
Copyright © 2021 MarkLogic Corporation. All rights reserved.

MarkLogic Server

Search Developer’s Guide
1Application Developer’s Guide

MarkLogic 10
May, 2019

Last Revised: 10.0-8, October, 2021

MarkLogic Server Table of Contents
Table of Contents

Search Developer’s Guide

1.0 Developing Search Applications in MarkLogic Server22
1.1 Overview of Search Features in MarkLogic Server ...22

1.1.1 High Performance Full Text Search ...22
1.1.2 APIs for Multiple Programming Languages ...23
1.1.3 Support for Multiple Query Styles ..24
1.1.4 Support for Multiple Query Types ..26
1.1.5 Full XPath Search Support in XQuery ...28
1.1.6 Lexicon and Range Index-Based APIs ...28
1.1.7 Stemming, Wildcard, Spelling, and Much More Functionality28
1.1.8 Alerting API and Built-Ins ..28

1.2 Where to Find Search Information ...29

2.0 Search API: Understanding and Using ..30
2.1 Understanding the Search API ..30

2.1.1 Making the Search API Available to Your Application31
2.1.2 Simple search:search Example and Response Output31
2.1.3 Automatic Query Text Parsing and Grammar ..32
2.1.4 Constrained Searches and Faceted Navigation ...34
2.1.5 Built-In Snippetting ..36
2.1.6 Search Term Completion ..36
2.1.7 Search Customization Via Options and Extensions36
2.1.8 Speed and Accuracy ..37

2.2 Controlling a Search With Query Options ..37
2.3 Search Term Completion Using search:suggest ...38

2.3.1 default-suggestion-source Option ...38
2.3.2 Choose Suggestions With the suggestion-source Option39
2.3.3 Use Multiple Query Text Inputs to search:suggest40
2.3.4 Make Suggestions Based on Cursor Position ...41
2.3.5 search:suggest Examples ..41

2.4 Creating a Custom Constraint ...42
2.4.1 Implementing the parse Function ...42
2.4.2 Implementing the start-facet Function ..45
2.4.3 Implementing the finish-facet Function ..46
2.4.4 Example: Creating a Simple Custom Constraint47
2.4.5 Example: Creating a Custom Constraint for Structured Queries48
2.4.6 Example: Creating a Custom Constraint Geospatial Facet50

2.5 Search Grammar ...53
2.6 Returning Lexicon Values With search:values ...54
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 2

MarkLogic Server Table of Contents
2.6.1 Specifying the Input Lexicons ..54
2.6.2 Constraining and Filtering Your Results ..55
2.6.3 Example: Using a Query to Constrain Results ...56
2.6.4 Example: Filtering with Starting Value, Limit, and Page Length58
2.6.5 Example: Finding Value Co-Occurrences ..60
2.6.6 Additional Interfaces ...60

2.7 JSON Support in the Search API ..60
2.8 More Search API Examples ..62

2.8.1 Buckets Example ..62
2.8.2 Computed Buckets Example ...64
2.8.3 Sort Order Example ..66

3.0 Searching Using String Queries ...67
3.1 String Query Overview ...67
3.2 The Default String Query Grammar ...68

3.2.1 Query Components and Operators ..68
3.2.2 Operator Precedence ...71
3.2.3 Using Relational Operators on Constraints ..72
3.2.4 String Query Examples ...73

4.0 Searching Using Structured Queries ..74
4.1 Structured Query Overview ..74
4.2 Structured Query Concepts ...75

4.2.1 Major Query Categories ..76
4.2.2 Understanding the Difference Between Term and Word Queries77
4.2.3 Understanding Containment ...77
4.2.4 Text Match Semantics ..79
4.2.5 Structured Query Sub-Query Taxonomy ..80

4.3 Constructing a Structured Query ..81
4.4 Syntax Summary ...82
4.5 Examples of Structured Queries ...83

4.5.1 Example: Simple Structured Search ...83
4.5.2 Example: Structured Search With Constraint References as Text84
4.5.3 Example: Structured Search With Constraint References85
4.5.4 Example: Structured Search on Key-Value Metadata Fields86

4.6 Syntax Reference ..87
4.6.1 query ...89
4.6.2 term-query ...91
4.6.3 and-query ..93
4.6.4 or-query ...94
4.6.5 and-not-query ..96
4.6.6 not-query ...98
4.6.7 not-in-query ..99
4.6.8 true-query ..101
4.6.9 false-query ..102
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 3

MarkLogic Server Table of Contents
4.6.10 near-query ...103
4.6.11 boost-query ...105
4.6.12 properties-fragment-query ..107
4.6.13 directory-query ..110
4.6.14 collection-query ..112
4.6.15 container-query ...113
4.6.16 document-query ..115
4.6.17 document-fragment-query ..116
4.6.18 locks-fragment-query ..118
4.6.19 range-query ...119
4.6.20 value-query ...123
4.6.21 word-query ..127
4.6.22 geo-elem-query ...130
4.6.23 geo-elem-pair-query ..134
4.6.24 geo-attr-pair-query ..138
4.6.25 geo-path-query ..142
4.6.26 geo-json-property-query ...146
4.6.27 geo-json-property-pair-query ..150
4.6.28 geo-region-path-query ..154
4.6.29 range-constraint-query ..159
4.6.30 value-constraint-query ..162
4.6.31 word-constraint-query ...165
4.6.32 collection-constraint-query ...167
4.6.33 container-constraint-query ..169
4.6.34 element-constraint-query ..172
4.6.35 properties-constraint-query ...174
4.6.36 custom-constraint-query ...175
4.6.37 geospatial-constraint-query ...178
4.6.38 geo-region-constraint-query ..181
4.6.39 lsqt-query ..185
4.6.40 period-compare-query ...187
4.6.41 period-range-query ..189
4.6.42 operator-state ..192

5.0 Searching Using Query By Example ...195
5.1 QBE Overview ..195

5.1.1 Search Criteria Based on Document Structure197
5.1.2 Logical Operators ...201
5.1.3 Comparison Operators ..202
5.1.4 Query by Value or Word ..203
5.1.5 Search Result Customization ..204
5.1.6 Options for Controlling Search Behavior ...204

5.2 Example ..204
5.2.1 XML Example ..205
5.2.2 JSON Example ..206

5.3 Understanding QBE Sub-Query Types ...208
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 4

MarkLogic Server Table of Contents
5.3.1 Value Query ..209
5.3.2 Word Query ..210
5.3.3 Range Query ...211
5.3.4 Composed Query ..213
5.3.5 Container Query ..214

5.4 Search Criteria Quick Reference ..217
5.4.1 XML Search Criteria Quick Reference ..218
5.4.2 JSON Search Criteria Quick Reference ..220
5.4.3 Searching Entire Documents ..221

5.5 QBE Structural Reference ..223
5.5.1 Top Level Structure ..224
5.5.2 Query Components ...225
5.5.3 Response Components ..227
5.5.4 XML-Specific Considerations ..228
5.5.5 JSON-Specific Considerations ...230

5.6 How Indexing Affects Your Query ..234
5.7 Adding Options to a QBE ...235

5.7.1 Specifying Options in XML ...235
5.7.2 Specifying Options in JSON ...235
5.7.3 Option List ..236
5.7.4 Using Persistent Query Options ..238

5.8 Customizing Search Results ...240
5.8.1 When to Include a Response in Your Query ..240
5.8.2 Using the snippet Formatter ..241
5.8.3 Using the extract Formatter ..243
5.8.4 Example: Search Customization ...244

5.9 Scoping a Search by Document Type ...245
5.10 Converting a QBE to a Combined Query ...246
5.11 Validating a QBE ..246

6.0 Composing cts:query Expressions ...248
6.1 Understanding cts:query ...248

6.1.1 cts:query Hierarchy ...249
6.1.2 Use to Narrow the Search ...251
6.1.3 Understanding cts:element-query ...251
6.1.4 Understanding cts:element-word-query ..251
6.1.5 Understanding Field Word and Value Query Constructors252
6.1.6 Understanding the Range Query Constructors252
6.1.7 Understanding the Reverse Query Constructor252
6.1.8 Understanding the Geospatial Query Constructors253
6.1.9 Specifying the Language in a cts:query ..253

6.2 Creating a Query From Search Text With cts:parse ...253
6.2.1 String Query Overview ...254
6.2.2 Grammar Components and Operators ..255
6.2.3 Including Options and Weights in Query Text262
6.2.4 Binding a Tag to a Reference, Field, or Query Generator264
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 5

MarkLogic Server Table of Contents
6.2.5 Customizing Naked Term Handling With Bindings274
6.2.6 Query Text Parsing Examples ..275

6.3 Combining multiple cts:query Expressions ..278
6.3.1 Using cts:and-query and cts:or-query ...278
6.3.2 Proximity Queries using cts:near-query ...279
6.3.3 Using Bounded cts:query Expressions ...279
6.3.4 Matching Nothing and Matching Everything ...280

6.4 Joining Documents and Properties with cts:properties-query or cts:document-frag-
ment-query 280

6.5 Registering cts:query Expressions to Speed Search Performance281
6.5.1 Registered Query APIs ...281
6.5.2 Must Be Used Unfiltered ..282
6.5.3 Registration Does Not Survive System Restart282
6.5.4 Storing Registered Query IDs ...283
6.5.5 Registered Queries and Relevance Calculations283
6.5.6 Example: Registering and Using a cts:query Expression283

6.6 Adding Relevance Information to cts:query Expressions:283
6.7 Serializations of cts:query Constructors ...284

6.7.1 Serializing a cts:query as XML ..284
6.7.2 Serializing a cts.query as JSON ..284
6.7.3 Add Arbitrary Annotations With cts:annotation285
6.7.4 Constructing a cts:query From XML ..285
6.7.5 Constructing a cts.query From a JavaScript Object or JSON String286

6.8 Example: Creating a cts:query Parser ...286

7.0 Creating JavaScript Search Applications ...289
7.1 JSearch Introduction ...289

7.1.1 JSearch Feature Summary ..290
7.1.2 Top Level Function Summary ..290
7.1.3 Query Design Pattern ..291
7.1.4 How JSearch Relates to Other MarkLogic Search APIs294
7.1.5 Running the Examples in This Chapter ..294

7.2 Scoping Operations by Collection ..295
7.3 Searching Documents ...295

7.3.1 Document Search Basics ..296
7.3.2 Example: Basic Document Search ..298

7.4 Creating a cts.query ..300
7.4.1 Using byExample to Create a Query ..301
7.4.2 Using Query Text to Create a cts.query ..306
7.4.3 Using cts.query Constructors ..308

7.5 Including Facets in Search Results ...308
7.5.1 Introduction to Facets ...309
7.5.2 Basic Steps for Generating Facets ..310
7.5.3 Example: Generating Facets From JSON Properties312
7.5.4 Creating a Facet Definition ...313
7.5.5 Understanding the Output of Facets ...315
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 6

MarkLogic Server Table of Contents
7.5.6 Sorting Facet Values with OrderBy ..318
7.5.7 Retrieving Facets and Content in a Single Operation319
7.5.8 Multi-Facet Interactions Using othersWhere ..322
7.5.9 Example: Multi-Facet Interactions Using othersWhere323

7.6 Controlling the Ordering of Results ..328
7.6.1 Sorting Document Search Results ..328
7.6.2 Sorting Values or Tuples Query Results ...330
7.6.3 Sorting Word Lexicon Query Results ...330
7.6.4 Sorting Facet Values ...331

7.7 Returning a Result Subset ...331
7.8 Including Snippets of Matching Content in Search Results332

7.8.1 Enabling Snippet Generation ..333
7.8.2 Configuring the Built-In Snippet Generator ...334
7.8.3 Returning Snippets and Documents Together ..335
7.8.4 Generating Custom Snippets ..336
7.8.5 Standalone Snippet Generation ...336

7.9 Extracting Portions of Each Matched Document ...337
7.9.1 Extraction Overview ...337
7.9.2 How selected Affects Extraction ..339
7.9.3 Combining Extraction With Snippeting ...340

7.10 Using Options to Control a Query ..341
7.11 Transforming Results with Map and Reduce ...343

7.11.1 Map and Reduce Overview ...343
7.11.2 Configuring the Built-In Mapper ..344
7.11.3 Using a Custom Mapper ...345
7.11.4 Configuring the Built-In Reducer ...346
7.11.5 Using a Custom Reducer ..347
7.11.6 Example: Returning Only Documents ..348
7.11.7 Example: Using a Custom Mapper for Content Transformation349
7.11.8 Example: Custom Reducer For Document Search351
7.11.9 Example: Custom Reducer For Values Query ..353

7.12 Querying Lexicons and Range Indexes ..354
7.12.1 Querying the Values in a Lexicon or Index ..354
7.12.2 Finding Value Co-Occurrences in Lexicons and Indexes357
7.12.3 Querying Values in a Word Lexicon ..359
7.12.4 Computing Aggregates Over Range Indexes ..362
7.12.5 Constructing Lexicon and Range Index References366

7.13 Grouping Values and Facets Into Buckets ..367
7.13.1 Bucketing Overview ...367
7.13.2 Example: Generating Buckets With makeBuckets369
7.13.3 Example: Grouping Using Custom Buckets ...372

7.14 Preparing to Run the Examples ..375
7.14.1 Configuring the Database ...375
7.14.2 Loading the Sample Documents ...379

8.0 Search Customization Using Query Options ...381
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 7

MarkLogic Server Table of Contents
8.1 Introduction ...381
8.2 Getting the Default Query Options ...382
8.3 Checking Query Options for Errors ..382
8.4 Constraint Options ..382

8.4.1 Value Constraint Example ..389
8.4.2 Word Constraint Examples ...389
8.4.3 Collection Constraint Example ...390
8.4.4 Bucketed Range Constraint Example ...391
8.4.5 Exact Match (Unbucketed) Range Constraint Example393
8.4.6 Geospatial Constraint Example ..393

8.5 Operator Options ...395
8.6 Return Options ..398
8.7 Searchable Expression Option ..398
8.8 Fragment Scope Option ..399
8.9 Searching Key-Value Metadata Fields ...400
8.10 Modifying Your Snippet Results ..401

8.10.1 Specifying transform-results Options ...401
8.10.2 Specifying Your Own Code in transform-results403

8.11 Extracting a Portion of Matching Documents ..404
8.12 Customizing Search Results with a Decorator ...408

8.12.1 Understanding Search Result Decorators ...408
8.12.2 Writing a Custom Search Result Decorator ..409
8.12.3 Installing a Custom Search Result Decorator ...410
8.12.4 Using a Custom Search Result Decorator ...410

8.13 Other Search Options ..411
8.14 Query Options Examples ..411

8.14.1 Example: Values and Tuples Query Options ..412
8.14.2 Example: Field Constraint Query Options ..415
8.14.3 Example: Collection Constraint Query Options415
8.14.4 Example: Path Range Index Constraint Query Options416
8.14.5 Example: Element Attribute Range Constraint Query Options418
8.14.6 Example: Geospatial Constraint Query Options420

9.0 Relevance Scores: Understanding and Customizing422
9.1 Understanding How Scores and Relevance are Calculated422

9.1.1 log(tf)*idf Calculation ..423
9.1.2 log(tf) Calculation ...423
9.1.3 Simple Term Match Calculation ...424
9.1.4 Random Score Calculation ...424
9.1.5 Term Frequency Normalization ..424

9.2 How Fragmentation and Index Options Influence Scores425
9.3 Using Weights to Influence Scores ...425
9.4 Proximity Boosting With the distance-weight Option ..426

9.4.1 Example of Simple Proximity Boosting ...426
9.4.2 Using Proximity Boosting With cts:and-query Semantics427
9.4.3 Using cts:near-query to Achieve Proximity Boosting428
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 8

MarkLogic Server Table of Contents
9.5 Boosting Relevance Score With a Secondary Query ..429
9.6 Including a Range or Geospatial Query in Scoring ..430

9.6.1 How a Range Query Contributes to Score ..431
9.6.2 Use Cases for Range Query Score Contributions431
9.6.3 Enabling Range Query Score Contribution ..431
9.6.4 Understanding Slope Factor ..433
9.6.5 Performance Considerations ...435
9.6.6 Range Query Scoring Examples ...436

9.7 Interaction of Score and Quality ...440
9.8 Using cts:score, cts:confidence, and cts:fitness ..440
9.9 Relevance Order in cts:search Versus Document Order in XPath441
9.10 Exploring Relevance Score Computation ...442
9.11 Sample cts:search Expressions ...444

9.11.1 Magnify the Score Boost for Documents With Quality444
9.11.2 Increase the Score for some Terms, Decrease for Others444

10.0 Browsing With Lexicons ...445
10.1 About Lexicons ...445
10.2 Creating Lexicons ...446
10.3 Word Lexicons ..447

10.3.1 Word Lexicon for the Entire Database ...447
10.3.2 Element/Element-Attribute Word Lexicons ...448
10.3.3 JSON Property Word Lexicons ..448
10.3.4 Field Word Lexicons ..449

10.4 Element/Element-Attribute/Path Value Lexicons ..449
10.5 Field Value Lexicons ..450
10.6 Value Co-Occurrences Lexicons ..451
10.7 Geospatial Lexicons ..453
10.8 Range Lexicons ...454
10.9 URI and Collection Lexicons ...454
10.10 Performing Lexicon-Based Queries ..455

10.10.1Lexicon APIs ..455
10.10.2Constraining Lexicon Searches to a cts:query Expression456
10.10.3Using the Match Lexicon APIs ...457
10.10.4Determining the Number of Fragments Containing a Lexicon Term457

11.0 Using Range Queries in cts:query Expressions ..459
11.1 Overview of Range Queries ..459

11.1.1 Uses for Range Queries ..459
11.1.2 Requirements for Using Range Queries ...460
11.1.3 Performance and Coding Advantages of Range Queries460

11.2 Range Query cts:query Constructors ..461
11.3 Examples of Range Queries ..461

12.0 Using Aggregate Functions ..463
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 9

MarkLogic Server Table of Contents
12.1 Introduction to Aggregate Functions ..463
12.2 Using Builtin Aggregate Functions ..463
12.3 Using Aggregate User-Defined Functions ..465

13.0 Highlighting Search Term Matches ...468
13.1 Overview of cts:highlight ...468

13.1.1 All Matching Terms, Including Stemmed, and Capitalized468
13.2 General Search and Replace Function ..469
13.3 Built-In Variables For cts:highlight ..469

13.3.1 Using the $cts:text Variable to Access the Matched Text470
13.3.2 Using the $cts:node Variable to Access the Context of the Match470
13.3.3 Using the $cts:queries Variable to Feed Logic Based on the Query471
13.3.4 Using $cts:start to Capture the String-Length Position472
13.3.5 Using $cts:action to Stop Highlighting ...472

13.4 Using cts:highlight to Create Snippets ..472
13.5 cts:walk Versus cts:highlight ..473
13.6 Common Usage Notes ..473

13.6.1 Input Must Be a Single Node ..474
13.6.2 Using xdmp:set Side Effects With cts:highlight474
13.6.3 No Highlighting with cts:similar-query or cts:element-attribute-*-query

475

14.0 Geospatial Search Applications ...476
14.1 Terms and Definitions ..477
14.2 Licensing Requirements for Geospatial Features ...478
14.3 Geospatial Features Overview ..479

14.3.1 Search for Points, Polygons, and Other Regions479
14.3.2 Geospatial Type System ...480
14.3.3 Multiple Coordinate Systems ..480
14.3.4 Support for Common Geospatial Representations481
14.3.5 Flexible Data Layout ..481
14.3.6 Support for Single and Double Precision Coordinates481
14.3.7 Geospatial Computational Utility Functions ..482
14.3.8 Geospatial Format Conversion Functions ...482
14.3.9 Support in Multiple APIs ..482

14.4 Understanding Coordinate Systems ..483
14.4.1 Understanding Points ..483
14.4.2 Understanding Geodetic Coordinates ...483
14.4.3 Understanding Euclidean Coordinates ..484
14.4.4 Supported Coordinate Systems ...485
14.4.5 The Governing Coordinate System ...486
14.4.6 How Precision Affects Geospatial Operations486

14.5 Understanding MarkLogic Geospatial Region Types ..487
14.5.1 Boxes ..487
14.5.2 Polygons ..489
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 10

MarkLogic Server Table of Contents
14.5.3 Complex Polygons ..491
14.5.4 Linestrings ..492
14.5.5 Circles ...492

14.6 Understanding Geospatial Query and Index Types ..493
14.6.1 Introduction to Geospatial Query and Index Types493
14.6.2 Geospatial Query Creation ..496
14.6.3 Geospatial Index Creation ..496
14.6.4 Geospatial XML Element Point Queries and Indexes497
14.6.5 Geospatial XML Element Child Point Queries and Indexes498
14.6.6 Geospatial XML Element Pair Point Queries and Indexes499
14.6.7 Geospatial XML Attribute Pair Point Queries and Indexes500
14.6.8 Geospatial Path Point Queries and Indexes ..501
14.6.9 Geospatial JSON Property Point Queries and Indexes503
14.6.10Geospatial JSON Property Child Point Queries and Indexes504
14.6.11Geospatial JSON Property Pair Point Queries and Indexes505
14.6.12Geospatial Region Queries and Indexes ...506
14.6.13Geospatial Index Positions ..508
14.6.14Geospatial Lexicons ..508
14.6.15Index Reference Resolution ..508

14.7 Searching for Matching Points ...509
14.7.1 Point Search Overview ...510
14.7.2 Example: Point Query Using XQuery ..512
14.7.3 Example: Point Query Using JavaScript ..514
14.7.4 Constructing a Point Query in XQuery ...518
14.7.5 Constructing a Point Query in JavaScript ...519
14.7.6 Constructing a Point Query from Query Text ..520
14.7.7 Creating Point Queries with the Client APIs ..522
14.7.8 Creating Geospatial Facets ...525

14.8 Searching for Matching Regions ..528
14.8.1 Region Match Overview ...529
14.8.2 Example: Simple Intersection Region Query ...530
14.8.3 Example: Using Region Queries in a Composed Query537
14.8.4 Constructing a Region Query Using a Constructor538
14.8.5 Constructing a Region Query from Query Text540
14.8.6 Creating Region Queries Using the Client APIs542
14.8.7 Example: Using the Envelope Pattern to Encode Regions548

14.9 Controlling Coordinate System and Precision ..549
14.9.1 The Relationship Between Precision and Coordinate System550
14.9.2 Determining the Best Precision for Your Application550
14.9.3 How MarkLogic Selects the Governing Coordinate System551
14.9.4 Probing the Governing Coordinate System Name554
14.9.5 Specifying the App Server Default Coordinate System554
14.9.6 Specifying the Per-Module Coordinate System555
14.9.7 Specifying a Per-Operation Coordinate System and Precision556
14.9.8 Specifying Coordinate System During Index Creation557

14.10 Understanding Tolerance ..558
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 11

MarkLogic Server Table of Contents
14.10.1How Tolerance Affects Geometric Comparisons558
14.10.2Considerations for Tolerance Selection ..560

14.11 Summary of Other Geospatial Operations ..560
14.12 Converting To and From Common Geospatial Representations562

14.12.1Conversion Overview ...562
14.12.2WKT and WKB Conversions in XQuery ...564
14.12.3WKT and WKB Conversions in JavaScript ...565
14.12.4Mapping of WKT and WKB Types to MarkLogic Types566

14.13 Constructing Geospatial Point and Region Values ...567
14.14 Geospatial Query Support in Other APIs ...569
14.15 Preparing to Run the Examples ..569

14.15.1Overview of the Sample Data ...569
14.15.2Configuring the Indexes ..573
14.15.3Creating the Input Data Files ..577
14.15.4Loading the Sample Data ..582

15.0 Entity Extraction and Enrichment ..586
15.1 Overview of Entity Extraction and Enrichment ...586
15.2 Understanding Dictionary-Based Extraction and Enrichment588
15.3 Creating an Entity Dictionary ...589

15.3.1 Understanding Entity Dictionaries ..590
15.3.2 Creating a Dictionary Using Entity Constructors591
15.3.3 Creating a Dictionary From Text ..591
15.3.4 Creating a Dictionary From a SKOS Ontology592
15.3.5 Persisting or Retrieving an Entity Dictionary ...595
15.3.6 Serializing a Dictionary as Text ..597

15.4 Dictionary-Based Entity Enrichment ..598
15.4.1 API Summary ...599
15.4.2 Using entity:enrich or entity.enrich ..599
15.4.3 Using cts:entity-highlight or cts.entityHighlight600
15.4.4 XQuery Example: entity:enrich ..601
15.4.5 XQuery Example: cts:entity-highlight ..603
15.4.6 JavaScript Example: entity.enrich ..605
15.4.7 JavaScript Example: cts.entityHighlight ...607

15.5 Dictionary-Based Entity Extraction ..609
15.5.1 API Summary ...610
15.5.2 Extraction Using entity:extract or entity.extract611
15.5.3 Extraction Using cts:entity-walk or cts.entityWalk612
15.5.4 XQuery Example: entity:extract ...614
15.5.5 XQuery Example: cts:entity-walk ..616
15.5.6 JavaScript Example: entity.extract ...618
15.5.7 JavaScript Example: cts.entityWalk ...620

15.6 Using an Entity Type Map for Extraction or Enrichment622
15.6.1 Entity Type Map Basics ..622
15.6.2 The Default Entity Type Map ...624
15.6.3 Handling Compound Entity Types ...626
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 12

MarkLogic Server Table of Contents
15.6.4 Filtering Entity Types With a Mapping ..626
15.7 Overlapping Entity Match Handling ...627

15.7.1 Understanding Entity Overlaps ...627
15.7.2 Overlap Handling Options ..628
15.7.3 Example: Overlap Handling in entity:extract and entity.extract628
15.7.4 Example: Overlap Handling in entity:enrich and entity.enrich629
15.7.5 Interaction with the Walk and Highlight Functions631

15.8 Entity Identification Using Reverse Query ...631
15.9 Entity Enrichment Pipelines ...634

15.9.1 Sample Pipelines Using Third-Party Technologies634
15.9.2 Custom Entity Enrichment Pipelines ..634

16.0 Creating Alerting Applications ..635
16.1 Overview of Alerting Applications in MarkLogic Server635
16.2 cts:reverse-query Constructor ...636
16.3 XML Serialization of cts:query Constructors ...636
16.4 Security Considerations of Alerting Applications ..637

16.4.1 Alert Users, Alert Administrators, and Controlling Access637
16.4.2 Predefined Roles for Alerting Applications ..637

16.5 Indexes for Reverse Queries ...638
16.6 Alerting API ..639

16.6.1 Alerting API Concepts ..639
16.6.2 Using the Alerting API ...641
16.6.3 Using CPF With an Alerting Application ...644

16.7 Alerting Sample Application ..646

17.0 Using fn:count vs. xdmp:estimate ..647
17.1 fn:count is Accurate, xdmp:estimate is Fast ...647
17.2 The xdmp:estimate Built-In Function ...647
17.3 Using cts:remainder to Estimate the Size of a Search ..648
17.4 When to Use xdmp:estimate ...648

17.4.1 When Estimates Are Good Enough ..650
17.4.2 When XPaths Meet The Right Criteria ...650
17.4.3 When Empirical Tests Demonstrate Correctness651

18.0 Understanding and Using Stemmed Searches ...652
18.1 The Role of Stemming and Tokenization in Search ...652
18.2 Stemming in MarkLogic Server ...653
18.3 Enabling Stemming ...653
18.4 Stemmed Searches Versus Word Searches ...654
18.5 Using cts:highlight to Emphasize a Query Match ..655
18.6 Using cts:contains to Test for a Stemmed Match ...655
18.7 Interaction With Wildcard Searches ...656
18.8 Using a User-Defined Stemmer Plugin ..656

18.8.1 When to Consider a User-Defined Stemmer ..656
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 13

MarkLogic Server Table of Contents
18.8.2 StemmerUDF Interface Summary ..657
18.8.3 Understanding User-Defined Stemmer Control Flow658
18.8.4 Implementation Guidelines for User-Defined Stemmers661
18.8.5 Creating and Deploying a User-Defined Stemmer Plugin661
18.8.6 Registering a User-Defined Stemmer with MarkLogic662
18.8.7 Testing a User-Defined Stemmer ...663
18.8.8 Error Handling and Logging ...663

19.0 Custom Dictionaries for Tokenizing and Stemming665
19.1 Custom Dictionaries in MarkLogic Server ...665
19.2 Custom Dictionary Format ...666
19.3 Custom Dictionary Function Summary ..667
19.4 Example: Managing a Custom Dictionary in XQuery ..668

19.4.1 Install the Dictionary ..668
19.4.2 Modify and Update the Dictionary ...669
19.4.3 Delete the Dictionary ..670

19.5 Example: Managing a Custom Dictionary in JavaScript670
19.5.1 Install the Dictionary ..670
19.5.2 Modify and Update the Dictionary ...671
19.5.3 Delete the Dictionary ..672

19.6 Example: Exercising a Custom Dictionary ...672

20.0 Extracting Metadata and Text From Binary Documents674
20.1 Metadata and Text Extraction Overview ..674
20.2 Usage Examples ..674

20.2.1 Microsoft Word ...674
20.2.2 File Archives ...676
20.2.3 PowerPoint ..678

20.3 Supported Binary Formats ..679
20.3.1 Archives ...679
20.3.2 Databases ...680
20.3.3 Email and Messaging ..680
20.3.4 Multimedia ..680
20.3.5 Other ...680
20.3.6 ..Presentation 680
20.3.7 Raster Image ...681
20.3.8 Spreadsheet ...681
20.3.9 Text and Markup ...681
20.3.10Vector Image ...681
20.3.11Word Processing and General Office ...682

21.0 Understanding and Using Wildcard Searches ..683
21.1 Wildcards in MarkLogic Server ...683

21.1.1 Wildcard Characters ...683
21.1.2 Rules for Wildcard Searches ...683
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 14

MarkLogic Server Table of Contents
21.2 Enabling Wildcard Searches ...684
21.2.1 Specifying Wildcards in Queries ..685
21.2.2 Recommended Wildcard Index Settings ...685
21.2.3 Understanding the Wildcard Indexes ..686

21.3 Interaction with Other Search Features ..687
21.3.1 Wildcarding and Stemming ..688
21.3.2 Wildcarding and Punctuation Sensitivity ...688

22.0 Collections ...693
22.1 The collection() Function ..693
22.2 Collections Versus Directories ...694
22.3 Defining Collections ...695

22.3.1 Implicitly Defining Unprotected Collections ...695
22.3.2 Explicitly Defining Protected Collections ..696

22.4 Collection Membership ...697
22.5 Collections and Security ...697

22.5.1 Unprotected Collections ...698
22.5.2 Protected Collections ..698

22.6 Performance Characteristics ...699
22.6.1 Number of Collections to Which a Document Belongs700
22.6.2 Adding/Removing Existing Documents To/From Collections700

23.0 Using the Thesaurus Functions ..701
23.1 The Thesaurus Module ...701
23.2 Function Reference ...701
23.3 Thesaurus Schema ..702
23.4 Capitalization ..702
23.5 Managing Thesaurus Documents ..702

23.5.1 Loading Thesaurus Documents in XQuery ..703
23.5.2 Loading Thesaurus Documents in JavaScript ...703
23.5.3 Lowercasing Terms When Inserting a Thesaurus Document704
23.5.4 Loading the XML Version of the WordNet Thesaurus704
23.5.5 Updating a Thesaurus Document ..705
23.5.6 Security Considerations With Thesaurus Documents706
23.5.7 Example Queries Using Thesaurus Management Functions706

23.6 Expanding Searches Using a Thesaurus in XQuery ...712
23.7 Expanding Searches Using a Thesaurus in JavaScript713

24.0 Using the Spelling Correction Functions ...714
24.1 Overview of Spelling Correction ..714
24.2 Function Reference ...714

24.2.1 The Spelling Built-In Functions ...715
24.2.2 The Spelling Dictionary Management Module Functions715

24.3 Dictionary Documents ..716
24.3.1 XML Dictionary Document ..716
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 15

MarkLogic Server Table of Contents
24.3.2 JSON Dictionary Document ...716
24.4 Capitalization ..717
24.5 Managing Dictionary Documents ...717

24.5.1 Loading Dictionary Documents in XQuery ..718
24.5.2 Loading Dictionary Documents in JavaScript ..718
24.5.3 Loading one of the Sample XML Dictionaries718
24.5.4 Updating a Dictionary Document ...719
24.5.5 Security Considerations With Dictionary Documents721

24.6 Testing if a Word is Spelled Correctly ...721
24.7 Getting Spelling Suggestions for Incorrectly Spelled Words722

25.0 Distinctive Terms and cts:similar-query ..723
25.1 Understanding cts:similar-query ...723
25.2 Finding the Distinctive Terms of a Set of Nodes ..723
25.3 Understanding the cts:distinctive-terms Output ...724
25.4 Example Design Pattern: Making a Tag Cloud ..725

26.0 Training the Classifier ...727
26.1 Understanding How Training and Classification Works727

26.1.1 Training and Classification ...727
26.1.2 XML SVM Classifier ..727
26.1.3 Hyper-Planes and Thresholds for Classes ..728
26.1.4 Training Content for the Classifier ...732

26.2 Classifier API ..732
26.2.1 XQuery Built-In Functions ...732
26.2.2 Data Can Reside Anywhere or Be Constructed733
26.2.3 API is Extremely Tunable ...733
26.2.4 Supports Versus Weights Classifiers ..733
26.2.5 Kernels (Mapping Functions) ...734
26.2.6 Find Thresholds That Balance Precision and Recall734

26.3 Leveraging XML With the Classifier ...734
26.4 Creating a Training Set ...734

26.4.1 Importance of the Training Set ...735
26.4.2 Defining Labels for the Training Set ..735

26.5 Methodology For Determining Thresholds For Each Class736
26.6 Example: Training and Running the Classifier ...737

26.6.1 Shakespeare’s Plays: The Training Set ...738
26.6.2 Comedy, Tragedy, History: The Classes ..738
26.6.3 Partition the Training Content Set ..738
26.6.4 Create Labels on the First Half of the Training Content739
26.6.5 Run cts:train on the First Half of the Training Content739
26.6.6 Run cts:classify on the Second Half of the Content Set740
26.6.7 Use cts:thresholds to Compute the Thresholds on the Second Half741
26.6.8 Evaluating Your Results, Make Changes, and Run Another Iteration ...741
26.6.9 Run the Classifier on Other Content ...742
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 16

MarkLogic Server Table of Contents
27.0 Results Clustering Using cts:cluster ..743
27.1 Understanding cts:cluster ..743
27.2 Options to cts:cluster ..744

27.2.1 Clustering (cts:cluster) Options ..744
27.2.2 Indexing (db:) Options ..745

27.3 Understanding the cts:cluster Output ..745
27.4 Example that Creates an HTML Report of the Cluster747

28.0 Language Support in MarkLogic Server ..751
28.1 Overview of Language Support in MarkLogic Server751
28.2 Tokenization and Stemming ...752

28.2.1 Language-Specific Tokenization ..752
28.2.2 Stemmed Searches in Different Languages ..754

28.3 Language Aspects of Loading and Updating Documents755
28.3.1 Tokenization and Stemming ...755
28.3.2 xml:lang Attribute ...755
28.3.3 Language-Related Notes About Loading and Updating Documents757
28.3.4 Protecting JSON Files That Should not be Stemmed757

28.4 Querying Documents By Languages ..758
28.4.1 Tokenization, Stemming, and the xml:lang Attribute758
28.4.2 Language-Aware Searches ...758
28.4.3 Unstemmed Searches ..759
28.4.4 Unknown Languages ..760

28.5 Supported Languages ..761
28.6 Generic Language Support ...762
28.7 Stemming and Tokenization Customization ...762

28.7.1 Tokenization Customization ...763
28.7.2 Stemming Customization ..763

28.8 Configuring Tokenization and Stemming Plugins ..764
28.8.1 Function Summary for Custom Language Management765
28.8.2 Customization Using a Built-In Lexer or Stemmer766
28.8.3 Customization Using a User-Defined Lexer or Stemmer768
28.8.4 Example: Adding Configuration for a Language770
28.8.5 Example: Removing Configuration for a Language773
28.8.6 Example: Resetting Configuration for All Languages774
28.8.7 Understanding Stemming Delegation ...775
28.8.8 Custom Dictionary Security Considerations ...776
28.8.9 Built-in Lexer Plugin Reference ...778
28.8.10Built-in Stemmer Plugin Reference ..779

28.9 Language Support in JSON ..782
28.9.1 Overview ...782
28.9.2 API Changes ...783
28.9.3 JSON Serialization ..784
28.9.4 Upgrade Considerations ..784
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 17

MarkLogic Server Table of Contents
29.0 Custom Tokenization ...785
29.1 Custom Tokenizer Overrides ..785

29.1.1 Introduction to Custom Tokenizer Overrides ...785
29.1.2 How Character Classification Affects Tokenization786
29.1.3 Using xdmp:describe to Explore Tokenization787
29.1.4 Performance Impact of Using Tokenizer Overrides788
29.1.5 Defining a Custom Tokenizer Override ..788
29.1.6 Examples of Custom Tokenizer Overrides ...789

29.2 User-Defined Lexer Plugins ...795
29.2.1 When to Consider a User-Defined Lexer ...796
29.2.2 LexerUDF Interface Summary ...796
29.2.3 Understanding User-Defined Lexer Control Flow797
29.2.4 Implementation Guidelines for User-Defined Lexers799
29.2.5 Creating and Deploying a User-Defined Lexer Plugin800
29.2.6 Registering a Custom Tokenizer with MarkLogic800
29.2.7 Testing a User-Defined Lexer ...801
29.2.8 Error Handling and Logging ...801

30.0 Encodings and Collations ...803
30.1 Character Encoding ...803
30.2 Collations ..804

30.2.1 Overview of Collations ...804
30.2.2 Two Common Collation URIs ..805
30.2.3 Collation URI Syntax ..805
30.2.4 Backward Compatibility with 3.1 Range Indexes and Lexicons809
30.2.5 UCA Root Collation ...809
30.2.6 How Collation Defaults are Determined ..809
30.2.7 Specifying Collations ..811

30.3 Collations and Character Sets By Language ...811

31.0 Appendix: Query Options Reference ...816
31.1 How to Use This Reference ..817
31.2 Options Summary ...818
31.3 additional-query ..820

31.3.1 Syntax Summary ...820
31.3.2 Component Description ..821
31.3.3 Examples ...821
31.3.4 See Also ..821

31.4 concurrency-level ..821
31.5 constraint ...822

31.5.1 Syntax Summary ...823
31.5.2 Component Description ..824
31.5.3 Examples ...825
31.5.4 See Also ..825
31.5.5 range ..825
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 18

MarkLogic Server Table of Contents
31.5.6 value ..831
31.5.7 word ..835
31.5.8 collection ...839
31.5.9 container ..842
31.5.10element-query ...844
31.5.11properties ..846
31.5.12geo-attr-pair ..847
31.5.13geo-elem ..852
31.5.14geo-elem-pair ..856
31.5.15geo-json-property ..860
31.5.16geo-json-property-pair ..863
31.5.17geo-path ..867
31.5.18geo-region-path ...871
31.5.19custom ...874
31.5.20heatmap ...877
31.5.21bucket ..880
31.5.22computed-bucket ...884
31.5.23path-index ...888

31.6 debug ...890
31.7 default-suggestion-source ...890

31.7.1 Syntax Summary ...891
31.7.2 Component Description ..892
31.7.3 Examples ...893
31.7.4 See Also ..894

31.8 extract-document-data ..895
31.8.1 Syntax Summary ...896
31.8.2 Component Description ..897
31.8.3 Examples ...898
31.8.4 See Also ..898

31.9 forest ...898
31.10 fragment-scope ..899
31.11 grammar ..900

31.11.1Syntax Summary ...900
31.11.2Component Description ..901
31.11.3Examples ...902
31.11.4starter ..903
31.11.5joiner ...905

31.12 operator ...908
31.12.1Syntax Summary ...909
31.12.2Component Description ..909
31.12.3Examples ...911
31.12.4See Also ..912

31.13 page-length ..912
31.14 quality-weight ...913
31.15 result-decorator ...913

31.15.1Syntax Summary ...914
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 19

MarkLogic Server Table of Contents
31.15.2Component Description ..914
31.15.3Examples ...915

31.16 return-aggregates ..915
31.17 return-constraints ..916
31.18 return-facets ..916
31.19 return-frequencies ...917
31.20 return-metrics ..917
31.21 return-plan ...917
31.22 return-qtext ..918
31.23 return-query ..918
31.24 return-results ...919
31.25 return-similar ..919
31.26 return-values ...920
31.27 search-option ...920
31.28 searchable-expression ...921

31.28.1Syntax Summary ...922
31.28.2Component Description ..922
31.28.3Examples ...923
31.28.4See Also ..923

31.29 sort-order ...923
31.29.1Syntax Summary ...924
31.29.2Component Description ..925
31.29.3Examples ...927

31.30 suggestion-source ..928
31.30.1Syntax Summary ...928
31.30.2Component Description ..929
31.30.3Examples ...930
31.30.4See Also ..931

31.31 term ...931
31.31.1Syntax Summary ...933
31.31.2Component Description ..933
31.31.3Examples ...934

31.32 transform-results ...936
31.32.1Syntax Summary ...937
31.32.2Component Description ..938
31.32.3Examples ...939
31.32.4See Also ..940

31.33 tuples ...941
31.33.1Syntax Summary ...941
31.33.2Component Description ..942
31.33.3Examples ...944
31.33.4See Also ..944

31.34 values ..945
31.34.1Syntax Summary ...946
31.34.2Component Description ..946
31.34.3Examples ...948
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 20

MarkLogic Server Table of Contents
31.34.4See Also ..949
31.35 Term Options ..950
31.36 Facet Options ..950
31.37 Range Options ...951
31.38 Geospatial Point Query Options ...952
31.39 Geospatial Region Query Options ..953
31.40 Suggestion Options ...953
31.41 Values Options ..954

32.0 Technical Support ..956

33.0 Copyright ...958
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 21

MarkLogic Server Developing Search Applications in MarkLogic Server
1.0 Developing Search Applications in MarkLogic Server
29

This chapter provides an overview of developing search applications in MarkLogic Server, and
includes the following sections:

• Overview of Search Features in MarkLogic Server

• Where to Find Search Information

1.1 Overview of Search Features in MarkLogic Server

MarkLogic Server includes rich full-text search features. All of the search features are
implemented as extension functions available in XQuery, and most of them are also available
through the REST and Java interfaces. This section provides a brief overview some of the main
search features in MarkLogic Server and includes the following parts:

• High Performance Full Text Search

• APIs for Multiple Programming Languages

• Support for Multiple Query Styles

• Support for Multiple Query Types

• Full XPath Search Support in XQuery

• Lexicon and Range Index-Based APIs

• Stemming, Wildcard, Spelling, and Much More Functionality

• Alerting API and Built-Ins

1.1.1 High Performance Full Text Search

MarkLogic Server is designed to scale to extremely large databases (100s of terabytes or more).
All search functionality operates directly against the database, no matter what the database size.
As part of loading a document, full-text indexes are created making arbitrary searches fast.
Searches automatically use the indexes. Features such as the xdmp:estimate XQuery function and
the unfiltered search option allow you to return results directly out of the MarkLogic indexes.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 22

MarkLogic Server Developing Search Applications in MarkLogic Server
1.1.2 APIs for Multiple Programming Languages

MarkLogic Server provides search features through a set of layered APIs that support multiple
programming languages. The following diagram illustrates the layering of the MarkLogic search
APIs. These APIs are extensible and work in a large number of applications.

The core text search foundation in MarkLogic Server is the cts API, a set of built-in XQuery
functions in the cts namespace that perform full-text search. These capabilities are also available
in Server-Side Javascript as functions with a “cts.” prefix.

The APIs above the cts foundation provide a higher level of abstraction that enables rapid
development of search applications using XQuery, Server-Side JavaScript, Java, Node.js, or any
programming language with support for making HTTP requests. For example, the XQuery Search
API leverages functions such as cts:search, cts:word-query, and cts:element-value-query
internally.

The Search API, jsearch API, and the Client APIs are sufficient for most applications. Use the cts
built-ins for advanced application features, such as creating alerting applications with reverse
queries or creating content classifiers. The higher level APIs offer benefits such as the following:

• Abstraction of queries from the constraints and indexes that support them.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 23

MarkLogic Server Developing Search Applications in MarkLogic Server
• Built in support for search result snippeting, highlighting, and performance analysis.

• An extensible simple string query grammar.

• Easy-to-use syntax for query composition.

• Built in best practices that optimize performance.

You can use more than one of these APIs in an application. For example, a Java application can
include an XQuery or Server-Side JavaScript extension to perform custom search result
transformations on the server. Similarly, an XQuery application can call both search:* and cts:*
functions.

1.1.3 Support for Multiple Query Styles

Each of the APIs described in “APIs for Multiple Programming Languages” on page 23 supports
one or more input query styles for searching content and metadata, from simple string queries
(cat OR dog) to XML or JSON representations of complex queries. Search results are returned in
either raw or report form. The supported query styles and result format vary by API.

For example, the primary search function for the CTS API, cts:search, accepts input in the form
of a cts:query, which is a composable query style that enables you to perform fine-grained
searches. The cts:search function returns raw results as a sequence of matching nodes.

The Search, REST, Node.js and Java APIs accept more abstract query styles such as string and
structured queries, and return results either in report form, as an XML search:response (or
equivalent JSON structure) or matching documents. The customizable search:response can
include details such as snippets with highlighting of matching terms and query metrics. The REST
and Java APIs can also return the results report as JSON.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 24

MarkLogic Server Developing Search Applications in MarkLogic Server
The following diagram summarizes the query styles and results formats each API provides for
searching content and metadata:

The following table provides a brief description of each query style. The level of complexity of
query construction increases as you read down the table.

Query Style
Supporting

APIs
Description

String Query all Construct queries as text strings using a simple grammar of
terms, phrases, and operators such as AND and “>”. String
queries are easily composable by end users typing into a
search text box. NOTE: The cts and jsearch APIs use a
slightly different grammar than the higher level APIs. For
details, see “Creating a Query From Search Text With
cts:parse” on page 253 and “Searching Using String Que-
ries” on page 67.

Query By Example • REST
• Java
• Node.js
• jsearch

Construct queries in XML or JSON using syntax that
resembles your document structure. Conceptually, QBE
enables developers to easily search for “documents that
look like this”. For details, see “Searching Using Query By
Example” on page 195.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 25

MarkLogic Server Developing Search Applications in MarkLogic Server
1.1.4 Support for Multiple Query Types

A query encapsulates your search criteria. When you search for documents matching a query,
your criteria fall into one or more of the query types described in this section, no matter what
query style you use (string, structured, QBE, etc.).

The following query types are basic search building blocks that describe the content you want to
match.

• Range: Match values that satisfy a relational expression. You can express conditions such
as “less than 5” or “not equal to true”. A range query must be backed by a range index.

• Value: Match an entire literal value, such as a string or number, in a specific JSON
property or XML element. By default, value queries use exact match semantics. For
example, a search for “mark” will not match “Mark Twain”.

• Word: Match a word or phrase in a specific JSON property, XML element, or XML
attribute. In contrast to a value query, a word query will match a subset of a text value and

Structured Query • Search
• REST
• Java
• Node.js

Construct queries in JSON or XML using an Abstract
Syntax Tree (AST) representation, while still taking
advantage of Search API based abstractions and options.
Useful for modifying or adding to a query originally
expressed as a string query. For details, see “Searching
Using Structured Queries” on page 74.

Combined Query • REST
• Java
• Node.js

Search using XML or JSON structures that bundle a string,
structured, QBE, and/or cts query with Search API query
options. This enables searching without pre-defining query
options as is otherwise required by the Client APIs. For
details, see Specifying Dynamic Query Options with Combined

Query in the REST Application Developer’s Guide, Apply

Dynamic Query Options to Document Searches in the Java
Application Developer’s Guide, or Searching with Structured

Queries in the Node.js Application Developer’s Guide.

cts:query • Search
• jsearch
• cts

Construct queries in XML from low level cts:query
elements such as cts:and-query and cts:not-query. This
representation is tree structured like Structured Query, but
more complicated to work with. For details, see
“Composing cts:query Expressions” on page 248. These
functions are available in Server-Side JavaScript using the
cts.* functions such as cts.andQuery.

Query Style
Supporting

APIs
Description
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 26

MarkLogic Server Developing Search Applications in MarkLogic Server
does not not use exact match semantics by default. For example, a search for “mark” will
match “Mark Twain” in a specific context.

• Term: Match a word or phrase anywhere it appears. In contrast to a value query, a term
query will match a subset of a text value and does not use exact match semantics by
default. For example, a search for “mark” will match “Mark Twain” anywhere it appears
in a document.

Additional query types enable you to build up complex queries by combining the basic content
queries with each other and with criteria that add additional constraints. The additional query
types fall into the following categories.

• Logical Composers: Express logical relationships between criteria. You can build up
compound logical expressions such as “x AND (y OR z)”.

• Document Selectors: Select documents based on collection, directory, or URI. For
example, you can express criteria such as “x only when it occurs in documents in
collection y”.

• Location Qualifiers: Further limit results based on where the match appears. For example,
“x only when contained in JSON property z”, or “x only when it occurs within n words of
y”, or “x only when it occurs in a document property”.

The CTS API includes query constructors for all the above query types, such as
cts:*-range-query, cts:*-value-query, cts:*-word-query, cts:and-query,
cts:collection-query, and cts:near-query. For details, see “Composing cts:query Expressions”
on page 248.

With no additional configuration, string queries support term queries and logical composers. For
example, the query string “cat AND dog” is implicitly two term queries, joined by an “and”
logical composer. However, you can easily extend the expressive power of a string query using
constraint bindings to enable additional query types. For example, if you use a range constraint
binding to tie the identifier “cost” to a specific indexed JSON property, you enable string queries
of the form “cost GT 10”. For details, see “Searching Using String Queries” on page 67.

In a QBE, content matches are value queries by default. For example, a QBE search criteria of the
form {'my-key': 'desired-value'} is implicitly a value query for the JSON property 'my-key'
whose value is exactly 'desired-value'. However, the QBE syntax includes special property
names that enable you to construct other types of query. For example, use $word to create a word
query instead of a value query: {'my-key': {'$word': 'desired-value'}}. For details, see
“Searching Using Query By Example” on page 195.

Structured query includes components that encompass all the query types, such as value-query,
range-query, term-query, and-query, and directory-query. Some of the Client APIs include a
structured query builder interface to assist you with structured query composition. For details, see
“Searching Using Structured Queries” on page 74.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 27

MarkLogic Server Developing Search Applications in MarkLogic Server
1.1.5 Full XPath Search Support in XQuery

MarkLogic Server implements the XQuery language, which includes XPath 2.0. XPath
expressions are searches which can search XML across the entire database. For example, consider
the following XPath expression:

/my-node/my-child[fn:contains(., "hello")]

This expression searches across the entire database returning my-child nodes that match the
expression. XPath expressions take full advantage of the indexes in the database and are designed
to be fast.

MarkLogic Server extends XPath so that you can also use it to address JSON content. For details,
see Traversing JSON Documents Using XPath in the Application Developer’s Guide.

1.1.6 Lexicon and Range Index-Based APIs

MarkLogic Server enables you to define range indexes which index XML structures such as
elements, element attributes; XPath expressions; and JSON properties. You can also define range
indexes over geospatial values. Each of these range indexes has lexicon APIs associated with
them. The lexicon APIs enable you to return values directly from the indexes. Lexicons are very
useful in constructing facets and in finding fast counts of XML element, XML attribute, and
JSON property values. The Search API and Node.js, Java, and REST Client APIs makes
extensive use of the lexicon features. For details about lexicons, see “Browsing With Lexicons”
on page 445.

1.1.7 Stemming, Wildcard, Spelling, and Much More Functionality

MarkLogic Server search supports a wide range of full-text features. These features include
stemming, wildcarded searches, diacritic-sensitive/insensitive searches, case-sensitive/insensitive
searches, spelling correction functions, thesaurus functions, geospatial searches, advanced
language and collation support, and much more. These features are all designed to build off of
each other and work together in an extensible and flexible way.

1.1.8 Alerting API and Built-Ins

You can create applications that notify users when new content is available that matches a
predefined query. There is an API to help build these applications as well as a built-in cts:query
constructor (cts:reverse-query) and indexing support to build large and scalable alerting
applications. For details on alerting applications, see “Creating Alerting Applications” on
page 635.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 28

MarkLogic Server Developing Search Applications in MarkLogic Server
1.2 Where to Find Search Information

The MarkLogic XQuery and XSLT Function Reference contains the XQuery function signatures
and descriptions, as well as many code examples. This Search Developer’s Guide contains
descriptions and technical details about the search features in MarkLogic Server, including:

• “Search API: Understanding and Using” on page 30

• “Composing cts:query Expressions” on page 248

• “Relevance Scores: Understanding and Customizing” on page 422

• “Browsing With Lexicons” on page 445

• “Using Range Queries in cts:query Expressions” on page 459

• “Highlighting Search Term Matches” on page 468

• “Geospatial Search Applications” on page 476

• “Entity Extraction and Enrichment” on page 586

• “Creating Alerting Applications” on page 635

• “Using fn:count vs. xdmp:estimate” on page 647

• “Understanding and Using Stemmed Searches” on page 652

• “Understanding and Using Wildcard Searches” on page 683

• “Collections” on page 693

• “Using the Thesaurus Functions” on page 701

• “Using the Spelling Correction Functions” on page 714

• “Language Support in MarkLogic Server” on page 751

• “Encodings and Collations” on page 803

For other information about developing applications in MarkLogic Server, see the Application
Developer’s Guide. For information about XQuery in MarkLogic Server, see the XQuery and
XSLT Reference Guide.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 29

MarkLogic Server Search API: Understanding and Using
2.0 Search API: Understanding and Using
66

This chapter describes the Search API, which is an XQuery API designed to make it easy to create
search applications that contain facets, search results, and snippets. This chapter includes the
following sections:

• Understanding the Search API

• Controlling a Search With Query Options

• Search Term Completion Using search:suggest

• Creating a Custom Constraint

• Search Grammar

• Returning Lexicon Values With search:values

• JSON Support in the Search API

• More Search API Examples

This chapter provides background, design patterns, and examples of using the Search API. For the
function signatures and descriptions, see the Search documentation under XQuery Library
Modules in the MarkLogic XQuery and XSLT Function Reference.

