
MarkLogic Server
Semantic Graph Developer’s Guide
2

MarkLogic 10
May, 2019

Last Revised: 10.0-8, October, 2021
Copyright © 2021 MarkLogic Corporation. All rights reserved.

MarkLogic Server
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 2

MarkLogic Server Table of Contents
Table of Contents

Semantic Graph Developer’s Guide

1.0 Introduction to Semantic Graphs in MarkLogic ..11
1.1 Terminology ..12
1.2 Linked Open Data ...13
1.3 RDF Implementation in MarkLogic ...14

1.3.1 Using RDF in MarkLogic ...15
1.3.1.1 Storing RDF Triples in MarkLogic ...17
1.3.1.2 Querying Triples ...18

1.3.2 RDF Data Model ...20
1.3.3 Blank Node Identifiers ..21
1.3.4 RDF Datatypes ..21
1.3.5 IRIs and Prefixes ...22

1.3.5.1 IRIs ..22
1.3.5.2 Prefixes ..23

1.3.6 RDF Vocabulary ...24
1.4 Example Datasets ..25

2.0 Getting Started with Semantic Graphs in MarkLogic27
2.1 Setting up MarkLogic Server ..27

2.1.1 Configuring the Database to Work with Triples27
2.1.2 Setting Up Additional Servers ..28

2.2 Loading Triples ...28
2.2.1 Downloading the Dataset ..28
2.2.2 Importing Triples with mlcp ...29
2.2.3 Verifying the Import ...30

2.3 Querying Triples ...32
2.3.1 Querying with Native SPARQL ...32
2.3.2 Querying with the sem:sparql Functions ..34

3.0 Loading Semantic Triples ..37
3.1 Loading Embedded RDF Triples ..37
3.2 Loading Triples ...37

3.2.1 Supported RDF Triple Formats ..38
3.2.2 Example RDF Formats ...39

3.2.2.1 RDF/XML ...39
3.2.2.2 Turtle ...40
3.2.2.3 RDF/JSON ..40
3.2.2.4 N3 ..41
3.2.2.5 N-Triples ...41
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 3

MarkLogic Server Table of Contents
3.2.2.6 N-Quads ..43
3.2.2.7 TriG ...44

3.2.3 Loading Triples with mlcp ..44
3.2.3.1 Preparation ..45
3.2.3.2 Import Command Syntax ..46
3.2.3.3 Loading Triples and Quads ...46
3.2.3.4 Import Options ..47
3.2.3.5 Specifying Collections and a Directory49

3.2.4 Loading Triples with XQuery ...51
3.2.4.1 sem:rdf-insert ..52
3.2.4.2 sem:rdf-load ..53
3.2.4.3 sem:rdf-get ..53

3.2.5 Loading Triples with JavaScript ...54
3.2.5.1 sem.rdfInsert ..55
3.2.5.2 sem.rdfLoad ...56
3.2.5.3 sem.rdfGet ...56

3.2.6 Loading Triples Using the REST API ..56
3.2.6.1 Preparation ..57
3.2.6.2 Addressing the Graph Store ..57
3.2.6.3 Specifying Parameters ...58
3.2.6.4 Supported Verbs ..58
3.2.6.5 Supported Media Formats ...59
3.2.6.6 Loading Triples ...59
3.2.6.7 Response Errors ...60

3.2.7 Loading Triples Using the Java API ...61
3.2.8 Loading Triples Using the Node.js API ..61

4.0 Triple Index Overview ..63
4.1 Understanding the Triple Index and How It’s Used ...63

4.1.1 Triple Data and Value Caches ..63
4.1.1.1 Triple Cache and Triple Value Cache64

4.1.2 Triple Values and Type Information ..64
4.1.3 Triple Positions ...64
4.1.4 Index Files ...65
4.1.5 Permutations ...66

4.2 Enabling the Triple Index ...66
4.2.1 Using the Database Configuration Pages ..66
4.2.2 Using the Admin API ...68

4.3 Other Considerations ..69
4.3.1 Sizing Caches ..69
4.3.2 Unused Values and Types ...70
4.3.3 Scaling and Monitoring ..71

5.0 Unmanaged Triples ..73
5.1 Uses for Triples in XML Documents ...76
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 4

MarkLogic Server Table of Contents
5.1.1 Context from the Document ...76
5.1.2 Combination Queries ..77
5.1.3 Security with Unmanaged Triples ..78

5.2 Bitemporal Triples ..78

6.0 Semantic Queries ...81
6.1 Querying Triples with SPARQL ...82

6.1.1 Types of SPARQL Queries ...82
6.1.2 Executing a SPARQL Query in Query Console83
6.1.3 Specifying Query Result Options ...83

6.1.3.1 Auto vs. Raw Format ..83
6.1.3.2 Selecting Results Rendering ..86

6.1.4 Constructing a SPARQL Query ..87
6.1.5 Prefix Declaration ...87
6.1.6 Query Pattern ..88
6.1.7 Target RDF Graph ..91

6.1.7.1 The FROM Keyword ..93
6.1.7.2 The FROM NAMED Keywords ...94
6.1.7.3 The GRAPH Keyword ..95

6.1.8 Result Clauses ...95
6.1.8.1 SELECT Queries ...96
6.1.8.2 CONSTRUCT Queries ..96
6.1.8.3 DESCRIBE Queries ..98
6.1.8.4 ASK Queries ...99

6.1.9 Query Clauses ...99
6.1.9.1 The OPTIONAL Keyword ..100
6.1.9.2 The UNION Keyword ...100
6.1.9.3 The FILTER Keyword ..102
6.1.9.4 Using Built-in Functions in a SPARQL Query104
6.1.9.5 Comparison Operators ...105

6.1.10 Negation in Filter Expressions ..105
6.1.10.1 EXISTS ...106
6.1.10.2 NOT EXISTS ..106
6.1.10.3 MINUS ..107
6.1.10.4 Differences Between NOT EXISTS and MINUS108
6.1.10.5 Combination Queries with Negation110
6.1.10.6 BIND Keyword ...111
6.1.10.7 Values Sections ...111

6.1.11 Solution Modifiers ..112
6.1.11.1 The DISTINCT Keyword ..112
6.1.11.2 The LIMIT Keyword ...113
6.1.11.3 ORDER BY Keyword ...113
6.1.11.4 The OFFSET Keyword ...115
6.1.11.5 Subqueries ...115
6.1.11.6 Projected Expressions ...116

6.1.12 De-Duplication of SPARQL Results ..117
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 5

MarkLogic Server Table of Contents
6.1.13 Property Path Expressions ..118
6.1.13.1 Enumerated Property Paths ...118
6.1.13.2 Unenumerated Property Paths ...120
6.1.13.3 Inference ..123

6.1.14 SPARQL Aggregates ..124
6.1.15 Using the Results of sem:sparql ..127
6.1.16 SPARQL Resources ..127

6.2 Querying Triples with XQuery or JavaScript ...128
6.2.1 Preparing to Run the Examples ..129
6.2.2 Using Semantic Functions to Query ...130

6.2.2.1 sem:sparql ..131
6.2.2.2 sem:sparql-values ..133
6.2.2.3 sem:store ..134
6.2.2.4 Querying Triples in Memory ...134

6.2.3 Using Bindings for Variables ...135
6.2.4 Viewing Results as XML and RDF ..137
6.2.5 Working with CURIEs ..139
6.2.6 Using Semantics with cts Searches ...142

6.2.6.1 cts:triples ...142
6.2.6.2 cts:triple-range-query ..143
6.2.6.3 cts:search ...143
6.2.6.4 cts:contains ..144

6.3 Querying Triples with the Optic API ..145
6.4 Serialization ..145

6.4.1 Setting the Output Method ..146
6.5 Security ...146

7.0 Inference ...147
7.1 Automatic Inference ...147

7.1.1 Ontologies ...148
7.1.2 Rulesets ...149

7.1.2.1 Pre-Defined Rulesets ...150
7.1.2.2 Specifying Rulesets for Queries ..151
7.1.2.3 Using the Admin UI to Specify a Default Ruleset for a Database

153
7.1.2.4 Overriding the Default Ruleset ...155
7.1.2.5 Creating a New Ruleset ...156
7.1.2.6 Ruleset Grammar ...157
7.1.2.7 Example Rulesets ..158

7.1.3 Memory Available for Inference ..160
7.1.4 A More Complex Use Case ..161

7.2 Other Ways to Achieve Inference ...161
7.2.1 Using Paths ...162
7.2.2 Materialization ..163

7.3 Performance Considerations ...163
7.3.1 Partial Materialization ...163
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 6

MarkLogic Server Table of Contents
7.4 Using Inference with the REST API ...163
7.5 Summary of APIs Used for Inference ...165

7.5.1 Semantic APIs ...165
7.5.2 Database Ruleset APIs ..166
7.5.3 Management APIs ...166

8.0 SPARQL Update ..169
8.1 Using SPARQL Update ..170
8.2 Graph Operations with SPARQL Update ...170

8.2.1 CREATE ...171
8.2.2 DROP ..172
8.2.3 COPY ..172
8.2.4 MOVE ...173
8.2.5 ADD ..174

8.3 Graph-Level Security ..175
8.4 Data Operations with SPARQL Update ...177

8.4.1 INSERT DATA ..178
8.4.2 DELETE DATA ...180
8.4.3 DELETE..INSERT WHERE ..181
8.4.4 DELETE WHERE ..182
8.4.5 INSERT WHERE ...182
8.4.6 CLEAR ...183

8.5 Bindings for Variables ..184
8.6 Using SPARQL Update with Query Console ...185
8.7 Using SPARQL Update with XQuery or Server-Side JavaScript186
8.8 Using SPARQL Update with REST ...187

9.0 Using Semantics with the REST Client API ..189
9.1 Assumptions ..191
9.2 Specifying Parameters ..191

9.2.1 SPARQL Query Parameters ...191
9.2.2 SPARQL Update Parameters ..193

9.3 Supported Operations for the REST Client API ...194
9.4 Serialization ..196

9.4.1 Unsupported Serialization ...197
9.5 Examples Using curl and REST ...197
9.6 Response Output Formats ...199

9.6.1 SPARQL Query Types and Output Formats ..200
9.6.2 Example: Returning Results as XML ...201
9.6.3 Example: Returning Results as JSON ..202
9.6.4 Example: Returning Results as HTML ...203
9.6.5 Example: Returning Results as CSV ..204
9.6.6 Example: Returning Results as N-triples ..205
9.6.7 Example: Returning a Boolean as XML or JSON206

9.7 SPARQL Query with the REST Client API ...207
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 7

MarkLogic Server Table of Contents
9.7.1 SPARQL Queries in a POST Request ..207
9.7.2 SPARQL Queries in a GET Request ..210

9.8 SPARQL Update with the REST Client API ..211
9.8.1 SPARQL Update in a POST Request ...212
9.8.2 SPARQL Update via POST with URL-encoded Parameters214

9.9 Listing Graph Names with the REST Client API ...214
9.10 Exploring Triples with the REST Client API ...215
9.11 Managing Graph Permissions ...217

9.11.1 Default Permissions and Required Privileges ...218
9.11.2 Setting Permissions as Part of Another Operation218
9.11.3 Setting Permissions Standalone ..219
9.11.4 Retrieving Graph Permissions ..221

10.0 XQuery and JavaScript Semantics APIs ..223
10.1 XQuery Library Module for Semantics ..223

10.1.1 Importing the Semantics Library Module with XQuery223
10.1.2 Importing the Semantics Library Module with JavaScript224

10.2 Generating Triples ..224
10.3 Extracting Triples from Content ...225
10.4 Parsing Triples ..228
10.5 Exploring Data ..230

10.5.1 sem:triple Functions ..231
10.5.2 Transitive Closure ...231

10.5.2.1 Understanding Transitive Closure ...231
10.5.2.2 sem:transitive-closure ..232

11.0 Client-Side APIs for Semantics ...237
11.1 Java Client API ...237
11.2 Node.js Client API ..237
11.3 Queries Using Optic API ..238

12.0 Inserting, Deleting, and Modifying Triples with XQuery and Server-Side
JavaScript 239
12.1 Updating Triples ...239
12.2 Deleting Triples ..241

12.2.1 Deleting Triples with XQuery or Server-Side JavaScript241
12.2.1.1 sem:graph-delete ...242
12.2.1.2 xdmp:node-delete ..243
12.2.1.3 xdmp:document-delete ..243

12.2.2 Deleting Triples with REST API ..244

13.0 Using a Template to Identify Triples in a Document247
13.1 Creating a Template ..247
13.2 Template Elements ...248
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 8

MarkLogic Server Table of Contents
13.2.1 Reindexing Triggered by Templates ...250
13.3 Examples ...250

13.3.1 Validate and Insert a Template ...250
13.3.2 Validate and Insert in One Step ..253
13.3.3 Use a JSON Template ...255
13.3.4 Identify Potential Triples ..257

13.4 Triples Generated With TDE and SQL ...259

14.0 Execution Plan ...261
14.1 Generating an Execution Plan ...261
14.2 Parsing an Execution Plan ..262

15.0 Technical Support ..265

16.0 Copyright ...267
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 9

MarkLogic Server Table of Contents
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 10

MarkLogic Server Introduction to Semantic Graphs in MarkLogic
1.0 Introduction to Semantic Graphs in MarkLogic
26

The power of a knowledge graph is the ability to define the relationships between disparate facts
and provides context for those facts. Graphs are semantic if the meaning of the relationships is
embedded in the graph itself and exposed in a standard format. Semantic Graph technology,
referred to in this documentation as “semantics,” describes a family of specific W3C standards to
allow the exchange of information about relationships in data in machine-readable form, whether
it resides on the Web or within organizations. MarkLogic Semantics, using RDF (Resource

Description Framework), allows you to natively store, search, and manage RDF triples using SPARQL
query, SPARQL Update, and JavaScript, XQuery, or REST.

Semantics requires a flexible data model (RDF), query tool (SPARQL), a graph and triple data
management tool (SPARQL Update), and a common markup language (for example RDFa,
Turtle, N-Triples). MarkLogic lets you natively store, manage, and search triples using SPARQL
and SPARQL Update.

RDF is one of the core technologies of linked open data. The framework provides standards for
disambiguating data, integrating, and interacting with data that may come from disparate sources,
both machine-readable and human-readable. It makes use of W3C recommendations and formal,
defined vocabularies for data to be published and shared across the Semantic Web.

SPARQL (SPARQL Protocol and RDF Query Language) is used to query data in RDF
serialization. SPARQL Update is used to create, delete, and update (delete/insert) triple data and
graphs.

You can derive additional semantic information from your data using inference. You can also
enrich your data using Linked Open Data (LOD), an extension of the World Wide Web created
from the additional semantic metadata embedded in data.

Note: Semantics is a separately licensed product. To use SPARQL features, a license that
includes the Semantics Option is required. Use of APIs leveraging Semantics
without using SPARQL, such as the Optic API or SQL API, does not require a
Semantics Option license.

For more information, see the following resources:

• http://www.w3.org/standards/semanticweb

• http://www.w3.org/RDF

• http://www.w3.org/TR/rdf-sparql-query

• http://www.w3.org/TR/sparql11-update

This document describes how to load, query, and work with semantic graph data in MarkLogic Server.
This chapter provides an overview of Semantics in MarkLogic Server. This chapter includes the
following sections:

• Terminology
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 11

http://www.w3.org/
http://www.w3.org/standards/semanticweb/
http://www.w3.org/RDF/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/sparql11-update/

MarkLogic Server Introduction to Semantic Graphs in MarkLogic
• Linked Open Data

• RDF Implementation in MarkLogic

• Example Datasets

1.1 Terminology
Terms used in this guide:

Term Definition

RDF RDF (Resource Description Framework) is a data model used to represent
facts as a triple made up of a subject, predicate, and an object. The frame-
work is W3C specification with a defined vocabulary.

RDF Triple An RDF statement containing atomic values representing a subject, pred-
icate, object, and optionally a graph. Each triple represents a single fact.

Subject A representation of a resource such as a person or an entity. A node in an
graph or triple.

Predicate A representation of a property or characteristics of the subject or of the
relationship between the subject and the object. The predicate is also
known as an arc or edge.

Object A node representing a property value, which in turn may be the subject in
a triple or graph. An object may be a typed literal. See “RDF Datatypes”
on page 21.

Graph A set of RDF triple statements or patterns. In a graph-based RDF model,
nodes represent subject or object resources, with the predicate providing
the connection between those nodes. Graphs that are assigned a name are
referred to as Named Graphs.

Quad A representation of a subject, predicate, object, and an additional
resource node for the context of the triple.

Vocabularies A standard format for classifying terms. Vocabularies such as FOAF
(Friend of a Friend) and Dublin Core (DC) define the concepts and rela-
tionships used to describe and represent facts. For example, OWL is a
Web Ontology Language for publishing and sharing ontologies across
the World Wide Web.

Triple Index An index that indexes triples ingested into MarkLogic to facilitate the
execution of SPARQL queries.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 12

http://www.w3.org/

MarkLogic Server Introduction to Semantic Graphs in MarkLogic
1.2 Linked Open Data
Linked Open Data enables sharing of metadata and data across the Web. The World Wide Web
provides access to resources of structured and unstructured data as human-readable web pages
and hyperlinks. Linked Open Data extends this by inserting machine-readable metadata about
pages and how they are related to each other to present semantically structured knowledge. The
Linked Open Data Cloud gives some sense of the variety of open data sets available on the Web.

RDF Triple Store A storage tool for the persistent storage, indexing, and query access to
RDF graphs.

IRI An IRI (Internationalized Resource Identifier) is a compact string that is used
for uniquely identifying resources in an RDF triple. IRIs may contain
characters from the Universal Character Set (Unicode/ISO 10646),
including Chinese or Japanese Kanji, Korean, Cyrillic characters, and so
on.

CURIE Compact URI Expression.

SPARQL A recursive acronym for SPARQL Protocol and RDF Query Language
(SPARQL), a query language designed for querying data in RDF serial-
ization. SPARQL 1.1 syntax and functions are available in MarkLogic.

SPARQL Protocol A means of conveying SPARQL queries from query clients to query pro-
cessors, consisting of an abstract interface with bindings to HTTP
(Hypertext Transfer Protocol) and SOAP (Simple Object Access Proto-
col).

SPARQL Update An update language for RDF graphs that uses a syntax derived from the
SPARQL Query language.

RDFa Resource Description Framework in Attributes (RDFa) is a W3C Rec-
ommendation that adds a set of attribute-level extensions to HTML,
XHTML, and various XML-based document types for embedding rich
metadata within Web documents.

Blank node A node in an RDF graph representing a resource for which a IRI or literal
is not provided. The term bnode is used interchangeably with blank node.

Term Definition
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 13

MarkLogic Server Introduction to Semantic Graphs in MarkLogic
For more about Linked Open Data, see http://linkeddata.org/.

1.3 RDF Implementation in MarkLogic
This section describes the semantic technologies using RDF that are implemented in MarkLogic
Server and includes the following concepts:

• Using RDF in MarkLogic

• RDF Data Model

• RDF Datatypes

• RDF Vocabulary
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 14

http://linkeddata.org/
http://linkeddata.org/

MarkLogic Server Introduction to Semantic Graphs in MarkLogic
1.3.1 Using RDF in MarkLogic
RDF is implemented in MarkLogic to store and search RDF triples. Specifically, each triple is an
RDF triple statement containing a subject, predicate, object, and optionally a graph.

For example:

The subject node is a resource named John Smith, the object node is London, and the predicate,
shown as an edge linking the two nodes, describes the relationship. From the example, the
statement “John Smith lives in London” can be derived.

This triple looks like this in XML (with a second triple added):

<sem:triples xmlns:sem="http://marklogic.com/semantics">
<sem:triple>

<sem:subject> http://xmlns.com/foaf/0.1/name/"John
Smith"</sem:subject>

<sem:predicate> http://example.org/livesIn</sem:predicate>
<sem:object

datatype="http://www.w3.org/2001/XMLSchema#string">"London"</sem:objec
t>

</sem:triple>
</sem:triples>

In JSON this same triple would look like:

{
"my" : "data",

"triple" : {
"subject": "http://xmlns.com/foaf/0.1/name/John Smith",
"predicate": "http://example.org/livesIn",
"object": { "value": "London", "datatype": "xs:string" }

}
}

Sets of triples are stored as RDF graphs. In MarkLogic, the graphs are stored as collections. The
following image is an example of a simple RDF graph model that contains three triples. For more
information about graphs, see “RDF Data Model” on page 20.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 15

MarkLogic Server Introduction to Semantic Graphs in MarkLogic

The object node of a triple can in turn be a subject node of another triple. In the example, the
following facts are represented “John Smith lives with Jane Smith”, “John Smith lives in London”
and “London is in England”.

The graph can be represented in tabular format:

In JSON, these triples would look like this:

{
"my" : "data",

"triple" : [{
"subject": "http://xmlns.com/foaf/0.1/name/John Smith",
"predicate": "http://example.org/livesIn",
"object": { "value": "London", "datatype": "xs:string" }

},{
"subject": "http://xmlns.com/foaf/0.1/name/London",
"predicate": "http://example.org/isIn",
"object": { "value": "England", "datatype": "xs:string" }

},{
"subject": "http://xmlns.com/foaf/0.1/name/John Smith",
"predicate": "http://example.org/livesWith",
"object": { "value": "Jane Smith", "datatype": "xs:string" }

}
]}

Subject Predicate Object

John Smith livesIn London

London isIn England

John Smith livesWith Jane Smith

Subject
Predicate

livesIn

LondonJohn Smith

Jane Smith

livesWith
isIn

England

Predicate
Predicate

Object Object

Object/Subject
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 16

MarkLogic Server Introduction to Semantic Graphs in MarkLogic
1.3.1.1 Storing RDF Triples in MarkLogic
When you load RDF triples into MarkLogic, the triples are stored in MarkLogic-managed XML
documents. You can load triples from a document using an RDF serialization, such as Turtle or
N-Triple. For example:

<http://example.org/dir/js> <http://xmlns.com/foaf/0.1/firstname>
"John" .
<http://example.org/dir/js> <http://xmlns.com/foaf/0.1/lastname>
"Smith" .
<http://example.org/dir/js> <http://xmlns.com/foaf/0.1/knows> "Jane
Smith" .

For more examples of RDF formats, see “Example RDF Formats” on page 39.

The triples in this example are stored in MarkLogic as XML documents, with sem:triples as the
document root. These are managed triples because they have a document root element of
sem:triples.

<?xml version="1.0" encoding="UTF-8"?>
<sem:triples xmlns:sem="http://marklogic.com/semantics">
<sem:triple>
<sem:subject>http://example.org/dir/js</sem:subject>
<sem:predicate>http://xmlns.com/foaf/0.1/firstname</sem:predicate>
<sem:object datatype="http://www.w3.org/2001/XMLSchema#string">John
</sem:object>

</sem:triple>
<sem:triple>
<sem:subject>http://example.org/dir/js</sem:subject>
<sem:predicate>http://xmlns.com/foaf/0.1/lastname</sem:predicate>
<sem:object datatype="http://www.w3.org/2001/XMLSchema#string">

Smith</sem:object>
</sem:triple>
<sem:triple>
<sem:subject>http://example.org/dir/js</sem:subject>
<sem:predicate>http://xmlns.com/foaf/0.1/knows</sem:predicate>
<sem:object datatype="http://www.w3.org/2001/XMLSchema#string">

Jane Smith</sem:object>
</sem:triple>

</sem:triples>

You can also embed triples within XML documents and load them into MarkLogic as-is. These
are unmanaged triples, with a element node of sem:triple. You do not need the outer sem:triples
element for unmanaged triples, but you do need the subject, predicate, and object elements within
the sem:triple element.

Here is an embedded triple, contained in an XML document:

<?xml version="1.0" encoding="UTF-8"?>
<article>

<info>
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 17

MarkLogic Server Introduction to Semantic Graphs in MarkLogic
<title>News for April 9, 2013</title>
<sem:triples xmlns:sem="http://marklogic.com/semantics">

<sem:triple>
<sem:subject>http://example.org/article</sem:subject>
<sem:predicate>http://example.org/mentions</sem:predicate>
<sem:object>http://example.org/London</sem:object>
<sem:triple>

</sem:triples>
...

</info>
</article>

The loaded triples are automatically indexed with a special-purpose index called a triple index. The
triple index allows you to immediately search the RDF data for which you have the required
privileges.

1.3.1.2 Querying Triples
You can write native SPARQL queries in Query Console to retrieve information from RDF triples
stored in MarkLogic or in memory. When queried with SPARQL, the question of “who lives in
England?” is answered with “John and Jane Smith”. This is based on the assertion of facts from
the above graph model. This is an example of a simple SPARQL SELECT query:

SELECT ?person ?place
WHERE
{

?person <http://example.org/livesIn> ?place .
?place <http://example.org/isIn>

http://xmlns.com/foaf/0.1/name/London.
}

You can also use XQuery to execute SPARQL queries with sem:sparql. For example:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics" at

"/MarkLogic/semantics.xqy";

sem:sparql("
PREFIX kennedy:<http://example.org/kennedy>
SELECT *
WHERE
{
?s ?p ?o .
FILTER (regex(?o, 'Joseph', 'i'))
}
")

For more information about using SPARQL and sem:sparql to query triples, see “Semantic
Queries” on page 81.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 18

MarkLogic Server Introduction to Semantic Graphs in MarkLogic
Using XQuery, you can query across triples, documents, and values with cts:triples or
cts:triple-range-query.

Here is an example using a cts:triples query:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

let $r :=
cts:triples(sem:iri("http://example.org/people/dir"),

sem:iri("http://xmlns.com/foaf/0.1/knows"),
sem:iri("person1"))

return <result>{$r}</result>

The following is an example of a query that uses cts:triple-range-query:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

"at /MarkLogic/semantics.xqy";

let $query := cts:triple-range-query(
sem:iri("http://example.org/people/dir"),
sem:iri("http://xmlns.com/foaf/0.1/knows"), ("person2"), "sameTerm")

return cts:search(fn:collection()//sem:triple, $query)

You can create combination queries with cts:query functions such as cts:or-query or cts:and-
query.

For example:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "MarkLogic/semantics.xqy";

declare namespace dc = "http://purl.org/dc/elements/1.1/";

cts:search(collection()//sem:triple, cts:or-query((
cts:triple-range-query((), sem:curie-expand("foaf:name"),

"Lamar Alexander", "="),
cts:triple-range-query(sem:iri("http://www.rdfabout.com/rdf/usgov

/congress/people/A000360"), sem:curie-expand("foaf:img"), (),
"="))))

For more information about cts:triples and the cts:triple-range-query queries, see “Semantic
Queries” on page 81.

You can also use the results of a SPARQL query with an XQuery search to create combination
queries.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 19

MarkLogic Server Introduction to Semantic Graphs in MarkLogic
For example:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";
import module namespace semi = "http://marklogic.com/semantics/impl"

at "/MarkLogic/semantics/sem-impl.xqy";

declare namespace sr = "http://www.w3.org/2005/sparql-results";

let $results := sem:sparql("prefix k: <http://example.org/kennedy>
select * { ?s k:latitude ?lat . ?s k:longitude ?lon }")
let $xml := sem:sparql($results)

return
for $sol in $xml/sr:results/sr:result
let $point := cts:point(xs:float($sol/sr:binding[@name eq
'lat']/sr:literal), xs:float($sol/sr:binding[@name eq
'lon']/sr:literal))
return <place name="{$sol/sr:binding[@name eq 's']/*}"
point="{$point}"/>

For more information about combination queries, see “Querying Triples with XQuery or
JavaScript” on page 128.

1.3.2 RDF Data Model
RDF triples are a convenient way to represent facts: facts about the world, facts about a domain,
facts about a document. Each RDF triple is a fact (or assertion) represented by a subject,
predicate, and object, such as “John livesIn London”. The subject and predicate of a triple must be
an IRI (Internationalized Resource Identifier), which is a compact string used to uniquely identify
resources. The object may be either an IRI or a literal, such as a number or string.

• Subjects and predicates are IRI references with an optional fragment identifier.
For example:

<http://xmlns.com/foaf/0.1/Person>
foaf:person

• Literals are strings with an optional language tag or a number. These are used as objects in
RDF triples. For example:

"Bob"
"chat" @fr

• Typed literals may be strings, integers, dates and so on, that are assigned to a datatype.
These literals are typed with a “^^” operator “”. For example:

"Bob"^^xs:string
"3"^^xs:integer
"26.2"^^xs:decimal
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 20

MarkLogic Server Introduction to Semantic Graphs in MarkLogic
In addition, a subject or object may be a blank node (bnode or anonymous node), which is a node
in a graph without a name. Blank nodes are represented with an underscore, followed by a colon
(:) and then an identifier. For example:

_:a
_:jane

For more information about IRIs, see “IRIs and Prefixes” on page 22.

Often the object of one triple is the subject of another, so a collection of triples forms a graph. In
this document we represent graphs using these conventions:

• Subjects and objects are shown as ovals.

• Predicates are shown as edges (labeled arrows).

• Typed literals are shown as boxes.

1.3.3 Blank Node Identifiers
In MarkLogic, a blank node is assigned a blank node identifier. This internal identifier is
maintained across multiple invocations. In a triple, a blank node can be used for the subject or
object and is specified by an underscore (_). For example:

_:jane <http://xmlns.com/foaf/0.1/name> "Jane Doe".
<http://example.org/people/about> <http://xmlns.com/foaf/0.1/knows>
_:jane

Given two blank nodes, you can determine whether or not they are the same. The first node
"_:jane" will refer to the same node as the second invocation that also mentions "_:jane". Blank
nodes are represented as skolemized IRIs: blank nodes where existential variables are replaced
with unique constants. Each blank node has a prefix of
"http://marklogic.com/semantics/blank".

1.3.4 RDF Datatypes
RDF uses the XML schema datatypes. These include xs:string, xs:float, xs:double,
xs:integer, and xs:date and so on, as described in the specification, XML Schema Part 2:
Datatypes Second Edition:

http://www.w3.org/TR/xmlschema-2

All XML schema simple types are supported, along with all types derived from them, except for
xs:QName and xs:NOTATION.

RDF can also contain custom datatypes that are named with a IRI. For example, a supported
MarkLogic-specific datatype is cts:point.

Note: Use of an unsupported datatype such as xs:QName, xs:NOTATION, or types derived
from these will generate an XDMP-BADRDFVAL exception.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 21

http://www.w3.org/TR/xmlschema-2/
http://en.wikipedia.org/wiki/Skolem_normal_form

MarkLogic Server Introduction to Semantic Graphs in MarkLogic
If you omit a datatype declaration, it is considered to be of type xs:string. A typed literal is
denoted by the presence of the datatype attribute, or by an xml:lang attribute to give the language
encoding of the literal, for example, “en” for English.

Datatypes in the MarkLogic Semantics data model allow for values with a datatype that has no
schema. These are identified as xs:untypedAtomic.

1.3.5 IRIs and Prefixes
This section describes meaning and role of IRIs and prefixes, and includes the following
concepts:

• IRIs

• Prefixes

1.3.5.1 IRIs
IRIs (Internationalized Resource Identifiers) are internationalized versions of URIs (Uniform
Resource Identifiers). URIs use a subset of ASCII characters and are limited to this set. IRIs use
characters beyond ASCII, making them more useful in an international context. IRIs (and URIs)
are unique resource identifiers that enable you to fetch a resource. A URN (Uniform Resource
Name) can also be used to uniquely identify a resource.

An IRI may appear similar a URL and may or may not be an actual website. For example:

<http://example.org/addressbook/d>

IRIs need to be heirarchical, or they cannot be resolved against the base URIs. Here is the start of
a heirarchical URI:

some_scheme://

And here is the start of a non-heirarchical URI:

some_scheme:/

To use a non-hierarchical IRI, use the repair option to turn off hierarchical IRI parsing while
loading.

IRIs are used instead of URIs, where appropriate, to identify resources. Since SPARQL
specifically refers to IRIs, later chapters in this guide reference IRIs and not URIs.

IRIs are required to eliminate ambiguity in facts, particularly if data is received from different
data sources. For example, if you are receiving information about books from different sources,
one publisher may refer to the name of the book as “title”, another source may refer to the position
of the author as “title”. Similarly, one domain may refer to the writer of the book as the “author”
and another as “creator”.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 22

MarkLogic Server Introduction to Semantic Graphs in MarkLogic
Presenting the information with IRIs (and URNs), we see a clearer presentation of what the facts
mean. The following examples are three sets of N-Triples:

<http://example.org/people/title/sh1999>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#label>
"Lucasian Professor of Mathematics"

<urn:isbn:9780553380163>
<http://purl.org/dc/elements/1.1/title>
"A Brief History of Time"

<urn:isbn:9780553380163>
<http://purl.org/dc/elements/1.1/creator>
"Stephen Hawking"

Note: Line breaks have been inserted for the purposes of formatting, which make this RDF N-
Triple syntax invalid. Each triple would normally be on one line. (Turtle syntax allows for single
triples to wrap across multiple lines.)

The IRI is a key component of RDF, however IRIs are usually long and are difficult to maintain.
Compact URI Expressions (CURIEs) are supported as a mechanism for abbreviating IRIs. These
are specified in the CURIE Syntax Definition:

http://www.w3.org/TR/rdfa-syntax/#s_curies

1.3.5.2 Prefixes
Prefixes are identified by IRIs and often begin with the name of an organization or company. For
example:

PREFIX js: <http://example.org/people/about/js/>

A prefix is a shorthand string used to identify a name. The designated prefix binds a prefix IRI to
the specified string. The prefix can then be used instead of writing the full IRI each time it is
referenced. When you use prefixes to write RDF, the prefix is followed by a colon. You can
choose any prefix for resources that you define. For example, here is a SPARQL declaration:

PREFIX dir: <http://example.org/people/about/>

You can also use standard and agreed upon prefixes that are a part of a specification. This is a
SPARQL declaration for rdf:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns/>

The prefix depends on the serialization that you use. The Turtle prefix declaration would be:

@prefix dir: <http://example.org/people/about/> .
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 23

http://www.w3.org/TR/rdfa-syntax/#s_curies

MarkLogic Server Introduction to Semantic Graphs in MarkLogic
Note: All PREFIX declarations must end with a forward slash (“/”) or a hashtag (“#”).
These separate the prefix from the final part of the IRI.

1.3.6 RDF Vocabulary
RDF vocabularies are defined using RDF Schema (RDFS) or Web Ontology Language (OWL) to
provide a standard serialization for classifying terms. The vocabulary is essentially the set of IRIs
for the arcs that form RDF graphs. For example, the FOAF vocabulary describes people and
relationships.

The existence of a shared standard vocabulary is helpful, but not essential since it is possible to
combine vocabularies or create a new one. Use the following prefix lookup to help decide which
vocabulary to use:

http://prefix.cc/about

There is an increasingly large number of vocabularies. Common RDF prefixes that are widely
used and agreed upon include the following:

Prefix Prefix IRI

cc http://web.resource.org/cc#ns Creative Commons

dc http://purl.org/dc/elements/1.1/ Dublin Core vocabulary

dcterms http://purl.org/dc/terms Dublin Core terms

rdfs http://www.w3.org/2000/01/rdf-schema# RDF schema

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns# RDF vocabulary

owl http://www.w3.org/2002/07/owl# Web Ontology Language

foaf http://xmlns.com/foaf/0.1/ FOAF (Friend of a Friend)

skos http://www.w3.org/2004/02/skos/core SKOS (Simple Knowledge Orga-
nization System)

vcard http://www.w3.org/2001/vcard-rdf/3.0 VCard vocabulary

void http://rdfs.org/ns/void Vocabulary of Interlinked Datasets

xml http://www.w3.org/XML/1998/namespace XML namespace

xhtml http://www.w3.org/1999/xhtml XHTML namespace

xs http://www.w3.org/2001/XMLSchema# XML Schema

fn http://www.w3.org/2005/xpath-functions XQuery function and operators
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 24

http://web.resource.org/cc/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/terms/
http://prefix.cc/about
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2002/07/owl#
http://xmlns.com/foaf/0.1/
http://www.w3.org/2004/02/skos/core#
http://www.w3.org/2001/vcard-rdf/3.0
http://www.w3.org/2001/vcard-rdf/3.0
http://www.w3.org/XML/1998/namespace
http://www.w3.org/1999/xhtml
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2005/xpath-functions

MarkLogic Server Introduction to Semantic Graphs in MarkLogic
Note: For these vocabularies, the IRIs are also URLs.

1.4 Example Datasets
There is a growing body of data from domains such as Government and governing agencies,
Healthcare, Finance, Social Media and so on, available as triples, often accessible via SPARQL
for the purpose of:

• Semantic search

• Dynamic Semantic Publishing

• Aggregating diverse datasets

There are a large number of datasets available for public consumption.

For example:

• FOAF: http://www.foaf-project.org - a project that provides a standard RDF vocabulary for
describing people, what they do, and relationships to other people or entities.

• DBPedia: http://wiki.dbpedia.org/develop/datasets/ - data derived from Wikipedia with many
external links to RDF datasets.

• Semantic Web: http://data.semanticweb.org - a database of thousands of unique triples about
conference data.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 25

http://www.foaf-project.org/
https://wiki.dbpedia.org/develop/datasets/
http://data.semanticweb.org/

MarkLogic Server Introduction to Semantic Graphs in MarkLogic
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 26

MarkLogic Server Getting Started with Semantic Graphs in MarkLogic
2.0 Getting Started with Semantic Graphs in MarkLogic
36

This chapter includes the following sections:

• Setting up MarkLogic Server

• Loading Triples

• Querying Triples

2.1 Setting up MarkLogic Server
When you install MarkLogic Server, a database, REST instance, and XDBC server (for loading
content) are created automatically for you. The default Documents database is available on port
8000 as soon as you install MarkLogic Server, with a REST instance attached to it.

The examples in this guide use this pre-configured database, XDBC server, and REST API
instance on port 8000. This section focuses on setting up MarkLogic Server to store triples. To do
this, you will need to configure the database to store, search, and manage triples.

Note: You must have admin privileges for MarkLogic Server to complete the procedures
described in this section.

Install MarkLogic Server on the database server, as described in the Installation Guide for All
Platforms, and then perform the following tasks:

• Configuring the Database to Work with Triples

• Setting Up Additional Servers

2.1.1 Configuring the Database to Work with Triples
The Documents database has the triple index and the collection lexicon enabled by default. These
options are also enabled by default for any new databases you create.

If you have an existing database that you want to use for triples, you need to make sure that the
triple index and the collection lexicon are both enabled. You can also use these steps to verify that
a database is correctly set up. Follow these steps to configure an existing database for triples:

1. Navigate to the Admin Interface (localhost:8001). Click the Documents database, and
then click the Configure tab.

2. Scroll down the Admin Configure page to see the status of triple index.

Set this to true if it is not already configured. The triple index is used for semantics.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 27

MarkLogic Server Getting Started with Semantic Graphs in MarkLogic
3. Scroll down a bit further and set the collection lexicon to true.

The collection lexicon index is required and used by the REST endpoint. You will only
need the collection lexicon if you are querying a named graph.

4. Click ok when you are done.

This is all you need to do before loading triples into your default database (the Documents
database).

Note: For all new installations of MarkLogic 9 and later, the triple index and collection
lexicon are enabled by default. Any new databases will also have the triple index
and collection lexicon enabled.

2.1.2 Setting Up Additional Servers
In a production environment, you will want to create additional app servers, REST instances, and
XDBC servers. Use these links to find out more:

• Application servers: The process to create additional app servers is described in Creating

and Configuring App Servers in the Administrator’s Guide.

• REST instances: To create a different REST instance on another port, see Administering

REST Client API Instances in the REST Application Developer’s Guide.

• XDBC servers: The process to create an XDBC server is described in detail in Creating a

New XDBC Server in the Administrator’s Guide.

2.2 Loading Triples
This section covers loading triples into the database. It includes the following topics:

• Downloading the Dataset

• Importing Triples with mlcp

• Verifying the Import

2.2.1 Downloading the Dataset
Use the full sample of Persondata from DBPedia (in English and Turtle serialization) for the
examples, or use a different subset of Persondata if you prefer.

1. Download the Persondata example dataset from DBPedia. You will use this dataset for the
steps in the rest of this chapter. The dataset is available at
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 28

MarkLogic Server Getting Started with Semantic Graphs in MarkLogic
https://wiki.dbpedia.org/develop/datasets/dbpedia-version-2016-10. To manually select it, go to
http://wiki.dbpedia.org/downloads-2016-10, scroll down to Persondata, and select the TTL
version: http://downloads.dbpedia.org/2016-10/core-i18n/en/persondata_en.ttl.bz2

Note: DBPedia datasets are licensed under the terms of the of the Creative Commons
Attribution-ShareAlike License and the GNU Free Documentation License. The data
is available in localized languages and in N-Triple and N-Quad serialized formats.

2. Extract the data from the compressed file to a local directory, for example, C:\space.

2.2.2 Importing Triples with mlcp
There are multiple ways to load triples into MarkLogic, including MarkLogic Content Pump
(mlcp), REST endpoints, and XQuery. The recommended way to bulk-load triples is with mlcp.
These examples use mlcp on a standalone Windows environment.

1. Install and configure MarkLogic Pump as described in Installation and Configuration in the
mlcp User Guide.

2. In the Windows command interpreter, cmd.exe, navigate to the mlcp bin directory for your
mlcp installation. For example:

cd C:\mlcp-11.0\bin

3. Assuming that the Persondata is saved locally under C:\space, enter the following single-
line command at the prompt:

mlcp.bat import -host localhost -port 8000 -username admin ^
-password password -input_file_path c:\space\persondata_en.ttl ^
-mode local -input_file_type RDF -output_uri_prefix /people/

For clarity the long command line is broken into multiple lines using the Windows line
continuation character “^”. Remove the line continuation characters to use the command.

The modified command for UNIX is:

mlcp.sh import -host localhost -port 8000 -username admin -password\
password -input_file_path /space/persondata_en.ttl -mode local\
-input_file_type RDF -output_uri_prefix /people/

For clarity, the long command line is broken into multiple lines using the UNIX line
continuation character “\”. Remove the line continuation characters to use the command.

The triples will be imported and stored in the default Documents database.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 29

https://wiki.dbpedia.org/develop/datasets/dbpedia-version-2016-10
http://wiki.dbpedia.org/downloads-2016-10
http://downloads.dbpedia.org/2016-10/core-i18n/en/persondata_en.ttl.bz2

MarkLogic Server Getting Started with Semantic Graphs in MarkLogic
4. Lots of lines of text will display in your command line window, perhaps with what appear
to be warning messages. This is normal. The successful triples data import (UNIX output)
looks like this when it is complete:

14/09/15 14:35:38 INFO contentpump.ContentPump: Hadoop library version:
2.0.0-alpha
14/09/15 14:35:38 INFO contentpump.LocalJobRunner: Content type: XML
14/09/15 14:35:38 INFO input.FileInputFormat: Total input paths to
process : 1
O:file:///home/persondata_en.ttl : persondata_en.ttl
14/09/15 14:35:40 INFO contentpump.LocalJobRunner: completed 0%
14/09/15 14:40:27 INFO contentpump.LocalJobRunner: completed 100%
14/09/15 14:40:28 INFO contentpump.LocalJobRunner:
com.marklogic.contentpump.ContentPumpStats:
14/09/15 14:40:28 INFO contentpump.LocalJobRunner:
ATTEMPTED_INPUT_RECORD_COUNT: 59595
14/09/15 14:40:28 INFO contentpump.LocalJobRunner:
SKIPPED_INPUT_RECORD_COUNT: 0
14/09/15 14:40:28 INFO contentpump.LocalJobRunner: Total execution
time: 289 sec

2.2.3 Verifying the Import
To verify that the RDF triples are successfully loaded into the triples database, do the following.

1. Navigate to the REST Server with a Web browser:

http://hostname:8000

where hostname is the name of your MarkLogic Server host machine, and 8000 is the
default port number for the REST instance that was created when you installed MarkLogic
Server.

2. Append “/latest/graphs/things” to the end of the web address URL where latest is
the latest version of the REST API. For example:

http://hostname:8000/v1/graphs/things
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 30

MarkLogic Server Getting Started with Semantic Graphs in MarkLogic
The first one thousand subjects are displayed:
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 31

MarkLogic Server Getting Started with Semantic Graphs in MarkLogic
3. Click on a subject link to view the triples. Subject and object IRIs are presented as links.

2.3 Querying Triples
You can run SPARQL queries in Query Console or via an HTTP endpoint using the
/v1/graphs/sparql endpoint (GET:/v1/graphs/sparql and POST:/v1/graphs/sparql). This section
includes the following topics:

• Querying with Native SPARQL

• Querying with the sem:sparql Functions

Note: This section assumes you loaded the sample dataset as described in “Downloading
the Dataset” on page 28.

2.3.1 Querying with Native SPARQL
You can run queries in Query Console using native SPARQL or the built-in function sem:sparql.

To run queries:

1. Navigate to Query Console with a Web browser:

http://hostname:8000/qconsole

where hostname is the name of your MarkLogic Server host.

2. From the Database drop-down list, select the Documents database.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 32

MarkLogic Server Getting Started with Semantic Graphs in MarkLogic
3. From the Query Type drop-down list, select SPARQLQuery.

4. In the query window, replace the default query text with this SPARQL query:

PREFIX db: <http://dbpedia.org/resource/>
PREFIX onto: <http://dbpedia.org/ontology/>

SELECT *
WHERE { ?s onto:birthPlace db:Brooklyn }

5. Click Run.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 33

MarkLogic Server Getting Started with Semantic Graphs in MarkLogic
The results show people born in Brooklyn as IRIs.

2.3.2 Querying with the sem:sparql Functions
Use the built-in XQuery function sem:sparql in Query Console to run the same query.

1. From the Database drop-down list, select the Documents database.

2. From the Query Type drop-down list, select “XQuery”.

3. In the query window, enter this query:

xquery version "1.0-ml";

sem:sparql('
PREFIX db: <http://dbpedia.org/resource/>
PREFIX onto: <http://dbpedia.org/ontology/>

SELECT *
WHERE { ?s onto:birthPlace db:Brooklyn }
')
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 34

MarkLogic Server Getting Started with Semantic Graphs in MarkLogic
4. Click Run.

5. The results contain IRIS showing people born in Brooklyn, the same as in “Querying with
Native SPARQL” on page 32.

For more information and examples of SPARQL queries, see “Semantic Queries” on page 81.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 35

MarkLogic Server Getting Started with Semantic Graphs in MarkLogic
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 36

MarkLogic Server Loading Semantic Triples
3.0 Loading Semantic Triples
62

You can load triples into a MarkLogic database from an XML document or JSON file that
contains embedded triples elements, or from triples files containing serialized RDF data. This
chapter includes the following sections:

• Loading Embedded RDF Triples

• Loading Triples

You can also use SPARQL Update to load triples. See “SPARQL Update” on page 169 for more
information.

3.1 Loading Embedded RDF Triples
Load documents that contain embedded triples in XML documents or JSON documents with any
of the ingestion tools described in Available Content Loading Interfaces in the Loading Content Into
MarkLogic Server Guide.

Note: The embedded triples must be in the MarkLogic XML format defined in the
schema for sem:triple (semantics.xsd).

Triples ingested into a MarkLogic database are indexed by the triples index and stored for access
and query by SPARQL. See “Storing RDF Triples in MarkLogic” on page 17 for details.

3.2 Loading Triples
There are multiple ways to load documents containing triples serialized in a supported RDF
serialization into MarkLogic. “Supported RDF Triple Formats” on page 38 describes these RDF
formats.

When you load one or more groups of triples, they are parsed into generated XML documents. A
unique IRI is generated for every XML document. Each document can contain multiple triples.

Note: The setting for the number of triples stored in documents is defined by MarkLogic
Server and is not a user configuration.

Ingested triples are indexed with the triples index to provide access and the ability to query the
triples with SPARQL, XQuery, or a combination of both. You can also use a REST endpoint to
execute SPARQL queries and return RDF data.

If you do not provide a graph for the triple, the triples will be stored in a default graph that uses a
MarkLogic Server feature called a collection. MarkLogic Server tracks the default graph with the
collection IRI http://marklogic.com/semantics#default-graph.

You can specify a different collection during the load process and load triples into a named graph.
For more information about collections, see Collections in the Search Developer’s Guide.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 37

MarkLogic Server Loading Semantic Triples
Note: If you insert triples into a database without specifying a graph name, the triples
will be inserted into the default graph
(http://marklogic.com/semantics#default-graph). If you insert triples into a
super database and run fn:count(fn:collection()) in the super database, you will
get a DUPURI exception for duplicate URIs.

