this function:

• pattern: A regular expression identifying the values to be redacted. Required. Use the
regular expression language syntax defined for XQuery and XPath. For details, see
http://www.w3.org/TR/xpath-functions/%23regex-syntax.

• replacement: The text with which to replace values matching pattern.

The pattern and replacement text are applied to the input values as if by calling the fn:replace
XQuery function or the fn.replace Server-Side JavaScript function.

Note that the replacement pattern can contain back references to portions of the matched text. A
back reference enables you to “capture” portions of the matched text and re-use them in the
replacement value. See the example at the end of this section.

Regular expression patterns can contain characters that require escaping in your rule definitions.
The following contains a few examples of problem characters. This is not an exhaustive list.

• Curly braces (“{ }”) in pattern in an XML rule installed with XQuery must be escaped as
“{{“ and “}}” to prevent the XQuery interpreter from treating them as code block
delimiters.

• A left angle bracket (“<“) in an XML rule must be replaced by the entity reference “<”.

• Backslashes (“\”) in a JSON rule definition must be escaped as “\\” because “\” is a special
character in JSON strings.

The following example redacts text which has one of the following forms, where N represents a
single digit in the range 0-9.

• NN-NNNNNNN (dash separator)

• NN.NNNNNNN (dot separator)

• NN NNNNNNN (space separator)

• NNNNNNN

The following regular expression matches the supported forms:

\d{2}[-.\s]\d{7}

http://www.w3.org/TR/xpath-functions/%23regex-syntax

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 518

The following rule specifies that values in an id XML element or JSON property that match the
pattern will be replaced with the text “NN-NNNNNNN”. Notice the escaped characters in the
pattern.

The table below illustrates the result of applying the rule to documents matching the rule.

XML JSON

<rule xml:lang="zxx"
 xmlns="http://marklogic.com/xdmp/redaction">
 <path>//id</path>
 <method>
 <function>redact-regex</function>
 </method>
 <options>
 <pattern>
 \d{{2}}[-.\s]\d{{7}}
 </pattern>
 <replacement>NN-NNNNNNN</replacement>
 </options>
</rule>

{"rule": {
 "path": "//id",
 "method": {
 "function": "redact-regex",
 },
 "options": {
 "pattern":
 "\\d{2}[-.\\s]\\d{7}",
 "replacement": "NN-NNNNNNN"
 }
} }

Format Original Document Redacted Result

XML <person>
 <id>12-3456789</id>
</person>

<person>
 <id>NN-NNNNNNN</id>
</person>

JSON {"id": "12-3456789"} {"id": "NN-NNNNNNN"
} }

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 519

The following rule uses a back reference in the pattern to leave the first 2 digits of the id intact.
The pattern in the previous example has been modified to have parentheses around the
sub-expression for the first block of digits (“(\d{2})”. The parentheses “capture” that block of text
in a variable that is referenced in the replacement string as “$1”.

Applying this rule to the same documents as before results in the following redaction:

12-NNNNNNN

For more details, see the fn:replace XQuery function or the fn.replace Server-Side JavaScript
function.

For a complete example, see “Example: Using the Built-In Redaction Functions” on page 519.

26.10 Example: Using the Built-In Redaction Functions
This example exercises all the built-in redaction functions using the sample documents from
“Preparing to Run the Examples” on page 557. You can choose to work with either an XML rule
set or a JSON rule set. The rules are equivalent in both rule sets.

This example has the following parts:

• Example Rule Summary

• Install the rules. Choose XML or JSON. Install one set or the other, not both.

• Install the XML Rules

• Install the JSON Rules

• Apply the Rules

• Review the Results

XML JSON

<rule xml:lang="zxx"
 xmlns="http://marklogic.com/xdmp/redaction">
 <path>//id</path>
 <method>
 <function>redact-regex</function>
 </method>
 <options>
 <pattern>
 (\d{{2}})[-.\s]\d{{7}}
 </pattern>
 <replacement>$1-NNNNNNN</replacement>
 </options>
</rule>

{"rule": {
 "path": "//id",
 "method": {
 "function": "redact-regex",
 },
 "options": {
 "pattern":
 "(\\d{2})[-.\\s]\\d{7}",
 "replacement": "$1-NNNNNNN"
 }
} }

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 520

26.10.1 Example Rule Summary
Each rule in this example exercises a different built-in redaction function. Each rule also operates
on a different XML element or JSON property value of the sample documents to prevent overlap
among the rules. Never apply collection of rules that act on the same document components.

The rules are inserted with a URI of the following form, where name is the XML element local
name or JSON property name of the node selected by the rule. (The URI suffix depends on the
rule format you install.)

/rules/redact-name.{xml|json}

For example, /rules/redact-alias.xml targets the alias XML element or JSON property of the
sample documents.

Every rule is inserted into two collections, an “all” collection and a collection that identifies the
built-in used by the rule. For example, /rules/redact-alias.json, which uses the mask-random
built-in, is inserted in the collections “all” and “random”. This enables you to apply the rules
together or selectively.

The table below summarizes the rules installed by this example:

26.10.2 Install the XML Rules
To install the XML rules, copy the following script into Query Console and run it against the
Schemas database. For a detailed example of installing rules with Query Console, see “Example:
Getting Started With Redaction” on page 469.

Rule URI
Basename

Built-in Function Used Path Selector Collections

redact-name mask-deterministic //name all, deterministic

redact-alias mask-random //alias all, random

redact-address conceal //address all, conceal

redact-balance redact-number //balance all, balance

redate-datetime redact-datetime //anniversary all, datetime

redact-ssn redact-us-ssn //ssn all, ssn

redact-phone redact-us-phone //phone all, phone

redact-email redact-email //email all, email

redact-ip redact-ipv4 //ip all, ip

redact-id redact-regex //id all, regex

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 521

Follow these steps to install the example rules in XML format using XQuery. If you prefer to use
JSON rules, see “Install the JSON Rules” on page 524. For a detailed example of installing rules
with Query Console, see “Example: Getting Started With Redaction” on page 469.

1. Copy the script below into Query Console.

2. Set the Query Type to XQuery.

3. Set the Database to Schemas.

4. Click Run. The rules are installed in the Schemas database.

5. Optionally, use the Query Console database explorer to review the rules.

Use the following script to install the rules. For a summary of what these rules do, see “Example
Rule Summary” on page 520.

xquery version "1.0-ml";
import module namespace rdt = "http://marklogic.com/xdmp/redaction"
 at "/MarkLogic/redaction.xqy";

let $rules := (
<rules>
 <rule>
 <name>redact-name</name>
 <collection>deterministic</collection>
 <rdt:rule xml:lang="zxx"
 xmlns:rdt="http://marklogic.com/xdmp/redaction">
 <rdt:path>//name</rdt:path>
 <rdt:method>
 <rdt:function>mask-deterministic</rdt:function>
 </rdt:method>
 <rdt:options>
 <length>10</length>
 </rdt:options>
 </rdt:rule>
 </rule>
 <rule>
 <name>redact-alias</name>
 <collection>random</collection>
 <rdt:rule xml:lang="zxx"
 xmlns:rdt="http://marklogic.com/xdmp/redaction">
 <rdt:path>//alias</rdt:path>
 <rdt:method>
 <rdt:function>mask-random</rdt:function>
 </rdt:method>
 <rdt:options>
 <length>10</length>
 </rdt:options>
 </rdt:rule>
 </rule>

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 522

 <rule>
 <name>redact-address</name>
 <collection>conceal</collection>
 <rdt:rule xml:lang="zxx"
 xmlns:rdt="http://marklogic.com/xdmp/redaction">
 <rdt:path>//address</rdt:path>
 <rdt:method>
 <rdt:function>conceal</rdt:function>
 </rdt:method>
 </rdt:rule>
 </rule>
 <rule>
 <name>redact-balance</name>
 <collection>balance</collection>
 <rdt:rule xml:lang="zxx"
 xmlns:rdt="http://marklogic.com/xdmp/redaction">
 <rdt:path>//balance</rdt:path>
 <rdt:method>
 <rdt:function>redact-number</rdt:function>
 </rdt:method>
 <rdt:options>
 <min>0</min>
 <max>100000</max>
 <format>0.00</format>
 <type>decimal</type>
 </rdt:options>
 </rdt:rule>
 </rule>
 <rule>
 <name>redact-anniversary</name>
 <collection>datetime</collection>
 <rdt:rule xml:lang="zxx"
 xmlns:rdt="http://marklogic.com/xdmp/redaction">
 <rdt:path>//anniversary</rdt:path>
 <rdt:method>
 <rdt:function>redact-datetime</rdt:function>
 </rdt:method>
 <rdt:options>
 <level>random</level>
 <format>[Y0001]-[M01]-[D01]</format>
 <range>1900,1999</range>
 </rdt:options>
 </rdt:rule>
 </rule>
 <rule>
 <name>redact-ssn</name>
 <collection>ssn</collection>
 <rdt:rule xml:lang="zxx"
 xmlns:rdt="http://marklogic.com/xdmp/redaction">
 <rdt:path>//ssn</rdt:path>
 <rdt:method>
 <rdt:function>redact-us-ssn</rdt:function>
 </rdt:method>
 <rdt:options>

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 523

 <level>partial</level>
 </rdt:options>
 </rdt:rule>
 </rule>
 <rule>
 <name>redact-phone</name>
 <collection>phone</collection>
 <rdt:rule xml:lang="zxx"
 xmlns:rdt="http://marklogic.com/xdmp/redaction">
 <rdt:path>//phone</rdt:path>
 <rdt:method>
 <rdt:function>redact-us-phone</rdt:function>
 </rdt:method>
 <rdt:options>
 <level>full</level>
 </rdt:options>
 </rdt:rule>
 </rule>
 <rule>
 <name>redact-email</name>
 <collection>email</collection>
 <rdt:rule xml:lang="zxx"
 xmlns:rdt="http://marklogic.com/xdmp/redaction">
 <rdt:path>//email</rdt:path>
 <rdt:method>
 <rdt:function>redact-email</rdt:function>
 </rdt:method>
 <rdt:options>
 <level>name</level>
 </rdt:options>
 </rdt:rule>
 </rule>
 <rule>
 <name>redact-ip</name>
 <collection>ip</collection>
 <rdt:rule xml:lang="zxx"
 xmlns:rdt="http://marklogic.com/xdmp/redaction">
 <rdt:path>//ip</rdt:path>
 <rdt:method>
 <rdt:function>redact-ipv4</rdt:function>
 </rdt:method>
 <rdt:options>
 <character>X</character>
 </rdt:options>
 </rdt:rule>
 </rule>
 <rule>
 <name>redact-id</name>
 <collection>regex</collection>
 <rdt:rule xml:lang="zxx"
 xmlns:rdt="http://marklogic.com/xdmp/redaction">
 <rdt:path>//id</rdt:path>
 <rdt:method>
 <rdt:function>redact-regex</rdt:function>

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 524

 </rdt:method>
 <rdt:options>
 <pattern>\d{{2}}[-.\s]\d{{7}}</pattern>
 <replacement>NN-NNNNNNN</replacement>
 </rdt:options>
 </rdt:rule>
 </rule>
</rules>
)
return
for $r in $rules/rule return
 let $collections := (<collection>all</collection>, $r/collection)
 let $options :=
 <options xmlns="xdmp:document-insert">
 <permissions>{xdmp:default-permissions()}</permissions>
 <collections>
 <collection>all</collection>
 <collection>{$r/*:collection/data()}</collection>
 </collections>
 </options>
 return xdmp:document-insert(
 fn:concat("/rules/", $r/name, ".xml"),
 $r/rdt:rule, $options
)

26.10.3 Install the JSON Rules
Follow these steps to install the example rules in JSON format using Server-Side JavaScript. If
you prefer to use XML rules, see “Install the XML Rules” on page 520. For a detailed example of
installing rules with Query Console, see “Example: Getting Started With Redaction” on page 469.