2.1 Understanding the Search API

The Search API is an XQuery library that combines searching, search parsing, search grammar,
faceting, snippeting, search term completion, and other search application features into a single
API. You can interact with the Search API through XQuery, REST, Node.js, and Java, using a
variety of query styles, as described in “Support for Multiple Query Styles” on page 24.

The Search API makes it easy to create search applications without needing to understand many
of the details of the underlying cts:search and cts:query APIs. The Search API is designed for
large-scale, production applications.

This section provides an overview and describes some of the features of the Search API, and
contains the following topics:

• Making the Search API Available to Your Application

• Simple search:search Example and Response Output

• Automatic Query Text Parsing and Grammar

• Constrained Searches and Faceted Navigation

• Built-In Snippetting

• Search Term Completion
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 30

MarkLogic Server Search API: Understanding and Using
• Search Customization Via Options and Extensions

• Speed and Accuracy

2.1.1 Making the Search API Available to Your Application

The Search API is implemented as an XQuery library module. You can use it directly from
XQuery. You can also access most of the Search API features through the REST, Node.js, and
Java Client APIs; for details, see REST Application Developer’s Guide, Node.js Application
Developer’s Guide, or Java Application Developer’s Guide. Server-Side JavaScript applications
can access similar features through the JSearch library; for details, see “Creating JavaScript
Search Applications” on page 289.

To use the Search API from XQuery, import the Search API library module into your XQuery
module with the following prolog statement:

import module namespace search =
 "http://marklogic.com/appservices/search"
 at "/MarkLogic/appservices/search/search.xqy";

The Search API uses the namespace prefix search:, which is not predefined in the server. The
Search API has the following core functions to perform searches and provide search results,
snippets, and query-completion suggestions: search:search, search:snippet, and
search:suggest. There are also other functions to perform these activities at finer granularities
and to provide convenience tools.

For the Search API function signatures and details about each individual function, see the
MarkLogic XQuery and XSLT Function Reference for the Search API.

2.1.2 Simple search:search Example and Response Output

The search:search function takes search terms, parses them into an appropriate cts:query, and
returns a response with snippets and URIs for matching nodes in the database. You can get started
with the Search API with a very simple query:

xquery version "1.0-ml";

import module namespace search =
 "http://marklogic.com/appservices/search"
 at "/MarkLogic/appservices/search/search.xqy";

search:search("hello world")
=>
<search:response total="1" start="1" page-length="10" xmlns=""

xmlns:search="http://marklogic.com/appservices/search">
 <search:result index="1" uri="/hello.xml"

path="doc("/hello.xml")" score="136"
confidence="0.67393" fitness="0.67393">

 <search:snippet>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 31

MarkLogic Server Search API: Understanding and Using
 <search:match path="doc("/hello.xml")/hello">This is
where you say "<search:highlight>Hello</search:highlight>
<search:highlight>World</search:highlight>".

</search:match>
 </search:snippet>
 </search:result>
 <search:qtext>hello world</search:qtext>
 <search:metrics>
 <search:query-resolution-time>PT0.328S

</search:query-resolution-time>
 <search:total-time>PT0.352S</search:total-time>
 </search:metrics>
</search:response>

The output is a search:response element, and it contains everything needed to build a search
results page. It includes an estimate of the total number of documents that match the search, the
URI and XPath for each result, pagination of the search results, a snippet of the result content, the
original query text submitted, and metrics on the response time. You can customize the data
returned in each search:result using the result-decorator query option.

To try the Search API on your own content, run a simple search like the above example against a
database of your own content, and then examine the search results.

The search:search function is highly customizable, but by default it includes sensible settings
that will provide good results for many applications. With the results of search:search, it is easy
to build useful results pages that are as simple or as complex as you like.

2.1.3 Automatic Query Text Parsing and Grammar

In a typical search application, a user enters query text into a search box in a browser. This text is
a string query. The Search API automatically parses a string query into a cts:query for efficient
and powerful searches. You can use string queries in XQuery, Java, Node.js, and REST, through
interfaces such as the following:

• XQuery: The search:search, search:parse, and search:resolve functions

• Java: The com.marklogic.client.query.QueryManager class

• Node.js: The DatabaseClient.documents.query and queryBuilder.parsedFrom functions.

• REST: The /search service

The default string query grammar is similar to the Google grammar. The default grammar
supports simple terms and double-quoted phrases, logical and relational operators (AND, OR, LT, GT),
grouping with parentheses (()), negation with a minus sign (-), and user-configured
constraints with a colon (:).

The following is a summary of the default grammar. For details, see “The Default String Query
Grammar” on page 68.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 32

MarkLogic Server Search API: Understanding and Using
• Terms can be free standing:

cat

• AND and OR operators, with AND having higher precedence.

• Parentheses can override default precedence:

(cat OR dog) AND horse

• Multiple terms are combined as an AND:

cat dog

• Phrases are surrounded by double-quotes:

"cat and dog"

• Terms are excluded through a leading minus:

cat –dog

• Colon operators indicate configured constraint or operator searches (for details, see
“Constraint Options” on page 382 and “Operator Options” on page 395):

tag:value

• Constraint and operator searches may operate over phrases:

tag:"a phrase value"

• A query text can comprise any number of these types of searches in any order.

• The default precedence for a search order provides preference to explicitly ordered (with
parenthesis, for example) then for implicitly ordered. Therefore, multi-term queries using
the explicit AND operator do not parse as equivalent to the same string using the implicit
AND because there is a difference in the way that precedence is applied. For example, A OR
B AND C parses to the equivalent of A OR (B AND C), while A OR B C parses to the
equivalent of (A OR B) and C.

String query parsing takes into account constraints and operators specified in an options node at
search runtime. For details on the options node for the Search API, see “Controlling a Search
With Query Options” on page 37.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 33

MarkLogic Server Search API: Understanding and Using
2.1.4 Constrained Searches and Faceted Navigation

The Search API makes it easy to constrain your searches to a subset of the content. For example,
you can create a search that only returns results for documents with titles that include the word
hello, or you can create a search that constrains the results to a particular decade. The default
string query grammar makes it easy to express these kinds of searches in a simple query text
string. For example, you create a constraint through query options such that the following string
query represents a search that constrains matches to a particular decade:

decade:2000s

These types of searches are useful in creating facets, which allow a user to drill down by
narrowing the search criteria. Facets also typically have counts of the number of results that
match. The Search, REST, Node.js, and Java Client APIs return these counts to use in facets.

The following is an example of a facet in an end-user application:

Users can click on any of the links to narrow the results of the search by decade. For example, the
query generated by clicking the top link contains the string decade:2000s, and constrains the
search to that decade.

The facet also includes counts for each constraint value. The number to the right of the link
represents the number of search results returned if you constrain it to that decade.

The Search API returns XML in its response that contains all of the information to create a facet
like the above example. The REST and Java Client APIs can return this information as XML or
JSON; the Node.js Client API returns this information as JSON.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 34

MarkLogic Server Search API: Understanding and Using
The facets returned by a search include the counts and values needed to generate the user
interface. For example, the following XML, returned from the Search API, was used to create the
above facet:

<search:response total="2370" start="1" page-length="10" xmlns=""
xmlns:search="http://marklogic.com/appservices/search">

<search:facet name="decade">
 <search:facet-value name="2000s" count="240">

2000s</search:facet-value>
 <search:facet-value name="1990s" count="300">

1990s</search:facet-value>
 <search:facet-value name="1980s" count="300">

1980s</search:facet-value>
 <search:facet-value name="1970s" count="300">

1970s</search:facet-value>
 <search:facet-value name="1960s" count="299">

1960s</search:facet-value>
 <search:facet-value name="1950s" count="300">

1950s</search:facet-value>
 <search:facet-value name="1940s" count="324">

1940s</search:facet-value>
 <search:facet-value name="1930s" count="245">

1930s</search:facet-value>
 <search:facet-value name="1920s" count="61">

1920s</search:facet-value>
</search:facet>

</search:response>

The counts and values in the response are also filtered by any other active query in the search, so
they represent the counts for that particular search.

You can generate facets from range, collection, geospatial, and custom constraints. To generate
facets from a constraint and include them in your search results, set the facet XML attribute or
JSON property to true on a constraint definition in your search options. For example:

<options xmlns="http://marklogic.com/appservices/search">
 <constraint name="subject">
 <collection prefix="/my-collections/" facet="true" />
 </constraint>
</options>

For more details, see “Appendix: Query Options Reference” on page 816.

There are many kinds of constraints and facets you can build with the Search, REST, and Java
APIs. For more details about constraints, see “Constraint Options” on page 382.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 35

MarkLogic Server Search API: Understanding and Using
2.1.5 Built-In Snippetting

A search results page typically shows portions of matching documents with the search matches
highlighted, perhaps with some text showing the context of the search matches. These search
result pieces are known as snippets. For example, a search for MarkLogic Server might produce
the following snippet:

MarkLogic Server is an XML Server that provides the agility you need
to build and ... Use MarkLogic Server's geospatial capability to
create new dynamic ...

The Search API and the Node.js, Java, and REST Client APIs include snippets in the
search:response output, making it easy to create search results pages that show the matches in the
context of the document. Providing the best snippet for a given content set is often very
application specific, however. Therefore, the Search API allows you to customize the snippets,
either using the built-in snippetting algorithm or by adding your own snippetting code. For details
on ways to customize the snippetting behavior for your searches, see “Modifying Your Snippet
Results” on page 401.

2.1.6 Search Term Completion

Search applications often offer suggestions for search terms as the user types into the search box.
The suggestions are based on terms that are in the database, and are typically used to make the
user interface more interactive and to quickly suggest search terms that are appropriate to the
application. The search:suggest function in the Search API is designed to supply the terms to a
search-completion user interface. For more details on how to use search term completion, see
“Search Term Completion Using search:suggest” on page 38.

2.1.7 Search Customization Via Options and Extensions

The Search, REST and Java APIs make it easy to customize your searches. A wide range of
customizations are available directly through the query options that you pass into the search.
There are a large number of options controlling nearly every aspect of the search you are
performing.

For cases where the built-in options do not do what you need, there is an XQuery extension
mechanism. The mechanism includes hooks which allow you to call out to your own XQuery
code. The hooks allow you to specify the location and name of the function containing your own
implementation of a function to replace the implementation of that function in the Search API.
The Search API uses function values to pass your custom function as a parameter, replacing the
default Search API functionality. For details on function values, see Function Values in the
Application Developer’s Guide.

The basic pattern to specify your extension function using the attributes apply, ns, and at as
attributes on various elements in the search:options node. These correspond to the local name of
your implemented function, the namespace of the function, and the location of the function library
module in which the code exists, respectively. For example, consider the following:
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 36

MarkLogic Server Search API: Understanding and Using
<transform-results apply="my-snippet" ns="my-namespace"
at="/my-module.xqy" />

In this example, the transform-results option specifies to use the my-snippet function in the
library module my-module under your App Server root instead of the default snippeting function
that the Search API uses. For additional details about working with transform-results, see
“Modifying Your Snippet Results” on page 401.

Any search option that has an apply attribute can use this extension pattern to point to your own
implementation for the functionality of that option, including transform-results, several grammar
options, custom constraints, and so on.

2.1.8 Speed and Accuracy

The Search API, and the Client APIs (Node.js, Java, REST) that build upon it, are designed to be
fast. When creating any search application, you make trade-offs between speed and guaranteed
accuracy. The values of various options in the Search API control things like filtered versus
unfiltered search, diacritic and case-sensitivity, and other options. These options affect the
accuracy of search estimates in MarkLogic Server. The default values of these query options are
designed to be sensible for most application. All applications are different, however, and
MarkLogic gives you the tools to control what makes sense for your specific application.

Range constraints use lexicons to get fast accurate unique values and counts. Keep in mind,
however, that certain operations might not produce accurate counts in all cases. For example,
when you pass a cts:query into a lexicon API (which the Search API does in some cases), it
filters the lexicon calls based on the index resolution of the cts:query, not on the filtered search
values, and the index resolution is not guaranteed to be accurate for all queries. For details on how
search index resolution works, see Fast Pagination and Unfiltered Searches in Query Performance
and Tuning Guide.

Other factors such as fragmentation and what you search for (searchable-expression in the
Search API options) can also contribute to whether the index resolution for a search is correct, as
can various options to lexicons. The default values for these various options make the trade-offs
that are sensible for many search applications. For example, the value of the total attribute in the
search:response output is the result of a cts:remainder, which will always be fast but is not
guaranteed to be accurate for all searches. For details, see “Using fn:count vs. xdmp:estimate” on
page 647.

2.2 Controlling a Search With Query Options

Most search operations in the XQuery Search API and the Client APIs make use of optional query
options. Query options enable you to specify the behavior and results format for a search. Default
query options are pre-defined. You can override the defaults by supplying custom query options.
For example, the XQuery function search:search accepts a search:options XML node as input.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 37

MarkLogic Server Search API: Understanding and Using
The REST and Java Client APIs supports query options expressed in either JSON or XML. The
Node.js Client API abstracts the representation from your application, but in most cases, this API
uses the JSON representation.

For more details, see “Search Customization Using Query Options” on page 381 and “Appendix:
Query Options Reference” on page 816.

2.3 Search Term Completion Using search:suggest

The search:suggest function returns suggestions that match a wildcarded string, and it is used in
query-completion applications.

A typical way to use the search:suggest function in an application is to have a Javascript event
listen for changes in the text box, and then upon those changes it asynchronously submits a
search:suggest call to MarkLogic Server. The result is that, after every letter is typed in, new
suggestions appear in the user interface. The remainder of this sections describes the following
details of the search:suggest function:

• default-suggestion-source Option

• Choose Suggestions With the suggestion-source Option

• Use Multiple Query Text Inputs to search:suggest

• Make Suggestions Based on Cursor Position

• search:suggest Examples

For information on using this feature with the Client APIs, see the following:

• REST: Generating Search Term Completion Suggestions in the REST Application
Developer’s Guide.

• Java: Generating Search Term Completion Suggestions in the Java Application Developer’s
Guide.

• Node.js: Generating Search Term Completion Suggestions in the Node.js Application
Developer’s Guide.

2.3.1 default-suggestion-source Option

To use search:suggest, it is best to specify a default-suggestion-source. The Search API uses
the default-suggestion-source to look for search term suggestions. If no
default-suggestion-source is specified, then any call to search:suggest returns only
suggestions for constraints and operators, or if there are none, then it returns the empty sequence.
The search:suggest function suggests constraint and operator names if they match the query text
string, and in the case of range index-based constraints, it will suggest matching constraint values.
For details on the syntax of the default-suggestion-source option, see the search:search options
documentation in the MarkLogic XQuery and XSLT Function Reference.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 38

MarkLogic Server Search API: Understanding and Using
For best performance, especially on large databases, use with a default-suggestion-source with
a range or collection instead of one with a word lexicon.

The following default-suggestion-source example uses the string range index on the attribute
named my-attribute as a source for suggesting terms. Range suggestion sources tend to perform
the best, especially for large databases. The range index must exist or an exception is thrown at
search runtime.

<default-suggestion-source>
 <range type="xs:string">
 <element ns="my-namespace" name="my-localname"/>
 <attribute ns="" name="my-attribute"/>
 </range>
</default-suggestion-source>

The following example specifies using a field lexicon to look for search term suggestions. Fields
can work well for suggestion sources, especially if the field is a relatively small subset of the
whole database. A field word lexicon for the specified field must exist or an exception is thrown
at search runtime.

<default-suggestion-source>
 <word collation="http://marklogic.com/collation/">
 <field name="my-field"/>
 </word>
</default-suggestion-source>

For more details, see “default-suggestion-source” on page 890.

2.3.2 Choose Suggestions With the suggestion-source Option

For some applications, you want to have a very specific list from which to choose suggestions for
a particular constraint. For example, you might have a constraint named name that has millions of
unique values, but perhaps you only want to make suggestions for a specific 500 of them. In such
cases, you can specify the suggestion-source option to override the suggestions that
search:suggest returns for query text matching values in that constraint.

You specify the constraint to override in the in the name attribute of the suggestion-source
element. For example, the following options specify to use the values from the short-list-name
element instead of from the name element when make suggestions for the name constraint.

<constraint name="name">
 <range collation="http://marklogic.com/collation"
 type="xs:string" facet="true">
 <element ns="my-namespace" name="fullname"/>
 </range>
 </constraint>
 <suggestion-source ref="name">
 <range collation="http://marklogic.com/collation"
 type="xs:string" facet="true">
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 39

MarkLogic Server Search API: Understanding and Using
 <element ns="my-namespace" name="short-list-name"/>
 </range>
 </suggestion-source>

For cases where you have a named constraint to use for searching and facets, but might want to
use a slightly (or completely) different source for type-ahead suggestions without needing to
re-parse your search terms, use the suggestion-source option.

If you want a particular constraint to not return suggestion, add an empty suggestion-source for
that constraint:

<suggestion-source ref="socialsecuritynumber" />

For more details, see “suggestion-source” on page 928.

2.3.3 Use Multiple Query Text Inputs to search:suggest

You can specify one or more query text parameters to search:suggest. When you specify a
sequence of more than one query text for search:search, the first item (or the one corresponding
to the $focus parameter) specifies the text to match against the suggestion source. Each of the
other items in the sequence is parsed as a cts:query, and that query is used to constrain the search
suggestions from the text-matching query text. Note that this is different from the other Search
API functions, which combine multiple query texts with a cts:and-query.

Consider a user interface that looks as follows:

The search text box on top is where the user types text. The lower check box might be another
control that the user can use to specify the decade. The decade:1980s text shown might be the
query text that is the result of that user interface control (possibly from a facet, for example). You
can then construct a search:suggest call from this user interface that uses the decade:1980s text
as a constraint to the terms matching comp (from the specified suggestion source). The following
is a search:suggest call that can be generated from this example:

search:suggest(("comp", "decade:1980s"), $options)

This ends up returning suggestions that match comp* on fragments that match
search:parse("decade:1980s"). For example, it might return a sequence including the words
competent, component, and computer.

Search

decade:1980s

comp
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 40

MarkLogic Server Search API: Understanding and Using
2.3.4 Make Suggestions Based on Cursor Position

The search:suggest function makes search suggestions based on the position of the cursor (which
you specify with the $cursor-position parameter. The idea is that when the user changes the
cursor position, you should suggest terms based on where the user is currently entering text.

2.3.5 search:suggest Examples

The following are some example search:suggest queries with sample output.

Assume a constraint named filesize for the following example:

search:suggest("fi", $options)

(: Returns the "filesize" constraint name first, followed
by words from the default source of word suggestions:

("filesize:", "field", "file", "fitness", "five",) :)

The following example shows how search:suggest works with bucketed range constraints:

(: Assume $options contains the following:
 <constraint name="date">
 <range type="xs:dateTime">
 <bucket name="today">
 <bucket name="yesterday">
 <bucket name="thismonth">
 <bucket name="thisyear">
...

:)
search:suggest("date:", $options)
(: bucket names from the "date" range constraint are

used to create suggestions

("date:thismonth", "date:thisyear", "date:today", "date:yesterday") :)
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 41

MarkLogic Server Search API: Understanding and Using
2.4 Creating a Custom Constraint

By default, the Search API supports many, but not all, types of constraints. If you need to create a
constraint for which there is not one pre-defined in the Search API, there is a mechanism to
extend the Search API to use your own constraint type. This type of constraint, called a custom
constraint, requires you to write XQuery functions to implement your own custom parsing and to
generate your own custom facets. You specify your function implementations in the options XML
as follows:

<constraint name="my-custom">
 <custom facet="true"> <!-- or false -->
 <parse apply="parse" ns="..." at="..." />
 <start-facet apply="start" ns="..." at="..." />
 <finish-facet apply="finish" ns="..." at="..." />
 </custom>
</constraint>

The three functions you need to implement are parse, start-facet, and finish-facet. The apply
attribute specifies the local name of the function, the ns attribute specifies the namespace, and the
at attribute specifies the location of the module containing the function. This section describes
how to create a custom constraint and includes some example code for creating a custom
geospatial constraint. This section includes the following parts:

• Implementing the parse Function

• Implementing the start-facet Function

• Implementing the finish-facet Function

• Example: Creating a Simple Custom Constraint

• Example: Creating a Custom Constraint for Structured Queries

• Example: Creating a Custom Constraint Geospatial Facet

2.4.1 Implementing the parse Function

The purpose of the parse function is to parse the custom constraint and generate the correct
cts:query from the query text.

This section covers the following topics:

• Choosing a Parser Interface

• Implementing a String Query parse Function

• Implementing a Structured Query parse Function

• Implementing a Multi-Format parse Function
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 42

MarkLogic Server Search API: Understanding and Using
2.4.1.1 Choosing a Parser Interface

The signature of your constraint parsing function varies depending on the type of query input
(string query or structured query) and the API through which you make your queries.

If your constraint can be used in queries initiated from XQuery, such as by calling cts:search or
search:search, choose one of the following solutions:

• If the input is always a string query, see “Implementing a String Query parse Function” on
page 43.

• If the input is always a structure query, see “Implementing a Structured Query parse
Function” on page 44.

• If the input can be either a string or structured query, see “Implementing a Multi-Format
parse Function” on page 44.

If your constraint is only used in queries initiated through the REST, Java, or Node.js Client API
and never through XQuery, you can use the structured query parse interface to service both string
and structured queries; your query is converted internally as needed. The selections described
above for XQuery are also usable with the REST, Node.js and Java Client APIs.

2.4.1.2 Implementing a String Query parse Function

For parsing your custom constraint in a string query, the custom function you implement must
have a signature compatible with the following signature:

declare function example:parse-string(
$constraint-qtext as xs:string,
$right as schema-element(cts:query))

as schema-element(cts:query)

You can use any namespace and local name for the function, but the number and order of the
parameters must be compatible and the return type must be compatible.

The $constraint-qtext parameter is the constraint name and joiner part of the query text for the
portion of the query pertaining to this constraint. For example, if the constraint name is geo and
the joiner is the default joiner, then the value of $constraint-qtext will be geo:. The
$constraint-qtext value is used in the qtextconst attribute, which is needed by search:unparse
to re-create the query text from the annotated cts:query.

The $right parameter contains the value of the constraint parsed as a cts:query. In other words, it
is the text to the right of what is passed into $constraint-qtext in the query text, and then that
text is parsed by the Search API as a cts:query, and returned to the parse function as the XML
representation of a cts:query. The value of $right is what the parse function uses for generating
its custom cts:query. For details on how cts:query constructors work, see “Composing cts:query
Expressions” on page 248.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 43

MarkLogic Server Search API: Understanding and Using
The parse function you implement takes the cts:query from the $right parameter, parses it as
you see fit, and then returns a cts:query XML element. For example, if the value of $right is as
follows:

<cts:word-query>
<cts:text>1@2@3@4</cts:text>

</cts:word-query>

Your code must process the cts:text element to construct the cts:query you need. For example,
you can tokenize on the @ character of the cts:text element, then use each value to construct a
part of the query. As part of constructing the cts:query, you can optionally add cts:annotation
elements and annotation attributes to the cts:query you generate. These annotations allow the
Search API to unparse the cts:query back into its original form. If you do not add the proper
annotations, then search:unparse might not return the original query text. For a sample function
that does something similar, see “Example: Creating a Custom Constraint Geospatial Facet” on
page 50.

2.4.1.3 Implementing a Structured Query parse Function

To use a custom constraint in a structured query, your custom parse function must have a
signature compatible with the following:

declare function example:parse-structured(
$query-elem as element(),
$options as element(search:options))

as schema-element(cts:query)

You can use any namespace and local name for the function, but the number and order of the
parameters must be compatible and the return type must be compatible. For a full example, see
“Example: Creating a Custom Constraint for Structured Queries” on page 48.

The $query-elem parameter is custom-constraint-query structured query that references your
constraint. For details, see “custom-constraint-query” on page 175.

The custom constraint can return either a cts:query or the XML serialization of a cts:query.
MarkLogic recommends that you return a cts:query.

2.4.1.4 Implementing a Multi-Format parse Function

You can create a single parse function capable of handling either a string query or a structured
query as input by generalizing the parse function interface to accomodate both and using the
XQuery instance of operator to determine the query type.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 44

MarkLogic Server Search API: Understanding and Using
The following parse function skeleton generalizes the input query as an item() and the second
parameter, which can be either a cts:query or search:options, to element(), and then uses
instance of to detect the actual input query type:

declare function example:combo-parser(
$query as item(),
$right-or-option as element())

as schema-element(cts:query)
{

if ($query instance of element(search:query))
 then ... (: handle as structured query :)
 else if ($query instance of xs:string)
 then ... (: handle as string query :)
 else ... (: error :)
};

Once you determine the input query type, coerce the second parameter to the correct type and
parse your query as you would in the appropriate string or structured query parse function, as
described in “Implementing a String Query parse Function” on page 43 and “Implementing a
Structured Query parse Function” on page 44.

2.4.2 Implementing the start-facet Function

The sole purpose of the start-facet function is to make a lexicon API call that returns the values
and counts that are used in constructing a facet. For details on lexicons, see “Browsing With
Lexicons” on page 445. The custom function you implement must have a signature compatible
with the following signature:

declare function my-namespace:start-facet(
 $constraint as element(search:constraint),
 $query as cts:query?,
 $facet-options as xs:string*,
 $quality-weight as xs:double?,
 $forests as xs:unsignedLong*)
as item()*

You can use any namespace and local name for the function, but the number and order of the
parameters must be compatible and the return type must be compatible.

Each of the parameters is passed into the function by the Search API. The $query parameter
includes any custom query your parse function implements, combined with any other query that
the Search API generates (which depends on other options passed into the original search such as
additional-query). All other parameters are specified in the search:options XML node passed
into the Search API call. You can choose to use them or not, as is needed to perform your custom
action.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 45

MarkLogic Server Search API: Understanding and Using
When implementing a lexicon call in the start-facet function, you must add the "concurrent"
option to the $facet-options parameter and use the combined sequence as input to the $options
parameter of the lexicon API. The "concurrent" option takes advantage of concurrency, and can
greatly speed performance, especially for applications with many facets. For a sample function,
see “Example: Creating a Custom Constraint Geospatial Facet” on page 50.

Note: The start-facet function is optional, but is the recommended way to create a
custom facet that uses any of the MarkLogic Server lexicon functions. If you do
not use the start-facet function, then the finish-facet function must do all of the
work to construct the facet (including constructing the values for the facet). For
details on the lexicon functions, see the MarkLogic XQuery and XSLT Function
Reference and “Browsing With Lexicons” on page 445.

2.4.3 Implementing the finish-facet Function

The finish-facet function takes input from the start-facet function (if it is used) and constructs
the facet element. This function must have a signature compatible with the following signature:

declare function my-namespace:finish-facet(
$start as item()*,
$constraint as element(search:constraint),

 $query as cts:query?,
 $facet-options as xs:string*,
 $quality-weight as xs:double?,
 $forests as xs:unsignedLong*)
as element(search:facet)

You can use any namespace and local name for the function, but the number and order of the
parameters must be compatible and the return type must be compatible.

The parameters are passed into the function by the Search API. The $query parameter includes
any custom query your parse function implemented, combined with any other query that the
Search API generates (which depends on other options passed in to the original search such as
additional-query). All of the remaining parameters are specified in the search:options XML
passed into the Search API call. You can choose to use them or not, as is needed to perform your
custom action. For a sample function, see “Example: Creating a Custom Constraint Geospatial
Facet” on page 50.

If you do not use a start-facet function, then the empty sequence is passed in for the $start
parameter. If you are not using a start-facet function, then the finish-facet function is
responsible for constructing the values and counts used in the facet, as well as creating the facet
XML.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 46

MarkLogic Server Search API: Understanding and Using
2.4.4 Example: Creating a Simple Custom Constraint

The following is a library module that implements a very simple custom constraint for use with
string queries. This constraint adds a cts:directory-query for the values specified in the
constraint. This constraint has no facets, so it does not need the start-facet and finish-facet
functions. This code does very minimal parsing; your actual code might parse the $right query
more carefully.

xquery version "1.0-ml";
module namespace my="my-namespace";

declare variable $prefix := "/mydocs/" ;

declare function part(
 $constraint-qtext as xs:string,
 $right as schema-element(cts:query))
as schema-element(cts:query)
{
let $query :=
<root>{
 let $s := fn:string($right//cts:text/text())
 let $dir :=
 if ($s eq "book")
 then fn:concat($prefix, "book-dir/")
 else if ($s eq "api")
 then (fn:concat($prefix, "api-dir1/"),

fn:concat($prefix, "api-dir2/"))
(: if it does not match, just constrain on the prefix :)

 else $prefix
 return

(: make these an or-query so you can look through several dirs :)
 cts:or-query((
 for $x in $dir
 return
 cts:directory-query($x, "infinity")
))
 }
</root>/*
return
(: add qtextconst attribute so that search:unparse will work -

required for some search library functions :)
element { fn:node-name($query) }

{ attribute qtextconst {
fn:concat($constraint-qtext, fn:string($right//cts:text)) },

$query/@*,
$query/node()}

} ;
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 47

MarkLogic Server Search API: Understanding and Using
If you put this module in a file named my-module.xqy your App Server root, you can run this
constraint with the following options node:

<options xmlns="http://marklogic.com/appservices/search">
<constraint name="part">

<custom facet="false">
<parse apply="part" ns="my-namespace" at="/my-module.xqy"/>

</custom>
</constraint>

</options>

The following query text results in constraining this search to the /mydocs/book-dir/ directory:

part:book

2.4.5 Example: Creating a Custom Constraint for Structured Queries

The following is a library module that implements a very simple custom constraint to be used
with structured queries. This constraint adds a cts:directory-query for the values specified in the
constraint. This constraint has no facets, so it does not need the start-facet and finish-facet
functions.

xquery version "1.0-ml";

module namespace my = "my-namespace";
import module namespace search =
 "http://marklogic.com/appservices/search"
 at "/MarkLogic/appservices/search/search.xqy";

declare variable $prefix := "/mydocs/" ;

declare function part(
 $query-elem as element(),
 $options as element(search:options)
) as schema-element(cts:query)
{
let $query :=
<root>{
 let $s := $query-elem/search:text/text()
 let $dir :=
 if ($s eq "book")
 then fn:concat($prefix, "book-dir/")
 else if ($s eq "api")
 then (fn:concat($prefix, "api-dir1/"),
 fn:concat($prefix, "api-dir2/"))
 (: if it does not match, just constrain on the prefix :)
 else $prefix
 return
 (: make these an or-query so you can look through several dirs :)
 cts:or-query((
 for $x in $dir
 return
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 48

MarkLogic Server Search API: Understanding and Using
 cts:directory-query($x, "infinity")
))
 }
</root>/*
return
(: add qtextconst attribute so that search:unparse will work -
 required for some search library functions :)
element { fn:node-name($query) }
 { attribute qtextconst {
 fn:concat(
 $query-elem/search:constraint-name, ":",
 $query-elem/search:text/text()) },
 $query/@*,
 $query/node()}
} ;

If you put this module in a file named my-module.xqy your App Server root, you can run this
constraint with the following options node:

<options xmlns="http://marklogic.com/appservices/search">
<constraint name="part">

<custom facet="false">
<parse apply="part" ns="my-namespace" at="/my-module.xqy"/>

</custom>
</constraint>

</options>

The following structured query constrains the search to the /mydocs/book-dir/ directory:

<query xmlns="http://marklogic.com/appservices/search">
<custom-constraint-query>

<constraint-name>part</constraint-name>
<text>book</text>

</custom-constraint-query>
</query>

You can use the return-query query option to see the directory-query generated by the custom
constraint. For example, if you add the following to your options node:

<return-query>true</return-query>

Then the search response will include a query similar to the following:

<search:response ...>
 <search:query>
 <cts:or-query xmlns:cts="http://marklogic.com/cts">
 <cts:directory-query depth="infinity">
 <cts:uri>/mydocs/book-dir/</cts:uri>
 </cts:directory-query>
 </cts:or-query>
 </search:query>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 49

MarkLogic Server Search API: Understanding and Using
...
</search:response>

2.4.6 Example: Creating a Custom Constraint Geospatial Facet

The following is a library module that implements a geospatial facet that uses a custom constraint.
It tokenizes the constraint value on the @ character to produce input to the geospatial lexicon
function. This is a simplified example, meant to demonstrate the design pattern, not meant for
production, as it does not do any error checking to make it more robust at handling user input.

Note: While you could use the code in this example, it is meant as an example of the
design patterns you use to create custom constraints. If you want to use a
geospatial constraint, use the built-in geospatial contraint types (geo-attr-pair,
geo-elem-pair, and geo-elem) as described in “Constraint Options” on page 382.

xquery version "1.0-ml";
module namespace geoexample = "my-geoexample";
(:
 Sample custom constraint for this example :

 <constraint name="geo">
 <custom>
 <parse apply="parse" ns="my-geoexample"
 at="/geoexample.xqy"/>
 <start-facet apply="start-facet" ns="my-geoexample"
 at="/geoexample.xqy"/>
 <finish-facet apply="finish-facet" ns="my-geoexample"
 at="/geoexample.xqy"/>
 <annotation>
 <yns:regions
xmlns:yns=”http://yourcompany.com/yournamespace”>
 <yns:region label="A">[0, -180, 30, -90]</yns:region>
 <yns:region label="B">[0, -90, 30, 0]</yns:region>
 <yns:region label="C">[30, -180, 45, -90]</yns:region>
 <yns:region label="D">[30, -90, 45, 0]</yns:region>
 <yns:region label="E">[45, -180, 60, -90]</yns:region>
 <yns:region label="F">[45, -90, 60, 0]</yns:region>
 <yns:region label="G">[45, 90, 60, 180]</yns:region>
 <yns:region label="H">[60, -180, 90, -90]</yns:region>
 <yns:region label="I">[60, -90, 90, 0]</yns:region>
 <yns:region label="J">[60, 90, 90, 180]</yns:region>
 </yns:regions>
 </annotation>
 </custom>
 </constraint>

This example assumes the presence of an element-pair
 geospatial index, on data structured as follows (note lat/lon
 children of quake):

 <quake>
 <area>0</area>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 50

MarkLogic Server Search API: Understanding and Using
 <perimeter>0</perimeter>
 <quakesx020>2</quakesx020>
 <quakesx0201>26024</quakesx0201>
 <catalog_sr>PDE</catalog_sr>
 <year>1994</year>
 <month>6</month>
 <day>11</day>
 <origin_tim>164453.48</origin_tim>
 <lat>61.61</lat>
 <lon>168.28</lon>
 <depth>9</depth>
 <magnitude>4.3</magnitude>
 <mag_scale>mb</mag_scale>
 <mag_source/>
 <dt>1994-06-11T16:44:53.48Z</dt>
 </quake>
:)

declare namespace search = "http://marklogic.com/appservices/search";
(:
 The Search API calls the parse function during the parsing of the
 query text. It accepts the parsed-so-far query text for this
 constraint, parses that query, and outputs a serialized cts:query
 for the custom part. The Search API passes the parameters to this
 function based on the custom constraint in the search:options and

the query text passed into search:search.
:)
declare function geoexample:parse(
 $qtext as xs:string,
 $right as schema-element(cts:query))
as schema-element(cts:query)
{
 let $point := fn:tokenize(fn:string($right//cts:text), "@")
 let $s := $point[1]
 let $w := $point[2]
 let $n := $point[3]
 let $e := $point[4]
 return
 element cts:element-pair-geospatial-query {
 attribute qtextconst {
 fn:concat($qtext, fn:string($right//cts:text)) },
 element cts:annotation {

"this is a custom constraint for geo" },
 element cts:element { "quake" },
 element cts:latitude {"lat"},
 element cts:longitude {"lon"},
 element cts:region {
 attribute xsi:type { "cts:box" },
 fn:concat("[", fn:string-join(($s, $w, $n, $e),

", "), "]")
 },
 element cts:option { "coordinate-system=wgs84" }
 }
};
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 51

MarkLogic Server Search API: Understanding and Using
(:
 The start-facet function starts the concurrent lexicon evaluation.
:)
declare function geoexample:start-facet(
 $constraint as element(search:constraint),
 $query as cts:query?,
 $facet-options as xs:string*,
 $quality-weight as xs:double?,
 $forests as xs:unsignedLong*)
as item()*
{
 let $latitude-bounds := (0, 30, 45, 60, 90)
 let $longitude-bounds := (-180, -90, 0, 90, 180)
 return
 cts:element-pair-geospatial-boxes(
 xs:QName("quake"), xs:QName("lat"), xs:QName("lon"),
$latitude-bounds,
 $longitude-bounds, ($facet-options, "concurrent", "gridded"),

$query, $quality-weight, $forests)
};

(:
 The finish-facet function constructs the facet, based on the

values from $start returned by the start-facet function.
:)
declare function geoexample:finish-facet(
 $start as item()*,
 $constraint as element(search:constraint),
 $query as cts:query?,
 $facet-options as xs:string*,
 $quality-weight as xs:double?,
 $forests as xs:unsignedLong*)
as element(search:facet)
{
(: Uses the annotation from the constraint to extract the regions :)
 let $labels :=
$constraint/search:custom/search:annotation/search:regions
 return
 element search:facet {
 attribute name {$constraint/@name},
 for $range in $start
 return
 element search:facet-value{
 attribute name {
 $labels/search:region[. eq fn:string($range)]/@label },
 attribute count {cts:frequency($range)}, fn:string($range) }
 }
};
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 52

MarkLogic Server Search API: Understanding and Using
To run a custom constraint that references the above custom code, put the above module in the
App Server root in a file names geoexample.xqy and run the following:

xquery version "1.0-ml";

import module namespace search =
 "http://marklogic.com/appservices/search"
 at "/MarkLogic/appservices/search/search.xqy";

let $options :=
<options xmlns="http://marklogic.com/appservices/search">
 <constraint name="geo">
 <custom>
 <parse apply="parse" ns="my-geoexample"
 at="/geoexample.xqy"/>
 <start-facet apply="start-facet" ns="my-geoexample"
 at="/geoexample.xqy"/>
 <finish-facet apply="finish-facet" ns="my-geoexample"
 at="/geoexample.xqy"/>
 <annotation>
 <regions>
 <region label="A">[0, -180, 30, -90]</region>
 <region label="B">[0, -90, 30, 0]</region>
 <region label="C">[30, -180, 45, -90]</region>
 <region label="D">[30, -90, 45, 0]</region>
 <region label="E">[45, -180, 60, -90]</region>
 <region label="F">[45, -90, 60, 0]</region>
 <region label="G">[45, 90, 60, 180]</region>
 <region label="H">[60, -180, 90, -90]</region>
 <region label="I">[60, -90, 90, 0]</region>
 <region label="J">[60, 90, 90, 180]</region>
 </regions>
 </annotation>
 </custom>
 </constraint>
</options>
return
search:search("geo:1@2@3@4", $options)

2.5 Search Grammar

The XQuery Search API and the REST, Node.js, and Java Client APIs use a built-in grammar to
generate a search query from simple query text, which is typically text entered by an end-user in a
simple HTML form. The default grammar provides a robust ability to generate complex queries.
The following are some examples of queries that use the default grammar:

• (cat OR dog) NEAR vet

at least one of the terms cat or dog within 10 terms (the default distance for
cts:near-query) of the word vet
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 53

MarkLogic Server Search API: Understanding and Using
• dog NEAR/30 vet

the word dog within 30 terms of the word vet

• cat -dog

the word cat where there is no word dog.

Customization of the string query grammar is available using the grammar query option.

For details, see “Searching Using String Queries” on page 67

2.6 Returning Lexicon Values With search:values

A lexicon is a list of unique words or values, either throughout an entire database (words only) or
over a named element, attribute, or field (words or values). The search:values Search API
function returns values from lexicons. You can optionally constrain the values with a structured
query, choose a subset of the matching values, calculate aggregates based on the lexicon values,
and find co-occurrences of values in multiple lexicons.

For general information about lexicons, see “Browsing With Lexicons” on page 445. This section
covers the following related topics specific to the Search API.

• Specifying the Input Lexicons

• Constraining and Filtering Your Results

• Example: Using a Query to Constrain Results

• Example: Filtering with Starting Value, Limit, and Page Length

• Example: Finding Value Co-Occurrences

• Additional Interfaces

2.6.1 Specifying the Input Lexicons

The most basic search:values call has the following form:

search:values($spec-name, $options)

Where $spec-name is the name of a values or tuples specification defined in the search:options
passed as the second parameter. Use a values specification to work with the values in a single
lexicon. Use a tuples specification to work with co-occurrences of values in multiple lexicons.

Before you can query the values or words in an element, attribute, or field, you must define a
corresponding range index or a word lexicon using the Admin Interface or Admin API. To you
query the URI or collection lexicon, it must be enabled on the database. For details, see “Creating
Lexicons” on page 446.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 54

MarkLogic Server Search API: Understanding and Using
The following example returns all values of the <first-name/> element, assuming the existence of
an element range index over the element.

xquery version "1.0-ml";
import module namespace search =
"http://marklogic.com/appservices/search"
 at "/MarkLogic/appservices/search/search.xqy";

let $options :=
<options xmlns="http://marklogic.com/appservices/search">
 <values name="names">
 <range type="xs:string">
 <element ns="" name="first-name" />
 </range>
 </values>
</options>
return
search:values("names", $options)

<values-response name="names" type="xs:string"
xmlns="http://marklogic.com/appservices/search"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <distinct-value frequency="1">George</distinct-value>
 <distinct-value frequency="1">Fred</distinct-value>

...
</values-response>

For more examples of values and tuples specifications, see the API reference for search:values.

The search:values function accepts additional parameters you can use to constrain and filter your
results; for details, see “Constraining and Filtering Your Results” on page 55. You can also apply
a pre-defined or user-defined aggregate function to values or tuples by defining an aggregate in
the search options; for details, see “Using Aggregate Functions” on page 463.

2.6.2 Constraining and Filtering Your Results

The search:values function has the following interface. Only the $spec-name and $options
parameters are required.

search:values($spec-name, $options, $query,
$limit, $start, $page-start, $page-length)
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 55

MarkLogic Server Search API: Understanding and Using
Use the $query, $limit, $start, $page-start, and $page-length parameters to filter the results
returned by search:values, as described in the following table:

The $query, $limit, and $start parameters limit the values selected from the lexicon. The
$page-start and $page-length parameters retrieve a subset of the selected values and can be used
to “page through” the selected values in successive invocations.

You cannot use $page-start and $page-length to retrieve values outside the subset selected by
$limit and/or $start. For example, if $page-start + $page-length exceeds $limit, then only
($limit - $page-start + 1) values are returned.

Most of the filtering parameters can be used independent of one another. That is, you can specify
a limit without a query or a start value without a limit. However, if you specify $page-start, then
you must also specify $page-length.

2.6.3 Example: Using a Query to Constrain Results

Imagine a set of documents describing animals. Each document includes an animal name and
kind. For example, each document is of the following form:

<animal>
<name>aardvark</name>
<kind>mammal</kind>

</animal>

If an element or field range index is defined on /animal/name, then the following query returns a
result for all the animal names in the database:

Parameter Description

$query Limit results to values in document that match the provided query.
Default: None; return values from all documents.

$limit The maximum number of values to retrieve from the lexicon. Default:
No limit; return all values in the lexicon, or all values in the subset
selected by $query.

$start The first value to return. If this value is not in the lexicon, then values are
returned beginning with the next logical value. Default: The first value in
the lexicon, or the first value in the subset selected by $query.

$page-start
$page-length

Define a subset of the results to return to your application. Default:
Return all values selected by $query, $limit, and $start.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 56

MarkLogic Server Search API: Understanding and Using
xquery version "1.0-ml";
import module namespace search =
"http://marklogic.com/appservices/search"
 at "/MarkLogic/appservices/search/search.xqy";

let $options :=
<options xmlns="http://marklogic.com/appservices/search">
 <values name="animals">
 <range type="xs:string">
 <field name="animal-name" />
 </range>
 </values>
</options>
return
search:values("animals", $options)

<values-response name="animals" type="xs:string"
xmlns="http://marklogic.com/appservices/search"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <distinct-value frequency="1">aardvark</distinct-value>
 <distinct-value frequency="1">badger</distinct-value>
 <distinct-value frequency="1">camel</distinct-value>
 <distinct-value frequency="1">duck</distinct-value>
 <distinct-value frequency="1">emu</distinct-value>

...
<distinct-value frequency="1">zebra</distinct-value>

</values-response>

The following example adds a query that limits the results to values in documents that match the
query “mammal OR marsupial”, eliminating duck, emu and other “bird” values from the result set.
This example uses a structured query derived from a string query by calling search:parse, but
you can use any structured query.

search:values("animals", $options,
search:parse("mammal OR marsupial", (), "search:query")

)

<values-response name="animals" type="xs:string"
xmlns="http://marklogic.com/appservices/search"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <distinct-value frequency="1">aardvark</distinct-value>
 <distinct-value frequency="1">badger</distinct-value>
 <distinct-value frequency="1">camel</distinct-value>
 <distinct-value frequency="1">fox</distinct-value>
 <distinct-value frequency="1">hare</distinct-value>

...
<distinct-value frequency="1">zebra</distinct-value>

</values-response>

If you include other filtering parameters, such as $limit, they are applied after the query. For
example, adding a limit of 4 returns the value set [aardvark badger camel fox] from the above
results.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 57

MarkLogic Server Search API: Understanding and Using
search:values("animals", $options,
search:parse("mammal OR marsupial", (), "search:query"), 4)

)

2.6.4 Example: Filtering with Starting Value, Limit, and Page Length

Assume your lexicon contains a string value for each lower-case letter in the alphabet so that the
following query returns results for the values a,b,c...,z:

xquery version "1.0-ml";
import module namespace search =
"http://marklogic.com/appservices/search"
 at "/MarkLogic/appservices/search/search.xqy";

let $options :=
<options xmlns="http://marklogic.com/appservices/search">
 <values name="alphabet">
 <range type="xs:string">
 <field name="letter" />
 </range>
 </values>
</options>
return
search:values("alphabet", $options)

The following query supplies a limit of 10, a start value of "c", a page start of 4, and page length
of 3 to the above query:

search:values("alphabet", $options, (), 10, "c", 4, 3)
(: $limit = 10 :)
(: $start = "c" :)
(: $page-start = 4 :)
(: $page-length = 3 :)

The $limit and $start parameter values result in a subset of 10 values, beginning with "c", that
are retrieved from the lexicon. The example below uses square brackets ([]) to delimit the
selected subset.

a b [c d e f g h i j k l] m n ... x y z

Then, $page-start and $page-length parameter values define the final “page” of values returned
by search:values. Since "f" is the 4th value in subset defined by $limit and $start, the final
result subset contains the value f..h. The example below uses curly braces ({ }) to delimit the
selected page of values:

a b [c d e { f g h } i j k l] m n ... x y z

Note that $page-start and $page-length can never yield a result set that extends past the last
value in the subset of values defined by $limit. Thus, in the example above, no value beyond "l"
can be returned without varying $start or $limit.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 58

MarkLogic Server Search API: Understanding and Using
The table below illustrates the values returned when applying various combinations of the $start,
$limit, $page-start, and $page-length parameters and how search:values arrives at the final
results. As above, square brackets ([]) delimit the values selected by $limit and/or $start, and
curly braces ({ }) delimit the values selected by $page-start and $page-length.

If a query parameter is included, the above filtering is applied to the results after applying the
query.

Filtering Parameters
Returned
Values

How the Results Are Derived

$limit: 5 a b c d e [a b c d e] f g ... x y z

$start: "c" c d e ... z a b [c d e f g ... x y z]

$limit: 5
$start: "c"

c d e f g a b [c d e f g] ... x y z

$page-start: 1
$page-length: 3

a b c { a b c } d e f g ... x y z

$page-start: 4
$page-length: 3

d e f a b c { d e f } g ... x y z

$limit: 5
$start: "c"
$page-start: 2
$page-length: 3

d e f a b [c { d e f } g] h ... x y z

$limit: 5
$page-start:4
$page-length: 3

d e [a b c { d e }] f g ... x y z
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 59

MarkLogic Server Search API: Understanding and Using
2.6.5 Example: Finding Value Co-Occurrences

The following shows how to return co-occurrences (tuples) from the URI lexicon and an element,
constraint on a query for hello AND goodbye, pulling data exclusively out of the range index:

xquery version "1.0-ml";
import module namespace search =

"http://marklogic.com/appservices/search"
at "/MarkLogic/appservices/search/search.xqy";

let $options :=
<options xmlns="http://marklogic.com/appservices/search">
 <tuples name="hello">
 <uri/>
 <range type="xs:string"

collation="http://marklogic.com/collation/">
 <element ns="" name="hello"/>
 </range>
 </tuples>
</options>
return
$values := search:values("hello", $options,

search:parse("hello goodbye", (), "search:query"))

2.6.6 Additional Interfaces

You can also query lexicons using the following interfaces:

• The cts:values XQuery function. For details, see “Browsing With Lexicons” on
page 445.

• The REST Client API methods GET:/v1/values/{name} and POST:/v1/values/{name}. For
details, see Querying the Values in a Lexicon or Range Index and Finding Value Co-Occurrences

in Lexicons in the REST Application Developer’s Guide.

• The Java Client API ValuesDefinition interface. For details, see the Javadoc and Search

On Tuples (Tuples Query / Values Query) in the Java Application Developer’s Guide.

• The Node.js Client API DatabaseClient.values interface. For details, see Querying Lexicons

and Range Indexes in the Node.js Application Developer’s Guide.

2.7 JSON Support in the Search API

The options node in the Search API allows you to specify JSON property names when you have
loaded JSON documents into the database and the values you are searching for are associated
with JSON properties. The following options node shows some sample json-property
specifications:

<!-- Example of enhanced options structures supporting JSON -->

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 60

MarkLogic Server Search API: Understanding and Using
<options xmlns="http://marklogic.com/appservices/search">
<!-- range constraint -->
 <constraint name="foo">
 <range type="xs:int">
 <json-property>foo</json-property>
 </range>
 </constraint>

<!-- range values -->
 <values name="foo-values">
 <range type="xs:int">
 <json-property>foo</json-property>
 </range>
 </values>

<!-- range tuples -->
 <tuples name="foo-tuples">
 <range type="xs:int">
 <json-property>foo</json-property>
 </range>
 <range type="xs:string">
 <json-property>bar</json-property>
 </range>
 </tuples>

<!-- default term with word -->
 <term apply="term">
 <default>
 <word>
 <json-property>bar</json-property>
 </word>
 </default>
 <empty apply="all-results"/>
 </term>

<constraint name="bar">
 <word>
 <json-property>bar</json-property>
 </word>
 </constraint>

<constraint name="baz">
 <value>
 <json-property>baz</json-property>
 </value>
 </constraint>

<operator name="sort">
 <state name="score">
 <sort-order direction="ascending">
 <score/>
 </sort-order>
 </state>
 <state name="foo">
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 61

MarkLogic Server Search API: Understanding and Using
 <sort-order type="xs:int" direction="ascending">
 <json-property>asc</json-property>
 </sort-order>
 </state>
 </operator>
 <sort-order type="xs:int" direction="descending">
 <json-property>desc</json-property>
 </sort-order>

<transform-results apply="snippet">
 <preferred-matches>
 <element ns="f" name="foo"/>
 <json-property>chicken</json-property>
 </preferred-matches>
 </transform-results>

<extract-metadata>
 <qname elem-ns="n" elem-name="p"/>
 <json-property>name</json-property>
 <json-property>title</json-property>
 <json-property>affiliation</json-property>
 </extract-metadata>
 <debug>true</debug>
 <return-similar>false</return-similar>
</options>

2.8 More Search API Examples

This section shows the following examples that use the Search API:

• Buckets Example

• Computed Buckets Example

• Sort Order Example

2.8.1 Buckets Example

The following example shows how to create a search that defines several decades as buckets, and
those buckets are used to generate facets and as a constraint in the search grammar. Buckets are a
type of range constraint, which are described in “Constraint Options” on page 382.

Each bucket defines boundary conditions that determines what values fit into the bucket (@ge, @lt,
etc.). Each bucket has a unique name (@name) that identifies the bucket search terms. For example,
“decade:1940s” matches values that fit into the bucket with the name “1990s”.

