MarkLogic Server on Kubernetes
MarkLogic 11 Kubernetes 2.0

Publication date 2024-07-24
Copyright © 2024 Progress Software Corporation

All Rights Reserved

MarkLogic 11
Kubernetes 2.0

Table of Contents

1. Overview of KUDEIMETES ... e 4
1.1, ComPAtiDIlIty ..o s 4
L2 1= 1011 o] oo)PP 4

2. Set up the reqUIred tOOIScouuiiiii e e 6
g T [15 =1 | I o = oS 6
2.2.INSTAILKUDECH ...t e 6
2.3. Tools for setting up the Kubernetes Clustercooeiiiiiiiiiiii e, 6

2.3.1. Install Minikube (for local development)cccooiiiiiiiiiiiii e, 6
2.3.2. Install Amazon Web Services Elastic Kubernetes Service (for production) 7
2.3.3. Parameters ... 7

3. Create @ MarkLogiC CIUSTIENo e e 8
3.1. Add the MarkLOgiC repOSITOrYuiiiiiiei e 8
3.2, Install the Chart ... e 8
3.3. Deploy Helm with HTTPS enabled ... 10

3.3.1. Configure a MarkLogic cluster with a standard certificatec............. 10
3.3.2. Configure a MarkLogic cluster with a temporary certificatecc.......... 11
3.4. Test MarkLogic Helm Chart and Docker image from ECRcccoiiiiiiiiiiiine, 11
3.4.1. Create an ECR repoSitorycocuiiiiiiiiiiicie e 11
3.4.2. Push the Docker image and Helm Chartcoooviiiiiiiiiie e, 12
3.4.3. Deploy the MarkLogiC CIUStErc.coiniiiii e 12
3.5. Topology spread CONSIraINtScoouuiiiiiii e 13
3.6. Retrieve the MarkLogic admin credentialscooiiiiiiiiiiii e 13
3.7. Configuration options for HEIMoooiiiii e 14
3.7.1.VAIUES Flag ..o e 14
3.7.2.SEETIAG et e 14
3.7.3. High availability and pod anti-affinity ..o 15
3.7.4. SeCUNity CONTEXE ...t e et eeees 16
3.7.5. NetWOIK POLICYeniieiii e 16
3.7.6. ASSIGN PO PrIOILY ..eevveieiiiii et e et eeean 17
TS T =1 =1 o] L= FoTe [oo | 1= o1 1) o S 17
3.9. Deploy a MarkLogic cluster with multiple groupscccocoiviiiiiiiiie 17

4. Access MarkLogic Server in a Kubernetes Clusterccooiiiiiiiiiiiiiici e, 19

4.1. Native KUDEINETES ... e 19
4.1.1. Use the CIUSLENP SEIVICEccevviiiiiiii i 19
4.1.2. Use the DNS reCOrdcoouiiiiiiiii e 20
4.1.3. Use the port-forward command ..o 20

A HA P OXY ettt e e e 20
4.2.1. ConfIQUuIrationooouei e 20

4.3. HTTP connection through Ingress on an EKS clusterccoooiiiiiiiiiiineenn, 23
4.3.1. ALB INGIESS ..ottt 23
4.3.2. Set up and use path-based routing with MarkLogic Helm Chart 27

4.4. ODBC connection through Ingress in EKS ... 29
4.4.1. Macro ArChiteCIUrecooiiiiiiiiii e 30
4.4.2. MarkLogic ODBC CONFIg ..uuiiviiiiiiiie et 30
4.4.3. MarkLogic HAProxy Load Balancer Configurationcc.ccoooeviiiiiiiiinienennnn. 30
4.4 .4, HAProxy Ingress Controller configurationcccoiiiiiiiiiiiiiiniecen e, 33
4.4.5. Network load balancer security groupccoooiiiiiiiieiiiei e 36
4.4.6. ANS Network Load balanCer ..o e 36
4.4.7. Route53 configurationc.uuiiiiiiiiiiiii e 37
R T @] o 1= Tox 1 o] o N = 38

LY. E= 1) =11 = o 01 Y 40
LT IR U oo | =T [PSP 40

5.1.1. Recommendations before upgradingcooooiiiiiiiiiiiiii 40

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 2

MarkLogic 11
Kubernetes 2.0

5.1.2. Upgrade ProCEAUIESc.uiiii et eee e et e e e e e e e e e e e e eeanns 40

5.1.3. Upgrading the MarkLogic root image to rootlesscccccoiviiiiiiiiiiiie, 42

5.2. Add and remoVve NOSEScouiiiiiii e 42
5.2.1. Add and remove hOSEScouiiiiiiiie e 43

5.2.2. REMOVE NOSES ...ieiiiiiii it eaaas 43

5.2.3. Scale down the MarkLogiC hOStSccooviiiiiiiiii e, 43

5.2.4. Enable SSL over XDQP i 44

5.3. Backup and restore a database ..o 44

5.4. Extend the data VOIUMES ... e 45
5.4.1. Expand the volume without downtimeccooiiiiiiiiii 45

LR T o [o [o =T = PR 46
5.5.1. Set huge pages atthe node level ... 46

5.5.2. ArQUMENTS ...t et et 47

5.5.3. Set privileged tO trUecoouniiiiii e 48

5.5.4. Kubelet restarto 48

5.5.5. Set huge pages for MarkLogic StatefulSetccoooiiiiiiiii . 49

5.6. Uninstall the Chart ..o e 50

6. MarkLogic Content Pump (mlcp) in Kubernetesccooooviiiiiiiiiiie e, 51
6.1. micp inside a Kubernetes ClUStercoooiiiiii i 51

6.2. Generate a Dockerimage With mICPcoooiiiiiii i, 51

6.3. Deploy the micp pod to the Kubernetes cluster ... 51

B.4. KUDECH AP DIy ot et 52

6.5. ACCESS the MICP PO ...oieiiii e 52

6.6. micp outside a Kubernetes ClUSTEro 52

6.7. Run mlcp to ingest dataoooiiiiiiiii e 53
B.7.1. -h0St SELHNG ..ot e 53

7. Helm chart parameters ... e 54
T (o101 o] =<1 o ToTo 1 o [PPSR 60
9. Known issues and limitationsoooiiiiiiiiii e 63
LT = Tor o g o= IR0 o] o Yo) o P 64
L 07 o374 o |) PP 65

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 3

MarkLogic 11 Overview of Kubernetes
Kubernetes 2.0

1. Overview of Kubernetes

Containerization is a process that bundles application code and all its dependent components

into a single package. The resulting package is known as a container. Containers include all the

files, resources, and libraries needed to run an application on any computer operating system or
infrastructure. Containers are lightweight and memory efficient when compared to virtual machines and
other virtualization technologies.

Docker and Kubernetes are containerization platforms often used together. Docker is used to create
containers. Kubernetes, on the other hand, is a container management tool. Kubernetes allows
developers to deploy and manage containerized applications at scale across multiple hosts or cloud
providers, and it provides a platform for building microservices-based applications. It automates the
deployment of containers and provides load balancing, scaling, and self-healing functions. These
functions make it easier for developers to manage their infrastructure so that they can focus on writing
code.

By combining MarkLogic with containers using Docker and Kubernetes, developers can quickly
collaborate and release code faster and more efficiently. Because containers are platform agnostic,
applications can be built once and run in a variety of scenarios including on-premise environments;
private, hybrid, or public clouds; and on AWS, Azure, and Google Cloud. By using containers, Docker,
and Kubernetes, MarkLogic developers will realize the benefits of a flexible, light-weight, and cost-
effective alternative to virtual machines.

1.1. Compatibility

MarkLogic Server

MarkLogic Server Version Docker Image Version

9 Unsupported

10 10.0-9.5-centos-1.0.2 or later

11 11.0.2-centos-1.0.2 or later
Kubernetes

Kubernetes 1.23 or later.
Managed Kubernetes

The MarkLogic Helm Chart is currently tested on Amazon EKS and Azure AKS. Setup and operational
instructions are currently only provided for Amazon EKS.

1.2. Terminology

The following terms are used throughout this guide:

Term Definition

Container A container is a unit of software containing application code and all the libraries, files, and dependent
resources that enable an application to run efficiently and reliably in different environments.

Node A node is a physical or virtual machine. There are two types of nodes:

* A master node contains the control plane that manages the node.
» A worker node processes data stored in the cluster and ensures that traffic to and from the application is
properly facilitated.

Cluster A cluster is a group of nodes.

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 4

https://hub.docker.com/layers/marklogicdb/marklogic-db/10.0-9.5-centos-1.0.2/images/sha256-b150cc5aed7cd588f653060d5f1d2d0fe8bf7f1f18e99ae7a38f2895453e4a54?context=explore
https://hub.docker.com/layers/marklogicdb/marklogic-db/11.0.2-centos-1.0.2/images/sha256-77f5924ae54bd1ce0fa7b42e589918a8adb4a611db82b04bcdb76673fd87986e?context=explore

MarkLogic 11
Kubernetes 2.0

Terminology

Term Definition

Control Plane The control plane manages clusters and the workloads running on them. The control plane manages
scheduling and detects and responds to events. The control plane operates on one or more machines within a
cluster.

Pod A pod is a group of one or more containers with shared storage, network resources, and a specification for
how to run the containers. In Kubernetes, applications and the accompanying utilities are hosted in pods. A
pod can also operate as a logical host.

A MarkLogic pod is managed by StatefulSet workload resources.

StatefulSet StatefulSet is used to manage stateful applications by managing the deployment and scaling of a set of pods.
StatefulSet also guarantees the ordering and uniqueness of pods.

Namespace A namespace is a mechanism for isolating groups of resources within a single cluster.

Service A service is an abstract way of exposing an application running as a network service on a set of pods.

Ingress Ingress is a Kubernetes resource that manages external access to the services in a cluster (typically using
HTTP). An Ingress also provides load balancing functions.

ConfigMap A ConfigMap is an API object used to store data in key-value pairs.

Secret A secret is an object that contains a small amount of sensitive data, such as a password, a token, or a key.

Load Balancing Load balancing is the methodical and efficient distribution of network or application traffic across multiple
servers.

2024-07-24 21:52

MarkLogic Server on Kubernetes Page 5

MarkLogic 11 Set up the required tools
Kubernetes 2.0

2. Set up the required tools

To run MarkLogic in Kubernetes, Helm and kubectl are required. Instructions for installing and
configuring these tools are included in this section.

NOTE

Enter all commands referenced in this section into the command-line interpreter
for your operating system (Linux - Shell, Windows- PowerShell, Mac - Terminal).

2.1. Install Helm

Helm is a package manager that makes it easy to install MarkLogic on Kubernetes.
To install Helm, follow these steps:

1. Follow the steps at Installing Helm.
2. For Windows computers, add the location of Helm to the path user environment variable.
3. Verify installation by entering this command:

helm-h

+ If the installation was successful, an explanation of the common actions appears.
« If the installation was unsuccessful, the command not found: helm error appears.

2.2. Install kubectl

kubectl is a command-line tool used as a client to connect to a Kubernetes cluster. kubectl can also be
used to run commands against a cluster, to pass Kubernetes object specifications in a YAML file, and to
deploy and manage MarkLogic resources.

To install kubectl, follow these steps:

1. Follow the steps at Install Tools: kubectl.
2. Verify the installation by entering this command:

kubectl -h
« If the installation was successful, the help content appears.

+ If the installation was unsuccessful, the command not found: kubectl error appears.

2.3. Tools for setting up the Kubernetes cluster
This section describes the tools needed to set up a Kubernetes cluster.

2.3.1. Install Minikube (for local development)

Minikube is a Kubernetes implementation that creates a virtual machine on a local machine and deploys
a cluster containing a single node.

To install Minikube for local development, follow the installation instructions in the local development
tutorial.

Start Minikube

To start Minikube, enter this command:

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 6

https://helm.sh/docs/intro/install/
https://kubernetes.io/docs/tasks/tools/
https://github.com/marklogic/marklogic-kubernetes/blob/master/docs/Local_Development_Tutorial.md
https://github.com/marklogic/marklogic-kubernetes/blob/master/docs/Local_Development_Tutorial.md

MarkLogic 11 Tools for setting up the Kubernetes cluster
Kubernetes 2.0

minikube start

Minikube Dashboard

To see the components that are created when Minikube is installed, enter this command:

minikube dashboard

2.3.2. Install Amazon Web Services Elastic Kubernetes Service (for

production)

Amazon Web Services Elastic Kubernetes Service, or EKS, is a managed Kubernetes platform
provided by Amazon Web Services. The eksctl tool is a simple way to bring up a Kubernetes cluster.

Install eksctl
To install eksctl, follow the installation instructions at Installing or updating ekscil.

Use eksctl to provision a Kubernetes cluster on EKS

The following eksctl code can be used to create a Kubernetes cluster in EKS. Replace the items in
capital letters with the correct values for your configuration. For an explanation of the parameters, see
Helm chart parameters.

eksctl create cluster \
--name CLUSTER_NAME \
—--version KUBERNETES VERSION \
--region REGION \
--nodegroup-name NODEGROUP_NAME \
--node-type NODE_TYPE \
--nodes NUMBER_OF_ NODES

2.3.3. Parameters

Value Description

CLUSTER_NAME A unique (distinctive) name for the cluster.

KUBERNETES_VERSION The version of Kubernetes in use.

NODEGROUP_NAME A unique (distinctive) name for the node group.

NODE_TYPE The type of node. It is recommended to set this to r5. large.

NUMBER_OF_NODES Total number of nodes running a MarkLogic database + nodes running other applications.

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 7

https://docs.aws.amazon.com/eks/latest/userguide/eksctl.html

MarkLogic 11 Create a MarkLogic cluster
Kubernetes 2.0

3. Create a MarkLogic cluster

This section describes how to add the MarkLogic Kubernetes repository. It includes the steps to create
a three-node MarkLogic cluster with resource allocation using a Helm Chart.

3.1. Add the MarkLogic repository

To add the MarkLogic repository to Helm, follow these steps:

1. Enter this command:
helm repo add marklogic https://marklogic.github.io/marklogic-kubernetes/

The message "marklogic™ has been added to your repositories appears.
2. Verify that the repository was added to Helm by entering this command:

helm repo list

An entry like marklogic https://marklogic.github.io/marklogic-kubernetes/
appears.
3. To ensure the Helm repository is up to date, enter this command:

helm repo update

3.2. Install the chart

NOTE

It is recommended to deploy the chart in an exclusive namespace.

To install the chart, follow these steps:

1. To create a three-node MarkLogic cluster with a resource allocation of 16 vCPUs, 128 GB RAM,
and storage of 500 GB, update the settings in the values.yaml file as shown:

NOTE

Use the latest MarkLogic Docker image for the new implementation as specified in
the values.yaml file below. Refer to dockerhub for the latest image available.