1. Copy the script below into Query Console.

2. Set the Query Type to JavaScript.

3. Set the Database to Schemas.

4. Click Run. The rules are installed in the Schemas database.

5. Optionally, use the Query Console database explorer to review the rules.

Use the following script to install the rules. For a summary of what these rules do, see “Example
Rule Summary” on page 520.

declareUpdate();
const rules = [
 { name: 'redact-name',
 content:
 {rule: {
 path: '//name',
 method: {function: 'mask-deterministic'},

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 525

 options: {length: 10}
 }},
 collection: 'deterministic'
 },
 { name: 'redact-alias',
 content:
 {rule: {
 path: '//alias',
 method: {function: 'mask-random'},
 options: {length: 10}
 }},
 collection: 'random'
 },
 { name: 'redact-address',
 content:
 {rule: {
 path: '//address',
 method: {function: 'conceal'},
 }},
 collection: 'conceal'
 },
 { name: 'redact-balance',
 content:
 {rule: {
 path: '//balance',
 method: {function: 'redact-number'},
 options: {min: 0, max: 100000, type: 'decimal', format: '0.00'}
 }},
 collection: 'balance'
 },
 { name: 'redact-anniversary',
 content:
 {rule: {
 path: '//anniversary',
 method: {function: 'redact-datetime'},
 options: {
 level: 'random',
 format: '[Y0001]-[M01]-[D01]',
 range: '1900,1999'
 }
 }},
 collection: 'datetime'
 },
 { name: 'redact-ssn',
 content:
 {rule: {
 path: '//ssn',
 method: {function: 'redact-us-ssn'},
 options: {level: 'partial'}
 }},
 collection: 'ssn'
 },
 { name: 'redact-phone',
 content:

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 526

 {rule: {
 path: '//phone',
 method: {function: 'redact-us-phone'},
 options: {level: 'full'}
 }},
 collection: 'phone'
 },
 { name: 'redact-email',
 content:
 {rule: {
 path: '//email',
 method: {function: 'redact-email'},
 options: {level: 'name'}
 }},
 collection: 'email'
 },
 { name: 'redact-ip',
 content:
 {rule: {
 path: '//ip',
 method: {function: 'redact-ipv4'},
 options: {character: 'X'}
 }},
 collection: 'ip'
 },
 { name: 'redact-id',
 content:
 {rule: {
 path: '//id',
 method: {function: 'redact-regex'},
 options: {
 pattern: '\\d{2}[-.\\s]\\d{7}',
 replacement: 'NN-NNNNNNN'
 }
 }},
 collection: 'regex'
 }
];
rules.forEach(function (rule, i, a) {
 xdmp.documentInsert(
 '/rules/' + rule.name + '.json',
 rule.content,
 { permissions: xdmp.defaultPermissions(),
 collections: ['all', rule.collection] }
);
})

26.10.4 Apply the Rules
Follow these steps to apply the complete set of example rules:

If you have not already done so, install the sample documents from “Preparing to Run the
Examples” on page 557. This example assumes they are installed in the Documents database.

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 527

Choose one of the following methods to apply the rules:

• Redact Using XQuery

• Redact Using JavaScript

• Redact Using mlcp

26.10.4.1Redact Using XQuery
Follow these steps to apply the example rules using XQuery and Query Console. All the rules will
be applied to the sample documents.

1. Copy the following script into Query Console:

xquery version "1.0-ml";
import module namespace rdt = "http://marklogic.com/xdmp/redaction"
 at "/MarkLogic/redaction.xqy";
rdt:redact(fn:collection("personnel"), "all")

2. Set the Query Type to XQuery.

3. Set the Database to Documents.

4. Click Run.

The redacted documents will be displayed in Query Console. For a discussion of the expected
results, see “Review the Results” on page 528.

26.10.4.2Redact Using JavaScript
Follow these steps to apply the example rules using Server-Side JavaScript and Query Console.
All the rules will be applied to the sample documents.

1. Copy the following script into Query Console:

const rdt = require('/MarkLogic/redaction.xqy');
rdt.redact(fn.collection('personnel'), 'all');

2. Set the Query Type to JavaScript.

3. Set the Database to Documents.

4. Click Run.

The redacted documents will be displayed in Query Console. For a discussion of the expected
results, see “Review the Results” on page 528.

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 528

26.10.4.3Redact Using mlcp
Use a command line similar to the following to export the redacted documents from the
Documents database. All the rules will be applied to the sample documents.

Change the example command line as needed to match your environment. The output directory
(./results) must not already exist.

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh export -host localhost -port 8000 -username user \
 -password password -mode local -output_file_path \
 ./results -collection_filter personnel \
 -redaction "all"

The redacted documents will be exported to ./results. For a discussion of the expected results,
see “Review the Results” on page 528.

For more details on using mlcp with Redaction, see Redacting Content During Export or Copy

Operations in the mlcp User Guide.

26.10.5 Review the Results
Applying all the example rules redacts most XML elements and JSON properties of the sample
documents. Recall that the following rules are applied to each element or property:

Path Selector Built-in Function

//name mask-deterministic

//alias mask-random

//address conceal

//balance mask-number

//anniversary redact-datetime

//ssn redact-us-ssn

//phone redact-us-phone

//email redact-email

//ip redact-ipv4

//id redact-regex

//balance redact-number

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 529

The following table illustrates the effect on the sample documents /redact-ex/person1.xml. The
redacted values you observe will differ from those shown if the rule generates a value, rather than
masking an existing value.

The following table illustrates the effect on the sample document /redact-ex/person3.json.

You will observe similar changes to /redact-ex/person2.xml and /redact-ex/person3.json.

Original Document Redacted Document

<person>
 <name>Little Bopeep</name>
 <alias>Peepers</alias>
 <alias>Bo</alias>
 <address>
 <street>100 Nursery Lane</street>
 <city>Hometown</city>
 <country>Neverland</country>
 </address>
 <ssn>123-45-6789</ssn>
 <phone>123-456-7890</phone>
 <email>bopeep@mothergoose.com</email>
 <ip>111.222.33.4</ip>
 <id>12-3456789</id>
 <birthdate>2015-01-15</birthdate>
 <anniversary>2017-04-18</anniversary>
 <balance>12.34</balance>
</person>

<person>
 <name>63a63aa762</name>
 <alias>47c1fc8b29</alias>
 <alias>7a314dcf2d</alias>
 <ssn>###-##-6789</ssn>
 <phone>###-###-####</phone>
 <email>NAME@mothergoose.com</email>
 <ip>XXX.XXX.XXX.XXX</ip>
 <id>NN-NNNNNNN</id>
 <birthdate>2015-01-15</birthdate>
 <anniversary>1930-05-13</anniversary>
 <balance>0.67</balance>
</person>

Original Document Redacted Document

{ "name": "Georgie Porgie",
 "alias": ["George", "G.P."],
 "address": {
 "street": "300 Nursery Lane",
 "city": "Hometown",
 "country": "Neverland"
 },
 "ssn": "345678901",
 "phone": "(345)678-9012",
 "email": "gp@mothergoose.com",
 "ip": "33.44.5.66",
 "id": "34-5678912",
 "birthdate": "2012-07-12",
 "anniversary": "2014-10-15",
 "balance": "12345.67"
}

{ "name":"34fe55c66a",
 "alias":["27a76af34e", "8b87c3e8c6"],
 "ssn":"#####8901",
 "phone":"(###)###-####",
 "email":"NAME@mothergoose.com",
 "ip":"XXX.XXX.XXX.XXX",
 "id":"NN-NNNNNNN",
 "birthdate":"2012-07-12",
 "anniversary": "1926-05-19"
 "balance": "5.28"
}

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 530

Note: The results in Query Console will not necessarily be in the order person1, person2,
person3, etc.

26.11 User-Defined Redaction Functions
If the built-in redaction functions do not address the needs of your application, you can implement
a user-defined redaction function in XQuery or Server-Side JavaScript. Follow these steps to
deploy and apply a user-defined function:

1. Implement the function. For details, see “Implementing a User-Defined Redaction
Function” on page 530.

2. Install the function in the Modules database associated with your App Server. For details,
see “Installing a User-Defined Redaction Function” on page 531.

3. Define a rule that specifies your function. For syntax, see “Defining Redaction Rules” on
page 477.

4. Install and apply the rule.

This section covers the following topics:

• Implementing a User-Defined Redaction Function

• Installing a User-Defined Redaction Function

For a complete example, see “Example: Using Custom Redaction Rules” on page 534.

26.11.1 Implementing a User-Defined Redaction Function
A user-defined function can be implemented in XQuery or Server-Side JavaScript. Your
implementation must conform to one of the following interfaces:

Language Interface

XQuery declare function yourNS:yourFunc(
 $node as node(),
 $options as map:map
) as node()?

Server-Side
JavaScript

function yourFunc(node, options)
// where:
// node is a Node
// options is an Object with paramName:value properties
// return 1 Node or nothing

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 531

The input node parameter is the node selected by the XPath expression in a rule using your
function. The options parameter can be used to pass user-defined data from the rule into your
function. Your function will return a node (redacted or not) or nothing.

Define your function in an XQuery or JavaScript library module. Install the module in the
modules database associated with the App Server through which redaction will be applied. For
details, see “Installing a User-Defined Redaction Function” on page 531.

The following table contains module templates suitable for defining your own conforming
module. For a complete example, see “Example: Custom Redaction Using JavaScript” on
page 534 or “Example: Custom Redaction Using XQuery” on page 540.

26.11.2 Installing a User-Defined Redaction Function
Install your implementation in the modules database associated with your App Server using
normal document insertion methods, such as the xdmp:document-insert XQuery function, the
xdmp.documentInsert Server-Side JavaScript function, or any of the document insertion features
of the Node.js, Java, or REST Client APIs.

For more details, see one of the following topics:

• Installing a Redaction Module Using XQuery

• Installing a Redaction Module Using JavaScript

• Installing a Redaction Module Using the Client APIs

Language Interface

XQuery xquery version "1.0-ml";
module namespace yourNS = "/your/module/namespace";

declare function yourNS:redact(
 $node as node(),
 $options as map:map
) as node()?
{
 (: your implementation here :)
};

Server-Side
JavaScript

function yourFunc(node, options)
{
 // your implementation here
}

exports.redact = yourFunc

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 532

26.11.2.1Installing a Redaction Module Using XQuery
The procedure in this section demonstrates how to use Query Console and XQuery to install a
module in the modules database. You can also use Server-Side JavaScript and the Java, Node.js,
and REST Client APIs for this task.

The procedure outlined here makes the following assumptions. You will need to modify the
procedure and example code to match your environment and application requirements.

• MarkLogic is installed on localhost.

• The modules database associated with your App Server is Modules.

• Your implementation is saved to a file on the file system with the path
/your/module/path/impl.xqy.

• The default document permissions are suitable for the module permissions.

Use a procedure similar to the following to install your XQuery module in the Modules database.

1. Navigate to Query Console in your browser. For example, go to
http://localhost:8000/qconsole.

2. Paste the following script into Query Console. Modify the module URI and the path in the
xdmp:document-get line to match your environment.

(: MODIFY THE FILE SYSTEM PATH AND URI TO MATCH YOUR ENV :)
xquery version "1.0-ml";
xdmp:document-insert(
 "/your/module/uri",
 xdmp:document-get("/your/module/path/impl.xqy"),
 <options xmlns="xdmp:document-insert">
 <permissions>{xdmp:default-permissions()}</permissions>
 </options>
)

3. Select Modules in the Database dropdown.

4. Select XQuery in the Query Type dropdown.

5. Click the Run button. The module is installed in the Modules database.

You can use the Explore feature of Query Console to browse the Modules database and confirm
the installation.