A bucket can also have a label as the element text data. The label has no functional use in a
search, but it is returned in the facet data and can be used by the application for display purposes.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 62

MarkLogic Server Search API: Understanding and Using
This example defines a constraint that uses a range index of type xs:gYear on a Wikipedia
nominee/@year attribute.

xquery version "1.0-ml";

import module namespace search =
 "http://marklogic.com/appservices/search"
 at "/MarkLogic/appservices/search/search.xqy";

let $options :=
<search:options>
 <search:constraint name="decade">
 <search:range type="xs:gYear" facet="true">
 <search:bucket ge="2000" name="2000s">Noughts</search:bucket>
 <search:bucket lt="2000" ge="1990"

name="1990s">Nineties</search:bucket>
 <search:bucket lt="1990" ge="1980"

name="1980s">Eighties</search:bucket>
 <search:bucket lt="1980" ge="1970"

 name="1970s">Seventies</search:bucket>
 <search:bucket lt="1970" ge="1960"

 name="1960s">Sixties</search:bucket>
 <search:bucket lt="1960" ge="1950"

 name="1950s">Fifties</search:bucket>
 <search:bucket lt="1950" ge="1940"

 name="1940s">Forties</search:bucket>
 <search:bucket lt="1940" ge="1930"

 name="1930s">Thirties</search:bucket>
 <search:bucket lt="1930" ge="1920"

 name="1920s">Twenties</search:bucket>
 <search:facet-option>limit=10</search:facet-option>
 <search:attribute ns="" name="year"/>
 <search:element ns="http://marklogic.com/wikipedia"

 name="nominee"/>
 </search:range>
 </search:constraint>
</search:options>
return
search:search("james stewart decade:1940s", $options)
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 63

MarkLogic Server Search API: Understanding and Using
The following is a partial response from this query:

<search:response total="2" start="1" page-length="10" xmlns=""
xmlns:search="http://marklogic.com/appservices/search">

 <search:result index="1" uri="/oscars/843224828394260114.xml"
path="doc("/oscars/843224828394260114.xml")" score="200"
confidence="0.670319" fitness="1">

 <search:snippet>
 <search:match path=

"doc("/oscars/843224828394260114.xml")/*:nominee
/*:name"><search:highlight>James</search:highlight>
<search:highlight>Stewart</search:highlight></search:match>

.......
 </search:snippet>

<search:snippet>.......</search:snippet>
.......
 </search:result>
 <search:facet name="decade">
 <search:facet-value name="1940s"
count="2">Forties</search:facet-value>
 </search:facet>
 <search:qtext>james stewart decade:1940s</search:qtext>
 <search:metrics>
 <search:query-resolution-time>

PT0.152S</search:query-resolution-time>
 <search:facet-resolution-time>

PT0.009S</search:facet-resolution-time>
 <search:snippet-resolution-time>

PT0.073S</search:snippet-resolution-time>
 <search:total-time>PT0.234S</search:total-time>
 </search:metrics>
</search:response>

2.8.2 Computed Buckets Example

The computed-bucket range constraint operates over xs:date and xs:dateTime range indexes. The
constraint specifies boundaries for the buckets that are computed at runtime based on
computations made at the current time. The anchor attribute on the computed-bucket element has
the following values:

<computed-bucket anchor="value"> Description

anchor="now" The current time.

anchor="start-of-day" The time of the start of the current day.

anchor="start-of-month" The time of the start of the current month.

anchor="start-of-year" The time of the start of the current year.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 64

MarkLogic Server Search API: Understanding and Using
These values can also be used in ge-anchor and le-anchor attributes of the computed-bucket
element.

The following search specifies a computed bucket and finds all of the documents that were
updated today (this example assumes the maintain last-modified property is set on the database
configuration):

xquery version "1.0-ml";

import module namespace search =
 "http://marklogic.com/appservices/search"
 at "/MarkLogic/appservices/search/search.xqy";

search:search('modified:today',
<options xmlns="http://marklogic.com/appservices/search">
 <searchable-expression>xdmp:document-properties()
 </searchable-expression>
 <constraint name="modified">
 <range type="xs:dateTime">
 <element ns="http://marklogic.com/xdmp/property"
 name="last-modified"/>
 <computed-bucket name="today" ge="P0D" lt="P1D"
 anchor="start-of-day">Today</computed-bucket>
 <computed-bucket name="yesterday" ge="-P1D" lt="P0D"
 anchor="start-of-day">yesterday</computed-bucket>
 <computed-bucket name="30-days" ge="-P30D" lt="P0D"
 anchor="start-of-day">Last 30 days</computed-bucket>
 <computed-bucket name="60-days" ge="-P60D" lt="P0D"
 anchor="start-of-day">Last 60 Days</computed-bucket>
 <computed-bucket name="year" ge="-P1Y" lt="P1D"
 anchor="now">Last Year</computed-bucket>
 </range>
 </constraint>
</options>)

The anchor attributes have a value of start-of-day, so the duration values specified in the ge and
lt attributes are applied at the start of the current day. Note that this is not the same as the
“previous 24 hours,” as the start-of-day value uses 12 o’clock midnight as the start of the day.
The notion of time relative to days, months, and years, as opposed to relative to the exact current
time, is the difference between relative buckets (computed-bucket) and absolute buckets (bucket).
For an example that uses absolute buckets, see “Buckets Example” on page 62.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 65

MarkLogic Server Search API: Understanding and Using
2.8.3 Sort Order Example

The following search specifies a custom sort order.

xquery version "1.0-ml";

import module namespace search =
 "http://marklogic.com/appservices/search"
 at "/MarkLogic/appservices/search/search.xqy";

let $options :=
<search:options>

<search:operator name="sort">
<search:state name="relevance">

<search:sort-order>
<search:score/>

</search:sort-order>
</search:state>
<search:state name="year">

<search:sort-order direction="descending" type="xs:gYear"
collation="">

<search:attribute ns="" name="year"/>
<search:element ns="http://marklogic.com/wikipedia"

name="nominee"/>
</search:sort-order>
<search:sort-order>
<search:score/>

</search:sort-order>
</search:state>

</search:operator>
</search:options>
return
search:search("lange sort:year", $options)

This search specifies to sort by year. The options specification allows you to specify year or
relevance, and without specifying, sorts by score (which is the same as relevance in this
example).
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 66

MarkLogic Server Searching Using String Queries
3.0 Searching Using String Queries
73

This chapter describes how to perform searches using simple string queries with Search API. This
chapter includes the following sections:

• String Query Overview

• The Default String Query Grammar

This chapter provides background, design patterns, and examples of using string queries. For the
function signatures and descriptions, see the Search documentation under XQuery Library
Modules in the MarkLogic XQuery and XSLT Function Reference.

3.1 String Query Overview

A string query is a plain text search string composed of terms, phrases, and operators that can be
easily composed by end users typing into an application search box. For example, “cat AND dog”
is a string query for finding documents that contain both the term “cat” and the term “dog”.

For historical reasons, MarkLogic supports two similar string query grammars. The XQuery
Search API, and the REST, Java, and Node.js Client APIs support the grammar discussed in this
chapter. The XQuery cts:parse function, the Javascript cts.parse function, and the Javascript
jsearch API support a similar grammar; for details, see “Creating a Query From Search Text With
cts:parse” on page 253. The two grammars share the same basic set of operators, but differ in how
you define constraints and the degree of customizability.

The syntax of a string query is determined by a configurable grammar. A powerful default
grammar is pre-defined. You can modify or extend the grammar through the grammar search
option. For details, see “The Default String Query Grammar” on page 68.

The default grammar provides a robust ability to generate complex queries. The following are
some examples of queries that use the default grammar:

• (cat OR dog) NEAR vet

at least one of the terms cat or dog within 10 terms (the default distance for
cts:near-query) of the word vet

• dog NEAR/30 vet

the word dog within 30 terms of the word vet

• cat -dog

the word cat where there is no word dog.

You can use string queries to search contents and metadata with the following MarkLogic Server
APIs:
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 67

MarkLogic Server Searching Using String Queries
• XQuery Search API. For details, see search:search and search:parse.

• Java API. For details, see Searching in the Java Application Developer’s Guide.

• REST API. For details, see Using and Configuring Query Features in the REST Application
Developer’s Guide.

3.2 The Default String Query Grammar

The Search API has a built-in default grammar for interpreting string querys such as “cat AND
dog”. The default grammar enables you to write applications that perform complex queries
against a database based on simple search strings.

• Query Components and Operators

• Operator Precedence

• Using Relational Operators on Constraints

• String Query Examples

3.2.1 Query Components and Operators

Use the following components and operators to form string queries with the default search
grammar:

Query Example Description

any terms dog
dog cat

Match one or more terms, as with a
cts:and-query. Adjacent terms and
phrases are implicitly joined with
AND. For example, dog cat is the
same as dog AND cat.

" " "dog tail"
"dog tail" "cat whisker"
dog "cat whisker"

Terms in double quotes are treated
as a phrase. Adjacent terms and
phrases are implicitly joined with
AND. For example, dog "cat whis-
ker" matches documents containing
both the term dog and the phrase cat
whisker.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 68

MarkLogic Server Searching Using String Queries
() (cat OR dog) zebra Parentheses indicate grouping. The
example matches documents con-
taining at least one of the terms cat
or dog, and also contain the term
zebra.

-query -dog
-(dog OR cat)
cat -dog

A NOT operation, as with a
cts:not-query. For example, cat
-dog matches documents that con-
tain the term cat but that do not con-
tain the term dog.

query1 AND query2 dog AND cat
(cat OR dog) AND zebra

Match two query expressions, as
with a cts:and-query. For example,
dog AND cat matches documents
containing both the term dog and the
term cat. AND is the default way to
combine terms and phrases, so the
previous example is equivalent to
dog cat.

query1 OR query2 dog OR cat Match either of two queries, as with
a cts:or-query. The example
matches documents containing at
least one of either of terms cat or
dog.

query1 NOT_IN query2 dog NOT_IN "dog house" Match one query when the match
does not overlap with another, as
with cts:not-in-query. The exam-
ple matches occurrences of dog
when it is not in the phrase dog
house.

query1 NEAR query2 dog NEAR cat
(cat food) NEAR mouse

Find documents containing matches
to the queries on either side of the
NEAR operator when the matches
occur within 10 terms of each other,
as with a cts:near-query. For exam-
ple, dog NEAR cat matches docu-
ments containing dog within 10
terms of cat.

Query Example Description
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 69

MarkLogic Server Searching Using String Queries
query1 NEAR/N query2 dog NEAR/2 cat Find documents containing matches
to the queries on either side of the
NEAR operator when the matches
occur within N terms of each other,
as with a cts:near-query. The
example matches documents where
the term dog occurs within 2 terms
of the term cat.

constraint:value color:red
decade:1980s
birthday:1999-12-31

Find documents that match the
named constraint with given value,
as with a cts:element-range-query
or other range query. For details, see
“Using Relational Operators on
Constraints” on page 72.

operator:state sort:relevance
sort:date

Apply a runtime configuration oper-
ator such as sort order, defined by an
operator XML element or JSON
property in the search options. For
details, see “Operator Options” on
page 395.

constraint LT value color LT red
birthday LT 1999-12-31

Find documents that match the
named range constraint with a value
less than value. For details, see
“Using Relational Operators on
Constraints” on page 72.

constraint LE value color LE red
birthday LE 1999-12-31

Find documents that match the
named range constraint with a value
less than or equal to value. For
details, see “Using Relational Oper-
ators on Constraints” on page 72.

constraint GT value color GT red
birthday GT 1999-12-31

Find documents that match the
named range constraint with a value
greater than value. For details, see
“Using Relational Operators on
Constraints” on page 72.

Query Example Description
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 70

MarkLogic Server Searching Using String Queries
3.2.2 Operator Precedence

The precedence of operators in the default grammar, from highest to lowest, is shown in the
following table. Each row in the table represents a precedence level. Where multiple operators
have the same precedence, evaluation occurs from left to right. Query sub-expressions using
operators higher in the table are evaluated before sub-expressions using operators lower in the
table.

constraint GE value color GE red
birthday GE 1999-12-31

Find documents that match the
named range constraint with a value
greater than or equal to value. For
details, see “Using Relational Oper-
ators on Constraints” on page 72.

constraint NE value color NE red
birthday NE 1999-12-31

Find documents that match the
named range constraint with a value
that is not equal to value. For details,
see “Using Relational Operators on
Constraints” on page 72.

query1 BOOST query2 george BOOST washington Find documents that match query1.
Boost the relevance score of docu-
ments that also match query2. The
example returns all matches for the
term “george”, with matches in doc-
uments that also contain “washing-
ton” having a higher relevance
score. For more details, see
cts:boost-query.

Operator

:, LT, LE, GT, GE, NE

-

NOT_IN

Query Example Description
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 71

MarkLogic Server Searching Using String Queries
For example, AND has higher precedence than OR, so the following queries:

A AND B OR C
A OR B AND C

Evaluate as if written as follows:

(A AND B) OR C
A OR (B AND C)

3.2.3 Using Relational Operators on Constraints

The relational query operators :, LT, LE, GT, GE, and NE accept a constraint name on the left hand
side and a value on the right hand side. That is, queries using these operators are of the following
form:

constraint op value

These relational operators match fragments that meet the named constraint with a value that
matches the relationship defined by the operator (equals, less than, greater than, etc.). For
example, if your query options define an element word constraint named color, then color:red
matches documents that contain elements meeting the color constraint with a value of red. For
details and more examples, see “Constraint Options” on page 382.

The constraint name must be the name of a <constraint/> XML element or "constraint" JSON
object defined by the query options governing the search. The constraint can be a word, value,
range, or geospatial constraint. There must be a range index associated with the constraint.

If the constraint is unbucketed, the value on the right hand side of the operator must be convertible
to the type of the constraint. For example, if the range index behind the constraint has type
xs:date, then the value to match must represent an xs:date.

If the constraint is bucketed, then the value must be the name of a bucket defined by the
constraint. For example, if searching using the decade bucketed constraint defined in “Bucketed
Range Constraint Example” on page 391, then the value on the right hand side must be a bucket
name such as 1920s or 2000s, such as decade:1920s.

BOOST

(), NEAR, NEAR/N

AND

OR

Operator
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 72

MarkLogic Server Searching Using String Queries
3.2.4 String Query Examples

The default grammar provides a robust ability to generate complex queries. The following are
some examples of queries that use the default grammar:

• (cat OR dog) NEAR vet

at least one of the terms cat or dog within 10 terms (the default distance for
cts:near-query) of the word vet

• dog NEAR/30 vet

the word dog within 30 terms of the word vet

• cat -dog

the word cat where there is no word dog
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 73

MarkLogic Server Searching Using Structured Queries
4.0 Searching Using Structured Queries
194

This chapter describes how to perform searches using structured queries expressed in XML or
JSON. The annotated cts:query that is generated by default from search:parse or search:search
works well for cases where you do not need to perform extensive modification to the query. If you
want to generate your own query, or if you want to parse your query using different rules from the
Search API grammar rules, there is an alternate query style called structured query.

This chapter includes the following topics:

• Structured Query Overview

• Structured Query Concepts

• Constructing a Structured Query

• Syntax Summary

• Examples of Structured Queries

• Syntax Reference

4.1 Structured Query Overview

A structured query is an Abstract Syntax Tree representation of a search expression, expressed in
XML or JSON. For example, the following is a structured query in XML that is equivalent to the
string query “cat AND dog”.

<search:query xmlns:search="http://marklogic.com/appservices/search">
 <search:and-query>
 <search:term-query>
 <search:text>cat</search:text>
 </search:term-query>
 <search:term-query>
 <search:text>dog</search:text>
 </search:term-query>
 </search:and-query>
</search:query>

Any time you want to intercept a query and either augment or manipulate it in some way, consider
using a structured query. The following use cases are good candidates for structured queries:

• Queries that do not work well in a string query. For example, constraints such as a
geospatial constraint of a complex polygon are designed to be machine generated.

• Search strings that include complex sets of rules, or a set of rules that do not map well to
the string query grammar.

• Combining a pre-parsed structured query with a user-generated or dynamically
constructed string query.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 74

MarkLogic Server Searching Using Structured Queries
• Converting a non-MarkLogic query representation such as an in-house query format into a
form consumable by MarkLogic Server.

• String queries that require application-specific validation.

You can generate a structured query using the XQuery function search:parse or by writing your
own code that returns a structured query. You can use structured queries to search contents and
metadata with the following MarkLogic Server APIs:

• XQuery Search API. For details, see search:search and search:resolve.

• Java API. For details, see Searching in the Java Application Developer’s Guide.

• REST API. For details, see Using and Configuring Query Features in the REST Application
Developer’s Guide.

4.2 Structured Query Concepts

The concepts covered in this section should help you understand the purpose and scope of the
various structured query building blocks. For detailed information about a particular sub-query,
see “Syntax Reference” on page 87.

The following topics are covered:

• Major Query Categories

• Understanding the Difference Between Term and Word Queries

• Understanding Containment

• Text Match Semantics

• Structured Query Sub-Query Taxonomy
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 75

MarkLogic Server Searching Using Structured Queries
4.2.1 Major Query Categories
A query encapsulates your search criteria. You can combine search criteria into complex search
expressions using many different types of query combinations. The many sub-query components
of structured query fall into one of the categories described in this section.

The query categories in the following table are “leaf” queries that never contain other queries.
These type of query are the basic search building blocks that describe what content you want to
match.

Additional sub-queries enable you to combine the basic content queries with each other and with
additional criteria and constraints. The additional query types fall into the following general
categories.

• Logical Composers: Express logical relationships between criteria. You can build up
compound logical expressions such as “x AND (y OR z)”.

• Document Selectors: Select documents based on collection, directory, or URI. For
example, you can express criteria such as “x only when it matches in documents in
collection y”.

Query Type Description

value Match an entire value in a specific place, such as a phrase or number in a JSON
property or XML element. Value queries on JSON property values must use
properly typed criteria; if you do not specify a type, string is assumed. For
example, to match the value of a property with “number” type, you must
explicitly set the criteria value type to “number” in your query. For details, see
“value-query” on page 123.

word Match a word or phrase in a specific place, such as in a specific JSON property,
XML element or attribute, or field. A word query will match a subset of a text
value. A word query only matches text, so it will never match JSON property
values that have number, boolean, or null type. For details, see “word-query” on
page 127.

term Match a word or phrase anywhere it appears in a document or container. A term
query will match a subset of a text value. A term query only matches text, so it
will never match JSON property values that have number, boolean, or null type.
For details, see “term-query” on page 91.

range Match values that satisfy a relational expression applied to a typed value. You
can express conditions such as “less than 5” or “not equal to true”. A range
query must either be backed by a range index or used in a filtered search
operation. For details, see “range-query” on page 119.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 76

MarkLogic Server Searching Using Structured Queries
• Location Qualifiers: Further limit a criteria based on where the match appears. For
example, “x only when contained in JSON property z”, or “x only when it matches within
n words of y”, or “x only when it matches in a document property”.

4.2.2 Understanding the Difference Between Term and Word Queries

Term queries and word queries differ primarily in how they handle containment. A term query
finds matches anywhere within its context container, while a word query matches only immediate
children. For example, suppose your JSON or XML document has the following structure:

A term query for “value” in “a” finds 2 matches: The occurrence in “b”, and the one in “d”.
However, a word query for “value” in “a” finds no matches because “value” does not occur as an
immediate child of “a”.

To locate occurrences of “value” using a word query, you must constrain the word query to the
scope of “b” or “d”. For example, the following sub-queries match “value” in “b” in the JSON
and XML documents, respectively:

4.2.3 Understanding Containment

Many sub-query types constrain matches to the context of a particular container. A container is a
JSON property, XML element, or XML element attribute.

A query such as a word or value query that includes the name of a container only matches
occurrences within that container. However, the container can appear at any level within the
enclosing document or container. That is, it does not have to be an immediate child.

JSON XML

{ "a": {
"b": "value",
"c": { "d": "value" }

} }

<a>
value
<c>

<d>value</d>
</c>

JSON XML

"word-query": {
"json-property": "b",
"text": "value"

}

<search:word-query>
<search:element name="b">
<search:text>value</search:text>

</search:word-query>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 77

MarkLogic Server Searching Using Structured Queries
For example, the following word queries only matches occurrences of “value” when appears in
the value of a JSON property or XML element named “a”. (The examples use json-property in
the JSON version and element in the XML version, but you can use these specifiers independent
of query format.)

However, in the absence of other restrictions, the container named “b” can occur anywhere. For
example, the following documents each contain two matches because there are 2 JSON properties
(or XML elements) containing “value”.

You can wrap a query in a container-query to further limit the scope of the matches. For example,
the following sub-queries only match “value” in “b” when “b” occurs inside “c”:

JSON XML

"word-query": {
"json-property": "b",
"text": "value"

}

<search:word-query>
<search:element name="b">
<search:text>value</search:text>

</search:word-query>

JSON XML

{"a": {
"b": "value",
"c": { "b": "value" }

} }

<a>
value
<c>

value
</c>

JSON XML

"container-query": {
"json-property": "c",
"word-query": {

"json-property": "b",
"text": "value"

}
}

<search:container-query>
<search:element name="c" />
<search:word-query>

<search:element name="b">
<search:text>value</search:text>

</search:word-query>
</search:container-query>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 78

MarkLogic Server Searching Using Structured Queries
You can limit the scope of matches in other ways, such as collection, database directory, or
property fragment scope. For details, see “Location Qualifiers” on page 81 and “Document
Selectors” on page 81.

4.2.4 Text Match Semantics

Whether a value, term, or word query on text content is case-sensitive, diacritic-sensitive,
whitespace-sensitive, or punctuation-sensitive depends on database configuration, query options,
and the input criteria text. Whether stemming and wildcarding are active similar depends on
options and database configuration.

The defaults for text matches are as follows:

• Case: If the criteria text is all lower-case, then the match is case-insenstive. If the criteria
contains any upper-case letters, then the match is case sensitive.

• Diacritics: If the criteria text contains no diacritics, then the match is diacritic-insenstive.
If the criteria contains any diacritics, then the match is diacritic-sensitive.

• Whitespace: Whitespace insenstive. (Whitespace is still used to tokenize words.)

• Punctuation: If the criteria text contains no punctuation, then the match is
punctuation-insenstive. If the criteria contains any punctuation, then the match is
punctuation sensitive.

• Stemming: Depends on the database configuration. Stemmed search is disabled on a
database by default.

• Wildcarding: Depends on the database configuration and the criteria text. Wildcard
searches are disabled on a database by default. If any wildcard search is enabled and the
criteria text contains wildcard characters (‘?’ or ‘*’), then wildcarding is applied.

For example, a word query for “purple” matches both “purple elephants” and “Purple Elephants”,
but a word query for “Purple” only matches “Purple Elephants”.

Similarly, a word query for “purple elephants” matches both “purple elephants” and “purple,
elephants”, but a word query for “purple,elephants” will only match “purple, elephants”.

You can override some of these behaviors with query options and database configuration. For
example, if wildcard searches are not enabled on the database, then a word query for “thom*” will
not match “Thomas”. Similarly, you can set term options local to a particular word-query or
value-query, or more widely through the term-options query option.

For more details, see “Term Options” on page 950 and Understanding the Text Index Settings in the
Administrator’s Guide.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 79

MarkLogic Server Searching Using Structured Queries
4.2.5 Structured Query Sub-Query Taxonomy

Structured query explicitly exposes all the query types described in “Major Query Categories” on
page 76. This section is a quick reference for locating the kind of sub-query you need, based on
this categorization.

You can use most kinds of sub-query in combination with each other to build up complex queries.
For details, see “Syntax Reference” on page 87.

• Basic Content Queries

• Logical Expression Composers

• Location Qualifiers

• Document Selectors

4.2.5.1 Basic Content Queries

Basic content queries express search criteria about your content, such as “JSON property A
contains value B” or “any document containing the phrase ‘dog’”. These queries function as
“leaves” in the structure of a complex, compound query because they do not contain sub-queries.

• term-query

• word-query

• value-query

• range-query

• geo-elem-query

• geo-elem-pair-query

• geo-attr-pair-query

• geo-json-property-query

• geo-json-property-pair-query

• geo-path-query

4.2.5.2 Logical Expression Composers

Logical composers are queries that join one or more sub-queries into a logical expression. For
example, “documents which match both query1 and query2” or “documents which match either
query1 or query2 or query3”.

• and-query

• and-not-query
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 80

MarkLogic Server Searching Using Structured Queries
• boost-query

• not-query

• not-in-query

• or-query

4.2.5.3 Location Qualifiers

Location qualifiers limit results based on where subquery matches occur, such as only in content,
only in metadata, or only when contained by a specified JSON property or XML element. For
example, “matches for this sub-query that occur in metadata” or “matches for this sub-query that
are contained in JSON Property P”.

• document-fragment-query

• locks-fragment-query

• near-query

• properties-fragment-query

• container-query

4.2.5.4 Document Selectors

Document selectors are queries that match a group of documents by database attributes such as
collection membership, directory, or URI, rather than by contents. For example, “all documents in
collections A and B” or “all documents in directory D”.

• collection-query

• directory-query

• document-query

4.3 Constructing a Structured Query

You can construct a structured query in multiple ways:

• Manually, using the syntax described in “Syntax Reference” on page 87.

• In XQuery, by calling the XQuery function search:parse and supplying "search:query"
as the 3rd parameter to see the XML representation.

• In Java, using the class com.marklogic.client.query.StructuredQueryBuilder. or
com.marklogic.client.pojo.PojoQueryBuilder, or an equivalent interface.

The XQuery Search API only accepts structured queries in XML. The REST and Java APIs
accept XML and JSON representations.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 81

MarkLogic Server Searching Using Structured Queries
For XML, you can use the search:parse technique with Query Console to explore how a string
query or serialized cts:query maps to a structured query, and then modify it according to your
needs. For example:

xquery version "1.0-ml";
import module namespace search =
 "http://marklogic.com/appservices/search"
 at "/MarkLogic/appservices/search/search.xqy";

return search:parse("cat AND dog", (), "search:query")

If you run the above query in Query Console and display the results as XML, you get the XML
representation of “cat AND dog” when parsed with the default search options in effect:

<search:query xmlns:search="http://marklogic.com/appservices/search">
 <search:and-query>
 <search:term-query>
 <search:text>cat</search:text>
 </search:term-query>
 <search:term-query>
 <search:text>dog</search:text>
 </search:term-query>
 </search:and-query>
</search:query>

4.4 Syntax Summary

This section gives a brief summary of structure of a structured query. For details, see “Syntax
Reference” on page 87

A structured query is a search:query XML element with children representing cts:query
composers, cts:query scoping constructors, and abstractions for Search API components such as
constraints and operators. When using the XQuery Search API, you must use the XML
representation. In REST and Java, you can choose between the XML or JSON representations.

Like cts:query constructors in XQuery, structured queries are composable to make a complex
search query. A structured query expressed as XML must have a <search:query> wrapper node.
For example:

<search:query xmlns:search="http://marklogic.com/appservices/search">
<search:and-query>...</search:and-query>

</search:query>

Similarly, the JSON representation of a structured query has a query wrapper object. Within this
wrapper, the sub-queries are enclosed in a queries array. The queries wrapper is used wherever
multiple sub-queries can occur. For example:

{
"query": {
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 82

MarkLogic Server Searching Using Structured Queries
"queries": [
{ "and-query": ... }

]
}

}

You can compose complex queries consisting of and-queries, or-queries, and so on, and they can
contain any number of term-queries with terms to search for. You can constrain queries to an
element, attribute, JSON property, or field; use range-queries; and so on. For background on how
cts:query expressions work in MarkLogic Server, see “Composing cts:query Expressions” on
page 248.

The REST API and the Java API support XML and JSON representations of structured queries.
The REST and Java APIs internally use the JSON conversion features in MarkLogic to convert
between JSON and XML. For details on this conversion, see Working With JSON in the Application
Developer’s Guide.

4.5 Examples of Structured Queries

This section includes the following examples of Structured Search, with an XML example as well
as the corresponding JSON example for each:

• Example: Simple Structured Search

• Example: Structured Search With Constraint References as Text

• Example: Structured Search With Constraint References

• Example: Structured Search on Key-Value Metadata Fields

For additional examples, see “Syntax Reference” on page 87.

4.5.1 Example: Simple Structured Search

The following is a structured query XML node equivalent to a string query for the phrase
"imagine a complex search":

<search:query xmlns:search="http://marklogic.com/appservices/search">
 <search:term-query>
 <search:text>imagine a complex search</search:text>
 </search:term-query>
</search:query>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 83

MarkLogic Server Searching Using Structured Queries
The following is the JSON representation of the same query (for use in the REST API or the Java
API):

{
 "query": {
 "queries": [{

"term-query": {
"text": ["imagine a complex search"]

}
}]

}}

With XQuery, you can generate the XML structured query from a string query using
search:parse, and perform a search with the structured query using search:resolve, as shown in
the following code:

xquery version "1.0-ml";
import module namespace search =

"http://marklogic.com/appservices/search"
at "/MarkLogic/appservices/search/search.xqy";

let $complex-search :=
 search:parse('"imagine a complex search"',
 (), "search:query")
return
search:resolve($complex-search)

=> a search:response element

The REST API and Java API include interfaces for searching directly with structured queries. For
details, see Searching With Structured Queries in REST Application Developer’s Guide and Search

Documents Using Structured Query Definition in Java Application Developer’s Guide.

4.5.2 Example: Structured Search With Constraint References as Text

The following is a slightly more complicated Structured Search query. It has an and-query to
combine terms, and has references to a constraint defined in a search options node, as it would be
if parsed using the default query grammar (for example, decade:1940s represents the decade
constraint with the value 1940s).

<search:query xmlns:search="http://marklogic.com/appservices/search">
 <search:and-query>
 <search:term-query>
 <search:text>hepburn</search:text>
 </search:term-query>
 <search:term-query>
 <search:text>decade:1940s</search:text>
 </search:term-query>
 </search:and-query>
</search:query>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 84

MarkLogic Server Searching Using Structured Queries
The following is the corresponding JSON representation:

{
 "query": {
 "queries": [{

"and-query": {
"queries": [

{ "term-query": { "text": ["hepburn"] } },
{ "term-query": { "text": ["decade:1940s"] } }

]
}

}]
}}

4.5.3 Example: Structured Search With Constraint References

The following example demonstrates a query that includes an explicit reference to a constraint
defined in query options.

Assume the query options include a decade bucketed constraint definition, and one of the buckets
is named 1940s:

<!-- for complete options, see “Buckets Example” on page 62 -->
<search:constraint name="decade">
 <search:range type="xs:gYear" facet="true">
 ...more buckets...
 <search:bucket lt="1950" ge="1940"
 name="1940s">1940s</search:bucket>
 <search:bucket lt="1940" ge="1930"
 name="1930s">1930s</search:bucket>
 ...more buckets...
 <search:facet-option>limit=10</search:facet-option>
 <search:attribute ns="" name="year"/>
 <search:element ns="http://marklogic.com/wikipedia"
 name="nominee"/>
 </search:range>
 </search:constraint>
</search:options>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 85

MarkLogic Server Searching Using Structured Queries
When evaluated with the above options, the string query "hepburn AND decade:1940s" expresses a
range constraint (decade:1940s) that limits matches to those that meet the criteria for the 1940s
bucket of the decade constraint. The following is the equivalent structured query, expressed in
XML:

<search:query xmlns:search="http://marklogic.com/appservices/search">
 <search:and-query>
 <search:term-query>
 <search:text>hepburn</search:text>
 </search:term-query>
 <search:range-constraint-query>
 <search:constraint-name>decade</search:constraint-name>
 <search:value>1940s</search:value>
 </search:range-constraint-query>
 </search:and-query>
</search:query>

The following is the corresponding JSON representation:

{
 "query": {
 "queries": [{

"and-query": {
"queries": [

{ "term-query": { "text": ["hepburn"] } },
{

"range-constraint-query": {
"value": ["1940s"],
"constraint-name": "decade"

}
}

]
}

}]
}}

4.5.4 Example: Structured Search on Key-Value Metadata Fields

A metadata field is a field over key-value document metadata. To make key-value metadata
searchable, you must define a metadata field on the key, as described in Configuring a New Metadata

Field in the Administrator’s Guide. You might also need to enable field value searches on your
database or configure a field range index, depending on the type of query you want to perform.

Once you define a field over a metadata key, you can include that key-value pair in searches using
any of the field query capabilities.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 86

MarkLogic Server Searching Using Structured Queries
For example, the following query matches the word “twain” when it occurs in the value of the
metadata key “author”:

<word-query>
 <field name="author"/>
 <text>twain</text>
 </word-query>
</query>

The following is the equivalent query expressed as JSON:

{ "query": {
 "queries": [{
 "word-query": {
 "field": {"name": "mkey"},
 "text": "flubber"
 }
 }]
}}

4.6 Syntax Reference

This section provides detailed syntax information on structured queries. There is a subsection for
each top level element in a structured query. Each section includes detailed syntax, an explanation
of the child elements, and an example. Begin with the top level query wrapper.

• query

• term-query

• and-query

• or-query

• and-not-query

• not-query

• not-in-query

• true-query

• false-query

• near-query

• boost-query

• properties-fragment-query

• directory-query

• collection-query

• container-query
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 87

MarkLogic Server Searching Using Structured Queries
• document-query

• document-fragment-query

• locks-fragment-query

• range-query

• value-query

• word-query

• geo-elem-query

• geo-elem-pair-query

• geo-attr-pair-query

• geo-path-query

• geo-json-property-query

• geo-json-property-pair-query

• geo-region-path-query

• range-constraint-query

• value-constraint-query

• word-constraint-query

• collection-constraint-query

• container-constraint-query

• element-constraint-query

• properties-constraint-query

• custom-constraint-query

• geospatial-constraint-query

• geo-region-constraint-query

• lsqt-query

• period-compare-query

• period-range-query

• operator-state
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 88

MarkLogic Server Searching Using Structured Queries
4.6.1 query

A query is the top level wrapper around a structured query definition. It can contain one or more
subquery children. See the subsections on each child for details.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 89

MarkLogic Server Searching Using Structured Queries
XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<query>
<!-- word or phrase query -->
<term-query />
<!-- cts:query composers -->
<and-query />
<or-query />
<and-not-query />
<not-query />
<not-in-query />
<near-query />
<boost-query />
<!-- cts:query scoping ctors -->
<properties-fragment-query />
<directory-query />
<collection-query />
<container-query />
<document-query />
<document-fragment-query />
<locks-fragment-query />
<range-query />
<value-query />
<word-query />
<geo-elem-query />
<geo-elem-pair-query />
<geo-attr-pair-query />
<geo-path-query />
<geo-json-property-query />
<geo-json-property-pair-query />
<lsqt-query />
<period-compare-query />
<period-range-query />
<!-- Search API abstractions -->
<range-constraint-query />
<value-constraint-query />
<word-constraint-query />
<collection-constraint-query />
<container-constraint-query />
<element-constraint-query />
<properties-constraint-query />
<custom-constraint-query />
<geospatial-constraint-query />
<operator-state />

</query>

{
"query": {

"queries": [
term-query,

and-query,
or-query,
and-not-query,
not-query,
not-in-query,
near-query,
boost-query,

properties-fragment-query,
directory-query,
collection-query,
container-query,
document-query,
document-fragment-query,
locks-fragment-query,
range-query,
value-query,
word-query,
geo-elem-query,
geo-elem-pair-query,
geo-attr-pair-query,
geo-path-query,
geo-json-property-query,
geo-json-property-pair-query,
lsqt-query,
period-compare-query,
period-range-query,

range-constraint-query,
value-constraint-query,
word-constraint-query,
collection-constraint-query,
container-constraint-query,
element-constraint-query,
properties-constraint-query,
custom-constraint-query,
geospatial-constraint-query,
operator-state

]
}

}

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 90

MarkLogic Server Searching Using Structured Queries
4.6.2 term-query

A query that matches one or more search terms or phrases. By default, a term-query is equivalent
to cts:word-query. However, if you use the term query option to customize query term handling,
this equivalence may not hold. For example, if your search includes a term option that specifies a
field word constraint, then a term-query might be handled as a cts:field-word-query. For details,
see “term” on page 931.

• Syntax Summary

• Component Description

• Examples

4.6.2.1 Syntax Summary

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<term-query>
<text>term-or-phrase</text>
<weight>value</weight>
<term-option>option</term-option>

</term-query>

"term-query": {
"text": ["term-or-phrase"],

 "weight": "value",
"term-option": [option]

}

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 91

MarkLogic Server Searching Using Structured Queries
4.6.2.2 Component Description

Element or JSON
Property Name

Req’d? Description

text Y The term or phrase to search for. The query can contain multi-
ple text children. When there are multiple terms, the query
matches if any of the terms match.

weight N A weight for this query. Default: 1.0. Higher weights move
search results up in the relevance order. The weight should be
less than or equal to 64 and greater than or equal to -16
(between -16 and 64, inclusive). Weights greater than 64 have
the same effect as a weight of 64. Weights less than the abso-
lute value of 0.0625 (between -0.0625 and 0.0625) are
rounded to 0, which means that they do not contribute to the
score.

term-option N Term options to apply to the query. You can specify multiple
term options. If the option has a value, the value of
term-option is option=value. For example:
<term-option>min-occurs=1</term-option> in XML, or
"term-option": ["min-occurs=1"] in JSON.

For details, see the cts query corresponding to the query
constraint type: cts:word-query, cts:element-word-query,
cts:element-attribute-word-query, cts:field-word-query,
or cts:json-property-word-query; and “Term Options” on
page 950.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 92

MarkLogic Server Searching Using Structured Queries
4.6.2.3 Examples

The following example searches for documents containing either of the terms “dog” or “cat”.

4.6.3 and-query

Find the intersection of matches specified by one or more sub-queries. For details, see
cts:and-query.

• Syntax Summary

• Component Description

• Examples

4.6.3.1 Syntax Summary

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<query>
<term-query>

<text>dog</text>
<text>cat</text>

</term-query>
</query>

{
 "query": {
 "queries": [{

"term-query": {
"text": ["dog", "cat"]

}
}]

}}

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<and-query>
anyQueryType
<ordered>bool</ordered>

</and-query>

"and-query": {
"queries": [

anyQueryType,
"ordered": boolean

]
}

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 93

MarkLogic Server Searching Using Structured Queries
4.6.3.2 Component Description

4.6.3.3 Examples

The following example searches for documents containing both of the terms “dog” and “cat”,
with “dog” occurring before “cat”.

4.6.4 or-query

Find the union of matches specified by one or more sub-queries. For details, see cts:or-query.

Element or JSON
Property Name

Req’d? Description

anyQueryType N One or more sub-queries.

ordered N Whether or not the sub-query matches must occur in the order
of the sub-queries. For example, if the sub-queries are "cat"
and "dog", an ordered query will only match fragments where
both "cat" and "dog" occur, and where "cat" comes before
"dog" in the fragment. Default: false.

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<query>
 <and-query>
 <term-query>
 <text>dog</text>
 </term-query>
 <term-query>
 <text>cat</text>
 </term-query>

<ordered>true</ordered>
 </and-query>
</query>

{
 "query": {
 "queries": [{

"and-query": {
"queries": [
{

"term-query": {
"text": ["dog"]

}
},
{

"term-query": {
"text": ["cat"]

}
},
{ "ordered": "true" }

]
}

}]
}}
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 94

MarkLogic Server Searching Using Structured Queries
• Syntax Summary

• Component Description

• Examples

4.6.4.1 Syntax Summary

4.6.4.2 Component Description

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<or-query>
anyQueryType

</or-query>

"or-query": {
"queries": [anyQueryType]

}

Element or JSON
Property Name

Req’d? Description

anyQueryType N One or more sub-queries.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 95

MarkLogic Server Searching Using Structured Queries
4.6.4.3 Examples

The following example matches documents containing either the phrase “dog bone” or the term
“cat”.

4.6.5 and-not-query

Find the set difference of the matches specified by two sub-queries. That is, return results that
match the positive query, but which do not match the negative query. For details, see
cts:and-not-query.

• Syntax Summary

• Component Description

• Examples

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<query>
 <or-query>
 <term-query>
 <text>dog bone</text>
 </term-query>
 <term-query>
 <text>cat</text>
 </term-query>
 </or-query>
</query>

{
 "query": {
 "queries": [{

"or-query": {
"queries": [
{

"term-query": {
"text": ["dog bone"]

}
},
{

"term-query": {
"text": ["cat"]

}
}

]}
}]

}}
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 96

MarkLogic Server Searching Using Structured Queries
4.6.5.1 Syntax Summary

4.6.5.2 Component Description

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<and-not-query>
<positive-query>
anyQueryType

</positive-query>
<negative-query>
anyQueryType

</negative-query>
</and-not-query>

"and-not-query": {
"positive-query": { anyQueryType },
"negative-query" : { anyQueryType }

}

Element or JSON
Property Name

Req’d? Description

positive-query Y A query specifying the results filtered in. All results will
match this query.

negative-query Y A query specifying the results filtered out. None of the results
will match this query.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 97

MarkLogic Server Searching Using Structured Queries
4.6.5.3 Examples

The following example matches occurrences of dog, but only where “cat” does not occur in the
same fragment.

4.6.6 not-query

A query that filters out any results that match its sub-query. For details, see cts:not-query.

• Syntax Summary

• Component Description

• Examples

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<query>
 <and-not-query>

<positive-query>
<term-query>
<text>dog</text>

</term-query>
</positive-query>
<negative-query>

<term-query>
<text>cat</text>

</term-query>
</negative-query>

 </and-not-query>
</query>

{
 "query": {
 "queries": [{

"and-not-query": {
"positive-query": {
"term-query": {

"text": ["dog"]
}},
"negative-query": {
"term-query": {

"text": ["cat"]
}}

}
}]

}}
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 98

MarkLogic Server Searching Using Structured Queries
4.6.6.1 Syntax Summary

4.6.6.2 Component Description

4.6.6.3 Examples

The following only matches documents that do not include the term “dog”.

4.6.7 not-in-query

A query that returns results matching a positive query only when those matches do not overlap
positionally with matches to a negative query. For details, see cts:not-in-query.

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<not-query>
anyQueryType

</not-query>

"not-query": {
anyQueryType

}

Element or JSON
Property Name

Req’d? Description

anyQueryType Y A negative query, specifying the search results to filter out.

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<query>
 <not-query>
 <term-query>
 <text>dog</text>
 </term-query>

</not-query>
</query>

{
 "query": {
 "queries": [{

"not-query": {
"term-query": {
"text": ["dog"]

}
}

}]
}}
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 99

MarkLogic Server Searching Using Structured Queries
• Syntax Summary

• Component Description

• Examples

4.6.7.1 Syntax Summary

4.6.7.2 Component Description

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<not-in-query>
<positive-query>
anyQueryType

</positive-query>
<negative-query>
anyQueryType

</negative-query>
</not-in-query>

"not-in-query": {
"positive-query": { anyQueryType },
"negative-query" : { anyQueryType }

}

Element or JSON
Property Name

Req’d? Description

positive-query Y A positive query, specifying the search results to filter in.

negative-query Y A negative query, specifying the search results to filter out.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 100

MarkLogic Server Searching Using Structured Queries
4.6.7.3 Examples

The example below matches fragments that contain at least one occurrence of “dog” outside of
the phrase “man bites dog”.

4.6.8 true-query

A query that matches all documents (or fragments). For details, see cts:true-query.

• Syntax Summary

• Component Description

• Examples

4.6.8.1 Syntax Summary

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<query>
 <not-in-query>

<positive-query>
<term-query>
<text>dog</text>

</term-query>
</positive-query>
<negative-query>

<term-query>
<text>man bites dog</text>

</term-query>
</negative-query>

 </not-in-query>
</query>

{
 "query": {
 "queries": [{

"not-in-query": {
"positive-query": {
"term-query": {

"text": ["dog"]
}},
"negative-query": {
"term-query": {

"text": [
"man bites dog"

]
}}

}
 }]
}}

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<true-query/>

"true-query": null
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 101

MarkLogic Server Searching Using Structured Queries
4.6.8.2 Component Description

This query has no sub-components.

4.6.8.3 Examples

The following example matches all documents.

4.6.9 false-query

A query that matches no documents (or fragments). For details, see cts:false-query.

• Syntax Summary

• Component Description

• Examples

4.6.9.1 Syntax Summary

4.6.9.2 Component Description

This query has no sub-components.

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<query>
 <true-query/>
</query>

{"query": {
 "queries": [{

"true-query": null
 }]
}}

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<false-query/>

"false-query": null
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 102

MarkLogic Server Searching Using Structured Queries
4.6.9.3 Examples

The following example matches all documents.

4.6.10 near-query

A query that returns results matching all of the specified queries where the matches occur within a
specified distance of each other. For details, see cts:near-query.

• Syntax Summary

• Component Description

• Examples

4.6.10.1 Syntax Summary

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<query>
 <false-query/>
</query>

{"query": {
 "queries": [{

"false-query": null
 }]
}}

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<near-query>
anyQueryType
<distance>integer</distance>
<minimum-distance>integer<minimum-distance>
<distance-weight>
double

</distance-weight>
<ordered>boolean</ordered>

</near-query>

"near-query": {
"queries": [

anyQueryType,
 "distance": "number",

"minimum-distance": "number",
"distance-weight": "number",
"ordered" : boolean

]
}

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 103

MarkLogic Server Searching Using Structured Queries
4.6.10.2 Component Description

Note that distance and minimum-distance apply to each near-query match. Therefore, if
minimum-distance is greater than distance, there can be no matches.

Element or JSON
Property Name

Req’d? Description

anyQueryType Y One or more queries that must match within the specified
proxmity to each other.

distance N A maximum distance, in number of words, between any two
matching queries. Default: 10. The results match if two que-
ries match and the minimum distance between the two
matches is less than or equal to the specified distance. A dis-
tance of 0 matches when the text is the same text or when there
is overlapping text. A negative distance is treated as 0.

minimum-distance N The minimum distance, in words, between any two matching
queries. Default: 0. The results match if the two queries match
and the minimum distance between the two matches is greater
than or equal to the specified minimum distance. A negative
distance is treated as 0.

distance-weight N A weight attributed to the distance for this query. Higher
weights add to the importance of distance (as opposed to term
matches) when the relevance order is calculated. Default: 1.0.

ordered N Whether or not the sub-query matches must occur in the order
of the sub-queries. For example, if the sub-queries are "cat"
and "dog", an ordered query will only match fragments where
both "cat" and "dog" occur within the required distance and
"cat" comes before "dog" in the fragment. Default: false.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 104

MarkLogic Server Searching Using Structured Queries
4.6.10.3 Examples

The following example matches occurrences of “dog” occuring within in two terms of “cat”.

4.6.11 boost-query

Find all matches to a query. Boost the search relevance score of results that also match the
boosting query. For details, see cts:boost-query and “Boosting Relevance Score With a
Secondary Query” on page 429.

• Syntax Summary

• Component Description

• Examples

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<query>
 <near-query>

<term-query>
<text>dog</text>

</term-query>
<term-query>

<text>cat</text>
</term-query>
<distance>2</distance>

</near-query>
</query>

{
 "query": {
 "queries": [{

"near-query": {
"queries": [
{

"term-query": {
"text": ["dog"]

}
},
{

"term-query": {
"text": ["cat"]

}
},
{ "distance": "2" }

]
}

 }]
}}
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 105

MarkLogic Server Searching Using Structured Queries
4.6.11.1 Syntax Summary

4.6.11.2 Component Description

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<boost-query>
<matching-query>
anyQueryType

</matching-query>
<boosting-query>
anyQueryType

</boosting-query>
</boost-query>

"boost-query": {
"matching-query": { anyQueryType },
"boosting-query" : { anyQueryType }

}

Element or JSON
Property Name

Req’d? Description

matching-query N The query to match. All search results matching this query are
returned (modulo limitations imposed by search options). This
element can occur multiple times; multiple occurrences are
AND’d together. If there are no occurrences, the boosting
query implicitly matches all documents.

boosting-query N The query to use for relevance score boosting. Those results
which match both matching-query and boosting-query have
their relevance scores modified proportional to the weight of
boosting-query. The boosting-query is not evaluated if there
are no matches to matching-query. This element can occur
multiple times; multiple occurrences are AND’d together. If
there are no occurrences, the boosting query implicitly
matches all documents.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 106

MarkLogic Server Searching Using Structured Queries
4.6.11.3 Examples

The following example searches for documents containing the term “dog”. Documents that also
contain the term “cat” will return a search:result with a relevance score boosted proportional to
the weight 10.0, giving them higher scores than documents that do not contain “cat”.

4.6.12 properties-fragment-query

A query that matches all documents where the sub-query matches against document properties.
For details, see cts:properties-fragment-query.

• Syntax Summary

• Component Description

• Examples

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<query>
 <boost-query>

<matching-query>
 <term-query>
 <text>dog</text>
 </term-query>

</matching-query>
<boosting-query>

 <term-query>
 <text>cat</text>

<weight>10.0</weight>
 </term-query>

</boosting-query>
</boost-query>

</query>

{
 "query": {
 "queries": [{

"boost-query": {
"matching-query": {
"term-query": {

"text": ["dog"]
}},
"boosting-query": {
"term-query": {

"text": ["cat"],
"weight": "10.0"

}}
}

 }]
}}
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 107

MarkLogic Server Searching Using Structured Queries
4.6.12.1 Syntax Summary

4.6.12.2 Component Description

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<properties-fragment-query>
anyQueryType

</properties-fragment-query>

"properties-fragment-query": {
anyQueryType

}

Element or JSON
Property Name

Req’d? Description

anyQueryType Y A sub-query to run against document properties.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 108

MarkLogic Server Searching Using Structured Queries
4.6.12.3 Examples

The following example matches all documents modified since 2012-12-31, assuming you define
an element range index on the “last-modified” property and your query includes options defining
the “modified” constraint.

Format Query

XML <options xmlns="http://marklogic.com/appservices/search">
 <constraint name="modified">
 <range type="xs:string">
 <element

ns="http://marklogic.com/xdmp/property"
name="last-modified"/>

<fragment-scope>properties</fragment-scope>
 </range>
 </constraint>
</options>

<query xmlns="http://marklogic.com/appservices/search">
<properties-fragment-query>

 <range-constraint-query>
<constraint-name>modified</constraint-name>

 <value>2012-12-31</value>
 <range-operator>GT</range-operator>
 </range-constraint-query>
 </properties-fragment-query>
</query>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 109

MarkLogic Server Searching Using Structured Queries
4.6.13 directory-query

A query matching documents in the directories with the given URIs. For details, see
cts:directory-query.

• Syntax Summary

• Component Description

• Examples

JSON {
 "options": {
 "constraint": [
 {
 "name": "modified",
 "range": {
 "type": "xs:string",
 "element": {
 "ns": "http://marklogic.com/xdmp/property",
 "name": "last-modified"
 },
 "fragment-scope": "properties"

}]
}}

{
 "query": {
 "queries": [{

"properties-fragment-query": {
"range-constraint-query": {

"value": ["2012-12-31"],
"constraint-name": "modified",
"range-operator": "GT"

}
}

 }]
}}

Format Query
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 110

MarkLogic Server Searching Using Structured Queries
4.6.13.1 Syntax Summary

4.6.13.2 Component Description

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<directory-query>
<uri>directory-uri</uri>
<infinite>boolean</infinite>

</directory-query>

"directory-query": {
"uri": [directory-uris],
"infinite": boolean

}

Element or JSON
Property Name

Req’d? Description

uri Y One or more directory URIs. A directory URI must end with a
forward slash (“/”).

infinite N Whether or not to recurse through all child directories.
Default: true.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 111

MarkLogic Server Searching Using Structured Queries
4.6.13.3 Examples

The following example matches documents in the database directories /documents/ or /images/,
but does not look for matches in any sub-directories.

4.6.14 collection-query

A query matching documents in any of the collections with the given URIs. For details, see
cts:collection-query.

• Syntax Summary

• Component Description

• Examples

4.6.14.1 Syntax Summary

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<query>
<directory-query>
<uri>/documents/</uri>
<uri>/images/</uri>
<infinite>false</infinite>

</directory-query>
</query>

{
 "query": {
 "queries": [{

"directory-query": {
"uri": [

"/documents/",
"/images/"

],
"infinite": false

}
 }]
}}

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<collection-query>
<uri>collection-uri</uri>

</collection-query>

"collection-query": {
uri": [collection-uris]

}

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 112

MarkLogic Server Searching Using Structured Queries
4.6.14.2 Component Description

4.6.14.3 Examples

The following example matches documents in the reports collection or the analysis collection.

4.6.15 container-query

A query matching documents containing a specified XML element or JSON property whose
contents match a specified sub-query.

• Syntax Summary

• Component Description

• Examples

Element or JSON
Property Name

Req’d? Description

uri Y One or more collection URIs. A document matches if it is in
any one of the collections specified by uri.

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<query>
<collection-query>
<uri>reports</uri>
<uri>analysis</uri>

</collection-query>
</query>

{
 "query": {
 "queries": [{

"collection-query": {
"uri": ["reports","analysis"]

}
 }]
}}
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 113

MarkLogic Server Searching Using Structured Queries
4.6.15.1 Syntax Summary

4.6.15.2 Component Description

Your query must include exactly one of element or json-property.

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<container-query>
<element name=string ns=string />
<json-property>name</json-property>
<fragment-scope>scope</fragment-scope>
anyQueryType

</container-query>

"container-query": {
"element": {

"name": elem-name,
"ns": namespace

},
"json-property": prop-name,
"fragment-scope": scope,
anyQueryType

}

Element or JSON
Property Name

Req’d? Description

element Y An XML element descriptor, identified by name and
namespace (ns). Both name and ns are required. If you include
element, you should not include a json-property. If you
specify multiple elements, the query matches documents that
satisfy any one of the element constraints.

json-property Y A JSON property name. If you include json-property, you
should not include an element. If you specify multiple
properties, the query matches documents that satisfy any one
of the property constraints.

fragment-scope N Constrain matches to the specified fragment scope. Allowed
values: documents (default) or properties. For more details,
see the fragment-scope query option.

anyQueryType Y A sub-query to run against the contents of matching containers
(XML elements or JSON properties). An and-query will only
match array items in the container if all the and-query criteria
are met in the same array value.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 114

MarkLogic Server Searching Using Structured Queries
4.6.15.3 Examples

The following XML example matches all documents containing a <pets/> element with
descendants whose contents match the term “dog”. The JSON example matches all documents
containing the property named “pets” with descendants whose contents match the term “dog”.

