MarkLogic Server

Semantic Graph Developer’s Guide

MarkLogic 10
May, 2019

Last Revised: 10.0-8, October, 2021

Copyright © 2021 MarkLogic Corporation. All rights reserved.

MarkLogic Server

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 2

MarkLogic Server Table of Contents

Table of Contents

Semantic Graph Developer’'s Guide

1.0

Introduction to Semantic Graphsin MarkLOogiCcccccvveveeieeccieesee e 11
00 A = 11 01 ¢ To oo PSP 12
1.2 Linked OPEN DELAcccooeeeeiiieiiesie sttt nee 13
1.3 RDF Implementation in MarkLOQICcccoecueiieiieiiesece e 14
1.3.1 USINg RDF iN MarKLOQICcoveeiiriienieniesiiesie et 15

1.3.1.1 Storing RDF Triplesin MarkLOgiCccovvereeeeiieieee e 17

1312 QuUEYINg THPIES oo 18

1.3.2 RDF DaaMOGEcoooiiiiiiiieeeieeeese et 20

1.3.3 Blank NOAEe [AENtifierSccveeiieieeeseereeee e 21

1.3.4 RDF DEAYPES ...cceeeeieieriesiesiesiesiesieseses s seesaessestessesse e ssessessesssessessessens 21

1.35 [TRISANA PrefiXeS ...coiiiiiiiiiiieie e 22

IR 2L T 1 22

1.35.2 PrEfiIXES oooiiiciiceeieeeee et 23

1.3.6 RDF VOCADUIAIYooveiiiiiiiiiieiieeie ettt st 24

14 EXAMPI@DELESELScouecuiiieieiesiesie st 25
Getting Started with Semantic Graphsin MarkLogiCcccccveeeeveniiieennenns 27
21 Setting UPp MarkLOGQIC SEIVENoc.oiuiiiiieieeesieie e 27
2.1.1 Configuring the Database to Work with Triplescccccovevveveiceecieenenne 27

2.1.2 Setting Up Additional SEIVEX'Sooeiiiiieiieie e e 28

2.2 LOBAING TIIPIES .ottt 28
221 Downloading the Daasetccccoveeieieeiecie e 28

2.2.2 Importing TripleSWith MICP ..cceovviriiiiiie e 29

2.2.3 Verifying the IMPOITcooiiiiiieeee s 30

P22 T © 0 1= o oo T] o] 1= 32
231 Querying with Native SPARQLc.ooiiiieeeeee e 32

2.3.2 Querying with the sem:spargl FUNCLIONSc.ccooeverinirieieee e 34
Loading SemantiC TrIPIESccceeiiiiee e 37
3.1 Loading Embedded RDF TriPIESccoiieieieeieesereresese s 37
T oo 1o N I] o -SSR 37
3.2.1 Supported RDF Triple FOrmMatsccccoveieriinienieee e 38

3.2.2 EXample RDF FOIMMALScccoveeeiieeiieeiesieesiesee s eae e eee e e eae e sneenes 39
3221 RDF/XML ottt 39

3.2.2.2 TUIIE et e 40

3.2.2.3 RDF/ISON ..ottt nae 40

3224 N3 e 41

3225 N-THPIES oo e 41

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 3

MarkLogic Server Table of Contents

4.0

5.0

3226 N-QUESccveverieeiieieeeceeere e 43

3227 THIG i 44

3.2.3 Loading TripleSWith MICP ..ccoeeeiiiiiiieeeee s 44
3231 Preparationccccccoeieieieniesesesese s 45

3.2.3.2 Import Command SYNLaXccceccereeruesieererieeseeseeseeseeseeseeenes 46

3.2.3.3 Loading Triplesand QUadscccceerurreenienenneniesee e 46

3234 IMPOIt OPLIONS ...cc.oeueeieeieieriesie et 47

3.2.3.5 Specifying Collectionsand a Directorycccccceecveveeveeieeennnnn. 49

3.24 Loading Tripleswith XQUENYcooiiiiiiniiniereeee e 51
3.24.1 SEMIIAf-INSEIT ..ooieeeececee e e 52

3.24.2 Semirdf-10a0cccooviriiie s 53

3.24.3 SEMIIA-EL ..ooieeeiieee e 53

3.25 Loading TripleswWith JAVASCIIPLccoererieieieierese e 54
3251 SEMLIAFINSEIT .o.veieiceicee e 55

3.25.2 SeMrdfLoadoooveieiieee e 56

3.25.3 SEMUIAFGEL ...t 56

3.2.6 Loading TriplesUsiNgthe REST APlocovieveieiee e 56
A I R = (= o= = (0] IR 57

3.26.2 Addressing the Graph SIOreccceoerererieriieierese e 57

3.2.6.3 Specifying Parameterscccoeveeveeiiecieie e 58

3.2.6.4 SUPPOItEd VEIDSooueiiiiiiitieee e 58

3.26.5 Supported Media FOrmatsccoceveienenenese e 59

3.26.6 LoOadiNg TrIPIEScoveeeeceee et 59

3.2.6.7 REJPONSEEITOIS ...ttt 60

3.2.7 Loading TriplesUsing the JAVa APl ... 61

3.2.8 Loading TriplesUsing the NOde,jSAPIcceeeiieceiieiececeece e 61
Triple INAEX OVEIVIEWc..eeiieeiee ettt s 63
4.1 Understanding the Triple Index and How It'sUSedccocoveeeiiiieveccicceecee, 63
4.1.1 TripleDataand Value Caches ... 63
4.1.1.1 TripleCacheand Triple Value Cachecccccooeveiinivencniene. 64

4.1.2 TripleVauesand Type INformationccccceveveeveiceveece e 64

4.1.3 THPIEPOSILIONScoiuiiiiiiecieeie et 64

g O 1 0o (g T -SSP 65

O TR = 110111 = 0] TSRS 66

4.2 Enabling the THPI@ INAEX ...cc.couiiieee s 66
4.2.1 Using the Database Configuration Pagescccceeerereeerieenienenie e 66

4.22 UsiNgthe AdMiNAPL ..o 68

IRC I ® 101 g Ore] o[= (0] PSR 69
431 SIZING CACNESoeiieiiiieiieeeeee s 69

4.3.2 Unused ValueS and TYPEScccceevrereerieeieieesteeieeseesteeee s esse e sse s e 70

4.3.3 Scaling and MONIOINGc.covereeiiiierecie e 71
UNMaNaged TrIPIESooeeeecie ettt 73
51 Usesfor Triplesin XML DOCUMENLSccceriuirierierierneenieseesiee e see e see s 76

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 4

MarkLogic Server Table of Contents

5.1.1 Context from the DOCUMENTccooveiieieereeineieseee e 76
512 Combination QUENTESccecueeiuieiiieeciee et stee et e e e sbeesne e sreeenneens 77
5.1.3 Security with Unmanaged TriplesSccccceririinienenieneereee e 78
52 Bitemporal THPIEScooieiiirire e 78
6.0 SemMantiC QUENESeoiiiieeeie ettt e e enn e enreas 81
6.1 Querying Tripleswith SPARQL ..ot 82
6.1.1 Typesof SPARQL QUENEScceeiueieerieciesteete et se et enen 82
6.1.2 Executing a SPARQL Query in Query Consolecccoeeeveeveeieneenennnn. 83
6.1.3 Specifying Query ReSult OPLioNScccoeiirereninieeieeeeesesee e 83
6.1.3.1 AUtOVS. RaW FOrmalcccoiiiiiieiieeeeeeeeee e 83
6.1.3.2 Selecting ResultsS ReNderingccccceeeeverieninneeieseeseeee e 86

6.1.4 Constructing @ SPARQL QUENYccueiiiriiriirenierieniesieeee e 87
6.1.5 PrefiX DeClarationc.ccocoeiiimiiniinieiese st 87
6.1.6 QUENY PaLLerNooieiiiiieieeee e e 88
6.1.7 Target RDF Graphcccooiiiiiiieieeeriese et 91
6.1.7.1 The FROM KeyWOrdccceiieiieiieiececie e 93
6.1.7.2 The FROM NAMED Keywordscc.ccocevieririenieeieneneseseneens 9
6.1.7.3 The GRAPH KeyWordcccceiiiiiireneneneeeseeeeee e 95

6.1.8 RESUIL ClAUSESooveieiiiiieitiriieie ettt snenne s 95
6.1.8.1 SELECT QUENES ...ocuviviiiieiieiieeeierie et nnen 96
6.1.8.2 CONSTRUCT QUENES ...ccueeiereeerieeiesreenieeeesreeseeseesseeseesneesseenes 96
6.1.8.3 DESCRIBE QUENESceoeerieiiiiniisie st 98
6.1.8.4 ASK QUENES ...ooeeieieeiesiesie sttt 99

6.1.9 QUENY ClAUSESocveiiiiriiitinieeieee ettt e snenne s 99
6.1.9.1 The OPTIONAL KeYWOrdccocvrierinerenineneenieneesee e 100
6.1.9.2 The UNION KeyWOordcccooeeiireerienieneeiesee e 100
6.1.9.3 TheFILTER KEYWOrdcccooiiiiiiinineeeeeeee e 102
6.1.9.4 Using Built-in Functionsin a SPARQL Queryccccceeueneee 104
6.1.9.5 Comparison OPEraLOrSccceveererreereenieeieesieesie e sseeseeseeseens 105

6.1.10 Negation in Filter EXPreSSIONScccooeveierenenenineseseeeesee e 105
6.1.10.1 EXISTS .ot 106
6.1.10.2 NOT EXISTS ..ot 106
6.1.10.3 MINUS ..o 107
6.1.10.4 Differences Between NOT EXISTSand MINUS 108
6.1.10.5 Combination Queries with Negationcccceeererinreesennnne 110
6.1.10.6 BIND KEYWOrdccccviiiirieieieieiesese s et 111
6.1.10.7 VAUES SECLIONScocviiiriiciiriinieie e 111

6.1.11 SOIUtION MOGITIENS ..c.eeieiiieiieeeee e e 112
6.1.11.1 The DISTINCT KE&YWOrdcccesivreieeeieeeeeeiereeseesie e 112
6.1.11.2 The LIMIT K&YWOrdcccceeieiiriirienineneseeeesee e 113
6.1.11.3 ORDER BY KeyWOrdccceivmiieieieneniesese e 113
6.1.11.4 The OFFSET KeyWordccoceiivierinieninieereenieseesee e 115
6.1.11.5 SUDQUENES ...oceeeeeee et 115
6.1.11.6 Projected EXPreSSIONScccoviereererrinreesieesieseesiesessieeseesneens 116

6.1.12 De-Duplication of SPARQL RESUILSccervrierierieiesiereeieesieeseesneens 117

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 5

MarkLogic Server Table of Contents

7.0

6.1.13 Property Path EXPreSSIONScccceieiierereniniesiesieseeeeee e 118
6.1.13.1 Enumerated Property Pathscccccooeviiievienecesece e 118

6.1.13.2 Unenumerated Property Pathsccccoocevieiiinienininneenenne 120

6.1.13.3 INFEIENCE ..ocueeeieeeeeie et 123

6.1.14 SPARQL AQOIrEaESoceiuirieriirieierie ettt s 124

6.1.15 Using the Results Of SEm:Sparglccccoeceeveerenieeneeieseeseeee e 127

6.1.16 SPARQL RESDUITEScocviiiiieiieriie ettt 127

6.2 Querying Tripleswith XQuery or JaVaSCriptccccceveveeievieeseeieseesre e 128
6.2.1 Preparing to Runthe EXamples ... 129

6.2.2 Using Semantic FUNCLIONSTO QUENYcccoeiiriirieninieeeeeeee e 130
(O = = 1 S o= (o | SRS 131

6.2.2.2 SEMISPAGI-VAIUES ..o 133

6.2.2.3 SEMISIONE ...ttt 134

6.2.2.4 Querying TripleSin MEmMOrYcccccevveveeieeieseese e 134

6.2.3 Using Bindingsfor Variables ... 135

6.2.4 Viewing Resultsas XML and RDF ..o 137

6.2.5 Working With CURIESccocoii i 139

6.2.6 Using SemanticSWith CtS Searchescoccveeiineneecineeeee e 142
6.2.6.1 CESIHMPIES ..oeeiieeeeeere s 142

6.2.6.2 CtSriple-range-qUENYcccoceeeeeieeeeeie e 143

6.2.6.3 CLSISEAICN ..o 143

6.2.6.4 CLSICONLAINS ..ocveevveeieeriesieeieseesieeeesreeeeseesaeeee e steeseesreensesneens 144

6.3 Querying Tripleswith the OptiC APlcoveiieeceeee e 145
(IS L= 2= (o] o ISR 145
6.4.1 Setting the Output MEthodccoiiiiriiiieeeeee e 146

LT TS = o1 11 S 146
INFEIEINCE ... s ne s 147
7.1 AULOMALIC INFEIENCE ..eiieiiieiee et 147
4% TS R @ 1 0] o | =SS 148

A U1 = S 149
7.1.2.1 Pre-Defined RUIESELScccceeeieiiece e 150

7.1.2.2 Specifying Rulesetsfor QUENEScccooevenerie e 151

7.1.2.3 Using the Admin Ul to Specify a Default Ruleset for a Database

153

7.1.24 Overiding the Default RUIESELccooceiieeiiiiiece e 155

7.1.25 Creating aNew RUIESEL ... 156

7.1.26 RUIESEL Grammarccoceeerieiieriesiese e 157

7127 EXample RUIESELSooooiiiiieeee e 158

7.1.3 Memory Availablefor INfErence ... 160

7.1.4 A More Complex USECaSEccccceeeeiiecie e eee e ste e sree e s 161

7.2 Other Waysto AChIeVe INFEIENCEccoee i e 161
7.2.1 USING PANS ... e 162

7.2.2 MaETAIZALION ..oocveieeceiceeeeee e e 163

7.3 Performance CONSIAEIatioNScccevereereriienieseeie et 163
7.3.1 Partial MaerialiZationccoceeeiiiiiiere e 163

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 6

MarkLogic Server Table of Contents

7.4 Using Inference With the REST APloooiiiiiiiceeeeee e 163
7.5 Summary of APIsSUsed for INfErenceccccvveveeceeeece e 165
7.5 1 SEMANLIC APIS ..oeiieiceciceee ettt 165

7.5.2 Datahase RUIESEL APISc.ooeeieeecece et 166

7.5.3 Management APIS ... e 166

8.0 SPARQL UPEALEccueeeeieieetee ettt e 169
8.1 USING SPARQL UPUALEocveriiiiiiiriieiieieieie ettt 170
8.2 Graph Operations with SPARQL UPdatecccoveeieriiiiieiineeseeesee e 170
STt R O = AN [171

B.2.2 DROP ..ttt bbb 172

ST T OO | = S 172

ST |V @ LY 173

B.2.5 ADD e 174

8.3 Graph-Level SECUMLYcceeiiiiiiieeiesee et 175
8.4 DataOperations with SPARQL UPJaLecccoviiiririininieieeieesesese s 177
8.4.1 INSERT DATA ettt st 178

8.4.2 DELETE DATA ottt sttt nneas 180

8.4.3 DELETE.INSERT WHEREccoveoiiieiee e 181

844 DELETEWHEREcoooiiiii ettt 182

845 INSERT WHEREccooiiieececeeee et 182

SR T O L 183

85 Bindingsfor Variables ..o 184
8.6 Using SPARQL Update with Query CONSOIEccceeveereenierensieeiesee e 185
8.7 Using SPARQL Update with XQuery or Server-Side JavaScriptccccceeuee. 186
8.8 Using SPARQL Update With RESTccccoiiiiiiiinenieseenesce e 187
9.0 Using Semanticswiththe REST Client APlcccoevieiiieiie e 189
0.1 ASSUMPLIONS ...ttt sttt ettt s e et e et e st e e e s re e beeneeeraentesneesneenreens 191
9.2 SPeCifying ParamMELerscccooeiiiriiiiee e 191
9.2.1 SPARQL QUErY Parametersccccoecierieriieeieesie e 191

9.2.2 SPARQL Update Parameterscccceevueeeeieeieseesieeieeseeseesessveesnesneens 193

9.3 Supported Operations for the REST Client APl ... 194
S S S = T2 o] o [196
9.4.1 Unsupported Serializationccccccevieeieeieeseere e s s 197

9.5 ExamplesUsing curl and REST ..o 197
9.6 ResPONSE OULPUL FOIMELScoveeiirieiieeieeeeste e 199
9.6.1 SPARQL Query Typesand Output FOrmMatsccccceveeverieesecsieseennns 200

9.6.2 Example: Returning ResUltS @S XMLcoccoiieiiiienieieseeee e 201

9.6.3 Example: Returning Results as JISONccoiriririiniieieeseseesesienine 202

9.6.4 Example: Returning ResUltSaSHTMLcccooveiiiieiiciececeee e, 203

9.6.5 Example: Returning ReSUItS @S CSVccooeiiiiiiniiieeeeeesee e 204

9.6.6 Example: Returning Results as N-triplescccccveeeveereccese e 205

9.6.7 Example: Returning aBoolean as XML or JSONccccceeevieiieceenenn 206

9.7 SPARQL Query with the REST Client APlccccooviiieeieieeeiere e 207

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 7

MarkLogic Server Table of Contents

9.7.1 SPARQL Queriesin aPOST REUQUESLccccerereereerienieneerieseeneesneens 207

9.7.2 SPARQL Queriesin a GET REQUESLccceveeiereeseee e 210

9.8 SPARQL Update with the REST Client APccccoviieeieieerese e 211
9.8.1 SPARQL Updatein a POST REQUESEccorerererierireeieieseesie e 212

9.8.2 SPARQL Update via POST with URL-encoded Parameters 214

9.9 Listing Graph Names with the REST Client APlcccoooviiriineeeeneee e 214
9.10 Exploring Tripleswith the REST Client APl ..o 215
9.11 Managing Graph PEIMISSIONScceieeiiiiieiecie et 217
9.11.1 Default Permissions and Required Privilegescccocvveiiniiiceienens 218

9.11.2 Setting Permissions as Part of Another Operationcccceeeeverenennne 218

9.11.3 Setting Permissions Standalonecccveeeieeieveese e 219

9.11.4 Retrieving Graph PEMMISSIONSccoveerienienieeiie e e e e ses e sneens 221

10.0 XQuery and JavaScript SEMantiCS APISoooveiieeiie e 223
10.1 XQuery Library Module for SEmMantiCsc.ccoveeveiieneneneese e 223
10.1.1 Importing the Semantics Library Module with XQueryc.ccceevneee. 223

10.1.2 Importing the Semantics Library Module with JavaScript 224

10.2 Generating TIIPIEScooieieiiiee ettt e e nne e 224
10.3 Extracting TripleS from CONENtccoeririeriieieresese e e 225
O o= T 1o T o =SS 228
(L0 R T =q o [0 (1o To [D - USRS 230
10.5.1 SeMitripl@ FUNCLIONSc.oouiiiiieiesiesie s 231

10.5.2 TranSitiVe CIOSUMEcceeeeieieriesie ettt nes 231
10.5.2.1 Understanding Transitive ClOSUIeccccceveeneennnennieesinnnnns 231

10.5.2.2 sem:tranSitive-ClOSUIecccoeceeeerieeie e 232

11.0 Client-Side APIsSfor Semanticsccooviiiiiiniiic e, 237
N N - 7 W O 1= g A 237
11.2 NOAEJS CHENE AP ..ottt sre e 237
11.3 QUENeSUSING OPLIC AP ...t 238

12.0 Inserting, Deleting, and Modifying Triples with XQuery and Server-Side

JavaScript 239
225 R U T oo = (o T] o] = USSR 239
12.2 De@ting THPIES ..ot e 241
12.2.1 Deleting Triples with XQuery or Server-Side JavaScriptccccceeueee. 241
12.2.1.1 sem:graph-deleteocoooveeiieeecece e 242
12.2.1.2 XAMP:NOAE-TEIELEooueeeiiieieiee s 243
12.2.1.3 xdmp:document-deletecceveerieriereeseeeseee e 243
12.2.2 Deleting Tripleswith REST APl ..o 244
13.0 Using aTemplateto Identify TriplesinaDocumentccccceevvevcieennnne 247
131 Creating aTemMPlateooeeiieeee et 247
13.2 Templat@ EIBMENESccooiiiierieee e 248

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 8

MarkLogic Server Table of Contents

13.2.1 Reindexing Triggered by TEMPIALESccviveieriiierise e 250

TG T ¢ 11 0] =SS 250

13.3.1 Vaidateand Insert a TemMpPIateccceeeereeiinienneenenee e 250

13.3.2 Validate and INSert in ONE SEEPovvevvereerierieieeee e 253

13.3.3 UseaJSON TeMPIALEceevveeeeeeeeiecee e 255

13.3.4 Identify Potential THPIEScoooieieiieeeee e 257

13.4 Triples Generated With TDE and SQLoooiiiieiiiieeeeees e 259

14.0 EXECULION PlaN ..coviiiiiiie ettt 261
141 Generating an EXECUtiON Plan ..o 261

14.2 Parsing an EXeCUtion Plan ..ot 262

15.0 Technical SUPPOITooiieeieece e nee s 265
X O O])Y/ 1 [0 o | RS RPRSR 267

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 9

MarkLogic Server Table of Contents

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 10

MarkLogic Server Introduction to Semantic Graphs in MarkLogic

1.0 Introduction to Semantic Graphs in MarkLogic

The power of aknowledge graph is the ability to define the relationships between disparate facts
and provides context for those facts. Graphs are semantic if the meaning of the relationshipsis
embedded in the graph itself and exposed in a standard format. Semantic Graph technol ogy,
referred to in this documentation as “ semantics,” describes afamily of specific w3C standardsto
allow the exchange of information about relationships in data in machine-readable form, whether
it resides on the Web or within organizations. MarkL ogic Semantics, using RDF (Resource
Description Framework), allows you to natively store, search, and manage RDF tripleS using SPARQL
query, SPARQL Update, and JavaScript, XQuery, or REST.

Semantics requires a flexible data model (RDF), query tool (SPARQL), agraph and triple data
management tool (SPARQL Update), and a common markup language (for example RDFa,
Turtle, N-Triples). MarkL ogic lets you natively store, manage, and search triples using SPARQL
and SPARQL Update.

RDF is one of the core technologies of linked open data. The framework provides standards for
disambiguating data, integrating, and interacting with data that may come from disparate sources,
both machine-readable and human-readable. It makes use of W3C recommendations and formal,
defined vocabularies for data to be published and shared across the Semantic Web.

SPARQL (SPARQL Protocol and RDF Query Language) is used to query datain RDF
serialization. SPARQL Update is used to create, delete, and update (delete/insert) triple data and

graphs.

You can derive additional semantic information from your data using inference. You can also
enrich your data using Linked Open Data (LOD), an extension of the World Wide Web created
from the additional semantic metadata embedded in data.

Note: Semanticsisaseparately licensed product. To use SPARQL features, alicense that
includes the Semantics Option is required. Use of APIs leveraging Semantics
without using SPARQL, such as the Optic APl or SQL API, does not require a
Semantics Option license.

For more information, see the following resources:

e http://www.w3.org/standards/semanticweb
* http://www.w3.org/RDF

» http://www.w3.0rg/TR/rdf-sparal-query

* http://www.w3.org/TR/spargll1-update

This document describes how to load, query, and work with semantic graph datain MarkL ogic Server.
This chapter provides an overview of Semanticsin MarkLogic Server. This chapter includes the
following sections:

e Terminology

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 11

http://www.w3.org/
http://www.w3.org/standards/semanticweb/
http://www.w3.org/RDF/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/sparql11-update/

MarkLogic Server Introduction to Semantic Graphs in MarkLogic

e Linked Open Data

¢ RDF Implementation in MarkLogic

e Example Datasets

1.1 Terminology
Terms used in this guide:

Term Definition

RDF RDF (Resource Description Framework) IS a data model used to represent
facts as atriple made up of a subject, predicate, and an object. The frame-
work is w3c specification with a defined vocabulary.

RDF Triple An RDF statement containing atomic val ues representing a subject, pred-
icate, object, and optionally a graph. Each triple represents a single fact.

Subject A representation of aresource such asaperson or an entity. A nodein an
graph or triple.

Predicate A representation of aproperty or characteristics of the subject or of the

relationship between the subject and the object. The predicate is also
known as an arc or edge.

Object A node representing a property value, which in turn may be the subject in
atriple or graph. An object may be atyped literal. See “ RDF Datatypes’
on page 21.

Graph A set of RDF triple statements or patterns. In a graph-based RDF model,

nodes represent subject or object resources, with the predicate providing
the connection between those nodes. Graphs that are assigned aname are
referred to as Named Graphs.

Quad A representation of a subject, predicate, object, and an additional
resource node for the context of thetriple.

Vocabularies A standard format for classifying terms. Vocabularies such as FOAF
(Friend of a Friend) and Dublin Core (DC) define the concepts and rela-
tionships used to describe and represent facts. For example, OWL isa
Web Ontology Language for publishing and sharing ontol ogies across
the World Wide Web.

Triple Index Anindex that indexes triplesingested into MarkL ogic to facilitate the
execution of SPARQL queries.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 12

http://www.w3.org/

MarkLogic Server Introduction to Semantic Graphs in MarkLogic

Term Definition

RDF Triple Store A storage tool for the persistent storage, indexing, and query access to
RDF graphs.

IRI An IRI (Internationalized Resource Identifier) iSacompact string that is used
for uniquely identifying resources in an RDF triple. IRIs may contain
characters from the Universal Character Set (Unicode/l SO 10646),
including Chinese or Japanese Kanji, Korean, Cyrillic characters, and so

on.
CURIE Compact URI Expression.
SPARQL A recursive acronym for SPARQL Protocol and RDF Query Language

(SPARQL), aquery language designed for querying datain RDF serial-
ization. SPARQL 1.1 syntax and functions are available in MarkL ogic.

SPARQL Protocol | A means of conveying SPARQL queries from query clientsto query pro-
cessors, consisting of an abstract interface with bindingsto HTTP
(Hypertext Transfer Protocol) and SOAP (Simple Object Access Proto-
col).

SPARQL Update An update language for RDF graphs that uses a syntax derived from the
SPARQL Query language.

RDFa Resource Description Framework in Attributes (RDFa) isa W3C Rec-
ommendation that adds a set of attribute-level extensionsto HTML,
XHTML, and various XM L-based document types for embedding rich
metadata within Web documents.

Blank node A nodein an RDF graph representing aresource for which alRI or litera
isnot provided. The term bnode is used interchangeably with blank node.

1.2 Linked Open Data

Linked Open Data enables sharing of metadata and data across the Web. The World Wide Web
provides access to resources of structured and unstructured data as human-readable web pages
and hyperlinks. Linked Open Data extends this by inserting machine-readable metadata about
pages and how they are related to each other to present semantically structured knowledge. The
Linked Open Data Cloud gives some sense of the variety of open data sets available on the Web.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 13

MarkLogic Server Introduction to Semantic Graphs in MarkLogic

For more about Linked Open Data, see http:/linkeddata.org/.

1.3 RDF Implementation in MarkLogic

This section describes the semantic technologies using RDF that are implemented in MarkL ogic
Server and includes the following concepts:

¢ Using RDF in MarkLogic

e RDF Data Model

¢ RDEF Datatypes
e RDEF Vocabulary

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 14

http://linkeddata.org/
http://linkeddata.org/

MarkLogic Server Introduction to Semantic Graphs in MarkLogic

1.3.1 Using RDF in MarkLogic

RDF isimplemented in MarkL ogic to store and search RDF triples. Specifically, each tripleisan
RDF triple statement containing a subject, predicate, object, and optionally a graph.

For example:

d livasin B izln

e —

j“‘mhn Smith” %" “London” %’ “England”]

livesin

The subject node is a resource named John Smith, the object node is London, and the predicate,
shown as an edge linking the two nodes, describes the relationship. From the example, the
statement “John Smith livesin London” can be derived.

Thistriplelooks like thisin XML (with a second triple added):

<sem:triples xmlns:sem="http://marklogic.com/semantics">
<sem:triple>
<sem:subject> http://xmlns.com/foaf/0.1/name/"John
Smith"</sem:subject>
<sem:predicate> http://example.org/livesIn</sem:predicate>
<sem:object
datatype="http://www.w3.0rg/2001/XMLSchema#string">"London"</sem:objec
t>
</sem:triple>
</sem:triples>

In JSON this same triple would look like:

{

"my" : "data",
"triple" : {
"subject": "http://xmlns.com/foaf/0.1/name/John Smith",
"predicate": "http://example.org/livesIn",
"object": { "value": "London", "datatype": "xs:string" }

}
}

Sets of triples are stored as RDF graphs. In MarkL ogic, the graphs are stored as collections. The
following image is an example of asimple RDF graph model that contains three triples. For more
information about graphs, see “RDF Data Model” on page 20.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 15

MarkLogic Server Introduction to Semantic Graphs in MarkLogic

Predicate

livesin Obj ect/Subj ect

Predicate

Predicate| _
liveswith

Object Object

The object node of atriple can in turn be a subject node of ancther triple. In the example, the
following facts are represented “ John Smith lives with Jane Smith”, “ John Smith livesin London”
and “London isin England”.

The graph can be represented in tabular format:

Subject Predicate Object
John Smith livesin London
London isin England
John Smith livesWith Jane Smith

In JSON, these triples would look like this:

{
"my" : "data",
"triple" : [{
"subject": "http://xmlns.com/foaf/0.1/name/John Smith",
"predicate": "http://example.org/livesIn",
"object": { "value": "London", "datatype": "xs:string" }
b d
"subject": "http://xmlns.com/foaf/0.1/name/London",
"predicate": "http://example.org/isIn",
"object": { "value": "England", "datatype": "xs:string" }
b d
"subject": "http://xmlns.com/foaf/0.1/name/John Smith",
"predicate": "http://example.org/livesWith",
"object": { "value": "Jane Smith", "datatype": "xs:string" }
}

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 16

MarkLogic Server Introduction to Semantic Graphs in MarkLogic

1.3.1.1 Storing RDF Triples in MarkLogic

When you load RDF triplesinto MarkL ogic, the triples are stored in MarkL ogic-managed XML
documents. You can load triples from a document using an RDF serialization, such as Turtle or
N-Triple. For example:

<http://example.org/dir/js> <http://xmlns.com/foaf/0.1/firstname>

"John"
<http://example.org/dir/js> <http://xmlns.com/foaf/0.1/lastname>
"Smith"

<http://example.org/dir/js> <http://xmlns.com/foaf/0.1/knows> "Jane
Smith"

For more examples of RDF formats, see “ Example RDF Formats’ on page 39.

Thetriplesin this example are stored in MarkLogic as XML documents, with sem:triples asthe
document root. These are managed triples because they have a document root element of

sem:triples.

<?xml version="1.0" encoding="UTF-8"?>

<sem:triples xmlns:sem="http://marklogic.com/semantics">
<sem:triple>
<sem:subject>http://example.org/dir/js</sem:subject>
<sem:predicate>http://xmlns.com/foaf/0.1/firstname</sem:predicate>
<sem:object datatype="http://www.w3.0rg/2001/XMLSchema#string">John
</sem:object>

</sem:triple>

<sem:triple>
<sem:subject>http://example.org/dir/js</sem:subject>
<sem:predicate>http://xmlns.com/foaf/0.1/lastname</sem:predicates>
<sem:object datatype="http://www.w3.0rg/2001/XMLSchema#string">

Smith</sem:object>

</sem:triple>

<sem:triple>
<sem:subject>http://example.org/dir/js</sem:subject>
<sem:predicate>http://xmlns.com/foaf/0.1/knows</sem:predicates>
<sem:object datatype="http://www.w3.0org/2001/XMLSchema#string">

Jane Smith</sem:object>
</sem:triple>
</sem:triples>

You can also embed triples within XML documents and load them into MarkL ogic as-is. These
are unmanaged triples, with a element node of sem:triple. YOu do not need the outer sem:triples
element for unmanaged triples, but you do need the subject, predicate, and object elements within
the sem: triple element.

Hereis an embedded triple, contained in an XML document:

<?xml version="1.0" encoding="UTF-8"?>
<articles
<info>

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 17

MarkLogic Server Introduction to Semantic Graphs in MarkLogic

<title>News for April 9, 2013</title>

<sem:triples xmlns:sem="http://marklogic.com/semantics">
<sem:triple>

<sem:subject>http://example.org/article</sem:subject>
<sem:predicate>http://example.org/mentions</sem:predicate>

<sem:object>http://example.org/London</sem:object>
<sem:triple>

</sem:triples>

</info>
</article>

The loaded triples are automatically indexed with a specia -purpose index called atriple index. The
triple index allows you to immediately search the RDF data for which you have the required
privileges.

1.3.1.2 Querying Triples

You can write native SPARQL queriesin Query Console to retrieve information from RDF triples
stored in MarkLogic or in memory. When queried with SPARQL, the question of “who livesin
England?’ is answered with “John and Jane Smith”. Thisis based on the assertion of facts from
the above graph model. Thisis an example of asimple SPARQL senecT query:

SELECT ?person ?place
WHERE
{
?person <http://example.org/livesIn> ?place .
?place <http://example.org/isIn>
http://xmlns.com/foaf/0.1/name/London.

}
You can also use XQuery to execute SPARQL queries with sem: sparql. FOr example:

xquery version "1.0-ml";

import module namespace sem = "http://marklogic.com/semantics" at
"/MarkLogic/semantics.xqy";

sem: sparqgl ("

PREFIX kennedy:<http://example.org/kennedy>
SELECT *

WHERE

{

?s ?p 20

FILTER (regex(?o, 'Joseph', 'i'))

}

Il)

For more information about using SPARQL and sem: sparq1 to query triples, see “ Semantic
Queries’ on page 81.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 18

MarkLogic Server Introduction to Semantic Graphs in MarkLogic

Using XQuery, you can query across triples, documents, and values with cts:triples Or

cts:triple-range-query.
Hereisan exampleusing acts:triples qUery:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqgy";

let $r :=
cts:triples(sem:iri ("http://example.org/people/dir"),
sem:iri ("http://xmlns.com/foaf/0.1/knows"),
sem:iri ("personl"))

return <result>{$r}</result>

The following is an example of aquery that useS cts:triple-range-query:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
"at /MarkLogic/semantics.xqy";

let Squery := cts:triple-range-query (
gsem:iri ("http://example.org/people/dir"),
gsem:iri ("http://xmlns.com/foaf/0.1/knows"), ("person2"), "sameTerm")

return cts:search(fn:collection()//sem:triple, Squery)

You can create combination queries with cts: query functions such as cts:or-query Of cts:and-

query.
For example:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "MarkLogic/semantics.xqy";

declare namespace dc = "http://purl.org/dc/elements/1.1/";

cts:search(collection()//sem:triple, cts:or-query ((
cts:triple-range-query((), sem:curie-expand("foaf:name"),
"Lamar Alexander", "="),
cts:triple-range-query (sem:iri ("http://www.rdfabout.com/rdf/usgov
/congress/people/A000360"), sem:curie-expand("foaf:img"), (),
"="))))

For more information about cts:triples and the cts:triple-range-query queries, see“Semantic
Queries’ on page 81.

You can also use the results of a SPARQL query with an XQuery search to create combination
gueries.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 19

MarkLogic Server Introduction to Semantic Graphs in MarkLogic

For example:

xquery version "1.0-ml";

import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqgy";
import module namespace semi = "http://marklogic.com/semantics/impl"

at "/MarkLogic/semantics/sem-impl.xqgy";

declare namespace sr = "http://www.w3.org/2005/spargl-results";

let Sresults := sem:sparqgl("prefix k: <http://example.org/kennedy>
select * { ?s k:latitude ?lat . ?s k:longitude ?lon }")

let $xml := sem:sparqgl (Sresults)

return

for $sol in $xml/sr:results/sr:result

let $point := cts:point (xs:float ($sol/sr:binding[@name eq

'lat'] /sr:literal), xs:float($sol/sr:binding[@name eq
'lon'] /sr:1literal))
return <place name="{$sol/sr:binding[@name eq 's']/*}"
point="{$point}"/>

For more information about combination queries, see “Querying Triples with XQuery or
JavaScript” on page 128.

1.3.2 RDF Data Model

RDF triples are a convenient way to represent facts: facts about the world, facts about adomain,
facts about a document. Each RDF triple is afact (or assertion) represented by a subject,
predicate, and object, such as* John livesin London”. The subject and predicate of atriple must be
an IRI (Internationalized Resource Identifier), which isacompact string used to uniquely identify
resources. The object may be either an IRI or aliteral, such as a number or string.

» Subjects and predicates are IRI references with an optional fragment identifier.
For example:

<http://xmlns.com/foaf/0.1/Person>
foaf :person

» Literasarestringswith an optional language tag or anumber. These are used as objectsin
RDF triples. For example:

IlBobll
"chat" efr

» Typed literals may be strings, integers, dates and so on, that are assigned to a datatype.
These literals are typed with a“~" operator “”. For example:

"Bob"*"*xs:string

"3nttxs:integer
126.2""*xs:decimal

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 20

MarkLogic Server Introduction to Semantic Graphs in MarkLogic

In addition, a subject or object may be a blank node (bnode or anonymous node), which is anode
in a graph without a name. Blank nodes are represented with an underscore, followed by a colon
(:) and then an identifier. For example:

_:a
__:jane

For more information about IRIs, see “IRIs and Prefixes’ on page 22.

Often the object of onetripleis the subject of another, so a collection of triples forms agraph. In
this document we represent graphs using these conventions:

» Subjects and objects are shown as ovals.
* Predicates are shown as edges (labeled arrows).
* Typed literals are shown as boxes.

1.3.3 Blank Node Identifiers

In MarkLogic, a blank node is assigned a blank node identifier. Thisinternal identifier is
maintained across multiple invocations. In atriple, a blank node can be used for the subject or
object and is specified by an underscore (). For example:

__:jane <http://xmlns.com/foaf/0.1/name> "Jane Doe".
<http://example.org/people/about> <http://xmlns.com/foaf/0.1/knows>
__:jane

Given two blank nodes, you can determine whether or not they are the same. The first node

" :jane" Will refer to the same node as the second invocation that also mentions »_:jane. Blank
nodes are represented as skolemized IRIs: blank nodes where existential variables are replaced
with unique constants. Each blank node has a prefix of

"http ://marklogic.com/ semantics/blank".

1.34 RDF Datatypes

RDF uses the XML schema datatypes. These include xs:string, xs:float, xs:double,
xs:integer, aNd xs:date and S0 on, as described in the specification, XML Schema Part 2:
Datatypes Second Edition:

http://www.w3.0rg/TR/xmlschema-2

All XML schema simple types are supported, along with all types derived from them, except for

x5 :OName and xs : NOTATION.

RDF can also contain custom datatypes that are named with alRI. For example, a supported
MarkL ogic-specific datatypeis cts:point.

Note: Use of an unsupported datatype such as xs : oName, xs : NOTATTON, OF types derived
from these will generate an XDMP-BADRDFVAL exception.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 21

http://www.w3.org/TR/xmlschema-2/
http://en.wikipedia.org/wiki/Skolem_normal_form

MarkLogic Server Introduction to Semantic Graphs in MarkLogic

If you omit a datatype declaration, it is considered to be of type xs:string. A typed literal is
denoted by the presence of the aatatype attribute, or by an xm1 : 1ang attribute to give the language
encoding of the literal, for example, “en” for English.

Datatypes in the MarkL ogic Semantics data model allow for values with a datatype that has no
schema. These are identified as xs : untypedatomic.

1.35 IRIs and Prefixes

This section describes meaning and role of IRIs and prefixes, and includes the following
concepts:

e IRIs

* Prefixes

1.3.5.1 IRIs

IRIs (Internationalized Resource I dentifiers) are internationalized versions of URIs (Uniform
Resource Identifiers). URIs use a subset of ASCII characters and are limited to this set. IRIs use
characters beyond ASCII, making them more useful in an international context. IRIs (and URIS)
are unigue resource identifiers that enable you to fetch aresource. A URN (Uniform Resource
Name) can also be used to uniquely identify aresource.

An IRl may appear similar aURL and may or may not be an actual website. For example:

<http://example.org/addressbook/d>

IRIs need to be heirarchical, or they cannot be resolved against the base URIs. Here isthe start of
aheirarchical URI:

some_scheme: //

And hereis the start of a non-heirarchical URI:

some_scheme:/

To use anon-hierarchical IRI, use the repair option to turn off hierarchical IRl parsing while
loading.

IRIs are used instead of URIs, where appropriate, to identify resources. Since SPARQL
specifically refersto IRIs, later chaptersin this guide reference IRIs and not URIs.

IRIs are required to eliminate ambiguity in facts, particularly if dataisreceived from different
data sources. For example, if you are receiving information about books from different sources,
one publisher may refer to the name of the book as“title”, another source may refer to the position
of the author as “title”. Similarly, one domain may refer to the writer of the book as the “ author”
and another as “creator”.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 22

MarkLogic Server Introduction to Semantic Graphs in MarkLogic

Presenting the information with IRIs (and URNS), we see a clearer presentation of what the facts
mean. The following examples are three sets of N-Triples:

<http://example.org/people/title/sh1999>
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#label>
"Lucasian Professor of Mathematics"

<urn:isbn:9780553380163>
<http://purl.org/dc/elements/1.1/title>
"A Brief History of Time"

<urn:isbn:9780553380163>
<http://purl.org/dc/elements/1.1/creator>
"Stephen Hawking"

Note: Line breaks have been inserted for the purposes of formatting, which make this RDF N-
Triple syntax invalid. Each triple would normally be on oneline. (Turtle syntax allows for single
triples to wrap across multiple lines.)

The IRI is akey component of RDF, however IRIs are usually long and are difficult to maintain.
Compact URI Expressions (CURIES) are supported as a mechanism for abbreviating IRIs. These
are specified in the CURIE Syntax Definition:

http://www.w3.org/TR/rdfa-syntax/#s_curies

1.3.5.2 Prefixes

Prefixes are identified by IRIs and often begin with the name of an organization or company. For
example:

PREFIX js: <http://example.org/people/about/js/>

A prefix isashorthand string used to identify a name. The designated prefix binds a prefix IRI to
the specified string. The prefix can then be used instead of writing the full IRI eachtimeitis
referenced. When you use prefixes to write RDF, the prefix is followed by a colon. You can
choose any prefix for resources that you define. For example, hereis a SPARQL declaration:

PREFIX dir: <http://example.org/people/about/>

You can also use standard and agreed upon prefixes that are a part of a specification. Thisisa
SPARQL declaration for rdf:

PREFIX rdf: <http://www.w3.0org/1999/02/22-rdf-syntax-ns/>

The prefix depends on the serialization that you use. The Turtle prefix declaration would be:

@prefix dir: <http://example.org/people/about/> .

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 23

http://www.w3.org/TR/rdfa-syntax/#s_curies

MarkLogic Server

Introduction to Semantic Graphs in MarkLogic

Note: All erer1x declarations must end with aforward slash (“/”) or ahashtag (“#”).

1.3.6 RDF Vocabulary

RDF vocabularies are defined using RDF Schema (RDFS) or Web Ontology Language (OWL) to
provide astandard serialization for classifying terms. The vocabulary is essentially the set of IRIs
for the arcs that form RDF graphs. For example, the FOAF vocabulary describes people and

relationships.

These separate the prefix from the final part of the IRI.

The existence of a shared standard vocabulary is helpful, but not essential sinceit is possible to
combine vocabularies or create a new one. Use the following prefix lookup to help decide which
vocabulary to use:

http://prefix.cc/about

Thereis an increasingly large number of vocabularies. Common RDF prefixes that are widely
used and agreed upon include the following:

Prefix Prefix IRI
cc http://web.resource.org/cc#ns Creative Commons
dec http://purl.org/dc/elements/1.1/ Dublin Core vocabulary
dcterms http://purl.org/dc/terms Dublin Core terms
rdfs http://www.w3.0rg/2000/01/rdf-schema# RDF schema
rdf http://www.w3.0rg/1999/02/22-rdf-syntax-ns# RDF vocabulary
owl http://www.w3.0rg/2002/07/owl# Web Ontology Language
foaf http://xmIns.com/foaf/0.1/ FOAF (Friend of aFriend)
skos http://www.w3.0rg/2004/02/skos/core SKOS (Simple Knowledge Orga-
nization System)
vecard http://www.w3.0rg/2001/vcard-rdf/3.0 V Card vocabulary
void http://rdfs.org/ns/void Vocabulary of Interlinked Datasets
xml http://www.w3.0rg/XML/1998/namespace XML namespace
xhtml http://www.w3.0rg/1999/xhtml XHTML namespace
XS http://www.w3.0rg/2001/XMLSchema# XML Schema
fn http://www.w3.0rg/2005/xpath-functions XQuery function and operators

MarkLogic 10—May, 2019

Semantic Graph Developer’ s Guide—Page 24

http://web.resource.org/cc/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/terms/
http://prefix.cc/about
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2002/07/owl#
http://xmlns.com/foaf/0.1/
http://www.w3.org/2004/02/skos/core#
http://www.w3.org/2001/vcard-rdf/3.0
http://www.w3.org/2001/vcard-rdf/3.0
http://www.w3.org/XML/1998/namespace
http://www.w3.org/1999/xhtml
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2005/xpath-functions

MarkLogic Server Introduction to Semantic Graphs in MarkLogic

Note For these vocabularies, the IRIsare also URLS.

1.4 Example Datasets
Thereis agrowing body of datafrom domains such as Government and governing agencies,

Healthcare, Finance, Social Media and so on, available astriples, often accessible via SPARQL
for the purpose of:

e Semantic search

e Dynamic Semantic Publishing

» Aggregating diverse datasets

There are alarge number of datasets available for public consumption.
For example:

» FOAF: http://www.foaf-project.org - a project that provides a standard RDF vocabulary for
describing people, what they do, and relationships to other people or entities.

» DBPedia: http://wiki.dbpedia.org/develop/datasets/ - data derived from Wikipedia with many
external linksto RDF datasets.

» Semantic Web: http://data.semanticweb.org - a database of thousands of unique triples about
conference data.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 25

http://www.foaf-project.org/
https://wiki.dbpedia.org/develop/datasets/
http://data.semanticweb.org/

MarkLogic Server Introduction to Semantic Graphs in MarkLogic

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 26

MarkLogic Server Getting Started with Semantic Graphs in MarkLogic

2.0 Getting Started with Semantic Graphs in MarkLogic

This chapter includes the following sections:

* Setting up Markl ogic Server

* Loading Triples

* Querying Triples

2.1 Setting up MarkLogic Server

When you install MarkLogic Server, a database, REST instance, and XDBC server (for loading
content) are created automatically for you. The default Documents database is available on port
8000 as soon as you install MarkL ogic Server, with a REST instance attached to it.

The examples in this guide use this pre-configured database, XDBC server, and REST API
instance on port 8000. This section focuses on setting up MarkL ogic Server to store triples. To do
this, you will need to configure the database to store, search, and manage triples.

Note: Y ou must have admin privilegesfor MarkLogic Server to complete the procedures
described in this section.

Install MarkLogic Server on the database server, as described in the Installation Guide for All
Platforms, and then perform the following tasks:

* Configuring the Database to Work with Triples

e Setting Up Additional Servers

2.1.1 Configuring the Database to Work with Triples

The Documents database has the triple index and the collection lexicon enabled by default. These
options are also enabled by default for any new databases you create.

If you have an existing database that you want to use for triples, you need to make sure that the
triple index and the collection lexicon are both enabled. You can also use these steps to verify that
adatabase is correctly set up. Follow these steps to configure an existing database for triples:

1 Navigate to the Admin Interface (1ocalhost:8001). Click the Documents database, and
then click the Configure tab.

2. Scroll down the Admin Configure page to see the status of triple index.

triple index @ true false

Enable the ROF triple index (slower document loads and larger database files).

Set thisto trueif it is not already configured. The triple index is used for semantics.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 27

MarkLogic Server Getting Started with Semantic Graphs in MarkLogic

3. Scroll down a bit further and set the collection lexicon to true.

collection lexicon @ true falze

Maintain a lexicon of collection URIs (slower document loads and larger database
files).

The collection lexicon index is required and used by the REST endpoint. Y ou will only
need the collection lexicon if you are querying a named graph.

4, Click ok when you are done.

Thisisall you need to do before loading triples into your default database (the Documents
database).

Note: For al new installations of MarkLogic 9 and later, the triple index and collection
lexicon are enabled by default. Any new databases will also have the triple index
and collection lexicon enabled.

2.1.2 Setting Up Additional Servers

In a production environment, you will want to create additional app servers, REST instances, and
XDBC servers. Use these links to find out more:

» Application servers: The process to create additional app serversis described in Creating
and Configuring App Servers in the Administrator’s Guide.

* REST instances. To create adifferent REST instance on another port, see Administering
REST Client API Instances in the REST Application Developer’s Guide.

* XDBC servers: The process to create an XDBC server isdescribed in detail in Creating a
New XDBC Server in the Administrator’s Guide.

2.2 Loading Triples
This section covers loading triples into the database. It includes the following topics:

e Downloading the Dataset

e Importing Triples with micp

e Verifying the Import

2.2.1 Downloading the Dataset

Use the full sample of Persondatafrom DBPedia (in English and Turtle seriaization) for the
examples, or use a different subset of Persondata if you prefer.

1 Download the Persondata example dataset from DBPedia. You will use this dataset for the
stepsin the rest of this chapter. The dataset is available at

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 28

MarkLogic Server Getting Started with Semantic Graphs in MarkLogic

2.

2.2.2

https://wiki.dbpedia.org/develop/datasets/dbpedia-version-2016-10. To manually select it, go to
http://wiki.dbpedia.org/downloads-2016-10, scroll down to Persondata, and select the TTL
Version: http://downloads.dbpedia.org/2016-10/core-il8n/en/persondata_en.ttl.hz2

Note DBPediadatasets are licensed under the terms of the of the Creative Commons
Attribution-ShareAlike License and the GNU Free Documentation License. The data
isavailable in localized languages and in N-Triple and N-Quad serialized formats.

Extract the data from the compressed file to alocal directory, for example, c: \space.

Importing Triples with mlcp

There are multiple ways to load triples into MarkL ogic, including MarkL ogic Content Pump
(mlcp), REST endpoints, and X Query. The recommended way to bulk-load triplesis with micp.
These examples use mlcp on a standalone Windows environment.

1.

Install and configure MarkL ogic Pump as described in Installation and Configuration in the
micp User Guide.

In the Windows command interpreter, cmd . exe, Navigate to the micp bin directory for your
micp installation. For example:

cd C:\mlcp-11.0\bin

Assuming that the Persondata is saved locally under c:\space, enter the following single-
line command at the prompt:

mlcp.bat import -host localhost -port 8000 -username admin *
-password password -input file path c:\space\persondata en.ttl
-mode local -input file type RDF -output uri prefix /people/

A

For clarity the long command line is broken into multiple lines using the Windows line
continuation character “”. Remove the line continuation characters to use the command.

The modified command for UNIX is;

mlcp.sh import -host localhost -port 8000 -username admin -password\
password -input file path /space/persondata en.ttl -mode local\
-input file type RDF -output uri prefix /people/

For clarity, the long command line is broken into multiple lines using the UNIX line
continuation character “\”. Remove the line continuation characters to use the command.

Thetriples will be imported and stored in the default Documents database.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 29

https://wiki.dbpedia.org/develop/datasets/dbpedia-version-2016-10
http://wiki.dbpedia.org/downloads-2016-10
http://downloads.dbpedia.org/2016-10/core-i18n/en/persondata_en.ttl.bz2

MarkLogic Server Getting Started with Semantic Graphs in MarkLogic

4, Lotsof lines of text will display in your command line window, perhaps with what appear
to be warning messages. Thisis normal. The successful triples dataimport (UNIX output)
looks like thiswhen it is complete:

14/09/15 14:35:38 INFO contentpump.ContentPump: Hadoop library version:
2.0.0-alpha

14/09/15 14:35:38 INFO contentpump.LocalJobRunner: Content type: XML
14/09/15 14:35:38 INFO input.FileInputFormat: Total input paths to
process : 1

O:file:///home/persondata _en.ttl : persondata en.ttl

14/09/15 14:35:40 INFO contentpump.LocalJobRunner: completed 0%
14/09/15 14:40:27 INFO contentpump.LocalJobRunner: completed 100%
14/09/15 14:40:28 INFO contentpump.LocalJobRunner:
com.marklogic.contentpump.ContentPumpStats:

14/09/15 14:40:28 INFO contentpump.LocalJobRunner:
ATTEMPTED INPUT RECORD COUNT: 59595

14/09/15 14:40:28 INFO contentpump.LocalJobRunner:
SKIPPED INPUT RECORD_ COUNT: O

14/09/15 14:40:28 INFO contentpump.LocalJobRunner: Total execution
time: 289 sec

2.2.3 Verifying the Import
To verify that the RDF triples are successfully loaded into the triples database, do the following.

1. Navigate to the REST Server with a Web browser:

http://hostname:8000

where hostname is the name of your MarkL ogic Server host machine, and sooo isthe
default port number for the REST instance that was created when you installed MarkL ogic
Server.

2. Append“/1atest/graphs/things” t0 the end of the web address URL where 1atest is
the latest version of the REST API. For example:

http://hostname:8000/v1/graphs/things

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 30

MarkLogic Server

The first one thousand subjects are displayed:

&

localhost:2321/v1/graphs/things

Subjects

dbpedia.org/resource/%22Dr. Death%22 Steve Williams=

<http://dbpedia.org/resource/%2 2Insh%22 Teddy Mann>

dbpedia.org/resource/%e22King%%22 Benme Nawahi=

dbpedia.org/resource/%e22King Ermest%22 Baker=

dbpedia.org/resource/%022 Sunshine?s2? Sonny Pavne=

<http://dbpedia.org/resource/%%22 Weird Al%22 Yankovic>

dbpedia.org/resource/%60Abdu'l-Bah%C3%A 1=

dbpedia.org/resource/%C3%80lex Corretja=

dbpedia.org/resource/%C3%80lex Crivill%eC3%A 9=

/dbpedia.org/resource/%C3%80lex Pascual=

<http:/

dbpedia.org/resource/%%C3%80lex S1m%C3%B3n 1 Casanovas>

dbpedia.org/resource/%C3%80ngel Rangel=

dbpedia.org/resource/%C3%80strid Berg%C3%A8s-Frisbey=

<http://dbpedia.org/resource/%C3%81brah%C3%Alm Lederer=

dbpedia.org/resource/%C3%81d%C3% A lm %C3%E% sk

dbpedia.org/resource/%C3%81d%C3% A lm B%C3%B3di=

dbpedia.org/resource/%C3%81d%C3% A lm Bajorthegyi=

<http://dbpedia.org/resource/%C3%81d%C3%A 1m Balajti=

dbpedia.org/resource/%C3%81d%C3% A lm Bodor=

MarkLogic 10—

May, 2019 Semantic Graph Developer’s Guide—Page 31

Getting Started with Semantic Graphs in MarkLogic

MarkLogic Server Getting Started with Semantic Graphs in MarkLogic

3. Click on asubject link to view the triples. Subject and object IRIs are presented as links.

8 triples

<http.//dbpedia.org/resource/%C3%80lex Cometja> <http://dbpedia.org/ontology/birthPlace> <http://dbpedia org/resource/Barcelona™ .
<http://dbpedia.org/resource/%C3%80lex Corretia= <http://dbpedia.org/ontology/birthPlace™ <http://dbpedia.org/resource/Spain= .
<http://dbpedia.org/resource/%C3%80lex Corretja™ <http:/www.w3.org/1999/02/22 rdf-syntax-nsFtvpe™ <http:/xmlns com/foafl0.1/ Person™> .
<http.//dbpedia.org/resource/%C3%80lex Corretia> <http://xmlns. com/foaf/0.1/givenName> "Alex" .
<http://dbpedia.org/resource/%C3%80lex Corretja™ <http://xmins com/foaf/0.1/name> "Alex Corretja” .
<http://dbpedia.org/resource/%C3%80lex Corretja™ <http://xmlns com/foaf’0.1/surname> "Corretja” .