The generated XML documents containing the triple data are loaded into a default directory
named /triplestore. Some loading tools let you specify a different directory. For example, when
you load triples using mlcp, you can specify the graph and the directory as part of the import
options. For more information, see “Loading Triples with mlcp” on page 44.

This section includes the following topics:

• Supported RDF Triple Formats

• Example RDF Formats

• Loading Triples with mlcp

• Loading Triples with XQuery

• Loading Triples with JavaScript

• Loading Triples Using the REST API

• Loading Triples Using the Java API

• Loading Triples Using the Node.js API

3.2.1 Supported RDF Triple Formats
MarkLogic Server supports loading these RDF data formats:

Format Description
File
Type

MIME Type

RDF/XML A syntax used to serialize an RDF graph as an
XML document. For an example, see
“RDF/XML” on page 39.

.rdf application/rdf+xml

Turtle Terse RDF Triple Language (Turtle)
serialization is a simplified subset of Notation 3
(N3), used for expressing data in the lowest
common denominator of serialization. For an
example, see “Turtle” on page 40.

.ttl text/turtle

RDF/JSON A syntax used to serialize RDF data as JSON
objects. For an example, see “RDF/JSON” on
page 40.

.json application/rdf+json
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 38

MarkLogic Server Loading Semantic Triples
3.2.2 Example RDF Formats
This section includes examples for the following RDF formats:

• RDF/XML

• Turtle

• RDF/JSON

• N3

• N-Triples

• N-Quads

• TriG

3.2.2.1 RDF/XML
RDF/XML is the original standard for writing unique RDF syntax as XML. It is used to serialize
an RDF graph as an XML document.

This example defines three prefixes: “rdf”, “xsd”, and “d”.

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:d="http://example.org/data/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#">
<rdf:Description rdf:about="http://example.org/data#item22">

<d:shipped rdf:datatype="http://www.w3.org/2001/XMLSchema#date">
2013-05-14</d:shipped>

<d:quantity

N3 Notation3 (N3) serialization is a non-XML
syntax used to serialize RDF data. For an
example, see “N3” on page 41.

.n3 text/n3

N-Triples A plain text serialization for RDF graphs. N-
Triples is a subset of Turtle and Notation3 (N3).
For an example, see “N-Triples” on page 41.

.nt application/n-triples

N-Quads A superset serialization that extends N-Triples
with an optional context value. For an example,
see “N-Quads” on page 43.

.nq application/n-quads

TriG A plain text serialization for RDF-named graphs
and RDF datasets. For an example, see “TriG”
on page 44.

.trig application/trig

Format Description
File
Type

MIME Type
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 39

MarkLogic Server Loading Semantic Triples
rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">
27</d:quantity>

<d:invoiced
rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean">

true</d:invoiced>
<d:costPerItem

rdf:datatype="http://www.w3.org/2001/XMLSchema#decimal">
10.50</d:costPerItem>

</rdf:Description>
</rdf:RDF>

3.2.2.2 Turtle
Terse RDF Triple Language (or Turtle) serialization expresses data in the RDF data model using a
syntax similar to SPARQL. Turtle syntax expresses triples in the RDF data model in groups of
three IRIs.

For example:

<http://example.org/item/item22>
<http://example.org/details/shipped>
"2013-05-14"^^<http://www.w3.org/2001/XMLSchema#dateTime> .

This triple states that item 22 was shipped on May 14th, 2013.

Turtle syntax provides a way to abbreviate information for multiple statements using @prefix to
factor out the common portions of IRIs. This makes it quicker to write RDF Turtle statements.
The syntax resembles RDF/XML, however unlike RDF/XML, it does not rely on XML. Turtle
syntax is also valid Notation3 (N3) since Turtle is a subset of N3.

Note: Turtle can only serialize valid RDF graphs.

In this example, four triples describe a transaction. The “shipped” object is assigned a “date”
datatype, making it a typed literal enclosed in quotes. There are three untyped literals for the
“quantity”, “invoiced”, and “costPerItem” objects.

@prefix i: <http://example.org/item> .
@prefix dt: <http://example.org/details#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

i:item22 dt:shipped "2013-05-14"^^xsd:date .
i:item22 dt:quantity 100 .
i:item22 dt:invoiced true .
i:item22 dt:costPerItem 10.50 .

3.2.2.3 RDF/JSON
RDF/JSON is a textual syntax for RDF that allows an RDF graph to be written in a form
compatible with JavaScript Object Notation (JSON).

For example:
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 40

MarkLogic Server Loading Semantic Triples
{ "http://example.com/directory#m":
{ "http://example.com/ns/person#firstName":

[{ "value": "Michelle",
"type": "literal",
"datatype": "http://www.w3.org/2001/XMLSchema#string" }

]
}

}

3.2.2.4 N3
Notation3 (N3) is a non-XML syntax used to serialize RDF graphs in a more compact and
readable form than XML RDF notation. N3 includes support for RDF-based rules.

When you have several statements about the same subject in N3, you can use a semicolon (;) to
introduce another property of the same subject. You can also use a comma to introduce another
object with the same predicate and subject.

For example:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix foafcorp: <http://xmlns.com/foaf/corp/> .
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0> .
@prefix sec: <http://www.rdfabout.com/rdf/schema/ussec> .
@prefix id: <http://www.rdfabout.com/rdf/usgov/sec/id> .

id:cik0001265081 sec:hasRelation [
dc:date "2008-06-05";
sec:corporation id:cik0001000045;
rdf:type sec:OfficerRelation;
sec:officerTitle "Senior Vice President, CFO"] .

id:cik0001000180 sec:cik "0001000180";
foaf:name "SANDISK CORP";
sec:tradingSymbol "SNDK";
rdf:type foafcorp:Company.

id:cik0001009165 sec:cik "0001009165";
rdf:type foaf:Person;
foaf:name "HARARI ELIYAHOU ET AL";
vcard:ADR [vcard:Street "601 MCCARTHY BLVD.; ";

vcard:Locality "MILPITAS, CA"; vcard:Pcode "95035"] .

3.2.2.5 N-Triples
N-Triples is a plain text serialization for RDF graphs. It is a subset of Turtle, designed to be
simpler to use than Turtle or N3. Each line in N-Triples syntax encodes one RDF triple statement
and consists of the following:

• Subject (an IRI or a blank node identifier), followed by one or more characters of
whitespace
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 41

MarkLogic Server Loading Semantic Triples
• Predicate (an IRI), followed by one or more characters of whitespace

• Object (an IRI, blank node identifier, or literal) followed by a period (.) and a new line.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 42

MarkLogic Server Loading Semantic Triples
Typed literals may include language tags to indicate the language. In this N-Triples example,
@en-US indicates that title of the resource is in US English.

<http://www.w3.org/2001/sw/RDFCore/ntriples>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://xmlns.com/foaf/0.1/Document> .
<http://www.w3.org/2001/sw/RDFCore/ntriples/>
<http://purl.org/dc/terms/title> "Example Doc"@en-US .
<http://www.w3.org/2001/sw/RDFCore/ntriples/>
<http://xmlns.com/foaf/0.1/maker> _:jane .
<http://www.w3.org/2001/sw/RDFCore/ntriples/>
<http://xmlns.com/foaf/0.1/maker> _:joe .

_:jane <http://www.w3.org/1999/02/22-rdf-syntax-ns>
<http://xmlns.com/foaf/0.1/Person> .
_:jane <http://xmlns.com/foaf/0.1/name> "Jane Doe".

_:joe <http://www.w3.org/1999/02/22-rdf-syntax-ns>
<http://xmlns.com/foaf/0.1/Person> .
_:joe <http://xmlns.com/foaf/0.1/name> "Joe Bloggs".

Note: Each line breaks after the end period. For clarity, additional line breaks have been
added.

3.2.2.6 N-Quads
N-Quads is a line-based, plain text serialization for encoding an RDF dataset. N-Quads syntax is a
superset of N-Triples, extending N-Triples with an optional context value. The simplest statement
is a sequence of terms (subject, predicate, object) forming an RDF triple, and an optional IRI
labeling the graph in a dataset to which the triple belongs. All of these are separated by a
whitespace and terminated by a period (.) at the end of each statement.

This example uses the relationship vocabulary. The class or property in the vocabulary has a IRI
constructed by appending a term name “acquaintanceOf” to the vocabulary IRI.

<http://example.org/#Jane>
<http://http://purl.org/vocab.org/relationship/#acquaintanceOf>
<http://example.org/#Joe>
<http://example.org/graphs/directory> .
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 43

MarkLogic Server Loading Semantic Triples
3.2.2.7 TriG
TriG is a plain text serialization for serializing RDF graphs. TriG is similar to Turtle, but is
extended with curly braces ({) and (}) to group triples into multiple graphs and precede named
graphs with their names. An optional equals operator (=) can be used to assign graph names and
an optional end period (.) is included for Notation3 compatibility.

Characteristics of TriG serialization include:

• Graph names must be unique within a TriG document, with one unnamed graph per TriG
document.

• TriG content is stored in files with an '.trig' suffix. The MIME type of TriG is
application/trig and the content encoding is UTF-8.

This example contains a default graph and two named graphs.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

default graph is http://marklogic.com/semantics#default-graph
{
<http://example.org/joe> dc:publisher "Joe" .
<http://example.org/jane> dc:publisher "Jane" .
}

first named graph
<http://example.org/joe>
{

_:a foaf:name "Joe" .
_:a foaf:mbox <mailto:joe@jbloggs.example.org> .

}
second named graph

<http://example.org/jane>
{

_:a foaf:name "Jane" .
_:a foaf:mbox <mailto:jane@jdoe.example.org> .

}

3.2.3 Loading Triples with mlcp
MarkLogic Content Pump (mlcp) is a command line tool for importing into, exporting from, and
copying content to MarkLogic from a local file system or Hadoop distributed file system (HDFS).

Using mlcp, you can bulk load billions of triples and quads into a MarkLogic database and specify
options for the import. For example, you can specify the directory into which the triples or quads
are loaded. It is the recommended tool for bulk loading triples. For more detailed information
about mlcp, see Loading Content Using MarkLogic Content Pump in the Loading Content Into
MarkLogic Server Guide.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 44

MarkLogic Server Loading Semantic Triples
This section discusses loading triples into MarkLogic Server with mlcp and includes the
following topics:

• Preparation

• Import Command Syntax

• Loading Triples and Quads

• Specifying Collections and a Directory

3.2.3.1 Preparation
Use these procedures to load content with mlcp:

1. Download and extract the mlcp binary files from developer.marklogic.com. Be sure that you
have the latest version of mlcp. For more information about installing and using mlcp and
system requirements, see Installation and Configuration in the mlcp User Guide.

Note: Although the extracted mlcp binary files do not need to be on the same MarkLogic
host machine, you must have access and permissions for the host machine into
which you are loading the triples.

2. For these examples we will use the default database (Documents) and forest (Documents).
To create your own database see Creating a New Database in the Administrator’s Guide.

3. Verify that the triple index is enabled by checking the Documents database configuration
page of the Admin Interface, or using the Admin API. See “Enabling the Triple Index” on
page 66 for details.

Note: The collection lexicon index is required for the Graph Store HTTP Protocol used
by REST API instances and for use of the GRAPH “?g” construct in SPARQL
queries. See “Configuring the Database to Work with Triples” on page 27 for
information on the collection lexicon.

4. You can use mlcp with the default server on port 8000, which includes an XDBC server.
To create your own XDBC server, see Creating a New XDBC Server in the Administrator’s
Guide.

5. (Optional) Put the mlcp bin directory in your path. For example:

$ export PATH=${PATH}:/space/marklogic/directory-name/bin

where directory-name is derived from the version of mlcp that you downloaded.

6. Use a command-line interpreter or interface to enter the import command as a single-line
command.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 45

http://developer.marklogic.com/

MarkLogic Server Loading Semantic Triples
3.2.3.2 Import Command Syntax
The mlcp import command syntax required for loading triples and quads into MarkLogic is:

mlcp_command import -host hostname -port port number \
-username username -password password
-output_graph graphname\
-input_file_path filepath -input_file_type filetype

Note: Long command lines in this section are broken into multiple lines using the line
continuation characters “\” or “^”. Remove the line continuation characters when
you use the import command.

The mlcp_command you use depends on your environment. Use the mlcp shell script mclp.sh for
UNIX systems and the batch script mlcp.bat for Windows systems. The -host and -port values
specify the MarkLogic host machine into which you are loading the triples. Your user credentials,
-username and -password are followed by the path to the content , the -input_file_path value. If
you use your own database, be sure to add the -database parameter for your database. If no
database parameter is specified, the content will be put into the default Documents database.

The -input_file_path may point to a directory, file, or compressed file in .zip or .gzip format.
The -input_file_type is the type of content to be loaded. For triples, the -input_file_type must
be RDF.

Note: The file extension of the file found in the -input_file_path is used by mlcp to
identify the type of content being loaded. The type of RDF serialization is
determined by the file extension (.rdf, .ttl, .nt, and so on).

A document with a file extension of .nq or .trig is identified as quad data, all other file extensions
are identified as triple data. For more information about file extensions, see “Supported RDF
Triple Formats” on page 38.

Note: You must have sufficient MarkLogic privileges to import to the specified host. See
Security Considerations in the mlcp User Guide.

3.2.3.3 Loading Triples and Quads
In addition to the required import options, you can specify several input and output options. See
“Import Options” on page 47 for more details about these options. For example, you can load
triples and quads by specifying RDF as the -input_file_type option:

$ mlcp.sh import -host localhost -port 8000 -username user \
-password passwd -input_file_path /space/tripledata/example.nt \
-output_graph /my/graph -mode local -input_file_type RDF

This example uses the shell script to load triples from a single N-Triples file example.nt, from a
local file system directory /space/tripledata into a MarkLogic host on port 8000.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 46

MarkLogic Server Loading Semantic Triples
On a Windows environment, the command would look like this:

> mlcp.bat import -host localhost -port 8000 ^
-username admin -password passwd ^
-input_file_path c:\space\tripledata\example.nt -mode local^
-input_file_type RDF -output_graph /my/graph

Note: For clarity, these long command lines are broken into multiple lines using the line
continuation characters “\” or “^”. Remove the line continuation characters when
you use the import command.

When you specify RDF as -input_file_type the mlcp RDFReader parses the triples and
generates XML documents with sem:triple as the root element of the document.

3.2.3.4 Import Options
These options can be used with the import command to load triples or quads.

Options Description

-input_file_type string Specifies the input file type. Default: document. For triples,
use RDF.

-input_compressed boolean When set to “true” this option enables decompression on
import. Default: false

-fastload boolean When set to “true” this option forces optimal performance
with a direct forest update. This may result in duplicate doc-
ument IRIs. See Time vs. Correctness: Understanding -fastload

Tradeoffs in the mlcp User Guide.

-output_directory Specifies the destination database directory in which to cre-
ate the loaded documents. Using this option enables -fast-
load by default, which can cause duplicate IRIs to be
created. See Time vs. Correctness: Understanding -fastload

Tradeoffs in the mlcp User Guide. Default: /triplestore

-output_graph The graph value to assign to quads with no explicit graph
specified in the data. Cannot be used with -
output_override_graph.

-output_override_graph The graph value to assign to every quad, whether a quad is
specified in the data or not. Cannot be used with -
output_graph.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 47

MarkLogic Server Loading Semantic Triples
Note: When you load triples using mlcp, the -output_permissions option is ignored -
triples (and, under the covers, triples documents) inherit the permissions of the
graph that you're loading into.

If -output_collections and -output_override_graph are set at the same time, a graph document
will be created for the graph specified by -output_override_graph, and triples documents will be
loaded into collections specified by -output_collections and -output_override_graph.

If -output_collections and -output_graph are set at the same time, a graph document will be
created for the graph specified by -output_graph (where there is no explicit graph specified in the
data). Quads with no explicit graph specified in the data will be loaded into collections specified
by -output_collections and the graph specified by -output_graph, while those quads that contain
explicit graph data will be loaded into the collections specified by -output_collections and the
graph(s) specified.

You can split large triples documents into smaller documents to parallelize loading with mlcp and
load all the files in a directory that you specify with -input_file_path.

For more information about import and output options for mlcp, see Import Command Line Options
in the mlcp User Guide.

For example:

Windows users, see Modifying the Example Commands for Windows

$ mlcp.sh import -host localhost -port 8000 -username user \
-password passwd -input_file_path /space/tripledata \
-mode local -input_file_type RDF -output_graph /my/graph

-output_collections Creates a comma-separated list of collections. Default:
http://marklogic.com/semantics#default-graph

If -output_collections is used with -output_graph and -
output_override_graph, the collections specified will be
added to the documents loaded.

-database string (optional) The name of the destination database. Default:
The database associated with the destination App Server
identified by -host and -port.

Options Description
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 48

MarkLogic Server Loading Semantic Triples
3.2.3.5 Specifying Collections and a Directory
To load triples into a named graph, specify a collection by using the -output_collections option.

Note: To create a new graph, you need to have the sparql-update-user role. For more
information about roles, see Understanding Roles in the Security Guide.

For example:

Windows users, see Modifying the Example Commands for Windows

$ mlcp.sh import -host localhost -port 8000 -username user \
-password passwd -input_file_path /space/tripledata \
-mode local -input_file_type RDF -output_graph /my/graph\
-output_collections /my/collection

This command puts all the triples in the tripledata directory into a named graph and overwrites
the graph IRI to /my/collection.

Note: Use -output_collections and not -filename_as_collection to overwrite the
default graph IRI.

For triples data, the documents go in the default collection
(http://marklogic.com/semantics#default-graph) if you do not specify any collections.

For quad data, if you do not specify any collections, the triples are parsed, serialized, and stored in
documents with the fourth part of the quad as the collection.

For example with this quad, the fourth part is an IRI that identifies the homepage of the subject.

<http://dbpedia.org/resource/London_Heathrow_Airport>
<http://xmlns.com/foaf/0.1/homepage>
<http://www.heathrowairport.com/>
<http://en.wikipedia.org/wiki/London_Heathrow_Airport?oldid=495283228#
absolute-line=26/> .

When the quad is loaded into the database, the collection is generated as a named graph,
http://en.wikipedia.org/wiki/London_Heathrow_Airport?oldid=495283228#absolute-line=26.

Note: If the -output_collections import option specifies a named graph, the fourth
element of the quad is ignored and the named graph is used.

If you are using a variety of loading methods, consider putting all of the triples documents in a
common directory. Since the sem:rdf-insert and sem:rdf-load functions put triples documents in
the /triplestore directory, use -output_uri_prefix /triplestore to put mlcp-generated triples
documents there as well.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 49

MarkLogic Server Loading Semantic Triples
For example:

$ mlcp.sh import -host localhost -port 8000 -username user \
-password passwd -input_file_path /space/tripledata/example.zip \
-mode local -input_file_type RDF -input_compressed true
-output_collections /my/collection -output_uri_prefix '/triplestore' \
-output_graph /my/graph

When you load triples or quads into a specified named graph from a compressed .zip or .gzip file,
mlcp extracts and serializes the content based on the serialization. For example, a compressed file
containing Turtle documents (.ttl) will be identified and parsed as triples.

When the content is loaded into MarkLogic with mlcp, the triples are parsed as they are ingested
as XML documents with a unique IRI. These unique IRIs are random numbers expressed in
hexadecimal. This example shows triples loaded with mlcp from the persondata.ttl file, with the
-output_uri_prefix specified as /triplestore:

/triplestore/d2a0b25bda81bb58-0-10024.xml
/triplestore/d2a0b25bda81bb58-0-12280.xml
/triplestore/d2a0b25bda81bb58-0-13724.xml
/triplestore/d2a0b25bda81bb58-0-14456.xml

Carefully consider the method you choose for loading triples. The algorithm for generating the
document IRIs with mlcp differs from other loading methods such as loading from a system file
directory with sem:rdf-load.

For example, loading the same persondata.ttl file with sem:rdf-load results in IRIs that appear
to have no relation to each other:

/triplestore/11b53cf4db02080a.xml
/triplestore/19b3a986fcd71a5c.xml
/triplestore/215710576ebe4328.xml
/triplestore/25ec5ded9bfdb7c2.xml

When you load triples with sem:rdf-load, the triples are bound to the
http://marklogic.com/semantics prefix in the resulting documents.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 50

MarkLogic Server Loading Semantic Triples
For example:

<?xml version="1.0" encoding="UTF-8"?>
<sem:triples xmlns:sem="http://marklogic.com/semantics">

<sem:triple>
<sem:subject>http://dbpedia.org/resource/Wayne_Stenehjem
</sem:subject>
<sem:predicate>http://purl.org/dc/elements/1.1/description
</sem:predicate>
<sem:object datatype="http://www.w3.org/2001/XMLSchema#string"
xml:lang="en">American politician
</sem:object>

</sem:triple>
<sem:triple>

<sem:subject>http://dbpedia.org/resource/Wayne_Stenehjem
</sem:subject>
<sem:predicate>http://dbpedia.org/ontology/birthDate
</sem:predicate>
<sem:object datatype="http://www.w3.org/2001/XMLSchema#date">
1953-02-05
</sem:object>
</sem:triple>

</sem:triples>

Note: You can leave out the sem:triples tag, but you cannot leave out the sem:triple tags.

3.2.4 Loading Triples with XQuery
Triples are typically created outside MarkLogic Server and loaded via Query Console by using
the following sem: functions:

• sem:rdf-insert

• sem:rdf-load

• sem:rdf-get

The sem:rdf-insert and sem:rdf-load functions are update functions. The sem:rdf-get function
is a return function that loads triples in memory. These functions are included in the XQuery
Semantics API that is implemented as an XQuery library module.

To use sem: functions in XQuery, import the module with the following XQuery prolog statement
in Query Console:

import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqy";

Note: If this module is already imported, you will get an error message.

For more details about semantic functions in XQuery, see the Semantics (sem:) documentation in
the MarkLogic XQuery and XSLT Function Reference.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 51

MarkLogic Server Loading Semantic Triples
3.2.4.1 sem:rdf-insert
The sem:rdf-insert function inserts triples into the database as triples documents. The triple is
created in-memory by using the sem:triple and sem:iri constructors. The IRIs of the inserted
documents are returned on execution.

For example:-*

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

sem:rdf-insert(
sem:triple(

sem:iri("http://example.org/people#m"),
sem:iri("http://example.com/person#firstName"),
"Michael"))

This returns the document IRI:

/triplestore/70eb0b7139816fe3.xml

By default, sem:rdf-insert puts the documents into the directory /triplestore/ and assigns the
default graph. You can specify a named graph as a collection in the fourth parameter.

For example:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

sem:rdf-insert(sem:triple(
sem:iri("http://example.com/ns/directory#jp"),
sem:iri("http://example.com/ns/person#firstName"),
"John-Paul"), null, null, "mygraph")

When you run this example, the document is inserted into both the default graph and mygraph.

Note: If you insert quads or triples in TriG serialization, the graph name comes from the
value in the “fourth position” in the quads/trig file.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 52

MarkLogic Server Loading Semantic Triples
3.2.4.2 sem:rdf-load
The sem:rdf-load function loads and parses triples from files in a specified location into the
database and returns the IRIs of the triples documents. You can specify the serialization of the
triples, such as turtle for Turtle files or rdfxml for RDF files.

For example:

sem:rdf-load('C:\rdfdata\example.rdf', "rdfxml")

=>
/triplestore/fbd28af1471b39e9.xml

As with sem:rdf-insert, this function also puts the triples documents into the default graph and
/triplestore/ directory unless a directory or named graph is specified in the options. This
example specifies mynewgraph as a named graph in the parameters:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

 sem:rdf-load("C:\turtledata\example.ttl", "turtle", (), (),
"mynewgraph")

The document is inserted:

Note: To use sem:rdf-load you need the xdmp:document-get privilege.

3.2.4.3 sem:rdf-get
The sem:ref-get function returns triples in triples files from a specified location. The following
example retrieves triples serialized in Turtle serialization from the local filesystem:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

sem:rdf-get('C:\turtledata\people.ttl', "turtle")
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 53

MarkLogic Server Loading Semantic Triples
The triples are returned as triples in Turtle serialization with one triple per line. Each triple ends
with a period.

This Query Console display format allows for easy copying from the Result pane.

3.2.5 Loading Triples with JavaScript
Triples can be loaded via Query Console by using the following sem. functions:

• sem.rdfInsert

• sem.rdfLoad

• sem.rdfGet

The sem.rdfInsert and sem.rdfLoad functions are update functions. The sem.rdfGet function is a
return function that loads triples in memory. These functions are included in the JavaScript
Semantics API.

To use sem. functions in JavaScript, import the module with the following JavaScript statements
in Query Console:

declareUpdate();
const sem = require("/MarkLogic/semantics.xqy");
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 54

MarkLogic Server Loading Semantic Triples
Note: If this module is already imported, you will get an error message.

For more details about semantic functions in JavaScript, see the Semantics (sem.) documentation
in the MarkLogic Server-Side JavaScript Function Reference.

3.2.5.1 sem.rdfInsert
The sem.rdfInsert function inserts triples into the database as triples documents. The triple is
created in-memory by using the sem.triple and sem.iri constructors. The IRIs of the inserted
documents are returned on execution.

For example:-*

declareUpdate();
const sem = require("/MarkLogic/semantics.xqy");

sem.rdfInsert(
 sem.triple(
 sem.iri("http://example.com/ns/directory#m"),

sem.iri("http://example.com/ns/person#firstName"), "Michael"));

This returns the document IRI:

/triplestore/74521a908ece2074.xml

By default, sem.rdfInsert puts the documents into the directory /triplestore/ and assigns the
default graph. You can specify a named graph as a collection in the fourth parameter.

For example:

declareUpdate();
const sem = require("/MarkLogic/semantics.xqy");

sem.rdfInsert(
 sem.triple(
 sem.iri("http://example.com/ns/directory#m"),

sem.iri("http://example.com/ns/person#firstName"),
"John-Paul"), (), (), "mygraph");

When you run this example, the document is inserted into both the default graph and mygraph.

Note: If you insert quads or triples in TriG serialization, the graph name comes from the
value in the “fourth position” in the quads/trig file.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 55

MarkLogic Server Loading Semantic Triples
3.2.5.2 sem.rdfLoad
The sem.rdfLoad function loads and parses triples from files in a specified location into the
database and returns the IRIs of the triples documents. You can specify the serialization of the
triples, such as turtle for Turtle files or rdfxml for RDF files.

For example:

declareUpdate();
var sem = require("/MarkLogic/semantics.xqy");

sem.rdfLoad('C:/data/example.rdf', "rdfxml")
=>
/triplestore/fbd28af1471b39e9.xml

As with sem.rdf-Insert, this function also puts the triples documents into the default graph and
/triplestore/ directory unless a directory or named graph is specified in the options. This
example specifies mynewgraph as a named graph in the parameters:

declareUpdate();
var sem = require("/MarkLogic/semantics.xqy");

sem.rdfLoad('C:/turtledata/example.ttl', "turtle", (), (),
"mynewgraph"))

=>
/triplestore/fbd28af1471b39e9.xml

The document is inserted.

Note: To use sem.rdfLoad you need the xdmp.documentGet privilege.

3.2.5.3 sem.rdfGet
The sem.refGet function returns triples in triples files from a specified location. The following
example retrieves triples serialized in Turtle serialization from the local filesystem:

var sem = require("/MarkLogic/semantics.xqy");

sem.rdfGet('C:/turtledata/people.ttl', "turtle");

The triples are returned as triples in Turtle serialization with one triple per line. Each triple ends
with a period.

3.2.6 Loading Triples Using the REST API
A REST endpoint is an XQuery module on MarkLogic Server that routes and responds to an
HTTP request. An HTTP client invokes endpoints to create, read, update, or delete content in
MarkLogic. This section discusses using the REST API to load triples with a REST endpoint. It
covers the following topics:
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 56

MarkLogic Server Loading Semantic Triples
• Preparation

• Addressing the Graph Store

• Specifying Parameters

• Supported Verbs

• Supported Media Formats

• Loading Triples

• Response Errors

3.2.6.1 Preparation
If you are unfamiliar with the REST API and endpoints, see Introduction to the MarkLogic REST API
in the REST Application Developer’s Guide.

Use the following procedures to make requests with REST endpoints:

1. Install MarkLogic Server version 8.0-4 or later.

2. Install curl or an equivalent command line tool for issuing HTTP requests.

3. You can use the default database and forest (Documents) on port 8000 or create your own.
To create a new database and forest, see Creating a New Database in the Administrator’s
Guide.

4. Verify that the triple index and the collection lexicon are enabled on the Documents
database by checking the configuration page of the Admin Interface or by using the
Admin API. See “Enabling the Triple Index” on page 66.

Note: The collection lexicon is required for the Graph Store HTTP Protocol of REST
API instances.

5. You can use the default REST API instance associated with port 8000. If you want to
create a new REST API instance, see Creating an Instance in the REST Application
Developer’s Guide.

3.2.6.2 Addressing the Graph Store
The graph endpoint is an implementation of the W3C Graph Store HTTP Protocol as specified in
the SPARQL 1.1 Graph Store HTTP Protocol:

http://www.w3.org/TR/2013/REC-sparql11-http-rdf-update-20130321/

The base URL for the graph store is:

http://hostname:port/vversion/graphs
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 57

http://www.w3.org/TR/2013/REC-sparql11-http-rdf-update-20130321/

MarkLogic Server Loading Semantic Triples
Where hostname is the MarkLogic Server host machine, port is the port on which the REST API
instance is running, and version is the version number of the API. The Graph Store HTTP
Protocol is a mapping from RESTful HTTP requests to the corresponding SPARQL 1.1 Update
operations. See Summary of the /graphs Service in the REST Application Developer’s Guide.

3.2.6.3 Specifying Parameters
The graph endpoint accepts an optional parameter for a particular named graph. For example:

http://localhost:8000/v1/graphs?graph=http://named-graph

If omitted, the default graph must be specified as a default parameter with no value.

For example:

http://localhost:8000/v1/graphs?default

When a GET request is issued with no parameters, the list of graphs will be given in list format. See
GET:/v1/graphs for more details.

3.2.6.4 Supported Verbs
A REST client uses HTTP verbs such as GET and PUT to interact with MarkLogic Server. This table
lists the supported verbs and the role required to use each:

The role you use to make a MarkLogic REST API request must have appropriate privileges for
the content accessed by the HTTP call; for example, permission to read or update documents in
the target database. For more information about REST API roles and privileges, see Security

Requirements in the REST Application Developer’s Guide.

Note: This endpoint will only update documents with the element sem:triple as the root.

Verb Description Role

GET Retrieves a named graph. rest-reader

POST Merges triples into a named graph or adds triples to an empty
graph.

rest-writer

PUT Replaces triples in a named graph or adds triples to an empty
graph. Functionally equivalent to DELETE followed by POST.
For an example, see “Loading Triples” on page 59.

rest-writer

DELETE Removes triples in a named graph. rest-writer

HEAD Test for the existence of a graph. Retrieves a named graph,
without the body.

rest-reader
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 58

MarkLogic Server Loading Semantic Triples
3.2.6.5 Supported Media Formats
For a list of supported media formats for the Content-type HTTP header, see “Supported RDF
Triple Formats” on page 38.

3.2.6.6 Loading Triples
To insert triples, make a PUT or POST request to a URL of the form:

http://host:port/v1/graphs?graph=graphname

When constructing the request:

1. Specify the graph in which to load the triples.

• To specify the default graph, set the graph parameter to the default graph.

• To specify a named graph, set the graph parameter to the named graph.

2. Place the content in the request body.

3. Specify the MIME type of the content in the Content-type HTTP header. See “Supported
RDF Triple Formats” on page 38.

4. Specify the user credentials.

The triples are loaded into the default directory, /triplestore.

This is an example of a curl command for a UNIX or Cygwin command line interpreter. The
command sends a PUT HTTP request to insert the contents of the file example.nt into the database
as XML documents in the default graph:

Windows users, see Modifying the Example Commands for Windows

$ curl -s -X PUT --data-binary '@example.nt' \
-H "Content-type: application/n-triples" \
--digest --user "admin:password" \
"http://localhost:8000/v1/graphs?default"

Note: When you load triples with the REST endpoint using PUT or POST, you must specify
the default graph or a named graph.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 59

MarkLogic Server Loading Semantic Triples
These curl command options are used in the preceding example:

For more information about the REST API, see the Semantics documentation in the REST Client
API. For more about REST and Semantics see “Using Semantics with the REST Client API” on
page 189.

3.2.6.7 Response Errors
This section covers the error reporting conventions followed by the MarkLogic REST API.

If a request to a MarkLogic REST API Instance fails, an error response code is returned and
additional information is detailed in the response body.

These response errors may be returned:

• 400 Bad Request returns for PUT or POST requests that have no parameters at all.

• 400 Bad Request returns for PUT or POST requests for payloads that fails to parse.

• 404 Not Found returns for GET requests to a graph that does not exist (the IRI is not present
in the collection lexicon).

• 406 Not Acceptable returns for GET requests for triples in an unsupported serialization.

Option Description

-s Specifies silent mode, so that the curl output does not include the
HTTP response headers in the output. The alternative is -i to
include the response headers.

-X http_method The type of HTTP request (PUT) that curl will send. Other sup-
ported requests are GET, POST and DELETE. See “Supported Verbs”
on page 58.

--data-binary data Data to include in the request body. Data may be placed directly
on the command line as an argument to --data-binary, or read
from a file by using @filename. If you are using Windows, a Win-
dows version of curl that supports the "@" operator is required.

-H headers The HTTP header to include in the request. The examples in this
guide use Content-type.

--digest The authentication method specified encrypts the user’s pass-
word.

--user user:password Username and password used to authenticate the request. Use a
MarkLogic Server user that has sufficient privileges to carry out
the requested operation. For details, see Security Requirements in
the REST Application Developer’s Guide.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 60

http://docs.marklogic.com/REST/client/semantics

MarkLogic Server Loading Semantic Triples
• 415 Unsupported Media Type returns for POST or PUT request in an unsupported format.

Note: The repair parameter for POST and PUT requests can be set to true or false. By
default this is false. If set to true, a payload that does not properly parse will still
insert any triples that do parse. If set to false, any payload errors whatsoever will
result in a 400 Bad Request response.

3.2.7 Loading Triples Using the Java API
For an example of loading triples using the MarkLogic Java API, see Example: Loading, Managing,

and Querying Triples in the Java Application Developer’s Guide.

3.2.8 Loading Triples Using the Node.js API
For an example of loading triples using the MarkLogic Node.js API, see Loading Triples in the
Node.js Application Developer’s Guide.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 61

MarkLogic Server Loading Semantic Triples
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 62

MarkLogic Server Triple Index Overview
4.0 Triple Index Overview
72

This chapter provides an overview of the triple index in MarkLogic Server and includes the
following sections:

• Understanding the Triple Index and How It’s Used

• Enabling the Triple Index

• Other Considerations

4.1 Understanding the Triple Index and How It’s Used
The triple index is used to index schema-valid sem:triple elements found anywhere in a
document. The indexing of triples is performed when documents containing triples are ingested
into MarkLogic or during a database reindex. The triple index stores each unique value only once,
in the dictionary. The dictionary gives each value an ID, and the triple data then uses that ID to
reference the value in the dictionary.

The validity of sem:triple elements is determined by checking elements and attributes in the
documents against the sem:triple schema (/MarkLogic/Config/semantics.xsd). If the sem:triple
element is valid, an entry is created in the triple index, otherwise the element is skipped. Unlike
range indexes, triple indexes do not have to fit in memory, so there is little up-front memory
allocation.

Note: For all new installations of MarkLogic 9 and later, the triple index and collection
lexicon are enabled by default. Any new databases will also have the triple index
and collection lexicon enabled.

This section covers the following topics:

• Triple Data and Value Caches

• Triple Values and Type Information

• Triple Positions

• Index Files

• Permutations

4.1.1 Triple Data and Value Caches
Internally, MarkLogic stores triples in two ways: triple values and triple data. The triple values
are the individual values from every triple, including all typed literal, IRIs, and blank nodes. The
triple data holds the triples in different permutations, along with a document ID and position
information. The triple data refer to the triple values by ID, making for very efficient lookup.
Triple data is stored compressed on disk, and triple values are stored in a separate compressed
value store. Both the triple index and the value store are stored in compressed four-kilobyte (4k)
blocks.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 63

MarkLogic Server Triple Index Overview
When triple data is needed (for example, during a lookup), the relevant block is cached in either
the triple cache or the triple value cache. Unlike other MarkLogic caches, the triple cache and
triple value cache shrinks and grows, only taking up memory when it needs to add to the caches.

Note: You can configure the size of the triple cache and the triple value cache for the
host of your triple store, as described in “Sizing Caches” on page 69.

4.1.1.1 Triple Cache and Triple Value Cache
The triple cache holds blocks of compressed triples from disk which are flushed using a least
recently used (LRU) algorithm. Blocks in the triple cache refer to values from a dictionary. The
triple value cache holds uncompressed values from the triple index dictionary. The triple value
cache is also an LRU cache.

Triples in the triple index are filtered out depending on the timestamps of the query and of the
document from which they came. The triple cache holds information generated before the
filtering happens, so deleting a triple has no effect on triple caches. However, after a merge, old
stands may be deleted. When a stand is deleted, all its blocks are flushed from the triple caches.

Cache timeout controls how long MarkLogic Server will keep triple index blocks in the cache
after the last time it was used (when it has not been flushed to make room for another block).
Increasing the cache timeout might be good for keeping the cache hot for queries that are run at
infrequent periods. Other more frequent queries may push the information out of the cache before
the infrequent query is re-run.

4.1.2 Triple Values and Type Information
Values are stored in a separate value store on disk in “value equality” sorted order, so in a given
stand, the value ID order is equivalent to value equality order.

Strings in the values are stored in the range index string storage. Anything not relevant to value
equality is removed from the stored values, such as timezone and derived type information.

Since type information is stored separately, triples can be returned directly from the triple index.
This information is also used for RDF-specific “sameTerm” comparison required by SPARQL
simple entailment.

4.1.3 Triple Positions
The triple positions index is used to accurately resolve queries that use cts:triple-range-query
and the item-frequency option of cts:triples. The triple positions index is also used to
accurately resolve searches that use the cts:near-query and cts:element-query constructors. The
triple positions index stores locations within a fragment of the relative positions of triples within
that fragment (typically, a fragment is a document). Enabling the triple positions index increases
index sizes and somewhat slows document loads, but it increases the accuracy of queries that need
those positions.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 64

MarkLogic Server Triple Index Overview
For example:

xquery version "1.0-ml";

cts:search(doc(),
cts:near-query((
cts:triple-range-query(sem:iri("http://www.rdfabout.com/rdf/

usgov/sec/id/cik0001075285"), (), ()),

cts:triple-range-query(sem:iri("http://www.rdfabout.com/rdf/
usgov/sec/id/cik0001317036"), (), ())
),11), "unfiltered")

The cts:near-query returns a sequence of queries to match, where the matches occur within the
specified distance from each other. The distance specified is in the number of words between any
two matching queries.

The unfiltered search selects fragments from the indexes that are candidates to satisfy the
specified cts:query and returns the document.

4.1.4 Index Files
To efficiently make use of memory, the index files for triple and value stores are directly mapped
into memory. The type store is entirely mapped into memory.

Both the triple and value stores have index files consisting of 64-byte segments. The first segment
in each is a header containing checksums, version number, and counts (of triples or values). This
is followed by:

• Triples index: After the header segment, the triples index contains an index of the first two
values and permutation of the first triple in each block, arranged into 64-byte segments.
This is used to find the blocks needed to answer a given lookup based on values from the
triple. Currently triples are not accessed by ordinal, so an ordinal index is not required.

• Values Index: After the header segment, the values index contains an index of the first
value in each block, arranged into 64-byte segments. The values index is used to find the
blocks needed to answer a given lookup based on value. This is followed by an index of
the starting ordinal for each block, which is used to find the block needed to answer a
given lookup based on a value ID.

Note: The triple index stores positions if the triple positions is enabled. See “Enabling
the Triple Index” on page 66.

The type store has an index file that stores the offset into the type data file for each stored type.
This is also mapped into memory.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 65

MarkLogic Server Triple Index Overview
This table describes the memory-mapped index files that store information used by the triple
indexes and values stores.

4.1.5 Permutations
The permutation enumeration details the role each value plays in the original triple. Three
permutations are stored in order to provide access to different sort orders, and to be able to
efficiently look up different parts of the triple. The permutations are acronyms made up from the
initials of the three RDF elements (subject, predicate, and object), for example:{ SOP, PSO, OPS }.

Use the cts:triples function to specify one of these sort orders in the options:

• order-pso - Returns results ordered by predicate, then subject, then object

• order-sop - Returns results ordered by subject, then object, then predicate

• order-ops - Returns results ordered by object, then predicate, then subject

4.2 Enabling the Triple Index
By default, the triple index is enabled for databases in MarkLogic 9 or later. This section
discusses how to enable the triple index or verify that it is enabled. It also discusses related
indexes and configuration settings. It includes the following topics:

• Using the Database Configuration Pages

• Using the Admin API

4.2.1 Using the Database Configuration Pages
The triple index can be enabled or disabled on the Admin Interface (http://hostname:8001)
database configuration page. The hostname is the MarkLogic Server host for which the triple
index is to be enabled.

Index File Description

TripleIndex
TripleValueIndex

Block indexes for TripleData and TripleValueData

TripleTypeData
TripleTypeIndex

Type information for the triple values

StringData
StringIndex
AtomData
AtomIndex

Also used by the string-based range indexes

TripleValueFreqs
TripleValueFreqsIndex

Statistical information about the triples. The triple index keeps
statistics on the triples for every value kept in the database.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 66

MarkLogic Server Triple Index Overview
For more information about index settings, see Index Settings that Affect Documents of the
Administrator’s Guide and “Configuring the Database to Work with Triples” on page 27.

Note: For all new installations of MarkLogic 9 and later, the triple index is enabled by
default. Any new databases will also have the triple index enabled. You may want
to verify that existing databases have the triple index enabled.

Use the following procedures to verify or configure the triple index and related settings. To enable
the triple positions index, the in-memory triple index size, and collection lexicon, use the Admin
interface (http://hostname:8001) or the Admin API. See “Using the Admin API” on page 68 for
details.

• In the Admin Interface, scroll down to the triple index setting and set it to true.

When you enable the triples index for the first time, or if you are reindexing your database
after enabling the triple index, only documents containing valid sem:triple elements are
indexed.

• You can enable the triple positions index for faster near searches using cts:triple-range-
query.

It is not necessary to enable the triple position index for querying with native SPARQL.

• You can set the size of cache and buffer memory to be allocated for managing triple index
data for an in-memory stand.

Note: When you change any index settings for a database, the new settings will take
effect based on whether reindexing is enabled (reindexer enable set to true).
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 67

MarkLogic Server Triple Index Overview
4.2.2 Using the Admin API
Use these Admin API functions to enable the triple index, triple index positions, and configure the
in-memory triple index size for your database:

• admin:database-set-triple-index

• admin:database-set-triple-positions

• admin:database-set-in-memory-triple-index-size

This example sets the triple index of “Sample-Database” to true using the Admin API:

xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin" at

"/MarkLogic/admin.xqy";

(: Get the configuration :)
let $config := admin:get-configuration()

(: Obtain the database ID of 'Sample-Database' :)
let $Sample-Database := admin:database-get-id(

$config, "Sample-Database")
let $c := admin:database-set-triple-index($config, $Sample-Database,
fn:true())
return admin:save-configuration($c)

This example uses the Admin API to set the triple positions of the database to true:

xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin" at
"/MarkLogic/admin.xqy";

let $config := admin:get-configuration()
let $Sample-Database := admin:database-get-id(

$config, "Sample-Database")
let $c := admin:database-set-triple-positions($config,

$Sample-Database, fn:true())
return admin:save-configuration($c)

This example sets the in-memory triple index size of the database to 256MB:

xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin" at
"/MarkLogic/admin.xqy";

let $config := admin:get-configuration()
let $Sample-Database := admin:database-get-id(

$config, "Sample-Database")
let $c := admin:database-set-in-memory-triple-index-size($config,

$Sample-Database, 256)
return admin:save-configuration($c)

Note: For details about the function signatures and descriptions, see the admin:database
functions (database) in the XQuery and XSLT Reference Guide.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 68

https://docs.marklogic.com/10.0/admin/database

MarkLogic Server Triple Index Overview
4.3 Other Considerations
This section includes the following topics:

• Sizing Caches

• Unused Values and Types

• Scaling and Monitoring

4.3.1 Sizing Caches
The triple cache and the triple value cache are d-node caches, which are partitioned for lock
contention. This partitioning enables parallelism and speeds up processing.

The maximum sizes of the caches and number of partitions are configurable. To change the triple
or triple value cache sizes for the host, you can use the Groups configuration page in the Admin
Interface or use the Admin API.

In the Admin Interface (http://hostname:8001) on the Groups configuration page, specify values
for caches sizes, partitions, and timeouts:
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 69

MarkLogic Server Triple Index Overview
This table describes the Admin API functions for group cache configurations:

4.3.2 Unused Values and Types
During a merge, triple values and types may become unused by the triple index. To merge the
triple index in a single streaming pass, type and value stores are merged before the triples. Unused
values and types are identified during the merge of the triples. During the next merge, the unused
types and values identified are be removed, releasing the space they previously used.

Note: For best compaction, two merges are needed. This is not an issue in normal
operations because MarkLogic Server is designed to periodically merge.

Since the type store is ordered by frequency, it is merged entirely in memory. The value and triple
stores are merged in a streaming fashion, from and to disk directly.

For more information about merging, see Understanding and Controlling Database Merges in the
Administrator’s Guide.

Function Description

admin:group-set-triple-cache-size Changes the triple cache size setting of
the group with the specified ID to the
specified value

admin:group-set-triple-cache-partitions Changes the triple cache partitions
setting of the group with the specified
ID to the specified value

admin:group-set-triple-cache-timeout Changes the number of seconds a triple
block can be unused before being
flushed from caches

admin:group-set-triple-value-cache-timeout Changes the number of seconds a triple
value block can be unused before being
flushed from caches

admin:group-set-triple-value-cache-size Changes the triple value cache size
setting of the group with the specified
ID to the specified value

admin:group-set-triple-value-cache-partitions Changes the triple value cache
partitions setting of the group with the
specified ID to the specified value
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 70

MarkLogic Server Triple Index Overview
4.3.3 Scaling and Monitoring
Since SPARQL execution does not fetch fragments, there is the potential to scale back on
expanded and compressed tree caches on triple-only deployments. You can configure tree caches
from the Group configuration page in the Admin Interface, or by using these functions:

admin:group-set-expanded-tree-cache-size
admin:group-set-compressed-tree-cache-size

You can monitor the status of the database and forest from the database Status page in the Admin
Interface:

http://hostname:8001/

You can also use the MarkLogic monitoring tools, Monitoring Dashboard and Monitoring
History:

http://hostname:8002/dashboard
http://hostname:8002/history

For more information, see Using the MarkLogic Server Monitoring Dashboard in the Monitoring
MarkLogic Guide.

You can also use these functions for query metrics and to monitor the status of forests and caches:

• xdmp:query-meters - Cache hits or misses for a query

• xdmp:forest-status - Cache hits or misses, hit rate, and miss rate for each stand

• xdmp:cache-status - Percentage busy, used, and free by cache partition
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 71

MarkLogic Server Triple Index Overview
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 72

MarkLogic Server Unmanaged Triples
5.0 Unmanaged Triples
80

Triples that included as part of an XML or a JSON document and have an element node of
sem:triple are called unmanaged triples, sometimes referred to as embedded triples. These
unmanaged triples must be in the MarkLogic XML or JSON format defined in the schema for
sem:triple (semantics.xsd).

Note: Unmanaged triples cannot be modified with SPARQL Update. Use XQuery or
JavaScript to modify these triples. See “Updating Triples” on page 239 for more
details.

With unmanaged triples, MarkLogic works like a triple store and a document store. You have the
functionality of a triple store and a document store for your data.

This example inserts an unmanaged triple into an XML document (Article.xml):

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

xdmp:document-insert("Article.xml",
<article>

<info>
<title>News for April 9, 2013</title>
<sem:triples xmlns:sem="http://marklogic.com/semantics">

<sem:triple>
<sem:subject>http://example.com/article</sem:subject>
<sem:predicate>http://example.com/mentions</sem:predicate>
<sem:object

datatype="http://www.w3.org/2001/XMLSchema#string">London</sem:object>
</sem:triple>

</sem:triples>
</info>

</article>)

Note: You can leave out the sem:triples tag, but you cannot leave out the sem:triple
tags.