26.11.2.2Installing a Redaction Module Using JavaScript
The procedure in this section demonstrates how to use Query Console and Server-Side JavaScript
to install a module in the modules database. You can also use XQuery or the Java, Node.js, and
REST Client APIs for this task.

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 533

The procedure outlined here makes the following assumptions. You will need to modify the
procedure and example code to match your environment and application requirements.

• MarkLogic is installed on localhost.

• The modules database associated with your App Server is Modules.

• Your implementation is saved to a file on the file system with the path
/your/module/path/impl.sjs.

• The default document permissions are suitable for the module permissions.

Use a procedure similar to the following to install your XQuery module in the Modules database.

1. Navigate to Query Console in your browser. For example, go to
http://localhost:8000/qconsole.

2. Paste the following script into Query Console. Modify the module URI and the path in the
xdmp.documentGet line to match your environment.

// MODIFY THE FILE SYSTEM PATH and URI TO MATCH YOUR ENV
declareUpdate();
xdmp.documentInsert(
 '/your/module/uri',
 xdmp.documentGet('/your/module/path/impl.sjs'));

3. Select Modules in the Database dropdown.

4. Select JavaScript in the Query Type dropdown.

5. Click the Run button. The module is installed in the Modules database.

You can use the Explore feature of Query Console to browse the Modules database and confirm
the installation.

26.11.2.3Installing a Redaction Module Using the Client APIs
The Java Client API, Node.js Client API, and Node.js Client API include the capability to install
modules in the modules database. See one of the following topics for details on how to install a
module using one of the Client APIs.

• Java: Managing Dependent Libraries and Other Assets in the Java Application Developer’s
Guide

• Node.js: Managing Assets in the Modules Database in the Node.js Application Developer’s
Guide

• REST: Managing Dependent Libraries and Other Assets in the REST Application Developer’s
Guide

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 534

26.12 Example: Using Custom Redaction Rules
This example walks you through installing and applying a custom redaction function. Two
versions of the example are available, one that it JSON/JavaScript centric and another that is
XML/XQuery centric. This artificial split is made to keep the example simple. You can mix XML
and JSON freely with both XQuery and Server-Side JavaScript.

Choose one of the following examples to explore using custom redaction rules.

• Example: Custom Redaction Using JavaScript

• Example: Custom Redaction Using XQuery

26.12.1 Example: Custom Redaction Using JavaScript
This example operates on JSON documents that include personal profile data such as name,
address, and date of birth. A custom Server-Side JavaScript redaction function is used to redact
the name if the person is less than 18 years old. A rule-specific option value controls the
replacement text.

For simplicity, this example only uses JavaScript and JSON. You can also write a custom a
function to handle both XML and JSON. For a similar XQuery/XML example, see “Example:
Custom Redaction Using JavaScript” on page 534.

Before running the example, install the sample documents from “Preparing to Run the Examples”
on page 557.

The example has the following parts:

• Input Data

• Installing the Redaction Function

• Installing the Redaction Rule

• Applying the Rule Using JavaScript

• Applying the Rule Using mlcp

26.12.1.1Input Data
The input documents have the following structure. The birthdate property is used to determine
whether or not to redact the name property.

{ "name": "any text",
 ...
 "birthdate": "YYYY-MM-DD"
}

To install the sample documents, see “Preparing to Run the Examples” on page 557.

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 535

26.12.1.2Installing the Redaction Function
Use the following procedure to install the custom function into the Modules database with the
URI /redaction/redact-xml-name.sjs. These instructions use Server-Side JavaScript and Query
Console, but you can use any document insertion interface. Discussion of the function follows the
procedure.

1. Save the following custom redaction function implementation to a file named
“redact-json-name.sjs”. Choose a location readable by MarkLogic.

function redactName(node, options) {
 const parent = fn.head(node.xpath('./parent::node()'));

 // only redact if containing obj has the expected 'shape'
 if (parent.nodeKind == 'object' &&
 parent.hasOwnProperty('birthdate')) {
 const birthday =
 xdmp.parseDateTime('[Y0001]-[M01]-[D01]', parent.birthdate);
 const age = Math.floor(fn.daysFromDuration(
 fn.currentDateTime().subtract(birthday)) / 365);
 if (age < 18) {
 // underage, so redact
 const builder = new NodeBuilder();
 builder.addText(options.newName);
 return builder.toNode();
 }
 }
 // not expected input, or not underage - do nothing
 return node;
};

exports.redact = redactName;

2. Navigate to Query Console in your browser. For example, go to
http://localhost:8000/qconsole.

3. Paste the following script into Query Console. Modify the path in the xdmp.documentGet
line to match the file location from Step 1.

// MODIFY THE FILE SYSTEM PATH TO MATCH YOUR ENV
declareUpdate();
xdmp.documentLoad(
 '/your/path/redact-json-name.sjs',
 {uri: '/redaction/redact-json-name.sjs'});

4. Select Modules in the Database dropdown.

5. Select JavaScript in the Query Type dropdown.

6. Click the Run button. The module is installed in the Modules databasew ith the URI
“/redaction/redact-xml-name.sjs”.

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 536

You can use Query Console to explore the Modules database and confirm the installation.

The custom function expects to receive a JSON node corresponding to the node that is a candidate
for redaction. This node must be a child of an object that also has a birthdate property. This code
snippet implements this check:

const parent = fn.head(node.xpath('./parent::node()'));

// only redact if containing obj has the expected 'shape'
if (parent.nodeKind == 'object' &&
 parent.hasOwnProperty('birthdate')) {

 ...

Note that you could theoretically write the function to expect the parent object as input and have
the redaction rule use an XPath expression such as /name/parent::node(). However, such a rule
path is invalid if the rule is ever applied to an XML document, so we traverse up to the parent
node inside the redaction function instead of in the rule. For more details, see “Limitations on
XPath Expressions in Redaction Rules” on page 481.

The redaction function uses the birthdate element to compute the age. If the age is less than 18,
then the text in the name element is redacted. The value of the “newName” property in the options
object is used as the replacement text.

const birthday =
 xdmp.parseDateTime('[Y0001]-[M01]-[D01]', parent.birthdate);
const age = Math.floor(fn.daysFromDuration(
 fn.currentDateTime().subtract(birthday)) / 365);
if (age < 18) {
 // underage, so redact
 const builder = new NodeBuilder();
 builder.addText(options.newName);
 return builder.toNode();
}

Redaction functions must return a node, not a simple value. In this case, we need to return a JSON
text node that will replace the original input node. You cannot construct a text node from a native
JavaScript object, so the function uses a NodeBuilder to construct the return node.

These requirements are not specific to working with the root object node. Any time you have a
node as input and want to modify it as a native JavaScript type, you need to use toObject.
Similarly, you must always return a node, not a native JavaScript value.

26.12.1.3Installing the Redaction Rule
Use the following procedure to install the rule in the schemas database associated with your
content database. Some discussion of the rule follows the procedure.

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 537

These instructions assume you will use the pre-installed App Server on localhost:8000 and the
Documents database, which is configured to use the Schemas database. This example uses
Server-Side JavaScript and Query Console to install the rule, but you can use any document
insertion interface.

1. Navigate to Query Console in your browser. For example, go to
http://localhost:8000/qconsole.

2. Paste the following script into a new query tab in Query Console.

declareUpdate();
xdmp.documentInsert('/rules/redact-name.json',
 { rule: {
 path: '/name',
 method: {
 function: 'redact',
 module: '/redaction/redact-json-name.sjs'
 },
 options: { newName: 'Jane Doe' }
 }},
 { permissions: xdmp.defaultPermissions(),
 collections: ['custom-rules'] }
);

3. Select Schemas in the Database dropdown.

4. Select JavaScript in the Query Type dropdown.

5. Click the Run button. The rule document is installed with the URI
“/rules/redact-name.json” and added to the “custom-rules” collection.

The path expression in the rule selects the name property for redaction. Since the custom function
uses the birthdate sibling property of name to control the redaction, it would be more natural in
some ways to apply the rule to the parent object. However, the parent object is anonymous, so it
cannot be addressed by name in an XPath expression.

An XPath expression such as /name/parent::node() would select the anonymous parent object,
but it will cause an error if the rule is ever applied to an XML document. Since we have a mixed
XML and JSON document set, we choose write the rule and the custom function to use the name
property as the redaction target.

The custom function is identified in the rule by exported function name and the URI of the
implementation installed in the modules database:

method: {
 function: 'redact',
 module: '/redaction/redact-json-name.sjs'
}

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 538

The options property contains a single child, newName. This value is used as the replacement
value for any redacted name elements:

options: { newName: 'Jane Doe' }

For a similar XQuery/XML example of defining and installing a rule that uses a custom function,
see “Example: Custom Redaction Using XQuery” on page 540.

26.12.1.4Applying the Rule Using JavaScript
Follow this procedure to apply the example custom redaction function using Query Console and
rdt.redact. Make sure you have already have installed the custom redaction module, rule, and
sample documents.

1. Navigate to Query Console in your browser. For example, go to
http://localhost:8000/qconsole.

2. Paste the following script into a new query tab in Query Console:

const jsearch = require('/MarkLogic/jsearch');
const rdt = require('/MarkLogic/redaction');

jsearch.collections('personnel').documents()
 .map(function (match) {
 match.document = fn.head(
 rdt.redact(fn.root(match.document), 'custom-rules')
 .root;
 return match;
 }).result();

3. Select Documents in the Databases dropdown.

4. Select JavaScript in the Query Type dropdown.

5. Click the Run button. The rules in the “custom-rules” collection are applied to the
documents in the “personnel” collection.

If you use the sample documents from “Preparing to Run the Examples” on page 557, running the
script will have the following effect on the search result matches:

• /redact-ex/person1.xml: Unredacted because it doesn’t match the rule path

• /redact-ex/person2.xml: Unredacted because it doesn’t match the rule path

• /redact-ex/person3.json: Name changed to "Jane Doe"

• /redact-ex/person4.json: Unredacted because not under the age limit

(Note, if you installed both the XQuery/XML and JavaScript/JSON custom redaction examples,
/personnel/person1.xml will also be redacted to display“John Doe”.)

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 539

Note that the node passed to rdt.redact is obtained by applying fn.root to match.document.

rdt.redact(fn.root(match.document), 'custom-rules')

The rdt.redact function expects a document node as input, whereas match.document is the root
node under the document node, such as a JSON object-node or XML element node. In the context
of DocumentsSearch.map, the node in match.document is an in-database node, not an in-memory
construct, so we can access the enclosing document node using fn.root, as shown above.

A similar technique is used, in reverse, to save the redaction result back into the search results:

match.document = fn.head(rdt.redact(...)).root;

This is necessary because rdt.redact function returns a Sequence of in-memory document nodes.
To save the redacted content in the expected form, we access the first node in the Sequence with
fn.head, and then “dereference” it using the “.root” property so that match.document again
contains the root node under the document node.

26.12.1.5Applying the Rule Using mlcp
You can apply the example custom redaction rule with mlcp by running a command similar to the
one below. The command exports the redacted documents to ./mlcp-output. This directory must
not already exist.

Modify the command line as needed to match your environment.

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh export -host localhost -port 8000 -username user \
 -password password -mode local -output_file_path \
 ./mlcp-output -collection_filter personnel \
 -redaction "custom-rules"

For more details, see Redacting Content During Export or Copy Operations in the mlcp User Guide.

If you use the sample documents from “Preparing to Run the Examples” on page 557, running the
script will create 4 files in the directory ./mlcp-output.