<http://dbpedia. org/resource/%C3%80lex Corretia= <http://purl org/dc/elements’]. 1/description= "Tennis player” .
<http://dbpedia.org/resource/%C3%80lex Corretja™ <http://dbpedia org/ontology/birthDate= "1974-04-11"""xs:date .

2.3 Querying Triples

You can run SPARQL queriesin Query Console or viaan HTTP endpoint using the
/v1l/graphs/spargl endp0| nt (GET :/v1l/graphs/sparqgl and posT: /v1 /graphs/sparql). Thissection
includes the following topics:

e Querying with Native SPARQL

* Querying with the sem:sparqgl Functions

Note: This section assumes you loaded the sample dataset as described in “ Downloading
the Dataset” on page 28.

2.3.1 Querying with Native SPARQL
You can run queries in Query Console using native SPARQL or the built-in function sem: sparqi.

To run queries:
1 Navigate to Query Console with a Web browser:

http://hostname:8000/gconsole

where hostname is the name of your MarkL ogic Server host.

2. From the Database drop-down list, select the Documents database.

. -
L] MarkLoglc] Query Console | ## Configuration Manager Monitoring Admin

bs] Query1 |+

Database: Documents % Explore server: | App-Services hd Query Type: JavaScript - e

‘use strict’

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 32

MarkLogic Server Getting Started with Semantic Graphs in MarkLogic

3. From the Query Type drop-down list, select SPARQL Query.

"Marl-nLogic-] Query Console %# Configuration Manager = [55 Monitoring @ Admin
bs] Query1 || +
Database: Documents ¥ | Explore Server: | App-Services 5 Query Type: JavaScript : i
JavaScript
‘use strict’ SPARQL Query S
SPARQL Update
SQL
XQuery
4, In the query window, replace the default query text with this SPARQL query:

PREFIX db: <http://dbpedia.org/resource/>
PREFIX onto: <http://dbpedia.org/ontology/>

SELECT *
WHERE { ?s onto:birthPlace db:Brooklyn }

5. Click Run.

. -
L] Mar]-;Loglc-] Query Console {}# Configuration Manager [Monitoring @l admin

© Query1 |+
Database: Documents ¥ | Explore server: | App-Services e Query Type: SPARQL Query ~ -

PREFIX db: <http://dbpedia.org/resource/>
PREFIX onto: <http://dbpedia.org/ontology/>

SELECT *
WHERE { ?s onto:birthPlace db:Brooklyn }

Run | Result | Auto | Raw H + Profile ” Explorer

Run query (ctrl enter)

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 33

MarkLogic Server

2.3.2

Use the built-in XQuery function sem: sparqg1 in Query Console to run the same query.

1.

2.

3.

MarkLogic 10—May, 2019

The results show people born in Brooklyn asIRIs.

Run (») Result: | || Auto | |- Raw B Profile || Explorer

Getting Started with Semantic Graphs in MarkLogic

hittp://dbpedia.crg/resource/40_lluminati
http://dbpedia.org/resourcesA._E._Waite
hittp://dbpedia.crg/resourcesAalivah
http://dbpedia.org/resourcelAaron_Elkins
http://dbpedia.crg/resource/Aaron_Russo
http://dbpedia.org/resource/Abe_Reles
hittp://dbpedia.crg/resource/Abraham_Klein_{physicist)
http://dbpedia.org/resourced/Abraham_5S._Fischler
http://dbpedia.org/resources/Abraham_S._Luchins
http://dbpedia.crg/resourcel/Abram_Cohen
hittp://dbpedia.crg/resources/Adam_Arkin
http://dbpedia.org/resource/Adam_Ferziger
http://dbpedia.org/resources/Adam_Ottavine
http://dbpedia.org/resource/Adam_Richman_{actor)
hittp://dbpedia.crg/resource/Adam_Roarke
http://dbpedia.org/resourcel/Adam_Sandler

hittp://dbpedia.crg/resource/Adam_Shapiro_(activist)

http://dbpedia.org/resourced/Adam_Yauch

Querying with the sem:sparqgl Functions

From the Database drop-down list, select the Documents database.

From the Query Type drop-down list, select “ XQuery”.
In the query window, enter this query:
xquery version "1.0-ml";
sem: sparqgl ('
PREFIX db: <http://dbpedia.org/resource/>
PREFIX onto: <http://dbpedia.org/ontology/>
SELECT *

WHERE { ?s onto:birthPlace db:Brooklyn }
")

Semantic Graph Developer’ s Guide—Page 34

MarkLogic Server Getting Started with Semantic Graphs in MarkLogic

4,

5.

Click Run.
- -
L] MarkLoglc‘] Query Console {# Configuration Manager < Monitoring Admin
& Query1 @ Query2 ik
Database: Documents v | Explore Server: | App-Services v Query Type: SPARQL Query ~ &

xquery version "1.8-ml";

sem:sparql(’
PREFIX db: <http://dbpedia.org/resource/>»
PREFIX onto: <http://dbpedia.org/ontology/>

SELECT *
WHERE { ?s onto:birthPlace db:Brooklyn }

Run || Result Auto | Raw || “ Profile H |Explorer

| Run guery (ctrl enter)

The results contain RIS showing people born in Brooklyn, the same asin * Querying with
Native SPARQL” on page 32.

Run ® Result: | || Auto | |- Raw ” (B Profile ” || Explorer |

hittp://dbpedia.crg/resource/40_lluminati
http://dbpedia.org/resourcesA._E._Waite
hittp://dbpedia.crg/resourcesAalivah
http://dbpedia.org/resourcelAaron_Elkins
http://dbpedia.crg/resource/Aaron_Russo
http://dbpedia.org/resource/Abe_Reles
hittp://dbpedia.crg/resource/Abraham_Klein_{physicist)
http://dbpedia.org/resourced/Abraham_5S._Fischler
http://dbpedia.org/resources/Abraham_S._Luchins
http://dbpedia.crg/resourcel/Abram_Cohen
hittp://dbpedia.crg/resources/Adam_Arkin
http://dbpedia.org/resource/Adam_Ferziger
http://dbpedia.org/resources/Adam_Ottavine
http://dbpedia.org/resource/Adam_Richman_{actor)
hittp://dbpedia.crg/resource/Adam_Roarke
http://dbpedia.org/resourcel/Adam_Sandler
hittp://dbpedia.crg/resource/Adam_Shapiro_(activist)

http://dbpedia.org/resourced/Adam_Yauch

For more information and examples of SPARQL queries, see “ Semantic Queries’ on page 81.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 35

MarkLogic Server Getting Started with Semantic Graphs in MarkLogic

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 36

MarkLogic Server Loading Semantic Triples

3.0 Loading Semantic Triples

You can load triples into a MarkL ogic database from an XML document or JSON file that
contains embedded triples elements, or from triples files containing serialized RDF data. This
chapter includes the following sections:

e Loading Embedded RDF Triples

¢ Loading Triples

You can also use SPARQL Update to load triples. See “ SPARQL Update’ on page 169 for more
information.

3.1 Loading Embedded RDF Triples

L oad documents that contain embedded triplesin XML documents or JSON documents with any
of the ingestion tools described in Available Content Loading Interfaces in the Loading Content Into
MarkLogic Server Guide.

Note: The embedded triples must bein the MarkLogic XML format defined in the
schemafor sem:triple (semantics.xsd).

Triplesingested into a MarkL ogic database are indexed by the triples index and stored for access
and query by SPARQL. See “Storing RDF Triplesin MarkLogic” on page 17 for details.

3.2 Loading Triples

There are multiple ways to load documents containing triples serialized in a supported RDF
serialization into MarkLogic. “ Supported RDF Triple Formats’ on page 38 describes these RDF
formats.

When you load one or more groups of triples, they are parsed into generated XML documents. A
unique IRI is generated for every XML document. Each document can contain multiple triples.

Note: The setting for the number of triples stored in documentsis defined by MarkLogic
Server and is not a user configuration.

Ingested triples are indexed with the triples index to provide access and the ability to query the
triples with SPARQL, XQuery, or a combination of both. You can also use aREST endpoint to
execute SPARQL queries and return RDF data.

If you do not provide agraph for the triple, the triples will be stored in a default graph that uses a
MarkLogic Server feature called a collection. MarkL ogic Server tracks the default graph with the
collection IRI http://marklogic.com/semantics#default-graph.

You can specify adifferent collection during the load process and load triples into anamed graph.
For more information about collections, see Collections in the Search Devel oper’s Guide.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 37

MarkLogic Server

Loading Semantic Triples

Note: If you insert triples into a database without specifying a graph name, the triples

will be inserted into the default graph

(http ://marklogic. com/semantics#default—graph). If you insert triples intoa
super database and run £n: count (fn:collection()) iNthe super database, you will

get a DUPURI exception for duplicate URIs.

The generated XML documents containing the triple data are loaded into a default directory
named /triplestore. Some loading tools let you specify a different directory. For example, when
you load triples using milcp, you can specify the graph and the directory as part of the import
options. For more information, see “Loading Triples with micp” on page 44.

This section includes the following topics:

e Supported RDFE Triple Formats

¢ Example RDF Formats

e | oading Triples with micp

* | oading Triples with XQuery

* Loading Triples with JavaScript

e | oading Triples Using the REST API

¢ Loading Triples Using the Java API

e Loading Triples Using the Node.js API

3.2.1 Supported RDF Triple Formats
MarkLogic Server supports loading these RDF data formats:

Format

Description

File
Type

MIME Type

RDF/ XML

A syntax used to serialize an RDF graph as an
XML document. For an example, see
“RDF/XML” on page 39.

rdf

application/rdf+xml

Turtle

Terse RDF Triple Language (Turtle)
serialization isasimplified subset of Notation 3
(N3), used for expressing data in the lowest
common denominator of serialization. For an
example, see “Turtle” on page 40.

At

text/turtle

RDF/JSON

A syntax used to serialize RDF data as JSON
objects. For an example, see “RDF/JSON” on

page 40.

Json

application/rdf+json

MarkLogic 10—May, 2019

Semantic Graph Developer’ s Guide—Page 38

MarkLogic Server

Loading Semantic Triples

Format

Description

File
Type

MIME Type

N3

Notation3 (N3) serialization isanon-XML
syntax used to serialize RDF data. For an
example, see “N3” on page 41.

.n3

text/n3

N-Triples

A plain text seriaization for RDF graphs. N-
Triplesisasubset of Turtle and Notation3 (N3).
For an example, see “N-Triples’ on page 41.

.nt

application/n-triples

N-Quads

A superset serialization that extends N-Triples
with an optional context value. For an example,
see “N-Quads’ on page 43.

.ng

application/n-quads

TriG

A plain text serialization for RDF-named graphs
and RDF datasets. For an example, see “TriG”
on page 44.

trig

application/trig

3.2.2

Example RDF Formats

This section includes examples for the following RDF formats:

e RDFE/XML
* Turtle

e RDF/JSON
* N3

* N-Triples

* N-Quads

e TiG

3.2.2.1 RDF/XML

RDF/XML isthe original standard for writing unique RDF syntax as XML. It isused to serialize
an RDF graph as an XML document.

This example defines three prefixes. “rdf”, “xsd”, and “d”.

<rdf :RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"

MarkLogic 10—May, 2019

xmlns:d="http://example.org/data/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema#" >
<rdf :Description rdf:about="http://example.org/data#item22">

<d:shipped rdf:datatype="http://www.w3.0org/2001/XMLSchema#date" >

2013-05-14</d:shipped>
<d:quantity

Semantic Graph Developer’ s Guide—Page 39

MarkLogic Server Loading Semantic Triples

rdf :datatype="http://www.w3.0rg/2001/XMLSchema#integer">
27</d:quantity>
<d:invoiced
rdf :datatype="http://www.w3.0rg/2001/XMLSchema#boolean" >
true</d:invoiced>
<d:costPerItem
rdf :datatype="http://www.w3.0rg/2001/XMLSchema#decimal">
10.50</d:costPerItem>
</rdf :Description>
</rdf :RDF>

3.2.2.2 Turtle

Terse RDF Triple Language (or Turtle) serialization expresses datain the RDF datamodel using a
syntax similar to SPARQL. Turtle syntax expresses triplesin the RDF data model in groups of
three IRIs.

For example:

<http://example.org/item/item22>
<http://example.org/details/shipped>
"2013-05-14"""<http://www.w3.0rg/2001/XMLSchema#fdateTime> .

Thistriple states that item 22 was shipped on May 14th, 2013.

Turtle syntax provides away to abbreviate information for multiple statements using eprefix to
factor out the common portions of IRIs. This makes it quicker to write RDF Turtle statements.
The syntax resembles RDF/ XML, however unlike RDF/ XML, it does not rely on XML. Turtle
syntax is also valid Notation3 (N3) since Turtle is a subset of N3.

Note: Turtle can only serialize valid RDF graphs.

In this example, four triples describe a transaction. The “ shipped” object is assigned a“date”
datatype, making it atyped literal enclosed in quotes. There are three untyped literals for the
“quantity”, “invoiced”, and “costPerltem” objects.

@prefix i: <http://example.org/item> .
@prefix dt: <http://example.org/details#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
i:item22 dt:shipped "2013-05-14"""xsd:date .
i:item22 dt:quantity 100 .
i:item22 dt:invoiced true .
i:item22 dt:costPerItem 10.50 .

3.2.2.3 RDF/JSON

RDF/JSON is atextual syntax for RDF that allows an RDF graph to be written in aform
compatible with JavaScript Object Notation (JSON).

For example:

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 40

MarkLogic Server Loading Semantic Triples

{ "http://example.com/directory#m":
{ "http://example.com/ns/person#firstName" :

[{ "value": "Michelle",
"type": "literal",
"datatype": "http://www.w3.org/2001/XMLSchema#string" }
]
}
}
3.2.24 N3

Notation3 (N3) isanon-XML syntax used to serialize RDF graphsin a more compact and
readable form than XML RDF notation. N3 includes support for RDF-based rules.

When you have severa statements about the same subject in N3, you can use a semicolon (;) to
introduce another property of the same subject. You can also use a comma to introduce another
object with the same predicate and subject.

For example:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns>
@prefix dc: <http://purl.org/dc/elements/1.1/>

@prefix foaf: <http://xmlns.com/foaf/0.1/>

@prefix foafcorp: <http://xmlns.com/foaf/corp/>

@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0>
@prefix sec: <http://www.rdfabout.com/rdf/schema/ussec>
@prefix id: <http://www.rdfabout.com/rdf/usgov/sec/id>

1id:cik0001265081 sec:hasRelation [

dc:date "2008-06-05";

sec:corporation id:cik0001000045;

rdf:type sec:0fficerRelation;

sec:officerTitle "Senior Vice President, CFO"]
id:cik0001000180 sec:cik "0001000180";

foaf:name "SANDISK CORP";

sec:tradingSymbol "SNDK";

rdf:type foafcorp:Company.
1id:cik0001009165 sec:cik "0001009165";

rdf:type foaf:Person;

foaf:name "HARARI ELIYAHOU ET AL";

vcard:ADR [vcard:Street "601 MCCARTHY BLVD.; ";
vcard:Locality "MILPITAS, CA"; vcard:Pcode "95035"]

3.2.2.5 N-Triples

N-Triplesisaplain text serialization for RDF graphs. It is a subset of Turtle, designed to be
simpler to use than Turtle or N3. Each line in N-Triples syntax encodes one RDF triple statement
and consists of the following:

e Subject (an IRI or ablank node identifier), followed by one or more characters of
whitespace

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 41

MarkLogic Server Loading Semantic Triples

* Predicate (an IRI), followed by one or more characters of whitespace

* Object (an IRI, blank node identifier, or literal) followed by a period (.) and a new line.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 42

MarkLogic Server Loading Semantic Triples

Typed literals may include language tags to indicate the language. In this N-Triples example,
een-us indicates that title of the resourceisin US English.

<http://www.w3.0rg/2001/sw/RDFCore/ntriples>
<http://www.w3.0rg/1999/02/22-rdf -syntax-ns#type>
<http://xmlns.com/foaf/0.1/Document> .
<http://www.w3.0rg/2001/sw/RDFCore/ntriples/>
<http://purl.org/dc/terms/title> "Example Doc"e@en-US .
<http://www.w3.0rg/2001/sw/RDFCore/ntriples/>
<http://xmlns.com/foaf/0.1/maker> :jane .
<http://www.w3.0rg/2001/sw/RDFCore/ntriples/>
<http://xmlns.com/foaf/0.1/maker> :joe .

__:jane <http://www.w3.0rg/1999/02/22-rdf-syntax-ns>

<http://xmlns.com/foaf/0.1/Person> .

__:jane <http://xmlns.com/foaf/0.1/name> "Jane Doe".

_:joe <http://www.w3.0rg/1999/02/22-rdf-syntax-ns>
<http://xmlns.com/foaf/0.1/Person> .
_:joe <http://xmlns.com/foaf/0.1/name> "Joe Bloggs".

Note: Each line breaks after the end period. For clarity, additional line breaks have been
added.

3.2.2.6 N-Quads

N-Quadsisaline-based, plain text serialization for encoding an RDF dataset. N-Quads syntax isa
superset of N-Triples, extending N-Triples with an optional context value. The simplest statement
Is a sequence of terms (subject, predicate, object) forming an RDF triple, and an optional IRI
labeling the graph in a dataset to which the triple belongs. All of these are separated by a
whitespace and terminated by a period (.) at the end of each statement.

This example uses the relationship vocabulary. The class or property in the vocabulary hasalRI
constructed by appending aterm name “ acquaintanceOf” to the vocabulary IRI.

<http://example.org/#Jane>
<http://http://purl.org/vocab.org/relationship/#acquaintanceOf>
<http://example.org/#Joe>

<http://example.org/graphs/directory> .

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 43

MarkLogic Server Loading Semantic Triples

3.2.2.7 TriG

TriG isaplain text serialization for serializing RDF graphs. TriG issimilar to Turtle, but is
extended with curly braces ({) and (}) to group triples into multiple graphs and precede named
graphs with their names. An optional equals operator (=) can be used to assign graph names and
an optional end period (.) isincluded for Notation3 compatibility.

Characteristics of TriG serialization include:

* Graph names must be unique within a TriG document, with one unnamed graph per TriG
document.

» TriG content is stored in fileswith an ".trig' suffix. The MIME type of TriG is
application/trig and the content encoding is UTF-8.

This example contains a default graph and two named graphs.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

default graph is http://marklogic.com/semantics#default-graph

{
<http://example.org/joe> dc:publisher "Joe" .
<http://example.org/jane> dc:publisher "Jane" .

}

first named graph
<http://example.org/joe>

{

_:a foaf:name "Joe" .
_:a foaf:mbox <mailto:joe@jbloggs.example.orgs> .

}

second named graph
<http://example.org/jane>

{

_:a foaf:name "Jane" .
_:a foaf:mbox <mailto:jane@jdoe.example.org> .

}

3.2.3 Loading Triples with mlcp

MarkL ogic Content Pump (mlcp) isacommand line tool for importing into, exporting from, and
copying content to MarkL ogic from alocal file system or Hadoop distributed file system (HDFS).

Using micp, you can bulk load billions of triples and quads into a MarkL ogic database and specify
options for the import. For example, you can specify the directory into which the triples or quads
are loaded. It is the recommended tool for bulk loading triples. For more detailed information
about mlcp, see Loading Content Using MarkLogic Content Pump in the Loading Content Into
MarkLogic Server Guide.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 44

MarkLogic Server Loading Semantic Triples

This section discusses |oading triplesinto MarkLogic Server with mlcp and includes the
following topics:

* Preparation

e Import Command Syntax

e | oading Triples and Quads

¢ Specifying Collections and a Directory

3.2.3.1 Preparation
Use these procedures to load content with mlcp:

1 Download and extract the micp binary files from developer.marklogic.com. Be sure that you
have the latest version of mlcp. For more information about installing and using micp and
system requirements, see Installation and Configuration in the mlcp User Guide.

Note: Although the extracted mlcp binary files do not need to be on the same MarkL ogic
host machine, you must have access and permissions for the host machine into
which you are loading the triples.

2. For these exampleswe will use the default database (Documents) and forest (Documents).
To create your own database see Creating a New Database in the Administrator’s Guide.

3. Verify that the triple index is enabled by checking the Documents database configuration
page of the Admin Interface, or using the Admin API. See “Enabling the Triple Index” on
page 66 for details.

Note: The collection lexicon index is required for the Graph Store HTTP Protocol used
by REST API instances and for use of the GRAPH “?g” construct in SPARQL
gueries. See “ Configuring the Database to Work with Triples” on page 27 for
information on the collection lexicon.

4, You can use micp with the default server on port 8000, which includes an XDBC server.
To create your own XDBC server, see Creating a New XDBC Server in the Administrator’s
Guide.

5. (Optional) Put the micp bin directory in your path. For example:
$ export PATH=${PATH}:/space/marklogic/directory-name/bin

where directory-name is derived from the version of micp that you downloaded.

6. Use a command-line interpreter or interface to enter the import command as asingle-line
command.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 45

http://developer.marklogic.com/

MarkLogic Server Loading Semantic Triples

3.2.3.2 Import Command Syntax
The mlcp import command syntax required for loading triples and quads into MarkLogic is:

mlcp command import -host hostname -port port number \
-username username -password password

-output graph graphname\

-input file path filepath -input file type filetype

Note: Long command linesin this section are broken into multiple lines using the line
continuation characters “\” or “~”. Remove the line continuation characters when
you use the import command.

The micp command you use depends on your environment. Use the micp shell script mcip.sh for
UNIX systems and the batch script micp.bat for Windows systems. The -host and -port values
specify the MarkL ogic host machine into which you are loading the triples. Your user credentials,
-username and -password dl'é followed by the path to the content , the -input file path vaue. If
you use your own database, be sure to add the -database parameter for your database. If no
database parameter is specified, the content will be put into the default Documents database.

The -input_file path May point to adirectory, file, or compressed filein .zip Or .gzip format.
The -input_file type iSthetype of content to be loaded. For triples, the -input _file type mMust
be RDF.

Note: Thefile extension of thefilefound in the -input file pathisused by micp to
identify the type of content being loaded. The type of RDF seridization is
determined by the file extension (. raf, .tt1, .nt, and so on).

A document with afile extension of .nq Or .trigisidentified asquad data, al other file extensions
areidentified as triple data. For more information about file extensions, see “ Supported RDF
Triple Formats’ on page 38.

Note: You must have sufficient MarkLogic privilegesto import to the specified host. See
Security Considerations in the mlcp User Guide.

3.2.3.3 Loading Triples and Quads

In addition to the required import options, you can specify several input and output options. See
“Import Options” on page 47 for more details about these options. For example, you can load
triples and quads by specifying RDF asthe -input_file type oOption:

$ mlcp.sh import -host localhost -port 8000 -username user \
-password passwd -input file path /space/tripledata/example.nt \

-output _graph /my/graph -mode local -input file type RDF

This example uses the shell script to load triples from asingle N-Triplesfile examp1e .nt, from a
local file system directory /space/tripledata into a MarkLogic host on port sooo.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 46

MarkLogic Server

Loading Semantic Triples

On a Windows environment, the command would look like this:

> mlcp.bat import -host localhost -port 8000

A

-username admin -password passwd *
-input file path c:\space\tripledata\example.nt -mode local”
-input file type RDF -output graph /my/graph

Note: For clarity, these long command lines are broken into multiple lines using the line
continuation characters “\” or “~”. Remove the line continuation characters when
you use the import command.

When you specify RDF as -input_file type the mlcp RDFReader parses the triples and
generates XML documents with sem: tripie astheroot e ement of the document.

3.2.3.4 Import Options

These options can be used with the import command to load triples or quads.

Options

Description

-input file type string

Specifiesthe input file type. Default: document. For triples,
use RDF.

-input_compressed boolean

When set to “true” this option enables decompression on
import. Default: false

-fastload boolean

When set to “true’ this option forces optimal performance
with adirect forest update. This may result in duplicate doc-
ument IRIs. See Time vs. Correctness: Understanding -fastload
Tradeoffs in the micp User Guide.

-output_directory

Specifies the destination database directory in which to cre-
ate the loaded documents. Using this option enables -fast-
1oad by default, which can cause duplicate IRIs to be
created. See Time vs. Correctness: Understanding -fastload
Tradeoffs in the micp User Guide. Default: /triplestore

-output graph

The graph value to assign to quads with no explicit graph
specified in the data. Cannot be used with -

output override graph.

-output_override graph

The graph value to assign to every quad, whether aquad is
specified in the data or not. Cannot be used with -
output_graph.

MarkLogic 10—May, 2019

Semantic Graph Developer’s Guide—Page 47

MarkLogic Server Loading Semantic Triples

Options Description

-output_collections Creates a comma-separated list of collections. Default:
http://marklogic.com/semantics#default-graph

If -output_collections is used with -output_graph and -
output_override graph, the collections SpeCIfled will be
added to the documents | oaded.

-database string (optional) The name of the destination database. Defaullt:
The database associated with the destination App Server
identified by -host and -port.

Note: When you load triples using micp, the -output_permissions Option isignored -
triples (and, under the covers, triples documents) inherit the permissions of the
graph that you're loading into.

If -output collections @nNd -output override graph are Set at the same time, a graph document
will be created for the graph specified by -output_override graph, and triples documents will be
|oaded into collections SpeCIfIEd by -output_collections and -output_override graph.

If -output_collections and -output_graph are set af the sameti me, agraph document will be
created for the graph specified by -output_graph (Where there is no explicit graph specified in the
data). Quads with no explicit graph specified in the data will be loaded into collections specified
by -output_collections and the graph specified by -output graph, while those quads that contain
explicit graph data will be loaded into the collections specified by -output_collections and the

graph(s) specified.

You can split large triples documents into smaller documentsto parallelize loading with micp and
load all the filesin adirectory that you specify with -input file path.

For more information about import and output options for mlcp, see Import Command Line Options
in the micp User Guide.

For example:

Windows users, see Modifying the Example Commands for Windows

$ mlcp.sh import -host localhost -port 8000 -username user \
-password passwd -input file path /space/tripledata \
-mode local -input file type RDF -output graph /my/graph

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 48

MarkLogic Server Loading Semantic Triples
3.2.3.5 Specifying Collections and a Directory
To load triples into a named graph, specify a collection by using the -output_collections Option.

Note: To create anew graph, you need to have the sparql-update-user role. For more
information about roles, see Understanding Roles in the Security Guide.

For example:

Windows users, see Modifying the Example Commands for Windows

$ mlcp.sh import -host localhost -port 8000 -username user \
-password passwd -input file path /space/tripledata \

-mode local -input file type RDF -output graph /my/graph\
-output collections /my/collection

This command puts all thetriplesin the tripiedata directory into a named graph and overwrites
the graph IRI tO /my/collection.

Note: Use -output collections and not -filename as collection 1O overwrite the
default graph IRI.

For triples data, the documents go in the default collection
(http://marklogic .com/semantics#default-graph) If you do not SpeC|fy any collections.

For quad data, if you do not specify any collections, the triples are parsed, serialized, and stored in
documents with the fourth part of the quad as the collection.

For example with this quad, the fourth part is an IRI that identifies the homepage of the subject.

<http://dbpedia.org/resource/London Heathrow Airports
<http://xmlns.com/foaf/0.1/homepage>

<http://www.heathrowairport.com/>
<http://en.wikipedia.org/wiki/London Heathrow Airport?0ldid=495283228%
absolute-line=26/> .

When the quad is loaded into the database, the collection is generated as a named graph,

http://en.wikipedia.org/wiki/London Heathrow Airport?oldid=495283228#absolute-line=26.

Note: If the -output collections import option specifies a named graph, the fourth
element of the quad isignored and the named graph is used.

If you are using a variety of loading methods, consider putting all of the triples documentsin a
common directory. Sincethe sem: rdaf-insert and sem: rdf-10ad functions put triples documentsin
the /triplestore directory, USE -output_uri_prefix /triplestore tO put mlcp-generated triples
documents there as well.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 49

MarkLogic Server Loading Semantic Triples

For example:

$ mlcp.sh import -host localhost -port 8000 -username user \

-password passwd -input file path /space/tripledata/example.zip \
-mode local -input file type RDF -input compressed true

-output collections /my/collection -output uri prefix '/triplestore' \
-output graph /my/graph

When you load triples or quads into a specified named graph from acompressed .zip Or .gzip file,
mlcp extracts and serializes the content based on the serialization. For example, acompressed file
containing Turtle documents (. tt1) will be identified and parsed as triples.

When the content is loaded into MarkLogic with micp, the triples are parsed as they are ingested
as XML documents with a unique IRI. These unique IRIs are random numbers expressed in
hexadecimal. This example showstriplesloaded with micp from the persondata.tt1 file, with the
-output_uri prefix spec:|f|ed aS /triplestore:

/triplestore/d2a0b25bda81bb58-0-10024 .xml
/triplestore/d2a0b25bda81bb58-0-12280.xml
/triplestore/d2a0b25bda81bb58-0-13724 .xml
/triplestore/d2a0b25bda81bb58-0-14456.xml

Carefully consider the method you choose for loading triples. The algorithm for generating the
document IRIs with micp differs from other loading methods such as loading from a system file
di rectory With sem: rdf-1oad.

For example, loading the same persondata.ttl file with sem: raf-10ad resultsin IRIs that appear
to have no relation to each other:

/triplestore/11b53cf4db02080a.xml
/triplestore/19b3a986fcd7la5¢c.xml
/triplestore/215710576ebe4328.xml
/triplestore/25ec5ded9bfdb7c2.xml

When you load triples with sem: raf-10ad, the triples are bound to the
http://marklogic.com/semantics prefix in the resulti ng documents.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 50

MarkLogic Server Loading Semantic Triples

For example:

<?xml version="1.0" encoding="UTF-8"?>
<sem:triples xmlns:sem="http://marklogic.com/semantics">

<sem:triple>
<sem:subject>http://dbpedia.org/resource/Wayne Stenehjem
</sem:subject>
<sem:predicate>http://purl.org/dc/elements/1.1/description
</sem:predicate>
<sem:object datatype="http://www.w3.0rg/2001/XMLSchemaf#fstring"
xml:lang="en">American politician
</sem:object>

</sem:triple>

<sem:triple>
<sem:subject>http://dbpedia.org/resource/Wayne Stenehjem
</sem:subject>
<sem:predicate>http://dbpedia.org/ontology/birthDate
</sem:predicate>
<sem:object datatype="http://www.w3.0rg/2001/XMLSchema#date" >
1953-02-05
</sem:object>
</sem:triple>

</sem:triples>

Note: You canleave out the sem: triples tag, but you cannot leave out the sem: tripie tags.

3.24 Loading Triples with XQuery
Triples are typically created outside MarkLogic Server and loaded via Query Console by using

the following sem: functions:
e sem:rdf-insert
e sem:rdf-load

* sem:rdf-get

The sem:rdf-insert and sem:rdf-1oad functionsare updaIe functions. The sem: rdf-get function
isareturn function that loads triples in memory. These functions are included in the XQuery
Semantics API that isimplemented as an XQuery library module.

Tousesem: functionsin XQuery, import the module with the following X Query prolog statement
in Query Console:

import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqy";

Note: If thismoduleis aready imported, you will get an error message.

For more details about semantic functions in XQuery, see the Semantics (sem:) documentation in
the MarkLogic XQuery and XS_T Function Reference.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 51

MarkLogic Server Loading Semantic Triples

3.2.4.1 sem:rdf-insert

The sem:rdf-insert function insertstriplesinto the database as triples documents. Thetripleis
created in-memory by using the sem:triple and sem:iri constructors. The IRIs of the inserted
documents are returned on execution.

For example:-*

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqgy";

sem:rdf-insert (
sem:triple(
sem:iri ("http://example.org/people#m") ,
sem:iri ("http://example.com/person#firstName"),
"Michael"))

This returns the document IRI:
/triplestore/70eb0b7139816fe3.xml

By default, sem: rdf-insert putsthe documentsinto the directory /triplestore/ and assignsthe
default graph. You can specify a named graph as a collection in the fourth parameter.

For example:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqy";

sem:rdf-insert (sem:triple(
sem:iri ("http://example.com/ns/directory#jp"),

sem:iri ("http://example.com/ns/person#firstName"),
"John-Paul"), null, null, "mygraph")

When you run this example, the document is inserted into both the default graph and mygraph.

ftriplestore/b58efcb2534a8454 xml E semitriples (no properties) http:#'marklegic. comizemantice#default-graph, mygraph

Note: If youinsert quads or triplesin TriG serialization, the graph name comes from the
value in the “fourth position” in the quadg/trig file.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 52

MarkLogic Server Loading Semantic Triples

3.2.4.2 sem:rdf-load

The sem:rdf-10aa function loads and parses triples from filesin a specified location into the
database and returns the IRIs of the triples documents. You can specify the serialization of the
triples, such as turt1e for Turtlefilesor ratxm1 for RDF files.

For example:

sem:rdf-load ('C:\rdfdata\example.rdf', "rdfxml")

=>

/triplestore/fbd28af1471b39e9.xml

Aswith sen:rdf-insert, thisfunction also puts the triples documents into the default graph and
/triplestore/ directory unless adirectory or named graph is specified in the options. This
example specifies mynewgraph as a named graph in the parameters:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqy";

sem:rdf-load ("C:\turtledata\example.ttl", "turtle", (), (),
"mynewgraph")

The document is inserted:
itriplestore/81b14a8e61b07 11 xml E semitriples (no properties) http:#'marklegic. com'zemantice#default-graph, mygraph

itriplestore/8f2cfelecf2 87 ¢ xml E semitriples (no properties) http:#/marklogic. comizemantice#default-graph, mynewgraph

Note: Touse sem:rdf-1oad YOU need the xdmp : document -get privilege.

3.2.4.3 sem:rdf-get

The sem: ref-get function returnstriplesin triples files from a specified location. The following
example retrieves triples serialized in Turtle serialization from the local filesystem:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqy";

sem:rdf-get ('C:\turtledata\people.ttl', "turtle")

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 53

MarkLogic Server Loading Semantic Triples

Thetriples are returned astriplesin Turtle serialization with one triple per line. Each triple ends
with a period.

Run l'\.:/l __| Result | Auto | Raw 4 Profile =" Explorer

@prefix xs: <http://www.w3.org/2861/¥MLSchema#> .

<http://dbpedia.org/resource/Abraham_Lincoln> <http://dbpedia.org/ontology/birthDate> "1889-82-1
<http://dbpedia.org/ontology/deathDate> "1865-84-15"""xs:date ;
<http://www.w3.0rg/1999/82/22-rdf-syntax-ns#typer <http://xmlns.com/foaf/0.1/Person> ;
<http://xmlns.com/foaf/@.1/name> "Abraham Lincoln"@en ;
<http://dbpedia.org/ontology/birthPlace> <http://dbpedia.org/resource/Hardin_County,_ Kentucky>
<http://purl.org/dc/elements/1.1/description> "16th President of the United States"@en .

<http://dbpedia.org/resource/Alexander Mackenzie» <http://dbpedia.org/ontology/birthDater "1822-¢
<http://dbpedia.org/ontology/deathDate> "1892-84-17""*xs:date ;
<http://www.w3.0rg/1999/82/22-rdf-syntax-ns#typer <http://xmlns.com/foaf/0.1/Person> ;
<http://xmlns.com/foat/6.1/s5urname> "Mackenzie"@en ;
<http://dbpedia.org/ontology/deathPlace> <http://dbpedia.org/resource/Toronto> ;
<http://xmlns.com/foat/6.1/name> "Alexander Mackenzie"@en ;
<http://dbpedia.org/ontology/birthPlace> <http://dbpedia.org/resource/Logierait> ,

<http://dbpedia.org/resource/Perthshire> ,
<http://dbpedia.org/resource/Scotland> ;

<http://xmlns.com/foaf/6.1/giveniName> "Alexander"@en ;
<http://purl.org/dc/elements/1.1/description> "2nd Prime Minister of Canada (1873-1878)"@en .

<http://dbpedia.org/resource/Alan_Turing> <http://dbpedia.org/ontology/birthDate> "1912-86-23"""
<http://dbpedia.org/ontology/deathDate> "1954-86-87""*xs:date ;
<http://www.w3.0rg/1999/82/22-rdf-syntax-ns#typer <http://xmlns.com/foaf/0.1/Person> ;
<http://xmlns.com/foaf/@.1/surname> "Turing"@en ;
<http://dbpedia.org/ontology/deathPlace> <http://dbpedia.org/resource/Manchester> ;
<http://xmlns.com/foaf/@.1/name> "Alan Mathison Turing"@en ;
<http://dbpedia.org/ontology/birthPlace> <http://dbpedia.org/resource/Paddington> ;
<http://xmlns.com/foaf/@.1/givenName> "Alan Mathison"@en ;
<http://purl.org/dc/elements/1.1/description> "Computer scientist, mathematician, and cryptogr:

This Query Console display format allows for easy copying from the Result pane.

3.25 Loading Triples with JavaScript
Triples can be loaded via Query Console by using the following sem. functions:

e sem.rdfInsert
¢ sem.rdfLoad
e sem.rdfGet

The sem. rdfinsert and sem.rdfLoad functionsare update functions. The sen. rafcet functionisa
return function that loads triples in memory. These functions are included in the JavaScript
Semantics API.

To usesem. functionsin JavaScript, import the module with the following JavaScript statements
in Query Console:

declareUpdate () ;
const sem = require ("/MarkLogic/semantics.xqy") ;

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 54

MarkLogic Server Loading Semantic Triples

Note: If thismoduleis aready imported, you will get an error message.

For more details about semantic functions in JavaScript, see the Semantics (sewn.) documentation
in the MarkLogic Server-Sde JavaScript Function Reference.

3.2.5.1 sem.rdflnsert

The sem.rdf1nsert function insertstriples into the database as triples documents. Thetripleis
created in-memory by using the sem.triple and sem.iri constructors. The IRIs of the inserted
documents are returned on execution.

For example:-*

declareUpdate () ;
const sem = require ("/MarkLogic/semantics.xqy") ;

sem.rdfInsert (
sem.triple(
gsem.iri ("http://example.com/ns/directory#m") ,

sem.iri ("http://example.com/ns/person#firstName"), "Michael"));

This returns the document IRI:

/triplestore/74521a908ece2074 .xml

By default, sem. rdfnsert puts the documents into the directory /triplestore/ and assignsthe
default graph. You can specify a named graph as a collection in the fourth parameter.

For example:

declareUpdate () ;
const sem = require ("/MarkLogic/semantics.xqy") ;

sem.rdfInsert (
sem.triple(
sem.iri ("http://example.com/ns/directory#m") ,
sem.iri ("http://example.com/ns/persontfirstName") ,
"John-Paul"), (), (), "mygraph");

When you run this example, the document is inserted into both the default graph and mygraph.

Note: If you insert quads or triplesin TriG serialization, the graph name comes from the
value in the “fourth position” in the quads/trig file.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 55

MarkLogic Server Loading Semantic Triples

3.2.5.2 sem.rdfLoad

The sem.rdf1oad function loads and parses triples from filesin a specified location into the
database and returns the IRIs of the triples documents. You can specify the serialization of the
triples, such as turt1e for Turtlefilesor ratxm1 for RDF files.

For example:

declareUpdate () ;
var sem = require ("/MarkLogic/semantics.xqy") ;

sem.rdfLoad ('C:/data/example.rdf', "rdfxml")
=>

/triplestore/fbd28af1471b39e9.xml

Aswith sen. rdaf-1nsert, thisfunction also puts the triples documents into the default graph and
/triplestore/ directory unless adirectory or named graph is specified in the options. This
example specifies mynewgraph as a named graph in the parameters:

declareUpdate () ;
var sem = require ("/MarkLogic/semantics.xqy") ;

sem.rdfLoad('C:/turtledata/example.ttl', "turtle", (), (),
"mynewgraph"))
=>

/triplestore/fbd28af1471b39e9.xml

The document is inserted.

Note: Touse sem.rdflLoad you need the xdmp . documentGet privi Iege.

3.2.5.3 sem.rdfGet

The sem. refcet function returnstriplesin triples files from a specified location. The following
example retrieves triples serialized in Turtle serialization from the local filesystem:

var sem = require ("/MarkLogic/semantics.xqy") ;
sem.rdfGet ('C:/turtledata/people.ttl', "turtle");

Thetriples are returned astriplesin Turtle serialization with one triple per line. Each triple ends
with a period.

3.2.6 Loading Triples Using the REST API

A REST endpoint is an XQuery module on MarkL ogic Server that routes and responds to an
HTTP request. An HTTP client invokes endpoints to create, read, update, or delete content in
MarkLogic. This section discusses using the REST API to load triples with a REST endpoint. It
covers the following topics:

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 56

MarkLogic Server Loading Semantic Triples

* Preparation

e Addressing the Graph Store

e Specifying Parameters

e Supported Verbs

e Supported Media Formats

* Loading Triples

* Response Errors

3.2.6.1 Preparation

If you are unfamiliar with the REST APl and endpoints, see Introduction to the MarkLogic REST API
in the REST Application Developer’s Guide.

Use the following procedures to make requests with REST endpoints:

1. Install MarkLogic Server version 8.0-4 or later.

2. Install cur1 or an equivalent command line tool for issuing HTTP requests.

3. You can use the default database and forest (Documents) on port 8000 or create your own.
To create a new database and forest, see Creating a New Database in the Administrator’s
Guide.

4, Verify that the triple index and the collection lexicon are enabled on the Documents

database by checking the configuration page of the Admin Interface or by using the
Admin API. See “Enabling the Triple Index” on page 66.

Note: The collection lexicon isrequired for the Graph Store HTTP Protocol of REST
API instances.

5. You can use the default REST API instance associated with port 8000. If you want to
create anew REST API instance, see Creating an Instance in the REST Application
Developer’s Guide.

3.2.6.2 Addressing the Graph Store

The graph endpoint is an implementation of the W3C Graph Store HTTP Protocol as specified in
the SPARQL 1.1 Graph Store HTTP Protocol:

http://www.w3.0rg/TR/2013/REC-sparql11-http-rdf-update-20130321/

The base URL for the graph storeis:

http://hostname:port/vversion/graphs

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 57

http://www.w3.org/TR/2013/REC-sparql11-http-rdf-update-20130321/

MarkLogic Server Loading Semantic Triples

Where hostname is the MarkL ogic Server host machine, port is the port on which the REST API
instance is running, and version is the version number of the API. The Graph Store HTTP
Protocol is amapping from RESTful HTTP requests to the corresponding SPARQL 1.1 Update
operations. See Summary of the /graphs Service in the REST Application Developer’s Guide.

3.2.6.3 Specifying Parameters
The graph endpoint accepts an optional parameter for a particular named graph. For example:

http://localhost:8000/v1/graphs?graph=http://named-graph
If omitted, the default graph must be specified as a default parameter with no value.
For example:

http://localhost:8000/v1l/graphs?default

When acet request isissued with no parameters, the list of graphswill be givenin list format. See
GET: /v1/graphs fOr more details.

3.2.6.4 Supported Verbs

A REST client usesHTTP verbs such ascer and put to interact with MarkL ogic Server. Thistable
lists the supported verbs and the role required to use each:

Verb Description Role
GET Retrieves a named graph. rest-reader
POST Merges triples into a named graph or adds triples to an empty rest-writer

graph.
PUT Replaces triplesin a named graph or adds triples to an empty rest-writer

graph. Functionally equivalent to DELETE followed by rosT.
For an example, see “Loading Triples’ on page 59.

DELETE Removes triples in a named graph. rest-writer
HEAD Test for the existence of a graph. Retrieves a named graph, rest-reader
without the body.

The role you use to make a MarkLogic REST API request must have appropriate privileges for
the content accessed by the HTTP call; for example, permission to read or update documentsin
the target database. For more information about REST API roles and privileges, see Security
Requirements in the REST Application Developer’s Guide.

Note: Thisendpoint will only update documents with the element sem: tripie astheroot.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 58

MarkLogic Server Loading Semantic Triples

3.2.6.5 Supported Media Formats

For alist of supported mediaformats for the content -type HTTP header, see * Supported RDF
Triple Formats’ on page 38.

3.2.6.6 Loading Triples
To insert triples, make a put Or rost request to a URL of the form:

http://host:port/vl/graphs?graph=graphname
When constructing the request:
1. Specify the graph in which to load the triples.

* To specify the default graph, set the graph parameter to the default graph.
* To specify anamed graph, set the graph parameter to the named graph.
2. Place the content in the request body.

3. Specify the MIME type of the content in the content-type HTTP header. See “ Supported
RDF Triple Formats’ on page 38.

4, Specify the user credentials.

Thetriples are loaded into the default directory, /triplestore.

Thisis an example of a cur1 command for a UNIX or Cygwin command line interpreter. The
command sends arur HTTP request to insert the contents of thefile examp1e.nt into the database

as XML documentsin the default graph:

Windows users, see Modifying the Example Commands for Windows

$ curl -s -X PUT --data-binary '@example.nt' \
-H "Content-type: application/n-triples" \
--digest --user "admin:password" \
"http://localhost:8000/v1/graphs?default"

Note: When you load triples with the REST endpoint using rut Or posT, you must specify
the default graph or a named graph.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 59

MarkLogic Server Loading Semantic Triples

These cur1 command options are used in the preceding example:

Option Description

-s Specifies silent mode, so that the cur1 output does not include the
HTTP response headersin the output. The alternativeis -i to
include the response headers.

-X http_method The type of HTTP request (put) that cur1 will send. Other sup-
ported requests are cet, rost and peLeTE. See * Supported Verbs’
on page 58.

--data-binary data Datato include in the request body. Data may be placed directly
on the command line as an argument tO - -data-binary, Of read
from afile by using efiiename. If you are using Windows, a Win-

dows version of cur1 that supportsthe "e" operator is required.

-H headers The HTTP header to include in the request. The examplesin this
gui de use content-type.

--digest The authentication method specified encrypts the user’s pass-
word.

--user user:password | Username and password used to authenticate the request. Use a
MarkLogic Server user that has sufficient privileges to carry out
the requested operation. For details, see Security Requirements in
the REST Application Developer’s Guide.

For more information about the REST API, see the Semantics documentation in the REST Client
API. For more about REST and Semantics see “Using Semantics with the REST Client API” on
page 189.

3.2.6.7 Response Errors
This section covers the error reporting conventions followed by the MarkLogic REST API.

If arequest to aMarkLogic REST API Instance fails, an error response code is returned and
additional information is detailed in the response body.

These response errors may be returned:

* 400 Bad Request returnsfor rut Or rosT requests that have no parameters at all.
* 400 Bad Request returnsfor rut Or rost requests for payloads that failsto parse.

* 404 Not Found returnsfor cer requeststo agraph that does not exist (the IRI is not present
in the collection lexicon).

* 406 Not Acceptable returnsfor cer requestsfor triplesin an unsupported serialization.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 60

http://docs.marklogic.com/REST/client/semantics

MarkLogic Server Loading Semantic Triples

* 415 Unsupported Media Type returnsfor rost Or puT request in an unsupported format.

Note: The repair parameter for rost and put requests can be set to true O false. By
default thisis fa1se. If set to true, apayload that does not properly parse will still
insert any triples that do parse. If set to false, any payload errors whatsoever will
result in @400 Bad Request ESPONSE.

3.2.7 Loading Triples Using the Java API

For an example of loading triples using the MarkL ogic Java API, see Example: Loading, Managing,
and Querying Triples in the Java Application Developer’s Guide.

3.2.8 Loading Triples Using the Node.js API

For an example of loading triples using the MarkL ogic Node.js API, see Loading Triples in the
Node.js Application Developer’s Guide.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 61

MarkLogic Server Loading Semantic Triples

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 62

MarkLogic Server Triple Index Overview

4.0 Triple Index Overview

This chapter provides an overview of the triple index in MarkLogic Server and includes the
following sections:

e Understanding the Triple Index and How It's Used

e Enabling the Triple Index

e Other Considerations

4.1 Understanding the Triple Index and How It’s Used

Thetripleindex is used to index schema-valid sem:triple €lements found anywherein a
document. The indexing of triplesis performed when documents containing triples are ingested
into MarkL ogic or during a database reindex. The triple index stores each unique value only once,
in the dictionary. The dictionary gives each value an ID, and the triple data then uses that ID to
reference the value in the dictionary.

The validity of sem:trip1e elementsis determined by checking elements and attributes in the
documents agal nst the sem:triple SChema (/MarkLogic/Config/semantics .xsd). If the sem:triple
element isvalid, an entry is created in the triple index, otherwise the element is skipped. Unlike
range indexes, triple indexes do not have to fit in memory, so thereislittle up-front memory
allocation.

Note: For al new installations of MarkLogic 9 and later, the triple index and collection
lexicon are enabled by default. Any new databases will also have the triple index
and collection lexicon enabled.

This section covers the following topics:

* Triple Data and Value Caches

* Triple Values and Type Information

* Triple Positions

¢ Index Files

e Permutations

41.1 Triple Data and Value Caches

Internally, MarkL ogic stores triplesin two ways: triple values and triple data. The triple values
aretheindividual values from every triple, including all typed literal, IRIs, and blank nodes. The
triple data holds the triples in different permutations, along with a document 1D and position
information. The triple data refer to the triple values by ID, making for very efficient lookup.
Triple datais stored compressed on disk, and triple values are stored in a separate compressed
value store. Both the triple index and the value store are stored in compressed four-kilobyte (4k)
blocks.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 63

MarkLogic Server Triple Index Overview

When triple datais needed (for example, during alookup), the relevant block is cached in either
the triple cache or the triple value cache. Unlike other MarkL ogic caches, the triple cache and
triple value cache shrinks and grows, only taking up memory when it needs to add to the caches.

Note: You can configure the size of the triple cache and the triple value cache for the
host of your triple store, as described in “ Sizing Caches’ on page 69.

4.1.1.1 Triple Cache and Triple Value Cache

The triple cache holds blocks of compressed triples from disk which are flushed using a least
recently used (LRU) algorithm. Blocks in the triple cache refer to values from adictionary. The
triple value cache holds uncompressed values from the triple index dictionary. The triple value
cacheisalso an LRU cache.

Triplesin thetriple index are filtered out depending on the timestamps of the query and of the
document from which they came. The triple cache holds information generated before the
filtering happens, so deleting a triple has no effect on triple caches. However, after amerge, old
stands may be deleted. When a stand is deleted, all its blocks are flushed from the triple caches.

Cache timeout controls how long MarkL ogic Server will keep triple index blocks in the cache
after the last time it was used (when it has not been flushed to make room for another block).
Increasing the cache timeout might be good for keeping the cache hot for queriesthat are run at
infrequent periods. Other more frequent queries may push the information out of the cache before
the infrequent query isre-run.

4.1.2 Triple Values and Type Information

Values are stored in a separate value store on disk in “value equality” sorted order, soin agiven
stand, the value ID order is equivalent to value equality order.

Strings in the values are stored in the range index string storage. Anything not relevant to value
equality isremoved from the stored values, such as timezone and derived type information.

Since type information is stored separately, triples can be returned directly from the triple index.
Thisinformation is also used for RDF-specific “sameTerm” comparison required by SPARQL
simple entailment.

4.1.3 Triple Positions

The triple positions index is used to accurately resolve queriesthat use cts:triple-range-query
and the item-frequency Option Of cts:triples. Thetriple positionsindex is also used to
accurately resolve searchesthat usethe cts:near-query and cts:element -query coOnstructors. The
triple positions index stores locations within a fragment of the relative positions of triples within
that fragment (typically, afragment is a document). Enabling the triple positions index increases
index sizes and somewhat slows document loads, but it increases the accuracy of queriesthat need
those positions.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 64

MarkLogic Server Triple Index Overview

For example:
xquery version "1.0-ml";

cts:search(doc (),
cts:near-query ((
cts:triple-range-query (sem:iri ("http://www.rdfabout.com/rdf/
usgov/sec/id/cik0001075285"), (), ()),

cts:triple-range-query (sem:iri ("http://www.rdfabout.com/rdf/
usgov/sec/1d/cik0001317036"), (), ())
),11), "unfiltered")

The cts:near-query returns a sequence of queries to match, where the matches occur within the
specified distance from each other. The distance specified isin the number of words between any
two matching queries.

The unfiltered search selects fragments from the indexes that are candidates to satisfy the
specified cts: query and returns the document.

4.1.4 Index Files

To efficiently make use of memory, the index files for triple and value stores are directly mapped
into memory. The type storeis entirely mapped into memory.

Both the triple and value stores have index files consisting of 64-byte segments. The first segment
in each is a header containing checksums, version number, and counts (of triples or values). This
isfollowed by:

» Triplesindex: After the header segment, the triplesindex contains an index of the first two
values and permutation of the first triple in each block, arranged into 64-byte segments.
Thisisused to find the blocks needed to answer a given lookup based on values from the
triple. Currently triples are not accessed by ordinal, so an ordinal index is not required.

» VauesIndex: After the header segment, the values index contains an index of the first
value in each block, arranged into 64-byte segments. The valuesindex is used to find the
blocks needed to answer a given lookup based on value. Thisisfollowed by an index of
the starting ordinal for each block, which is used to find the block needed to answer a
given lookup based on avalue ID.

Note: Thetripleindex storespositionsif thetriple positions iSenabled. See*Enabling
the Triple Index” on page 66.

The type store has an index file that stores the offset into the type data file for each stored type.
Thisis aso mapped into memory.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 65

MarkLogic Server Triple Index Overview

This table describes the memory-mapped index files that store information used by the triple
indexes and values stores.

Index File Description
TripleIndex Block indexes for TripleData and TripleValueData
TripleValueIndex
TripleTypeData Typeinformation for the triple values
TripleTypeIndex
StringData Also used by the string-based range indexes
StringIndex
AtomData
AtomIndex
TripleValueFregs Statistical information about the triples. The triple index keeps
TriplevalueFregsIndex statistics on the triples for every value kept in the database.

4.1.5 Permutations

The permutation enumeration details the role each value playsin the original triple. Three
permutations are stored in order to provide access to different sort orders, and to be able to
efficiently look up different parts of the triple. The permutations are acronyms made up from the
initials of the three RDF elements (subject, predicate, and object), for example:{ sop, pso, ops}.

Usethe cts:triples function to specify one of these sort ordersin the options:

* order-pso - Returns results ordered by predicate, then subject, then object
* order-sop - Returns results ordered by subject, then object, then predicate

* order-ops - Returns results ordered by object, then predicate, then subject

4.2 Enabling the Triple Index

By default, the triple index is enabled for databasesin MarkLogic 9 or later. This section
discusses how to enable the triple index or verify that it is enabled. It also discusses related
indexes and configuration settings. It includes the following topics:

e Using the Database Configuration Pages

¢ Using the Admin API

4.2.1 Using the Database Configuration Pages

Thetriple index can be enabled or disabled on the Admin Interface (http://hostname:8001)
database configuration page. The hostname is the MarkL ogic Server host for which the triple
index isto be enabled.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 66

MarkLogic Server Triple Index Overview

For more information about index settings, see Index Settings that Affect Documents of the
Administrator’s Guide and “ Configuring the Database to Work with Triples’ on page 27.

Note: For al new installations of MarkLogic 9 and later, the triple index is enabled by
default. Any new databases will also have the triple index enabled. Y ou may want
to verify that existing databases have the triple index enabled.

Use the following proceduresto verify or configure the triple index and related settings. To enable
the triple positions index, the in-memory triple index size, and collection lexicon, use the Admin
interface (nttp://hostname:8001) Or the Admin API. See “Using the Admin API” on page 68 for
details.

* Inthe Admin Interface, scroll down to the triple index setting and set it to true.

triple index @ true false

Enable the ROF triple index (slower document loads and larger database files).