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 8

https://hub.docker.com/r/marklogicdb/marklogic-db/tags

MarkLogic 11 Install the chart
Kubernetes 2.0

Number of Marklogic nodes
replicaCount: 3

Marklogic image parameters
using the latest image 11.0.3-centos-1.0.2
image:

repository: marklogicdb/marklogic-db;

tag: 11.0.3-centos-1.0.2

pullPolicy: IfNotPresent

Configure persistence using persistent Volume Claim
persistence:

storageClass:‘“<storageClass-name>"

enabled: true

size: 500Gi

Compute Resources
resources:
requests:
cpu: 16000m
memory: 128Gi

NOTE

storageClass-name is used for gp2, gp3 (for EKS), or custom.

2. Create a Kubernetes Secret for the MarkLogic admin credentials. The secret should include the
username, password, and wallet password. The credentials should be inserted between the "'
marks when using this command:

kubectl create secret generic ml-admin-secrets \
--from-literal=username="" \
--from-literal=password="" \
--from-literal=wallet-password=""

3. Set the parameter auth.secretName in the values.yaml file:

If no secret is specified and the admin credentials are not provided, a secret will
be automatically# generated with random admin and wallet passwords.
auth:

secretName: "ml-admin-secrets"

4. Create a Kubernetes Secret for the credentials of the private image repository. Use the kubectl
create secret command with the credentials needed to access the repository. In this example,
the username and password are set:

image-repo-secrets
5. Once the secret is created, set the value for imagePul 1Secrets.name in the values.yaml file:

Configure the imagePullSecrets to pull the image from private repository that
requires credential
imagePullSecrets:
- name: "image-repo-secrets"
6. Next, install the chart to the current namespace using the settings in the values.yaml file by
entering this command:

helm install my-release marklogic/marklogic --version <version> --values values.yaml
-n <release-namespace>

Once the installation is successful, this output appears:

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 9

MarkLogic 11 Deploy Helm with HTTPS enabled
Kubernetes 2.0

NAME: my-release

LAST DEPLOYED:

NAMESPACE: <release-namespace>
STATUS: deployed

REVISION: 1

7. Verify the deployment by entering this command:

helm list -n <release-namespace>

3.3. Deploy Helm with HTTPS enabled

The MarkLogic Helm Chart supports installing MarkLogic with HTTPS enabled on the default app
servers. The default app servers are App-Services (8000), Admin (8001), and Manage (8002)

Choose the type of certificate
Two types of certificates are supported: standard certificates and temporary certificates.

» Temporary Certificates - A temporary certificate is ideal for development purposes. When using a
temporary certificate for MarkLogic App Servers, a signed certificate does not need to be supplied.
The certificate will be generated automatically.

» Standard Certificates - A standard certificate is issued by a trusted Certificate Authority (CA) for a
specific domain (host name for MarkLogic server). A standard certificate is strongly recommended
for production environments. Support is provided for both named certificates and wildcard certificates.
* Named Certificate - Each host must possess a designated certificate with a matching common

name (CN).
* Wildcard Certificate - A single wildcard certificate can be used for all hosts within a cluster.

3.3.1. Configure a MarkLogic cluster with a standard certificate
To configure a MarkLogic cluster with a standard certificate, follow these steps:

1. Obtain a certificate with a common name matching the hostname of the MarkLogic host. The
certificate must be signed by a trusted Certificate Authority (CA). Either a publicly rooted CA or a
private CA can be used. This example uses a private CA and a 2-node cluster.

2. Use this script to generate a self-signed CA certificate with openSSL. The script will create ca-
private-key.pem as the CA key and cacert.pem as the private CA certificate:

Generate private key for CA
openssl genrsa -out ca-private-key.pem 2048

Generate the self-signed CA certificate
openssl req -new -x509 -days 3650 -key ca-private-key.pem -out cacert.pem

3. Use the script below to generate a private key and CSR for the marklogic-0 pod. After running the
script, tls.key is generated as a private key and a host certificate for the marklogic-0 pod.

NOTE

The filename for the private key must be tls.key and the filename for host
certificate must be tls.crt.

* If the release name is "marklogic”, then the host name for the marklogic-0 pod will be
"marklogic-0.marklogic.default.svc.cluster.local”.
* The host name for the marklogic-1 pod will be "marklogic-1.marklogic.default.svc.cluster.local".

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 10

MarkLogic 11 Test MarkLogic Helm Chart and Docker image from ECR
Kubernetes 2.0

Create private key
openssl genpkey -algorithm RSA -out tls.key

Create CSR for marklogic-0
Use marklogic-0.marklogic.default.svc.cluster.local as Common Name(CN) for CSR
openssl req -new -key tls.key -out tls.csr

Sign CSR with private CA
openssl x509 -req -CA cacert.pem -CAkey ca-private-key.pem -in tls.csr -out tls.crt
-days 365

4. Use this script below to generate secrets for the host certificate and the CA certificate.
Repeat these steps to generate the certificate for the marklogic-1 host and create the secret
marklogic-1-cert . After running the script, secrets are created for marklogic-0 and
marklogic-1. One secret is also created for the private CA certificate.

Generate Secret for marklogic-0 host certificate
kubectl create secret generic marklogic-0-cert --from-file=tls.crt --from-file=tls._key

Generate Secret for private CA certificate
kubectl create secret generic ca-cert --from-file=cacert.pem

5. Once the certificate is created within Kubernetes secrets, add the following section to
the values.yaml file and follow the instructions outlined in Install the chart.

tis:
enableOnDefaul tAppServers: true
certSecretNames:
- "marklogic-0-cert"
- "marklogic-1l-cert"
caSecretName: '"‘ca-cert"

3.3.2. Configure a MarkLogic cluster with a temporary certificate

To configure a temporary certificate, simply add the following option to the values.yaml file and then
follow the instructions outlined in Install the chart.

tis:
enableOnDefaul tAppServers: true

Access an SSL-enabled server with a temporary certificate

Accessing an SSL-Enabled Server with a temporary certificate requires retrieval of the certificate in
order for clients to trust it. Refer to the Accessing an SSL-Enabled Server from a Browser or WebDAV
Client of the MarkLogic Security Guide for details.

3.4. Test MarkLogic Helm Chart and Docker image from ECR

This section describes how to use MarkLogic Helm Chart and the Docker image from ECR. ECR

is an AWS managed container image registry service. It can host any OCI compatible artifact like a
Docker image or Helm Chart. For additional information, see the Amazon Elastic Container Registry
Documentation.

3.4.1. Create an ECR repository

To create an ECR repository:

1. Navigate to the AWS portal.
2. Inthe ECR Section, create a private repository.

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 11

https://docs.marklogic.com/guide/security-guide/en/configuring-ssl-on-app-servers/accessing-an-ssl-enabled-server-from-a-browser-or-webdav-client.html
https://docs.marklogic.com/guide/security-guide/en/configuring-ssl-on-app-servers/accessing-an-ssl-enabled-server-from-a-browser-or-webdav-client.html
https://docs.marklogic.com/guide/security-guide/en/securing-marklogic-server.html
https://docs.aws.amazon.com/ecr/
https://docs.aws.amazon.com/ecr/

MarkLogic 11 Test MarkLogic Helm Chart and Docker image from ECR
Kubernetes 2.0

Amazon ECR) Repositories

Private Public

Private repositories (1) Create repository

Q Find repositories ‘ 1 &

0 Repository URI Created at o Tag Scan Encryption Pull-through

name immutability frequency type cache

a2 308453789681.dkr.ecr.us-west- 16 November 2022, 18:28:46

O marklogic)
2.amazonaws.com/marklogic (UTC+01)

Disabled Manual AES-256 Inactive

3.4.2. Push the Docker image and Helm Chart

To push the Docker image and Helm Chart, refer to Pushing a Docker image and Pushing a Helm Chart
(AWS documentation).

3.4.3. Deploy the MarkLogic cluster
To deploy the MarkLogic cluster, add the Helm Chart repository and install the MarkLogic cluster.

Add the Helm Chart repository
Login by using:

aws ecr get-login-password \
--region us-west-2 | helm registry login \
—--username AWS \
--password-stdin aws_account_id.dkr.ecr.region.amazonaws.com

Install the MarkLogic cluster
To install the MarkLogic cluster:

1. Add information about the Docker image from ECR to the values.yaml file:

Marklogic image parameters

image:
repository: 308453789681 .dkr.ecr.us-west-2._amazonaws.com/marklogic
tag: 11.1.0-centos-1.1.0
pullPolicy: IfNotPresent

Configure the imagePullSecrets to pull the image from private repository that
requires credential
imagePullSecrets:
- name: "‘docker-creds"
- name: "'your-secret-name-2"

2. Install the MarkLogic cluster using the helm install command. In this example, a specific
values.yaml file is used:

helm install ml-cluster oci://308453789681.dkr.ecr.us-west-2.amazonaws.com/marklogic
-f values.yaml -n ml

3. The command will return a message similar to this:

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 12

https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-push-ecr-image.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/push-oci-artifact.html

MarkLogic 11 Topology spread constraints
Kubernetes 2.0

Pulled: 308453789681 .dkr.ecr.us-west-2.amazonaws.com/marklogic:1.0.1

Digest: sha256:c3902a1330b0928b7aec1075f16c38c865b9395e5efb0e0eb5314c903fFbc40bd
NAME: ml-cluster

LAST DEPLOYED: Thu Oct 12 14:28:21 2023

NAMESPACE: default

STATUS: deployed

REVISION: 1

NOTES:

Thank you for installing marklogic.

Your release is named ml-cluster.

3.5. Topology spread constraints

Topology spread constraints and the actual Skew and maxSkew parameters control the spread of
pods among worker nodes and zones in a cluster.

+ actualSkew is the difference between the number of pods in the most populated worker nodes or
availability zones, and the number of pods in the least populated worker nodes or availability zones.
* maxSkew is the maximum degree to which pods may be unevenly distributed.

For additional information and examples, see GitHub.

The MarkLogic Helm Chart defaults to this configuration:

- maxSkew: 1
topologyKey: kubernetes.io/hostname
whenUnsatisfiable: DoNotSchedule
labelSelector:
matchLabels:
app-kubernetes.io/name: marklogic
- maxSkew: 1
topologyKey: topology.kubernetes.io/zone
whenUnsatisfiable: ScheduleAnyway
labelSelector:
matchLabels:
app-kubernetes.io/name: marklogic

In the first rule, topologyKey is set to the hostname. This ensures that MarkLogic pods are scheduled
to all the available worker nodes evenly and that maxSkew is not exceeded.

In the second rule, the topologyKey is set to the zone. This setting attempts to schedule the pods
onto worker nodes located in different availability zones. If the topologyKey zone has an even
distribution, the rule only applies to nodes with the label zone: <any value>. Nodes without a zone
label are skipped.

When the actual Skew of all the nodes exceeds maxSkew, the rules are unsatisfied. When the rules
are unsatisfied, whenUnsatisfiable controls what happen next:

+ ifwhenUnsatisfiable is set to DoNotSchedule, pods are not scheduled to the worker nodes.
* IfwhenUnsatisTiable is set to ScheduleAnyway, pods are scheduled to the worker nodes. Pods
are scheduled even if the rule is unsatisfied.

3.6. Retrieve the MarkLogic admin credentials

If credentials were not provided for the admin user when installing the MarkLogic Chart, a randomly
generated alphanumeric value was used. This value is stored in Kubernetes Secrets.

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 13

https://github.com/kubernetes/enhancements/tree/master/keps/sig-scheduling/895-pod-topology-spread#maxskew

MarkLogic 11 Configuration options for Helm
Kubernetes 2.0

NOTE

Custom admin credentials can also be set using the auth parameter during
installation.

To retrieve the randomly generated admin credentials from Kubernetes Secrets, follow these steps:

1. List the secrets for a MarkLogic deployment by entering this command:

kubectl get secrets -n <release-namespace>

2. Find the appropriate secret. The secret generated by the Helm Chart has the format <release-
name>-admin. For example, if release-name = marklogic, the secret that contains the admin
username, password, and wallet password is marklogic-admin.

3. Retrieve the encoded credentials by entering this command:

kubectl get secret marklogic-admin -n <release-namespace> SECRET_NAME -o
Jjsonpath="{.data}"

4. Use the output to decode the credentials. For example, if the encoded password is
UyFCXCpkJHpECc219, enter this command to decode the password:

echo "UyFCXCpkJHpEc219" | base64 --decode
5. Repeat the process described in step 4 for the username and wallet password.

3.7. Configuration options for Helm
This section describes Helm configuration options.

3.7.1. values flag

The values flag points to a YAML file. The values in this file will override the default Helm values.

To view the default configuration variables, enter this command:
helm show values marklogic/marklogic --version <version>

To set different values with a YAML file, follow these steps:

1. Create a values.yaml file with custom values as needed. See Helm chart parameters for a list of
parameters.

2. After creating the values.yaml file, install MarkLogic by entering this command:

helm install my-release marklogic/marklogic --version <version> --values values.yaml
-n <release-namespace>

3.7.2. set flag

The set flag can be used to make one or more configuration changes directly as shown in this example:

helm install my-release marklogic/marklogic --version <version> \
--set imagePullSecret.registry="https://index.docker.io/v1l/™ \
--set imagePullSecret.username=YOUR_USERNAME \

--set imagePullSecret.password=YOUR_PASSWORD \ -n <release-namespace>

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 14

MarkLogic 11 Configuration options for Helm
Kubernetes 2.0

NOTE

It is recommended to use the values.yaml file for configuring an installation.

3.7.3. High availability and pod anti-affinity

To attempt to provide the highest availability deployment, the MarkLogic Helm Chart provides a default
affinity configuration that prefers to schedule one MarkLogic pod per worker node using the preferred
rule. However, if a one-MarkLogic-pod-per-worker node configuration must be strictly enforced, the
required rule is recommended.

Preferred rule

The preferred rule, podAntiAffinity:
preferredDuringSchedul inglgnoredDuringExecution, is a softly enforced rule that prefers
scheduling MarkLogic pods on different worker nodes:

affinity:
podAntiAfFinity:
preferredDuringSchedul inglgnoredDuringExecution:
- weight: 100
podAffinityTerm:
labelSelector:
matchExpressions:
- key: app-kubernetes.io/name
operator: In
values:
- marklogic
topologyKey: kubernetes.io/hostname

However, the rule will still co-locate the MarkLogic pods if the worker nodes are limited.

Required rule
The strict rule, podAntiAfFinity: requiredDuringSchedulinglgnoredDuringExecution, is
a rigidly enforced rule that requires scheduling MarkLogic pods on different worker nodes:

affinity:
podAntiAffinity:
requiredDuringSchedul inglgnoredDuringExecution:
- labelSelector:
matchExpressions:
- key: app-.kubernetes.io/name
operator: In
values:
- marklogic
topologyKey: kubernetes.io/hostname

Use this rule, for example, if there is only one worker node but you want to create two MarkLogic pods.
In this case, the rule will cause the second pod to remain in pending status until a second worker node
with adequate resources is created.