These files will reflect the following effects relative to the input documents:

• /redact-ex/person1.xml: Unredacted because it doesn’t match the rule path

• /redact-ex/person2.xml: Unredacted because it doesn’t match the rule path

• /redact-ex/person3.json: Name changed to "Jane Doe"

• /redact-ex/person4.json: Unredacted because not under the age limit

(Note, if you installed both the XQuery/XML and JavaScript/JSON custom redaction examples,
/personnel/person1.xml will also be redacted to display“John Doe”.)

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 540

26.12.2 Example: Custom Redaction Using XQuery
This example operates on XML documents that include personal profile data such as name,
address, and date of birth. A custom XQuery redaction function is used to redact the name if the
person is less than 18 years old. A rule-specific option value controls the replacement text.

This example only uses XQuery and XML. You can write a custom a function to handle both
XML and JSON, but you might find it more convenient to use XQuery for XML and Server-Side
JavaScript for JSON. For an equivalent JavaScript/JSON example, see “Example: Custom
Redaction Using JavaScript” on page 534.

Before running this example, you must install the sample documents from “Preparing to Run the
Examples” on page 557.

The example has the following parts:

• Input Data

• Installing the Redaction Function

• Installing the Redaction Rule

• Applying the Rule Using XQuery

• Applying the Rule Using mlcp

26.12.2.1Input Data
The input documents have the following structure. The birthdate element is used to determine
whether or not to redact the name element.

<person>
 <name>any text</name>
 ...
 <birthdate>YYYY-MM-DD</birthdate>
</person>

To install the sample documents, see “Preparing to Run the Examples” on page 557.

26.12.2.2Installing the Redaction Function
Use the following procedure to install the custom function into the Modules database with the
URI /redaction/redact-xml-name.xqy. These instructions use XQuery and Query Console, but
you can use any document insertion interface.

1. Save the following custom redaction function implementation to a file named
“redact-xml-name.xqy”. Choose a location readable by MarkLogic.

xquery version "1.0-ml";
module namespace my = "http://marklogic.com/example/redaction";

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 541

declare function my:redact(
 $node as node(),
 $options as map:map
) as node()?
{
 if (xdmp:node-kind($node) = "element" and
 fn:local-name-from-QName(fn:node-name($node)) = "person")
 then
 let $birthdate :=
 xdmp:parse-dateTime('[Y0001]-[M01]-[D01]', $node//birthdate)
 let $age := math:floor(fn:days-from-duration(
 fn:current-dateTime() - $birthdate)) div 365
 return
 if ($age < 18)
 then element { fn:node-name($node) } {
 $node/@*,
 for $n in ($node/node()) return
 if (fn:local-name-from-QName(fn:node-name($n)) = "name")
 then element {fn:node-name($n)} {
 $n/@*, text {map:get($options, "new-name")}
 }
 else $n
 }
 else $node
 else $node
};

2. Navigate to Query Console in your browser. For example, go to
http://localhost:8000/qconsole.

3. Paste the following script into Query Console. Modify the path in the xdmp:document-get
line to match the file location from Step 1.

(: MODIFY THE FILE SYSTEM PATH TO MATCH YOUR ENV :)
xquery version "1.0-ml";
xdmp:document-load(
 "/your/path/redact-xml-name.xqy",
 <options xmlns="xdmp:document-load">
 <uri>/redaction/redact-xml-name.xqy</uri>
 </options>
)

4. Select Modules in the Database dropdown.

5. Select XQuery in the Query Type dropdown.

6. Click the Run button. The module is installed in the Modules database with the URI
“/redaction/redact-xml-name.xqy”.

You can use Query Console to explore the Modules database and confirm the installation.

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 542

The custom function expects to receive a <person/> node as input and options that include a
“new-name” key specifying the replacement name value.

The function uses the birthdate element to compute the age. If the age is less than 18, then the
text in the name element is redacted.

If the input does not have the expected “shape” or the age is 18 or older, the input node is
returned, unchanged.

For a similar JavaScript-based solution, see “Example: Custom Redaction Using JavaScript” on
page 534.

26.12.2.3Installing the Redaction Rule
Use the following procedure to install the rule in the schemas database associated with your
content database. Some discussion of the rule follows the procedure.

These instructions assume you will use the pre-installed App Server on localhost:8000 and the
Documents database, which is configured to use the Schemas database. This example uses
XQuery and Query Console to install the rule, but you can use any document insertion interface.

1. Navigate to Query Console in your browser. For example, go to
http://localhost:8000/qconsole.

2. Paste the following script into a new query tab in Query Console.

xquery version "1.0-ml";
xdmp:document-insert("/rules/redact-name.xml",
 <rdt:rule xml:lang="zxx"
 xmlns:rdt="http://marklogic.com/xdmp/redaction">
 <rdt:path>/person</rdt:path>
 <rdt:method>
 <rdt:function>redact</rdt:function>
 <rdt:module>/redaction/redact-xml-name.xqy</rdt:module>
 <rdt:module-namespace>http://marklogic.com/example/redaction</rd
t:module-namespace>
 </rdt:method>
 <rdt:options>
 <new-name>John Doe</new-name>
 </rdt:options>
 </rdt:rule>
, <options xmlns="xdmp:document-insert">
 <permissions>{xdmp:default-permissions()}</permissions>
 <collections>
 <collection>custom-rules</collection>
 </collections>
 </options>)

3. Select Schemas in the Database dropdown.

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 543

4. Select XQuery in the Query Type dropdown.

5. Click the Run button. The rule document is installed with URI “/rules/redact-name.xml”
and added to the “custom-rules” collection.

Recall that the sample documents are rooted at a <person/> element, so the rule selects the entire
contents by using “/person” as the path value. This enables the redaction function to easily
examine /person/birthdate, as well as modify /person/name.

The custom function is identified in the rule by function name, module URI, and module
namespace:

<rdt:method>
 <rdt:function>redact</rdt:function>
 <rdt:module>/redaction/redact-xml-name.xqy</rdt:module>
 <rdt:module-namespace>
 http://marklogic.com/example/redaction
 </rdt:module-namespace>
</rdt:method>

The options element contains a single element, new-name, that is used as the replacement value for
any redacted name elements:

<rdt:options>
 <new-name>John Doe</new-name>
</rdt:options>

For a similar JavaScript/JSON example of defining and installing a rule that uses a custom
function, see “Example: Custom Redaction Using JavaScript” on page 534.

26.12.2.4Applying the Rule Using XQuery
Follow this procedure to apply the example custom redaction function using Query Console and
rdt:redact. Make sure you have already installed the custom redaction module, rule, and sample
documents.

1. Navigate to Query Console in your browser. For example, go to
http://localhost:8000/qconsole.

2. Paste the following script into a new query tab in Query Console:

xquery version "1.0-ml";
import module namespace rdt = "http://marklogic.com/xdmp/redaction"
 at "/MarkLogic/redaction.xqy";
rdt:redact(
 cts:search(fn:doc(), cts:collection-query("personnel")),
 "custom-rules")

3. Select Documents in the Databases dropdown.

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 544

4. Select XQuery in the Query Type dropdown.

5. Click the Run button. The rules in the “custom-rules” collection are applied to the
documents in the “personnel” collection.

If you use the sample documents from “Preparing to Run the Examples” on page 557, running the
script will return the following:

• /redact-ex/person1.xml: Name redacted by changing it to John Doe

• /redact-ex/person2.xml: Unredacted due to age > 18

• /redact-ex/person3.json: Unredacted because it doesn’t match the rule path

• /redact-ex/person4.json: Unredacted because it doesn’t match the rule path

(Note, if you installed both the XQuery/XML and JavaScript/JSON custom redaction examples,
/personnel/person3.json will also be redacted to display “Jane Doe”.)

26.12.2.5Applying the Rule Using mlcp
You can apply the example custom redaction rule with mlcp by running a command similar to the
following. The command exports the redacted documents to ./mlcp-output. This directory must
not already exist.

Modify the command line as needed to match your environment.

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh export -host localhost -port 8000 -username user \
 -password password -mode local -output_file_path \
 ./mlcp-output -collection_filter personnel \
 -redaction "custom-rules"

For more details, see in Redacting Content During Export or Copy Operations the mlcp User Guide.

If you use the sample documents from “Preparing to Run the Examples” on page 557, running the
script will create 4 files in the directory ./mlcp-output. These files will reflect the following
effects relative to the input documents:

• /redact-ex/person1.xml: Name redacted by changing it to John Doe

• /redact-ex/person2.xml: Unredacted due to age > 18

• /redact-ex/person3.json: Unredacted because it doesn’t match the rule path

• /redact-ex/person4.json: Unredacted because it doesn’t match the rule path

(Note, if you installed both the XQuery/XML and JavaScript/JSON custom redaction examples,
person3.json will also be redacted to display“Jane Doe”.)

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 545

26.13 Using Dictionary-Based Masking
Some pre-defined redaction functions that mask content can extract the masking value from a
redaction dictionary. This section covers the following topics related to using a dictionary for a
masking source:

• Defining a Redaction Dictionary

• Installing a Redaction Dictionary

• Using a Redaction Dictionary

26.13.1 Defining a Redaction Dictionary
A redaction dictionary is an XML or JSON document with the form specified below.

The following requirements apply. If these requirements are not met, you will get an
RDT-INVALIDDICTIONARY error when you use the dictionary.

• A dictionary must contain at least one entry.

• The value in an entry cannot be empty or null.

• The value must be atomic. That is:

• In XML, the entry value can be any text (word, phrase, date, decimal, etc.).

• In JSON, the value can be a string, number, or boolean value.

Format Syntax

XML <dictionary xmlns="http://marklogic.com/xdmp/redaction">
 <entry>value</entry>
 ...
</dictionary>

JSON { "dictionary": {
 "entry":[
 value,
 ...
]
}}

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 546

The following example is a trivial dictionary containing four entries of various types. For a
complete example, see “Example: Dictionary-Based Masking” on page 547.

26.13.2 Installing a Redaction Dictionary
Before you can use a redaction dictionary, you must install it in the schemas database associated
with the database that contains the content to be redacted. This must be the same database in
which you install your redaction rules.

Install the using the same techniques discussed in “Installing Redaction Rules” on page 488.

For security purposes, use document permissions to carefully control who can read or modify
your dictionary. For more details, see “Security Considerations” on page 475.

26.13.3 Using a Redaction Dictionary
The pre-defined redaction functions that support dictionary-based masking do so through a
dictionary option that accepts a dictionary URI as its value.

For example, the mask-deterministic and mask-random built-in redaction functions support a
dictionary option, so you can draw values from a dictionary with a rule similar to the following:

<rule xml:lang="zxx" xmlns="http://marklogic.com/xdmp/redaction">
 <path>//country</path>
 <method>
 <function>mask-random</function>
 </method>
 <options>
 <dictionary>/rules/dict/countries.xml</dictionary>
 </options>
</rule>

Format Syntax

XML <dictionary xmlns="http://marklogic.com/xdmp/redaction">
 <entry>a phrase</entry>
 <entry>a_term</entry>
 <entry>1234</entry>
 <entry>true</entry>
</dictionary>

JSON { "dictionary": {
 "entry":[
 "a phrase",
 "a_term",
 1234,
 true
]
}}

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 547

For more details, see “Built-in Redaction Function Reference” on page 494. For a complete
example, see “Example: Dictionary-Based Masking” on page 547.

26.14 Example: Dictionary-Based Masking
This section contain an example that demonstrates how to install a redaction dictionary and use it
with built-in redaction functions. The examples rules perform the following redactions:

• The mask-deterministic function and a JSON dictionary is applied to the country XML
element or JSON property of the sample data.

• The mask-random function and an XML dictionary is applied to the street XML element or
JSON property of the sample data.

Before running this example, you must install the sample documents from “Preparing to Run the
Examples” on page 557.