When you enable the triplesindex for thefirst time, or if you are reindexing your database
after enabling the triple index, only documents containing valid sem: triple €lementsare
indexed.

* You can enablethe triple positions index for faster near searchesusing cts:triple-range-

query.

triple positions true @ falge

Index triple positions for faster near searches involving cis:triple-range-guery
(slower document loads and larger database files).

It is not necessary to enable the triple position index for querying with native SPARQL.

* You can set the size of cache and buffer memory to be allocated for managing triple index
data for an in-memory stand.

in memory triple index 1

size Size of the in-memory triple index storage, in megabytes.

Note: When you change any index settings for a database, the new settings will take
effect based on whether reindexing is enabled (reindexer enable Set tO true).

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 67

MarkLogic Server Triple Index Overview

4.2.2 Using the Admin API

Usethese Admin API functionsto enable the tripleindex, triple index positions, and configure the
in-memory triple index size for your database:
® admin:database-set-triple-index

® admin:database-set-triple-positions

® admin:database-set-in-memory-triple-index-size

This example sets the triple index of “ Sample-Database” to true using the Admin API:

xquery version "1.0-ml";

import module namespace admin = "http://marklogic.com/xdmp/admin" at
"/MarkLogic/admin.xqy";

(: Get the configuration :)
let Sconfig := admin:get-configuration/()

(: Obtain the database ID of 'Sample-Database' :)

let $Sample-Database := admin:database-get-id(

Sconfig, "Sample-Database")
let $c := admin:database-set-triple-index($config, $Sample-Database,
fn:true())

return admin:save-configuration ($c)

This example uses the Admin API to set the triple positions of the database to true:

xquery version "1.0-ml";

import module namespace admin = "http://marklogic.com/xdmp/admin" at
"/MarkLogic/admin.xqy";

let Sconfig := admin:get-configuration ()

let $Sample-Database := admin:database-get-id(
Sconfig, "Sample-Database")

let $c := admin:database-set-triple-positions ($Sconfig,
SSample-Database, fn:true())

return admin:save-configuration ($c)

This example sets the in-memory triple index size of the database to 256M B:

xquery version "1.0-ml";

import module namespace admin = "http://marklogic.com/xdmp/admin" at
"/MarkLogic/admin.xqy";

let Sconfig := admin:get-configuration ()
let s$Sample-Database := admin:database-get-id(
Sconfig, "Sample-Database")

let $c := admin:database-set-in-memory-triple-index-size($config,
SSample-Database, 256)
return admin:save-configuration ($c)

Note: For details about the function signatures and descriptions, see the admin: database
functions (database) in the XQuery and XSLT Reference Guide.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 68

https://docs.marklogic.com/10.0/admin/database

MarkLogic Server

Triple Index Overview

4.3 Other Considerations
This section includes the following topics:

* Sizing Caches

e Unused Values and Types

e Scaling and Monitoring

4.3.1 Sizing Caches

The triple cache and the triple value cache are d-node caches, which are partitioned for lock
contention. This partitioning enables parallelism and speeds up processing.

The maximum sizes of the caches and number of partitions are configurable. To change the triple
or triple value cache sizes for the host, you can use the Groups configuration page in the Admin
Interface or use the Admin API.

In the Admin Interface (http://hostname:8001) 0N the Groups configuration page, specify values
for caches sizes, partitions, and timeouts:

triple cache size*

triple cache partitions*

triple cache timeout

triple value cache size*

triple value cache partitions*

triple value cache timeout

MarkLogic 10—May, 2019

1024
The =size of the triple cache, in megabytes.

1
The number of triple cache partitions.

300
The number of seconds of inactivity before triple index pages are eligable to be flushed from the cache.

512
The size of the triple value cache, in megabytes.

1
The number of triple value cache partitions.

300
The number of seconds of inactivity before triple value index pages are eligable to be flushed from the cache.

Semantic Graph Developer’ s Guide—Page 69

MarkLogic Server Triple Index Overview

This table describes the Admin API functions for group cache configurations:

Function Description
admin:group-set-triple-cache-size Changes the triple cache size setting of
the group with the specified ID to the
specified value
admin:group-set-triple-cache-partitions Changes the tri p| e cache partiti ons

setting of the group with the specified
ID to the specified value

admin:group-set-triple-cache-timeout Changes the number of seconds atriple
block can be unused before being
flushed from caches

admin:group-set-triple-value-cache-timeout Changes the number of secondsatriple
value block can be unused before being
flushed from caches

admin:group-set-triple-value-cache-size Changes the tri p|e value cache size
setting of the group with the specified
ID to the specified value

admin:group-set-triple-value-cache-partitions Changes thetri p| evalue cache
partitions setting of the group with the
specified ID to the specified value

4.3.2 Unused Values and Types

During amerge, triple values and types may become unused by the triple index. To merge the
tripleindex in asingle streaming pass, type and val ue stores are merged before the triples. Unused
values and types are identified during the merge of the triples. During the next merge, the unused
types and values identified are be removed, releasing the space they previously used.

Note: For best compaction, two merges are needed. Thisis not an issue in normal
operations because MarkLogic Server is designed to periodically merge.

Since the type store is ordered by frequency, it is merged entirely in memory. The value and triple
stores are merged in a streaming fashion, from and to disk directly.

For more information about merging, see Understanding and Controlling Database Merges in the
Administrator’s Guide.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 70

MarkLogic Server Triple Index Overview

4.3.3 Scaling and Monitoring

Since SPARQL execution does not fetch fragments, there is the potential to scale back on
expanded and compressed tree caches on triple-only deployments. You can configure tree caches
from the Group configuration page in the Admin Interface, or by using these functions:

admin:group-set-expanded-tree-cache-size
admin:group-set-compressed-tree-cache-size

You can monitor the status of the database and forest from the database Status page in the Admin
Interface:

http://hostname:8001/

You can also use the MarkL ogic monitoring tools, Monitoring Dashboard and Monitoring
History:

http://hostname:8002/dashboard
http://hostname:8002/history

For more information, see Using the MarkLogic Server Monitoring Dashboard in the Monitoring
MarkLogic Guide.

You can also use these functions for query metrics and to monitor the status of forests and caches.

* xdmp:query-meters - Cache hits or missesfor aquery
* xdmp:forest-status - Cache hits or misses, hit rate, and miss rate for each stand

* xdmp:cache-status - Percentage busy, used, and free by cache partition

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 71

MarkLogic Server Triple Index Overview

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 72

MarkLogic Server Unmanaged Triples

5.0 Unmanaged Triples

Triplesthat included as part of an XML or a JSON document and have an element node of
sem:triple are called unmanaged triples, sometimes referred to as embedded triples. These
unmanaged triples must be in the MarkLogic XML or JSON format defined in the schemafor

sem:triple(semantics.xsd)

Note: Unmanaged triples cannot be modified with SPARQL Update. Use XQuery or
JavaScript to modify these triples. See “Updating Triples’ on page 239 for more
details.

With unmanaged triples, MarkL ogic works like atriple store and a document store. You have the
functionality of atriple store and a document store for your data.

This example inserts an unmanaged triple into an XML document (article.xml):

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqgy";

xdmp : document -insert ("Article.xml",
<article>
<info>
<title>News for April 9, 2013</title>
<sem:triples xmlns:sem="http://marklogic.com/semantics">
<sem:triple>
<sem:subject>http://example.com/article</sem:subject>
<sem:predicates>http://example.com/mentions</sem:predicate>
<sem:object
datatype="http://www.w3.0rg/2001/XMLSchema#string">London</sem:object>
</sem:triple>
</sem:triples>
</info>
</article>)

Note: You can leave out the sem: triples tag, but you cannot leave out the sem:triple
tags.

An XML or JSON document can contain many kinds of information, along with the triples.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 73

MarkLogic Server Unmanaged Triples

This example shows a suspicious activity report document that contains both XML and triples:

<SAR>
<title>Suspicious vehicle...Suspicious vehicle near airport</title>
<date>2014-11-12%</date>
<type>observation/surveillance</type>
<threat>
<type>suspicious activity</type>
<categorys>suspicious vehicle</category>
</threat>
<location>
<lat>37.497075</1lat>
<long>-122.363319</long>
</location>
<description>A blue van with license plate ABC 123 was observed
parked behind the airport sign...
<sem:triple>
<sem:subject>IRIID</sem:subject>
<sem:predicate>isa</sem:predicate>
<sem:object
datatype="http://www.w3.0rg/2001/XMLSchema#string">license-
plate</sem:object>
</sem:triple>
<sem:triple>
<sem:subject>IRIID</sem:subject>
<sem:predicate>value</sem:predicate>
<sem:object
datatype="http://www.w3.0rg/2001/XMLSchema#string">ABC
123</sem:object>
</sem:triple>
</description>
</SAR>

Unmanaged triplesingested into a MarkL ogic database are indexed by the triple index and stored
for access and query by SPARQL. Here is another representation of the same information:

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 74

MarkLogic Server Unmanaged Triples

II-text

<5AR>

Un sbructured fu

<description=

<title>

Suspicious vehicle...

A black van...

<location>

<predicate> ABC 123

2012-11-127

<subject> value

. i (ty e
observation/surveilance
<category>

Data suspicious activity

@gospaﬁaF
suspicious vehicle icense-plate (F\pF)

Lic
5o gripl®”

You can also embed triplesinto JSON documents. Here is how you would insert atriple using
JavaScript:

declareUpdate () ;
var sem = require ("/MarkLogic/semantics.xqy") ;
xdmp . documentInsert (
"testDoc.json", {
"my" : "data", "triple" . {
"subject": "http://example.org/ns/dir/js/",
"predicate": "http://xmlns.com/foaf/0.1/firstname/",
"object": {"datatype" : "http://www.w3.org/2001/XMLSchema#string",
"value": "John"

}
}
}
)

Hereisthe triple embedded in a JSON document:

{
"my": "data",
"triple":{
"subject": "http://example.org/ns/dir/js/",
"predicate": "http://xmlns.com/foaf/0.1/firstname/",
"object": {
"datatype" : "http://www.w3.org/2001/XMLSchemaf#fstring",
"value":"John"
}
}
}

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 75

MarkLogic Server Unmanaged Triples

You can do the same document insert with XQuery:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqgy";

xdmp : document -insert ("myData.xml",
<sem:triples xmlns:sem="http://marklogic.com/semantics">
<sem:triple>
<sem:subject>http://example.org/ns/dir/js/</sem:subject>
<sem:predicate>http://xmlns.com/foaf/0.1/firstname/</sem:predicate
>
<sem:object
datatype="http://www.w3.0rg/2001/XMLSchema#string">John</sem:object>
</sem:triple>
</sem:triples>

)

When triples are embedded in an XML or JSON document as unmanaged triples, they can include
additional information about the triple along with additional metadata (time/date information,
bitemporal information, source of thetriple). You can add useful information to the XML or
JSON file (like the provenance of the triple). When you update the triple, you update the
document and the triple together.

In addition to adding triples to a document, you can use atemplate to identify content to be
indexed astriples. See “Using a Template to Identify Triplesin a Document” on page 247 for
more information about templ ates.

5.1 Uses for Triples in XML Documents

With unmanaged triples you can do combination queries on both the document and the triples
they contain. The triples stay “in context” with the other information in the document in which
they are embedded and have the security and permissions associated with that document. These
triples are updated with the document and deleted when the document is del eted.

51.1 Context from the Document

When you have triples in adocument, the document can provide context for the data described by
the triples. The source of the triples and more information about when the document and triples
were created can be included as part of the document.

<article>
<info>AP Newswire - Nixon went to China</info>
<triples-context>
<confidence>80</confidence>
<pub-date>2011-10-14</pub-date>
<source>AP Newswire</sources>
</triples-contexts>
<sem:triple xmlns:sem="http://marklogic.com/semantics">
<sem:subject>http://example.org/news/Nixon</sem: subject>
<sem:predicate>http://example.org/wentTo</sem:predicates>

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 76

MarkLogic Server Unmanaged Triples

<sem:object
datatype="http://www.w3.0rg/2001/XMLSchema#string">China</sem:object>
</sem:triple>
</articles

You can annotate the triples to provide even more information, such as the level of confidencein
the reliability of the information.

5.1.2 Combination Queries

A combination query operates on both the document and any triples. Here is a complex query for
the information in the AP newswire document :

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqgy";

sem:sparqgl ('
SELECT ?country
WHERE {

<http://example.org/news/Nixon> <http://example.org/wentTo>
?country

}

1
1

0,
0,
cts:and-query ((
cts:path-range-query("//triples-context/confidence", ">=", 80)
cts:path-range-query("//triples-context/pub-date", ">",
xs:date("1974-01-01")),
cts:or-query((
cts:element-value-query(xs:QName ("source"), "AP Newswire"),
cts:element-value-query(xs:QName ("source"), "BBC")

’

The ctsquery in thisexampleidentifiesaset of fragments. Any triplesin those fragments are used
to build a semantic store and the SPARQL query isthen run against that store. This means that the
guery says, “Find countriesin triples that are in fragments identified by the cts query; whichis
any fragment that has asem: triple/@confidence > 80 and a sem: triple/@edate earlier than 1974,
and has a source element with either “ap newswire” OF “BBC”.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 77

MarkLogic Server Unmanaged Triples

5.1.3 Security with Unmanaged Triples

For unmanaged triples, the security permissions for the document also apply to the triples. You
will need to have the appropriate permissions to modify or add triples to the document. To find
the current perml ssions for a document, USe xdmp : document -get -permissions:

xquery version "1.0-ml";
xdmp : document -get-permissions ("/example.json")

=>

<sec:permission xmlns:sec="http://marklogic.com/xdmp/security">
<sec:capability>read</sec:capability>
<sec:ro0le-1d>11180836995942796002</sec:role-id>

</sec:permission>

<sec:permission xmlns:sec="http://marklogic.com/xdmp/security">
<sec:capability>update</sec:capability>
<sec:ro0le-1d>11180836995942796002</sec:role-id>

</sec:permission>

To set the permssions on a document, you Can USe xdmp : document - set -permissions:

xdmp : document -set-permissions (
" /example.json",
(xdmp:permission ("spargl-update-user", "update"),
xdmp :permission ("spargl-update-user", "read"))

)

See Document Permissions in the Security Guide for more information about document
permissions.

5.2 Bitemporal Triples

You can use SPARQL to perform bitemporal search queries with unmanaged triples. In this
example, the bitemporal query iswrapped inside the SPARQL query asacts:period-range-
query.

let $gq := "'

SELECT
?derivation

WHERE {
<http://example.com/prov/trader/>
<http://www.w3.org/ns/prov#iwasDerivedFrom/> ?derivation

}

return
sem: sparqgl (
$q,
0,
0,
sem: store (
(),

cts:period-range-query (

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 78

MarkLogic Server Unmanaged Triples

"valid",
"ISO_CONTAINS",
cts:period(
xs:dateTime ("2014-04-01T16:10:00"),
xs:dateTime ("2014-04-01T16:12:00")))

)

This bitemporal SPARQL query searches for events between 2014-04-01116:10:00 @and 2014-04-
01T16:12:00. SeeUnderstanding Temporal Documents in the Temporal Developer’s Guide for more
information about temporal documents.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 79

MarkLogic Server Unmanaged Triples

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 80

MarkLogic Server Semantic Queries

6.0 Semantic Queries

This chapter discusses the principal techniques and tools used for performing semantic queries on
RDF triples. Just as with loading and deleting triples, you can select your preferred method for
guerying RDF triplesin MarkLogic. You can query triplesin severa ways, though the main focus
in this chapter is using SPARQL to query triples.

MarkL ogic supports the syntax and capabilitiesin SPARQL 1.1. SPARQL is aquery language
specification for querying over RDF triples. The SPARQL languageis aforma W3C
recommendation from the RDF Data Access Working Group. It is described in the SPARQL
Query Language for RDF recommendation:

http://www.w3.orq/TR/rdf-spargl-query/

SPARQL queries are executed natively in MarkL ogic to query either in-memory triples or triples
stored in a database. When querying triples stored in a database, SPARQL queries execute
entirely against the triple index. For examples of running SPARQL queries, see “ Querying
Triples’ on page 32.

You can combine SPARQL with XQuery or JavaScript. For example, you can restrict a SPARQL
guery by passing in acts:query (XQuery) or cts.query (JavaScript) and you can call built-in
functions (including cts:contains OF cts.contains for full-text search) as part of your SPARQL
guery. For more details, see “Using Built-in Functionsin a SPARQL Query” on page 104.

You can use the following methods to query triples:

» SPARQL mode in Query Console. For details, see “ Querying Triples with SPARQL” on
page 82

* XQuery using the semantics functions, and Search API, or a combination of XQuery and
SPARQL. For details, see* Querying Triples with XQuery or JavaScript” on page 128.

 HTTPviaaSPARQL endpoint. For details, see “Using Semantics with the REST Client
API” on page 189.

Note: SPARQL keywords are shown in uppercase in this chapter, however SPARQL
keywords are not case sensitive.

This chapter includes the following sections:

e Querying Triples with SPARQL

* Querying Triples with XQuery or JavaScript

e Querying Triples with the Optic API

e Serialization

e Security

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 81

http://www.w3.org/TR/2013/REC-sparql11-query-20130321/

MarkLogic Server Semantic Queries

6.1 Querying Triples with SPARQL

This section isa high-level overview of the SPARQL query capabilitiesin MarkL ogic and
includes the following topics:

e Types of SPARQL Queries

e Executing a SPARQL Query in Query Console

e Specifying Query Result Options

¢ Selecting Results Rendering

e Constructing a SPARQL Query

* Prefix Declaration

* Query Pattern
e Target RDE Graph

* Result Clauses

* Query Clauses

¢ Solution Modifiers

* Property Path Expressions

e SPARQL Aqgaregates

e SPARQL Resources

Note: The examplesin this section use the persondata-en.tt1 dataset from
http://downloads.dbpedia.org/2016-10/core-i18n/en/persondata_en.ttl.bz2. See
“Downloading the Dataset” on page 28.

6.1.1 Types of SPARQL Queries
You can query an RDF dataset using any of these SPARQL query forms:

* SELECT Queries - A SPARQL serLecT query returnsasolution, which isaset of bindings of
variables and values.

* CONSTRUCT Queries - A SPARQL construcT query returns triples as a sequence of
sem:triple VAluesin an RDF graph. Thesetriplesare constructed by substituting variables
in aset of triple templates to create new triples from existing triples.

* DESCRIBE Queries - A SPARQL prscriee query returns a sequence of sem:triple values
as an RDF graph that describes the resources found.

* ASK Queries - A SPARQL asxk query returns aboolean (true Or false) indicating whether
aquery pattern matches the dataset.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 82

http://downloads.dbpedia.org/2016-10/core-i18n/en/persondata_en.ttl.bz2

MarkLogic Server Semantic Queries
6.1.2 Executing a SPARQL Query in Query Console

To execute a SPARQL query:

1 In aWeb browser, navigate to the Query Console:

http://hostname:8000/gconsole

where hostname is the name of your MarkL ogic Server host.
2. From the Query Type drop-down list, select SPARQL Quiery.
The Query Console supports syntax highlighting for SPARQL keywords.

Note: Select SPARQL Update when you are working with SPARQL Update. See
“SPARQL Update” on page 169 for more information.

3. Construct your SPARQL query. See “Constructing a SPARQL Query” on page 87.
Y ou can add comments prefaced with the hash symbol (#).

4, From the Content Source drop-down list, select the target database.

5. In the control bar below the query window, click Run.
Note: If thetripleindex is not enabled for the target database, an XDMP-

TRPLIDXNOTFOUND exception is thrown. See “Enabling the Triple Index” on
page 66 for details.

6.1.3 Specifying Query Result Options

In the Query Console, SPARQL results are returned as a sequence of json:object valuesin the
case of aseLecT query, asequence of sem:triple Valuesin the case of a consTruCT OF DESCRIBE
guery, or asingle xs:boolean Valuein the case of an ask query. The results for each will look
different in Query Console.

This section discusses the following topics:

e Auto vs. Raw Format

* Selecting Results Rendering

6.1.3.1 Auto vs. Raw Format

The results of a SPARQL query displaystriples or serect solutions. Solution objects show a
mapping from variable names to typed values. Each heterogeneous item in the result sequence
will have specific rendering, which is by default shown in Auto format.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 83

MarkLogic Server Semantic Queries

For example, this seLecT query returns a solution:

PREFIX db: <http://dbpedia.org/resource/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX onto: <http://dbpedia.org/ontology/>

SELECT ?person ?name
WHERE { ?person onto:birthPlace db:Brooklyn;
foaf:name ?name .}

Run @ |_| Result | Auto | Raw & Profile Explorer =
solution *
person name
<http://dbpedia org/resource/40_llluminati= "Will Pierce"@en
<http://dbpedia org/resource/A._E._Waite> "Arthur Edward Waite"@en
<http//dbpedia.org/resource/Aaliyan> "Aaliyah"@en
<http://dbpedia org/resource/Aaron_Elkins= "Aaron Elkins"@en
<http://dbpedia org/resource/Aaron_Russo= "Aaron Russo"@en
<http://dbpedia.orgiresource/Abe_Reles> "Abe Reles"@en
<httn fidhnedia ariresniires/ARraham Klein (nhusirictis "Ahraham Klein"men

To change the display format to Raw, click Raw on the Result tab. In Raw format, the results for
the same query are displayed in RDF/JSON serialization:

[

{
"person":"<http://dbpedia.org/resource/40 Illuminatis",
"name" :"\"Will Pierce\"@en"

|

{

"person":"<http://dbpedia.org/resource/A. E. Waite>",
"name":"\"Arthur Edward Waite\"@en"

s

{

"person":"<http://dbpedia.org/resource/Aaliyah>",
"name":"\"Aaliyah\"@en"

s

{
"person":"<http://dbpedia.org/resource/Aaron Elkins>",
"name" :"\"Aaron Elkins\"@en"

s

{

"person":"<http://dbpedia.org/resource/Aaron Russo>",
"name":"\"Aaron Russo\"@en"

|

{

"person":"<http://dbpedia.org/resource/Abe Reles>",
"name":"\"Abe Reles\"@en"

s

{
"person":"<http://dbpedia.org/resource/Abraham Klein (physicist)s",
"name":"\"Abraham Klein\"@en"

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 84

MarkLogic Server Semantic Queries

Iy
{

"person":"<http://dbpedia.org/resource/Abraham S. Fischlers",
"name":"\"Abraham S.Fischler\"@en"

b

{

"person":"<http://dbpedia.org/resource/Abraham S. Luchinss>",
"name":"\"Abraham S.Luchins\"@en"

b

{

"person":"<http://dbpedia.org/resource/Abram Cohens",
"name":"\"Abram Cohen\"@en"

}
]

If you run asimilar pescr1ee query, the output is returned in Query Console in triples format:

PREFIX db: <http://dbpedia.org/resource/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX onto: <http://dbpedia.org/ontology/>

DESCRIBE ?person ?name
WHERE { ?person onto:birthPlace db:Brooklyn;
foaf:name ?name .}

@prefix xs: <http://www.w3.org/2001/XMLSchemat>
<http://dbpedia.org/resource/40 Illuminatis>
<http://dbpedia.org/ontology/birthPlace>
<http://dbpedia.org/resource/Brooklyn> ,
<http://dbpedia.org/resource/New Yorks> ;
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type/>
<http://xmlns.com/foaf/0.1/Persons> ;
<http://xmlns.com/foaf/0.1/surname> "Pierce"@en ;
<http://purl.org/dc/elements/1.1/description> "Rapper"@en ;
<http://xmlns.com/foaf/0.1/givenName> "Will"@en ;
<http://xmlns.com/foaf/0.1/name> "Will Pierce"@en
<http://dbpedia.org/resource/A. E. Waite>
<http://dbpedia.org/ontology/birthPlace>
<http://dbpedia.org/resource/Brooklyn> ;
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type/>
<http://xmlns.com/foaf/0.1/Persons> ;
<http://xmlns.com/foaf/0.1/givenName> "Arthur Edward"e@en ;
<http://xmlns.com/foaf/0.1/name> "Arthur Edward Waite"@en ;
<http://purl.org/dc/elements/1.1/description> "English writer"@en ;
<http://xmlns.com/foaf/0.1/surname> "Waite"@en
<http://dbpedia.org/resource/Aaliyah>
<http://dbpedia.org/ontology/deathPlace>
<http://dbpedia.org/resource/Abaco_Islands> ,
<http://dbpedia.org/resource/Marsh Harbours ,
<http://dbpedia.org/resource/The Bahamas> ;
<http://dbpedia.org/ontology/birthPlace>

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 85

MarkLogic Server Semantic Queries

<http://dbpedia.org/resource/Brooklyn> ,
<http://dbpedia.org/resource/New York Citys> ;
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type/>
<http://xmlns.com/foaf/0.1/Person> ;
<http://xmlns.com/foaf/0.1/name> "Aaliyah"@en ;
<http://purl.org/dc/elements/1.1/description> "Singer, dancer,
actress, model'"@en ;

<http://dbpedia.org/ontology/birthDate> "1979-01-16"""xs:date ;
<http://dbpedia.org/ontology/deathDate> "2001-08-25"""xs:date

Note: When you run aquery that returns triples as a subgraph, the default output
serializationis Turtle.

The pescrise clause has alimit of 9999 triplesin the server. If aquery includes apescrize clause
with one IRI or few IRIs that total more than 9999 triples, tripleswill be truncated from the
results. The server does not provide any warning or message that this has occured.

6.1.3.2 Selecting Results Rendering

Use the solution as: drop-down list options to choose the display for query results. For example,
thispescrise query returnstriplesin Turtle serialization:

PREFIX db: <http://dbpedia.org/resource/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX onto: <http://dbpedia.org/ontology/>

DESCRIBE ?person ?name
WHERE { ?person onto:birthPlace db:Brooklyn;
foaf:name ?name .}

Run @ Result | Auto | Raw & Profile Explorer =
@prefix xs: <http://www.w3.org/2001/XMLSChema#> . friple
<http://dbpedia.org/resource/4e_Illuminati> <http://dbpedia.org/ontology/birthPlace> <http://dbpedia.org/resource %3
/Brooklyn> , v Turtle

<http://dbpedia.org/resource/New_York> ; #ggh

<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/@.1/Person> ;
<http://xmlns.com/foaf/©.1/surname> "Pierce”@en ;
<http://purl.org/dc/elements/1.1/description> "Rapper”@en ;
<http://xmlns.com/foaf/@.1/givenName> "Will"@en ;
<http://xmlns.com/foaf/@.1/name> "Will Pierce"@en .
<http://dbpedia.org/resource/A._E._Waite> <http://dbpedia.org/ontology/birthPlace» <http://dbpedia.org/resource/Brooklyn> ;
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/@.1/Person> ;
<http://xmlns.com/foaf/@.1/givenName> "Arthur Edward”@en ;
<http://xmlns.com/foaf/@.1/name> "Arthur Edward Waite"@en ;
<http://purl.org/dc/elements/1.1/description> "English writer"@en ;
<http://xmlns.com/foaf/@.1/surname> "Waite"@en .
<http://dbpedia.org/resource/Aaliyah> <http://dbpedia.org/ontology/deathrlace> <http://dbpedia.org/resource/Abaco Islands>» ,
<http://dbpedia.org/resource/Marsh_Harbour>» ,

Or you can select JSON or text as the format for the results.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 86

MarkLogic Server Semantic Queries

Note: For apescrise query, the rendering options are Turtle, JSON, or Text. Rendering
options may be different for queries that use cts:search, a combination of
SPARQL and cts: queries, or use query results that are serialized by a
serialization function.

6.1.4 Constructing a SPARQL Query

You can construct a SPARQL query to ask specific questions about triples or to create new triples
from triplesin your triple store. A SPARQL query typically contains the following (in order):

» Prefix Declaration - abbreviates prefix IRIs

* Query Pattern - specifies what to query in the RDF graph, compares and matches query
patterns

* Target RDF Graph - identifies the dataset to query

* Result Clauses - specifies the information to return from the graph
* Query Clauses - extends or restricts the scope of your query

* Solution Modifiers - specifies the order in which to return the results and the number of
results

The query pattern and aresult clause are the minimum required components for a query. The
prefix declaration, target RDF graph, query clauses, and solution modifiers are optional
components that structure and define your query.

The following exampleisasimple SPARQL serecT query that contains a query pattern to find
people whose birthplace is Paris:

SELECT ?s
WHERE {?s <http://dbpedia.org/ontology/birthPlace/>
<http://dbpedia.org/resource/Paris>

}

The following sections discuss the components of the SPARQL query in more detail, and how to
compose simple and complex queries.

6.1.5 Prefix Declaration

IRIs can be long and unwieldy, and the same IRl may be used many times in aquery. To make
gueries concise, SPARQL allows the definition of prefixes and base IRIs. Defining prefixes saves
time, makes the query more readable, and can reduce errors. The prefix for acommonly used
vocabulary is aso known as a CURIE (Compact URI Expression).

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 87

MarkLogic Server Semantic Queries

In this example, the prefix definitions are declared and the query pattern is written with
abbreviated prefixes:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX db: <http://dbpedia.org/resource/>

PREFIX onto: <http://dbpedia.org/ontology/>

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#s>

SELECT *
WHERE {
?s dc:description "Physicist"een ;
rdf:type foaf:Person ;
onto:birthPlace db:England .

}

The query results returns the people described as “ Physicist” who were born in England. The
“@en” language tag means that you are searching for the English word “ Physicist”. The query
will match only triples with “Physicist” and an English language tag.

6.1.6 Query Pattern

At the heart of a SPARQL query isaset of triple patterns called a graph pattern. Triple patterns
are like RDF triples except the subject, predicate, and object nodes may be avariable.

A graph pattern matches a subgraph of the RDF data when RDF terms from that subgraph may be
substituted for the variables, and the result is an RDF graph equivalent to the subgraph.

The graph pattern is one or more triple patterns contained within curly braces ({ }). Thefollowing
types of graph patterns for the query pattern are discussed in this chapter:
» Basic graph pattern - a set of triple patterns must match against triplesin the triple store

» Group graph pattern - a set of graph patterns must all match using the same variable
substitution

* Optional graph pattern - additional patterns may extend the solution
* Union graph pattern - where two or more possible patterns are tried
» Graph graph pattern - where patterns are matched against named graphs

SPARQL variables are denoted with a question mark (2) or adollar symbol (s). The variables can
be positioned to match any subject, predicate, or object node, and match any value in that
position. Thus, the variable may be bound to an IRI or aliteral (string, boolean, date, and so on).
Each time atriple pattern matches atriple in the triple store, it produces a binding for each
variable.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 88

MarkLogic Server Semantic Queries

This example shows a basic graph pattern with variables to match the subject (»s) and predicate
(?p) Of tripleswhere the object is* db:Paris’ - to find subjects who were born or died in Paris. The
guery consists of two parts; the serect clause specifies what isin the query results (subject and
predicate) and the wuere clause provides the basic graph pattern to match against the data graph:

PREFIX db: <http://dbpedia.org/resource/>
PREFIX onto: <http://dbpedia.org/ontology/>

SELECT ?s ?p
WHERE {?s ?p db:Paris }

This query will return every person in your dataset who was born or died in Paris. You may want
to limit the number of results by adding “LIMIT 10" to the end of the query. See*The LIMIT
Keyword” on page 113 for details.

Note: A variable may only be bound once. The »s and »p in the serecT clause are the
same variables asin the wuere clause.

The results of the query include the subject and predicate IRIs (for birthPlace and deathPlace)
where “db:Paris’ isin the object position of the triple:

<htt|::-:.n'a'dbpedia.u:lrga‘resuurcea'fEtienne—Denis_Pasquier> <http://dbpedia.org/ontology/bithPlace- -~
<http :Ia':lt:|::e:Iia.nrg;resource;étienne-Luuis_r.1alus> <http://dbpedia.org/ontology/bithPlace:=
<http:/idbpedia.orgiresource/A._Kingsley_Macomber= <http.//dbpedia.org/ontology/deathPlace=

<http:/idbpedia. orgiresource/Abdul_Rasul_(Iragi_scientist)y- <http://dbpedia.org/ontology/deathPlace=
<http./idbpedia.orgiresource/Abdiimecid_Il= <http.//dbpedia.org/ontology/deathPlace=
<http:/idbpedia.orgiresource/Abel_Decaux= <http://dbpedia.org/ontology/deathPlace=

A SPARQL sevecT query returns a solution, which isaset of bindings of variables and values. By
default, the results of serecT queries are returned in Auto format, a formatted view made for easy
viewing. You can change the output display. For details, see “ Specifying Query Result Options”
on page 83.

The previous example is a single triple pattern match (the basic graph pattern). You can query
with SPARQL using multiple triple pattern matching. SPARQL uses a syntax similar to Turtle for
expressing query patterns, where each triple pattern ends with a period.

Similar to an anp clause in SQL queries, every triplein the query pattern must be matched exactly.

For example, consider place namesin our dataset that can be found in different countries such as
Paris, Texas or Paris, France.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 89

MarkLogic Server Semantic Queries

The following example returns the IRIs for all resources born in Paris, France that are described
as “Footballers’:

PREFIX db: <http://dbpedia.org/resource/>
PREFIX onto: <http://dbpedia.org/ontology/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?s ?p
WHERE {?s onto:birthPlace db:Paris
?s onto:birthPlace db:France
?s dc:description "Footballer"@en

}

e]
<http://dbpedia.org/resource/Abdoulaye_Baldé_(footballer)= <http:/idbpedia.orgiontology/birthPlace=
<http.//dbpedia.org/resource/Abdoulaye_Keita_(footballer_born_1980)= <http./idbpedia.org/entology/birthPlace=
<http://dbpedia.org/resource/sbdoulave_Meré= <http:/idbpedia.orgiontology/birthPlace=
<http.//dbpedia.org/resource/Aboubacar_Sankhare= <http./idbpedia.org/entology/birthPlace=
<http://dbpedia.org/resource/Aboubacar_Tandia> <http:/idbpedia.orgiontology/birthPlace=
<http.//dbpedia.org/resource/Ahmed_Soukouna= <http./idbpedia.org/entology/birthPlace=
<http://dbpedia.org/resource/Alain_de_Martigny= <http:/idbpedia.orgiontology/birthPlace=
<http.//dbpedia.org/resource/Albert_Jourda= <http./idbpedia.org/entology/birthPlace=
<http://dbpedia.org/resource/Alexandre_Raineau= <http:/idbpedia.orgiontology/birthPlace=

An aternative way to write the query pattern above isto use asemicolon (;) in the wsere clause to
separate triple patterns that share the same subject.

For example:

PREFIX db: <http://dbpedia.org/resource/>
PREFIX onto: <http://dbpedia.org/ontology/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?s

WHERE {?s onto:birthPlace db:Paris ;
onto:birthPlace db:France ;
dc:description "Footballer"@en

}

The SPARQL specification allows you to use a blank node as subject and object of atriple pattern
inaquery.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 90

MarkLogic Server Semantic Queries

For example:

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT *?desc
WHERE { :p rdf:type foaf:Person ;
dc:description ?desc
}

The query returnsthe role or title for resources as defined in the triples in the dataset:

desc
"Ukrainian musician”™
“Competitive eater”
“American guitarist”
“American martial artist”
"Boxer”

“American guitarist”

Note: If there are blank nodes in the queried graph, blank node identifiers may be
returned in the results.

6.1.7 Target RDF Graph
A SPARQL query is executed against an RDF dataset that contains graphs. These graphs can be:

* A singledefault graph - a set of triples with no name attached to them

» One or more named graphs - where inside acrapru clause, each named graph isapair,
made up of aname and a set of triples

For example, this query will be executed on the graph named nhttp://my collections:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?name ?mbox ?date
FROM <http://my collections>
WHERE { ?g dc:publisher ?name ;
dc:date ?date
GRAPH ?g { ?person foaf:name ?name ;
foaf:mbox ?mbox }

}
“The GRAPH Keyword” on page 95 describes the use of craru in aquery.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 91

MarkLogic Server Semantic Queries

The rrom and rrom NameD Keywords are used to specify an RDF dataset in a SPARQL query, as
described in the W3C SPARQL Query Language for RDF:

http://www.w3.org/TR/rdf-sparql-query/#specifyingDataset

In the absence of rrom Or FroM NamMED Keywords, a SPARQL query executes against all graphs that
exist in the database. In other words, if you don't specify a graph name with a query, the unzon of
al graphswill be queried.

Using XQuery, REST, or Javascript you can aso specify one or more graphs to be queried by
using:

* QAdefault-graph-urix - Selectsthe graph name(s) to query, usually a subset of the
available graphs.

* @named-graph-uri* - Used with rrom naveD and craru t0 specify the IRI(S) to be
substituted for a name within particular kinds of queries. Y ou can have one or more
named-graph-uri* parameters specified as part of aquery.

If you specify default-graph-uri*, ONe or more graph names that you specify will be queried.
The “+” indicates that one or more default-graph-uri Of named-graph-uri parameters can be
specified.

Note: Thisdefault-graph-uri iSnot the "default" graph that contains unnamed triples -
http://marklogic.com/semantics#default-graph.

In this example a SPARQL query iswrapped in XQuery, to search the data set in the
http://example.org/bob/foaf.rdf graph:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqgy";

sem:sparqgl ('

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?g ?name

WHERE {graph ?g { ?alum foaf:schoolHomepage <http://www.ucsb.edu/> .
?alum foaf:knows ?person .
?person foaf:name ?name |}

}

()
("default-graph-uri=http://example.org/bob/foaf.rdf")

The rrom in @ SPARQL query functions the same as default-graph-uri, and the From NaMED
functions the same as named-graph-uri. These two clauses function in the same way as part of the

SPARQL query, except that one is written into queries (wrapped in the query), while the other is
specified outside of the query.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 92

http://www.w3.org/TR/rdf-sparql-query/#specifyingDataset

MarkLogic Server Semantic Queries

This section discusses the following topics:

e The FROM Keyword

¢ The FROM NAMED Keywords

e The GRAPH Keyword

6.1.7.1 The FROM Keyword

The rrom clause in a SPARQL query tells SPARQL where to get data to query, which graph to
guery. To use rrom as part of a query, there has to be a graph with the name in the rrom clause.
Graph namesin MarkL ogic are implemented as collections, which you can view using Explore or
the cts:collections function in the Query Console.

This SPARQL query uses the rrom keyword to search datain the info:govtrack/people graph:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name

FROM <http://marklogic.com/semantics#info:govtrack/people/>
WHERE { ?x foaf:name ?name }
LIMIT 10

See “Preparing to Run the Examples’ on page 129 for information about the GovTrack dataset.
The default graph is the result of an RDF merge of the graphs (a union of graphs) referred to in
one or more rrom clauses. Each rrom clause contains an IRI that indicates a graph to be used to
form the default graph.

For example, graphl and graph2 are merged to form the default graph:

FROM graphl
FROM graph2

Default graph

Note: When we talk about the default graph in this sense, it is not the same as the default
CO”eCﬂonS,http://marklogic.com/semantics#default—graph.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 93

MarkLogic Server Semantic Queries

This example showsa SPARQL sevect query that returnsal tripleswhere® Alice” isin the object
position. The RDF dataset contains a single default graph and no named graphs:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?s ?p 7o
FROM <http://example.org/foaf/alice>
WHERE {?s foaf:name "Alice";

?p ?0 .}

Note: The rrom keyword must be placed before the wuere clause. Placing the rrom
keyword after the waere clause causes a syntax error.

6.1.7.2 The FROM NAMED Keywords

A query can supply IRIsfor the named graphsin the dataset using the rrom naveD clause. Each IR
is used to provide one named graph in the dataset. Having multiple rrom naveD Clauses causes
multiple graphs to be added to the dataset. With rrom naveD, every graph nameyou usein the
query will be matched only to the graph provided in the clause.

You can set the named-graph at load time using mlcp with the collection parameter
-output_collections http://www.example.org/my graph. See” SpeCIfyI ng Collectionsand a
Directory” on page 49. You can aso set the named-graph using the REST client with
PUT:/v1/graphs.

Note: A named graph istypically created when you load RDF data. See “Loading
Triples’ on page 37.

In aquery, rrom naMeD IS USed to identify a named graph that is queried from the wuere clause by
using the craru keyword.

For example:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?who ?g ?mbox

FROM <http://example.org/foaf/aliceFoaf>
FROM NAMED <http://example.org/alice>
FROM NAMED <http://example.org/bob>
WHERE

{

?g dc:publisher ?who .
GRAPH ?g { ?x foaf:mbox ?mbox }

}

In the example, the rrom and rrom navED Keywords are used together. The rrom naveD IS used to
scope the graphs that are considered during query evaluation, and the crapu construct specifies
one of the named graphs.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 94

MarkLogic Server Semantic Queries

Note: When rrom Or From namMeED Keywords are used, the graphs you can usein acraru
clause potentially become restricted.

6.1.7.3 The GRAPH Keyword

The eraru keyword instructs the query engine to evaluate part of the query against the named
graphsin the dataset. A variable used in the ecraru clause may also be used in another craru clause
or in agraph pattern matched against the default graph in the dataset.

For example:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?name ?mbox ?date
WHERE { ?g dc:publisher ?name ;
dc:date ?date .
GRAPH ?g { ?person foaf:name ?name ;
foaf:mbox ?mbox }

}

Note: Y ou must enable the collection lexicon when you use acrapu construct in a
SPARQL query. Y ou can enable the collection lexicon from the database
configuration pages or the Admin Interface.

Triplesinside of acraru clause with an explicit IRI, such ascraps <. .. .uri...> { ...graph
pattern... }, arematched against the dataset using the IRI specified in the graph clause.

6.1.8 Result Clauses

Querying the dataset with different types of SPARQL queries returns different types of results.
These SPARQL query forms return the following result clauses:

* SELECT Queries - returns a sequence of variable bindings

* CONSTRUCT Queries - returns an RDF graph constructed by substituting variables in a set
of triple templates

* DESCRIBE Queries - returns an RDF graph that describes the resources found

* ASK Queries - returns a boolean indicating whether a query pattern matches

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 95

MarkLogic Server Semantic Queries

6.1.8.1 SELECT Queries

The SPARQL serect keyword indicates that you are requesting data from a dataset. This
SPARQL query isthe most widely used of the query forms. SPARQL sevecT queries return a
sequence of bindings as a solution, that satisfies the query. Selected variables are separated by
white spaces, not commeas.

You can use the asterisk wildcard symbol (+) with SPARQL serecT as shorthand for selecting all
the variables identified in the query pattern.

For example:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT *
WHERE({?s foaf:givenName ?fn .
?s foaf:surname ?1ln .

}

Note: Insingletriple patterns, aperiod at the end isoptional. In a query pattern with
multiple triple patterns, the period at the end of final tripleis aso optional.

In the example, the seLecT query returns a sequence of bindings that includes the IRI for the
subject variable (»s), dlong with the first name (2£n) and last name (»1n) of resourcesin the
dataset.

SPARQL serecT query results are serialized as XML, JSON, or passed to another function as a
map. The results of aseLecT query may not always be triples.

6.1.8.2 CONSTRUCT Queries

You can create new triples from existing triples by using SPARQL construcT queries. When you
execute a construct query, the results are returned in a sequence of sem:triple Valuesastriplesin
memory.

This example creates triples for Albert Einstein from the existing triples in the database:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

CONSTRUCT

{?person ?p 70 .}

WHERE {?person foaf:givenName "Albert"e@en ;
foaf:surname "Einstein"@en ;

?p ?0 .}

The construcT queries return an RDF graph created from variablesin the query pattern.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 96

MarkLogic Server Semantic Queries

These triples are created for Albert Einstein from the existing triples in the dataset:

@prefix xs: <http://www.w3.org/2001/XMLSchema#>
<http://dbpedia.org/resource/Albert Einsteins
<http://dbpedia.org/ontology/birthPlace>
<http://dbpedia.org/resource/Baden-Wirttemberg>

@prefix xs: <http://www.w3.org/2001/XMLSchema#>
<http://dbpedia.org/resource/Albert Einsteins
<http://dbpedia.org/ontology/birthPlace>
<http://dbpedia.org/resource/German Empires>

@prefix xs: <http://www.w3.org/2001/XMLSchema#>
<http://dbpedia.org/resource/Albert Einsteins
<http://dbpedia.org/ontology/deathPlace>
<http://dbpedia.org/resource/Princeton, New Jersey>

@prefix xs: <http://www.w3.org/2001/XMLSchemat>
<http://dbpedia.org/resource/Albert Einsteins
<http://dbpedia.org/ontology/birthPlace>
<http://dbpedia.org/resource/Ulm>

@prefix xs: <http://www.w3.org/2001/XMLSchema>
<http://dbpedia.org/resource/Albert Einsteins
<http://dbpedia.org/ontology/deathPlace>
<http://dbpedia.org/resource/United States>

@prefix xs: <http://www.w3.org/2001/XMLSchemat>
<http://dbpedia.org/resource/Albert Einsteins
<http://www.w3.0rg/1999/02/22-rdf -syntax-ns#type>
<http://xmlns.com/foaf/0.1/Person>

@prefix xs: <http://www.w3.org/2001/XMLSchema#>
<http://dbpedia.org/resource/Albert Einsteins
<http://xmlns.com/foaf/0.1/givenName> "Albert"@en

@prefix xs: <http://www.w3.org/2001/XMLSchema#>
<http://dbpedia.org/resource/Albert Einsteins
<http://xmlns.com/foaf/0.1/name> "Albert Einstein"@en

@prefix xs: <http://www.w3.org/2001/XMLSchema#>
<http://dbpedia.org/resource/Albert Einsteins
<http://xmlns.com/foaf/0.1/surname> "Einstein"@en
@prefix xs: <http://www.w3.org/2001/XMLSchema#>

<http://dbpedia.org/resource/Albert Einsteins>
<http://purl.org/dc/elements/1l.1/description> "Physicist"een

These triples are constructed in memory and not added to the database.

Note: The“@en” language tag means that thisis an English word and will match
differently than any other language tag.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 97

MarkLogic Server Semantic Queries

6.1.8.3 DESCRIBE Queries

SPARQL pescr1se queries return a sequence of sem:triple Values. The pescrise query result
returns RDF graphs that describe one or more of the given resources. The W3C specification
leaves the details implementation dependent. In MarkL ogic, we return a Concise Bounded
Description oOf the IRIsidentified, which includesall triples which have the IRI as a subject, and for
each of those triples that has a blank node as an object, all triples with those blank nodes as a
subject. Thisimplementation does not provide any reified statements, and will return a maximum
of 9999 triples.

For example, this query finds triples containing “Pascal Bedrossian”:
DESCRIBE <http://dbpedia.org/resource/Pascal Bedrossians>

Thetriples found by the pescr1se query are returned in Turtle format. You can also select JSON
or Text as the format.

@prefix xs: <http://www.w3.org/2001/XMLSchemat>
<http://dbpedia.org/resource/Pascal Bedrossianx>
<http://dbpedia.org/ontology/birthPlace>
<http://dbpedia.org/resource/France>

@prefix xs: <http://www.w3.org/2001/XMLSchemat>
<http://dbpedia.org/resource/Pascal Bedrossianx>
<http://dbpedia.org/ontology/birthPlace>
<http://dbpedia.org/resource/Marseille>

@prefix xs: <http://www.w3.org/2001/XMLSchemat>
<http://dbpedia.org/resource/Pascal Bedrossianx>
<http://www.w3.0rg/1999/02/22-rdf -syntax-nsH#type>
<http://xmlns.com/foaf/0.1/Person>

@prefix xs: <http://www.w3.org/2001/XMLSchemat>
<http://dbpedia.org/resource/Pascal Bedrossians>
<http://xmlns.com/foaf/0.1/surname> "Bedrossian"@en .

@prefix xs: <http://www.w3.org/2001/XMLSchema#>
<http://dbpedia.org/resource/Pascal Bedrossian>
<http://xmlns.com/foaf/0.1/givenName> "Pascal"e@en .

@prefix xs: <http://www.w3.org/2001/XMLSchema#>
<http://dbpedia.org/resource/Pascal Bedrossians>
<http://xmlns.com/foaf/0.1/name> "Pascal Bedrossian"een .

@prefix xs: <http://www.w3.org/2001/XMLSchema#>
<http://dbpedia.org/resource/Pascal Bedrossians
<http://purl.org/dc/elements/1.1/description> "footballer"een .

@prefix xs: <http://www.w3.org/2001/XMLSchemat#>

<http://dbpedia.org/resource/Pascal Bedrossians>
<http://dbpedia.org/ontology/birthDate> "1974-11-28"""xs:date

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 98

http://www.w3.org/Submission/CBD/
http://www.w3.org/Submission/CBD/

MarkLogic Server Semantic Queries

Note: Thepescrise clause hasalimit of 9999 triplesin the server, which meansif a
guery includes apescr1ze clause with one IRI or few IRIs that total more than
9999 triples, tripleswill be truncated from the results. The server does not provide
any warning or message that this has occurred.

6.1.8.4 ASK Queries

SPARQL asxk queriesreturn asingle xs :boolean Value. The ask clause returns true if the query
pattern has any matches in the dataset and ra1se if there is no pattern match.

For example, in the persondata dataset are the following facts about two members of the Kennedy
family: Carolyn Bessette-Kennedy and Eunice Kennedy-Shriver:

* Eunice Kennedy-Shriver, the founder of the Special Olympics precursor and a sister of
John F. Kennedy was born on 1921-07-10.

» Carolyn Bessette-Kennedy, a publicist, and wife of JFK Junior, was born on 1966-01-07.

This query asksif Carolyn was born after Eunice.

PREFIX db: <http://dbpedia.org/resource/>
PREFIX onto: <http://dbpedia.org/ontology/>

ASK

{

db:Carolyn Bessette-Kennedy onto:birthDate ?by .
db:Eunice Kennedy Shriver onto:birthDate ?bd .
FILTER (?by>?bd).

}

=>
true

Theresponseis true.

Note: ask queries check to seeif thereisat |east one result.

6.1.9 Query Clauses
Add the following query clauses to extend or reduce the number of potential results returned:

e The OPTIONAL Keyword

e The UNION Keyword

e The FILTER Keyword

e Comparison Operators

* Negation in Filter Expressions

¢ BIND Keyword

e Values Sections

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 99

MarkLogic Server Semantic Queries

6.1.9.1 The OPTIONAL Keyword

The orrronar keyword is used to return additional resultsif thereis amatch in an optional graph
pattern. For example, this query pattern returns triples in the database consisting of the first name
(2£n), last name (»1n) and mail address (?ub):

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?fn ?1n

WHERE({?x foaf:givenName ?fn .
?x foaf:surname ?1n .
?x foaf:email ?mb .

}

Only triples that match all the triple patterns are returned. In the persondata dataset there may be
people with no email address. In this case, the Query Console will silently |eave these people out
of the result set.

You can use the optional graph pattern (also known as aleft join) to return matching values of any
variablesin common, if they exist. Since the orrronar keyword is also agraph pattern, it hasits
own set of curly braces (inside the curly braces of the waere clause).

This example extends the previous example to return one or more email addresses, and just the
first name and last name if there is no email address:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?fn ?1n

WHERE {?x foaf:givenName ?fn .
?x foaf:surname ?1ln .

OPTIONAL{?x foaf:email ?mb .}

}
Note: Optiona patterns may yield unbound variables. See “ORDER BY Keyword”’ on
page 113 for more about unbound variables.

6.1.9.2 The UNION Keyword

Use the unton keyword to match multiple patterns from multiple different sets of data, and then
combine them in the query result. The unzon keyword is placed inside the curly braces of the
waERE Clause. The syntax is:

{ triple pattern } UNION { triple pattern }

The unton pattern combines graph patterns; each alternative possibility can contain more than one
triple pattern (logical disunction).

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 100

MarkLogic Server Semantic Queries

This example finds people who are described as “ Authors” or “Novelists’ and their date of birth:

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX onto: <http://dbpedia.org/ontology/>

SELECT P?person ?desc ?date

WHERE { ?person rdf:type foaf:Person
?person dc:description ?desc
?person onto:birthDate ?date

{ ?person dc:description "Novelist"een . }
UNION
{ ?person dc:description "Author"een . }

You can also group triple patterns into multiple graph patterns using a group graph pattern
structure.

For example:

PREFIX rdf: <http://www.w3.o0rg/1999/02/22-rdf-syntax-ns>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?person ?desc
WHERE {{?person rdf:type foaf:Person }
{?person dc:description ?desc }

{{?person dc:description "Author"een }

UNION
{ ?person dc:description "Novelist"@en . } } }

Note that each set of braces contains atriple. Thisis semantically equivalent to this next query
and would yield the same results.

PREFIX rdf: <http://www.w3.o0rg/1999/02/22-rdf-syntax-ns>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?person
WHERE {?person rdf:type foaf:Person ;
dc:description ?desc

{?person dc:description "Author"@en }

UNION
{?person dc:description "Novelist"een . }

}

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 101

MarkLogic Server Semantic Queries

Note: You can use multiple unzon patternsin a SPARQL query. The results from the
oprroNaL and unton queries differ in that the unton query allows a subgraph of
another solution, while an opr1onar query explicitly does not.

6.1.9.3 The FILTER Keyword

There are multiple methods for limiting the results of a SPARQL query. You can use the rF1LTER,
prsTINCT, OF the LimiT Kkeywords to restrict the number of matching results that are returned.

You can use one or more SPARQL r1nter keywords to specify the variables by which to
constrain results. The rrnTeER CONstraint is placed inside the curly braces of the waere clause and
can contain symbols for logical, mathematical, or comparison operators such as greater than (),
lessthan(<), equal to (=), and so on. The rrrTER CONStraints use boolean conditions to return
matching query results. There are also a number of built-in SPARQL tests you can use such as
isURI, isBlank, and so forth.

Thistable lists some of the SPARQL unary operatorsin rrrTer COnstraints:

Operator Type Result Type

! xsd:boolean xsd:boolean
+ numeric numeric

- numeric numeric
BOUND () variable xsd:boolean
isURI () RDF tearm xsd:boolean
isBLANK() RDF tearm xsd:boolean
isLITERAL RDF tearm xsd:boolean
STR () literal/IRI simpleliteral
LANG () literal simpleliteral
DATATYPE () litera IRI

Note: For afull list of operations, see Operator Mapping in the SPARQL Query Language

for RDE.

MarkLogic 10—May, 2019

Semantic Graph Developer’ s Guide—Page 102

http://www.w3.org/TR/rdf-sparql-query/#evaluation
http://www.w3.org/TR/rdf-sparql-query/#evaluation

MarkLogic Server Semantic Queries

This example is a query pattern that provides meaning to the variable »ba (a person’s birth date).
The rrrTER Clause of the query pattern compares the variable value to the date January 1st, 1999
and returns people born after the given date:

PREFIX onto: <http://dbpedia.org/ontology/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX rdf: <http://www.w3.o0rg/1999/02/22-rdf-syntax-ns>

SELECT ?s
WHERE {?s rdf:type foaf:Person .
?s onto:birthDate ?bd .
FILTER (?bd > "1999-01-01"""xsd:date)

}

The SPARQL keyword a is a shortcut for the common predicate rdr : type, giving the class of a
resource. For example, the waere clause could be written as:

WHERE {?s a foaf:Person .
?s onto:birthDate ?bd .

You can express a rrLTer Clause with aregular expression pattern by using the regex function.
For example:

SELECT ?s ?p 2?0
WHERE {?s ?p 20
FILTER (regex (?0, "Lister", "i"))

}

The SPARQL query returns all matching results where the text in the object position contains the
string Lister in any case. Regular expression matches are made case-insensitive with the i flag.

Note: Thistype of rrrTer query isthe equivalent of the fn:match XQuery function.
Regular expressions are not optimized in SPARQL. Use cts:contains for
optimized full text searching.