4.6.16 document-query

A query matching documents with the given URIs.. For details, see cts:document-query.

• Syntax Summary

• Component Description

• Examples

4.6.16.1 Syntax Summary

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<query>
<container-query>

 <element name="pet" ns="" />
<term-query>

<text>dog</text>
</term-query>

</query>

{
 "query": {
 "queries": [{

"container-query": {
"json-property": "pet",
"term-query": {

"text": ["dog"]
}

}
 }]
}}

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<document-query>
<uri>document-uri</uri>

</document-query>

"document-query": {
"uri": [document-uris]

}

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 115

MarkLogic Server Searching Using Structured Queries
4.6.16.2 Component Description

4.6.16.3 Examples

The following example matches either the document with URI /documents/reports.xml or the
document with URI /documents/analysis.xml.

4.6.17 document-fragment-query

A query that matches all documents where a sub-query matches any document fragment. For
details, see cts:document-fragment-query.

• Syntax Summary

• Component Description

• Examples

Element or JSON
Property Name

Req’d? Description

uri Y One or more document URIs.

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<query>
<document-query>
<uri>/documents/reports.xml</uri>
<uri>/documents/analysis.xml</uri>

</document-query>
</query>

{
 "query": {
 "queries": [{

"document-query": {
"uri": [

"/documents/reports.xml",
"/documents/analysis.xml"

]
}

 }]
}}
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 116

MarkLogic Server Searching Using Structured Queries
4.6.17.1 Syntax Summary

4.6.17.2 Component Description

4.6.17.3 Examples

The following example matches any documents that include fragments that contain the term dog.

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<document-fragment-query>
anyQueryType

</document-fragment-query>

"document-fragment-query": {
anyQueryType

}

Element or JSON
Property Name

Req’d? Description

anyQueryType Y The query to be matched against any document fragment.

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<query>
 <document-fragment-query>
 <term-query>
 <text>dog</text>
 </term-query>

</document-fragment-query>
</query>

{
 "query": {
 "queries": [{

"document-fragment-query": {
"term-query": {

"text": ["dog"]
}

}
 }]
}}
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 117

MarkLogic Server Searching Using Structured Queries
4.6.18 locks-fragment-query

A query that matches all documents where a sub-query matches a document-locks fragment. For
details, see cts:locks-fragment-query.

• Syntax Summary

• Component Description

• Examples

4.6.18.1 Syntax Summary

4.6.18.2 Component Description

4.6.18.3 Examples

The following example matches documents with document locks fragments that include the term
write in lock:lock-type element. This example assumes the existence of an element range index
on lock:lock-type and query options that include a constraint on that element with the name
lock-type.

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<locks-fragment-query>
anyQueryType

</locks-fragment-query>

"locks-fragment-query": {
anyQueryType

}

Element or JSON
Property Name

Req’d? Description

anyQueryType Y The query to be matched against any document fragment.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 118

MarkLogic Server Searching Using Structured Queries
4.6.19 range-query

A query that applies a range constraint and compares the results to the specified value. For details,
see “Constraint Options” on page 382 and the XQuery functions cts:element-range-query,
cts:element-attribute-range-query, cts:field-range-query, and cts:path-range-query.

A range-query is equivalent to string query expressions of the form constraint:value or
constraint LE value. The constraint is defined in the query and must be backed by a range index.

• Syntax Summary

• Component Description

• Examples

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/sear

ch.

<query>
 <locks-fragment-query>
 <container-constraint-query>

<constraint-name>
lock-type

</constraint-name>
<term-query>
<text>write</text>

</term-query>
</container-constraint-query>

</locks-fragment-query>
</query>

{
 "query": {
 "queries": [{

"locks-fragment-query": {
"container-constraint-query": {
"constraint-name": "lock-type",
"term-query": {

"text": ["write"]
}

}}
}]

}}
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 119

MarkLogic Server Searching Using Structured Queries
4.6.19.1 Syntax Summary

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<range-query type=index-type collation=uri>
<element name=elem-name ns=namespace />
<attribute name=attr-name ns=namespace />
<json-property>name</json-property>
<field name=field-name collation=uri />
<path-index>path-expr</path-index>
<fragment-scope>scope</fragment-scope>
<value>value</value>
<range-operator>operator</operator>
<range-option>option</range-option>
<weight>value</weight>

</range-query>

"range-query": {
"type": index-type,
"collation": index-collation-uri,
"element": {

"name": elem-name,
"ns": namespace

},
"attribute": {

"name": attr-name,
"ns": namespace

},
"json-property": prop-name,
"field": {

"name": field-name,
"collation": uri

},
"path-index": {

"text": path-expr,
"namespaces": {

prefix: namespace-uri
}

},
"fragment-scope": scope,
"value": value-as-string,
"range-operator": operator,
"range-option": option,
"weight": number

}

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 120

MarkLogic Server Searching Using Structured Queries
4.6.19.2 Component Description

You must specify an element, json-property, field, or path-index, or an element and an
attribute to define the range constraint to apply to the query. These components are mutually
exclusive: Except for element and attribute, a query must include exactly one.

Element or JSON
Property Name

Req’d? Description

element N An XML element descriptor, identified by element name and
namespace (ns). Both name and ns are required. If you include
element, you should not include a json-property, field, or
path-index.

attribute N An XML attribute descriptor, identifying the attribute by name
and namespace (ns). Both name and ns are required.

json-property N A JSON property name. If you include json-property, you
should not include an element, field, or path-index.

field N A field descriptor, identified by the field name (required) and
optional collation. The database configuration must include a
definition for this field. If you include field, you should not
include an element, json-property, or path-index.

path-index N A path range expression. If the path expression includes
namespace prefixes, you must define the namespace bindings
on the path-index. If you include path-index, you should not
include an element, json-property, or field.

The database configuration must include a matching path
range index. The path expression and namespace URIs must
match the index configuration; namespace prefixes do not
have to match.

The path expression is limited to the subset of XPath that can
be used to define a path range index. For details, see Path Field

and Path-Based Range Index Configuration in the XQuery and
XSLT Reference Guide.

fragment-scope N Constrain matches to the specified fragment scope. Allowed
values: documents (default) or properties. For more details,
see the fragment-scope query option.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 121

MarkLogic Server Searching Using Structured Queries
value N The value against which to match XML elements, XML ele-
ment attributes, JSON properties, or fields that match the con-
straint identified by constraint-name. This element can occur
0 or more times.

range-operator N One of LT, LE, GT, GE, EQ, NE. Default: EQ. The relationship that
must be satisfied between constraint matches and value.

range-option N One or more range query options. Allowed values depend on
the type of range query (element, path, field, etc.). For details,
see Including a Range or Geospatial Query in Scoring in Search
Developer’s Guide. For a list of options, see “Range Options”
on page 951.

type N The type of the range index. Required when you have multiple
indexes over the same item with different datatypes.

collation N A collation URI to use if the index type is string.

weight N A weight for this query. Default: 1.0. Higher weights move
search results up in the relevance order. The weight should be
less than or equal to 64 and greater than or equal to -16
(between -16 and 64, inclusive). Weights greater than 64 have
the same effect as a weight of 64. Weights less than the
absolute value of 0.0625 (between -0.0625 and 0.0625) are
rounded to 0, which means that they do not contribute to the
score.

Element or JSON
Property Name

Req’d? Description
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 122

MarkLogic Server Searching Using Structured Queries
4.6.19.3 Examples

The following example matches documents containing a <body-color/> element with a value of
black, assuming an element range index exists on <body-color/>.

4.6.20 value-query

A query that matches fragments where the value of an XML element, XML attribute, JSON
property, or field matches value in the text XML element or JSON property of the query.

When searching JSON documents, the criteria value in the query text element or JSON property
must be properly typed by setting the type element or property in the query. If you do not set type
in the query, “string” is assumed, which will never match a number, boolean, or null value in a
JSON document.

The match semantics depend on the text value, the database configuration, and the options in
effect. For details, see“Text Match Semantics” on page 79 or cts:element-value-query,
cts:element-attribute-value-query, cts:json-property-value-query, or
cts:field-value-query.

• Syntax Summary

• Component Description

• Examples

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<query>
<range-query type="xs:string">

<element ns="" name="body-color"/>
<value>black</value>

</range-query>
</query>

{
 "query": {
 "queries": [{

"range-query": {
"type": "xs:string",
"element": {

"ns": "",
"name": "body-color"

},
"value": ["black"]

}
 }]
}}
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 123

MarkLogic Server Searching Using Structured Queries
4.6.20.1 Syntax Summary

4.6.20.2 Component Description

You must specify an element, json-property, field, or an element and an attribute to define the
range constraint to apply to the query. These components are mutually exclusive: Except for
element and attribute, a query must include exactly one.

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<value-query type=node-type>
<element name=elem-name ns=namespace />
<attribute name=attr-name ns=namespace />
<json-property>name</json-property>
<field name=field-name collation=uri />
<fragment-scope>scope</fragment-scope>
<text>name</text>
<term-option>option/term-option>
<weight>value</weight>

</value-query>

"value-query": {
"type": node-type,
"element": {

"name": elem-name,
"ns": namespace

},
"attribute": {

"name": attr-name,
"ns": namespace

},
"json-property": name,
"field": {

"name": field-name,
"collation": uri

},
"fragment-scope": scope,
"text": [name],
"term-option": [option],
"weight": number

}

Element, Attribute,
or JSON Property

Name
Req’d? Description

type N A JSON node type, one of string (default), boolean, null,
number. Only meaningful for JSON content. Use type to
constrain the matches to values in this node type. Non-JSON
documents never contain boolean, null or number nodes.

element N An XML element descriptor, identified by element name and
namespace (ns). Both name and ns are required. If you include
element, you should not include a json-property.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 124

MarkLogic Server Searching Using Structured Queries
attribute N An XML attribute descriptor, identifying the attribute by name
and namespace (ns). Both name and ns are required.

json-property N A JSON property name. If you include json-property, you
should not include an element.

field N A field descriptor, identified by the field name (required) and
optional collation. The database configuration must include a
definition for this field.

fragment-scope N Constrain matches to the specified fragment scope. Allowed
values: documents (default) or properties. For more details,
see the fragment-scope query option.

text N The value that must match in an XML element, XML element
attribute, JSON property, or field value. Multiple values can be
specified. If there is no type specifier, the values are treated as
strings for matching purposes. The interpretation of the value
is determined by the type setting in the query.

term-option N Term options to apply to the query when matching text. You
can specify multiple term options. If the option has a value, the
value of term-option is option=value. For example:
<term-option>min-occurs=1</term-option>.

For details, see the cts query corresponding to the query
constraint type: cts:element-value-query,
cts:element-attribute-value-query,
cts:json-property-value-query, or cts:field-value-query;
and “Term Options” on page 950.

weight N A weight for this query. Default: 1.0. Higher weights move
search results up in the relevance order. The weight should be
less than or equal to 64 and greater than or equal to -16
(between -16 and 64, inclusive). Weights greater than 64 have
the same effect as a weight of 64. Weights less than the
absolute value of 0.0625 (between -0.0625 and 0.0625) are
rounded to 0, which means that they do not contribute to the
score.

Element, Attribute,
or JSON Property

Name
Req’d? Description
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 125

MarkLogic Server Searching Using Structured Queries
4.6.20.3 Examples

The following example matches documents where the field defined with the name “myFieldName”
has the value “Jane Doe”. The example assumes the field “myFieldName” is defined in the database
configuration and that field searches are enabled for the database.

The following example matches documents where the JSON property “num” contains the number
value 42. Since type is set to “number”, the query matches a document such as { "num": 42 }, but
it will not match a document such as { "num": "42" }. If you did not set type, then the type would
be string and the query would match a document such as { "num": "42" } but would not match a
document such as { "num": "42" }.

Note that in the JSON version of the query, the value of text can be either a string ("42") or a
number (42). The interpretation of the value depends on the type setting in the query.

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<query>
<value-query>

<field name="myFieldName" />
<text>Jane Doe</text>

</value-query>
</query>

{
 "query": {
 "queries": [{

"value-query": {
"field": {

"name": "myFieldName",
},
"text": ["Jane Doe"]

}
 }]
}}

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<query>
<value-query>

<json-property>num</json-property>
<text>42</text>
<type>number</type>

</value-query>
</query>

{
 "query": {
 "queries": [{

"value-query": {
"json-property": "num",
"type": "number",
"text": ["42"]

}
 }]
}}
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 126

MarkLogic Server Searching Using Structured Queries
4.6.21 word-query

A query that matches fragments containing the specified terms or phrases in the XML element or
attribute, JSON property, or field identified by the constraint defined in the query. This is similar
to a string query of the form constraint:value, where the constraint is an element, element
attribute, JSON property, or field constraint. For details, see the cts word query function that
corresponds to your constraint type, such as cts:element-word-query or cts:field-word-query.

• Syntax Summary

• Component Description

• Examples

4.6.21.1 Syntax Summary

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<word-query>
<element name=elem-name ns=namespace />
<attribute name=attr-name ns=namespace

/>
<json-property>name</json-property>
<field name=field-name collation=uri />
<fragment-scope>scope</fragment-scope>
<text>name</text>
<term-option>option/term-option>
<weight>value</weight>

</word-query>

"word-query": {
"element": {

"name": elem-name,
"ns": namespace

},
"attribute": {

"name": attr-name,
"ns": namespace

},
"json-property": prop-name,
"field": {

"name": field-name,
"collation": uri

},
"fragment-scope": scope,
"text": [name],
"term-option": [option],
"weight": number

}

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 127

MarkLogic Server Searching Using Structured Queries
4.6.21.2 Component Description

You must specify at least one element, json-property, field, or an element and an attribute to
define the range constraint to apply to the query. These components are mutually exclusive:
Except for element and attribute pairs, a word-query must include exactly one type of constraint
specifier.

Element or JSON
Property Name

Req’d? Description

element N An XML element descriptor, identified by element name and
namespace (ns). Both name and ns are required. You can
specify multiple elements, in which case the query matches if
a match is found in any of the elements. If you include
element, you should not include a json-property or field.

attribute N An XML attribute descriptor, identifying the attribute by name
and namespace (ns). Both name and ns are required. You can
specify multiple attributes, in which case the query matches if
a match is found in any of the attributes. You cannot use this
component in conjunction with json-property or field.

json-property N A JSON property name. You can specify multiple properties,
in which case the query matches if a match is found in any of
the properties. If you include json-property, you should not
include an element, attribute, or field.

field N A field descriptor, identified by the field name (required) and
optional collation. The database configuration must include a
definition for the field. You can specify multiple fields, in
which case the query matches if a match is found in any of the
fields. If you include field, you should not include an
element, attribute, or json-property.

fragment-scope N Constrain matches to the specified fragment scope. Allowed
values: documents (default) or properties. For more details,
see the fragment-scope query option.

text N Terms or phrases that must occur in documents matching the
constraint defined by this query. Multiple values can be speci-
fied; if any one matches, the document matches the query.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 128

MarkLogic Server Searching Using Structured Queries
term-option N Term options to apply to the query. You can specify multiple
term options. If the option has a value, the value of
term-option is option=value. For example:
<term-option>min-occurs=1</term-option>.

For details, see the cts query corresponding to the query
constraint type, such as: cts:element-word-query,
cts:element-attribute-word-query,
cts:json-property-word-query, or cts:field-word-query; and
“Term Options” on page 950.

weight N A weight for this query. Default: 1.0. Higher weights move
search results up in the relevance order. The weight should be
less than or equal to 64 and greater than or equal to -16
(between -16 and 64, inclusive). Weights greater than 64 have
the same effect as a weight of 64. Weights less than the
absolute value of 0.0625 (between -0.0625 and 0.0625) are
rounded to 0, which means that they do not contribute to the
score.

Element or JSON
Property Name

Req’d? Description
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 129

MarkLogic Server Searching Using Structured Queries
4.6.21.3 Examples

The following example matches documents containing a <body-color/> element that contains the
word black.

4.6.22 geo-elem-query

A query that returns documents that match the geospatial element constraint defined in the query.
For details, see cts:element-geospatial-query, cts:element-child-geospatial-query, or
“Geospatial Search Applications” on page 476.

• Syntax Summary

• Component Description

• Examples

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<query>
<word-query>

<element name="body-color" ns="" />
<text>black</text>

</word-query>
</query>

{
 "query": {
 "queries": [{

"word-query": {
"element": {

"name": "body-color",
"ns": ""

},
"text": ["black"]

}
 }]
}}
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 130

MarkLogic Server Searching Using Structured Queries
4.6.22.1 Syntax Summary

4.6.22.2 Component Description

A geospatial query contains one or more points or regions, described by point, box, circle, and
polygon XML child elements or JSON sub-objects. The element pair containing geospatial data
are described by parent, lat, and lon. For details, see “Geospatial Search Applications” on
page 476

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<geo-elem-query>
<parent name=elem-name ns=uri />
<element name=elem-name ns=uri />
<geo-option>option</geo-option>
<fragment-scope>scope</fragement-scope>
<point>
<latitude>float</latitude>
<longitude>float</longitude>

</point>
<box>
<south>float</south>
<west>float</west>
<north>float</north>
<east>float</east>

</box>
<circle>
<radius>float</radius>
<point/>

</circle>
<polygon>
<point/>

</polygon>
<weight>value</weight>

</geo-elem-query>

"geo-elem-query": {
"parent": {

"name": elem-name
"ns": uri

},
"element": {

"name": elem-name
"ns": uri

},
"geo-option": [option],
"fragment-scope": scope,
"point": [

{
"latitude": number,
"longitude": number

}
],
"box": [

{
"south": number,
"west": number,
"north": number,
"east": number

}
],
"circle": [

{
"radius": number,
point

}
],
"polygon": [point],
"weight": number

}

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 131

MarkLogic Server Searching Using Structured Queries
Element or JSON
Property Name

Req’d? Description

parent N Optional. The parent element of the element containing
geospatial data, identified by element name and namespace
(ns). Both name and ns are required.

element Y The element containing geospatial data, identified by name and
namespace (ns). Both name and ns are required.

fragment-scope N Constrain matches to the specified fragment scope. Allowed
values: documents (default) or properties. For more details,
see the fragment-scope query option.

geo-option N Geospatial options to apply to the query. You can specify
multiple options. If an option has a value, the value of
geo-option is of the form option=value. For example:
<geo-option>units=miles</geo-option>. For details, see
cts:element-geospatial-query or
cts:element-child-geospatial-query.

point N Zero or more geographic points, each defined by a latitude
and a longitude. The query can contain 0 or more points.

box N Zero or more rectangular regions, each defined by 4 points:
north, south, east, and west.

circle N Zero or more circles, each defined by radius and a center
point.

polygon N Zero or more polygons, each series of point’s.

weight N A weight for this query. Default: 1.0. Higher weights move
search results up in the relevance order. The weight should be
less than or equal to 64 and greater than or equal to -16
(between -16 and 64, inclusive). Weights greater than 64 have
the same effect as a weight of 64. Weights less than the
absolute value of 0.0625 (between -0.0625 and 0.0625) are
rounded to 0, which means that they do not contribute to the
score.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 132

MarkLogic Server Searching Using Structured Queries
4.6.22.3 Examples

The following example matches points contained in either of two polygons. The constraint
defined in the query by parent and element defines how to construct the points to match against
the regions defined in the query.

Format Query

XML <query xmlns="http://marklogic.com/appservices/search">
 <geo-elem-query>

<parent ns="ns1" name="elem1"/>
<element ns="ns1" name="elem2"/>
<polygon>

 <point> <latitude>1</latitude> <longitude>2</longitude> </point>
 <point> <latitude>3</latitude> <longitude>4</longitude> </point>
 <point> <latitude>5</latitude> <longitude>6</longitude> </point>
 <point> <latitude>7</latitude> <longitude>8</longitude> </point>
 </polygon>
 <polygon>
 <point> <latitude>2</latitude> <longitude>6</longitude> </point>
 <point> <latitude>3</latitude> <longitude>7</longitude> </point>
 <point> <latitude>4</latitude> <longitude>8</longitude> </point>
 <point> <latitude>5</latitude> <longitude>9</longitude> </point>
 </polygon>
 </geo-elem-query>
</query>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 133

MarkLogic Server Searching Using Structured Queries
4.6.23 geo-elem-pair-query

A query that returns documents that match the geospatial XML element constraint defined in the
query. For details, see cts:element-pair-geospatial-query and “Geospatial Search
Applications” on page 476.

• Syntax Summary

• Component Description

• Examples

JSON {
 "query": {
 "queries": [{

"geo-elem-query": {
"parent": { "ns": "ns1", "name": "elem1" },
"element": { "ns": "ns1", "name": "elem2" },
"polygon": [

{
"point": [

 { "latitude": 1, "longitude": 2 },
 { "latitude": 3, "longitude": 4 },
 { "latitude": 5, "longitude": 6 },
 { "latitude": 7, "longitude": 8 }

]
},
{
"point": [

 { "latitude": 2, "longitude": 6 },
 { "latitude": 3, "longitude": 7 },
 { "latitude": 4, "longitude": 8 },
 { "latitude": 5, "longitude": 9 }
]

}
]

}
}]

}}

Format Query
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 134

MarkLogic Server Searching Using Structured Queries
4.6.23.1 Syntax Summary

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<geo-elem-pair-query>
<parent name=elem-name ns=uri />
<lat name=elem-name ns=uri />
<lon name=elem-name ns=uri />
<geo-option>option</geo-option>
<fragment-scope>scope</fragement-scope>
<point>
<latitude>float</latitude>
<longitude>float</longitude>

</point>
<box>
<south>float</south>
<west>float</west>
<north>float</north>
<east>float</east>

</box>
<circle>
<radius>float</radius>
<point/>

</circle>
<polygon>
<point/>

</polygon>
<weight>value</weight>

</geo-elem-pair-query>

"geo-elem-pair-query": {
"parent": {

"name": elem-name
"ns": uri

},
"lat": {

"name": elem-name
"ns": uri

},
"lon": {

"name": elem-name
"ns": uri

},
"geo-option": [option],
"fragment-scope": scope,
"point": [

{
"latitude": number,
"longitude": number

}
],
"box": [

{
"south": number,
"west": number,
"north": number,
"east": number

}
],
"circle": [

{
"radius": number,
point

}
],
"polygon": [point],
"weight": number

}

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 135

MarkLogic Server Searching Using Structured Queries
4.6.23.2 Component Description

A geospatial query contains one or more points or regions, described by point, box, circle, and
polygon XML child elements or JSON sub-objects. The element pair containing geospatial data
are described by parent, lat, and lon.

Element or JSON
Property Name

Req’d? Description

parent N The element containing geospatial data, identified by element
name and namespace (ns). Both name and ns are required.

lat Y The XML element containing latitude data, identified by name
and namespace (ns). Both name and ns are required.

lon Y The XML element containing longitude data, identified by
name and namespace (ns). Both name and ns are required.

fragment-scope N Constrain matches to the specified fragment scope. Allowed
values: documents (default) or properties. For more details,
see the fragment-scope query option.

geo-option N Geospatial options to apply to the query. You can specify
multiple options. If an option has a value, the value of
geo-option is of the form option=value. For example:
<geo-option>units=miles</geo-option>. For details, see
cts:element-pair-geospatial-query.

point N Zero or more geographic points, each defined by a latitude
and a longitude. The query can contain 0 or more points.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 136

MarkLogic Server Searching Using Structured Queries
4.6.23.3 Examples

The following example matches points contained in either of two polygons. The constraint
defined in the query by parent, lat, and lon defines how to construct the points to match against
the regions defined in the query.

box N Zero or more rectangular regions, each defined by 4 points:
north, south, east, and west.

circle N Zero or more circles, each defined by radius and a center
point.

polygon N Zero or more polygons, each series of point’s.

weight N A weight for this query. Default: 1.0. Higher weights move
search results up in the relevance order. The weight should be
less than or equal to 64 and greater than or equal to -16
(between -16 and 64, inclusive). Weights greater than 64 have
the same effect as a weight of 64. Weights less than the
absolute value of 0.0625 (between -0.0625 and 0.0625) are
rounded to 0, which means that they do not contribute to the
score.

Format Query

XML <query xmlns="http://marklogic.com/appservices/search">
 <geo-elem-pair-query>

<parent ns="ns1" name="elem2"/>
<lat ns="ns2" name="attr2"/>
<lon ns="ns3" name="attr3"/>
<polygon>

 <point> <latitude>1</latitude> <longitude>2</longitude> </point>
 <point> <latitude>3</latitude> <longitude>4</longitude> </point>
 <point> <latitude>5</latitude> <longitude>6</longitude> </point>
 <point> <latitude>7</latitude> <longitude>8</longitude> </point>
 </polygon>
 <polygon>
 <point> <latitude>2</latitude> <longitude>6</longitude> </point>
 <point> <latitude>3</latitude> <longitude>7</longitude> </point>
 <point> <latitude>4</latitude> <longitude>8</longitude> </point>
 <point> <latitude>5</latitude> <longitude>9</longitude> </point>
 </polygon>
 </geo-elem-pair-query>
</query>

Element or JSON
Property Name

Req’d? Description
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 137

MarkLogic Server Searching Using Structured Queries
4.6.24 geo-attr-pair-query

A query that returns documents that match the geospatial element constraint defined in the query.
For details, see cts:element-attribute-pair-geospatial-query or “Geospatial Search
Applications” on page 476.

• Syntax Summary

• Component Description

• Examples

JSON {"query": {
 "queries": [{

"geo-elem-pair-query": {
"parent": { "ns": "ns1", "name": "elem2" },
"lat": { "ns": "ns2", "name": "attr2" },
"lon": { "ns": "ns3", "name": "attr3" }
"polygon": [

{
"point": [

 { "latitude": 1, "longitude": 2 },
 { "latitude": 3, "longitude": 4 },
 { "latitude": 5, "longitude": 6 },
 { "latitude": 7, "longitude": 8 }

]
},
{
"point": [

 { "latitude": 2, "longitude": 6 },
 { "latitude": 3, "longitude": 7 },
 { "latitude": 4, "longitude": 8 },
 { "latitude": 5, "longitude": 9 }
]

}
]

}
}]

}}

Format Query
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 138

MarkLogic Server Searching Using Structured Queries
4.6.24.1 Syntax Summary

4.6.24.2 Component Description

A geospatial query contains one or more points or regions, described by point, box, circle, and
polygon XML child elements or JSON sub-objects. The element pair containing geospatial data
are described by parent, lat, and lon. For details, see “Geospatial Search Applications” on
page 476

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<geo-attr-pair-query>
<parent name=elem-name ns=uri />
<lat name=attr-name ns=uri />
<lon name=attr-name ns=uri />
<geo-option>option</geo-option>
<fragment-scope>scope</fragement-scope>
<point>
<latitude>float</latitude>
<longitude>float</longitude>

</point>
<box>
<south>float</south>
<west>float</west>
<north>float</north>
<east>float</east>

</box>
<circle>
<radius>float</radius>
<point/>

</circle>
<polygon>
<point/>

</polygon>
<weight>value</weight>

</geo-attr-pair-query>

"geo-attr-pair-query": {
"parent": {

"name": elem-name
"ns": uri

},
"lat": {

"name": attr-name
"ns": uri

},
"lon": {

"name": attr-name
"ns": uri

},
"geo-option": [option],
"fragment-scope": scope,
"point": [

{
"latitude": number,
"longitude": number

}
],
"box": [

{
"south": number,
"west": number,
"north": number,
"east": number

}
],
"circle": [

{
"radius": number,
point

}
],
"polygon": [point],
"weight": number

}

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 139

MarkLogic Server Searching Using Structured Queries
Element or JSON
Property Name

Req’d? Description

parent Y The element containing the lat and lon attributes that hold
geospatial data, identified by element name and namespace
(ns). Both name and ns are required.

lat Y The name of the attribute that contains latitude data, identified
by name and namespace (ns). Both name and ns are required.

lon Y The name of the attribute that contains longitude data,
identified by name and namespace (ns). Both name and ns are
required.

fragment-scope N Constrain matches to the specified fragment scope. Allowed
values: documents (default) or properties. For more details,
see the fragment-scope query option.

geo-option N Geospatial options to apply to the query. You can specify
multiple options. If an option has a value, the value of
geo-option is of the form option=value. For example:
<geo-option>units=miles</geo-option>. For details, see
cts:element-attribute-pair-geospatial-query.

point N Zero or more geographic points, each defined by a latitude
and a longitude. The query can contain 0 or more points.

box N Zero or more rectangular regions, each defined by 4 points:
north, south, east, and west.

circle N Zero or more circles, each defined by radius and a center
point.

polygon N Zero or more polygons, each series of point’s.

weight N A weight for this query. Default: 1.0. Higher weights move
search results up in the relevance order. The weight should be
less than or equal to 64 and greater than or equal to -16
(between -16 and 64, inclusive). Weights greater than 64 have
the same effect as a weight of 64. Weights less than the
absolute value of 0.0625 (between -0.0625 and 0.0625) are
rounded to 0, which means that they do not contribute to the
score.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 140

MarkLogic Server Searching Using Structured Queries
4.6.24.3 Examples

The following example matches points contained in either of two polygons. The constraint
defined in the query by parent, lat, and lon defines how to construct the points to match against
the regions defined in the query.

Format Query

XML <query xmlns="http://marklogic.com/appservices/search">
 <geo-attr-pair-query>

<parent ns="ns1" name="elem"/>
<lat ns="ns1" name="attr1"/>
<lon ns="ns1" name="attr2" />
<polygon>

 <point> <latitude>1</latitude> <longitude>2</longitude> </point>
 <point> <latitude>3</latitude> <longitude>4</longitude> </point>
 <point> <latitude>5</latitude> <longitude>6</longitude> </point>
 <point> <latitude>7</latitude> <longitude>8</longitude> </point>
 </polygon>
 <polygon>
 <point> <latitude>2</latitude> <longitude>6</longitude> </point>
 <point> <latitude>3</latitude> <longitude>7</longitude> </point>
 <point> <latitude>4</latitude> <longitude>8</longitude> </point>
 <point> <latitude>5</latitude> <longitude>9</longitude> </point>
 </polygon>
 </geo-attr-pair-query>
</query>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 141

MarkLogic Server Searching Using Structured Queries
4.6.25 geo-path-query

A query that returns documents that match the geospatial constraint defined in the query only
when it occurs in an XML element, XML attribute, or JSON property that matches a specified
XPath expression. For details, see cts:path-geospatial-query or “Geospatial Search
Applications” on page 476.

• Syntax Summary

• Component Description

• Examples

JSON {
 "query": {
 "queries": [{

"geo-elem-query": {
"parent": { "ns": "ns1", "name": "elem1" },
"element": { "ns": "ns1", "name": "elem2" },
"polygon": [

{
"point": [

 { "latitude": 1, "longitude": 2 },
 { "latitude": 3, "longitude": 4 },
 { "latitude": 5, "longitude": 6 },
 { "latitude": 7, "longitude": 8 }

]
},
{
"point": [

 { "latitude": 2, "longitude": 6 },
 { "latitude": 3, "longitude": 7 },
 { "latitude": 4, "longitude": 8 },
 { "latitude": 5, "longitude": 9 }
]

}
]

}
}]

}}

Format Query
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 142

MarkLogic Server Searching Using Structured Queries
4.6.25.1 Syntax Summary

4.6.25.2 Component Description

A geospatial query contains one or more points or regions, described by point, box, circle, and
polygon XML child elements or JSON sub-objects. The element or attribute containing geospatial
data are described by path-index. For details, see “Geospatial Search Applications” on page 476

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<geo-path-query>
<path-index>path-expr</path-index>
<geo-option>option</geo-option>
<fragment-scope>scope</fragement-scope>
<point>
<latitude>float</latitude>
<longitude>float</longitude>

</point>
<box>
<south>float</south>
<west>float</west>
<north>float</north>
<east>float</east>

</box>
<circle>
<radius>float</radius>
<point/>

</circle>
<polygon>
<point/>

</polygon>
<weight>value</weight>

</geo-path-query>

"geo-path-query": {
"path-index": {

"text": path-expr,
"namespaces": [{

prefix: namespace-uri
}]

},
"geo-option": [option],
"fragment-scope": scope,
"point": [

{
"latitude": number,
"longitude": number

}
],
"box": [

{
"south": number,
"west": number,
"north": number,
"east": number

}
],
"circle": [

{
"radius": number,
point

}
],
"polygon": [point],
"weight": number

}

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 143

MarkLogic Server Searching Using Structured Queries
Element or JSON
Property Name

Req’d? Description

path-index Y A path range expression matching an element or attribute
whose contents represent a point contained within the given
geographic region(s). If the path expression includes
namespace prefixes, you must define the namespace bindings
on the path-index.

The database configuration must include a matching path
range index. The path expression and namespace URIs must
match the index configuration; namespace prefixes do not
have to match.

The path expression is limited to the subset of XPath that can
be used to define a path range index. For details, see Path Field

and Path-Based Range Index Configuration in the XQuery and
XSLT Reference Guide.

fragment-scope N Constrain matches to the specified fragment scope. Allowed
values: documents (default) or properties. For more details,
see the fragment-scope query option.

geo-option N Geospatial options to apply to the query. You can specify
multiple options. If an option has a value, the value of
geo-option is of the form option=value. For example:
<geo-option>units=miles</geo-option>. For details, see
cts:element-attribute-pair-geospatial-query.

point N Zero or more geographic points, each defined by a latitude
and a longitude. The query can contain 0 or more points.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 144

MarkLogic Server Searching Using Structured Queries
4.6.25.3 Examples

The following example matches points contained in either of two polygons. The constraint
defined in the query by path-index defines how to construct the points to match against the
regions defined in the query.

box N Zero or more rectangular regions, each defined by 4 points:
north, south, east, and west.

circle N Zero or more circles, each defined by radius and a center
point.

polygon N Zero or more polygons, each series of point’s.

weight N A weight for this query. Default: 1.0. Higher weights move
search results up in the relevance order. The weight should be
less than or equal to 64 and greater than or equal to -16
(between -16 and 64, inclusive). Weights greater than 64 have
the same effect as a weight of 64. Weights less than the
absolute value of 0.0625 (between -0.0625 and 0.0625) are
rounded to 0, which means that they do not contribute to the
score.

Format Query

XML <query xmlns="http://marklogic.com/appservices/search">
 <geo-path-query>
 <path-index xmlns:ns1="/my/ns">/ns:a/ns:b</path-index>

<polygon>
 <point> <latitude>1</latitude> <longitude>2</longitude> </point>
 <point> <latitude>3</latitude> <longitude>4</longitude> </point>
 <point> <latitude>5</latitude> <longitude>6</longitude> </point>
 <point> <latitude>7</latitude> <longitude>8</longitude> </point>
 </polygon>
 <polygon>
 <point> <latitude>2</latitude> <longitude>6</longitude> </point>
 <point> <latitude>3</latitude> <longitude>7</longitude> </point>
 <point> <latitude>4</latitude> <longitude>8</longitude> </point>
 <point> <latitude>5</latitude> <longitude>9</longitude> </point>
 </polygon>
 </geo-path-query>
</query>

Element or JSON
Property Name

Req’d? Description
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 145

MarkLogic Server Searching Using Structured Queries
4.6.26 geo-json-property-query

A query that returns documents that match the geospatial constraint defined in the query only
when it occurs a specified JSON property. For details, see cts:json-property-geospatial-query,
cts:json-property-child-geospatial-query, or “Geospatial Search Applications” on page 476.

• Syntax Summary

• Component Description

• Examples

JSON {"query":{
 "geo-path-query":{
 "path-index": {
 "text": "/ns1:a/ns2:b",
 "namespaces": [{"ns1": "/my/ns1"}, {"ns2": "my/ns2"}]
 },
 "polygon": [
 {"point": [
 { "latitude": 1, "longitude": 2 },
 { "latitude": 3, "longitude": 4 },
 { "latitude": 5, "longitude": 6 },
 { "latitude": 7, "longitude": 8 }
] },
 {"point": [
 { "latitude": 2, "longitude": 6 },
 { "latitude": 3, "longitude": 7 },
 { "latitude": 4, "longitude": 8 },
 { "latitude": 5, "longitude": 9 }
] }
]
 }
}}

Format Query
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 146

MarkLogic Server Searching Using Structured Queries
4.6.26.1 Syntax Summary

4.6.26.2 Component Description

A geospatial query contains one or more points or regions, described by point, box, circle, and
polygon XML child elements or JSON sub-objects. The element pair containing geospatial data
are described by parent, lat, and lon. For details, see “Geospatial Search Applications” on
page 476

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<geo-json-property-query>
<parent-property>name</parent-property>
<json-property>name</json-property>
<geo-option>option</geo-option>
<fragment-scope>scope</fragement-scope>
<point>
<latitude>float</latitude>
<longitude>float</longitude>

</point>
<box>
<south>float</south>
<west>float</west>
<north>float</north>
<east>float</east>

</box>
<circle>
<radius>float</radius>
<point/>

</circle>
<polygon>
<point/>

</polygon>
<weight>value</weight>

</geo-json-property-query>

"geo-json-property-query": {
"parent-property": name,
"json-property": name,
"geo-option": [option],
"fragment-scope": scope,
"point": [

{
"latitude": number,
"longitude": number

}
],
"box": [

{
"south": number,
"west": number,
"north": number,
"east": number

}
],
"circle": [

{
"radius": number,
point

}
],
"polygon": [point],
"weight": number

}

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 147

MarkLogic Server Searching Using Structured Queries
Element or JSON
Property Name

Req’d? Description

parent-property N Optional. The parent property of the property containing
geospatial data, identified by name.

json-property Y The name of the property containing geospatial data.

fragment-scope N Constrain matches to the specified fragment scope. Allowed
values: documents (default) or properties. For more details,
see the fragment-scope query option.

geo-option N Geospatial options to apply to the query. You can specify
multiple options. If an option has a value, the value of
geo-option is of the form option=value. For example:
<geo-option>units=miles</geo-option>. For details, see
cts:json-property-geospatial-query or
cts:json-property-child-geospatial-query.

point N Zero or more geographic points, each defined by a latitude
and a longitude. The query can contain 0 or more points.

box N Zero or more rectangular regions, each defined by 4 points:
north, south, east, and west.

circle N Zero or more circles, each defined by radius and a center
point.

polygon N Zero or more polygons, each series of point’s.

weight N A weight for this query. Default: 1.0. Higher weights move
search results up in the relevance order. The weight should be
less than or equal to 64 and greater than or equal to -16
(between -16 and 64, inclusive). Weights greater than 64 have
the same effect as a weight of 64. Weights less than the
absolute value of 0.0625 (between -0.0625 and 0.0625) are
rounded to 0, which means that they do not contribute to the
score.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 148

MarkLogic Server Searching Using Structured Queries
4.6.26.3 Examples

The following example matches points contained in either of two polygons. The JSON property
defined in the query by parent-property and json-property defines how to construct the points
to match against the regions defined in the query.

Format Query

XML <query xmlns="http://marklogic.com/appservices/search">
 <geo-json-property-query>

<parent-property>myParent</parent>
<json-property>loc</json-property>
<polygon>

 <point> <latitude>1</latitude> <longitude>2</longitude> </point>
 <point> <latitude>3</latitude> <longitude>4</longitude> </point>
 <point> <latitude>5</latitude> <longitude>6</longitude> </point>
 <point> <latitude>7</latitude> <longitude>8</longitude> </point>
 </polygon>
 <polygon>
 <point> <latitude>2</latitude> <longitude>6</longitude> </point>
 <point> <latitude>3</latitude> <longitude>7</longitude> </point>
 <point> <latitude>4</latitude> <longitude>8</longitude> </point>
 <point> <latitude>5</latitude> <longitude>9</longitude> </point>
 </polygon>
 </geo-json-property-query>
</query>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 149

MarkLogic Server Searching Using Structured Queries
4.6.27 geo-json-property-pair-query

A query that returns documents that match the geospatial constraint defined in the query only
when it occurs a JSON property that matches a specified XPath expression. For details, see
cts:json-property-pair-geospatial-query or “Geospatial Search Applications” on page 476.

• Syntax Summary

• Component Description

• Examples

JSON {
 "query": {
 "queries": [{

"geo-json-property-query": {
"parent-property": "myParent",
"json-property": "loc",
"polygon": [

{
"point": [

 { "latitude": 1, "longitude": 2 },
 { "latitude": 3, "longitude": 4 },
 { "latitude": 5, "longitude": 6 },
 { "latitude": 7, "longitude": 8 }

]
},
{
"point": [

 { "latitude": 2, "longitude": 6 },
 { "latitude": 3, "longitude": 7 },
 { "latitude": 4, "longitude": 8 },
 { "latitude": 5, "longitude": 9 }
]

}
]

}
}]

}}

Format Query
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 150

MarkLogic Server Searching Using Structured Queries
4.6.27.1 Syntax Summary

4.6.27.2 Component Description

A geospatial query contains one or more points or regions, described by point, box, circle, and
polygon XML child elements or JSON sub-objects. The element pair containing geospatial data
are described by parent-property, lat-property, and lon-property. For details, see “Geospatial
Search Applications” on page 476

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<geo-json-property-pair-query>
<parent-property>name</parent-property>
<lat-property>name</lat-property>
<lon-property>name</lon-property>
<geo-option>option</geo-option>
<fragment-scope>scope</fragement-scope>
<point>
<latitude>float</latitude>
<longitude>float</longitude>

</point>
<box>
<south>float</south>
<west>float</west>
<north>float</north>
<east>float</east>

</box>
<circle>
<radius>float</radius>
<point/>

</circle>
<polygon>
<point/>

</polygon>
<weight>value</weight>

</geo-json-property-pair-query>

"geo-json-property-pair-query": {
"parent-property": name,
"lat-property": name,
"lon-property": name,
"geo-option": [option],
"fragment-scope": scope,
"point": [

{
"latitude": number,
"longitude": number

}
],
"box": [

{
"south": number,
"west": number,
"north": number,
"east": number

}
],
"circle": [

{
"radius": number,
point

}
],
"polygon": [point],
"weight": number

}

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 151

MarkLogic Server Searching Using Structured Queries
Element or JSON
Property Name

Req’d? Description

parent-property Y The name of JSON property containing lat-property and
lon-property.

lat-property Y The name of the JSON property that contains latitude data.

lon-property Y The name of the JSON property that contains longitude data.

fragment-scope N Constrain matches to the specified fragment scope. Allowed
values: documents (default) or properties. For more details,
see the fragment-scope query option.

geo-option N Geospatial options to apply to the query. You can specify
multiple options. If an option has a value, the value of
geo-option is of the form option=value. For example:
<geo-option>units=miles</geo-option>. For details, see
cts:json-property-pair-geospatial-query.

point N Zero or more geographic points, each defined by a latitude
and a longitude. The query can contain 0 or more points.

box N Zero or more rectangular regions, each defined by 4 points:
north, south, east, and west.

circle N Zero or more circles, each defined by radius and a center
point.

polygon N Zero or more polygons, each series of point’s.

weight N A weight for this query. Default: 1.0. Higher weights move
search results up in the relevance order. The weight should be
less than or equal to 64 and greater than or equal to -16
(between -16 and 64, inclusive). Weights greater than 64 have
the same effect as a weight of 64. Weights less than the
absolute value of 0.0625 (between -0.0625 and 0.0625) are
rounded to 0, which means that they do not contribute to the
score.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 152

MarkLogic Server Searching Using Structured Queries
4.6.27.3 Examples

The following example matches points contained in either of two polygons. The constraint
defined in the query by parent, lat, and lon defines how to construct the points to match against
the regions defined in the query.

Format Query

XML <query xmlns="http://marklogic.com/appservices/search">
 <geo-json-property-pair-query>

<parent-property>myParent</parent>
<lat-property>loc</lat-property>
<lon-property>lon</lon-property>
<polygon>

 <point> <latitude>1</latitude> <longitude>2</longitude> </point>
 <point> <latitude>3</latitude> <longitude>4</longitude> </point>
 <point> <latitude>5</latitude> <longitude>6</longitude> </point>
 <point> <latitude>7</latitude> <longitude>8</longitude> </point>
 </polygon>
 <polygon>
 <point> <latitude>2</latitude> <longitude>6</longitude> </point>
 <point> <latitude>3</latitude> <longitude>7</longitude> </point>
 <point> <latitude>4</latitude> <longitude>8</longitude> </point>
 <point> <latitude>5</latitude> <longitude>9</longitude> </point>
 </polygon>
 </geo-json-property-pair-query>
</query>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 153

MarkLogic Server Searching Using Structured Queries
4.6.28 geo-region-path-query

A query that returns documents containing at least one region R1 that satisfies the requirement R1
op R2, for some topological operator op and criteria region R2. For example, “R1 contains R2” or
“R1 intersects R2”. The regions in the documents are identified by a reference to a geospatial
region path index. The criteria regions are defined in the query. For details, see
cts:geospatial-region-query, cts.geospatialRegionQuery, or “Searching for Matching
Regions” on page 528.

If the query defines multiple criteria regions, a document matches the query if R1 op R2 is true for
any one (R1, R2) pair. That is, specifying multiple criteria regions is like an implicit OR query.

• Syntax Summary

• Component Description

• Examples

JSON {
 "query": {
 "queries": [{

"geo-json-property-pair-query": {
"parent-property": "myParent",
"lat-property": "lat",
"lon-property": "lon",
"polygon": [

{
"point": [

 { "latitude": 1, "longitude": 2 },
 { "latitude": 3, "longitude": 4 },
 { "latitude": 5, "longitude": 6 },
 { "latitude": 7, "longitude": 8 }

]
},
{
"point": [

 { "latitude": 2, "longitude": 6 },
 { "latitude": 3, "longitude": 7 },
 { "latitude": 4, "longitude": 8 },
 { "latitude": 5, "longitude": 9 }
]

}
]

}
}]

}}

Format Query
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 154

MarkLogic Server Searching Using Structured Queries
4.6.28.1 Syntax Summary

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<geo-region-path-query coord="coord-sys">
<path-index>path-expr</path-index>
<geospatial-operator>op</geospatial-operator>
<geo-option>option</geo-option>
<fragment-scope>scope</fragement-scope>
<weight>value</weight>
<point>
<latitude>float</latitude>
<longitude>float</longitude>

</point>
<box>
<south>float</south>
<west>float</west>
<north>float</north>
<east>float</east>

</box>
<circle>
<radius>float</radius>
<point/>

</circle>
<polygon>
<point/>

</polygon>
</geo-region-path-query>

"geo-region path-query": {
"path-index": {

"text": path-expr,
"namespaces": [{

prefix: namespace-uri
}]

},
"geospatial-operator": op,
"coord": coord-sys-name,
"geo-option": [option],
"weight": number,
"fragment-scope": scope,
"point": [

{
"latitude": number,
"longitude": number

}
],
"box": [

{
"south": number,
"west": number,
"north": number,
"east": number

}
],
"circle": [

{
"radius": number,
point

}
],
"polygon": [point]

}

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 155

MarkLogic Server Searching Using Structured Queries
4.6.28.2 Component Description

A geospatial region query contains one or more point or region criteria, described by point, box,
circle, and polygon XML child elements or JSON sub-objects. The XML element or JSON
property defining a region in your documents is identified by path-index. For details, see
“Geospatial Region Queries and Indexes” on page 506.

Element or JSON
Property Name

Req’d? Description

path-index Y A path range expression matching an XML element or JSON
property whose contents represent a region. If the path
expression includes namespace prefixes, you must define the
namespace bindings on the path-index in XML or using
path-index/namespaces in JSON; for details, see the
Examples, below.

The database configuration must include a matching
geospatial region path index. The path expression and
namespace URIs must match the index configuration;
namespace prefixes do not have to match.

The path expression is limited to the subset of XPath that can
be used to define a path range index. For details, see Path

Field and Path-Based Range Index Configuration in the XQuery
and XSLT Reference Guide.

geospatial-operator N A topological operator. One of contains, covered-by, covers,
disjoint, intersects, overlaps, within. Default: contains.
For a region R1 in the specified region index and a search
criteria region R2, a document matches if R1 op R2 is true.

coord N Specify the coordinate system and precision of the region
index associated with the path in path-index. Allowed
values: wgs84, wgs84/double, etrs89, etrs89/double, raw,
raw/double. You must specify this value if path-index is not
sufficient to unambiguously identify the target region index.

geo-option N Geospatial options to apply to the query. You can specify
multiple options. If an option has a value, the value of
geo-option is of the form option=value. For example:
<geo-option>units=miles</geo-option> in XML, or
"units=miles" in JSON. For details, see
cts:geospatial-region-query or
cts.geospatialRegionQuery.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 156

MarkLogic Server Searching Using Structured Queries
fragment-scope N Constrain matches to the specified fragment scope. Allowed
values: documents (default) or properties. For more details,
see the fragment-scope query option.

weight N A weight for this query. Default: 1.0. Higher weights move
search results up in the relevance order. The weight should be
less than or equal to 64 and greater than or equal to -16
(between -16 and 64, inclusive). Weights greater than 64
have the same effect as a weight of 64. Weights less than the
absolute value of 0.0625 (between -0.0625 and 0.0625) are
rounded to 0, which means that they do not contribute to the
score.

point N Zero or more geographic points, each defined by a latitude
and a longitude. The query can contain 0 or more points.

box N Zero or more rectangular regions, each defined by 4 points:
north, south, east, and west.

circle N Zero or more circles, each defined by radius and a center
point.

polygon N Zero or more polygons, each series of point’s.

Element or JSON
Property Name

Req’d? Description
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 157

MarkLogic Server Searching Using Structured Queries
4.6.28.3 Examples

The following example matches regions in documents that intersect either of the two criteria
polygons. A geospatial region index matching path-index and coord must exist.

Format Query

XML <query xmlns="http://marklogic.com/appservices/search">
 <geo-region-path-query coord="wgs84/double">
 <path-index xmlns:ns="/my/ns">/ns:a/ns:b</path-index>

<geospatial-operator>intersects</geospatial-operator>
<polygon>

 <point> <latitude>1</latitude> <longitude>2</longitude> </point>
 <point> <latitude>3</latitude> <longitude>4</longitude> </point>
 <point> <latitude>5</latitude> <longitude>6</longitude> </point>
 <point> <latitude>7</latitude> <longitude>8</longitude> </point>
 </polygon>
 <polygon>
 <point> <latitude>2</latitude> <longitude>6</longitude> </point>
 <point> <latitude>3</latitude> <longitude>7</longitude> </point>
 <point> <latitude>4</latitude> <longitude>8</longitude> </point>
 <point> <latitude>5</latitude> <longitude>9</longitude> </point>
 </polygon>
 </geo-region-path-query>
</query>

JSON {"query":{
 "geo-region-path-query":{
 "path-index": {
 "text": "/ns1:a/ns2:b",
 "namespaces": [{"ns1": "/my/ns1"}, {"ns2": "my/ns2"}]
 },

"coord": "wgs84/double",
"geospatial-operator": "intersects",

 "polygon": [
 {"point": [
 { "latitude": 1, "longitude": 2 },
 { "latitude": 3, "longitude": 4 },
 { "latitude": 5, "longitude": 6 },
 { "latitude": 7, "longitude": 8 }
] },
 {"point": [
 { "latitude": 2, "longitude": 6 },
 { "latitude": 3, "longitude": 7 },
 { "latitude": 4, "longitude": 8 },
 { "latitude": 5, "longitude": 9 }
] }
]
 }
}}
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 158

MarkLogic Server Searching Using Structured Queries
4.6.29 range-constraint-query

A query that applies a pre-defined range constraint and compares the results to the specified
value. For details, see “Constraint Options” on page 382 and the XQuery functions
cts:element-range-query, cts:element-attribute-range-query, cts:field-range-query, and
cts:path-range-query.

A range-constraint-query is equivalent to string query expressions of the form
constraint:value or constraint LE value. The named constraint must be backed by a range
index.

• Syntax Summary

• Component Description

• Examples

4.6.29.1 Syntax Summary

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<range-constraint-query>
<constraint-name>name</constraint-name>
<value>value-to-match</value>
<range-operator>operator</range-operator>
<range-option>option</range-option>

</range-constraint-query>

"range-constraint-query": {
"constraint-name": "name",
"value": [value-to-match],
"range-operator": "operator",
"range-option": [option]

}

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 159

MarkLogic Server Searching Using Structured Queries
4.6.29.2 Component Description

Element or JSON
Property Name

Req’d? Description

constraint-name Y The name of a constraint defined in the global or query-spe-
cific query options.

value Y The value against which to match XML elements, XML ele-
ment attributes, JSON properties, or fields that match the con-
straint identified by constraint-name. This element can occur
0 or more times.

range-operator N One of LT, LE, GT, GE, EQ, NE. Default: EQ. The match relation-
ship that must be satisfied between constraint-name matches
and value.

range-option N One or more range query options. Allowed values depend on
the type of range query (element, path, field, etc.). For details,
see Including a Range or Geospatial Query in Scoring in Search
Developer’s Guide. For a list of options, see “Range Options”
on page 951.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 160

MarkLogic Server Searching Using Structured Queries
4.6.29.3 Examples

The following example matches documents containing a <body-color/> element with a value of
black, assuming an element range index exists on <body-color/>.