Use the following steps to exercise the example:

• Install the Dictionaries

• Install the Rules

• Apply the Rules

26.14.1 Install the Dictionaries
Use either of the following procedures to install example dictionaries. The procedure installs two
dictionaries: A dictionary of country names, defined in XML, and a dictionary of street addresses,
defined in JSON.

• Install Dictionaries Using XQuery

• Install Dictionaries Using JavaScript

26.14.1.1Install Dictionaries Using XQuery
The following procedure installs the two example dictionaries:

1. Copy the script below into a new query in Query Console.

2. Set the Query Type to XQuery.

3. Set the Database to Schemas.

4. Click Run. The dictionaries are installed in the Schemas database with the URIs
/rules/dict/countries.xml and /rules/dict/streets.json.

5. Optionally, use the Query Console database explorer to review the dictionaries.

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 548

Use the following script in Step 1, above.

(: NOTE: RUN AGAINST YOUR SCHEMAS DB :)

(: Install example XML dictionary :)
xquery version "1.0-ml";
let $dictURI := '/rules/dict/countries.xml'
let $dict :=
 <dictionary xmlns="http://marklogic.com/xdmp/redaction">
 <entry>Brazil</entry>
 <entry>China</entry>
 <entry>France</entry>
 <entry>Germany</entry>
 <entry>United States</entry>
 <entry>United Kingdom</entry>
 </dictionary>
return
xdmp:document-insert($dictURI, $dict,
 <options xmlns="xdmp:document-insert">
 <permissions>{xdmp:default-permissions()}</permissions>
 </options>);

(: Install example JSON dictionary :)
xquery version "1.0-ml";
let $dictURI := '/rules/dict/steets.json'
let $dict := xdmp:unquote(
 '{ "dictionary": {
 "entry": [
 "10 Oak Ln",
 "2451 Elm St",
 "892 Veterans Blvd",
 "P.O. Box 1234",
 "250 Park Ln",
 "16 Highway 82, Suite 301"
]
 } }')
return
xdmp:document-insert(
 $dictURI, $dict,
 <options xmlns="xdmp:document-insert">
 <permissions>{xdmp:default-permissions()}</permissions>
 </options>);

26.14.1.2Install Dictionaries Using JavaScript
The following procedure installs the two example dictionaries:

1. Copy the script below into a new query in Query Console.

2. Set the Query Type to JavaScript.

3. Set the Database to Schemas.

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 549

4. Click Run. The dictionaries are installed in the Schemas database with the URIs
/rules/dict/countries.xml and /rules/dict/streets.json.

5. Optionally, use the Query Console database explorer to review the dictionaries.

Use the following script in Step 1, above.

// NOTE: RUN AGAINST YOUR SCHEMAS DB
declareUpdate();

// Install example XML dictionary
const countryDict = fn.head(xdmp.unquote(
 '<dictionary xmlns="http://marklogic.com/xdmp/redaction">' +
 '<entry>Brazil</entry>' +
 '<entry>China</entry>' +
 '<entry>France</entry>' +
 '<entry>Germany</entry>' +
 '<entry>United States</entry>' +
 '<entry>United Kingdom</entry>' +
 '</dictionary>'));
xdmp.documentInsert(
 '/rules/dict/countries.xml', countryDict,
 { permissions: xdmp.defaultPermissions() }
);

// Install example JSON dictionary
const streetDict =
 { dictionary: {
 entry: [
 '10 Oak Ln',
 '2451 Elm St',
 '892 Veterans Blvd',
 'P.O. Box 1234',
 '250 Park Ln',
 '16 Highway 82, Suite 301'
]
 } };
xdmp.documentInsert(
 '/rules/dict/streets.json', streetDict,
 { permissions: xdmp.defaultPermissions() }
);

26.14.2 Install the Rules
Use either of the following procedures to install rules that exercise the dictionaries. One rule is
defined using XML, and the other rule is defined using JSON.

• Install Rules Using XQuery

• Install Rules Using JavaScript

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 550

26.14.2.1Install Rules Using XQuery
The following procedure installs two rules, each of which uses one of the dictionaries installed in
“Install the Dictionaries” on page 547:

1. Copy the script below into a new query in Query Console.

2. Set the Query Type to XQuery.

3. Set the Database to Schemas.

4. Click Run. The rules are installed in the Schemas database with the URIs
/rules/randomize-country.xml and /rules/redact-street.json.

5. Optionally, use the Query Console database explorer to review the rules.

Use the following script in Step 1, above.

(: NOTE: RUN AGAINST YOUR SCHEMAS DB :)

(: Install rule using mask-random with a dictionary :)
xquery version "1.0-ml";
let $ruleURI := '/rules/randomize-country.xml'
let $rule :=
<rule xml:lang="zxx"
 xmlns="http://marklogic.com/xdmp/redaction">
 <path>//country</path>
 <method>
 <function>mask-random</function>
 </method>
 <options>
 <dictionary>/rules/dict/countries.xml</dictionary>
 </options>
</rule>
return xdmp:document-insert(
 $ruleURI, $rule,
 <options xmlns="xdmp:document-insert">
 <permissions>{xdmp:default-permissions()}</permissions>
 <collections>
 <collection>dict</collection>
 <collection>dict-random</collection>
 </collection>
 </options>);

(: Install rule using mask-deterministic with a dictionary :)
xquery version "1.0-ml";
let $ruleURI := '/rules/redact-street.json'
let $rule := xdmp:unquote(
 '{"rule": {
 "path": "//street",
 "method": {"function": "mask-deterministic"},
 "options": {"dictionary": "/rules/dict/streets.json"}

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 551

 }}'
)
return xdmp:document-insert(
 $ruleURI, $rule,
 <options xmlns="xdmp:document-insert">
 <permissions>{xdmp:default-permissions()}</permissions>
 <collections>
 <collection>dict</collection>
 <collection>dict-deter</collection>
 </collections>
 </options>
);

26.14.2.2Install Rules Using JavaScript
The following procedure installs two rules, each of which uses one of the dictionaries installed in
“Install the Dictionaries” on page 547:

1. Copy the script below into a new query in Query Console.

2. Set the Query Type to JavaScript.

3. Set the Database to Schemas.

4. Click Run. The rules are installed in the Schemas database with the URIs
/rules/randomize-country.xml and /rules/redact-street.json.

5. Optionally, use the Query Console database explorer to review the rules.

Use the following script in Step 1, above.

// NOTE: RUN AGAINST YOUR SCHEMAS DB

declareUpdate();

// Install rule using mask-random with dictionary
xdmp.documentInsert(
 '/rules/randomize-country.xml',
 fn.head(xdmp.unquote(
 '<rule xml:lang="zxx" xmlns="http://marklogic.com/xdmp/redaction">' +
 '<path>//country</path>' +
 '<method>' +
 '<function>mask-random</function>' +
 '</method>' +
 '<options>' +
 '<dictionary>/rules/dict/countries.xml</dictionary>' +
 '</options>' +
 '</rule>')),
 { permissions: xdmp.defaultPermissions(),
 collections: ['dict','dict-random'] }
);

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 552

// Install rule using mask-deterministic with dictionary
xdmp.documentInsert(
 '/rules/redact-street.json',
 {rule: {
 path: '//street',
 method: {function: 'mask-deterministic'},
 options: {dictionary: '/rules/dict/streets.json'}
 }},
 { permissions: xdmp.defaultPermissions(),
 collections: ['dict','dict-deter'] }
);

26.14.3 Apply the Rules
Choose one of the following methods for exercising the rules that use dictionary-based masking:

• Apply the Rules Using XQuery

• Apply the Rules Using JavaScript

• Apply the Rules Using mlcp

26.14.3.1Apply the Rules Using XQuery
Follow these steps to apply the example rules using XQuery and Query Console. All the rules will
be applied to the sample documents.

1. Copy the following script into Query Console:

xquery version "1.0-ml";
import module namespace rdt = "http://marklogic.com/xdmp/redaction"
 at "/MarkLogic/redaction.xqy";
let $results := rdt:redact(fn:collection("personnel"), "dict")
return (
 "*** REDACTED STREETS ***",
 $results//street/data(),
 "*** REDACTED COUNTRIES ****",
 $results//country/data()
)

2. Set the Query Type to XQuery.

3. Set the Database to Documents.

4. Click Run. The redacted street and country names from each document are displayed.

You will see output similar to the following, though the values may vary.

*** REDACTED STREETS ***
P.O. Box 1234
2451 Elm St

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 553

892 Veterans Blvd
250 Park Ln
*** REDACTED COUNTRIES ****
United States
Brazil
Germany
France

If you run the script again, the values for the street names will not change because they are
redacted using mask-deterministic. The values for the countries will change with each run since
they are redacted using mask-random.

26.14.3.2Apply the Rules Using JavaScript
Follow these steps to apply the example rules using XQuery and Query Console. All the rules will
be applied to the sample documents.

1. Copy the following script into Query Console:

const rdt = require('/MarkLogic/redaction.xqy');
const results = rdt.redact(fn.collection('personnel'), 'dict');

// Extract the redacted streed and country data for display purposes
const displayAccumulator = ['*** STREETS ***'];
for (let doc of results) {
 displayAccumulator.push(doc.xpath('//street/data()'));
}
displayAccumulator.push('*** COUNTRIES ***');
for (let doc of results) {
 displayAccumulator.push(doc.xpath('//country/data()'));
}

// Dump the redacted street and country values
displayAccumulator

2. Set the Query Type to JavaScript.

3. Set the Database to Documents.

4. Click Run. The redacted street and country names from each document are displayed.

You will see output similar to the following, though the values may vary.

*** REDACTED STREETS ***
P.O. Box 1234
2451 Elm St
892 Veterans Blvd
250 Park Ln
*** REDACTED COUNTRIES ****
United States
Brazil

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 554

Germany
France

If you run the script again, the values for the street names will not change because they are
redacted using mask-deterministic. The values for the countries will change with each run since
they are redacted using mask-random.

26.15 Salting Masking Values for Added Security
When you use the mask-deterministic built-in redaction function without a salt, two rules with
equivalent options always produce the same output for the same input. You can use a “salt” to
introduce masking value variance across rules, rule sets, or clusters. When you use a salt, each
masking value is still deterministic in that the same input produces the same output. However, the
same input with different salts produces different output.

The mask-deterministic function supports applying a salt to masking value generation via the
following options. You can use them individually or together.

• salt: A user-defined salt value. This option has no value by default.

• extend-salt: Include the cluster id or rule set collection name in the salt. This option
defaults to cluster-id.

To completely disable the salt, set salt to an empty string (or leave it unspecified) and set
extend-salt to none.

For example, consider the following rules that apply equivalent redaction logic to two different
paths, using no salt:

<rule xml:lang="zxx" xmlns="http://marklogic.com/xdmp/redaction">
 <path>/data/pii1</path>
 <method>
 <function>mask-deterministic</function>
 </method>
 <options>
 <length>20</length>
 <salt/>
 <extend-salt>none</extend-salt>
 </options>
</rule>

<rule xml:lang="zxx" xmlns="http://marklogic.com/xdmp/redaction">
 <path>/data/pii2</path>
 <method>
 <function>mask-deterministic</function>
 </method>
 <options>
 <length>20</length>
 <salt/>
 <extend-salt>none</extend-salt>

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 555

 </options>
</rule>

If you apply these rules to the following documents, both produce the same masking value by
default for the input “John Smith”:

An attacker could use a similar “salt-less” rule to generate a lookup table that indicates “John
Smith” redacts to “6c50dad68163a7a079db”. That knowledge can be used to reverse engineer
redacted output.

However, if you modify the “/data/pii1” rule to include a salt option:

<rule xml:lang="zxx" xmlns="http://marklogic.com/xdmp/redaction">
 <path>/data/pii1</path>
 <method>
 <function>mask-deterministic</function>
 </method>
 <options>
 <length>20</length>
 <salt>anyoldthing</salt>
 </options>
</rule>

Then the masking values generated by the two rules differ as shown below. An attacker cannot
deduce the relationship between the redacted value (“89d7499b154a8b81c17f”) and the input
value (“John Smith”) without also knowing the salt.