Pods running on different worker nodes and in separate zones

Spreading resources across availability zones is part of the availability equation in the cloud. However,
because the MarkLogic Helm Chart may be used in non-cloud environments, there is no default affinity
setting that includes zones. To deploy to the cloud and to deploy across zones, include a pod affinity
for topologyKey: topology.kubernetes. io/zone. This affinity rule prefers scheduling pods to
run on different worker nodes and in separate zones:

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 15

MarkLogic 11 Configuration options for Helm
Kubernetes 2.0

affinity:
podAntiAffinity:
preferredDuringSchedulinglgnoredDuringExecution:
- weight: 100
podAffinityTerm:
labelSelector:
matchExpressions:
- key: app.kubernetes.io/name
operator: In
values:
- marklogic
topologyKey: kubernetes.io/hostname
- weight: 100
podAffinityTerm:
labelSelector:
matchExpressions:
- key: app.kubernetes. io/name
operator: In
values:
- marklogic
topologyKey: topology.kubernetes.io/zone

3.7.4. Security context

Security context defines privilege and access control settings for a pod or container. By

default, security context for containers is enabled with the runAsUser, runAsNonRoot, and
allowPrivilegeEscalation settings. To configure these values for containers, set the
containerSecurityContext in the values.yaml file or use the --set flag. You can also add
security context settings to the containerSecurityContext configuration. See Configure a Security
Context for a Pod or Container for additional information.

This is the current configuration:

containerSecurityContext:
enabled: true
runAsUser: 1000
runAsNonRoot: true
allowPrivilegeEscalation: true

WARNING

This security context should not be modified. See Known issues and limitations.

3.7.5. Network policy

S NOTE
To use network policies, the networking solution used must support NetworkPolicy.
Creating a NetworkPolicy resource without a controller that implements it will have no
effect. See Prerequisites for further information.

NetworkPolicy can be used to control network traffic flow for applications and to specify how pods
should communicate. By default, network policy is disabled in the values.yaml file. To enable it, set

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 16

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/concepts/services-networking/network-policies/#prerequisites

MarkLogic 11 Enable log collection
Kubernetes 2.0

the networkPolicy.enabled parameter to true. Default ports are provided in the settings. Custom
rules for the sources of the traffic to the desired ports can also be defined.

The default configuration is that ports 8000-8020 are open.

ports:
- port: 8000
endPort: 8020
protocol: TCP

3.7.6. Assign pod priority

Pod priority can be used to indicate the significance of a pod compared to other pods. Assigning
priority to pods is important to ensure that high-priority pods are not preempted and can use required
resources. For example, if a pod cannot be scheduled, the scheduler will attempt to free up resources
by evicting lower-priority pods. When enough resources are available, the higher-priority pods can be
scheduled.

0 IMPORTANT

To ensure the availability of the database, it is highly recommended that a
PriorityClass object with the highest possible value is set for MarkLogic pods.
For more details on pod priority and PriorityClass, see Pod Priority and Preemption.

To assign priority for pods, follow these steps:

1. Add aPriorityClass. This example shows a PriorityClass with a value of 1 million:

apiVersion: scheduling.k8s.io/v1
kind: PriorityClass
metadata:
name: high-priority
value: 1000000
globalDefault: false
description: "This high priority class should be used for MarkLogic pods only."

2. SetpriorityClassName to one of the added PriorityClassNames through the values.yaml file
or by using —-set flag while installing the chart.

3.8. Enable log collection
To enable collection for MarkLogic logs, follow these steps:

1. Setthe LogCollection.enabled parameter to true.

2. Set each parameter in the logCol lection. files to true if you want to track that type of log
file or to False if you do not. See Helm chart parameters for parameter descriptions.

3. Define an output in the values.yaml file.

4. Use Fluent Bit to parse and output all the log files from each pod to the outputs specified in
the values.yaml file. See Fluent Bit's output documentation for more information on configuring
Fluent Bit output with a logging backend.

3.9. Deploy a MarkLogic cluster with multiple groups

To deploy a MarkLogic cluster with multiple groups (for example, separate E and D nodes), either

the bootstrapHostName and group.name must be configured in the values.yaml file, or the
values provided for these configurations must be set using the —--set flag while installing Helm Charts.
For example, if you want to create a MarkLogic cluster with three nodes in a dnode group and two
nodes in an enode group, start with this Helm command:

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 17

https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/
https://docs.fluentbit.io/manual/pipeline/outputs

MarkLogic 11 Deploy a MarkLogic cluster with multiple groups
Kubernetes 2.0

helm install dnode-group marklogic/marklogic --set group.name=dnode --set replicaCount=3
-n <release-namespace>

Once the deployment is complete, a MarkLogic cluster with three hosts will be running. To

add the enode group and nodes to the cluster, the bootstrapHostName must be set to

join the existing MarkLogic cluster. The first host in the other group can be used. For this

example, set bootstrapHostName to dnode-group-marklogic-0.dnode-group-marklogic-
headless.default._svc.cluster.local with this command:

helm install enode-group marklogic/marklogic --set group.name=enode --set
replicaCount=2 --set bootstrapHostName=dnode-group-marklogic-0.dnode-group-marklogic-
headless.default.svc.cluster.local-n <release-namespace>

Once the deployment is complete, there will be a new "enode" group with two hosts in the MarkLogic
cluster. Each MarkLogic group will have its own chart release. In the example, both dnode groups and
enode groups have a chart release. Each group can be handled separately.

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 18

MarkLogic 11
Kubernetes 2.0

Access MarkLogic Server in a Kubernetes cluster

4. Access MarkLogic Server in a Kubernetes cluster

You can access MarkLogic Server using native Kubernetes, MarkLogic HAProxy Load Balancer

Configuration, an HTTP Connection Through Ingress on an EKS cluster, or an ODBC connection

through Ingress in EKS.

4.1. Native Kubernetes

In a native Kubernetes environment, access MarkLogic using the ClusterlP service, DNS record, or port

forward.

4.1.1. Use the ClusterlP service

You can use the ClusterlP service to access MarkLogic within a Kubernetes cluster. The ClusterlP
service includes Helm Chart installation.

A WARNING

The Kubernetes service does not support HTTP-level load balancing and cookie-based

session affinity. To support cookie-based session affinity, use HAProxy as the load

balancer.

To use the ClusterlP service, follow these steps:

1. Use the command kubectl get services to get a list of Kubernetes services. The output will
look like this (the actual names may be different):

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterlP 10.96.0.1 <none> 443/TCP 1d
marklogic ClusterlP 10.109.182.205 <none> 8000/TCP, 8001/TCP, 8002/TCP 1d
marklogic- ClusterlP None <none> 7997/TCP,7998/TCP,7999/ 1d
headless TCP,8000/

TCP,8001/TCP,8002/TCP

2. The service you are looking for ends with "marklogic" and CLUSTER-IP <> None. In the example
above, marklogic is the service name for the ClusterlIP service. The row is shown in bold.

Additional ports

When you create a new application server on MarkLogic, you must add the new server port to

additionalPorts in the service configuration:

@param service.additionalPorts. Additional ports exposed at the service level.

Example:
- name: appl
Hit port: 8010

targetPort: 8010

HH protocol: TCP
additionalPorts:

- name: app-serverl

port: 8010

targetPort: 8010

protocol: TCP

2024-07-24 21:52

MarkLogic Server on Kubernetes

Page 19

MarkLogic 11 HAProxy
Kubernetes 2.0

4.1.2. Use the DNS record

For each Kubernetes ClusterlP service, a DNS with this format is created:
<service-name>.<namespace-name>.svc.cluster.local

For example, if the service-name is marklogic and the namespace-name is default, the DNS URL
to access the MarkLogic cluster is marklogic.default.svc.cluster.local

Because StatefulSet is used for the MarkLogic deployment, the DNS for individual pods is created
based on the headless service:

<pod-name>.<headless-service-name>._<namespace-name>_svc.cluster.local

For example, if the pod name is marklogic-0, then the headless service name is marklogic-
headless and the namespace-name is defaul t. The DNS URL to access the marklogic-0 pod is
marklogic-0.marklogic.default.svc.cluster.local.

The DNS name can be used to access a MarkLogic cluster or an individual pod if your applications are
deployed in the same Kubernetes cluster.

4.1.3. Use the port-forward command

Use the kubectl port-forward command to access MarkLogic outside of the Kubernetes cluster.
Use it to access either a specific pod or the whole cluster.

Forward to pod
To access each pod directly, use the kubectl port-forward command with this format:

kubectl port-forward <POD-NAME> <LOCAL-PORT>: <CONTAINER-PORT> -n <release-namespace>
For example, enter this command to forward port 8000 from the MarkLogic service to localhost:
kubectl port-forward svc/marklogic 8000:8001 -n <release-namespace>

This pod can now be accessed from http://localhost:8001.

Forward to service
To access the whole cluster, use the kubectl port-forward command with this format:

kubectl port-forward svc/<SERVICE-NAME><LOCAL-PORT>:<CONTAINER-PORT> -n <release-
namespace>

For example, enter this command to forward ports 8000 from the MarkLogic service to localhost:

kubectl port-forward svc/marklogic 8000:8000 -n <release-namespace>

This pod can now be accessed via http://localhost:8001.

4.2. HAProxy

MarkLogic clusters need a load balancer to handle load balancing activity. The MarkLogic Helm
Chart comes with an internal load balancer based on HAProxy. This section aims to provide clear
documentation about the configuration of the HAProxy.

4.2.1. Configuration

The HAProxy configuration is designed to be as dynamic as possible. The configuration works
efficiently with MarkLogic and should not require any modification. The configuration is separated into
five sections:

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 20

MarkLogic 11 HAProxy
Kubernetes 2.0

* Global

* Default

* Resolver DNS
* Front-ends

» Back-ends

Global section

The default HAProxy is configured to handle 1024 parallel connections. Log output is done through the
container stdout and can be checked using the kubectl log command.

Default section

timeout is set at 600s to fit with the default timeout on MarkLogic. By default, the HAProxy will forward
the client IP to MarkLogic.

To modify timeout, change the configuration in the values.yaml file:

timeout:
timeoutClient: 600s
timeoutConnect: 600s
timeoutServer: 600s

Resolver DNS

This section mainly handles the DNS configuration between HAProxy and MarkLogic server.
Front-end section

HAProxy statistics pages
The statistics page is disabled by default. It can be exposed by providing this configuration in the
values.yaml file of the chart:

stats:
enabled: false
port: 1024
auth:
enabled: false
username: "°
password:

Then, a dedicated front-end section can be configured.

MarkLogic front-end
Two different front-end types can be configured:

- HTTP
. TCP

The HTTP front-end can be configured using path-based routing or port routing. See Set up and use
path-based routing with MarkLogic Helm Chart for configuration information.

S NOTE
Path-based routing is only supported in MarkLogic 11.1 and higher.

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 21

MarkLogic 11 HAProxy
Kubernetes 2.0

TCP front-end

By default, HAProxy uses the leastconn algorithm. HAProxy selects the server with the fewest active
sessions. The logs are standard TCP output which is the recommended value for a pure TCP
connection. The TCP front-end allows the exposure of ODBC servers from MarkLogic.

To add port 5432 for TCP load balancing, add this configuration to the values.yanml file:

tcpports:
TCP port has to be explicitely enabled
enabled: true
ports:
- name: odbc
type: TCP
port: 5432

HTTP front-end

The HTTP front-ends are all configured in the same way. When path-based routing is enabled, only one
front-end section is created. Each request is handled by the relevant MarkLogic server based on the
path used. When path-based routing is not enabled, then a dedicated front-end section is created for
each port exposed.

This is the default configuration:

Path and port used on HAProxy
The same path will be used on Ingress for Default AppServers

defaultAppServers:
appservices:
path: /console
port: 8000
admin:
path: /ZadminUl
port: 8001
manage :
path: /manage
port: 8002

To add port 8010 for HTTP load balancing, add this configuration to the values.yaml file:

additionalAppServers:
- name: myappl
type: HTTP
port: 8010
targetPort: 8010
path: /myappl

Back-end section
HTTP back-ends are all configured in the same way. By default, HAProxy uses the leastconn algorithm.
HAProxy selects the server with the fewest active sessions.

Specific cookies are managed to bring session stickiness capability.

* The Hostld cookie is used for XCC connections.
» The SessionlD cookie is used for the Java client.
» A dedicated cookie is used to manage requests made through the internet browser.

Cookies are set to expired all 4 hours.

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 22

MarkLogic 11 HTTP connection through Ingress on an EKS cluster
Kubernetes 2.0

4.3. HTTP connection through Ingress on an EKS cluster

With MarkLogic 11.1 and Helm Chart release 2.0.0, it is possible to expose a MarkLogic cluster
using Ingress and path-based routing. This section describes how to do this with the Application Load
Balancer (ALB) Ingress Controller.

4.3.1. ALB Ingress
This approach uses the ALB Ingress Controller functionality provided by EKS.

@ NOTE
This approach will not address ODBC exposition, as ALB Ingress only supports
HTTP/HTTPS connections. See ODBC connection through Ingress in EKS for further
information.

ALB Ingress limitations

» 100 total rules per application load balancer.
» Typically, only 100 Ingresses per ALB.

» 5 condition values per rule.

* 5 wildcards per rule.

* 5 weighted target groups per rule.

* Only HTTP/HTTPS protocol.

Install ALB Ingress

To install ALB Ingress, see AWS Load Balancer Controller installation.

NOTE
To use External DNS, see Setup External DNS.

This feature is still in alpha release and should not be used in production.

Ingress definition
When you install ALB Ingress, the Ingress definition automatically creates an ALB.

Configure the paths
To configure the paths, use these values in the values.yaml file in the HAProxy section of the Helm
Chart:

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 23

https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.4/deploy/installation/
https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.4/guide/integrations/external_dns/

MarkLogic 11 HTTP connection through Ingress on an EKS cluster
Kubernetes 2.0

Used if MarkLogic Default APP-Servers are meant to be exposed under subpath different
from /

HHHH R

IMPORTANT NOTE:
This feature is only supported with MarkLogic 11.1 and higher.
See Limitations and known Issues in the README file.

HHHH B H AR R H R AR

pathbased:
enabled: true

This the default listening port in the Front-End section of the HAProxy when using Path
based routing
frontendPort: 443

Path and port used on HAProxy
The same path will be used on Ingress for Default AppServers

defaul tAppServers:
appservices:
path: /console
port: 8000
admin:
path: /ZadminUl
port: 8001
manage :
path: /manage
port: 8002

Configure the Ingress definition
The Ingress definition can be configured in the values.yaml file:

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 24

MarkLogic 11 HTTP connection through Ingress on an EKS cluster
Kubernetes 2.0

Configure Ingress

B HHHHHHH AR HHHH AR R

IMPORTANT NOTE:
Ingress is only supported with MarkLogic 11.1 and higher.
See Limitations and known Issues in the README file.