Format Query

XML <options xmlns="http://marklogic.com/appservices/search">
<constraint name="color">

<range type="xs:string">
<element ns="" name="body-color"/>

</range>
 </constraint>
</options>

<query xmlns="http://marklogic.com/appservices/search">
<range-constraint-query>

<constraint-name>color</constraint-name>
<value>black</value>

</range-constraint-query>
</query>

JSON {
 "options": {
 "constraint": [
 {
 "name": "color",
 "range": {
 "type": "xs:string",
 "element": {
 "ns": "",
 "name": "body-color"
 }
 }}]}}

{
 "query": {
 "queries": [{

"range-constraint-query": {
"constraint-name": "color",
"value": ["black"]

}
 }]
}}
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 161

MarkLogic Server Searching Using Structured Queries
4.6.30 value-constraint-query

A query that matches fragments where the value of the content of an XML element, XML
attribute, JSON property, or field exactly matches the text, number, boolean, or null value in
the query. The match semantics depend on the value, the database configuration, and the options
in effect. The element, attribute, property, or field is identified by a value constraint defined in
query options. This is similar to a string query term of the form constraint:value. For details, see
cts:element-value-query, cts:element-attribute-value-query, cts:field-value-query,
cts:json-property-value-query.

• Syntax Summary

• Component Description

• Examples

4.6.30.1 Syntax Summary

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<value-constraint-query>
<constraint-name>name</constraint-name>
<text>value-to-match</text>
<weight>value</weight>

</value-constraint-query>

"value-constraint-query": {
"constraint-name": "name",
"text": [string],
"weight": number

}

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 162

MarkLogic Server Searching Using Structured Queries
4.6.30.2 Component Description

Element or JSON
Property Name

Req’d? Description

constraint-name Y The name of a values constraint defined in the global or
query-specific query options.

text N A value to match. Multiple values can be specified. If there is
no text, number, boolean, or null component, all values
matching the constraint are returned.

number N A numeric value to match. Applicable to only to JSON docu-
ments. Multiple values can be specified. If there is no text,
number, boolean, or null component, all values matching the
constraint are returned.

boolean N A boolean value to match. Applicable to only to JSON docu-
ments. Multiple values can be specified. If there is no text,
number, boolean, or null component, all values matching the
constraint are returned.

null N Match a null value. Applicable to only to JSON documents.
Multiple values can be specified. If there is no text, number,
boolean, or null component, all values matching the con-
straint are returned.

weight N A weight for this query. Default: 1.0. Higher weights move
search results up in the relevance order. The weight should be
less than or equal to 64 and greater than or equal to -16
(between -16 and 64, inclusive). Weights greater than 64 have
the same effect as a weight of 64. Weights less than the abso-
lute value of 0.0625 (between -0.0625 and 0.0625) are
rounded to 0, which means that they do not contribute to the
score.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 163

MarkLogic Server Searching Using Structured Queries
4.6.30.3 Examples

The following example matches documents where the field defined with the name “myFieldName”
has the value “Jane Doe”. The example assumes the field “myFieldName” is defined in the database
configuration and that field searches are enabled for the database.

Format Query

XML <options xmlns="http://marklogic.com/appservices/search">
<constraint name="full-name">

 <value>
 <field name="myFieldName"/>
 </value>
 </constraint>
</options>

<query xmlns="http://marklogic.com/appservices/search">
<value-constraint-query>

<constraint-name>full-name</constraint-name>
<text>Jane Doe</text>

</value-constraint-query>
</query>

JSON {
 "options": {
 "constraint": [
 {
 "name": "full-name",
 "value": {
 "field": {
 "name": "myFieldName"
 }}}]}}

{
 "query": {
 "queries": [{

"value-constraint-query": {
"text": ["Jane Doe"],
"constraint-name": "full-name"

}
 }]
}}
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 164

MarkLogic Server Searching Using Structured Queries
4.6.31 word-constraint-query

A query that matches fragments containing the specified terms or phrases in the XML element or
attribute, JSON property, or field identified by a specified constraint. This is similar to a string
query of the form constraint:value, where the constraint is a word constraint. For details, see
cts:word-query.

• Syntax Summary

• Component Description

• Examples

4.6.31.1 Syntax Summary

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<word-constraint-query>
<constraint-name>name</constraint-name>
<text>text-to-match</text>
<weight>value</weight>

</word-constraint-query>

"word-constraint-query": {
"constraint-name": "name",
"text": [string],
"weight": number

}

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 165

MarkLogic Server Searching Using Structured Queries
4.6.31.2 Component Description

Element or JSON
Property Name

Req’d? Description

constraint-name Y The name of a word constraint defined in the global or
query-specific query options. If you include multiple con-
straint names, the query matches if any of the constraints are
met.

text N Terms or phrases that must occur in documents matching the
constraint defined by constraint-name. Multiple values can be
specified; if any one matches, the document matches the
query.

weight N A weight for this query. Default: 1.0. Higher weights move
search results up in the relevance order. The weight should be
less than or equal to 64 and greater than or equal to -16
(between -16 and 64, inclusive). Weights greater than 64 have
the same effect as a weight of 64. Weights less than the abso-
lute value of 0.0625 (between -0.0625 and 0.0625) are
rounded to 0, which means that they do not contribute to the
score.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 166

MarkLogic Server Searching Using Structured Queries
4.6.31.3 Examples

The following example matches documents containing a <body-color/> element that contains the
word black.

4.6.32 collection-constraint-query

A query that applies a pre-defined constraint and compares the results to the specified value. For
details, see cts:collection-query.

• Syntax Summary

• Component Description

• Examples

Format Query

XML <options xmlns="http://marklogic.com/appservices/search">
<constraint name="color">

 <word>
 <element name="body-color"/>
 </word>
 </constraint>
</options>

<query xmlns="http://marklogic.com/appservices/search">
<word-constraint-query>

<constraint-name>color</constraint-name>
<text>black</text>

</word-constraint-query>
</query>

JSON {
 "query": {
 "queries": [{

"word-constraint-query": {
"text": ["black"],
"constraint-name": "color"

}
 }]
}}
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 167

MarkLogic Server Searching Using Structured Queries
4.6.32.1 Syntax Summary

4.6.32.2 Component Description

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<collection-constraint-query>
<constraint-name>name</constraint-name>
<uri>collection-uri</value>

</collection-constraint-query>

"collection-constraint-query": {
"constraint-name": "name",
"uri": [collection-uri]

}

Element or JSON
Property Name

Req’d? Description

constraint-name Y The name of a collection constraint defined in the global or
query-specific query options.

uri N One or more collection URIs to match against.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 168

MarkLogic Server Searching Using Structured Queries
4.6.32.3 Examples

The following example matches documents in the collection reports or the collection analysis.

4.6.33 container-constraint-query

A query that matches XML elements or JSON properties meeting a specified constraint, with
contained elements, attributes or properties that match a specified sub-query(s). The matching
container and all of its descendants are considered by the sub-queries. For details, see
cts:element-query.

• Syntax Summary

• Component Description

Format Query

XML <options xmlns="http://marklogic.com/appservices/search">
<constraint name="biz">

<collection prefix="my-coll-prefix"/>
</constraint>

</options>

<query xmlns="http://marklogic.com/appservices/search">
<collection-constraint-query>

<constraint-name>biz</constraint-name>
<uri>reports</uri>
<uri>analysis</uri>

</collection-constraint-query>
</query>

JSON {
 "options": {
 "constraint": [{
 "name": "biz",
 "collection": {
 "prefix": "my-coll-prefix"
 }

}]
}}

{
 "query": {
 "queries": [{

"collection-constraint-query": {
"uri": ["reports", "analysis"],
"constraint-name": "biz"

}
}]

}}
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 169

MarkLogic Server Searching Using Structured Queries
• Examples

4.6.33.1 Syntax Summary

4.6.33.2 Component Description

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<container-constraint-query>
<constraint-name>name</constraint-name>
anyQueryType

</element-constraint-query>

"container-constraint-query": {
"constraint-name": "name",
anyQueryType

}

Element or JSON
Property Name

Req’d? Description

constraint-name Y The name of a constraint defined in the global or query-spe-
cific query options. If you specify multiple constraints, the
query matches documents that satisfy any one of the con-
straints.

anyQueryType Y A query to run against containers matching the constraint
identified by constraint-name.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 170

MarkLogic Server Searching Using Structured Queries
4.6.33.3 Examples

The following example matches occurrences of a <body-color/> element that contains the term
black.

Format Query

XML <options xmlns="http://marklogic.com/appservices/search">
<constraint name="body-color">

<container>
<element name="color" ns="" />

</container>
</constraint>

</options>

<query xmlns="http://marklogic.com/appservices/search">
<container-constraint-query>

<constraint-name>body-color</constraint-name>
<term-query>

 <text>black</text>
 </term-query>

</container-constraint-query>
</query>

JSON {
 "options": {
 "constraint": [{

"name": "body-color",
"container": {
"element": {

"name": "color",
"ns": ""

}
}

}]
}}

{
 "query": {
 "queries": [{

"container-constraint-query": {
"constraint-name": "body-color",
"term-query": {

"text": ["black"]

}
 }]
}}
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 171

MarkLogic Server Searching Using Structured Queries
4.6.34 element-constraint-query

A query that matches elements meeting a specified element constraint, with sub-elements and/or
attribute that match a specified sub-query(s). The matching element and all of its descendants are
considered by the sub-queries. For details, see cts:element-query.

Note: Use of this query type is deprecated. Use container-constraint-query instead.

• Syntax Summary

• Component Description

• Examples

4.6.34.1 Syntax Summary

4.6.34.2 Component Description

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<element-constraint-query>
<constraint-name>name</constraint-name>
anyQueryType

</element-constraint-query>

"element-constraint-query": {
"constraint-name": "name",
anyQueryType

}

Element or JSON
Property Name

Req’d? Description

constraint-name Y The name of a container constraint defined in the global or
query-specific query options. If you specify multiple con-
straints, the query matches documents that satisfy any one of
the constraints.

anyQueryType Y A query to run against elements matching the constraint iden-
tified by constraint-name.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 172

MarkLogic Server Searching Using Structured Queries
4.6.34.3 Examples

The following example matches occurrences of a <body-color/> element that contains the term
black.

Format Query

XML <options xmlns="http://marklogic.com/appservices/search">
<constraint name="body-color">

<element-query name="color" ns="" />
</constraint>

</options>

<query xmlns="http://marklogic.com/appservices/search">
<element-constraint-query>

<constraint-name>body-color</constraint-name>
<term-query>

 <text>black</text>
 </term-query>

</element-constraint-query>
</query>

JSON {
 "options": {
 "constraint": [{

"name": "body-color",
"element": {
"name": "color",
"ns": ""

}
}]

}}

{
 "query": {
 "queries": [{

"element-constraint-query": {
"constraint-name": "body-color",
"term-query": {

"text": ["black"]

}
 }]
}}
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 173

MarkLogic Server Searching Using Structured Queries
4.6.35 properties-constraint-query

A query that matches documents with properties that match the specified property constraint,
where the matching properties also match the specified query. For details, see
cts:properties-fragment-query.

• Syntax Summary

• Component Description

• Examples

4.6.35.1 Syntax Summary

4.6.35.2 Component Description

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<properties-constraint-query>
<constraint-name>name</constraint-name>
anyQueryType

</properties-constraint-query>

"properties-constraint-query": {
"constraint-name": "name",
anyQueryType

}

Element or JSON
Property Name

Req’d? Description

constraint-name Y The name of a properties constraint defined in the global or
query-specific query options.

anyQueryType Y A query to run against properties matching the constraint iden-
tified by constraint-name.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 174

MarkLogic Server Searching Using Structured Queries
4.6.35.3 Examples

The following example matches documents that have properties fragments containing the term
dog.

4.6.36 custom-constraint-query

A query constructed by a custom XQuery extension function, using the supplied criteria. For
details, see “Creating a Custom Constraint” on page 42.

• Syntax Summary

Format Query

XML <options xmlns="http://marklogic.com/appservices/search">
<constraint name="prop-only">

<properties />
</constraint>

</options>

<query xmlns="http://marklogic.com/appservices/search">
<properties-constraint-query>

<constraint-name>prop-only</constraint-name>
<term-query>

 <text>dog</text>
 </term-query>

</properties-constraint-query>
</query>

JSON {
 "options": {
 "constraint": [{

"name": "prop-only",
"properties": null

}]
}}

{
 "query": {
 "queries": [{

"properties-constraint-query": {
"constraint-name": "prop-only",
"term-query": {

"text": ["dog"]
}

}
 }]
}}
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 175

MarkLogic Server Searching Using Structured Queries
• Component Description

• Examples

4.6.36.1 Syntax Summary

4.6.36.2 Component Description

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<custom-constraint-query>
<constraint-name>name</constraint-name>
<text>term</text>

</custom-constraint-query>

"custom-constraint-query": {
"constraint-name": "name",
"text": [term]

}

Element or JSON
Property Name

Req’d? Description

constraint-name Y The name of a custom constraint defined in the global or
query-specific query options.

text N A query to run against fragments matching the constraint iden-
tified by constraint-name.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 176

MarkLogic Server Searching Using Structured Queries
4.6.36.3 Examples

The following example is equivalent to the string query “part:book” where part is the name of a
custom constraint defined in the query options.

Format Query

XML <options xmlns="http://marklogic.com/appservices/search">
 <constraint name="part">
 <custom facet="false">
 <parse apply="part" ns="my-namespace" at="/my-module.xqy"/>
 </custom>
 </constraint>
</options>

<query xmlns="http://marklogic.com/appservices/search">
<custom-constraint-query>

<constraint-name>part</constraint-name>
<text>book</text>

</custom-constraint-query>
</query>

JSON {
 "options": {
 "constraint": [{

"name": "part",
"custom": {
"facet": false,
"parse": {

"apply": "part",
"ns": "my-namespace",
"at": "/my-module.xqy"

}
}

}]
}}

{
 "query": {
 "queries": [{

"custom-constraint-query": {
"text": ["book"],
"constraint-name": "part"

}
 }]
}}
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 177

MarkLogic Server Searching Using Structured Queries
4.6.37 geospatial-constraint-query

A query that returns documents that match the specified geospatial constraint and the matching
fragments also match the geospatial queries. For details, see “Geospatial Search Applications” on
page 476.

• Syntax Summary

• Component Description

• Examples

4.6.37.1 Syntax Summary

4.6.37.2 Component Description

A geospatial constraint query contains one or more points or regions, described by point, box,
circle, and polygon XML child elements or JSON sub-objects.

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<geospatial-constraint-query>
<constraint-name>name</constraint-name>
<point>
<latitude>float</latitude>
<longitude>float</longitude>

</point>
<box>
<south>float</south>
<west>float</west>
<north>float</north>
<east>float</east>

</box>
<circle>
<radius>float</radius>
<point/>

</circle>
<polygon>
<point/>

</polygon>
<text>term</text>

</geospatial-constraint-query>

"geospatial-constraint-query": {
"constraint-name": "name",
"point": [

{
"latitude": number,
"longitude": number

}
],
"box": [

{
"south": number,
"west": number,
"north": number,
"east": number

}
],
"circle": [

{
"radius": number,
point

}
],
"polygon": [point]

}

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 178

MarkLogic Server Searching Using Structured Queries
Element or JSON
Property Name

Req’d? Description

constraint-name Y The name of a custom constraint defined in the global or
query-specific query options.

point N Zero or more geographic points, each defined by a latitude
and a longitude. The query can contain 0 or more points.

box N Zero or more rectangular regions, each defined by 4 points:
north, south, east, and west.

circle N Zero or more circles, each defined by radius and a center
point.

polygon N Zero or more polygons, each series of point’s.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 179

MarkLogic Server Searching Using Structured Queries
4.6.37.3 Examples

The following example matches points contained in either of two polygons. The
my-geo-elem-pair constraint in the query options defines how to construct the points.

Format Query

XML <options xmlns="http://marklogic.com/appservices/search">
 <constraint name="my-geo-elem-pair">
 <geo-elem-pair>
 <parent ns="ns1" name="elem2"/>
 <lat ns="ns2" name="attr2"/>
 <lon ns="ns3" name="attr3"/>
 </geo-elem-pair>
 </constraint>
</options>

<query xmlns="http://marklogic.com/appservices/search">
 <geospatial-constraint-query>
 <constraint-name>name</constraint-name>
 <polygon>
 <point> <latitude>1</latitude> <longitude>2</longitude> </point>
 <point> <latitude>3</latitude> <longitude>4</longitude> </point>
 <point> <latitude>5</latitude> <longitude>6</longitude> </point>
 <point> <latitude>7</latitude> <longitude>8</longitude> </point>
 </polygon>
 <polygon>
 <point> <latitude>2</latitude> <longitude>6</longitude> </point>
 <point> <latitude>3</latitude> <longitude>7</longitude> </point>
 <point> <latitude>4</latitude> <longitude>8</longitude> </point>
 <point> <latitude>5</latitude> <longitude>9</longitude> </point>
 </polygon>
 </geospatial-constraint-query>
</query>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 180

MarkLogic Server Searching Using Structured Queries
4.6.38 geo-region-constraint-query

A query that returns documents that match the specified geospatial region constraint and the
matching fragments also match the geospatial region queries. For details, see “Geospatial Search
Applications” on page 476.

A query that returns documents containing at least one region R1 that satisfies the requirement R1
op R2, for some topological operator op and criteria region R2. For example, “R1 contains R2” or
“R1 intersects R2”. The regions in the documents are identified by a reference to a geospatial
region path index. The criteria regions are defined in the query. For details, see
cts:geospatial-region-query, cts.geospatialRegionQuery, or “Searching for Matching
Regions” on page 528.

JSON {
 "options": {
 "constraint": [{

"name": "my-geo-elem-pair",
"geo-elem-pair": {

"parent": { "ns": "ns1", "name": "elem2" },
"lat": { "ns": "ns2", "name": "attr2" },
"lon": { "ns": "ns3", "name": "attr3" }

}
}]

}}

{
 "query": {
 "queries": [{

"geospatial-constraint-query": {
"constraint-name": "name",
"polygon": [

{
"point": [

 { "latitude": 1, "longitude": 2 },
 { "latitude": 3, "longitude": 4 },
 { "latitude": 5, "longitude": 6 },
 { "latitude": 7, "longitude": 8 }

]
},
{
"point": [

 { "latitude": 2, "longitude": 6 },
 { "latitude": 3, "longitude": 7 },
 { "latitude": 4, "longitude": 8 },
 { "latitude": 5, "longitude": 9 }
]

}
]

}
}]

}}

Format Query
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 181

MarkLogic Server Searching Using Structured Queries
If the query defines multiple criteria regions, a document matches the query if R1 op R2 is true for
any one (R1, R2) pair. That is, specifying multiple criteria regions is like an implicit OR query.

• Syntax Summary

• Component Description

• Examples

4.6.38.1 Syntax Summary

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<geo-region-path-query coord="coord-sys">
<path-index>path-expr</path-index>
<geospatial-operator>op</geospatial-operator>
<geo-option>option</geo-option>
<fragment-scope>scope</fragement-scope>
<weight>value</weight>
<point>
<latitude>float</latitude>
<longitude>float</longitude>

</point>
<box>
<south>float</south>
<west>float</west>
<north>float</north>
<east>float</east>

</box>
<circle>
<radius>float</radius>
<point/>

</circle>
<polygon>
<point/>

</polygon>
</geo-region-path-query>

"geo-region path-query": {
"path-index": {

"text": path-expr,
"namespaces": [{

prefix: namespace-uri
}]

},
"geospatial-operator": op,
"coord": coord-sys-name,
"geo-option": [option],
"weight": number,
"fragment-scope": scope,
"point": [

{
"latitude": number,
"longitude": number

}
],
"box": [

{
"south": number,
"west": number,
"north": number,
"east": number

}
],
"circle": [

{
"radius": number,
point

}
],
"polygon": [point]

}

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 182

MarkLogic Server Searching Using Structured Queries
4.6.38.2 Component Description

A geospatial region query contains one or more point or region criteria, described by point, box,
circle, and polygon XML child elements or JSON sub-objects. The XML element or JSON
property defining a region in your documents is identified by path-index. For details, see
“Geospatial Region Queries and Indexes” on page 506.

Element or JSON
Property Name

Req’d? Description

constraint-name Y The name of a geospatial region constraint defined in the
global or query-specific query options.

geospatial-operator N A topological operator. One of contains, covered-by, covers,
disjoint, intersects, overlaps, within. Default: contains.
For a region R1 in the specified region index and a search
criteria region R2 specified in this query, a document matches
if R1 op R2 is true.

weight N A weight for this query. Default: 1.0. Higher weights move
search results up in the relevance order. The weight should be
less than or equal to 64 and greater than or equal to -16
(between -16 and 64, inclusive). Weights greater than 64
have the same effect as a weight of 64. Weights less than the
absolute value of 0.0625 (between -0.0625 and 0.0625) are
rounded to 0, which means that they do not contribute to the
score.

point N Zero or more geographic points, each defined by a latitude
and a longitude. The query can contain 0 or more points.

box N Zero or more rectangular regions, each defined by 4 points:
north, south, east, and west.

circle N Zero or more circles, each defined by radius and a center
point.

polygon N Zero or more polygons, each series of point’s.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 183

MarkLogic Server Searching Using Structured Queries
4.6.38.3 Examples

The following example matches regions in documents that intersect either of the two criteria
polygons. A geospatial region index matching the constraint definition must exist.

Format Query

XML <options xmlns="http://marklogic.com/appservices/search">
 <constraint name="my-geo-region">
 <geo-region-path coord="wgs84">
 <path-index>/a/b</path-index>

<geo-option>units=feet</geo-option>
 </geo-region-path>
 </constraint>
</options>

<query xmlns="http://marklogic.com/appservices/search">
 <geo-region-constraint-query>

<constraint-name>my-geo-region</constraint-name>
<geospatial-operator>intersects</geospatial-operator>
<polygon>

 <point> <latitude>1</latitude> <longitude>2</longitude> </point>
 <point> <latitude>3</latitude> <longitude>4</longitude> </point>
 <point> <latitude>5</latitude> <longitude>6</longitude> </point>
 <point> <latitude>7</latitude> <longitude>8</longitude> </point>
 </polygon>
 <polygon>
 <point> <latitude>2</latitude> <longitude>6</longitude> </point>
 <point> <latitude>3</latitude> <longitude>7</longitude> </point>
 <point> <latitude>4</latitude> <longitude>8</longitude> </point>
 <point> <latitude>5</latitude> <longitude>9</longitude> </point>
 </polygon>
 </geo-region-path-query>
</query>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 184

MarkLogic Server Searching Using Structured Queries
4.6.39 lsqt-query

A query that returns documents before Last Stable Query Time (LSQT) or before a given
timestamp that is before LSQT. For details, see cts:lsqt-query or Searching Temporal Documents
in the Temporal Developer’s Guide.

• Syntax Summary

• Component Description

• Examples

JSON { "options": {
 "constraint": [{

"name": "my-geo-region",
"geo-region-path": {

"path-index": "/a/b",
"coord": "wgs84",
"geo-option": ["units=feet"]

}
}]

}}

{ "query": {
"queries": [{

 "geo-region-constraint-query":{
 "constraint-name": "my-geo-region",

"geospatial-operator": "intersects",
 "polygon": [
 {"point": [
 { "latitude": 1, "longitude": 2 },
 { "latitude": 3, "longitude": 4 },
 { "latitude": 5, "longitude": 6 },
 { "latitude": 7, "longitude": 8 }
] },
 {"point": [
 { "latitude": 2, "longitude": 6 },
 { "latitude": 3, "longitude": 7 },
 { "latitude": 4, "longitude": 8 },
 { "latitude": 5, "longitude": 9 }
] }
]
 }

}]
}}

Format Query
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 185

MarkLogic Server Searching Using Structured Queries
4.6.39.1 Syntax Summary

4.6.39.2 Component Description

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<lsqt-query>
<temporal-collection>name</temporal-collection>
<timestamp>dateTime</timestamp>
<weight>value</weight>
<temporal-option>option</temporal-option>

</lsqt-query>

"lsqt-query": {
"temporal-collection": name,
"timestamp": string,
"weight": number,
"temporal-option": [string]

}

Element or JSON
Property Name

Req’d? Description

temporal-collectio
n

Y The name of a temporal collection.

timestamp N Return only temporal documents with a system start time
less than or equal to this value. Timestamps greater than
LSQT are rejected. Default: LSQT for the named temporal
collection.

weight N A weight for this query. Default: 1.0. Higher weights move
search results up in the relevance order. The weight should
be less than or equal to 64 and greater than or equal to -16
(between -16 and 64, inclusive). Weights greater than 64
have the same effect as a weight of 64. Weights less than the
absolute value of 0.0625 (between -0.0625 and 0.0625) are
rounded to 0, which means that they do not contribute to the
score.

temporal-option N Temporal options to apply to the query. You can specify
multiple options. If the option has a value, the value of
temporal-option is option=value. For example:
<temporal-option>score-function=linear</temporal-opti

on>. For available options, see cts:lsqt-query.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 186

MarkLogic Server Searching Using Structured Queries
4.6.39.3 Examples

The following example returns documents in the temporal collection “myTemporalCollection”
before LSQT.

4.6.40 period-compare-query

A query that matches documents for which the specified relationship holds between two temporal
axes. For details, see cts:period-compare-query or Searching Temporal Documents in the Temporal
Developer’s Guide.

• Syntax Summary

• Component Description

• Examples

Format Query

XML <options xmlns="http://marklogic.com/appservices/search">

</options>

<query xmlns:search="http://marklogic.com/appservices/search">
<lsqt-query>
<temporal-collection>myTemporalCollection</temporal-collection>
<temporal-option>cached-incremental</temporal-option>

</lsqt-query>
</query>

JSON {"query": {
"queries": [{
"lsqt-query": {

"temporal-collection": "myTemporalCollection",
"temporal-option": ["cached-incremental"]

}
}]

}}
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 187

MarkLogic Server Searching Using Structured Queries
4.6.40.1 Syntax Summary

4.6.40.2 Component Description

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<period-compare-query>
<axis1>axis-name</axis1>
<temporal-operator>
operator

</temporal-operator>
<axis2>axis-name</axis2>
<temporal-option>option</temporal-option>

</period-compare-query>

"period-compare-query": {
"axis1": name,
"temporal-operator": string,
"axis2": name,
"temporal-option": [string]

}

Element or JSON
Property Name

Req’d? Description

axis1 Y The name of the first temporal axis.

temporal-operator Y The comparison operation to apply to the two axes. For a list
of operator names, see cts:period-compare-query and Period

Comparison Operators in the Temporal Developer’s Guide.

axis2 Y The name of the second temporal axis.

temporal-option N Temporal options to apply to the query. You can specify
multiple options. If the option has a value, the value of
temporal-option is option=value. For example:
<temporal-option>score-function=linear</temporal-optio

n>. For available options, see cts:lsqt-query.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 188

MarkLogic Server Searching Using Structured Queries
4.6.40.3 Examples

The following example matches documents that were in the database when the time period
defined by the axis named “valid” is within the time period defined by the axis “system”.

4.6.41 period-range-query

• Syntax Summary

• Component Description

• Examples

Format Query

XML <query xmlns:search="http://marklogic.com/appservices/search">
<period-compare-query>
<axis1>system</axis1>
<temporal-operator>iso_contains</temporal-operator>
<axis2>valid</axis2>

</period-compare-query>
</query>

JSON {"query": {
"queries": [{
"period-compare-query": {

"axis1": "system",
"temporal-operator": "iso_contains",
"axis2": "valid"

}
}]

}}
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 189

MarkLogic Server Searching Using Structured Queries
4.6.41.1 Syntax Summary

4.6.41.2 Component Description

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<period-range-query>
<axis>axis-name</axis>
<temporal-operator>
operator

</temporal-operator>
<period>
<period-start>dateTime</period-start>
<period-end>period-end</period-end>

</period>
<temporal-option>option</temporal-option>
<weight>value</weight>

</period-range-query>

"period-range-query": {
"axis": [name],
"temporal-operator": string,
"period": [
{
"period-start": string,
"period-end": string

}
],
"temporal-option": [string],
"weight": number

}

Element or JSON
Property Name

Req’d? Description

axis Y The name of a temporal axis. You can specify multiple axis
names.

temporal-operator Y The comparison operation to apply to the axis and period. For
a list of operator names, see cts:period-range-query and
Period Comparison Operators in the Temporal Developer’s
Guide.

period Y One or more periods to match. When multiple periods are
specified, the query matches if any value matches.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 190

MarkLogic Server Searching Using Structured Queries
4.6.41.3 Examples

The following example matches temporal documents a valid end time before. 14:00.

temporal-option N Temporal options to apply to the query. You can specify
multiple options. If the option has a value, the value of
temporal-option is option=value. For example:
<temporal-option>score-function=linear</temporal-optio

n>. For available options, see cts:lsqt-query.

weight N A weight for this query. Default: 1.0. Higher weights move
search results up in the relevance order. The weight should be
less than or equal to 64 and greater than or equal to -16
(between -16 and 64, inclusive). Weights greater than 64 have
the same effect as a weight of 64. Weights less than the
absolute value of 0.0625 (between -0.0625 and 0.0625) are
rounded to 0, which means that they do not contribute to the
score.

Format Query

XML <query xmlns:search="http://marklogic.com/appservices/search">
<period-range-query>
<axis>valid</axis>
<temporal-operator>aln_before</temporal-operator>
<period>

<period-start>2014-04-03T14:00:00</period-start>
<period-end>9999-12-31T11:59:59Z</period-end>

</period>
</period-range-query>

</query>

Element or JSON
Property Name

Req’d? Description
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 191

MarkLogic Server Searching Using Structured Queries
4.6.42 operator-state

This component of a structured query sets the state of a custom runtime configuration operator
defined by your string query grammar. For details, see “Operator Options” on page 395.

• Syntax Summary

• Component Description

• Examples

4.6.42.1 Syntax Summary

JSON {"query": {
"queries": [{
"period-range-query": {

"axis": ["valid"],
"temporal-operator": "aln_before",
"period": [

{
"period-start": "2014-04-03T14:00:00",
"period-end": "9999-12-31T11:59:59Z"

}
]

}
}]

}}

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<operator-state>
<operator-name>name</operator-name>
<state-name>state</state-name>

</operator-state>

"operator-state": {
"operator-name": "name",
"state-name": "state"

}

Format Query
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 192

MarkLogic Server Searching Using Structured Queries
4.6.42.2 Component Description

4.6.42.3 Examples

The following examples illustrate use of a custom sort operator defined in the query options. The
example structured queries is equivalent to the string query “sort:date”. For details, see
“Operator Options” on page 395.

Element or JSON
Property Name

Req’d? Description

operator-state Y The name of a custom runtime configuration operator defined
by the <operator/> query option.

state-name Y The name of a state recognized by this operator.

Format Code Example

XML
options

<options xmlns="http://marklogic.com/appservices/search">
<operator name="sort">

 <state name="relevance">
 <sort-order>
 <score/>
 </sort-order>
 </state>
 <state name="date">
 <sort-order direction="descending" type="xs:dateTime">
 <element ns="my-ns" name="date"/>
 </sort-order>
 <sort-order>
 <score/>
 </sort-order>
 </state>
 </operator>
</options>

XML
query

<query xmlns:search="http://marklogic.com/appservices/search">
 <operator-state>
 <operator-name>sort</operator-name>
 <state-name>date</state-name>
 </operator-state>
</query>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 193

MarkLogic Server Searching Using Structured Queries
JSON
options

{
 "options": {
 "operator": [{

"name": "sort",
"state": [

{
"name": "relevance",
"sort-order": [{ "score": null }]

},
{

"name": "date",
"sort-order": [
{

"direction": "descending",
"type": "xs:dateTime",
"element": { "ns": "my-ns", "name": "date" }

},
{ "score": null }

]
}]

}]
}}

JSON
query

{
 "query": {
 "queries": [{

"operator-state": {
"operator-name": "sort",
"state-name": "date"

}
 }]
}}

Format Code Example
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 194

MarkLogic Server Searching Using Query By Example
5.0 Searching Using Query By Example
247

This chapter describes how to perform searches using Query By Example (QBE). A QBE is a
query whose structure closely models the structure of the documents you want to match. You can
use a QBE to search XML and JSON documents with the REST, Node.js and Java APIs.

This chapter includes the following sections:

• QBE Overview

• Example

• Understanding QBE Sub-Query Types

• Search Criteria Quick Reference

• QBE Structural Reference

• How Indexing Affects Your Query

• Adding Options to a QBE

• Customizing Search Results

• Scoping a Search by Document Type

• Converting a QBE to a Combined Query

• Validating a QBE

For details on supporting APIs, see Java Application Developer’s Guide and REST Application
Developer’s Guide.

5.1 QBE Overview
The simple, intuitive syntax of a Query By Example (QBE) enables rapid prototyping of queries
for “documents that look like this” because search criteria in a QBE resemble the structure of
documents in your database. In its simplest form, a QBE models one or more XML elements,
XML element attributes, or JSON properties in your documents.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 195

MarkLogic Server Searching Using Query By Example
For example, if your documents include an author XML element or JSON property, you can use
the following QBE to find documents with an author value of “Mark Twain”.

A QBE always contains a query component in which you define search criteria. A QBE can
include an optional response component for customizing search results, and flags and options that
control search behaviors. For details, see “QBE Structural Reference” on page 223.

QBE exposes many powerful features of the Search API, including the following:

• Search Criteria Based on Document Structure

• Logical Operators. Create complex composed queries using AND, OR, NOT and NEAR
operators.

• Comparison Operators. Create range queries that test the value of XML elements, XML
attributes, and JSON properties using comparison operators such as less than, greather
than, and not equal.

• Query by Value or Word. Choose to match values exactly or as subset of the contained
content.

• Search Result Customization. Control what to include in the results and snippets returned by
your search.

• Options for Controlling Search Behavior. Use options and flags to control query behaviors
such as case sensitivity, weights, and number of occurrences.

You can prototype queries using QBE without creating any database indexes, though doing so has
implications for performance. For details, see “How Indexing Affects Your Query” on page 234.

Format Example

XML <q:qbe xmlns:q="http://marklogic.com/appservices/querybyexample">
 <q:query>

<author>Mark Twain</author>
 </q:query>
</q:qbe>

JSON {
"$query": { "author": "Mark Twain" }

}

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 196

MarkLogic Server Searching Using Query By Example
This chapter covers the syntax and semantics of QBE. You can use a QBE to search XML and
JSON documents with the following MarkLogic APIs:

If you need access to more advanced search features, APIs are available for converting a QBE to
a combined query, giving you a foundation on which to build. For details, refer to Client API
documentation.

5.1.1 Search Criteria Based on Document Structure

A QBE uses search criteria expressed as XML elements, XML element attributes, or JSON
properties that closely resemble portions of documents in the database.

For example, if the database contains documents of the following form:

API More Information

Node.js Client API Searching with Query By Example in the Node.js Application Developer’s
Guide.

Java Client API Prototype a Query Using Query By Example in the Java Application
Developer’s Guide

REST Client API Using Query By Example to Prototype a Query in the in REST Application
Developer’s Guide.

Format Example Document

XML <book>
 <title>Tom Sawyer</title>
 <author>Mark Twain</author>

<edition format="paperback"/>
</book>

JSON "book": {
 "title": "Tom Sawyer",
 "author" : "Mark Twain",
 "edition": [
 { "format": "paperback" }
]
} }
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 197

MarkLogic Server Searching Using Query By Example
Then you can construct a QBE to find all paperback books by a given author by creating criteria
that model the author, edition format. The following QBE finds all paperback books by Mark
Twain.

By default, the literal values in criteria must exactly match document contents. That is, the above
query matches if the author value is “Mark Twain”, but it will not match documents where the
author is “M. Twain” or “mark twain”. You can change this behavior using word queries and
options. For details, see “Understanding QBE Sub-Query Types” on page 208 and “Adding
Options to a QBE” on page 235.

Format Example

XML <q:qbe xmlns:q="http://marklogic.com/appservices/querybyexample">
 <q:query>
 <author>Mark Twain</author>
 <edition format="paperback"/>
 </q:query>
</q:qbe>

JSON {"$query": {
 "author": "Mark Twain",
 "edition": {
 "format": "paperback"
 }
} }
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 198

MarkLogic Server Searching Using Query By Example
You can construct criteria that express value, word, and range queries. For example, you can
construct a QBE that satisfies all of the following criteria. The Example Criteria column shows an
XML and a JSON criteria that expresses each requirement.

When you combine the above criteria into a single query, you get the following QBE. Notice that
the child elements of query are implicitly AND’d together.

Requirement
Query
Type

Example Criteria

the author includes “twain” word <author><q:word>twain</q:word></author>

"author": {"$word": "shakespeare"}

there is a paperback edition value <edition format="paperback"/>

"edition": {"format": "paperback"}

the price of the paperback edition
is less than 9.00

range <edition>
<price><q:lt>9.00</q:lt></price>

</edition>

"edition": {"price": {"$lt": 9.00} }

Format Example

XML <q:qbe xmlns:q="http://marklogic.com/appservices/querybyexample">
 <q:query>
 <author><q:word>twain</q:word></author>
 <edition format="paperback">

<price><q:lt>9.00</q:lt></price>
</edition>

 <q:filtered>true</q:filtered>
 </q:query>
</q:qbe>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 199

MarkLogic Server Searching Using Query By Example
The above examples demonstrate searching for direct containment, such as “the author is Mark
Twain.” You can also search for matches anywhere within a containing XML element or JSON
property. For example, suppose a book contains author and editor names, broken down into
first-name and last-name:

JSON {
"$query": {

"author": {
"$word": "twain"

},
"edition": {

"format": "paperback",
"price": { "$lt": 9.00 }

},
"$filtered": true

}
}

Format Example Document

XML <book>
<author>

<first-name>Mark</first-name>
<last-name>Twain</last-name>

</author>
<editor>

<first-name>Mark</first-name>
<last-name>Matthews</last-name>

</editor>
</book>

JSON "book": {
 "author" : {

"first-name": "Mark",
"last-name": "Twain"

},
"editor" : {

"first-name": "Mark",
"last-name": "Matthews"

}
} }

Format Example
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 200

MarkLogic Server Searching Using Query By Example
You can search for “any occurences of Mark as a first name contained by a book” using criteria
such as the following:

Such criteria represent container queries. For details, see “Container Query” on page 214.

5.1.2 Logical Operators

You can use logical “operators” to create powerful composed queries. The QBE grammar
supports and, or, not, and near composers. The following example matches documents that
contain “twain” or “shakespeare” in the author XML element or JSON property.

Sub-queries that are immediate children of query represent an implicit and query.

Format Example

XML <q:qbe xmlns:q="http://marklogic.com/appservices/querybyexample">
 <q:query>
 <book><first-name>Mark</last-name></book>
 </q:query>
</q:qbe>

JSON {"$query": {
 "book": { "first-name": "Mark" }
} }

Format Example

XML <q:qbe xmlns:q="http://marklogic.com/appservices/querybyexample">
 <q:query>
 <q:or>
 <author><q:word>twain</q:word></author>
 <author><q:word>shakespeare</q:word></author>
 </q:or>
 </q:query>
</q:qbe>

JSON {
 "$query" : {
 "$or": [
 { "author": {"$word": "twain" } },
 { "author": {"$word": "shakespeare" } }
]
 }
}

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 201

MarkLogic Server Searching Using Query By Example
For details, see “Composed Query” on page 213.

5.1.3 Comparison Operators

The QBE grammar supports the following comparison operators for constructing range queries on
XML element, XML attribute, and JSON property values: lt, le, eq, ne, ge, gt. For example, the
following query matches all documents where the price is greater than or equal to 10.00 and less
than or equal to 20.00.

The filtered flag is included in the above query because you must either use filtered search or
back the range queries on “price” with a range index. For details, see “How Indexing Affects Your
Query” on page 234.

For details, see “Range Query” on page 211.

Note: In MarkLogic 10, a user must have both rest-reader and eval-search-string
privileges to execute a QBE that uses relational comparisons (in particular, EQ,
NE, LT, LE, GT, and GE) for elements that don't have a range index. The
eval-search-string privilege is available in MarkLogic 9 so adopters can add the
privilege to the users's role prior to rolling upgrade.

Format Example

XML <q:qbe xmlns:q="http://marklogic.com/appservices/querybyexample">
 <q:query>
 <price><q:ge>10.00</q:ge></price>
 <price><q:le>20.00</q:le></price>
 <q:filtered>true</q:filtered>
 </q:query>
</q:qbe>

JSON { "$query": {
 "$and": [
 {"price" : { "$ge": 10.00 } },
 {"price" : { "$le": 20.00 } }],
 "$filtered": true
}}
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 202

MarkLogic Server Searching Using Query By Example
5.1.4 Query by Value or Word

When you construct a criteria on a literal value, it is an implicit value query that matches an exact
value. For example, the following criteria matches only when author is “Mark Twain”. It will not
match “mark twain”or “M. Twain”:

When this is not the desired behavior, you can use a word query and/or options to modify the
default behavior. A word query differs from a value query in two ways: It relaxes the default exact
match semantics of a value query, and it matches a subset of the value in a document.

For example, the following query matches if the author contains “twain”, with any capitalization,
so it matches values that are not matched by the original query, such as “Mark Twain”, “M.
Twain” and “mark twain”.

For details, see “Value Query” on page 209 and “Word Query” on page 210.

Format Example

XML <q:qbe xmlns:q="http://marklogic.com/appservices/querybyexample">
 <q:query>

<author>Mark Twain</author>
 </q:query>
</q:qbe>

JSON {
"$query": { "author": "Mark Twain" }

}

Format Example

XML <q:qbe xmlns:q="http://marklogic.com/appservices/querybyexample">
 <q:query>

<author><q:word>twain</q:word></author>
 </q:query>
</q:qbe>

JSON {
"$query": { "author": { "$word": "twain" } }

}

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 203

MarkLogic Server Searching Using Query By Example
5.1.5 Search Result Customization

You can include a response XML element or JSON property to customize the contents of returned
search results. The default search results include a highlighted snippet of matching XML elements
or JSON properties. Use the response section of a QBE to disable snippeting, extract additional
elements, or return an entire document.

For details, see “Customizing Search Results” on page 240.

5.1.6 Options for Controlling Search Behavior

The QBE grammar includes several flags and options to control your search. Flags usually have a
global effect on your search, such as how to score search results. Options affect a portion of your
query, such as whether or not perform an exact match against a particular XML element or JSON
property value.

The following example uses the exact option to disable exact matches on value queries.

For more details, see “Adding Options to a QBE” on page 235.

5.2 Example

This section includes an example that uses most of the query features of a QBE.

• XML Example

• JSON Example

Format Example

XML <q:qbe xmlns:q="http://marklogic.com/appservices/querybyexample">
 <q:query>

<author><q:value exact="false">mark twain</q:value></author>
 </q:query>
</q:qbe>

JSON {
"$query": {

"author": {
"$exact": false,
"$value" : "mark twain"

}
}

}

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 204

MarkLogic Server Searching Using Query By Example
5.2.1 XML Example

This example assumes the database contains documents with the following structure:

<book>
 <title>Tom Sawyer</title>
 <author>Mark Twain</author>

<edition format="paperback">
<publisher>Clipper</publisher>
<pub-date>2011-08-01</pub-date>
<price>9.99</price>
<isbn>1613800917</isbn>

</edition>
</book>

The following query uses most of the features of QBE and matches the above document. The
sub-queries that are immediate children of query are implicitly AND’d together, so all these
conditions must be met by matching documents.

<q:qbe xmlns:q="http://marklogic.com/appservices/querybyexample">
 <q:query>
 <title>

<q:value exact="false">Tom Sawyer</q:value>
</title>

 <q:near distance="2">
 <author><q:word>mark</q:word></author>
 <author><q:word>twain</q:word></author>
 </q:near>
 <edition format="paperback">
 <q:or>
 <publisher>Clipper</publisher>
 <publisher>Daw</publisher>
 </q:or>
 </edition>
 <q:and>
 <price><q:lt>10.00</q:lt></price>
 <price><q:ge>8.00</q:ge></price>
 </q:and>
 <q:filtered>true</q:filtered>
 </q:query>
</q:qbe>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 205

MarkLogic Server Searching Using Query By Example
The following table explains the requirement expressed by each component of the query. Each of
the subquery types used in this example is explored in more detail in “Understanding QBE
Sub-Query Types” on page 208.

5.2.2 JSON Example

This example assumes the database contains documents with the following structure:

{"book": {
 "title": "Tom Sawyer",
 "author" : "Mark Twain",
 "edition": [
 { "format": "paperback",
 "publisher": "Clipper",
 "pub-date": "2011-08-01",
 "price" : 9.99,

Requirement Example Criteria

The title is “Tom Sawyer”. Exact
match is disabled, so the match is
not sensitive to whitespace,
punctuation, or diacritics. The match
is case sensitive because the value
(“Tom Sawyer”) is mixed case.

<title>
<q:value exact="false">Tom Sawyer</q:value>

</title>

The author contains the word
“mark” and the word “twain” within
2 words of each other.

<q:near distance="2">
<author><q:word>mark</q:word></author>
<author><q:word>twain</q:word></author>

</q:near>

The edition format is “paperback”
and the publisher is “Clipper” or
“Daw”. All the atomic values in this
sub-query use exact value match
semantics.

<edition format="paperback">
<q:or>

<publisher>Clipper</publisher>
<publisher>Daw</publisher>

</q:or>
</edition>

The price is less than 10.00 and
greather than or equal to 8.00.

<q:and>
<price><q:lt>10.00</q:lt></price>
<price><q:ge>8.00</q:ge></price>

</q:and>

Use unfiltered search. This flag can
be omitted if there is a range index
on price. For details, see “How
Indexing Affects Your Query” on
page 234.

<q:filtered>true</q:filtered>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 206

MarkLogic Server Searching Using Query By Example
 "isbn": "1613800917",
 }
]
} }

The following query uses most of the features of QBE and matches the above document. The
sub-queries that are immediate children of query are implicitly AND’d together, so all these
conditions must be met by matching documents.

{"$query": {
 "title": {
 "$value": "Tom Sawyer",
 "$exact": false
 },
 "$near": [
 { "author": { "$word": "mark" } },
 { "author": { "$word": "twain" } }
], "$distance": 2,
 "edition": {
 "format": "paperback",
 "$or" : [
 { "publisher": "Clipper" },
 { "publisher": "Daw" }
]
 },
 "$and": [
 {"price": { "$lt": 10.00 }},
 {"price": { "$ge": 8.00 }}
],
 "$filtered": true
} }
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 207

MarkLogic Server Searching Using Query By Example
The following table explains the requirement expressed by each component of the query. Each of
the subquery types used in this example is explored in more detail in “Understanding QBE
Sub-Query Types” on page 208.

5.3 Understanding QBE Sub-Query Types

The query portion of a QBE is composed of sub-queries. While QBE enables you to express a
sub-query using syntax that closely models your documents, you should understand the query
types represented by this modeling. You can express the following query types in a QBE:

• Value Query

• Word Query

• Range Query

Requirement Example Criteria

The title is “Tom Sawyer”. Exact match is
disabled, so the match is not sensitive to
whitespace, punctuation, or diacritics. The
match is case sensitive because the value
(“Tom Sawyer”) is mixed case.

"title": {
"$value": "Tom Sawyer",
"$exact": false

}

The author contains the word “mark” and
the word “twain” within 2 words of each
other.

"$near": [
{ "author": { "$word": "mark" } },
{ "author": { "$word": "twain" } }

],
"$distance": 2

The edition format is “paperback” and the
publisher is “Clipper” or “daw”. All the
atomic values in this sub-query use exact
value match semantics.

"edition": {
"format": "paperback",
"$or" : [

{ "publisher": "Clipper" },
{ "publisher": "Daw" }

]
}

The price is less than 10.00 and greater
than or equal to 8.00.

"$and": [
{"price": { "$lt": 10.00 }},
{"price": { "$ge": 8.00 }}

]

Use unfiltered search. This flag can be
omitted if there is range index on price.
For details, see “How Indexing Affects
Your Query” on page 234.

"$filtered": true
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 208

MarkLogic Server Searching Using Query By Example
• Composed Query

• Container Query

5.3.1 Value Query

A value query matches an entire literal value, such as a string, date, or number.

By default, an XML element or JSON property criteria represents a value query with exact match
semantics:

• The value in the criteria is matched with case, diacritic, punctuation, and whitespace
sensitivity enabled.

• Stemming and wildcarding are not enabled.

• The specified value must be an immediate child of the containing XML element or JSON
property.

• The value in the query will not match if it is a subset of the value in a document.

For example, the following criteria only matches documents where the author XML element or
JSON property contains exactly and only the text “Twain”. It will not match author values such as
“Mark Twain” or “twain”.

You can override some of the exact match semantics with options. For example, you can disable
case-sensitive matches. For details, see “Adding Options to a QBE” on page 235.

A value query can be explicit or implicit. The example above is an implicit value query. You can
make an explicit value query using the value QBE keyword. This is useful when you want to add
options to a value query. The following example is an explicit value query that uses the
case-sensitive option.

Format Example

XML <q:qbe xmlns:q="http://marklogic.com/appservices/querybyexample">
 <q:query>

<author>Twain</author>
 </q:query>
</q:qbe>

JSON {
"$query": { "author": "Twain" }

}

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 209

MarkLogic Server Searching Using Query By Example
5.3.2 Word Query

A word query matches a word or phrase appearing anywhere in a text value. A word query will
match a subset of a text value. By default, word queries do not use exact match semantics.

• The value in the criteria is matched with case, diacritic, punctuation, and whitespace
sensitivity disabled.

• Stemmed matches are included.

• Wildcard matching is performed if wildcarding is enabled for the database.

• The specified word or phrase can occur in the value of the immediately containing XML
element or JSON property, or in the value of child components.

You can use options to override some of the match semantics. For details, see “Adding Options to
a QBE” on page 235.

Word queries occurring within another container, such as an XML element or JSON property that
describes content in your document, match occurrences within the container. Word queries that
are not in a container, such as word queries that are immediate children of the top level QBE
query wrapper, match occurrences anywhere in a document. For details, see “Container Query”
on page 214 and “Searching Entire Documents” on page 221.

Format Example

XML <q:qbe xmlns:q="http://marklogic.com/appservices/querybyexample">
 <q:query>

<author>
<q:value case-sensitive="false">Twain<q:value>

</author>
 </q:query>
</q:qbe>

JSON { "$query": {
"author": {

"$value": "Twain",
"$case-sensitive": false

}
} }
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 210

MarkLogic Server Searching Using Query By Example
The following example QBE matches if the author contains “twain” with any capitalization, so it
matches values such as “Mark Twain”, “M. Twain” and “mark twain”.

In JSON, the value in a word query can be either a string or an array of strings. An array of values
is treated as an AND-related list of word queries. For example, the following query matches
documents where author contains word matches for “mark” and “twain”. The matched values
need not be array item values.

{
"$query": { "author": { "$word": ["mark", "twain"] } }

}

5.3.3 Range Query

A range query matches values that satisfy a relational expression applied to a string, number, date,
time, or dateTime value, such as “less than 5” or “not equal to 10”. This section includes the
following topics:

• JSON Property Value Range Query

• XML Element Value Range Query

• XML Element Attribute Value Range Query

• Type Conversion in Range Expressions

Note: You must either back a range query by a range index or use the filtered flag. For
details see “How Indexing Affects Your Query” on page 234.

5.3.3.1 JSON Property Value Range Query

To construct a range query for a JSON property value, construct a JSON property with the
operator name prefixed with “$” as the name and the boundary value as the value:

{ "$operator" : boundary-value }

Format Example

XML <q:qbe xmlns:q="http://marklogic.com/appservices/querybyexample">
 <q:query>

<author><q:word>twain</q:word></author>
 </q:query>
</q:qbe>

JSON {
"$query": { "author": { "$word": "twain" } }

}

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 211

MarkLogic Server Searching Using Query By Example
The following example criteria tests for format not equal to “paperback”:

"format": {"$ne": "paperback" }

You cannot construct a range query that is constrained to match an array item.

5.3.3.2 XML Element Value Range Query

To construct a range query on an XML element value, use the following syntax, where q is the
namespace prefix for http://marklogic.com/appservices/querybyexample:

<container>
<q:operator>boundary-value</q:operator>

</container>

The following example criteria tests for publication date greather than 2010-01-01:

<pub-date>
<q:gt>2010-01-01</q:gt>

</pub-date>

5.3.3.3 XML Element Attribute Value Range Query

To construct a range query on an XML element attribute value, prefix the operator name with “$”
and put the comparison expression in the string value of the attribute on the containing element
criteria:

<container attr="$operator value" />

The following example criteria tests that @format of edition does not equal “paperback”:

<edition format="$ne paperback" />

5.3.3.4 Type Conversion in Range Expressions

By default, values in range queries are treated as xs:boolean, xs:double, xs:dateTime, xs:date, or
xs:time if castable as such, and as strings otherwise.

You can use the xsi:type (XML) or $datatype (JSON) option to force a particular type
conversion; for details, see “Adding Options to a QBE” on page 235.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 212

MarkLogic Server Searching Using Query By Example
5.3.4 Composed Query

A composed query is one composed of sub-queries joined by a logical “operator” such and, or,
not, or near. The following example matches documents where the value of author is “Mark
Twain” or “Robert Frost”.