Unredacted Data Redacted Data

<data>
 <pii1>John Smith</pii1>
</data>

<data>
 <pii1>6c50dad68163a7a079db</pii1>
</data>

<data>
 <pii2>John Smith</pii2>
</data>

<data>
 <pii2>6c50dad68163a7a079db</pii2>
</data>

Unredacted Data Redacted Data

<data>
 <pii1>John Smith</pii1>
</data>

<data>
 <pii1>89d7499b154a8b81c17f</pii1>
</data>

<data>
 <pii2>John Smith</pii2>
</data>

<data>
 <pii2>6c50dad68163a7a079db</pii2>
</data>

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 556

By default, extend-salt option is set to cluster-id and the salt option is empty. This means that
equivalent rules applied on the same cluster will generate the same output, but the same values
would not be generated on a different cluster.

Similarly, setting extend-salt to collection means that an attacker who has access to one rule set
cannot generate a lookup table that can be used to reverse engineer redacted values generated by a
different rule set.

The following table outlines the impact of various salt and extend-salt option combinations,
assuming all other options are the same.

26.15.0.1Apply the Rules Using mlcp
Use a command line similar to the following to export the redacted documents from the
Documents database. Both dictionary-based rules will be applied to the sample documents.

salt extend-salt Effect

empty (default) none For a given input, all rules with no salt value produce the
same output.

any value none For a given input, all rules with the same salt value produce
the same output for the same input.

empty cluster-id For a given input, a rule applied in cluster C produces the
same output as other rules with no salt applied in cluster C.
Any rule specifying a non-empty salt applied in cluster C
produces different output, as does any rule applied in a
different cluster.

any value cluster-id For a given input, a rule applied in Cluster C only produces
the same output as other rules with the same salt applied in
cluster C. Any rule with a different or no salt applied in
Cluster C produces different output, as does any rule applied
in a different cluster.

empty collection For a given input, any rule in rule collection R produces the
same output as other rules in R that do not specify a salt.
Rules in another rule collection produce different output.

any value collection For a given input, a rule in rule collection R only produces
the same output as other rules in R with the same salt. Rules
in another rule collection produce different output, even with
the same salt.

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 557

Change the example command line as needed to match your environment. The output directory
(./dict-results) must not already exist.

Windows users, see Modifying the Example Commands for Windows
$ mlcp.sh export -host localhost -port 8000 -username user \
 -password password -mode local -output_file_path \
 ./dict-results -collection_filter personnel \
 -redaction "dict"

The redacted documents will be exported to ./dict-results. The //street and //country values
will reflect values from the street and country dictionaries, respectively.

The redacted streets values will be the same each time you export the documents because they are
redacted using mask-deterministic. The redacted country values will change each time you
export the documents because they are redacted using mask-random.

For more details on using mlcp with Redaction, see Redacting Content During Export or Copy

Operations in the mlcp User Guide.

26.16 Preparing to Run the Examples
Unless otherwise noted, the examples in this chapter are based on the same set of source
documents. The source document set consists of two XML documents and two JSON documents
with similar structure. They include some complex element and property values, such as child
XML elements or JSON objects, and JSON arrays.

The documents are inserted into collections so they can easily be selected for redaction. The
“personnel” collection contains all the samples. The “xml-people” collection includes only the
XML samples. The “json-people” collection includes only the JSON samples.

When you complete the steps in this section, your Documents database will contain the following
documents. The collection names are shown in parentheses after the URI in the following list.

• /redact-ex/person1.xml (personnel, xml-people)

• /redact-ex/person2.xml (personnel, xml-people)

• /redact-ex/person3.json (personnel, json-people)

• /redact-ex/person4.json (personnel, json-people)

Follow these steps to install the sample documents:

1. Navigate to Query Console in your browser. For example, go to
http://localhost:8000/qconsole.

2. Paste the following script into a new query tab in Query Console:

xquery version "1.0-ml";
xdmp:document-insert("/redact-ex/person1.xml",

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 558

 <person>
 <name>Little Bopeep</name>
 <alias>Peepers</alias>
 <alias>Bo</alias>
 <address>
 <street>100 Nursery Lane</street>
 <city>Hometown</city>
 <country>Neverland</country>
 </address>
 <ssn>123-45-6789</ssn>
 <phone>123-456-7890</phone>
 <email>bopeep@mothergoose.com</email>
 <ip>111.222.33.4</ip>
 <id>12-3456789</id>
 <birthdate>2015-01-15</birthdate>
 <anniversary>2017-04-18</anniversary>
 <balance>12.34</balance>
 </person>,
 <options xmlns="xdmp:document-insert">
 <permissions>{xdmp:default-permissions()}</permissions>
 <collections>
 <collection>personnel</collection>
 <collection>xml-people</collection>
 </collections>
 </options>
);

xquery version "1.0-ml";
xdmp:document-insert("/redact-ex/person2.xml",
 <person>
 <name>Humpty Dumpty</name>
 <alias>Dumpy</alias>
 <address>
 <street>200 Nursery Lane</street>
 <city>Hometown</city>
 <country>Neverland</country>
 </address>
 <ssn>234.56.7890</ssn>
 <phone>234.567.8901</phone>
 <email>hdumpty@mothergoose.com</email>
 <ip>222.3.44.5</ip>
 <id>23-4567891</id>
 <birthdate>1965-06-12</birthdate>
 <anniversary>2012-11-09</anniversary>
 <balance>567.89</balance>
 </person>,
 <options xmlns="xdmp:document-insert">
 <permissions>{xdmp:default-permissions()}</permissions>
 <collections>
 <collection>personnel</collection>
 <collection>xml-people</collection>
 </collections>
 </options>
);

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 559

xquery version "1.0-ml";
xdmp:document-insert("/redact-ex/person3.json", xdmp:unquote('
 { "name": "Georgie Porgie",
 "alias": ["George", "G.P."],
 "address": {
 "street": "300 Nursery Lane",
 "city": "Hometown",
 "country": "Neverland"
 },
 "ssn": "345678901",
 "phone": "(345)678-9012",
 "email": "gp@mothergoose.com",
 "ip": "33.44.5.66",
 "id": "34-5678912",
 "birthdate": "2012-07-12",
 "anniversary": "2014-10-15",
 "balance": 12345.67
 }'),
 <options xmlns="xdmp:document-insert">
 <permissions>{xdmp:default-permissions()}</permissions>
 <collections>
 <collection>personnel</collection>
 <collection>json-people</collection>
 </collections>
 </options>
);

xquery version "1.0-ml";
xdmp:document-insert("/redact-ex/person4.json", xdmp:unquote('
 { "name": "Jack Sprat",
 "alias": ["Jacko","Beanpole"],
 "address": {
 "street": "400 Nursery Lane",
 "city": "Hometown",
 "country": "Neverland"
 },
 "ssn": "456-78-9012",
 "phone": "4567890123",
 "email": "jack.sprat@mothergoose.com",
 "ip": "4.55.6.77",
 "id": "45-6789123",
 "birthdate": "1995-10-04",
 "anniversary": "2010-05-23",
 "balance": "90.12"
 }'),
 <options xmlns="xdmp:document-insert">
 <permissions>{xdmp:default-permissions()}</permissions>
 <collections>
 <collection>personnel</collection>
 <collection>json-people</collection>
 </collections>
 </options>
);

MarkLogic Server Redacting Document Content

MarkLogic 10—May, 2019 Application Developer’s Guide—Page 560

3. Select Documents in the Database dropdown.

4. Select XQuery in the Query Type dropdown.

5. Click the Run button. The sample documents are installed in the Documents database.

6. Optionally, click Explore next to the Database dropdown to explore the database and
confirm insertion of the sample documents.

MarkLogic Server Copyright
27.0 Copyright
999

MarkLogic Server 10.0 and supporting products.
Last updated: February, 2022

Copyright © 2022 MarkLogic Corporation. All rights reserved.
This technology is protected by U.S. Patent No. 7,127,469B2, U.S. Patent No. 7,171,404B2, U.S.
Patent No. 7,756,858 B2, and U.S. Patent No 7,962,474 B2, US 8,892,599, and US 8,935,267.

The MarkLogic software is protected by United States and international copyright laws, and
incorporates certain third party libraries and components which are subject to the attributions,
terms, conditions and disclaimers set forth below.

For all copyright notices, including third-party copyright notices, see the Combined Product
Notices for your version of MarkLogic.
MarkLogic 10

MarkLogic Server Copyright
MarkLogic 10—May, 2019 Administrator’s Guide—Page 562

MarkLogic Server Technical Support
28.0 Technical Support
564

MarkLogic provides technical support according to the terms detailed in your Software License
Agreement or End User License Agreement.

We invite you to visit our support website at http://help.marklogic.com to access information on
known and fixed issues, knowledge base articles, and more. For licensed customers with an active
maintenance contract, see the Support Handbook for instructions on registering support contacts
and on working with the MarkLogic Technical Support team.

Complete product documentation, the latest product release downloads, and other useful
information is available for all developers at http://developer.marklogic.com. For technical
questions, we encourage you to ask your question on Stack Overflow.
MarkLogic 10

http://help.marklogic.com/
https://stackoverflow.com/questions/tagged/marklogic
http://developer.marklogic.com
http://www.marklogic.com/files/Mark_Logic_Support_Handbook.pdf

MarkLogic Server Technical Support
MarkLogic 10—May, 2019 Administrator’s Guide—Page 564

	Application Developer’s Guide
	Table of Contents
	1.0 Developing Applications in MarkLogic Server
	1.1 Overview of MarkLogic Server Application Development
	1.2 Skills Needed to Develop MarkLogic Server Applications
	1.3 Where to Find Specific Information

	2.0 Loading Schemas
	2.1 Configuring Your Database
	2.2 Loading Your Schema
	2.3 Referencing Your Schema
	2.4 Working With Your Schema
	2.5 Validating XML and JSON Data Against a Schema
	2.5.1 Validating Schemas using Schematron
	2.5.2 Validating Schemas using the XQuery validate Expression
	2.5.3 Validating JSON Documents against JSON Schemas

	3.0 Understanding Transactions in MarkLogic Server
	3.1 Terms and Definitions
	3.2 Overview of MarkLogic Server Transactions
	3.2.1 Key Transaction Attributes
	3.2.2 Understanding Statement Boundaries
	3.2.3 Single-Statement Transaction Concept Summary
	3.2.4 Multi-Statement Transaction Concept Summary

	3.3 Commit Mode
	3.4 Transaction Type
	3.4.1 Transaction Type Overview
	3.4.2 Controlling Transaction Type in XQuery
	3.4.3 Controlling Transaction Type in JavaScript
	3.4.4 Query Transactions: Point-in-Time Evaluation
	3.4.5 Update Transactions: Readers/Writers Locks
	3.4.6 Example: Query and Update Transaction Interaction

	3.5 Single vs. Multi-statement Transactions
	3.5.1 Single-Statement, Automatically Committed Transactions
	3.5.2 Multi-Statement, Explicitly Committed Transactions
	3.5.3 Semi-Colon as a Statement Separator

	3.6 Transaction Mode
	3.6.1 Transaction Mode Overview
	3.6.2 Auto Transaction Mode
	3.6.3 Query Transaction Mode
	3.6.4 Update Transaction Mode
	3.6.5 Query-Single-Statement Transaction Mode
	3.6.6 Multi-Auto Transaction Mode

	3.7 Interactions with xdmp:eval/invoke
	3.7.1 Isolation Option to xdmp:eval/invoke
	3.7.2 Preventing Deadlocks
	3.7.3 Seeing Updates From eval/invoke Later in the Transaction
	3.7.4 Running Multi-Statement Transactions under xdmp:eval/invoke