BHAHHHHHHHHH AR AR R AR HHHH R AR AR

ref: https://kubernetes.io/docs/concepts/services-networking/ingress/
ingress:
enabled: true

Ingress class
ref: https://kubernetes.io/docs/concepts/services-networking/ingress/#ingress-class
className: "alb"

Ingress labels
ref: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
labels:

app-kubernetes.io/instance: marklogic

app-kubernetes.io/name: ml

Ingress annotations
ref: https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
annotations:
alb.ingress._kubernetes.io/healthcheck-port: "443"
alb.ingress.kubernetes. io/healthcheck-path: /adminUl
alb.ingress._kubernetes.io/success-codes: "200-401"
alb.ingress.kubernetes.io/load-balancer-name: ml
alb.ingress.kubernetes.io/scheme: internet-facing
alb.ingress._kubernetes.io/listen-ports: "[{"HTTPS":443}]"
alb.ingress._kubernetes.io/target-group-attributes:
load_balancing.algorithm.type=least_outstanding_requests
alb.ingress.kubernetes.io/certificate-arn: arn:aws:acm:us-
west-2 : XXXXXXXXXXX : certificate/XxXXXXXXX-xxxX=XXXX=XXXX = XXXXXXXXXXXXXX
alb.ingress._kubernetes.io/target-type: ip
alb.ingress.kubernetes.io/group.name: ml-group
alb.ingress.kubernetes. io/load-balancer-attributes:
idle_timeout. timeout_seconds=600,routing.http.xff_header_processing.mode=append

NOTE

The path definition of the Ingress will be the same as defined in the HAProxy section.

Configuration details

Code Description

alb.ingress.kubernetes.io/ Specifies the port on which to perform the health check.

healthcheck-port
See alb.ingress.kubernetes.io/healthcheck-port.

alb.ingress.kubernetes.io/ Specifies the path used for the health check.

healthcheck-path
See alb.ingress.kubernetes.io/healthcheck-path.

alb.ingress.kubernetes.io/load- Specifies the prefix for the name of the ALB. Note that name impacts the entire
balancer-name: mi IngressGroup.

See alb.ingress.kubernetes.io/load-balancer-name.

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 25

https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.4/guide/ingress/annotations/#healthcheck-port
https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.4/guide/ingress/annotations/#healthcheck-path
https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.4/guide/ingress/annotations/#load-balancer-name

MarkLogic 11
Kubernetes 2.0

HTTP connection through Ingress on an EKS cluster

Code

Description

alb.ingress.kubernetes.io/scheme:
internet-facing

Specifies the scheme. Because MarkLogic app-servers should be exposed from outside of
the cluster and outside of the cloud, this is set it to internet-facing.

See alb.ingress.kubernetes.io/scheme.

alb.ingress.kubernetes.io/listen-
ports

Specifies the listening port for each Ingress. The syntax is : <protocol>:<port>.
Protocol can only be HTTP or HTTPS.

See alb.ingress.kubernetes.io/listen-ports.

alb.ingress.kubernetes.io/target-
group-attributes

Specifies the target group attributes as the load balancing algorithm.

See alb.ingress.kubernetes.io/target-group-attributes.

alb.ingress.kubernetes.io/
certificate-arn

Specifies the certificates to be used (HTTPS termination on the ALB should be enabled).

See alb.ingress.kubernetes.io/certificate-arn.

alb.ingress.kubernetes.io/target-
type

Specifies the target type. The target type can be instance or ip.
instance type is only available if the target service is type NodePort.

See alb.ingress.kubernetes.io/target-type.

alb.ingress.kubernetes.io/
group.name

Specifies the group name for the ALB. This allows several Ingresses to use the same ALB.

group.name and load.balancer.name have to be the same in the same IngressGroup.

See alb.ingress.kubernetes.io/group.name.

For additional annotations, see the complete list.

Check the ALB

Go to the AWS Console and check what the created ALB looks like:

EC2 > Load balancers

Load balancer (1/4)

Elastic Load Balancing scales your load balancer capacity automatically in response to changes in incoming traffic.

Q
-] Name v DNS name
ml-odbc-
ml-odbc
nginx-ingress
haproxy-ingress
ml-lb

Listener rules (4) info

1 @

v State v VPCID v Availability Zones v Type v

: vpc- o L
© Active 05051ebd88161ef87 3 Availability Zones network
. vpc- o L : "
Act 3 Availability Z
O Active 05051ebd88161ef87 3 Avaliability zones application
N vpc- o Ty " :
3 Availability Z
@ Active 05051ebd88161ef87 wailability Zones application
. vpc- I _—
3 Availability Zones
@ Active B TG vailability application ‘

Traffic received by the listener is routed according to the default action and any additional rules. Rules are evaluated in priority order from the lowest value to the highest value.

Q Filter rules

| ®

(]} Name tag Priority Conditions (If) | Actions (Then) ‘ ARN ‘ Tags
Forward to target group
O - 1 Path Pattern is /console OR /console/* « k8s-ml-mlcluste-5a129a0742 [Z: 1 (100%) ARN 3tags
* Group-level stickiness: Off
Forward to target group
O 2 Path Pattern is /adminUl OR /adminUI/* « k8s-ml-mlcluste-5a129a0742 [Z: 1 (100%) ARN 3tags
* Group-level stickiness: Off
Forward to target group
O 3 Path Pattern is /manage OR /manage/* * k8s-ml-mlcluste-5a129a0742 [: 1 (100%) ARN 3 tags
* Group-level stickiness: Off
Return fixed response
Last * Response code: 404
Default If no other rule applie: T ARN 0 tags
O erau (default) g 1 rute applies ¢ Responsebody = o %

* Response content type: text/plain

2024-07-24 21:52

MarkLogic Server on Kubernetes Page 26

https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.4/guide/ingress/annotations/#scheme
https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.4/guide/ingress/annotations/#listen-ports
https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.4/guide/ingress/annotations/#target-group-attributes
https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.4/guide/ingress/annotations/#certificate-arn
https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.4/guide/ingress/annotations/#target-type
https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.4/guide/ingress/annotations/#group.name
https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.4/guide/ingress/annotations/#annotations

MarkLogic 11 HTTP connection through Ingress on an EKS cluster
Kubernetes 2.0

Route53

Because the ALB scheme is specified as internet-facing, the automatically generated DNS name can
be used. However, it is more convenient to use a proper DNS name. This is done using Route53:

1. Configure Route53 with one hosted zone:

Route 53 > Hosted zones

Hosted zones (1)

Automatic mode is the current search behavior optimized for best filter results. To change modes go to settings.
Q 1 @
Domain name Type Created by Record count Description Hosted zone ID
mil-kube.com Public Route 53 9 HostedZone created by Route... Z0659197D6CT1HZSNBHAS

2. Create a dedicated record to point to the ALB:

Route53 > Hosted zones » mi-kube.com Record details & X

@ml-kube.com Info ‘ Delete zone H Test record H Configure query logging ‘ ‘ Edit record

» Hosted zone details Edithosted zone Record name

mi-cluster.ml-kube.com

DNSSEC signing Hosted zone tags (0)

Record type
A

Records (1/9) nfo

Automatic made is the current search behavior optimized for best filter results. Ta change modes go to settings. Vvalue
dualstack.ml-1b-2121052492.us-west-

| Delete record Import zone file 2.elb.amazonaws.com.

Q v v v @

Alias

-] Record name Type Routin... Differ... Value/Route traffic to I ves

ns-1937.awsdns-50,gpme
ns-506.awsd} "com. TTL (seconds)

NS Simple ns-63G4€0ns- 15.net.
348.awsdns-40.0rg.
SOA Simple - ns-1937.awsdns-50.co.uk. awsdns-hostmaster.amazon.com. 17200 9...
Routing policy
CNAME Simple d _da1234856c84cf5d8b15aazdfb7ac8cd zrvsvrxrgs.acm-validations.a... simple
A sj - dualstack.nginx-ingress-1792723479.us-west-2.elb.amazonaws.com.
A Simple - dualstack.haproxy-ingress-917974803.us-west-2.elb.amazonaws.com.
A simple - dualstack.haproxy-ing 17974803.us-west-2.elb, om.
‘ mi-cluster.mi-kube.com #* A Simple - dualstack.ml-Ib-2121052492.us-west-2.elb.amazonaws.com.
m A Simple - ml-odbc-5ae8f4961596678c.elb.us-west-2.amazonaws.com.
A Simple - dualstack.haproxy-ingress-917974803.us-west-2.elb.amazonaws.com.

4.3.2. Set up and use path-based routing with MarkLogic Helm Chart

Helm Chart release 2.0.0 includes the ability to setup and use path-based routing to access a
MarkLogic cluster. This include the capability to use Ingress.

Limitations
Path-based routing and Ingress features are only supported on MarkLogic 11.1 and higher.

Prerequisites

The HAProxy LoadBalancer needs to be enabled to use path base routing and Ingress
See Section HAProxy LoadBalancer.

Path bath routing configuration

Enable path-based routing
Path- based routing is disabled by default. To enable it, use this configuration in the values.yanl file
for the chart installation:

pathbased:
enabled: true

Front-end port configuration
Configure the front-end port to expose the HAProxy in the values.yaml file using this code:

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 27

MarkLogic 11 HTTP connection through Ingress on an EKS cluster
Kubernetes 2.0

frontendPort: 443

Default App Server path and back-end port
Configure the path and back-end port for the default App Servers in the chart installation
values._yaml file:

defaul tAppServers:
appservices:
path: /console
port: 8000
admin:
path: /adminUl
port: 8001
manage :
path: /manage
port: 8002

Additional App Server
Include additional App Servers in the HAProxy configuration using the values.yaml file:

additionalAppServers:
- name: dhf-jobs
type: HTTP
port: 8010
targetPort: 8010
path: /DHF-jobs
- name: dhf-final
type: HTTP
port: 8011
targetPort: 8011
path: /DHF-final

Ingress configuration

Enable Ingress
Ingress routing is disabled by default. To enable it, use this configuration in the values.yaml file:

ingress:
enabled: false

Paths and ports configuration
The paths and ports only need to be configured in the HAProxy. The Ingress will automatically adapt its
configuration to use what is defined there.

Ingress Class
Ingresses can be implemented by different controllers with different configurations. Each Ingress should
specify a class in the values.yaml file. In this example, the AWS ALB Ingress Controller is specified.

className: "alb"

Annotations

Some Ingress controllers require specific annotations. This example shows a configuration for an ALB
Ingress Controller on AWS. See HTTP connection through Ingress on an EKS cluster for additional
information.

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 28

MarkLogic 11 ODBC connection through Ingress in EKS
Kubernetes 2.0

annotations:
alb.ingress.kubernetes. io/healthcheck-port: "443°
alb.ingress._kubernetes.io/healthcheck-path: ZadminUl
alb.ingress.kubernetes.io/success-codes: "200-401"
alb.ingress.kubernetes.io/load-balancer-name: ml
alb.ingress.kubernetes.io/scheme: internet-facing
alb.ingress._kubernetes.io/listen-ports: "[{"HTTPS":443}]"
alb.ingress.kubernetes.io/target-group-attributes:

load_balancing.algorithm.type=least outstanding_requests
alb.ingress.kubernetes.io/certificate-arn: arn:aws:acm:us-

west-2 - XXXXXXXXXXX : certi Ficate/XxXXXXXXX=XXXX—-XXXX-XXXX=XXXXXXXXXXXXXX
alb.ingress.kubernetes.io/target-type: ip
alb.ingress._kubernetes.io/group.name: ml-group
alb.ingress._kubernetes.io/load-balancer-attributes:

idle_timeout. timeout_seconds=600,routing.http.xff_header_processing.mode=append

Access MarkLogic Cluster
After path-based routing is configured, access the Ul using these addresses:

Component URL

QConsole https://example.com/qconsole/console
Admin Ul https://example.com/adminUl/

Manage Ul https://example.com/manage/dashboard

4.4. ODBC connection through Ingress in EKS

Ingress does not support TCP or UDP services. However, most Ingress controllers can point to an
existing config map where the key is the external port and the value indicates the service to expose.
This automatically adds frontend/backend entries to the Ingress controller configuration. To do this,

use the -—configmap-tcp-services argument. Nginx and taefix manage TCP connections using a
Kubernetes object called IngressRoute TCP.

This section contains information on exposing an ML ODBC App-server on an EKS cluster using
HAProxy as an Ingress controller.

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 29

MarkLogic 11 ODBC connection through Ingress in EKS
Kubernetes 2.0

4.4.1. Macro Architecture

Ing Service

0O O

Ingress Ingress
Contraller Coniraller

4.4.2. MarkLogic ODBC config
The ODBC App server is configured using SQL Quick Start.

4.4.3. MarkLogic HAProxy Load Balancer Configuration

This section describes how to configure the HAProxy Load Balancer.

Configure the ODBC App Server

First, configure the ODBC App Server by providing these values in the values.yaml file:

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 30

https://docs.marklogic.com/guide/sql/setup#chapter

MarkLogic 11 ODBC connection through Ingress in EKS
Kubernetes 2.0

Ports and load balancing type configuration for HAproxy
There are three types of backends supported:
1. HTTP: HTTP(Layer 7) proxy mode. This works for most of the App Servers handling
HTTP connections.
2. TCP: TCP(Layer 4) proxy mode. This works for the MarkLogic App Servers handling TCP
connections like ODBC.
ports:
- name: app-service
type: HTTP
port: 8000
targetPort: 8000
- name: admin
type: HTTP
port: 8001
targetPort: 8001
- name: manage
type: HTTP
port: 8002
targetPort: 8002
- name: odbc
type: TCP
port: 5432

Auto-generated HAProxy configuration file
After adding the values to the values.yaml file, this appears in the auto-generated HAProxy
configuration file:

0ODBC

frontend ml-cluster-odbc
description "ml-cluster-odbc"

mode tcp

option tcplog

bind :5432

use_backend ml-cluster-odbc

backend ml-cluster-odbc
description "ml-cluster-manage"
mode tcp
balance leastconn

server ml-enode-mlenode-0 ml-enode-mlenode-0.ml-enode-mlenode-
headless.ml_svc.cluster.local:5432 check resolvers dns init-addr none

server ml-enode-mlenode-1 ml-enode-mlenode-1.ml-enode-mlenode-
headless.ml.svc.cluster.local:5432 check resolvers dns init-addr none

Code explanation
In the Auto-generated HAProxy configuration file:

* mode tcp - This mode is used because Layer4 LB is only required for ODBC connections.

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 31

MarkLogic 11
Kubernetes 2.0

ODBC connection through Ingress in EKS

« option tcplog - This allows the log output to be enriched with data from the connection timers,
the session status, the connection numbers, the frontend, backend, and server name. The source
address and ports can also be included.

* balance leastconn - With this configuration, HAProxy selects the servers with the fewest active
sessions.