An XML or JSON document can contain many kinds of information, along with the triples.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 73

MarkLogic Server Unmanaged Triples
This example shows a suspicious activity report document that contains both XML and triples:

<SAR>
<title>Suspicious vehicle...Suspicious vehicle near airport</title>
<date>2014-11-12Z</date>
<type>observation/surveillance</type>
<threat>

<type>suspicious activity</type>
<category>suspicious vehicle</category>

</threat>
<location>

<lat>37.497075</lat>
<long>-122.363319</long>

</location>
<description>A blue van with license plate ABC 123 was observed

parked behind the airport sign...
<sem:triple>

<sem:subject>IRIID</sem:subject>
<sem:predicate>isa</sem:predicate>
<sem:object

datatype="http://www.w3.org/2001/XMLSchema#string">license-
plate</sem:object>

</sem:triple>
<sem:triple>

<sem:subject>IRIID</sem:subject>
<sem:predicate>value</sem:predicate>
<sem:object

datatype="http://www.w3.org/2001/XMLSchema#string">ABC
123</sem:object>

</sem:triple>
</description>

</SAR>

Unmanaged triples ingested into a MarkLogic database are indexed by the triple index and stored
for access and query by SPARQL. Here is another representation of the same information:
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 74

MarkLogic Server Unmanaged Triples
You can also embed triples into JSON documents. Here is how you would insert a triple using
JavaScript:

declareUpdate();
var sem = require("/MarkLogic/semantics.xqy");
xdmp.documentInsert(
"testDoc.json", {
"my": "data","triple":{

"subject": "http://example.org/ns/dir/js/",
"predicate": "http://xmlns.com/foaf/0.1/firstname/",
"object": {"datatype" : "http://www.w3.org/2001/XMLSchema#string",
"value": "John"
}

}
}

)

Here is the triple embedded in a JSON document:

{
"my": "data",
"triple":{

"subject": "http://example.org/ns/dir/js/",
"predicate": "http://xmlns.com/foaf/0.1/firstname/",
"object": {

"datatype" : "http://www.w3.org/2001/XMLSchema#string",
"value":"John"

}
}

}

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 75

MarkLogic Server Unmanaged Triples
You can do the same document insert with XQuery:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

xdmp:document-insert("myData.xml",
<sem:triples xmlns:sem="http://marklogic.com/semantics">

<sem:triple>
<sem:subject>http://example.org/ns/dir/js/</sem:subject>
<sem:predicate>http://xmlns.com/foaf/0.1/firstname/</sem:predicate

>
<sem:object

datatype="http://www.w3.org/2001/XMLSchema#string">John</sem:object>
</sem:triple>

</sem:triples>
)

When triples are embedded in an XML or JSON document as unmanaged triples, they can include
additional information about the triple along with additional metadata (time/date information,
bitemporal information, source of the triple). You can add useful information to the XML or
JSON file (like the provenance of the triple). When you update the triple, you update the
document and the triple together.

In addition to adding triples to a document, you can use a template to identify content to be
indexed as triples. See “Using a Template to Identify Triples in a Document” on page 247 for
more information about templates.

5.1 Uses for Triples in XML Documents
With unmanaged triples you can do combination queries on both the document and the triples
they contain. The triples stay “in context” with the other information in the document in which
they are embedded and have the security and permissions associated with that document. These
triples are updated with the document and deleted when the document is deleted.

5.1.1 Context from the Document
When you have triples in a document, the document can provide context for the data described by
the triples. The source of the triples and more information about when the document and triples
were created can be included as part of the document.

<article>
<info>AP Newswire - Nixon went to China</info>
<triples-context>
<confidence>80</confidence>
<pub-date>2011-10-14</pub-date>
<source>AP Newswire</source>

</triples-context>
<sem:triple xmlns:sem="http://marklogic.com/semantics">
<sem:subject>http://example.org/news/Nixon</sem:subject>
<sem:predicate>http://example.org/wentTo</sem:predicate>
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 76

MarkLogic Server Unmanaged Triples
<sem:object
datatype="http://www.w3.org/2001/XMLSchema#string">China</sem:object>
</sem:triple>

</article>

You can annotate the triples to provide even more information, such as the level of confidence in
the reliability of the information.

5.1.2 Combination Queries
A combination query operates on both the document and any triples. Here is a complex query for
the information in the AP newswire document :

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

sem:sparql('
SELECT ?country
WHERE {

<http://example.org/news/Nixon> <http://example.org/wentTo>
?country

}
',
(),
(),
cts:and-query((

cts:path-range-query("//triples-context/confidence", ">=", 80) ,
cts:path-range-query("//triples-context/pub-date", ">",

xs:date("1974-01-01")),
cts:or-query((

cts:element-value-query(xs:QName("source"), "AP Newswire"),
cts:element-value-query(xs:QName("source"), "BBC")

))
))

)

The cts query in this example identifies a set of fragments. Any triples in those fragments are used
to build a semantic store and the SPARQL query is then run against that store. This means that the
query says, “Find countries in triples that are in fragments identified by the cts query; which is
any fragment that has a sem:triple/@confidence > 80 and a sem:triple/@date earlier than 1974,
and has a source element with either “AP Newswire” or “BBC”.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 77

MarkLogic Server Unmanaged Triples
5.1.3 Security with Unmanaged Triples
For unmanaged triples, the security permissions for the document also apply to the triples. You
will need to have the appropriate permissions to modify or add triples to the document. To find
the current permissions for a document, use xdmp:document-get-permissions:

xquery version "1.0-ml";
xdmp:document-get-permissions("/example.json")

=>
<sec:permission xmlns:sec="http://marklogic.com/xdmp/security">

<sec:capability>read</sec:capability>
<sec:role-id>11180836995942796002</sec:role-id>

</sec:permission>
<sec:permission xmlns:sec="http://marklogic.com/xdmp/security">

<sec:capability>update</sec:capability>
<sec:role-id>11180836995942796002</sec:role-id>

</sec:permission>

To set the permssions on a document, you can use xdmp:document-set-permissions:

xdmp:document-set-permissions(
"/example.json",
(xdmp:permission("sparql-update-user","update"),
xdmp:permission("sparql-update-user","read"))

)

See Document Permissions in the Security Guide for more information about document
permissions.

5.2 Bitemporal Triples
You can use SPARQL to perform bitemporal search queries with unmanaged triples. In this
example, the bitemporal query is wrapped inside the SPARQL query as a cts:period-range-
query.

let $q := '
SELECT

?derivation
WHERE {

<http://example.com/prov/trader/>
<http://www.w3.org/ns/prov#wasDerivedFrom/> ?derivation

}
'

return
sem:sparql(

$q,
(),
(),
sem:store(

(),
cts:period-range-query(
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 78

MarkLogic Server Unmanaged Triples
"valid",
"ISO_CONTAINS",

cts:period(
xs:dateTime("2014-04-01T16:10:00"),
xs:dateTime("2014-04-01T16:12:00")))

)
)

This bitemporal SPARQL query searches for events between 2014-04-01T16:10:00 and 2014-04-
01T16:12:00. See Understanding Temporal Documents in the Temporal Developer’s Guide for more
information about temporal documents.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 79

MarkLogic Server Unmanaged Triples
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 80

MarkLogic Server Semantic Queries
6.0 Semantic Queries
146

This chapter discusses the principal techniques and tools used for performing semantic queries on
RDF triples. Just as with loading and deleting triples, you can select your preferred method for
querying RDF triples in MarkLogic. You can query triples in several ways, though the main focus
in this chapter is using SPARQL to query triples.

MarkLogic supports the syntax and capabilities in SPARQL 1.1. SPARQL is a query language
specification for querying over RDF triples. The SPARQL language is a formal W3C
recommendation from the RDF Data Access Working Group. It is described in the SPARQL
Query Language for RDF recommendation:

http://www.w3.org/TR/rdf-sparql-query/

SPARQL queries are executed natively in MarkLogic to query either in-memory triples or triples
stored in a database. When querying triples stored in a database, SPARQL queries execute
entirely against the triple index. For examples of running SPARQL queries, see “Querying
Triples” on page 32.

You can combine SPARQL with XQuery or JavaScript. For example, you can restrict a SPARQL
query by passing in a cts:query (XQuery) or cts.query (JavaScript) and you can call built-in
functions (including cts:contains or cts.contains for full-text search) as part of your SPARQL
query. For more details, see “Using Built-in Functions in a SPARQL Query” on page 104.

You can use the following methods to query triples:

• SPARQL mode in Query Console. For details, see “Querying Triples with SPARQL” on
page 82

• XQuery using the semantics functions, and Search API, or a combination of XQuery and
SPARQL. For details, see “Querying Triples with XQuery or JavaScript” on page 128.

• HTTP via a SPARQL endpoint. For details, see “Using Semantics with the REST Client
API” on page 189.

Note: SPARQL keywords are shown in uppercase in this chapter, however SPARQL
keywords are not case sensitive.

This chapter includes the following sections:

• Querying Triples with SPARQL

• Querying Triples with XQuery or JavaScript

• Querying Triples with the Optic API

• Serialization

• Security
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 81

http://www.w3.org/TR/2013/REC-sparql11-query-20130321/

MarkLogic Server Semantic Queries
6.1 Querying Triples with SPARQL
This section is a high-level overview of the SPARQL query capabilities in MarkLogic and
includes the following topics:

• Types of SPARQL Queries

• Executing a SPARQL Query in Query Console

• Specifying Query Result Options

• Selecting Results Rendering

• Constructing a SPARQL Query

• Prefix Declaration

• Query Pattern

• Target RDF Graph

• Result Clauses

• Query Clauses

• Solution Modifiers

• Property Path Expressions

• SPARQL Aggregates

• SPARQL Resources

Note: The examples in this section use the persondata-en.ttl dataset from
http://downloads.dbpedia.org/2016-10/core-i18n/en/persondata_en.ttl.bz2. See
“Downloading the Dataset” on page 28.

6.1.1 Types of SPARQL Queries
You can query an RDF dataset using any of these SPARQL query forms:

• SELECT Queries - A SPARQL SELECT query returns a solution, which is a set of bindings of
variables and values.

• CONSTRUCT Queries - A SPARQL CONSTRUCT query returns triples as a sequence of
sem:triple values in an RDF graph. These triples are constructed by substituting variables
in a set of triple templates to create new triples from existing triples.

• DESCRIBE Queries - A SPARQL DESCRIBE query returns a sequence of sem:triple values
as an RDF graph that describes the resources found.

• ASK Queries - A SPARQL ASK query returns a boolean (true or false) indicating whether
a query pattern matches the dataset.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 82

http://downloads.dbpedia.org/2016-10/core-i18n/en/persondata_en.ttl.bz2

MarkLogic Server Semantic Queries
6.1.2 Executing a SPARQL Query in Query Console
To execute a SPARQL query:

1. In a Web browser, navigate to the Query Console:

http://hostname:8000/qconsole

where hostname is the name of your MarkLogic Server host.

2. From the Query Type drop-down list, select SPARQL Query.

The Query Console supports syntax highlighting for SPARQL keywords.

Note: Select SPARQL Update when you are working with SPARQL Update. See
“SPARQL Update” on page 169 for more information.

3. Construct your SPARQL query. See “Constructing a SPARQL Query” on page 87.

You can add comments prefaced with the hash symbol (#).

4. From the Content Source drop-down list, select the target database.

5. In the control bar below the query window, click Run.

Note: If the triple index is not enabled for the target database, an XDMP-
TRPLIDXNOTFOUND exception is thrown. See “Enabling the Triple Index” on
page 66 for details.

6.1.3 Specifying Query Result Options
In the Query Console, SPARQL results are returned as a sequence of json:object values in the
case of a SELECT query, a sequence of sem:triple values in the case of a CONSTRUCT or DESCRIBE
query, or a single xs:boolean value in the case of an ASK query. The results for each will look
different in Query Console.

This section discusses the following topics:

• Auto vs. Raw Format

• Selecting Results Rendering

6.1.3.1 Auto vs. Raw Format
The results of a SPARQL query displays triples or SELECT solutions. Solution objects show a
mapping from variable names to typed values. Each heterogeneous item in the result sequence
will have specific rendering, which is by default shown in Auto format.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 83

MarkLogic Server Semantic Queries
For example, this SELECT query returns a solution:

PREFIX db: <http://dbpedia.org/resource/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX onto: <http://dbpedia.org/ontology/>

SELECT ?person ?name
WHERE { ?person onto:birthPlace db:Brooklyn;

foaf:name ?name .}

To change the display format to Raw, click Raw on the Result tab. In Raw format, the results for
the same query are displayed in RDF/JSON serialization:

[
{
"person":"<http://dbpedia.org/resource/40_Illuminati>",
"name":"\"Will Pierce\"@en"

},
{
"person":"<http://dbpedia.org/resource/A._E._Waite>",
"name":"\"Arthur Edward Waite\"@en"

},
{
"person":"<http://dbpedia.org/resource/Aaliyah>",
"name":"\"Aaliyah\"@en"

},
{
"person":"<http://dbpedia.org/resource/Aaron_Elkins>",
"name":"\"Aaron Elkins\"@en"

},
{
"person":"<http://dbpedia.org/resource/Aaron_Russo>",
"name":"\"Aaron Russo\"@en"

},
{
"person":"<http://dbpedia.org/resource/Abe_Reles>",
"name":"\"Abe Reles\"@en"

},
{
"person":"<http://dbpedia.org/resource/Abraham_Klein_(physicist)>",
"name":"\"Abraham Klein\"@en"
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 84

MarkLogic Server Semantic Queries
},
{
"person":"<http://dbpedia.org/resource/Abraham_S._Fischler>",
"name":"\"Abraham S.Fischler\"@en"

},
{
"person":"<http://dbpedia.org/resource/Abraham_S._Luchins>",
"name":"\"Abraham S.Luchins\"@en"

},
{
"person":"<http://dbpedia.org/resource/Abram_Cohen>",
"name":"\"Abram Cohen\"@en"

}
]

If you run a similar DESCRIBE query, the output is returned in Query Console in triples format:

PREFIX db: <http://dbpedia.org/resource/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX onto: <http://dbpedia.org/ontology/>

DESCRIBE ?person ?name
WHERE { ?person onto:birthPlace db:Brooklyn;
foaf:name ?name .}

=>

@prefix xs: <http://www.w3.org/2001/XMLSchema#> .
<http://dbpedia.org/resource/40_Illuminati>
<http://dbpedia.org/ontology/birthPlace>
<http://dbpedia.org/resource/Brooklyn> ,
<http://dbpedia.org/resource/New_York> ;
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type/>
<http://xmlns.com/foaf/0.1/Person> ;
<http://xmlns.com/foaf/0.1/surname> "Pierce"@en ;
<http://purl.org/dc/elements/1.1/description> "Rapper"@en ;
<http://xmlns.com/foaf/0.1/givenName> "Will"@en ;
<http://xmlns.com/foaf/0.1/name> "Will Pierce"@en .
<http://dbpedia.org/resource/A._E._Waite>
<http://dbpedia.org/ontology/birthPlace>
<http://dbpedia.org/resource/Brooklyn> ;
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type/>
<http://xmlns.com/foaf/0.1/Person> ;
<http://xmlns.com/foaf/0.1/givenName> "Arthur Edward"@en ;
<http://xmlns.com/foaf/0.1/name> "Arthur Edward Waite"@en ;
<http://purl.org/dc/elements/1.1/description> "English writer"@en ;
<http://xmlns.com/foaf/0.1/surname> "Waite"@en .
<http://dbpedia.org/resource/Aaliyah>
<http://dbpedia.org/ontology/deathPlace>
<http://dbpedia.org/resource/Abaco_Islands> ,
<http://dbpedia.org/resource/Marsh_Harbour> ,
<http://dbpedia.org/resource/The_Bahamas> ;
<http://dbpedia.org/ontology/birthPlace>
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 85

MarkLogic Server Semantic Queries
<http://dbpedia.org/resource/Brooklyn> ,
<http://dbpedia.org/resource/New_York_City> ;
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type/>
<http://xmlns.com/foaf/0.1/Person> ;
<http://xmlns.com/foaf/0.1/name> "Aaliyah"@en ;
<http://purl.org/dc/elements/1.1/description> "Singer, dancer,
actress, model"@en ;
<http://dbpedia.org/ontology/birthDate> "1979-01-16"^^xs:date ;
<http://dbpedia.org/ontology/deathDate> "2001-08-25"^^xs:date .
. . . .

Note: When you run a query that returns triples as a subgraph, the default output
serialization is Turtle.

The DESCRIBE clause has a limit of 9999 triples in the server. If a query includes a DESCRIBE clause
with one IRI or few IRIs that total more than 9999 triples, triples will be truncated from the
results. The server does not provide any warning or message that this has occured.

6.1.3.2 Selecting Results Rendering
Use the solution as: drop-down list options to choose the display for query results. For example,
this DESCRIBE query returns triples in Turtle serialization:

PREFIX db: <http://dbpedia.org/resource/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX onto: <http://dbpedia.org/ontology/>

DESCRIBE ?person ?name
WHERE { ?person onto:birthPlace db:Brooklyn;
foaf:name ?name .}

Or you can select JSON or text as the format for the results.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 86

MarkLogic Server Semantic Queries
Note: For a DESCRIBE query, the rendering options are Turtle, JSON, or Text. Rendering
options may be different for queries that use cts:search, a combination of
SPARQL and cts: queries, or use query results that are serialized by a
serialization function.

6.1.4 Constructing a SPARQL Query
You can construct a SPARQL query to ask specific questions about triples or to create new triples
from triples in your triple store. A SPARQL query typically contains the following (in order):

• Prefix Declaration - abbreviates prefix IRIs

• Query Pattern - specifies what to query in the RDF graph, compares and matches query
patterns

• Target RDF Graph - identifies the dataset to query

• Result Clauses - specifies the information to return from the graph

• Query Clauses - extends or restricts the scope of your query

• Solution Modifiers - specifies the order in which to return the results and the number of
results

The query pattern and a result clause are the minimum required components for a query. The
prefix declaration, target RDF graph, query clauses, and solution modifiers are optional
components that structure and define your query.

The following example is a simple SPARQL SELECT query that contains a query pattern to find
people whose birthplace is Paris:

SELECT ?s
WHERE {?s <http://dbpedia.org/ontology/birthPlace/>
<http://dbpedia.org/resource/Paris>
}

The following sections discuss the components of the SPARQL query in more detail, and how to
compose simple and complex queries.

6.1.5 Prefix Declaration
IRIs can be long and unwieldy, and the same IRI may be used many times in a query. To make
queries concise, SPARQL allows the definition of prefixes and base IRIs. Defining prefixes saves
time, makes the query more readable, and can reduce errors. The prefix for a commonly used
vocabulary is also known as a CURIE (Compact URI Expression).
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 87

MarkLogic Server Semantic Queries
In this example, the prefix definitions are declared and the query pattern is written with
abbreviated prefixes:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX db: <http://dbpedia.org/resource/>
PREFIX onto: <http://dbpedia.org/ontology/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT *
WHERE {
?s dc:description "Physicist"@en ;
rdf:type foaf:Person ;

onto:birthPlace db:England .
 }

The query results returns the people described as “Physicist” who were born in England. The
“@en” language tag means that you are searching for the English word “Physicist”. The query
will match only triples with “Physicist” and an English language tag.

6.1.6 Query Pattern
At the heart of a SPARQL query is a set of triple patterns called a graph pattern. Triple patterns
are like RDF triples except the subject, predicate, and object nodes may be a variable.

A graph pattern matches a subgraph of the RDF data when RDF terms from that subgraph may be
substituted for the variables, and the result is an RDF graph equivalent to the subgraph.

The graph pattern is one or more triple patterns contained within curly braces ({ }). The following
types of graph patterns for the query pattern are discussed in this chapter:

• Basic graph pattern - a set of triple patterns must match against triples in the triple store

• Group graph pattern - a set of graph patterns must all match using the same variable
substitution

• Optional graph pattern - additional patterns may extend the solution

• Union graph pattern - where two or more possible patterns are tried

• Graph graph pattern - where patterns are matched against named graphs

SPARQL variables are denoted with a question mark (?) or a dollar symbol ($). The variables can
be positioned to match any subject, predicate, or object node, and match any value in that
position. Thus, the variable may be bound to an IRI or a literal (string, boolean, date, and so on).
Each time a triple pattern matches a triple in the triple store, it produces a binding for each
variable.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 88

MarkLogic Server Semantic Queries
This example shows a basic graph pattern with variables to match the subject (?s) and predicate
(?p) of triples where the object is “db:Paris” - to find subjects who were born or died in Paris. The
query consists of two parts; the SELECT clause specifies what is in the query results (subject and
predicate) and the WHERE clause provides the basic graph pattern to match against the data graph:

PREFIX db: <http://dbpedia.org/resource/>
PREFIX onto: <http://dbpedia.org/ontology/>

SELECT ?s ?p
WHERE {?s ?p db:Paris }

This query will return every person in your dataset who was born or died in Paris. You may want
to limit the number of results by adding “LIMIT 10” to the end of the query. See“The LIMIT
Keyword” on page 113 for details.

Note: A variable may only be bound once. The ?s and ?p in the SELECT clause are the
same variables as in the WHERE clause.

The results of the query include the subject and predicate IRIs (for birthPlace and deathPlace)
where “db:Paris” is in the object position of the triple:

A SPARQL SELECT query returns a solution, which is a set of bindings of variables and values. By
default, the results of SELECT queries are returned in Auto format, a formatted view made for easy
viewing. You can change the output display. For details, see “Specifying Query Result Options”
on page 83.

The previous example is a single triple pattern match (the basic graph pattern). You can query
with SPARQL using multiple triple pattern matching. SPARQL uses a syntax similar to Turtle for
expressing query patterns, where each triple pattern ends with a period.

Similar to an AND clause in SQL queries, every triple in the query pattern must be matched exactly.
For example, consider place names in our dataset that can be found in different countries such as
Paris, Texas or Paris, France.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 89

MarkLogic Server Semantic Queries
The following example returns the IRIs for all resources born in Paris, France that are described
as “Footballers”:

PREFIX db: <http://dbpedia.org/resource/>
PREFIX onto: <http://dbpedia.org/ontology/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?s ?p
WHERE {?s onto:birthPlace db:Paris .

?s onto:birthPlace db:France .
?s dc:description "Footballer"@en .

}

An alternative way to write the query pattern above is to use a semicolon (;) in the WHERE clause to
separate triple patterns that share the same subject.

For example:

PREFIX db: <http://dbpedia.org/resource/>
PREFIX onto: <http://dbpedia.org/ontology/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?s
WHERE {?s onto:birthPlace db:Paris ;

 onto:birthPlace db:France ;
 dc:description "Footballer"@en .

}

The SPARQL specification allows you to use a blank node as subject and object of a triple pattern
in a query.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 90

MarkLogic Server Semantic Queries
For example:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?desc
WHERE { _:p rdf:type foaf:Person ;

dc:description ?desc .
}

The query returns the role or title for resources as defined in the triples in the dataset:

Note: If there are blank nodes in the queried graph, blank node identifiers may be
returned in the results.

6.1.7 Target RDF Graph
A SPARQL query is executed against an RDF dataset that contains graphs. These graphs can be:

• A single default graph - a set of triples with no name attached to them

• One or more named graphs - where inside a GRAPH clause, each named graph is a pair,
made up of a name and a set of triples

For example, this query will be executed on the graph named http://my_collections:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?name ?mbox ?date
FROM <http://my_collections>
WHERE { ?g dc:publisher ?name ;

dc:date ?date .
GRAPH ?g { ?person foaf:name ?name ;
foaf:mbox ?mbox }
}

“The GRAPH Keyword” on page 95 describes the use of GRAPH in a query.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 91

MarkLogic Server Semantic Queries
The FROM and FROM NAMED keywords are used to specify an RDF dataset in a SPARQL query, as
described in the W3C SPARQL Query Language for RDF:

http://www.w3.org/TR/rdf-sparql-query/#specifyingDataset

In the absence of FROM or FROM NAMED keywords, a SPARQL query executes against all graphs that
exist in the database. In other words, if you don't specify a graph name with a query, the UNION of
all graphs will be queried.

Using XQuery, REST, or Javascript you can also specify one or more graphs to be queried by
using:

• a default-graph-uri* - Selects the graph name(s) to query, usually a subset of the
available graphs.

• a named-graph-uri* - Used with FROM NAMED and GRAPH to specify the IRI(s) to be
substituted for a name within particular kinds of queries. You can have one or more
named-graph-uri* parameters specified as part of a query.

If you specify default-graph-uri*, one or more graph names that you specify will be queried.
The “*” indicates that one or more default-graph-uri or named-graph-uri parameters can be
specified.

Note: This default-graph-uri is not the "default" graph that contains unnamed triples -
http://marklogic.com/semantics#default-graph.

In this example a SPARQL query is wrapped in XQuery, to search the data set in the
http://example.org/bob/foaf.rdf graph:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

sem:sparql('
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?g ?name
WHERE {graph ?g { ?alum foaf:schoolHomepage <http://www.ucsb.edu/> .

?alum foaf:knows ?person .
?person foaf:name ?name }

}
'
()
("default-graph-uri=http://example.org/bob/foaf.rdf")

The FROM in a SPARQL query functions the same as default-graph-uri, and the FROM NAMED
functions the same as named-graph-uri. These two clauses function in the same way as part of the
SPARQL query, except that one is written into queries (wrapped in the query), while the other is
specified outside of the query.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 92

http://www.w3.org/TR/rdf-sparql-query/#specifyingDataset

MarkLogic Server Semantic Queries
This section discusses the following topics:

• The FROM Keyword

• The FROM NAMED Keywords

• The GRAPH Keyword

6.1.7.1 The FROM Keyword
The FROM clause in a SPARQL query tells SPARQL where to get data to query, which graph to
query. To use FROM as part of a query, there has to be a graph with the name in the FROM clause.
Graph names in MarkLogic are implemented as collections, which you can view using Explore or
the cts:collections function in the Query Console.

This SPARQL query uses the FROM keyword to search data in the info:govtrack/people graph:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name
FROM <http://marklogic.com/semantics#info:govtrack/people/>
WHERE { ?x foaf:name ?name }
LIMIT 10

See “Preparing to Run the Examples” on page 129 for information about the GovTrack dataset.

The default graph is the result of an RDF merge of the graphs (a union of graphs) referred to in
one or more FROM clauses. Each FROM clause contains an IRI that indicates a graph to be used to
form the default graph.

For example, graph1 and graph2 are merged to form the default graph:

FROM graph1
FROM graph2

Note: When we talk about the default graph in this sense, it is not the same as the default
collections, http://marklogic.com/semantics#default-graph.

graph1

graph2

Default graph
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 93

MarkLogic Server Semantic Queries
This example shows a SPARQL SELECT query that returns all triples where “Alice” is in the object
position. The RDF dataset contains a single default graph and no named graphs:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?s ?p ?o
FROM <http://example.org/foaf/alice>
WHERE {?s foaf:name "Alice";
?p ?o .}

Note: The FROM keyword must be placed before the WHERE clause. Placing the FROM
keyword after the WHERE clause causes a syntax error.

6.1.7.2 The FROM NAMED Keywords
A query can supply IRIs for the named graphs in the dataset using the FROM NAMED clause. Each IRI
is used to provide one named graph in the dataset. Having multiple FROM NAMED clauses causes
multiple graphs to be added to the dataset. With FROM NAMED, every graph name you use in the
query will be matched only to the graph provided in the clause.

You can set the named-graph at load time using mlcp with the collection parameter
-output_collections http://www.example.org/my_graph. See “Specifying Collections and a
Directory” on page 49. You can also set the named-graph using the REST client with
PUT:/v1/graphs.

Note: A named graph is typically created when you load RDF data. See “Loading
Triples” on page 37.

In a query, FROM NAMED is used to identify a named graph that is queried from the WHERE clause by
using the GRAPH keyword.

For example:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?who ?g ?mbox
FROM <http://example.org/foaf/aliceFoaf>
FROM NAMED <http://example.org/alice>
FROM NAMED <http://example.org/bob>
WHERE
{
 ?g dc:publisher ?who .
 GRAPH ?g { ?x foaf:mbox ?mbox }
}

In the example, the FROM and FROM NAMED keywords are used together. The FROM NAMED is used to
scope the graphs that are considered during query evaluation, and the GRAPH construct specifies
one of the named graphs.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 94

MarkLogic Server Semantic Queries
Note: When FROM or FROM NAMED keywords are used, the graphs you can use in a GRAPH
clause potentially become restricted.

6.1.7.3 The GRAPH Keyword
The GRAPH keyword instructs the query engine to evaluate part of the query against the named
graphs in the dataset. A variable used in the GRAPH clause may also be used in another GRAPH clause
or in a graph pattern matched against the default graph in the dataset.

For example:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?name ?mbox ?date
WHERE { ?g dc:publisher ?name ;

dc:date ?date .
GRAPH ?g { ?person foaf:name ?name ;
foaf:mbox ?mbox }
}

Note: You must enable the collection lexicon when you use a GRAPH construct in a
SPARQL query. You can enable the collection lexicon from the database
configuration pages or the Admin Interface.

Triples inside of a GRAPH clause with an explicit IRI, such as GRAPH <....uri...> { ...graph
pattern... }, are matched against the dataset using the IRI specified in the graph clause.

6.1.8 Result Clauses
Querying the dataset with different types of SPARQL queries returns different types of results.
These SPARQL query forms return the following result clauses:

• SELECT Queries - returns a sequence of variable bindings

• CONSTRUCT Queries - returns an RDF graph constructed by substituting variables in a set
of triple templates

• DESCRIBE Queries - returns an RDF graph that describes the resources found

• ASK Queries - returns a boolean indicating whether a query pattern matches
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 95

MarkLogic Server Semantic Queries
6.1.8.1 SELECT Queries
The SPARQL SELECT keyword indicates that you are requesting data from a dataset. This
SPARQL query is the most widely used of the query forms. SPARQL SELECT queries return a
sequence of bindings as a solution, that satisfies the query. Selected variables are separated by
white spaces, not commas.

You can use the asterisk wildcard symbol (*) with SPARQL SELECT as shorthand for selecting all
the variables identified in the query pattern.

For example:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT *
WHERE{?s foaf:givenName ?fn .

?s foaf:surname ?ln .
}

Note: In single triple patterns, a period at the end is optional. In a query pattern with
multiple triple patterns, the period at the end of final triple is also optional.

In the example, the SELECT query returns a sequence of bindings that includes the IRI for the
subject variable (?s), along with the first name (?fn) and last name (?ln) of resources in the
dataset.

SPARQL SELECT query results are serialized as XML, JSON, or passed to another function as a
map. The results of a SELECT query may not always be triples.

6.1.8.2 CONSTRUCT Queries
You can create new triples from existing triples by using SPARQL CONSTRUCT queries. When you
execute a construct query, the results are returned in a sequence of sem:triple values as triples in
memory.

This example creates triples for Albert Einstein from the existing triples in the database:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

CONSTRUCT
{?person ?p ?o .}
WHERE {?person foaf:givenName "Albert"@en ;

foaf:surname "Einstein"@en ;
?p ?o .}

The CONSTRUCT queries return an RDF graph created from variables in the query pattern.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 96

MarkLogic Server Semantic Queries
These triples are created for Albert Einstein from the existing triples in the dataset:

@prefix xs: <http://www.w3.org/2001/XMLSchema#> .
<http://dbpedia.org/resource/Albert_Einstein>
<http://dbpedia.org/ontology/birthPlace>
<http://dbpedia.org/resource/Baden-Württemberg> .

@prefix xs: <http://www.w3.org/2001/XMLSchema#> .
<http://dbpedia.org/resource/Albert_Einstein>
<http://dbpedia.org/ontology/birthPlace>
<http://dbpedia.org/resource/German_Empire> .

@prefix xs: <http://www.w3.org/2001/XMLSchema#> .
<http://dbpedia.org/resource/Albert_Einstein>
<http://dbpedia.org/ontology/deathPlace>
<http://dbpedia.org/resource/Princeton,_New_Jersey> .

@prefix xs: <http://www.w3.org/2001/XMLSchema#> .
<http://dbpedia.org/resource/Albert_Einstein>
<http://dbpedia.org/ontology/birthPlace>
<http://dbpedia.org/resource/Ulm> .

@prefix xs: <http://www.w3.org/2001/XMLSchema#> .
<http://dbpedia.org/resource/Albert_Einstein>
<http://dbpedia.org/ontology/deathPlace>
<http://dbpedia.org/resource/United_States> .

@prefix xs: <http://www.w3.org/2001/XMLSchema#> .
<http://dbpedia.org/resource/Albert_Einstein>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://xmlns.com/foaf/0.1/Person> .

@prefix xs: <http://www.w3.org/2001/XMLSchema#> .
<http://dbpedia.org/resource/Albert_Einstein>
<http://xmlns.com/foaf/0.1/givenName> "Albert"@en .

@prefix xs: <http://www.w3.org/2001/XMLSchema#> .
<http://dbpedia.org/resource/Albert_Einstein>
<http://xmlns.com/foaf/0.1/name> "Albert Einstein"@en .

@prefix xs: <http://www.w3.org/2001/XMLSchema#> .
<http://dbpedia.org/resource/Albert_Einstein>
<http://xmlns.com/foaf/0.1/surname> "Einstein"@en .

@prefix xs: <http://www.w3.org/2001/XMLSchema#> .
<http://dbpedia.org/resource/Albert_Einstein>
<http://purl.org/dc/elements/1.1/description> "Physicist"@en .

These triples are constructed in memory and not added to the database.

Note: The “@en” language tag means that this is an English word and will match
differently than any other language tag.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 97

MarkLogic Server Semantic Queries
6.1.8.3 DESCRIBE Queries
SPARQL DESCRIBE queries return a sequence of sem:triple values. The DESCRIBE query result
returns RDF graphs that describe one or more of the given resources. The W3C specification
leaves the details implementation dependent. In MarkLogic, we return a Concise Bounded

Description of the IRIs identified, which includes all triples which have the IRI as a subject, and for
each of those triples that has a blank node as an object, all triples with those blank nodes as a
subject. This implementation does not provide any reified statements, and will return a maximum
of 9999 triples.

For example, this query finds triples containing “Pascal Bedrossian”:

DESCRIBE <http://dbpedia.org/resource/Pascal_Bedrossian>

The triples found by the DESCRIBE query are returned in Turtle format. You can also select JSON
or Text as the format.

@prefix xs: <http://www.w3.org/2001/XMLSchema#> .
<http://dbpedia.org/resource/Pascal_Bedrossian>
<http://dbpedia.org/ontology/birthPlace>
<http://dbpedia.org/resource/France> .

@prefix xs: <http://www.w3.org/2001/XMLSchema#> .
<http://dbpedia.org/resource/Pascal_Bedrossian>
<http://dbpedia.org/ontology/birthPlace>
<http://dbpedia.org/resource/Marseille> .

@prefix xs: <http://www.w3.org/2001/XMLSchema#> .
<http://dbpedia.org/resource/Pascal_Bedrossian>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://xmlns.com/foaf/0.1/Person> .

@prefix xs: <http://www.w3.org/2001/XMLSchema#> .
<http://dbpedia.org/resource/Pascal_Bedrossian>
<http://xmlns.com/foaf/0.1/surname> "Bedrossian"@en .

@prefix xs: <http://www.w3.org/2001/XMLSchema#> .
<http://dbpedia.org/resource/Pascal_Bedrossian>
<http://xmlns.com/foaf/0.1/givenName> "Pascal"@en .

@prefix xs: <http://www.w3.org/2001/XMLSchema#> .
<http://dbpedia.org/resource/Pascal_Bedrossian>
<http://xmlns.com/foaf/0.1/name> "Pascal Bedrossian"@en .

@prefix xs: <http://www.w3.org/2001/XMLSchema#> .
<http://dbpedia.org/resource/Pascal_Bedrossian>
<http://purl.org/dc/elements/1.1/description> "footballer"@en .

@prefix xs: <http://www.w3.org/2001/XMLSchema#> .
<http://dbpedia.org/resource/Pascal_Bedrossian>
<http://dbpedia.org/ontology/birthDate> "1974-11-28"^^xs:date .
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 98

http://www.w3.org/Submission/CBD/
http://www.w3.org/Submission/CBD/

MarkLogic Server Semantic Queries
Note: The DESCRIBE clause has a limit of 9999 triples in the server, which means if a
query includes a DESCRIBE clause with one IRI or few IRIs that total more than
9999 triples, triples will be truncated from the results. The server does not provide
any warning or message that this has occurred.

6.1.8.4 ASK Queries
SPARQL ASK queries return a single xs:boolean value. The ASK clause returns true if the query
pattern has any matches in the dataset and false if there is no pattern match.

For example, in the persondata dataset are the following facts about two members of the Kennedy
family: Carolyn Bessette-Kennedy and Eunice Kennedy-Shriver:

• Eunice Kennedy-Shriver, the founder of the Special Olympics precursor and a sister of
John F. Kennedy was born on 1921-07-10.

• Carolyn Bessette-Kennedy, a publicist, and wife of JFK Junior, was born on 1966-01-07.

This query asks if Carolyn was born after Eunice.

PREFIX db: <http://dbpedia.org/resource/>
PREFIX onto: <http://dbpedia.org/ontology/>

ASK
{

db:Carolyn_Bessette-Kennedy onto:birthDate ?by .
db:Eunice_Kennedy_Shriver onto:birthDate ?bd .
FILTER (?by>?bd).

}
=>
true

The response is true.

Note: ASK queries check to see if there is at least one result.

6.1.9 Query Clauses
Add the following query clauses to extend or reduce the number of potential results returned:

• The OPTIONAL Keyword

• The UNION Keyword

• The FILTER Keyword

• Comparison Operators

• Negation in Filter Expressions

• BIND Keyword

• Values Sections
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 99

MarkLogic Server Semantic Queries
6.1.9.1 The OPTIONAL Keyword
The OPTIONAL keyword is used to return additional results if there is a match in an optional graph
pattern. For example, this query pattern returns triples in the database consisting of the first name
(?fn), last name (?ln) and mail address (?mb):

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?fn ?ln
WHERE{?x foaf:givenName ?fn .

?x foaf:surname ?ln .
?x foaf:email ?mb .

}

Only triples that match all the triple patterns are returned. In the persondata dataset there may be
people with no email address. In this case, the Query Console will silently leave these people out
of the result set.

You can use the optional graph pattern (also known as a left join) to return matching values of any
variables in common, if they exist. Since the OPTIONAL keyword is also a graph pattern, it has its
own set of curly braces (inside the curly braces of the WHERE clause).

This example extends the previous example to return one or more email addresses, and just the
first name and last name if there is no email address:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?fn ?ln
WHERE {?x foaf:givenName ?fn .

?x foaf:surname ?ln .
OPTIONAL{?x foaf:email ?mb .}
}

Note: Optional patterns may yield unbound variables. See “ORDER BY Keyword” on
page 113 for more about unbound variables.

6.1.9.2 The UNION Keyword
Use the UNION keyword to match multiple patterns from multiple different sets of data, and then
combine them in the query result. The UNION keyword is placed inside the curly braces of the
WHERE clause. The syntax is:

{ triple pattern } UNION { triple pattern }

The UNION pattern combines graph patterns; each alternative possibility can contain more than one
triple pattern (logical disjunction).
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 100

MarkLogic Server Semantic Queries
This example finds people who are described as “Authors” or “Novelists” and their date of birth:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX onto: <http://dbpedia.org/ontology/>

SELECT ?person ?desc ?date
WHERE { ?person rdf:type foaf:Person .

?person dc:description ?desc .
?person onto:birthDate ?date .

{ ?person dc:description "Novelist"@en . }
UNION

{ ?person dc:description "Author"@en . }
}

You can also group triple patterns into multiple graph patterns using a group graph pattern
structure.

For example:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?person ?desc
WHERE {{?person rdf:type foaf:Person }

{?person dc:description ?desc }

{{?person dc:description "Author"@en }

 UNION
{ ?person dc:description "Novelist"@en . } } }

Note that each set of braces contains a triple. This is semantically equivalent to this next query
and would yield the same results.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?person
WHERE {?person rdf:type foaf:Person ;

dc:description ?desc .

{?person dc:description "Author"@en }

UNION
{?person dc:description "Novelist"@en . }

}

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 101

MarkLogic Server Semantic Queries
Note: You can use multiple UNION patterns in a SPARQL query. The results from the
OPTIONAL and UNION queries differ in that the UNION query allows a subgraph of
another solution, while an OPTIONAL query explicitly does not.

6.1.9.3 The FILTER Keyword
There are multiple methods for limiting the results of a SPARQL query. You can use the FILTER,
DISTINCT, or the LIMIT keywords to restrict the number of matching results that are returned.

You can use one or more SPARQL FILTER keywords to specify the variables by which to
constrain results. The FILTER constraint is placed inside the curly braces of the WHERE clause and
can contain symbols for logical, mathematical, or comparison operators such as greater than (>),
less than(<), equal to (=), and so on. The FILTER constraints use boolean conditions to return
matching query results. There are also a number of built-in SPARQL tests you can use such as
isURI, isBlank, and so forth.

This table lists some of the SPARQL unary operators in FILTER constraints:

Note: For a full list of operations, see Operator Mapping in the SPARQL Query Language

for RDF.

Operator Type Result Type

! xsd:boolean xsd:boolean

+ numeric numeric

- numeric numeric

BOUND() variable xsd:boolean

isURI() RDF term xsd:boolean

isBLANK() RDF term xsd:boolean

isLITERAL RDF term xsd:boolean

STR() literal/IRI simple literal

LANG() literal simple literal

DATATYPE() literal IRI
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 102

http://www.w3.org/TR/rdf-sparql-query/#evaluation
http://www.w3.org/TR/rdf-sparql-query/#evaluation

MarkLogic Server Semantic Queries
This example is a query pattern that provides meaning to the variable ?bd (a person’s birth date).
The FILTER clause of the query pattern compares the variable value to the date January 1st, 1999
and returns people born after the given date:

PREFIX onto: <http://dbpedia.org/ontology/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns>

SELECT ?s
WHERE {?s rdf:type foaf:Person .

?s onto:birthDate ?bd .
FILTER (?bd > "1999-01-01"^^xsd:date)

}

The SPARQL keyword a is a shortcut for the common predicate rdf:type, giving the class of a
resource. For example, the WHERE clause could be written as:

WHERE {?s a foaf:Person .
?s onto:birthDate ?bd .

You can express a FILTER clause with a regular expression pattern by using the regex function.
For example:

SELECT ?s ?p ?o
WHERE {?s ?p ?o

FILTER (regex (?o, "Lister", "i"))
}

The SPARQL query returns all matching results where the text in the object position contains the
string Lister in any case. Regular expression matches are made case-insensitive with the i flag.

Note: This type of FILTER query is the equivalent of the fn:match XQuery function.
Regular expressions are not optimized in SPARQL. Use cts:contains for
optimized full text searching.

The regular expression language is defined in XQuery 1.0 and XPath 2.0 Functions and
Operators, section 7.6.1 Regular Expression Syntax.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 103

http://www.w3.org/TR/xpath-functions/#regex-syntax

MarkLogic Server Semantic Queries
6.1.9.4 Using Built-in Functions in a SPARQL Query
In addition to SPARQL functions, you can use XQuery or JavaScript built-in functions (for
example, functions with the prefix fn, cts, math, or xdmp) in a SPARQL query where you can use a
function, which includes FILTER, BIND, and the expressions in a SELECT statement.

A built-in function is one that can be called without using “import module” in XQuery or “var
<module> = require” in JavaScript. These functions are called extension functions when used in a
SPARQL query. You can find a list of built-in functions at http://docs.marklogic.com by selecting
“Server-Side JavaScript APIs” (or “Server-Side XQuery APIs”). The built-ins listed are under
“MarkLogic Built-In Functions” and “W3C-Standard Functions.” See “Using Semantic Functions
to Query” on page 130 for more information.

Extension functions in SPARQL are identified by IRIs in the form of
http://www.w3.org/2005/xpath-functions#name where name is the local name of the function and
the string before the # is the prefix IRI of the function, for example
http://www.w3.org/2005/xpath-functions#starts-with. For the prefix IRIs commonly
associated with fn, cts, math, and xdmp (or any other prefix IRIs that do not end with a "/" or "#"),
append a # to the prefix IRI and then the function local name, for example:
http://marklogic.com/cts#contains.

You can access built-in functions like cts using PREFIX in the SPARQL query. In this example,
cts:contains is added as using PREFIX and then included as part of the FILTER query:

PREFIX cts: <http://marklogic.com/cts#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT *
WHERE{ ?s ?p ?o .

FILTER cts:contains(?o, cts:or-query(("Monarch", "Sovereign")))
FILTER(?p IN (dc:description, rdfs:type))

}

This is full-text search for the words “Monarch” or “Sovereign” where the predicate is either a
description or a type. In the second FILTER clause, the use of IN specifies the predicates to filter
on. The results include people that have a title of “Monarch” (of a kingdom, state or sovereignty)
and things that have a description of “Monarch” such as the Monarch butterfly or Monarch
Islands.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 104

http://docs.marklogic.com

MarkLogic Server Semantic Queries
In this example the XPath function starts-with is used in a SPARQL query to return the roles or
titles of people whose description begins with “Chief”. The function is imported by including the
IRI as part of the FILTER query:

PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?desc
WHERE {?s dc:description ?desc

FILTER (<http://www.w3.org/2005/xpath-functions#starts-with>(?desc,
"Chief"))}

Note: You can use the FILTER keyword with the OPTIONAL and UNION keywords.

6.1.9.5 Comparison Operators
The IN and NOT IN comparison operators are used with the FILTER clause to return a boolean true
if a matching term is in the set of expressions, or false if not. For example:

ASK {
FILTER(2 IN (1, 2, 3))

}

=>
true

ASK {
FILTER(2 NOT IN (1, 2, 3))

}

=>
false

6.1.10 Negation in Filter Expressions
Negation can be used with the FILTER expression to eliminate solutions from the query results.
There are two types of negation - one type filters results depending on whether a graph pattern
does or does not match in the context of the query solution being filtered, and the other type is
based on removing solutions related to another pattern. MarkLogic supports SPARQL 1.1
Negation (using EXISTS, NOT EXISTS, and MINUS)for use with FILTER.

The examples for negation use this data:

PREFIX : <http://example.org/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

:alice rdf:type foaf:Person .
:alice foaf:name "Alice" .
:bob rdf:type foaf:Person .
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 105

MarkLogic Server Semantic Queries
This section contains these topics:

• EXISTS

• NOT EXISTS

• MINUS

• Differences Between NOT EXISTS and MINUS

• Combination Queries with Negation

6.1.10.1 EXISTS
The filter expression EXISTS checks to see whether the query pattern can be found in the data. For
example, the EXISTS filter in this examples checks for the pattern ?person foaf:name ?name in the
data:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?person
WHERE
{
 ?person rdf:type foaf:Person .
 FILTER EXISTS { ?person foaf:name ?name }
}

=>
person

<http://example.org/alice

The result of the query is Alice. The EXISTS filter does not generate any additional bindings.

6.1.10.2 NOT EXISTS
With the NOT EXISTS filter expression, the query tests whether a graph pattern does not match a
dataset, given the values of variables in the group graph pattern in which the filter occurs. This
query tests whether the ?person foaf:name ?name does not occur in the data:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?person
WHERE
{
 ?person rdf:type foaf:Person .
 FILTER NOT EXISTS { ?person foaf:name ?name }
}

=>
person

<http://example.org/bob>
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 106

MarkLogic Server Semantic Queries
The graph pattern for <http://example.org/bob> does not have a predicate foaf:name for ?person,
so the query returns Bob as the result for this query. The NOT EXISTS filter does not generate any
additional bindings.

6.1.10.3 MINUS
The another type of SPARQL negation is MINUS, which evaluates both its arguments, then
calculates solutions in the left-hand side that are not compatible with the solutions on the right-
hand side of the pattern.

For this example we will add additional data:

PREFIX : <http://example.org/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

:alice foaf:givenName "Alice" ;
 foaf:familyName "Smith" .

:bob foaf:givenName "Bob" ;
 foaf:familyName "Jones" .

:carol foaf:givenName "Carol" ;
 foaf:familyName "Smith" .

This query looks for patterns in the data that do not match ?s foaf:givenName "Bob" and returns
those results:

PREFIX : <http://example.org/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT DISTINCT ?s
WHERE {
 ?s ?p ?o .
 MINUS {
 ?s foaf:givenName "Bob" .
 }
}

=>
<http://example.org/carol>
<http://example.org/alice>

The results are Carol and Alice.

The filters NOT EXISTS and MINUS represent two ways of approaching negation. The NOT EXISTS
approach tests whether a pattern exists in the data, based on the bindings determined by the query
pattern. The MINUS approach removes matches based on the evaluation of two patterns. In some
cases, they can produce different results. The MINUS filter does not generate any additional
bindings.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 107

MarkLogic Server Semantic Queries
6.1.10.4 Differences Between NOT EXISTS and MINUS
The filter expressions NOT EXISTS and MINUS represent two ways of using negation. The NOT
EXISTS filter tests whether a pattern exists in the data, given the bindings already determined by
the query pattern. The MINUS filter removes matches from the result set based on the evaluation of
two patterns in the query. In some cases, these two approaches can produce different answers.