Format Example

XML <q:qbe xmlns:q="http://marklogic.com/appservices/querybyexample">
 <q:query>

<q:or>
<author>Mark Twain</author>
<author>Robert Frost</author>

</q:or>
 </q:query>
</q:qbe>

JSON {"$query": {
"$or": [

"author": "Mark Twain",
"author": "Robert Frost"

]
} }
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 213

MarkLogic Server Searching Using Query By Example
The near operator models a cts:near-query and accepts an optional distance XML attribute or
JSON property to specify a maximum acceptable distance in words between matches for the
operands queries. For example, the following near query specifies a maximum distance of 2
words. The default distance is 10.

5.3.5 Container Query

A container query matches when sub-query conditions are met within the scope of a specific
XML element or JSON property. In a container query, the relationship between the named
container and XML element or JSON property names used in the sub-queries is “contained by”
not merely “child of”.

A container query is implicitly defined when you use search criteria that model your document
and that contain a composed query or structural sub-queries (XML element, XML attribute, or
JSON property).

For example, an XML criteria such as the following defines defines a container query on edition
because it contains an implicit value query on another element, price.

<edition><price>8.99</price></edition>

By contrast, the following criteria is a value query, not a container query, on author:

<author>twain</author>

Format Example

XML <q:qbe xmlns:q="http://marklogic.com/appservices/querybyexample">
 <q:query>

<q:near distance="2">
<author><q:word>mark</q:word></author>

 <author><q:word>twain</q:word></author>
 </q:near>
 </q:query>
</q:qbe>

JSON {"$query": {
 "$near": [
 { "author": { "$word": "mark" } },
 { "author": { "$word": "twain" } }
],
 "$distance": 2
} }
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 214

MarkLogic Server Searching Using Query By Example
Similarly, the following JSON criteria is a container query on edition because it contains an
implicit value query on another property, price.

"edition":{"price": 8.99}

By contrast, a criteria such as the following is a value query, not a container query, on author.

"author":"twain"

The examples below demonstrate how a container query for price contained by book matches at
multiple levels.

A query on an XML element attribute is a container query in that the element “contains” the
attribute. However, only attributes on the containing element can match. The following criteria
matches @format only when it appears as an attribute of edition. It does not match occurrences of
@format on child elements of edition.

<edition format="paperback"/>

Query Example Matching Documents

<q:qbe
xmlns:q="http://marklogic.com/appserv
ices/querybyexample">
 <q:query>

<book><price>8.99</price></book>

 </q:query>
</q:qbe>

<book>
<price>8.99</price>

</book>

<book>
<edition>

<price>8.99</price>
</edition>

</book>

{"$query": {
"book":{"price": 8.99}

} }

{ "book": {
"price": 8.99

} }

{ "book": {
"edition": {"price": 8.99 }

} }

{ "book": {
"edition": [{"price": 8.99}]

} }
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 215

MarkLogic Server Searching Using Query By Example
The following table contains XML examples of container queries.

Description Container Query

The element price is contained by the element
edition and has a value of exactly 8.99.

price need not be an immediate child of
edition.

<edition>
<price>8.99</price>

</edition>

The attribute format is contained by the
element edition and has the exact value
"paperback".

<edition format="paperback"/>

The element price is contained by the element
edition and has the exact value 8.99, or the
element publisher is contained by the element
edition and has the exact value "Fawcett".

<edition>
<q:or>

<price>8.99</price>
<publisher>Fawcett</publisher>

</q:or>
</edition>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 216

MarkLogic Server Searching Using Query By Example
The following table contains JSON examples of container queries.

5.4 Search Criteria Quick Reference

This section provides templates for constructing composed queries and frequently used criteria
that model your documents.

• XML Search Criteria Quick Reference

• JSON Search Criteria Quick Reference

• Searching Entire Documents

Description Container Query

The JSON property price is contained in a
property named edition and has the exact
value 8.99.

price need not be an immediate child of
edition.

"edition": {"price": 8.99 }

The JSON property price is contained in a
property named edition and has the exact
value 8.99, or the property named publisher
is contained in JSON property named edition
and has the exact value "Fawcett".

"edition": {
"$or": [

"price": 8.99,
"publisher": "Fawcett"

]
}

The property named edition contains a price
property with the value 8.99 and a publisher
property with the value "Fawcett" anywhere
in its substructure. If the value of edition is
an array, then price and publisher must
match within the same array item. Otherwise,
the matches need not be within the same
object or array.

"edition": {
"$and": [

"price": 8.99,
"publisher": "Fawcett"

]
}

The property named edition contains a price
property with the value 8.99 and a publisher
property with the value "Fawcett" anywhere
in its substructure. The matches need not be
within the same object or array.

"$and": [
"edition": {"price": 8.99},
"edition": {"publisher":"Fawcett"}

]

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 217

MarkLogic Server Searching Using Query By Example
5.4.1 XML Search Criteria Quick Reference

The table below provides a quick reference for constructing QBE search criteria and composed
queries in XML. Use these examples as templates for your own criteria. For more details, see
“QBE Structural Reference” on page 223.

The examples below assume that the namespace prefix q is bound to
http://marklogic.com/appservices/querybyexample.

Criteria Description Example

element e has value v <e>v</e>

<e><q:value>v</q:value></e>

the value of attribute a of element e is v <e a="v"/>

<e a="$value v"/>

element e contains word w anywhere in the
substructure of the element content

<e><q:word>w</q:word></e>

the value of attribute a of element e includes
the word w

<e a="$word w"/>

element e has a value greater than 5 <e><q:gt>5</q:gt></e>

the value of attribute a of element e is greater
than 5

<e a="$gt 5"/>

element e exists <e><q:exists/></e>

attribute a of element e exists not supported

element e1 contains element e2 with value v;
e2 can occur anywhere in the substructure of
the element content

<e1>
 <e2>v</e2>
</e1>

element e1 contains a descendant element e2,
and e2 contains word w anywhere in the
substructure of the element content

<e1>
 <e2><q:word>w</q:word></e2>
</e1>

element e1 contains a descendant element e2,
that has an attribute a with value v

<e1>
 <e2 a="v"/>
</e1>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 218

MarkLogic Server Searching Using Query By Example
element e1 contains a descendant element e2
that has an attribute a with word w in its value

<e1>
 <e2 a="$word w"/>
</e1>

a descendant of element e has attribute a not supported

element e has value v1 or v2 <q:or>
 <e>v1</e>
 <e>v2</e>
</q:or>

element e contains word w1 or w2 anywhere
in the substructure of the element content

<q:or>
 <e><q:word>w1</q:word></e>
 <e><q:word>w2</q:word></e>
</q:or>

element e1 contains a descendant element e2,
and e2 has value v1 or v2

<e1>
 <q:or>
 <e2>v1</e2>
 <e2>v2</e2>
 </q:or>
</e1>

the value of attribute a of element e has is v1
or v2

<q:or>
 <e a="v1"/>
 <e a="v2"/>
</q:or>

the value of attribute a of element e includes
word w1 or w2

<q:or>
 <e a="$word w1"/>
 <e a="$word w2"/>
</q:or>

the value of attribute a of element e2 that is a
descendant of element e1 is v1 or v2

<e1>
 <q:or>
 <e2 a="v1"/>
 <e2 a="v2"/>
 </q:or>
</e1>

Criteria Description Example
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 219

MarkLogic Server Searching Using Query By Example
5.4.2 JSON Search Criteria Quick Reference

The table below provides a quick reference for constructing QBE search criteria and composed
queries in JSON. Where the example property name begins with c, the criteria represents a
container query. For more details, see “QBE Structural Reference” on page 223.

This list of example criteria is not exhaustive. Additional forms are supported. For example, not
all variants of explicit and implicit value queries are shown for a given criteria.

Criteria Description Example Criteria

Property k with value v { "k": "v"}

{ "k": {"$value": "v"}}

Property k containing word w anywhere in the
substructure of the property value

{"k":{"$word":"w"}}

Property k with a value greater than 5 {"k":{"$gt":5}}

Property k exists {"k":{"$exists":{}}}

A property named c containing a property
named k with value v, where k can be anywhere
in the substructure of c’s value

{"c": {"k":"v"} }

{"c": {
"k": {"$value": "v"}

} }

A property named c containing a property
named k with a value that includes word w,
where k can be anywhere in the substructure of
c’s value

{"c":{
"k":{"$word":"w"}

}}

A property named k with value v1 or value v2 {"$or":[
{"k":"v1"},
{"k":"v2"}

]}

{"$or":[
{"k": {"$value": "v1"}},
{"k": {"$value": "v2"}}

]}

{"k": {"$or": [
{"$value": "v1"},
{"$value": "v2"}

]}}
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 220

MarkLogic Server Searching Using Query By Example
5.4.3 Searching Entire Documents

This section describes how to construct a query that matches words or phrases anywhere in a
document, rather than constraining the match to occurrences in a particular XML element, XML
attribute, or JSON property.

A property named k that includes word w1 or
w2 in its value.

{"$or":[
{"k":{"$word":"w1"}},
{"k":{"$word":"w2"}}

]}

{"k": {"$or": [
{"$word": "v1"},
{"$word": "v2"}

]}}

A property named c that contains a property
named k with value v1 or v2 anywhere within
the substructure of c’s value

{"c":{"$or":[
{"k":"v1"},
{"k":"v2"}

]}}

A property named c that contains a property
named k with value v1 and a property named k
with value v2 anywhere within the substructure
of c’s value.

{"c":{"$and":[
{"k":"v1"},
{"k":"v2"}

]}}

{"c":{"$and":[
{"k": {"$value": "v1"}},
{"k": {"$value": "v2"}}

]}}

A property named k1 with value v1 and a
property named k2 with value v2. k1 and k2 can
be in different objects.

{
"k1":"v1",
"k2":"v2"

}

{"$and":[
{"k1":"v1"},
{"k2":"v2"}

]}

{
"k1": {"$value": "v1"},
"k2": {"$value": "v2"}

}

{"$and":[
{"k1": {"$value": "v1"}},
{"k2": {"$value": "v2"}}

]}

Criteria Description Example Criteria
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 221

MarkLogic Server Searching Using Query By Example
A word query has document scope if it is not contained in an XML element or JSON property
criteria. For example, a word query that is an immediate child of the top level query element, or
one that is a child at any depth of a hierarchy of composed queries (and, or, not, near). This also
applies to the implicit and query that joins the immediate children of query.

For example, the following query matches all documents containing the phrase “moonlight
sonata”:

The following example matches all documents containing either the phrase “moonlight sonata” or
the word “sunlight”.

Format Example

XML <q:qbe xmlns:q="http://marklogic.com/appservices/querybyexample">
 <q:query>

<q:word>moonlight sonata</q:word>
 </q:query>
</q:qbe>

JSON {"$query": {
"$word": "moonlight sonata"

} }

Format Example

XML <q:qbe xmlns:q="http://marklogic.com/appservices/querybyexample">
 <q:query>

<q:or>
<q:word>moonlight sonata</q:word>
<q:word>sunlight</q:word>

</q:or>
 </q:query>
</q:qbe>

JSON {"$query": {
 "$or": [

{"$word": "moonlight sonata"},
{"$word": "sunlight"}

]
} }
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 222

MarkLogic Server Searching Using Query By Example
An AND relationship between words and phrases can be either explicit or implicit. The following
example queries match all documents contains both the phrase “moonlight sonata” and the word
“sunlight”:

5.5 QBE Structural Reference

This section describes the syntax and semantics of a QBE. The following topics are covered:

• Top Level Structure

• Query Components

• Response Components

• XML-Specific Considerations

• JSON-Specific Considerations

Format Example

XML <q:qbe xmlns:q="http://marklogic.com/appservices/querybyexample">
 <q:query>

<q:word>moonlight sonata</q:word>
<q:word>sunlight</q:word>

 </q:query>
</q:qbe>

<q:qbe xmlns:q="http://marklogic.com/appservices/querybyexample">
 <q:query>

<q:and>
<q:word>moonlight sonata</q:word>
<q:word>sunlight</q:word>

</q:and>
 </q:query>
</q:qbe>

JSON {"$query": [
{"$word": "moonlight"},
{"$word": "sunlight"}

] }

{"$query": {
 "$and": [

{"$word": "moonlight"},
{"$word": "sunlight"}

]
} }
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 223

MarkLogic Server Searching Using Query By Example
5.5.1 Top Level Structure

At the top level, a QBE must contain a query and can optionally contain a response and/or a
format flag. A QBE has the following top level parts:

• query: Define matching document requirements in the query.

• response: Customize your search results in the response; if there is no response, the
default search response is returned.

• format: Use the format flag to override the interpretation of bare names as JSON property
names or XML element names in no namespace, based on the query format. For details,
see “Scoping a Search by Document Type” on page 245.

• validate: Use the validate flag to enable query validation before evaluating the search.
The default is no validation, which can result in surprising search results if your QBE
contains errors. However, validation has a performance cost, so it is best used only for
debugging during development.

The following table outlines the top level of a QBE:

A query contains one or more XML elements or JSON properties defining element or property
criteria or composed queries. Use criteria to model document structure. Use a composed query to
logically join sub-queries using operators such as and, or, not, and near.

Format Example

XML <q:qbe xmlns:q="http://marklogic.com/appservices/querybyexample">
 <q:query>

search parameters
 </q:query>

<q:response>
search result customizations

</q:response>
<q:format>xml-or-json</q:format>
<q:validate>true-or-false</q:validate>

</q:qbe>

JSON {
"$query": {

search parameters
},
"$response": {

search result customizations
},
"$format": xml-or-json,
"$validate": boolean

}

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 224

MarkLogic Server Searching Using Query By Example
In XML, a QBE has a qbe wrapper element. Element and attribute names pre-defined by the QBE
grammar, such as qbe, query, and word, are in the namespace
http://marklogic.com/appservices/querybyexample. All other element and attributes names
represent element and attribute names in your documents. For details, see “Managing
Namespaces” on page 228

In JSON, all property names pre-defined by the QBE grammar have a “$” prefix, such as $query
or $word. Any property name without a “$” prefix represents a property in your documents. For
details, see “Property Naming Convention” on page 230.

You will not usually need to set the format flag. You only need to set the format flag to use a
JSON QBE to match XML documents, or vice versa. For details, see “Scoping a Search by
Document Type” on page 245.

5.5.2 Query Components

The table below describes the components of the query portion of a QBE. Additional
format-specific details are covered in “XML-Specific Considerations” on page 228 and
“JSON-Specific Considerations” on page 230.

Component
Type

XML Local
Name

JSON Property
Name

Description

query query $query Defines the search criteria. Required.

criteria your
element
name

your
property
name

Defines search criteria to apply within the
scope of an XML element or JSON property in
your documents. The name corresponds to an
element or property in the content to be
matched by the query.

If the criteria wraps a composed query or
another criteria, then it represents a container
query. Otherwise, it represents a value, word, or
range query.

composed
query

and

or

not

near

$and

$or

$not

$near

Defines a composed query that joins sub-que-
ries using logical “operators”.

The near operator accepts an optional distance
XML attribute or JSON property:
• <q:near distance=”5>...</q:near>

• { "$near": "$distance":5, [..] }
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 225

MarkLogic Server Searching Using Query By Example
The following table summarizes where each component type can be used. Options are covered in
“Adding Options to a QBE” on page 235.

range query lt, le

gt, ge

eq, ne

$lt, $le

$gt, $ge

$eq, $ne

Defines a relational “expressions” on a value in
an XML element, XML attribute, or JSON
property.

modifier value

word

exists

$value

$word

$exists

A modifier on a value that defines how to
match that value: with a value query (the
default with no modifier), with a word query, or
with an existence test.

flag filtered

score

$filtered

$score

Flags are modifiers of search behavior.

Use the boolean filtered flag to control
whether the search is filtered or unfiltered
(default). For more details, see “How Indexing
Affects Your Query” on page 234.

Use the score flag to override the search result
scoring function. Allowed values: logtf, logt-
fidf, random, simple, zero. Default: logtfidf.
For details, see “Relevance Scores: Under-
standing and Customizing” on page 422.

options Use options to fine tune your search criteria and
results. For details, see “Adding Options to a
QBE” on page 235.

Component
Type

XML Local
Name

JSON Property
Name

Description
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 226

MarkLogic Server Searching Using Query By Example
5.5.3 Response Components

You can use the response portion of a QBE to customize the format of your search results. The
following table describes the components of a response. A response is optional, and can only
occur at the top level of a QBE, as a sibling of query.

Component Type Contains Contained By

query One or more criteria, composed que-
ries, and the filtered or score flags

qbe (XML)

root object (JSON)

criteria • Nothing (empty); or
• One value; or
• One word, (explicit) value, or

range query; or
• One or more criteria or composed

queries

query, composed query, criteria

composed query
(and, or, etc.)

One or more criteria, composed que-
ries, or word queries. Word queries
are only permitted when the com-
posed query is an immediate child of
query.

query, composed query, or criteria

range query
(lt, gt, etc.)

a value criteria

word or value
query

a value (string, number, date, time,
dateTime)

word: query, criteria, or composed
query

value: criteria; composed query
contained by a criteria

exists criteria

flag query
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 227

MarkLogic Server Searching Using Query By Example
A response can contain the following formatter components:

For details, see “Customizing Search Results” on page 240.

5.5.4 XML-Specific Considerations

This section covers structural and semantic details you should know when constructing a QBE in
XML.

• Managing Namespaces

• Querying Attributes

5.5.4.1 Managing Namespaces

Use the namespace http://marklogic.com/appservices/querybyexample for all pre-defined
element names in the QBE grammar, such as qbe, query, and word. This namespace distinguishes
the structural parts of the query from criteria elements that model your documents. You define this
namespace at the top level of your QBE. For example:

<q:qbe xmlns:q="http://marklogic.com/appservices/querybyexample">
...

</q:qbe>

Define namespaces required by your element criteria on the criteria or any enclosing element
container. You cannot bind the same namespace prefix to different namespaces within a QBE.

The following example demonstrates declaring user-defined namespaces on the root qbe element,
on a containing element, and on an element criteria.

<q:qbe xmlns:q="http://marklogic.com/appservices/querybyexample"
 xmlns:ns1="http://marklogic.com/example1">

XML Local
Name

JSON Property
Name

Description

snippet $snippet A snippet element controls what is returned for search
matches. You can specify elements to prefer if they have a
match and/or set a policy (default, document, none) for what
to show.

extract $extract An extract element supplements a snippet by listing XML
elements or JSON properties to extract from matching docu-
ments, whether or not a match occurs in the listed elements or
property.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 228

MarkLogic Server Searching Using Query By Example
 <q:query xmlns:ns2="http://marklogic.com/example2">
 <ns1:author xmlns="http://marklogic.com/example">

Mark Twain
</ns1:author>

 <ns2:edition format="paperback"/>
 <title xmlns="http://marklogic.com/example3">Tom Sawyer</title>
 </q:query>
</q:qbe>

5.5.4.2 Querying Attributes

To query an element attribute, create an element criteria that contains the attribute. The following
example represents a value query for the attribute edition/@format with a value of “paperback”.

<q:qbe xmlns:q="http://marklogic.com/appservices/querybyexample">
 <q:query>
 <edition format="paperback"/>
 </q:query>
</q:qbe>

The value of the attribute can be an implicit value query, as in the example above, or an explicit
value, word, or range query. To create a word, range, or explicit value query on an attribute, use
the following template for the attribute value, where keyword is a modifier (word or value) or
comparator (lt, gt, etc.).

$keyword value

For example, the following QBE represents a range query on the attribute edition/@price.

<q:qbe xmlns:q="http://marklogic.com/appservices/querybyexample">
 <q:query>
 <edition price="$lt 9.00"/>
 </q:query>
</q:qbe>

You cannot use the exists modifier in an attribute value.

Multiple attributes on an element criteria are AND’d together. For example, the following QBE
uses a range query on edition/@price and a word query on edition/@format paperback to find all
paperback editions with a price less than 9.00.

<q:qbe xmlns:q="http://marklogic.com/appservices/querybyexample">
 <q:query>
 <edition price="$lt 9.00" format="$word paperback" />

<q:filtered>true</q:filtered>
</q:query>

</q:qbe>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 229

MarkLogic Server Searching Using Query By Example
You cannot use range, word, or value query options such as exact, min-occurs, or score-function
on attribute criteria. If you need this level of control over an attribute query, use a structured query
instead of QBE. For details, see “Searching Using Structured Queries” on page 74.

5.5.5 JSON-Specific Considerations

This section covers structural and semantic details you should know when constructing a QBE in
JSON. The following topics are covered:

• Property Naming Convention

• Matching Array Items

• Searching Array and Object Containers

• Constructing a QBE with the Node.js QueryBuilder

5.5.5.1 Property Naming Convention

In JSON, all pre-defined JSON property names in the QBE grammar have a “$” prefix to
distinguish them from names that occur in your documents. For example, the property name for
the query part of a JSON QBE is $query.

If your documents include property names that start with “$”, the names in your content can
conflict with the pre-defined property names. In such a case, you must use a structured query
instead of QBE. For details, see “Searching Using Structured Queries” on page 74.

For a list of pre-defined property names, see “Query Components” on page 225 and “Response
Components” on page 227.

5.5.5.2 Matching Array Items

QBE does not distinguish between values contained in an array and values not contained in an
array. For example, the following query:

{ "$query": {"k": ["v"]} }

Matches both of the following documents:

{ "k": "v" }

{ "k": ["v"] }

Also, the query is exactly equivalent to the following query that does not use array syntax:

{ "$query": {"k": "v"} }

Consequently, you cannot use QBE to match a property whose value is exactly and only a
specified array value.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 230

MarkLogic Server Searching Using Query By Example
When you use array syntax and include multiple values, an AND relationship is implied between
the values. For example, the following two queries are equivalent:

{"$query":
{"k": ["v1", "v2"]}

}

{"$query": {
 "$and": [
 {"k": "v1"},
 {"k": "v2"}
]
}}

Both queries will match all of the following documents:

{ "k": ["v1", "v2"] }

{ "k": ["v1", "v2", "v3"] }

{ "c": [{"k": "v1"}, {"k": "v2"}] }

{"c": {"k": "v1", "c2": {"k": "v2"}}

5.5.5.3 Searching Array and Object Containers

The type of query represented by a criteria property that names a JSON property in your content
depends on the type of value in the property. If the value is an object or a composed query, then it
represents a container query. Otherwise, it is a value, word, or range query. You should
understand how container queries apply to searching JSON documents..

A criteria property expresses “Match a JSON property named k whose value meets these
conditions” if the value is a literal value, or a word, value, or range query. Such a criteria is not a
container query. The table below illustrates these forms.

Criteria Template Example Criteria Description

name : value { "price" : 8.99 } Match a property named
"price" whose value is 8.99

name : {
word-or-value : value

}

{ "title" : {
"$word" : "sawyer"

} }

Match a property named "title"
whose value includes "sawyer"

name : {
relational-op : value

}

{ "price" : {
"$lt" : 9

} }

Match a property named
"price" whose value is less than
9

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 231

MarkLogic Server Searching Using Query By Example
A criteria property in which the value is an object or a composed query is a container query. Such
a query says “Match a property named c that contains a value meeting these conditions anywhere
in its substructure.” The table below illustrtates these forms.

Since a container query always matches its sub-queries anywhere within the container
substructure, you cannot construct a JSON QBE that matches “a container with property name k
whose value is exactly and only this object”.

The table below provides example documents matched by a value query and several kinds of
container query. The matched document examples are not exhaustive. Each query is annotated
with a textual description of what the criteria asserts about matching documents. For more
examples, see “JSON Search Criteria Quick Reference” on page 220.

Criteria Template Example Criteria Description

name : object {"edition":
{"price" : 8.99 }

}

Match a JSON property named
"price" whose value is 8.99 and
that is contained somewhere
within a property named "edi-
tion". The value can occur as an
array item.

name : {
logical-op : [

sub-query+
]

}

{"edition" : {
"$or": [

{"format": "paperback"},
{"format": "hardback"}

]
} }

Match a JSON property named
"format" that is contained some-
where within a property named
"edition" and whose value is
"paperback" or "hardback". The
values can occur as array items.

QBE Matches

{"$query":
{ "k": "v" }

}

Property k has value "v"

{ "k": "v" }

{ "k": ["v"] }
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 232

MarkLogic Server Searching Using Query By Example
5.5.5.4 Constructing a QBE with the Node.js QueryBuilder

This topic describes how to use the information in this chapter in conjunction with the Node.js
Client API.

The Node.js Client API enables you to construct a QBE using the QueryBuilder.byExample
function. The parameters of byExample correspond to the criteria within the $query portion of a
raw QBE, expressed as a JavaScript object. For example, the table below shows a QBE example
from elsewhere in this chapter and the equivalent QueryBuilder.byExample call.

You can also supply the entire $query portion of a QBE to byExample as a JavaScript object. For
example:

qb.byExample(
{ $query: {

author: {$word: 'twain'},
$filtered: true

}
)

However, you cannot specify $response portions of a raw QBE through QueryBuilder.byExample.
Response customization is still available through QueryBuilder.extract and
QueryBuilder.snippet.

{"$query":
{"k": ["v1", "v2"]}

}

Property k has value "v1" and value "v2".

{ "k": ["v1", "v2"] }

{ "c": [{"k": "v1"}, {"k": "v2"}] }

{"c": {"k": "v1", "c2": {"k": "v2"}}

{"$query":
{"c": {"k": "v"}}

}

Property c contains a property k that has value
"v", where k can occur anywhere in c’s
substructure.

{ "c" : {"k" : "v" } }

{ "c" :
 {"c2": {"k": "v" }}
}

Raw QBE QueryBuilder.byExample

{"$query": {
"author": {"$word": "twain"},
"$filtered": true

}}

qb.byExample({
author: {$word: 'twain'},
$filtered: true

})

QBE Matches
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 233

MarkLogic Server Searching Using Query By Example
For details, see Querying Documents and Metadata in the Node.js Application Developer’s Guide.

5.6 How Indexing Affects Your Query

You do not have to define any indexes to use QBE. This allows you to get started with QBE
quickly. However, indexes can significantly improve the performance of your search.

Unless your database is small or your query produces only a small set of pre-filtering results, you
should define an index over any XML element, XML attribute, or JSON property used in a range
query. To configure an index, see Range Indexes and Lexicons in Administrator’s Guide.

If your QBE includes a range query, you must either have an index configured on the XML
element, XML attribute, or JSON property used in the range query, or you must use the filtered
flag to force a filtered search.

A filtered search uses available indexes, if any, but then checks whether or not each candidate
meets the query requirements. This makes a filtered search accurate, but much slower than an
unfiltered search. An unfiltered search relies solely on indexes to identify matches, which is much
faster, but can result in false positives. For details, see Fast Pagination and Unfiltered Searches in
Query Performance and Tuning Guide.

In the absence of a backing index, a range query cannot be used with unfiltered search. To enable
filtered search, set the filtered flag to true in the query portion of your QBE, as shown in the
following example:

Format Example

XML <q:qbe xmlns:q="http://marklogic.com/appservices/querybyexample">
 <q:query>
 <author><q:word>twain</q:word></author>

<q:filtered>true</q:filtered>
 </q:query>
</q:qbe>

JSON {
"$query": {

"author": {"$word": "twain"},
"$filtered": true

}
}

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 234

MarkLogic Server Searching Using Query By Example
5.7 Adding Options to a QBE

Options give you fine grained control over a QBE. Most options are associated with a value,
word, or range query.

• Specifying Options in XML

• Specifying Options in JSON

• Option List

• Using Persistent Query Options

5.7.1 Specifying Options in XML

In an XML QBE, an option is an attributes of the predefined QBE element it modifies, such
<q:lt/>, <q:word/> or <q:value>. The following query demonstrates use of the exact option on a
value query.

<q:qbe xmlns:q="http://marklogic.com/appservices/querybyexample">
 <q:query>
 <author><q:value exact="false">mark twain</q:value></author>
 </q:query>
</q:qbe>

You cannot apply options to queries on attributes because the range, word, or value query is
embedded in the attribute value. For example, you cannot add a case-sensitive option to the
following attribute word query:

<q:qbe xmlns:q="http://marklogic.com/appservices/querybyexample">
 <q:query>
 <edition @format="$word paperback"/></edition>
 </q:query>
</q:qbe>

If you need such control over an element attribute query, you should use a structured or combined
query.

5.7.2 Specifying Options in JSON

In a JSON QBE, an option is a sibling of the QBE object it modifies, such as a value, word, or
range query. Option names always have a “$” prefix.

The following example query uses the exact option to modify a value query by including it as a
JSON property at the same level as the $value object:

{
 "$query": {
 "author": {

"$exact": false,
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 235

MarkLogic Server Searching Using Query By Example
"$value": "mark twain"
}

 }
}

5.7.3 Option List

The following table describes the options available for use in a QBE. The MarkLogic Server
Search API supports additional options through other query formats, such as string or structured
query, and through the use of persistent query options. For details, see “Search Customization
Using Query Options” on page 381.

Option Attribute or
Property Name

Description

case-sensitive Whether or not to perform a case-sensitive match. Default: false if
the text to match is all lower case, true otherwise. Value type:
boolean. Usable with: word or value query. For details, see
cts:word-query or cts:value-query.

diacritic-sensitive Whether or not to perform a diacritic-sensitive match. Default:
Depends on context: false if the text to match contains no
diacritics, true otherwise. Value type: boolean. Usable with: word
or value query. For details, see cts:word-query or
cts:value-query.

punctation-sensitive Whether or not to perform a punctuation-sensitive match. Default:
depends on context: false if the text to match contains no
punctuation, true otherwise. Value type: boolean. Usable with:
word or value query. For details, see cts:word-query or
cts:value-query.

whitespace-sensitive Whether or not to perform a whitespace-sensitive match. Default:
false. Value type: boolean. Usable with: word or value query. For
details, see cts:word-query or cts:value-query.

stemmed Whether or not to use stemming. Default: Depends on context and
database configuration; for details, see cts:word-query. Value
type: boolean. Usable with: word or value query. For details, see
cts:word-query or cts:value-query.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 236

MarkLogic Server Searching Using Query By Example
exact Whether to perform an exact match or use the builtin
context-sensitive default behaviors for the *-sensitive options.
When true, exact is shorthand for case-sensitive, diacritic
sensitive, punctuation-sensitive, whitespace-sensitive, unstemmed,
and unwildcarded. Default: true for value and range query, false
for word query. Value type: boolean. Usable with: word or value
query.

score-function Use the selected scoring function. Allowed values: linear,
reciprocal. Usable with: range query. For details, see “Including a
Range or Geospatial Query in Scoring” on page 430.

slope-factor Apply the given number as a scaling factor to the slope of the
scoring function. Default: 1.0. Value type: double. Usable with:
range query. For details, see “Including a Range or Geospatial
Query in Scoring” on page 430.

min-occurs The minimum number of occurrences required. If there are fewer
occurrences, the fragment does not match. Default: 1. Value type:
integer. Usable with: range, word, or value query. For details, see
cts:word-query.

max-occurs The maximum number of occurrences required. If there are more
occurrences, the fragment does not match. Default: Unbounded.
Value type: integer. Usable with: range, word, or value query. For
details, see cts:word-query.

lang The language under which to interpret the content. The option
value is case-insensitive. Allowed values: An ISO 639 language
code. Default: The default language configured for the database.
Usable with: query; range, word, or value query. In XML it can
also appear on the qbe element. In JSON, it can appear as a top
level property.

weight A weight for this query. Higher weights move search results up in
the relevance order. Allowed values: less than or equal to 64 and
greater tha or equal to -16 (between -16 and 64). Default: 1.0.
Usable with: a word or value query, or a range query that is backed
by a range index. For details, see cts:word-query,
cts:value-query, or cts:element-range-query.

Option Attribute or
Property Name

Description
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 237

MarkLogic Server Searching Using Query By Example
5.7.4 Using Persistent Query Options

The REST and Java APIs enable you to install persistent query options on your REST instance
and apply them to subsequent searches. You can also use persistent query options with the Node.js
Client API, but the API has no facility for creating and maintaining the persistent options.

Using persistent query options with a QBE allows you to use options not supported directly by the
QBE grammar. Using persistent options with a QBE also allows you to define global options to
apply throughout your query, such as making all word queries case-sensitive instead of specifying
the case-sensitive option on each word query in your QBE.

Query options applied through through the constraint option override options specified inline on
a QBE.

You can apply persistent query options to a QBE using the constraint option. To use this option:

1. Install named, persistent query options following the directions appropriate for the API
you are using.

2. Specify the name of a constraint defined in the persistent options from Step 1 as the value
of a constraint option on a word, value, or range query in your QBE. See the example,
below.

3. When you execute a search with your QBE, associate the persistent query options from
Step 1 with your search in the manner prescribed by the client API (REST, Java, or
Node.js).

For details on defining, installing and using persistent query options, see Configuring Query Options
in REST Application Developer’s Guide or Query Options in Java Application Developer’s Guide.

constraint The name of a range, values, or word constraint specified for the
same XML element or JSON property in persisted query options
associated with the search. Usable with: range, word, or value
query. For details, see “Using Persistent Query Options” on
page 238.

@xsi:type (XML)
$datatype (JSON)

The xsi:type to which to cast the value supplied in a range query.
Default: Values are treated as xs:boolean, xs:double, xs:date,
xs:dateTime, or xs:time if castable as such, and as string
otherwise. Usable with: range query.

Option Attribute or
Property Name

Description
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 238

MarkLogic Server Searching Using Query By Example
The pre-defined constraint named by the constraint option should match the type of query to
which it is applied. That is, name a range constraint for a range query, a value constraint for a
value query, and a word constraint for a word query.

The following example pre-defines a word constraint called “w-t” that gives weight 2.0 to
matches in a title XML element or JSON property, and then applies it to a QBE that contains a
word query on title. This enables word queries on title a default weight that can be overridden
by omitting the constraint option.

If the folloiwng persistent query options are installed specified as a parameter to the search
performed with the QBE:

Then the following QBE applies the “w-t” option to a word query on title to give weight 2.0 to
matches in a title element.

XML Options JSON Options

<search:options
xmlns:search="http://marklogic.com/appservices/

search">
 <search:constraint name="w-t">
 <search:word>
 <search:element name="title" ns=""/>
 <search:weight>2.0</search:weight>
 </search:word>
 </search:constraint>
</search:options>

{"options": {
 "constraint": [{
 "name": "w-t",
 "word": {
 "json-property": "title",
 "weight": 2
 }
 }]
} }

XML JSON

<q:qbe
xmlns:q="http://marklogic.com/appservices/

querybyexample">
 <q:query>
 <title>

<q:word constraint="w-t">sawyer</q:word>
</title>

 </q:query>
</q:qbe>

{ "$query": {
 "title": {
 "$word": "sawyer",
 "$constraint": "w-t"
 }
} }
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 239

MarkLogic Server Searching Using Query By Example
5.8 Customizing Search Results

You can include a response XML element or JSON property to customize the contents of returned
search results. You can modify or supplement the default search results using the snippet and
extract formatters in the response section of a QBE.

This section covers the following topics:

• When to Include a Response in Your Query

• Using the snippet Formatter

• Using the extract Formatter

5.8.1 When to Include a Response in Your Query

Add an optional response section to a QBE to do one or more of the following:

• Return matching documents instead of snippets. (snippet)

• Return only information about the document and the match, such as database URI,
document format, and relevance score. (snippet)

• Specify XML elements or JSON properties to prefer when constructing snippets.
(snippet)

• Specify XML elements or JSON properties to extract from matching documents, whether
or not the match occurs within those elements or properties. (extract)

Advanced customization is available using result decorators, transforms, and persistent query
options. For details, see Customizing Search Results in REST Application Developer’s Guide or
Transforming Search Results in Java Application Developer’s Guide.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 240

MarkLogic Server Searching Using Query By Example
5.8.2 Using the snippet Formatter

Use snippet to control what, if anything, is included in the snippet portion of a search match and
to identify preferred XML elements or JSON properties to include a snippet. The default snippet
is a small text excerpt with the matching text tagged for highlighting. The following table contains
an excerpt of the snippet section of a search response generated with the default policy.

The snippet formatter has the following form:

The policy, preferred-element, and preferred-property are optional.

Format Default Snippet Example

XML <search:response ...>
<search:result ...>

<search:snippet>
<search:match

path="fn:doc("/books/sawyer.xml")/book">
<search:highlight>Mark Twain</search:highlight>

</search:match>
</search:snippet>

</search:result>
...

</searchresponse>

JSON {
 ...
 "results": [{
 ...
 "matches": [{

"path": "fn:doc(\"/books/sawyer.json\")/*:json/*:book/*:author",
"match-text": [{ "highlight": "Mark Twain" }]

 }]
 }],
 ...
}

XML JSON

<q:response>
<q:snippet>

<q:policy/>
preferred-element

</q:snippet>
</q:response>

{ "$response": {
"$snippet": {

policy: {},
preferred-property: {}

},
} }
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 241

MarkLogic Server Searching Using Query By Example
The snippeting policy controls whether or not snippets are included in the output and whether to
include a small text excerpt (default) or the entire document when snippets are enabled. Use one
of the following element or property names for policy.

The following example disables snippet generation by setting the snippet policy to none. In JSON,
specify an empty object value for the policy property.

You can also specify one or more XML element or JSON property names to be preferred when
generating snippets. For example, if you specify a preference for the title element or property,
and both title and author contain a match, the snippet is generated from the match in title. In
JSON, specify the preferred property with an empty object value.

XML JSON Description

default $default Include a small excerpt of the text around the matching terms, with
the matched text tagged for highlighting.

document $document Return the entire document.

none $none Do not include any snippets.

XML JSON

<q:response>
<q:snippet>

<q:none/>
</q:snippet>

</q:response>

{ "$response": {
"$snippet": {

"$none": {}
}

} }

XML JSON

<q:response>
<q:snippet>

<title/>
</q:snippet>

</q:response>

{ "$response": {
"$snippet": {

"title": {}
}

} }
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 242

MarkLogic Server Searching Using Query By Example
5.8.3 Using the extract Formatter

Use the extract formatter to specify additional XML elements or JSON properties to include in
the search output. If snippets are included, the extracted components supplement any snippet in a
match, rather than replacing it.

For example, the following response says to extract the title and author from a matching
document. The title and author need not contain the matching terms or values.

Extracted elements or properties go into the metadata section of the enclosing match. For an
example, see “Example: Search Customization” on page 244.

XML JSON

<q:response>
<q:extract>

<your-element/>
</q:extract>

</q:response>

{ "$response": {
"$extract": {

"your-property-name": {}
}

} }

XML JSON

<q:response>
<q:extract>

<title/>
<author/>

</q:extract>
</q:response>

{ "$response": {
"$extract": {

"title": {},
"author": {}

}
} }
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 243

MarkLogic Server Searching Using Query By Example
5.8.4 Example: Search Customization

The following QBE modifies the search results to exclude snippets and to extract the title XML
element or JSON property into the search result metadata section.

Format Example

XML <q:qbe xmlns:q="http://marklogic.com/appservices/querybyexample">
 <q:query>
 <author>Mark Twain</author>
 </q:query>
 <q:response>
 <q:extract><title/></q:extract>
 <q:snippet><q:none/></q:snippet>
 </q:response>
</q:qbe>

JSON {
 "$query": {
 "author": "Mark Twain"
 },
 "$response": {
 "$snippet": { "$none": {} },
 "$extract": { "title": {} }
 }
}

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 244

MarkLogic Server Searching Using Query By Example
The following table shows the default output and the modified output produced by the above
query.

5.9 Scoping a Search by Document Type

This section describes how the treatment of bare names in a QBE affects the type of documents
matched by the query.

Format Default Output Customized Output

XML <search:response
snippet-format="snippet"
total="1" start="1"
page-length="10"
...>

<search:result index="1"
uri="/books/sawyer.xml"
...>

 <search:snippet>
 <search:match ...>

<search:highlight>
Mark Twain

</search:highlight>
</search:match>

 </search:snippet>
 </search:result>

...
</search:response>

<search:response
snippet-format="empty-snippet"

total="1" start="1"
page-length="10"
..>

<search:result index="1"
uri="/books/sawyer.xml"
...>

 <search:snippet/>
 <search:metadata>
 <title>Tom Sawyer</title>
 </search:metadata>
 </search:result>

...
</search:response>

JSON {
 "snippet-format": "snippet",
 "total": 1,
 "start": 1,
 "page-length": 10,
 "results": [{

"index": 1,
"uri": "/books/sawyer.json",
"matches": [{

"path": ...,
"match-text": [{

"highlight": "Mark Twain"
}]

}]
}],
...

}

{
 "snippet-format":

"empty-snippet",
 "total": 1,
 "start": 1,
 "page-length": 10,
 "results": [{

"index": 1,
"uri": "/books/sawyer.json",
...,
"matches": [],
"metadata": [{

"title": "Tom Sawyer"
}]

}],
...

}

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 245

MarkLogic Server Searching Using Query By Example
A bare name in a JSON QBE is a JSON property name that does not include a “$” prefix. A bare
name in an XML QBE is an element name in no namespace.

By default, the interpretation of bare names matches your query format. That is, bare names in a
JSON QBE represent JSON property names in content, and bare names in an XML QBE
represent element names in content that are in no namespace. The net effect is that an XML QBE
only matches XML documents, and a JSON QBE only matches JSON documents by default.

Use the format option to override the default behavior, as shown in the following example:

5.10 Converting a QBE to a Combined Query

The primary use case for QBE is rapid prototyping of queries during development. For best
performance and access to the full set of Search API capabilities, you should eventually convert
your QBE to a combined query. A combined query is a lower level representation that combines a
structured query and query options.

The REST and Java APIs include an interface for generating a combined query from a QBE. For
details, see the following:

• Convert a QBE to a Combined Query in Java Application Developer’s Guide

• Generating a Combined Query from a QBE in REST Application Developer’s Guide

• “Searching Using Structured Queries” on page 74

5.11 Validating a QBE

You can set the validate flag to true to perform query validation before evaluating a QBE. When
validation is enabled, if you submit a QBE that contains errors, MarkLogic reports the errors and
does not perform the search. If your query does not contain errors, the search proceeds as usual.

Format Example

XML <q:qbe xmlns:q="http://marklogic.com/appservices/querybyexample">
<q:format>json</q:format>

 <q:query>...</q:query>
</q:qbe>

JSON {
"$format": "xml",
"$query": {...}

}

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 246

MarkLogic Server Searching Using Query By Example
Performing query validation on every search can be expensive, so you should not enable
validation in production. It is best used for debugging during development.

The following example is a QBE with validation enabled:

Format Example

XML <q:qbe xmlns:q="http://marklogic.com/appservices/querybyexample">
 <q:query>
 <author>Mark Twain</author>
 </q:query>
 <q:validate>true</q:validate>
</q:qbe>

JSON {
 "$query": {
 "author": "Mark Twain"
 },
 "$validate": true
}

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 247

MarkLogic Server Composing cts:query Expressions
6.0 Composing cts:query Expressions
288

Searches in MarkLogic Server use expressions that have a cts:query type. This chapter describes
how to create various types of cts:query expressions and how you can register some complex
expressions to improve performance of future queries that use the registered cts:query
expressions.

MarkLogic Server includes many Built-In XQuery functions to compose cts:query expressions.
The signatures and descriptions of the various APIs are described in the MarkLogic XQuery and
XSLT Function Reference.

This chapter includes the following sections:

• Understanding cts:query

• Creating a Query From Search Text With cts:parse

• Combining multiple cts:query Expressions

• Joining Documents and Properties with cts:properties-query or cts:document-fragment-query

• Registering cts:query Expressions to Speed Search Performance

• Adding Relevance Information to cts:query Expressions:

• Serializations of cts:query Constructors

• Example: Creating a cts:query Parser

6.1 Understanding cts:query

The second parameter for cts:search takes a parameter of cts:query type. The contents of the
cts:query expression determines the conditions in which a search will return a document or node.
This section describes cts:query and includes the following parts:

• cts:query Hierarchy

• Use to Narrow the Search

• Understanding cts:element-query

• Understanding cts:element-word-query

• Understanding Field Word and Value Query Constructors

• Understanding the Range Query Constructors

• Understanding the Reverse Query Constructor

• Understanding the Geospatial Query Constructors

• Specifying the Language in a cts:query
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 248

MarkLogic Server Composing cts:query Expressions
6.1.1 cts:query Hierarchy

The cts:query type forms a hierarchy, allowing you to construct complex cts:query expressions
by combining multiple expressions together. The hierarchy includes composable and
non-composable cts:query constructors.

A composable constructor is one that is used to combine multiple cts:query constructors together.
A leaf-level constructor is one that cannot be used to combine with other cts:query constructors
(although it can be combined using a composable constructor).
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 249

MarkLogic Server Composing cts:query Expressions
The following diagram shows the leaf-level cts:query constructors, which are not composable,
and the composable cts:query constructors, which you can use to combine both leaf-level and
other composable cts:query constructors. The diagram shows most of the available constructors,
but not necessarily all of them.

Equivalent constructors exist for Server-Side JavaScript. For example, the JavaScript built-in
cts.andQuery is equivalent to the XQuery built-in cts:and-query in the diagram above.

The remainder of this chapter goes into more detail on combining constructors.

cts:query Hierarchy

cts:word-query cts:element-word-query
cts:element-range-query

cts:and-query

cts:properties-query

cts:not-query

cts:element-query

cts:near-query

cts:element-value-query
cts:element-attribute-value-query

cts:directory-query
cts:collection-query
cts:document-query

cts:and-not-query

Composable Constructors

Leaf-Level (non-composable) Constructors

cts:element-attribute-range-query
cts:element-attribute-word-query

cts:reverse-query

cts:*-geospatial-query

cts:or-query

cts:document-fragment-query

cts:field-word-query
cts:field-value-query
cts:field-range-query

cts:not-in-query

cts:path-range-query
cts:json-property-range-query
cts:json-property-value-query
cts:json-property-word-query

cts:lsqt-query
cts:period-compare-query
cts:period-range-query

cts:triple-range-query
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 250

MarkLogic Server Composing cts:query Expressions
6.1.2 Use to Narrow the Search

The core search cts:query API is cts:word-query. The cts:word-query function returns true for
words or phrases that match its $text parameter, thus narrowing the search to fragments
containing terms that match the query. If needed, you can use other cts:query APIs to combine a
cts:word-query expression into a more complex expression. Similarly, you can use the other
leaf-level cts:query constructors to narrow the results of a search.

6.1.3 Understanding cts:element-query

The cts:element-query function searches through a specified element and all of its children. It is
used to narrow the field of search to the specified element hierarchy, exploiting the XML structure
in the data. Also, it is composable with other cts:element-query functions, allowing you to
specify complex hierarchical conditions in the cts:query expressions.

For example, the following search against a Shakespeare database returns the title of any play that
has SCENE elements that have SPEECH elements containing both the words “room” and
“castle”:

for $x in cts:search(fn:doc(),
 cts:element-query(xs:QName("SCENE"),
 cts:element-query(xs:QName("SPEECH"),
 cts:and-query(("room", "castle")))))
return
($x//TITLE)[1]

This query returns the first TITLE element of the play. The TITLE element is used for both play and
scene titles, and the first one in a play is the title of the play.

When you use cts:element-query and you have both the word positions and element word
positions indexes enabled in the Admin Interface, it will speed the performance of many queries
that have multiple term queries (for example, "the long sly fox") by eliminating some false
positive results.

6.1.4 Understanding cts:element-word-query

While cts:element-query searches through an element and all of its children,
cts:element-word-query searches only the immediate text node children of the specified element.
For example, consider the following XML structure:

<root>
<a>hello

goodbye
<a>

</root>

The following query returns false, because "goodbye" is not an immediate text node of the
element named a:
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 251

MarkLogic Server Composing cts:query Expressions
cts:element-word-query(xs:QName("a"), "goodbye")

6.1.5 Understanding Field Word and Value Query Constructors

The cts:field-word-query and cts:field-value-query constructors search in fields for either
words or values. A field value is defined as all of the text within a field, with a single space
between text that comes from different elements. For example, consider the following XML
structure:

<name>
<first>Raymond</first>
<middle>Clevie</middle>
<last>Carver</last>

</name>

If you want to normalize names in the form firstname lastname, then you can create a field on
this structure. The field might include the element name and exclude the element middle. The
value of this instance of the field would then be Raymond Carver, with a space between the text
from the two different element values from first and last. If your document contained other
name elements with the same structure, their values would be derived similarly. If the field is
named my-field, then a cts:field-value-query("my-field", "Raymond Carver") returns true for
documents containing this XML. Similarly, a cts:field-word-query("my-field", "Raymond

Carver") returns true.

For more information about fields, see Fields Database Settings in the Administrator’s Guide. For
information on lexicons on fields, see “Field Value Lexicons” on page 450.

6.1.6 Understanding the Range Query Constructors

The cts:element-range-query, cts:element-atribute-range-query, cts:path-range-query, and
cts:field-range-query constructors allow you to specify constraints on a value in a cts:query
expression. The range query constructors require a range index on the specified element or
attribute. For details on range queries, see “Using Range Queries in cts:query Expressions” on
page 459.

6.1.7 Understanding the Reverse Query Constructor

The cts:reverse-query constructor allows you to match queries stored in a database to nodes that
would match those queries. Reverse queries are used as the basis for alert applications. For
details, see “Creating Alerting Applications” on page 635.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 252

MarkLogic Server Composing cts:query Expressions
6.1.8 Understanding the Geospatial Query Constructors

The geospatial query constructors are used to constrain cts:query expressions on geospatial data.
Geospatial searches are used with documents that have been marked up with latitude and
longitude data, and can be used to answer queries like “show me all of the documents that
mention places within 100 miles of New York City.” For details on gesospatial searches, see
“Geospatial Search Applications” on page 476.

6.1.9 Specifying the Language in a cts:query

All leaf-level cts:query constructors are language-aware; you can either explicitly specify a
language value as an option, or it will default to the database default language. The language
option specifies the language in which the query is tokenized and, for stemmed searches, the
language of the content to be searched.

To specify the language option in a cts:query, use the lang=language_code option, where
language_code is the two or three character ISO 639-1 or ISO 639-2 language code
(http://www.loc.gov/standards/iso639-2/php/code_list.php). For example, the following query:

let $x :=
<root>
 <el xml:lang="en">hello</el>
 <el xml:lang="fr">hello</el>
</root>
return
$x//el[cts:contains(.,
 cts:word-query("hello", ("stemmed", "lang=fr")))]

returns only the French-language node:

<el xml:lang="fr">hello</el>

Depending on the language of the cts:query and on the language of the content, a string will
tokenize differently, which will affect the search results. For details on how languages and the
xml:lang attribute affect tokenization and searches, see “Language Support in MarkLogic Server”
on page 751.

6.2 Creating a Query From Search Text With cts:parse

This section describes how to create a cts:query from a simple search string using the cts:parse.
XQuery function or the cts.parse Server-Side JavaScript function. The following topics are
covered:

• String Query Overview

• Grammar Components and Operators

• Including Options and Weights in Query Text
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 253

http://www.loc.gov/standards/iso639-2/php/code_list.php

MarkLogic Server Composing cts:query Expressions
• Binding a Tag to a Reference, Field, or Query Generator

• Customizing Naked Term Handling With Bindings

6.2.1 String Query Overview

A string query is a plain text search string (“query text”) composed of terms, phrases, and
operators that can be easily composed by end users typing into an application search box. For
example, “cat AND dog” is a string query for finding documents that contain both the term “cat”
and the term “dog”.

You can use the cts:parse XQuery built-in function or the cts.parse Server-Side JavaScript
built-in function to convert such a string query into a cts:query (XQuery) or cts.query
(JavaScript). Use the resulting query in any interface that accepts a cts query, such as the
cts:search XQuery function, the cts.search JavaScript function, and several JSearch API
interfaces.

The following example uses cts:parse to match documents that contain the term “cat” and the
term “dog”.

The string query grammar supported by cts:parse and cts.parse enables users to compose
complex queries. Adjacent terms, phrases and sub-expressions are implicitly AND’d together.

The following are some examples of queries that work with cts:parse and cts.parse “out of the
box”:

• (cat OR dog) NEAR vet

at least one of the terms cat or dog within 10 terms (the default distance for
cts:near-query) of the word vet

Language Example

XQuery cts:search(fn:doc(), cts:parse("cat AND dog"))

JavaScript // with cts.search
cts.search(cts.parse('cat AND dog'))

// with JSearch
import * as jsearch from '/MarkLogic/jsearch.mjs';
jsearch.documents()

.where(cts.parse('cat AND dog'))

.result()
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 254

MarkLogic Server Composing cts:query Expressions
• dog NEAR/30 vet

the word dog within 30 terms of the word vet

• cat -dog

the word cat where there is no word dog

You can also bind a tag name to an index reference, lexicon reference, or field name. When such a
tag name appears in a query string, it parses to a word, value, or range query that is scoped to the
bound entity.

For example, binding the tag “color” to a cts:reference to a JSON property named bodyColor
enables users to create query text like the following:

• color:red

Match documents where the value of the bodyColor contains the word “red”

• color NE blue

Match documents where the value of bodyColor is not “blue”

Without the binding, the above examples are just word queries that include the term “color”. For
example, without a binding, “color NE blue” becomes a query for documents containing the
words “color”, “NE”, and “blue”.

You can also bind a tag name to a reference to a function that generates a query, giving you more
control over the interpretation. For example, you can use a query generator function to scope a
query to documents in a particular collection or directory.

For details, see “Binding a Tag to a Reference, Field, or Query Generator” on page 264.

6.2.2 Grammar Components and Operators

This section describes the components and operators you can use in query text passed to cts.parse.
Some operators are only available in search terms that involve tags bound to query generators
using the parse binding feature.