	3.8 Functions With Non-Transactional Side Effects
	3.9 Reducing Blocking with Multi-Version Concurrency Control
	3.10 Administering Transactions
	3.11 Transaction Examples
	3.11.1 Example: Multi-statement Transactions and Same-statement Isolation
	3.11.2 Example: Multi-Statement Transactions and Different-transaction Isolation
	3.11.3 Example: Generating a Transaction Report With xdmp:host-status

	4.0 Working With Binary Documents
	4.1 Terminology
	4.2 Loading Binary Documents
	4.3 Configuring MarkLogic Server for Binary Content
	4.3.1 Setting the Large Size Threshold
	4.3.2 Sizing and Scalability of Binary Content
	4.3.3 Selecting a Location For Binary Content
	4.3.4 Monitoring the Total Size of Large Binary Data in a Forest
	4.3.5 Detecting and Removing Orphaned Binaries

	4.4 Developing Applications That Use Binary Documents
	4.4.1 Adding Metadata to Binary Documents Using Properties
	4.4.2 Downloading Binary Content With HTTP Range Requests
	4.4.3 Creating Binary Email Attachments

	4.5 Useful Built-ins for Manipulating Binary Documents

	5.0 Importing XQuery Modules, XSLT Stylesheets, and Resolving Paths
	5.1 XQuery Library Modules and Main Modules
	5.1.1 Main Modules
	5.1.2 Library Modules

	5.2 Rules for Resolving Import, Invoke, and Spawn Paths
	5.3 Module Caching Notes
	5.4 Example Import Module Scenario

	6.0 Library Services Applications
	6.1 Understanding Library Services
	6.2 Building Applications with Library Services
	6.3 Required Range Element Indexes
	6.4 Library Services API
	6.4.1 Library Services API Categories
	6.4.2 Managed Document Update Wrapper Functions

	6.5 Security Considerations of Library Services Applications
	6.5.1 dls-admin Role
	6.5.2 dls-user Role
	6.5.3 dls-internal Role

	6.6 Transactions and Library Services
	6.7 Putting Documents Under Managed Version Control
	6.8 Checking Out Managed Documents
	6.8.1 Displaying the Checkout Status of Managed Documents
	6.8.2 Breaking the Checkout of Managed Documents

	6.9 Checking In Managed Documents
	6.10 Updating Managed Documents
	6.11 Defining a Retention Policy
	6.11.1 Purging Versions of Managed Document
	6.11.2 About Retention Rules
	6.11.3 Creating Retention Rules
	6.11.4 Retaining Specific Versions of Documents
	6.11.5 Multiple Retention Rules
	6.11.6 Deleting Retention Rules

	6.12 Managing Modular Documents in Library Services
	6.12.1 Creating Managed Modular Documents
	6.12.2 Expanding Managed Modular Documents
	6.12.3 Managing Versions of Modular Documents

	7.0 Transforming XML Structures With a Recursive typeswitch Expression
	7.1 XML Transformations
	7.1.1 XQuery vs. XSLT
	7.1.2 Transforming to XHTML or XSL-FO
	7.1.3 The typeswitch Expression

	7.2 Sample XQuery Transformation Code
	7.2.1 Simple Example
	7.2.2 Simple Example With cts:highlight
	7.2.3 Sample Transformation to XHTML
	7.2.4 Extending the typeswitch Design Pattern

	8.0 Document and Directory Locks
	8.1 Overview of Locks
	8.1.1 Write Locks
	8.1.2 Persistent
	8.1.3 Searchable
	8.1.4 Exclusive or Shared
	8.1.5 Hierarchical
	8.1.6 Locks and WebDAV
	8.1.7 Other Uses for Locks

	8.2 Lock APIs
	8.3 Example: Finding the URI of Documents With Locks
	8.4 Example: Setting a Lock on a Document
	8.5 Example: Releasing a Lock on a Document
	8.6 Example: Finding the User to Whom a Lock Belongs

	9.0 Properties Documents and Directories
	9.1 Properties Documents
	9.1.1 Properties Document Namespace and Schema
	9.1.2 APIs on Properties Documents
	9.1.3 XPath property Axis
	9.1.4 Protected Properties
	9.1.5 Creating Element Indexes on a Properties Document Element
	9.1.6 Sample Properties Documents
	9.1.7 Standalone Properties Documents

	9.2 Using Properties for Document Processing
	9.2.1 Using the property Axis to Determine Document State
	9.2.2 Document Processing Problem
	9.2.3 Solution for Document Processing
	9.2.4 Basic Commands for Running Modules

	9.3 Directories
	9.3.1 Properties and Directories
	9.3.2 Directories and WebDAV Servers
	9.3.3 Directories Versus Collections

	9.4 Permissions On Properties and Directories
	9.5 Example: Directory and Document Browser
	9.5.1 Directory Browser Code
	9.5.2 Setting Up the Directory Browser

	10.0 Point-In-Time Queries
	10.1 Understanding Point-In-Time Queries
	10.1.1 Fragments Stored in Log-Structured Database
	10.1.2 System Timestamps and Merge Timestamps
	10.1.3 How the Fragments for Point-In-Time Queries are Stored
	10.1.4 Only Available on Query Statements, Not on Update Statements
	10.1.5 All Auxiliary Databases Use Latest Version
	10.1.6 Database Configuration Changes Do Not Apply to Point-In-Time Fragments

	10.2 Using Timestamps in Queries
	10.2.1 Enabling Point-In-Time Queries in the Admin Interface
	10.2.2 The xdmp:request-timestamp Function
	10.2.3 Requires the xdmp:timestamp Execute Privilege
	10.2.4 The Timestamp Parameter to xdmp:eval, xdmp:invoke, xdmp:spawn
	10.2.5 Timestamps on Requests in XCC
	10.2.6 Scoring Considerations

	10.3 Specifying Point-In-Time Queries in xdmp:eval, xdmp:invoke, xdmp:spawn, and XCC
	10.3.1 Example: Query Old Versions of Documents Using XCC
	10.3.2 Example: Querying Deleted Documents

	10.4 Rolling Back a Forest to a Particular Timestamp
	10.4.1 Tradeoffs and Scenarios to Consider For Rolling Back Forests
	10.4.2 Setting the Merge Timestamp
	10.4.3 Notes About Performing an xdmp:forest-rollback Operation
	10.4.4 General Steps for Rolling Back One or More Forests

	11.0 System Plugin Framework
	11.1 How MarkLogic Server Plugins Work
	11.1.1 Overview of System Plugins
	11.1.2 System Plugins versus Application Plugins
	11.1.3 The plugin API

	11.2 Writing System Plugin Modules
	11.3 Password Plugin Sample
	11.3.1 Understanding the Password Plugin
	11.3.2 Modifying the Password Plugin

	12.0 Using the map Functions to Create Name-Value Maps
	12.1 Maps: In-Memory Structures to Manipulate in XQuery
	12.2 map:map XQuery Primitive Type
	12.3 Serializing a Map to an XML Node
	12.4 Map API
	12.5 Map Operators
	12.6 Examples
	12.6.1 Creating a Simple Map
	12.6.2 Returning the Values in a Map
	12.6.3 Constructing a Serialized Map
	12.6.4 Add a Value that is a Sequence
	12.6.5 Creating a Map Union
	12.6.6 Creating a Map Intersection
	12.6.7 Applying a Map Difference Operator
	12.6.8 Applying a Negative Unary Operator
	12.6.9 Applying a Div Operator
	12.6.10 Applying a Mod Operator

	13.0 Function Values
	13.1 Overview of Function Values
	13.2 xdmp:function XQuery Primitive Type
	13.3 XQuery APIs for Function Values
	13.4 When the Applied Function is an Update from a Query Statement
	13.5 Example of Using Function Values

	14.0 Reusing Content With Modular Document Applications
	14.1 Modular Documents
	14.2 XInclude and XPointer
	14.2.1 Example: Simple id
	14.2.2 Example: xpath() Scheme
	14.2.3 Example: element() Scheme
	14.2.4 Example: xmlns() and xpath() Scheme

	14.3 CPF XInclude Application and API
	14.3.1 XInclude Code and CPF Pipeline
	14.3.2 Required Security Privileges—xinclude Role

	14.4 Creating XML for Use in a Modular Document Application
	14.4.1 <xi:include> Elements
	14.4.2 <xi:fallback> Elements
	14.4.3 Simple Examples

	14.5 Setting Up a Modular Document Application

	15.0 Controlling App Server Access, Output, and Errors
	15.1 Creating Custom HTTP Server Error Pages
	15.1.1 Overview of Custom HTTP Error Handling
	15.1.2 Error Detail
	15.1.3 Configuring Custom Error Handlers
	15.1.4 Execute Permissions Are Needed On Error Handler Document for Modules Databases
	15.1.5 Example: Custom Error Handler

	15.2 Setting Up URL Rewriting for an HTTP App Server
	15.2.1 Overview of URL Rewriting
	15.2.2 Creating URL Rewrite Modules
	15.2.3 Prohibiting Access to Internal URLs
	15.2.4 URL Rewriting and Page-Relative URLs
	15.2.5 Using the URL Rewrite Trace Event

	15.3 Example: A Simple URL Rewriter
	15.3.1 Create the Example App Server
	15.3.2 Install the Example Content
	15.3.3 Install the Example Application Module
	15.3.4 Exercise the Example Application
	15.3.5 Install the Rewriter
	15.3.6 Configure the App Server to Use the Rewriter
	15.3.7 Exercise the Rewriter

	15.4 Outputting SGML Entities
	15.4.1 Understanding the Different SGML Mapping Settings
	15.4.2 Configuring SGML Mapping in the App Server Configuration
	15.4.3 Specifying SGML Mapping in an XQuery Program

	15.5 Specifying the Output Encoding
	15.5.1 Configuring App Server Output Encoding Setting
	15.5.2 XQuery Built-In For Specifying the Output Encoding

	15.6 Specifying Output Options at the App Server Level

	16.0 Creating an Interpretive XQuery Rewriter to Support REST Web Services
	16.1 Terms Used in this Chapter
	16.2 Overview of the REST Library
	16.3 A Simple XQuery Rewriter and Endpoint
	16.4 Notes About Rewriter Match Criteria
	16.5 The options Node
	16.6 Validating options Node Elements
	16.7 Extracting Multiple Components from a URL
	16.8 Handling Errors
	16.9 Handling Redirects
	16.10 Handling HTTP Verbs
	16.10.1 Handling OPTIONS Requests
	16.10.2 Handling POST Requests

	16.11 Defining Parameters
	16.11.1 Parameter Types
	16.11.2 Supporting Parameters Specified in a URL
	16.11.3 Required Parameters
	16.11.4 Default Parameter Value
	16.11.5 Specifying a List of Values
	16.11.6 Repeatable Parameters
	16.11.7 Parameter Key Alias
	16.11.8 Matching Regular Expressions in Parameters with the match and pattern Attributes

	16.12 Adding Conditions
	16.12.1 Authentication Condition
	16.12.2 Accept Headers Condition
	16.12.3 User Agent Condition
	16.12.4 Function Condition
	16.12.5 And Condition
	16.12.6 Or Condition
	16.12.7 Content-Type Condition

	16.13 Preparing to Run the Examples
	16.13.1 Load the Example Data
	16.13.2 Create the Example App Server

	17.0 Creating a Declarative XML Rewriter to Support REST Web Services
	17.1 Overview of the XML Rewriter
	17.2 Configuring an App Server to use the XML Rewriter
	17.3 Input and Output Contexts
	17.3.1 Input Context
	17.3.2 Output Context