The regular expression language is defined in XQuery 1.0 and XPath 2.0 Functions and
Operators, section 7.6.1 Regular Expression Syntax.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 103

http://www.w3.org/TR/xpath-functions/#regex-syntax

MarkLogic Server Semantic Queries

6.1.9.4 Using Built-in Functions in a SPARQL Query

In addition to SPARQL functions, you can use XQuery or JavaScript built-in functions (for
example, functions with the prefix fn, cts, math, OF xamp) in @ SPARQL query where you can usea
function, which includes rrnTeR, B1ND, @nd the expressionsin a serect Statement.

A built-in function is one that can be called without using “import modul€” in XQuery or “var
<module> = require” in JavaScript. These functions are called extension functionswhen used in a
SPARQL query. You can find alist of built-in functions at http://docs.marklogic.com by selecting
“Server-Side JavaScript APIS” (or “ Server-Side XQuery APIS’). The built-ins listed are under
“MarkLogic Built-In Functions” and “W3C-Standard Functions.” See “Using Semantic Functions
to Query” on page 130 for more information.

Extension functionsin SPARQL are identified by IRIsin the form of
http://www.w3.org/2005/xpath- functions#name Where name istheloca name of the function and
the string before the # is the prefix IRI of the function, for example
http://www.w3.0org/2005/xpath-functions#starts-with. For the prefix IRIs Commonly
associated with fn, cts, math, and xdmp (Or any other prefix IRIsthat do not end witha" /" or "4"),
append a # to the prefix IRl and then the function local name, for example:

http://marklogic.com/cts#contains.

You can access built-in functions like cts using ererzx in the SPARQL query. In this example,
cts:contains IS added as using rrer1x and then included as part of the rrrTErR qUery:

PREFIX cts: <http://marklogic.com/cts#>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT *
WHERE{ ?s ?p ?0 .
FILTER cts:contains(?0, cts:or-query(("Monarch", "Sovereign")))

FILTER (?p IN (dc:description, rdfs:type))

}

Thisisfull-text search for the words “Monarch” or “Sovereign” where the predicate is either a
description or atype. In the second rrrrer Clause, the use of v specifiesthe predicatesto filter
on. The results include people that have atitle of “Monarch” (of a kingdom, state or sovereignty)
and things that have a description of “Monarch” such as the Monarch butterfly or Monarch
Islands.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 104

http://docs.marklogic.com

MarkLogic Server Semantic Queries

In this example the X Path function starts-with isused in a SPARQL query to return the roles or
titles of people whose description begins with “Chief”. The function isimported by including the
IRI as part of the rrrLTER qUeEry:

PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?desc
WHERE {?s dc:description ?desc

FILTER (<http://www.w3.org/2005/xpath-functions#starts-with>(?desc,
"Chief"))}

Note: You can usethe rrrrer keyword with the orrronarn and unton keywords.

6.1.9.5 Comparison Operators

The v and ot 1v cOmparison operators are used with the rrnTer clause to return aboolean true
if amatching termisin the set of expressions, or faise if not. For example:

ASK {
FILTER (2 IN (1, 2, 3))

}

=>
true

ASK {
FILTER (2 NOT IN (1, 2, 3))

}

=>
false

6.1.10 Negation in Filter Expressions

Negation can be used with the r1rTEr expression to eliminate solutions from the query results.
There are two types of negation - one type filters results depending on whether a graph pattern
does or does not match in the context of the query solution being filtered, and the other typeis
based on removing solutions related to another pattern. MarkL ogic supports SPARQL 1.1
Negation (using ex1sTs, NoT ExIsTs, and minus)for use with F1LTER.

The examples for negation use this data:

PREFIX : <http://example.org/>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

:alice rdf:type foaf:Person .

:alice foaf:name "Alice"
:bob rdf :type foaf:Person .

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 105

MarkLogic Server Semantic Queries

This section contains these topics:

e EXISTS
e NOTEXISTS
e MINUS

¢ Differences Between NOT EXISTS and MINUS

Combination Queries with Negation

6.1.10.1 EXISTS

Thefilter expression ex1sts checks to see whether the query pattern can be found in the data. For
example, the exzsts filter in this examples checks for the pattern »person foaf:name ?name inthe
data:

PREFIX «rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?person
WHERE

{

?person rdf:type foaf:Person .
FILTER EXISTS { ?person foaf:name ?name }

}

=>
person
<http://example.org/alice

The result of the query is Alice. The ex1sts filter does not generate any additional bindings.

6.1.10.2 NOT EXISTS

With thevor ex1sts filter expression, the query tests whether a graph pattern does not match a
dataset, given the values of variables in the group graph pattern in which the filter occurs. This
guery tests whether the »person foaf:name 2name doesnot occur in the data:

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#s>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?person
WHERE
?person rdf:type foaf:Person .
FILTER NOT EXISTS { ?person foaf:name ?name }

}

=>
person
<http://example.org/bob>

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 106

MarkLogic Server Semantic Queries

The graph pattern for <http://example.org/bob> doesnot have apredicate foaf :name fOr ?person,
so the query returns Bob as the result for this query. Thenot exrsts filter does not generate any
additional bindings.

6.1.10.3 MINUS

The another type of SPARQL negation isminus, which evaluates both its arguments, then
calculates solutions in the left-hand side that are not compatible with the solutions on the right-
hand side of the pattern.

For this example we will add additional data:

PREFIX : <http://example.org/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

:alice foaf:givenName "Alice" ;
foaf:familyName "Smith"

:bob foaf:givenName "Bob" ;
foaf:familyName "Jones"

:carol foaf:givenName "Carol" ;
foaf:familyName "Smith"

This query looks for patternsin the data that do not match »s foaf:givenname "Bob" and returns
those results:

PREFIX : <http://example.org/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT DISTINCT ?s
WHERE {
?s ?p ?0 .
MINUS {
?s foaf:givenName "Bob"

}
}

=>
<http://example.org/carol>
<http://example.org/alice>

The results are Carol and Alice.

Thefiltersnor Exrsts and minus represent two ways of approaching negation. The ot exists
approach tests whether a pattern exists in the data, based on the bindings determined by the query
pattern. The minus approach removes matches based on the evaluation of two patterns. In some
cases, they can produce different results. The minus filter does not generate any additional
bindings.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 107

MarkLogic Server Semantic Queries

6.1.10.4 Differences Between NOT EXISTS and MINUS

Thefilter expressionsvor ex1sts and minus represent two ways of using negation. The vor
ex1sTs filter tests whether a pattern exists in the data, given the bindings already determined by
the query pattern. The minus filter removes matches from the result set based on the evaluation of
two patternsin the query. In some cases, these two approaches can produce different answers.

Example: Sharing of variables
If we have this dataset:

@prefix : <http://example.com/> .
:a b o:c .

And we use this query:

SELECT =*

{

?s ?p 20
FILTER NOT EXISTS {?x ?y ?2x}

}

=>
(This query has no results)

The result set will be empty because {»>x 2y 2x} matches all triplesin the data, which the not
ex1sTs filter eliminates from the results.

When we use v1nus in the same query, there is no shared variable between the first part (?s 2p 20)
and the second part (?x »y 2z), SO ho bindings are eliminated:

SELECT =*

{

?s ?p 20
FILTER MINUS {?x ?y ?x}

}

=>
s P o
<http://example.com/a> <http://example.com/b> <http://example.com/c>

Example: Fixed pattern

Another case where the results will be different for nor exrsts and minus iSwherethereisa
concrete pattern (no variables) in the example query.

This query uses~ot exists asthefilter for negation:

PREFIX : <http://example.com/>
SELECT *

{

?s ?p 70

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 108

MarkLogic Server

FILTER NOT EXISTS {:a

}

=>

(This query has no results)

This query uses minus asthefilter:

PREFIX :

SELECT *

{

?s ?p 70
MINUS {:a :b :c}

}

>

[ON]

b

:b

<http://example.com/>

Semantic Queries

o

<http://example.com/a> <http://example.com/b> <http://example.com/c>

Since there is no match of bindings, no solutions are eliminated, and the solution includes a, b,

and c.

Example: Inner FILTERS

Differencesin results will also occur because in afilter, variables from the group are in scope. In
this example, the rrrrer inside the vor x1sTs has access to the value of »n for the solution being

considered. For this example, we will use this dataset:

PREFIX :
P
g
g

:a
:a
:a

:b
:b
b

P
g
g

=

3.0
.0
5.0

N

<http://example.com/>

When using r1LTER NOT ExISTS, thetestison each possible solutionto »x :p 2ninthisquery:

PREFIX :

SELECT * WHERE {
?X :p ?n
FILTER NOT EXISTS ({

=>
X

<http://example.com/b> 3.0

?X g :m .
FILTER (?n = ?m)

}

n

MarkLogic 10—May, 2019

<http://example.com/>

Semantic Graph Developer’ s Guide—Page 109

MarkLogic Server Semantic Queries

With m1nus, the rivTer inside the pattern does not have avaue for »n and it is always unbound.

PREFIX : <http://example.com/>
SELECT * WHERE {
?X ?p °?n
MINUS
?X :q ?m .
FILTER (?n = ?m)

n
<http://example.com/b> 3.0
<http://example.com/a> 1

6.1.10.5 Combination Queries with Negation

A combination query operates on triples embedded in documents. The query searches both the
document and any triples embedded in the document. You can add negation with the rrLTEr
keyword to constrain the results of the query.

For example:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqgy";

let sSquery := '
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?country

WHERE {
<http://example.org/news/Nixon> <http://example.org/wentTo>
?country
FILTER NOT EXISTS {?country foaf:isIn ?location .
?location foaf:isIn "Europe"} . }'
let $store := sem:store((),cts:and-query((
cts:path-range-query("//triples-context/confidence", ">=", 80) ,
cts:path-range-query("//triples-context/pub-date", ">",

xs:date("1974-01-01")),
cts:or-query((

cts:element-value-query(xs:QName ("source"), "AP Newswire"),
cts:element-value-query(xs:QName ("source"), "BBC")
)))))
let Sresult := sem:sparql (Squery, (), (), S$store)

return <result>{$result}</result>

Note: The cts:path-range-query requires the path index to be configured to work
correctly. See Understanding Range Indexes in the Administrator’s Guide.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 110

MarkLogic Server Semantic Queries

Thisisamaodification of an earlier query that says “Find all of the documents containing triples
that have information about countries that Nixon visited. From that group, return only those
triples that have a confidence level of 80% or above and a publication date after January 1st,
1974. And only return triples with a source element of AP Newswire or BBC.” The minus filter
removes any countries that are located in Europe from the results.

Note: SPARQL Update will not modify triples embedded in documents. SPARQL
Update can be used to insert new triplesinto graphs as part of acombination query,
or to modify managed triples. See “Unmanaged Triples’ on page 73 for more
information about triples in documents.

6.1.10.6 BIND Keyword

The s1np keyword allows a value to be assigned to a variable from a basic graph pattern or
property path expression. The use of s1xp ends the preceding basic graph pattern. The variable
introduced by the s1xp clause must not have been used in the group graph pattern up to the point
of use in sxnp. When you assign a computed value to a variable in the middle of a pattern, the
computed value can then be used in other patterns, such as a construct query. The syntax is
(expression AS ?var). For exampl €

PREFIX db: <http://dbpedia.org/resource/>
PREFIX onto: <http://dbpedia.org/ontology/>

SELECT ?person
WHERE { BIND (db:London AS ?location)
?person onto:birthPlace ?location .

LIMIT 10

6.1.10.7 Values Sections

You can use SPARQL varues sections to provide inline data as an unordered solution sequence
that isjoined with the results of the query evaluation. The varues section allows multiple
variables to be specified in the data block. For example:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT *

WHERE { ?a foaf:name ?n .
VALUES ?n { "John" "Jane" }}

This query says “find subjects with foat : name John or Jane” - supplying the values the »n can
have instead of searching for »n in the dataset. Thisisthe same as a query using the longer form
where the parameter lists are contained in parentheses:

VALUES (?z) { ("John") ("Jane") }

Note: A varues block of data can appear in aquery pattern or at the end of aserect query
or subquery.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 111

MarkLogic Server Semantic Queries

6.1.11 Solution Modifiers

A solution modifier modifies the result set for serecT queries. This section discusses how you can
modify what your query returns using the following solution modifiers:

e The DISTINCT Keyword

* The LIMIT Keyword

* ORDER BY Keyword

e The OFESET Keyword

e Subqueries

e Projected Expressions

Note: With the exception of prstrner, modifiers appear after the waere clause.

6.1.11.1 The DISTINCT Keyword
Use the prstinet keyword to remove duplicate results from aresults set.

For example:

SELECT DISTINCT °?p
WHERE {?s ?p 2?0}

The query returns all of the predicates - just once - for all thetriplesin the persondata dataset.

]
<http.//dbpedia.org/ontology/bithDate=
<http://dbpedia.org/ontology/birthPlace=
<http.//dbpedia.org/ontology/deathDate=
<http:.//dbpedia.org/ontology/deathPlace=
<http:/'purl.org/dcielementsd1 . 1/description=
<http:iwerw w3 orgM 999V02/22-rdf-syntax-ns#type=
<http:/ixmins. com/foafi0. 1/givenName:=
<http:/ixmins.com/feafil. 1/name=

<http:/ixmins. com/foafid 1/surname=

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 112

MarkLogic Server Semantic Queries

6.1.11.2 The LIMIT Keyword

Use the niur keyword to further restrict the results of a SPARQL query that are displayed. For
example, in the DBPedia dataset, there could be thousands of authors that match this query:

PREFIX dc:<http://purl.org/dc/elements/1.1/>
PREFIX foaf:<http://xmlns.com/foaf/0.1/>

SELECT ?x ?fn ?1ln

WHERE{?x dc:description "Author"een ;
foaf:name ?fn ;
foaf:surname ?1n.}

To specify the number matching results to display, add the Ltvrt keyword after the curly braces of
the wuere clause with an integer (not a variable).

For example:

PREFIX dc:<http://purl.org/dc/elements/1.1/>
PREFIX foaf:<http://xmlns.com/foaf/0.1/>

SELECT ?x ?fn ?1ln

WHERE{?x dc:description "Author'"een ;
foaf:name ?fn ;
foaf:surname ?1n.}

LIMIT 10

The results of the query are limited to the first ten matches:

X fn
<http://dbpedia.org/resource/A S._King> "AS. King"@en "King"@en
<http.//dbpedia.org/resource/A._H._Almaas= "AH. Almaas"@en "Almaas"@en
<http.//dbpedia.org/resource/A._Lee_Martinez» "A. Lee Martinez'@en "Martinez"@en
<htip://dbpedia.org/resource/A._M._Burrage> "A_ M. Burrage"@en "Burrage"@en
<http://dbpedia_org/resource/A._Muthukrishnan= "A_ Muthukrishnan"@en "Muthukrishnan"@
<http://dbpedia.org/resource/Abidemi_Sanusi> "Abidemi Sanusi"@en "Sanusi"@en
<http.//dbpedia.org/resource/Ada_Albrecht= "Ada Albrecht"@en "Albrecht"@en
<http://dbpedia_org/resource/Adéle_Geras> "Adele Geras"@en "Geras"@en
<http.//dbpedia.org/resource/Agnete_Friis= "Agnete Friis"@en "Friis"@en
<http://dbpedia.org/resource/Ahmad_Akbarpour> "Ahmad Akbarpour'@en "Akbarpour'@en

6.1.11.3 ORDER BY Keyword

Use the orper BY Clause to specify the values of one or more variable by which to sort the query
results. SPARQL provides an ordering for unbound variables, blank nodes, IRIs, or RDF literals
as described in the SPARQL 1.1 Query Language recommendation:

http://www.w3.0org/TR/spargll1-query/#modOrderBy

The default ordering is ascending order.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 113

http://www.w3.org/TR/sparql11-query/#modOrderBy

MarkLogic Server Semantic Queries

For example:

PREFIX dc:<http://purl.org/dc/elements/1.1/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?x ?fn ?1n

WHERE{?x dc:description "Author"
foaf:name ?fn ;
foaf:surname ?1n.}

ORDER BY ?1n ?fn

LIMIT 10

The results are ordered by the author’s last name (21n) and then by the author’s first name (2 £n):

X fn In
<http://dbpedia.orgiresource/Patience_Abbe> "Patience Abbe"@en "Abbe"@en
<http://dbpedia.org/resource/Lynn_Abbey:> "Lynn Abbey"@en "Abbey"@en
<htip://dbpedia.org/resource/George_Abboi_(author)> "George Abbot"@en "Abbot"@en
<http://dbpedia.org/resource/Eleanor_Hallowell_Abbott> "Eleanor Hallowell Abboft"@en "Abbott"@en
<http://dbpedia.org/resource/Hailey_Abboti= "Hailey Abboit"@en "Abbott"@en
<http://dbpedia.org/resource/\Valid_Abdallah> "Walid Abdallan"@en "Abdallah"@en
<http://dbpedia org/resource/Robert_Abernathy= "Robert Abernathy"@en "Abernathy"@en
<http://dbpedia.orgiresource/Susan_Abulhawa= "Susan Abulhawa"@en "Abulhawa"@en
<http://dbpedia.org/resource/Rodolfo_Acevedo> "Rodolfo Acevedo"@en "Acevedo"@en
<http://dbpedia.org/resource/John_M._Ackerman= "John M. Ackerman"@en "Ackerman"@en

To change the order of results to descending order, use the pesc keyword and place the variable
for the values to be returned in brackets. For example:

PREFIX dc:<http://purl.org/dc/elements/1.1/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?x ?fn ?1ln

WHERE({?x dc:description "Author"een ;
foaf:name ?fn ;
foaf:surname ?1ln .}

ORDER BY DESC (?1n)

LIMIT 10

<hftp://dbpedia.org/resource/Joan_de_Hamel>
<http://dbpedia.org/resource/Laila_al-Ouhaydib>
<http.//dbpedia.org/resource/Shahidul_Zahir=
<http://dbpedia_org/resource/Anwer_Zahidi>
<http.//dbpedia.org/resource/Helen_Zahavi=
<hftp://dbpedia.org/resource/Rachel_Zadok=
<http://dbpedia_org/resource/Michele_Zackheim:=
<hftp://dbpedia.org/resource/Shan_Sa=
<http://dbpedia_org/resource/Evie_Wyld=>

<http://dbpedia.org/resource/Patricia_Wrede>

MarkLogic 10—May, 2019

"Joan de Hamel"@en
"Laila al-Ouhaydib"@en
"Shahidul Zahir'@en
"Anwer Zahidi'@en
"Helen Zahavi"@en
"Rachel Zadok"@en
"Michele Zackheim'@en
"Ni Yan"@en

"Evie Wyld"@en
"Patricia C. Wrede"@en

Semantic Graph Developer’ s Guide—Page 114

"de Hamel"@en
"al-Ouhaydib"@en
"Zahir"@en
"Zahidi"@en
"Zahavi"@en
"ZadoK"@en
"Zackheim"@en
"Yan"@en
"Wyld"@en
"Wrede"@en

MarkLogic Server Semantic Queries

6.1.11.4 The OFFSET Keyword

The orrserT modifier is used for pagination, to skip a given number of matching query results
before returning the remaining results. This keyword can be used with the tmrT and orber BY
keywordsto retrieve different slices of datafrom a dataset. For example, you can create pages of
results from different offsets.

This example queries for Authors in ascending order and limits the results to the first twenty,
skipping the first eight matches and starting the list at position nine:

PREFIX dc:<http://purl.org/dc/elements/1.1/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?x ?fn ?1ln

WHERE{?x dc:description "Author'"een ;
foaf:name ?fn ;
foaf:surname ?1n.}

ORDER BY ?x

OFFSET 8

LIMIT 20

The results are returned, skipping the first eight matches.

X fn In
<http-//dbpedia.org/resource/Agnete_Friis> "Agnete Friis"@en "Friis"@en
<http://dbpedia. org/resource/Ahmad_Akbarpour> "Ahmad Akbarpour'@en "Akbarpour"@en
<http:#/dbpedia. org/resource/Ajip_Rosidi> "Ajip Rosidi"@en "Rosidi"@en
<http-//dbpedia.org/resource/Alauddin_Masood> "Alauddin Masood"@en "Masood"@en
<http://dbpedia.org/resource/Alberto_Fortis=> "Abbe Alberto Fortis"@en "Fortis"@en
<hitp//dbpedia orgiresource/Alexandra_Hawkins= "Alexandra Hawkins"@en "Hawkins"@en
<hitp-//dbpedia org/resource/Alexandre_Beljame> "Alexandre Beljame"@en "Beljame”@en
<http://dbpedia. org/resources/Alexis_Jenni> "Alexis Jenni"@en "Jenni'@en
<http-//dbpedia orgiresource/Alexis_Lecaye> "Alexis Lecaye"@en "Lecaye"@en
<hitp://dbpedia org/resource/Alfred_Leland_Crabb> "Alfred Leland Crabb"@en "Crabb"@en

Note: SPARQL uses a 1-based index, meaning the first item is 1 and not O, so an offset
of 8 will skip items one through eight.

6.1.11.5 Subqueries

You can combine the results of several queries by using subqueries. You can nest one or more
gueries inside another query. Each subquery is enclosed in separate pairs of curly braces.
Typically, subqueries are used with solution modifiers. This example queries for Politicians who
were born in London and then limits the results to the first ten:

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX db: <http://dbpedia.org/resource/>
PREFIX onto: <http://dbpedia.org/ontology/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT P?name ?location ?date

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 115

MarkLogic Server Semantic Queries

WHERE
{ ?person dc:description "Politician"een .

{SELECT ?location
WHERE{ ?person onto:birthPlace db:London .
?person onto:birthPlace ?location }

{SELECT ?date
WHERE({ ?person onto:birthDate ?date . }

}

{SELECT ?name
WHERE{ ?person foaf:name ?name }

}
}

LIMIT 10

6.1.11.6 Projected Expressions

You can use projected expressions within SPARQL senecT queriesto project arbitrary SPARQL
expressions, rather than only bound variables. This allows the creation of new valuesin aquery.

Thistype of query uses values derived from a variable, constant IRIs, constant literal, function
calls, or other expressionsin the serect list for columnsin a query result set.

Note: Functions could include both SPARQL built-in functions and extension functions
supported by an implementation.

Projected expressions must be in parentheses and must be given an alias using the as keyword.
The syntax is (expression AS ?var).

For example:

PREFIX ex: <http://example.org/>

SELECT ?Item (?price * ?gty AS ?total price)
WHERE {

?Item ex:price ?price.

?Item ex:quantity ?qty

}

The query returns values for »total price that do not occur in the graphs contained in the RDF
dataset.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 116

MarkLogic Server Semantic Queries

6.1.12 De-Duplication of SPARQL Results

MarkLogic has implemented dedup=on and dedup=otf OPtioNStO sem: sparql () . Here are some
examples of how deduplication works, based on asimple sem:sparql () example.

First, insert the same triple twice:

import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqgy";

(: load an rdf triple that will match the SPARQL query :)

sem:rdf-insert (
sem:triple(sem:iri ("http://www.example.org/dept/108/invoices/20963"),
sem:iri ("http://www.example.org/dept/108/invoices/paid"),
"true")
xdmp:default-permissions(),
"test-dedup")

(: returns the URI of the document that contains the triple :)

import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqgy";

(: load an rdf triple that will match the SPARQL query :)

sem:rdf-insert (
sem:triple(sem:iri ("http://www.example.org/dept/108/invoices/20963")

sem:iri ("http://www.example.org/dept/108/invoices/paid"),
"true")

xdmp:default-permissions(),

"test-dedup")

(: returns the URI of the document that contains the triple :)

Then use a SPARQL query with dedup=off:

sem: sparqgl ('
PREFIX inv: <http://www.example.org/dept/108/invoices/>

SELECT ?predicate ?object
WHERE
{ inv:20963 ?predicate ?object }

1
7

0,

"dedup=off")

=>

<http://www.example.org/dept/108/invoices/paid> "true"
<http://www.example.org/dept/108/invoices/paid> "true"

Two identical triples are returned.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 117

MarkLogic Server Semantic Queries

This SPARQL query uses dgedup=on, Which is the default:

sem:sparqgl ('
PREFIX inv: <http://www.example.org/dept/108/invoices/>

SELECT ?predicate ?object
WHERE { inv:20963 ?predicate ?object }

1
’

(),
"dedup=on")
=>
<http://www.example.org/dept/108/invoices/paid> "true"

Only one instance of the triple is returned.

The gedaup=on option is the default, standards-compliant behavior. The dedup=of £ Option for
sem: spargl May well give the same resultsif you never insert duplicate triples, but it entails a
considerable performance overhead (for example, with filtering in search), so it's important to
consider using this option.

6.1.13 Property Path Expressions

Property paths enable you to traverse an RDF graph. You can follow possible routes through a
graph between two graph nodes. You can use property paths to answer questions like “show me
all of the people who are connected to John, and all the people who know people who know
John.” You can use property pathsto query paths of any length in a dataset graph by using an
XPath-like syntax. A property path query retrieves pairs of connecting nodes where the paths that
link those nodes match the given property path. This makes it easier to follow and use
relationships expressed as triples.

Query evaluation determines all matches of a path expression and binds subject or object as
appropriate. Only one match per route through the graph is recorded - there are no duplicates for
any given path expression.

6.1.13.1 Enumerated Property Paths

The following table describes the supported enumerated path operators (|, *, and /) that can be
combined with predicates in a property path:

Property Path Construct Description
Sequence pathl/path?2 Forwards path from pathl to path2
Inverse “path Backwards path from object to subject
Alternative pathl|path2 Either pathl or path2
Group (path) A group path path, brackets control precedence

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 118

MarkLogic Server Semantic Queries

The following examplesillustrate property paths using this simple graph model:

3 fOaf:person
rdf:type T
IRI;
foaf:hasParent foaf:hasParent
'RI2 > IRl
foaf:hasChild foaf:hasChild)
foaf:name oaf-name foaf:hasParent
foaf:name) Y) :
Jane IR,
. foaf:hasChild
“Alice” “Mary”
foaf:name

“John”

Hereisthat same graph model expressed astriplesin Turtle format:

@prefix foaf: <http://xmlns.com/foaf/0.1/>
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns>
@prefix pO0: <http://marklogic.com/semantics/> .

pO:alice foaf:hasParent pO:jane ;
a foaf:Person ;
foaf :name "Alice"

p0:jane foaf:hasChild pO:alice,
pO:mary;
a foaf:Person ;
foaf :name "Jane"

pO0:mary foaf:hasParent pO:jane ;
a foaf:Person ;
foaf:hasChild pO:john ;
foaf :name "Mary"

pO0:john foaf:hasParent pO:mary ;

a foaf:Person ;
foaf:name "John".

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 119

MarkLogic Server

Semantic Queries

This example query uses paths (the ; operator) to find the name of Alice's parent:

PREFIX foaf:

SELECT ?s ?name
WHERE {?s foaf:name "Alice".
?s foaf:hasParent/foaf:name ?name .

}

=>
S

name

<http://xmlns.com/foaf/0.1/>

<http://marklogic.com/semantics/alice> "Jane"

This query finds the names of people two links away from John (his grandparent):

PREFIX foaf:

SELECT ?s ?name
WHERE {?s foaf:name "John".
?s foaf:hasParent/foaf:hasParent/foaf:name ?name .

}

=>
S

name

<http://xmlns.com/foaf/0.1/>

<http://marklogic.com/semantics/john> "Jane"

This query reverses the property path direction (swaps the roles of subject and object using the »
operator) to find the name of Mary’s mother:

PREFIX foaf:

SELECT ?s
WHERE { <http://marklogic.com/semantics/mary> “foaf:hasChild ?s }

=>
S

<http://xmlns.com/foaf/0.1/>

<http://marklogic.com/semantics/Jane>

6.1.13.2 Unenumerated Property Paths

Unenumerated paths enable you to query triple paths and discover relationships, along with
simple facts. This table describes the unenumerated path operators (+, *, or ?) that can be
combined with predicatesin a property path:

Property Path

Construct

Description

One or more

path+

A path that connects the subject and the object of the path by one
or more matches of a path el ement.

MarkLogic 10—May, 2019

Semantic Graph Developer’ s Guide—Page 120

MarkLogic Server

Semantic Queries

Property Path | Construct Description

Zero or more | path* A path that connects the subject and the object of the path by zero
or more matches of a path element.

Zero or one path? A path that connects the subject and the object of the path by zero
or one matches of a path element

Note: A path element may itself be composed of path constructs.

The inverse operator () can be used with the enumerated path operators. Precedence of these
operators is left-to-right within groups.

For these next examples, we can use sem: rdf-insert t0 add these triples to express the concept of

foaf :knows:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqy";

let S$string :=

@prefix foaf:
@prefix po:

<http://xmlns.com/foaf/0.1/>
<http://marklogic.com/semantics/>

pO0:alice foaf:knows pO:jane

p0:jane foaf:knows pO:mary,
pO:alice

p0:mary foaf:knows pO:john,
p0:jane

p0:john foaf:knows pO:mary .'

return sem:rdf-insert (sem:rdf-parse($string, "turtle"))

To find the names of all the people who are connected to Mary, use foaf : knows With the “+” path

operator:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?s ?name

WHERE {?s foaf:name "Mary"

?s foaf:knows+/foaf :name ?name .}

=>

s name
<http://marklogic.com/semantics/mary> "Jane"
<http://marklogic.com/semantics/mary> "John"

MarkLogic 10—May, 2019

Semantic Graph Developer’ s Guide—Page 121

MarkLogic Server Semantic Queries

<http://marklogic.com/semantics/mary> "Mary"
<http://marklogic.com/semantics/mary> "Alice"

Thisquery will match all of the triples connected to Mary by foat : knows Where one or more paths
exist. You can use foaf :knows With the“*” operator to find the names of anyonewho is
connected to Mary (including Mary) by zero or more paths.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?s ?name
WHERE {?s foaf:name "Mary"
?s foaf:knows*/foaf:name ?name .}

In this case the results will be same as in the previous example because the number of people
connected to Mary by zero or more paths (the “*” path operator) is the same as the number
connected by one or more paths.

Using the “?" operator finds the triples connected to Mary by one path element.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?s ?name
WHERE {?s foaf:name "Mary"

?s foaf:knows?/foaf:name ?name .}

=>

s name
<http://marklogic.com/semantics/mary> "Jane"
<http://marklogic.com/semantics/mary> "John"
<http://marklogic.com/semantics/mary> "Mary"

You can also use a property path sequence to discover connections between triples.
For example, this query will find triples connected to Mary by three path elements:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?s ?name

WHERE {

?s foaf:name "Mary"

?s foaf:knows/foaf :knows/foaf :knows/foaf :name ?name

}

s name
<http://marklogic.com/semantics/mary> "John"
<http://marklogic.com/semantics/mary> "Jane"
<http://marklogic.com/semantics/mary> "John"
<http://marklogic.com/semantics/mary> "Jane"

The duplicate results are due to the different paths traversed by the query. You could add a
prstincT keyword in the serect clause to return only one instance of each result and elimate the
duplicates.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 122

MarkLogic Server Semantic Queries

Note: The SPARQL modifier “1” has not been implemented in MarkLogic. Using this
modifier to invert a property path value resultsin a syntax error.

You can combine SPARQL queries using property paths with a cts:query parameter to restrict
results to only some documents (a combination query).

This combination query will find all the people connected to Alice who have children:

PREFIX cts: <http://marklogic.com/cts#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?s ?name
WHERE {
?s foaf:name "Mary"
?s foaf:knows+/foaf :name ?name
?s ?p 70
FILTER cts:contains(?p, cts:word-
query ("http://xmlns.com/foaf/0.1/hasChild"))

}

<http://marklogic.com/semantics/mary> "Alice"
<http://marklogic.com/semantics/mary> "Jane"
<http://marklogic.com/semantics/mary> "John"
<http://marklogic.com/semantics/mary> "Mary"

You could also use a cts: query parameter to restrict the query to a collection or directory.

6.1.13.3 Inference

You can use unenumerated paths to do simple inference using thesaural relationships. (A thesaural
relationship is a simple ontology).

For example, you can infer all the possible types of aresource, including supertypes of resources
using this pattern:

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#s>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

SELECT ?x ?type

{
}

For example, this query will find the products that are subclasses of “shirt”:

?x rdf:type/rdfs:subClassOf* ?type

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX ex: <http://example.com>

SELECT ?product
WHERE

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 123

MarkLogic Server Semantic Queries

{

?product rdf:type/rdfs:subClassOf* ex:Shirt ;
}

For more about inference, see “Inference” on page 147.

6.1.14 SPARQL Aggregates

You can do simple analytic queries over triples using SPARQL aggregate functions. An aggregate
function performs an operation over values or value co-occurrencesin triples.

For example, you can use an aggregate function to compute the sum of values. This SPARQL
guery uses sum to find the total sales:

PREFIX demov: <http://demo/verb/>
PREFIX vcard: <http://www.w3.org/2006/vcard/ns/>

SELECT (SUM (?sales) as ?sum_sales)

FROM <http://marklogic.com/semantics/COMPANIES100/>
WHERE {

?company a vcard:0Organization

?company demov:sales ?sales

}
These SPARQL aggregate functions are supported:

Aggregate Function Example

COUNT SELECT (COUNT (?company) as ?count companies)
Count of “companies”

SUM SELECT (SUM (?sales) as ?sum_sales)

MIN SELECT (MIN (?sales) as ?min_sales)

MAX SELECT ?country (MAX (?sales) AS ?max_sales)
AVG SELECT ?industry (ROUND(AVG (?employees)) AS

?avg_employees)

MODE (STATS_ MODE) SELECT (MODE (?housePrice) as ?mode_ housePrice)
MEDIAN SELECT (MEDIAN (?housePrice) as ?median housePrice)
STDDEV (STD, STDDEV_SAMP) SELECT (STDDEV (?duration) as ?std duration)
STDDEVP (STDDEV_POP) SELECT (STDDEVP (?sales) as ?stdp_sales)

VARIANCE (VAR, VAR _ SAMP) SELECT (VARIANCE (?distance) as ?var distance)
VARIANCEP (VARP, VAR_POP) SELECT (VARIANCEP (?distance) as ?varp_distance)
Grouping Oper ations: All aggregate functions are supported with crour By

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 124

MarkLogic Server Semantic Queries

Aggregate Function Example

GROUP BY GROUP BY ?industry
or
GROUP BY ?country ?industry

GROUP BY GROUP BY AVG
<some_aggregate variable>

GROUP BY. . HAVING GROUP BY ?industry
<some_aggregate_variablex HAVING (?sum_sales > 3000000000)
GROUP SELECT
CONCAT<more_than_one_item> ?region

(GROUP_CONCAT (DISTINCT ?industry ; separator=" + "
) AS ?industries)

SAMPLE SELECT ?country (SAMPLE(?industry) AS
?sample _industry) (SUM (?sales) AS ?sum sales)

sampLE IS required for proper evaluation of unaggregated
variables

Hereisa SPARQL query using the aggregate function count over alarge number of triples:

PREFIX demor: <http://demo/resource/>
PREFIX demov: <http://demo/verb/>
PREFIX vcard: <http://www.w3.org/2006/vcard/ns/>

count the companies
(more precisely, count things of type organization)

(SELECT (COUNT (?company) AS ?count companies)
FROM <http://marklogic.com/semantics/test/COMPANIES100/>

WHERE {
?company a vcard:0Organization

o=
o

Hereis another example using count and orber BY DESC:

PREFIX demor: <http://demo/resource/>
PREFIX demov: <http://demo/verb/>
PREFIX vcard: <http://www.w3.org/2006/vcard/ns/>

SELECT DISTINCT ?object (COUNT (?subject) AS ?count)
WHERE {
?subject <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type/> ?object
}
GROUP BY ?object
ORDER BY DESC (?count)
LIMIT 10

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 125

MarkLogic Server Semantic Queries

This query uses aggregates (vax) to find the baseball player with the highest uniform number, and
then get all the triples that pertain to him (or her). It uses an arbitrary triple (oo : number) that it
knows every player in the dataset has, stores the subject in »xey, then queries for all triples and
filters out where the subject in the outer query matches the »key value:

PREFIX bb: <http://marklogic.com/baseball/players/>
PEFIX bbr: <http://marklogic.com/baseball/rules/>
PREFIX xs: <http://www.w3.org/2001/XMLSchema#>

SELECT *
FROM <Athletics>

{

?s ?p 70

{

SELECT (MAX (?s1l) as ?key)
WHERE

{

}
}
FILTER (?s = ?key)

}

ORDER BY °?p

?sl bb:number 2?0l

This complex nested query uses count ave to find the ten cheapest vendors for a specific product
type, selected by the highest percentage of their product below the average cost, and then filters
for vendors containing either “name1” Of “name2”:

PREFIX bsbm: <http://www4.wiwiss.fu-
berlin.de/bizer/bsbm/v01l/vocabulary/>

PREFIX bsbm-inst: <http://www4.wiwiss.fu-
berlin.de/bizer/bsbm/v01l/instances/>

PREFIX xsd: <http://www.w3.o0rg/2001/XMLSchema#>
PREFIX cts: <http://marklogic.com/cts#>

SELECT ?vendor (xsd:float (?belowAvyg)/?offerCount As
?cheapExpensiveRatio)

{

{ SELECT ?vendor (count (?offer) As ?belowAvg)

{

{ ?product a <http://wwwd.wiwiss.fu-
berlin.de/bizer/bsbm/v01l/instances/ProductType459>
?offer bsbm:product ?product
?offer bsbm:vendor ?vendor
?o0ffer bsbm:price ?price
{ SELECT ?product (avg(xsd:float (xsd:string(?price))) As ?avgPrice)
{
?product a <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/
instances/ProductType459>
?offer bsbm:product ?product
?offer bsbm:vendor ?vendor

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 126

MarkLogic Server Semantic Queries

?offer bsbm:price ?price

}
GROUP BB °?product
}
}

FILTER (xsd:float (xsd:string(?price)) < ?avgPrice)

}

GROUP BY ?vendor

{ SELECT ?vendor (count (?offer) As ?offerCount)

{

?product a <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/
instances/ProductType459>

?offer bsbm:product ?product

?0ffer bsbm:vendor ?vendor

}

GROUP BY ?vendor
FILTER cts:contains(?vendor, cts:or-query(("namel",

}

ORDER BY desc (xsd:float (?belowAvg) /?offerCount) ?vendor
LIMIT 10

"name2")))

6.1.15 Using the Results of sem:sparq|
Here is an example of using the results of sem:sparql in aquery:

import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqy";

cts:search (
fn:doc (),
cts:triple-range-query (
(), "takenIn",
(: Use sem:spargl to run a query, then use the ! operator to
convert the solution to a sequence of strings
:)

sem:sparqgl (
'select ?countryIRI

{

?continentIRI <http://www.w3.org/2004/02/skos/core#ipreflabel >

?continentLabel
?countryIRI <http://dbpedia.org/property/continents>
?continentIRT
I
map:entry ("continentLabel", rdf:langString("Countries in South
America", "en"))
) ! map:get (., "countryIRI")

))

6.1.16 SPARQL Resources
The SPARQL recommendation is closely related to these specifications:

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 127

MarkLogic Server Semantic Queries

* The SPARQL Protocol for RDF [SPROT] specification defines the remote protocol for

issuing SPARQL queries and receiving the results.
http://www.w3.org/TR/rdf-spargl-protocol/

» MarkLogic supports simple entailment, as described in the W3C recommendation:
http://www.w3.org/TR/rdf-mt/#entail

e The SPARQL Query Results XML Format specification defines an XML document

format for representing the results of SPARQL serecT and ask queries.
http://www.w3.org/TR/rdf-spargl-XMLres/

* SPARQL 1.1 Graph Store HTTP Protocol:
http://www.w3.0rg/TR/2012/CR-sparqll1-http-rdf-update-20121108/

There are avariety of tutorials available for learning more about the SPARQL query language.
For example:

e http://www.cambridgesemantics.com/semantic-university

e https://iena.apache.org/tutorials/spargl.html

Recommended reading:

* Learning SPARQL by Bob DuCharme (Publisher: O’ Reilly)

» Semantic Web for the Working Ontologist by Dean Allemang and Jim Hendler (Publisher:
Morgan Kaufmann)

Additional useful resources include:

* SPARQL Implementations: http://www.w3.org/wiki/Sparglimplementations

» SPARQL Working Group: http://www.w3.0rg/2009/spargl/wiki/Main_Page

* SPARQL query results- JSON format: http://www.w3.0rg/TR/2012/PR-spargl11-results-json-
20121108/

» SPARQL Frequently Asked Questions: http:/thefigtrees.net/lee/sw/spargl-faqg

6.2 Querying Triples with XQuery or JavaScript
This section contains examples of using X Query or JavaScript with semantic data. When you use

JavaScript or XQuery to query triplesin MarkLogic, you can use the Semantics AP library, built-
in functions, the Search API built-in functions, or a combination of these.
This section includes the following topics:

* Preparing to Run the Examples

¢ Using Semantic Functions to Query

e Using Bindings for Variables

* Viewing Results as XML and RDF

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 128

http://www.w3.org/TR/2012/CR-sparql11-http-rdf-update-20121108/
http://www.w3.org/TR/rdf-sparql-protocol/
http://www.w3.org/TR/rdf-sparql-XMLres/
http://www.w3.org/wiki/SparqlImplementations
http://www.w3.org/2009/sparql/wiki/Main_Page
http://www.w3.org/TR/2012/PR-sparql11-results-json-20121108/
http://www.w3.org/TR/2012/PR-sparql11-results-json-20121108/
http://thefigtrees.net/lee/sw/sparql-faq
http://www.w3.org/TR/rdf-mt/#entail
https://jena.apache.org/tutorials/sparql.html
http://www.cambridgesemantics.com/semantic-university

MarkLogic Server Semantic Queries

e Working with CURIEs

¢ Using Semantics with cts Searches

6.2.1 Preparing to Run the Examples

These examples for querying triples with XQuery or Javascript assume that you have the
GovTrack dataset stored on Archive.org. If you prefer to use your own dataset or cannot access
the datasets mentioned here, you can skip this section.

Note: Thelinksto the datasets have moved since this section was written. They can be
found at https://web.archive.org/web/20170718121008/https://www.govtrack.us/data/rdf/

Thisdataisfree, publicly available legidative information about billsin the US Congress,
representatives, and voting records. The information originates from avariety of official
government Web sites. The covtrack.us datafrom Archive.org appliesthe principles of open data
to legidative transparency.

Before installing the GovTrack dataset, make sure you have the following:

* MarkLogic Server 8.0-4 or |ater.

» MarkLogic Content Pump (mlcp). See Installation and Configuration in the micp User Guide

* The GovTrack dataset from Archive.org and access to
https://web.archive.org/web/20170718121008/https://www.govtrack.us/data/rdf/

Follow this procedure to download the GovTrack dataset and load it into MarkL ogic Server.

1 Download the following filesinto a directory on your local file system:

® bills.108.cosponsors.rdf.gz
® Dbills.108.rdf.gz

® people.rdf.gz

® people.roles.rdf.gz

2. Create a govtrack database and forest. For these examples you can use the application
server on port 8000 with the GovTrack data. This default server can function asan XDBC
server and REST instance as well.

To create your own XDBC server and REST instance see Setting Up Additional Servers in
this guide and Administering REST Client API Instances in the in the REST Application
Developer’s Guide for more information.

3. Verify that the triples index and the collection lexicon are enabled for the govtrack
database. See “Enabling the Triple Index” on page 66.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 129

https://web.archive.org/web/20170718121008/https://www.govtrack.us/data/rdf/
https://web.archive.org/web/20170718121008/https://www.govtrack.us/data/rdf/

MarkLogic Server Semantic Queries

4, Import the data into your govtrack database with mlcp, specifying the collections of
info:govtrack/people and info:govtrack/bills. See “Loadi ng Trlp'eSWIth mICp” on
page 44. Your import command on Windows will look similar to the following:

mlcp.bat import -host localhost -port 8000 -username admin *
-password password -database govtrack -input file type rdf
-input file path c:\space\GovTrack -input compressed true”
-input compression codec gzip *

-output collections "info:govtrack/people,info:govtrack/bills"

A

MOdIfy the host, port, username, password, and -input file path options to match your
environment. In this example, long lines have been broken for readability and Windows
continuation characters (“*") have been added.

Note: Besureto add the -aatabase parameter to the command. If you leave this
parameter out, the data will go into the default Documents database.

The equivalent command for UNIX is:

mlcp.sh import -host localhost -port 8000 -username admin \
-password password -database govtrack -input file type RDF \
-input file path /space/GovTrack -input compressed true \
-input compression codec gzip \

-output collections 'info:govtrack/people,info:govtrack/bills’

In this example, the long lines have been broken and the UNIX continuation characters
(“\") have been added.

Note: It isimportant to specify the -input_file type as RDF toinvoke the correct
parser.

6.2.2 Using Semantic Functions to Query

You can execute SPARQL serEcT, ask, and construct queries with the sem: sparq1l and

sem: spargl-values functionsin XQuery, and with the sem. sparqgl and sem. sparglValues
functions in Javascript. For details about the function signatures and descriptions, see the
Semantics functions documentation and the XQuery Library Modules in the MarkLogic XQuery
and XSLT Function Reference.

The following examples execute SPARQL queries against the triplesindex of the govtrack
database. See “ Preparing to Run the Examples’ on page 129.

Note: Although some of the semantics functions are built-in, others are not, so we
recommend that you import the Semantics API library into every XQuery module
or JavaScript module that uses the Semantics API.

Using XQuery, the import statement is:

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 130

https://docs.marklogic.com/sem/semantic-functions

MarkLogic Server Semantic Queries

import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqgy";

For Javascript, the import statement is:

var sem = require("/MarkLogic/semantics.xqy") ;

6.2.2.1 sem:sparql

You can use the sem: spargl function to query RDF datain the database in the same way you

would in the SPARQL language. To use sen: sparql, You pass the SPARQL query to the function
asastring.

Using XQuery the query would look like:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqgy";

sem:sparqgl ('

PREFIX bill: <http://www.rdfabout.com/rdf/usgov/congress/108/bills/>
SELECT ?predicate ?object

WHERE { bill:h963 ?predicate ?object }
")

Using Javascript, the query would be:

var sem = require ("/MarkLogic/semantics.xqgy") ;

sem.sparqgl (+

'"PREFIX bill: <http://www.rdfabout.com/rdf/usgov/congress/108/bills/>" +
'SELECT ?predicate ?object' +

'"WHERE { bill:h963 ?predicate ?object }')
Note: In JavaScript, you must either use aleft-quote (* ") at the beginning of aliteral

string that spans multiple lines. Otherwise, you must usea“+” or “\” to
concatenate the substrings.

The XQuery code returns an array as a sequence, whereas the JavaScript code returns a Sequence.
See Sequence in the JavaScript Reference Guide for more information.

The result of the example query for all tripleswhere the subject is bill number “h963” would |ook
likethis:

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 131

MarkLogic Server

predicate
<http:/iwww . rdfabout. comird f'schemasusbillhasTitle=
<httpefivewe e w3 org/1 98200 2/22-rdf-syntax-ns#type=
<http:/iwww . rdfabout. comird f/'schemalusbillinCommittee=
<http:/www rdfabout. comird flschemalusbillcosponsor=
<http:/iwww rdfabout. comird f'schemalusbillsponsor=
<http:/fwewe e rdfabout. comirdflschemalusbillcongress=
<http:/ipurl.org/dciterms/created=

<http:www rdfabout. comirdffschemalusbillnumber=

<http:/purl. org/dc/elements/ 1 Aitle=
<http:/lpurl.org/ontology/bibo/shoriTitle=
<http:/fwew we rdfabout. comirdflschemasusbilltitle:

<http/iweww w3.org/2000001/rdf-schema#label=

<http/iwww . rdfabout. comird f/'schemalusbilltype=
<http:www rdfabout. comird flschemalusbill'status=

<http/iwww . rdfabout. comird f'schemasuskillintroduced=

Semantic Queries

ohject
=-278ac84:14008022ed1:-3313>
<http:/weww rdfabout. comird flschemalusbillHouzeBill=
<http:/iwww . rdfabout. comird flusgovicongress/committees/HouseGovernmentReforms=
<http:/fwew e rdfabout. comirdflusgovicongress/people/D000SS8>
<http:/iwww . rdfabout. comird flusgovicongress/people/FO001 16>
"08"
"2003-02-27"
mgaae

"H.R. 108/983: To redesignate the facilty of the United States Postal Service located at 2777 Loga
\"Cesar E. Chavez Post Office\™.”

"H.R. $53: To redesignate the facility of the United States Postal Service located at 2777 Logan A
\"Cesar E. Chavez Post Office\™”

"H.R. 953: To redesignate the facility of the United States Postal Service located at 2777 Logan Ax
\"Cesar E. Chavez Post Office\™.”

"H.R. $53: To redesignate the facility of the United States Postal Service located at 2777 Logan A
\"Cesar E. Chavez Post Office\”. (108th Congress)”

opym
“intreduced”

"2003-02-27 x5 date

For more information about constructing SPARQL queries, see “Constructing a SPARQL Query”

on page 87.

You can also construct your SPARQL query as an input string in a FLWOR statement. In the
following example, the 1et statement contains the SPARQL query. Thisisa SPARQL asxk query,
to find out if there are any male politicians who are members of the Latter Day Saints:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqy";

let S$spargl := !

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX rdf: <http://www.w3.o0rg/1999/02/22-rdf-syntax-ns>

PREFIX politico: <http://www.rdfabout.com/rdf/schema/politico/>
PREFIX govtrack: <http://www.rdfabout.com/rdf/schema/usgovt/>
PREFIX vcard: <http://www.w3.org/2001/vcard-rdf/3.0/>

ASK { ?x rdf:type politico:Politician ;
foaf:religion "Latter Day Saints" ; foaf:gender "male". }

return sem:sparqgl ($Ssparqgl)

=>
true

MarkLogic 10—May, 2019

Semantic Graph Developer’ s Guide—Page 132

MarkLogic Server Semantic Queries

6.2.2.2 sem:spargl-values

Use the sen: sparql-values function to alow sequences of bindings to restrict what a SPARQL
query returns. In this example, a sequence of values are bound to the subject IRIs that represent
two members of congress.

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqy";

let $bindings := (map:entry("s",

sem:iri ("http://www.rdfabout.com/rdf/usgov/congress/people/A000069")),
map:entry("s",

sem:iri ("http://www.rdfabout.com/rdf /usgov/congress/people/G000359"))
)

return

sem:spargl-values ("select * { ?s ?p 2?0 }",$bindings)

The results are returned as sequences of values for the two members of congress:

5 P o
<http:/hwww.rdfabout. comird flusgovicongress/people/AR00065= <http/iwww. w3 orgf2001veard-rdfi3. 0#N= =-278acs84:1400302
<http:'www rdfabout. comird flusgovicongress/people/A00006%- <http:www rdfabout com/rdfischema/politico/hasRole=> <-7058dabe: 1403c27
<http:/www.rdfabout. comird flusgovicongress/people/AR000659= <httpJ/iwww.rdfabout.com/rdfischema/poltico/hasRole= =-T058dae: 1403c2T
<http:'www rdfabout. comird flusgovicongress/people/A00006%- <http:www rdfabout com/rdfischema/politico/hasRole=> <-7058dabe: 1403c27
<http:/www.rdfabout. comird ffusgovicongress/people/A000069= <hitpJ/ixmins.comifoaf/D. 1/img= <http/iwww.goviract
<http:/www rdfabout. comirdflusgovicongress/people/A00006%- <http:Mwww w3 orgd1999/02422-rdf-syntax-ns#type- <http:/fwww rdfabout
<http:/www.rdfabout. comird flusgovicongress/people/AR0006S= <http/iwww. w3 orgd1999/02/22-rdf-syntax-ns#type> <http:/ixmins.comifea
<http:iwww rdfabout. comird flusgovicongress/people/A00006%- <http:www w3 orgi2001vcard-rdfi3. 0#BDAY = "1524-08-11"

<http:/hwww.rdfabout. comird ffusgovicongress/people/A000069= <hitp/iwww.rdfabout.com/rdfizschemal/usgovt/congressBioGuidell= "A000085"

<http:ihwww rdfabout. comirdflusgovicongress/people/A000069> <http:ifxmins. comifoafil. 1/religion= “Congregationalist”
<http:/hwww.rdfabout. comird flusgovicongress/people/AQ0000659= <httpJ/iwww.rdfabout.com/rdfizchemal/usgovi/name= “Caniel Akaka™
<http:ihwww rdfabout. comirdflusgovicongress/people/A000065> <hitp:/xmins. comifoafi0. 1/name:= “Daniel Akaka™
<http:/www.rdfabout. comird ffusgovicongress/people/A000069= <hitp/ixmins. comifoaf/D. 1iitle= “Sen.”

The sem: sparql-values function can be considered as equivalent to the SPARQL 1.1 facility of an
outermost varues block. See " Values Sections” on page 111 for more information.

Everywhere you use avariable in a SPARQL values query, you can set the variable to a fixed

value by passing in external bindings as argumentsto sem: sparqgl-values. See “Using Bindings
for Variables’ on page 135.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 133

MarkLogic Server Semantic Queries

6.2.2.3 sem:store

The sem: store function contains a set of criteria used to select the set of triplesto be passed in to
sem: spargl, sem: spargl-values, O sem:spargl-update and evaluated as part of the query. The
triplesincluded in sem:store come from the current database’s triple index, restricted by the
options and the cts: query argument in sem:store (for instance, “al triples in documents
matching this query”). If multiple sen: store constructors are supplied, the triples from al the
sources are merged and queried together.

If & sem: store CONStructor is not Supplled asan option for sem: sparql, sem:spargl-values, O
sem:sparqgl -update, then the default sen: store constructor for the query will be used (the default
database’s triple index).

6.2.2.4 Querying Triples in Memory
YOu Can USe sem: in-memory-store tO query triplesin memory.

For example:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqgy";

let sStriples := sem:rdf-parse($string, ("turtle", "myGraph"))
let Squery := '

PREFIX ad: <http://marklogic.com/addressbook/>

PREFIX d: <http://marklogic.com/id/>

CONSTRUCT{ ?person ?p 20 .}
FROM <myOtherGraph>
WHERE

{

?person ad:firstName "Elvis"

ad:lastName "Presley"
?p ?0 .
}
for $result in sem:sparql ($query, (), (), sem:in-memory-

store($triples))
order by sem:triple-object (Sresult)
return <result>{$result}</result>

This query constructs a graph of triplesin memory named “myGraph” containing persons named
Elviswith alast name of Presley. The source of these triplesis “myOtherGraph” and the results
arereturned in order.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 134

MarkLogic Server Semantic Queries

6.2.3 Using Bindings for Variables

Extensions to standard SPARQL enable you to use bindings for variables in the body of a query
statement. Everywhere you use avariable in a SPARQL query, you can set the variable to afixed
value by passing in external bindings as arguments to sem: spargql.