• Basic Components and Operators

• Operators Usable With Bound Tags

• Query Text Parsing Examples
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 255

MarkLogic Server Composing cts:query Expressions
6.2.2.1 Basic Components and Operators

The table below describes the basic components and operators recognized by the cts:parse
XQuery function and the cts.parse JavaScript function. If you define bindings, then additional
operators become available for query expressions using a bound tag; for details, see “Operators
Usable With Bound Tags” on page 258.

An empty query string (cts:parse("")) generates an empty cts:and-query that matches
everything.

Query Example Description

any adjacent terms dog
dog tail
"dog tail" cat mouse
dog (cat OR mouse)

Match one or more terms or query
expressions, as with a cts:and-query.
Adjacent terms and query expressions
are implicitly joined with AND. For
example, dog tail is the same as dog
AND tail.

"phrase" "dog tail"
"dog tail" "cat whisker"
dog "cat whisker"

Terms in double quotes are treated as a
phrase. Adjacent terms and phrases are
implicitly joined with AND. For
example, dog "cat whisker" matches
documents containing both the term
dog and the phrase cat whisker.
NOTE: You cannot use single quotes
in place of double quotes.

() (cat OR dog) zebra Parentheses indicate grouping. The
example matches documents
containing at least one of the terms cat
or dog as well as the term zebra.

-query -dog
-(dog OR cat)
cat -dog

A NOT operation, as with a
cts:not-query. For example, cat -dog
matches documents that contain the
term cat but that do not contain the
term dog.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 256

MarkLogic Server Composing cts:query Expressions
query1 AND query2 dog AND cat
(cat OR dog) AND zebra

Match two query expressions, as with a
cts:and-query. For example, dog AND
cat matches documents containing
both the term dog and the term cat. AND
is the default way to combine terms
and phrases, so the previous example is
equivalent to dog cat.

query1 OR query2 dog OR cat Match either of two queries, as with a
cts:or-query. The example matches
documents containing at least one of
either of terms cat or dog.

query1 NOT_IN query2 dog NOT_IN "dog house" Match one query when the match does
not overlap with another, as with
cts:not-in-query. The example
matches occurrences of dog when it is
not in the phrase dog house.

query1 NEAR query2 dog NEAR cat
(cat food) NEAR mouse

Find documents containing matches to
the queries on either side of the NEAR
operator when the matches occur
within 10 terms of each other, as with a
cts:near-query. For example, dog NEAR
cat matches documents containing dog
within 10 terms of cat.

query1 NEAR/N query2 dog NEAR/2 cat Find documents containing matches to
the queries on either side of the NEAR
operator when the matches occur
within N terms of each other, as with a
cts:near-query. The example matches
documents where the term dog occurs
within 2 terms of the term cat.

Query Example Description
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 257

MarkLogic Server Composing cts:query Expressions
6.2.2.2 Operators Usable With Bound Tags

When you bind a tag to an index, lexicon, field, or query generator, then you can use the tag name
in the ways shown in the following table. If you use these operators in a context in which the left
operand is not a tag name, then the “operator” is simply interpreted as another query term. That is,
“unbound LT value” is a cts:and-query of word queries on the words “unbound”, “LT”, and
“value”.

For more information on defining a binding, see “Binding a Tag to a Reference, Field, or Query
Generator” on page 264. For tags bound to geospatial indexes, see “Operators Usable with
Geospatial Queries” on page 260.

The sub-expressions enabled by these operators can be used in combination with the grammar
features described in “Basic Components and Operators” on page 256. You can also associate
options with sub-expressions that use tags; for details, see “Including Options and Weights in
Query Text” on page 262.

query1 BOOST query2 george BOOST washington Find documents that match query1.
Boost the relevance score of
documents that also match query2. The
example returns all matches for the
term “george”, with matches in
documents that also contain
“washington” having a higher
relevance score. For more details, see
cts:boost-query.

[opt,opt,...] cat[min-occurs=5]
cat AND[ordered] dog

Pass options or a weight to the cts
query generated for query. Options
after a word or phrase apply to the
word query on that word or phrase.
Options after the operator apply to the
query associated with the operator,
such as cts:and-query for AND. For
details, see “Including Options and
Weights in Query Text” on page 262.

Query Example Description
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 258

MarkLogic Server Composing cts:query Expressions
If you bind a tag to a geospatial index reference, the value you compare to the tag can be
geospatial point or region. Not all the operators listed below are sensible in a geospatial context.
For details, see “Binding to a Geospatial Index Reference” on page 269.

Query Example Description

tag:value color:red
decade:1980s
birthday:1999-12-31

Matches documents where value satisfies
a word query against the reference bound
to tag. For example, as with a
cts:element-word-query.

tag:(valueList) color:(red blue)
decade:(1980s 1990s)

Matches documents where at least one
value in valueList satisfies a word query
against the reference bound to tag. For
example, as with a
cts:element-word-query.

tag = value color = red
decade = 1980s
birthday = 1999-12-31

Matches documents where value satisfies
a value query against the reference bound
to tag. For example, as with a
cts:element-value-query.

tag = (valueList) color = (red blue)
decade = (1980s 1990s)

Matches documents where at least one
value in valueList satisfies a value query
against the reference bound to tag. For
example, as with a
cts:element-value-query.

tag EQ value color EQ red

decade EQ 1980s
birthday EQ 1999-12-31

Matches documents where value satisfies
a range query with the “=” operator
against the reference bound to tag. For
example, as with a
cts:element-range-query.

tag EQ (valueList) color EQ (red blue)
decade EQ (1980s 1990s)

Matches documents where at least one
value in valueList satisfies a range query
with the “=” operator against the
reference bound to tag. For example, as
with a cts:element-word-query.

tag NE value color NE red
birthday NE 1999-12-31

Matches documents where value satisfies
a range query with the “!=” operator
against the reference bound to tag. For
example, as with a
cts:element-range-query.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 259

MarkLogic Server Composing cts:query Expressions
6.2.2.3 Operators Usable with Geospatial Queries

When you bind a tag to a geospatial point or region index, then you can use the tag name with the
operators listed in this section. If you use these operators in a context in which the left operand is
not a tag name, then the “operator” is simply interpreted as another query term. That is, “unbound
EQ value” is a cts:and-query of word queries on the words “unbound”, “EQ”, and “value”.

For more information on defining a binding, see “Binding a Tag to a Reference, Field, or Query
Generator” on page 264.

The sub-expressions enabled by these operators can be used in combination with the grammar
features described in “Basic Components and Operators” on page 256. You can include options
with geospatial sub-expressions; for details, see “Including Options and Weights in Query Text”
on page 262.

tag LT value color LT red
birthday LT 1999-12-31

Matches documents where value satisfies
a range query with the “<” operator
against the reference bound to tag. For
example, as with a
cts:element-range-query.

tag LE value color LE red
birthday LE 1999-12-31

Matches documents where value satisfies
a range query with the “<=” operator
against the reference bound to tag. For
example, as with a
cts:element-range-query.

tag GT value color GT red
birthday GT 1999-12-31

Matches documents where value satisfies
a range query with the “>” operator
against the reference bound to tag. For
example, as with a
cts:element-range-query.

tag GE value color GE red
birthday GE 1999-12-31

Matches documents where value satisfies
a range query with the “>=” operator
against the reference bound to tag. For
example, as with a
cts:element-range-query.

query[opt,opt,...] color:(red,blue)[unstemmed]
price GT 5[min-occurs=2]

Pass options or a weight to the cts query
generated for query. For details, see
“Including Options and Weights in Query
Text” on page 262

Query Example Description
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 260

MarkLogic Server Composing cts:query Expressions
The value operand must be a geospatial point or region literal. For details, see “Binding to a
Geospatial Index Reference” on page 269.

You can use the following operators with tags bound to a geospatial point index, such as a
geospatial element child index or geospatial path index.

Tags bound to a geospatial region index can only be used with the DE9IM_* operators listed below.
These operators implement the DE9-IM semantics described in http://en.wikipedia.org/wiki/DE-9IM.
Expressions using these operators produce a cts:geospatial-region-query (XQuery) or
cts.geospatialRegionQuery (JavaScript).

Query Example Description

tag:value pt:"37.5128,-122.2581" Matches documents where value
satisfies a point query against the
geospatial point reference bound to tag.
For example, as with a
cts:element-geospatial-query.

tag = value pt = "37.5128,-122.2581"

tag EQ value pt EQ "37.5128,-122.2581"

[opt,opt,...] pt EQ "37,-122"[precision=float] Pass options or a weight to the
generated point query. For details, see
“Including Options and Weights in
Query Text” on page 262.

Query Description

tag DE9IM_CONTAINS value Matches regions in the bound index that contain the region
value. That is, regions where
geo:region-contains(indexedRegion,value) returns true.

tag DE9IM_COVERED_BY value If R1 is a region in the bound index and R2 is value, then R1 is
covered by R2 if every point of R1 is a point of R2, and the
interiors of R1 and R2 have at least one point in common.

tag DE9IM_COVERS value If R1 is a region in the bound index and R2 is value, R1 covers
R2 if R2 lies in R1. That is, no points of R2 lie in the exterior of
R1, or every point of R2 is a point of the interior or boundary of
R1.

tag DE9IM_CROSSES value If R1 is a region in the bound index and R2 is value, R1 crosses
R2 if their interiors intersect and the dimension of the
intersection is less than that of at least one of the regions.

tag DE9IM_DISJOINT value If R1 is a region in the bound index and R2 is value, R1 is
disjoint from R2 if the intersection of the two regions is empty.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 261

http://en.wikipedia.org/wiki/DE-9IM

MarkLogic Server Composing cts:query Expressions
As with point queries, pass options to a region query by putting the option list after the query. For
example, if the tag “region” is bound to a geospatial region index, then you can specify the units
option as follows:

region DE9IM_CONTAINS "@1 32,-122" [units=km]

6.2.3 Including Options and Weights in Query Text

Your query text can include query options or a weight that is passed through to the query
generated by cts:parse. This is an advanced feature that you would not typically expose directly
to end users. To use this feature, put the options or weight in brackets after query term or operator.
The position depends on the type of query.

Place the option list adjacent to a word or phrase sub-expression or a sub-expression that uses a
bound tag. For example:

cat[min-occurs=2]
tag LT value [min-occurs=2]
tag DE9IM_OVERLAPS [1, 10, 5, 20] [units=km]

Place the options adjacent to the operator when the operator is one of the operators listed in
“Basic Components and Operators” on page 256 (AND, OR, NEAR, etc.). For example:

cat AND[ordered] dog

To specify a weight, use “weight=N”. For example:

tag LT value [weight=2.0]

tag DE9IM_EQUALS value If R1 is a region in the bound index and R2 is value, R1 equals
R2 if every point of R1 is a point of R2, and every point of R2 is
a point of R1. That is, the regions are topologically equal.

tag DE9IM_INTERSECTS value If R1 is a region in the bound index and R2 is value, R1
intersect R2 if geo:region-intersects(R1,R2) returns true.

tag DE9IM_OVERLAPS value If R1 is a region in the bound index and R2 is value, then R1
overlaps R2 if R1 intersects R2, exclusive of boundaries, and
neither region contains the other.

tag DE9IM_TOUCHES value If R1 is a region in the bound index and R2 is value, R1 touches
R2 if they have a boundary point in common but no interior
points in common.

tag DE9IM_WITHIN value If R1 is a region in the bound index and R2 is value, then R1 is
within R2 if R2 contains R1.

Query Description
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 262

MarkLogic Server Composing cts:query Expressions
The following table provides additional examples of passing options and weights in query text.
Assume that the query terms “cat” and “dogs” are simple words, and the query terms “price”,
“pt”, and “region” are tags bound to an index, field, or lexicon reference.

Query Text Generated Query

cat cts:word-query("cat", ("lang=en"), 1)

cat[case-sensitive] cts:word-query(
"cat", ("case-sensitive","lang=en"), 1)

chat[stemmed,lang=fr] cts:word-query("chat", ("stemmed","lang=fr"), 1)

cat AND dog cts:and-query(
(cts:word-query("cat", ("lang=en"), 1),
cts:word-query("dog", ("lang=en"), 1)

),("unordered"))

cat[min-occurs=3] AND
dog[weight=2]

cts:and-query(
(cts:word-query("cat",

("lang=en","min-occurs=3"), 1),
cts:word-query("dog", ("lang=en"), 2)

),("unordered"))

cat[min-occurs=3]
AND[ordered]

perro[lang=es]

cts:and-query((
cts:word-query("cat",
("min-occurs=3","lang=en"), 1),

cts:word-query("perro", ("lang=es"), 1)
), ("ordered"))

price GT 5 [min-occurs=2] cts:json-property-range-query(
"price", ">", xs:int("5"), (
"min-occurs=2"), 1)

price EQ 5 [min-occurs=2]
AND[ordered]

perro[lang=es]

cts:and-query((
cts:json-property-range-query(

"price", ">", xs:int("5"),
("min-occurs=2"), 1),

cts:word-query("perro", ("lang=es"), 1)
), ("ordered"))

pt:"@1 37,-122"[units=km] cts:element-child-geospatial-query(
fn:QName(...), fn:QName(...),
cts:point("37,-122"),
("coordinate-system=wgs84","units=km"), 1)

region
DE9IM_CONTAINS

"@1 32,-122" [units=km]

cts:geospatial-region-query((
cts:geospatial-region-path-reference(

"/envelope/cts-region",(
"coordinate-system=wgs84"))),

"contains", cts:circle("@1 32,-122"),
("units=km"), 1)
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 263

MarkLogic Server Composing cts:query Expressions
6.2.4 Binding a Tag to a Reference, Field, or Query Generator

This topic describes how to define parse bindings that enable the use of specially scoped
relational and comparison operators in query text passed to the cts:parse XQuery function or
cts.parse Server-Side JavaScript function. You can create bindings to XML elements, XML
element attributes, JSON properties, fields, and paths, as well as to custom parsing functions.

The following topics are covered:

• Binding Overview

• Binding to a cts:reference

• Binding to a Field by Simple Name

• Binding to a Geospatial Index Reference

• Binding to an XQuery Query Generator Function

• Binding to a JavaScript Query Generator Function

6.2.4.1 Binding Overview

The cts:parse XQuery function and the cts.parse JavaScript function accept an optional 2nd
parameter that is a set of bindings between a tag and a content reference, field name, or a query
generator function. When you use the tag in query text, cts:parse (cts.parse) uses the binding to
generate a query based on the bound reference, field, or function.

In XQuery, bindings are represented by a map with the tag names as the keys. In JavaScript, the
bindings are represented by a JavaScript object with the tag names as the object property names.
For example, the following code snippet binds the tag “by” to an XML element/JSON property
named “author”:

Language Example

XQuery let $bindings := map:map()
let $_ := map:put(

$bindings,
"by", cts:element-reference(xs:QName("author"))

JavaScript const bindings =
{ by: cts.jsonPropertyReference('author') };
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 264

MarkLogic Server Composing cts:query Expressions
Given the above binding, you can use “by” in query text to represent the value of the “author”
element or property. For example, the following query text parses to a cts:element-word-query
(or cts.jsonPropertyWordQuery) for the phrase “mark twain” in the “author” XML element or
JSON property.

by:"mark twain"

Note: The example above uses an element reference in XQuery and a JSON property
reference in JavaScript, but your choice of query language does not limit you to a
particular reference type. For example, you can create a binding with
cts:json-property-reference in XQuery and with cts.elementReference in
JavaScript.

You can examine the serialized output produced by the parse in Query Console to observe the
results of using a bound tag in query text. For example, passing the above query text and bindings
to cts:parse yields the results shown below:

You get this result because the “:” operator signifies comparison as per a word query, and the
binding dictates the word query is scoped to a specific JSON property. Thus, the combination of
the operator and the bound reference determines the generated query. For details, see “Binding to
a cts:reference” on page 266.

Language Example

XQuery xquery version "1.0-ml";
let $bindings := map:map()
let $_ := map:put(
 $bindings,
 "by", cts:element-reference(xs:QName("author")))
return cts:parse('by:"mark twain"', $bindings)

(: emits
: cts:element-word-query(fn:QName("","author"), "mark twain")
:)

JavaScript const bindings =
{ by: cts.jsonPropertyReference('author') };

cts.parse('by:"mark twain"', bindings)

// emits
// cts.jsonPropertyWordQuery("author", "mark twain")
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 265

MarkLogic Server Composing cts:query Expressions
The “:”, “=”, and “EQ” operators also accept a grouping of values, which is handled like an OR.
For example, the following query matches documents where the “author” JSON property contains
either the word “twain” or the word “frost”:

by:(twain frost)

If you define a binding with an empty string as the tag, the binding applies to unqualified terms
like “cat”. For details, see “Customizing Naked Term Handling With Bindings” on page 274.

Binding to a simple string is similar, but the bound entity in that case is a field. For details, see
“Binding to a Field by Simple Name” on page 268.

For a complete mapping of reference type and operator to query type, refer to the reference
documentation for cts:parse in the MarkLogic XQuery and XSLT Function Reference or
cts.parse in the MarkLogic Server-Side JavaScript Function Reference.

If the default query mapping does not satisfy the requirements of your application, you can bind a
tag to a query generator function instead. Binding a tag to a function that generates a cts query
gives you more control over the interpretation of a query sub-expression and enables using the
following operators in query text: “:”, “=”, “LT”, “LE”, “GT”, “GE”, “EQ”, “NE”.

The bound function is expected to generate a cts:query (or cts.query) from the operator and
operands. For example, you could cause the query text 'by:"mark twain"' to match “mark twain”
in the author property only when the phrase occurs in documents in a specific collection. For
details, see “Binding to an XQuery Query Generator Function” on page 271 or “Binding to a
JavaScript Query Generator Function” on page 272.

Note: Function binding is designed to enable you to override the default query selection
when a tag is bound to a reference or simple string. It is not a general purpose
grammar extender. For example, you cannot define a new operators or change the
number of operands expected by an operator.

6.2.4.2 Binding to a cts:reference

You can bind a tag to a cts:reference by using any cts:reference constructor. This enables you to
bind a tag to an XML element or element attribute, JSON property, field, or path. Query
expressions using the tag can parse to a word query, value query, or range query, depending on the
operator context.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 266

MarkLogic Server Composing cts:query Expressions
For example, the following code binds the tag “cost” to an XML element or JSON property
named “price”, then uses the “cost” tag in the query expression “cost LT 15”. The use of the tag
with the “LT” operator causes the expression to parse to a range query, so the database
configuration should include a range index on “price” with type “float”.

If you use the binding in a different operator context, the parser generates a different kind of
query. For example, the “:” operator generates a word query in most cases, so the query text
“cost:15” parses to a cts:element-word-query or cts.jsonPropertyWordQuery, similar to the
following:

cts:element-word-query(fn:QName("","price"), "15", ("lang=en"), 1)

cts.jsonPropertyWordQuery("price", "15", ["lang=en"], 1)

If you bind a tag to a geospatial index reference, the “:” operator generates a geospatial query. For
details, see “Binding to a Geospatial Index Reference” on page 269.

For a complete list of the types of query generated by each operator, refer to cts:parse in the
MarkLogic XQuery and XSLT Function Reference or cts.parse in the MarkLogic Server-Side
JavaScript Function Reference.

Language Example

XQuery xquery version "1.0-ml";
let $bindings := map:map()
let $_ := map:put(
 $bindings,
 "cost", cts:element-reference(xs:QName("price")))
return cts:parse('cost LT 15', $bindings)

(: cts:element-range-query(
fn:QName("","price"), "<", xs:float("15"), (), 1)

:)

JavaScript const bindings =
{ by: cts.jsonPropertyReference('price') };

cts.parse('cost LT 15', bindings)

// cts.jsonPropertyRangeQuery(
// "price", "<", xs.float("15"), [], 1)
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 267

MarkLogic Server Composing cts:query Expressions
By default, the parser checks for the existence of a backing index or lexicon for each cts reference
when it processes your bindings. Though it is usually beneficial to have a backing index for a
binding, you can suppress the check if you want to defer index creation or know you will never
use the binding in a search context that actually requires an index. For example, range queries
always require an index, but a word query does not necessarily require one. If you use an
unchecked binding to create a query that requires an index, you will still get an error when you
use the query in a search.

To suppress the parse time index check, add the “unchecked” and “type” options when creating
the reference. The “type” option is required because the parser can no longer derive this
information from the index definition. The following example illustrates the parse time check vs.
the search time check:

6.2.4.3 Binding to a Field by Simple Name

You can bind to a field by name or by cts:reference. This section describes how to bind to field by
name. To use a reference constructor, instead, see “Binding to a cts:reference” on page 266.

Language Example

XQuery (: parse time XDMP-ELEMRIDXNOTFOUND if no range index exists:)
xquery version "1.0-ml";
let $bindings := map:map()
let $_ := map:put(
 $bindings,
 "cost", cts:element-reference(xs:QName("price")))
return cts:parse('cost LT 15', $bindings);

(: search time XDMP-ELEMRIDXNOTFOUND :)
xquery version "1.0-ml";
let $bindings := map:map()
let $_ := map:put(
 $bindings, "cost", cts:element-reference(xs:QName("price"),

("type=float","unchecked")))
return cts:search(cts:parse('cost LT 15', $bindings))

JavaScript // parse time XDMP-ELEMRIDXNOTFOUND if no range index exists
cts.parse('cost LT 15', {p: cts.jsonPropertyReference('price')})

// Suppress the parse time index check
const query = cts.parse('cost LT 15',

{cost: cts.jsonPropertyReference(
'price',['type=float','unchecked'])})

// But will still get search time error if no range index found
cts.search(query) // XDMP-ELEMRIDXNOTFOUND
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 268

MarkLogic Server Composing cts:query Expressions
When you bind a tag to a simple string, the string is interpreted as the name of a field. The
database configuration should include a corresponding field definition. You can bind to any type
of field, including metadata fields.

For example, the following binds the tag “name” to a field named “person”:

When you use the bound tag, it will parse to a cts:field-word-query, cts:field-value-query, or
cts:field-range-query, depending on the operator context. If you use the tag name in a context
that parses to a range query, you will get an error if the database configuration does not include a
corresponding field range index.

To learn more about fields, see Fields Database Settings in the Administrator’s Guide.

For a complete list of the kinds of query generated by the supported (cts:reference, operator)
pairs, refer to cts:parse in the MarkLogic XQuery and XSLT Function Reference or cts.parse in the
MarkLogic Server-Side JavaScript Function Reference.

6.2.4.4 Binding to a Geospatial Index Reference

If you bind a tag (or naked terms) to a cts:reference to a geospatial index, you can construct
query terms that represent a geospatial point or region query. For example you can match
documents containing a point within a region defined in the query text, or documents containing a
region that intersects a region defined in the query text.

For example, if you bind the tag “loc” to a geospatial point index, then the following query text
matches documents containing a point within a circle defined by a radius and a center point, using
the syntax “@radius lon,lat”:

loc:"@5 37.5,-122.4"

Language Example

XQuery xquery version "1.0-ml";
let $bindings := map:map()
let $_ := map:put(
 $bindings,
 "name", "person")
return cts:parse('name:"jane doe"', $bindings)

(: cts:field-word-query("name", "jane doe", ("lang=en"), 1) :)

JavaScript const bindings = { name: 'person' };
cts.parse('name:"jane doe"', bindings)

// cts.fieldWordQuery("name", "jane doe", ["lang=en"], 1)
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 269

MarkLogic Server Composing cts:query Expressions
The following code demonstrates how to define the binding and parse the above query text. In this
example, the tag “loc” is bound to a geospatial point index on an XML element or JSON property
named “incidents”. The resulting query matches documents containing points in the “incidents”
element or property contained within the circle with center (37.5,-122.4) and a radius of 5 miles.

You can bind a tag to any of the index types described in “Understanding Geospatial Query and
Index Types” on page 493. Parsing an expression that uses such a tag creates a query of the
corresponding type. For example, a tag bound to a geospatial element reference produces an
element geospatial query, and a tag bound to a geospatial region path reference produces a
geospatial region query.

Use the “:”, “EQ”, and “=” operators with tags bound to a geospatial point index. Use the DE9IM_*
operators with tags bound to a geospatial region index. For details, see “Operators Usable with
Geospatial Queries” on page 260. For example:

mypoint:"@1 -122.2465038,37.5073428"

myregion DE9IM_OVERLAPS "@1 -122.2465038,37.5073428"

Language Example

XQuery xquery version "1.0-ml";
let $bindings := map:map()
let $_ := map:put(
 $bindings,
 "loc", cts:geospatial-element-reference(xs:QName("incidents")))
return cts:parse('loc:"@5 37.5,-122.4"', $bindings)

(: cts:element-geospatial-query(
: fn:QName("","incidents"),
: cts:circle("@5 37.5,-122.4"),
: ("coordinate-system=wgs84"), 1)
:)

JavaScript cts.parse('loc:"@5 37.5,-122.4"',
{ loc: cts.geospatialJsonPropertyReference('incidents') })

// cts.jsonPropertyGeospatialQuery(
// "incidents",
// cts.circle("@5 37.5,-122.4"),
// ["coordinate-system=wgs84"], 1)
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 270

MarkLogic Server Composing cts:query Expressions
The right operand of a geospatial query expression must be a geospatial literal. You can specify a
point, circle, box, or polygon using the shorthand shown below, or you can specify any supported
region type using WKT. The shorthand is equivalent to the serialization of cts:point, cts:circle,
cts:box, and cts:polygon in XQuery; and of cts.point, cts.circle, cts.box, and cts.polygon in
JavaScript. For details, see the corresponding region constructors and “Constructing Geospatial
Point and Region Values” on page 567.

Note: Geospatial point and region literals such as the point “37,-122” must be enclosed
in double quotes. You cannot substitute single quotes for the double quotes.

For more details, see “Constructing Geospatial Point and Region Values” on page 567 and
“Converting To and From Common Geospatial Representations” on page 562.

6.2.4.5 Binding to an XQuery Query Generator Function

A query generator function should implement the following interface:

function (
$operator as xs:string,
$values as xs:string*,
$options as xs:string*

) as cts:query?

If your function does not return a value, the query sub-expression is interpreted as text.

The following example adds a cts:collection-query to the search, corresponding to each term in
the query text that is qualified by the tag name “cat” (as in “category”). If an unsupported
category name is supplied, an error is thrown. If the operator is not “:” or “EQ”, no value is
returned.

xquery version "1.0-ml";

(: The query generator :)
declare function local:scope-to-coll(
 $operator as xs:string,
 $values as xs:string*,

Geospatial
Entity

Literal Syntax Example

point lat,lon tag:"37.5, -122.4"

circle @radius lat,lon tag:"@5 37.5,-122.4"

box [sbound, wbound, nbound, ebound] tag:"[45, -122, 78, 30]"

polygon lat1,lon1 lat2,lon2 ...latN,lonN tag:"100,0 101,0 101,1 100,1 100,0"
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 271

MarkLogic Server Composing cts:query Expressions
 $options as xs:string*)
as cts:query?
{
 if ($operator = (":", "EQ")) then
 let $known := ("classics", "fiction", "poetry")
 return cts:collection-query(
 for $c in ($values)
 return
 if ($c = $known)
 then $c
 else fn:error(

xs:QName("ERROR"),
fn:concat("Unrecognized category: ", $c))

)
 else () (: unsupported operator :)
};

(: how to use it :)
let $bindings := map:map()
let $_ := map:put($bindings, "cat", local:scope-to-coll#3)
return cts:parse('cat EQ classics california', $bindings)
(: matchs docs in the "classics" collection that contain califorina :)

This query generator function produces the following results:

6.2.4.6 Binding to a JavaScript Query Generator Function

A query generator function should implement the following interface:

function (operator, values, options)

Where operator is a string containing the operator token, and values and options are either a
single value or a (possibly empty) Sequence.

Query Text Result

cat:classics

cat EQ classics

cts:collection-query("classics")

cat:unrecognized None - function reports an error

cat LT anything (: interpreted as text :)
cts:and-query((

(cts:word-query("cat", ("lang=en"), 1),
cts:word-query("LT", ("lang=en"), 1),
cts:word-query("anything", ("lang=en"), 1)

),("unordered"))
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 272

MarkLogic Server Composing cts:query Expressions
Your function can return a cts.query, return nothing, or throw an error by calling fn.error. If you
return nothing, the sub-expression is interpreted as text.

The following example adds a cts.collectionQuery to the search, corresponding to each term in
the query text that is qualified by the tag name “cat” (as in “category”). If an unsupported
category name is supplied, an error is thrown. If the operator is not “:” or “EQ”, no value is
returned.

function scopeToColl(operator, category, options) {
 if (operator === ':' || operator === 'EQ') {
 // normalize input, which can be one val or an iterator
 const categories =
 (category instanceof Sequence)

? category.toArray() : [category];
const known = ['classics', 'fiction', 'poetry']

 const collections = [];
 categories.forEach(function (c) {
 if (known.indexOf(c) != -1) {
 collections.push(c);
 } else {
 fn.error('ERROR', 'Unrecognized category: ' + c);
 }
 });
 return cts.collectionQuery(collections);
 }
 // else, unsupported operator, so return nothing
};

const bindings = { cat: scopeToColl };
cts.parse('cat:(classics poetry) california', bindings)

This query generator function produces the following results:

Query Text Result

cat:classics

cat EQ classics

cts.collectionQuery('classics')

cat:unrecognized None - function reports an error

cat LT anything // Function returns nothing, phrase interpreted as text
// by cts.parse
cts.andQuery(

[cts.wordQuery("cat", ["lang=en"], 1),
cts.wordQuery("LT", ["lang=en"], 1),
cts.wordQuery("anything", ["lang=en"], 1)],

["unordered"])
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 273

MarkLogic Server Composing cts:query Expressions
The values in the second parameter may be strings or numbers. If a term in the query text can be
represented as a number, then your function receives it as a number. Otherwise, the term is a
string.

The following table illustrates how several variations on query text are interpreted and passed as
input to your query generator:

6.2.5 Customizing Naked Term Handling With Bindings

You can use bindings to control the interpretation of terms in query text that are not qualified by a
tag (naked terms). For example, in query text such as “cat AND dog”, “cat” and “dog” are naked
terms. The default interpretation of this query text is a query that matches the terms “cat” and
“dog” anywhere they appear, similar to the following

cts:and-query((cts:word-query('cat'), cts:word-query('dog')))

If you create a binding with the empty string as the tag, you can customize the handling of terms
that have no tag qualifier in the same way you can customize the interpretation of a defined tag.
For example, you can configure the parser to scope the terms “cat” and “dog” to a particular XML
element or JSON property.

You can bind naked terms to a content reference, field name, or a query generator function, just as
when using a tag.

Query Text Function Parameter Values

tag LT value operator: 'LT'
values: value
options: an empty Sequence

tag = (val1 val2) operator: '='
values: Sequence over val1 and val2
options: an empty Sequence

tag:42 operator: ':'
values: 42 as a number
options: an empty Sequence

tag:true operator: ':'
values: 'true' (string, not boolean)
options: an empty Sequence

tag:value[opt] operator: ':'
values: value
options: 'opt'

tag LT value[opt1,opt2=42] operator: 'NE'
values: value
options: a Sequence over 'opt1' and 'opt2=42'
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 274

MarkLogic Server Composing cts:query Expressions
The following examples constrain naked terms to occurrences in an XML element/JSON property
named “title”.

For more details on using bindings, see “Binding a Tag to a Reference, Field, or Query Generator”
on page 264.

6.2.6 Query Text Parsing Examples

This section illustrates the output from the cts:parse XQuery function or cts.parse JavaScript
function various inputs. For examples of queries that include option values, see “Including
Options and Weights in Query Text” on page 262.

Language Example

XQuery xquery version "1.0-ml";
let $bindings := map:map()
let $_ := map:put($bindings, "",

cts:element-reference(xs:QName("title")))
return cts:parse('cat AND dog', $bindings)

(:
cts:and-query((
cts:element-word-query(fn:QName("","title"),"cat",("lang=en"),1),
cts:element-word-query(fn:QName("","title"),"dog",("lang=en"), 1)),

("unordered"))
:)

JavaScript cts.parse(
'cat AND dog',
{'': cts.jsonPropertyReference('title')}

)

// cts.andQuery([
// cts.jsonPropertyWordQuery("title", "cat", ["lang=en"], 1),
// cts.jsonPropertyWordQuery("title", "dog", ["lang=en"], 1)
//],
// ["unordered"])
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 275

MarkLogic Server Composing cts:query Expressions
You can use a query similar to the following in Query Console to explore the parser output on
your own. The bindings are only needed for the examples that use the “color” or “loc” tag. To
parse some of the query text that uses the bound tags, you need to define an element range index
on the “body-color” XML element or “bodyColor” JSON property, and a geospatial element
ranage index on an XML element or JSON property named “incidents”.

The following table contains examples of input query text and the result returned by the parser.

Query
Language

Query Template

XML xquery version "1.0-ml";
let $bindings := map:map()
let $_ :=

map:put($bindings,
 "color", cts:element-reference(xs:QName("body-color")))
return cts:parse(queryText, $bindings)

JavaScript cts.parse(queryText,
{ color: cts.jsonPropertyReference('bodyColor') })

Query Text
cts:parse Output

(XQuery)
cts.parse Output

(JavaScript)

cat cts:word-query(
"cat", ("lang=en"), 1)

cts.wordQuery(
"cat", ["lang=en"], 1)

cat dog

cat AND dog

cts:and-query((
cts:word-query(

"cat", ("lang=en"), 1),
cts:word-query(

"dog", ("lang=en"), 1)
), ("unordered"))

cts.andQuery([
cts.wordQuery(

"cat", ["lang=en"], 1),
cts.wordQuery(

"dog", ["lang=en"], 1)
], ["unordered"])

cat dog OR mouse cts:or-query((
cts:and-query((

cts:word-query(
"cat",("lang=en"),1),

cts:word-query(
"dog",("lang=en"), 1)

), ("unordered")),
cts:word-query(

"mouse",("lang=en"),1)
), ())

cts.orQuery([
cts.andQuery([

cts.wordQuery(
"cat",["lang=en"],1),

cts.wordQuery(
"dog", ["lang=en"],1)

], ["unordered"]),
cts.wordQuery(

"mouse", ["lang=en"],1)
], [])
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 276

MarkLogic Server Composing cts:query Expressions
cat (dog OR
mouse)

cts:and-query((
cts:word-query(

"cat", ("lang=en"), 1),
cts:or-query((

cts:word-query(
"dog",("lang=en"),1),

cts:word-query(
"mouse",("lang=en"),
1)

), ())
), ("unordered"))

cts.andQuery([
cts.wordQuery(

"cat", ["lang=en"], 1),
cts.orQuery([

cts.wordQuery(
"dog",["lang=en"],1),

cts.wordQuery(
"mouse",["lang=en"],1)

], [])
], ["unordered"])

cat -dog cts:and-query((
cts:word-query(

"cat", ("lang=en"), 1),
cts:not-query(

cts:word-query(
"dog", ("lang=en"),
1),

1)
), ("unordered"))

cts.andQuery([
cts.wordQuery(

"cat", ["lang=en"], 1),
cts.notQuery(

cts.wordQuery(
"dog", ["lang=en"],1),

1)
], ["unordered"])

color:red cts:element-word-query(
fn:QName("","body-color"),
"red", ("lang=en"), 1)

cts.jsonPropertyWordQuery(
"bodyColor", "red",
["lang=en"], 1)

color = red cts:element-value-query(
fn:QName("","body-color"),
"red", ("lang=en"), 1)

cts.jsonPropertyValueQuery(
"bodyColor", "red",
["lang=en"], 1)

color EQ red cts:element-range-query(
fn:QName("","body-color"),
"=", "red",
("collation=..."), 1)

cts.jsonPropertyRangeQuery(
"bodyColor", "=", "red",
["collation=..."], 1)

color:(red blue) cts:element-word-query(
fn:QName("","body-color"),
("red", "blue"),
("lang=en"), 1)

Matches if body-color contains
either red or blue.

cts.jsonPropertyWordQuery(
"color", ["red", "blue"],
["lang=en"], 1)

Matches if bodyColor contains
either red or blue.

Query Text
cts:parse Output

(XQuery)
cts.parse Output

(JavaScript)
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 277

MarkLogic Server Composing cts:query Expressions
6.3 Combining multiple cts:query Expressions

Because cts:query expressions are composable, you can combine multiple expressions to form a
single expression. There is no limit to how complex you can make a cts:query expressions. Any
API that has a return type of cts:* (for example, cts:query, cts:and-query, and so on) can be
composed with another cts:query expression to form another expression. This section has the
following parts:

• Using cts:and-query and cts:or-query

• Proximity Queries using cts:near-query

• Using Bounded cts:query Expressions

• Matching Nothing and Matching Everything

6.3.1 Using cts:and-query and cts:or-query

You can construct arbitrarily complex boolean logic by combining cts:and-query and
cts:or-query constructors in a single cts:query expression.

For example, the following search with a relatively simple nested cts:query expression will
return all fragments that contain either the word alfa or the word maserati, and also contain either
the word saab or the word volvo.

cts:search(fn:doc(),
cts:and-query((cts:or-query(("alfa", "maserati")),

cts:or-query(("saab", "volvo"))
))

)

Additionally, you can use cts:and-not-query and cts:not-query to add negation to your boolean
logic.

loc:"100.0,1.0" cts:element-geospatial-query(
fn:QName("","incidents"),
cts:point("100,1"),
("coordinate-system=wgs84"),
1)

cts.jsonPropertyGeospatialQuer
y(
"incidents",
cts.point("100,1"),
["coordinate-system=wgs84"],
1)

loc:"[10,20,30,40]" cts:element-geospatial-query(
fn:QName("","incidents"),
cts:box("[10, 20, 30, 40]"),
("coordinate-system=wgs84",
1)

cts.jsonPropertyGeospatialQuer
y(
"incidents",
cts.box("[10,20,30,40]"),
["coordinate-system=wgs84",
1)

Query Text
cts:parse Output

(XQuery)
cts.parse Output

(JavaScript)
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 278

MarkLogic Server Composing cts:query Expressions
6.3.2 Proximity Queries using cts:near-query

You can add tests for proximity to a cts:query expression using cts:near-query. Proximity
queries use the word positions index in the database and, if you are using cts:element-query, the
element word positions index. Proximity queries will still work without these indexes, but the
indexes will speed performance of queries that use cts:near-query.

Proximity queries return true if the query matches occur within the specified distance from each
other. You can specify both a maximum and a minimum distance.

For more details, see the MarkLogic XQuery and XSLT Function Reference for cts:near-query.

6.3.3 Using Bounded cts:query Expressions

The following cts:query constructors allow you to bound a cts:query expression to one or more
documents, a directory, or one or more collections.

• cts:document-query

• cts:directory-query

• cts:collection-query

These bounding constructors allow you to narrow a set of search results as part of the second
parameter to cts:search. Bounding the query in the cts:query expression is much more efficient
than filtering results in a where clause, and is often more convenient than modifying the XPath in
the first cts:search parameter. To combine a bounded cts:query constructor with another
constructor, use a cts:and-query or a cts:or-query constructor.

For example, the following constrains a search to a particular directory, returning the URI of the
document(s) that match the cts:query.

for $x in cts:search(fn:doc(),
 cts:and-query((
 cts:directory-query("/shakespeare/plays/", "infinity"),
 "all's well that"))
)
return xdmp:node-uri($x)

This query returns the URI of all documents under the specified directory that satisfy the query
"all's well that".

Note: In this query, the query "all's well that" is equivalent to a
cts:word-query("all's well that").
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 279

MarkLogic Server Composing cts:query Expressions
6.3.4 Matching Nothing and Matching Everything

An empty cts:word-query will always match no fragments, and an empty cts:and-query will
always match all fragments. Therefore the following are true:

cts:search(fn:doc(), cts:word-query(""))
=> returns the empty sequence

cts:search(fn:doc(), "")
=> returns the empty sequence

cts:search(fn:doc(), cts:and-query(()))
=> returns every fragment in the database

You can also use cts:true-query and cts:false-query to match everything or nothing. For example:

cts:search(fn:doc(), cts:false-query())
==> returns the empty sequence

cts:search(fn:doc(), cts:true-query())
==> returns every fragment in the database

One use for an empty cts:word-query is when you have a search box that an end user enters terms
to search for. If the user enters nothing and hits the submit button, then the corresponding
cts:search will return no hits.

An empty cts:and-query or a cts-true-query that matches everything is sometimes useful when
you need a cts:query to match everything.

6.4 Joining Documents and Properties with cts:properties-query or
cts:document-fragment-query

You can use a cts:properties-query to match content in properties document. If you are
searching over a document, then a cts:properties-query will search in the properties document
at the URI of the document. The cts:properties-query joins the properties document with its
corresponding document. The cts:properties-query takes a cts:query as a parameter, and that
query is used to match against the properties document. A cts:properties-query is composable,
so you can combine it with other cts:query constructors to create arbitrarily complex queries.

Using a cts:properties-query in a cts:search, you can easily create a query that returns results
that join content in a document with content in the corresponding properties document. For
example, consider a document that represents a chapter in a book, and the document has
properties containing the publisher of the book. you can then write a search that returns
documents that match a cts:query where the document has a specific publisher, as in the following
example:

cts:search(collection(), cts:and-query((
cts:properties-query(
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 280

MarkLogic Server Composing cts:query Expressions
cts:element-value-query(xs:QName("publisher"), "My Press")),
cts:word-query("a small good thing"))))

This query returns all documents with the phrase a small good thing and that have a value of
My Press in the publisher element in their corresponding properties document.

Similarly, you can use cts:document-fragment-query to join documents against properties when
searching over properties.

6.5 Registering cts:query Expressions to Speed Search Performance

If you use the same complex cts:query expressions repeatedly, and if you are using them as an
unfiltered cts:query constructor, you can register the cts:query expressions for later use.
Registering a cts:query expression stores a pre-evaluated version of the expression, making it
faster for subsequent queries to use the same expression. Unfiltered constructors return results
directly from the indexes and return all candidate fragments for a search, but do not perform
post-filtering to validate that each fragment perfectly meets the search criteria. For details on
unfiltered searches, see “Using Unfiltered Searches for Fast Pagination” in the Query
Performance and Tuning Guide.

This section describes registered queries and provides some examples of how to use them. It
includes the following topics:

• Registered Query APIs

• Must Be Used Unfiltered

• Registration Does Not Survive System Restart

• Storing Registered Query IDs

• Registered Queries and Relevance Calculations

• Example: Registering and Using a cts:query Expression

6.5.1 Registered Query APIs

To register and reuse unfiltered searches for cts:query expressions, use the following XQuery
APIs:

• cts:register

• cts:registered-query

• cts:deregister

For the syntax of these functions, see the MarkLogic XQuery and XSLT Function Reference.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 281

MarkLogic Server Composing cts:query Expressions
6.5.2 Must Be Used Unfiltered

You can only use registered queries on unfiltered constructors; using a registered query as a
filtered constructor throws the XDMP-REGFLT exception. To specify an unfiltered constructor, use
the "unfiltered" option to cts:registered-query. For details about unfiltered searches, see
“Using Unfiltered Searches for Fast Pagination” in the Query Performance and Tuning Guide.

6.5.3 Registration Does Not Survive System Restart

Registered queries are only stored in the memory cache, and if the cache grows too big, some
registered queries might be aged out of the cache. Also, if MarkLogic Server stops or restarts, any
queries that were registered are lost and must be re-registered.

If you attempt to call cts:registered-query in a cts:search and the query is not currently
registered, it throws an XDMP-UNREGISTERED exception. Because registered queries are not
guaranteed to be registered every time they are used, it is good practice to use a try/catch around
calls to cts:registered-query, and re-register the query in the catch if the it throws an
XDMP-UNREGISTERED exception.

For example, the following sample code shows a cts:registered-query call used with a try/catch
expression in XQuery:

(: wrap the registered query in a try/catch :)
try{
xdmp:estimate(cts:search(fn:doc(),
 cts:registered-query(995175721241192518, "unfiltered")))
}
catch ($e)
{
let $registered := 'cts:register(
cts:word-query("hello*world", "wildcarded"))'
return
if (fn:contains($e/*:code/text(), "XDMP-UNREGISTERED"))
then ("retry this query with the following registered query ID: ",
 xdmp:eval($registered))
else ($e)
}

This code is somewhat simplified: it catches the XDMP-UNREGISTERED exception and simply reports
what the new registered query ID is. In an application that uses registered queries, you probably
would want to re-run the query with the new registered ID. Also, this example performs the
try/catch in XQuery. If you are using XCC to issue queries against MarkLogic Server, you can
instead perform the try/catch in the middleware Java layer.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 282

MarkLogic Server Composing cts:query Expressions
6.5.4 Storing Registered Query IDs

When you register a cts:query expression, the cts:register function returns an integer, which is
the ID for the registered query. After the cts:register call returns, there is no way to query the
system to find the registered query IDs. Therefore, you might need to store the IDs somewhere.
You can either store them in the middleware layer (if you are using XCC to issue queries against
MarkLogic Server) or you can store them in a document in MarkLogic Server.

The registered query ID is generated based on a hash of the actual query, so registering the same
query multiple times results in the same ID. The registered query ID is valid for all queries against
the database across the entire cluster.

6.5.5 Registered Queries and Relevance Calculations

Searches that use registered queries will generate results having different scores from the
equivalent searches using non-registered queries. This is because registered queries are treated as
a single term in the relevance calculation. For details on relevance calculations, see “Relevance
Scores: Understanding and Customizing” on page 422.

6.5.6 Example: Registering and Using a cts:query Expression

To run a registered query, you first register the query and then run the registered query, specifying
it by ID. This section describes some example steps for registering a query and then running the
registered query.

1. First register the cts:query expression you want to run, as in the following example:

cts:register(cts:word-query("hello*world", "wildcarded"))

2. The first step returns an integer. Keep track of the integer value (for example, store it in a
document).

3. Use the integer value to run a search with the registered query (with the "unfiltered"
option) as follows:

cts:search(fn:doc(),
cts:registered-query(987654321012345678, "unfiltered"))

6.6 Adding Relevance Information to cts:query Expressions:

The leaf-level cts:query APIs (cts:word-query, cts:element-word-query, and so on) have a
weight parameter, which allows you to add a multiplication factor to the scores produced by
matches from a query. You can use this to increase or decrease the weight factor for a particular
query. For details about score, weight, and relevance calculations, see “Relevance Scores:
Understanding and Customizing” on page 422.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 283

MarkLogic Server Composing cts:query Expressions
6.7 Serializations of cts:query Constructors

You can create an XML serialization of a cts:query. The XML serialization is used by alerting
applications that use a cts:reverse-query constructor and is also useful to perform various
programmatic tasks to a cts:query. Alerting applications (see “Creating Alerting Applications”
on page 635) find queries that would match nodes, and then perform some action for the query
matches. This section describes the serialized XML and includes the following parts:

• Serializing a cts:query as XML

• Serializing a cts.query as JSON

• Add Arbitrary Annotations With cts:annotation

• Constructing a cts:query From XML

• Constructing a cts.query From a JavaScript Object or JSON String

6.7.1 Serializing a cts:query as XML

A serialized cts:query has XML that conforms to the <marklogic-dir>/Config/cts.xsd schema,
which is in the http://marklogic.com/cts namespace, which is bound to the cts prefix. You can
either construct the XML directly or, if you use any cts:query expression within the context of an
element, MarkLogic Server will automatically serialize that cts:query to XML. Consider the
following example:

<some-element>{cts:word-query("hello world")}</some-element>

When you run the above expression, it serializes to the following XML:

<some-element>
<cts:word-query xmlns:cts="http://marklogic.com/cts">

<cts:text xml:lang="en">hello world</cts:text>
</cts:word-query>

</some-element>

If you are using an alerting application, you might choose to store this XML in the database so
you can match searches that include cts:reverse-query constructors. For details on alerts, see
“Creating Alerting Applications” on page 635.

6.7.2 Serializing a cts.query as JSON

You can construct the JSON representation of a cts query manually, or by applying
xdmp.toJsonString to the result of any cts.query constructor call. Consider the following
example:

xdmp.toJsonString(cts.wordQuery("hello"))
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 284

MarkLogic Server Composing cts:query Expressions
If you evaluate the above expression in Query Console, you get the following output:

{"wordQuery":{"text":["hello"], "options":["lang=en"]}}

You can also turn a cts query into a JavaScript object in Server-Side JavaScript using the toObject
method on the object turned by one of the cts.query constructors. For example, the following
expression returns a JavaScript object equivalent to the above JSON.

cts.wordQuery('hello').toObject()

6.7.3 Add Arbitrary Annotations With cts:annotation

You can annotate your cts:query XML with cts:annotation elements. A cts:annotation
element can be a child of any element in the cts:query XML, and it can consist of any valid XML
content (for example, a single text node, a single element, multiple elements, complex elements,
and so on). MarkLogic Server ignores these annotations when processing the query XML, but
such annotations are often useful to the application. For example, you can store information about
where the query came from, information about parts of the query to use or not in certain parts of
the application, and so on. The following is some sample XML with cts:annotation elements:

<cts:and-query xmlns:cts="http://marklogic.com/cts">
<cts:directory-query>

 <cts:annotation>private</cts:annotation>
 <cts:uri>/myprivate-dir/</cts:uri>
 </cts:directory-query>
 <cts:and-query>
 <cts:word-query><cts:text>hello</cts:text></cts:word-query>
 <cts:word-query><cts:text>world</cts:text></cts:word-query>
 </cts:and-query>
 <cts:annotation>

<useful>something useful to the application here</useful>
</cts:annotation>

</cts:and-query>

For another example that uses cts:annotation to store the original query string in a function that
generates a cts:query from a string, see the last part of the example in “Serializations of cts:query
Constructors” on page 284.

6.7.4 Constructing a cts:query From XML

You can turn an XML serialization of a cts:query back into an un-serialized cts:query with the
cts:query function. For example, you can turn a serialized cts:query back into a cts:query as
follows:

cts:query(
 <cts:word-query xmlns:cts="http://marklogic.com/cts">
 <cts:text>word</cts:text>
 </cts:word-query>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 285

MarkLogic Server Composing cts:query Expressions
)
(: returns: cts:word-query("word", ("lang=en"), 1) :)

6.7.5 Constructing a cts.query From a JavaScript Object or JSON String

Before you can use a serialized cts.query in a context such as cts.search, you must “de-serialize”
it and turn it back into an in-memory cts.query. When working with a serialized cts.query in
Server-Side JavaScript, you will likely have the serialized query in memory as either a JavaScript
object or as a JSON string.

To convert a JavaScript object into a cts.query node, pass the object to the cts.query constructor
function. The following example artificially constructs a JavaScript object equivalent to the JSON
serialization of a cts.query, for purposes of illustration.

const aQueryObject =
{wordQuery: {text : ['hello'], options: ['lang=en']}}

cts.query(aQueryObject)

To convert a JSON string cts.query serialization back into a cts.query node, first pass the JSON
string through xdmp.fromJsonString, and then to the cts.query constructor function. Note that
xdmp.fromJsonString returns a Sequence, so you must use the fn.head function to access the
underlying node value. For example:

cts.query(fn.head(
xdmp.fromJsonString(

'{"wordQuery":{"text":["hello"], "options":["lang=en"]}}')
))

6.8 Example: Creating a cts:query Parser

The following sample code shows a simple query string parser that parses double-quote marks to
be a phrase, and considers anything else that is separated by one or more spaces to be a single
term. If needed, you can use the same design pattern to add other logic to do more complex
parsing (for example, OR processing or NOT processing).

xquery version "1.0-ml";
declare function local:get-query-tokens($input as xs:string?)

as element() {
(: This parses double-quotes to be exact matches. :)
<tokens>{
let $newInput := fn:string-join(
(: check if there is more than one double-quotation mark. If there is,
 tokenize on the double-quotation mark ("), then change the spaces
 in the even tokens to the string "!+!". This will then allow later
 tokenization on spaces, so you can preserve quoted phrases as phrase
 searches (after re-replacing the "!+!" strings with spaces). :)
 if (fn:count(fn:tokenize($input, '"')) > 2)
 then (for $i at $count in fn:tokenize($input, '"')
 return
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 286

MarkLogic Server Composing cts:query Expressions
 if ($count mod 2 = 0)
 then fn:replace($i, "\s+", "!+!")
 else $i)
 else ($input) , " ")
let $tokenInput := fn:tokenize($newInput, "\s+")

return (
for $x in $tokenInput
where $x ne ""
return
<token>{fn:replace($x, "!\+!", " ")}</token>)
}</tokens>
} ;

let $input := 'this is a "really big" test'
return
local:get-query-tokens($input)

This returns the following:

<tokens>
<token>this</token>
<token>is</token>
<token>a</token>
<token>really big</token>
<token>test</token>

</tokens>

Now you can derive a cts:query expression from the tokenized XML produced above, which
composes all of the terms with a cts:and-query, as follows (assuming the
local:get-query-tokens function above is available to this function):

xquery version "1.0-ml";
declare function local:get-query($input as xs:string)
{
let $tokens := local:get-query-tokens($input)
return
 cts:and-query((cts:and-query(
 for $token in $tokens//token
 return
 cts:word-query($token/text()))))
} ;

let $input := 'this is a "really big" test'
return
local:get-query($input)

This returns the following (spacing and line breaks added for readability):

cts:and-query(
cts:and-query((

cts:word-query("this", (), 1),
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 287

MarkLogic Server Composing cts:query Expressions
cts:word-query("is", (), 1),
cts:word-query("a", (), 1),
cts:word-query("really big", (), 1),
cts:word-query("test", (), 1)
), ()) ,

())

You can now take the generated cts:query expression and add it to a cts:search.