Service

After the HAProxy configuration file is generated, this service is deployed for the HAProxy load

balancer:

apiVersion: vl
kind: Service
metadata:
annotations:
meta.helm.sh/release-name: ml-enode
meta.helm.sh/release-namespace: ml
labels:
app-kubernetes.io/instance: ml-enode
app - kubernetes. io/managed-by: Helm

app-kubernetes.io/name: ml-1b
no u

app-kubernetes. io/version:
helm.sh/chart: ml-1b-2.7

name: ml-enode-ml-1b
namespace: ml-1b

spec:
clusterlP: 10.100.14.59
clusterlPs:

internalTrafficPolicy: Cluster

10.100.14.59

ipFamilies:

1Pv4

ipFamilyPolicy: SingleStack
ports:

name: https

port: 443

protocol: TCP
targetPort: https
name: ml-admin

port: 8001

protocol: TCP
targetPort: ml-admin
name: ml-manage
port: 8002

protocol: TCP
targetPort: ml-manage
name: ml-odbc

port: 5432

protocol: TCP
targetPort: ml-odbc
name: ml-query

port: 8000

protocol: TCP
targetPort: ml-query
name: stat

port: 1024

protocol: TCP
targetPort: stat

selector:
app-kubernetes.io/instance: ml-enode

app-kubernetes.io/name: ml-Ib

sessionAffinity: None
type: ClusterlP

2024-07-24 21:52

MarkLogic Server on Kubernetes

Page 32

MarkLogic 11 ODBC connection through Ingress in EKS

Kubernetes 2.0

Code explanation
In the Service code, this section is dedicated to ODBC:

- name: ml-odbc
port: 5432
protocol: TCP
targetPort: ml-odbc

NOTE

The service is a standard ClusterlP service.

4.4.4. HAProxy Ingress Controller configuration

The Ingress controller is exposed using NodePort and the -—configmap-tcp-services
functionality.

Service configuration
The HAProxy Ingress controller service is configured using this code:

2024-07-24 21:52 MarkLogic Server on Kubernetes

Page 33

MarkLogic 11
Kubernetes 2.0

ODBC connection through Ingress in EKS

apiVersion: vl
kind: Service
metadata:
annotations:
meta.helm.sh/release-name: haproxy
meta.helm.sh/release-namespace: ingress
labels:
app-kubernetes. io/instance: haproxy
app-kubernetes. io/managed-by: Helm
app-kubernetes.io/name: kubernetes-ingress
app-kubernetes.io/version: 1.8.3
helm.sh/chart: kubernetes-ingress-1.22.4
name: haproxy-kubernetes-ingress
namespace: ingress
spec:
clusterliP: 10.100.226.75
clusterlPs:
- 10.100.226.75
externalTrafficPolicy: Cluster
internalTrafficPolicy: Cluster
ipFamilies:

- 1Pv4
ipFamilyPolicy: SingleStack
ports:
- name: http
nodePort: 31080
port: 80

protocol: TCP
targetPort: http
- name: https
nodePort: 31443
port: 443
protocol: TCP
targetPort: https

- name: stat
nodePort: 31024
port: 1024

protocol: TCP
targetPort: stat
- name: ml-odbc-tcp
nodePort: 31032
port: 5432
protocol: TCP
targetPort: 5432
- name: healthz-tcp
nodePort: 31042
port: 1042
protocol: TCP
targetPort: 1042
selector:
app-kubernetes. io/instance: haproxy
app-kubernetes.io/name: kubernetes-ingress
sessionAffinity: None
type: NodePort

Code explanation
In the Service configuration, the ODBC code is:

- name: ml-odbc-tcp
nodePort: 31032
port: 5432
protocol: TCP
targetPort: 5432

The port is exposed using nodePort: 31032.

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 34

MarkLogic 11 ODBC connection through Ingress in EKS
Kubernetes 2.0

configmap-tcp-services
To create a dedicated configmap:

» Use --configmap-tcp-services with this code:

apiVersion: vl
data:
"5432": ml-1b/ml-enode-ml-1b:5432
kind: ConfigMap
metadata:
annotations:
kubectl .kubernetes.io/last-applied-configuration: |
{"apiVersion":"v1","data" : {"'5432" :"'ml-1b/ml-enode-
ml-1b:5432"},"kind":""ConfigMap", "'metadata":{""annotations™":{}, " labels":{"app.kubernetes.io/
instance:"haproxy","app.kubernetes. io/name':""kubernetes-ingress"}, ""name":"ml-odbc-
config", ""namespace':""ingress'}}
labels:
app-kubernetes. io/instance: haproxy
app-kubernetes.io/name: kubernetes-ingress
name: ml-odbc-config
namespace: ingress

Code explanation
In configmap-tcp-services:

» The configuration is typically done with this code:

data:
""5432": ml-1b/ml-enode-ml-1b:5432

<ingress-tcp-sevice-port> : <tcp-service-to-be-exposed-namespace>/<tcp-service-name-to-
be-exposed>
» Port 5432 is exposed at the Ingress controller service level and the ML LB ODBC port is bound.

Ingress controller Helm Chart level
At the Ingress controller Helm Chart level, this was specified in the values.yaml file:

Additional command line arguments to pass to Controller
ref: https://github.com/haproxytech/kubernetes-ingress/blob/master/documentation/
controller.md

extraArgs:

- --namespace-whitelist=default

- --namespace-whitelist=namespacel
- --namespace-blacklist=namespace?2

- —-configmap-tcp-services=ingress/ml-odbc-config

Additional tcp ports to expose

This is especially useful for TCP services:

https://github.com/haproxytech/kubernetes-ingress/blob/master/documentation/
controller.md

tcpPorts:
- name: ml-odbc
port: 5432

targetPort: 5432
nodePort: 31032
Controller Service configuration
ref: https://kubernetes.io/docs/concepts/services-networking/service/
service:
enabled: true # set to false when controller.kind is "DaemonSet” and
controller.daemonset.useHostPorts is true

type: NodePort # can be "ClusterlIP®, "NodePort®" or "LoadBalancer®

Code explanation
In the Ingress controller Helm Chart level:

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 35

https://www.haproxy.com/documentation/kubernetes/latest/configuration/controller/#--configmap-tcp-services

MarkLogic 11 ODBC connection through Ingress in EKS
Kubernetes 2.0

* extraArgs specifies which configmap is used. The tcp service syntax is:

- —-configmap-tcp-services=<configmap-namespace>/<configmap-name>
* tcpPorts specifies the additional tcp ports exposed by the Ingress controller service.
* The Ingress controller service is specified as NodePort.

4.4.5. Network load balancer security group

To allow the network Load Balancer to communicate with the worker node on the NodePort, create a
dedicated security group:

1. First, configure the inbound rules:
a. Set the port range on the NodePort to 31032
b. Restrict the source as the CIDR related to the private VPC of the EKS cluster.

Inbound rules (1/1) ‘ Manage tags ‘ [Edit inbound rules
Q 1 @
Name v Security group rule ID v IP version v Type v Protocol v Port range v Source
l - Sqr-0b2696546¢6fcf258 1Pv4 Custom TCP Tcp 31032 192.168.0.0/16

2. There are no restrictions on outbound rules:

sg-0c722eb9e6e4e50e4 - ml-odbe-lb

Details Inbound rules Outbound rules Tags

® You can now check network connectivity with Reachability Analyzer Run Reachability Analyzer X

Outbound rules (1/1) l Manage tags ‘ l Edit outbound rules |
Q d @
Name v Security group rule... v IP version v Type v Protocol v Port range v Destination v
‘ = sgr-0309aafafdabf4e70 IPv4 All traffic Al Al 0.0.0.0/0

3. Attach the security group to the worker nodes. This must be done for all the worker nodes:

Instance: i-05425edd32bab23af (rwiniesk-rwiniesk-ng-Node) @ X

¥ Inbound rules

Q_ Filter rules 1
Name | Security group rule ID | Portrange | Protocol | Source | Security groups | Description
- sgr-0886d4380a6097324 All All 59-0f772613173554b39 [4 eks-cluster-sg-rwiniesk-1833452130 [-
- 5gr-069388bcd070a6¢15 80 - 8080 TCP 5g-0c39823b19d06741e [eks-cluster-sg-rwiniesk-1833452130 [4 elbv2.k8s.aw
- sgr-07eba08e4519e4845 All All 5g-Odabbce15738c59¢6 [eks-cluster-sg-rwiniesk-1833452130 [4 Allow unmar
- sgr-0b2696546c6fcf258 31032 TCP 192.168.0.0/16 ml-odbe-lb [F -

4.4.6. AWS Network Load balancer

To configure the network load balancer:

1. Configure the load balancer to listen on port 31032 (or another tcp port).

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 36

MarkLogic 11
Kubernetes 2.0

ODBC connection through Ingress in EKS

EC2 > Loadbalancers > ml-odbc

ml-odbc

v Details

i ing: 1-2:30845378968

Load balancer type DNS name

Network Load Balancer

IP address type Scheme

1Pva Internet-facing

ml-odbc-52e8f4961596678c.elb.us-west-
2.amazonaws.com (A Record)

-/52e8f4961596678¢

Status

Active

Availability Zones

subnet-042ba54fe596e404c [us-west-2a (usw2-

az1)

VPC
vpc-05051ebd88161ef87 [4

Hosted Zone
Z18D5FSROUN65G

subnet-0c227b010e29f53e4 [us-west-2c (usw2-

az3)

subnet-0adab88b8c5130d47 [4 us-west-2d

(usw2-az4)

Listeners Network mapping Monitoring Integrations

Listeners (1)

Attributes

Tags

Alistener checks for connection requests on its port and protocol. Traffic received by the listener is routed according to its rules.

Q search
O Protocol:Port[4 v | ARN ¥ Security policy
O TCP:31032 ARN Not Applicable

v | Default SSL cert [2

Not Applicable

v | Default routing rule [4 v

1 (o]

ALPNpolicy v | Tags[2 v

Forward to ml-odbc None 0

2. Configure the listeners to forward on a specific target group. In this example, the target group has 3
worker nodes registered bind on the NodePort 31032 specific to the Ingress Controller service port

for ODBC.

3. Perform a health check by pinging the tcp port specified. In this example, it is protocol port 31302:

EC2 » Targetgroups » mi-odbe

ml-odbc

Details

s elasticloadhalancing us-west 2

Target type Protocal - Part

P TCP:31032

Load balancer

ml-odhe 3

Tatal targets Healthy Unhealthy

3 @3 @0
Targets Monitoring Health checks Attributes Tags
Registered targets (3}
Q

IP address A4 Port v Zane
192.168.80.151 31032 us-west-2d
192.168.50,204 31032 us-west-2a
192.168.3.102 31032 us-west-2c

4.4.7. Route53 configuration

To configure Route53:

vPC
wpe-05051ebd88161ef87 [

Unused

v Health status v
© healthy

@ healthy

@ healthy

1. Configure Route53 with ml-kube . com as a hosted zone.

Route 53 > Hosted zones

Hosted zones (1)
Aucamatic mod s the cunent sarch behavior optimizad for best filte results. To changs modes go to settings.

Q

Domain name v Type v Createdby v

ml-kube.com Route 53

2. Specify a dedicated record for ODBC:

2024-07-24 21:52

2

Record count ¥ Deseription

Actions ¥

1P address type

IPua.
Initial Draining
0 o

Register torgets |

1 @

Health status details

1 ®

v Hosted zone ID v

8

MarkLogic Server on Kubernetes

d by

Page 37

MarkLogic 11
Kubernetes 2.0

ODBC connection through Ingress in EKS

Raute 53 > Hosted zones > mi-kube.com

@ ml-kube.com ..

» Hosted zone details

Records (8) DNSSEC signing

Records (1/8) info

Record details @ X

Hosted zone tags (0)

Delete zone

Test record H Configure query lagging |

Edit record

Edit hosted zone

Ausomatic made is the current search behavior optimized for best fitter results. T change mades go to setiings.

[G][vewercora || mportzonerne | EETEEN
Q v v v 1 @
a Record name v Type ¥ Routin... Differ... v Value/Route traffic to v
ns-1937 awsdns-50.co.uk.
) 5-506,awsdns-63.com
mil-kube.com s Slmgle ns-636.awsdns-15.net.
n5-1348.awsdns-40.0rg.
mil-kube.com soa Simple 151937 awsdns-50.co.uk. awsdns-hostmaster.am.
_e576¢7e3d602ch7. CNAME simple _da1234856¢84¢(5d8h152a2dMb7ackcd zrvevrg. .
eks-1.ml-kube.com A simple dualstack.ngink-ingress-1792723479.us-west-2.eL...
ks mi-kube.com A simple dUaIStacK.NBPrORy-INgress-917974803 Us-West-2....
eks11.mi-kube.com A Simple dualstack.naproxy-ingress-917974803 us-west-2....
‘ mi-odhcml-kubecom A Simple mi-odbc-52eBf4361596678c elb.us-west-2.amaza. ..
rancher.ml-kube.com A Simple dualstack haproxy-ingress-917974803 us-west-2...

3. Use the endpoint mI-odbc .ml-kube.com:3103 to connect to the ML ODBC.

4.4.8. Connection Test
To configure a connection test:

1. Follow the steps in the ML Knowledge article for setting up ODBC on a Linux environment

configuration:

[MarkLogicSQL]
Description=MarkLogicSQL
Driver=MarkLogicSQL

Trace=No
TraceFile=

Database=ml-odbc
Servername=ml-odbc.ml-kube.com
Username=<username>
Password=<password>

Port=31032
Protocol=7.4
ReadOnly=No

SSLMode=disable
UseServerSidePrepare =Yes
ShowSystemTables=No

ConnSettings=

2. Connect to the odbc and test a query:

2024-07-24 21:52

Record name

ml-odbe.ml-kube.com

Record type
A

value
mi-odbc-5ae8f4961596675¢ elb.us-west-
2.amazanaws.com

Alias
I Yes

TTL (seconds)

Routing policy
simple

MarkLogic Server on Kubernetes

. Use this

Page 38

https://help.marklogic.com/knowledgebase/article/View/511/0/marklogic-odbc-setup-and-quick-start-for-linux-environments

MarkLogic 11 ODBC connection through Ingress in EKS
Kubernetes 2.0

[azureuser@marklogic1083 ~]$ isql -v MarkLogicSQL
Connected!
sql-statement

|
|
|
| help [tablename]
| quit

|

+

SQL> SELECT employees.FirstName, employees.LastName, SUM(expenses.Amount) AS
ExpensesPerEmployee FROM employees JOIN expenses ON employees.EmployeelD =
expenses.EmployeelD GROUP BY employees.FirstName, employees.LastName ORDER BY

ExpensesPerEmployee;

o Fomm e +

| FirstName | LastName | ExpensesPerEmployee |
o Fom o +

| Jane | Lead | 155.22 |

| John | Widget | 190.97 |

| Debbie | Goodall | 259.84 |

| Steve | Manager | 282.95 |
Ty Fomm e e +

SQLRowCount returns -1
4 rows fetched
SQL>

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 39

MarkLogic 11 Maintain a cluster
Kubernetes 2.0

5. Maintain a cluster

This section includes information on maintaining a cluster.

5.1. Upgrades

MarkLogic Kubernetes Helm Chart is released in major, minor, and patch releases:

» Major releases may include breaking changes and new features that require configuration changes
to the values.yaml file. Because of this, review the changes in a release and test the upgrade in a
non-production environment.

* Minor and patch releases include bug fixes and other smaller changes.