Bindingsfor variables can also be used as valuesin orrser and Lim1T clauses (in the syntax where
they previously were not allowed). This example query uses bindings for variables with both

LIMIT and oFFSET.

xquery version "1.0-ml";

import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqgy";
import module namespace json = "http://marklogic.com/xdmp/json"
at "MarkLogic/json/json.xqy";
declare namespace jbasic = "http://marklogic.com/xdmp/json/basic";
let sSquery := '

PREFIX bb: <http://marklogic.com/baseball/players/>

SELECT ?firstname ?lastname ?team
FROM <SportsTeams>

{
{

?gs bb:firstname ?firstname
?s bb:lastname ?lastname
?s bb:team ?team
?s bb:position ?position
FILTER (?position = ?pos)
}
}

ORDER BY ?lastname
LIMIT ?1lmt

let Smymap := map:map ()

let Sput := map:put (Smymap, "pos", "pitcher")

let Sput := map:put (Smymap, "lmt", "3")

let sStriples := sem:sparql (Squery, S$Smymap)

let Striples-xml := sem:query-results-serialize(Striples, "xml")

return <results>{$triples-xml}</results>

=>
<resultss>
<spargl xmlns="http://www.w3.0rg/2005/spargl-results/">
<head>
<variable name="firstname"></variable>
<variable name="lastname"></variable>
<variable name="team"></variable>
</head>
<resultss>
<result>
<binding name="firstname">
<literal datatype="http://www.w3.0rg/2001/XMLSchema#fstring">

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 135

MarkLogic Server Semantic Queries

Fernando</literal>
</binding>
<binding name="lastname">
<literal datatype="http://www.w3.0rg/2001/XMLSchema#string">
Abad</literal>
</binding>
<binding name="team">
<literal datatype="http://www.w3.0rg/2001/XMLSchema#string">
Athletics</literals>
</binding>
</result>
<result>
<binding name="firstname">
<literal datatype="http://www.w3.0rg/2001/XMLSchema#string">
Jesse</literals>
</binding>
<binding name="lastname">
<literal datatype="http://www.w3.0rg/2001/XMLSchema#string">
Chavez</literals>
</binding>
<binding name="team">
<literal datatype="http://www.w3.0rg/2001/XMLSchema#string">
Athletics</literals>
</binding>
</results>
<result>
<binding name="firstname">
<literal datatype="http://www.w3.0rg/2001/XMLSchema#string">
Ryan</literal>
</binding>
<binding name="lastname">
<literal datatype="http://www.w3.0rg/2001/XMLSchema#string">
Cook</literals>
</binding>
<binding name="team">
<literal datatype="http://www.w3.0rg/2001/XMLSchema#string">
Athletics</literals>
</binding>
</result>
</results>
</spargl>
</results>

Bindi ngs can be used with SPARQL (sem: sparql), SPARQL values (sem: sparql—values), and
SPARQL Update (sem: sparqgl-update). See“Bindings for Variables’ on page 184 for an example
of bindings for variables used with SPARQL Update.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 136

MarkLogic Server Semantic Queries

6.2.4 Viewing Results as XML and RDF

YOU Can USe sem: query-results-serialize aNd sem:rdf-serialize functionsto view resultsin
XML, JSON, or RDF serialization.

In this example, the sem: sparq1 query finds the cosponsors of bill number “1024” and passes the
value sequence into sem:query-results-serialize tO return the results as variable bindingsin
default XML format:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqy";

sem:query-results-serialize (sem:sparqgl ('

PREFIX rdf: <http://www.w3.o0rg/1999/02/22-rdf-syntax-ns>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX bill: <http://www.rdfabout.com/rdf/schema/usbill/>

SELECT ?bill ?person ?name
WHERE {?bill rdf:type bill:SenateBill ;
bill:congress "108" ;
bill:number "1024"
bill:cosponsor ?person
?person foaf:name ?name .}

"))

Theresults are returned in W3C SPARQL Query Results format:

Run {::) | Result Auto Raw 5 profile [=Explorer
<spargl xmlns="http://www.w3.0rg/20@5/sparql-results#">
<head>»

<variable name="bill "/>
<variable name="person"/>
<variable name=" name "/>
</head>
<results>»
<result>
<binding name="bill ">
<uri>http://www.rdfabout.com/rdf/usgov/congress/108/bills/s1824< /uri>
</binding>
<binding name="person ">
<urishttp://www.rdfabout. com/rdf/usgov/congress/people/CBBB888</uris
</binding>
<binding name="name ">
<literal datatype="http://www.w3.0rg/2001/XMLSchemaf#string ">Michael Crapo</literal>
</binding>
</result>»
<result>
<binding name="bill ">
<urishttp://uww. rdfabout. com/rdf/usgov/congress/168/bills/s1824< /uri>
</binding>
<binding name="person ">
<urishttp://www. rdfabout.com/rdf/usgov/congress/people/C881841</uri>
</binding>
<binding name="name ">
<literal datatype="http://www.w3.0rg/2001/XMLSchema#string "»Hillary Clinton</literal>
</binding>
</result>»

<racult>

To view the same resultsin JSON serialization, add the format option after the query.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 137

MarkLogic Server Semantic Queries

For example:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqgy";

sem:query-results-serialize (sem:sparqgl ('

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX bill: <http://www.rdfabout.com/rdf/schema/usbill/>

SELECT ?bill ?person ?name
WHERE {?bill rdf:type bill:SenateBill ;
bill:congress "108" ;
bill:number "1024"
bill:cosponsor ?person
?person foaf:name ?name .}
'), "json")

When you use the sem: rdf-serialize function, you pass the triple to return as a string, or
optionally you can specify a parsing serialization option.

For example:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqy";

sem:rdf-serialize(
sem:triple(
sem:iri (
"http://www.rdfabout.com/rdf /usgov/congress/people/D000060") ,
gsem:iri ("http://www.rdfabout.com/rdf/schema/usgovt/name"),
"Archibald Darragh"), "rdfxml")

This table describes the serialization options available for the output:

Serialization Output As
ntriple xs:string
nquad xs:string
turtle xs:string
rdfxml an element
rdfjson ajson:object
triplexml asequence of sem:triple €lements

You can also select different ways to display results. See “ Selecting Results Rendering” on
page 86.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 138

MarkLogic Server Semantic Queries

6.2.5 Working with CURIEs

A CURIE (Compact URI Expression) is a shortened version of a URI signifying a specific resource.
With MarkL ogic, lengthy IRIs can be shortened using a mechanism similar to that built into the
SPARQL language. As a convenience, the definitions of several common prefixes are built in, as
shown in the examplesin this section.

CURIEs are composed of two components: a prefix, and areference. The prefix is separated from
the reference by acolon (:), for example, dc:description isaprefix for Dublin Core and the
reference - http://purl.org/dc/elements/1.1/ - isthe description.

These are the most common prefixes and their mapping:

map:entry ("atom", "http://www.w3.org/2005/Atom/"),
map:entry("cc", "http://creativecommons.org/ns/"),
map:entry("dc", "http://purl.org/dc/elements/1.1/"),
map:entry ("dcterms", "http://purl.org/dc/terms/"),

map:entry
map:entry

"doap", "http://usefulinc.com/ns/doap/"),
"foaf", "http://xmlns.com/foaf/0.1/"),

~ o~~~ o~~~ o~ o~~~ —

map:entry ("media", "http://search.yahoo.com/searchmonkey/media/"),
map:entry ("og", "http://ogp.me/ns/"),

map:entry("owl", "http://www.w3.org/2002/07/owl/"),

map:entry ("prov", "http://www.w3.org/ns/prov/"),

map:entry ("rdf", "http://www.w3.org/1999/02/22-rdf-syntax-ns"),
map:entry ("rdfs", "http://www.w3.org/2000/01/rdf-schema/"),

map:entry ("result-set",
"http://www.w3.0rg/2001/sw/DataAccess/tests/result-set/"),

map:entry("rss", "http://purl.org/rss/1.0/"),
map:entry ("skos", "http://www.w3.org/2004/02/skos/core/"),
map:entry ("vcard", "http://www.w3.org/2006/vcard/ns/"),
map:entry ("void", "http://rdfs.org/ns/void/"),
map:entry ("xhtml", "http://www.w3.org/1999/xhtml/"),

(

map:entry ("xs", "http://www.w3.0rg/2001/XMLSchema#")

You can use the sem: curie-expand and sem: curie-shorten functionsto work with CURIESin
MarkLogic. When you Use sem: curie-expand, you eliminate the need to declare common
prefixes.

For example:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqgy";

sem:curie-expand ("foaf :name")

<http://xmlns.com/foaf/0.1/name>

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 139

MarkLogic Server Semantic Queries

Inthisexample, the cts: triple-range-query findsaperson named “Lamar Alexander”. Note that
the results are returned from a cts:search t0 find the sem: triple elements where the foaf : name
equals “Lamar Alexander”. The predicate CURIE is displayed as the fully expanded IRI for

foaf :name.

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqgy";

let Squery := cts:triple-range-query((), sem:curie-
expand ("foaf :name"), "Lamar Alexander", "sameTerm")

return cts:search(fn:collection()//sem:triple, sSquery)

=>
<sem:triples xmlns="http://marklogic.com/semantics">
<sem:subject>
http://www.rdfabout .com/rdf/usgov/congress/people/A000360/
</sem:subject>
<sem:predicates
http://xmlns.com/foaf/0.1/name
</sem:predicate>
<sem:object datatype="http://www.w3.0rg/2001/XMLSchema#fstring">
Lamar Alexander
</sem:object>
</sem:triples>

In the following example, the query includes a series of cts:tripies function calls and

sem: curie-expand t0 find the name of the congressperson who was born on November 20, 1917.
The person’s name is returned as an RDF literal string from the object position (sem:triple-
object) Of the returned triple statement:

xquery version "1.0-ml";

import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqy";

let Sperson-triples := cts:triples((), sem:curie-expand("vcard3:BDAY",
map:entry ("vcard3", "http://www.w3.org/2001/vcard-rdf/3.0/")),
"1917-11-20")

let Ssubject := sem:triple-subject ($Sperson-triples)

let Sname-triples := cts:triples(Ssubject,

sem:curie-expand ("foaf:name"), ())

let Sname := sem:triple-object ($name-triples)

return (S$name)

Robert Byrd

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 140

MarkLogic Server Semantic Queries

Use the sem: curie-shorten t0 cOmpact an IRl to a CURIE. Evaluating the function involves
replacing the CURIE with a concatenation of the value represented by the prefix and the part after
the colon (the reference).

For example:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqgy";

sem:curie-shorten(sem:iri ("http://www.w3.0rg/1999/02/
22-rdf-syntax-ns#resource/"))

=>
rdf : resource

Note: Although CURIESs map to IRIs, do not use them as values for attributes or other
content that are specified to contain only IRIs.

For example, the following query will return an empty sequence sincethe cts:triple-range-
query expectsan IRI (sem:iri) in that position Not & sem: curie-shorten, Which isastring:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqy";

let $query := cts:triple-range-query((),
sem:curie-shorten(sem:iri ("http://xmlns.com/foaf/0.1/name")),
"Lamar Alexander", "sameTerm")

return cts:search(fn:collection()//sem:triple, Squery)

Instead, either of the following can be used:

let $query := cts:triple-range-query((),
sem:curie-expand ("foaf:name"), "Lamar Alexander", "sameTerm")

Or aternatively expand the prefix to the full IRI:

let Squery := cts:triple-range-query((),
sem:iri ("http://xmlns.com/foaf/0.1/name/"), "Lamar Alexander",
"sameTerm")

Note: The sameTerm function that is defined in SPARQL, performs the value equality
operation. It differs from the equality operator (=) in the way that types are
handled. In MarkLogic, types and timezones are the only things that make
sameTern different from = . For example, sameTerm(a,s) implies A=B. In SPARQL
terms, using sameTerm SeMantics to match graphs to the graph patternsin a
SPARQL query is called simple entailment. For more information, see “Triple
Values and Type Information” on page 64.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 141

MarkLogic Server Semantic Queries

6.2.6 Using Semantics with cts Searches

This section discusses using cts searches to return RDF data from aMarkL ogic triple store. It
includes the following topics:

e cts:triples

e cts:triple-range-query

e cts:search

e cts:contains

6.2.6.1 cts:triples

The cts:triples function retrieves the parameter values from the triple index. Triples can be
returned in any of the sort orders present in the triple index.

In this example, the subject IRI for amember of congressis passed as the first parameter for the
subject IRI:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqgy";

let $r := cts:triples
(sem:iri (
"http://www.rdfabout.com/rdf/usgov/congress/people/D000060O") ,
)

return (Sr)

The matching results return triples for that member of congress (Archibald Darragh):

Run Lb) Result | Auto Raw & Profile Explorer

@prefix xs: <http://www.w3.org/2001/XMLSchema#> .
<http://www.rdfabout.com/rdf/usgov/congress/people/Doeaaed> <http://www.w3.org/2001/vcard-rdf/3.0#N>
_:bnode8fase4assecoad3zez ;
<http://www.rdfabout.com/rdf/schema/politico/hasRole> _:bnoded47ccd51472345bf ,
_:bnoded483cdseb723babf ,
_:bnoded4a2cdsca7239bbf ,
_:bnoded7e9cdeg1720debf ;
<http://www.w3.0rg/1999/82/22-rdf-syntax-ns#type> <http://www.rdfabout.com/rdf/schema/politico/Politician> ,
<http://xmlns.com/foaf/@.1/Person> ;
<http://www.w3.org/2001/vcard-rdf/3.04BDAY> "1840-12-23"~xs:string ;
<http://www.rdfabout.com/rdf/schema/usgovt/name> "Archibald Darragh"~"xs:string ;
<http://xmlns.com/foaf/@.1/name> "Archibald Darragh”~xs:string ;
<http://www.rdfabout.com/rdf/schema/usgovt/congressBioGuideID> "De@Bo6@" xs:string ;
<http://xmlns.com/foaf/@.1/gender> "male”~ xs:string .

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 142

MarkLogic Server Semantic Queries

6.2.6.2 cts:triple-range-query

Accessto the triple index is provided through the cts: triple-range-query function. Thefirst
parameter in this exampleis an empty sequence for the subject. The predicate and object parameters
are provided, dong with the sameTerm Operator to find someone named “Lamar Alexander”:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqy";

let $query := cts:triple-range-query((),
sem:iri ("http://xmlns.com/foaf/0.1/name"), "Lamar Alexander",
"sameTerm")

return cts:search(fn:collection()//sem:triple, Squery)

6.2.6.3 cts:search

The built-in cts search functions are X Query functions used to perform text searches. In thisexample,
the cts:search queriesagainst the info:govtrack/bills collection of XML docsto determine how
many bills have the word “Guam” in the document (the cts : word-query Of the specified string).

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqgy";

let $search := cts:search(//sem:triple,

cts:and-query ((cts:collection-query("info:govtrack/bills"),
cts:word-query ("Guam"))

)

) [1]

return cts:remainder (Ssearch)

=>

16

You can use acombination of cts:query and comparison operators. The cts:triple-range-query
function in thisexample is used within acts:search to find the sem: trip1e €elements, where the
foaf :name €quals“Lamar Alexander” or where Alexander’s subject IRI containsa foat : img
property conveying animage IRI.

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqy";

declare namespace dc = "http://purl.org/dc/elements/1.1/";
cts:search(collection()//sem:triple, cts:or-query ((
cts:triple-range-query((), sem:curie-expand("foaf:name"),

"Lamar Alexander", "sameTerm"),
cts:triple-range-query (

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 143

MarkLogic Server Semantic Queries

sem:iri
("http://www.rdfabout.com/rdf/usgov/congress/people/A000360"),
sem:curie-expand("foaf:img"), (), "="
)
)))

You can construct sequences in SPARQL expressions and the SPARQL 1.1 v and noT 1N
operators to make effective use of built-in cts functions such as cts: and-query, Which expect a
sequence of cts:query Values asthe first argument.

You can al'so USe cts : order CONStructors as an option to cts: search to to specify an ordering. This
lets you order cts search results using a specified index for better, predictable performance. See
Creating a cts:order Specification in the Query Performance and Tuning Guide.

6.2.6.4 cts:contains

You can use the cts:contains function in SPARQL expressions, which occur in rrnTer and snp
clauses. For an example, see“The FILTER Keyword” on page 102.

Since cts:contains alows any value as the first argument, you can pass a variable that is bound
by atriple pattern in the query as the first argument. The triple pattern uses the full-text index to
reduce the results it returns during the lookup in the triple index. For example:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqgy";

fn:count (sem:sparqgl ('
PREFIX cts: <http://marklogic.com/cts#>

SELECT DISTINCT *
WHERE
{ »s ?p 70 .
FILTER cts:contains(?0, cts:word-query ("Environment")) }
")
)
=>

53

The following exampleis a query to verify if thereisabill number “hr543”.

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqy";

cts:contains (collection("info:govtrack/bills")//sem:subject,
cts:word-query ('hr543"'))

=>
true

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 144

MarkLogic Server Semantic Queries

6.3 Querying Triples with the Optic API

The Optic API can also be used for server-side queries of triples. The following Optic example
query returns alist of the people who were born in Brooklyn in the form of atable with two
columns, person and name.

xquery version "1.0-ml";
import module namespace op="http://marklogic.com/optic"
at "/MarkLogic/optic.xgy";

let Sresource op:prefixer ("http://dbpedia.org/resource/")

let S$foaf := op:prefixer ("http://xmlns.com/foaf/0.1/")
let Sonto := op:prefixer ("http://dbpedia.org/ontology/")
let Sperson := op:col ("person")

return op:from-triples ((
op:pattern($person, S$onto("birthPlace"), S$resource ("Brooklyn")),
op:pattern($person, $foaf ("name"), op:col("name"))))
=> op:result ()

This query uses the same data set as the one used for queries earlier in this chapter (see “Querying
Tripleswith SPARQL” on page 82). The results would look like this:

sqlas | Table E\

person
hitp://dbpedia orgiresource/A E._Coleby
http://dbpedia orgiresource/A S._Douglas
hiip://dbpedia.org/resource/A._A._Pearson
hiip://dbpedia.org/resource/A._B._Campbell
hiip://dbpedia.org/resource/A._E._W._Mason
hiip://dbpedia.org/resource/A. _Follett_Osler
hiip://dbpedia_org/resource/A._J._Ayer
hiip://dbpedia.org/resource/A._L._Lloyd
hiip://dbpedia.org/resource/A._M._W._Stirling
hiip://dbpedia.org/resource/A._R._Rawlinson

hiip://dbpedia_ org/resource/Aaron_Hart_(businessman)

name
AE. Coleby
Alexander Shafto Douglas
A. A Pearson
A. B. Campbell
AEW Mason
A. Follett Osler
Alfred Ayer
Alpert Lancaster Lloyd
AM.W. Stirling
AR Rawlinson

Aaron Hart

httncildhnadia armlracnnrealAarnn Dattan Aarnn Dattan

For more about the Optic API, see Optic API for Multi-Model Data Access and Data Access Functions
in the Application Developer’s Guide and op: from-triples Of op.fromTriples iNthe Optic API
for more about server-side queries using Optic.

6.4 Serialization

You can set the output serialization for resultsin avariety of ways. These options can be set at the
guery level as part of the JSON or XQuery function to override any default options, or you could
set the method in an X Query declaration, or the method can be configured in the app server. These
output options affect how data returned from the App Server or sent over REST is serialized.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 145

MarkLogic Server Semantic Queries

6.4.1 Setting the Output Method

You can set the output method for the results of your query in the following ways. Each method
overrides the next method in the list:

* set an option to xdmp: quote ()

e Sef xdmp:set-response-output-method ()

* setthe XSLT output method

* Useadtatic declaration in XQuery (or JavaScript)
» Configure the output in app server

In other words, any configuration you have set in the app server will be overwritten by a static
declaration in XQuery or Javascript.

To set the output method in an XQuery declaration use:
declare option xdmp:output "method = spargl-results-json"
To set the output method as part of an XQuery function use:

set-response-output-method ("spargl-results-json")

As part of a server-side JavaScript function use to set the output method:

setResponseOutputMethod ("spargl-results-json")

6.5 Security

If you have a document with unmanaged triples, or you have TDE-extracted triples, those triples
share the same security characteristics as the source documents. That is, if you can read the
document containing the values that create the triples, you can read the triples.

With managed triples, the document inherits create permissions from the graph. When you set
graph permissions, the documents created from those triples have the permissions you set on that

graph.

Thetripleindex, cts:triples, and sem: sparql queries only returns triples from documents which
the database user has permission to read.

Named graphs inherit the write protection settings available to collections.

Task Privilege

Executing sem: sparql http://marklogic.com/xdmp/privileges/sem-sparq|

For more information about MarkL ogic security, see Document Permissions in the Security Guide.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 146

MarkLogic Server Inference

7.0 Inference

In the context of MarkL ogic Semantics, and semantic technology in general, the process of
“inference” involves the automated discovery of new facts based on a combination of data and
rules for understanding that data. Inference isthe process of “inferring” or discovering new facts
about your data based on a set of rules. Inference with semantic triples means that automatic
procedures can generate new relationships (new facts) from existing triples.

An inference query isany SPARQL query that is affected by automatic inference. The W3C
specification describing inference, with links to related standards, can be found here:
http://www.w3.org/standards/semanticweb/inference

New facts may be added to the database (forward-chaining inference), or they may be inferred at
guery time (backward chaining inference), depending on the implementation. MarkL ogic
supports automatic backward-chaining inference.

This chapter includes the following sections:

e Automatic Inference

e Other Ways to Achieve Inference

e Performance Considerations

e Using Inference with the REST API

e Summary of APIs Used for Inference

7.1 Automatic Inference

Automatic inference is done using rulesets and ontologies. As the name implies, automatic
inference is performed automatically and can aso be centrally managed. MarkL ogic semantics
uses backward-chaining inference, meaning that the inference is performed at query time. Thisis
very flexible; it means you can specify which ruleset(s) and ontology (or ontologies) to use per-
query, with default rulesets per-database.

This section includes these topics:

¢ Ontologies

e Rulesets

¢ Memory Available for Inference

* A More Complex Use Case

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 147

http://www.w3.org/standards/semanticweb/inference

MarkLogic Server Inference

7.1.1 Ontologies

An ontology is used to define the semantics of your data; it describes relationshipsin your data
that can be used to infer new facts about your data. In Semantics, an ontology is a set of triplesthat
provides a semantic model of a portion of the world, amodel that enables knowledge to be
represented for a particular domain (relationships between people, types of publications, or a
taxonomy of medications). This knowledge model is a collection of triples used to describe the
relationships in your data. Different vocabularies can supply sets of terms to define concepts and
relationships to represent facts.

An ontology describes what types of things exist in the domain and how they are related. A
vocabulary is composed of terms with clear definitions controlled by some internal or external
authority. For example, the ontology triple ex:dog skos:broader ex:mammal Statesthat dog is part
of the broader concept mamma.

This SPARQL example inserts that ontology triple into a graph.

PREFIX skos: <http://www.w3.0rg/2004/02/skos/core#Concept/>
PREFIX ex: <http://example.org/>

INSERT DATA

{

GRAPH <http://marklogic.com/semantics/animals/vertebratess

{

ex:dog skos:broader ex:mammal .

b}

You may want to use an ontology you have created to model your business or your area of
research, and use that along with one or more rulesets to discover additional information about
your data.

The rulesets are applied across al of the triplesin scope for the query, including ontology triples.
Ontology triples have to be in scope for the query in order to be used. There are multiple ways to
do this:

* Userrom OF FrOM NaMED/GRAPH 1N the query to specify what datais being accessed.
Ontologies are organized by collection/named graph.
e Usedefault-graph= and named-graph= Opti ONS 10 sem: sparqgl Of sem:spargl-update.

* Useacts:query to exclude datato be queried. Ontologies can be organized by directory,
or anything else that a cts:query can find.

* Add the ontology to an in-memory store, and query across both the database and the in-
memory store. In this case, the ontology is not stored in the database, and can be
manipulated and changed for each query.

* Add the ontology to aruleset as axiomatic triples. Axiomatic triples are triples that the
ruleset says are always true - indicated by having an empty wuere clause in therule. You
can then choose to include the ontologies in certain ruleset files or not at query time.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 148

MarkLogic Server Inference

7.1.2 Rulesets

A ruleset isaset of inference rules, or rulesthat can be used to infer additional facts from data.
Rulesets are used by the inference engine in MarkL ogic to infer new triples from existing triples
at query time. A ruleset may be built up by importing other rulesets. Inference rules enable you to
search over both asserted triples and inferred triples. The semantic inference engine uses rulesets to
create new triples from existing triples at query time.

d livesin e isin

[“John Smith” é “London” ﬁ’ “England”

livesin

For example, if you know that John livesin London and London isin England, you (as a human)
know that John livesin England. You inferred that fact. Similarly, if there aretriplesin the
database that say that John livesin London and that London isin England, and there are also
triples that express the meaning of “livesin” and “isin” as part of an ontology, MarkL ogic can
infer that John livesin England. When you query your datafor all the people that live in England,
John will be included in the results.

Hereis asimple custom rule (ruleset) to express the concept of “livesin”:

geographic rules for inference

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema/>
PREFIX ex: <http://example.com/>

PREFIX gn: <http://www.geonames.org/ontology/>

RULE "livesIn" CONSTRUCT {
?person ex:livesIn ?place?2

b

?person ex:livesIn ?placel .
?placel gn:parentFeature ?place2

}

Thisrule states (reading from the bottom up): if place1 isin (has @parentFeature) place2, and a
person livesin placel, then Aperson asolivesin place2.

Inference that is done at query time using rulesetsisreferred to as“backward chaining” inference.
Each SPARQL query looks at the specified ruleset(s) and creates new triples based on the results.
Thistype of inferencing is faster during ingestion and indexing, but potentially a bit slower at
guery time. In general, inference becomes more expensive (slower) as you add more (and more
complex) rules.

MarkLogic allows you to apply just the rulesets you need for each query. For convenience, you
can specify the default ruleset or rulesets for a database, but you can also ignore those defaults for
certain queries. It is possible to override the default ruleset association to alow querying without
using inferencing and/or querying with alternative rulesets.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 149

MarkLogic Server Inference

This section includes these topics:

* Pre-Defined Rulesets

¢ Specifying Rulesets for Queries

e Using the Admin Ul to Specify a Default Ruleset for a Database

e Qverriding the Default Ruleset

e Creating a New Ruleset

¢ Ruleset Grammar

e Example Rulesets

7.1.2.1 Pre-Defined Rulesets

Some pre-defined, standards-based rulesets (RDFS, RDFS-Plus, and OWL Horst) for inference
are included with MarkL ogic semantics. The rulesets are written in a language specific to
MarkL ogic that has the same syntax as the SPARQL construcT query. Each ruleset has two
versions; the full ruleset (xxx-fu1l.rules) and the optimized version (xxx.rules).

The components of each of these rulesets are available separately so that you can do fine-grained
inference with queries. You can also create your own rulesets by importing some of those rulesets
and/or writing your own rules. See “Creating a New Ruleset” on page 156 for more information.

To see these pre-defined rulesets (in Linux), go to the Config directory under your MarkLogic
install directory (/MarkLogic install_dir/config/+.rules). For example:

/opt/MarkLogic/Config/*.rules

You will see aset of fileswith the . ruies extension. Each of these . ruies filesisaruleset. For a
Windows installation, these files are usually located in c:\program Files\MarkLogic\Config).

Hereis an example of the rule domain. rules:

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema/>

tbox {
?p rdfs:domain ?c .

}

RULE "domain axioms" construct {
rdfs:domain rdfs:domain rdf:Property .
rdfs:domain rdfs:range rdfs:Class

b}

RULE "domain rdfs2" CONSTRUCT ({
?xX a ?c

bAoA

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 150

MarkLogic Server Inference

?x ?p ?y .
?p rdfs:domain ?c

}

In thisexample, a means “type of” (rdf:type OF rdfs:type). The“domain rdfs2” rule statesthat if
all the thingsin the second set of braces aretrue (p has domain c; that is, for every triple that has
the predicate p, the object must be in the domain <), then construct the triple in the first set of
braces (if you seex p y, thenxisac).

If you open arulein atext editor you will see that some of the rulesets are componentized; that is,
they are defined in small component rulesets, and then built up into larger rulesets. For example,
rdfs.rules imports four other rules to create the optimized set of rdfs rules:

RDFS 1.1 optimized rules
prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

import "domain.rules"

import "range.rules"

import "subPropertyOf.rules"
import "subClassOf.rules"

RULE "rdf classes" construct ({

By using a building block approach to using (and creating) rulesets, you can enable only therules
you really need, so that your query can be as efficient as possible. The syntax for rulesetsis
similar to the syntax for SPARQL consTruCT.

7.1.2.2 Specifying Rulesets for Queries

You can choose which rulesets to use for your SPARQL query by using sem: ruleset-store. The
ruleset is specified as part of the function. The sem: ruleset-store function returns a set of triples
that result from the application of the ruleset to the triples defined by the sem: store function
provided in sstore (for example, “all of the triples that can be inferred from thisrule”).

This statement specifiesthe rafs. rules ruleset as part of sem: ruleset-store:

let $rdfs-store := sem:ruleset-store("rdfs.rules",sem:store())

So this says, let srdfs-store contain triples derived by inference using the rdats . rules against the
sem:store. If N0 valueis provided for sem:store, the query uses the triples in the current
database’s triple index. The built-in functions sem: store and sem:ruleset-store are used to
define the triples over which to query and the rulesets (if any) to use with the query. The sstore
definition includes aruleset, as well as other ways of restricting aquery’sdomain, such asa

cts:query.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 151

MarkLogic Server Inference

This example uses the pre-defined rdats.rules ruleset:

import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqy";

let Ssup :=

'"PREFIX rdf: <http://www.w3.0org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

INSERT DATA

{ <someMedicalCondition> rdf:type <osteoarthritiss>
<osteoarthritis> rdfs:subClassOf <bonedisease> . }

return sem:sparqgl-update ($sup)

; (: transaction separator :)

let S$sq :=

'"PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX d: <http://diagnoses#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?diagnosis

WHERE { ?diagnosis rdf:type <bonedisease>. } '

(: rdfs.rules is a predefined ruleset :)

let $rs := sem:ruleset-store("rdfs.rules", sem:store())

return sem:sparqgl ($sq, (), (), Srs)

(: the rules specify that query for <bonedisease> will return the
subclass <osteocarthritis> :)

Note: If graph URIsareincluded as part of a SPARQL query that includes sem: store Or
sem:ruleset-store, the query will include “triplesthat are in the storeand also in
these graphs’.

Thisexampleisa SPARQL query against the datain striples, using the rulesets rafs : subclassof
and rdfs: subPropertyof:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqy";

let Striples := sem:store((), cts:word-query ("henley"))

return

sem:sparqgl ("

PREFIX skos: <http://www.w3.0rg/2004/02/skos/core#Concept/>

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

SELECT * { ?c a skos:Concept; rdfs:label 2?1 }", (), (),

sem:ruleset-store(("subClassOf.rules", "subPropertyOf.rules"),
(Striples))

)

You can manage the default rulesets for a database using the Admin Ul, the REST Management
API, or XQuery Admin API. See“Using the Admin Ul to Specify a Default Ruleset for a
Database” on page 153 for information about specifying rulesets with the Admin Ul. See the
default-ruleset Property IN PUT: /manage/v2/databases/{id|name}/properties for REST
Management API details. See admin:database-add-default-ruleset fOr Admin APl details.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 152

MarkLogic Server Inference

7.1.2.3 Using the Admin Ul to Specify a Default Ruleset for a Database

You can use the Admin Ul to set the default ruleset to be used for queries against a specific
database (for example, “when using this database, use this ruleset for queries’).

To specify the ruleset or rulesets for a database:
1. Click the Databases in left tree menu of the Admin Ul.

2. Click the database name to expand the list and scroll to Default Rulesets.

Configure

j Groups

E & Databases

\ﬁ App-Services

E £ Documents

: \ﬁ Farests
ﬁ Sub-Databases
. HFES Flexible Replication
\ﬁ Database Replication

\ﬁ Fragment Roots
ﬁ Fragment Parents
ﬁ Triggers

\ﬁ Merge Policy
\ﬁ Scheduled Backups
ﬁ Content Processing

ﬁ Element Range Indexes
\ﬁ Attribute Range Indexes
\ﬁ Field Range Indexes
ﬁ Path Namespaces
ﬁ Path Range Indexes
\ﬁ Element Ward Lexicons
\ﬁ Attribute Word Lexicons
ﬁ Word Query

EHED Fislds

\ﬁ Phrase-Throughs

\ﬁ Phrase-Arounds
ﬁ Element-Word-Query-Throughs
ﬁ Geospatial Indexes
[E Default Rulesets
i \ﬁ Permissions
ﬁ Extensions

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 153

MarkLogic Server Inference

3. Click Default Rulesets to see the rulesets currently associated with the Documents
database.

ErasrmerTsm

Database: Documents | ok | | cancel |

default rulesets — The default rulesets configuration.

default ruleset — Configuration for a single default ruleset. ;- delete -,

location subClassOf.rules

A rulezet location.

ok || cancel

4, To add your own ruleset, click Add to enter the name and location of the ruleset.

e T o T o

ok , ,_ cancel ,
Add Default Rulesets to Database
location irules/livesin.rules|
A ruleset location.
, more items ,
ok cancel
5. Your custom rulesets will be located in the schemas database.

The rulesets supplied by MarkL ogic are located in the Config directory under your
MarkLogic installation directory (/MarkLogic_install_dir/config/+*.rules).

6. Click more items to associate additional rulesets with this database.

Note: Security for rulesets is managed the same way that security is handled for
MarkL ogic schemas.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 154

MarkLogic Server Inference

You can use Query Console to find out what default rulesets are currently associated with a
database usi ng the admin:database-get-default-rulesets function.

This example will return the name and location of the default rulesets for the Documents
database:

xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin"
at "/MarkLogic/admin.xqy";

let $config := admin:get-configuration/()
let $dbid := admin:database-get-id($config, "Documents")
return admin:database-get-default-rulesets ($Sconfig, $dbid)

=>

<default-ruleset xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://marklogic.com/xdmp/database" >
<locations>/rules/livesin.rules</location>
</default-ruleset>

Note: If you have adefault ruleset associated with a database and you specify aruleset as
part of your query, both rulesets will be used. Rulesets are additive. Use the
no-default-ruleset option iN sem:store tO ignore the default ruleset.

7.1.2.4 Overriding the Default Ruleset

You can turn off or ignore aruleset set as the default on a database. In this example, a SPARQL
guery is executed against the database, ignoring the default rulesets and using the
rdfs:subClassof inference ruleset for the query:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqgy";

sem:sparqgl ("
PREFIX skos: <http://www.w3.0rg/2004/02/skos/core#Concept/>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
SELECT * {
?c a skos:Concept;
rdfs:label 21 }", (), (),
sem:ruleset-store ("subClassOf .rules", sem:store("no-default-rulesets"))

)

You can also turn off or ignore aruleset as part of a query, through the Admin Ul, or by using
XQuery or JavaScript to specify the ruleset.

You can aso change the default ruleset for a database in the Admin Ul by “deleting” the default

ruleset from that database. In the Admin Ul, select the database name from the left navigation
panel, click the database name. Click Default Rulesets.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 155

MarkLogic Server Inference

e T e T e

Database: Documents | ok | | cancel |

default rulesets — The default rulesets configuration.

default ruleset — Configuration for a single default ruleset. ;- delete -;

location Irules/livesin.rules
A ruleset location.

ok || cancel |

On the Database: Documents panel, select the default ruleset you want to remove, and click
delete. Click ok when you are done. The ruleset is no longer the default ruleset for this database.

Note: This action does not delete the ruleset, only removesiit as the default ruleset.

You can alSO USE admin:database-delete-default-ruleset With XQuery to change a database’'s
default ruleset. This example removes subciassof . rules asthe default ruleset for the Documents
database.

xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin"
at "/MarkLogic/admin.xqy";

let $Sconfig := admin:get-configuration ()

let $dbid := admin:database-get-id($config, "Documents")

let Srules := admin:database-ruleset ("subClassOf.rules")

let $c := admin:database-delete-default-ruleset (Sconfig, $dbid, $rules)
return admin:save-configuration ($c)

7.1.2.5 Creating a New Ruleset

You can create your own rulesets to use for inference in MarkLogic. MarkL ogic rulesets are
written in alanguage specific to MarkLogic, based on the SPARQL consTrucT qQUEry.

Oneway to think of inferencerulesis as away to construct some inferred triples, then search over
the new data set (one that includes the portion of the database defined by the sem: store plusthe
inferred triples).

The MarkL ogic-supplied rulesets are located in the install directory:

/MarkLogic install dir/Config/*.rules

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 156

MarkLogic Server Inference

When you create a custom ruleset, insert it into the schemas database and refer to it asa URI in
the schemas database. A ruleset location is either a URI for the database you are using in the
schemas database, or afilenamein MarkLogic_Install_Directory/config.

Note: MarkLogic will search first for the MarkL ogic-provided rulesetsin /config and
then in the schemas database for any other rulesets.

7.1.2.6 Ruleset Grammar

MarkL ogic rulesets are written in alanguage specific to MarkL ogic. Thelanguageisbased onthe
SPARQL 1.1 grammar. The syntax of an inferenceruleis similar to the grammar for SPARQL
consTrUCT, With the waere clause restricted to a combination of only triple patterns, joins, and
filters. The ruleset must have a unique name.

The following grammar specifies the MarkL ogic Ruleset Language.

Rules ::= RulePrologue Rule*

Rule ::= 'RULE' RuleName 'CONSTRUCT' ConstructTemplate 'WHERE'?
RuleGroupGraphPattern

RuleName ::= String

RuleGroupGraphPattern ::= '{' TriplesBlock? ((Filter
RuleGroupGraphPattern) '.'? TriplesBlock?)* '}

RulePrologue ::= (BaseDecl | PrefixDecl | RuleImportDecl)*

RuleImportDecl ::= 'IMPORT' RuleImportLocation

RuleImportLocation ::= String

The string fOr rRuleImportrocation Must be a URI for the location of the rule to be imported.
Non-terminals that are not defined here (like sasepec1) are references to productionsin the
SPARQL 1.1 grammar.

» Thegrammar restricts the contents of arule’ swuere clause, and it is further restricted
during static analysis to a combination of only triple patterns, joins, and filters.

e Comments are allowed using standard SPARQL comment syntax (comments in the form
of “4”, outside an IRI or string, and continuing to the end of line).

* A MarkLogic ruleset uses the extension “ . rules” and has a mimetype of

“ application/vnd. marklogic—ruleset" .

» Somekinds of property path operators (“/”, “~”, for instance) can be used as part of

ruleset. However, you cannot use these operators as part of aproperty path in aruleset: “|”,
H?l’ H*”’ Or H+" .

The import statement in the prolog includes all rules from the ruleset found at the location given,
and all other rulesets imported transitively. If aruleset at a given location isimported more than
once, the effect of the import will be asif it had only been imported once. If aruleset isimported
more than once from different locations, MarkLogic will assume that they are different rulesets
and raise an error because of the duplicate rule names they contain (xove-burrULE).

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 157

https://www.w3.org/TR/sparql11-query/#sparqlGrammar

MarkLogic Server Inference

7.1.2.7 Example Rulesets

Thisruleset (subc1assof . rules) fromthe /MarkLogic_Install /config directory includes prefixes,
and has rule names and a construct clause. The subclassof rdfso ruleisthe one doing the work:

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
tbox {

?cl rdfs:subClassOf ?c2

}

RULE "subClassOf axioms" CONSTRUCT {
rdfs:subClassOf rdfs:domain rdfs:Class
rdfs:subClassOf rdfs:range rdfs:Class

b}

RULE "subClassOf rdfs9" CONSTRUCT {
?X a ?c2
bA
?x a »cl
?cl rdfs:subClassOf ?c2
FILTER (?cl!=?c2)

}

Note that the subciassof rdfso rule aso includesarIirnTer clause.

This ruleset from same directory (rafs.rules) imports smaller rulesets to make a ruleset
approximating the full RDFS ruleset:

RDFS 1.1 optimized rules
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

import "domain.rules"

import "range.rules"

import "subPropertyOf.rules"
import "subClassOf.rules"

RULE "rdf classes" CONSTRUCT ({
rdf:type a rdf:Property
rdf :subject a rdf:Property
rdf :predicate a rdf:Property
rdf:object a rdf:Property
rdf:first a rdf:Property
rdf:rest a rdf:Property
rdf:value a rdf:Property
rdf:nil a rdf:List

b}

RULE "rdfs properties" CONSTRUCT {
rdf:type rdfs:range rdfs:Class

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 158

MarkLogic Server Inference

rdf :subject rdfs:domain rdf:Statement
rdf :predicate rdfs:domain rdf:Statement
rdf:object rdfs:domain rdf:Statement

rdf:first rdfs:domain rdf:List
rdf:rest rdfs:domain rdf:List
rdf:rest rdfs:range rdf:List

rdfs:isDefinedBy rdfs:subPropertyOf rdfs:seeAlso

b}

RULE "rdfs classes" CONSTRUCT ({
rdf :Alt rdfs:subClassOf rdfs:Container
rdf :Bag rdfs:subClassOf rdfs:Container
rdf:Seq rdfs:subClassOf rdfs:Container
rdfs:ContainerMembershipProperty rdfs:subClassOf rdf:Property

b}

RULE "datatypes" CONSTRUCT {
rdf :XMLLiteral a rdfs:Datatype
rdf :HTML a rdfs:Datatype
rdf:langString a rdfs:Datatype

b}

RULE "rdfsl2" CONSTRUCT {
?p rdfs:subPropertyOf rdfs:member

b

?p a rdfs:ContainerMembershipProperty

}

Thisisthe custom rule shown earlier that you could create and use to infer information about
geographic locations:

geographic rules for inference

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema/>
PREFIX ex: <http://example.com/>

PREFIX gn: <http://www.geonames.org/ontology/>

RULE "lives in" CONSTRUCT {
?person ex:livesIn ?place2

b

?person ex:livesIn ?placel
?placel gn:parentFeature ?place2

}

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 159

MarkLogic Server Inference

Add the 1ives1n rule to the schemas database using xdmp : document - insert and Query Console.
Make sure the schemas database is selected as the Content Source before you run the code:

xquery version "1.0-ml";

xdmp : document -insert (

'/rules/livesin.rules’',

text{"

geographic rules for inference

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema/>
PREFIX ex: <http://example.com/>

PREFIX gn: <http://www.geonames.org/ontology/>

RULE "lives in" CONSTRUCT {
?person ex:livesIn ?place2

b

?person ex:livesIn ?placel
?placel gn:parentFeature ?place2

b
3]

The example storesthe 1ivesin.rule in the schemas database, in the rules directory
(/rules/1ivesin.rules). YOU can include your ruleset as part of inference in the same way you
can include the supplied rulesets. MarkLogic will check the location for rules in the schemas
database and then the location for the supplied rulesets.

7.1.3 Memory Available for Inference

The default, maximum, and minimum inference size values are all per-query, not per-system. The
maximum inference size is the memory limit for inference. The appserver-max-inference-size
function allows the administrator to set a memory limit for inference. You cannot exceed this
amount.

The default inference size is the amount of memory available to use for inference. By default the
amount of memory availablefor inferenceis 100mb (size=100). If you run out of memory and get
an inference full error (zxrruns), you need to increase the default memory size using
admin:appserver-set-default-inference-size O by changi ng the default inference size on the
HTTP Server Configuration page in the Admin Ul.

You can also set the inference memory size in your query as part of sem: ruleset-store. ThiS
guery sets the memory size for inference to 300mb (size=300):

Let $store := sem:ruleset-store(("baseball.rules", "rdfs-plus-
full.rules"),
sem:store (), ("size=300"))

If your query returns an InrruLL €Xception, you can to changethe size in ruleset-store.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 160

MarkLogic Server Inference

7.1.4 A More Complex Use Case

You can use inference in more complex queries. ThisisaJavaScript example of a SPARQL query
where an ontology is added to an in-memory store. The in-memory store uses inference to
discover recipes that use soft goat’s cheese. The query then returns the list of possible recipe
titles.

var sem = require("/MarkLogic/semantics.xqy") ;

var inmem = sem.inMemoryStore (
sem.rdfParse (...
prefix ch: <http://marklogic.com/semantics/cheeses/>
prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
prefix owl: <http://www.w3.o0rg/2002/07/owl#>
prefix dcterms: <http://purl.org/dc/terms/>

ch:FreshGoatsCheese owl:intersectionOf (
ch:SoftFreshCheese
[owl:hasValue ch:goatsMilk ;
owl:onProperty ch:milkSource]
) ...,"turtle"));
var rules = sem.rulesetStore(
["intersectionOf.rules", "hasValue.rules"],
[inmem, sem.store()])

sem.sparqgl (...
prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
prefix dcterms: <http://purl.org/dc/terms/>
prefix f: <http://linkedrecipes.org/schema/>
prefix ch: <http://marklogic.com/semantics/cheeses/>

select ?title ?ingredient WHERE
?recipe dcterms:title ?title ;
f:ingredient [
a ch:FreshGoatsCheese ;
rdfs:label ?ingredient]
}o.o., 01,101 ,rules)

To get results back from this query, you would need to have atriplestore of recipes, that aso
includes triples describing cheese made from goat’s milk.

7.2 Other Ways to Achieve Inference

Before going down the path of automatic inference, consider other ways to achieve inference that
may be more appropriate for your use case.

This section includes these topics:

¢ Using Paths

e Materialization

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 161

MarkLogic Server Inference

7.2.1 Using Paths

In many cases, you can do inference by rewriting your query. For example, you can do some
simple inference using unenumerated property paths. Property paths (as explained in “ Property
Path Expressions’ on page 118) enable a simple kind of inference.

You can find all the possible types of aresource, including supertypes of aresources, using RDFS
vocabulary and the “/” property path in a SPARQL query:

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#s>
PREFIX rdfs: <http://www.w3.0rg/2001/01/rdf-schema#>
SELECT ?type

{
}

The result will be al resources and their inferred types. The unenumerated property path
expression with the asterisk (*) will look for triples where the subject and object are connected by
rdf : type and followed by zero or more occurrences of rdfs: subclassof.

<http://example/thing> rdf:type/rdfs:subClassOf* 2?type

For example, you could use this query to find the products that are subClasses of “shirt”, at any
depth in the hierarchy:

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX ex: <http://example.com>

SELECT ?product
WHERE

{

?product rdf:type/rdfs:subClassOf* ex:Shirt ;
}

Or you could use a property path to find people who live in England:

PREFIX gn: <http://www.geonames.org/ontology/>
PREFIX ex: <http://www.example.org>

SELECT ?p

{

?p ex:livesIn/gn:parentFeature "England"

}

For more about property paths and how to use them with semantics, see “Property Path
Expressions’ on page 118.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 162

MarkLogic Server Inference

7.2.2 Materialization

A possible aternative to automatic inference at query time (backward-chaining inference) IS
materialization or forward-chaining inference, where you perform inference on parts of your data,
not as part of a query, and then store those inferred triples to be queried later. Materialization
works best for triple datathat isfairly static; performing inference with rules and ontol ogies that
do not change often.

This process of materialization at ingestion or update time may be time-consuming and will
require a significant amount of disk space for storage. You will need to write code or scripts to
handle transactions and security and to handle changes in data and ontol ogies.

Note: Thesetasksareall handled for you if you choose automatic inference.

Materialization can be very useful if you need very fast queries and you are prepared to do the
pre-processing work up front and use the extra disk space for the inferred triples. You may want
to use thistype of inference in situations where the data, rulesets, your ontologies, and some parts
of your data do not change very much.

You can mix and match; materialize some inferred triples that do not change very much (such as
ontology triples: for example, a customer isapersonisalegal entity), while using automatic
inference for triples that change or are added to more often. You can also use automatic inference
where inference has a broader scope (new-order-111 CONtaiNS 1ine-item-222, Which contains
product-333, which isrelated to accessory—444).

7.3 Performance Considerations

The key to making your SPARQL queriesrun fast is“partitioning” the data (by writing a
sufficiently rich query that the number of results returned is small). Backward-chaining inference
will run faster in the available memory if it is querying over fewer triples. To achieve this, make
your inference queries very selective by using arrrTer Or constraining the scope of the query
through cts: query (for example a collection-query).

7.3.1 Partial Materialization

You can do partial materialization of data, rulesets, and ontologies that you use frequently and
that do not change often. You can perform inference on parts of your data to materialize the
inferred triples and use these materialized triplesin your inference queries.

To materialize these triples, construct SPARQL queries for the rules that you want to use for
inference and run them on your data as part of your ingestion or update pipeline.

7.4 Using Inference with the REST API

When you execute a SPARQL query or update using the REST Client APl methods

POST: /v1l/graphs/sparql Of GET:/vl/graphs/spargl, yOU Can speCIfy rulesets thl’OUgh the request
parameters default-rulesets and rulesets. If you omit both of these parameters, the default
rulesets for the database are applied.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 163

MarkLogic Server Inference

After you Sef rdfs.rules and equivalentProperties.rules asthe default rulesets for the database,
you can perform this SPARQL query using REST from the Query Console:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqgy";

let Suri := "http://localhost:8000/vl1/graphs/spargl"

return

let $spargl :="'

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX prod: <http://example.com/products/>

PREFIX ex: <http://example.com/>

SELECT ?product
FROM <http://marklogic.com/semantics/products/inf-1>
WHERE

{

?product rdf:type ex:Shirt ;

ex:color "blue"

}

let Sresponse :=
xdmp:http-post (Suri,
<options xmlns="xdmp:http">
<authentication method="digest">
<usernames>admin</username>
<password>admin</password>
</authentications>
<headers>
<content-type>application/spargl-query</content-type>
<accept>application/spargl-results+xml</accepts>
</headers>
</options>
text {$sparql})
return
($response[1] /http:code, Sresponse[2] /node())

product
<http://example.com/products/1001>
<http://example.com/products/1002>
<http://example.com/products/1003>

Using the REST endpoint and cur1 (with the same default rulesets for the database), the same
guery would look like this:

curl --anyauth --user Admin:janem-3 -i -X POST \

-H "Content-type:application/x-www-form-urlencoded" \

-H "Accept:application/spargl-results+xml" \

--data-urlencode query='PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 164

MarkLogic Server Inference

syntax-ns#> \

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

PREFIX prod: <http://example.com/products/> \

PREFIX ex: <http://example.com/> \

SELECT ?product FROM <http://marklogic.com/semantics/products/inf-1> \
WHERE {?product rdf:type ex:Shirt ; ex:color "blue"}' \
http://localhost:8000/v1/graphs/sparqgl

To run this cur1 example, removethe “\” characters and make the command one line. See “Using
Semantics with the REST Client API” on page 189 and Querying Triples in the REST Application
Developer’s Guide for more information.

7.5 Summary of APIs Used for Inference

MarkLogic has APIs that can be used for semantic inference. Semantic APIs are available for use
as part of the actual inference query (specifying which triples to query and which rules to apply).
Database APIs can be used to choose rulesets to be used for inference by a particular database.
Management APIs can control the memory used by inference by either an appserver or a
taskserver.

e Semantic APIs

e Database Ruleset APls

* Management APIs

7.5.1 Semantic APIs

MarkLogic Semantic APIs can be used for managing triples for inference and for specifying
rulesets to be used with individual queries (or by default with databases). Stores are used to
identify the subset of triples to be evaluated by the query.

Semantic API Description

sem:store The query argument of sem:spargl accepts sem: store to indicate the
source of the triples to be evaluated as part of the query. If multiple
sem:store constructors are supplied, the triples from all the sources are
merged and queried together.

The sen:store Can contain one or more options along with acts: query
to restrict the scope of triplesto be evaluated as part of the sem: sparql
query. The sem:store parameter can also be used with

sem: sparqgl-update and sem: spargl-values.

sem:in-memory-store | RetUrns asem:store that represents the set of triples from the
sem:triple Values passed in as an argument. The default
rulesets configured on the current database have no effect on a
sem:store Created with sem: in-memory-store.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 165

MarkLogic Server Inference

Semantic API Description

sem:ruleset-store Returns anew sem: store that represents the set of triples derived by
applying the ruleset to the triples in sem: store in addition to the
original triples.

Note: Usethe sem: in-memory-store function with sem: spargl in preference to the
deprecated sem:spargl-triples function (avallable in MarkLogic 7). The
cts:query argument {0 sem: sparql has also been deprecated.

If you call sem:sparqgl-update With astore that is based on in-memory triples (that is, a store that
was created by sem: in-memory-store) You Will get an error because you cannot update triples that
arein memory and not on disk. Similarly, if you passin multiple storesto sem: sparql-update and
any of them is based on in-memory triples you will get an error.

7.5.2 Database Ruleset APIs
These Database Ruleset APIs are used to manage the rul esets associated with databases.

Ruleset API Description

admin:database-ruleset The ruleset element to be used for inference on a
database. One or more rulesets can be used for
inference. By default, no ruleset is configured.

admin:database-get-default-rulesets Returns the default ruleset(s) for a database.

admin:database-add-default-ruleset Adds aruleset to be used for inference on a
database. One or more rulesets can be used for
inference. By default, no ruleset is configured.

admin:database-delete-default-ruleset Deletes the default ruleset used by a database for
inference.

7.5.3 Management APIs

These Management APIs are used to manage memory sizing (default, minimum, and maximum)
allotted for inference.

Management APl (admin:) Description

admin:appserver-set-default-inference-size Specifies the default value for any
request’s inference size on this application
Server.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 166

MarkLogic Server

Inference

Management APl (admin:)

Description

admin:

appserver-get-default-inference-size

Returns the default amount of memory (in
megabytes) that can be used by sem:store
for inference by an application server.

admin:

taskserver-set-default-inference-size

Specifies the default value for any
request’s inference size on this task server.

admin:

taskserver-get-default-inference-size

Returns the default amount of memory (in
megabytes) that can be used by sem:store
for inference by atask server.

admin:

appserver-set-max-inference-size

Specifies the upper bound for any
request’s inference size. The inference
size is the maximum amount of memory
in megabytes allowed for sem:store
performing inference on this application
Server.

admin:

appserver-get-max-inference-size

Returns the maximum amount of memory
(in megabytes) that can be used by
sem:store fOr inference by an application
server.

admin:

taskserver-set-max-inference-size

Specifies the upper bound for any
request’s inference size. The inference
size is the maximum amount of memory
in megabytes allowed for sem:store
performing inference on thistask server.

admin:

taskserver-get-max-inference-size

Returns the maximum amount of memory
(in megabytes) that can be used by
sem: store fOr inference by atask server.

MarkLogic 10—May, 2019

Semantic Graph Developer’ s Guide—Page 167

MarkLogic Server Inference

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 168

MarkLogic Server SPARQL Update

8.0 SPARQL Update

The SPARQL 1.1 Update language is used to delete, insert, and update (del ete/insert) triples and
graphs. An update is actually an insert/pELETE Operation in the database.

SPARQL Update is apart of the SPARQL 1.1 suite of specifications at
http://www.w3.0rg/TR/2013/REC-sparql11-update-20130321. It is a separate language from the
SPARQL Query. SPARQL Update enables you to manipulate triples or sets of triples, while the
SPARQL query language enables you to search and query your triple data.

You can manage security level using SPARQL Update. All SPARQL queries over managed triples
are governed by the graph permissions. Triple documents will inherit those permissions at ingest.

Only triples managed by MarkLogic - triples whose document root iS sem: triples - are affected
by SPARQL Update. Managed triples are triples that have been loaded into the database using:

4 mlcp with - input file type RDF

. sem:rdf-load

e gsem:rdf-insert

e sem:spargl-update
Embedded triples are part of an XML or JSON document . If you want to create, delete, or update
embedded triples, use the appropriate document update functions. See “Unmanaged Triples’ on
page 73 for more information about triples embedded in documents. Unmanaged triples can also

be modified and updated with document management functions. See “Inserting, Deleting, and
Modifying Triples with XQuery and Server-Side JavaScript” on page 239 for details.

This section includes the following parts:

¢ Using SPARQL Update

* Graph Operations with SPARQL Update

¢ Graph-Level Security

¢ Data Operations with SPARQL Update

¢ Bindings for Variables

e Using SPARQL Update with Query Console

¢ Using SPARQL Update with XQuery or Server-Side JavaScript

* Using SPARQL Update with REST

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 169

http://www.w3.org/TR/2013/REC-sparql11-update-20130321

MarkLogic Server SPARQL Update

8.1 Using SPARQL Update

You can use SPARQL Update to insert and delete managed triplesin a Graph Store. There are two
kinds of SPARQL Update operations: graph data operations, and graph management operations.

There are several ways to use SPARQL Update:

e From Query Console - Select SPARQL Update as the Query Type from the drop-down
list. See “Using SPARQL Update with Query Console”’ on page 185.