Example: Sharing of variables

If we have this dataset:

@prefix : <http://example.com/> .
:a :b :c .

And we use this query:

SELECT *
{
 ?s ?p ?o
 FILTER NOT EXISTS {?x ?y ?x}
}

=>
(This query has no results)

The result set will be empty because {?x ?y ?x} matches all triples in the data, which the NOT
EXISTS filter eliminates from the results.

When we use MINUS in the same query, there is no shared variable between the first part (?s ?p ?o)
and the second part (?x ?y ?z), so no bindings are eliminated:

SELECT *
{
 ?s ?p ?o
 FILTER MINUS {?x ?y ?x}
}

=>
s p o
<http://example.com/a> <http://example.com/b> <http://example.com/c>

Example: Fixed pattern

Another case where the results will be different for NOT EXISTS and MINUS is where there is a
concrete pattern (no variables) in the example query.

This query uses NOT EXISTS as the filter for negation:

PREFIX : <http://example.com/>
SELECT *
{
 ?s ?p ?o
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 108

MarkLogic Server Semantic Queries
 FILTER NOT EXISTS {:a :b :c}
}

=>
(This query has no results)

 This query uses MINUS as the filter:

PREFIX : <http://example.com/>
SELECT *
{
 ?s ?p ?o
 MINUS {:a :b :c}
}

=>
s p o
<http://example.com/a> <http://example.com/b> <http://example.com/c>

Since there is no match of bindings, no solutions are eliminated, and the solution includes a, b,
and c.

Example: Inner FILTERs

Differences in results will also occur because in a filter, variables from the group are in scope. In
this example, the FILTER inside the NOT EXISTS has access to the value of ?n for the solution being
considered. For this example, we will use this dataset:

PREFIX : <http://example.com/>
:a :p 1 .
:a :q 1 .
:a :q 2 .

:b :p 3.0 .
:b :q 4.0 .
:b :q 5.0 .

When using FILTER NOT EXISTS, the test is on each possible solution to ?x :p ?n in this query:

PREFIX : <http://example.com/>
SELECT * WHERE {
 ?x :p ?n
 FILTER NOT EXISTS {
 ?x :q :m .
 FILTER (?n = ?m)
 }
 }

=>
x n
<http://example.com/b> 3.0
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 109

MarkLogic Server Semantic Queries
With MINUS, the FILTER inside the pattern does not have a value for ?n and it is always unbound.

PREFIX : <http://example.com/>
SELECT * WHERE {
 ?x ?p ?n
 MINUS {
 ?x :q ?m .
 FILTER (?n = ?m)
 }
 }

=>
x n
<http://example.com/b> 3.0
<http://example.com/a> 1

6.1.10.5 Combination Queries with Negation
A combination query operates on triples embedded in documents. The query searches both the
document and any triples embedded in the document. You can add negation with the FILTER
keyword to constrain the results of the query.

For example:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
 at "/MarkLogic/semantics.xqy";

let $query := '
 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
 SELECT ?country
 WHERE {
 <http://example.org/news/Nixon> <http://example.org/wentTo>
?country
 FILTER NOT EXISTS {?country foaf:isIn ?location .
 ?location foaf:isIn "Europe"} . }'
let $store := sem:store((),cts:and-query((
 cts:path-range-query("//triples-context/confidence", ">=", 80) ,
 cts:path-range-query("//triples-context/pub-date", ">",
xs:date("1974-01-01")),
 cts:or-query((
 cts:element-value-query(xs:QName("source"), "AP Newswire"),
 cts:element-value-query(xs:QName("source"), "BBC")
)))))

let $result := sem:sparql($query, (), (), $store)
return <result>{$result}</result>

Note: The cts:path-range-query requires the path index to be configured to work
correctly. See Understanding Range Indexes in the Administrator’s Guide.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 110

MarkLogic Server Semantic Queries
This is a modification of an earlier query that says “Find all of the documents containing triples
that have information about countries that Nixon visited. From that group, return only those
triples that have a confidence level of 80% or above and a publication date after January 1st,
1974. And only return triples with a source element of AP Newswire or BBC.” The MINUS filter
removes any countries that are located in Europe from the results.

Note: SPARQL Update will not modify triples embedded in documents. SPARQL
Update can be used to insert new triples into graphs as part of a combination query,
or to modify managed triples. See “Unmanaged Triples” on page 73 for more
information about triples in documents.

6.1.10.6 BIND Keyword
The BIND keyword allows a value to be assigned to a variable from a basic graph pattern or
property path expression. The use of BIND ends the preceding basic graph pattern. The variable
introduced by the BIND clause must not have been used in the group graph pattern up to the point
of use in BIND. When you assign a computed value to a variable in the middle of a pattern, the
computed value can then be used in other patterns, such as a CONSTRUCT query. The syntax is
(expression AS ?var). For example:

PREFIX db: <http://dbpedia.org/resource/>
PREFIX onto: <http://dbpedia.org/ontology/>

SELECT ?person
 WHERE { BIND (db:London AS ?location)
 ?person onto:birthPlace ?location .
 }
LIMIT 10

6.1.10.7 Values Sections
You can use SPARQL VALUES sections to provide inline data as an unordered solution sequence
that is joined with the results of the query evaluation. The VALUES section allows multiple
variables to be specified in the data block. For example:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT *
WHERE { ?a foaf:name ?n .
VALUES ?n { "John" "Jane" }}

This query says “find subjects with foaf:name John or Jane” - supplying the values the ?n can
have instead of searching for ?n in the dataset. This is the same as a query using the longer form
where the parameter lists are contained in parentheses:

VALUES (?z) { ("John") ("Jane") }

Note: A VALUES block of data can appear in a query pattern or at the end of a SELECT query
or subquery.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 111

MarkLogic Server Semantic Queries
6.1.11 Solution Modifiers
A solution modifier modifies the result set for SELECT queries. This section discusses how you can
modify what your query returns using the following solution modifiers:

• The DISTINCT Keyword

• The LIMIT Keyword

• ORDER BY Keyword

• The OFFSET Keyword

• Subqueries

• Projected Expressions

Note: With the exception of DISTINCT, modifiers appear after the WHERE clause.

6.1.11.1 The DISTINCT Keyword
Use the DISTINCT keyword to remove duplicate results from a results set.

For example:

SELECT DISTINCT ?p
WHERE {?s ?p ?o}

The query returns all of the predicates - just once - for all the triples in the persondata dataset.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 112

MarkLogic Server Semantic Queries
6.1.11.2 The LIMIT Keyword
Use the LIMIT keyword to further restrict the results of a SPARQL query that are displayed. For
example, in the DBPedia dataset, there could be thousands of authors that match this query:

PREFIX dc:<http://purl.org/dc/elements/1.1/>
PREFIX foaf:<http://xmlns.com/foaf/0.1/>

SELECT ?x ?fn ?ln
WHERE{?x dc:description "Author"@en ;

foaf:name ?fn ;
foaf:surname ?ln.}

To specify the number matching results to display, add the LIMIT keyword after the curly braces of
the WHERE clause with an integer (not a variable).

For example:

PREFIX dc:<http://purl.org/dc/elements/1.1/>
PREFIX foaf:<http://xmlns.com/foaf/0.1/>

SELECT ?x ?fn ?ln
WHERE{?x dc:description "Author"@en ;

foaf:name ?fn ;
foaf:surname ?ln.}

LIMIT 10

The results of the query are limited to the first ten matches:

6.1.11.3 ORDER BY Keyword
Use the ORDER BY clause to specify the values of one or more variable by which to sort the query
results. SPARQL provides an ordering for unbound variables, blank nodes, IRIs, or RDF literals
as described in the SPARQL 1.1 Query Language recommendation:

http://www.w3.org/TR/sparql11-query/#modOrderBy

The default ordering is ascending order.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 113

http://www.w3.org/TR/sparql11-query/#modOrderBy

MarkLogic Server Semantic Queries
For example:

PREFIX dc:<http://purl.org/dc/elements/1.1/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?x ?fn ?ln
WHERE{?x dc:description "Author" ;

foaf:name ?fn ;
foaf:surname ?ln.}

ORDER BY ?ln ?fn
LIMIT 10

The results are ordered by the author’s last name (?ln) and then by the author’s first name (?fn):

To change the order of results to descending order, use the DESC keyword and place the variable
for the values to be returned in brackets. For example:

PREFIX dc:<http://purl.org/dc/elements/1.1/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?x ?fn ?ln
WHERE{?x dc:description "Author"@en ;

foaf:name ?fn ;
foaf:surname ?ln .}

ORDER BY DESC (?ln)
LIMIT 10
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 114

MarkLogic Server Semantic Queries
6.1.11.4 The OFFSET Keyword
The OFFSET modifier is used for pagination, to skip a given number of matching query results
before returning the remaining results. This keyword can be used with the LIMIT and ORDER BY
keywords to retrieve different slices of data from a dataset. For example, you can create pages of
results from different offsets.

This example queries for Authors in ascending order and limits the results to the first twenty,
skipping the first eight matches and starting the list at position nine:

PREFIX dc:<http://purl.org/dc/elements/1.1/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?x ?fn ?ln
WHERE{?x dc:description "Author"@en ;

foaf:name ?fn ;
foaf:surname ?ln.}

ORDER BY ?x
OFFSET 8
LIMIT 20

The results are returned, skipping the first eight matches.

Note: SPARQL uses a 1-based index, meaning the first item is 1 and not 0, so an offset
of 8 will skip items one through eight.

6.1.11.5 Subqueries
You can combine the results of several queries by using subqueries. You can nest one or more
queries inside another query. Each subquery is enclosed in separate pairs of curly braces.
Typically, subqueries are used with solution modifiers. This example queries for Politicians who
were born in London and then limits the results to the first ten:

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX db: <http://dbpedia.org/resource/>
PREFIX onto: <http://dbpedia.org/ontology/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name ?location ?date
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 115

MarkLogic Server Semantic Queries
WHERE
{ ?person dc:description "Politician"@en .

{SELECT ?location
WHERE{?person onto:birthPlace db:London .

?person onto:birthPlace ?location }
}
{SELECT ?date
WHERE{?person onto:birthDate ?date . }
}
{SELECT ?name
WHERE{ ?person foaf:name ?name }
}

}
LIMIT 10

6.1.11.6 Projected Expressions
You can use projected expressions within SPARQL SELECT queries to project arbitrary SPARQL
expressions, rather than only bound variables. This allows the creation of new values in a query.

This type of query uses values derived from a variable, constant IRIs, constant literal, function
calls, or other expressions in the SELECT list for columns in a query result set.

Note: Functions could include both SPARQL built-in functions and extension functions
supported by an implementation.

Projected expressions must be in parentheses and must be given an alias using the AS keyword.
The syntax is (expression AS ?var).

For example :

PREFIX ex: <http://example.org/>

SELECT ?Item (?price * ?qty AS ?total_price)
WHERE {

?Item ex:price ?price.
?Item ex:quantity ?qty

}

The query returns values for ?total_price that do not occur in the graphs contained in the RDF
dataset.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 116

MarkLogic Server Semantic Queries
6.1.12 De-Duplication of SPARQL Results
MarkLogic has implemented dedup=on and dedup=off options to sem:sparql(). Here are some
examples of how deduplication works, based on a simple sem:sparql() example.

First, insert the same triple twice:

import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqy";

(: load an rdf triple that will match the SPARQL query :)

sem:rdf-insert(
sem:triple(sem:iri("http://www.example.org/dept/108/invoices/20963"),
sem:iri("http://www.example.org/dept/108/invoices/paid"),
"true") ,
xdmp:default-permissions(),
"test-dedup") ;

(: returns the URI of the document that contains the triple :)

import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqy";

(: load an rdf triple that will match the SPARQL query :)

sem:rdf-insert(
sem:triple(sem:iri("http://www.example.org/dept/108/invoices/20963")

,
sem:iri("http://www.example.org/dept/108/invoices/paid"),
"true") ,
xdmp:default-permissions(),
"test-dedup") ;

(: returns the URI of the document that contains the triple :)

Then use a SPARQL query with dedup=off:

sem:sparql('
PREFIX inv: <http://www.example.org/dept/108/invoices/>

SELECT ?predicate ?object
WHERE
{ inv:20963 ?predicate ?object }
' ,
(),
"dedup=off")
=>
<http://www.example.org/dept/108/invoices/paid> "true"
<http://www.example.org/dept/108/invoices/paid> "true"

Two identical triples are returned.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 117

MarkLogic Server Semantic Queries
This SPARQL query uses dedup=on, which is the default:

sem:sparql('
PREFIX inv: <http://www.example.org/dept/108/invoices/>

SELECT ?predicate ?object
WHERE { inv:20963 ?predicate ?object }
' ,
(),
 "dedup=on")
=>
<http://www.example.org/dept/108/invoices/paid> "true"

Only one instance of the triple is returned.

The dedup=on option is the default, standards-compliant behavior. The dedup=off option for
sem:sparql may well give the same results if you never insert duplicate triples, but it entails a
considerable performance overhead (for example, with filtering in search), so it’s important to
consider using this option.

6.1.13 Property Path Expressions
Property paths enable you to traverse an RDF graph. You can follow possible routes through a
graph between two graph nodes. You can use property paths to answer questions like “show me
all of the people who are connected to John, and all the people who know people who know
John.” You can use property paths to query paths of any length in a dataset graph by using an
XPath-like syntax. A property path query retrieves pairs of connecting nodes where the paths that
link those nodes match the given property path. This makes it easier to follow and use
relationships expressed as triples.

Query evaluation determines all matches of a path expression and binds subject or object as
appropriate. Only one match per route through the graph is recorded - there are no duplicates for
any given path expression.

6.1.13.1 Enumerated Property Paths
The following table describes the supported enumerated path operators (|, ^, and /) that can be
combined with predicates in a property path:

Property Path Construct Description

Sequence path1/path2 Forwards path from path1 to path2

Inverse ^path Backwards path from object to subject

Alternative path1|path2 Either path1 or path2

Group (path) A group path path, brackets control precedence
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 118

MarkLogic Server Semantic Queries
The following examples illustrate property paths using this simple graph model:

Here is that same graph model expressed as triples in Turtle format:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns> .
@prefix p0: <http://marklogic.com/semantics/> .

p0:alice foaf:hasParent p0:jane ;
a foaf:Person ;
foaf:name "Alice" .

p0:jane foaf:hasChild p0:alice,
p0:mary;

a foaf:Person ;
foaf:name "Jane" .

p0:mary foaf:hasParent p0:jane ;
a foaf:Person ;
foaf:hasChild p0:john ;
foaf:name "Mary" .

p0:john foaf:hasParent p0:mary ;
a foaf:Person ;
foaf:name "John".

foaf:person

IRI2 IRI3

IRI4

foaf:hasParent

foaf:hasChild

foaf:hasParent

“Alice”

“Jane”

“Mary”

“John”

foaf:name

foaf:name
foaf:name

foaf:name

IRI1

rdf:type rdf:typerdf:type

foaf:hasParent

foaf:hasChild

foaf:hasChild
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 119

MarkLogic Server Semantic Queries
This example query uses paths (the / operator) to find the name of Alice’s parent:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?s ?name
WHERE {?s foaf:name "Alice".

?s foaf:hasParent/foaf:name ?name .
}

=>
s name

<http://marklogic.com/semantics/alice> "Jane"

This query finds the names of people two links away from John (his grandparent):

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?s ?name
WHERE {?s foaf:name "John".

?s foaf:hasParent/foaf:hasParent/foaf:name ?name .
}

=>
s name

<http://marklogic.com/semantics/john> "Jane"

This query reverses the property path direction (swaps the roles of subject and object using the ^
operator) to find the name of Mary’s mother:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?s
WHERE { <http://marklogic.com/semantics/mary> ^foaf:hasChild ?s }

=>
s

<http://marklogic.com/semantics/Jane>

6.1.13.2 Unenumerated Property Paths
Unenumerated paths enable you to query triple paths and discover relationships, along with
simple facts. This table describes the unenumerated path operators (+, *, or ?) that can be
combined with predicates in a property path:

Property Path Construct Description

One or more path+ A path that connects the subject and the object of the path by one
or more matches of a path element.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 120

MarkLogic Server Semantic Queries
Note: A path element may itself be composed of path constructs.

The inverse operator (^) can be used with the enumerated path operators. Precedence of these
operators is left-to-right within groups.

For these next examples, we can use sem:rdf-insert to add these triples to express the concept of
foaf:knows:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

let $string := '
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix p0: <http://marklogic.com/semantics/> .

p0:alice foaf:knows p0:jane .

p0:jane foaf:knows p0:mary,
p0:alice .

p0:mary foaf:knows p0:john,
p0:jane .

p0:john foaf:knows p0:mary .'

return sem:rdf-insert(sem:rdf-parse($string, "turtle"))

To find the names of all the people who are connected to Mary, use foaf:knows with the “+” path
operator:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?s ?name
WHERE {?s foaf:name "Mary" .

?s foaf:knows+/foaf:name ?name .}

=>
s name

<http://marklogic.com/semantics/mary> "Jane"
<http://marklogic.com/semantics/mary> "John"

Zero or more path* A path that connects the subject and the object of the path by zero
or more matches of a path element.

Zero or one path? A path that connects the subject and the object of the path by zero
or one matches of a path element

Property Path Construct Description
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 121

MarkLogic Server Semantic Queries
<http://marklogic.com/semantics/mary> "Mary"
<http://marklogic.com/semantics/mary> "Alice"

This query will match all of the triples connected to Mary by foaf:knows where one or more paths
exist. You can use foaf:knows with the “*” operator to find the names of anyone who is
connected to Mary (including Mary) by zero or more paths.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?s ?name
WHERE {?s foaf:name "Mary" .

?s foaf:knows*/foaf:name ?name .}

In this case the results will be same as in the previous example because the number of people
connected to Mary by zero or more paths (the “*” path operator) is the same as the number
connected by one or more paths.

Using the “?” operator finds the triples connected to Mary by one path element.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?s ?name
WHERE {?s foaf:name "Mary" .
?s foaf:knows?/foaf:name ?name .}

=>
s name

<http://marklogic.com/semantics/mary> "Jane"
<http://marklogic.com/semantics/mary> "John"
<http://marklogic.com/semantics/mary> "Mary"

You can also use a property path sequence to discover connections between triples.

For example, this query will find triples connected to Mary by three path elements:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?s ?name
WHERE {
?s foaf:name "Mary" .
?s foaf:knows/foaf:knows/foaf:knows/foaf:name ?name .
}

s name
<http://marklogic.com/semantics/mary> "John"
<http://marklogic.com/semantics/mary> "Jane"
<http://marklogic.com/semantics/mary> "John"
<http://marklogic.com/semantics/mary> "Jane"

The duplicate results are due to the different paths traversed by the query. You could add a
DISTINCT keyword in the SELECT clause to return only one instance of each result and elimate the
duplicates.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 122

MarkLogic Server Semantic Queries
Note: The SPARQL modifier “!” has not been implemented in MarkLogic. Using this
modifier to invert a property path value results in a syntax error.

You can combine SPARQL queries using property paths with a cts:query parameter to restrict
results to only some documents (a combination query).

This combination query will find all the people connected to Alice who have children:

PREFIX cts: <http://marklogic.com/cts#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?s ?name
WHERE {
 ?s foaf:name "Mary" .
 ?s foaf:knows+/foaf:name ?name .
 ?s ?p ?o .
FILTER cts:contains(?p, cts:word-
query("http://xmlns.com/foaf/0.1/hasChild"))
 }
=>
<http://marklogic.com/semantics/mary> "Alice"
<http://marklogic.com/semantics/mary> "Jane"
<http://marklogic.com/semantics/mary> "John"
<http://marklogic.com/semantics/mary> "Mary"

You could also use a cts:query parameter to restrict the query to a collection or directory.

6.1.13.3 Inference
You can use unenumerated paths to do simple inference using thesaural relationships. (A thesaural

relationship is a simple ontology).

For example, you can infer all the possible types of a resource, including supertypes of resources
using this pattern:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT ?x ?type
{

?x rdf:type/rdfs:subClassOf* ?type
}

For example, this query will find the products that are subclasses of “shirt”:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX ex: <http://example.com>

SELECT ?product
WHERE
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 123

MarkLogic Server Semantic Queries
{
?product rdf:type/rdfs:subClassOf* ex:Shirt ;

}

For more about inference, see “Inference” on page 147.

6.1.14 SPARQL Aggregates
You can do simple analytic queries over triples using SPARQL aggregate functions. An aggregate
function performs an operation over values or value co-occurrences in triples.

For example, you can use an aggregate function to compute the sum of values. This SPARQL
query uses SUM to find the total sales:

PREFIX demov: <http://demo/verb/>
PREFIX vcard: <http://www.w3.org/2006/vcard/ns/>

SELECT (SUM (?sales) as ?sum_sales)
FROM <http://marklogic.com/semantics/COMPANIES100/>
WHERE {
?company a vcard:Organization .
?company demov:sales ?sales
}

These SPARQL aggregate functions are supported:

Aggregate Function Example

COUNT SELECT (COUNT (?company) as ?count_companies)
Count of “companies”

SUM SELECT (SUM (?sales) as ?sum_sales)

MIN SELECT (MIN (?sales) as ?min_sales)

MAX SELECT ?country (MAX (?sales) AS ?max_sales)

AVG SELECT ?industry (ROUND(AVG (?employees)) AS
?avg_employees)

MODE (STATS_MODE) SELECT (MODE (?housePrice) as ?mode_housePrice)

MEDIAN SELECT (MEDIAN (?housePrice) as ?median_housePrice)

STDDEV (STD, STDDEV_SAMP) SELECT (STDDEV (?duration) as ?std_duration)

STDDEVP (STDDEV_POP) SELECT (STDDEVP (?sales) as ?stdp_sales)

VARIANCE (VAR, VAR_SAMP) SELECT (VARIANCE (?distance) as ?var_distance)

VARIANCEP (VARP, VAR_POP) SELECT (VARIANCEP (?distance) as ?varp_distance)

Grouping Operations: All aggregate functions are supported with GROUP BY
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 124

MarkLogic Server Semantic Queries
Here is a SPARQL query using the aggregate function COUNT over a large number of triples:

PREFIX demor: <http://demo/resource/>
PREFIX demov: <http://demo/verb/>
PREFIX vcard: <http://www.w3.org/2006/vcard/ns/>

count the companies
(more precisely, count things of type organization)

(SELECT (COUNT (?company) AS ?count_companies)

FROM <http://marklogic.com/semantics/test/COMPANIES100/>
WHERE {

?company a vcard:Organization .

}=>
100

Here is another example using COUNT and ORDER BY DESC:

PREFIX demor: <http://demo/resource/>
PREFIX demov: <http://demo/verb/>
PREFIX vcard: <http://www.w3.org/2006/vcard/ns/>

SELECT DISTINCT ?object (COUNT(?subject) AS ?count)
WHERE {

?subject <http://www.w3.org/1999/02/22-rdf-syntax-ns#type/> ?object
}
GROUP BY ?object
ORDER BY DESC (?count)
LIMIT 10

GROUP BY GROUP BY ?industry
or
GROUP BY ?country ?industry

GROUP BY
<some_aggregate_variable>

GROUP BY AVG

GROUP BY. . HAVING
<some_aggregate_variable>

GROUP BY ?industry
HAVING (?sum_sales > 3000000000)

GROUP
CONCAT<more_than_one_item>

SELECT
 ?region
 (GROUP_CONCAT(DISTINCT ?industry ; separator=" + "
) AS ?industries)

SAMPLE SELECT ?country (SAMPLE(?industry) AS
?sample_industry) (SUM (?sales) AS ?sum_sales)

SAMPLE is required for proper evaluation of unaggregated
variables

Aggregate Function Example
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 125

MarkLogic Server Semantic Queries
This query uses aggregates (MAX) to find the baseball player with the highest uniform number, and
then get all the triples that pertain to him (or her). It uses an arbitrary triple (bb:number) that it
knows every player in the dataset has, stores the subject in ?key, then queries for all triples and
filters out where the subject in the outer query matches the ?key value:

PREFIX bb: <http://marklogic.com/baseball/players/>
PEFIX bbr: <http://marklogic.com/baseball/rules/>
PREFIX xs: <http://www.w3.org/2001/XMLSchema#>

SELECT *
FROM <Athletics>
{

?s ?p ?o .
{

SELECT(MAX(?s1) as ?key)
WHERE
{

?s1 bb:number ?o1 .
}

}
FILTER (?s = ?key)

}
ORDER BY ?p

This complex nested query uses COUNT AVG to find the ten cheapest vendors for a specific product
type, selected by the highest percentage of their product below the average cost, and then filters
for vendors containing either “name1” or “name2”:

PREFIX bsbm: <http://www4.wiwiss.fu-
berlin.de/bizer/bsbm/v01/vocabulary/>
PREFIX bsbm-inst: <http://www4.wiwiss.fu-
berlin.de/bizer/bsbm/v01/instances/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX cts: <http://marklogic.com/cts#>

SELECT ?vendor (xsd:float(?belowAvg)/?offerCount As
?cheapExpensiveRatio)
{
{ SELECT ?vendor (count(?offer) As ?belowAvg)

{
{ ?product a <http://www4.wiwiss.fu-

berlin.de/bizer/bsbm/v01/instances/ProductType459> .
?offer bsbm:product ?product .
?offer bsbm:vendor ?vendor .
?offer bsbm:price ?price .
{ SELECT ?product (avg(xsd:float(xsd:string(?price))) As ?avgPrice)
{
?product a <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/
instances/ProductType459> .

?offer bsbm:product ?product .
?offer bsbm:vendor ?vendor .
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 126

MarkLogic Server Semantic Queries
?offer bsbm:price ?price .
}
GROUP BB ?product

}
} .

FILTER (xsd:float(xsd:string(?price)) < ?avgPrice)
}
GROUP BY ?vendor

}
{ SELECT ?vendor (count(?offer) As ?offerCount)
{
?product a <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/

instances/ProductType459> .
?offer bsbm:product ?product .
?offer bsbm:vendor ?vendor .

}
GROUP BY ?vendor

}
FILTER cts:contains(?vendor, cts:or-query(("name1", "name2")))

}
ORDER BY desc(xsd:float(?belowAvg)/?offerCount) ?vendor
LIMIT 10

6.1.15 Using the Results of sem:sparql
Here is an example of using the results of sem:sparql in a query:

import module namespace sem = "http://marklogic.com/semantics"
 at "/MarkLogic/semantics.xqy";

cts:search(
 fn:doc(),
 cts:triple-range-query(
 (), "takenIn",
 (: Use sem:sparql to run a query, then use the ! operator to
 : convert the solution to a sequence of strings
 :)
 sem:sparql(
 'select ?countryIRI
 {
 ?continentIRI <http://www.w3.org/2004/02/skos/core#prefLabel>
?continentLabel .
 ?countryIRI <http://dbpedia.org/property/continent>
?continentIRI .
 }',
 map:entry("continentLabel", rdf:langString("Countries in South
America", "en"))
) ! map:get(., "countryIRI")
))

6.1.16 SPARQL Resources
The SPARQL recommendation is closely related to these specifications:
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 127

MarkLogic Server Semantic Queries
• The SPARQL Protocol for RDF [SPROT] specification defines the remote protocol for
issuing SPARQL queries and receiving the results.
http://www.w3.org/TR/rdf-sparql-protocol/

• MarkLogic supports simple entailment, as described in the W3C recommendation:
http://www.w3.org/TR/rdf-mt/#entail

• The SPARQL Query Results XML Format specification defines an XML document
format for representing the results of SPARQL SELECT and ASK queries.
http://www.w3.org/TR/rdf-sparql-XMLres/

• SPARQL 1.1 Graph Store HTTP Protocol:
http://www.w3.org/TR/2012/CR-sparql11-http-rdf-update-20121108/

There are a variety of tutorials available for learning more about the SPARQL query language.
For example:

• http://www.cambridgesemantics.com/semantic-university

• https://jena.apache.org/tutorials/sparql.html

Recommended reading:

• Learning SPARQL by Bob DuCharme (Publisher: O’Reilly)

• Semantic Web for the Working Ontologist by Dean Allemang and Jim Hendler (Publisher:
Morgan Kaufmann)

Additional useful resources include:

• SPARQL Implementations: http://www.w3.org/wiki/SparqlImplementations

• SPARQL Working Group: http://www.w3.org/2009/sparql/wiki/Main_Page

• SPARQL query results - JSON format: http://www.w3.org/TR/2012/PR-sparql11-results-json-
20121108/

• SPARQL Frequently Asked Questions: http://thefigtrees.net/lee/sw/sparql-faq

6.2 Querying Triples with XQuery or JavaScript
This section contains examples of using XQuery or JavaScript with semantic data. When you use
JavaScript or XQuery to query triples in MarkLogic, you can use the Semantics API library, built-
in functions, the Search API built-in functions, or a combination of these.

This section includes the following topics:

• Preparing to Run the Examples

• Using Semantic Functions to Query

• Using Bindings for Variables

• Viewing Results as XML and RDF
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 128

http://www.w3.org/TR/2012/CR-sparql11-http-rdf-update-20121108/
http://www.w3.org/TR/rdf-sparql-protocol/
http://www.w3.org/TR/rdf-sparql-XMLres/
http://www.w3.org/wiki/SparqlImplementations
http://www.w3.org/2009/sparql/wiki/Main_Page
http://www.w3.org/TR/2012/PR-sparql11-results-json-20121108/
http://www.w3.org/TR/2012/PR-sparql11-results-json-20121108/
http://thefigtrees.net/lee/sw/sparql-faq
http://www.w3.org/TR/rdf-mt/#entail
https://jena.apache.org/tutorials/sparql.html
http://www.cambridgesemantics.com/semantic-university

MarkLogic Server Semantic Queries
• Working with CURIEs

• Using Semantics with cts Searches

6.2.1 Preparing to Run the Examples
These examples for querying triples with XQuery or Javascript assume that you have the
GovTrack dataset stored on Archive.org. If you prefer to use your own dataset or cannot access
the datasets mentioned here, you can skip this section.

Note: The links to the datasets have moved since this section was written. They can be
found at https://web.archive.org/web/20170718121008/https://www.govtrack.us/data/rdf/

This data is free, publicly available legislative information about bills in the US Congress,
representatives, and voting records. The information originates from a variety of official
government Web sites. The Govtrack.us data from Archive.org applies the principles of open data
to legislative transparency.

Before installing the GovTrack dataset, make sure you have the following:

• MarkLogic Server 8.0-4 or later.

• MarkLogic Content Pump (mlcp). See Installation and Configuration in the mlcp User Guide

• The GovTrack dataset from Archive.org and access to
https://web.archive.org/web/20170718121008/https://www.govtrack.us/data/rdf/

Follow this procedure to download the GovTrack dataset and load it into MarkLogic Server.

1. Download the following files into a directory on your local file system:

• bills.108.cosponsors.rdf.gz

• bills.108.rdf.gz

• people.rdf.gz

• people.roles.rdf.gz

2. Create a govtrack database and forest. For these examples you can use the application
server on port 8000 with the GovTrack data. This default server can function as an XDBC
server and REST instance as well.

To create your own XDBC server and REST instance see Setting Up Additional Servers in
this guide and Administering REST Client API Instances in the in the REST Application
Developer’s Guide for more information.

3. Verify that the triples index and the collection lexicon are enabled for the govtrack
database. See “Enabling the Triple Index” on page 66.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 129

https://web.archive.org/web/20170718121008/https://www.govtrack.us/data/rdf/
https://web.archive.org/web/20170718121008/https://www.govtrack.us/data/rdf/

MarkLogic Server Semantic Queries
4. Import the data into your govtrack database with mlcp, specifying the collections of
info:govtrack/people and info:govtrack/bills. See “Loading Triples with mlcp” on
page 44. Your import command on Windows will look similar to the following:

mlcp.bat import -host localhost -port 8000 -username admin ^
-password password -database govtrack -input_file_type rdf ^
-input_file_path c:\space\GovTrack -input_compressed true^
-input_compression_codec gzip ^
-output_collections "info:govtrack/people,info:govtrack/bills"

Modify the host, port, username, password, and -input_file_path options to match your
environment. In this example, long lines have been broken for readability and Windows
continuation characters (“^”) have been added.

Note: Be sure to add the -database parameter to the command. If you leave this
parameter out, the data will go into the default Documents database.

The equivalent command for UNIX is:

mlcp.sh import -host localhost -port 8000 -username admin \
-password password -database govtrack -input_file_type RDF \
-input_file_path /space/GovTrack -input_compressed true \
-input_compression_codec gzip \
-output_collections 'info:govtrack/people,info:govtrack/bills'

In this example, the long lines have been broken and the UNIX continuation characters
(“\”) have been added.

Note: It is important to specify the -input_file_type as RDF to invoke the correct
parser.

6.2.2 Using Semantic Functions to Query
You can execute SPARQL SELECT, ASK, and CONSTRUCT queries with the sem:sparql and
sem:sparql-values functions in XQuery, and with the sem.sparql and sem.sparqlValues
functions in Javascript. For details about the function signatures and descriptions, see the
Semantics functions documentation and the XQuery Library Modules in the MarkLogic XQuery
and XSLT Function Reference.

The following examples execute SPARQL queries against the triples index of the govtrack
database. See “Preparing to Run the Examples” on page 129.

Note: Although some of the semantics functions are built-in, others are not, so we
recommend that you import the Semantics API library into every XQuery module
or JavaScript module that uses the Semantics API.

Using XQuery, the import statement is:
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 130

https://docs.marklogic.com/sem/semantic-functions

MarkLogic Server Semantic Queries
import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqy";

For Javascript, the import statement is:

var sem = require("/MarkLogic/semantics.xqy");

6.2.2.1 sem:sparql
You can use the sem:sparql function to query RDF data in the database in the same way you
would in the SPARQL language. To use sem:sparql, you pass the SPARQL query to the function
as a string.

Using XQuery the query would look like:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

sem:sparql('
PREFIX bill: <http://www.rdfabout.com/rdf/usgov/congress/108/bills/>
SELECT ?predicate ?object
WHERE { bill:h963 ?predicate ?object }
')

Using Javascript, the query would be:

var sem = require("/MarkLogic/semantics.xqy");

sem.sparql(+
'PREFIX bill: <http://www.rdfabout.com/rdf/usgov/congress/108/bills/>' +
'SELECT ?predicate ?object' +
'WHERE { bill:h963 ?predicate ?object }')

Note: In JavaScript, you must either use a left-quote (“‘”) at the beginning of a literal
string that spans multiple lines. Otherwise, you must use a “+” or “\” to
concatenate the substrings.

The XQuery code returns an array as a sequence, whereas the JavaScript code returns a Sequence.
See Sequence in the JavaScript Reference Guide for more information.

The result of the example query for all triples where the subject is bill number “h963” would look
like this:
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 131

MarkLogic Server Semantic Queries
For more information about constructing SPARQL queries, see “Constructing a SPARQL Query”
on page 87.

You can also construct your SPARQL query as an input string in a FLWOR statement. In the
following example, the let statement contains the SPARQL query. This is a SPARQL ASK query,
to find out if there are any male politicians who are members of the Latter Day Saints:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

let $sparql := '
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns>
PREFIX politico: <http://www.rdfabout.com/rdf/schema/politico/>
PREFIX govtrack: <http://www.rdfabout.com/rdf/schema/usgovt/>
PREFIX vcard: <http://www.w3.org/2001/vcard-rdf/3.0/>

ASK { ?x rdf:type politico:Politician ;
foaf:religion "Latter Day Saints" ; foaf:gender "male". }

'
return sem:sparql($sparql)

=>
true
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 132

MarkLogic Server Semantic Queries
6.2.2.2 sem:sparql-values
Use the sem:sparql-values function to allow sequences of bindings to restrict what a SPARQL
query returns. In this example, a sequence of values are bound to the subject IRIs that represent
two members of congress.

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

let $bindings := (map:entry("s",
sem:iri("http://www.rdfabout.com/rdf/usgov/congress/people/A000069")),
map:entry("s",
sem:iri("http://www.rdfabout.com/rdf/usgov/congress/people/G000359"))
)
return
sem:sparql-values("select * { ?s ?p ?o }",$bindings)

The results are returned as sequences of values for the two members of congress:

The sem:sparql-values function can be considered as equivalent to the SPARQL 1.1 facility of an
outermost VALUES block. See “Values Sections” on page 111 for more information.

Everywhere you use a variable in a SPARQL values query, you can set the variable to a fixed
value by passing in external bindings as arguments to sem:sparql-values. See “Using Bindings
for Variables” on page 135.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 133

MarkLogic Server Semantic Queries
6.2.2.3 sem:store
The sem:store function contains a set of criteria used to select the set of triples to be passed in to
sem:sparql, sem:sparql-values, or sem:sparql-update and evaluated as part of the query. The
triples included in sem:store come from the current database’s triple index, restricted by the
options and the cts:query argument in sem:store (for instance, “all triples in documents
matching this query”). If multiple sem:store constructors are supplied, the triples from all the
sources are merged and queried together.

If a sem:store constructor is not supplied as an option for sem:sparql, sem:sparql-values, or
sem:sparql-update, then the default sem:store constructor for the query will be used (the default
database’s triple index).

6.2.2.4 Querying Triples in Memory
You can use sem:in-memory-store to query triples in memory.

For example:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

let $triples := sem:rdf-parse($string, ("turtle", "myGraph"))
let $query := '
PREFIX ad: <http://marklogic.com/addressbook/>
PREFIX d: <http://marklogic.com/id/>

CONSTRUCT{ ?person ?p ?o .}
FROM <myOtherGraph>
WHERE
{

?person ad:firstName "Elvis" ;
ad:lastName "Presley" ;
?p ?o .

}
'
for $result in sem:sparql($query, (), (), sem:in-memory-
store($triples))
order by sem:triple-object($result)
return <result>{$result}</result>

This query constructs a graph of triples in memory named “myGraph” containing persons named
Elvis with a last name of Presley. The source of these triples is “myOtherGraph” and the results
are returned in order.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 134

MarkLogic Server Semantic Queries
6.2.3 Using Bindings for Variables
Extensions to standard SPARQL enable you to use bindings for variables in the body of a query
statement. Everywhere you use a variable in a SPARQL query, you can set the variable to a fixed
value by passing in external bindings as arguments to sem:sparql.

Bindings for variables can also be used as values in OFFSET and LIMIT clauses (in the syntax where
they previously were not allowed). This example query uses bindings for variables with both
LIMIT and OFFSET.

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";
import module namespace json = "http://marklogic.com/xdmp/json"

at "MarkLogic/json/json.xqy";
declare namespace jbasic = "http://marklogic.com/xdmp/json/basic";

let $query := '
PREFIX bb: <http://marklogic.com/baseball/players/>

SELECT ?firstname ?lastname ?team
FROM <SportsTeams>
{
{
?s bb:firstname ?firstname .
?s bb:lastname ?lastname .
?s bb:team ?team .
?s bb:position ?position .

FILTER (?position = ?pos)
}

}
ORDER BY ?lastname
LIMIT ?lmt
'
let $mymap := map:map()
let $put := map:put($mymap, "pos", "pitcher")
let $put := map:put($mymap, "lmt", "3")
let $triples := sem:sparql($query, $mymap)
let $triples-xml := sem:query-results-serialize($triples, "xml")
return <results>{$triples-xml}</results>

=>
<results>
<sparql xmlns="http://www.w3.org/2005/sparql-results/">
<head>

<variable name="firstname"></variable>
<variable name="lastname"></variable>
<variable name="team"></variable>

</head>
<results>
<result>
<binding name="firstname">
<literal datatype="http://www.w3.org/2001/XMLSchema#string">
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 135

MarkLogic Server Semantic Queries
Fernando</literal>
</binding>
<binding name="lastname">
<literal datatype="http://www.w3.org/2001/XMLSchema#string">
Abad</literal>

</binding>
<binding name="team">
<literal datatype="http://www.w3.org/2001/XMLSchema#string">
Athletics</literal>

</binding>
</result>
<result>
<binding name="firstname">
<literal datatype="http://www.w3.org/2001/XMLSchema#string">
Jesse</literal>

</binding>
<binding name="lastname">
<literal datatype="http://www.w3.org/2001/XMLSchema#string">

Chavez</literal>
</binding>
<binding name="team">
<literal datatype="http://www.w3.org/2001/XMLSchema#string">
Athletics</literal>

</binding>
</result>
<result>
<binding name="firstname">
<literal datatype="http://www.w3.org/2001/XMLSchema#string">
Ryan</literal>

</binding>
<binding name="lastname">
<literal datatype="http://www.w3.org/2001/XMLSchema#string">
Cook</literal>

</binding>
<binding name="team">
<literal datatype="http://www.w3.org/2001/XMLSchema#string">
Athletics</literal>

</binding>
</result>

</results>
</sparql>

</results>

Bindings can be used with SPARQL (sem:sparql), SPARQL values (sem:sparql-values), and
SPARQL Update (sem:sparql-update). See “Bindings for Variables” on page 184 for an example
of bindings for variables used with SPARQL Update.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 136

MarkLogic Server Semantic Queries
6.2.4 Viewing Results as XML and RDF
You can use sem:query-results-serialize and sem:rdf-serialize functions to view results in
XML, JSON, or RDF serialization.

In this example, the sem:sparql query finds the cosponsors of bill number “1024” and passes the
value sequence into sem:query-results-serialize to return the results as variable bindings in
default XML format:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

sem:query-results-serialize(sem:sparql('
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX bill: <http://www.rdfabout.com/rdf/schema/usbill/>

SELECT ?bill ?person ?name
WHERE {?bill rdf:type bill:SenateBill ;

bill:congress "108" ;
bill:number "1024" ;
bill:cosponsor ?person .

?person foaf:name ?name .}
'))

The results are returned in W3C SPARQL Query Results format:

To view the same results in JSON serialization, add the format option after the query.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 137

MarkLogic Server Semantic Queries
For example:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

sem:query-results-serialize(sem:sparql('
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX bill: <http://www.rdfabout.com/rdf/schema/usbill/>

SELECT ?bill ?person ?name
WHERE {?bill rdf:type bill:SenateBill ;

bill:congress "108" ;
bill:number "1024" ;
bill:cosponsor ?person .

?person foaf:name ?name .}
'), "json")

When you use the sem:rdf-serialize function, you pass the triple to return as a string, or
optionally you can specify a parsing serialization option.

For example:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

sem:rdf-serialize(
sem:triple(

sem:iri(
"http://www.rdfabout.com/rdf/usgov/congress/people/D000060"),

sem:iri("http://www.rdfabout.com/rdf/schema/usgovt/name"),
"Archibald Darragh"), "rdfxml")

This table describes the serialization options available for the output:

You can also select different ways to display results. See “Selecting Results Rendering” on
page 86.

Serialization Output As

ntriple xs:string

nquad xs:string

turtle xs:string

rdfxml an element

rdfjson a json:object

triplexml a sequence of sem:triple elements
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 138

MarkLogic Server Semantic Queries
6.2.5 Working with CURIEs
A CURIE (Compact URI Expression) is a shortened version of a URI signifying a specific resource.
With MarkLogic, lengthy IRIs can be shortened using a mechanism similar to that built into the
SPARQL language. As a convenience, the definitions of several common prefixes are built in, as
shown in the examples in this section.

CURIEs are composed of two components: a prefix, and a reference. The prefix is separated from
the reference by a colon (:), for example, dc:description is a prefix for Dublin Core and the
reference - http://purl.org/dc/elements/1.1/ - is the description.

These are the most common prefixes and their mapping:

map:entry("atom", "http://www.w3.org/2005/Atom/"),
map:entry("cc", "http://creativecommons.org/ns/"),
map:entry("dc", "http://purl.org/dc/elements/1.1/"),
map:entry("dcterms", "http://purl.org/dc/terms/"),
map:entry("doap", "http://usefulinc.com/ns/doap/"),
map:entry("foaf", "http://xmlns.com/foaf/0.1/"),
map:entry("media", "http://search.yahoo.com/searchmonkey/media/"),
map:entry("og", "http://ogp.me/ns/"),
map:entry("owl", "http://www.w3.org/2002/07/owl/"),
map:entry("prov", "http://www.w3.org/ns/prov/"),
map:entry("rdf", "http://www.w3.org/1999/02/22-rdf-syntax-ns"),
map:entry("rdfs", "http://www.w3.org/2000/01/rdf-schema/"),
map:entry("result-set",
"http://www.w3.org/2001/sw/DataAccess/tests/result-set/"),
map:entry("rss", "http://purl.org/rss/1.0/"),
map:entry("skos", "http://www.w3.org/2004/02/skos/core/"),
map:entry("vcard", "http://www.w3.org/2006/vcard/ns/"),
map:entry("void", "http://rdfs.org/ns/void/"),
map:entry("xhtml", "http://www.w3.org/1999/xhtml/"),
map:entry("xs","http://www.w3.org/2001/XMLSchema#")

You can use the sem:curie-expand and sem:curie-shorten functions to work with CURIEs in
MarkLogic. When you use sem:curie-expand, you eliminate the need to declare common
prefixes.

For example:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

sem:curie-expand("foaf:name")

=>

<http://xmlns.com/foaf/0.1/name>
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 139

MarkLogic Server Semantic Queries
In this example, the cts:triple-range-query finds a person named “Lamar Alexander”. Note that
the results are returned from a cts:search to find the sem:triple elements where the foaf:name
equals “Lamar Alexander”. The predicate CURIE is displayed as the fully expanded IRI for
foaf:name.

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

let $query := cts:triple-range-query((), sem:curie-
expand("foaf:name"), "Lamar Alexander", "sameTerm")

return cts:search(fn:collection()//sem:triple, $query)

=>
<sem:triples xmlns="http://marklogic.com/semantics">

<sem:subject>
http://www.rdfabout.com/rdf/usgov/congress/people/A000360/

</sem:subject>
<sem:predicate>

http://xmlns.com/foaf/0.1/name
</sem:predicate>
<sem:object datatype="http://www.w3.org/2001/XMLSchema#string">

Lamar Alexander
</sem:object>

</sem:triples>

In the following example, the query includes a series of cts:triples function calls and
sem:curie-expand to find the name of the congressperson who was born on November 20, 1917.
The person’s name is returned as an RDF literal string from the object position (sem:triple-
object) of the returned triple statement:

xquery version "1.0-ml";

import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqy";

let $person-triples := cts:triples((), sem:curie-expand("vcard3:BDAY",
map:entry("vcard3", "http://www.w3.org/2001/vcard-rdf/3.0/")),
"1917-11-20")
let $subject := sem:triple-subject($person-triples)
let $name-triples := cts:triples($subject,
sem:curie-expand("foaf:name"), ())
let $name := sem:triple-object($name-triples)
return ($name)

=>

Robert Byrd
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 140

MarkLogic Server Semantic Queries
Use the sem:curie-shorten to compact an IRI to a CURIE. Evaluating the function involves
replacing the CURIE with a concatenation of the value represented by the prefix and the part after
the colon (the reference).

For example:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

sem:curie-shorten(sem:iri("http://www.w3.org/1999/02/

22-rdf-syntax-ns#resource/"))

=>
rdf:resource

Note: Although CURIEs map to IRIs, do not use them as values for attributes or other
content that are specified to contain only IRIs.

For example, the following query will return an empty sequence since the cts:triple-range-
query expects an IRI (sem:iri) in that position not a sem:curie-shorten, which is a string:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

let $query := cts:triple-range-query((),
sem:curie-shorten(sem:iri("http://xmlns.com/foaf/0.1/name")),
"Lamar Alexander", "sameTerm")

return cts:search(fn:collection()//sem:triple, $query)

Instead, either of the following can be used:

let $query := cts:triple-range-query((),
sem:curie-expand("foaf:name"), "Lamar Alexander", "sameTerm")

Or alternatively expand the prefix to the full IRI:

let $query := cts:triple-range-query((),
sem:iri("http://xmlns.com/foaf/0.1/name/"), "Lamar Alexander",
"sameTerm")

Note: The sameTerm function that is defined in SPARQL, performs the value equality
operation. It differs from the equality operator (=) in the way that types are
handled. In MarkLogic, types and timezones are the only things that make
sameTerm different from =.For example, sameTerm(A,B) implies A=B. In SPARQL
terms, using sameTerm semantics to match graphs to the graph patterns in a
SPARQL query is called simple entailment. For more information, see “Triple
Values and Type Information” on page 64.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 141

MarkLogic Server Semantic Queries
6.2.6 Using Semantics with cts Searches
This section discusses using cts searches to return RDF data from a MarkLogic triple store. It
includes the following topics:

• cts:triples

• cts:triple-range-query

• cts:search

• cts:contains

6.2.6.1 cts:triples
The cts:triples function retrieves the parameter values from the triple index. Triples can be
returned in any of the sort orders present in the triple index.