5.1.1. Recommendations before upgrading
Before you start the upgrade process:

* Read the MarkLogic documentation for details on upgrading MarkLogic.

* Have the latest version of Helm installed.

» Avoid using the --reuse-values option with the Helm upgrade to ensure the changes in the
new values.yaml are merged into your release.

» Always use the values.yaml file using the —F option and avoid using the —-set option while
installing and upgrading the chart. This ensures your release has all the new values.

» Upgrade the bootstrap host in the MarkLogic StatefulSet before any other node in the cluster.
Because of this, the OnDelete upgrade strategy is recommended over the RollingUpgrade strategy.
See Update Strategies for more information on upgrade strategies.

* Itis important to have a database backup in case of upgrade failure. See Backing Up and Restoring a
Database.

5.1.2. Upgrade procedures

This section describes three upgrade procedures.

Upgrade MarkLogic Helm Chart version

When a new version of the MarkLogic Helm Chart is released, upgrade to the new version by following
these steps:

1. Update the chart repository to get the new version of the chart:

helm repo update
2. Check the upgrades available for MarkLogic Kubernetes Helm Chart:

helm search repo marklogic
3. Set the upgrade strategy in the values.yaml file to OnDelete:

updateStrategy:
type: OnDelete

4. Update the values.yaml file with the new values from the updated chart version.
5. Run the Helm upgrade command. Specify the name of your release and the new chart version
using the —-version option. Specify the values.yaml file using the -F option:

helm upgrade <your release> marklogic/marklogic -f values.yaml --version <new
version> -n <release-namespace>

6. To start the upgrade, terminate the pod with the smallest ordinal that is running a bootstrap node:
kubectl delete pod <pod-name>-n <release-namespace>

For example:

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 40

https://docs.marklogic.com/guide/release-notes/en/installation-and-upgrade.html
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/#update-strategies
http://docs.marklogic.com/guide/admin-guide/en/backing-up-and-restoring-a-database.html
http://docs.marklogic.com/guide/admin-guide/en/backing-up-and-restoring-a-database.html

MarkLogic 11 Upgrades
Kubernetes 2.0

kubectl delete pod dnode-group-marklogic-0 -n marklogic

Once the pod is terminated, a new pod will be created with the updated Helm Chart version.
7. Repeat step 6 for all pods in your release.
8. Complete the upgrade process.

Upgrade Marklogic version in your release

S NOTE

« If a cluster is a multi-group MarkLogic cluster, each release corresponding to a group
should be upgraded using the following procedure. If all the nodes in the groups
are not updated to the same MarkLogic version, then differences in the version and
effective version of the MarkLogic cluster will exist.

» MarkLogic Kubernetes Helm Chart releases are independent of MarkLogic Server
releases. An upgrade may be required when there is a new MarkLogic Server
version available.

» MarkLogic Server also uses the major, minor, and patch release classification. For
further information, see MarkLogic Upgrade Support.

To upgrade the MarkLogic version in your release, follow these steps:

1. Update the image.repository and image.tag in the values.yaml file to the version of
MarkLogic to upgrade to:

image:
repository: marklogicdb/marklogic-db
tag: <new tag>

2. SetupgradeStrategy in the values._yaml file to OnDelete:

updateStrategy:
type: OnDelete

3. Upgrade the Helm Chart using the helm upgrade command with the release name, chart name,
and values.yaml:

helm upgrade <release-name> <chart-name> -f <values.yaml> --version <chart-version>
-n <release-namespace>

4. Use this command to start the upgrade by deleting the pod with the smallest ordinal that is a
MarkLogic bootstrap host:

kubectl delete pod <pod-name> -n <release-namespace>.
For example,:

kubectl delete pod dnode-group-marklogic-0.

5. Once the pod is terminated, a new pod will be created with an updated MarkLogic version. New
values will also be updated in the values.yaml file.

6. To complete the upgrade, repeat the termination process for all the pods in your release. After
all the pods are upgraded, access the Admin Ul on the bootstrap host and check that there is a
configuration and/or a security database upgrade and/or an effective version change. If there is, a
prompt to click OK to upgrade appears. If the prompt does not appear, the process is finished.

7. Verify the upgrade by checking the version of MarkLogic on the Admin Ul or by accessing the
server logs. Required tests can now be run.

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 41

https://docs.marklogic.com/guide/release-notes/en/installation-and-upgrade.html#UUID-ae8580bb-c23d-dda7-593c-0610a633c771_section-idm203341859110072

MarkLogic 11 Add and remove hosts
Kubernetes 2.0

Upgrade MarkLogic and the Helm Chart at the same time

1.

To upgrade the MarkLogic and Helm Chart versions at the same time, follow steps 1-5 in Upgrade
MarkLogic Helm Chart version and steps 1-3 in Upgrade Marklogic version in your release.

Next, initiate terminating the pods. First, delete pod-0 (the pod running the MarkLogic bootstrap
host). Then delete the other pods using a command like this one:

kubectl delete pod <pod-name> -n <release-namespace>.
For example:

kubectl delete pod dnode-group-marklogic-0 -n marklogic.
Monitor the pod status with this command:

kubectl get pods --nampespace=<your-namespace> -W
As soon as all pods are back running, verify the upgrade by checking the version or by running the
required tests.

5.1.3. Upgrading the MarkLogic root image to rootless

To upgrade the MarkLogic image from root to rootless, follow these steps:

1.

Set the rootToRootlessUpgrade flag in the values.yaml to true:

rootToRootlessUpgrade: true
Update the image.tag in the values.yaml file to the rootless MarkLogic version to upgrade to:

repository: marklogicdb/marklogic-db
tag: <11.2.0-ubi-rootless>

Upgrade the Helm Chart using the helm upgrade command with the release name, chart name,
and values.yaml:

helm upgrade <release-name> <chart-name> -n <release-namespace>
Use this command to start the upgrade. The command will delete the pod with the smallest ordinal
that is a MarkLogic bootstrap host:

kubectl delete pod <pod-name> -n <release-namespace>
For example:

kubectl delete pod dnode-group-marklogic-0
Once the pod is terminated, a new pod is created with a rootless MarkLogic version. Monitor the
pod status with this command:

kubectl get pods --nampespace=<your-namespace> -W
As soon as all pods are back running, verify the upgrade by checking the permissions on volume
mounts or by running the required tests.

3 NOTE
If rootToRootlessUpgrade is set to true and the image tag is not rootless,
then this error message is displayed:

ERROR: Root to Rootless Upgrade is supported only if
rootToRootlessUpgrade flag is true and image type is
rootless

5.2. Add and remove hosts

This section describes how to add and remove hosts from clusters.

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 42

MarkLogic 11 Add and remove hosts
Kubernetes 2.0

5.2.1. Add and remove hosts

The MarkLogic Helm Chart creates one MarkLogic "host" per Kubernetes pod in a StatefulSet. To add a
new MarkLogic host to an existing cluster, simply increase the number of pods in your StatefulSet.

For example, to change the host count of an existing MarkLogic cluster from 2 to 3, follow these steps:

1. Enter this Helm command:

helm upgrade release-name marklogic/marklogic --version <version> --namespace
<release-namespace> -set replicaCount=3

2. Once this deployment is complete, the new MarkLogic host joins the existing cluster.
3. To track deployment status, use the kubectl get pods command.

S NOTE
This procedure does not automatically create forests on the new host. If the host will
be managing forests for a database, create the forests using MarkLogic's Admin Ul or
APIs once the pod is up and running.

5.2.2. Remove hosts

When scaling down a StatefulSet, Kubernetes attempts to stop one or more pods in the set to achieve
the desired number of pods. However, the storage attached to the pod remains until the persistent
volume claims are deleted.

Shutting down a pod from Kubernetes does not modify the MarkLogic cluster configuration; it merely
stops the pod. Stopping the pod causes the MarkLogic host to go offline. If there are forests assigned to
the stopped hosts, the associated forests will go offline.

5.2.3. Scale down the MarkLogic hosts

The procedure to scale down the number of MarkLogic hosts in a cluster varies depending on whether
forests are assigned to the hosts and whether the hosts will be permanently removed from the
MarkLogic cluster.

For example, after migrating forest data from the third MarkLogic host, change the host count on an
existing MarkLogic cluster from 3 to 2 by running the following Helm command:

helm upgrade release-name marklogic/marklogic --version <version> --namespace <release-
namespace> --set replicaCount=2

Before Kubernetes stops the pod, it makes a call to the MarkLogic host to shut down with

the TastFai lOver flag set to true. This tells the remaining hosts in the cluster that this host

is shutting down. It also triggers failover for any replica forests available on this host. There is a
two-minute grace period to allow MarkLogic to shut down cleanly before Kubernetes kills the pod.

Track shutdown progress
To track the host shutdown progress, run this command:

kubectl logs pod/terminated-host-pod-name -n <release-namespace>

Permanently remove the host

If the host should be permanently removed from the MarkLogic cluster, once the pod is terminated,
follow the procedure in "Recovery - Step 3: Remove dead host configuration” in the MarkLogic
Knowledgebase article Replacing a failed MarkLogic node in a cluster: a step by step walkthrough.

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 43

https://help.marklogic.com/Knowledgebase/Article/View/607/15/replacing-a-failed-marklogic-node-in-a-cluster-a-step-by-step-walkthrough

MarkLogic 11 Backup and restore a database
Kubernetes 2.0

WARNING

Before attempting to scale the hosts in the StatefulSet back up, persistent volume
claims and persistent volumes must be manually deleted using the Kubernetes API.

To delete the persistent volumes and persistent volume claims of the terminated host, follow these
steps:

1. Get the persistent volume claims:

kubectl get pvc datadir-<terminated-host-pod-name> -n <release-namespace>
2. Delete the persistent volume:

kubectl delete pv <volume name from get pvc command>
3. Delete the persistent volume claims:

kubectl delete pvc datadir-<terminated-host-pod-name> -n <release-namespace>

5.2.4. Enable SSL over XDQP

To enable SSL over XDQP, set enableXdgpSsl to true either in the values.yaml file or by using
the —-set flag. All communications to and from hosts in the cluster will be secured. With this setting
enabled, default SSL certificates will be used for XDQP encryption. By default, SSL over XDQP is
activated in the Helm Chart.

NOTE

To enable other XDQP/SSL settings, like xdgp ssl allow sslv3, xdgp ssl
allow tls, and xdgp ssl ciphers, use the MarkLogic REST Management API.

5.3. Backup and restore a database

When backing up MarkLogic to the file system, a dedicated volume should be allocated for each
MarkLogic host. This can be done by adding additionalVolumes in the values.yaml file:

Specify additional list of persistent volume claims
additionalVolumeClaimTemplates:
- metadata:
name: "‘backup-dir"
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 10Gi
specify additional list of volumes
additionalVolumes:
- name: "‘backup-dir"
emptyDir: {}
specify additional list of volumeMounts
additionalVolumeMounts:
- name: "backup-dir"
mountPath: "/space"

Once the values.yaml file is modified, /space can be used as the backup directory for backing up
and restoring a database using the procedures described in the MarkLogic documentation.

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 44

https://docs.marklogic.com/guide/admin/backup_restore

MarkLogic 11 Extend the data volumes
Kubernetes 2.0

5.4. Extend the data volumes

Volume expansion is only available if the underlying StorageClass has the
option al lowVolumeExpansion set to true. See Expanding Persistent Volumes Claims for more
information, including a list of volume types supported.

After StatefulSet objects are created, the only items that can be modified are the number of replicas,
the update strategy, and the object template. Attempting to modify any other specifications returns this
error:

* spec: Forbidden: updates to statefulset spec for fields other than
“replicas”, “template’, and “updateStrategy” are forbidden.

5.4.1. Expand the volume without downtime
To expand the volume without downtime, follow these steps:

1. Delete the StatefulSet set without deleting the pods by entering this command:

kubectl delete sts <statefulset-name>--cascade=orphan -n <release-namespace>

NOTE

This will cause orphan pods. However, there will not be any downtime.

2. Modify each PVC with the desired size by entering this command:

kubectl edit pvc <pvc-name> -n <release-namespace>

This output appears:

apiVersion: vl
kind: PersistentVolumeClaim
metadata:

annotations:

labels:
app-kubernetes.io/instance: huge-ml
app-kubernetes.io/name: marklogic
name: datadir-huge-ml-marklogic-0
namespace: ml
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 80Gi (old size 20Gi)
storageClassName: gp3

3. Recreate the StatefulSet with the new storage request. First, modify the values.yaml used to
deploy the ML-cluster:

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 45

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#expanding-persistent-volumes-claims.

MarkLogic 11 Huge pages
Kubernetes 2.0

Configure persistence using persistent Volume Claim
ref: https://kubernetes.io/docs/concepts/storage/persistent-volumes
/#persistentvolumeclaims
The """ storageClass will use the default storage class for your cluster.
(gp2 for EKS, standard for Minikube)
If set the enabled to false, it will use EmptyDir
volumepersistence:
enabled: true
storageClass: "'gp3"
size: 80Gi<---New size
annotations: {}
accessModes:
- ReadWriteOnce
mountPath: /var/opt/MarkLogic

4. Next, upgrade the Helm Chart by entering this command:

helm upgrade <release name> -n <release-namespace> marklogic --version <version> - f
<path-to-values-file>

5.5. Huge pages

This section explains setting up and using huge pages. For additional information, see the Kubernetes
documentation.

WARNING

To increase performance and efficiency, disable transparent huge pages before
following the steps in this section. Especially, on nodes with high memory utilization.

5.5.1. Set huge pages at the node level

Huge pages are configured by setting the kernel parameter vm.nr_hugepages. This parameter can
be set using DaemonSet:

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 46

https://kubernetes.io/docs/tasks/manage-hugepages/scheduling-hugepages/
https://kubernetes.io/docs/tasks/manage-hugepages/scheduling-hugepages/

MarkLogic 11 Huge pages
Kubernetes 2.0

apiVersion: apps/vl
kind: DaemonSet
metadata:
name: sysctl-hugepages
namespace: kube-system

labels:
k8s-app: sysctl-hugepages
spec:
selector:
matchLabels:
name: sysctl-hugepages
template:
metadata:
labels:
name: sysctl-hugepages
spec:
tolerations:

these tolerations are to have the daemonset runnable on control plane nodes
remove them if your control plane nodes should not run pods
- key: node-role.kubernetes.io/control-plane
operator: Exists
effect: NoSchedule
- key: node-role.kubernetes.io/master
operator: Exists
effect: NoSchedule
containers:
- name: sysctl
image: busybox
command: [""/bin/sh"]
args: ['"-c", "sysctl -w vm.hugetlb_shm _group=100; sysctl -w vm.nr_hugepages=1280;
tail - /dev/null™]
securityContext:
privileged: true
resources:
limits:
memory: 200Mi
requests:
cpu: 100m
memory: 200Mi
terminationGracePeriodSeconds: 30
these nodeSelector is to have the daemonset only running on specific nodes
hosting ML pods
adapt value if necessary
nodeSelector:
role: ml-worker

The docker image used is the standard busybox.