» Using XQuery or JavaScript - Call SPARQL Update from XQuery (sem: spargl -update)
or Javascript (sem. sparglupdate). See*Using SPARQL Update with XQuery or Server-
Side JavaScript” on page 186.

o Through the REST API (GET :/v1l/graphs/spargl O POST: /vl /graphs/sparql). See“Usi ng
SPARQL Update with REST” on page 187.

SPARQL Update is used with managed triples. To modify “embedded” or unmanaged triples, use
the appropriate document update functions with XQuery or JavaScript. See “ Inserting, Deleting,
and Modifying Triples with XQuery and Server-Side JavaScript” on page 239.

A new role has been added for SPARQL Update - spargl-update-user . Users must have sparqi -
update-user Capabilities to tnserT, DELETE, OF DELETE/ INSERT triplesinto graphs. See Role-Based
Security Model in the Security Guide for details.

8.2 Graph Operations with SPARQL Update

You can manipulate RDF graphs using SPARQL Update. Graph management operations include
CREATE, DROP, COPY, MOVE, and App.

The SPARQL Update spec includes these commands and options for working with RDF graphs:

Command Options Description

CREATE SILENT, GRAPH IRIref Creates anew graph. Use GRAPH to name the
graph. SILENT creates the graph silently. This
means if the graph already exists, do not return an

error.
DROP SILENT, GRAPH IRIref, Drops a graph and its contents. Use GRAPH to
DEFAULT, NAMED, ALL name a graph to remove, DEFAULT to remove
the default graph
COPY SILENT, GRAPH, Copies the source graph into the destination
IRIref_from, DEFAULT, TO, | graph. Any content in the destination graph will
IRIref to be overwritten (deleted).

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 170

MarkLogic Server SPARQL Update

Command Options Description
MOVE SILENT, GRAPH, Moves the contents of the source graph into the
IRIref_from, DEFAULT, TO, | destination graph, and removes that content from
IRIref to the source graph. Any content in the destination
graph will be overwritten (deleted).
ADD SILENT, GRAPH, Add the contents of the source graph to the
IRIref_from, DEFAULT, TO, | destination graph. The ADD operation keeps the
IRIref to content of both the source graph and destination
graph intact.

Multiple statements separated by semicolons (;) in one SPARQL Update operation, run in the
same transaction, and can be included in the same request. It isimportant to note that each
statement can see the result of the previous statements.

For example, in this query, the cory operation can see the graph <test> created in the first
statement:

PREFIX dc: <http://purl.org/dc/elements/1.1/>

INSERT DATA

{

<http://example/book0> dc:title "A default book"

GRAPH <TEST> {<http://example/bookl> dc:title "A new book" }

GRAPH <TEST> {<http://example/book2> dc:title "A second book" }

GRAPH <TEST> {<http://example/book3> dc:title "A third book" }
}i

COPY <TEST> TO <BOOKS1>

Note: SPARQL Update operations return the empty sequence.

8.2.1 CREATE
This operation creates a graph. If the graph aready exists, an error will be returned unless the

stLENT Option is used. The contents of already existing graphs remain unchanged. If you do not
have permission to create the graph, an error isreturned (unless the strexT option is used).
The syntax for a create operation is:

CREATE (SILENT)? GRAPH IRIref

If the stenT Option is used, the operation will not return an error. The graru 1rRIref OPtion
specifiesthe IRI for the new graph.

For example:

CREATE GRAPH <http://marklogic.com/semantics/tutorial/update> ;

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 171

MarkLogic Server SPARQL Update

If the specified destination graph does not exist, the graph will be created. The creats operation
will create a graph with the permissions specified through sem: spargl -update, OF with the user’s
default permission if no permissions are specified.

8.2.2 DROP

The pror oOperation removes the specified graph or graphs from the Graph Store. The syntax for a
DROP Operation is:

DROP (SILENT)? GRAPH IRIref | DEFAULT |NAMED | ALL)

The craru keyword is used to remove a graph specified by triref . The peravrT keyword option
is used to remove the default graph from the Graph Store. The navep keyword is used to remove

all named graphs from the Graph Store. All graphs are removed from the Graph Store with the ar.,
keyword; thisis the same as resetting the Graph store.

For example:
DROP SILENT GRAPH <http://marklogic.com/semantics/tutorial/intro> ;

After successful completion of this operation, the specified graphs are no longer available for
further graph update operations. This operation returns an error if the specified named graph does
not exist. If strenT is present, the result of the operation will always be success.

Note: If the default graph of the Graph Store is dropped, MarkLogic creates a new,
empty default graph with the user’ s default permissions.

8.2.3 COPY

The copy operation is used for inserting all of the triples from a source graph into a destination
graph. Triples from the source graph are not affected, but triplesin the destination graph, if any
exist, are removed before the new triples are inserted.

The syntax for a cory operation is:

COPY (SILENT)? ((GRAPH)? IRIref from | DEFAULT) TO ((GRAPH)°?
IRIref to | DEFAULT)

The copy Operation copies permissions from a source graph to the destination graph. Since source
graph has the permission info, $perm parameter in sem: sparqgl-update doesnot apply in acory
operation.

For example:

COPY <http://marklogic.com/semantics/tutorial/intro> TO
<http://marklogic.com/semantics/tutorial/start> ;

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 172

MarkLogic Server SPARQL Update

If the destination graph does not exist, it will be created. The operation returns an error if the
source graph does not exist. If the stuenT Option is used, the result of the operation will always be
success.

The copv operation is similar to dropping a graph and then inserting a new graph:

DROP SILENT (GRAPH IRIref to | DEFAULT); INSERT { (GRAPH IRIref to)?
{ ?s ?p 20 } } WHERE { (GRAPH IRIref from)? { ?s ?p 20 } }

If copy iSused to copy agraph onto itself, no operation is performed and the datais |eft asit was.

If you want the update to fail when the destination graph does not already exist, the existing-
graph OPtiON iN sen: sparql-update Needsto be specified. If you copy into a new graph, that new
graph takes the permissions of the graph that you copied from. If you copy into an existing graph,
the permssions of that graph do not change.

8.2.4 MOVE

Thewove operation is used for moving all triples from a source graph into a destination graph. The
syntax for amove operation is:

MOVE (SILENT)? ((GRAPH)? IRIref from | DEFAULT) TO ((GRAPH)?
IRIref to | DEFAULT)

The source graph is removed after insertion. Triplesin the destination graph, if any exist, are
removed before destination triples are inserted.

For example:

MOVE <http://marklogic.com/semantics/tutorial/queries> TO
<http://marklogic.com/semantics/tutorialSearches> ;

The graph <http://marklogic.com/semantics/queries> isremoved after its triples have been
inserted intO <http://marklogic.com/semantics/searchess. ANy triplesin the graph
<http://marklogic.com/semantics/searches> dAlé deleted before the other tri pIeS are inserted.

Note: If move isused to move agraph onto itself, no operation will be performed and the
datawill be left asit was.

If the destination graph does not exist, it will be created. The vove operation returns an error if the
source graph does not exist. If the stLenT option is used, the result of the operation will always be
success.

The vove operation issimilar to :

DROP SILENT (GRAPH IRIref to | DEFAULT); INSERT { (GRAPH IRIref to)?
{ ?s ?p 20 } } WHERE { (GRAPH IRIref from)? { ?s ?p 2?0 } };
DROP (GRAPH IRIref from | DEFAULT)

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 173

MarkLogic Server SPARQL Update

The move operation moves permissions from source graph to destination graph. Since source
graph has the permission info, the sperm parameter in sem: sparql-update does not apply to the
operation.

If you want the update to fail when the destination graph does not already exist, the existing-
graph OPtioN in sem: sparql -update Needs to be specified. If you copy into a new graph, that new
graph takes the permissions of the graph that you copied from. If you copy into an existing graph,
the permssions of that graph do not change.

8.2.5 ADD

The app operation isused for inserting all triples from a source graph into a destination graph. The
triples from the source graph are not affected, and existing triples from the destination graph, if
any exist, are kept intact.

The syntax for an app operation is:

ADD (SILENT)? ((GRAPH)? IRIref from | DEFAULT) TO ((GRAPH)?
IRIref to | DEFAULT)

For example:

ADD <http://marklogic.com/semantics/tutorial/queries> TO
<http://marklogic.com/semantics/searches> ;

If app is used to add a graph onto itself, no operation will be performed and the datawill be left as
it was. If the destination graph does not exist, it will be created. The app operation returns an error
if the source graph does not exist. If the str.enT Option is used, the result of the operation will
always be success.

If you are adding triples into a new graph, you can set the permissions of the new graph through
sem:spargl -update. |f NO permissions are specified, your default graph permissions will be
applied to the graph.

The app operation is equivaent to:

INSERT { (GRAPH IRIref to)? { ?s ?p 2?0 } } WHERE
{ (GRAPH IRIref from)? { ?s ?p 20 } }

If you want the update to fail when the destination graph does not already exist, the existing-
graph OPtioN iN sem: sparql-update Needsto be specified. If you copy into a new graph, that new
graph takes the permissions of the graph that you copied from. If you copy into an existing graph,
the permssions of that graph do not change.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 174

MarkLogic Server SPARQL Update

8.3 Graph-Level Security

You can manage security at the graph level using SPARQL Update. Graph-level security means
that only users with arole corresponding to the permissions set on a graph can view a graph,
change graph content, or create anew graph. Asauser, you can only see the triples and graphs for
which you have read permissions (viaarole). See Role-Based Security Model in the Security Guide.

By default, graphs are created with the default permissions of the user creating the graph. If you
specify graph permissions as an argument to the sem: sparqgl-update call, graph operations and
graph management operations that result in the creation of a new graph will use those specified
permissions. Thisistrue whether the graph is created explicitly using creaTe craen, or implicitly
by inserting or copying triples (1nserT Or agraph operation to copy, move, or add) into a graph
that does not already exist.

If you passin permissions with sem: sparql-update ON an operation that inserts triplesinto an
existing graph, the permissions you passed in are ignored. If you're copying a graph from one
graph to another, the permissions are ignored in favor of “transferring” the data and the
permissions from one graph to another.

Note: Graph-level security isenforced for all semantic operations using SPARQL or
SPARQL Update, via XQuery or JavaScript, and includes semantic REST
functions.

Your default user permissions are set by the MarkL ogic administrator. These are the same default
permissions for document creation that are discussed in Default Permissions in the Security Guide.

To see what permissions are currently on agraph, Use sem: graph-get-permissions:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "MarkLogic/semantics.xqy";

sem:graph-get-permissions (
sem:iri ("MyGraph"))

=>

<sec:permission xmlns:sec="http://marklogic.com/xdmp/security">
<sec:capability>read</sec:capability>
<sec:role-1d>5995163769635647336</sec:role-id>
</sec:permission>

<sec:permission xmlns:sec="http://marklogic.com/xdmp/security">
<sec:capability>update</sec:capability>
<sec:role-1d>5995163769635647336</sec:role-id>
</sec:permission>

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 175

MarkLogic Server SPARQL Update

Thisreturns the two capabilities set on in this graph: read and update. If you have the role with the
ID s995163769635647336, YOU Will be able to read information in this graph, you will be able to
see the graph and the triplesin the graph. If you have the role with the ID 5995163769635647335,
you will be able to update the graph. You must have read capability for the graph to use

sem:graph-get-permissions.

Note: In anew database, the graph document for the default graph does not exist yet.
Once you insert triples into this database, the default graph is created.

To set permissions on agraph, USE sem:graph-set-permissions:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "MarkLogic/semantics.xqy";

declare namespace sec = "http://marklogic.com/xdmp/security";

sem:graph-set-permissions (sem:iri ("MyGraph"),
(xdmp :permission ("spargl-update-role", "update"))

Thiswill set the permissions on the graph and the triplesin the graph. If the specified IRI does not
exist, the graph will be created. You must have update permissions for the graph to set the
permissions.

To add permissions to agraph, USE sem:graph-add-permissions

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "MarkLogic/semantics.xqy";

declare namespace sec = "http://marklogic.com/xdmp/security";

sem:graph-add-permissions (sem:iri ("MyGraph") ,
(xdmp :permission ("spargl-read-role", "read"),))

Thiswill add read permissions for the sparql-read-role to the graph and to the triplesin the
graph. If the graph named by the IRI does not exist, the graph will be automatically created. You
must have update permissions for the graph to add permissions to an existing graph.

Note: A graphthat iscreated by anon-admin user (that is, by any user who does not have

the admin role) must have at least one update permission for the graph, otherwise
the creation of the graph will return an xove-MusTaAVEUPDATE €EXCEpLiON.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 176

MarkLogic Server

To remove permissions, USE sem:graph-remove-permissions.

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "MarkLogic/semantics.xqy";

SPARQL Update

declare namespace sec = "http://marklogic.com/xdmp/security";

sem:graph-remove-permissions (sem:iri ("MyGraph") ,
(xdmp :permission ("spargl-read-role",

"read"),))

This removes the read permission on “MyGraph” for sparql-read-role. YOU must have update
permissions for the graph to remove permissions. If the graph does not exist, thiswill result in an

error.

8.4 Data Operations with SPARQL Update

These data operations are part of SPARQL Update: 1NSERT DATA, DELETE DATA, DELETE/INSERT,
roap, and crear. Data operations involve triple data contained in graphs.

SPARQL Update includes these commands and options for working with datain RDF graphs:

Command

Options

Description

INSERT DATA

QuadData, WITH, GRAPH

Inserts triples into a graph.
If no graph is specified, the default
graph will be used.

DELETE DATA

QuadData

Deletes triples from a graph, as
specified by QuadData. If no graph
is specified, deletesfrom all in-
scope graphs.

DELETE..INSERT

WHERE

WITH, IRIref, USING NAMED,
WHERE, DELETE, INSERT

Remove or add triples from/to the
Graph Store based on bindings for
aquery pattern specified in awuere
clause.

DELETE WHERE

WITH, IRIref, USING NAMED,
WHERE, DELETE, INSERT

Remove triples from the Graph
Store based on bindings for a
query pattern specified in a waere
clause. DELETE WHERE IS
DELETE..INSERT WHERE With a
missing nserT (Whichis
optional).

MarkLogic 10—May, 2019

Semantic Graph Developer’s Guide—Page 177

MarkLogic Server SPARQL Update

Command Options Description

INSERT WHERE WITH, IRIref, USING, NAMED, Add triplesto the Graph Store
WHERE, DELETE, INSERT based on bindings for a query
pattern specified in awuere clause.
INSERT WHERE iS DELETE. . INSERT
wHERE With a missing peLeTE
(which is optional).

CLEAR SILENT, (GRAPH IRIref | Removes all thetriplesin the
DEFAULT | NAMED | ALL) specified graph.

You can run multiple statements separated by semicolons (;) in one SPARQL Update operation in
the same transaction, and you can include them in the same request. It is important to note that
each statement can see the result of the previous statements.

Note: SPARQL Update operations return the empty sequence.

Other waysto load triplesinto MarkLogic: micp, sem:rdf-10ad, O the HTTP REST endpoints.
See “Loading Tripleswith micp” on page 44, “sem:rdf-load” on page 53, “Addressing the Graph
Store” on page 57, and “Loading Semantic Triples’ on page 37. For bulk loading, micp isthe
preferred method.

8.4.1 INSERT DATA
inserT paTa adds triples specified in the request into a graph. The syntax for 1nserT pata iS:

INSERT DATA QuadData
(GRAPH VarOrIri) ? {TriplesTemplates}

The guadpata parameter is made up of sets of triple patterns (rripiesrempiates), which can
optionally be wrapped in a craru block.

Note: All of the managed triples from atriples document will go into the default graph
unless you specify the destination graph when inserting them using SPARQL
Update.

If you are inserting triples into a new graph, create the graph with the permissions you want,
specified through sem: spargl-update. If you do not specify permissions on the graph, the graph
will be created with your default permissions. To manage the permissions of the graph, use
sem:graph-add-permissions. See “ Graph-Level Security” on page 175 for more about
permissions and security.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 178

MarkLogic Server SPARQL Update

For example, this update uses sem:graph-add-permissions to add update permissions to the
sparqgl -update-role tO update for <My Graphs>, and inserts three triplesinto that graph:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqgy";

sem:graph-add-permissions (sem:iri ("MyGraph") ,
xdmp :permission ("spargl-update-role", "update")) ;
sem:sparqgl-update ('

PREFIX exp: <http://example.org/marklogic/peoples>
PREFIX pre: <http://example.org/marklogic/predicates>

INSERT DATA ({
GRAPH <MyGraph>{
exp:John Smith pre:livesIn "London"
exp:Jane Smith pre:livesIn "London"
exp:Jack Smith pre:livesIn "Glasgow"

H
")

If no graph is described in guadpata, the default graph is assumed
(http ://marklogic. com/semantics#default—graph). If dataisinserted into agraph that does not
exist in the Graph Store, a new graph is created for the data with the user’s permissions.

This example uses 1nserT DaTa to insert atriple into adefault graph and then insert three triples
into a graph named “BOOKS".

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqy";

sem: spargl-update ('

PREFIX dc: <http://marklogic.com/dc/elements/1.1/>

INSERT DATA

{
<http://example/book0> dc:title "A default book"
GRAPH <BOOKS> {<http://example/bookl> dc:title "A new book" }
GRAPH <BOOKS> {<http://example/book2> dc:title "A second book" }
GRAPH <BOOKS> {<http://example/book3> dc:title "A third book" }

") ;

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 179

MarkLogic Server SPARQL Update

This example will delete any book titled “A new book”in the graph “BOOKS" and insert thetitle
“Inside MarkLogic Server” in its place:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqgy";

sem:spargl-update ('

PREFIX dc: <http://marklogic.com/dc/elements/1.1/>
WITH <BOOKS>

DELETE {?b dc:title "A new book"}

INSERT {?b dc:title "Inside MarkLogic Server" }
WHERE {

?b dc:title "A new book".

JA)

The wrtu keyword means to use this graph (<sookss) in every clause.

8.4.2 DELETE DATA

ThepeLeTE DATA Operation removes some triples specified in the request, if the respective graphs
in the Graph Store contain them. The syntax for peLeTE DpaTa iS:

DELETE DATA QuadData

The ouadpata parameter specifies the triples to be removed. If no graph is described in guadpata,
then the default graph is assumed.

Any MarkL ogic-managed triple that matches subject, predicate, and object on any of the triples
specified in guadpata Will be deleted. If a graph is specified in guadpata, the scope of deletion is
limited to the triplesin that graph; otherwise, the scope of deletion islimited to thetriplesin
default graph.

This example deletes triples that match “true” and “ Retail/\Wholesale” from the
<http://marklogic.com/semantics/COMPANIES100A/ > graph.

PREFIX demov: <http:demo/verb#s>
PREFIX demor: <http:demo/resource#>

DELETE DATA

{

GRAPH <http://marklogic.com/semantics/COMPANIES100A/>

{

demor : COMPANY100 demor:listed "true"
demor : COMPANY100 demov:industry "Retail/Wholesale"

}
}

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 180

MarkLogic Server SPARQL Update

Anerror will bethrown if apeLete paTa operation includes variables or blank nodes. The deletion
of non-existing triples has no effect. Any triples specified in ouadpata that do not exist in the
Graph Store are ignored.

8.4.3 DELETE..INSERT WHERE

ThepereTE. . INsERT wHERE Operation isused to remove and/or add triples from/to the Graph Store
based on bindings for a query pattern specified in a waere clause. YOU Can USE DELETE. . INSERT
wHeERE tO Specify a pattern to match against and then delete and/or insert triples.

See http://www.w3.0rg/TR/sparglll-update/#updateLanguage for details.

To delete triples according to a specific pattern, use the peLeTE. . INsERT WHERE CONStruct without
the optional 1nserT clause. If you do not specify agraph, you will insert into or delete triples from
the default graph (http ://marklogic. com/semantics#default—graph), also called the unnamed
graph. The syntax for pELETE . . INSERT WHERE IS:

(WITH IRIref)?

((DeleteClause InsertClause?) | InsertClause)
(USING (NAMED)? IRIref)*

WHERE GroupGraphPattern

DeleteClause ::= DELETE QuadPattern
InsertClause ::= INSERT QuadPattern

This operation identifies data using the wuere clause, which is used to determine matching
sequences of bindings for a set of variables. The bindings for each solution are then substituted
into the peLeTE template to remove triples, and then in the inserT template to create new triples.

If an operation triesto insert into agraph that does not exist, that graph will be created. peLeTe and
INSERT Fun in the same transaction, and obey MarkL ogic security rules.

In this example each triple containing “Healthcare/Life Sciences’ will be deleted and two triples
and two triples will be inserted, one for “Healthcare” and a second one for “Life Sciences’.

PREFIX demov: <http:demo/verb#s>

WITH <http://marklogic.com/semantics/COMPANIES100A/>
DELETE

{

?company demov:industry "Healthcare/Life Sciences"

}

INSERT

{

?company demov:industry "Healthcare"
?company demov:industry "Life Sciences"

}

WHERE {
?company demov:industry "Healthcare/Life Sciences" .}

Note that the pereTE and 1nserT are independent of each other.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 181

http://www.w3.org/TR/sparql11-update/#updateLanguage

MarkLogic Server SPARQL Update

8.4.4 DELETE WHERE

ThepereTe waere Operation isused to remove triples from the Graph Store based on bindings for
aquery pattern specified in awnere Clause. DELETE WHERE ISDELETE. . INSERT WHERE With amissing
1nserT, Whichisoptional. You can usepereTE whERE tO Specify a pattern to match against and then
delete the matching triples.

To delete triples according to a specific pattern, use the pereTe waere construct without the
optional 1nserT clause. If you do not specify agraph, you will delete triples from the default graph
(http ://marklogic. com/semantics#default—graph), also called the unnamed graph

The syntax for pELETE WHERE IS:

(WITH IRIref)?

((DeleteClause InsertClause?) | InsertClause)
(USING (NAMED)? IRIref)*

WHERE GroupGraphPattern

DeleteClause ::= DELETE QuadPattern
InsertClause ::= INSERT QuadPattern

Thisexample of pereTE waERE deletes the sales data for any companies with less than 100
employees from the graph <nttp://marklogic.com/semantics/COMPANTES100A/ >

PREFIX demov: <http:demo/verb#s>
PREFIX vcard: <http:www.w3c.org/2006/vcard/ns#>

WITH <http://marklogic.com/semantics/COMPANIES100A/>
DELETE

{

?company demov:sales ?sales .

}

WHERE {
?company a vcard:0Organization .
?company demov:employees ?employees .

}

FILTER (?employees < 100)

8.4.5 INSERT WHERE

The 1nserT wrErE Operation isused to add triples to the Graph Store based on bindings for a
query pattern specified in awaere Clause. INSERT WHERE ISDELETE. . INSERT WHERE With amissing
peLETE, Which isoptional.You can use inserT whERE tO Specify apattern to match against and then
insert triples based on that match.

To insert triples according to a specific pattern, use the tnserT waere construct without the

optional pereTE clause. If you do not specify agraph, you will insert triples into the default graph
(http ://marklogic. com/semantics#default—graph), also called the unnamed graph

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 182

MarkLogic Server SPARQL Update

The syntax for INSERT WHERE IS

(WITH IRIref)?

((DeleteClause InsertClause?) | InsertClause)
(USING (NAMED)? IRIref)*

WHERE GroupGraphPattern

DeleteClause ::= DELETE QuadPattern
InsertClause ::= INSERT QuadPattern

This example of 1nserT wuere finds each company in New York, USA and adds state="nv" and

deliveryRegion="East Coast".

PREFIX demov: <http:demo/verb#s>
PREFIX vcard: <http:www.w3c.org/2006/vcard/ns#>

WITH <http://marklogic.com/semantics/sb/COMPANIES100A/>
INSERT

{

?company demov:State "NY"
?company demov:deliveryRegion "East Coast"

}

WHERE {
?company a vcard:0Organization .
?company vcard:hasAddress [
vcard:region "New York"
vcard:country-name "USA"]

8.4.6 CLEAR
The cLear operation removes al of the triples in the specified graph(s). The syntax for crear is:

CLEAR (SILENT)? (GRAPH IRIref | DEFAULT | NAMED | ALL)

Thecraru 1rIrer Option isused to remove al triples from the graph specified by craru 1rIref.
The peraurT Option isused to remove al the triples from the default graph of the Graph Store. The
namep Option is used to remove al of thetriplesin al of the named graphs of the Graph Store, and
the aLL option is used to remove al triples from all graphs of the Graph Store.

For example:

CLEAR GRAPH <http://marklogic.com/semantics/COMPANIES100A/> ;

This operation removes all of the triples from the graph. The graph and its metadata (such as
permissions) will be kept after the graph is cleared. The cuear will fail if the specified graph does
not exist. If the strexT Option is used, the operation will not return an error.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 183

MarkLogic Server SPARQL Update

8.5 Bindings for Variables

Binding variables can be used as valuesin 1nsert paTa, and peLeTE DATA, and are passed in as
arguments {0 sem: sparqgl-update.

To create bindings for variables to be used with SPARQL Update, you create an XQuery or
JavaScript function to map the bindings and then pass in the bindings as part of a call to

sem: sparqgl-update.

In this example we create a function, assign the variables, build a set of bindings, and then use the
bindings to insert repetitive data into the triple store using 1nserT DATA:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqy";

declare function
local:add-player-triples($id as xs:integer,
Slastname as xs:string,
Sfirstname as xs:string,
Sposition as xs:string,
Steam as xs:string,
Snumber as xs:integer
)
{
let Squery := '
PREFIX bb: <http://marklogic.com/baseball/players/>
PREFIX xs: <http://www.w3.org/2001/XMLSchema#>

INSERT DATA

{

GRAPH <PlayerGraph>

{

?playertoken bb:playerid ?id
?playertoken bb:lastname ?lastname
?playertoken bb:firstname ?firstname
?playertoken bb:position ?position
?playertoken bb:number ?number
?playertoken bb:team ?team

}
}

let Splayertoken := fn:concat ("bb:", $id)

let Splayer-map := map:entry("id", s$id)

let Sput := map:put ($Splayer-map, "playertoken", S$playertoken)
let S$put := map:put ($player-map, "lastname", $lastname)

let Sput := map:put ($player-map, "firstname", $firstname)

let S$put := map:put ($player-map, "position", $position)

let Sput := map:put ($Splayer-map, "number", S$number)

let Sput := map:put ($player-map, "team", S$team)

return sem:spargl-update (supdate, S$player-map)

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 184

MarkLogic Server SPARQL Update

}i

local:add-player-triples (417, "Doolittle", "Sean", "pitcher", 62,
"Athletics"),

local:add-player-triples (215, "Abad", "Fernando", "pitcher", 56,
"Athletics"),

local:add-player-triples (109, "Kazmir", "Scott", "pitcher", 26,

"Athletics"),

The order of the variables does not matter because of the mapping.

This same pattern can be used with iviT and orrser clauses. Bindings for variables can be used
with SPARQL Update (sem: sparql—update), SPARQL (sem: sparql), and SPARQL values
(sem:sparql-values). See “Using Bindings for Variables’ on page 135 for an example using
bindings for variables with SPARQL using rimrt and orrseT clauses.

8.6 Using SPARQL Update with Query Console
You can use SPARQL Update with Query Console. It islisted as a Query type in the Query

Console drop-down menu.

& Query1 ||+

Database: Documents ¥ | Explore Server: | App-Services o Query Type: SPARQL Query i v
JavaScript

PREFIX demov: <http:demo/verb#> SPARQL Query

WITH <http://marklogic.com/semantics/COMPANTES100A/ > SQL

DELETE XQuery

?company demov:industry "Healthcare/Life Sciences”
INSERT

?company demov:industry "Healthcare"
?company demov:industry "Life Sciences™

WHERE
?company demov:industry "Healthcare/Life Sciences™

Run \:) Result | Auto | Raw £ Profile Explorer

Query Console highlights SPARQL Update keywords as you create your query. You can run your
SPARQL Update queriesin the Query Console the same way you run SPARQL Queries.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 185

MarkLogic Server SPARQL Update

8.7 Using SPARQL Update with XQuery or Server-Side JavaScript

You can execute SPARQL Updaleﬁ With sem: spargl-update in XQuery and sem. sparqlupdate IN
Javascript. For details about the function signatures and descriptions, see the Semantics
documentation under XQuery Library Modules in the MarkLogic XQuery and XS_T Function
Reference and in the MarkLogic Server-Sde JavaScript Function Reference.

Note: Although some of the semantics functions are built-in, others are not. We therefore
recommend that you import the Semantics API library into every XQuery module
or JavaScript module that uses the Semantics API.

Using XQuery, the import statement is:

import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqgy";

For Javascript, the import statement is:
var sem = require ("/MarkLogic/semantics.xqgy") ;

Hereisacomplex query using SPARQL Update with XQuery. The query selects arandom player
from the Athletics baseball team, formerly with the Twins, and deletes that player the Athletics:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqy";

let sSquery := '

PREFIX bb: <http://marklogic.com/baseball/players#>
PREFIX bbr: <http://marklogic.com/baseball/rules#s>
PREFIX xs: <http://www.w3.org/2001/XMLSchema#>

WITH <Athletics>
DELETE

{

?s ?p 20 .

}

INSERT

{

?s ?p bbr:Twins .

}

WHERE

{

?s ?p 20 .

SELECT (max(?sl) as ?key) (count(?sl) as ?inner numbers)
WHERE

{

?sl bb:number 201 .

}
}

FILTER (?s = ?key)

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 186

http://pubs.marklogic.com:8011/8.0/sem/semantics

MarkLogic Server SPARQL Update

FILTER (?p = bb:team)

}

return sem:spargl-update ($query)

8.8 Using SPARQL Update with REST

SPARQL Update can be used with REST in client applications to manage graphs and triple data
viathe SPARQL endpoint. See “SPARQL Update with the REST Client API” on page 211 for
information about using SPARQL Update with REST.

For more information about using SPARQL with Node.js client applications, see Working With
Semantic Data in the Node.js Application Developer’s Guide. For semantic client applications
using Java, you can find the Java Client API on GitHub at http://github.com/marklogic/java-client-api
or get it from the central Maven repository.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 187

https://github.com/marklogic/java-client-api

MarkLogic Server SPARQL Update

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 188

MarkLogic Server Using Semantics with the REST Client API

9.0 Using Semantics with the REST Client API

This section describes how to use MarkL ogic Semantics with the REST Client API to view, query,
and modify triples and graphs using REST (Representational State Transfer) over HTTP. The REST
Client API enables a client application to perform SPARQL queries and updates. A MarkLogic
SPARQL endpoint (/v1/graphs/sparql) isavailable to use with SPARQL query and SPARQL
Update to access triplesin MarkLogic. The /v1/graphs/sparql Serviceisacompliant SPARQL
endpoint, as defined by the SPARQL 1.1 Protocol: http://www.w3.0rg/TR/2013/REC-spargl11-
protocol-20130321/#terminology. |f your client requires configuration of a SPARQL Update or
Query endpoint, use this service.

A SPARQL endpoint is aweb service that implements the SPARQL protocol and can respond to
SPARQL queries. RDF data published to the web using a SPARQL endpoint can be queried to
answer a specific question, instead of downloading all of the data. If you have an application that
does standard queries and updates over a SPARQL endpoint, you can point the application to this
endpoint.

The SPARQL endpoint URL is addressed as:

http://host:port/vl/graphs/sparql

The graph endpoint is used for CRUD procedures on graphs; creating, reading, updating, and
deleting graphs. The URL is addressed as:

http://host:port/v1l/graphs
The tnings endpoint is used for viewing content in the database. The URL is addressed as:
http://host :port/vl/graphs/things

The following table shows the supported operations available for Semantics (viewing, querying,
inserting, or deleting content):

Operation Method Description
/v1/graphs/sparql
Retrieve GET Perform a SPARQL query on the database.
Create/Retrieve | POST Perform a SPARQL query or SPARQL Update on one or more
graphs. (These two operations are mutually exclusive.)
/v1/graphs
Retrieve GET Retrieve the contents or permissions metadata of a graph, or a

list of available graph URIs.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 189

http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/#terminology
http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/#terminology

MarkLogic Server Using Semantics with the REST Client API

Operation Method Description
Merge POST Merge N-quads into the triple store, merge other types of
triples, or new permissionsinto a named graph or the default
graph.
Create/Replace | PUT Create or replace quads in the triple store; or create or replace

other kinds of triplesin anamed graph or the default graph; or
replace the permissions on a named graph or the default graph.

Return HEAD Returns the same headers as an equivalent GET on the /graphs
service.

Delete DELETE | Removetriplesin anamed graph or the default graph, or
remove all graphs from the triple store.

/v1l/graphs/things

Retrieve GET Retrieve alist of all graph nodesin the database, or a specified

set of nodes.

For more information about usage and parameters for a service, see the REST Client APIs for
Semantics.

This chapter includes the following sections:

e Assumptions

* Specifying Parameters

e Supported Operations for the REST Client API

e Serialization

e Examples Using curl and REST

* Response Output Formats

* SPARQL Query with the REST Client API

¢ SPARQL Update with the REST Client API

e Listing Graph Names with the REST Client API

e Exploring Triples with the REST Client API

¢ Managing Graph Permissions

To use the SPARQL endpoint or graphs endpoints with SPARQL query, you must have the rest-
reader privilege, along with any security requirements for your environment. To use SPARQL
Update with the SPARQL endpoint or graphs endpoints, you must have the rest-writer privilege.
See Controlling Access to Documents Created with the REST AP in the REST Application Developer’s
Guide for more information about permissions.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 190

/REST/client/semantics
/REST/client/semantics

MarkLogic Server Using Semantics with the REST Client API

9.1 Assumptions
To follow aong with the examples later in this section the following assumptions are made:

* You have accessto the GovTrack dataset. For details, see “Preparing to Run the
Examples’ on page 129. If you do not have access to the GovTrack data or prefer to use
your own data, you can modify queriesto fit your data.

* You have cur1 or an equivalent command-line tool for issuing HTTP requestsisinstalled.
Note: Though the examplesrely on cur1, you can use any tool capable of sending HTTP

requests. If you are not familiar with cur1 or do not have cur1 on your system, see
the Introduction to the curl Tool in the REST Application Developer’s Guide.

9.2 Specifying Parameters

A variety of parameters can be used with REST services. The complete list can be found in the
REST Client APIs, for instance rost: /v1/graphs/sparqgl. This section describes a selection of
those parameters that can be used with SPARQL query and/or SPARQL Update.

For the parameters, “*” and “?” both imply that a parameter is optional. “*” meansthat you can
use a parameter 0 or more times and “?” means that you can use a parameter O or 1 times.

9.2.1 SPARQL Query Parameters

Some of the parameters supported for SPARQL query on the SPARQL endpoint, using
POST:/vl/graphs/spargl OF GET: /vl/graphs/sparql, include:

* gquery - SPARQL query to execute

* default-graph-uri* - The URI of the graph or graphs to use as the default graphsin the
query operatl on. Thisis addressed as http://host:port/vl/graphs/sparqgl?default-
graph-uri=<default-graph-uri*>

* named-graph-uri* - The URI of the graph or graphsto include in the query operation.
Thisis addressed as http://host:port/vl/graphs/spargl?named-graph-uri=<named-
graph-uri*>
The*"+” indicatesthat one or more default-graph-uri Of named-graph-uri parameterscan
be specified. The named-graph-uri parameter isused with rrom namep and crapu in
gueriesto specify the IRI(S) to be substituted for a name within particular kinds of queries.
Y ou can have one or More named-graph-uri Specified as part of a query.

* database? - The database on which to perform the query.
* base? - Theinitial base IRI for the query.

* bind:{name}* - A binding name and value. This format assumes that the type of the bind
variableisan IRI.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 191

MarkLogic Server Using Semantics with the REST Client API

* bind:{name}:{type}* - A binding name, type, and value. This parameter accepts an XSD
type, for example “string”, “date” or “unsignedLong”.

* bind:{name}e{lang}* - A binding name, language tag, and value. Use this pattern to bind
to language-tagged strings.

e txid? - Thetransaction identifier of the multi-statement transaction in which to service
thisrequest. Use the /transactions Service to create and manage multi-statement
transactions.

* start? - Theindex of thefirst result to return. Results are numbered beginning with 1. The
default is 1.

* pageLength? - The maximum number of resultsto return in this request.

These optional search query parameters can be used to constrain which documents will be
searched with the SPARQL query:

* g2 - A string query.

* structuredouery? - A structured search query string, a serialized representation of a
search:query element.

* options? - Thename of query options.

If you do not specify a graph name with a query, the unton of all graphswill be queried. If you
Specify default-graph-uri, ONE OF more graph names that you specify will be queried (thisis not
the “default” graph that contains the unnamed triples). You can also query
http://marklogic.com/semantics#default-graph, Where unnamed tri ples are stored.

Any valid IRI can be used for these graph names (for example, /my graph/ or
http://www.example.com/rdf-graph- store/). The default -graph-uri isused to SpECIfy oneor
more default graphs to query as part of the operation, and the named-graph-uri can specify one or
more additional graphsto use in the operation. If no dataset is defined, the dataset will include all
triples (the unzon of al graphs).

If you specify a dataset in both the request parameters and the query, the dataset defined with
named-graph-uri OF default-graph-uri takes precedence. When you specify more than one
default-graph-uri O named-graph-uri in aquery viathe REST Client API, the format will be
http://host:port/vl/graphs/spargl?named-graph-uri=<named-graph-uri*> for each graph
named in the query.

For example, thisisasimple REST request to send the SPARQL query intheviiis.sparql file
and return the results as JSON:

curl --anyauth --user admin:admin -i -X POST \
--data-binary @./bills.sparqgl \

-H "Content-type: application/spargl-query" \
-H "Accept: application/sparqgl-results+json" \
http://localhost:8000/v1/graphs/spargl

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 192

MarkLogic Server Using Semantics with the REST Client API

=>
HTTP/1.1 200 OK

Content-type: application/spargl-results+json; charset=UTF-8
Server: MarkLogic

Content-Length: 1268

Connection: Keep-Alive

Keep-Alive: timeout=5

{"head": {"vars": ["bill", "title"]},
"results":{"bindings": [

{"bill":{"type":"uri",

"value":"http://www.rdfabout.com/rdf/usgov/congress/108/
bills/h1171"},

"title":{"type":"literal", "value":"H.R. 108/1171: Iris Scan
Security Act of 2003",

"datatype":"http://www.w3.0rg/2001/XMLSchema#string"}},

{"bill":{"type":"uri",

"value":"http://www.rdfabout.com/rdf/usgov/congress/108/
bills/h1314"},

"title":{"type":"literal", "value":"H.R. 108/1314: Screening
Mammography Act of 2003",

"datatype":"http://www.w3.0rg/2001/XMLSchema#string"}},

{"bill":{"type":"uri",

"value":"http://www.rdfabout.com/rdf/usgov/congress/108/
bills/h1384"},

"title":{"type":"literal", "value":"H.R. 108/1384: To amend the
Railroad Retirement Act of 1974 to eliminate a limitation
on benefits.",

"datatype":"http://www.w3.0rg/2001/XMLSchema#string"}},

{"bill":{"type":"uri",

"value":"http://www.rdfabout.com/rdf/usgov/congress/108/
bills/h1418"},

"title":{"type":"literal", "value":"H.R. 108/1418: Veterans'
Housing Equity Act",

"datatype":"http://www.w3.0rg/2001/XMLSchema#string"}},

P11}
Note: Inthe command line example above, long lines have been broken into multiple
lines using the UNIX line continuation character '\' and extraline breaks have been

added for readability. Extraline breaks for readability have been added in the
results.

9.2.2 SPARQL Update Parameters

In addition to the query parameters, these parameters can be used with SPARQL Update on the
POST:/vl/graphs/sparqgl endpohﬂ:

* update - The URL-encoded SPARQL Update operation. Only use this parameter when
you put the request parameters in the request body and use application/x-www-form-
urlencoded aSthe request content type.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 193

MarkLogic Server Using Semantics with the REST Client API

using-graph-uri* - The URI of the graph or graphs to address as part of a SPARQL
UpdaIe operati on. Thisis addressed as http://host:port/vl/graphs/spargl?using-

graph-uri=<using-graph-uri*>

using-named-graph-uri* - The URI of anamed graph or graphs to address as part of a
SPARQL update operation. Thisis addressed as

http://host:port/vl/graphs/spargl?using-named-graph-uri=<using-named-graph-uri*>

perm: {role}* - ASSign permissions to the inserted graph(s), and the permission has arole
and a capability. When you insert a new graph, you can set its permissionsto allow a
certain capability for acertain role. Valid values for the permissions: read, update,
execute. These permissions only apply to newly created graphs. See “Managing Graph
Permissions’ on page 217 for more about permissions.

txid? - The transaction identifier of the multi-statement transaction in which to service
thisrequest. Use the /transactions Service to create and manage multi-statement
transactions.

database? - The database on which to perform the query.
base? - Theinitia base IRI for the query.

bind: {name}* - A binding name and value. This format assumes that the type of the bind
variableisan IRI.

bind: {name}: {type}+* - A binding name, type, and value. This parameter accepts an XSD
type, for example “string”, “date” or “unsignedLong”.

bind: {name}e{1lang}+* - A binding name, language tag, and value. Use this pattern to bind
to language-tagged strings.

See “Target RDF Graph” on page 91 for more information about graphs. See Querying Triples in
the REST Application Developer’s Guide for more information about using the REST Client API
with RDF triples.

9.3 Supported Operations for the REST Client API
For the /v1/graphs/sparql endpoint, these operations are supported:

Operation

Description

Method

Privilege

Retrieve

Evaluates a SPARQL query toretrieveanamed | GET

graph.

rest-reader

MarkLogic 10—May, 2019

Semantic Graph Developer’ s Guide—Page 194

MarkLogic Server Using Semantics with the REST Client API

Operation Description Method Privilege
Create/ Evaluates a SPARQL query as a parameter or POST rest-writer
Retrieve | URL-encoded as part of the rost body. (SPARQL query)
Using SPARQL Update, rosT mergestriplesinto rest-writer
anamed graph when used as parameter, or asa (SPARQL Update)
URL-encoded SPARQL Update in the rosT
body.

SPARQL query and SPARQL Update operations
are mutually exclusive.

Note: For SPARQL Update, only post: /v1/graphs/sparqgl IS Supported.

Thereisalso a /vi/graphs endpoint and a /vi/graphs/things endpoint to access and view RDF
data. For the /v1/graphs endpoint, these verbs are supported:

Operation Description Method Privilege

Retrieve Retrieve agraph or alist of availablegraph URIs. | GET rest-reader

Merge Without parameters, merges quads into the triple | POST rest-writer
store. With graph or default, merges triplesinto a
named graph or the default graph.

Create/ Without parameters, creates or replaces quads. PUT rest-writer
Replace With default OrF graph, Creates or replaces triples
in anamed graph or the default graph. Using put
with an empty graph, will delete the graph.

Delete Without parameters, removes all graphsfromthe | DELETE | rest-writer
triple store. With graph Or default, removes
triplesin anamed graph or the default graph.

Return Returns the same headers as an equivalent GET HEAD rest-reader
onthe /graphs Service.

And for the /vi1/graphs/things endpoint, the verb cer is supported for REST requests.

Operation Description Method Privilege

Retrieve Retrieves alist of all graph nodes in the database, or a | GET rest-reader
specified set of nodes.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 195

MarkLogic Server Using Semantics with the REST Client API

9.4 Serialization

Serialization of RDF data occurs whenever it isloaded, queried, or updated. The data can be
serialized in avariety of ways. The supported serializations are shown in the table shown in
“Supported RDF Triple Formats’ on page 38.

Several types of optimized serialization are available for SPARQL results (solutions - sets of
bindings) and RDF (triples) over REST. Using these serializations in your interactions will make
them faster. These serializations specify a MIME type for the input and output format. Formats
are specified as part of the accept headers of the REST request.

We recommend using one of the following choices for optimized serialization of SPARQL results
when usi ng the /v1 /graphs/sparqgl endeI nt:

Format | SPARQL Query Type MIME Type/Accept Header
/v1/graphs/sparqgl
json SELECT OF ASK application/spargl-results+json
csv SELECT OF ASK application/spargl-results+csv
n-triples CONSTRUCT Of DESCRIBE | application/n-triples

For construcT Or pescriee all of the supported triples formats are supported. See the table in
“Supported RDF Triple Formats” on page 38.

Note: N-Quads and TriG formats are quad formats, not triple formats, and REST does
not serialize quads.

For optimized RDF results (triple or quads), choose one of these serialization options when using
the /v1/graphs endpoint:

RDF Query Type
Format Il qraphs MIME Type/Accept Header

n-triples CONSTRUCT Of DESCRIBE application/n-triples

n-quads SELECT OF ASK application/quads

Thisinformation is shown in adifferent way in “ SPARQL Query Types and Output Formats’ on
page 200. For more about serialization, see Setting Output Options for an HTTP Server in the
Administrator’s Guide.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 196

MarkLogic Server Using Semantics with the REST Client API

94.1 Unsupported Serialization

A ceT Or posT request for aresponse in an unsupported serialization yields a“ 406 Not
Acceptable” error. If the SPARQL payload failsto parse, the responseyields a“400 Bad Request”
error.

For example:

<rapi:error xmlns:rapi="http://marklogic.com/rest-api">
<rapi:status-code>400</rapi:status-code>
<rapi:status>Bad Request</rapi:status>
<rapi:message-code>RESTAPI-INVALIDCONTENT</rapi:message-code>
<rapi:message>RESTAPI-INVALIDCONTENT: (err:FOER0000) Invalid
content:
Unexpected Payload: c:\space\example.ttl</rapi:message>
</rapi:error>

For more about the REST Client API error handling, see Error Reporting in the REST Application
Developer’s Guide.

9.5 Examples Using curl and REST

These two examples use cur1 with cygwin (Linux) and Windows to do Semantic queries over
REST. This SPARQL query is encoded and used in the examples:

SELECT *
WHERE {
?s ?p 20 }

For readability, the character (“ \) isused in the cygwin (Linux) exampleto indicate aline break.
The actual request must be entered on one continuous line. The query looks like this:

curl --anyauth --user user:password
"http://localhost:8000/v1/graphs/spargl" \

-H "Content-type:application/x-www-form-urlencoded" \

-H "Accept:application/spargl-results+xml" \

-X POST --data-binary 'query=SELECT+*+WHERE+{+%3fs+%3fp+%3fo+}"

=>
<spargl xmlns="http://www.w3.0rg/2005/spargl-results#">
<head>
<variable name="s"/>
<variable name="p"/>
<variable name="o0"/>
</head>
<results>
<result>
<binding name="sg"><uris>http://example/bookl/</uri></binding>
<binding
name="p"><uris>http://purl.org/dc/elements/1.1/title</uri></binding>
<binding name="o"><literal>A new book</literal></binding>
</results>

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 197

MarkLogic Server Using Semantics with the REST Client API

<results>
<binding name="s">
<urishttp://example/bookl/</uri>
</binding>
<binding name="p">
<uris>http://purl.org/dc/elements/1.1/title</uri>
</binding>
<binding name="0">
<literal>Inside MarkLogic Server</literals>
</binding>
</results>
<result>
<binding name="g">
<urishttp://www.w3.0rg/2000/01/rdf-schema#fsubClassOf</uri>
</binding>
<binding name="p">
<uri>http://www.w3.0rg/2000/01/rdf-schema#tdomain</uri>
</binding>
<binding name="o0">
<uris>http://www.w3.0rg/2000/01/rdf-schema#Class</uri>
</binding>
</result>
<result>
<binding name="s">
<uri>http://www.w3.0rg/2000/01/rdf-schema#subClassOf</uri>
</binding>
<binding name="p">
<uris>http://www.w3.0rg/2000/01/rdf-schema#frange</uri>
</binding>
<binding name="o0">
<urishttp://www.w3.0org/2000/01/rdf-schema#Class</uri>
</binding>
</results>
</results></spargl>

Note: The results have been formatted for clarity.

In the Windows example, the character (“ *) is used to indicate aline break for readability. The
actual request must be entered on one continuous line. The Windows query looks like this:

curl --anyauth --user user:password
"http://localhost:8000/v1l/graphs/spargl"
-H "Content-type:application/x-www-form-urlencoded"
-H "Accept:application/spargl-results+xml"
-X POST --data-binary 'query=SELECT+*+WHERE+{+%3fs+%3fp+3%3fo+}"

A

A

=>

<spargl xmlns="http://www.w3.0rg/2005/spargl-results#">
<head>
<variable name="s"/>
<variable name="p"/>
<variable name="o"/>
</head>
<results>

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 198

MarkLogic Server

<result>
<binding name="s">
<urishttp://example.org/marklogic/people/Jack Smith</uris
</binding>
<binding name="p">
<uris>http://example.org/marklogic/predicate/livesIn</uri>
</binding>
<binding name="o"><literal>Glasgow</literals>
</binding>
</result>
<result>
<binding name="s">
<uris>http://example.org/marklogic/people/Jane Smith</uris
</binding>
<binding name="p">
<uris>http://example.org/marklogic/predicate/livesIn</uris>
</binding>
<binding name="o0">
<literalsLondon</literals>
</binding>
</result>
<result>
<binding name="s">
<urishttp://example.org/marklogic/people/John Smith</uris
</binding>
<binding name="p">
<urishttp://example.org/marklogic/predicate/livesIn</uri>
</binding>
<binding name="o">
<literal>London</literals>
</binding>
</results>
</results></spargl>

Using Semantics with the REST Client API

Note: The results have been formatted for clarity.

9.6 Response Output Formats

This section describes the header types and response output formats available when using
SPARQL endpoints with the REST Client API. Examples of results in different formats are
included. These topics are covered:

e SPAROQL Query Types and Output Formats

e Example:

Returning Results as XML

e Example:

Returning Results as JSON

e Example:

Returning Results as HTML

e Example:

Returning Results as CSV

e Example:

Returning Results as N-triples

e Example:

Returning a Boolean as XML or JSON

MarkLogic 10—May, 2019

Semantic Graph Developer’ s Guide—Page 199

MarkLogic Server Using Semantics with the REST Client API

9.6.1 SPARQL Query Types and Output Formats

When you query the SPARQL endpoint with REST Client APIS (GeT: /v1/graphs/spargl OF
POST: /v1/graphs/sparqgl), YOu can specify the result output format. The response type format
depends on the type of query and the MIME type in the HT TP Accept header.

A SPARQL serect query can return results as XML, JSON, HTML, or CSV, while a SPARQL
consTRUCT uery can return the results astriplesin N-Triples or N-Quads format, or XMLor
JSON triplesin any of the supported triplesformats. A SPARQL pescrise query returnstriplesin
XML, N-Triples, or N-Quads format describing the triples found by the query. Using SPARQL
ask query will return aboolean (true Or faise) in either XML or JSON. See “Types of SPARQL
Queries’ on page 82 for more information about query types.

Thistable describes the MIME types and Accept Header/Output formats (MIME type) for
different types of SPARQL queries.

Query Type Format Accept Header MIME Type

SELECT Or xml application/spargl-results+xml

ASK See “Example: Returning Results as XML” on page 201 and
“Example: Returning aBoolean as XML or JSON” on

Returns

SPARQL results page 206.

- solutions json application/spargl-results+json

See “Example: Returning Results as JISON” on page 202.

html text/html

See “Example: Returning Resultsas HTML” on page 203.

csv text/csv

See “Example: Returning Results as CSV” on page 204.
Note: Only preserves the order of the results, not the type.

Note: ask queriesreturn aboolean (true Of false).

CONSTRUCT n-triples application/n-triples

Of DESCRIBE For faster serialization - see “ Example: Returning Results as
N-triples’ on page 205.

t'_‘r’gl‘gs RDF Note: If you want triples returned as JSON, the proper MIME

type is application/rdf+json.

other CONSTRUCT OF DESCRIBE queriesreturn RDF triplesin any of the
available formats. See “ Supported RDF Triple Formats’ on

page 38

Note: You canrequest any of thetriple MIME types (application/rdf+xml, text/turtle,
and so on), but use appilication/n-triples for best performance. See
“Serialization” on page 196 for details.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 200

MarkLogic Server Using Semantics with the REST Client API

The following examples use this SPARQL serLect query to find US Congress bills that were
sponsored by Robert Andrews (“A0002107):

#filename bills.sparqgl

PREFIX rdf: <http://www.w3.o0rg/1999/02/22-rdf-syntax-ns>

PREFIX bill: <http://www.rdfabout.com/rdf/schema/usbill/>

PREFIX people: <http://www.rdfabout.com/rdf/usgov/congress/people/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT °?bill ?title

WHERE { ?bill rdf:type bill:HouseBill ;
dc:title ?title ;
bill:sponsor people:A000210

}

LIMIT 5

The SPARQL query issaved asbills.spargl. The query limitsresponsesto 5 results. Using cur1
and the REST Client API, you can query the SPARQL endpoint and get the results back in a
variety of formats.

Note: If you use cur1 to make a put Or posT request and read in the request body from a
file, use - -data-binary rather than -4 to specify the input file. When you use
--data-binary, curl insertsthe datafrom thefileinto the request body as-is. When
yOu USe -4, curl Strips newlines from the input, which can make your triple data or
SPARQL syntactically invalid.

9.6.2 Example: Returning Results as XML

The SPARQL serecT query inthevilis.sparql file returnsthe responsein XML format in this
example.

curl --anyauth --user admin:password -i -X POST \
--data-binary @./bills.spargl \

-H "Content-type: application/spargl-query" \

-H "Accept: application/sparql-results+xml" \
http://localhost:8050/v1/graphs/spargl

=>

HTTP/1.1 200 OK

Content-type: application/spargl-results+xml
Server: MarkLogic

Content-Length: 1528

Connection: Keep-Alive

Keep-Alive: timeout=5

<spargl xmlns="http://www.w3.0rg/2005/spargl-results/">
<head><variable name="bill"/>
<variable name="title"/>
</head>
<results>

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 201

MarkLogic Server Using Semantics with the REST Client API

<result>
<binding name="bill">
<uri>http://www.rdfabout.com/rdf/usgov/congress/108/bills/h1171
</uris>
</binding><binding name="title">
<literal datatype="http://www.w3.0rg/2001/XMLSchema#fstring">
H.R. 108/1171: Iris Scan Security Act of 2003
</literals>
</binding>
</results>
<result>
<binding name="bill"s>
<uri>http://www.rdfabout.com/rdf/usgov/congress/108/bills/h1314/
</uris>
</binding>
<binding name="title">
<literal datatype="http://www.w3.0rg/2001/XMLSchema#string">
H.R. 108/1314: Screening Mammography Act of 2003</literals>
</binding>
</result>
<result>
<binding name="bill"><uris>http://www.rdfabout.com/rdf/usgov
/congress/108/bills/h1384/</uri>
</binding>

</result>
</results>
</spargl>

Note: Inthe example above, long lines have been broken into multiple lines using the
UNIX line continuation character '\' and extra line breaks have been added for
readability. Extraline breaks for readability have also been added in the results.