In this example, the subject IRI for a member of congress is passed as the first parameter for the
subject IRI:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

let $r := cts:triples
 (sem:iri(
 "http://www.rdfabout.com/rdf/usgov/congress/people/D000060"),
)

return ($r)

The matching results return triples for that member of congress (Archibald Darragh):
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 142

MarkLogic Server Semantic Queries
6.2.6.2 cts:triple-range-query
Access to the triple index is provided through the cts:triple-range-query function. The first
parameter in this example is an empty sequence for the subject. The predicate and object parameters
are provided, along with the sameTerm operator to find someone named “Lamar Alexander”:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

let $query := cts:triple-range-query((),
 sem:iri("http://xmlns.com/foaf/0.1/name"), "Lamar Alexander",
"sameTerm")

return cts:search(fn:collection()//sem:triple, $query)

6.2.6.3 cts:search
The built-in cts search functions are XQuery functions used to perform text searches. In this example,
the cts:search queries against the info:govtrack/bills collection of XML docs to determine how
many bills have the word “Guam” in the document (the cts:word-query of the specified string).

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

let $search := cts:search(//sem:triple,
 cts:and-query((cts:collection-query("info:govtrack/bills"),
cts:word-query("Guam"))
)
)[1]

return cts:remainder($search)

=>
16

You can use a combination of cts:query and comparison operators. The cts:triple-range-query
function in this example is used within a cts:search to find the sem:triple elements, where the
foaf:name equals “Lamar Alexander” or where Alexander’s subject IRI contains a foaf:img
property conveying an image IRI.

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

declare namespace dc = "http://purl.org/dc/elements/1.1/";

cts:search(collection()//sem:triple, cts:or-query((
 cts:triple-range-query((), sem:curie-expand("foaf:name"),
 "Lamar Alexander", "sameTerm"),
 cts:triple-range-query(
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 143

MarkLogic Server Semantic Queries
 sem:iri
 ("http://www.rdfabout.com/rdf/usgov/congress/people/A000360"),
 sem:curie-expand("foaf:img"), (), "="
)
)))

You can construct sequences in SPARQL expressions and the SPARQL 1.1 IN and NOT IN
operators to make effective use of built-in cts functions such as cts:and-query, which expect a
sequence of cts:query values as the first argument.

You can also use cts:order constructors as an option to cts:search to to specify an ordering. This
lets you order cts search results using a specified index for better, predictable performance. See
Creating a cts:order Specification in the Query Performance and Tuning Guide.

6.2.6.4 cts:contains
You can use the cts:contains function in SPARQL expressions, which occur in FILTER and BIND
clauses. For an example, see “The FILTER Keyword” on page 102.

Since cts:contains allows any value as the first argument, you can pass a variable that is bound
by a triple pattern in the query as the first argument. The triple pattern uses the full-text index to
reduce the results it returns during the lookup in the triple index. For example:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

fn:count(sem:sparql('
PREFIX cts: <http://marklogic.com/cts#>

SELECT DISTINCT *
WHERE
{ ?s ?p ?o .

FILTER cts:contains(?o, cts:word-query("Environment")) }
 ')
)
=>
53

The following example is a query to verify if there is a bill number “hr543”.

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

cts:contains(collection("info:govtrack/bills")//sem:subject,
 cts:word-query('hr543'))

=>
true
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 144

MarkLogic Server Semantic Queries
6.3 Querying Triples with the Optic API
The Optic API can also be used for server-side queries of triples. The following Optic example
query returns a list of the people who were born in Brooklyn in the form of a table with two
columns, person and name.

xquery version "1.0-ml";
import module namespace op="http://marklogic.com/optic"
 at "/MarkLogic/optic.xqy";

let $resource := op:prefixer("http://dbpedia.org/resource/")
let $foaf := op:prefixer("http://xmlns.com/foaf/0.1/")
let $onto := op:prefixer("http://dbpedia.org/ontology/")
let $person := op:col("person")

return op:from-triples((
 op:pattern($person, $onto("birthPlace"), $resource("Brooklyn")),
 op:pattern($person, $foaf("name"), op:col("name"))))
 => op:result()

This query uses the same data set as the one used for queries earlier in this chapter (see “Querying
Triples with SPARQL” on page 82). The results would look like this:

For more about the Optic API, see Optic API for Multi-Model Data Access and Data Access Functions
in the Application Developer’s Guide and op:from-triples or op.fromTriples in the Optic API
for more about server-side queries using Optic.

6.4 Serialization
You can set the output serialization for results in a variety of ways. These options can be set at the
query level as part of the JSON or XQuery function to override any default options, or you could
set the method in an XQuery declaration, or the method can be configured in the app server. These
output options affect how data returned from the App Server or sent over REST is serialized.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 145

MarkLogic Server Semantic Queries
6.4.1 Setting the Output Method
You can set the output method for the results of your query in the following ways. Each method
overrides the next method in the list:

• set an option to xdmp:quote()

• set xdmp:set-response-output-method()

• set the XSLT output method

• Use a static declaration in XQuery (or JavaScript)

• Configure the output in app server

In other words, any configuration you have set in the app server will be overwritten by a static
declaration in XQuery or Javascript.

To set the output method in an XQuery declaration use:

declare option xdmp:output "method = sparql-results-json"

To set the output method as part of an XQuery function use:

set-response-output-method("sparql-results-json")

As part of a server-side JavaScript function use to set the output method:

setResponseOutputMethod("sparql-results-json")

6.5 Security
If you have a document with unmanaged triples, or you have TDE-extracted triples, those triples
share the same security characteristics as the source documents. That is, if you can read the
document containing the values that create the triples, you can read the triples.

With managed triples, the document inherits create permissions from the graph. When you set
graph permissions, the documents created from those triples have the permissions you set on that
graph.

The triple index, cts:triples, and sem:sparql queries only returns triples from documents which
the database user has permission to read.

Named graphs inherit the write protection settings available to collections.

For more information about MarkLogic security, see Document Permissions in the Security Guide.

Task Privilege

Executing sem:sparql http://marklogic.com/xdmp/privileges/sem-sparql
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 146

MarkLogic Server Inference
7.0 Inference
168

In the context of MarkLogic Semantics, and semantic technology in general, the process of
“inference” involves the automated discovery of new facts based on a combination of data and
rules for understanding that data. Inference is the process of “inferring” or discovering new facts
about your data based on a set of rules. Inference with semantic triples means that automatic
procedures can generate new relationships (new facts) from existing triples.

An inference query is any SPARQL query that is affected by automatic inference. The W3C
specification describing inference, with links to related standards, can be found here:
http://www.w3.org/standards/semanticweb/inference

New facts may be added to the database (forward-chaining inference), or they may be inferred at
query time (backward chaining inference), depending on the implementation. MarkLogic
supports automatic backward-chaining inference.

This chapter includes the following sections:

• Automatic Inference

• Other Ways to Achieve Inference

• Performance Considerations

• Using Inference with the REST API

• Summary of APIs Used for Inference

7.1 Automatic Inference
Automatic inference is done using rulesets and ontologies. As the name implies, automatic
inference is performed automatically and can also be centrally managed. MarkLogic semantics
uses backward-chaining inference, meaning that the inference is performed at query time. This is
very flexible; it means you can specify which ruleset(s) and ontology (or ontologies) to use per-
query, with default rulesets per-database.

This section includes these topics:

• Ontologies

• Rulesets

• Memory Available for Inference

• A More Complex Use Case
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 147

http://www.w3.org/standards/semanticweb/inference

MarkLogic Server Inference
7.1.1 Ontologies
An ontology is used to define the semantics of your data; it describes relationships in your data
that can be used to infer new facts about your data. In Semantics, an ontology is a set of triples that
provides a semantic model of a portion of the world, a model that enables knowledge to be
represented for a particular domain (relationships between people, types of publications, or a
taxonomy of medications). This knowledge model is a collection of triples used to describe the
relationships in your data. Different vocabularies can supply sets of terms to define concepts and
relationships to represent facts.

An ontology describes what types of things exist in the domain and how they are related. A
vocabulary is composed of terms with clear definitions controlled by some internal or external
authority. For example, the ontology triple ex:dog skos:broader ex:mammal states that dog is part
of the broader concept mammal.

This SPARQL example inserts that ontology triple into a graph.

PREFIX skos: <http://www.w3.org/2004/02/skos/core#Concept/>
PREFIX ex: <http://example.org/>

INSERT DATA
{
GRAPH <http://marklogic.com/semantics/animals/vertebrates>
{
ex:dog skos:broader ex:mammal .
}}

You may want to use an ontology you have created to model your business or your area of
research, and use that along with one or more rulesets to discover additional information about
your data.

The rulesets are applied across all of the triples in scope for the query, including ontology triples.
Ontology triples have to be in scope for the query in order to be used. There are multiple ways to
do this:

• Use FROM or FROM NAMED/GRAPH in the query to specify what data is being accessed.
Ontologies are organized by collection/named graph.

• Use default-graph= and named-graph= options to sem:sparql or sem:sparql-update.

• Use a cts:query to exclude data to be queried. Ontologies can be organized by directory,
or anything else that a cts:query can find.

• Add the ontology to an in-memory store, and query across both the database and the in-
memory store. In this case, the ontology is not stored in the database, and can be
manipulated and changed for each query.

• Add the ontology to a ruleset as axiomatic triples. Axiomatic triples are triples that the
ruleset says are always true - indicated by having an empty WHERE clause in the rule. You
can then choose to include the ontologies in certain ruleset files or not at query time.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 148

MarkLogic Server Inference
7.1.2 Rulesets
A ruleset is a set of inference rules, or rules that can be used to infer additional facts from data.
Rulesets are used by the inference engine in MarkLogic to infer new triples from existing triples
at query time. A ruleset may be built up by importing other rulesets. Inference rules enable you to
search over both asserted triples and inferred triples. The semantic inference engine uses rulesets to
create new triples from existing triples at query time.

For example, if you know that John lives in London and London is in England, you (as a human)
know that John lives in England. You inferred that fact. Similarly, if there are triples in the
database that say that John lives in London and that London is in England, and there are also
triples that express the meaning of “lives in” and “is in” as part of an ontology, MarkLogic can
infer that John lives in England. When you query your data for all the people that live in England,
John will be included in the results.

Here is a simple custom rule (ruleset) to express the concept of “lives in”:

geographic rules for inference
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema/>
PREFIX ex: <http://example.com/>
PREFIX gn: <http://www.geonames.org/ontology/>

RULE "livesIn" CONSTRUCT {
?person ex:livesIn ?place2

} {
?person ex:livesIn ?place1 .
?place1 gn:parentFeature ?place2

}

This rule states (reading from the bottom up): if place1 is in (has a parentFeature) place2, and a
person lives in place1, then a person also lives in place2.

Inference that is done at query time using rulesets is referred to as “backward chaining” inference.
Each SPARQL query looks at the specified ruleset(s) and creates new triples based on the results.
This type of inferencing is faster during ingestion and indexing, but potentially a bit slower at
query time. In general, inference becomes more expensive (slower) as you add more (and more
complex) rules.

MarkLogic allows you to apply just the rulesets you need for each query. For convenience, you
can specify the default ruleset or rulesets for a database, but you can also ignore those defaults for
certain queries. It is possible to override the default ruleset association to allow querying without
using inferencing and/or querying with alternative rulesets.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 149

MarkLogic Server Inference
This section includes these topics:

• Pre-Defined Rulesets

• Specifying Rulesets for Queries

• Using the Admin UI to Specify a Default Ruleset for a Database

• Overriding the Default Ruleset

• Creating a New Ruleset

• Ruleset Grammar

• Example Rulesets

7.1.2.1 Pre-Defined Rulesets
Some pre-defined, standards-based rulesets (RDFS, RDFS-Plus, and OWL Horst) for inference
are included with MarkLogic semantics. The rulesets are written in a language specific to
MarkLogic that has the same syntax as the SPARQL CONSTRUCT query. Each ruleset has two
versions; the full ruleset (xxx-full.rules) and the optimized version (xxx.rules).

The components of each of these rulesets are available separately so that you can do fine-grained
inference with queries. You can also create your own rulesets by importing some of those rulesets
and/or writing your own rules. See “Creating a New Ruleset” on page 156 for more information.

To see these pre-defined rulesets (in Linux), go to the Config directory under your MarkLogic
install directory (/MarkLogic_install_dir/Config/*.rules). For example:

/opt/MarkLogic/Config/*.rules

You will see a set of files with the .rules extension. Each of these .rules files is a ruleset. For a
Windows installation, these files are usually located in C:\Program Files\MarkLogic\Config).

Here is an example of the rule domain.rules:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema/>

tbox {
 ?p rdfs:domain ?c .
}

RULE "domain axioms" construct {
rdfs:domain rdfs:domain rdf:Property .
rdfs:domain rdfs:range rdfs:Class .

} {}

RULE "domain rdfs2" CONSTRUCT {
?x a ?c

} {
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 150

MarkLogic Server Inference
?x ?p ?y .
?p rdfs:domain ?c

}

In this example, a means “type of” (rdf:type or rdfs:type). The “domain rdfs2” rule states that if
all the things in the second set of braces are true (p has domain c; that is, for every triple that has
the predicate p, the object must be in the domain c), then construct the triple in the first set of
braces (if you see x p y, then x is a c).

If you open a rule in a text editor you will see that some of the rulesets are componentized; that is,
they are defined in small component rulesets, and then built up into larger rulesets. For example,
rdfs.rules imports four other rules to create the optimized set of rdfs rules:

RDFS 1.1 optimized rules
prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

import "domain.rules"
import "range.rules"
import "subPropertyOf.rules"
import "subClassOf.rules"

RULE "rdf classes" construct {
...
...

By using a building block approach to using (and creating) rulesets, you can enable only the rules
you really need, so that your query can be as efficient as possible. The syntax for rulesets is
similar to the syntax for SPARQL CONSTRUCT.

7.1.2.2 Specifying Rulesets for Queries
You can choose which rulesets to use for your SPARQL query by using sem:ruleset-store. The
ruleset is specified as part of the function. The sem:ruleset-store function returns a set of triples
that result from the application of the ruleset to the triples defined by the sem:store function
provided in $store (for example, “all of the triples that can be inferred from this rule”).

This statement specifies the rdfs.rules ruleset as part of sem:ruleset-store:

let $rdfs-store := sem:ruleset-store("rdfs.rules",sem:store())

So this says, let $rdfs-store contain triples derived by inference using the rdfs.rules against the
sem:store. If no value is provided for sem:store, the query uses the triples in the current
database’s triple index. The built-in functions sem:store and sem:ruleset-store are used to
define the triples over which to query and the rulesets (if any) to use with the query. The $store
definition includes a ruleset, as well as other ways of restricting a query’s domain, such as a
cts:query.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 151

MarkLogic Server Inference
This example uses the pre-defined rdfs.rules ruleset:

import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqy";

let $sup :=
'PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

INSERT DATA
{ <someMedicalCondition> rdf:type <osteoarthritis> .
 <osteoarthritis> rdfs:subClassOf <bonedisease> . }'
return sem:sparql-update($sup)
; (: transaction separator :)

let $sq :=
'PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX d: <http://diagnoses#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?diagnosis
WHERE { ?diagnosis rdf:type <bonedisease>. } '

(: rdfs.rules is a predefined ruleset :)
let $rs := sem:ruleset-store("rdfs.rules", sem:store())
return sem:sparql($sq, (), (), $rs)
(: the rules specify that query for <bonedisease> will return the
subclass <osteoarthritis> :)

Note: If graph URIs are included as part of a SPARQL query that includes sem:store or
sem:ruleset-store, the query will include “triples that are in the store and also in
these graphs”.

This example is a SPARQL query against the data in $triples, using the rulesets rdfs:subClassOf
and rdfs:subPropertyOf:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

let $triples := sem:store((), cts:word-query("henley"))
return
sem:sparql("
PREFIX skos: <http://www.w3.org/2004/02/skos/core#Concept/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT * { ?c a skos:Concept; rdfs:label ?l }",(),(),
sem:ruleset-store(("subClassOf.rules","subPropertyOf.rules"),

($triples))
)

You can manage the default rulesets for a database using the Admin UI, the REST Management
API, or XQuery Admin API. See “Using the Admin UI to Specify a Default Ruleset for a
Database” on page 153 for information about specifying rulesets with the Admin UI. See the
default-ruleset property in PUT:/manage/v2/databases/{id|name}/properties for REST
Management API details. See admin:database-add-default-ruleset for Admin API details.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 152

MarkLogic Server Inference
7.1.2.3 Using the Admin UI to Specify a Default Ruleset for a Database
You can use the Admin UI to set the default ruleset to be used for queries against a specific
database (for example, “when using this database, use this ruleset for queries”).

To specify the ruleset or rulesets for a database:

1. Click the Databases in left tree menu of the Admin UI.

2. Click the database name to expand the list and scroll to Default Rulesets.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 153

MarkLogic Server Inference
3. Click Default Rulesets to see the rulesets currently associated with the Documents
database.

4. To add your own ruleset, click Add to enter the name and location of the ruleset.

5. Your custom rulesets will be located in the schemas database.

The rulesets supplied by MarkLogic are located in the Config directory under your
MarkLogic installation directory (/MarkLogic_install_dir/Config/*.rules).

6. Click more items to associate additional rulesets with this database.

Note: Security for rulesets is managed the same way that security is handled for
MarkLogic schemas.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 154

MarkLogic Server Inference
You can use Query Console to find out what default rulesets are currently associated with a
database using the admin:database-get-default-rulesets function.

This example will return the name and location of the default rulesets for the Documents
database:

xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin"

at "/MarkLogic/admin.xqy";

let $config := admin:get-configuration()
let $dbid := admin:database-get-id($config, "Documents")
return admin:database-get-default-rulesets($config, $dbid)

=>

<default-ruleset xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://marklogic.com/xdmp/database">

<location>/rules/livesin.rules</location>
</default-ruleset>

Note: If you have a default ruleset associated with a database and you specify a ruleset as
part of your query, both rulesets will be used. Rulesets are additive. Use the
no-default-ruleset option in sem:store to ignore the default ruleset.

7.1.2.4 Overriding the Default Ruleset
You can turn off or ignore a ruleset set as the default on a database. In this example, a SPARQL
query is executed against the database, ignoring the default rulesets and using the
rdfs:subClassOf inference ruleset for the query:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

sem:sparql("
PREFIX skos: <http://www.w3.org/2004/02/skos/core#Concept/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT * {

?c a skos:Concept;
rdfs:label ?l }",(),(),

sem:ruleset-store("subClassOf.rules",sem:store("no-default-rulesets"))
)

You can also turn off or ignore a ruleset as part of a query, through the Admin UI, or by using
XQuery or JavaScript to specify the ruleset.

You can also change the default ruleset for a database in the Admin UI by “deleting” the default
ruleset from that database. In the Admin UI, select the database name from the left navigation
panel, click the database name. Click Default Rulesets.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 155

MarkLogic Server Inference
On the Database: Documents panel, select the default ruleset you want to remove, and click
delete. Click ok when you are done. The ruleset is no longer the default ruleset for this database.

Note: This action does not delete the ruleset, only removes it as the default ruleset.

You can also use admin:database-delete-default-ruleset with XQuery to change a database’s
default ruleset. This example removes subClassOf.rules as the default ruleset for the Documents
database.

xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin"

at "/MarkLogic/admin.xqy";

let $config := admin:get-configuration()
let $dbid := admin:database-get-id($config, "Documents")
let $rules := admin:database-ruleset("subClassOf.rules")
let $c := admin:database-delete-default-ruleset($config, $dbid, $rules)

return admin:save-configuration($c)

7.1.2.5 Creating a New Ruleset
You can create your own rulesets to use for inference in MarkLogic. MarkLogic rulesets are
written in a language specific to MarkLogic, based on the SPARQL CONSTRUCT query.

One way to think of inference rules is as a way to construct some inferred triples, then search over
the new data set (one that includes the portion of the database defined by the sem:store plus the
inferred triples).

The MarkLogic-supplied rulesets are located in the install directory:

/MarkLogic_install_dir/Config/*.rules
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 156

MarkLogic Server Inference
When you create a custom ruleset, insert it into the schemas database and refer to it as a URI in
the schemas database. A ruleset location is either a URI for the database you are using in the
schemas database, or a filename in MarkLogic_Install_Directory/Config.

Note: MarkLogic will search first for the MarkLogic-provided rulesets in /Config and
then in the schemas database for any other rulesets.

7.1.2.6 Ruleset Grammar
MarkLogic rulesets are written in a language specific to MarkLogic. The language is based on the
SPARQL 1.1 grammar. The syntax of an inference rule is similar to the grammar for SPARQL
CONSTRUCT, with the WHERE clause restricted to a combination of only triple patterns, joins, and
filters. The ruleset must have a unique name.

The following grammar specifies the MarkLogic Ruleset Language.

Rules ::= RulePrologue Rule*
Rule ::= 'RULE' RuleName 'CONSTRUCT' ConstructTemplate 'WHERE'?

RuleGroupGraphPattern
RuleName ::= String
RuleGroupGraphPattern ::= '{' TriplesBlock? ((Filter

RuleGroupGraphPattern) '.'? TriplesBlock?)* '}'
RulePrologue ::= (BaseDecl | PrefixDecl | RuleImportDecl)*
RuleImportDecl ::= 'IMPORT' RuleImportLocation
RuleImportLocation ::= String

The String for RuleImportLocation must be a URI for the location of the rule to be imported.
Non-terminals that are not defined here (like BaseDecl) are references to productions in the
SPARQL 1.1 grammar.

• The grammar restricts the contents of a rule’s WHERE clause, and it is further restricted
during static analysis to a combination of only triple patterns, joins, and filters.

• Comments are allowed using standard SPARQL comment syntax (comments in the form
of “#”, outside an IRI or string, and continuing to the end of line).

• A MarkLogic ruleset uses the extension “.rules” and has a mimetype of
“application/vnd.marklogic-ruleset”.

• Some kinds of property path operators (“/”, “^”, for instance) can be used as part of
ruleset. However, you cannot use these operators as part of a property path in a ruleset: “|”,
“?”, “*”, or “+”.

The import statement in the prolog includes all rules from the ruleset found at the location given,
and all other rulesets imported transitively. If a ruleset at a given location is imported more than
once, the effect of the import will be as if it had only been imported once. If a ruleset is imported
more than once from different locations, MarkLogic will assume that they are different rulesets
and raise an error because of the duplicate rule names they contain (XDMP-DUPRULE).
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 157

https://www.w3.org/TR/sparql11-query/#sparqlGrammar

MarkLogic Server Inference
7.1.2.7 Example Rulesets
This ruleset (subClassOf.rules) from the /MarkLogic_Install/Config directory includes prefixes,
and has rule names and a CONSTRUCT clause. The subClassOf rdfs9 rule is the one doing the work:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

tbox {
 ?c1 rdfs:subClassOf ?c2 .
}

RULE "subClassOf axioms" CONSTRUCT {
 rdfs:subClassOf rdfs:domain rdfs:Class .
 rdfs:subClassOf rdfs:range rdfs:Class .
} {}

RULE "subClassOf rdfs9" CONSTRUCT {
 ?x a ?c2
} {
 ?x a ?c1 .
 ?c1 rdfs:subClassOf ?c2 .
 FILTER(?c1!=?c2)
}

Note that the subClassOf rdfs9 rule also includes a FILTER clause.

This ruleset from same directory (rdfs.rules) imports smaller rulesets to make a ruleset
approximating the full RDFS ruleset:

RDFS 1.1 optimized rules
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

import "domain.rules"
import "range.rules"
import "subPropertyOf.rules"
import "subClassOf.rules"

RULE "rdf classes" CONSTRUCT {
 rdf:type a rdf:Property .
 rdf:subject a rdf:Property .
 rdf:predicate a rdf:Property .
 rdf:object a rdf:Property .
 rdf:first a rdf:Property .
 rdf:rest a rdf:Property .
 rdf:value a rdf:Property .
 rdf:nil a rdf:List .
} {}

RULE "rdfs properties" CONSTRUCT {
 rdf:type rdfs:range rdfs:Class .
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 158

MarkLogic Server Inference
 rdf:subject rdfs:domain rdf:Statement .
 rdf:predicate rdfs:domain rdf:Statement .
 rdf:object rdfs:domain rdf:Statement .

 rdf:first rdfs:domain rdf:List .
 rdf:rest rdfs:domain rdf:List .
 rdf:rest rdfs:range rdf:List .

 rdfs:isDefinedBy rdfs:subPropertyOf rdfs:seeAlso .
} {}

RULE "rdfs classes" CONSTRUCT {
 rdf:Alt rdfs:subClassOf rdfs:Container .
 rdf:Bag rdfs:subClassOf rdfs:Container .
 rdf:Seq rdfs:subClassOf rdfs:Container .
 rdfs:ContainerMembershipProperty rdfs:subClassOf rdf:Property .
} {}

RULE "datatypes" CONSTRUCT {
 rdf:XMLLiteral a rdfs:Datatype .
 rdf:HTML a rdfs:Datatype .
 rdf:langString a rdfs:Datatype .
} {}

RULE "rdfs12" CONSTRUCT {
 ?p rdfs:subPropertyOf rdfs:member
} {
 ?p a rdfs:ContainerMembershipProperty
}

This is the custom rule shown earlier that you could create and use to infer information about
geographic locations:

geographic rules for inference
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema/>
PREFIX ex: <http://example.com/>
PREFIX gn: <http://www.geonames.org/ontology/>

RULE "lives in" CONSTRUCT {
?person ex:livesIn ?place2

} {
?person ex:livesIn ?place1 .
?place1 gn:parentFeature ?place2

}

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 159

MarkLogic Server Inference
Add the livesIn rule to the schemas database using xdmp:document-insert and Query Console.
Make sure the schemas database is selected as the Content Source before you run the code:

xquery version "1.0-ml";

xdmp:document-insert(
'/rules/livesin.rules',
text{'
geographic rules for inference
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema/>
PREFIX ex: <http://example.com/>
PREFIX gn: <http://www.geonames.org/ontology/>

RULE "lives in" CONSTRUCT {
?person ex:livesIn ?place2

} {
?person ex:livesIn ?place1 .
?place1 gn:parentFeature ?place2
}'

})

The example stores the livesin.rule in the schemas database, in the rules directory
(/rules/livesin.rules). You can include your ruleset as part of inference in the same way you
can include the supplied rulesets. MarkLogic will check the location for rules in the schemas
database and then the location for the supplied rulesets.

7.1.3 Memory Available for Inference
The default, maximum, and minimum inference size values are all per-query, not per-system. The
maximum inference size is the memory limit for inference. The appserver-max-inference-size
function allows the administrator to set a memory limit for inference. You cannot exceed this
amount.

The default inference size is the amount of memory available to use for inference. By default the
amount of memory available for inference is 100mb (size=100). If you run out of memory and get
an inference full error (INFFULL), you need to increase the default memory size using
admin:appserver-set-default-inference-size or by changing the default inference size on the
HTTP Server Configuration page in the Admin UI.

You can also set the inference memory size in your query as part of sem:ruleset-store. This
query sets the memory size for inference to 300mb (size=300):

Let $store := sem:ruleset-store(("baseball.rules", "rdfs-plus-
full.rules"),
sem:store(), ("size=300"))

If your query returns an INFFULL exception, you can to change the size in ruleset-store.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 160

MarkLogic Server Inference
7.1.4 A More Complex Use Case
You can use inference in more complex queries. This is a JavaScript example of a SPARQL query
where an ontology is added to an in-memory store. The in-memory store uses inference to
discover recipes that use soft goat’s cheese. The query then returns the list of possible recipe
titles.

var sem = require("/MarkLogic/semantics.xqy");

var inmem = sem.inMemoryStore(
sem.rdfParse(...

prefix ch: <http://marklogic.com/semantics/cheeses/>
prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
prefix owl: <http://www.w3.org/2002/07/owl#>
prefix dcterms: <http://purl.org/dc/terms/>

ch:FreshGoatsCheese owl:intersectionOf (

ch:SoftFreshCheese
[owl:hasValue ch:goatsMilk ;
owl:onProperty ch:milkSource]

) ...,"turtle"));
var rules = sem.rulesetStore(

["intersectionOf.rules","hasValue.rules"],
[inmem,sem.store()])

sem.sparql(...

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
prefix dcterms: <http://purl.org/dc/terms/>
prefix f: <http://linkedrecipes.org/schema/>
prefix ch: <http://marklogic.com/semantics/cheeses/>

select ?title ?ingredient WHERE {

?recipe dcterms:title ?title ;
f:ingredient [

a ch:FreshGoatsCheese ;
rdfs:label ?ingredient]

}...,[],[],rules)

To get results back from this query, you would need to have a triplestore of recipes, that also
includes triples describing cheese made from goat’s milk.

7.2 Other Ways to Achieve Inference
Before going down the path of automatic inference, consider other ways to achieve inference that
may be more appropriate for your use case.

This section includes these topics:

• Using Paths

• Materialization
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 161

MarkLogic Server Inference
7.2.1 Using Paths
In many cases, you can do inference by rewriting your query. For example, you can do some
simple inference using unenumerated property paths. Property paths (as explained in “Property
Path Expressions” on page 118) enable a simple kind of inference.

You can find all the possible types of a resource, including supertypes of a resources, using RDFS
vocabulary and the “/” property path in a SPARQL query:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2001/01/rdf-schema#>
SELECT ?type
{

<http://example/thing> rdf:type/rdfs:subClassOf* ?type
}

The result will be all resources and their inferred types. The unenumerated property path
expression with the asterisk (*) will look for triples where the subject and object are connected by
rdf:type and followed by zero or more occurrences of rdfs:subClassOf.

For example, you could use this query to find the products that are subClasses of “shirt”, at any
depth in the hierarchy:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX ex: <http://example.com>

SELECT ?product
WHERE

{
?product rdf:type/rdfs:subClassOf* ex:Shirt ;

}

Or you could use a property path to find people who live in England:

PREFIX gn: <http://www.geonames.org/ontology/>
PREFIX ex: <http://www.example.org>

SELECT ?p
{

?p ex:livesIn/gn:parentFeature "England"
}

For more about property paths and how to use them with semantics, see “Property Path
Expressions” on page 118.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 162

MarkLogic Server Inference
7.2.2 Materialization
A possible alternative to automatic inference at query time (backward-chaining inference) is
materialization or forward-chaining inference, where you perform inference on parts of your data,
not as part of a query, and then store those inferred triples to be queried later. Materialization
works best for triple data that is fairly static; performing inference with rules and ontologies that
do not change often.

This process of materialization at ingestion or update time may be time-consuming and will
require a significant amount of disk space for storage. You will need to write code or scripts to
handle transactions and security and to handle changes in data and ontologies.

Note: These tasks are all handled for you if you choose automatic inference.

Materialization can be very useful if you need very fast queries and you are prepared to do the
pre-processing work up front and use the extra disk space for the inferred triples. You may want
to use this type of inference in situations where the data, rulesets, your ontologies, and some parts
of your data do not change very much.

You can mix and match; materialize some inferred triples that do not change very much (such as
ontology triples: for example, a customer is a person is a legal entity), while using automatic
inference for triples that change or are added to more often. You can also use automatic inference
where inference has a broader scope (new-order-111 contains line-item-222, which contains
product-333, which is related to accessory-444).

7.3 Performance Considerations
The key to making your SPARQL queries run fast is “partitioning” the data (by writing a
sufficiently rich query that the number of results returned is small). Backward-chaining inference
will run faster in the available memory if it is querying over fewer triples. To achieve this, make
your inference queries very selective by using a FILTER or constraining the scope of the query
through cts:query (for example a collection-query).

7.3.1 Partial Materialization
You can do partial materialization of data, rulesets, and ontologies that you use frequently and
that do not change often. You can perform inference on parts of your data to materialize the
inferred triples and use these materialized triples in your inference queries.

To materialize these triples, construct SPARQL queries for the rules that you want to use for
inference and run them on your data as part of your ingestion or update pipeline.

7.4 Using Inference with the REST API
When you execute a SPARQL query or update using the REST Client API methods
POST:/v1/graphs/sparql or GET:/v1/graphs/sparql, you can specify rulesets through the request
parameters default-rulesets and rulesets. If you omit both of these parameters, the default
rulesets for the database are applied.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 163

MarkLogic Server Inference
After you set rdfs.rules and equivalentProperties.rules as the default rulesets for the database,
you can perform this SPARQL query using REST from the Query Console:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

let $uri := "http://localhost:8000/v1/graphs/sparql"
return
let $sparql :='
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX prod: <http://example.com/products/>
PREFIX ex: <http://example.com/>

SELECT ?product
FROM <http://marklogic.com/semantics/products/inf-1>
WHERE
{
?product rdf:type ex:Shirt ;
ex:color "blue"

}
'
let $response :=
xdmp:http-post($uri,
<options xmlns="xdmp:http">

<authentication method="digest">
<username>admin</username>
<password>admin</password>

</authentication>
<headers>

<content-type>application/sparql-query</content-type>
<accept>application/sparql-results+xml</accept>

</headers>
</options>
text {$sparql})

return
($response[1]/http:code, $response[2] /node())

=>

product
<http://example.com/products/1001>
<http://example.com/products/1002>
<http://example.com/products/1003>

Using the REST endpoint and curl (with the same default rulesets for the database), the same
query would look like this:

curl --anyauth --user Admin:janem-3 -i -X POST \
-H "Content-type:application/x-www-form-urlencoded" \
-H "Accept:application/sparql-results+xml" \
--data-urlencode query='PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 164

MarkLogic Server Inference
syntax-ns#> \
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX prod: <http://example.com/products/> \
PREFIX ex: <http://example.com/> \
SELECT ?product FROM <http://marklogic.com/semantics/products/inf-1> \
WHERE {?product rdf:type ex:Shirt ; ex:color "blue"}' \
http://localhost:8000/v1/graphs/sparql

To run this curl example, remove the “\” characters and make the command one line. See “Using
Semantics with the REST Client API” on page 189 and Querying Triples in the REST Application
Developer’s Guide for more information.

7.5 Summary of APIs Used for Inference
MarkLogic has APIs that can be used for semantic inference. Semantic APIs are available for use
as part of the actual inference query (specifying which triples to query and which rules to apply).
Database APIs can be used to choose rulesets to be used for inference by a particular database.
Management APIs can control the memory used by inference by either an appserver or a
taskserver.

• Semantic APIs

• Database Ruleset APIs

• Management APIs

7.5.1 Semantic APIs
MarkLogic Semantic APIs can be used for managing triples for inference and for specifying
rulesets to be used with individual queries (or by default with databases). Stores are used to
identify the subset of triples to be evaluated by the query.

Semantic API Description

sem:store The query argument of sem:sparql accepts sem:store to indicate the
source of the triples to be evaluated as part of the query. If multiple
sem:store constructors are supplied, the triples from all the sources are
merged and queried together.

The sem:store can contain one or more options along with a cts:query
to restrict the scope of triples to be evaluated as part of the sem:sparql
query. The sem:store parameter can also be used with
sem:sparql-update and sem:sparql-values.

sem:in-memory-store Returns a sem:store that represents the set of triples from the
sem:triple values passed in as an argument. The default
rulesets configured on the current database have no effect on a
sem:store created with sem:in-memory-store.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 165

MarkLogic Server Inference
Note: Use the sem:in-memory-store function with sem:sparql in preference to the
deprecated sem:sparql-triples function (available in MarkLogic 7). The
cts:query argument to sem:sparql has also been deprecated.

If you call sem:sparql-update with a store that is based on in-memory triples (that is, a store that
was created by sem:in-memory-store) you will get an error because you cannot update triples that
are in memory and not on disk. Similarly, if you pass in multiple stores to sem:sparql-update and
any of them is based on in-memory triples you will get an error.

7.5.2 Database Ruleset APIs
These Database Ruleset APIs are used to manage the rulesets associated with databases.

7.5.3 Management APIs
These Management APIs are used to manage memory sizing (default, minimum, and maximum)
allotted for inference.

sem:ruleset-store Returns a new sem:store that represents the set of triples derived by
applying the ruleset to the triples in sem:store in addition to the
original triples.

Ruleset API Description

admin:database-ruleset The ruleset element to be used for inference on a
database. One or more rulesets can be used for
inference. By default, no ruleset is configured.

admin:database-get-default-rulesets Returns the default ruleset(s) for a database.

admin:database-add-default-ruleset Adds a ruleset to be used for inference on a
database. One or more rulesets can be used for
inference. By default, no ruleset is configured.

admin:database-delete-default-ruleset Deletes the default ruleset used by a database for
inference.

Management API (admin:) Description

admin:appserver-set-default-inference-size Specifies the default value for any
request’s inference size on this application
server.

Semantic API Description
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 166

MarkLogic Server Inference
admin:appserver-get-default-inference-size Returns the default amount of memory (in
megabytes) that can be used by sem:store
for inference by an application server.

admin:taskserver-set-default-inference-size Specifies the default value for any
request’s inference size on this task server.

admin:taskserver-get-default-inference-size Returns the default amount of memory (in
megabytes) that can be used by sem:store
for inference by a task server.

admin:appserver-set-max-inference-size Specifies the upper bound for any
request’s inference size. The inference
size is the maximum amount of memory
in megabytes allowed for sem:store
performing inference on this application
server.

admin:appserver-get-max-inference-size Returns the maximum amount of memory
(in megabytes) that can be used by
sem:store for inference by an application
server.

admin:taskserver-set-max-inference-size Specifies the upper bound for any
request’s inference size. The inference
size is the maximum amount of memory
in megabytes allowed for sem:store
performing inference on this task server.

admin:taskserver-get-max-inference-size Returns the maximum amount of memory
(in megabytes) that can be used by
sem:store for inference by a task server.

Management API (admin:) Description
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 167

MarkLogic Server Inference
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 168

MarkLogic Server SPARQL Update
8.0 SPARQL Update
188

The SPARQL1.1 Update language is used to delete, insert, and update (delete/insert) triples and
graphs. An update is actually an INSERT/DELETE operation in the database.

SPARQL Update is a part of the SPARQL 1.1 suite of specifications at
http://www.w3.org/TR/2013/REC-sparql11-update-20130321. It is a separate language from the
SPARQL Query. SPARQL Update enables you to manipulate triples or sets of triples, while the
SPARQL query language enables you to search and query your triple data.

You can manage security level using SPARQL Update. All SPARQL queries over managed triples
are governed by the graph permissions. Triple documents will inherit those permissions at ingest.

Only triples managed by MarkLogic - triples whose document root is sem:triples - are affected
by SPARQL Update. Managed triples are triples that have been loaded into the database using:

• mlcp with -input_file_type RDF

• sem:rdf-load

• sem:rdf-insert

• sem:sparql-update

Embedded triples are part of an XML or JSON document . If you want to create, delete, or update
embedded triples, use the appropriate document update functions. See “Unmanaged Triples” on
page 73 for more information about triples embedded in documents. Unmanaged triples can also
be modified and updated with document management functions. See “Inserting, Deleting, and
Modifying Triples with XQuery and Server-Side JavaScript” on page 239 for details.

This section includes the following parts:

• Using SPARQL Update

• Graph Operations with SPARQL Update

• Graph-Level Security

• Data Operations with SPARQL Update

• Bindings for Variables

• Using SPARQL Update with Query Console

• Using SPARQL Update with XQuery or Server-Side JavaScript

• Using SPARQL Update with REST
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 169

http://www.w3.org/TR/2013/REC-sparql11-update-20130321

MarkLogic Server SPARQL Update
8.1 Using SPARQL Update
You can use SPARQL Update to insert and delete managed triples in a Graph Store. There are two
kinds of SPARQL Update operations: graph data operations, and graph management operations.

There are several ways to use SPARQL Update:

• From Query Console - Select SPARQL Update as the Query Type from the drop-down
list. See “Using SPARQL Update with Query Console” on page 185.

• Using XQuery or JavaScript - Call SPARQL Update from XQuery (sem:sparql-update)
or JavaScript (sem.sparqlUpdate). See “Using SPARQL Update with XQuery or Server-
Side JavaScript” on page 186.

• Through the REST API (GET:/v1/graphs/sparql or POST:/v1/graphs/sparql). See “Using
SPARQL Update with REST” on page 187.

SPARQL Update is used with managed triples. To modify “embedded” or unmanaged triples, use
the appropriate document update functions with XQuery or JavaScript. See “Inserting, Deleting,
and Modifying Triples with XQuery and Server-Side JavaScript” on page 239.

A new role has been added for SPARQL Update - sparql-update-user . Users must have sparql-
update-user capabilities to INSERT, DELETE, or DELETE/INSERT triples into graphs. See Role-Based

Security Model in the Security Guide for details.

8.2 Graph Operations with SPARQL Update
You can manipulate RDF graphs using SPARQL Update. Graph management operations include
CREATE, DROP, COPY, MOVE, and ADD.

The SPARQL Update spec includes these commands and options for working with RDF graphs:

Command Options Description

CREATE SILENT, GRAPH IRIref Creates a new graph. Use GRAPH to name the
graph. SILENT creates the graph silently. This
means if the graph already exists, do not return an
error.

DROP SILENT, GRAPH IRIref,
DEFAULT, NAMED, ALL

Drops a graph and its contents. Use GRAPH to
name a graph to remove, DEFAULT to remove
the default graph

COPY SILENT, GRAPH,
IRIref_from, DEFAULT, TO,
IRIref_to

Copies the source graph into the destination
graph. Any content in the destination graph will
be overwritten (deleted).
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 170

MarkLogic Server SPARQL Update
Multiple statements separated by semicolons (;) in one SPARQL Update operation, run in the
same transaction, and can be included in the same request. It is important to note that each
statement can see the result of the previous statements.

For example, in this query, the COPY operation can see the graph <TEST> created in the first
statement:

PREFIX dc: <http://purl.org/dc/elements/1.1/>

INSERT DATA
{

<http://example/book0> dc:title "A default book"
GRAPH <TEST> {<http://example/book1> dc:title "A new book" }
GRAPH <TEST> {<http://example/book2> dc:title "A second book" }
GRAPH <TEST> {<http://example/book3> dc:title "A third book" }

};
COPY <TEST> TO <BOOKS1>

Note: SPARQL Update operations return the empty sequence.

8.2.1 CREATE
This operation creates a graph. If the graph already exists, an error will be returned unless the
SILENT option is used. The contents of already existing graphs remain unchanged. If you do not
have permission to create the graph, an error is returned (unless the SILENT option is used).

The syntax for a CREATE operation is:

CREATE (SILENT)? GRAPH IRIref

If the SILENT option is used, the operation will not return an error. The GRAPH IRIref option
specifies the IRI for the new graph.

For example:

CREATE GRAPH <http://marklogic.com/semantics/tutorial/update> ;

MOVE SILENT, GRAPH,
IRIref_from, DEFAULT, TO,
IRIref_to

Moves the contents of the source graph into the
destination graph, and removes that content from
the source graph. Any content in the destination
graph will be overwritten (deleted).

ADD SILENT, GRAPH,
IRIref_from, DEFAULT, TO,
IRIref_to

Add the contents of the source graph to the
destination graph. The ADD operation keeps the
content of both the source graph and destination
graph intact.

Command Options Description
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 171

MarkLogic Server SPARQL Update
If the specified destination graph does not exist, the graph will be created. The CREATE operation
will create a graph with the permissions specified through sem:sparql-update, or with the user’s
default permission if no permissions are specified.

8.2.2 DROP
The DROP operation removes the specified graph or graphs from the Graph Store. The syntax for a
DROP operation is:

DROP (SILENT)? GRAPH IRIref | DEFAULT |NAMED | ALL)

The GRAPH keyword is used to remove a graph specified by IRIref . The DEFAULT keyword option
is used to remove the default graph from the Graph Store. The NAMED keyword is used to remove
all named graphs from the Graph Store. All graphs are removed from the Graph Store with the ALL
keyword; this is the same as resetting the Graph store.

For example:

DROP SILENT GRAPH <http://marklogic.com/semantics/tutorial/intro> ;

After successful completion of this operation, the specified graphs are no longer available for
further graph update operations. This operation returns an error if the specified named graph does
not exist. If SILENT is present, the result of the operation will always be success.

Note: If the default graph of the Graph Store is dropped, MarkLogic creates a new,
empty default graph with the user’s default permissions.

8.2.3 COPY
The COPY operation is used for inserting all of the triples from a source graph into a destination
graph. Triples from the source graph are not affected, but triples in the destination graph, if any
exist, are removed before the new triples are inserted.

The syntax for a COPY operation is:

COPY (SILENT)? ((GRAPH)? IRIref_from | DEFAULT) TO ((GRAPH)?
IRIref_to | DEFAULT)

The COPY operation copies permissions from a source graph to the destination graph. Since source
graph has the permission info, $perm parameter in sem:sparql-update does not apply in a COPY
operation.

For example:

COPY <http://marklogic.com/semantics/tutorial/intro> TO
<http://marklogic.com/semantics/tutorial/start> ;
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 172

MarkLogic Server SPARQL Update
If the destination graph does not exist, it will be created. The operation returns an error if the
source graph does not exist. If the SILENT option is used, the result of the operation will always be
success.

The COPY operation is similar to dropping a graph and then inserting a new graph:

DROP SILENT (GRAPH IRIref_to | DEFAULT); INSERT { (GRAPH IRIref_to)?
{ ?s ?p ?o } } WHERE { (GRAPH IRIref_from)? { ?s ?p ?o } }

If COPY is used to copy a graph onto itself, no operation is performed and the data is left as it was.

If you want the update to fail when the destination graph does not already exist, the existing-
graph option in sem:sparql-update needs to be specified. If you copy into a new graph, that new
graph takes the permissions of the graph that you copied from. If you copy into an existing graph,
the permssions of that graph do not change.

8.2.4 MOVE
The MOVE operation is used for moving all triples from a source graph into a destination graph. The
syntax for a MOVE operation is:

MOVE (SILENT)? ((GRAPH)? IRIref_from | DEFAULT) TO ((GRAPH)?
IRIref_to | DEFAULT)

The source graph is removed after insertion. Triples in the destination graph, if any exist, are
removed before destination triples are inserted.

For example:

MOVE <http://marklogic.com/semantics/tutorial/queries> TO
<http://marklogic.com/semantics/tutorialSearches> ;

The graph <http://marklogic.com/semantics/queries> is removed after its triples have been
inserted into <http://marklogic.com/semantics/searches>. Any triples in the graph
<http://marklogic.com/semantics/searches> are deleted before the other triples are inserted.

Note: If MOVE is used to move a graph onto itself, no operation will be performed and the
data will be left as it was.

If the destination graph does not exist, it will be created. The MOVE operation returns an error if the
source graph does not exist. If the SILENT option is used, the result of the operation will always be
success.

The MOVE operation is similar to :

DROP SILENT (GRAPH IRIref_to | DEFAULT); INSERT { (GRAPH IRIref_to)?
{ ?s ?p ?o } } WHERE { (GRAPH IRIref_from)? { ?s ?p ?o } };
DROP (GRAPH IRIref_from | DEFAULT)
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 173

MarkLogic Server SPARQL Update
The MOVE operation moves permissions from source graph to destination graph. Since source
graph has the permission info, the $perm parameter in sem:sparql-update does not apply to the
operation.

If you want the update to fail when the destination graph does not already exist, the existing-
graph option in sem:sparql-update needs to be specified. If you copy into a new graph, that new
graph takes the permissions of the graph that you copied from. If you copy into an existing graph,
the permssions of that graph do not change.

8.2.5 ADD
The ADD operation is used for inserting all triples from a source graph into a destination graph. The
triples from the source graph are not affected, and existing triples from the destination graph, if
any exist, are kept intact.

The syntax for an ADD operation is:

ADD (SILENT)? ((GRAPH)? IRIref_from | DEFAULT) TO ((GRAPH)?
IRIref_to | DEFAULT)

For example:

ADD <http://marklogic.com/semantics/tutorial/queries> TO
<http://marklogic.com/semantics/searches> ;

If ADD is used to add a graph onto itself, no operation will be performed and the data will be left as
it was. If the destination graph does not exist, it will be created. The ADD operation returns an error
if the source graph does not exist. If the SILENT option is used, the result of the operation will
always be success.

If you are adding triples into a new graph, you can set the permissions of the new graph through
sem:sparql-update. If no permissions are specified, your default graph permissions will be
applied to the graph.