5.5.2. Arguments

Huge pages are set with these arguments:

* args: ["-c", "sysctl -w vm.hugetlb_shm_group=100; sysctl -w vm.nr_hugepages=1280; tail -f /dev/null"]
» vm.hugetlb_shm_group=100 (gid of default ml user)
* vm.nr_hugepages=1280

NOTE

Linux huge pages should be set at 3/8 the size of physical memory.

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 47

MarkLogic 11 Huge pages
Kubernetes 2.0

5.5.3. Set privileged to true

Set the securityContext: privileged setting to true as shown below (and in Set huge pages at

the node level).

containers:
- name: sysctl
image: busybox
command: [""/bin/sh"]

args: ['"-c", "sysctl -w vm.hugetlb_shm_group=100; sysctl -w vm.nr_hugepages=1280;

tail -f /dev/null™]
securityContext:
privileged: true

5.5.4. Kubelet restart

In order for Kubernetes to account for the huge pages, the kubelet on each involved node has to be

restarted. After restarting and applying the DaemonSet, the HugePages_Total = 1280.

cat /proc/meminfo | grep -i hug

AnonHugePages: 124928 kB
ShmemHugePages: 0 kB
FileHugePages: 0 kB
HugePages_Total : 1280
HugePages Free: 1280
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
Hugetlb: 2621440 kB

When the kubelet is not restarted, the new configuration is not taken into account. The kubectl
describe node command indicates that hugepages-1Gi and 2Mi =0

Capacity:
attachable-volumes-aws-ebs: 25
cpu: 8
ephemeral-storage: 104845292Ki
hugepages-1Gi : 0
hugepages-2Mi : 0
memory : 32408692K1i
pods: 58
Allocatable:
attachable-volumes-aws-ebs: 25
cpu: 7910m
ephemeral-storage: 95551679124
hugepages-1Gi : 0
hugepages-2Mi : 0
memory : 31391860Ki
pods: 58

After the kubelet has been restarted, hugepages-2Mi has a value.

2024-07-24 21:52

MarkLogic Server on Kubernetes

Page 48

MarkLogic 11 Huge pages
Kubernetes 2.0

Capacity:
attachable-volumes-aws-ebs: 25
cpu: 8
ephemeral -storage: 104845292Ki
hugepages-1Gi : 0
hugepages-2Mi : 2560Mi
memory: 32408692K1i
pods: 58

Allocatable:
attachable-volumes-aws-ebs: 25

cpu: 7910m
ephemeral -storage: 104845292Ki
hugepages-1Gi : 0
hugepages-2Mi : 2560Mi
memory: 28770420K1
pods: 58

Huge pages can now be allocated at the pod level.

5.5.5. Set huge pages for MarkLogic StatefulSet

The use of huge pages in a namespace is controlled with ResourceQuota similar to other compute
resources like cpu or memory using the hugepages-<size> token.

NOTE

Huge pages do not support overcommit

In the values.yaml file, huge pages can be set:

Manage HugePages
ref: https://v1-23.docs.kubernetes.io/docs/tasks/manage-hugepages/schedul ing-hugepages/
hugepages:

enabled: true

mountPath: /dev/hugepages

resources:
Marklogic pods® resource requests and limits
ref: https://kubernetes.io/docs/user-guide/compute-resources/
limits:
hugepages-2Mi: 1Gi
memory: 8Gi
requests:
memory: 8Gi

Check the error log

After setting the huge pages, check the error log to verify that the huge pages are detected. You should
see an entry in the log indicating the number of huge pages detected:

2023-02-06 16:01:40.190 Info: Linux Huge Pages: detected 1280, using 1280, recommend 1280
to 1820

Check resource usage at the node level
To verify huge pages are working as expected, can check the resource usage,

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 49

MarkLogic 11 Uninstall the chart
Kubernetes 2.0

5.6. Uninstall the chart

To uninstall the Helm Chart, follow these steps:
1. Enter this command:
helm uninstall my-release -n <namespace-release>

release "my-release’” uninstalled appears.
2. Verify the uninstall was successful with this command:

helm list --all-namespaces

An entry named "my-release" (or the release name you chose) should no longer appear.
3. Manually delete the persistent volume claims:

kubectl delete pvc -n <namespace-release> -1 app.kubernetes.io/name=marklogic

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 50

MarkLogic 11 MarkLogic Content Pump (mlcp) in Kubernetes
Kubernetes 2.0

6. MarkLogic Content Pump (micp) in Kubernetes

MarkLogic Content Pump (mlcp) is a powerful tool used for ingesting data into a MarkLogic database.
This section describes how to run micp in Kubernetes.

ﬂ NOTE
Before following the steps in this section, configure a Kubernetes cluster and ensure
that it is accessible. mlcp can either be run within or outside of the cluster.

6.1. micp inside a Kubernetes cluster
To run micp inside a Kubernetes cluster:

* Generate a Docker image with mlcp
* Deploy the micp pod to the Kubernetes cluster

6.2. Generate a Docker image with micp

To build an image containing micp, prepare a Docker file or use the image generated by our
development team: mdwel ler5/theswamp:mlcp.

6.3. Deploy the micp pod to the Kubernetes cluster

The next step is to create a Kubernetes deployment YAML file named mlcp.yaml and
persistentVolumeClaim for storage. A sample file is included below:

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 51

MarkLogic 11 Kubectl Apply
Kubernetes 2.0

apiVersion: vl
kind: Pod
metadata:
name: mlcp
spec:
volumes:
- name: mlcp-volume
persistentVolumeClaim:
claimName: mlcp-pvc
containers:
- name: mlcp
image: mdweller5/theswamp:mlcp
command:
- bash
_ ¢t
-
tail -f /dev/null
volumeMounts:
- mountPath: "/data"
name: mlcp-volume
apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: mlcp-pvc
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 20Gi

6.4. Kubectl Apply

Once mlcp.yaml is created, use the kubectl apply command to deploy mlcp.yaml to the
Kubernetes cluster alongside MarkLogic. Verify that the micp pod is successfully deployed using the
kubectl get pods command.

6.5. Access the micp pod

Once the micp pod has been deployed, use this command to access the pod within the cluster:
kubectl exec mlcp -- /bin/bash

micp is located under the path/mlcp. Use export PATH=${PATH}:/mlcp/bin to run the mlcp.sh
command from any location.

@ NOTE
The /data directory is mounted with a persistent volume which provides a storage
location for the ingested data. Additional volumes can also be mounted in the
volumeMounts micp pod.

6.6. milcp outside a Kubernetes cluster

Because the fully qualified domain name for MarkLogic hosts is not accessible outside a Kubernetes
cluster, use HAProxy with the LoadBalancer service to access MarkLogic hosts. Please refer to
MarkLogic HAProxy Load Balancer Configuration for additional information.

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 52

MarkLogic 11 Run micp to ingest data
Kubernetes 2.0

After the HAProxy with the LoadBalancer server is configured with MarkLogic, use the kubectl get
services command to find the external IP of the server with the name ending with —haproxy as the
host for micp.

6.7. Run mlcp to ingest data

Run micp to ingest data. The example below shows an options file configured to ingest a CSV file.
Once the file is ready, use the command mlcp.sh -options_file import.txt toingest the file.
For additional information on data ingestion, see the micp User Guide.

import

-username

your_username

-password

your_password

-host
marklogic-0.marklogic-headless.default.svc.cluster.local ,marklogic-1.marklogic-
headless.default.svc.cluster.local
-port

8000

-document_type

json

-input_Ffile_path

data.txt

—-input_file_type

delimited_text

6.7.1. -host setting

Provide the fully qualified domain name of all MarkLogic hosts to the -host setting.

NOTE

if you use a Load Balancer like HAProxy for -host , then —-restrict_hosts needs
to set to true.

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 53

https://docs.marklogic.com/guide/mlcp-guide/en/using-marklogic-content-pump--mlcp-.html

MarkLogic 11
Kubernetes 2.0

Helm chart parameters

7. Helm chart parameters

Name Description Default Value
replicaCount Number of MarkLogic 1
nodes
updateStrategy.type Update strategy for OnDelete
MarkLogic pods
terminationGracePeriod Seconds before 120
the MarkLogic pod
terminates gracefully
clusterDomain Domain for the cluster.local
Kubernetes cluster
allowLongHostnames Indicates whether to false
allow deployment with
hostnames over 64
characters
useLegacyHostnames Use the legacy false
hostnames used before
the 1.1.0 version
podAnnotations Pod annotations {
group.name Group name for joining Default
MarkLogic cluster
group.enableXdqpSsl SSL encryption for XDQP true

bootstrapHostName

Host name of MarkLogic
bootstrap host (to join a
cluster)

image.repository

Repository for MarkLogic
image

progressofficial/marklogic-db

image.tag

Image tag for MarkLogic
image

11.3.0-ubi-rootless

image.pullPolicy

Image pull policy for
MarkLogic image

IfNotPresent

initContainers.configureGroup.image

Image for
configureGroup
InitContainer

curlimages/curl:8.8.0

initContainers.configureGroup.pullPolicy

Pull policy
for configureGroup
InitContainer

IfNotPresent

initContainers.utilContainer.image

Image for copyCerts
and volume permission
change for root

to rootless upgrade
InitContainer

redhat/ubi9:9.4

initContainers.utilContainer.pullPolicy

Pull policy for copyCerts
and volume permission
change for root

to rootless upgrade
InitContainer

IfNotPresent

imagePullSecrets

Registry secret names as
an array

hugepages.enabled

Parameter to enable
Hugepages on
MarkLogic

false

hugepages.mountPath

Mountpath for
Hugepages

/dev/hugepages

resources

The resource requests
and limits for MarkLogic
container

{

nameOverride

String to override the app
name

2024-07-24 21:52

MarkLogic Server on Kubernetes

Page 54

MarkLogic 11 Helm chart parameters
Kubernetes 2.0

Name Description Default Value
fullnameOverride String to completely "
replace the generated
name
auth.secretName Kubernetes Secret name
for MarkLogic Admin
credentials
auth.adminUsername Username for default
MarkLogic Administrator
auth.adminPassword Password for default
MarkLogic Administrator
auth.walletPassword Password for wallet
tls.enableOnDefaultAppServers Parameter to enalbe TLS false

on Default App Servers
(8000, 8001, 8002)

tls.certSecretNames Names of the secret i}
that contains the named
certificate

tls.caSecretName Name of the secret
that contains the CA
certificate

enableConverters Parameter to Install false
converters for the client
if they are not already
installed

license.key Used to set the
MarkLogic license key
installed

license.licensee Used to set the
MarkLogic licensee
information

affinity Affinity for MarkLogic {}
pods assignment

topologySpreadConstraints POD topology spread I
constraints to spread
pods across the cluster

nodeSelector Node labels for {
MarkLogic pods
assignment

persistence.enabled Parameter to enable true
MarkLogic data

persistence using
Persistence Volume
Claim (PVC). If set to
false, EmptyDir will be
used.

persistence.storageClass Storage class for
MarkLogic data volume.
Leave this parameter
empty to use the default
storage class

persistence.size Size of storage request 10Gi
for MarkLogic data
volume

persistence.annotations Annotations for {
Persistence Volume
Claim (PVC)

persistence.accessModes Access mode for ["ReadWriteOnce"]
persistence volume

additionalVolumeClaimTemplates List of additional 1|
volumeClaimTemplates
to each MarkLogic
container

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 55

MarkLogic 11
Kubernetes 2.0

Helm chart parameters

Name

Description

Default Value

additionalVolumes

List of additional volumes
to add to the MarkLogic
containers

0

additionalVolumeMounts

List of mount points for
the additional volumes
to add to the MarkLogic
containers

additionalContainerPorts

List of ports in addition to
the defaults exposed at
the container level

This does not typically
need to be updated. Use
service.additional
Ports to expose app
server ports

service.annotations

Annotations for
MarkLogic service

i

service.type

Default service type

ClusterlP

service.additionalPorts

List of ports, in addition
to the defaults exposed
at the service level

0

serviceAccount.create

Parameter to enable
creating a service
account for a MarkLogic
Pod

true

serviceAccount.annotations

Annotations for
MarkLogic service
account

¢

serviceAccount.name

Name of the
serviceAccount

priorityClassName

Name of a PriortyClass
defined to set pod priority

networkPolicy.enabled

Parameter to enable
network policy

false

networkPolicy.customRules

Placeholder to specify
selectors

i

networkPolicy.ports

Parameter to specify the
ports where traffic is
allowed

[{port:8000, endPort: 8020,
protocol: TCP}]

podSecurityContext.enabled

Parameter to enable
security context for a
pod running MarkLogic
containers

true

podSecurityContext.fsGroup

Parameter to specify the
group id for a mounted
data volume

podSecurityContext.fsGroupChangePolicy

Parameter to specify how
the volume ownership
should be changed when
a pod's volumes needs
to be updated with an
fsGroup

OnRootMismatch

containerSecurityContext.enabled

Parameter to enable
security context for
MarkLogic containers

true

containerSecurityContext.runAsUser

User ID to run
the entrypoint of the
container process

1000

containerSecurityContext.runAsNonRoot

Indicates that the
container must run as a
non-root user

true

2024-07-24 21:52

MarkLogic Server on Kubernetes

Page 56

MarkLogic 11
Kubernetes 2.0

Helm chart parameters

Name Description Default Value
containerSecurityContext.allowPrivilegeEscalation Controls whether a false
process can gain more
privileges than its parent
process
livenessProbe.enabled Parameter to enable the true
liveness probe
livenessProbe.initialDelaySeconds Initial delay (in seconds) 300
for liveness probe
livenessProbe.periodSeconds Period (in seconds) for 10
liveness probe
livenessProbe.timeoutSeconds Timeout (in seconds) for 5
liveness probe
livenessProbe.failureThreshold Failure threshold for 15
liveness probe
livenessProbe.successThreshold Success threshold for 1
liveness probe
readinessProbe.enabled Parameter to enable the true
readiness probe
readinessProbe.initialDelaySeconds Initial delay (in seconds) 10
for readiness probe
readinessProbe.periodSeconds Period seconds for 10
readiness probe
readinessProbe.timeoutSeconds Timeout seconds for 5
readiness probe
readinessProbe.failureThreshold Failure threshold for 3
readiness probe
readinessProbe.successThreshold Success threshold for 1
readiness probe
logCollection.enabled Parameter to enable false

cluster wide log collection
of Marklogic server logs

logCollection.image

Image repository and tag
for fluent-bit container

fluent/fluent-bit:3.1.1

logCollection.resources.requests.cpu

The requested cpu
resource for the fluent-bit
container

100m

logCollection.resources.requests.memory

The requested memory
resource for the fluent-bit
container

128Mi

logCollection.resources.limits.cpu

The cpu resource limit for
the fluent-bit container

100m

logCollection.resources.limits.memory

The memory resource
limit for the fluent-bit
container

128Mi

logCollection.files.errorLogs

Parameter to enable
collection of MarkLogic's
error logs when log
collection is enabled

true

logCollection.files.accessLogs

Parameter to enable
collection of MarkLogic's
access logs when log
collection is enabled

true

logCollection.files.requestLogs

Parameter to enable
collection of MarkLogic's
request logs when log
collection is enabled

true

logCollection.files.crashLogs

Parameter to enable
collection of MarkLogic's
crash logs when log
collection is enabled

true

2024-07-24 21:52

MarkLogic Server on Kubernetes

Page 57

MarkLogic 11
Kubernetes 2.0

Helm chart parameters

Name

Description

Default Value

logCollection.files.auditLogs

Parameter to enable
collection of MarkLogic's
audit logs when log
collection is enabled

true

logCollection.outputs

Used to configure the
desired output for fluent-
bit

haproxy.enabled

Parameter to enable the
HAProxy Load Balancer
for MarkLogic Server

false

haproxy.existingConfigmap

Name of an

existing configmap
with configuration for
HAProxy

marklogic-haproxy

haproxy.replicaCount

Number of HAProxy
deployment

haproxy.restartWhenUpgrade.enabled

Indicates whether

to automatically roll
deployments for every
helm upgrade

true

haproxy.stats.enabled

Parameter to enable the
stats page for HAProxy

false

haproxy.stats.port

Port for stats page

1024

haproxy.stats.auth.enabled

Parameter to enable the
basic auth for stats page

false

haproxy.stats.auth.username

Username for stats page

haproxy.stats.auth.password

Password for stats page

haproxy.service.type

The service type of the
HAproxy

ClusterlP

haproxy.pathbased.enabled

Parameter to enable path
based routing on the
HAProxy Load Balancer
for MarkLogic

false

haproxy.frontendPort

Listening port in the
front-end section of the
HAProxy when using
path-based routing