9.6.3 Example: Returning Results as JSON

The SPARQL seLecT query intheilis.sparql file returnsthe response in JSON format in this
example:

curl --anyauth --user admin:password -i -X POST \
--data-binary @./bills.spargl \

-H "Content-type: application/spargl-query" \

-H "Accept: application/sparql-results+json" \
http://localhost:8050/vl/graphs/sparqgl

HTTP/1.1 200 OK

Content-type: application/spargl-results+json
Server: MarkLogic

Content-Length: 1354

Connection: Keep-Alive

Keep-Alive: timeout=5

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 202

MarkLogic Server Using Semantics with the REST Client API

{"head": {"vars": ["bill", "title"]},
"results":{"bindings": [

{"bill":{"type":"uri",

"value":"http://www.rdfabout.com/rdf/usgov/congress/108/
bills/h1171"},

"title":{"type":"literal", "value":"H.R. 108/1171: Iris Scan
Security Act of 2003",

"datatype":"http://www.w3.0rg/2001/XMLSchema#string"}},

{"bill":{"type":"uri",

"value":"http://www.rdfabout.com/rdf/usgov/congress/108/
bills/h1314"},

"title":{"type":"literal", "value":"H.R. 108/1314: Screening
Mammography Act of 2003",

"datatype":"http://www.w3.0rg/2001/XMLSchema#string"}},

{"bill":{"type":"uri",

"value":"http://www.rdfabout.com/rdf/usgov/congress/108/
bills/h1384"},

"title":{"type":"literal", "value":"H.R. 108/1384: To amend the
Railroad Retirement Act of 1974 to eliminate a limitation
on benefits.",

"datatype":"http://www.w3.0rg/2001/XMLSchema#string"}},

{"bill":{"type":"uri",

"value":"http://www.rdfabout.com/rdf/usgov/congress/108/
bills/h1418"},

"title":{"type":"literal", "value":"H.R. 108/1418: Veterans'
Housing Equity Act",

"datatype":"http://www.w3.0rg/2001/XMLSchema#string"}},

P11}
Note: Inthe command line example above, long lines have been broken into multiple
lines using the UNIX line continuation character '\' and extraline breaks have been

added for readability. Extraline breaks for readability have also been added in the
results

9.6.4 Example: Returning Results as HTML

The same SPARQL serecT query inthebilis. sparql filereturnstheresponsein HTML format in
this example

curl --anyauth --user admin:password -i -X POST \
--data-binary @./bills.spargl \

-H "Content-type: application/spargl-query" \

-H "Accept: text/html" http://localhost:8050/vl1l/graphs/sparqgl"

HTTP/1.1 200 OK

Content-type: text/html; charset=UTF-8
Server: MarkLogic

Content-Length: 1448

Connection: Keep-Alive

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 203

MarkLogic Server Using Semantics with the REST Client API

Keep-Alive: timeout=5

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>SPARQL results</titles>
</head>
<body><table border="1">
<tr>
<th>bill</th>
<th>title</th></tr>
<tr>
<td><a href="/vl/graphs/things?iri=http%3a//www.rdfabout.com/
rdf /usgov/congress/108/bills/h1171">http://www.rdfabout .com/
rdf /usgov/congress/108/bills/hl171
</td>
<td>H.R. 108/1171: Iris Scan Security Act of 2003</td>
</tr><tr>
<td><a href="/vl/graphs/things?iri=http%3a//www.rdfabout.com/
rdf /usgov/congress/108/bills/h1314">http://www.rdfabout.com/
rdf /usgov/congress/108/bills/hl1314
</td>
<td>H.R. 108/1314: Screening Mammography Act of 2003</td>
</tr><tr>
<td><a href="/vl/graphs/things?iri=http%3a//www.rdfabout.com/
rdf /usgov/congress/108/bills/h1384">http://www.rdfabout.com/
rdf /usgov/congress/108/bills/hl1384
</td>
<td>H.R. 108/1384: To amend the Railroad Retirement Act of
1974 to eliminate a limitation on benefits.
</td>
</tr>

</table>
</body>
</html>

Note: Inthe preceding example, long lines have been broken into multiple linesusing the
UNIX line continuation character '\' and extra line breaks have been added for
readability. Extraline breaks for readability have also been added in the results.

9.6.5 Example: Returning Results as CSV
Hereisthe same SPARQL seLecT query (bills.sparqgl) With the results returned in CSV format:

curl --anyauth --user Admin:janem-3 -i -X POST --data-binary \
@./bills.spargl -H "Content-type: application/spargl-query" \
-H "Accept: text/csv" http://janem-3:8000/v1/graphs/sparqgl

=>

bill,title

http://www.rdfabout.com/rdf/usgov/congress/108/bills/h1171,H.R.
108/1171: Iris Scan Security Act of 2003

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 204

MarkLogic Server Using Semantics with the REST Client API

http://www.rdfabout.com/rdf/usgov/congress/108/bills/h1314,H.R.
108/1314: Screening Mammography Act of 2003

http://www.rdfabout.com/rdf/usgov/congress/108/bills/h1384,H.R.
108/1384: To amend the Railroad Retirement Act of 1974 to eliminate a
limitation on benefits.

http://www.rdfabout.com/rdf/usgov/congress/108/bills/h1418,H.R.
108/1418: Veterans' Housing Equity Act

http://www.rdfabout.com/rdf/usgov/congress/108/bills/h1419,H.R.
108/1419: Seniors' Family Business Enhancement Act[jmckean@janem-3 ~]$

Note: Inthe preceding example, long lines have been broken into multiple linesusing the
UNIX line continuation character '\' and extra line breaks have been added for
readability. Extraline breaks for readability have also been added in the results.

9.6.6 Example: Returning Results as N-triples
For this example, we will use apescriee query that was introduced and used earlier:

DESCRIBE <http://dbpedia.org/resource/Pascal Bedrossians>

Thefollowing command usesthis query to match triples that describe Pascal and return the results
as N-Triples. Long lines in the command below have been broken with the UNIX line
continuation character “\”. The query is URL encoded and passed as the value of the “query”
request parameter.

curl -X GET --digest --user "admin:password" \

-H "Accept: application/n-triples" \

-H "Content-type: application/x-www-form-urlencoded"\
"http://localhost:8321/v1/graphs/spargl?query=DESCRIBE%$20%3Chttp\
$3A%2F%2Fdbpedia.org%2Fresource%2FPascal Bedrossian%3E"

=>

<http://dbpedia.org/resource/Pascal Bedrossianx>
<http://dbpedia.org/ontology/birthPlace>
<http://dbpedia.org/resource/France>

<http://dbpedia.org/resource/Pascal Bedrossianx>
<http://dbpedia.org/ontology/birthPlace>
<http://dbpedia.org/resource/Marseille>

<http://dbpedia.org/resource/Pascal Bedrossianx>
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://xmlns.com/foaf/0.1/Person>

<http://dbpedia.org/resource/Pascal Bedrossianx>
<http://xmlns.com/foaf/0.1/surname> "Bedrossian"@en

<http://dbpedia.org/resource/Pascal Bedrossianx>
<http://xmlns.com/foaf/0.1/givenName> "Pascal"@en

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 205

MarkLogic Server Using Semantics with the REST Client API

<http://dbpedia.org/resource/Pascal Bedrossianx>
<http://xmlns.com/foaf/0.1/name> "Pascal Bedrossian"een .

<http://dbpedia.org/resource/Pascal Bedrossianx>
<http://purl.org/dc/elements/1.1/description> "footballer"een .

<http://dbpedia.org/resource/Pascal Bedrossianx>
<http://dbpedia.org/ontology/birthDate> "1974-11-
28" " " <http://www.w3.0rg/2001/XMLSchema#date>

9.6.7 Example: Returning a Boolean as XML or JSON

In this example, a SPARQL asx query (from an earlier example) is used to determine whether
Carolyn Kennedy was born after Eunice Kennedy.

Here are the contents of the ask-sparql . sparql file used in the following query:

#file: ask-sparqgl.sparqgl

PREFIX db: <http://dbpedia.org/resource/>

PREFIX onto: <http://dbpedia.org/ontology/>

ASK

{
db:Carolyn Bessette-Kennedy onto:birthDate ?by .
db:Eunice Kennedy Shriver onto:birthDate ?bd .
FILTER (?by>?bd) .

Note: If you use cur1 to make a put Or rosT request and read in the request body from a
file, use - -data-binary rather than -4 to specify the input file. When you use - -
data-binary, curl inserts the data from the file into the request body as-is. When
YOU USe -4, cur1 Strips newlines from the input, which can make your triple dataor
SPARQL syntactically invalid.

Thisrequest, containing SPARQL ask query, returns the boolean result as XML:

curl --anyauth --user user:password -i -X POST \
--data-binary @./ask-sparql.sparql \

-H "Content-type: application/spargl-query" \

-H "Accept: application/sparql-results+xml" \
http://localhost:8050/v1/graphs/spargl

HTTP/1.1 200 OK

Content-type: application/spargl-results+xml
Server: MarkLogic

Content-Length: 89

Connection: Keep-Alive

Keep-Alive: timeout=5

<sparql

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 206

MarkLogic Server Using Semantics with the REST Client API

<xmlns="http://www.w3.0rg/2005/spargl-results/">
<boolean>true</boolean>
</spargl>

Here isthe same request (containing the SPARQL ask query) where the boolean result is returned
as JSON:

curl --anyauth --user user:password -i -X POST \
--data-binary @./ask-sparqgl.sparqgl \

-H "Content-type: application/spargl-query" \

-H "Accept: application/sparqgl-results+json" \
http://localhost:8050/v1/graphs/spargl

=>

HTTP/1.1 200 OK

Content-type: application/spargl-results+json
Server: MarkLogic

Content-Length: 17

Connection: Keep-Alive

Keep-Alive: timeout=5

{"boolean":true}

9.7 SPARQL Query with the REST Client API
SPARQL queries (serecT, DESCRIBE, consTRUCT, and ask) can be used with either rost or cer and

the REST Client API. For more about query types and output, see the tablein “ SPARQL Query
Types and Output Formats’ on page 200.
This section includes the following:

e SPARQL Queries in a POST Request

e SPARQL Queries in a GET Request

9.7.1 SPARQL Queries in a POST Request

This section describes how SPARQL query can be used to manage graphs and triple data through
/v1l/graphs/sparqgl endp0| nt.

http://hostname:port/vl/graphs/sparqgl

where the hostname and port are the host and port on which you are running MarkL ogic.
You can specify your input SPARQL query to rosT: /v1/graphs/sparqgl in the following ways:

* Include a SPARQL query asafilein the rosT body
* Include the SPARQL query as URL-encoded data

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 207

MarkLogic Server Using Semantics with the REST Client API

Thisisa SPARQL pescr1se query used to find out about US Congress bill 44. The query is saved
as afile, named bill44. sparqgl.

#file name bill44.sparqgl

PREFIX rdf: <http://www.w3.o0rg/1999/02/22-rdf-syntax-ns>

PREFIX bill: <http://www.rdfabout.com/rdf/schema/usbill/>

DESCRIBE ?x WHERE { ?x rdf:type bill:HouseBill ;
bill:number "44" . }

Note: If you use cur1 to make a put Or posT request and read in the request body from a
file, use - -data-binary rather than -4 to specify the input file. When you use - -
data-binary, curl insertsthe datafrom the file into the request body as-is. When
yOu USe -4, curl Strips newlines from the input, which can make your triple dataor
SPARQL syntactically invalid.

The endpoint requires a SPARQL query to be either a parameter or in the rost body. In the
following example, thebi1144.sparql file with the pescrise query is passed to the body of the
posT request:

Windows users, see Modifying the Example Commands for Windows
curl --anyauth --user admin:password \

-i -X POST --data-binary @./bill44.sparql \

-H "Content-type: application/spargl-query" \

-H "Accept: application/rdf+xml"™ \
http://localhost:8000/v1/graphs/spargl

The request body MIME typeis specified as application/sparql -query and the requested
response MIME type (the accept :) isspecified @S application/rdf+xml. The output isreturned as
triplesin XML format. See “Response Output Formats’ on page 199 for more details.

The query returns the following triples describing bill 44:

<rdf :RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns">
<OfficialTitle rdf:ID="bnodebnode309771418819f878"
xmlns="http://www.rdfabout.com/rdf/schema/usbill/">
<rdf:typerdf:resource="http://www.rdfabout.com/rdf/schema/usbill
/OfficialTitle"/>
<rdf:value rdf:datatype="http://www.w3.0rg/2001/XMLSchema#fstring">
To amend the Internal Revenue Code of 1986 to provide reduced
capital gain rates for qualified economic stimulus gain and to
index the basis of assets of individuals for purposes of
determining gains and losses.</rdf:value></OfficialTitle>
<ShortTitle rdf:ID="bnodebnode30b47143b819db78"
xmlns="http://www.rdfabout.com/rdf/schema/usbill/">
<rdf:type rdf:resource="http://www.rdfabout.com/rdf/schema/usbill
/ShortTitle" />
<rdf:value rdf:datatype="http://www.w3.0rg/2001/XMLSchema#fstring">
Investment Tax Incentive Act of 2003</rdf:value></ShortTitle>
<ShortTitle rdf:ID="bnodebnodeel860b72fb58b315"
xmlns="http://www.rdfabout.com/rdf/schema/usbill/">

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 208

MarkLogic Server Using Semantics with the REST Client API

<rdf:type rdf:resource="http://www.rdfabout.com/rdf/schema/usbill
/ShortTitle"/>

<rdf:value rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string">
Investment Tax Incentive Act of 2003</rdf:value></ShortTitle>

<HouseBill rdf:about="http://www.rdfabout.com/rdf/usgov/congress/108
/bills/h44" xmlns="http://www.rdfabout.com/rdf/schema/usbill/">

<inCommittee rdf:resource="http://www.rdfabout.com/rdf/usgov
/congress/committees/HouseWaysandMeans" />

<cosponsor rdf:resource="http://www.rdfabout.com/rdf/usgov/congress
/people/A000358" />

<cosponsor rdf:resource="http://www.rdfabout.com/rdf/usgov/congress
/people/B000208" />

<cosponsor rdf:resource="http://www.rdfabout.com/rdf/usgov/congress
/people/B000575" />

<cosponsor

Another way to use the rosT request isto specify the URL-encoded query as the value of the
“query” parameter and USe application/x-www-form-urlencoded asthe request bOdy MIME type,
as described in the semantics documentation of the REST Client API.

Thefollowing SPARQL serecT query finds the House of Congress bills that were cosponsored by
the person with a Congress BioGuidel D of “A000358":

PREFIX rdf: <http://www.w3.o0rg/1999/02/22-rdf-syntax-ns>

PREFIX bill: <http://www.rdfabout.com/rdf/schema/usbill/>

PREFIX people: <http://www.rdfabout.com/rdf/usgov/congress/people/>
SELECT ?x WHERE { ?x rdf:type bill:HouseBill ; bill:cosponsor
people:A000358. }

In this example, the seLecT query is URL-encoded and then sent as form-encoded data:

curl -X POST --anyauth --user admin:password \

-H "Accept:application/sparql-results+xml" --data-binary \
"query=PREFIX%20rdf%3A%20%3Chttp%3A%2F%$2Fwww.w3.0rg%2F1999%2F02%2F22-r
df -syntax-ns\

%$23%3E%20%0APREFIX%20b1i11%3A%20%3Chttp%3A%2F%2Fwww. rdfabout.com$2Frdf\
$2Fschema%2Fusbill%2F%$3E$0APREFIX%20people%$3A%20%3Chttps3A%2F$2Fwww. rd
fabout . com\
%$2Frdf%2Fusgov%2Fcongress$2Fpeople%s2F%3ES0ASELECT%20%3Fx%20WHERE%20%7B
$20%3Fx\
%$20rdf%3Atype%20bill1%3AHouseBil11%20%3B%20bill%3Acosponsors20%20peopled
3AA000358.%20%7D%0A"\

-H "Content-type:application/x-www-form-urlencoded" \
http://localhost:8000/v1/graphs/sparqgl

=>

<spargl xmlns="http://www.w3.0org/2005/spargl-results/">
<head><variable name="x"/></head>
<results>
<result><binding name="x">
<uri>http://www.rdfabout.com/rdf/usgov/congress/108/bills/h1036

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 209

http://docs.marklogic.com/REST/client/semantics

MarkLogic Server Using Semantics with the REST Client API

</uri></binding></result>
<result><binding name="x">
<uri>http://www.rdfabout.com/rdf/usgov/congress/108/bills/h1057
</uri></binding></result>
<result><binding name="x">
<uri>http://www.rdfabout.com/rdf/usgov/congress/108/bills/h1078
</uri></binding></result>
<result><binding name="x">
<uri>http://www.rdfabout.com/rdf/usgov/congress/108/bills/h110
</uri></binding></result>
<result><binding name="x">
<uri>http://www.rdfabout.com/rdf/usgov/congress/108/bills/h1117
</uri></binding></result>
<result><binding name="x">
<uri>http://www.rdfabout.com/rdf/usgov/congress/108/bills/h1153
</uri></binding></result>
<result><binding name="x">
<uri>http://www.rdfabout.com/rdf/usgov/congress/108/bills/h975
</uri></binding></result>
</results>
</spargl>

Note: For readability, the long command line is broken into multiple lines using the
UNIX line continuation character '\'. Extraline breaks have been inserted for
readability of the URL-encoded query.

9.7.2 SPARQL Queries in a GET Request

For acer request, the SPARQL query in the query request parameter must be URL -encoded. Here
isthe SPARQL pescriee query, searching for aUS Congress bill (44), beforeit is encoded:

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#s>
PREFIX bill: <http://www.rdfabout.com/rdf/schema/usbill/>
DESCRIBE ?x

WHERE {
?x rdf:type bill:HouseBill ;
bill:number "44" . }

In this example cur1 sends an HTTP ceT request to execute the SPARQL pescrise query :

curl -X GET --digest --user "user:password" \

-H "accept: application/spargl-results+xml" \
"http://localhost:8000/v1/graphs/spargl?query=PREFIX%$20rdf%$3A%20%3C\
http%3A%2F%2Fwww.w3 .0rg%2F1999%2F02%2F22-rdf-syntax-ns%$23%3E%$20%0A\
PREFIX%20bil1%3A%20%3Chttp%3A%2F%2Fwww.rdfabout.com%$2Frdf%2Fschema\
%$2Fusbill%2F%3E%0ADESCRIBE%20%3Fx%20WHERE%20%7B%20%3Fx%20rdf%3Atype\
%$20b111%3AHOUSeBi11%20%3B%20%20bill1%3Anumber%20%2244%22%20.%20%7D"

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 210

MarkLogic Server Using Semantics with the REST Client API

Your results will be similar to these triples:

<http://www.rdfabout.com/rdf/usgov/congress/108/bills/h44>
<http://purl.org/dc/elements/1.1/title> "H.R. 108/44: Investment Tax
Incentive Act of 2003"

<http://www.rdfabout.com/rdf/usgov/congress/108/bills/h44>
<http://purl.org/dc/terms/created> "2003-01-07"

<http://www.rdfabout.com/rdf/usgov/congress/108/bills/h44>
<http://purl.org/ontology/bibo/shortTitle> "H.R. 44: Investment Tax
Incentive Act of 2003"

<http://www.rdfabout.com/rdf/usgov/congress/108/bills/h44>
<http://www.rdfabout.com/rdf/schema/usbill/congress> "108"

<http://www.rdfabout.com/rdf/usgov/congress/108/bills/h44>
<http://www.rdfabout.com/rdf/schema/usbill/cosponsor>
<http://www.rdfabout.com/rdf/usgov/congress/people/A000358>
<http://www.rdfabout.com/rdf/usgov/congress/108/bills/h44>
<http://www.rdfabout.com/rdf/schema/usbill/cosponsor>
<http://www.rdfabout.com/rdf/usgov/congress/people/B000208>
<http://www.rdfabout.com/rdf/usgov/congress/108/bills/h44>

<http://www.rdfabout.com/rdf/schema/usbill/cosponsor>
<http://www.rdfabout.com/rdf/usgov/congress/people/B000575>

The triples describe information about bill 44 in the U.S. Congress; it’stitle, when it was created,
who cosponsored the bill, and so on.

9.8 SPARQL Update with the REST Client API

This section describes how SPARQL Update can be used to manage graphs and triple data
through /v1/graphs/spargl endp0| nt.

http://hostname:port/vl/graphs/sparqgl
where the hostname and port are the host and port on which you are running MarkL ogic.

You can specify your SPARQL Update (which is a pereTe/1NSERT) 1O POST: /v1/graphs/spargl iN
the following ways.

* Include a SPARQL Update as afilein the rost body in the form of:

http://host :port/vl/graphs/spargl
content-type:application/sparqgl-update

See “SPARQL Update in a POST Reguest” on page 212.

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 211

MarkLogic Server Using Semantics with the REST Client API

* Include the SPARQL Update as URL-encoded data in the form of:

http://host :port/vl/graphs/sparqgl
content-type:application/x-www-form-urlencoded

See “SPARQL Update via POST with URL-encoded Parameters’ on page 214.

The examplesin this section use a rost request, with no URL encoding, and with content -
type:application/sparqgl-update.

You can specify the RDF dataset against which to execute the update using the using-graph-uri
and using-named-graph-uri request parameters, or within the update. If the dataset is specified in
both the request parameters and the update, the dataset defined by the request parametersis used.
If neither is specified, all graphs (the unzow of al graphs) are included in the operation.

Note: Includi ng the using-graph-uri O using-named-graph-uri parameters, with a
SPARQL 1.1 Update request that contains an operation that uses the us1ng, usine
NAMED, Of wrTH clause, will cause an error.

See “ Specifying Parameters’ on page 191 for details on specifying parameters for use with the
REST Client API. See “ Supported Operations for the REST Client API” on page 194 and the list
of verbs supported by the Graph store endpoint for SPARQL Update for more about rost. See
POST: /v1/graphs/spargl for more about the SPARQL endpoint.

This section includes the following:

* SPARQL Update in a POST Request

e SPARQL Update via POST with URL-encoded Parameters

9.8.1 SPARQL Update in a POST Request

You can send requests using the rost method by including SPARQL Update in the request body.
Set the Content-type HTTP header to application/spargl-update.

Hereisthe SPARQL Update before it is added to the request body:

PREFIX dc: <http://purl.org/dc/elements/1.1/>
WITH <BOOKS>

DELETE {?b dc:title "A new book"}

INSERT

{?b dc:title "Inside MarkLogic Server" }
WHERE {?b dc:title "A new book".}

In the graph named <sooks>, SPARQL Update matches atriple with dc:tit1e in the predicate
position and a2 new book iN the object position and deletesit. Then anew tripleisinserted (b
dc:title "MarkLogic Server").

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 212

MarkLogic Server Using Semantics with the REST Client API

In this example, the SPARQL Update is sent in the request body using application/spargl-
update and the -a option for the query:

Windows users, see Modifying the Example Commands for Windows

curl --anyauth --user admin:admin -i -X POST \

-H "Content-type:application/spargl-update" \

-H "Accept:application/spargl-results+xml" \

-d 'PREFIX dc: <http://purl.org/dc/elements/1.1/> \
WITH <BOOKS> \

DELETE {?b dc:title "A new book"} \

INSERT {?b dc:title "Inside MarkLogic Server" } \
WHERE {?b dc:title "A new book".}' \
http://localhost:8000/v1/graphs/spargl

Note: For clarity, long command lines are broken into multiple lines using the line
continuation characters “\” . Remove the line continuation characters when you
use the cur1 command. (For Windows the line continuation character is“/”.)

Alternatively, you can use cur1 to execute a SPARQL Update from afile as part of arost request.
The SPARQL Update is saved in afile named vooktitle.sparqgl. Here are the file contents:

PREFIX dc: <http://purl.org/dc/elements/1.1/>
INSERT DATA

{
<http://example/bookl> dc:title "book title" ;
dc:creator "author name"

}
The rosT request with the SPARQL Update in afile would look like this:

curl --anyauth --user admin:admin -i -X POST \
--data-binary @./booktitle.sparql \

-H "Content-type:application/spargl-update" \
-H "Accept:application/spargl-results+xml" \
http://localhost:8000/vl/graphs/sparqgl

Notice that the request uses the --data-binary option instead of -4 to call the file containing the
SPARQL Update. You can include using-graph-uri, using-named-graph-uri and role-
capability @ HTTP request parameters. The perm parameter is expected in this syntax, with role

and capability.

perm:admin=update&perm:admin=execute

See “Default Permissions and Required Privileges’ on page 218 for more about permissions.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 213

MarkLogic Server Using Semantics with the REST Client API

9.8.2 SPARQL Update via POST with URL-encoded Parameters

You can also send update protocol requests viathe HTTP rost method by URL -encoding the
parameters. When you do this, URL percent-encode al parameters and include them as
parameters within the request body viathe appiication/x-www-form-urlencoded mediatype. The
content type header of the HTTP request is set t0 application/x-www-form-urlencoded.

This next example uses SPARQL Update and rosT with URL-encoded parametersto insert data
(along with a set of permissions) into graph c1.

curl --anyauth --user admin:admin -i -X POST \

--data-urlencode update='PREFIX dc: <http://purl.org/dc/elements/1.1/>
\

INSERT DATA \

{<http://example/bookl> dc:title "book title" ; \

dc:creator "author name" .}' \

-H "Content-type:application/x-www-form-urlencoded" \

-H "Accept:application/spargl-results+xml" \
'http://localhost:8000/v1/graphs/spargl?using-named-graph-uri=C1l \
&perm:admin=update&perm:admin+execute’

If you Supply the using-graph-uri Of using-named-graph-uri parameters when us ng this
protocol to convey a SPARQL 1.1 Update request that uses the ustne namep, Or wiTu clause, the
operation will result in an error.

This cur1 example uses rost with URL-encoding for the SPARQL Update and permissions:

curl --anyauth --user admin:admin -i -X POST \

-H "Content-type:application/x-www-form-urlencoded" \

-H "Accept:application/spargl-results+xml" \

--data-urlencode update='PREFIX dc: <http://purl.org/dc/elements/1.1/>
INSERT DATA{ GRAPH <Cl> {http://example/bookl/> dc:title "C book"} }' \
--data-urlencode perm:rest-writer=read \

--data-urlencode perm:rest-writer=update \
http://localhost:8321/v1/graphs/spargl

If anew RDF graph is created, the server responds with a201 createa message. The response to
an update request indicates success or failure of the request via HT TP response status code (200
or a00). If the request body is empty, the server responds with 204 No content.

9.9 Listing Graph Names with the REST Client API
You can list the graphsin your database with the REST Client API using the graphs endpoint.

http://hostname:port/vl/graphs

where the hostname and port are the host and port on which you are running MarkL ogic.

For example when this endpoint is called with no parameters, alist of graphsin the database is
returned:

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 214

MarkLogic Server Using Semantics with the REST Client API

http://localhost:8000/v1/graphs

The request might return graphs like these:

graphs/MyDemoGraph
http://marklogic.com/semantics#default-graph
http://marklogic.com/semantics#graphs

9.10 Exploring Triples with the REST Client API

The following endpoint provides RESTful access to knowledge (things) referred to in the
database. This endpoint retrieves alist of al subject nodes in the database:

http://hostname:port/vl/graphs/things
where the hostname and port are the host and port on which you are running MarkL ogic.
For example:

http://localhost:8050/v1/graphs/things

You can also specify a set of subject nodes to be returned. When this endpoint is called with no
parameters, alist of subject nodes in the database is returned for all triplesin the database.

This example shows the response, alist of nodes as IRIs, in a\Web browser:
ﬁ localhost:8050/v1/graphs/things?

Subjects

<http://dbpedia.org/resource/Abraham Lincoln=

<http://dbpedia.org/resource/Alain Connes>

<http.//dbpedia.org/resource/Allan Dwan>

<http://dbpedia.org/resource/ Anistotle>

-bnodel1375398754161/-2217616413582301424/-7059da6e:1403c27791b:-105f

-bnodel1375398754161/-2217616413582301424/-7059da6e:1403c27791b:-108f

-bnode1375398754161/-2217616413582301424/-7059da6e:1403c27791b:-10c2

-bnodel1375398754161/-2217616413582301424/-7059da6e:1403c27791b:-1202

-bnodel1375398754161/-2217616413582301424/-7059da6e:1403c27791b:-13de

Note: Thisendpoint has a hard-coded limit of 10,000 items to display, and does not
support pagination.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 215

MarkLogic Server Using Semantics with the REST Client API

You can traverse and navigate the triplesin the database by clicking on the links and drilling
down the nodes. Clicking on an IRl may return one or more related triples:

3 triples

‘bnodel375398754161/-2217616413582301424/-7059dabe:1403c27791b:-1145
<http://pervasive semanticweb.org/ont/2004/06/time#to>
<-7059dabe:1403c27791b:-6a9%a> .

‘bnodel375398754161/-2217616413582301424/-7059dabe:1403c27791b:-1145
<http://pervasive semanticweb.org/ont/2004/06/time#from>
<-7059dabe:1403c27791b:-6a9%b> .

‘bnodel375398754161/-2217616413582301424/-7059dabe:1403c27791b:-1145
<http/www.w3.org/1999/02/22-rdf-syntax-nsFtvpe> <http:/www.rdfabout.com
/rdf'schema/politico/Term> .

‘bnodel375398754161/-2217616413582301424/-7059dabe:1403c27791b:-1145
<http://www.rdfabout.com/rdf'schema/politico/forOffice>
<http://www.rdfabout.com/rdf'usgov/congress/house/33/in> .

‘bnodel375398754161/-2217616413582301424/-7059dabe:1403c27791b:-1145
<http//www.rdfabout.com/rdf'schema/politico/partyv> "Democrat” .

You can use an optional iri parameter to specify particular IRIs about which to return
information, in Turtle triple serialization.

For example, you could paste this request into your browser:

http://localhost:8050/v1l/graphs/things?iri=http://dbpedia.org/resource
/Abraham Lincoln

The nodes selected by the IRl http://dbpedia.org/resources/Abraham Lincoln al€ returned in
Turtle serialization:

(- localhost:8050/71/ graphs/thingsTiri=http://dbpedia.org/resource/Abraham_Lincaoln

6 triples

<http://dbpedia.org/resource/Abraham Lincoln= <http://dbpedia.org/ontology/birthPlace> <http://dbpedia org/resource/]
<http.//dbpedia.org/resource/ Abraham Lincoln= <http://www.w3.org/1999/02/22 -rdf-syntax-ns¥type> <htip://xmlns.cor
<http://dbpedia.org/resource/Abraham Lincoln® <http:/purl org/dec/elements/]1.1/description= " 16th President of the Un
=http://dbpedia.org/resource/Abraham Lincoln> <http://xmins com/foaf'l. /name> "Abraham Lincoln"@en .
<http://dbpedia.org/resource/ Abraham Lincoln> <http://dbpedia.org/ontology/birthDate= "1809-02-12"""xs:date .
<http.//dbpedia.org/resource/ Abraham Lincoln> <http://dbpedia.org/ontology/deathDate> "1865-04-15"""xs:date

If you are using cur1 or an equivalent command-line tool for issuing HT TP requests, you can
specify the following MIME typesin the request Accept header:
* When no parameters are specified, use text/htm1 in the request Accept header.

* Whenyou usethe iri parameter, use one of the MIME typeslisted in “ SPARQL Query
Types and Output Formats’ on page 200. See “ Supported RDF Triple Formats’ on
page 38 for additional information about RDF triple formats.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 216

MarkLogic Server Using Semantics with the REST Client API

In this example, the ceT request returns the nodes selected by the given iri parameter in Turtle
triple serialization:

curl --anyauth --user admin:password -i -X GET \

-H "Accept: text/turtle" \
http://localhost:8051/v1/graphs/things?iri=http://dbpedia.org/resource
/Aristotle

HTTP/1.1 200 OK

Content-type: text/turtle; charset=UTF-8
Server: MarkLogic

Content-Length: 628

Connection: Keep-Alive

Keep-Alive: timeout=5

@prefix xs: <http://www.w3.org/2001/XMLSchema#>
<http://dbpedia.org/resource/Aristotle>
<http://dbpedia.org/ontology/deathPlace>
<http://dbpedia.org/resource/Chalcis>
<http://dbpedia.org/resource/Aristotle>
<http://dbpedia.org/ontology/birthPlace>
<http://dbpedia.org/resource/Stagira (ancient city)s>
<http://dbpedia.org/resource/Aristotle> <http://www.w3.org/1999/02/22-
rdf-syntax

-ns#type/> <http://xmlns.com/foaf/0.1/Person>
<http://dbpedia.org/resource/Aristotle>
<http://xmlns.com/foaf/0.1/name>

"Aristotle"

<http://dbpedia.org/resource/Aristotle>
<http://purl.org/dc/elements/1.1/description>

"Greek philosopher"

Note: If agiven IRI does not exist, the response is “404 Not Found”. A cer request for a
response in an unsupported serialization will yield “406 Not Acceptable’.

9.11 Managing Graph Permissions

This section covers the REST Client API support for setting, modifying, and retrieving graph
permissions. If you are not already familiar with the MarkLogic security model, review the
Security Guide.

The following topics are covered:

e Default Permissions and Required Privileges

e Setting Permissions as Part of Another Operation

e Setting Permissions Standalone

e Retrieving Graph Permissions

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 217

MarkLogic Server Using Semantics with the REST Client API

9.11.1 Default Permissions and Required Privileges

All graphs created and managed using the REST Client API grant “read” capability to the rest-
reader foleand “update” capability to the rest-writer role. These default permissions are
always assigned to a graph, even if you do not explicitly specify them.

For example, if you create anew graph using rut /v1/graphs and do not specify any permissions,
the graph will have permissions similar to the following:

XML JSON
<metadata xmlns="http://marklogic.com/rest-api"> {"permissions": [
<permissionss> {"role—name":"rest—writer",
<permissions "capabilities": ["update"]
<role-names>rest-writer</role-name> },
<capabilitys>update</capability> {"role-name":"rest-reader",
</permission> "capabilities": ["read"]
<permissions }
<role-names>rest-reader</role-name>]}
<capability>read</capability>
</permission>
</permissions>
</metadatas

If you explicitly specify other permissions when creating the graph, the above default permissions
are still set, aswell as the permissions you specify.

You can use custom roles to limit access to selected users on a graph by graph basis. Your custom
roles must include equivalent rest-reader and rest-writer privileges. Otherwise, users with
these roles cannot use the REST Client API to manage or query semantic data.

For details, see Security Requirements in the REST Application Developer’s Guide.

9.11.2 Setting Permissions as Part of Another Operation

Use the perm request parameter to set, overwrite, or add permissions as part of another graph
operation. To manage permissions when not modifying graph content, use the category parameter
instead. For details, see“ Setting Permissions Standalone” on page 219.

The perm parameter has the following form:

perm:role=capability

Where role is the name of arole defined in MarkLogic and capability isone of “read”, “insert”,
“update”, or “execute”.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 218

MarkLogic Server Using Semantics with the REST Client API

You can specify the perm parameter multiple times to grant multiple capabilities to the samerole
or set permissions for multiple roles. For example, the following set of parameters grants the
“readers’ rolethe “read” capability and the “writers’ role the “update”’ capability:

perm:readers=read&perm:writers=update

Note: Setting or changing the permissions on a graph does not affect the permissions on
documents that contain embedded triples in that graph.

You can use the perm parameter with the following operations:

Operation REST Client APl Methods
Set or overwrite permissi onson a PUT /vl/graphs?graph=uri&perm:role=capability
named graph or the default graph PUT /vl/graphs?default&perm:role=capability
while creating or overwritng the graph

contents. Request body contains new graph contents (triples).

During a SPARQL Update operation, | POST /v1/graphs/sparql?perm:role=capability
set permissions on all graphs created

as part of the update. Request body contains SPARQL Update.
Add perml ssions to anamed graph POST /vl/graphs?graph=uri&perm:role=capability
while addi ng content to the graph_ POST /vl/graphs?default&perm:role=capability

Request body contains graph updates (triples)

The following restrictions apply:

* When you use the perm parameter with /vi1/graphs, you must also include either the graph
or the gefault request parameter.

* You cannot use the perm parameter in conjunction with category=permissions Or

category=metadata.

* When you use the perm parameter to specify permissions as part of a SPARQL Update
operation, the permissions only affect graphs created as part of the update. The
permissions on pre-existing graphs remain unchanged.

9.11.3 Setting Permissions Standalone

Set the category request parameter to permissions t0 manage permissions without affecting the
contents of a graph. For example, arequest of the following form that includes permissions
metadata in the request body sets the permissions on the default graph, but does not change the
graph contents.

PUT /vl1l/graphs?defaulté&category=permissions

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 219

MarkLogic Server

Using Semantics with the REST Client API

To set or add permissions along with your graph content, use the pern request parameter. For
details, see “ Setting Permissions as Part of Another Operation” on page 218.

You can set the category parameter to either permissions Ol metadata. They are equival ent inthe

context of graph management.

The request body must contain permissions metadata. In XML, the metadata can be rooted at
either ametadata element or the permissions € ement. Also, in XML, the metadata must be in the

namespace http://marklogic.com/rest-api.

For example, all of the following are acceptable:

JSON

XML
<metadata xmlns="http://marklogic.com/rest-api">
<permissions>
<permission>

<role-names>roleA</role-name>
<capability>read</capability>
<capability>update</capability>

</permission>

<permission>
<role-name>roleB</role-name>
<capability>read</capability>

</permission>

</permissions>
</metadatas

{"permissions": [
{"role-name":"roleA",
"capabilities": [

]
I

{"role-name":"roleB",

}

"read", "update"

"capabilities": ["read"]

<permissions
xmlns="http://marklogic.com/rest-api">
<permissions
<role-name>roleA</role-name>
<capabilitys>read</capabilitys>
<capability>update</capability>
</permission>
<permission>
<role-name>roleB</role-name>
<capability>read</capabilitys>
</permission>
</permissions>

Note: Setting or changing the permissions on a graph does not effect the permissions on
documents that contain embedded triples in that graph.

MarkLogic 10—May, 2019

Semantic Graph Developer’ s Guide—Page 220

MarkLogic Server Using Semantics with the REST Client API

You can use the category=permissions pattern to manage graph permissions with the following
methods. In all cases, the graph contents are unaffected.

Operation REST Client API Pattern
Set or overwrite permissions PUT /vl1/graphs?graph=uri&category=permissions
on anhamed graph or the PUT /vl/graphs?default&category=permissions
default graph.

Request body contains permissions metadata. You can also
USE category=metadata.

Add permisg'ons to anamed POST /vl1/graphs?graph=uri&category=permissions
graph or the default graph POST /vl/graphs?defaulté&category=permissions

Request body contains permissions metadata. You can aso
USE category=metadata.

Reset the perm|ss| onsto DELETE /vl/graphs?graph=uri&category=permissions
default permissions ona DELETE /vl1/graphs?default&category=permissions
named graph or the default

graph.

The following restrictions apply:

* When YOU USE category=permissions OI category=metadata with /v1l/graphs, YOU must
also include either the grapn or the gefault request parameter.

* YOU Ccannot USe category=permissions Of category=metadata in Conj unction with the perm
parameter.

9.11.4 Retrieving Graph Permissions

To retrieve permissions metadata about a named graph, make a GET request of the following
form:

GET /vl/graphs?graph=graphURI&category=permissions

To retrieve permissions metadata about the default graph, make a GET request of the following
form:

GET /vl/graphs?default&category=permissions
You can request metadata in either XML or JSON. The default format is XML.
For example, the following command retrieves permissions for the graph with URI /my/graph, as

XML. Inthis case, the graph includes both the default rest-writer and read-reader permissions
and permissions for a custom role named “ GroupA”.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 221

MarkLogic Server Using Semantics with the REST Client API

curl --anyauth --user user:password -X GET -i \
-H "Accept: application/xml" \
'http://localhost:8000/v1/graphs?graph=/my/graph&category=permissions’

HTTP/1.1 200 OK

Content-type: application/xml; charset=utf-8
Server: MarkLogic

Content-Length: 868

Connection: Keep-Alive

Keep-Alive: timeout=5

<rapi:metadata uri="/my/graph"
xmlns:rapi="http://marklogic.com/rest-api" ...>
<rapi:permissions>
<rapi:permission>
<rapi:role-name>rest-writer</rapi:role-name>
<rapi:capability>update</rapi:capability>
</rapi:permission>
<rapi:permission>
<rapi:role-name>rest-reader</rapi:role-name>
<rapi:capability>read</rapi:capability>
</rapi:permission>
<rapi:permission>
<rapi:role-name>GroupA</rapi:role-name>
<rapi:capability>read</rapi:capability>
<rapi:capability>update</rapi:capability>
</rapi:permission>
</rapi:permissions>
</rapi:metadata>

The following data is the equivalent permissions metadata, expressed as JSON:

{"permissions": [

{"role-name":"rest-writer", "capabilities": ["update"]},
{"role-name":"rest-reader", "capabilities": ["read"]},
{"role-name":"GroupA", "capabilities": ["read", "update"] }

1}

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 222

MarkLogic Server XQuery and JavaScript Semantics APIs

10.0 XQuery and JavaScript Semantics APIs

This chapter describes the XQuery and JavaScript Semantics APIs, which include an XQuery
library module, built-in semantics functions, and support for SPARQL, SPARQL Update, and
RDF. The Semantics API is designed for large-scale, production triple stores and applications.
The complete list of semantic functions can be found at https://docs.marklogic.com/sem/semantic-
functions.

This chapter includes examples of using the Semantics API, which isan API designed to create,
guery, update, and delete triples and graphsin MarkLogic.

Additionally, the following APIs support the MarkL ogic Semantics features; XQuery API, REST
API, Nodejs Client API, and Java Client API, using avariety of query styles, as described in the
Loading Semantic Triples, Semantic Queries and Inserting. Deleting. and Modifying Triples with XQuery
and Server-Side JavaScript chapters of this guide.

This chapter includes the following sections:

e XQuery Library Module for Semantics

* Generating Triples

e Extracting Triples from Content

¢ Parsing Triples
e Exploring Data

Note: Semanticsisaseparately licensed product: you need avalid semantics license key
to use semantics.

10.1 XQuery Library Module for Semantics

Some of the Semantics XQuery functions are built-in functions that do not require an import
statement, while others are implemented in an XQuery library module that requires an import
statement. To simplify things, MarkL ogic recommends that you import the Semantics API library
into every XQuery module or JavaScript module that uses the Semantics API.

10.1.1 Importing the Semantics Library Module with XQuery

You can use the Semantics API library module with XQuery by importing the module into your
XQuery with the following prolog statement:

import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqy";

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 223

https://docs.marklogic.com/sem/semantic-functions
https://docs.marklogic.com/sem/semantic-functions

MarkLogic Server XQuery and JavaScript Semantics APIs

The prefix for all semantic functionsin XQuery iShttp://marklogic.com/semantics. The
Semantics API uses the prefixes sem: Or rdaf:, which are defined in the server. For details about
the function signatures and descriptions, see the Semantics documentation under XQuery Library
Modulesin the XQuery and XSLT Reference Guide and the MarkLogic XQuery and XS.T
Function Reference.

10.1.2 Importing the Semantics Library Module with JavaScript

For JavaScript you can use the Semantics API library module by importing the module into your
JavaScript with this statement:

var sem = require("/marklogic/semantics.xqy") ;

The prefix for al semantic XQuery functionsin JavaScript iS /marklogic.com/semantics.xqy.
With JavaScript, the Semantics APl usesthe prefix sem. , which is defined in the server. For
details about the function signatures and descriptions, see the Semantics documentation under
JavaScript Library Modules in the JavaScript Reference Guide and the MarkLogic XQuery and
XST Function Reference.

10.2 Generating Triples

The XQuery sem: rdf-builder function isapowerful tool for dynamically generating triplesin the
Semantics API. (For JavaScript, the function iS sem. rafBuilder.)

The function builds triples from the CURIE and blank node syntaxes. Blank nodes specified with
aleading underscore (_) are assigned blank node identifiers, and maintain state across multiple
invocations; for example, " _:personi” refersto the same node as a later invocation that also
mentions"_:person1". For example:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqgy";

let sbuilder := sem:rdf-builder((), sem:iri("my-named-graph"))
let $tl := Sbuilder(" :personl", "a", "foaf:Person")

let $t2 := Sbuilder (" :person2", "a", "foaf:Person")

let $t3 := S$builder (" :personl", "foaf:knows", " :person2")

return ($tl,3$t2,3t3)

=>
@prefix xs: <http://www.w3.org/2001/XMLSchema#> .
<http://marklogic.com/semantics/blank/4892021155019117627>
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type/>
<http://xmlns.com/foaf/0.1/Person> .
<http://marklogic.com/semantics/blank/6695700652332466909>

<http://xmlns.com/foaf/0.1/knows>
_:bnode4892021155019117627 ;

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 224

MarkLogic Server XQuery and JavaScript Semantics APIs

<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type/>
<http://xmlns.com/foaf/0.1/Person> .

In the exampl e, there are threetriples generated in Turtle serialization using sem: rdaf-builder. The
triples represent the following facts; that personl and person2 are people, and that their
relationship is that personl knows person2.

Note the following:

* Thefirst parameter accepts an optional set of prefix mappings, which in thisexampleisan
empty argument. Since“ empty” means default, the $common-prefixes are used for the first
argument. The second argument is a named graph for the sem: raf-builder OUtpUL.

* Inthe predicate position, the special value of »a» isexpanded to the full IRI for rdf: type.

* Human-readable CURIESs for common prefixes are used, such as foaf : knows instead of
long IRIs. See “Working with CURIES” on page 139.

» Theblank nodes produced in the third triple match the identity of those defined in the first
and second.

10.3 Extracting Triples from Content

With the sem: raf-builder function you can easily extract triples from existing content or the
results of a SPARQL query and quickly construct RDF graphs for querying or inserting into your
database.

Assume that you have aweb page that lists cities and countries that are sorted and ranked by the
cost of living (COL), which is based on a Consumer Priced Index (CPI) and CPI-based inflation
rate. The inflation rate is defined as the annual percent change in consumer prices compared with
the previous year's consumer prices. Using areference point of Monterrey, Mexico with an
assigned avalue of 100, the inf1ation vValue of every other city in the database is calculated by
comparing their COL to that of Monterrey. For example, an tnfiation Value of 150, means that
the COL is 50% more expensive than living in Monterrey.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 225

MarkLogic Server XQuery and JavaScript Semantics APIs

Ranking City Inflation * Ranking City Inflation *
1 London (United Kingdom) 270 71 Minneapolis (United States 134
2 Stockholm (Sweden) 266 72 Turin (Ttaly 134
3 Zurich (Switzerland) 251 73 Shanghai (China) 133
4 Geneva (Switzerland) 247 74 Lijubliana (Slovenia) 132
3 New York City (United States) 225 73 Orlando (United States) 129
6 Singapore (Singapore) 219 76 Saint Petersburg (Russia 125
7 San Francisco (United States) 209 77 Austin (United States 125
8 Paris (France 208 78 Phoenix (United States 123
9 Svdnev (Australia 205 79 Almaty (Kazakhstan 121
10 Brisbane (Australia) 203 80 Salt Lake Citv (United States) 120
11 Copenhagen (Denmark 202 81 Beijing (China) 120
12 Oslo (Norway 201 82 Lisbon (Portugal 120
13 Tokvo (JTapan) 200 83 Santiago (Chile) 120
14 Hone Kon, ong Kon, 200 84 Montevideo (Uruguay) 119
15 Perth (Australia) 198 85 Belo Horizonte (Brazil 116
16 Melbourne (Australia) 190 86 Brasilia (Brazil 116
17 Amsterdam (Netherlands) 189 87 Valencia (Spain 116
18 Wellington (New Zealand) 186 28 Kansas City (United States) 116
19 Washington D.C. (United States) 185 89 Raleigh. North Carolina (United States) 115
20 Helsinki (Finland) 182 90 Istanbul (Turkev) 114
21 Dublin (Treland) 182 91 Bangkok (Thailand 114
22 Boston (United States) 174 92 Bogota (Colombia) 111
23 Frankfurt am Main (Germany) 172 93 Zagreb (Croatia) 109
24 Toronto (Canada 170 94 Oporto (Portugal 108
25 Munich (Germanv) 168 95 Taipei (Tarwan 108
26 Manchester (United Kingdom) 166 96 Amman (Jordan) 107
27 Vancouver {Canada 165 97 Curitiba (Brazil 107
28 Tel Aviv (Israel 165 98 Porto Alegre (Brazil) 107
29 Malmo (Sweden) 165 99 Kuala Lumpur (Malaysia) 105
30 Calgarv (Canada) 164 100 Johannesbure (South Africa) 103

Note: These values arefictional and are not based on any official sources.
The underlying HTML code for the COL table may resemble the following:

<table class="city-index"
style="max-width:58%;float:left;margin-right:2em; ">
<thead>
<tr>
<th>Ranking</th>
<th class="city-name">City</th>
<th class="inflation">Inflation
*</th>
</tr>
</thead>

<tbody><tr>
<td class="ranking">1l</td>

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 226

MarkLogic Server XQuery and JavaScript Semantics APIs

<td class="city-name">

London (United Kingdom)</td>
<td class="inflation">270</td>
</tr>

<tr>
<td class="ranking">2</td>
<td class="city-name">

Stockholm (Sweden)</td>
<td class="inflation">266</td>
</tr>

<tr>
<td class="ranking">3</td>
<td class="city-name">

Zurich (Switzerland)</tds>
<td class="inflation">251</td>
</tr>

<tr>
<td class="ranking">4</td>
<td class="city-name">

Geneva (Switzerland)</td>
<td class="inflation">247</td>
</tr>

<tr>
<td class="ranking">5</td>
<td class="city-name">
<ahref="http://www.example.org/IncreasedCoL/new-york">
New York City (United States)</td>
<td class="inflation">225</td>

</tr>

This example uses the sem: raf-builder function to extract triples from the HTML content. The
function takes advantage of the fact that the HTML code is already well-formed and has a useful
classification node (eciass):

import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqy";
declare namespace html="http://www.w3.org/1999/xhtml";

let $doc := xdmp:tidy (xdmp:document-get ("C:\Temp\CoLIndex.html",
<options xmlns="xdmp:document-get">
<repairs>none</repairs
<formats>text</formats>
</options>)) [2]

let Srows := (Sdoc//html:tr) [html:td/@class eq 'ranking']

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 227

MarkLogic Server XQuery and JavaScript Semantics APIs

let Sbuilder := sem:rdf-builder
(sem:prefixes ("my: http://example.org/vocab/"))
for Srow in Srows
let $bnode-name := " :" || $row/html:td[eclass eqg 'ranking']
return (
Sbuilder ($Sbnode-name, "my:rank", xs:decimal (
Srow/html:td[@class eq 'ranking'l)),
Sbuilder (Sbnode-name, "rdfs:label", xs:string(
Srow/html:td[e@class eq 'city-name']l)),
Sbuilder (Sbnode-name, "my:coli", xs:decimal (
Srow/html:td[@class eq 'inflation']))

The results are returned as in-memory triples:

Run l:‘_:’,l __| Result Auto | Raw 5 Profile = Explorer

@prefix xs: <http://www.w3.org/2881/XMLSchema#> .
<http://marklogic.com/semantics/blank/115632221686814697> <http://example.org/vocab/coli> "188""*"
<http://www.w3.org/2888/81/rdf-schema#label> "Monterrey (Mexico)"**xs:string ;
<http://example.org/vocab/rank> "162"*"*xs:decimal .
<http://marklogic.com/semantics/blank/113432313684957818354> <http://example.org/vocab/coli> "164"
<http://www.w3.org/2888/81/rdf-schema#label> "Calgary (Canada)"""xs:string ;
<http://example.org/vocab/rank> "38""*xs:decimal .
<http://marklogic.com/semantics/blank/55789343678081214614> <http://example.org/vocab/coli> "98""*"
<http://www.w3.org/2888/81/rdf-schema#label> "Riyadh (Saudi Arabia)"""xs:string ;
<http://example.org/vocab/rank> "1@5"*"*xs:decimal .
<http://marklogic.com/semantics/blank/11266584666843360618> <http://example.org/vocab/coli» "225™
<http://www.w3.org/2888/81/rdf-schema#label> "New York City (United States)"""xs:string ;
<http://example.org/vocab/rank> "5"""xs:decimal .
<http://marklogic.com/semantics/blank/1826266981718582@8882> <http://example.org/vocab/coli» "162™
<http://www.w3.org/2888/81/rdf-schema#label> "Rome (Italy)"**xs:string ;
<http://example.org/vocab/rank> "32""*xs:decimal .
<http://marklogic.com/semantics/blank/1586@7358448488722276> <http://example.org/vocab/coli> "66""
<http://www.w3.org/20888/01/rdf-schema#label> "Colombo (Sri Lanka)"**xs:string ;
<http://example.org/vocab/rank> "129"**xs:decimal .
<http://marklogic.com/semantics/blank/13783911643831869128> <http://example.org/vocab/coli> "48"*
<http://www.w3.org/2888/81/rdf-schema#label> "Hyderabad (India)"**xs:string ;
<http://example.org/vocab/rank> "137"**xs:decimal .

10.4 Parsing Triples

This exampl e extends the previous example and inserts parsed triples into the database by using
the sem: rdf-insert function:

import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqy";
declare namespace html="http://www.w3.org/1999/xhtml";

let $doc := xdmp:tidy (xdmp:document-get ("C:\Temp\CoLIndex.html",
<options xmlns="xdmp:document-get">
<repairs>none</repairs
<formats>text</formats>
</options>)) [2]

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 228

MarkLogic Server XQuery and JavaScript Semantics APIs

let Srows := (Sdoc//html:tr) [html:td/@class eq 'ranking']
let S$builder := sem:rdf-builder(
sem:prefixes ("my: http://example.org/vocab/"))
for Srow in Srows
let $Sbnode-name := " :" || $row/html:td[eclass eqg 'ranking']
let striples := Srow
return (sem:rdf-insert ((
Sbuilder (Sbnode-name, "my:rank", xs:decimal
(srow/html:td[eclass eq 'ranking']l)),
Sbuilder (Sbnode-name, "rdfs:label", xs:string
(srow/html:td[eclass eq 'city-name'])),
Sbuilder (Sbnode-name, "my:coli", xs:decimal
(srow/html:td[eclass eq 'inflation'])))
))

The document IRIs are returned as strings:

Run ';:J' __| Result Auto | Raw 5 Profile =] Explorer

/triplestore/2ca88f284b7ddo6d. xml
/triplestore/7c19fel72dad48828.xml
/triplestore/6a45de9c436d854f . xml
/triplestore/47f9e478bda7921d . xml
/triplestore/6c674215fbbedb99. xml
/triplestore/a@39ff4f4117FF53 . xml
/triplestore/5a261fblel3f247a.xml
/triplestore/d57ed5a@9ff8b1d3 . xml

/triplestore/2c21d435cba81f5f . xml

Note: For more information about inserting and parsing triples with XQuery, see
“Loading Triples with XQuery” on page 51.

The parser ensures well-formed markup as the triples are inserted as schema-valid triples and
indexed with the Triplesindex, provided it is enabled. See “Enabling the Triple Index” on

page 66.
Use £n:doc to view the contents of the documents and verify the triples.

fn:doc ("/triplestore/2ca88f284b7dd96d.xml")

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 229

MarkLogic Server XQuery and JavaScript Semantics APIs

Run l\.:/] __| Result | Auto | Raw & Profile = Explorer

<?xml version="1.8" encoding="UTF-8"2>
<sem:triples xmlns:sem="http://marklogic.com/semantics">
<sem:triple>
<sem:subject>http://marklogic.com/semantics/blank/12344897314863730726</sem:subjects
<sem:predicaterhttp://example.org/vocab/rank</sem:predicate>
<sem:object datatype="http://www.w3.org/2001/XMLS5chemas#decimal ">1</sem:object>
</sem:triple>
<sem:triple>
<sem:subject>http://marklogic.com/semantics/blank/12344897314863730726</sem: subject>
<sem:predicate>http://www.w3.org/2608/81/rdf-schemafflabel</sem:predicate>
<sem:object datatype="http://www.w3.org/2601/XMLSchema#string ">London (United Kingdom)</sem:object>
</sem:triple>
<sem:triple>
<sem:subject>http://marklogic.com/semantics/blank/123448973148637308726</sem:subjects
<sem:predicaterhttp://example.org/vocab/coli</sem: predicates
<sem:object datatype="http://www.w3.org/2681/XMLSchematidecimal ">276</sem:object>
</sem:triple>
<fsem:triples>

One document is created for each blank node identifier ($bnode-name).

Note: During the generation process spuilder maintains state eliminating the need to
keep track of every blank node label and ensuring that they map to the same
sem:blank Value.