The ADD operation is equivalent to:

INSERT { (GRAPH IRIref_to)? { ?s ?p ?o } } WHERE
{ (GRAPH IRIref_from)? { ?s ?p ?o } }

If you want the update to fail when the destination graph does not already exist, the existing-
graph option in sem:sparql-update needs to be specified. If you copy into a new graph, that new
graph takes the permissions of the graph that you copied from. If you copy into an existing graph,
the permssions of that graph do not change.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 174

MarkLogic Server SPARQL Update
8.3 Graph-Level Security
You can manage security at the graph level using SPARQL Update. Graph-level security means
that only users with a role corresponding to the permissions set on a graph can view a graph,
change graph content, or create a new graph. As a user, you can only see the triples and graphs for
which you have read permissions (via a role). See Role-Based Security Model in the Security Guide.

By default, graphs are created with the default permissions of the user creating the graph. If you
specify graph permissions as an argument to the sem:sparql-update call, graph operations and
graph management operations that result in the creation of a new graph will use those specified
permissions. This is true whether the graph is created explicitly using CREATE GRAPH, or implicitly
by inserting or copying triples (INSERT or a graph operation to copy, move, or add) into a graph
that does not already exist.

If you pass in permissions with sem:sparql-update on an operation that inserts triples into an
existing graph, the permissions you passed in are ignored. If you're copying a graph from one
graph to another, the permissions are ignored in favor of “transferring” the data and the
permissions from one graph to another.

Note: Graph-level security is enforced for all semantic operations using SPARQL or
SPARQL Update, via XQuery or JavaScript, and includes semantic REST
functions.

Your default user permissions are set by the MarkLogic administrator. These are the same default
permissions for document creation that are discussed in Default Permissions in the Security Guide.

To see what permissions are currently on a graph, use sem:graph-get-permissions:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "MarkLogic/semantics.xqy";

sem:graph-get-permissions(
sem:iri("MyGraph"))

=>

<sec:permission xmlns:sec="http://marklogic.com/xdmp/security">
<sec:capability>read</sec:capability>
<sec:role-id>5995163769635647336</sec:role-id>

</sec:permission>

<sec:permission xmlns:sec="http://marklogic.com/xdmp/security">
<sec:capability>update</sec:capability>
<sec:role-id>5995163769635647336</sec:role-id>
</sec:permission>
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 175

MarkLogic Server SPARQL Update
This returns the two capabilities set on in this graph: read and update. If you have the role with the
ID 5995163769635647336, you will be able to read information in this graph, you will be able to
see the graph and the triples in the graph. If you have the role with the ID 5995163769635647336,
you will be able to update the graph. You must have read capability for the graph to use
sem:graph-get-permissions.

Note: In a new database, the graph document for the default graph does not exist yet.
Once you insert triples into this database, the default graph is created.

To set permissions on a graph, use sem:graph-set-permissions:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "MarkLogic/semantics.xqy";

declare namespace sec = "http://marklogic.com/xdmp/security";

sem:graph-set-permissions(sem:iri("MyGraph"),
(xdmp:permission("sparql-update-role", "update"))

This will set the permissions on the graph and the triples in the graph. If the specified IRI does not
exist, the graph will be created. You must have update permissions for the graph to set the
permissions.

To add permissions to a graph, use sem:graph-add-permissions

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "MarkLogic/semantics.xqy";

declare namespace sec = "http://marklogic.com/xdmp/security";

sem:graph-add-permissions(sem:iri("MyGraph"),
(xdmp:permission("sparql-read-role", "read"),))

This will add read permissions for the sparql-read-role to the graph and to the triples in the
graph. If the graph named by the IRI does not exist, the graph will be automatically created. You
must have update permissions for the graph to add permissions to an existing graph.

Note: A graph that is created by a non-admin user (that is, by any user who does not have
the admin role) must have at least one update permission for the graph, otherwise
the creation of the graph will return an XDMP-MUSTHAVEUPDATE exception.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 176

MarkLogic Server SPARQL Update
To remove permissions, use sem:graph-remove-permissions:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "MarkLogic/semantics.xqy";

declare namespace sec = "http://marklogic.com/xdmp/security";

sem:graph-remove-permissions(sem:iri("MyGraph"),
(xdmp:permission("sparql-read-role", "read"),))

This removes the read permission on “MyGraph” for sparql-read-role. You must have update
permissions for the graph to remove permissions. If the graph does not exist, this will result in an
error.

8.4 Data Operations with SPARQL Update
These data operations are part of SPARQL Update: INSERT DATA, DELETE DATA, DELETE/INSERT,
LOAD, and CLEAR. Data operations involve triple data contained in graphs.

SPARQL Update includes these commands and options for working with data in RDF graphs:

Command Options Description

INSERT DATA QuadData, WITH, GRAPH Inserts triples into a graph.
If no graph is specified, the default
graph will be used.

DELETE DATA QuadData Deletes triples from a graph, as
specified by QuadData. If no graph
is specified, deletes from all in-
scope graphs.

DELETE..INSERT

WHERE

WITH, IRIref, USING, NAMED,
WHERE, DELETE, INSERT

Remove or add triples from/to the
Graph Store based on bindings for
a query pattern specified in a WHERE
clause.

DELETE WHERE WITH, IRIref, USING, NAMED,
WHERE, DELETE, INSERT

Remove triples from the Graph
Store based on bindings for a
query pattern specified in a WHERE
clause. DELETE WHERE is
DELETE..INSERT WHERE with a
missing INSERT (which is
optional).
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 177

MarkLogic Server SPARQL Update
You can run multiple statements separated by semicolons (;) in one SPARQL Update operation in
the same transaction, and you can include them in the same request. It is important to note that
each statement can see the result of the previous statements.

Note: SPARQL Update operations return the empty sequence.

Other ways to load triples into MarkLogic: mlcp, sem:rdf-load, or the HTTP REST endpoints.
See “Loading Triples with mlcp” on page 44, “sem:rdf-load” on page 53, “Addressing the Graph
Store” on page 57, and “Loading Semantic Triples” on page 37. For bulk loading, mlcp is the
preferred method.

8.4.1 INSERT DATA
INSERT DATA adds triples specified in the request into a graph. The syntax for INSERT DATA is:

INSERT DATA QuadData
(GRAPH VarOrIri) ? {TriplesTemplates}

The QuadData parameter is made up of sets of triple patterns (TriplesTemplates), which can
optionally be wrapped in a GRAPH block.

Note: All of the managed triples from a triples document will go into the default graph
unless you specify the destination graph when inserting them using SPARQL
Update.

If you are inserting triples into a new graph, create the graph with the permissions you want,
specified through sem:sparql-update. If you do not specify permissions on the graph, the graph
will be created with your default permissions. To manage the permissions of the graph, use
sem:graph-add-permissions. See “Graph-Level Security” on page 175 for more about
permissions and security.

INSERT WHERE WITH, IRIref, USING, NAMED,
WHERE, DELETE, INSERT

Add triples to the Graph Store
based on bindings for a query
pattern specified in a WHERE clause.
INSERT WHERE is DELETE..INSERT
WHERE with a missing DELETE
(which is optional).

CLEAR SILENT, (GRAPH IRIref |
DEFAULT | NAMED | ALL)

Removes all the triples in the
specified graph.

Command Options Description
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 178

MarkLogic Server SPARQL Update
For example, this update uses sem:graph-add-permissions to add update permissions to the
sparql-update-role to update for <My Graph>, and inserts three triples into that graph:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

sem:graph-add-permissions(sem:iri("MyGraph"),
xdmp:permission("sparql-update-role", "update"));
sem:sparql-update('

PREFIX exp: <http://example.org/marklogic/people>
PREFIX pre: <http://example.org/marklogic/predicate>

INSERT DATA {
GRAPH <MyGraph>{
exp:John_Smith pre:livesIn "London" .
exp:Jane_Smith pre:livesIn "London" .
exp:Jack_Smith pre:livesIn "Glasgow" .
}}

')

If no graph is described in QuadData, the default graph is assumed
(http://marklogic.com/semantics#default-graph). If data is inserted into a graph that does not
exist in the Graph Store, a new graph is created for the data with the user’s permissions.

This example uses INSERT DATA to insert a triple into a default graph and then insert three triples
into a graph named “BOOKS”.

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

sem:sparql-update('
PREFIX dc: <http://marklogic.com/dc/elements/1.1/>
INSERT DATA
{

<http://example/book0> dc:title "A default book"
GRAPH <BOOKS> {<http://example/book1> dc:title "A new book" }
GRAPH <BOOKS> {<http://example/book2> dc:title "A second book" }
GRAPH <BOOKS> {<http://example/book3> dc:title "A third book" }

}
');
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 179

MarkLogic Server SPARQL Update
This example will delete any book titled “A new book”in the graph “BOOKS” and insert the title
“Inside MarkLogic Server” in its place:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

sem:sparql-update('
PREFIX dc: <http://marklogic.com/dc/elements/1.1/>
WITH <BOOKS>
DELETE {?b dc:title "A new book"}
INSERT {?b dc:title "Inside MarkLogic Server" }
WHERE {
?b dc:title "A new book".
}')

The WITH keyword means to use this graph (<BOOKS>) in every clause.

8.4.2 DELETE DATA
The DELETE DATA operation removes some triples specified in the request, if the respective graphs
in the Graph Store contain them. The syntax for DELETE DATA is:

DELETE DATA QuadData

The QuadData parameter specifies the triples to be removed. If no graph is described in QuadData,
then the default graph is assumed.

Any MarkLogic-managed triple that matches subject, predicate, and object on any of the triples
specified in QuadData will be deleted. If a graph is specified in QuadData, the scope of deletion is
limited to the triples in that graph; otherwise, the scope of deletion is limited to the triples in
default graph.

This example deletes triples that match “true” and “Retail/Wholesale” from the
<http://marklogic.com/semantics/COMPANIES100A/> graph.

PREFIX demov: <http:demo/verb#>
PREFIX demor: <http:demo/resource#>

DELETE DATA
{

GRAPH <http://marklogic.com/semantics/COMPANIES100A/>
{
demor:COMPANY100 demor:listed "true" .
demor:COMPANY100 demov:industry "Retail/Wholesale" .

}
}

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 180

MarkLogic Server SPARQL Update
An error will be thrown if a DELETE DATA operation includes variables or blank nodes. The deletion
of non-existing triples has no effect. Any triples specified in QuadData that do not exist in the
Graph Store are ignored.

8.4.3 DELETE..INSERT WHERE
The DELETE..INSERT WHERE operation is used to remove and/or add triples from/to the Graph Store
based on bindings for a query pattern specified in a WHERE clause. You can use DELETE..INSERT
WHERE to specify a pattern to match against and then delete and/or insert triples.

See http://www.w3.org/TR/sparql11-update/#updateLanguage for details.

To delete triples according to a specific pattern, use the DELETE..INSERT WHERE construct without
the optional INSERT clause. If you do not specify a graph, you will insert into or delete triples from
the default graph (http://marklogic.com/semantics#default-graph), also called the unnamed
graph. The syntax for DELETE..INSERT WHERE is:

(WITH IRIref)?
((DeleteClause InsertClause?) | InsertClause)
(USING (NAMED)? IRIref)*
WHERE GroupGraphPattern
DeleteClause ::= DELETE QuadPattern
InsertClause ::= INSERT QuadPattern

This operation identifies data using the WHERE clause, which is used to determine matching
sequences of bindings for a set of variables. The bindings for each solution are then substituted
into the DELETE template to remove triples, and then in the INSERT template to create new triples.

If an operation tries to insert into a graph that does not exist, that graph will be created. DELETE and
INSERT run in the same transaction, and obey MarkLogic security rules.

In this example each triple containing “Healthcare/Life Sciences” will be deleted and two triples
and two triples will be inserted, one for “Healthcare” and a second one for “Life Sciences”.

PREFIX demov: <http:demo/verb#>

WITH <http://marklogic.com/semantics/COMPANIES100A/>
DELETE
{

?company demov:industry "Healthcare/Life Sciences" .
}
INSERT
{

?company demov:industry "Healthcare" .
?company demov:industry "Life Sciences" .

}
WHERE {

?company demov:industry "Healthcare/Life Sciences" .}

Note that the DELETE and INSERT are independent of each other.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 181

http://www.w3.org/TR/sparql11-update/#updateLanguage

MarkLogic Server SPARQL Update
8.4.4 DELETE WHERE
The DELETE WHERE operation is used to remove triples from the Graph Store based on bindings for
a query pattern specified in a WHERE clause. DELETE WHERE is DELETE..INSERT WHERE with a missing
INSERT, which is optional. You can use DELETE WHERE to specify a pattern to match against and then
delete the matching triples.

To delete triples according to a specific pattern, use the DELETE WHERE construct without the
optional INSERT clause. If you do not specify a graph, you will delete triples from the default graph
(http://marklogic.com/semantics#default-graph), also called the unnamed graph.

The syntax for DELETE WHERE is:

(WITH IRIref)?
((DeleteClause InsertClause?) | InsertClause)
(USING (NAMED)? IRIref)*
WHERE GroupGraphPattern
DeleteClause ::= DELETE QuadPattern
InsertClause ::= INSERT QuadPattern

This example of DELETE WHERE deletes the sales data for any companies with less than 100
employees from the graph <http://marklogic.com/semantics/COMPANIES100A/>:

PREFIX demov: <http:demo/verb#>
PREFIX vcard: <http:www.w3c.org/2006/vcard/ns#>

WITH <http://marklogic.com/semantics/COMPANIES100A/>
DELETE
{

?company demov:sales ?sales .
}
WHERE {

?company a vcard:Organization .
?company demov:employees ?employees .

}
FILTER (?employees < 100)

8.4.5 INSERT WHERE
The INSERT WHERE operation is used to add triples to the Graph Store based on bindings for a
query pattern specified in a WHERE clause. INSERT WHERE is DELETE..INSERT WHERE with a missing
DELETE, which is optional.You can use INSERT WHERE to specify a pattern to match against and then
insert triples based on that match.

To insert triples according to a specific pattern, use the INSERT WHERE construct without the
optional DELETE clause. If you do not specify a graph, you will insert triples into the default graph
(http://marklogic.com/semantics#default-graph), also called the unnamed graph.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 182

MarkLogic Server SPARQL Update
The syntax for INSERT WHERE is:

(WITH IRIref)?
((DeleteClause InsertClause?) | InsertClause)
(USING (NAMED)? IRIref)*
WHERE GroupGraphPattern
DeleteClause ::= DELETE QuadPattern
InsertClause ::= INSERT QuadPattern

This example of INSERT WHERE finds each company in New York, USA and adds State="NY" and
deliveryRegion="East Coast".

PREFIX demov: <http:demo/verb#>
PREFIX vcard: <http:www.w3c.org/2006/vcard/ns#>

WITH <http://marklogic.com/semantics/sb/COMPANIES100A/>
INSERT
{
 ?company demov:State "NY" .
 ?company demov:deliveryRegion "East Coast"
}
WHERE {
 ?company a vcard:Organization .
 ?company vcard:hasAddress [
 vcard:region "New York" ;
 vcard:country-name "USA"]
}

8.4.6 CLEAR
The CLEAR operation removes all of the triples in the specified graph(s). The syntax for CLEAR is:

CLEAR (SILENT)? (GRAPH IRIref | DEFAULT | NAMED | ALL)

The GRAPH IRIref option is used to remove all triples from the graph specified by GRAPH IRIref.
The DEFAULT option is used to remove all the triples from the default graph of the Graph Store. The
NAMED option is used to remove all of the triples in all of the named graphs of the Graph Store, and
the ALL option is used to remove all triples from all graphs of the Graph Store.

For example:

CLEAR GRAPH <http://marklogic.com/semantics/COMPANIES100A/> ;

This operation removes all of the triples from the graph. The graph and its metadata (such as
permissions) will be kept after the graph is cleared. The CLEAR will fail if the specified graph does
not exist. If the SILENT option is used, the operation will not return an error.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 183

MarkLogic Server SPARQL Update
8.5 Bindings for Variables
Binding variables can be used as values in INSERT DATA, and DELETE DATA, and are passed in as
arguments to sem:sparql-update.

To create bindings for variables to be used with SPARQL Update, you create an XQuery or
JavaScript function to map the bindings and then pass in the bindings as part of a call to
sem:sparql-update.

In this example we create a function, assign the variables, build a set of bindings, and then use the
bindings to insert repetitive data into the triple store using INSERT DATA:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

declare function
local:add-player-triples($id as xs:integer,

$lastname as xs:string,
$firstname as xs:string,
$position as xs:string,
$team as xs:string,
$number as xs:integer

)
{
let $query := '
PREFIX bb: <http://marklogic.com/baseball/players/>
PREFIX xs: <http://www.w3.org/2001/XMLSchema#>

INSERT DATA
{
GRAPH <PlayerGraph>
{
?playertoken bb:playerid ?id .
?playertoken bb:lastname ?lastname .
?playertoken bb:firstname ?firstname .
?playertoken bb:position ?position .
?playertoken bb:number ?number .
?playertoken bb:team ?team .
}
}

'
let $playertoken := fn:concat("bb:", $id)
let $player-map := map:entry("id", $id)
let $put := map:put($player-map, "playertoken", $playertoken)
let $put := map:put($player-map, "lastname", $lastname)
let $put := map:put($player-map, "firstname", $firstname)
let $put := map:put($player-map, "position", $position)
let $put := map:put($player-map, "number", $number)
let $put := map:put($player-map, "team", $team)

return sem:sparql-update($update, $player-map)
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 184

MarkLogic Server SPARQL Update
};

local:add-player-triples(417, "Doolittle", "Sean", "pitcher", 62,
"Athletics"),
local:add-player-triples(215, "Abad", "Fernando", "pitcher", 56,
"Athletics"),
local:add-player-triples(109, "Kazmir", "Scott", "pitcher", 26,
"Athletics"),

The order of the variables does not matter because of the mapping.

This same pattern can be used with LIMIT and OFFSET clauses. Bindings for variables can be used
with SPARQL Update (sem:sparql-update), SPARQL (sem:sparql), and SPARQL values
(sem:sparql-values). See “Using Bindings for Variables” on page 135 for an example using
bindings for variables with SPARQL using LIMIT and OFFSET clauses.

8.6 Using SPARQL Update with Query Console
You can use SPARQL Update with Query Console. It is listed as a Query type in the Query
Console drop-down menu.

Query Console highlights SPARQL Update keywords as you create your query. You can run your
SPARQL Update queries in the Query Console the same way you run SPARQL Queries.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 185

MarkLogic Server SPARQL Update
8.7 Using SPARQL Update with XQuery or Server-Side JavaScript
You can execute SPARQL Updates with sem:sparql-update in XQuery and sem.sparqlUpdate in
Javascript. For details about the function signatures and descriptions, see the Semantics
documentation under XQuery Library Modules in the MarkLogic XQuery and XSLT Function
Reference and in the MarkLogic Server-Side JavaScript Function Reference.

Note: Although some of the semantics functions are built-in, others are not. We therefore
recommend that you import the Semantics API library into every XQuery module
or JavaScript module that uses the Semantics API.

Using XQuery, the import statement is:

import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqy";

For Javascript, the import statement is:

var sem = require("/MarkLogic/semantics.xqy");

Here is a complex query using SPARQL Update with XQuery. The query selects a random player
from the Athletics baseball team, formerly with the Twins, and deletes that player the Athletics:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

let $query := '
PREFIX bb: <http://marklogic.com/baseball/players#>
PREFIX bbr: <http://marklogic.com/baseball/rules#>
PREFIX xs: <http://www.w3.org/2001/XMLSchema#>

WITH <Athletics>
DELETE
{

?s ?p ?o .
}
INSERT
{

?s ?p bbr:Twins .
}
WHERE

{
?s ?p ?o .
{

SELECT (max(?s1) as ?key) (count(?s1) as ?inner_numbers)
WHERE

{
?s1 bb:number ?o1 .

}
}

FILTER (?s = ?key)
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 186

http://pubs.marklogic.com:8011/8.0/sem/semantics

MarkLogic Server SPARQL Update
FILTER (?p = bb:team)
}
return sem:sparql-update($query)

8.8 Using SPARQL Update with REST
SPARQL Update can be used with REST in client applications to manage graphs and triple data
via the SPARQL endpoint. See “SPARQL Update with the REST Client API” on page 211 for
information about using SPARQL Update with REST.

For more information about using SPARQL with Node.js client applications, see Working With

Semantic Data in the Node.js Application Developer’s Guide. For semantic client applications
using Java, you can find the Java Client API on GitHub at http://github.com/marklogic/java-client-api
or get it from the central Maven repository.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 187

https://github.com/marklogic/java-client-api

MarkLogic Server SPARQL Update
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 188

MarkLogic Server Using Semantics with the REST Client API
9.0 Using Semantics with the REST Client API
222

This section describes how to use MarkLogic Semantics with the REST Client API to view, query,
and modify triples and graphs using REST (Representational State Transfer) over HTTP. The REST
Client API enables a client application to perform SPARQL queries and updates. A MarkLogic
SPARQL endpoint (/v1/graphs/sparql) is available to use with SPARQL query and SPARQL
Update to access triples in MarkLogic. The /v1/graphs/sparql service is a compliant SPARQL
endpoint, as defined by the SPARQL 1.1 Protocol: http://www.w3.org/TR/2013/REC-sparql11-

protocol-20130321/#terminology. If your client requires configuration of a SPARQL Update or
Query endpoint, use this service.

A SPARQL endpoint is a web service that implements the SPARQL protocol and can respond to
SPARQL queries. RDF data published to the web using a SPARQL endpoint can be queried to
answer a specific question, instead of downloading all of the data. If you have an application that
does standard queries and updates over a SPARQL endpoint, you can point the application to this
endpoint.

The SPARQL endpoint URL is addressed as:

http://host:port/v1/graphs/sparql

The graph endpoint is used for CRUD procedures on graphs; creating, reading, updating, and
deleting graphs. The URL is addressed as:

http://host:port/v1/graphs

The things endpoint is used for viewing content in the database. The URL is addressed as:

http://host:port/v1/graphs/things

The following table shows the supported operations available for Semantics (viewing, querying,
inserting, or deleting content):

Operation Method Description

/v1/graphs/sparql

Retrieve GET Perform a SPARQL query on the database.

Create/Retrieve POST Perform a SPARQL query or SPARQL Update on one or more
graphs. (These two operations are mutually exclusive.)

/v1/graphs

Retrieve GET Retrieve the contents or permissions metadata of a graph, or a
list of available graph URIs.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 189

http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/#terminology
http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/#terminology

MarkLogic Server Using Semantics with the REST Client API
For more information about usage and parameters for a service, see the REST Client APIs for

Semantics.

This chapter includes the following sections:

• Assumptions

• Specifying Parameters

• Supported Operations for the REST Client API

• Serialization

• Examples Using curl and REST

• Response Output Formats

• SPARQL Query with the REST Client API

• SPARQL Update with the REST Client API

• Listing Graph Names with the REST Client API

• Exploring Triples with the REST Client API

• Managing Graph Permissions

To use the SPARQL endpoint or graphs endpoints with SPARQL query, you must have the rest-
reader privilege, along with any security requirements for your environment. To use SPARQL
Update with the SPARQL endpoint or graphs endpoints, you must have the rest-writer privilege.
See Controlling Access to Documents Created with the REST API in the REST Application Developer’s
Guide for more information about permissions.

Merge POST Merge N-quads into the triple store, merge other types of
triples, or new permissions into a named graph or the default
graph.

Create/Replace PUT Create or replace quads in the triple store; or create or replace
other kinds of triples in a named graph or the default graph; or
replace the permissions on a named graph or the default graph.

Return HEAD Returns the same headers as an equivalent GET on the /graphs
service.

Delete DELETE Remove triples in a named graph or the default graph, or
remove all graphs from the triple store.

/v1/graphs/things

Retrieve GET Retrieve a list of all graph nodes in the database, or a specified
set of nodes.

Operation Method Description
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 190

/REST/client/semantics
/REST/client/semantics

MarkLogic Server Using Semantics with the REST Client API
9.1 Assumptions
To follow along with the examples later in this section the following assumptions are made:

• You have access to the GovTrack dataset. For details, see “Preparing to Run the
Examples” on page 129. If you do not have access to the GovTrack data or prefer to use
your own data, you can modify queries to fit your data.

• You have curl or an equivalent command-line tool for issuing HTTP requests is installed.

Note: Though the examples rely on curl, you can use any tool capable of sending HTTP
requests. If you are not familiar with curl or do not have curl on your system, see
the Introduction to the curl Tool in the REST Application Developer’s Guide.

9.2 Specifying Parameters
A variety of parameters can be used with REST services. The complete list can be found in the
REST Client APIs, for instance POST:/v1/graphs/sparql. This section describes a selection of
those parameters that can be used with SPARQL query and/or SPARQL Update.

For the parameters, “*” and “?” both imply that a parameter is optional. “*” means that you can
use a parameter 0 or more times and “?” means that you can use a parameter 0 or 1 times.

9.2.1 SPARQL Query Parameters
Some of the parameters supported for SPARQL query on the SPARQL endpoint, using
POST:/v1/graphs/sparql or GET:/v1/graphs/sparql, include:

• query - SPARQL query to execute

• default-graph-uri* - The URI of the graph or graphs to use as the default graphs in the
query operation. This is addressed as http://host:port/v1/graphs/sparql?default-
graph-uri=<default-graph-uri*>

• named-graph-uri* - The URI of the graph or graphs to include in the query operation.
This is addressed as http://host:port/v1/graphs/sparql?named-graph-uri=<named-
graph-uri*>

The “*” indicates that one or more default-graph-uri or named-graph-uri parameters can
be specified. The named-graph-uri parameter is used with FROM NAMED and GRAPH in
queries to specify the IRI(s) to be substituted for a name within particular kinds of queries.
You can have one or more named-graph-uri specified as part of a query.

• database? - The database on which to perform the query.

• base? - The initial base IRI for the query.

• bind:{name}* - A binding name and value. This format assumes that the type of the bind
variable is an IRI.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 191

MarkLogic Server Using Semantics with the REST Client API
• bind:{name}:{type}* - A binding name, type, and value. This parameter accepts an XSD
type, for example “string”, “date” or “unsignedLong”.

• bind:{name}@{lang}* - A binding name, language tag, and value. Use this pattern to bind
to language-tagged strings.

• txid? - The transaction identifier of the multi-statement transaction in which to service
this request. Use the /transactions service to create and manage multi-statement
transactions.

• start? - The index of the first result to return. Results are numbered beginning with 1. The
default is 1.

• pageLength? - The maximum number of results to return in this request.

These optional search query parameters can be used to constrain which documents will be
searched with the SPARQL query:

• q? - A string query.

• structuredQuery? - A structured search query string, a serialized representation of a
search:query element.

• options? - The name of query options.

If you do not specify a graph name with a query, the UNION of all graphs will be queried. If you
specify default-graph-uri, one or more graph names that you specify will be queried (this is not
the “default” graph that contains the unnamed triples). You can also query
http://marklogic.com/semantics#default-graph, where unnamed triples are stored.

Any valid IRI can be used for these graph names (for example, /my_graph/ or
http://www.example.com/rdf-graph-store/). The default-graph-uri is used to specify one or
more default graphs to query as part of the operation, and the named-graph-uri can specify one or
more additional graphs to use in the operation. If no dataset is defined, the dataset will include all
triples (the UNION of all graphs).

If you specify a dataset in both the request parameters and the query, the dataset defined with
named-graph-uri or default-graph-uri takes precedence. When you specify more than one
default-graph-uri or named-graph-uri in a query via the REST Client API, the format will be
http://host:port/v1/graphs/sparql?named-graph-uri=<named-graph-uri*> for each graph
named in the query.

For example, this is a simple REST request to send the SPARQL query in the bills.sparql file
and return the results as JSON:

curl --anyauth --user admin:admin -i -X POST \
--data-binary @./bills.sparql \
-H "Content-type: application/sparql-query" \
-H "Accept: application/sparql-results+json" \
http://localhost:8000/v1/graphs/sparql
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 192

MarkLogic Server Using Semantics with the REST Client API
=>
HTTP/1.1 200 OK
Content-type: application/sparql-results+json; charset=UTF-8
Server: MarkLogic
Content-Length: 1268
Connection: Keep-Alive
Keep-Alive: timeout=5

{"head":{"vars":["bill","title"]},
"results":{"bindings":[

{"bill":{"type":"uri",
"value":"http://www.rdfabout.com/rdf/usgov/congress/108/

bills/h1171"},
"title":{"type":"literal", "value":"H.R. 108/1171: Iris Scan

Security Act of 2003",
"datatype":"http://www.w3.org/2001/XMLSchema#string"}},
{"bill":{"type":"uri",
"value":"http://www.rdfabout.com/rdf/usgov/congress/108/

bills/h1314"},
"title":{"type":"literal", "value":"H.R. 108/1314: Screening

Mammography Act of 2003",
"datatype":"http://www.w3.org/2001/XMLSchema#string"}},
{"bill":{"type":"uri",
"value":"http://www.rdfabout.com/rdf/usgov/congress/108/

bills/h1384"},
"title":{"type":"literal", "value":"H.R. 108/1384: To amend the

Railroad Retirement Act of 1974 to eliminate a limitation
on benefits.",

"datatype":"http://www.w3.org/2001/XMLSchema#string"}},
{"bill":{"type":"uri",
"value":"http://www.rdfabout.com/rdf/usgov/congress/108/

bills/h1418"},
"title":{"type":"literal", "value":"H.R. 108/1418: Veterans'

Housing Equity Act",
"datatype":"http://www.w3.org/2001/XMLSchema#string"}},

...
}]}}

Note: In the command line example above, long lines have been broken into multiple
lines using the UNIX line continuation character '\' and extra line breaks have been
added for readability. Extra line breaks for readability have been added in the
results.

9.2.2 SPARQL Update Parameters
In addition to the query parameters, these parameters can be used with SPARQL Update on the
POST:/v1/graphs/sparql endpoint:

• update - The URL-encoded SPARQL Update operation. Only use this parameter when
you put the request parameters in the request body and use application/x-www-form-
urlencoded as the request content type.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 193

MarkLogic Server Using Semantics with the REST Client API
• using-graph-uri* - The URI of the graph or graphs to address as part of a SPARQL
Update operation. This is addressed as http://host:port/v1/graphs/sparql?using-
graph-uri=<using-graph-uri*>

• using-named-graph-uri* - The URI of a named graph or graphs to address as part of a
SPARQL update operation. This is addressed as
http://host:port/v1/graphs/sparql?using-named-graph-uri=<using-named-graph-uri*>

• perm:{role}* - Assign permissions to the inserted graph(s), and the permission has a role
and a capability. When you insert a new graph, you can set its permissions to allow a
certain capability for a certain role. Valid values for the permissions: read, update,
execute. These permissions only apply to newly created graphs. See “Managing Graph
Permissions” on page 217 for more about permissions.

• txid? - The transaction identifier of the multi-statement transaction in which to service
this request. Use the /transactions service to create and manage multi-statement
transactions.

• database? - The database on which to perform the query.

• base? - The initial base IRI for the query.

• bind:{name}* - A binding name and value. This format assumes that the type of the bind
variable is an IRI.

• bind:{name}:{type}* - A binding name, type, and value. This parameter accepts an XSD
type, for example “string”, “date” or “unsignedLong”.

• bind:{name}@{lang}* - A binding name, language tag, and value. Use this pattern to bind
to language-tagged strings.

See “Target RDF Graph” on page 91 for more information about graphs. See Querying Triples in
the REST Application Developer’s Guide for more information about using the REST Client API
with RDF triples.

9.3 Supported Operations for the REST Client API
For the /v1/graphs/sparql endpoint, these operations are supported:

Operation Description Method Privilege

Retrieve Evaluates a SPARQL query to retrieve a named
graph.

GET rest-reader
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 194

MarkLogic Server Using Semantics with the REST Client API
Note: For SPARQL Update, only POST:/v1/graphs/sparql is supported.

There is also a /v1/graphs endpoint and a /v1/graphs/things endpoint to access and view RDF
data. For the /v1/graphs endpoint, these verbs are supported:

And for the /v1/graphs/things endpoint, the verb GET is supported for REST requests:

Create/
Retrieve

Evaluates a SPARQL query as a parameter or
URL-encoded as part of the POST body.
Using SPARQL Update, POST merges triples into
a named graph when used as parameter, or as a
URL-encoded SPARQL Update in the POST
body.
SPARQL query and SPARQL Update operations
are mutually exclusive.

POST rest-writer
(SPARQL query)
rest-writer
(SPARQL Update)

Operation Description Method Privilege

Retrieve Retrieve a graph or a list of available graph URIs. GET rest-reader

Merge Without parameters, merges quads into the triple
store. With graph or default, merges triples into a
named graph or the default graph.

POST rest-writer

Create/
Replace

Without parameters, creates or replaces quads.
With default or graph, creates or replaces triples
in a named graph or the default graph. Using PUT
with an empty graph, will delete the graph.

PUT rest-writer

Delete Without parameters, removes all graphs from the
triple store. With graph or default, removes
triples in a named graph or the default graph.

DELETE rest-writer

Return Returns the same headers as an equivalent GET
on the /graphs service.

HEAD rest-reader

Operation Description Method Privilege

Retrieve Retrieves a list of all graph nodes in the database, or a
specified set of nodes.

GET rest-reader

Operation Description Method Privilege
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 195

MarkLogic Server Using Semantics with the REST Client API
9.4 Serialization
Serialization of RDF data occurs whenever it is loaded, queried, or updated. The data can be
serialized in a variety of ways. The supported serializations are shown in the table shown in
“Supported RDF Triple Formats” on page 38.

Several types of optimized serialization are available for SPARQL results (solutions - sets of
bindings) and RDF (triples) over REST. Using these serializations in your interactions will make
them faster. These serializations specify a MIME type for the input and output format. Formats
are specified as part of the accept headers of the REST request.

We recommend using one of the following choices for optimized serialization of SPARQL results
when using the /v1/graphs/sparql endpoint:

For CONSTRUCT or DESCRIBE all of the supported triples formats are supported. See the table in
“Supported RDF Triple Formats” on page 38.

Note: N-Quads and TriG formats are quad formats, not triple formats, and REST does
not serialize quads.

For optimized RDF results (triple or quads), choose one of these serialization options when using
the /v1/graphs endpoint:

This information is shown in a different way in “SPARQL Query Types and Output Formats” on
page 200. For more about serialization, see Setting Output Options for an HTTP Server in the
Administrator’s Guide.

Format SPARQL Query Type
/v1/graphs/sparql

MIME Type/Accept Header

json SELECT or ASK application/sparql-results+json

csv SELECT or ASK application/sparql-results+csv

n-triples CONSTRUCT or DESCRIBE application/n-triples

Format RDF Query Type
/v1/graphs

MIME Type/Accept Header

n-triples CONSTRUCT or DESCRIBE application/n-triples

n-quads SELECT or ASK application/quads
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 196

MarkLogic Server Using Semantics with the REST Client API
9.4.1 Unsupported Serialization
A GET or POST request for a response in an unsupported serialization yields a “406 Not
Acceptable” error. If the SPARQL payload fails to parse, the response yields a “400 Bad Request”
error.

For example:

<rapi:error xmlns:rapi="http://marklogic.com/rest-api">
<rapi:status-code>400</rapi:status-code>
<rapi:status>Bad Request</rapi:status>
<rapi:message-code>RESTAPI-INVALIDCONTENT</rapi:message-code>
<rapi:message>RESTAPI-INVALIDCONTENT: (err:FOER0000) Invalid

content:
Unexpected Payload: c:\space\example.ttl</rapi:message>

</rapi:error>

For more about the REST Client API error handling, see Error Reporting in the REST Application
Developer’s Guide.

9.5 Examples Using curl and REST
These two examples use curl with cygwin (Linux) and Windows to do Semantic queries over
REST. This SPARQL query is encoded and used in the examples:

SELECT *
WHERE {
 ?s ?p ?o }

For readability, the character (“ \ ”) is used in the cygwin (Linux) example to indicate a line break.
The actual request must be entered on one continuous line. The query looks like this:

curl --anyauth --user user:password
"http://localhost:8000/v1/graphs/sparql" \
-H "Content-type:application/x-www-form-urlencoded" \
-H "Accept:application/sparql-results+xml" \
-X POST --data-binary 'query=SELECT+*+WHERE+{+%3fs+%3fp+%3fo+}'

=>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
<head>
 <variable name="s"/>
 <variable name="p"/>
 <variable name="o"/>
</head>
<results>
 <result>
 <binding name="s"><uri>http://example/book1/</uri></binding>
 <binding
name="p"><uri>http://purl.org/dc/elements/1.1/title</uri></binding>
 <binding name="o"><literal>A new book</literal></binding>
 </result>
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 197

MarkLogic Server Using Semantics with the REST Client API
 <result>
 <binding name="s">
 <uri>http://example/book1/</uri>
 </binding>
 <binding name="p">
 <uri>http://purl.org/dc/elements/1.1/title</uri>
 </binding>
 <binding name="o">
 <literal>Inside MarkLogic Server</literal>
 </binding>
 </result>
 <result>
 <binding name="s">
 <uri>http://www.w3.org/2000/01/rdf-schema#subClassOf</uri>
 </binding>
 <binding name="p">
 <uri>http://www.w3.org/2000/01/rdf-schema#domain</uri>
 </binding>
 <binding name="o">
 <uri>http://www.w3.org/2000/01/rdf-schema#Class</uri>
 </binding>
 </result>
 <result>
 <binding name="s">
 <uri>http://www.w3.org/2000/01/rdf-schema#subClassOf</uri>
 </binding>
 <binding name="p">
 <uri>http://www.w3.org/2000/01/rdf-schema#range</uri>
 </binding>
 <binding name="o">
 <uri>http://www.w3.org/2000/01/rdf-schema#Class</uri>
 </binding>
 </result>
</results></sparql>

Note: The results have been formatted for clarity.

In the Windows example, the character (“ ^ ”) is used to indicate a line break for readability. The
actual request must be entered on one continuous line. The Windows query looks like this:

curl --anyauth --user user:password
"http://localhost:8000/v1/graphs/sparql" ^
 -H "Content-type:application/x-www-form-urlencoded" ^
 -H "Accept:application/sparql-results+xml" ^
 -X POST --data-binary 'query=SELECT+*+WHERE+{+%3fs+%3fp+%3fo+}'
=>

<sparql xmlns="http://www.w3.org/2005/sparql-results#">
<head>
 <variable name="s"/>
 <variable name="p"/>
 <variable name="o"/>
</head>
<results>
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 198

MarkLogic Server Using Semantics with the REST Client API
 <result>
 <binding name="s">
 <uri>http://example.org/marklogic/people/Jack_Smith</uri>
 </binding>
 <binding name="p">
 <uri>http://example.org/marklogic/predicate/livesIn</uri>
 </binding>
 <binding name="o"><literal>Glasgow</literal>
 </binding>
 </result>
 <result>
 <binding name="s">
 <uri>http://example.org/marklogic/people/Jane_Smith</uri>
 </binding>
 <binding name="p">
 <uri>http://example.org/marklogic/predicate/livesIn</uri>
 </binding>
 <binding name="o">
 <literal>London</literal>
 </binding>
 </result>
 <result>
 <binding name="s">
 <uri>http://example.org/marklogic/people/John_Smith</uri>
 </binding>
 <binding name="p">
 <uri>http://example.org/marklogic/predicate/livesIn</uri>
 </binding>
 <binding name="o">
 <literal>London</literal>
 </binding>
 </result>
</results></sparql>

Note: The results have been formatted for clarity.

9.6 Response Output Formats
This section describes the header types and response output formats available when using
SPARQL endpoints with the REST Client API. Examples of results in different formats are
included. These topics are covered:

• SPARQL Query Types and Output Formats

• Example: Returning Results as XML

• Example: Returning Results as JSON

• Example: Returning Results as HTML

• Example: Returning Results as CSV

• Example: Returning Results as N-triples

• Example: Returning a Boolean as XML or JSON
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 199

MarkLogic Server Using Semantics with the REST Client API
9.6.1 SPARQL Query Types and Output Formats
When you query the SPARQL endpoint with REST Client APIs (GET:/v1/graphs/sparql or
POST:/v1/graphs/sparql), you can specify the result output format. The response type format
depends on the type of query and the MIME type in the HTTP Accept header.

A SPARQL SELECT query can return results as XML, JSON, HTML, or CSV, while a SPARQL
CONSTRUCT query can return the results as triples in N-Triples or N-Quads format, or XMLor
JSON triples in any of the supported triples formats. A SPARQL DESCRIBE query returns triples in
XML, N-Triples, or N-Quads format describing the triples found by the query. Using SPARQL
ASK query will return a boolean (true or false) in either XML or JSON. See “Types of SPARQL
Queries” on page 82 for more information about query types.

This table describes the MIME types and Accept Header/Output formats (MIME type) for
different types of SPARQL queries.

Note: You can request any of the triple MIME types (application/rdf+xml, text/turtle,
and so on), but use application/n-triples for best performance. See
“Serialization” on page 196 for details.

Query Type Format Accept Header MIME Type

SELECT or
ASK

Returns
SPARQL results
- solutions

xml application/sparql-results+xml

See “Example: Returning Results as XML” on page 201 and
“Example: Returning a Boolean as XML or JSON” on
page 206.

json application/sparql-results+json

See “Example: Returning Results as JSON” on page 202.

html text/html

See “Example: Returning Results as HTML” on page 203.

csv text/csv

See “Example: Returning Results as CSV” on page 204.
Note: Only preserves the order of the results, not the type.

Note: ASK queries return a boolean (true or false).

CONSTRUCT

or DESCRIBE

Returns RDF
triples

n-triples application/n-triples

For faster serialization - see “Example: Returning Results as
N-triples” on page 205.
Note: If you want triples returned as JSON, the proper MIME
type is application/rdf+json.

other CONSTRUCT or DESCRIBE queries return RDF triples in any of the
available formats. See “Supported RDF Triple Formats” on
page 38
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 200

MarkLogic Server Using Semantics with the REST Client API
The following examples use this SPARQL SELECT query to find US Congress bills that were
sponsored by Robert Andrews (“A000210”):

#filename bills.sparql
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns>
PREFIX bill: <http://www.rdfabout.com/rdf/schema/usbill/>
PREFIX people: <http://www.rdfabout.com/rdf/usgov/congress/people/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?bill ?title
WHERE { ?bill rdf:type bill:HouseBill ;

dc:title ?title ;
bill:sponsor people:A000210 .

}
LIMIT 5

The SPARQL query is saved as bills.sparql. The query limits responses to 5 results. Using curl
and the REST Client API, you can query the SPARQL endpoint and get the results back in a
variety of formats.

Note: If you use curl to make a PUT or POST request and read in the request body from a
file, use --data-binary rather than -d to specify the input file. When you use
--data-binary, curl inserts the data from the file into the request body as-is. When
you use -d, curl strips newlines from the input, which can make your triple data or
SPARQL syntactically invalid.

9.6.2 Example: Returning Results as XML
The SPARQL SELECT query in the bills.sparql file returns the response in XML format in this
example.

curl --anyauth --user admin:password -i -X POST \
--data-binary @./bills.sparql \
-H "Content-type: application/sparql-query" \
-H "Accept: application/sparql-results+xml" \
http://localhost:8050/v1/graphs/sparql

=>

HTTP/1.1 200 OK
Content-type: application/sparql-results+xml
Server: MarkLogic
Content-Length: 1528
Connection: Keep-Alive
Keep-Alive: timeout=5

<sparql xmlns="http://www.w3.org/2005/sparql-results/">
<head><variable name="bill"/>

<variable name="title"/>
</head>
<results>
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 201

MarkLogic Server Using Semantics with the REST Client API
<result>
<binding name="bill">
<uri>http://www.rdfabout.com/rdf/usgov/congress/108/bills/h1171
</uri>

</binding><binding name="title">
<literal datatype="http://www.w3.org/2001/XMLSchema#string">
H.R. 108/1171: Iris Scan Security Act of 2003
</literal>

</binding>
</result>
<result>

<binding name="bill">
<uri>http://www.rdfabout.com/rdf/usgov/congress/108/bills/h1314/
</uri>

</binding>
<binding name="title">
<literal datatype="http://www.w3.org/2001/XMLSchema#string">
H.R. 108/1314: Screening Mammography Act of 2003</literal>

</binding>
</result>
<result>

<binding name="bill"><uri>http://www.rdfabout.com/rdf/usgov
/congress/108/bills/h1384/</uri>
</binding>

...
</result>

</results>
</sparql>

Note: In the example above, long lines have been broken into multiple lines using the
UNIX line continuation character '\' and extra line breaks have been added for
readability. Extra line breaks for readability have also been added in the results.

9.6.3 Example: Returning Results as JSON
The SPARQL SELECT query in the bills.sparql file returns the response in JSON format in this
example:

curl --anyauth --user admin:password -i -X POST \
--data-binary @./bills.sparql \
-H "Content-type: application/sparql-query" \
-H "Accept: application/sparql-results+json" \
http://localhost:8050/v1/graphs/sparql

=>

HTTP/1.1 200 OK
Content-type: application/sparql-results+json
Server: MarkLogic
Content-Length: 1354
Connection: Keep-Alive
Keep-Alive: timeout=5
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 202

MarkLogic Server Using Semantics with the REST Client API
{"head":{"vars":["bill","title"]},
"results":{"bindings":[

{"bill":{"type":"uri",
"value":"http://www.rdfabout.com/rdf/usgov/congress/108/

bills/h1171"},
"title":{"type":"literal", "value":"H.R. 108/1171: Iris Scan

Security Act of 2003",
"datatype":"http://www.w3.org/2001/XMLSchema#string"}},
{"bill":{"type":"uri",
"value":"http://www.rdfabout.com/rdf/usgov/congress/108/

bills/h1314"},
"title":{"type":"literal", "value":"H.R. 108/1314: Screening

Mammography Act of 2003",
"datatype":"http://www.w3.org/2001/XMLSchema#string"}},
{"bill":{"type":"uri",
"value":"http://www.rdfabout.com/rdf/usgov/congress/108/

bills/h1384"},
"title":{"type":"literal", "value":"H.R. 108/1384: To amend the

Railroad Retirement Act of 1974 to eliminate a limitation
on benefits.",

"datatype":"http://www.w3.org/2001/XMLSchema#string"}},
{"bill":{"type":"uri",
"value":"http://www.rdfabout.com/rdf/usgov/congress/108/

bills/h1418"},
"title":{"type":"literal", "value":"H.R. 108/1418: Veterans'

Housing Equity Act",
"datatype":"http://www.w3.org/2001/XMLSchema#string"}},

...
}]}}

Note: In the command line example above, long lines have been broken into multiple
lines using the UNIX line continuation character '\' and extra line breaks have been
added for readability. Extra line breaks for readability have also been added in the
results.

9.6.4 Example: Returning Results as HTML
The same SPARQL SELECT query in the bills.sparql file returns the response in HTML format in
this example:

curl --anyauth --user admin:password -i -X POST \
--data-binary @./bills.sparql \
-H "Content-type: application/sparql-query" \
-H "Accept: text/html" http://localhost:8050/v1/graphs/sparql"

=>

HTTP/1.1 200 OK
Content-type: text/html; charset=UTF-8
Server: MarkLogic
Content-Length: 1448
Connection: Keep-Alive
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 203

MarkLogic Server Using Semantics with the REST Client API
Keep-Alive: timeout=5

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>SPARQL results</title>

</head>
<body><table border="1">
<tr>
<th>bill</th>
<th>title</th></tr>

<tr>
<td><a href="/v1/graphs/things?iri=http%3a//www.rdfabout.com/

rdf/usgov/congress/108/bills/h1171">http://www.rdfabout.com/
rdf/usgov/congress/108/bills/h1171

</td>
<td>H.R. 108/1171: Iris Scan Security Act of 2003</td>

</tr><tr>
<td><a href="/v1/graphs/things?iri=http%3a//www.rdfabout.com/

rdf/usgov/congress/108/bills/h1314">http://www.rdfabout.com/
rdf/usgov/congress/108/bills/h1314

</td>
<td>H.R. 108/1314: Screening Mammography Act of 2003</td>

</tr><tr>
<td><a href="/v1/graphs/things?iri=http%3a//www.rdfabout.com/

rdf/usgov/congress/108/bills/h1384">http://www.rdfabout.com/
rdf/usgov/congress/108/bills/h1384

</td>
<td>H.R. 108/1384: To amend the Railroad Retirement Act of

1974 to eliminate a limitation on benefits.
</td>

</tr>
...
</table>
</body>

</html>

Note: In the preceding example, long lines have been broken into multiple lines using the
UNIX line continuation character '\' and extra line breaks have been added for
readability. Extra line breaks for readability have also been added in the results.