443

haproxy.defaultAppServers.appservices.path

Path used to expose
MarkLogic App-Services
App-Server

haproxy.defaultAppServers.admin.path

Path used to expose
MarkLogic Admin App-
Server

haproxy.defaultAppServers.manage.path

Path used to expose the
MarkLogic Manage App-
Server

haproxy.additionalAppServers

List of additional HTTP
ports configuration for
HAproxy

haproxy.tcpports.enabled

Parameter to enable TCP
port routing on HAProxy

false

haproxy.tcpports

TCP ports and
load balancing type
configuration for HAproxy

haproxy.timemout.client

The timeout for inactivity
during periods that the
client is expected to be
speaking

600s

2024-07-24 21:52

MarkLogic Server on Kubernetes

Page 58

MarkLogic 11
Kubernetes 2.0

Helm chart parameters

Name

Description

Default Value

haproxy.timeout.connect

This parameter
configures the time that
HAProxy will wait for

a TCP connection to a
backend server to be
established

600s

haproxy.timeout.server

This parameter
measures inactivity when
the backend server is
expected to be speaking

600s

haproxy.tls.enabled

Parameter that enables
TLS for HAProxy

false

haproxy.tls.secretName

Name of the secret that
stores the certificate

haproxy.tls.certFileName

The name of the
certificate file in the
secret

haproxy.nodeSelector

Node labels for HAProxy
pods assignment

{

haproxy.affinity

Affinity for HAProxy pods
assignment

{

haproxy.resources.requests.cpu

The requested cpu
resource for the HAProxy
container

250m

haproxy.resources.requests.memory

The requested memory
resource for the HAProxy
container

128Mi

haproxy.resources.limits.cpu

The cpu resource limit for
the HAProxy container

250m

haproxy.resources.limits.memory

The memory resource
limit for the HAProxy
container

128Mi

ingress.enabled

Enables an ingress
resource for the
MarkLogic cluster

false

ingress.className

Defines which ingress
controller will implement
the resource

ingress.labels

Additional ingress labels

{

ingress.annotations

Additional ingress
annotations

{

ingress.hosts

List of ingress hosts

ingress.additionalHost

List of ingress additional
hosts

2024-07-24 21:52

MarkLogic Server on Kubernetes

Page 59

MarkLogic 11 Troubleshooting
Kubernetes 2.0

8. Troubleshooting

S NOTE
For the commands below, provide the namespace name if the chart is deployed to a
different namespace than the current kubectl context. Use -n <your-namespace>
to apply the command to a specific namespace, or use --al I-namespaces (-A) to
apply the command to all namespaces.

Retrieve the status of deployed resources
To get the status of the Helm deployment, enter this command:

helm list
To get the status of all the pods in the current namespace, enter this command:

kubectl get pods

NOTE

The commands above will get all the pods running in the current namespace.

To get the status of all the pods in a MarkLogic deployment, enter this command:

kubectl get pods --selector="app.kubernetes.io/name=marklogic™ --all-namespaces
To list all the pods for a specific release:

kubectl get pods --selector="app.kubernetes. io/instance=<RELEASE-NAME>

To get detailed information, use the kubectl describe command:

kubectl describe pods <POD-NAME>

NOTE

After entering this command, you can use the Events list at the bottom for debugging.

Statuses for MarkLogic pods
Pending

This status indicates that the pod has been accepted by the Kubernetes system, but the container
within the pod has not started yet. If a pod is stuck in this phase, use the kubectl describe
pods <POD-NAME> command to get more information. Often, a detailed warning is listed in the

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 60

MarkLogic 11 Access logs
Kubernetes 2.0

Events list at the bottom. For example, if none of the nodes meet the scheduling requirements, a
FailedSchedul ing warning event appears in the Events list.

Running

This status indicates that the pod has been scheduled to a node and that all the containers in the pod
are running.

Access logs
To access container logs for specific pod, use this command:

kubectl logs <pod-name>

To access all the logs in MarkLogic server, follow these steps:

1. Use the kubect exec command to get access into a specific MarkLogic container:

kubectl exec -it <POD-NAME> -- /bin/bash
2. Goto /var/opt/MarkLogic/Logs/ to view all the logs.

NOTE

It is recommended that you set up log forwarding in production environments.

Common issues
ImagePullBackOff

* When a pod enters ImagePul 1BackOff status, Kubernetes was unable to download the container
image for the pod's container. This could be caused by a network issue or incorrect image tags.

» By default, the image registry is Docker Hub. Test the connection from the node to Docker Hub to
make sure that the Kubernetes node has access to the registry.

+ If you provide a customized value for the image repository or tag during the installation, use this
command to test if the image is valid:

kubectl run marklogic --image=marklogicdb/marklogic-db: latest
CrashLoopBackOff

When a pod enters CrashLoopBackOTT status, the pod's containers have exited with an error, causing
Kubernetes to restart them.

This issue could be caused by several reasons:

» Probe Failure - The MarkLogic container uses a liveness probe to perform a container health check. If
the liveness probe fails a certain number of times, the container will restart.

* Insufficient Resources, such as CPU or Memory - Double-check the resource limits and requests
specified in the values.yaml file.

» Application Failure - Check the container or MarkLogic Server logs to see if there are any errors or
messages related to the crashes.

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 61

MarkLogic 11 Common debugging practices
Kubernetes 2.0

NOTE

To see MarkLogic Server for a crashed container, you need a logs forwarder solution.
(FluentBit is enabled in the Helm Chart).

Common debugging practices

1. Get pod statuses by using kubectl get pods.
2. Get detailed information by using kubectl describe pods.
3. Get container logs and MarkLogic logs.

Recommend guides for debugging in Kubernetes

For more information about how to troubleshoot in Kubernetes, see A visual guide on troubleshooting
Kubernetes deployments.

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 62

https://learnk8s.io/troubleshooting-deployments
https://learnk8s.io/troubleshooting-deployments

MarkLogic 11 Known issues and limitations
Kubernetes 2.0

9. Known issues and limitations

1. If the hostname is greater than 64 characters there will be issues with certificates. It is highly
recommended to use a hostname shorter than 64 characters or use SANs for hostnames
in the certificates. If you still choose to use hostname greater than 64 characters, set
allowLongHostnames to true.

2. The latest released version of fluent/fluent-bit:3.1.1 has known high and critical security
vulnerabilities. If you decide to enable the log collection feature, choose and deploy the fluent-bit or
an alternate image with no vulnerabilities as per your requirements.

3. The security context al lowPrivilegeEscalation is set to false by default in the
values._yaml file. This should not be changed when running the MarkLogic container
with the default rootless image. If you choose to use an image with root privileges, set
allowPrivilegeEscalation to true.

4. Known Issues and Limitations for the MarkLogic Server Docker image can be viewed at Known
Issues and Limitations.

5. Path-based routing and Ingress features are only supported with MarkLogic 11.1 and higher.

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 63

https://github.com/marklogic/marklogic-docker?tab=readme-ov-file#Known-Issues-and-Limitations
https://github.com/marklogic/marklogic-docker?tab=readme-ov-file#Known-Issues-and-Limitations

MarkLogic 11 Technical support
Kubernetes 2.0

10. Technical support

Progress Software provides technical support according to the terms detailed in your Software License
Agreement or End User License Agreement.

We invite you to visit our support website at http://help_marklogic.com to access information
on known and fixed issues, knowledge base articles, and more. For licensed customers with an active
maintenance contract, see the Support Handbook for instructions on registering support contacts and
on working with the MarkLogic Server Technical Support team.

Complete product documentation, the latest product release downloads, and other useful information
is available for all developers at http://developer.marklogic.com. For technical questions, we
encourage you to ask your question on the Progress Community.

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 64

http://help.marklogic.com
https://www.marklogic.com/wp-content/uploads/2021/01/support-handbook_2021_Jan_13.pdf
http://developer.marklogic.com
https://community.progress.com/s/topic/0TO4Q000000Y6WXWA0/marklogic-general-discussions

MarkLogic 11 Copyright
Kubernetes 2.0

11. Copyright

For copyright information, see Product Documentation and Copyright Notice.

2024-07-24 21:52 MarkLogic Server on Kubernetes Page 65

https://www.progress.com/legal/documentation-copyright

	MarkLogic Server on Kubernetes
	Table of Contents
	1. Overview of Kubernetes
	1.1. Compatibility
	1.2. Terminology

	2. Set up the required tools
	2.1. Install Helm
	2.2. Install kubectl
	2.3. Tools for setting up the Kubernetes cluster
	2.3.1. Install Minikube (for local development)
	Start Minikube
	Minikube Dashboard

	2.3.2. Install Amazon Web Services Elastic Kubernetes Service (for production)
	Install eksctl
	Use eksctl to provision a Kubernetes cluster on EKS

	2.3.3. Parameters

	3. Create a MarkLogic cluster
	3.1. Add the MarkLogic repository
	3.2. Install the chart
	3.3. Deploy Helm with HTTPS enabled
	3.3.1. Configure a MarkLogic cluster with a standard certificate
	3.3.2. Configure a MarkLogic cluster with a temporary certificate
	Access an SSL-enabled server with a temporary certificate

	3.4. Test MarkLogic Helm Chart and Docker image from ECR
	3.4.1. Create an ECR repository
	3.4.2. Push the Docker image and Helm Chart
	3.4.3. Deploy the MarkLogic cluster
	Add the Helm Chart repository
	Install the MarkLogic cluster

	3.5. Topology spread constraints
	3.6. Retrieve the MarkLogic admin credentials
	3.7. Configuration options for Helm
	3.7.1. values flag
	3.7.2. set flag
	3.7.3. High availability and pod anti-affinity
	Preferred rule
	Required rule
	Pods running on different worker nodes and in separate zones

	3.7.4. Security context
	3.7.5. Network policy
	3.7.6. Assign pod priority

	3.8. Enable log collection
	3.9. Deploy a MarkLogic cluster with multiple groups

	4. Access MarkLogic Server in a Kubernetes cluster
	4.1. Native Kubernetes
	4.1.1. Use the ClusterIP service
	Additional ports

	4.1.2. Use the DNS record
	4.1.3. Use the port-forward command
	Forward to pod
	Forward to service

	4.2. HAProxy
	4.2.1. Configuration
	Global section
	Default section
	Resolver DNS
	Front-end section
	HAProxy statistics pages
	MarkLogic front-end
	TCP front-end
	HTTP front-end
	Back-end section

	4.3. HTTP connection through Ingress on an EKS cluster
	4.3.1. ALB Ingress
	ALB Ingress limitations
	Install ALB Ingress
	Ingress definition
	Configure the paths
	Configure the Ingress definition
	Configuration details

	Check the ALB
	Route53

	4.3.2. Set up and use path-based routing with MarkLogic Helm Chart
	Limitations
	Prerequisites
	Path bath routing configuration
	Enable path-based routing
	Front-end port configuration
	Default App Server path and back-end port
	Additional App Server

	Ingress configuration
	Enable Ingress
	Paths and ports configuration
	Ingress Class
	Annotations

	Access MarkLogic Cluster

	4.4. ODBC connection through Ingress in EKS
	4.4.1. Macro Architecture
	4.4.2. MarkLogic ODBC config
	4.4.3. MarkLogic HAProxy Load Balancer Configuration
	Configure the ODBC App Server
	Auto-generated HAProxy configuration file
	Code explanation

	Service
	Code explanation

	4.4.4. HAProxy Ingress Controller configuration
	Service configuration
	Code explanation
	configmap-tcp-services
	Code explanation
	Ingress controller Helm Chart level
	Code explanation

	4.4.5. Network load balancer security group
	4.4.6. AWS Network Load balancer
	4.4.7. Route53 configuration
	4.4.8. Connection Test

	5. Maintain a cluster
	5.1. Upgrades
	5.1.1. Recommendations before upgrading
	5.1.2. Upgrade procedures
	Upgrade MarkLogic Helm Chart version
	Upgrade Marklogic version in your release
	Upgrade MarkLogic and the Helm Chart at the same time

	5.1.3. Upgrading the MarkLogic root image to rootless

	5.2. Add and remove hosts
	5.2.1. Add and remove hosts
	5.2.2. Remove hosts
	5.2.3. Scale down the MarkLogic hosts
	Track shutdown progress
	Permanently remove the host

	5.2.4. Enable SSL over XDQP

	5.3. Backup and restore a database
	5.4. Extend the data volumes
	5.4.1. Expand the volume without downtime

	5.5. Huge pages
	5.5.1. Set huge pages at the node level
	5.5.2. Arguments
	5.5.3. Set privileged to true
	5.5.4. Kubelet restart
	5.5.5. Set huge pages for MarkLogic StatefulSet
	Check the error log
	Check resource usage at the node level

	5.6. Uninstall the chart

	6. MarkLogic Content Pump (mlcp) in Kubernetes
	6.1. mlcp inside a Kubernetes cluster
	6.2. Generate a Docker image with mlcp
	6.3. Deploy the mlcp pod to the Kubernetes cluster
	6.4. Kubectl Apply
	6.5. Access the mlcp pod
	6.6. mlcp outside a Kubernetes cluster
	6.7. Run mlcp to ingest data
	6.7.1. -host setting

	7. Helm chart parameters
	8. Troubleshooting
	9. Known issues and limitations
	10. Technical support
	11. Copyright