	17.4 Regular Expressions (Regex)
	17.5 Match Rules
	17.5.1 rewriter
	17.5.2 match-accept
	17.5.3 match-content-type
	17.5.4 match-cookie
	17.5.5 match-execute-privilege
	17.5.6 match-header
	17.5.7 match-method
	17.5.8 match-path
	17.5.9 match-query-param
	17.5.10 match-role
	17.5.11 match-string
	17.5.12 match-user

	17.6 System Variables
	17.7 Evaluation Rules
	17.7.1 add-query-param
	17.7.2 set-database
	17.7.3 set-error-format
	17.7.4 set-error-handler
	17.7.5 set-eval
	17.7.6 set-modules-database
	17.7.7 set-modules-root
	17.7.8 set-path
	17.7.9 set-query-param
	17.7.10 set-transaction
	17.7.11 set-transaction-mode
	17.7.12 set-var
	17.7.13 trace

	17.8 Termination Rules
	17.8.1 dispatch
	17.8.2 error

	17.9 Simple Rewriter Examples

	18.0 Template Driven Extraction (TDE)
	18.1 Security on TDE Documents
	18.2 Template View Elements
	18.3 JSON Template Structure
	18.3.1 Collections
	18.3.2 Directories
	18.3.3 path-namespaces
	18.3.4 Context
	18.3.5 Variables

	18.4 Template Dialect and Data Transformation Functions
	18.4.1 Date and Time Functions
	18.4.2 Logical Functions and Data validation
	18.4.3 String Functions
	18.4.4 Type Casting
	18.4.5 Mathematical Functions
	18.4.6 Data Hub Mapping Functions
	18.4.7 Hashing Functions
	18.4.8 Miscellaneous Functions

	18.5 Validating and Inserting a Template
	18.6 Templates and Non-Conforming Documents
	18.7 Enabling and Disabling Templates
	18.8 Deleting Templates

	19.0 Optic API for Multi-Model Data Access
	19.1 Differences between the JavaScript and XQuery Optic APIs
	19.2 Objects in an Optic Pipeline
	19.3 Data Access Functions
	19.3.1 fromView Examples
	19.3.2 fromTriples Example
	19.3.3 fromLexicons Examples
	19.3.4 fromLiterals Examples
	19.3.5 fromSQL Example
	19.3.6 fromSPARQL Example
	19.3.7 fromSearch Example

	19.4 Kinds of Optic Queries
	19.4.1 Basic Queries
	19.4.2 Aggregates and Grouping
	19.4.3 Row Joins
	19.4.4 Document Joins
	19.4.5 Union, Intersect, and Except
	19.4.6 Grouping Sets
	19.4.7 Document Queries

	19.5 Query DSL for Optic API
	19.5.1 Syntax
	19.5.2 Vocabulary
	19.5.3 Server APIs
	19.5.4 Processing Optic Output

	19.6 Expression Functions For Processing Column Values
	19.6.1 XQuery Libraries Required for Expression Functions

	19.7 Functions Equivalent to Boolean, Numeric, and String Operators
	19.8 Node Constructor Functions
	19.9 Best Practices and Performance Considerations
	19.10 Optic Execution Plan
	19.11 Parameterizing a Plan
	19.12 Exporting and Importing a Serialized Optic Query
	19.13 Sampling Data
	19.14 Query-Based Views

	20.0 Machine Learning with the ONNX API
	20.1 Overview of Machine Learning
	20.2 Terms
	20.3 Types of Machine Learning
	20.3.1 Supervised Learning
	20.3.2 Unsupervised Learning
	20.3.3 Reinforcement Learning

	20.4 Why Using ONNX Runtime in MarkLogic Makes Sense
	20.5 Capabilities of the ONNX Runtime
	20.6 ONNX XQuery and JavaScript API
	20.6.1 New Types for the ONNX Runtime
	20.6.2 Exposed ONNX Runtime API
	20.6.3 Security
	20.6.4 Limitations

	20.7 Example ONNX Applications
	20.7.1 Example ONNX Application using JavaScript
	20.7.2 Example ONNX Application using XQuery

	21.0 Convert PyTorch Model to ONNX Model
	21.1 General Steps
	21.2 Case Study: Text Summarization with Bert
	21.2.1 How does the Converter Work?
	21.2.2 Prepare the Environment

	21.3 Export the Model to ONNX
	21.4 Running the Model in MarkLogic using Javascript
	21.5 Conclusion

	22.0 Working With JSON
	22.1 JSON, XML, and MarkLogic
	22.2 How MarkLogic Represents JSON Documents
	22.3 Traversing JSON Documents Using XPath
	22.3.1 What is XPath?
	22.3.2 Exploring the XPath Examples
	22.3.3 Selecting Nodes and Node Values
	22.3.4 Node Test Operators
	22.3.5 Selecting Arrays and Array Members

	22.4 Creating Indexes and Lexicons Over JSON Documents
	22.5 How Field Queries Differ Between JSON and XML
	22.6 Representing Geospatial, Temporal, and Semantic Data
	22.6.1 Geospatial Data
	22.6.2 Date and Time Data
	22.6.3 Semantic Data

	22.7 Character Set Restrictions
	22.8 Document Properties
	22.9 Serialization of Large Integer Values
	22.10 Working With JSON in XQuery
	22.10.1 Constructing JSON Nodes
	22.10.2 Building a JSON Object from a Map
	22.10.3 Interaction With fn:data
	22.10.4 JSON Document Operations
	22.10.5 Example: Updating JSON Documents
	22.10.6 Searching JSON Documents

	22.11 Working With JSON in Server-Side JavaScript
	22.11.1 Constructing JSON Nodes in JavaScript
	22.11.2 Updating JSON Documents from JavaScript
	22.11.3 Read-Only Access to JSON Document Contents
	22.11.4 Using Node Update Functions on JSON Documents

	22.12 Converting JSON to XML and XML to JSON
	22.12.1 Conversion Philosophy
	22.12.2 Functions for Converting Between XML and JSON
	22.12.3 Understanding the Configuration Strategies For Custom Transformations
	22.12.4 Example: Conversion Using Basic Strategy
	22.12.5 Example: Conversion Using Full Strategy
	22.12.6 Example: Conversion Using Custom Strategy

	22.13 Low-Level JSON XQuery APIs and Primitive Types
	22.13.1 Available Functions and Primitive Types
	22.13.2 Example: Serializing to a JSON Node
	22.13.3 Example: Parsing a JSON Node into a List of Items

	22.14 Loading JSON Documents
	22.14.1 Loading JSON Document Using mlcp
	22.14.2 Loading JSON Documents Using the Java Client API
	22.14.3 Loading JSON Documents Using the Node.js Client API
	22.14.4 Loading JSON Using the REST Client API

	23.0 Using Triggers to Spawn Actions
	23.1 Overview of Triggers
	23.1.1 Trigger Components
	23.1.2 Databases Used By Triggers

	23.2 Triggers and the Content Processing Framework
	23.3 Pre-Commit Versus Post-Commit Triggers
	23.3.1 Pre-Commit Triggers
	23.3.2 Post-Commit Triggers

	23.4 Trigger Events
	23.4.1 Database Events
	23.4.2 Data Events

	23.5 Trigger Scope
	23.6 Modules Invoked or Spawned by Triggers
	23.6.1 Difference in Module Behavior for Pre- and Post-Commit Triggers
	23.6.2 Module External Variables trgr:uri and trgr:trigger

	23.7 Creating and Managing Triggers With triggers.xqy
	23.8 Simple Trigger Example
	23.9 Avoiding Infinite Trigger Loops (Trigger Storms)

	24.0 Using Native Plugins
	24.1 What is a Native Plugin?
	24.2 How MarkLogic Server Manages Native Plugins
	24.3 Building a Native Plugin Library
	24.4 Packaging a Native Plugin
	24.5 Installing a Native Plugin
	24.6 Uninstalling a Native Plugin
	24.7 Registering a Native Plugin at Runtime
	24.8 Versioning a Native Plugin
	24.9 Checking the Status of Loaded Plugins
	24.10 The Plugin Manifest
	24.11 Native Plugin Security Considerations
	24.12 Native Plugin Example

	25.0 Aggregate User-Defined Functions
	25.1 What Are Aggregate User-Defined Functions?
	25.2 In-Database MapReduce Concepts
	25.2.1 What is MapReduce?
	25.2.2 How In-Database MapReduce Works

	25.3 Implementing an Aggregate User-Defined Function
	25.3.1 Creating and Deploying an Aggregate UDF
	25.3.2 Implementing AggregateUDF::map
	25.3.3 Implementing AggregateUDF::reduce
	25.3.4 Implementing AggregateUDF::finish
	25.3.5 Registering an Aggregate UDF
	25.3.6 Aggregate UDF Memory Management
	25.3.7 Implementing AggregateUDF::encode and AggregateUDF::decode
	25.3.8 Aggregate UDF Error Handling and Logging
	25.3.9 Aggregate UDF Argument Handling
	25.3.10 Type Conversions in Aggregate UDFs

	26.0 Redacting Document Content
	26.1 Terms and Definitions
	26.2 Introduction to Redaction
	26.2.1 What is Redaction?
	26.2.2 Express Redaction Requirements Through Rules
	26.2.3 Apply Rules Using Multiple Interfaces
	26.2.4 Protection of Redaction Logic

	26.3 Example: Getting Started With Redaction
	26.3.1 Installing the Source Documents
	26.3.2 Installing the Rules
	26.3.3 Understanding the Rules
	26.3.4 Applying the Rules

	26.4 Security Considerations
	26.5 Defining Redaction Rules
	26.5.1 Rule Definition Basics
	26.5.2 Choosing a Redaction Strategy
	26.5.3 Choosing a Redaction Function
	26.5.4 Defining XML Namespace Prefix Bindings
	26.5.5 Limitations on XPath Expressions in Redaction Rules
	26.5.6 Defining Rules Usable on Multiple Document Formats
	26.5.7 XML Rule Syntax Reference
	26.5.8 JSON Rule Syntax Reference

	26.6 Installing Redaction Rules
	26.7 Applying Redaction Rules
	26.7.1 Overview
	26.7.2 Applying Rules Using mlcp
	26.7.3 Applying Rules Using XQuery
	26.7.4 Applying Rules Using JavaScript
	26.7.5 No Guaranteed Ordering of Rules

	26.8 Validating Redaction Rules
	26.9 Built-in Redaction Function Reference
	26.9.1 mask-deterministic
	26.9.2 mask-random
	26.9.3 conceal
	26.9.4 redact-number
	26.9.5 redact-us-ssn
	26.9.6 redact-us-phone
	26.9.7 redact-email
	26.9.8 redact-ipv4
	26.9.9 redact-datetime
	26.9.10 redact-regex

	26.10 Example: Using the Built-In Redaction Functions
	26.10.1 Example Rule Summary
	26.10.2 Install the XML Rules
	26.10.3 Install the JSON Rules
	26.10.4 Apply the Rules
	26.10.5 Review the Results

	26.11 User-Defined Redaction Functions
	26.11.1 Implementing a User-Defined Redaction Function
	26.11.2 Installing a User-Defined Redaction Function

	26.12 Example: Using Custom Redaction Rules
	26.12.1 Example: Custom Redaction Using JavaScript
	26.12.2 Example: Custom Redaction Using XQuery

	26.13 Using Dictionary-Based Masking
	26.13.1 Defining a Redaction Dictionary
	26.13.2 Installing a Redaction Dictionary
	26.13.3 Using a Redaction Dictionary

	26.14 Example: Dictionary-Based Masking
	26.14.1 Install the Dictionaries
	26.14.2 Install the Rules
	26.14.3 Apply the Rules

	26.15 Salting Masking Values for Added Security
	26.16 Preparing to Run the Examples

	27.0 Copyright
	28.0 Technical Support