9.6.5 Example: Returning Results as CSV
Here is the same SPARQL SELECT query (bills.sparql) with the results returned in CSV format:

curl --anyauth --user Admin:janem-3 -i -X POST --data-binary \
@./bills.sparql -H "Content-type: application/sparql-query" \
-H "Accept: text/csv" http://janem-3:8000/v1/graphs/sparql
=>
bill,title

http://www.rdfabout.com/rdf/usgov/congress/108/bills/h1171,H.R.
108/1171: Iris Scan Security Act of 2003
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 204

MarkLogic Server Using Semantics with the REST Client API
http://www.rdfabout.com/rdf/usgov/congress/108/bills/h1314,H.R.
108/1314: Screening Mammography Act of 2003

http://www.rdfabout.com/rdf/usgov/congress/108/bills/h1384,H.R.
108/1384: To amend the Railroad Retirement Act of 1974 to eliminate a
limitation on benefits.

http://www.rdfabout.com/rdf/usgov/congress/108/bills/h1418,H.R.
108/1418: Veterans' Housing Equity Act

http://www.rdfabout.com/rdf/usgov/congress/108/bills/h1419,H.R.
108/1419: Seniors' Family Business Enhancement Act[jmckean@janem-3 ~]$

Note: In the preceding example, long lines have been broken into multiple lines using the
UNIX line continuation character '\' and extra line breaks have been added for
readability. Extra line breaks for readability have also been added in the results.

9.6.6 Example: Returning Results as N-triples
For this example, we will use a DESCRIBE query that was introduced and used earlier:

DESCRIBE <http://dbpedia.org/resource/Pascal_Bedrossian>

The following command uses this query to match triples that describe Pascal and return the results
as N-Triples. Long lines in the command below have been broken with the UNIX line
continuation character “\”. The query is URL encoded and passed as the value of the “query”
request parameter.

curl -X GET --digest --user "admin:password" \
-H "Accept: application/n-triples" \
-H "Content-type: application/x-www-form-urlencoded"\
"http://localhost:8321/v1/graphs/sparql?query=DESCRIBE%20%3Chttp\
%3A%2F%2Fdbpedia.org%2Fresource%2FPascal_Bedrossian%3E"
=>
<http://dbpedia.org/resource/Pascal_Bedrossian>
<http://dbpedia.org/ontology/birthPlace>
<http://dbpedia.org/resource/France> .

<http://dbpedia.org/resource/Pascal_Bedrossian>
<http://dbpedia.org/ontology/birthPlace>
<http://dbpedia.org/resource/Marseille> .

<http://dbpedia.org/resource/Pascal_Bedrossian>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://xmlns.com/foaf/0.1/Person> .

<http://dbpedia.org/resource/Pascal_Bedrossian>
<http://xmlns.com/foaf/0.1/surname> "Bedrossian"@en .

<http://dbpedia.org/resource/Pascal_Bedrossian>
<http://xmlns.com/foaf/0.1/givenName> "Pascal"@en .
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 205

MarkLogic Server Using Semantics with the REST Client API
<http://dbpedia.org/resource/Pascal_Bedrossian>
<http://xmlns.com/foaf/0.1/name> "Pascal Bedrossian"@en .

<http://dbpedia.org/resource/Pascal_Bedrossian>
<http://purl.org/dc/elements/1.1/description> "footballer"@en .

<http://dbpedia.org/resource/Pascal_Bedrossian>
<http://dbpedia.org/ontology/birthDate> "1974-11-
28"^^<http://www.w3.org/2001/XMLSchema#date> .

9.6.7 Example: Returning a Boolean as XML or JSON
In this example, a SPARQL ASK query (from an earlier example) is used to determine whether
Carolyn Kennedy was born after Eunice Kennedy.

Here are the contents of the ask-sparql.sparql file used in the following query:

#file: ask-sparql.sparql
PREFIX db: <http://dbpedia.org/resource/>
PREFIX onto: <http://dbpedia.org/ontology/>
ASK
{

db:Carolyn_Bessette-Kennedy onto:birthDate ?by .
db:Eunice_Kennedy_Shriver onto:birthDate ?bd .
FILTER (?by>?bd).

}

Note: If you use curl to make a PUT or POST request and read in the request body from a
file, use --data-binary rather than -d to specify the input file. When you use --
data-binary, curl inserts the data from the file into the request body as-is. When
you use -d, curl strips newlines from the input, which can make your triple data or
SPARQL syntactically invalid.

This request, containing SPARQL ASK query, returns the boolean result as XML:

curl --anyauth --user user:password -i -X POST \
--data-binary @./ask-sparql.sparql \
-H "Content-type: application/sparql-query" \
-H "Accept: application/sparql-results+xml" \
http://localhost:8050/v1/graphs/sparql

=>

HTTP/1.1 200 OK
Content-type: application/sparql-results+xml
Server: MarkLogic
Content-Length: 89
Connection: Keep-Alive
Keep-Alive: timeout=5

<sparql
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 206

MarkLogic Server Using Semantics with the REST Client API
<xmlns="http://www.w3.org/2005/sparql-results/">
<boolean>true</boolean>
</sparql>

Here is the same request (containing the SPARQL ASK query) where the boolean result is returned
as JSON:

curl --anyauth --user user:password -i -X POST \
--data-binary @./ask-sparql.sparql \
-H "Content-type: application/sparql-query" \
-H "Accept: application/sparql-results+json" \
http://localhost:8050/v1/graphs/sparql

=>

HTTP/1.1 200 OK
Content-type: application/sparql-results+json
Server: MarkLogic
Content-Length: 17
Connection: Keep-Alive
Keep-Alive: timeout=5

{"boolean":true}

9.7 SPARQL Query with the REST Client API
SPARQL queries (SELECT, DESCRIBE, CONSTRUCT, and ASK) can be used with either POST or GET and
the REST Client API. For more about query types and output, see the table in “SPARQL Query
Types and Output Formats” on page 200.

This section includes the following:

• SPARQL Queries in a POST Request

• SPARQL Queries in a GET Request

9.7.1 SPARQL Queries in a POST Request
This section describes how SPARQL query can be used to manage graphs and triple data through
/v1/graphs/sparql endpoint.

http://hostname:port/v1/graphs/sparql

where the hostname and port are the host and port on which you are running MarkLogic.

You can specify your input SPARQL query to POST:/v1/graphs/sparql in the following ways:

• Include a SPARQL query as a file in the POST body

• Include the SPARQL query as URL-encoded data
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 207

MarkLogic Server Using Semantics with the REST Client API
This is a SPARQL DESCRIBE query used to find out about US Congress bill 44. The query is saved
as a file, named bill44.sparql.

#file name bill44.sparql
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns>
PREFIX bill: <http://www.rdfabout.com/rdf/schema/usbill/>
DESCRIBE ?x WHERE { ?x rdf:type bill:HouseBill ;
 bill:number "44" . }

Note: If you use curl to make a PUT or POST request and read in the request body from a
file, use --data-binary rather than -d to specify the input file. When you use --
data-binary, curl inserts the data from the file into the request body as-is. When
you use -d, curl strips newlines from the input, which can make your triple data or
SPARQL syntactically invalid.

The endpoint requires a SPARQL query to be either a parameter or in the POST body. In the
following example, the bill44.sparql file with the DESCRIBE query is passed to the body of the
POST request:

Windows users, see Modifying the Example Commands for Windows
curl --anyauth --user admin:password \
-i -X POST --data-binary @./bill44.sparql \
-H "Content-type: application/sparql-query" \
-H "Accept: application/rdf+xml" \
http://localhost:8000/v1/graphs/sparql

The request body MIME type is specified as application/sparql-query and the requested
response MIME type (the Accept:) is specified as application/rdf+xml. The output is returned as
triples in XML format. See “Response Output Formats” on page 199 for more details.

The query returns the following triples describing bill 44:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns">
<OfficialTitle rdf:ID="bnodebnode309771418819f878"

xmlns="http://www.rdfabout.com/rdf/schema/usbill/">
<rdf:typerdf:resource="http://www.rdfabout.com/rdf/schema/usbill

/OfficialTitle"/>
<rdf:value rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

To amend the Internal Revenue Code of 1986 to provide reduced
capital gain rates for qualified economic stimulus gain and to
index the basis of assets of individuals for purposes of
determining gains and losses.</rdf:value></OfficialTitle>

<ShortTitle rdf:ID="bnodebnode30b47143b819db78"
xmlns="http://www.rdfabout.com/rdf/schema/usbill/">

<rdf:type rdf:resource="http://www.rdfabout.com/rdf/schema/usbill
/ShortTitle"/>

<rdf:value rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
Investment Tax Incentive Act of 2003</rdf:value></ShortTitle>

<ShortTitle rdf:ID="bnodebnodee1860b72fb58b315"
xmlns="http://www.rdfabout.com/rdf/schema/usbill/">
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 208

MarkLogic Server Using Semantics with the REST Client API
<rdf:type rdf:resource="http://www.rdfabout.com/rdf/schema/usbill
/ShortTitle"/>

<rdf:value rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
Investment Tax Incentive Act of 2003</rdf:value></ShortTitle>

<HouseBill rdf:about="http://www.rdfabout.com/rdf/usgov/congress/108
/bills/h44" xmlns="http://www.rdfabout.com/rdf/schema/usbill/">

<inCommittee rdf:resource="http://www.rdfabout.com/rdf/usgov
/congress/committees/HouseWaysandMeans"/>

<cosponsor rdf:resource="http://www.rdfabout.com/rdf/usgov/congress
/people/A000358"/>

<cosponsor rdf:resource="http://www.rdfabout.com/rdf/usgov/congress
/people/B000208"/>

<cosponsor rdf:resource="http://www.rdfabout.com/rdf/usgov/congress
/people/B000575"/>

<cosponsor
.....

Another way to use the POST request is to specify the URL-encoded query as the value of the
“query” parameter and use application/x-www-form-urlencoded as the request body MIME type,
as described in the Semantics documentation of the REST Client API.

The following SPARQL SELECT query finds the House of Congress bills that were cosponsored by
the person with a Congress BioGuideID of “A000358”:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns>
PREFIX bill: <http://www.rdfabout.com/rdf/schema/usbill/>
PREFIX people: <http://www.rdfabout.com/rdf/usgov/congress/people/>
SELECT ?x WHERE { ?x rdf:type bill:HouseBill ; bill:cosponsor
people:A000358. }

In this example, the SELECT query is URL-encoded and then sent as form-encoded data:

curl -X POST --anyauth --user admin:password \
-H "Accept:application/sparql-results+xml" --data-binary \
"query=PREFIX%20rdf%3A%20%3Chttp%3A%2F%2Fwww.w3.org%2F1999%2F02%2F22-r
df-syntax-ns\
%23%3E%20%0APREFIX%20bill%3A%20%3Chttp%3A%2F%2Fwww.rdfabout.com%2Frdf\
%2Fschema%2Fusbill%2F%3E%0APREFIX%20people%3A%20%3Chttp%3A%2F%2Fwww.rd
fabout.com\
%2Frdf%2Fusgov%2Fcongress%2Fpeople%2F%3E%0ASELECT%20%3Fx%20WHERE%20%7B
%20%3Fx\
%20rdf%3Atype%20bill%3AHouseBill%20%3B%20bill%3Acosponsor%20%20people%
3AA000358.%20%7D%0A"\
-H "Content-type:application/x-www-form-urlencoded" \
http://localhost:8000/v1/graphs/sparql
=>

<sparql xmlns="http://www.w3.org/2005/sparql-results/">
<head><variable name="x"/></head>

<results>
<result><binding name="x">
<uri>http://www.rdfabout.com/rdf/usgov/congress/108/bills/h1036
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 209

http://docs.marklogic.com/REST/client/semantics

MarkLogic Server Using Semantics with the REST Client API
</uri></binding></result>
<result><binding name="x">
<uri>http://www.rdfabout.com/rdf/usgov/congress/108/bills/h1057
</uri></binding></result>

<result><binding name="x">
<uri>http://www.rdfabout.com/rdf/usgov/congress/108/bills/h1078
</uri></binding></result>

<result><binding name="x">
<uri>http://www.rdfabout.com/rdf/usgov/congress/108/bills/h110
</uri></binding></result>

<result><binding name="x">
<uri>http://www.rdfabout.com/rdf/usgov/congress/108/bills/h1117
</uri></binding></result>

<result><binding name="x">
<uri>http://www.rdfabout.com/rdf/usgov/congress/108/bills/h1153
</uri></binding></result>

.......
<result><binding name="x">
<uri>http://www.rdfabout.com/rdf/usgov/congress/108/bills/h975
</uri></binding></result>

</results>
</sparql>

Note: For readability, the long command line is broken into multiple lines using the
UNIX line continuation character '\'. Extra line breaks have been inserted for
readability of the URL-encoded query.

9.7.2 SPARQL Queries in a GET Request
For a GET request, the SPARQL query in the query request parameter must be URL-encoded. Here
is the SPARQL DESCRIBE query, searching for a US Congress bill (44), before it is encoded:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX bill: <http://www.rdfabout.com/rdf/schema/usbill/>
DESCRIBE ?x
WHERE {
 ?x rdf:type bill:HouseBill ;
 bill:number "44" . }

In this example curl sends an HTTP GET request to execute the SPARQL DESCRIBE query :

curl -X GET --digest --user "user:password" \
-H "accept: application/sparql-results+xml" \
"http://localhost:8000/v1/graphs/sparql?query=PREFIX%20rdf%3A%20%3C\
http%3A%2F%2Fwww.w3.org%2F1999%2F02%2F22-rdf-syntax-ns%23%3E%20%0A\
PREFIX%20bill%3A%20%3Chttp%3A%2F%2Fwww.rdfabout.com%2Frdf%2Fschema\
%2Fusbill%2F%3E%0ADESCRIBE%20%3Fx%20WHERE%20%7B%20%3Fx%20rdf%3Atype\
%20bill%3AHouseBill%20%3B%20%20bill%3Anumber%20%2244%22%20.%20%7D"
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 210

MarkLogic Server Using Semantics with the REST Client API
Your results will be similar to these triples:

<http://www.rdfabout.com/rdf/usgov/congress/108/bills/h44>
<http://purl.org/dc/elements/1.1/title> "H.R. 108/44: Investment Tax
Incentive Act of 2003" .

<http://www.rdfabout.com/rdf/usgov/congress/108/bills/h44>
<http://purl.org/dc/terms/created> "2003-01-07" .

<http://www.rdfabout.com/rdf/usgov/congress/108/bills/h44>
<http://purl.org/ontology/bibo/shortTitle> "H.R. 44: Investment Tax
Incentive Act of 2003" .

<http://www.rdfabout.com/rdf/usgov/congress/108/bills/h44>
<http://www.rdfabout.com/rdf/schema/usbill/congress> "108" .

<http://www.rdfabout.com/rdf/usgov/congress/108/bills/h44>
<http://www.rdfabout.com/rdf/schema/usbill/cosponsor>
<http://www.rdfabout.com/rdf/usgov/congress/people/A000358> .

<http://www.rdfabout.com/rdf/usgov/congress/108/bills/h44>
<http://www.rdfabout.com/rdf/schema/usbill/cosponsor>
<http://www.rdfabout.com/rdf/usgov/congress/people/B000208> .

<http://www.rdfabout.com/rdf/usgov/congress/108/bills/h44>
<http://www.rdfabout.com/rdf/schema/usbill/cosponsor>
<http://www.rdfabout.com/rdf/usgov/congress/people/B000575> .

The triples describe information about bill 44 in the U.S. Congress; it’s title, when it was created,
who cosponsored the bill, and so on.

9.8 SPARQL Update with the REST Client API
This section describes how SPARQL Update can be used to manage graphs and triple data
through /v1/graphs/sparql endpoint.

http://hostname:port/v1/graphs/sparql

where the hostname and port are the host and port on which you are running MarkLogic.

You can specify your SPARQL Update (which is a DELETE/INSERT) to POST:/v1/graphs/sparql in
the following ways:

• Include a SPARQL Update as a file in the POST body in the form of:

http://host:port/v1/graphs/sparql
content-type:application/sparql-update

See “SPARQL Update in a POST Request” on page 212.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 211

MarkLogic Server Using Semantics with the REST Client API
• Include the SPARQL Update as URL-encoded data in the form of:

http://host:port/v1/graphs/sparql
content-type:application/x-www-form-urlencoded

See “SPARQL Update via POST with URL-encoded Parameters” on page 214.

The examples in this section use a POST request, with no URL encoding, and with content-
type:application/sparql-update.

You can specify the RDF dataset against which to execute the update using the using-graph-uri
and using-named-graph-uri request parameters, or within the update. If the dataset is specified in
both the request parameters and the update, the dataset defined by the request parameters is used.
If neither is specified, all graphs (the UNION of all graphs) are included in the operation.

Note: Including the using-graph-uri or using-named-graph-uri parameters, with a
SPARQL 1.1 Update request that contains an operation that uses the USING, USING
NAMED, or WITH clause, will cause an error.

See “Specifying Parameters” on page 191 for details on specifying parameters for use with the
REST Client API. See “Supported Operations for the REST Client API” on page 194 and the list
of verbs supported by the Graph store endpoint for SPARQL Update for more about POST. See
POST:/v1/graphs/sparql for more about the SPARQL endpoint.

This section includes the following:

• SPARQL Update in a POST Request

• SPARQL Update via POST with URL-encoded Parameters

9.8.1 SPARQL Update in a POST Request
You can send requests using the POST method by including SPARQL Update in the request body.
Set the Content-type HTTP header to application/sparql-update.

Here is the SPARQL Update before it is added to the request body:

PREFIX dc: <http://purl.org/dc/elements/1.1/>
WITH <BOOKS>
DELETE {?b dc:title "A new book"}
INSERT
{?b dc:title "Inside MarkLogic Server" }
WHERE {?b dc:title "A new book".}

In the graph named <BOOKS>, SPARQL Update matches a triple with dc:title in the predicate
position and A new book in the object position and deletes it. Then a new triple is inserted (?b
dc:title "MarkLogic Server").
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 212

MarkLogic Server Using Semantics with the REST Client API
In this example, the SPARQL Update is sent in the request body using application/sparql-
update and the -d option for the query:

Windows users, see Modifying the Example Commands for Windows

curl --anyauth --user admin:admin -i -X POST \
-H "Content-type:application/sparql-update" \
-H "Accept:application/sparql-results+xml" \
-d 'PREFIX dc: <http://purl.org/dc/elements/1.1/> \
WITH <BOOKS> \
DELETE {?b dc:title "A new book"} \
INSERT {?b dc:title "Inside MarkLogic Server" } \
WHERE {?b dc:title "A new book".}' \
http://localhost:8000/v1/graphs/sparql

Note: For clarity, long command lines are broken into multiple lines using the line
continuation characters “\” . Remove the line continuation characters when you
use the curl command. (For Windows the line continuation character is “^”.)

Alternatively, you can use curl to execute a SPARQL Update from a file as part of a POST request.
The SPARQL Update is saved in a file named booktitle.sparql. Here are the file contents:

PREFIX dc: <http://purl.org/dc/elements/1.1/>
INSERT DATA
{
<http://example/book1> dc:title "book title" ;
dc:creator "author name" .
}

The POST request with the SPARQL Update in a file would look like this:

curl --anyauth --user admin:admin -i -X POST \
--data-binary @./booktitle.sparql \
-H "Content-type:application/sparql-update" \
-H "Accept:application/sparql-results+xml" \
http://localhost:8000/v1/graphs/sparql

Notice that the request uses the --data-binary option instead of -d to call the file containing the
SPARQL Update. You can include using-graph-uri, using-named-graph-uri and role-
capability as HTTP request parameters. The perm parameter is expected in this syntax, with role
and capability.

perm:admin=update&perm:admin=execute

See “Default Permissions and Required Privileges” on page 218 for more about permissions.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 213

MarkLogic Server Using Semantics with the REST Client API
9.8.2 SPARQL Update via POST with URL-encoded Parameters
You can also send update protocol requests via the HTTP POST method by URL-encoding the
parameters. When you do this, URL percent-encode all parameters and include them as
parameters within the request body via the application/x-www-form-urlencoded media type. The
content type header of the HTTP request is set to application/x-www-form-urlencoded.

This next example uses SPARQL Update and POST with URL-encoded parameters to insert data
(along with a set of permissions) into graph C1.

curl --anyauth --user admin:admin -i -X POST \
--data-urlencode update='PREFIX dc: <http://purl.org/dc/elements/1.1/>
\
INSERT DATA \
{<http://example/book1> dc:title "book title" ; \
dc:creator "author name" .}' \
-H "Content-type:application/x-www-form-urlencoded" \
-H "Accept:application/sparql-results+xml" \
'http://localhost:8000/v1/graphs/sparql?using-named-graph-uri=C1 \
&perm:admin=update&perm:admin+execute'

If you supply the using-graph-uri or using-named-graph-uri parameters when using this
protocol to convey a SPARQL 1.1 Update request that uses the USING NAMED, or WITH clause, the
operation will result in an error.

This curl example uses POST with URL-encoding for the SPARQL Update and permissions:

curl --anyauth --user admin:admin -i -X POST \
-H "Content-type:application/x-www-form-urlencoded" \
-H "Accept:application/sparql-results+xml" \
--data-urlencode update='PREFIX dc: <http://purl.org/dc/elements/1.1/>
INSERT DATA{ GRAPH <C1> {http://example/book1/> dc:title "C book"} }' \
--data-urlencode perm:rest-writer=read \
--data-urlencode perm:rest-writer=update \
http://localhost:8321/v1/graphs/sparql

If a new RDF graph is created, the server responds with a 201 Created message. The response to
an update request indicates success or failure of the request via HTTP response status code (200
or 400). If the request body is empty, the server responds with 204 No Content.

9.9 Listing Graph Names with the REST Client API
You can list the graphs in your database with the REST Client API using the graphs endpoint.

http://hostname:port/v1/graphs

where the hostname and port are the host and port on which you are running MarkLogic.

For example when this endpoint is called with no parameters, a list of graphs in the database is
returned:
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 214

MarkLogic Server Using Semantics with the REST Client API
http://localhost:8000/v1/graphs

The request might return graphs like these:

graphs/MyDemoGraph
http://marklogic.com/semantics#default-graph
http://marklogic.com/semantics#graphs

9.10 Exploring Triples with the REST Client API
The following endpoint provides RESTful access to knowledge (things) referred to in the
database. This endpoint retrieves a list of all subject nodes in the database:

http://hostname:port/v1/graphs/things

where the hostname and port are the host and port on which you are running MarkLogic.

For example:

http://localhost:8050/v1/graphs/things

You can also specify a set of subject nodes to be returned. When this endpoint is called with no
parameters, a list of subject nodes in the database is returned for all triples in the database.

This example shows the response, a list of nodes as IRIs, in a Web browser:

Note: This endpoint has a hard-coded limit of 10,000 items to display, and does not
support pagination.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 215

MarkLogic Server Using Semantics with the REST Client API
You can traverse and navigate the triples in the database by clicking on the links and drilling
down the nodes. Clicking on an IRI may return one or more related triples:

You can use an optional iri parameter to specify particular IRIs about which to return
information, in Turtle triple serialization.

For example, you could paste this request into your browser:

http://localhost:8050/v1/graphs/things?iri=http://dbpedia.org/resource
/Abraham_Lincoln

The nodes selected by the IRI http://dbpedia.org/resources/Abraham_Lincoln are returned in
Turtle serialization:

If you are using curl or an equivalent command-line tool for issuing HTTP requests, you can
specify the following MIME types in the request Accept header:

• When no parameters are specified, use text/html in the request Accept header.

• When you use the iri parameter, use one of the MIME types listed in “SPARQL Query
Types and Output Formats” on page 200. See “Supported RDF Triple Formats” on
page 38 for additional information about RDF triple formats.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 216

MarkLogic Server Using Semantics with the REST Client API
In this example, the GET request returns the nodes selected by the given iri parameter in Turtle
triple serialization:

curl --anyauth --user admin:password -i -X GET \
-H "Accept: text/turtle" \
http://localhost:8051/v1/graphs/things?iri=http://dbpedia.org/resource
/Aristotle

=>

HTTP/1.1 200 OK
Content-type: text/turtle; charset=UTF-8
Server: MarkLogic
Content-Length: 628
Connection: Keep-Alive
Keep-Alive: timeout=5

@prefix xs: <http://www.w3.org/2001/XMLSchema#> .
<http://dbpedia.org/resource/Aristotle>
<http://dbpedia.org/ontology/deathPlace>
 <http://dbpedia.org/resource/Chalcis> .
<http://dbpedia.org/resource/Aristotle>
<http://dbpedia.org/ontology/birthPlace>
 <http://dbpedia.org/resource/Stagira_(ancient_city)> .
<http://dbpedia.org/resource/Aristotle> <http://www.w3.org/1999/02/22-
rdf-syntax
-ns#type/> <http://xmlns.com/foaf/0.1/Person> .
<http://dbpedia.org/resource/Aristotle>
<http://xmlns.com/foaf/0.1/name>
"Aristotle" .
<http://dbpedia.org/resource/Aristotle>
<http://purl.org/dc/elements/1.1/description>
"Greek philosopher" .

Note: If a given IRI does not exist, the response is “404 Not Found”. A GET request for a
response in an unsupported serialization will yield “406 Not Acceptable”.

9.11 Managing Graph Permissions
This section covers the REST Client API support for setting, modifying, and retrieving graph
permissions. If you are not already familiar with the MarkLogic security model, review the
Security Guide.

The following topics are covered:

• Default Permissions and Required Privileges

• Setting Permissions as Part of Another Operation

• Setting Permissions Standalone

• Retrieving Graph Permissions
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 217

MarkLogic Server Using Semantics with the REST Client API
9.11.1 Default Permissions and Required Privileges
All graphs created and managed using the REST Client API grant “read” capability to the rest-
reader role and “update” capability to the rest-writer role. These default permissions are
always assigned to a graph, even if you do not explicitly specify them.

For example, if you create a new graph using PUT /v1/graphs and do not specify any permissions,
the graph will have permissions similar to the following:

If you explicitly specify other permissions when creating the graph, the above default permissions
are still set, as well as the permissions you specify.

You can use custom roles to limit access to selected users on a graph by graph basis. Your custom
roles must include equivalent rest-reader and rest-writer privileges. Otherwise, users with
these roles cannot use the REST Client API to manage or query semantic data.

For details, see Security Requirements in the REST Application Developer’s Guide.

9.11.2 Setting Permissions as Part of Another Operation
Use the perm request parameter to set, overwrite, or add permissions as part of another graph
operation. To manage permissions when not modifying graph content, use the category parameter
instead. For details, see “Setting Permissions Standalone” on page 219.

The perm parameter has the following form:

perm:role=capability

Where role is the name of a role defined in MarkLogic and capability is one of “read”, “insert”,
“update”, or “execute”.

XML JSON

<metadata xmlns="http://marklogic.com/rest-api">
 <permissions>
 <permission>
 <role-name>rest-writer</role-name>
 <capability>update</capability>
 </permission>
 <permission>
 <role-name>rest-reader</role-name>
 <capability>read</capability>
 </permission>
 </permissions>
</metadata>

{"permissions":[
{"role-name":"rest-writer",
"capabilities":["update"]

},
{"role-name":"rest-reader",

"capabilities":["read"]
}

]}
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 218

MarkLogic Server Using Semantics with the REST Client API
You can specify the perm parameter multiple times to grant multiple capabilities to the same role
or set permissions for multiple roles. For example, the following set of parameters grants the
“readers” role the “read” capability and the “writers” role the “update” capability:

perm:readers=read&perm:writers=update

Note: Setting or changing the permissions on a graph does not affect the permissions on
documents that contain embedded triples in that graph.

You can use the perm parameter with the following operations:

The following restrictions apply:

• When you use the perm parameter with /v1/graphs, you must also include either the graph
or the default request parameter.

• You cannot use the perm parameter in conjunction with category=permissions or
category=metadata.

• When you use the perm parameter to specify permissions as part of a SPARQL Update
operation, the permissions only affect graphs created as part of the update. The
permissions on pre-existing graphs remain unchanged.

9.11.3 Setting Permissions Standalone
Set the category request parameter to permissions to manage permissions without affecting the
contents of a graph. For example, a request of the following form that includes permissions
metadata in the request body sets the permissions on the default graph, but does not change the
graph contents.

PUT /v1/graphs?default&category=permissions

Operation REST Client API Methods

Set or overwrite permissions on a
named graph or the default graph
while creating or overwritng the graph
contents.

PUT /v1/graphs?graph=uri&perm:role=capability
PUT /v1/graphs?default&perm:role=capability

Request body contains new graph contents (triples).

During a SPARQL Update operation,
set permissions on all graphs created
as part of the update.

POST /v1/graphs/sparql?perm:role=capability

Request body contains SPARQL Update.

Add permissions to a named graph
while adding content to the graph.

POST /v1/graphs?graph=uri&perm:role=capability
POST /v1/graphs?default&perm:role=capability

Request body contains graph updates (triples)
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 219

MarkLogic Server Using Semantics with the REST Client API
To set or add permissions along with your graph content, use the perm request parameter. For
details, see “Setting Permissions as Part of Another Operation” on page 218.

You can set the category parameter to either permissions or metadata. They are equivalent in the
context of graph management.

The request body must contain permissions metadata. In XML, the metadata can be rooted at
either a metadata element or the permissions element. Also, in XML, the metadata must be in the
namespace http://marklogic.com/rest-api.

For example, all of the following are acceptable:

Note: Setting or changing the permissions on a graph does not effect the permissions on
documents that contain embedded triples in that graph.

XML JSON

<metadata xmlns="http://marklogic.com/rest-api">
 <permissions>
 <permission>
 <role-name>roleA</role-name>

<capability>read</capability>
 <capability>update</capability>
 </permission>
 <permission>
 <role-name>roleB</role-name>
 <capability>read</capability>
 </permission>
 </permissions>
</metadata>

{"permissions":[
{"role-name":"roleA",
"capabilities":[

"read", "update"
]

},
{"role-name":"roleB",

"capabilities":["read"]
}

]}

<permissions
xmlns="http://marklogic.com/rest-api">

 <permission>
 <role-name>roleA</role-name>
 <capability>read</capability>
 <capability>update</capability>
 </permission>
 <permission>
 <role-name>roleB</role-name>
 <capability>read</capability>
 </permission>
</permissions>
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 220

MarkLogic Server Using Semantics with the REST Client API
You can use the category=permissions pattern to manage graph permissions with the following
methods. In all cases, the graph contents are unaffected.

The following restrictions apply:

• When you use category=permissions or category=metadata with /v1/graphs, you must
also include either the graph or the default request parameter.

• You cannot use category=permissions or category=metadata in conjunction with the perm
parameter.

9.11.4 Retrieving Graph Permissions
To retrieve permissions metadata about a named graph, make a GET request of the following
form:

GET /v1/graphs?graph=graphURI&category=permissions

To retrieve permissions metadata about the default graph, make a GET request of the following
form:

GET /v1/graphs?default&category=permissions

You can request metadata in either XML or JSON. The default format is XML.

For example, the following command retrieves permissions for the graph with URI /my/graph, as
XML. In this case, the graph includes both the default rest-writer and read-reader permissions
and permissions for a custom role named “GroupA”.

Operation REST Client API Pattern

Set or overwrite permissions
on a named graph or the
default graph.

PUT /v1/graphs?graph=uri&category=permissions
PUT /v1/graphs?default&category=permissions

Request body contains permissions metadata. You can also
use category=metadata.

Add permissions to a named
graph or the default graph.

POST /v1/graphs?graph=uri&category=permissions
POST /v1/graphs?default&category=permissions

Request body contains permissions metadata. You can also
use category=metadata.

Reset the permissions to
default permissions on a
named graph or the default
graph.

DELETE /v1/graphs?graph=uri&category=permissions
DELETE /v1/graphs?default&category=permissions
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 221

MarkLogic Server Using Semantics with the REST Client API
curl --anyauth --user user:password -X GET -i \
-H "Accept: application/xml" \

 'http://localhost:8000/v1/graphs?graph=/my/graph&category=permissions'

HTTP/1.1 200 OK
Content-type: application/xml; charset=utf-8
Server: MarkLogic
Content-Length: 868
Connection: Keep-Alive
Keep-Alive: timeout=5

<rapi:metadata uri="/my/graph" ...
 xmlns:rapi="http://marklogic.com/rest-api" ...>
 <rapi:permissions>
 <rapi:permission>
 <rapi:role-name>rest-writer</rapi:role-name>
 <rapi:capability>update</rapi:capability>
 </rapi:permission>
 <rapi:permission>
 <rapi:role-name>rest-reader</rapi:role-name>
 <rapi:capability>read</rapi:capability>
 </rapi:permission>
 <rapi:permission>
 <rapi:role-name>GroupA</rapi:role-name>
 <rapi:capability>read</rapi:capability>
 <rapi:capability>update</rapi:capability>
 </rapi:permission>
 </rapi:permissions>
</rapi:metadata>

The following data is the equivalent permissions metadata, expressed as JSON:

{"permissions":[
 {"role-name":"rest-writer","capabilities":["update"]},
 {"role-name":"rest-reader","capabilities":["read"]},
 {"role-name":"GroupA","capabilities":["read","update"]}
]}
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 222

MarkLogic Server XQuery and JavaScript Semantics APIs
10.0 XQuery and JavaScript Semantics APIs
236

This chapter describes the XQuery and JavaScript Semantics APIs, which include an XQuery
library module, built-in semantics functions, and support for SPARQL, SPARQL Update, and
RDF. The Semantics API is designed for large-scale, production triple stores and applications.
The complete list of semantic functions can be found at https://docs.marklogic.com/sem/semantic-

functions.

This chapter includes examples of using the Semantics API, which is an API designed to create,
query, update, and delete triples and graphs in MarkLogic.

Additionally, the following APIs support the MarkLogic Semantics features; XQuery API, REST
API, Node.js Client API, and Java Client API, using a variety of query styles, as described in the
Loading Semantic Triples, Semantic Queries and Inserting, Deleting, and Modifying Triples with XQuery

and Server-Side JavaScript chapters of this guide.

This chapter includes the following sections:

• XQuery Library Module for Semantics

• Generating Triples

• Extracting Triples from Content

• Parsing Triples

• Exploring Data

Note: Semantics is a separately licensed product: you need a valid semantics license key
to use semantics.

10.1 XQuery Library Module for Semantics
Some of the Semantics XQuery functions are built-in functions that do not require an import
statement, while others are implemented in an XQuery library module that requires an import
statement. To simplify things, MarkLogic recommends that you import the Semantics API library
into every XQuery module or JavaScript module that uses the Semantics API.

10.1.1 Importing the Semantics Library Module with XQuery
You can use the Semantics API library module with XQuery by importing the module into your
XQuery with the following prolog statement:

import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqy";
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 223

https://docs.marklogic.com/sem/semantic-functions
https://docs.marklogic.com/sem/semantic-functions

MarkLogic Server XQuery and JavaScript Semantics APIs
The prefix for all semantic functions in XQuery is http://marklogic.com/semantics. The
Semantics API uses the prefixes sem: or rdf:, which are defined in the server. For details about
the function signatures and descriptions, see the Semantics documentation under XQuery Library
Modules in the XQuery and XSLT Reference Guide and the MarkLogic XQuery and XSLT
Function Reference.

10.1.2 Importing the Semantics Library Module with JavaScript
For JavaScript you can use the Semantics API library module by importing the module into your
JavaScript with this statement:

var sem = require("/marklogic/semantics.xqy");

The prefix for all semantic XQuery functions in JavaScript is /marklogic.com/semantics.xqy.
With JavaScript, the Semantics API uses the prefix sem. , which is defined in the server. For
details about the function signatures and descriptions, see the Semantics documentation under
JavaScript Library Modules in the JavaScript Reference Guide and the MarkLogic XQuery and
XSLT Function Reference.

10.2 Generating Triples
The XQuery sem:rdf-builder function is a powerful tool for dynamically generating triples in the
Semantics API. (For JavaScript, the function is sem.rdfBuilder.)

The function builds triples from the CURIE and blank node syntaxes. Blank nodes specified with
a leading underscore (_) are assigned blank node identifiers, and maintain state across multiple
invocations; for example, "_:person1" refers to the same node as a later invocation that also
mentions "_:person1". For example:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

 let $builder := sem:rdf-builder((), sem:iri("my-named-graph"))
 let $t1 := $builder("_:person1", "a", "foaf:Person")
 let $t2 := $builder("_:person2", "a", "foaf:Person")
 let $t3 := $builder("_:person1", "foaf:knows", "_:person2")
 return ($t1,$t2,$t3)

=>

@prefix xs: <http://www.w3.org/2001/XMLSchema#> .

<http://marklogic.com/semantics/blank/4892021155019117627>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type/>
<http://xmlns.com/foaf/0.1/Person> .

<http://marklogic.com/semantics/blank/6695700652332466909>
<http://xmlns.com/foaf/0.1/knows>
_:bnode4892021155019117627 ;
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 224

MarkLogic Server XQuery and JavaScript Semantics APIs
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type/>
<http://xmlns.com/foaf/0.1/Person> .

In the example, there are three triples generated in Turtle serialization using sem:rdf-builder. The
triples represent the following facts; that person1 and person2 are people, and that their
relationship is that person1 knows person2.

Note the following:

• The first parameter accepts an optional set of prefix mappings, which in this example is an
empty argument. Since “empty” means default, the $common-prefixes are used for the first
argument. The second argument is a named graph for the sem:rdf-builder output.

• In the predicate position, the special value of "a" is expanded to the full IRI for rdf:type.

• Human-readable CURIEs for common prefixes are used, such as foaf:knows instead of
long IRIs. See “Working with CURIEs” on page 139.

• The blank nodes produced in the third triple match the identity of those defined in the first
and second.

10.3 Extracting Triples from Content
With the sem:rdf-builder function you can easily extract triples from existing content or the
results of a SPARQL query and quickly construct RDF graphs for querying or inserting into your
database.

Assume that you have a web page that lists cities and countries that are sorted and ranked by the
cost of living (COL), which is based on a Consumer Priced Index (CPI) and CPI-based inflation
rate. The inflation rate is defined as the annual percent change in consumer prices compared with
the previous year's consumer prices. Using a reference point of Monterrey, Mexico with an
assigned a value of 100, the Inflation value of every other city in the database is calculated by
comparing their COL to that of Monterrey. For example, an Inflation value of 150, means that
the COL is 50% more expensive than living in Monterrey.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 225

MarkLogic Server XQuery and JavaScript Semantics APIs
Note: These values are fictional and are not based on any official sources.

The underlying HTML code for the COL table may resemble the following:

<table class="city-index"
style="max-width:58%;float:left;margin-right:2em;">

<thead>
<tr>

<th>Ranking</th>
<th class="city-name">City</th>
<th class="inflation">Inflation
*</th>

</tr>
</thead>

<tbody><tr>

<td class="ranking">1</td>
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 226

MarkLogic Server XQuery and JavaScript Semantics APIs
<td class="city-name">

London (United Kingdom)</td>
<td class="inflation">270</td>

</tr>

<tr>
<td class="ranking">2</td>
<td class="city-name">

Stockholm (Sweden)</td>
<td class="inflation">266</td>

</tr>

<tr>
<td class="ranking">3</td>
<td class="city-name">

Zurich (Switzerland)</td>
<td class="inflation">251</td>

</tr>

<tr>
<td class="ranking">4</td>
<td class="city-name">

Geneva (Switzerland)</td>
<td class="inflation">247</td>

</tr>

<tr>
<td class="ranking">5</td>
<td class="city-name">
<ahref="http://www.example.org/IncreasedCoL/new-york">
New York City (United States)</td>
<td class="inflation">225</td>

</tr>

This example uses the sem:rdf-builder function to extract triples from the HTML content. The
function takes advantage of the fact that the HTML code is already well-formed and has a useful
classification node (@class):

import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqy";

declare namespace html="http://www.w3.org/1999/xhtml";

let $doc := xdmp:tidy(xdmp:document-get("C:\Temp\CoLIndex.html",
<options xmlns="xdmp:document-get">
<repair>none</repair>
<format>text</format>

</options>))[2]

let $rows := ($doc//html:tr)[html:td/@class eq 'ranking']
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 227

MarkLogic Server XQuery and JavaScript Semantics APIs
let $builder := sem:rdf-builder
(sem:prefixes("my: http://example.org/vocab/"))

for $row in $rows
let $bnode-name := "_:" || $row/html:td[@class eq 'ranking']
return (

$builder($bnode-name, "my:rank", xs:decimal(
$row/html:td[@class eq 'ranking'])),

$builder($bnode-name, "rdfs:label", xs:string(
$row/html:td[@class eq 'city-name'])),

$builder($bnode-name, "my:coli", xs:decimal(
$row/html:td[@class eq 'inflation']))

)

The results are returned as in-memory triples:

10.4 Parsing Triples
This example extends the previous example and inserts parsed triples into the database by using
the sem:rdf-insert function:

import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqy";

declare namespace html="http://www.w3.org/1999/xhtml";

let $doc := xdmp:tidy(xdmp:document-get("C:\Temp\CoLIndex.html",
<options xmlns="xdmp:document-get">
<repair>none</repair>
<format>text</format>

</options>))[2]
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 228

MarkLogic Server XQuery and JavaScript Semantics APIs
let $rows := ($doc//html:tr)[html:td/@class eq 'ranking']
let $builder := sem:rdf-builder(

sem:prefixes("my: http://example.org/vocab/"))
for $row in $rows
let $bnode-name := "_:" || $row/html:td[@class eq 'ranking']
let $triples := $row
return (sem:rdf-insert((

$builder($bnode-name, "my:rank", xs:decimal
($row/html:td[@class eq 'ranking'])),

$builder($bnode-name, "rdfs:label", xs:string
($row/html:td[@class eq 'city-name'])),

$builder($bnode-name, "my:coli", xs:decimal
($row/html:td[@class eq 'inflation'])))

))

The document IRIs are returned as strings:

Note: For more information about inserting and parsing triples with XQuery, see
“Loading Triples with XQuery” on page 51.

The parser ensures well-formed markup as the triples are inserted as schema-valid triples and
indexed with the Triples index, provided it is enabled. See “Enabling the Triple Index” on
page 66.

Use fn:doc to view the contents of the documents and verify the triples.

fn:doc("/triplestore/2ca88f284b7dd96d.xml")
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 229

MarkLogic Server XQuery and JavaScript Semantics APIs
One document is created for each blank node identifier ($bnode-name).

Note: During the generation process $builder maintains state eliminating the need to
keep track of every blank node label and ensuring that they map to the same
sem:blank value.

The Semantics API includes a repair option for the N-Quad and Turtle parsers. During a normal
operation, the RDF parsers perform these tasks:

• Turtle parsing uses the base IRI to resolve relative IRIs. If the result is relative, an error is
raised.

• N-Quad parsing does not resolve using the base IRI. If a IRI in the document is relative, an
error is raised.

During a repair operation the RDF parsers perform this task:

• Turtle parsing uses the base IRI to resolve relative IRIs. No error is raised for resultant
relative IRIs.

• N-Quad parsing also uses the base IRI to resolve relative IRIs. No error is raised for
resultant relative IRIs.

10.5 Exploring Data
The Semantics API provides functions to access RDF data in a database. This section focuses on
the following topics:

• sem:triple Functions

• Transitive Closure
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 230

MarkLogic Server XQuery and JavaScript Semantics APIs
10.5.1 sem:triple Functions
This table describes the sem:triple functions used to define or search for triple data:

In this example, the sem:triple function is used to create a triple that includes a CURIE for the
predicate and an rdf:langString value as the object, with English (en) as the given language tag:

sem:triple(sem:iri("http://id.loc.gov/authorities/subjects/
sh85040989"),
sem:curie-expand("skos:prefLabel"),
rdf:langString("Education", "en"))

=>
@prefix xs: <http://www.w3.org/2001/XMLSchema#> .

<http://id.loc.gov/authorities/subjects/sh85040989>
<http://www.w3.org/2004/02/skos/core#prefLabel/>
"Education"@en .

10.5.2 Transitive Closure
Transitive closure is a way to traverse a large section of a graph with a single lookup, applying a
“follow relationship X” recursively.

10.5.2.1 Understanding Transitive Closure
A common use case is a thesaurus, where you have a term, and you want to find all broader terms,
all broader terms for those terms, and all broader terms for those broader terms, and so forth. For
example, if you have a taxonomy organized like this:

Mammal
Dog
Bichon

Function Description

sem:triple Creates a triple object that represents an RDF triple containing
atomic values representing the subject, predicate, object, and
optionally a graph identifier (graph IRI)

sem:triple-subject Returns the subject from a sem:triple value

sem:triple-predicate Returns the predicate from a sem:triple value

sem:triple-object Returns the object from a sem:triple value

sem:triple-graph Returns the graph identifier (graph IRI) from a sem:triple value
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 231

MarkLogic Server XQuery and JavaScript Semantics APIs
If you want to find all terms that are narrower terms for “mammal”, you can do a transitive
closure of “mammal” over “narrower term” and find cat, dog, cow, Bichon, Siamese, Alsatian,
chihuahua, Friesian, Jersey, and so forth.

Transitive closure queries are commonly used to explore taxonomies and ontologies such as the
Simple Knowledge Organization System (SKOS). SKOS is “a common data model for
knowledge organization systems such as thesauri, classification schemes, subject heading systems
and taxonomies” as described by the W3C SKOS Simple Knowledge Organization System
Reference:

http://www.w3.org/TR/skos-reference/

10.5.2.2 sem:transitive-closure
The sem:transitive-closure function has the following signature:

This function takes seeds (subjects), predicates (relationships), and the depth to which to search,
and returns all unique node IRIs.

Use the sem:transitive-closure function to traverse RDF graphs to answer reachability
questions and discover more information about your RDF data. (In JavaScript, you would use the
sem.transitiveClosure function.)

For example, assume that you have a file composed of triples for subject headings that relate to
US Congress bills and that the triples are marked up with the SKOS vocabulary. The triples may
look similar to this extract:

<http://id.loc.gov/authorities/subjects/sh85002310/>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type/>
<http://www.w3.org/2004/02/skos/core#Concept/> .

<http://id.loc.gov/authorities/subjects/sh85002310/>
<http://www.w3.org/2004/02/skos/core#prefLabel/>
"Agricultural education"@en .

<http://id.loc.gov/authorities/subjects/sh85002310/>
<http://www.w3.org/2008/05/skos-xl#altLabel/>
_:bnode7authoritiessubjectssh85002310 .

_:bnode7authoritiessubjectssh85002310
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type/>
<http://www.w3.org/2008/05/skos-xl#Label/> .

sem:transitive-closure(
$seeds as sem:iri*,
$predicates as sem:iri*,
$limit as xs:integer

) as sem:iri*
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 232

http://www.w3.org/TR/skos-reference/

MarkLogic Server XQuery and JavaScript Semantics APIs
_:bnode7authoritiessubjectssh85002310
<http://www.w3.org/2008/05/skos-xl#literalForm/>
"Education, Agricultural"@en .

<http://id.loc.gov/authorities/subjects/sh85002310/>
<http://www.w3.org/2004/02/skos/core#broader/>
<http://id.loc.gov/authorities/subjects/sh85133121/> .

<http://id.loc.gov/authorities/subjects/sh85002310/>
<http://www.w3.org/2004/02/skos/core#narrower/>
<http://id.loc.gov/authorities/subjects/sh85118332/> .

<http://id.loc.gov/authorities/subjects/sh85133121/>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type/>
<http://www.w3.org/2004/02/skos/core#Concept/> .

<http://id.loc.gov/authorities/subjects/sh85133121/>
<http://www.w3.org/2004/02/skos/core#prefLabel/>
"Technical education"@en .