The Semantics API includes arepair option for the N-Quad and Turtle parsers. During a normal
operation, the RDF parsers perform these tasks:

* Turtle parsing uses the base IRI to resolve relative IRIs. If theresult isrelative, an error is
raised.

* N-Quad parsing does not resolve using the base IRI. If alRI in the document isrelative, an
error is raised.

During arepair operation the RDF parsers perform this task:
» Turtle parsing uses the base IRI to resolve relative IRIs. No error israised for resultant
relative IRIs.

* N-Quad parsing also uses the base IRI to resolve relative IRIs. No error israised for
resultant relative IRIs.

10.5 Exploring Data

The Semantics API provides functions to access RDF data in a database. This section focuses on
the following topics:

e sem:triple Functions

* Transitive Closure

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 230

MarkLogic Server

XQuery and JavaScript Semantics APIs

10.5.1 sem:triple Functions
This table describes the sem: trip1e functions used to define or search for triple data:

Function

Description

sem:triple

Creates atriple object that represents an RDF triple containing
atomic values representing the subject, predicate, object, and
optionally a graph identifier (graph IRI)

sem:triple-subject

Returns the subject from asen:triple vaue

sem:triple-predicate

Returns the predicate from asen:triple value

sem:triple-object

Returns the object from a sem: triple vaue

sem:triple-graph

Returns the graph identifier (graph IRI) from asem:triple vaue

In this example, the sem: tripie function is used to create atriple that includes a CURIE for the
predicate and an raf : 1angstring Value as the object, with English (en) as the given language tag:

sem:triple(sem:iri ("http://id.loc.gov/authorities/subjects/

sh85040989") ,

sem:curie-expand ("skos:preflabel"),
rdf:langString ("Education", "en"))

=>
@prefix xs:

<http://www.w3.0rg/2001/XMLSchema#> .

<http://id.loc.gov/authorities/subjects/sh85040989>
<http://www.w3.0rg/2004/02/skos/coref#fprefLabel/>

"Education"@en .

10.5.2 Transitive Closure

Transitive closure is away to traverse alarge section of a graph with asingle lookup, applying a
“follow relationship X” recursively.

10.5.2.1 Understanding Transitive Closure

A common use caseis athesaurus, where you have aterm, and you want to find all broader terms,
all broader terms for those terms, and all broader terms for those broader terms, and so forth. For
example, if you have ataxonomy organized like this:

Mammal
Dog
Bichon

MarkLogic 10—May, 2019

Semantic Graph Developer’ s Guide—Page 231

MarkLogic Server XQuery and JavaScript Semantics APIs

If you want to find all terms that are narrower terms for “mammal”, you can do atransitive
closure of “mammal” over “narrower term” and find cat, dog, cow, Bichon, Siamese, Alsatian,
chihuahua, Friesian, Jersey, and so forth.

Transitive closure queries are commonly used to explore taxonomies and ontologies such as the
Simple Knowledge Organization System (SKOS). SKOS is “a common data model for
knowledge organization systems such as thesauri, classification schemes, subject heading systems
and taxonomies” as described by the W3C SKOS Simple Knowledge Organization System
Reference:

http://www.w3.0rg/TR/skos-reference/

10.5.2.2 sem:transitive-closure
The sem:transitive-closure function has the following signature:

sem:transitive-closure (
$seeds as sem:iri*,
Spredicates as sem:iri¥,
$limit as xs:integer

) as sem:iri+*

This function takes seeds (subjects), predicates (relationships), and the depth to which to search,
and returns all unique node IRIs.

Use the sem:transitive-closure function to traverse RDF graphs to answer reachability
guestions and discover more information about your RDF data. (In JavaScript, you would use the
sem.transitiveClosure function.)

For example, assume that you have a file composed of triples for subject headings that relate to
US Congress bills and that the triples are marked up with the SKOS vocabulary. The triples may
look similar to this extract:

<http://id.loc.gov/authorities/subjects/sh85002310/>
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type/>
<http://www.w3.0rg/2004/02/skos/core#Concept/> .

<http://id.loc.gov/authorities/subjects/sh85002310/>
<http://www.w3.0rg/2004/02/skos/coref#fprefLabel/>
"Agricultural education"e@en .

<http://id.loc.gov/authorities/subjects/sh85002310/>
<http://www.w3.0rg/2008/05/skos-x1#altLabel/>
__:bnode7authoritiessubjectssh85002310 .

:bnode7authoritiessubjectssh85002310

:http://www.w3.org/l999/02/22—rdf—syntax—ns#type/>
<http://www.w3.0rg/2008/05/skos-x1#Label/> .

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 232

http://www.w3.org/TR/skos-reference/

MarkLogic Server

XQuery and JavaScript Semantics APIs

__:bnode7authoritiessubjectssh85002310
<http://www.w3.0rg/2008/05/skos-x1#literalForm/>
"Education, Agricultural"@en

<http:
<http:
<http:

<http:
<http:
<http:

<http:
<http:
<http:

<http:
<http:

//id.loc.

//www.w3

//id.loc.

//id.loc.

//www.w3

//id.loc.

//id.loc.

//www.w3
//Www. w3

//id.loc.

//Www. w3

gov/authorities/subjects/sh85002310/>
.org/2004/02/skos/coreffbroader/>
gov/authorities/subjects/sh85133121/>

gov/authorities/subjects/sh85002310/>
.org/2004/02/skos/core#fnarrower/ >
gov/authorities/subjects/sh85118332/>

gov/authorities/subjects/sh85133121/>
.org/1999/02/22-rdf -syntax-ns#type/>
.org/2004/02/skos/core#fConcept/>

gov/authorities/subjects/sh85133121/>
.org/2004/02/skos/coref#fprefLabel/>

"Technical education"@en

In this dataset, “ Technical education” is abroader subject heading for “ Agricultural education” as
defined by the skos :broader predicate:

<http://id.loc.gov/authorities/subjects/sh85002310/>
<http://www.w3.0rg/2004/02/skos/coref#fbroader/>
<http://id.loc.gov/authorities/subjects/sh85133121/>

MarkLogic 10—May, 2019

Semantic Graph Developer’ s Guide—Page 233

MarkLogic Server XQuery and JavaScript Semantics APIs

<sem:triples>
<sem:subject>http://id.loc.gov/authorities/subjects/sh85002310</sem:subject>
<sem:predicates>http://www.w3.0rg/1999/02/22-rdf -syntax-ns#type</sem:predicate>
<sem:object>http://www.w3.0rg/2004/02/skos/core#Concept</sem:object>

</sem:triple>

<sem:triple>
<sem:subject>http://id.loc.gov/authorities/subjects/sh85002310</sem: subject>
<sem:predicate>http://www.w3.0rg/2004/02/skos/coref#ipreflLabel</sem:predicate>
<sem:object xml:lang="en">Agricultural education</sem:object>

</sem:triple>

<sem:triple>
<sem:subject>http://id.loc.gov/authorities/subjects/sh85002310</sem: subject>
<sem:predicates>http://www.w3.0rg/2008/05/skos-x1#altLabel</sem:predicate>
<sem:object>http://marklogic.com/semantics/blank/17142585114552908287</sem:object>

</sem:triple>

<sem:triple>

<sem:subject>http://marklogic.com/semantics/blank/17142585114552908287</sem: subject>
<sem:predicatehttp://www.w3.0rg/1999/02/22-rdf-syntax-ns#type></sem:predicates>
<sem:object>http://www.w3.0rg/2008/05/skos-x1#Label</sem:object>

</sem:triple>

<sem:triple>

<sem:subject>http://marklogic.com/semantics/blank/17142585114552908287</sem:subject>
<sem:predicate>http://www.w3.0rg/2008/05/skos-x1#literalForm</sem:predicate>
<sem:object xml:lang="en">Education, Agricultural</sem:object>

</sem:triple>

<sem:triple>
<sem:subject>http://id.loc.gov/authorities/subjects/sh85002310</sem: subject>
<sem:predicateshttp://www.w3.0rg/2004/02/skos/core#tbroader</sem:predicates>
<sem:object>http://id.loc.gov/authorities/subjects/sh85002310</sem:object>

</sem:triple>

Thisexample uses cts: triples to find the subject IRI for atriple where the predicate isa CURIE
for skos :preflabel and the object iSAgricultural education. The SUb]eCt IRI found in the
cts:triples query issubsequently used with skos :broader to determine broader subject terms to
adepth of s:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqy";

let striple-subject := sem:triple-subject(cts:triples((), sem:curie-
expand ("skos:prefLabel"),

rdf:langString ("Agricultural education", "en")))

return

sem:transitive-closure ($Striple-subject, sem:curie-
expand ("skos:broader"), 3)

=>

<http://id.loc.gov/authorities/subjects/sh85133121/>
<http://id.loc.gov/authorities/subjects/sh85002310/>
<http://id.loc.gov/authorities/subjects/sh85026423/>
<http://id.loc.gov/authorities/subjects/sh85040989/>

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 234

MarkLogic Server

XQuery and JavaScript Semantics APIs

Notice that in addition to the expected IRIs, for the following subjects:

e <http://id.loc.gov/authorities/subjects/sh85002310/>

e <http://id.loc.gov/authorities/subjects/sh85133121/>
IRIs were returned also in the results for the following subjects:

e <http://id.loc.gov/authorities/subjects/sh85040989/>

e <http://id.loc.gov/authorities/subjects/sh85026423/>

When we take a closer ook at the dataset, the IRIs for “Education” and “ Civilization” are also
returned, since they are broader subjects still to “ Agricultural education” and “ Technical

Education”:

<http://id.loc.
.org/2004/02/skos/coref#fprefLabel/>

<http://www.w3
"Education"@en

<http://id.loc.
.org/2004/02/skos/core#broader/>

<http://www.w3

<http://id.loc.

<http://id.loc.
.org/2004/02/skos/coref#fprefLabel/>

<http://www.w3

gov/authorities/subjects/sh85040989/>

gov/authorities/subjects/sh85040989/>
gov/authorities/subjects/sh85026423/>

gov/authorities/subjects/sh85026423/>

"Civilization"@en

MarkLogic 10—May, 2019

Semantic Graph Developer’ s Guide—Page 235

MarkLogic Server XQuery and JavaScript Semantics APIs

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 236

MarkLogic Server Client-Side APIs for Semantics

11.0 Client-Side APIs for Semantics

MarkL ogic Semantics can be accessed through client-side APIs that provide support for
management of triples and graphs, SPARQL and SPARQL Update, and access to the search
features of MarkL ogic server. The Java Client and Node.js Client source are available on GitHub.

The chapter includes the following sections:

e Java Client API

e Node.js Client API

* Queries Using Optic API

11.1 Java Client API

The Java Client API enables you to create client-side Java applications that interact with
MarkLogic. Semantics related features include support for graph and triple management,
SPARQL Query, SPARQL Update, and Optic queries.

For details, see Working With Semantic Data in the Java Application Developer’s Guide and the
following interfaces and classesin the com.marklogic.client.semantics package in the Java
Client APl Documentation.

® GraphManager

d SPARQLQueryManager

* SPARQLQueryDefinitions
* MarkLogicBooleanQuery
* MarkL ogicUpdateQuery

11.2 Node.js Client API

The Node.js Client API can be used for CRUD (Create, Read, Update, and Delete) operations
on graphs; creating, reading, updating, and deleting triples and graphs. The
DatabaseClient.graphs.write fUNCtion can be used to create a graph containing triples, the
DatabaseClient.graphs.read function reads from a graph ThepatabaseClient. graphs.remove
function removes a graph. The patabaseclient.graphs.spargl function queries semantic data.

See Working With Semantic Data in the Node.js Application Developer’s Guide for more details.
The Node.js Client source can be found on GitHub at http:/github.com/marklogic/node-client-api. For
additional operations, see the Node.js Client APl Reference.

Note: These operations only work with managed triples contained in a graph. Embedded
triples cannot be manipulated using the Node.js Client API.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 237

https://github.com/marklogic/java-client-api
https://github.com/marklogic/node-client-api
https://github.com/marklogic/node-client-api

MarkLogic Server Client-Side APIs for Semantics

11.3 Queries Using Optic API

The Optic API can be used to search and work with semantic triplesin both client-side queries
and server-side side queries. Optic can be used for triple data client-side queries with the Java
Client APl and the REST Client API, but not with Node.js. See Optic Java API for Relational
Operations in the Java Application Devel oper’s Guide and Retrieving Rows in the REST Application
Developer’s Guide for more details.

For server-side queries using the Optic API, see “Querying Triples with the Optic API” on
page 145 for more information. Also, seethe op: from-triples OF op.fromTriples functionsin
the Optic API and the Data Access Functions section in the Application Developer’s Guide .

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 238

MarkLogic Server Inserting, Deleting, and Modifying Triples with XQuery

12.0 Inserting, Deleting, and Modifying Triples with XQuery
and Server-Side JavaScript

Triples can be modified with XQuery or Server-side JavaScript, using MarkLogic xdmp built-ins.
Triples managed by MarkL ogic - those triples having a document root of sem:triples - Can be
modified using SPARQL Update. See “Using SPARQL Update” on page 170 for more
information about modifying managed triples.

“Unmanaged” triples, those triples embedded in another document with an element node of
sem:triple, can only be modified using XQuery or Server-Side JavaScript and xamp built-ins. To
perform updates on triplesin your datastore (for either managed or unmanaged triples), you insert
anew triple and delete the existing one. You are not updating the existing triple; the update
operation is actually an insert/pELETE procedure.

This chapter includes the following sections:

e Updating Triples

¢ Deleting Triples

12.1 Updating Triples

You can use XQuery or Server-Side JavaScript functions to update existing triples in a database,
by using inserT/DELETE tO replace nodes. For a managed triple, the sem: database-nodes
(sem.databaseNode in Server-Side JavaScrlpt) and the xdmp : node-replace (xdmp .nodeReplace iN
Server-Side JavaScript) functions are used to correct inaccurate data.

Assume the database contains a document containing the following unmanaged triple, with the
resource “ John Doe” entered as “John_Doeg”:

<sem:triples xmlns:sem="http://marklogic.com/semantics">
<sem:triple>
<sem:subject>http://dbpedia.org/resource/John Doe</sem:subjects>
<sem:predicate>http://www.w3.0rg/1999/02/22-rdf-syntax-
nsH#type</sem:predicate>
<sem:object>http://xmlns.com/foaf/0.1/Person/</sem:object>
</sem:triple>
</sem:triples>

The following example replaces the subject with “http://dbpedia.org/resource/John_Doe” using
the xdmp : node-replace function. The example uses sem: rdf-builder to construct atriple that
matches the one we want to change. Using thistriple with sem: database-nodes finds the matching
nodes in the database to be changed.

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqgy";

(: construct the triple to match against :)

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 239

MarkLogic Server Inserting, Deleting, and Modifying Triples with XQuery

let Sbuilder := sem:rdf-builder(
sem:prefixes ("dbpedia: http://dbpedia.org/resource/"))
let striple := Sbuilder(
"dbpedia:John Doe", "a", "foaf:Person")
(: find matching unmanaged triples in the database :)
let $node := sem:database-nodes($triple)
(: construct the replacement triple with a new subject :)
let Sreplace :=
<sem:triple>
<sem:subject>http://dbpedia.org/resource/John Doe</sem:subject>
{$node[1] /sem:predicate, $node[l]/sem:object}
</sem:triple>

(: replace the old triple with the new one in all matched nodes :)
return $node ! xdmp:node-replace ($node, S$replace) ;

The following example performs the same operation using Server-Side JavaScript. The example
uses the NodeBuilder interface to construct the replacement node.

declareUpdate () ;
const sem = require ('/MarkLogic/semantics') ;

// construct the triple to find in the database
const builder =

sem.rdfBuilder (sem.prefixes ('dbpedia: http://dbpedia.org/resource/')) ;
const triple = xdmp.apply(builder,

'dbpedia:John Doe', 'a', 'foaf:Person');

for (let node of sem.databaseNodes (triple)) ({
// construct the replacement triple with the new subject
const pred = fn.head(
node.xpath('sem:predicate’,

{rsem': 'http://marklogic.com/semantics'}));
const obj = fn.head(
node.xpath('sem:object"',
{rsem': 'http://marklogic.com/semantics'}));

const replacement = new NodeBuilder ()
.startElement ('sem:triple', 'http://marklogic.com/semantics/"')
.addElement (
'sem:subject"',
'http://dbpedia.org/resource/John Doe',
'http://marklogic.com/semantics"')
.addNode (pred)
.addNode (obj)
.endElement ()
.toNode () ;
// replace the old triple with the new one
xdmp .nodeReplace (node, replacement)

}

When you have multiple triples to update, you can use XQuery or Server-Side JavaScript (or if
they are managed triples, SPARQL Update), to find matching triples, and then iterate over the
nodes to replace them.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 240

MarkLogic Server Inserting, Deleting, and Modifying Triples with XQuery

In thisexample, acts:triples cal findsal triples with “John_Doe” in the subject position and
replaces each occurrence with “ Jane_Roe”:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/Marklogic/semantics.xqgy";

let striples :=
cts:triples(sem:iri ("http://dbpedia.org/resource/John Doe"), (), ())
for S$triple in S$triples
let S$node := sem:database-nodes (Striple)
let Sreplace :=
<sem:triple>
<sem:subject>http://dbpedia.org/resource/Jane Roe</sem:subject>
{$node/sem:predicate, $node/sem:object}
</sem:triple>
return $node ! xdmp:node-replace(., Sreplace)

An empty sequenceis returned for both of the examples because the replacements have been
made. Useasimple cts:triples cal to verify that the updates have been made:

cts:triples(sem:iri ("http://dbpedia.org/resource/John Doe"),
0, 0)

Note: Using the xdmp : node-replace function resultsin creating a new fragment and
deleting the old fragment. When the system performs a merge, the deleted
fragments are removed permanently. The system performs automatic merges,
unless this feature has been disabled by an administrator.

12.2 Deleting Triples

This section discusses methods for deleting RDF datain MarkL ogic and includes the following
topics:

e Deleting Triples with XQuery or Server-Side JavaScript

e Deleting Triples with REST API

12.2.1 Deleting Triples with XQuery or Server-Side JavaScript

There are several functions you can use to delete triples from a database. This section discusses
the following functions:

* sem:graph-delete

e xdmp:node-delete

¢ xdmp:document-delete

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 241

MarkLogic Server Inserting, Deleting, and Modifying Triples with XQuery

12.2.1.1 sem:graph-delete
Note: Thisfunction only works for managed triples.

You can use the sem: graph-delete function to delete all managed triple documents in a named
graph. You specify the graph IRI as the parameter.

For example:

xquery version "1.0-ml";

import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqy";

sem:graph-delete (sem:iri ("mynamedgraph"))

In Server-Side JavaScript the command would be:

const sem = require ("/marklogic/semantics.xqy") ;

sem.graphDelete (sem.iri ("mynamedgraph")) ;

The following example deletes all managed triples in the default graph. If no other named graphs
exigt, this might remove al triples from the database:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqgy";

sem:graph-delete (
sem:iri ("http://marklogic.com/semantics#default-graph"))

Note: The sem:graph-delete function will only delete triplesinserted by the Graph Store
API, which have a document root element of sem:tripie. If you delete a specific
named graph, it will not affect documents with embedded triples (with a
sem:triples €lement node), so the graph might still exist.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 242

MarkLogic Server Inserting, Deleting, and Modifying Triples with XQuery

12.2.1.2 xdmp:node-delete

To delete a set of triples from the database, use the sem: database-nodes function with
xdmp :node-delete in XQuery, Of sem.databaseNodes With xdmp .nodeDelete in Server-Side
JavaScript. This function works with managed or unmanaged triples.

For example:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqgy";

let striples :=
cts:triples(sem:iri ("http://www.rdfabout.com/rdf/usgov/congress/people
/D000596"), () ())

for Striple in S$triples
return (sem:database-nodes ($triple) ! xdmp:node-delete(.))

Note: This query will not delete empty sem:tripie document elementsif al the triples
are deleted from a single document.

In Server-Side JavaScript, the example would look like this:

const sem = require ('/MarkLogic/semantics') ;

const triples = cts.triples(
sem.iri ('http://www.rdfabout.com/rdf/usgov/congress/people/D000596"),
null, null);

for (let triple of triples) {
for (let node of xdm.databaseNodes (triple)) ({
xdmp .nodeDelete (node)
}

}

12.2.1.3 xdmp:document-delete
You can remove documents containing triples from the database with the xdamp : document -delete

function. Thisfunction deletes adocument and all of its properties, and works with both managed
and unmanaged triples. Specify the IRI of the document to be deleted as the parameter.
The following XQuery example deletes the document with URI “example.xml”:

xquery version "1.0-ml";
xdmp : document -delete ("example.xml")

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 243

MarkLogic Server Inserting, Deleting, and Modifying Triples with XQuery

The following example performs the equivalent operation in Server-Side JavaScript:

declareUpdate () ;
const sem = require ('/MarkLogic/semantics.xqy') ;

xdmp . documentDelete ('example.xml') ;

Deleting a document del etes the document, any triples embedded in the document, and the
document properties.

To delete all documentsin a directory, use the xdmp: directory-delete function.

12.2.2 Deleting Triples with REST API

You can use the REST API to delete triples in the default graph or a named graph by sending a
DELETE request to the peLeTE: /v1/graphs Service. To delete triples from a named graph, use curi
to send the pereTE request in the following form:

http://host :port/version/graphs?graph=graph-iri
where graph-iri isthe IRI of your named graph.

The IRI for the named graph in the request iShttp: //host:port/version/graphs?default. FOr
example, thispeLeTe request removes all triples from the default graph at port 8321

#Windows users, see Modifying the Example Commands for Windows

$ curl --anyauth --user user:password -X DELETE \
http://localhost:8321/v1l/graphs?default

Note: Use caution when specifying the graph, since there is no confirmation check
before del eting the dataset.

This cur1 command will delete the triples in the graph named mygraph.

#Windows users, see Modifying the Example Commands for Windows

$ curl --anyauth --user user:password -X DELETE \
http://localhost:8321/v1/graphs?graph=http://marklogic.com/semantics#m
ygraph/

Aswith the sem:graph-delete function, the perLere request removes triples from graphs where
sem:triples IStheroot element of the containing document (managed triples). XML documents
that contain embedded triples are unaffected. Graphs may still exist after the pereTe operation if the
graph contained both types of documents.

When you send a rut request, triples are replaced in anamed graph or added to an empty graph if
the graph did not exist. Thisisthe equivalent of aperere followed by rosT.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 244

MarkLogic Server Inserting, Deleting, and Modifying Triples with XQuery

For example:

Windows users, see Modifying the Example Commands for Windows

$ curl --digest --user admin:password -s -X PUT
-H "Content-type:text/turtle" --data-binary '@./example.ttl’
"http://localhost:8033/vl1/graphs?graph=mynamed-graph"

To perform the equivalent of apereTe Operation using the REST API, use cur1 to send a pur
reguest with an empty graph.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 245

MarkLogic Server Inserting, Deleting, and Modifying Triples with XQuery

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 246

MarkLogic Server Using a Template to Identify Triples in a Document

13.0 Using a Template to Identify Triples in a Document

You can define atemplate to identify data to be indexed as triplesin an existing document.
Documents with any type of datathat you want to represent as triples can be indexed using a
template. The triplesidentified by the template are similar to unmanaged triples, sometimes called
embedded triples.

Once you have indexed these triples, you can query them in all the same ways you can query
unmanaged triples; with SPARQL, with xdmp . sparq1 (), with combination queries, with the new
Optic API, and with cts:triple-range-query. FOr more about working with these triples, see
“Unmanaged Triples’ on page 73. For amore compl ete discussion of creating and using
templates, see Template Driven Extraction (TDE) in the Application Devel oper’s Guide.

This chapter covers the following topics:

e Creating a Template

* Template Elements

e Examples
* Triples Generated With TDE and SQL

13.1 Creating a Template

Hereis an example of asimple template to identify triples. It includes a definition for a
namespace and context for the template. It contains descriptions for the subject, object, predicate
of thetriples, and data mappings for the values:

<template xmlns="http://marklogic.com/xdmp/tde">
<context>/article/topic</context>
<vars>
<vars
<name>EX</name>
<val>"http://example.org/ex#"</val>
</vars>
</varss>
<tripless>
<triples
<subjects>
<valssem:iri($EX || who)</vals
</subject>
<predicates>
<valssem:iri($EX || what)</vals
</predicate>
<objects>
<vals>xs:string($EX || where)</vals
</object>
</triple>
</triples>
</template>

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 247

MarkLogic Server Using a Template to Identify Triples in a Document

For triples, the subject and predicate descriptions must have avalue of sen:iri. Herethe template
incorporates using vars as a short-hand, to save typing when you specify IRIs. When creating
templatesto identify triples, you can specify the types of values that you extract using a subset of
XQuery language expressions. See Template Dialect and Data Transformation Functions in the
Application Developer’s Guide for more information.

Note: Triplesidentified using templates cannot be modified directly or modified as
triples (for example, using SPARQL Update). Y ou can disable and then delete a
template so that the triples no longer exist, or you can modify the underlying
document data to modify the triple.

Security for templates can be controlled by setting protected collections. See Security on TDE
Documents in the Application Developer’s Guide.

13.2 Template Elements
A template contains the following elements and their child elements:

Element Description
context The lookup node that is used for template activation and data
extraction. See Context in the Application Developer’s Guide for
more details.
description Optional description of the template.
collections Optional collection scopes. Multiple collection scopes can be
collection ORed or ANDed.
collections-and
collection

A <collections> Sectionisatop level OR of asequence of:
* <collections that scope the template to a specific
collection.

* <collections-ands that contains a sequence of
<collections that are ANDed together.

See Caollections in the Application Developer’s Guide for more

details.
directories Optional directory scopes. Multiple directory scopes are ORed
directory together.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 248

MarkLogic Server Using a Template to Identify Triples in a Document
Element Description
vars Optional intermediate variables extracted at the current context
var level.
This element can be used as a short hand for IRIs (prefixes) in
triples. See variables in the Application Developer’s Guide for more
details.
triples These elements are used for triple-extraction templ ates.
triple
sus;‘;‘jt triples CONtains a sequence of triple extraction descriptions. Each
invalid-values | triple description definesthe data mapping for the subject,
predicate praﬁcateandobject
val
invalid-values | An extracted triples graph cannot be specified through the
obj e<13t template. The graph isimplicitly defined by the document's
va

invalid-values

collection ssimilar to embedded triples.

templates
template

Optional sequence of sub-templates. For details, see Creating Views
from Multiple Templates and Creating Views from Nested Templates in
the SQL Data Modeling Guide.

path-namespaces
path-namespace

Optional sequence of namespace bindings. See path-namespaces in
the Application Developer’s Guide for more details.

enabled

A boolean that specifies whether the template is enabled (true) or
disabled (false). The default value is true.

The context, vars, and triples elementsidentify XQuery elements or JSON properties by means
of path expressions. The var element can be used to specify a prefix for elementsin the triple.

For example:

<vars>
<var>

<namesex</name>
<val>"http://example.org/ex#"</val>

</vars>
</varss>

Path expressions are based on XPath, which is described in XPath Quick Reference in the XQuery
and XSLT Reference Guide and Traversing JSON Documents Using XPath in the Application

Developer’s Guide.

MarkLogic 10—May, 2019

Semantic Graph Developer’ s Guide—Page 249

MarkLogic Server Using a Template to Identify Triples in a Document

13.2.1 Reindexing Triggered by Templates

When adding or modifying atriple template, reindexing istriggered and the triples extracted by
the template are available as soon as they start to appear in the triple index. Note that only
documents matching the context element, and the directory and collection scopes will be re-
indexed, so choose these carefully to avoid unnecessary (re)indexing work.

» For anew template, triples appear in the index as documents are indexed.

» For modified templates (and until reindexing is complete), there could be amix of existing
triples extracted with the previous version of the template (for the documents that haven’t
been reindexed yet) along with new triples extracted by the newer version of the template
(for those documents that have been reindexed).

13.3 Examples

This section contains examples of different ways that you can validate and use templates to
identify triples in documents.

e Validate and Insert a Template

¢ Validate and Insert in One Step

e Use a JSON Template

¢ |dentify Potential Triples

13.3.1 Validate and Insert a Template

For this example, insert this document into the Documents database using the Query Console.
This document is used as the source of the triples.

xdmp : document -insert ("APNews.xml",
<article>
<info>APNewswire - Nixon went to China</infos>
<triples-context>
<confidence>80</confidence>
<published>2011-10-14</published>
<sources>AP News</sources>
</triples-context>
<topic>
<who>Nixon</who>
<what>wentTo</what>
<where>China</where>
</topic>
<body>
In 1974, Richard Nixon went to China.
</body>
</article>

)

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 250

MarkLogic Server Using a Template to Identify Triples in a Document

Using the Query Console, we will validate thistemplate (aptemp1ate.xm1) and theninsert it into a
collection called nttp: //marklogic.com/xdmp/tde iN the Schemas database. First validate the
template:

let stl :=
<template xmlns="http://marklogic.com/xdmp/tde">
<context>/article/topic</contexts>
<varss>
<vars>
<name>EX</name>
<val>"http://example.org/ex#"</val>
</vars
</vars>
<triples>
<triple>
<subject>
<valssem:iri($EX || who)</vals
</subject>
<predicates>
<valssem:iri($EX || what)</vals
</predicates>
<object>
<valsxs:string($EX || where)</vals
</object>
</triple>
</tripless>
</template>

return tde:validate(S$tl)
=>
<map:map xmlns:map="http://marklogic.com/xdmp/map"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<map:entry key="valid">
<map:value xsi:type="xs:boolean">true
</map:value>
</map:entry>
</map:map>

Next insert the valid template. Use tde: template-insert. Thistakes care of putting the template
into the Schemas database and into the correct collection:

xquery version "1.0-ml";
import module namespace tde = "http://marklogic.com/xdmp/tde"
at "/MarkLogic/tde.xqgy";

let stl :=
<template xmlns="http://marklogic.com/xdmp/tde">
<context>/article/topic</contexts>
<vars>
<vars
<name>EX</name>
<val>"http://example.org/ex#"</val>

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 251

MarkLogic Server Using a Template to Identify Triples in a Document

</vars>
</vars>
<triples>
<triple>
<subject>
<vals>sem:iri($EX || who)</vals>
</subject>
<predicate>
<vals>sem:iri($EX || what)</vals>
</predicate>
<object>
<vals>xs:string($EX || where)</vals
</object>
</triple>
</triples>
</template>

return tde:template-insert (
"APtemplate.xml",$tl, (), "http://marklogic.com/xdmp/tde")

When you use the template, content in the document will be indexed as atriple. The tripleis not
added to the original document. To see the triple, run this query in Query Console:

tde:node-data-extract (fn:doc ("APNews.xml")) ;

This returns the name of the document and the content that was indexed as atriple.

=>
{"APNews.xml": [

{

"triple": {

"subject": "http://example.org/ex#Nixon",

"predicate": "http://example.org/ex#wentTo",

"object": {
"datatype": "http://www.w3.org/2001/XMLSchema#string",
"value": "http://example.org/ex#China"

}

}
}
1}

Use this SPARQL query to verify that the tripleisin the triple index:

SELECT ?country

WHERE {
<http://example.org/ex#Nixon> <http://example.org/ex#wentTo>
?country

}

=> China

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 252

MarkLogic Server Using a Template to Identify Triples in a Document

13.3.2 Validate and Insert in One Step

The next example Uses tde: template-insert t0 both validate and insert the template into the
Schemas database associated with this content database in one step. For this example, we'll insert
adocument described in “Unmanaged Triples’ on page 73.

The following code inserts the document into the Documents database in a“ SAR” collection:

xquery version "1.0-ml";
xdmp : document -insert ("SAR report.xml",
<SAR>
<title>Suspicious vehicle...Suspicious vehicle near airport</title>
<date>2015-11-12%</date>
<type>observation/surveillance</type>
<threat>
<type>suspicious activity</type>
<categorys>suspicious vehicle</categorys>
</threat>
<location>
<lat>37.497075</1lat>
<long>-122.363319</long>
</location>
<description>A blue van with license plate ABC 123 was observed
parked behind the airport sign...
<sem:triple>
<sem:subject>IRIID</sem:subject>
<sem:predicate>isa</sem:predicate>
<sem:object
datatype="http://www.w3.0rg/2001/XMLSchema#string">license-
plate</sem:object>
</sem:triple>
<sem:triple>
<sem:subject>IRIID</sem:subject>
<sem:predicate>value</sem:predicate>
<sem:object
datatype="http://www.w3.0rg/2001/XMLSchema#string" >ABC
123</sem:object>
</sem:triple>
</description>
</SAR>, (),
"SAR")

This document already has two embedded triples. Now let usidentify another triple describing the
date and type of threat described in the report. We will create atemplate to identify the triple and
insert it using tde: template-insert, Which validates the template and then insertsit into the
Schemas database.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 253

MarkLogic Server Using a Template to Identify Triples in a Document

xquery version "1.0-ml";
import module namespace tde = "http://marklogic.com/xdmp/tde"
at "/MarkLogic/tde.xqgy";

let stemplate :=
<template xmlns="http://marklogic.com/xdmp/tde">
<context>/SAR</contexts>
<triples>
<triple>
<subject>
<val>sem:iri (threat/type)</val>
</subject>
<predicate>
<val>sem:iri ("http://example.org/on-date")</val>
</predicate>
<object>
<val>xs:date (date) </vals>
</object>
</triple>
</triples>
</template>
return tde:template-insert ("SARtemplate.xml", Stemplate)

To see the new triple, run this query using tde:node-data-extract in Query Console:

tde:node-data-extract (fn:doc ("SAR_report.xml")) ;

—~ |l

"SAR report.xml": [
{
"triple": {
"subject": "suspicious activity",
"predicate": "http://example.org/on-date",
"object": {
"datatype": "http://www.w3.org/2001/XMLSchema#date",
"value": "2015-11-122z"
}

To seedl the triplesin this document, run this SPARQL query restricted to the “SAR” collection,
in the Query Console:

SELECT *
FROM <SAR>
WHERE {

?s ?p 70
}

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 254

MarkLogic Server Using a Template to Identify Triples in a Document

Thisreturns al of thetriplesin the sar_report.xm1 document:

S p o
<suspicious activitys> <http://example.org/on-date> 2014-11-
12Z"*"xs:date

<IRIID> <isa>

<license-plates>
<IRIID> <value> <ABC 123>

13.3.3 Use aJSON Template
You can use a JSON template to identify triplesin a JSON document.

Note: Any template (XML or JSON) will extract triples from any document (XML or
JSON).

Insert this document into the Documents database:

declareUpdate () ;

xdmp .document Insert ("/medlineCitation.json", ({
"MedlineCitation":
"Status": "Completed",

"MedlineID": 69152893,
"PMID": 5717905,
"Article": {

"Journal":
"ITSSN": "0043-5341"
}I
"ArticleTitle": "[On the influence of calcium ... on cholesterol

in human serum]",
"AuthorList":
"Author": [

{

"LastName": "Doe'",
"ForeName": "John"
"LastName": "Smith",
"ForeName": "Jane"
1
}, "collections" : "http://marklogic.com/xdmp/tde"}

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 255

MarkLogic Server Using a Template to Identify Triples in a Document

Now validate and insert a JSON template. The tde.templaternsert cOmmand validates the
template and inserts it into the Schemas database.

declareUpdate () ;
var tde = require ("/MarkLogic/tde.xqgy");

var template = xdmp.toJSON ({

"template": {
"context":"/MedlineCitation/Article",
"vars": [

{
"name" :"prefixl",
"val":"\"http://marklogic.com/example/\""
}
1,
"triples": [{

"subject":
"val":"sem:iri ($prefixl| | 'person/'||AuthorList/Author[1] \
/ForeName| |' '||AuthorList/Author[1]/LastName)"},
"predicate":
"val":"sem:1iri (($prefixl||'authored'))"},
"object":{

"val":"xs:string (Journal/ISSN) "}

}
1 1h)

tde.templateInsert ("medlineTemplate.json", template) ;

// After validating the template, this inserts template into the
Schemas
database as medlineTemplate.json

Run this query against the Documents database in the Query Console. This query identifies the
first author in the document in the form of atriple:

tde.nodeDataExtract ([fn.doc ("/medlineCitation.json")]) ;
=>

{

"/medlineCitation.json": [
{
"triple": {

"subject": "http://marklogic.com/example/person/John Doe",

"predicate": "http://marklogic.com/example/authored",

"object": {
"datatype": "http://www.w3.org/2001/XMLSchema#string",
"value": "0043-5341"

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 256

MarkLogic Server Using a Template to Identify Triples in a Document

Note: ThenodepataExtract cOmmand is ahelper utility to show you how the template
view looks. Normally you would run a SQL or SPARQL query against the
generated view.

This template only extracts the first author’s name along with the ISSN number. You can change
the (11 to a 121 in the template to extract the second author’s name.

13.3.4 Identify Potential Triples

This next exampl e includes both the document and the template used to identify two triples as part
of one query that you can paste into Query Console. The tde:node-data-extract iSaheping
function to show you what would be indexed if you did insert this document and templ ate.

let sSdocl :=
<MedlineCitation Status="Completed"s>
<MedlineID>69152893</MedlineID>
<PMID>5717905</PMID>
<Article>
<Journals>
<ISSN>0043-5341</ISSN>
<JournalIssue>
<Volume>118</Volumes>
<Issue>49</Issue>
<PubDate>
<Year>1968</Year>
<Month>Dec</Month>
<Day>7</Day>
</PubDate>
</Journallssues>
</Journal>
<ArticleTitle>[On the influence of calcium ... on cholesterol in
human serum] </ArticleTitle>
<AuthorList>
<Authors>
<LastNames>Doe</LastName>
<ForeName>John</ForeName>
</Authors>
<Author>
<LastName>Smith</LastName>
<ForeName>Jane</ForeName>
</Authors>
</AuthorList>
</Article>
</MedlineCitation>

let Stemplatel :=
<template xmlns="http://marklogic.com/xdmp/tde">
<contexts>/MedlineCitation/Article/AuthorList/Author</contexts>
<triples>
<triples>
<subject>
<valssem:iri (concat (ForeName,' ',6 LastName))</vals>

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 257

MarkLogic Server Using a Template to Identify Triples in a Document

</subject>
<predicate>
<valssem:iri ('authored')</vals>
</predicate>
<object>
<val>xs:string(../../ArticleTitle)</val>
</object>
</triple>
</triples>
</template>

return tde:node-data-extract (($docl), (Stemplatel))

This query returns the two triples that would be added to the triple index in JSON format:

{

"documentl": [
{
"triple": {
"subject": "John Doe",
"predicate": "authored",
"object": {
"value": "[On the influence of calcium ... on cholesterol in human
serum] "
}
}
b
{
"triple": {
"subject": "Jane Smith",
"predicate": "authored",
"object": {
"datatype": "http://www.w3.org/2001/XMLSchema#string",
"value": "[On the influence of calcium ... on cholesterol in human
serum] "

}
}

}
]

}

These triples in this example have not been added to the triple index, but you can see how the
template works and what triples would be indexed if you inserted the document and template.

Note: The graph for these triples cannot be specified through the template. The graphis
implicitly defined by the document’s collection, similar to embedded triples.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 258

MarkLogic Server Using a Template to Identify Triples in a Document

13.4 Triples Generated With TDE and SQL

Some TDE views created for SQL will generate index entries that are present, visible, and usable
astriples due to the underlying implementation of SQL using the triples index. Those triples may
then appear in SPARQL query results.

These triples have very distinctive subject and predicate URIS, so aslong as a SPARQL query
includes some subject or some predicate filter, the triples generated by a row template will not
appear in your results.

Thisis an example of atriple generated from arow template:

<http: //marklogic .com/row/09CA32CBA69361E5/8FD41B78E884B48E>
<http://marklogic.com/column/id/81C579F95CEA957B>
"George Washington"

Some SPARQL operations where these row triples may appear include:

1. A SPARQL query for “show meall triples’. When you areinitially trying out SPARQL,
you might load 10 triples and run this SPARQL query:

SELECT *
WHERE {
?s ?p ?0 }

Note: For performance reasons, do not run this query on any database with numerous
triples because the query will return all of the triplesin the database.

2. A SPARQL query to “count al triples’. Thisis similar to the preceding query, and would
also access all of the triplesin the database.

3. A SPARQL query to “show me all distinct predicates’. Thisis another common way to
explore your triples data.

To avoid seeing row triplesreturned as part of these queries, insert and query triplesfrom anamed
graph, or include a subject or predicate filter to exclude the row triples.

Note: A best practiceisto insert triplesinto a named graph and query from that graph.

For more information about using the Optic API with triplesfor server-side queries see “ Querying
Triples with the Optic API” on page 145, the op: from-triples Of op.fromTriples functions, and
Data Access Functions and Optic API for Multi-Model Data Access in the Application Developer’s
Guide. For information about using the Optic API for client-side queries, see “Queries Using
Optic API” on page 238 and Optic Java API for Relational Operations in the Java Application
Developer’s Guide. Also see /REST/client/row-management in the Client API reference and the row
manager and rows endpoint in the REST Application Developer’s Guide.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 259

/REST/client/row-management

MarkLogic Server Using a Template to Identify Triples in a Document

For information about using templates with SQL content, see Creating Template Views in the SQL
Data Modeling Guide.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 260

MarkLogic Server Execution Plan

14.0 Execution Plan

This section describes how to interpret a query execution plan output from the sem: spargl-plan
function. The generated query execution plan shows how the supplied query will be handled by
the SPARQL parser. The query execution plan for SPARQL is designed to work with all searor
gueries, including seLecT, coNSTRUCT, ASK aNd DESCRIBE.

14.1 Generating an Execution Plan

YOu can use sem: sparql-plan tO generate a query execution plan for a searor query to see how
the query will be handled internally.

For example, this SPARQL query produces an execution plan:
sem:spargl-plan("select * { ?s ?p 2?0 }",(),"optimize=1")
The query outputs the following execution plan:

<plan:plan xmlns:plan="http://marklogic.com/plan">
<plan:select>
<plan:project order="1,0,2">
<plan:variable name="s" column-index="0" static-type="NONE">
</plan:variable>
<plan:variable name="p" column-index="1" static-type="NONE">
</plan:variable>
<plan:variable name="o" column-index="2" static-type="NONE">
</plan:variable>
<plan:triple-index order="1,0,2" permutation="PSO" dedup="true">
<plan:subjects>
<plan:variable name="s" column-index="0" static-type="NONE">
</plan:variable>
</plan:subject>
<plan:predicates>
<plan:variable name="p" column-index="1" static-type="NONE">
</plan:variable>
</plan:predicate>
<plan:object>
<plan:variable name="o" column-index="2" static-type="NONE">
</plan:variable>
</plan:object>
</plan:triple-index>
</plan:projects>
</plan:select>
</plan:plan>

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 261

MarkLogic Server Execution Plan

14.2 Parsing an Execution Plan
This section breaks down and describes each portion of the execution plan.

The intro specifies the type of plan, in this case for a seLecT Statement:

<plan:plan xmlns:plan="http://marklogic.com/plan">
<plan:select>

This section identifies the projected order of the elements of the triples—subject, predicate,
object—with their variable names (s,p,0) and column indexes:

<plan:project order="1,0,2">
<plan:variable name="s" column-index="0" static-type="NONE">
</plan:variable>
<plan:variable name="p" column-index="1" static-type="NONE">
</plan:variable>
<plan:variable name="o" column-index="2" static-type="NONE">
</plan:variable>

At the end is the order of the triple variablesin the triple index - predicate, subject, object (p,s,0).

<plan:triple-index order="1,0,2" permutation="PSO" dedup="true">
<plan:subject>
<plan:variable name="s" column-index="0" static-type="NONE">
</plan:variable>
</plan:subject>
<plan:predicate>
<plan:variable name="p" column-index="1" static-type="NONE">
</plan:variable>
</plan:predicate>
<plan:object>
<plan:variable name="o" column-index="2" static-type="NONE">
</plan:variable>
</plan:object>
</plan:triple-index>
</plan:projects>
</plan:select>
</plan:plan>

If you run this query, the variables and the values are projected in three columns (s, p, 0):

[{"s":"<http://example.com/ns/directory#jp>","p":"<http://example.com/
ns/person#firstNames>", "o":"\"John-Paul\""}]

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 262

MarkLogic Server Execution Plan

Here is an example of amore complicated SPARQL serect query, which includes prefixes:

sem:spargl-plan ("

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX prod: <http://example.com/products/>

PREFIX ex: <http://example.com/>

SELECT ?product
FROM <http://marklogic.com/semantics/products/>
WHERE
{
?product rdf:type ex:Shirt ;
ex:color 'blue' }")

Hereisthe output for this query execution plan. The intro specifies the namespace and the type of
plan:

<plan:plan xmlns:plan="http://marklogic.com/plan">
<plan:select>

The first section identifies the order of projected values, in this case just one “product”.

<plan:project order="order (0 ASC)">
<plan:variable name="product" column-index="0" static-type="NONE">
</plan:variable>

This section describes what sort of hash join order.

<plan:hash-join order="order (0 ASC)">
<plan:hash left="0" right="0" operator="=">
</plan:hash>

Hereisthe projected order of triple elements—object, predicate, subject (0, p, s)-first for thetriple
for product of type “Shirt”:

<plan:triple-index order="order (0 ASC)" permutation="OPS"
dedup="true">
<plan:subject>
<plan:variable name="product" column-index="0" static-type="NONE">
</plan:variable>
</plan:subject>
<plan:predicate>
<plan:iri name="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type"
static-type="NONE" >
</plan:iri>
</plan:predicate>
<plan:object>
<plan:iri name="http://example.com/Shirt" static-type="NONE">
</plan:iri>
</plan:object>
</plan:triple-index>

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 263

MarkLogic Server Execution Plan

And for the product with the color value “blue’:

<plan:triple-index order="order (0 ASC)" permutation="OPS"
dedup="true">
<plan:subjects>
<plan:variable name="product" column-index="0" static-type="NONE">
</plan:variable>
</plan:subject>
<plan:predicates>
<plan:iri name="http://example.com/color" static-type="NONE">
</plan:iri>
</plan:predicate>
<plan:object>
<plan:value datatype="http://www.w3.0rg/2001/XMLSchemaf#fstring"
value="blue">
</plan:value>
</plan:object>
</plan:triple-index>

And then the close of the plan:

</plan:hash-join>
</plan:projects>
</plan:select>
</plan:plan>

For more about query execution plans, see Execution Plan in the SQL Data Modeling Guide.

MarkLogic 10—May, 2019 Semantic Graph Developer’ s Guide—Page 264

MarkLogic Server Technical Support

15.0 Technical Support

MarkL ogic provides technical support according to the terms detailed in your Software License
Agreement or End User License Agreement.

We invite you to visit our support website at http://help.marklogic.com to access information on
known and fixed issues, knowledge base articles, and more. For licensed customers with an active
maintenance contract, see the Support Handbook for instructions on registering support contacts
and on working with the MarkL ogic Technical Support team.

Complete product documentation, the latest product release downloads, and other useful
information is available for al developers at http:/developer.marklogic.com. For technical
guestions, we encourage you to ask your question on Stack Overflow.

MarkLogic 11

http://help.marklogic.com/
https://stackoverflow.com/questions/tagged/marklogic
http://developer.marklogic.com
http://www.marklogic.com/files/Mark_Logic_Support_Handbook.pdf

MarkLogic Server Technical Support

MarkLogic 11 —December, 2022 Installation Guide for All Platforms—Page 266

MarkLogic Server Copyright

16.0 Copyright

MarkLogic Server 10.0 and supporting products.
Last updated: February, 2022

Copyright © 2022 MarkL ogic Corporation. All rights reserved.
Thistechnology is protected by U.S. Patent No. 7,127,469B2, U.S. Patent No. 7,171,404B2, U.S.
Patent No. 7,756,858 B2, and U.S. Patent No 7,962,474 B2, US 8,892,599, and US 8,935,267.

The MarkL ogic software is protected by United States and international copyright laws, and
incorporates certain third party libraries and components which are subject to the attributions,
terms, conditions and disclaimers set forth below.

For all copyright notices, including third-party copyright notices, see the Combined Product
Notices for your version of MarkLogic.

MarkLogic 11

MarkLogic Server Copyright

MarkLogic 11 —December, 2022 Installation Guide for All Platforms—Page 268

	Semantic Graph Developer’s Guide
	Table of Contents
	1.0 Introduction to Semantic Graphs in MarkLogic
	1.1 Terminology
	1.2 Linked Open Data
	1.3 RDF Implementation in MarkLogic
	1.3.1 Using RDF in MarkLogic
	1.3.2 RDF Data Model
	1.3.3 Blank Node Identifiers
	1.3.4 RDF Datatypes
	1.3.5 IRIs and Prefixes
	1.3.6 RDF Vocabulary

	1.4 Example Datasets

	2.0 Getting Started with Semantic Graphs in MarkLogic
	2.1 Setting up MarkLogic Server
	2.1.1 Configuring the Database to Work with Triples
	2.1.2 Setting Up Additional Servers

	2.2 Loading Triples
	2.2.1 Downloading the Dataset
	2.2.2 Importing Triples with mlcp
	2.2.3 Verifying the Import

	2.3 Querying Triples
	2.3.1 Querying with Native SPARQL
	2.3.2 Querying with the sem:sparql Functions

	3.0 Loading Semantic Triples
	3.1 Loading Embedded RDF Triples
	3.2 Loading Triples
	3.2.1 Supported RDF Triple Formats
	3.2.2 Example RDF Formats
	3.2.3 Loading Triples with mlcp
	3.2.4 Loading Triples with XQuery
	3.2.5 Loading Triples with JavaScript
	3.2.6 Loading Triples Using the REST API
	3.2.7 Loading Triples Using the Java API
	3.2.8 Loading Triples Using the Node.js API

	4.0 Triple Index Overview
	4.1 Understanding the Triple Index and How It’s Used
	4.1.1 Triple Data and Value Caches
	4.1.2 Triple Values and Type Information
	4.1.3 Triple Positions
	4.1.4 Index Files
	4.1.5 Permutations

	4.2 Enabling the Triple Index
	4.2.1 Using the Database Configuration Pages
	4.2.2 Using the Admin API

	4.3 Other Considerations
	4.3.1 Sizing Caches
	4.3.2 Unused Values and Types
	4.3.3 Scaling and Monitoring

	5.0 Unmanaged Triples
	5.1 Uses for Triples in XML Documents
	5.1.1 Context from the Document
	5.1.2 Combination Queries
	5.1.3 Security with Unmanaged Triples

	5.2 Bitemporal Triples

	6.0 Semantic Queries
	6.1 Querying Triples with SPARQL
	6.1.1 Types of SPARQL Queries
	6.1.2 Executing a SPARQL Query in Query Console
	6.1.3 Specifying Query Result Options
	6.1.4 Constructing a SPARQL Query
	6.1.5 Prefix Declaration
	6.1.6 Query Pattern
	6.1.7 Target RDF Graph
	6.1.8 Result Clauses
	6.1.9 Query Clauses
	6.1.10 Negation in Filter Expressions
	6.1.11 Solution Modifiers
	6.1.12 De-Duplication of SPARQL Results
	6.1.13 Property Path Expressions
	6.1.14 SPARQL Aggregates
	6.1.15 Using the Results of sem:sparql
	6.1.16 SPARQL Resources

	6.2 Querying Triples with XQuery or JavaScript
	6.2.1 Preparing to Run the Examples
	6.2.2 Using Semantic Functions to Query
	6.2.3 Using Bindings for Variables
	6.2.4 Viewing Results as XML and RDF
	6.2.5 Working with CURIEs
	6.2.6 Using Semantics with cts Searches

	6.3 Querying Triples with the Optic API
	6.4 Serialization
	6.4.1 Setting the Output Method

	6.5 Security

	7.0 Inference
	7.1 Automatic Inference
	7.1.1 Ontologies
	7.1.2 Rulesets
	7.1.3 Memory Available for Inference
	7.1.4 A More Complex Use Case

	7.2 Other Ways to Achieve Inference
	7.2.1 Using Paths
	7.2.2 Materialization

	7.3 Performance Considerations
	7.3.1 Partial Materialization

	7.4 Using Inference with the REST API
	7.5 Summary of APIs Used for Inference
	7.5.1 Semantic APIs
	7.5.2 Database Ruleset APIs
	7.5.3 Management APIs

	8.0 SPARQL Update
	8.1 Using SPARQL Update
	8.2 Graph Operations with SPARQL Update
	8.2.1 CREATE
	8.2.2 DROP
	8.2.3 COPY
	8.2.4 MOVE
	8.2.5 ADD

	8.3 Graph-Level Security
	8.4 Data Operations with SPARQL Update
	8.4.1 INSERT DATA
	8.4.2 DELETE DATA
	8.4.3 DELETE..INSERT WHERE
	8.4.4 DELETE WHERE
	8.4.5 INSERT WHERE
	8.4.6 CLEAR

	8.5 Bindings for Variables
	8.6 Using SPARQL Update with Query Console
	8.7 Using SPARQL Update with XQuery or Server-Side JavaScript
	8.8 Using SPARQL Update with REST

	9.0 Using Semantics with the REST Client API
	9.1 Assumptions
	9.2 Specifying Parameters
	9.2.1 SPARQL Query Parameters
	9.2.2 SPARQL Update Parameters

	9.3 Supported Operations for the REST Client API
	9.4 Serialization
	9.4.1 Unsupported Serialization

	9.5 Examples Using curl and REST
	9.6 Response Output Formats
	9.6.1 SPARQL Query Types and Output Formats
	9.6.2 Example: Returning Results as XML
	9.6.3 Example: Returning Results as JSON
	9.6.4 Example: Returning Results as HTML
	9.6.5 Example: Returning Results as CSV
	9.6.6 Example: Returning Results as N-triples
	9.6.7 Example: Returning a Boolean as XML or JSON

	9.7 SPARQL Query with the REST Client API
	9.7.1 SPARQL Queries in a POST Request
	9.7.2 SPARQL Queries in a GET Request

	9.8 SPARQL Update with the REST Client API
	9.8.1 SPARQL Update in a POST Request
	9.8.2 SPARQL Update via POST with URL-encoded Parameters

	9.9 Listing Graph Names with the REST Client API
	9.10 Exploring Triples with the REST Client API
	9.11 Managing Graph Permissions
	9.11.1 Default Permissions and Required Privileges
	9.11.2 Setting Permissions as Part of Another Operation
	9.11.3 Setting Permissions Standalone
	9.11.4 Retrieving Graph Permissions

	10.0 XQuery and JavaScript Semantics APIs
	10.1 XQuery Library Module for Semantics
	10.1.1 Importing the Semantics Library Module with XQuery
	10.1.2 Importing the Semantics Library Module with JavaScript

	10.2 Generating Triples
	10.3 Extracting Triples from Content
	10.4 Parsing Triples
	10.5 Exploring Data
	10.5.1 sem:triple Functions
	10.5.2 Transitive Closure

	11.0 Client-Side APIs for Semantics
	11.1 Java Client API
	11.2 Node.js Client API
	11.3 Queries Using Optic API

	12.0 Inserting, Deleting, and Modifying Triples with XQuery and Server-Side JavaScript
	12.1 Updating Triples
	12.2 Deleting Triples
	12.2.1 Deleting Triples with XQuery or Server-Side JavaScript
	12.2.2 Deleting Triples with REST API

	13.0 Using a Template to Identify Triples in a Document
	13.1 Creating a Template
	13.2 Template Elements
	13.2.1 Reindexing Triggered by Templates

	13.3 Examples
	13.3.1 Validate and Insert a Template
	13.3.2 Validate and Insert in One Step
	13.3.3 Use a JSON Template
	13.3.4 Identify Potential Triples

	13.4 Triples Generated With TDE and SQL

	14.0 Execution Plan
	14.1 Generating an Execution Plan
	14.2 Parsing an Execution Plan

	15.0 Technical Support
	16.0 Copyright