In this dataset, “Technical education” is a broader subject heading for “Agricultural education” as
defined by the skos:broader predicate:

<http://id.loc.gov/authorities/subjects/sh85002310/>
<http://www.w3.org/2004/02/skos/core#broader/>
<http://id.loc.gov/authorities/subjects/sh85133121/> .
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 233

MarkLogic Server XQuery and JavaScript Semantics APIs
This example uses cts:triples to find the subject IRI for a triple where the predicate is a CURIE
for skos:prefLabel and the object is Agricultural education. The subject IRI found in the
cts:triples query is subsequently used with skos:broader to determine broader subject terms to
a depth of 3:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

let $triple-subject := sem:triple-subject(cts:triples((), sem:curie-
expand("skos:prefLabel"),
rdf:langString("Agricultural education", "en")))
return
sem:transitive-closure($triple-subject, sem:curie-
expand("skos:broader"), 3)

=>
<http://id.loc.gov/authorities/subjects/sh85133121/>
<http://id.loc.gov/authorities/subjects/sh85002310/>
<http://id.loc.gov/authorities/subjects/sh85026423/>
<http://id.loc.gov/authorities/subjects/sh85040989/>

<sem:triple>
 <sem:subject>http://id.loc.gov/authorities/subjects/sh85002310</sem:subject>
 <sem:predicate>http://www.w3.org/1999/02/22-rdf-syntax-ns#type</sem:predicate>
 <sem:object>http://www.w3.org/2004/02/skos/core#Concept</sem:object>
</sem:triple>
<sem:triple>
 <sem:subject>http://id.loc.gov/authorities/subjects/sh85002310</sem:subject>
 <sem:predicate>http://www.w3.org/2004/02/skos/core#prefLabel</sem:predicate>
 <sem:object xml:lang="en">Agricultural education</sem:object>
</sem:triple>
<sem:triple>
 <sem:subject>http://id.loc.gov/authorities/subjects/sh85002310</sem:subject>
 <sem:predicate>http://www.w3.org/2008/05/skos-xl#altLabel</sem:predicate>
 <sem:object>http://marklogic.com/semantics/blank/17142585114552908287</sem:object>
</sem:triple>
<sem:triple>

<sem:subject>http://marklogic.com/semantics/blank/17142585114552908287</sem:subject>
 <sem:predicatehttp://www.w3.org/1999/02/22-rdf-syntax-ns#type></sem:predicate>
 <sem:object>http://www.w3.org/2008/05/skos-xl#Label</sem:object>
</sem:triple>
<sem:triple>

<sem:subject>http://marklogic.com/semantics/blank/17142585114552908287</sem:subject>
 <sem:predicate>http://www.w3.org/2008/05/skos-xl#literalForm</sem:predicate>
 <sem:object xml:lang="en">Education, Agricultural</sem:object>
</sem:triple>
<sem:triple>
 <sem:subject>http://id.loc.gov/authorities/subjects/sh85002310</sem:subject>
 <sem:predicate>http://www.w3.org/2004/02/skos/core#broader</sem:predicate>
 <sem:object>http://id.loc.gov/authorities/subjects/sh85002310</sem:object>
</sem:triple>
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 234

MarkLogic Server XQuery and JavaScript Semantics APIs
Notice that in addition to the expected IRIs, for the following subjects:

• <http://id.loc.gov/authorities/subjects/sh85002310/>

• <http://id.loc.gov/authorities/subjects/sh85133121/>

IRIs were returned also in the results for the following subjects:

• <http://id.loc.gov/authorities/subjects/sh85040989/>

• <http://id.loc.gov/authorities/subjects/sh85026423/>

When we take a closer look at the dataset, the IRIs for “Education” and “Civilization” are also
returned, since they are broader subjects still to “Agricultural education” and “Technical
Education”:

<http://id.loc.gov/authorities/subjects/sh85040989/>
<http://www.w3.org/2004/02/skos/core#prefLabel/>
"Education"@en .
<http://id.loc.gov/authorities/subjects/sh85040989/>
<http://www.w3.org/2004/02/skos/core#broader/>
<http://id.loc.gov/authorities/subjects/sh85026423/> .
...
<http://id.loc.gov/authorities/subjects/sh85026423/>
<http://www.w3.org/2004/02/skos/core#prefLabel/>
"Civilization"@en .
...
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 235

MarkLogic Server XQuery and JavaScript Semantics APIs
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 236

MarkLogic Server Client-Side APIs for Semantics
11.0 Client-Side APIs for Semantics
238

MarkLogic Semantics can be accessed through client-side APIs that provide support for
management of triples and graphs, SPARQL and SPARQL Update, and access to the search
features of MarkLogic server. The Java Client and Node.js Client source are available on GitHub.

The chapter includes the following sections:

• Java Client API

• Node.js Client API

• Queries Using Optic API

11.1 Java Client API
The Java Client API enables you to create client-side Java applications that interact with
MarkLogic. Semantics related features include support for graph and triple management,
SPARQL Query, SPARQL Update, and Optic queries.

For details, see Working With Semantic Data in the Java Application Developer’s Guide and the
following interfaces and classes in the com.marklogic.client.semantics package in the Java
Client API Documentation.

• GraphManager

• SPARQLQueryManager

• SPARQLQueryDefinitions

• MarkLogicBooleanQuery

• MarkLogicUpdateQuery

11.2 Node.js Client API
The Node.js Client API can be used for CRUD (Create, Read, Update, and Delete) operations
on graphs; creating, reading, updating, and deleting triples and graphs. The
DatabaseClient.graphs.write function can be used to create a graph containing triples, the
DatabaseClient.graphs.read function reads from a graph. The DatabaseClient.graphs.remove
function removes a graph. The DatabaseClient.graphs.sparql function queries semantic data.

See Working With Semantic Data in the Node.js Application Developer’s Guide for more details.
The Node.js Client source can be found on GitHub at http://github.com/marklogic/node-client-api. For
additional operations, see the Node.js Client API Reference.

Note: These operations only work with managed triples contained in a graph. Embedded
triples cannot be manipulated using the Node.js Client API.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 237

https://github.com/marklogic/java-client-api
https://github.com/marklogic/node-client-api
https://github.com/marklogic/node-client-api

MarkLogic Server Client-Side APIs for Semantics
11.3 Queries Using Optic API
The Optic API can be used to search and work with semantic triples in both client-side queries
and server-side side queries. Optic can be used for triple data client-side queries with the Java
Client API and the REST Client API, but not with Node.js. See Optic Java API for Relational

Operations in the Java Application Developer’s Guide and Retrieving Rows in the REST Application
Developer’s Guide for more details.

For server-side queries using the Optic API, see “Querying Triples with the Optic API” on
page 145 for more information. Also, see the op:from-triples or op.fromTriples functions in
the Optic API and the Data Access Functions section in the Application Developer’s Guide .
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 238

MarkLogic Server Inserting, Deleting, and Modifying Triples with XQuery
12.0 Inserting, Deleting, and Modifying Triples with XQuery
and Server-Side JavaScript

246

Triples can be modified with XQuery or Server-side JavaScript, using MarkLogic xdmp built-ins.
Triples managed by MarkLogic - those triples having a document root of sem:triples - can be
modified using SPARQL Update. See “Using SPARQL Update” on page 170 for more
information about modifying managed triples.

“Unmanaged” triples, those triples embedded in another document with an element node of
sem:triple, can only be modified using XQuery or Server-Side JavaScript and xdmp built-ins. To
perform updates on triples in your datastore (for either managed or unmanaged triples), you insert
a new triple and delete the existing one. You are not updating the existing triple; the update
operation is actually an INSERT/DELETE procedure.

This chapter includes the following sections:

• Updating Triples

• Deleting Triples

12.1 Updating Triples
You can use XQuery or Server-Side JavaScript functions to update existing triples in a database,
by using INSERT/DELETE to replace nodes. For a managed triple, the sem:database-nodes
(sem.databaseNode in Server-Side JavaScript) and the xdmp:node-replace (xdmp.nodeReplace in
Server-Side JavaScript) functions are used to correct inaccurate data.

Assume the database contains a document containing the following unmanaged triple, with the
resource “John Doe” entered as “John_Doe”:

<sem:triples xmlns:sem="http://marklogic.com/semantics">
<sem:triple>
<sem:subject>http://dbpedia.org/resource/John_Doe</sem:subject>

<sem:predicate>http://www.w3.org/1999/02/22-rdf-syntax-
ns#type</sem:predicate>

<sem:object>http://xmlns.com/foaf/0.1/Person/</sem:object>
</sem:triple>

</sem:triples>

The following example replaces the subject with “http://dbpedia.org/resource/John_Doe” using
the xdmp:node-replace function. The example uses sem:rdf-builder to construct a triple that
matches the one we want to change. Using this triple with sem:database-nodes finds the matching
nodes in the database to be changed.

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

(: construct the triple to match against :)
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 239

MarkLogic Server Inserting, Deleting, and Modifying Triples with XQuery
let $builder := sem:rdf-builder(
sem:prefixes("dbpedia: http://dbpedia.org/resource/"))

let $triple := $builder(
"dbpedia:John_Doe", "a", "foaf:Person")

(: find matching unmanaged triples in the database :)
let $node := sem:database-nodes($triple)
(: construct the replacement triple with a new subject :)
let $replace :=

<sem:triple>
<sem:subject>http://dbpedia.org/resource/John_Doe</sem:subject>

{$node[1]/sem:predicate, $node[1]/sem:object}
</sem:triple>

(: replace the old triple with the new one in all matched nodes :)
return $node ! xdmp:node-replace($node, $replace);

The following example performs the same operation using Server-Side JavaScript. The example
uses the NodeBuilder interface to construct the replacement node.

declareUpdate();
const sem = require('/MarkLogic/semantics');

// construct the triple to find in the database
const builder =

sem.rdfBuilder(sem.prefixes('dbpedia: http://dbpedia.org/resource/'));

const triple = xdmp.apply(builder,
'dbpedia:John_Doe', 'a', 'foaf:Person');

for (let node of sem.databaseNodes(triple)) {
// construct the replacement triple with the new subject
const pred = fn.head(

node.xpath('sem:predicate',
{'sem': 'http://marklogic.com/semantics'}));

const obj = fn.head(
node.xpath('sem:object',

{'sem': 'http://marklogic.com/semantics'}));
const replacement = new NodeBuilder()

.startElement('sem:triple','http://marklogic.com/semantics/')
.addElement(
'sem:subject',
'http://dbpedia.org/resource/John_Doe',
'http://marklogic.com/semantics')

.addNode(pred)

.addNode(obj)
.endElement()
.toNode();

// replace the old triple with the new one
xdmp.nodeReplace(node, replacement)

}

When you have multiple triples to update, you can use XQuery or Server-Side JavaScript (or if
they are managed triples, SPARQL Update), to find matching triples, and then iterate over the
nodes to replace them.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 240

MarkLogic Server Inserting, Deleting, and Modifying Triples with XQuery
In this example, a cts:triples call finds all triples with “John_Doe” in the subject position and
replaces each occurrence with “Jane_Roe”:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/Marklogic/semantics.xqy";

let $triples :=
cts:triples(sem:iri("http://dbpedia.org/resource/John_Doe"),(),())
for $triple in $triples
let $node := sem:database-nodes($triple)
let $replace :=
 <sem:triple>
 <sem:subject>http://dbpedia.org/resource/Jane_Roe</sem:subject>
 {$node/sem:predicate, $node/sem:object}
 </sem:triple>
return $node ! xdmp:node-replace(., $replace)

An empty sequence is returned for both of the examples because the replacements have been
made. Use a simple cts:triples call to verify that the updates have been made:

cts:triples(sem:iri("http://dbpedia.org/resource/John_Doe"),
(),())

Note: Using the xdmp:node-replace function results in creating a new fragment and
deleting the old fragment. When the system performs a merge, the deleted
fragments are removed permanently. The system performs automatic merges,
unless this feature has been disabled by an administrator.

12.2 Deleting Triples
This section discusses methods for deleting RDF data in MarkLogic and includes the following
topics:

• Deleting Triples with XQuery or Server-Side JavaScript

• Deleting Triples with REST API

12.2.1 Deleting Triples with XQuery or Server-Side JavaScript
There are several functions you can use to delete triples from a database. This section discusses
the following functions:

• sem:graph-delete

• xdmp:node-delete

• xdmp:document-delete
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 241

MarkLogic Server Inserting, Deleting, and Modifying Triples with XQuery
12.2.1.1 sem:graph-delete

Note: This function only works for managed triples.

You can use the sem:graph-delete function to delete all managed triple documents in a named
graph. You specify the graph IRI as the parameter.

For example:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

sem:graph-delete(sem:iri("mynamedgraph"))

In Server-Side JavaScript the command would be:

const sem = require("/marklogic/semantics.xqy");

sem.graphDelete(sem.iri("mynamedgraph"));

The following example deletes all managed triples in the default graph. If no other named graphs
exist, this might remove all triples from the database:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

sem:graph-delete(
sem:iri("http://marklogic.com/semantics#default-graph"))

Note: The sem:graph-delete function will only delete triples inserted by the Graph Store
API, which have a document root element of sem:triple. If you delete a specific
named graph, it will not affect documents with embedded triples (with a
sem:triples element node), so the graph might still exist.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 242

MarkLogic Server Inserting, Deleting, and Modifying Triples with XQuery
12.2.1.2 xdmp:node-delete
To delete a set of triples from the database, use the sem:database-nodes function with
xdmp:node-delete in XQuery, or sem.databaseNodes with xdmp.nodeDelete in Server-Side
JavaScript. This function works with managed or unmanaged triples.

For example:

xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"

at "/MarkLogic/semantics.xqy";

let $triples :=
cts:triples(sem:iri("http://www.rdfabout.com/rdf/usgov/congress/people
/D000596"),()())

for $triple in $triples
return (sem:database-nodes($triple) ! xdmp:node-delete(.))

Note: This query will not delete empty sem:triple document elements if all the triples
are deleted from a single document.

In Server-Side JavaScript, the example would look like this:

const sem = require('/MarkLogic/semantics');
const triples = cts.triples(

sem.iri('http://www.rdfabout.com/rdf/usgov/congress/people/D000596'),
null, null);

for (let triple of triples) {
 for (let node of xdm.databaseNodes(triple)) {
 xdmp.nodeDelete(node)
 }
}

12.2.1.3 xdmp:document-delete
You can remove documents containing triples from the database with the xdmp:document-delete
function. This function deletes a document and all of its properties, and works with both managed
and unmanaged triples. Specify the IRI of the document to be deleted as the parameter.

The following XQuery example deletes the document with URI “example.xml”:

xquery version "1.0-ml";
xdmp:document-delete("example.xml")
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 243

MarkLogic Server Inserting, Deleting, and Modifying Triples with XQuery
The following example performs the equivalent operation in Server-Side JavaScript:

declareUpdate();
const sem = require('/MarkLogic/semantics.xqy');

xdmp.documentDelete('example.xml');

Deleting a document deletes the document, any triples embedded in the document, and the
document properties.

To delete all documents in a directory, use the xdmp:directory-delete function.

12.2.2 Deleting Triples with REST API
You can use the REST API to delete triples in the default graph or a named graph by sending a
DELETE request to the DELETE:/v1/graphs service. To delete triples from a named graph, use curl
to send the DELETE request in the following form:

http://host:port/version/graphs?graph=graph-iri

where graph-iri is the IRI of your named graph.

The IRI for the named graph in the request is http://host:port/version/graphs?default. For
example, this DELETE request removes all triples from the default graph at port 8321:

#Windows users, see Modifying the Example Commands for Windows

$ curl --anyauth --user user:password -X DELETE \
http://localhost:8321/v1/graphs?default

Note: Use caution when specifying the graph, since there is no confirmation check
before deleting the dataset.

This curl command will delete the triples in the graph named mygraph.

#Windows users, see Modifying the Example Commands for Windows

$ curl --anyauth --user user:password -X DELETE \
http://localhost:8321/v1/graphs?graph=http://marklogic.com/semantics#m
ygraph/

As with the sem:graph-delete function, the DELETE request removes triples from graphs where
sem:triples is the root element of the containing document (managed triples). XML documents
that contain embedded triples are unaffected. Graphs may still exist after the DELETE operation if the
graph contained both types of documents.

When you send a PUT request, triples are replaced in a named graph or added to an empty graph if
the graph did not exist. This is the equivalent of a DELETE followed by POST.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 244

MarkLogic Server Inserting, Deleting, and Modifying Triples with XQuery
For example:

Windows users, see Modifying the Example Commands for Windows

$ curl --digest --user admin:password -s -X PUT
-H "Content-type:text/turtle" --data-binary '@./example.ttl'

"http://localhost:8033/v1/graphs?graph=mynamed-graph"

To perform the equivalent of a DELETE operation using the REST API, use curl to send a PUT
request with an empty graph.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 245

MarkLogic Server Inserting, Deleting, and Modifying Triples with XQuery
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 246

MarkLogic Server Using a Template to Identify Triples in a Document
13.0 Using a Template to Identify Triples in a Document
260

You can define a template to identify data to be indexed as triples in an existing document.
Documents with any type of data that you want to represent as triples can be indexed using a
template. The triples identified by the template are similar to unmanaged triples, sometimes called
embedded triples.

Once you have indexed these triples, you can query them in all the same ways you can query
unmanaged triples; with SPARQL, with xdmp.sparql(), with combination queries, with the new
Optic API, and with cts:triple-range-query. For more about working with these triples, see
“Unmanaged Triples” on page 73. For a more complete discussion of creating and using
templates, see Template Driven Extraction (TDE) in the Application Developer’s Guide.

This chapter covers the following topics:

• Creating a Template

• Template Elements

• Examples

• Triples Generated With TDE and SQL

13.1 Creating a Template
Here is an example of a simple template to identify triples. It includes a definition for a
namespace and context for the template. It contains descriptions for the subject, object, predicate
of the triples, and data mappings for the values:

<template xmlns="http://marklogic.com/xdmp/tde">
 <context>/article/topic</context>
 <vars>
 <var>
 <name>EX</name>
 <val>"http://example.org/ex#"</val>
 </var>
 </vars>
 <triples>
 <triple>
 <subject>
 <val>sem:iri($EX || who)</val>
 </subject>
 <predicate>
 <val>sem:iri($EX || what)</val>
 </predicate>
 <object>
 <val>xs:string($EX || where)</val>
 </object>
 </triple>
 </triples>
 </template>
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 247

MarkLogic Server Using a Template to Identify Triples in a Document
For triples, the subject and predicate descriptions must have a value of sem:iri. Here the template
incorporates using vars as a short-hand, to save typing when you specify IRIs. When creating
templates to identify triples, you can specify the types of values that you extract using a subset of
XQuery language expressions. See Template Dialect and Data Transformation Functions in the
Application Developer’s Guide for more information.

Note: Triples identified using templates cannot be modified directly or modified as
triples (for example, using SPARQL Update). You can disable and then delete a
template so that the triples no longer exist, or you can modify the underlying
document data to modify the triple.

Security for templates can be controlled by setting protected collections. See Security on TDE

Documents in the Application Developer’s Guide.

13.2 Template Elements
A template contains the following elements and their child elements:

Element Description

context The lookup node that is used for template activation and data
extraction. See Context in the Application Developer’s Guide for
more details.

description Optional description of the template.

collections
collection
collections-and

collection

Optional collection scopes. Multiple collection scopes can be
ORed or ANDed.

A <collections> section is a top level OR of a sequence of:

• <collection> that scope the template to a specific
collection.

• <collections-and> that contains a sequence of
<collection> that are ANDed together.

See Collections in the Application Developer’s Guide for more
details.

directories
directory

Optional directory scopes. Multiple directory scopes are ORed
together.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 248

MarkLogic Server Using a Template to Identify Triples in a Document
The context, vars, and triples elements identify XQuery elements or JSON properties by means
of path expressions. The var element can be used to specify a prefix for elements in the triple.

For example:

<vars>
 <var>
 <name>ex</name>
 <val>"http://example.org/ex#"</val>
 </var>
</vars>

Path expressions are based on XPath, which is described in XPath Quick Reference in the XQuery
and XSLT Reference Guide and Traversing JSON Documents Using XPath in the Application
Developer’s Guide.

vars
var

Optional intermediate variables extracted at the current context
level.

This element can be used as a short hand for IRIs (prefixes) in
triples. See Variables in the Application Developer’s Guide for more
details.

triples
triple

subject
val
invalid-values

predicate
val
invalid-values

object
val
invalid-values

These elements are used for triple-extraction templates.

triples contains a sequence of triple extraction descriptions. Each
triple description defines the data mapping for the subject,
predicate and object.

An extracted triples graph cannot be specified through the
template. The graph is implicitly defined by the document's
collection similar to embedded triples.

templates
template

Optional sequence of sub-templates. For details, see Creating Views

from Multiple Templates and Creating Views from Nested Templates in
the SQL Data Modeling Guide.

path-namespaces
path-namespace

Optional sequence of namespace bindings. See path-namespaces in
the Application Developer’s Guide for more details.

enabled A boolean that specifies whether the template is enabled (true) or
disabled (false). The default value is true.

Element Description
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 249

MarkLogic Server Using a Template to Identify Triples in a Document
13.2.1 Reindexing Triggered by Templates
When adding or modifying a triple template, reindexing is triggered and the triples extracted by
the template are available as soon as they start to appear in the triple index. Note that only
documents matching the context element, and the directory and collection scopes will be re-
indexed, so choose these carefully to avoid unnecessary (re)indexing work.

• For a new template, triples appear in the index as documents are indexed.

• For modified templates (and until reindexing is complete), there could be a mix of existing
triples extracted with the previous version of the template (for the documents that haven’t
been reindexed yet) along with new triples extracted by the newer version of the template
(for those documents that have been reindexed).

13.3 Examples
This section contains examples of different ways that you can validate and use templates to
identify triples in documents.

• Validate and Insert a Template

• Validate and Insert in One Step

• Use a JSON Template

• Identify Potential Triples

13.3.1 Validate and Insert a Template
For this example, insert this document into the Documents database using the Query Console.
This document is used as the source of the triples.

xdmp:document-insert("APNews.xml",
<article>
 <info>APNewswire - Nixon went to China</info>
 <triples-context>
 <confidence>80</confidence>
 <published>2011-10-14</published>
 <source>AP News</source>
 </triples-context>
 <topic>
 <who>Nixon</who>
 <what>wentTo</what>
 <where>China</where>
 </topic>
 <body>
 In 1974, Richard Nixon went to China.
 </body>
</article>
)

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 250

MarkLogic Server Using a Template to Identify Triples in a Document
Using the Query Console, we will validate this template (APtemplate.xml) and then insert it into a
collection called http://marklogic.com/xdmp/tde in the Schemas database. First validate the
template:

let $t1 :=
<template xmlns="http://marklogic.com/xdmp/tde">
 <context>/article/topic</context>
 <vars>
 <var>
 <name>EX</name>
 <val>"http://example.org/ex#"</val>
 </var>
 </vars>
 <triples>
 <triple>
 <subject>
 <val>sem:iri($EX || who)</val>
 </subject>
 <predicate>
 <val>sem:iri($EX || what)</val>
 </predicate>
 <object>
 <val>xs:string($EX || where)</val>
 </object>
 </triple>
 </triples>
 </template>

return tde:validate($t1)
=>
<map:map xmlns:map="http://marklogic.com/xdmp/map"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

<map:entry key="valid">
<map:value xsi:type="xs:boolean">true
</map:value>

</map:entry>
</map:map>

Next insert the valid template. Use tde:template-insert. This takes care of putting the template
into the Schemas database and into the correct collection:

xquery version "1.0-ml";
import module namespace tde = "http://marklogic.com/xdmp/tde"
 at "/MarkLogic/tde.xqy";

let $t1 :=
<template xmlns="http://marklogic.com/xdmp/tde">
 <context>/article/topic</context>
 <vars>
 <var>
 <name>EX</name>
 <val>"http://example.org/ex#"</val>
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 251

MarkLogic Server Using a Template to Identify Triples in a Document
 </var>
 </vars>
 <triples>
 <triple>
 <subject>
 <val>sem:iri($EX || who)</val>
 </subject>
 <predicate>
 <val>sem:iri($EX || what)</val>
 </predicate>
 <object>
 <val>xs:string($EX || where)</val>
 </object>
 </triple>
 </triples>
 </template>

return tde:template-insert(
"APtemplate.xml",$t1, (), "http://marklogic.com/xdmp/tde")

When you use the template, content in the document will be indexed as a triple. The triple is not
added to the original document. To see the triple, run this query in Query Console:

tde:node-data-extract(fn:doc("APNews.xml"));

This returns the name of the document and the content that was indexed as a triple.

=>
{"APNews.xml": [
{
"triple": {
"subject": "http://example.org/ex#Nixon",
"predicate": "http://example.org/ex#wentTo",
"object": {
"datatype": "http://www.w3.org/2001/XMLSchema#string",
"value": "http://example.org/ex#China"

}
}

}
]}

Use this SPARQL query to verify that the triple is in the triple index:

SELECT ?country
WHERE {

<http://example.org/ex#Nixon> <http://example.org/ex#wentTo>
?country

}

=> China
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 252

MarkLogic Server Using a Template to Identify Triples in a Document
13.3.2 Validate and Insert in One Step
The next example uses tde:template-insert to both validate and insert the template into the
Schemas database associated with this content database in one step. For this example, we’ll insert
a document described in “Unmanaged Triples” on page 73.

The following code inserts the document into the Documents database in a “SAR” collection:

xquery version "1.0-ml";
xdmp:document-insert("SAR_report.xml",
<SAR>
<title>Suspicious vehicle...Suspicious vehicle near airport</title>
<date>2015-11-12Z</date>
<type>observation/surveillance</type>
<threat>
<type>suspicious activity</type>
<category>suspicious vehicle</category>

</threat>
<location>

<lat>37.497075</lat>
<long>-122.363319</long>

</location>
<description>A blue van with license plate ABC 123 was observed

parked behind the airport sign...
<sem:triple>

<sem:subject>IRIID</sem:subject>
<sem:predicate>isa</sem:predicate>
<sem:object

datatype="http://www.w3.org/2001/XMLSchema#string">license-
plate</sem:object>

</sem:triple>
<sem:triple>

<sem:subject>IRIID</sem:subject>
<sem:predicate>value</sem:predicate>
<sem:object

datatype="http://www.w3.org/2001/XMLSchema#string">ABC
123</sem:object>

</sem:triple>
</description>

</SAR>,(),
"SAR")

This document already has two embedded triples. Now let us identify another triple describing the
date and type of threat described in the report. We will create a template to identify the triple and
insert it using tde:template-insert, which validates the template and then inserts it into the
Schemas database.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 253

MarkLogic Server Using a Template to Identify Triples in a Document
xquery version "1.0-ml";
import module namespace tde = "http://marklogic.com/xdmp/tde"

at "/MarkLogic/tde.xqy";

let $template :=
<template xmlns="http://marklogic.com/xdmp/tde">

<context>/SAR</context>
<triples>
<triple>

<subject>
<val>sem:iri(threat/type)</val>

</subject>
<predicate>
<val>sem:iri("http://example.org/on-date")</val>

</predicate>
<object>
<val>xs:date(date)</val>

</object>
</triple>
</triples>

</template>
return tde:template-insert("SARtemplate.xml", $template)

 To see the new triple, run this query using tde:node-data-extract in Query Console:

tde:node-data-extract(fn:doc("SAR_report.xml"));

=>
{
"SAR_report.xml": [
{
"triple": {
"subject": "suspicious activity",
"predicate": "http://example.org/on-date",
"object": {

"datatype": "http://www.w3.org/2001/XMLSchema#date",
"value": "2015-11-12Z"

}
}

}
]

}

To see all the triples in this document, run this SPARQL query restricted to the “SAR” collection,
in the Query Console:

SELECT *
FROM <SAR>
WHERE {
 ?s ?p ?o
}

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 254

MarkLogic Server Using a Template to Identify Triples in a Document
This returns all of the triples in the SAR_report.xml document:

s p o
<suspicious activity> <http://example.org/on-date> 2014-11-
12Z"^^xs:date
<IRIID> <isa> <license-plate>
<IRIID> <value> <ABC 123>

13.3.3 Use a JSON Template
You can use a JSON template to identify triples in a JSON document.

Note: Any template (XML or JSON) will extract triples from any document (XML or
JSON).

Insert this document into the Documents database:

declareUpdate();
xdmp.documentInsert("/medlineCitation.json", ({
 "MedlineCitation": {
 "Status": "Completed",
 "MedlineID": 69152893,
 "PMID": 5717905,
 "Article": {
 "Journal": {
 "ISSN": "0043-5341"
 },
 "ArticleTitle": "[On the influence of calcium ... on cholesterol
in human serum]",
 "AuthorList": {
 "Author": [
 {
 "LastName": "Doe",
 "ForeName": "John"
 },
 {
 "LastName": "Smith",
 "ForeName": "Jane"
 }
]
 }
 }, "collections" : "http://marklogic.com/xdmp/tde"}
}));
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 255

MarkLogic Server Using a Template to Identify Triples in a Document
Now validate and insert a JSON template. The tde.templateInsert command validates the
template and inserts it into the Schemas database.

declareUpdate();
var tde = require ("/MarkLogic/tde.xqy");

var template = xdmp.toJSON({
 "template":{
 "context":"/MedlineCitation/Article",
 "vars":[
 {
 "name":"prefix1",
 "val":"\"http://marklogic.com/example/\""
 }
],
 "triples":[{
 "subject":{
 "val":"sem:iri($prefix1||'person/'||AuthorList/Author[1] \
 /ForeName||'_'||AuthorList/Author[1]/LastName)"},
 "predicate":{
 "val":"sem:iri(($prefix1||'authored'))"},
 "object":{
 "val":"xs:string(Journal/ISSN)"}
 }
] }});

tde.templateInsert("medlineTemplate.json", template);

// After validating the template, this inserts template into the
Schemas
database as medlineTemplate.json

Run this query against the Documents database in the Query Console. This query identifies the
first author in the document in the form of a triple:

tde.nodeDataExtract([fn.doc("/medlineCitation.json")]);
=>
{
 "/medlineCitation.json": [
 {
 "triple": {
 "subject": "http://marklogic.com/example/person/John_Doe",
 "predicate": "http://marklogic.com/example/authored",
 "object": {
 "datatype": "http://www.w3.org/2001/XMLSchema#string",
 "value": "0043-5341"
 }
 }
 }
]
}

MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 256

MarkLogic Server Using a Template to Identify Triples in a Document
Note: The nodeDataExtract command is a helper utility to show you how the template
view looks. Normally you would run a SQL or SPARQL query against the
generated view.

This template only extracts the first author’s name along with the ISSN number. You can change
the [1] to a [2] in the template to extract the second author’s name.

13.3.4 Identify Potential Triples
This next example includes both the document and the template used to identify two triples as part
of one query that you can paste into Query Console. The tde:node-data-extract is a helping
function to show you what would be indexed if you did insert this document and template.

let $doc1 :=
<MedlineCitation Status="Completed">
 <MedlineID>69152893</MedlineID>
 <PMID>5717905</PMID>
 <Article>
 <Journal>
 <ISSN>0043-5341</ISSN>
 <JournalIssue>
 <Volume>118</Volume>
 <Issue>49</Issue>
 <PubDate>
 <Year>1968</Year>
 <Month>Dec</Month>
 <Day>7</Day>
 </PubDate>
 </JournalIssue>
 </Journal>
 <ArticleTitle>[On the influence of calcium ... on cholesterol in
human serum]</ArticleTitle>
 <AuthorList>
 <Author>
 <LastName>Doe</LastName>
 <ForeName>John</ForeName>
 </Author>
 <Author>
 <LastName>Smith</LastName>
 <ForeName>Jane</ForeName>
 </Author>
 </AuthorList>
 </Article>
</MedlineCitation>

let $template1 :=
<template xmlns="http://marklogic.com/xdmp/tde">
 <context>/MedlineCitation/Article/AuthorList/Author</context>
 <triples>
 <triple>
 <subject>
 <val>sem:iri(concat(ForeName,' ',LastName))</val>
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 257

MarkLogic Server Using a Template to Identify Triples in a Document
 </subject>
 <predicate>
 <val>sem:iri('authored')</val>
 </predicate>
 <object>
 <val>xs:string(../../ArticleTitle)</val>
 </object>
 </triple>
 </triples>
</template>

return tde:node-data-extract (($doc1), ($template1))

This query returns the two triples that would be added to the triple index in JSON format:

{
 "document1": [
 {
 "triple": {
 "subject": "John Doe",
 "predicate": "authored",
 "object": {
 "value": "[On the influence of calcium ... on cholesterol in human
serum]"
 }
 }
 },
 {
 "triple": {
 "subject": "Jane Smith",
 "predicate": "authored",
 "object": {
 "datatype": "http://www.w3.org/2001/XMLSchema#string",
 "value": "[On the influence of calcium ... on cholesterol in human
serum]"
 }
 }
 }
]
}

These triples in this example have not been added to the triple index, but you can see how the
template works and what triples would be indexed if you inserted the document and template.

Note: The graph for these triples cannot be specified through the template. The graph is
implicitly defined by the document’s collection, similar to embedded triples.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 258

MarkLogic Server Using a Template to Identify Triples in a Document
13.4 Triples Generated With TDE and SQL
Some TDE views created for SQL will generate index entries that are present, visible, and usable
as triples due to the underlying implementation of SQL using the triples index. Those triples may
then appear in SPARQL query results.

These triples have very distinctive subject and predicate URIs, so as long as a SPARQL query
includes some subject or some predicate filter, the triples generated by a row template will not
appear in your results.

This is an example of a triple generated from a row template:

<http://marklogic.com/row/09CA32CBA69361E5/8FD41B78E884B48E>
 <http://marklogic.com/column/id/81C579F95CEA957B>
 "George Washington"

Some SPARQL operations where these row triples may appear include:

1. A SPARQL query for “show me all triples”. When you are initially trying out SPARQL,
you might load 10 triples and run this SPARQL query:

SELECT *
WHERE {

?s ?p ?o }

Note: For performance reasons, do not run this query on any database with numerous
triples because the query will return all of the triples in the database.

2. A SPARQL query to “count all triples”. This is similar to the preceding query, and would
also access all of the triples in the database.

3. A SPARQL query to “show me all distinct predicates”. This is another common way to
explore your triples data.

To avoid seeing row triples returned as part of these queries, insert and query triples from a named
graph, or include a subject or predicate filter to exclude the row triples.

Note: A best practice is to insert triples into a named graph and query from that graph.

For more information about using the Optic API with triples for server-side queries see “Querying
Triples with the Optic API” on page 145, the op:from-triples or op.fromTriples functions, and
Data Access Functions and Optic API for Multi-Model Data Access in the Application Developer’s
Guide. For information about using the Optic API for client-side queries, see “Queries Using
Optic API” on page 238 and Optic Java API for Relational Operations in the Java Application
Developer’s Guide. Also see /REST/client/row-management in the Client API reference and the row
manager and rows endpoint in the REST Application Developer’s Guide.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 259

/REST/client/row-management

MarkLogic Server Using a Template to Identify Triples in a Document
For information about using templates with SQL content, see Creating Template Views in the SQL
Data Modeling Guide.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 260

MarkLogic Server Execution Plan
14.0 Execution Plan
264

This section describes how to interpret a query execution plan output from the sem:sparql-plan
function. The generated query execution plan shows how the supplied query will be handled by
the SPARQL parser. The query execution plan for SPARQL is designed to work with all SPARQL
queries, including SELECT, CONSTRUCT, ASK and DESCRIBE.

14.1 Generating an Execution Plan
You can use sem:sparql-plan to generate a query execution plan for a SPARQL query to see how
the query will be handled internally.

For example, this SPARQL query produces an execution plan:

sem:sparql-plan("select * { ?s ?p ?o }",(),"optimize=1")

The query outputs the following execution plan:

<plan:plan xmlns:plan="http://marklogic.com/plan">
 <plan:select>
 <plan:project order="1,0,2">
 <plan:variable name="s" column-index="0" static-type="NONE">
 </plan:variable>
 <plan:variable name="p" column-index="1" static-type="NONE">
 </plan:variable>
 <plan:variable name="o" column-index="2" static-type="NONE">
 </plan:variable>
 <plan:triple-index order="1,0,2" permutation="PSO" dedup="true">
 <plan:subject>
 <plan:variable name="s" column-index="0" static-type="NONE">
 </plan:variable>
 </plan:subject>
 <plan:predicate>
 <plan:variable name="p" column-index="1" static-type="NONE">
 </plan:variable>
 </plan:predicate>
 <plan:object>
 <plan:variable name="o" column-index="2" static-type="NONE">
 </plan:variable>
 </plan:object>
 </plan:triple-index>
 </plan:project>
 </plan:select>
</plan:plan>
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 261

MarkLogic Server Execution Plan
14.2 Parsing an Execution Plan
This section breaks down and describes each portion of the execution plan.

The intro specifies the type of plan, in this case for a SELECT statement:

<plan:plan xmlns:plan="http://marklogic.com/plan">
 <plan:select>

This section identifies the projected order of the elements of the triples–subject, predicate,
object–with their variable names (s,p,o) and column indexes:

<plan:project order="1,0,2">
 <plan:variable name="s" column-index="0" static-type="NONE">
 </plan:variable>
 <plan:variable name="p" column-index="1" static-type="NONE">
 </plan:variable>
 <plan:variable name="o" column-index="2" static-type="NONE">
 </plan:variable>

At the end is the order of the triple variables in the triple index - predicate, subject, object (p,s,o).

 <plan:triple-index order="1,0,2" permutation="PSO" dedup="true">
 <plan:subject>
 <plan:variable name="s" column-index="0" static-type="NONE">
 </plan:variable>
 </plan:subject>
 <plan:predicate>
 <plan:variable name="p" column-index="1" static-type="NONE">
 </plan:variable>
 </plan:predicate>
 <plan:object>
 <plan:variable name="o" column-index="2" static-type="NONE">
 </plan:variable>
 </plan:object>
 </plan:triple-index>
 </plan:project>
 </plan:select>
</plan:plan>

If you run this query, the variables and the values are projected in three columns (s, p, o):

[{"s":"<http://example.com/ns/directory#jp>","p":"<http://example.com/
ns/person#firstName>","o":"\"John-Paul\""}]
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 262

MarkLogic Server Execution Plan
Here is an example of a more complicated SPARQL SELECT query, which includes prefixes:

sem:sparql-plan("
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX prod: <http://example.com/products/>
PREFIX ex: <http://example.com/>

SELECT ?product
FROM <http://marklogic.com/semantics/products/>
WHERE
 {
 ?product rdf:type ex:Shirt ;
 ex:color 'blue' }")

Here is the output for this query execution plan. The intro specifies the namespace and the type of
plan:

<plan:plan xmlns:plan="http://marklogic.com/plan">
 <plan:select>

The first section identifies the order of projected values, in this case just one “product”.

 <plan:project order="order(0 ASC)">
 <plan:variable name="product" column-index="0" static-type="NONE">
 </plan:variable>

This section describes what sort of hash join order.

 <plan:hash-join order="order(0 ASC)">
 <plan:hash left="0" right="0" operator="=">
 </plan:hash>

Here is the projected order of triple elements–object, predicate, subject (o, p, s)–first for the triple
for product of type “Shirt”:

<plan:triple-index order="order(0 ASC)" permutation="OPS"
dedup="true">
 <plan:subject>
 <plan:variable name="product" column-index="0" static-type="NONE">
 </plan:variable>
 </plan:subject>
 <plan:predicate>
 <plan:iri name="http://www.w3.org/1999/02/22-rdf-syntax-ns#type"
static-type="NONE">
 </plan:iri>
 </plan:predicate>
 <plan:object>
 <plan:iri name="http://example.com/Shirt" static-type="NONE">
 </plan:iri>
 </plan:object>
</plan:triple-index>
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 263

MarkLogic Server Execution Plan
And for the product with the color value “blue”:

<plan:triple-index order="order(0 ASC)" permutation="OPS"
dedup="true">
 <plan:subject>
 <plan:variable name="product" column-index="0" static-type="NONE">
 </plan:variable>
 </plan:subject>
 <plan:predicate>
 <plan:iri name="http://example.com/color" static-type="NONE">
 </plan:iri>
 </plan:predicate>
 <plan:object>
 <plan:value datatype="http://www.w3.org/2001/XMLSchema#string"
value="blue">
 </plan:value>
 </plan:object>
</plan:triple-index>

And then the close of the plan:

 </plan:hash-join>
 </plan:project>
 </plan:select>
</plan:plan>

For more about query execution plans, see Execution Plan in the SQL Data Modeling Guide.
MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 264

MarkLogic Server Technical Support
15.0 Technical Support
266

MarkLogic provides technical support according to the terms detailed in your Software License
Agreement or End User License Agreement.

We invite you to visit our support website at http://help.marklogic.com to access information on
known and fixed issues, knowledge base articles, and more. For licensed customers with an active
maintenance contract, see the Support Handbook for instructions on registering support contacts
and on working with the MarkLogic Technical Support team.

Complete product documentation, the latest product release downloads, and other useful
information is available for all developers at http://developer.marklogic.com. For technical
questions, we encourage you to ask your question on Stack Overflow.
MarkLogic 11

http://help.marklogic.com/
https://stackoverflow.com/questions/tagged/marklogic
http://developer.marklogic.com
http://www.marklogic.com/files/Mark_Logic_Support_Handbook.pdf

MarkLogic Server Technical Support
MarkLogic 11—December, 2022 Installation Guide for All Platforms—Page 266

MarkLogic Server Copyright
16.0 Copyright
999

MarkLogic Server 10.0 and supporting products.
Last updated: February, 2022

Copyright © 2022 MarkLogic Corporation. All rights reserved.
This technology is protected by U.S. Patent No. 7,127,469B2, U.S. Patent No. 7,171,404B2, U.S.
Patent No. 7,756,858 B2, and U.S. Patent No 7,962,474 B2, US 8,892,599, and US 8,935,267.

The MarkLogic software is protected by United States and international copyright laws, and
incorporates certain third party libraries and components which are subject to the attributions,
terms, conditions and disclaimers set forth below.

For all copyright notices, including third-party copyright notices, see the Combined Product
Notices for your version of MarkLogic.
MarkLogic 11

MarkLogic Server Copyright
MarkLogic 11—December, 2022 Installation Guide for All Platforms—Page 268

	Semantic Graph Developer’s Guide
	Table of Contents
	1.0 Introduction to Semantic Graphs in MarkLogic
	1.1 Terminology
	1.2 Linked Open Data
	1.3 RDF Implementation in MarkLogic
	1.3.1 Using RDF in MarkLogic
	1.3.2 RDF Data Model
	1.3.3 Blank Node Identifiers
	1.3.4 RDF Datatypes
	1.3.5 IRIs and Prefixes
	1.3.6 RDF Vocabulary

	1.4 Example Datasets

	2.0 Getting Started with Semantic Graphs in MarkLogic
	2.1 Setting up MarkLogic Server
	2.1.1 Configuring the Database to Work with Triples
	2.1.2 Setting Up Additional Servers

	2.2 Loading Triples
	2.2.1 Downloading the Dataset
	2.2.2 Importing Triples with mlcp
	2.2.3 Verifying the Import

	2.3 Querying Triples
	2.3.1 Querying with Native SPARQL
	2.3.2 Querying with the sem:sparql Functions

	3.0 Loading Semantic Triples
	3.1 Loading Embedded RDF Triples
	3.2 Loading Triples
	3.2.1 Supported RDF Triple Formats
	3.2.2 Example RDF Formats
	3.2.3 Loading Triples with mlcp
	3.2.4 Loading Triples with XQuery
	3.2.5 Loading Triples with JavaScript
	3.2.6 Loading Triples Using the REST API
	3.2.7 Loading Triples Using the Java API
	3.2.8 Loading Triples Using the Node.js API

	4.0 Triple Index Overview
	4.1 Understanding the Triple Index and How It’s Used
	4.1.1 Triple Data and Value Caches
	4.1.2 Triple Values and Type Information
	4.1.3 Triple Positions
	4.1.4 Index Files
	4.1.5 Permutations

	4.2 Enabling the Triple Index
	4.2.1 Using the Database Configuration Pages
	4.2.2 Using the Admin API

	4.3 Other Considerations
	4.3.1 Sizing Caches
	4.3.2 Unused Values and Types
	4.3.3 Scaling and Monitoring

	5.0 Unmanaged Triples
	5.1 Uses for Triples in XML Documents
	5.1.1 Context from the Document
	5.1.2 Combination Queries
	5.1.3 Security with Unmanaged Triples

	5.2 Bitemporal Triples

	6.0 Semantic Queries
	6.1 Querying Triples with SPARQL
	6.1.1 Types of SPARQL Queries
	6.1.2 Executing a SPARQL Query in Query Console
	6.1.3 Specifying Query Result Options
	6.1.4 Constructing a SPARQL Query
	6.1.5 Prefix Declaration
	6.1.6 Query Pattern
	6.1.7 Target RDF Graph
	6.1.8 Result Clauses
	6.1.9 Query Clauses
	6.1.10 Negation in Filter Expressions
	6.1.11 Solution Modifiers
	6.1.12 De-Duplication of SPARQL Results
	6.1.13 Property Path Expressions
	6.1.14 SPARQL Aggregates
	6.1.15 Using the Results of sem:sparql
	6.1.16 SPARQL Resources

	6.2 Querying Triples with XQuery or JavaScript
	6.2.1 Preparing to Run the Examples
	6.2.2 Using Semantic Functions to Query
	6.2.3 Using Bindings for Variables
	6.2.4 Viewing Results as XML and RDF
	6.2.5 Working with CURIEs
	6.2.6 Using Semantics with cts Searches

	6.3 Querying Triples with the Optic API
	6.4 Serialization
	6.4.1 Setting the Output Method

	6.5 Security

	7.0 Inference
	7.1 Automatic Inference
	7.1.1 Ontologies
	7.1.2 Rulesets
	7.1.3 Memory Available for Inference
	7.1.4 A More Complex Use Case

	7.2 Other Ways to Achieve Inference
	7.2.1 Using Paths
	7.2.2 Materialization

	7.3 Performance Considerations
	7.3.1 Partial Materialization

	7.4 Using Inference with the REST API
	7.5 Summary of APIs Used for Inference
	7.5.1 Semantic APIs
	7.5.2 Database Ruleset APIs
	7.5.3 Management APIs

	8.0 SPARQL Update
	8.1 Using SPARQL Update
	8.2 Graph Operations with SPARQL Update
	8.2.1 CREATE
	8.2.2 DROP
	8.2.3 COPY
	8.2.4 MOVE
	8.2.5 ADD

	8.3 Graph-Level Security
	8.4 Data Operations with SPARQL Update
	8.4.1 INSERT DATA
	8.4.2 DELETE DATA
	8.4.3 DELETE..INSERT WHERE
	8.4.4 DELETE WHERE
	8.4.5 INSERT WHERE
	8.4.6 CLEAR

	8.5 Bindings for Variables
	8.6 Using SPARQL Update with Query Console
	8.7 Using SPARQL Update with XQuery or Server-Side JavaScript
	8.8 Using SPARQL Update with REST

	9.0 Using Semantics with the REST Client API
	9.1 Assumptions
	9.2 Specifying Parameters
	9.2.1 SPARQL Query Parameters
	9.2.2 SPARQL Update Parameters

	9.3 Supported Operations for the REST Client API
	9.4 Serialization
	9.4.1 Unsupported Serialization

	9.5 Examples Using curl and REST
	9.6 Response Output Formats
	9.6.1 SPARQL Query Types and Output Formats
	9.6.2 Example: Returning Results as XML
	9.6.3 Example: Returning Results as JSON
	9.6.4 Example: Returning Results as HTML
	9.6.5 Example: Returning Results as CSV
	9.6.6 Example: Returning Results as N-triples
	9.6.7 Example: Returning a Boolean as XML or JSON

	9.7 SPARQL Query with the REST Client API
	9.7.1 SPARQL Queries in a POST Request
	9.7.2 SPARQL Queries in a GET Request

	9.8 SPARQL Update with the REST Client API
	9.8.1 SPARQL Update in a POST Request
	9.8.2 SPARQL Update via POST with URL-encoded Parameters

	9.9 Listing Graph Names with the REST Client API
	9.10 Exploring Triples with the REST Client API
	9.11 Managing Graph Permissions
	9.11.1 Default Permissions and Required Privileges
	9.11.2 Setting Permissions as Part of Another Operation
	9.11.3 Setting Permissions Standalone
	9.11.4 Retrieving Graph Permissions

	10.0 XQuery and JavaScript Semantics APIs
	10.1 XQuery Library Module for Semantics
	10.1.1 Importing the Semantics Library Module with XQuery
	10.1.2 Importing the Semantics Library Module with JavaScript

	10.2 Generating Triples
	10.3 Extracting Triples from Content
	10.4 Parsing Triples
	10.5 Exploring Data
	10.5.1 sem:triple Functions
	10.5.2 Transitive Closure

	11.0 Client-Side APIs for Semantics
	11.1 Java Client API
	11.2 Node.js Client API
	11.3 Queries Using Optic API

	12.0 Inserting, Deleting, and Modifying Triples with XQuery and Server-Side JavaScript
	12.1 Updating Triples
	12.2 Deleting Triples
	12.2.1 Deleting Triples with XQuery or Server-Side JavaScript
	12.2.2 Deleting Triples with REST API

	13.0 Using a Template to Identify Triples in a Document
	13.1 Creating a Template
	13.2 Template Elements
	13.2.1 Reindexing Triggered by Templates

	13.3 Examples
	13.3.1 Validate and Insert a Template
	13.3.2 Validate and Insert in One Step
	13.3.3 Use a JSON Template
	13.3.4 Identify Potential Triples

	13.4 Triples Generated With TDE and SQL

	14.0 Execution Plan
	14.1 Generating an Execution Plan
	14.2 Parsing an Execution Plan

	15.0 Technical Support
	16.0 Copyright