Similarly, you can generate a serialized cts:query as follows (assuming the
local:get-query-tokens function is available):

xquery version "1.0-ml";
declare function local:get-query-xml($input as xs:string)
{
let $tokens := local:get-query-tokens($input)
return
 element cts:and-query {
 element cts:and-query {
 for $token in $tokens//token
 return
 element cts:word-query { $token/text() } },
 element cts:annotation {$input} }
} ;

let $input := 'this is a "really big" test'
return
local:get-query-xml($input)

This returns the folllowing XML serialization:

<cts:and-query xmlns:cts="http://marklogic.com/cts">
 <cts:and-query>
 <cts:word-query>this</cts:word-query>
 <cts:word-query>is</cts:word-query>
 <cts:word-query>a</cts:word-query>
 <cts:word-query>really big</cts:word-query>
 <cts:word-query>test</cts:word-query>
 </cts:and-query>
 <cts:annotation>this is a "really big" test</cts:annotation>
</cts:and-query>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 288

MarkLogic Server Creating JavaScript Search Applications
7.0 Creating JavaScript Search Applications
380

This chapter describes how to add search operations and lexicon analysis to your Server-Side
JavaScript modules and extensions using the JSearch library module. This chapter includes the
following sections:

• JSearch Introduction

• Searching Documents

• Scoping Operations by Collection

• Creating a cts.query

• Including Facets in Search Results

• Controlling the Ordering of Results

• Returning a Result Subset

• Including Snippets of Matching Content in Search Results

• Extracting Portions of Each Matched Document

• Using Options to Control a Query

• Transforming Results with Map and Reduce

• Querying Lexicons and Range Indexes

• Grouping Values and Facets Into Buckets

• Preparing to Run the Examples

This chapter provides background, design patterns, and examples of the JSearch library module.
For the function signatures and descriptions, see the JSearch documentation under JavaScript
Library Modules in the MarkLogic Server-Side JavaScript Function Reference.

You can also use the Node.js Client API to integrate search operations and lexicon analysis into
your client-side code. For details, see the Node.js Application Developer’s Guide.

7.1 JSearch Introduction

This section provides a high level overview of the features and design patterns of the JSearch
library. This section covers the following topics:

• JSearch Feature Summary

• Top Level Function Summary

• Query Design Pattern

• How JSearch Relates to Other MarkLogic Search APIs
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 289

MarkLogic Server Creating JavaScript Search Applications
• Running the Examples in This Chapter

7.1.1 JSearch Feature Summary

You can use the JSearch library to perform most of the query operations available through the cts
built-in functions and the Search API, including the following:

• Search document contents and document properties using Query By Example (QBE),
query text parsable by cts:parse, and cts queries.

• Include documents, snippets, and/or facets in your search results.

• Apply content transformations to search results.

• Return results in configurable slices.

• Generate facets for an arbitrary set of documents in the database.

• Query lexicons and range indexes.

• Find lexicon and range index values and tuples (value co-occurrences).

• Compute aggregates over lexicon and range index values and tuples.

7.1.2 Top Level Function Summary

Libraries can be imported as JavaScript MJS modules. This is the preferred import method.

The following table provides an overview of the key top level JSearch methods. All these
methods are effectively query builders. You can chain additional methods to them to refine and
produce results. For details, see “Query Design Pattern” on page 291.

The API also includes helper functions, not listed here, for constructing complex inputs such as
lexicon references, facet definitions, and heatmap definitions.

For a complete list of functions, see the MarkLogic Server-Side JavaScript Function Reference.

JSearch Method Description

collections Creates a jsearch object that implicitly scopes all operations to one or
more collections. For details, see “Scoping Operations by Collection” on
page 295.

documents Search documents and document properties. You can tailor the results to
include data such as matching documents, document projections, and
snippets, as well as search metadata such as relevance score. For details,
see “Document Search Basics” on page 296.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 290

MarkLogic Server Creating JavaScript Search Applications
7.1.3 Query Design Pattern

The top level JSearch operations, such as document search, lexicon value queries, and lexicon
tuple queries use a pipeline pattern for defining the query and customizing results. The pipeline
mirrors steps MarkLogic performs when evaluating a query. The pipeline stages vary by
operation, but can include steps such as query criteria definition, result ordering, and result
transformations.

Building and evaluating a query consists of the following steps:

1. Select the resource you want to work with, such as documents, lexicon values, or tuples.

2. Add the pipeline stages that define your query and desired result set, such as query
criteria, sort order, and transformations. All pipeline stages are optional.

3. Optionally, specify advanced options, such as a quality weight. The available options
depend on the resource selected in Step 1.

4. Perform the operation and get results.

If you omit all the pipeline stages in Step 2, then you retrieve the default slice from all selected
resources. For example, all the documents in the database or all values or tuples in the selected
lexicon(s).

values Query the values in a lexicon or range index, optionally computing one
or more aggregates over the values. For details, see “Querying the Values
in a Lexicon or Index” on page 354.

tuples Find n-way value co-occurrences in lexicons and range indexes,
optionally computing one or more aggregates over the tuples. For details,
see “Finding Value Co-Occurrences in Lexicons and Indexes” on
page 357.

words Query the values in a word lexicon. For details, see “Querying Values in
a Word Lexicon” on page 359.

facets Generate facets from a value lexicon. The results can optionally include
documents as well as facets. For details, see “Including Facets in Search
Results” on page 308.

documentSelect Generate snippets, sparse document projections, and/or a set of similar
documents from an arbitrary set of documents, such as the result of
calling cts.search or fn.doc.

JSearch Method Description
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 291

MarkLogic Server Creating JavaScript Search Applications
Consider the case of a document search. The following example (1) selects documents as the
resource; (2) defines the query and customizes the result using the where, orderBy, slice, and map
pipeline stages; (3) specifies the returnQueryPlan option using the withOptions method; and then
(4) evaluates the assembled query and gets results.

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.documents() // 1. resource selection

.where(cts.parse('title:california', // 2. query defn pipeline
{title: cts.jsonPropertyReference('title')}))

.orderBy('price') // .

.slice(0,5) // .

.map({snippet: true}) // .

.withOptions({returnQueryPlan: true}) // 3. additional options

.result() // 4. query evaluation

The query definition pipeline in this example uses the following stages:

For comparsion, below is a JSearch values query. Observe that it follows the same pattern. In this
case, the selected resource is the values in a range index on the price JSON property or XML
element.

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.values('price') // 1. resource selection

.where(cts.parse('by:"mark twain"', // 2. query defn pipeline
{by: cts.jsonPropertyReference('author')}))

.orderBy('item','descending') // .

.slice(0,20) // .

.withOptions({qualityWeight: 2}) // 3. additional options

.result() // 4. query evaluation

Stage Description

where(...) Define the query criteria: Match documents with “california” in the
title JSON property (or XML element).

orderBy('price') Define the ordering of results: Order the results by the values in the
price property.

slice(0,5) Define a result subset: Limit the results to the first 5 matches.

map({snippet: true}) Define a mapping operation to apply to each result: Use the built-in
mapper to generate snippets.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 292

MarkLogic Server Creating JavaScript Search Applications
The query definition pipeline in this values query example uses the following stages:

The query definition pipeline is realized through a call chain, as shown in the examples. All
pipeline stages are optional, but the order is fixed. The table below summarizes the pipeline stages
available for querying each resource type. The stage names are also JSearch method names. Note
that two pipelines are available for values and tuples queries: one for retrieving values or tuples
from lexicons and another for computing aggregates over the values or tuples.

Results can be returned as values (typically, an array) or as an Iterable. The default is values. For
example, the default output from a document search has the following form:

{ results: [resultItems], estimate: totalEstimatedMatches }

However, if you request an Iterable object by passing 'iterator' to the result method, then you
get the following:

{ results: iterableOverResultItems, estimate: totalEstimatedMatches }

When you request iterable results by calling results('iterator') on the various JSearch APIs,
you receive a Sequence in some contexts and a Generator in others. For more information on these
constructs, see Sequence in the JavaScript Reference Guide and the definition of Generator in the
JavaScript standard:

Stage Description

where(...) Define the query criteria: Limit the results to the values in
documents where the author property or element value is “mark
twain”.

orderBy(
'item',
'descending')

Define the ordering of results: Return the values in descending item
order.

slice(0,20) Define a result subset: Return the first 20 values.

Selected
Resource

Query Definition Pipeline

Documents where > orderBy > filter > slice > (map or reduce)

Values where > (match or groupInto) > orderBy > slice > (map or reduce)

where > aggregate

Tuples where > orderBy > slice > (map or reduce)

where > aggregate
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 293

MarkLogic Server Creating JavaScript Search Applications
http://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator

7.1.4 How JSearch Relates to Other MarkLogic Search APIs

The JSearch library module is primarily designed for JavaScript developers writing MarkLogic
applications that initiate document searches and lexicon queries on the server. The same
capabilities are available through other server-side interfaces, such as the cts built-in functions
and the Search API, but JSearch offers the following advantages for a JavaScript developer:

• All input and output is in the form of JavaScript objects.

• A fluent call chain pattern that is natural for JavaScript.

• Powerful convenience methods for operations such as snippet generation and faceting.

In addition, the design patterns, query styles, and configuration options are similar to those used
by the Node.js Client API. Thus, developers creating multi-tier JavaScript applications will find it
easy to move between client (or middle) and server tiers when using JSearch. To learn more about
the Node.js Client API, see the Node.js Application Developer’s Guide.

You can use the JSearch API in conjunction with the cts built-in functions, in many contexts. For
example:

• You can use the cts query constructors to create input queries usable with a JSearch-based
document search. For details, see “Using cts.query Constructors” on page 308.

• You can construct index references for a JSearch values query using the cts.reference
constructors.

• You can use the jsearch.documentSelect method to generate snippets or sparse document
projections from the results returned by cts.search.

• Many JSearch operations enable you to pass advanced options to the underlying cts layer
through the withOptions method. For details, see “Using Options to Control a Query” on
page 341.

7.1.5 Running the Examples in This Chapter

All the examples in this chapter can be run using Query Console. To configure the sample
database and load the sample documents, see the instructions in “Preparing to Run the Examples”
on page 375.

For more information about Query Console, see the Query Console User Guide or the Query
Console help.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 294

http://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator

MarkLogic Server Creating JavaScript Search Applications
7.2 Scoping Operations by Collection

If your application primarily works with documents in one or more collections, you can use the
collections method to create a top level jsearch object that implicitly limits operations by
collection.

For example, suppose your application is operating on documents in a collection with the URI
“classics”. Including a cts.collectionQuery('classics') in all your query operations can be
inconvenient. Instead, use the collections method to create a scoped search object through which
you can perform all JSearch operations, as shown below:

import jsearch from '/MarkLogic/jsearch.mjs';
const classics = jsearch.collections('classics');

// implicitly limit results to matches in the 'classics' collection
classics.documents()
 .where(cts.parse('california'))
 .result()

You can use the resulting object everywhere you can use the object returned by the require that
brings the JSearch library into scope.

You can scope to one or many collections. When you specify multiple collections, the implicit
collection query matches documents in any of the collections. For example:

import jsearch from '/MarkLogic/jsearch.mjs';

// Work with documents in either the "novels" or "poems" collection
const books = jsearch.collections(['novels','poems']);

The collection scope is ignored on operations for which it makes no sense, such as when
constructing a lexicon reference using a helper function like jsearch.elementLexicon. On
operations where scope matters, such as documents, values, and words, the implicit
cts.collectionQuery is added to a top-level cts.andQuery on every where clause.

For more details, see jsearch.collections .

7.3 Searching Documents

To perform a document search, use the jsearch.documents method and the design pattern
described in “Query Design Pattern” on page 291.

• Document Search Basics

• Example: Basic Document Search
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 295

MarkLogic Server Creating JavaScript Search Applications
7.3.1 Document Search Basics

This section outlines how to perform a document search. The search features touched on here are
discussed in more detail in the remainder of this chapter.

Bring the JSearch library module functions into scope by including a import statement similar to
the following in your code.

import jsearch from '/MarkLogic/jsearch.mjs';

A document search begins by selecting documents as the resource you want to work with by
calling the top level documents method. You can invoke this method either on the object created
by the require statement, or on a collection-scoped instantiation.

// Work with all documents
jsearch.documents().where(cts.parse('cat')).result() ...

// Work with documents in collections 'coll1' and 'coll2'
const myColls = jsearch.collections([coll1,coll2]);
myColls.documents().where(cts.parse('cat')).result() ...

To learn more about working with collections, see “Scoping Operations by Collection” on
page 295

Build and execute your search following the pattern described in “Query Design Pattern” on
page 291. The following table maps the applicable JSearch methods to the steps in the design
pattern. Note that all the pipeline stages in Step 2 are optional, but you must use them in the order
shown. For an example, see “Example: Basic Document Search” on page 298.

Pattern Step Method(s) Notes

1 Select resource documents Required. Select documents as the resource to work
with. For details, see jsearch.documents in the
MarkLogic Server-Side JavaScript Function
Reference.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 296

MarkLogic Server Creating JavaScript Search Applications
2 Add a query
definition and
result set
pipeline

where Optional. Define your query. Accepts one or more
cts.query objects as input. If you pass in more than
one cts.query object, the queries are implicitly
AND’d together. You can create a cts.query from a
QBE, query text, cts.query constructors, or any other
technique that creates a cts.query. For details, see
“Creating a cts.query” on page 300 and
DocumentsSearch.where in the MarkLogic
Server-Side JavaScript Function Reference.

orderBy Optional. Specify sort keys and/or sorting direction.
For details, see “Controlling the Ordering of Results”
on page 328 and DocumentsSearch.orderBy in the
MarkLogic Server-Side JavaScript Function
Reference.

filter Optional. Specify whether or not to filter the search.
By default, the search is unfiltered. Filtered search is
always accurate, but can take longer. For details, see
DocumentsSearch.filter and Fast Pagination and

Unfiltered Searches in the Query Performance and
Tuning Guide.

slice Optional. Select a subset of documents from the
result set. The default slice is the first 10 documents.
Retrieving results incrementally is best practice for
most applications.For details, see “Returning a Result
Subset” on page 331 and DocumentsSearch.slice in
the MarkLogic Server-Side JavaScript Function
Reference.

map | reduce Optional. Configure snippeting, extraction of specific
pieces of matched documents, or custom
transformations. You cannot use map and reduce
together. For details, see “Transforming Results with
Map and Reduce” on page 343,
DocumentsSearch.map, and DocumentsSearch.reduce.

Pattern Step Method(s) Notes
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 297

MarkLogic Server Creating JavaScript Search Applications
7.3.2 Example: Basic Document Search

The following is the most minimal JSearch document search, but it has the broadest scope in that
it returns the default slice of all documents in the database.

jsearch.documents().result()

More typically, your search will include at least a where “clause” that defines the desired set of
results. The where method accepts one or more cts.query objects as input and defines your search
criteria. For example, the following query matches documents where the author property has the
value “Mark Twain”:

jsearch.documents()
.where(jsearch.byExample({author: 'Mark Twain'}))
.result()

You can customize the results by adding orderBy, slice, map, and reduce stages to the operation.
For example, you can suppress the search metadata, include snippets instead of (or in addition to)
the full documents, extract just a portion of each matching document, or apply a custom content
transformation. These and other features are covered elsewhere in this chapter.

The following example matches documents that contain an author JSON property with the value
“Mark Twain”, price property with a value less than10, and that are in the /books/ directory.
Notice that the search criteria are expressed in several ways; for details, see “Creating a cts.query”
on page 300. The search results contain at most the first 3 matching documents (slice), ordered
by the value of the title property (orderBy).

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.documents()

.where([
jsearch.byExample({author: 'Mark Twain'}),
cts.parse('price LT 10',

{price: cts.jsonPropertyReference('price')}),

3 Add advanced
options

withOptions Optional. Specify additional, advanced search
options that customize the search behavior. For
details, see “Using Options to Control a Query” on
page 341 and DocumentsSearch.withOptions in the
MarkLogic Server-Side JavaScript Function
Reference.

4 Evaluate the
query and get
results

result Required. Execute the search and receive your
results, optionally specifying whether to receive the
results as a value or an Iterable. The default is a value
(typically an array).

Pattern Step Method(s) Notes
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 298

MarkLogic Server Creating JavaScript Search Applications
cts.directoryQuery('/books/')])
.orderBy('title')
.slice(0,3)
.result()

This query produces output similar to the following when run against the documents and database
configuration described in “Preparing to Run the Examples” on page 375.

{ "results": [
{ "index": 0,

"uri": "/books/twain3.json",
"score": 16384,
"confidence": 0.43934014439583,
"fitness": 0.69645345211029,
"document": {
"title": "Adventures of Huckleberry Finn",
"author": "Mark Twain",
"edition": {

"format": "paperback",
"price": 8

},
"synopsis": "The adventures of Huck, a boy ..."

}
},
{ "index": 1,

"uri": "/books/twain1.json",
"score": 16384,
"confidence": 0.43934014439583,
"fitness": 0.69645345211029,
"document": {
"title": "Adventures of Tom Sawyer",
"author": "Mark Twain",
"edition": {

"format": "paperback",
"price": 9

},
"synopsis": "Tales of mischief and adventure ..."

}
}

],
"estimate": 2

}

By default, the results include search metadata (uri, score, confidence, fitness, etc.) and the full
content of each matched document.

You can also choose whether to work with the results embedded in the return value as a value or
an Iterable. For example, by default the results are returned in an array:

import jsearch from '/MarkLogic/jsearch.mjs';
const response =

jsearch.documents()
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 299

MarkLogic Server Creating JavaScript Search Applications
.where(jsearch.byExample({author: 'Mark Twain'}))

.result(); // or .result('value')
response.results.forEach(function (result) {

// work with the result object
});

By passing “iterator” as the input to the result method, you can work with the results as an
Iterable instead:

import jsearch from '/MarkLogic/jsearch.mjs';
const response =

jsearch.documents()
.where(jsearch.byExample({author: 'Mark Twain'}))
.result('iterator');

for (const result of response.results) {
// work with the result object

}

For more details, see the following topics:

• “Creating a cts.query” on page 300

• “Controlling the Ordering of Results” on page 328

• “Returning a Result Subset” on page 331

• “Including Snippets of Matching Content in Search Results” on page 332

• “Including Facets in Search Results” on page 308

• “Transforming Results with Map and Reduce” on page 343

• DocumentsSearch in the MarkLogic Server-Side JavaScript Function Reference

7.4 Creating a cts.query

This section describes the most common ways of creating a cts.query for defining query criteria.
Most JSearch operations include a where clause that accepts one or more cts.query objects as
input. For example, the documents, values, and tuples methods all return an object with a where
method for defining query criteria.

This section covers the following topics:

• Using byExample to Create a Query

• Using Query Text to Create a cts.query

• Using cts.query Constructors
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 300

/js/DocumentsSearch

MarkLogic Server Creating JavaScript Search Applications
7.4.1 Using byExample to Create a Query

The jsearch.byExample method enables you to build queries by modeling the structure of the
content you want to match. It enables you to express your search in terms of “documents that look
like this”.

This section covers the following topics:

• Introduction to byExample

• Example: Building a Query With byExample

• Differences Between byExample and QBE

7.4.1.1 Introduction to byExample

JSearch.byExample() and search:by-example() take a query represented as an XML element for
XML or as a JSON node or map for JSON and return a cts:query that can be used in any API that
takes a cts:query including cts:search(), cts:uris() and the Optic where clause:

jsearch.byExample({author: 'Mark Twain'})

Search criteria like the one immediately above are implicitly value queries with exact match
semantics in QBE.

The XQuery equivalent to the preceding JavaScript call is:

import module namespace q =
"http://marklogic.com/appservices/querybyexample"
at "/MarkLogic/appservices/search/qbe.xqy";
q:by-example(<author>Mark Twain</author>)

which yields:

cts:element-value-query(fn:QName("","author"), "Mark Twain", ...)

Search criteria like the jsearch.byExample() above are implicitly value queries with exact match
semantics in QBE, so the query constructed with byExample above is equivalent to the following
cts.query constructor call:

// equivalent cts.query constructor call:
cts.jsonPropertyValueQuery(

'author', 'Mark Twain',
['case-sensitive','diacritic-sensitive',
'punctuation-sensitive','whitespace-sensitive',
'unstemmed','unwildcarded','lang=en'],

1)
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 301

https://docs.marklogic.com/10.0/jsearch.byExample

MarkLogic Server Creating JavaScript Search Applications
QBE provides much of the expressive power of cts.query constructors. For example, you can use
QBE keywords in your criteria to construct value, word, and range queries, as well as compose
compound queries with logical “operators. For a more complete example see “Example: Building
a Query With byExample” on page 303. For details, see “Searching Using Query By Example” on
page 195.

Note: The JSearch byExample method does not use the $response portion of a QBE. This
and other QBE features, such as result customization, are provided through other
JSearch interfaces. For details, see “Differences Between byExample and QBE”
on page 305.

The input to jsearch.byExample can be a JavaScript object, XML node, or JSON node. In all
cases, the object or node can express either a complete QBE, as described in “Searching Using
Query By Example” on page 195, or just the contents of the query portion of a QBE (the search
criteria). For convenience, you can also pass in a document that encapsulates an XML or JSON
node that meets the preceding requirements. You must use the complete QBE form of input if you
need to specify the format or validate QBE flags.

For example, all the following are valid inputs to jsearch.byExample:

Input Example

JavaScript
Object

// Criteria only
{author: 'Mark Twain'}

// Fully formed QBE
{ $query: {author: 'Mark Twain'}, $validate: true}
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 302

MarkLogic Server Creating JavaScript Search Applications
By default, a query expressed as JavaScript object or JSON node will match JSON documents and
a query expressed as an XML node will match XML documents. You can use the format QBE
flag to override this behavior; for details, see “Scoping a Search by Document Type” on page 245.

You must use the XML node (or a corresponding document node wrapper) form to search XML
documents that use namespaces as there is no way to define namespaces in the JavaScript/JSON
QBE format.

7.4.1.2 Example: Building a Query With byExample

This example assumes the database contains documents with the following structure:

{ "title": "Tom Sawyer",
"author" : "Mark Twain",
"edition": {

"format": "paperback",
"price" : 9.99

JSON node // Criteria only
fn.head(xdmp.unquote(

'{"author": "Mark Twain"}'
)).root

// Fully formed QBE
fn.head(xdmp.unquote(

'{"$query": {"author": "Mark Twain"}, "$validate": true}}'

)).root

XML node // Criteria only
fn.head(xdmp.unquote(

'<my:author xmlns:my="http://marklogic.com/example">' +
'Mark Twain</my:author>'

)).root

// Fully formed QBE
fn.head(xdmp.unquote(

'<q:qbe xmlns:q="http://marklogic.com/appservices/querybyexample">' +

'<q:query>' +

'<my:author xmlns:my="http://marklogic.com/example">' +
'Mark Twain</my:author>'+

'</q:query>' +

'<q:validate>true</q:validate>' +

'</q:qbe>'

)).root

Document
node

// (xdmp.unquote returns a Sequence of document nodes)
fn.head(xdmp.unquote(

'{"$query": {"author": "Mark Twain"}, "$validate": true}}'

))

Input Example
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 303

MarkLogic Server Creating JavaScript Search Applications
}
}

To add similar data to your database, see “Preparing to Run the Examples” on page 375.

The following query uses most of the expressive power of QBE and matches the above document.
The top level properties in the query object passed to byExample are implicitly AND’d together, so
all these conditions must be met by matching documents. Since the query includes range queries
on a “price” property, the database configuration must include an element range index with local
name “price” and type float.

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.documents()

.where(jsearch.byExample({
"title": {

"$value": "adventures of tom sawyer",
"$exact": false

},
"$near": [

{ "author": { "$word": "mark" } },
{ "author": { "$word": "twain" } }

], "$distance": 2,
"edition": {

"$or" : [
{ "format": "paperback" },
{ "format": "hardback" }

]
},
"$and": [

{"price": { "$lt": 10.00 }},
{"price": { "$ge": 8.00 }}

]
 }))
.result()

If you run this query using the documents created by “Preparing to Run the Examples” on
page 375, the above query should match one document.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 304

MarkLogic Server Creating JavaScript Search Applications
The following table explains the requirements expressed by each component of the query. Each of
the subquery types used in this example is explored in more detail in “Understanding QBE
Sub-Query Types” on page 208.

If you examine the output from byExample, you can see that the generated cts.query is complicated
and much more difficult to express than the QBE syntax.

For more details, see “Searching Using Query By Example” on page 195.

7.4.1.3 Differences Between byExample and QBE

The byExample method of JSearch does not use all parts of a QBE. A full QBE encapsulates search
criteria, results refinement, and other options. However, JSearch supports some QBE features
through other interfaces like filter and map. If you pass a full QBE to byExample, only the $query,
$format, and $validate properties are used. Similarly, if you use an XML QBE, only the query,
format, and validate elements are used.

When reviewing the QBE documentation or converting QBE queries from client-side code, keep
the following differences and restrictions in mind:

• Use the JSearch filter method instead of the QBE $filtered flag to enable filtered
search.

Requirement Example Criteria

The title is “adventures of tom sawyer”.
Exact match is disabled, so the match is
not sensitive to case, whitespace,
punctuation, or diacritics.

"title": {
"$value": "adventures of tom sawyer",
"$exact": false

}

The author contains the word “mark” and
the word “twain” within 2 words of each
other.

"$near": [
{ "author": { "$word": "mark" } },
{ "author": { "$word": "twain" } }

],
"$distance": 2

The edition format is “paperback” or
“hardback”. All the atomic values in this
sub-query use exact value match
semantics.

"edition": {
"$or" : [

{ "format": "paperback" },
{ "format": "hardback" }

]
}

The price is less than 10.00 and greater
than or equal to 8.00.

"$and": [
{"price": { "$lt": 10.00 }},
{"price": { "$ge": 8.00 }}

]

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 305

MarkLogic Server Creating JavaScript Search Applications
• Your database configuration must include a range index definition for any range queries.
There is no equivalent to using $filtered to avoid or defer index creation.

• Use the JSearch withOptions method instead of the QBE $score flag to select a scoring
algorithm.

• You cannot use the QBE options $constraint or $datatype in your queries.

• Use the JSearch map method instead of the QBE $response property to customize results.

The following table contains a QBE on the left that uses several features affected by the
differences listed above, including $filtered, $score, and $response. The JSearch example on the
right illustrates how to achieve the same result by combining byExample with other JSearch
features.

7.4.2 Using Query Text to Create a cts.query

Use cts.parse to create a cts.query from query text such as “cat AND dog” that a user might
enter in a search text box. The cts.parse grammar is similar to the Search API default string
query grammar. For grammar details, see “Creating a Query From Search Text With cts:parse” on
page 253.

For example, the following code matches documents that contain the word “steinbeck” and the
word “california”, anywhere.

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.documents()

.where(cts.parse('steinbeck AND california'))

.result()

Standalone QBE Equivalent JSearch byExample

{"$query": {
"author": "Mark Twain"

"$filtered": true,

"$score": "logtf"

},

"$response": {

"$snippet": { "$none": {} },

"$extract": { "title": {} }

}
}

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.documents()

.where(jsearch.byExample({author: 'Mark Twain'}))

.filter()

.map({snippet:false,

extract: {paths: ['/title']}

})

.result()
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 306

MarkLogic Server Creating JavaScript Search Applications
You can use the cts.parse grammar to generate complex queries. The following table illustrates
some simple query text strings with their equivalent cts.query constructor calls.

You can also bind a keyword to a query-generating function that the parser uses to generate a
sub-query when the keyword appears in a query expression. This feature is similar to using
pre-defined constraint names in Search API string queries. You can use a built-in function, such as
cts.jsonPropertyReference, or supply a custom function that returns a cts.query.

For example, you can use a binding to cause the query text “by:twain” to generate a query that
matches the word “twain” only when it appears in the value of the author JSON property. (In the
cts.parse grammar, the colon (“:”) operator signifies a word query by default.)

import jsearch from '/MarkLogic/jsearch.mjs';

// bind 'by' to the JSON property 'author'
const queryBinding = {

by: cts.jsonPropertyReference('author')
};

// Perform a search using the bound name in a word query expression
jsearch.documents()

.where(cts.parse('by:twain', queryBinding))

.result();

You can also define a custom binding function rather than using a pre-defined function such as
cts.jsonPropertyReference. For more details and examples, see “Creating a Query From Search
Text With cts:parse” on page 253.

Query Text Equivalent cts.query Explanation

(tom or huck)
NEAR becky

cts.nearQuery(
[cts.orQuery([

cts.wordQuery("tom"),
cts.wordQuery("huck")]),

cts.wordQuery("becky")
])

at least one of the terms tom or
huck within 10 terms (the default
distance for cts.nearQuery) of
the term becky

tom NEAR/30 huck cts.nearQuery([
cts.wordQuery("tom"),
cts.wordQuery("huck")],
30)

the term tom within 30 terms of
the term huck

huck -tom cts.andQuery([
cts.wordQuery("huck"),
cts.notQuery(

cts.wordQuery("tom"))
])

the term huck where there is no
occurrence of tom
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 307

MarkLogic Server Creating JavaScript Search Applications
7.4.3 Using cts.query Constructors

You can build a cts.query by calling one or more cts.query constructor built-in functions such as
cts.andQuery or cts.jsonPropertyRangeQuery. The constructors enable you to compose complex
and powerful queries.

For example, the following code uses a cts.query constructor built-in function to create a word
query that matches documents containing the phrase “mark twain” in the value of the “author”
JSON property.

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.documents()

.where(
cts.jsonPropertyWordQuery('author', 'mark twain'))

.result();

Query constructor built-in functions can be either leaf constructors, such as the one in the above
example, or composable constructors. A leaf constructor does not accept cts.query’s as input,
while a composable constructor does. You can use composable constructors to build up powerful,
complex queries.

For example, the following call creates a query that matches documents in the database directory
/books that contain the phrase “huck” or the phrase “tom” in the “title” property and either have a
“format” property with the value “paperback” or a “price” property with a value that is less than
10.

cts.andQuery([
cts.directoryQuery('/books/', 'infinity'),
cts.jsonPropertyWordQuery('title', ['huck','tom']),
cts.orQuery([

cts.jsonPropertyValueQuery('format', 'paperback'),
cts.jsonPropertyRangeQuery('price', '<', 10)])

])

You can pass options to most cts.query constructor built-ins for fine-grained control of each
portion of your search. For example, you can specify whether or not a particular word query
should be case and diacritic insensitive. For details on available options, see the API reference
documentation for each constructor.

For more details on constructing cts.query objects, see “Composing cts:query Expressions” on
page 248.

7.5 Including Facets in Search Results

Search facets provide a summary of the values of a given characteristic across a set of search
results. For example, you could query an inventory of appliances and facet on the manufacturer
names. Facets can also include counts. The jsearch.facets method enables you to generate
search result facets quickly and easily.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 308

MarkLogic Server Creating JavaScript Search Applications
This section includes the following topics:

• Introduction to Facets

• Basic Steps for Generating Facets

• Example: Generating Facets From JSON Properties

• Creating a Facet Definition

• Understanding the Output of Facets

• Sorting Facet Values with OrderBy

• Retrieving Facets and Content in a Single Operation

• Multi-Facet Interactions Using othersWhere

• Example: Multi-Facet Interactions Using othersWhere

7.5.1 Introduction to Facets

Search facets can enable your application users to narrow a search by “drilling down” with search
criteria presented by the application.

For example, suppose you have an application that enables users to search bibliographic data on
books. If the user searches for American authors, the application displays the search results, plus
filtering controls that enable the user to narrow the results by author and/or media format. The
filtering controls may include both a list of values, such as author names, and the number of items
matching each selection.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 309

MarkLogic Server Creating JavaScript Search Applications
The following diagram depicts such an interaction. Search results are not shown; only the filtering
controls are included due to space constraints. The greyed out items are just representative of how
an application might choose to display unselected facet values.

The filtering categories “Author” and “Media Format” represent facets. The author names and
formats are values from the author and format facets, respectively. The numbers after each value
represent the number of items containing that value.

MarkLogic generates facet values and counts from range indexes and lexicons. Therefore, your
database configuration must include a lexicon or index for any content feature you want to use as
a facet source, such as a JSON property or XML element.

Use the JSearch facet method to identify an index from which to source facet data; for details, see
“Creating a Facet Definition” on page 313. Use the Jsearch facets method to generate facets from
such definitions. Only facet data is returned by default, but you can optionally request matching
documents as well; for details, see “Retrieving Facets and Content in a Single Operation” on
page 319.

The remainder of this section describes how to generate and customize facets in more detail.

7.5.2 Basic Steps for Generating Facets

The primary interfaces for generating facets are the jsearch.facets and jsearch.facet methods.
Use the facet method to create a FacetDefinition, then pass your facet definitions to the facets
method to create a facet generation operation. As with other JSearch operations, facets are not
generated until you call the result method.

Author

Media Format

Mark Twain (4)
Robert Frost (1)
John Steinbeck(3)

audiobook (1)
hardback (3)
paperback (4)

Author

Media Format

Mark Twain (4)
Robert Frost (1)
John Steinbeck(3)

audiobook (0)
hardback (2)
paperback (2)

User searches for American authors. Search
results and filtering options are displayed.

User filters by
author Mark Twain

Facets and results
change in response

Faceted Navigation
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 310

MarkLogic Server Creating JavaScript Search Applications
The following procedure outlines the steps for building a faceting operation. For a complete
example, see “Example: Generating Facets From JSON Properties” on page 312.

1. Define one or more facets using the jsearch.facet method. For each, provide a label and
an index, lexicon, or JSON property reference that identifies the facet source. The label
becomes the property name for the facet data in the results.

For example, the following call defines a facet labeled “Author” derived from a range
index on the JSON property named “author”. The database must include a range index on
“author”.

jsearch.facet('Author', 'author')

A facet definition can include additional configuration. For details, see “Creating a Facet
Definition” on page 313.

2. Pass your facet definitions to the jsearch.facets method. For example:

jsearch.facets([
jsearch.facet('Author', 'author'),
jsearch.facet('MediaFormat', 'format')])

3. Optionally, add a documents “clause” to return document search results and contents along
with the facets. By default, only the facet data is returned. For example:

jsearch.facets([
jsearch.facet('Author', 'author'),
jsearch.facet('MediaFormat', 'format')],
jsearch.documents())

4. Optionally, use FacetsSearch.where method to select the documents over which to facet.
You can pass one or more cts.query objects, just as for a document search. For example:

jsearch.facets([
jsearch.facet('Author', 'author'),
jsearch.facet('MediaFormat', 'format')])

.where(jsearch.byExample({price: {$lt: 15}}))

5. Optionally, use the FacetsSearch.withOptions method to specify advanced options. For
example:

jsearch.facets([
jsearch.facet('Author', 'author'),
jsearch.facet('MediaFormat', 'format')])

.where(jsearch.byExample({price: {$lt: 15}}))

.withOptions({maxThreads: 15})
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 311

MarkLogic Server Creating JavaScript Search Applications
6. Generate facets (and documents, if requested in Step 3) by calling the result method. For
example:

jsearch.facets([
jsearch.facet('Author', 'author'),
jsearch.facet('MediaFormat', 'format')])

.where(jsearch.byExample({price: {$lt: 15}}))

.result()

For a complete example, see “Example: Generating Facets From JSON Properties” on page 312.

For more details, see the following topics in the MarkLogic Server-Side JavaScript Function
Reference:

• jsearch.facet and FacetDefinition

• jsearch.facets and FacetsSearch

7.5.3 Example: Generating Facets From JSON Properties

This example is a simple demonstration of generating facets. The example uses the sample
documents and database configuration described in “Preparing to Run the Examples” on
page 375.

The example generates facets for documents that contain a “price” property with value less than
15 (jsearch.byExample({price: {$lt: 15}})). Since the search criteria is a range query, the
database configuration must include a range index on “price”.

Facets are generated for the matched documents from two content features:

• The “author” JSON property values. The database configuration must include a range
index on this property.

• The “format” JSON property values. The database configuration must include a range
index on this property.

If your database is configured according to the instructions in “Preparing to Run the Examples”
on page 375, then it already includes the indexes needed to run this example.

The following query builds up and then evaluates a facet request. Facets are not generated until
the result method is evaluated.

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.facets([

jsearch.facet('Author', 'author'),
jsearch.facet('MediaFormat', 'format')])

.where(jsearch.byExample({price: {$lt: 15}}))

.result()
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 312

/js/FacetDefinition
/js/FacetsSearch

MarkLogic Server Creating JavaScript Search Applications
Running this query in Query Console produces the following output:

{"facets":{
"Author": {

"Mark Twain": 2,
"John Steinbeck": 1

},
"MediaFormat": {

"paperback": 3
}}}

Notice that the “facets” property of the results contains a child property corresponding to each
facet definition created by jsearch.facet. In this case, the documents that met the “price < 15”
criteria include two documents with an “author” value of “Mark Twain” and one document with
an author value of “John Steinbeck”. Similarly, based on the “format” property, a total of 3
paperbacks meet the price criteria.

If you add a documents query, you can retrieve facets and matched documents together. For
details, see “Retrieving Facets and Content in a Single Operation” on page 319.

7.5.4 Creating a Facet Definition

The facets method accepts one or more facet definitions as input. Use the jsearch.facet method
to create each facet definition.

The simplest form of facet definition just associates a facet name with a reference to a JSON
property, XML element, field or other index or lexicon. For example, the following facet
definition associates the name “Author” with a JSON property named “author”.

jsearch.facet('Author', 'author')
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 313

MarkLogic Server Creating JavaScript Search Applications
However, you can further customize the facet using a pipeline pattern similar to the one described
in “Query Design Pattern” on page 291. The table below describes the pipeline stages availble for
building a facet definition.All pipeline stages are optional, can appear at most once, and must be
used in the order shown. Most stages behave as they do when used with a values query; for
details, see ValuesSearch in the MarkLogic Server-Side JavaScript Function Reference.

Method Stage Description

othersWhere Control how facets interact with each other and with any queries that are
part of the facets call, such as a documents query. For details, see
“Multi-Facet Interactions Using othersWhere” on page 322 and
FacetDefinition.othersWhere in the MarkLogic Server-Side JavaScript
Function Reference.

thisWhere Control how facets interact with each other and with any queries that are
part of the facets call, such as a documents query. For details, see
“Multi-Facet Interactions Using othersWhere” on page 322 and
FacetDefinition.thisWhere in the MarkLogic Server-Side JavaScript
Function Reference.

groupInto Group facet values into buckets based on a range of values. For example
you can facet on price and group facet values into price range buckets
such as “Less than $10” and “$10 or more”, rather than simply retrieving
a set of individual prices and counts. For details, see “Grouping Values
and Facets Into Buckets” on page 367 and FacetDefinition.groupInto in
the MarkLogic Server-Side JavaScript Function Reference.

orderBy Control whether the results from this facet are ordered by frequency or
value and whether they’re listed in ascending or descending order. For
details, see “Sorting Values or Tuples Query Results” on page 330 and
FacetDefinition.orderBy in the MarkLogic Server-Side JavaScript
Function Reference.

slice Define a subset of the results to return. Slicing enables you to “page”
through a large set of results. For details, see “Returning a Result Subset”
on page 331 and FacetDefinition.slice in the MarkLogic Server-Side
JavaScript Function Reference.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 314

/js/ValuesSearch

MarkLogic Server Creating JavaScript Search Applications
7.5.5 Understanding the Output of Facets

By default, only facet data is returned from a facets request, and the data for each facet is an
object containing facetValue:count properties. That is, the default output has the following form:

{"facets": {
"facetName1": {

"facetValue1": count,
...
"facetValueN": count,

},
"facetNameN": { ... },

}}

The facet names come from the facet definition. The facet values and counts come from the index
or lexicon referenced in the facet definition. The following diagram shows the relationship
between a facet definition and the facet data generated from it:

For example, the following output was produced by a facets request that included two facet
definitions, name “Author” and “MediaFormat”. For details on the input facet definitions, see
“Example: Generating Facets From JSON Properties” on page 312.

{"facets":{
"Author": {

map | reduce Use map or reduce to apply transformations to the results. You can only
use map or reduce, never both together. For details, see “Transforming
Results with Map and Reduce” on page 343, FacetDefinition.map, and
FacetDefinition.reduce.

withOptions Specify advanced faceting options, such as an option accepted by
cts.values or a quality weight. A facet definition accepts the same
options configuration as a values query. For details, see
FacetDefinition.withOptions in the MarkLogic Server-Side JavaScript
Function Reference.

Method Stage Description

jsearch.facet('Author', 'author')

"Author": {
 "Mark Twain": 2,
 "John Steinbeck": 1
 }

values and counts
from index

facet label
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 315

MarkLogic Server Creating JavaScript Search Applications
"Mark Twain": 2,
"John Steinbeck": 1

},
"MediaFormat": {

"paperback": 3
}}}

The built-in reducer generates the per facet objects, with counts. If you do not require counts, you
can use the map method to bypass the reducer and configure the built-in mapper to omit the counts.
For example:

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.facets(

jsearch.facet('Author', 'author').map({frequency: 'none'}))
.where(cts.directoryQuery('/books/'))
.result()

Running this query on a database configured according to the instructions in “Preparing to Run
the Examples” on page 375 produces the following output:

{"facets": {
"Author": ["Mark Twain", "Robert Frost", "John Steinbeck"]

}}

If you include a documents call in your facets operation, then the output includes both facet data
and the results of the document search. The output has the following form:

{ "facets": {
property for each facet

},
"documents": [

descriptor for each matched document
]

}

The documents array items are search result descriptors exactly as returned by a document search.
They can include the document contents and search match snippets. For an example, see
“Example: Generating Facets From JSON Properties” on page 312.

You can pass 'iterator' to your result call to return a Sequence as the value of each facet instead of
an object. For example:

import jsearch from '/MarkLogic/jsearch.mjs';
const results =

jsearch.facets(jsearch.facet('Author', 'author'))
.where(cts.directoryQuery('/books/'))
.result('iterator')

const authors = [];
for (const author of results.facets.Author) {

authors.push(author)
}

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 316

MarkLogic Server Creating JavaScript Search Applications
authors

==> [{"Mark Twain":4, "Robert Frost":1, "John Steinbeck":3}]

In this case, the returned Iterable contains only a single item: The object containing the
value:count properties for the facet that is produced by the built-in reducer. However, if you use a
mapper or a custom reducer, you can have more items to iterate over.

For example, the following call chain configures the built-in mapper to return only the facet
values, without counts, so returning an iterator results in a Sequence over each facet value (author
name, here):

import jsearch from '/MarkLogic/jsearch.mjs';
const results =
jsearch.facets(

jsearch.facet('Author', 'author').map({frequency: 'none'}))
.where(cts.directoryQuery('/books/'))
.result('iterator')

const authors = [];
for (const author of results.facets.Author) {

authors.push(author)
}
authors

==> ["Mark Twain", "Robert Frost", "John Steinbeck"]

If you use groupInto to group the values for a facet into “buckets” representing value ranges, then
the value of the facet is either an object or an Iterable over the bucket descriptors. For example,
suppose you generate facets on a price property and get the following values:

{"facets":{
"Price": "8":1, "9":1, "10":1, "16":1, "18":2, "20":1, "30":1}

}}

You could add a groupInto specification to group the facet values into 3 price range buckets
instead, as shown in the following query:

jsearch.facets(
jsearch.facet('Price','price')

.groupInto([
jsearch.bucketName('under $10'), 10,
jsearch.bucketName('$10 to $19.99'), 20,
jsearch.bucketName('over $20')

]))
.where(cts.directoryQuery('/books/'))
.result();

Now, the generated facets are similar to the following:

{"facets": {
"Price": {
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 317

MarkLogic Server Creating JavaScript Search Applications
"under $10": {
"value": {
"minimum": 8,
"maximum": 9,
"upperBound": 10

},
"frequency": 2

},
"$10 to $19.99": {

"value": {
"minimum": 10,
"maximum": 18,
"lowerBound": 10,
"upperBound": 20

},
"frequency": 4

},
"over $20": {

"value": {
"minimum": 20,
"maximum": 30,
"lowerBound": 20

},
"frequency": 2

}
}

} }

For details, see “Grouping Values and Facets Into Buckets” on page 367.

7.5.6 Sorting Facet Values with OrderBy

As mentioned in “Introduction to Facets” on page 309, facet results include a count (or frequency)
by default. You can use FacetDefinition.orderBy to sort the results for a given facet by this
frequency. Including an explicit sort order in your facet definition changes the structure of the
results.

For example, the following query, which does not use orderBy, produces a set of facet values on
“author”, in the form of a JSON object. This is the default behavior. Since the facet is an object
with facetValue:count properties, the facet values are effectively unordered.

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.facets([

jsearch.facet('Author', 'author')])
.where(jsearch.byExample({price: {$lt: 50}}))
.result();

// Produces the following output:
// {"facets":{
// "Author":{
// "John Steinbeck":3,
// "Mark Twain":4,
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 318

MarkLogic Server Creating JavaScript Search Applications
// "Robert Frost":1}
// }}

If you add an orderBy clause to the facet definition, then the value of the facet is an array of
arrays, where each inner array is of the form [item_value, count]. The array items are ordered
by the frequency. For example:

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.facets([

jsearch.facet('Author', 'author').orderBy('frequency')])
.where(jsearch.byExample({price: {$lt: 50}}))
.result();

// Produces the following output:
// {"facets":{
// "Author":[
// ["Mark Twain", 4],
// ["John Steinbeck", 3],
// ["Robert Frost", 1]
//]
// }}

You can also sort by item (the value of “author” in our example), and choose whether to list the
facet values in ascending or descending order. For example, if you use the orderBy clause
orderBy('item', descending), the you get the following output:

{"facets":{
"Author":[

["Robert Frost", 1],
["Mark Twain", 4],
["John Steinbeck", 3]

]
}}

If the default structure does not meet the needs of your application, you can modify the output
using a custom mapper. For more details, see “Transforming Results with Map and Reduce” on
page 343.

7.5.7 Retrieving Facets and Content in a Single Operation

By default, the result of facet generation does not include content from the documents from which
the facets are derived. Add snippets, complete documents, or document projections to the results
by including a documents query in your facets call.

For example, the following query returns both facets and snippets for documents that contain a
“price” property with a value less than 15:

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.facets([

jsearch.facet('Author', 'author'),
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 319

MarkLogic Server Creating JavaScript Search Applications
jsearch.facet('MediaFormat', 'format')],
jsearch.documents())

.where(jsearch.byExample({price: {$lt: 15}}))

.result()

Running this query against the database created by “Preparing to Run the Examples” on page 375
produces the following output. Notice the output includes facets on author and format, plus the
document search results containing snippets (in the “properties” property).

{ "facets": {
"Author": {

"Mark Twain": 2,
"John Steinbeck": 1

},
"MediaFormat": { "paperback": 3 }

},
"documents": [

{ "uri": "/books/twain1.json",
"path": "fn:doc(\"/books/twain1.json\")",
"index": 0,
"matches": [{
"path":

"fn:doc(\"/books/twain1.json\")/edition/number-node(\"price\")",

"matchText": [{ "highlight": "9" }]
}]

},
...additional documents...

],
"estimate": 3

}

The matches property of each documents item contains the snippets. For example, if the above
facets results are saved in a variable named “results”, then you can access the snippets for a given
document through results.documents[n].matches.

To include the complete documents in your facet results instead of just snippets, configure the
built-in mapper on the documents query to extract “all”. For example:

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.facets([

jsearch.facet('Author', 'author'),
jsearch.facet('MediaFormat', 'format')],
jsearch.documents().map({extract:{select:'all'}}))

.where(jsearch.byExample({price: {$lt: 15}}))

.result()

In this case, you access the document contents through the extracted property of each document.
For example, results.documents[n].extracted. The extracted property value is an array because
you can potentially project multiple subsets of content out of the matched document using the
map and reduce features. For details, see “Extracting Portions of Each Matched Document” on
page 337.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 320

MarkLogic Server Creating JavaScript Search Applications
The documents query can include where, orderBy, filter, slice, map/reduce, and withOptions
qualifiers, just as with a standalone document search. For details, see “Document Search Basics”
on page 296.

The document search combines the queries in the where qualifier of the facets query, the where
qualifier of the documents query, and any othersWhere queries on facet definitions into a single
AND query.

For example, the following facets query includes uses all three query sources.

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.facets([

jsearch.facet('Author', 'author'),
jsearch.facet('MediaFormat','format')

.othersWhere(jsearch.byExample({format: 'paperback'}))],
jsearch.documents()

.where(jsearch.byExample({author: 'Mark Twain'})))
.where(jsearch.byExample({price: {$lt: 20}}))
.result()

This query has the following effect on the returned results:

• Only generate facets from documents where “price < 20”. From this part of the query:
jsearch.facets(...).where(jsearch.byExample({price: {$lt: 20}})).

• For facets other than format, only return facet values for documents where “format is
paperback”. From this part of the query:
jsearch.facet('MediaFormat','format').othersWhere(jsearch.byExample({format:
'paperback'}))

• Only return documents where “author is Mark Twain”. From this part of the query:
jsearch.documents().where(jsearch.byExample({author: 'Mark Twain'}))

Thus, the query only returns matches where all the following conditions are met: “price < 20” and
“format is paperback” and “author is Mark Twain”.

You can use the returnQueryPlan option to explore this relationship. For example, adding a
withOptions call to the documents query as shown below returns the following information in the
results:

...
jsearch.documents()

.where(jsearch.byExample({author: 'Mark Twain'}))

.withOptions({returnQueryPlan: true})
...

==> results.queryPlan includes the following information
(reformatted for readability)

Search query contributed 3 constraints:
cts.andQuery([
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 321

MarkLogic Server Creating JavaScript Search Applications
cts.jsonPropertyRangeQuery("price", "<", xs.float("20"), [], 1),
cts.jsonPropertyValueQuery("format", "paperback",

["case-sensitive","diacritic-sensitive","punctuation-sensitive",
"whitespace-sensitive","unstemmed","unwildcarded","lang=en"], 1),

cts.jsonPropertyValueQuery("author", "Mark Twain",
["case-sensitive","diacritic-sensitive","punctuation-sensitive",
"whitespace-sensitive","unstemmed","unwildcarded","lang=en"], 1)

], [])

7.5.8 Multi-Facet Interactions Using othersWhere

Use the FacetDefinition.othersWhere method to efficiently vary facet values across user
interactions and deliver a more intuitive faceted navigation user experience.

Imagine an application that enables users to filter a search using facet-based filtering controls.
Each time a user interacts with the filtering controls, the application makes a request to
MarkLogic to retrieve new search results and facet values that reflect the current search criteria.

A naive implementation might apply the selection criteria across all facets and document results.
However, this causes values to “drop out” of the filtering choices, making it more difficult for
users to be aware of other choice or change the filters.

The application could generate the values for each facet and for the matching documents
independently, but this is inefficient because it requires multiple requests to MarkLogic. A better
approach is to use the othersWhere method to apply criteria asymmetrically to the facets and
collectively to the document search portion.

The following example uses othersWhere to generate facet values for two selection criteria, an
author value of “Mark Twain” and a format value of “paperback”:

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.facets(

[jsearch.facet('Author', 'author')
.othersWhere(jsearch.byExample({author: 'Mark Twain'})),

jsearch.facet('MediaFormat', 'format')
.othersWhere(jsearch.byExample({format: 'paperback'}))],

jsearch.documents())
.where(cts.directoryQuery('/books/'))
.result()

When each facet applies othersWhere to selection criteria based on itself, you get multi-facet
interactions. For example, the above query returns the following results. Thanks to the use of
othersWhere on each facet definition, the author facet values are unaffected by the “Mark Twain”
selection and the format facet values are unaffected by “paperback” selection. The document
search is affected by both.

{"facets":{
"Author":{"John Steinbeck":1, "Mark Twain":2, "Robert Frost":1},
"MediaFormat":{"hardback":2, "paperback":2}},
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 322

MarkLogic Server Creating JavaScript Search Applications
"documents":[...snippets for docs matching both criteria...]
}

If you pass the criteria in through the where method instead, some facet values “drop out”, making
it more difficult for users to see the available selections or to change selections. For example, the
following query puts the author and format criteria in the where call, resulting in the facet values
shown:

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.facets(

[jsearch.facet('Author', 'author'),
jsearch.facet('MediaFormat', 'format')],

jsearch.documents())
.where([cts.directoryQuery('/books/'),

jsearch.byExample({author: 'Mark Twain'}),
jsearch.byExample({format: 'paperback'})])

.result()

==>
{"facets":{

"Author":{"Mark Twain":2},
"MediaFormat":{"paperback":2}},

"documents":[...snippets for docs matching both criteria...]

The differences in these two approaches are explored in more detail in “Example: Multi-Facet
Interactions Using othersWhere” on page 323.

The JSearch API also includes a FacetDefinition.thisWhere modifier which has the opposite
effect of othersWhere: The selection criteria is applied only to the subject facet, not to any other
facets or to the document search. For details, see FacetDefinition.thisWhere in the MarkLogic
Server-Side JavaScript Function Reference.

7.5.9 Example: Multi-Facet Interactions Using othersWhere

This example explores the use of othersWhere to enable search selection criteria to affect related
facets asymmetrically, as described in “Multi-Facet Interactions Using othersWhere” on
page 322.

This example assumes the database configuration and content described in “Preparing to Run the
Examples” on page 375.

Suppose you have an application that enables users to search for books, and the application
displays facets on author and format (hardback, paperback, etc.) that can be used to narrow a
search.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 323

MarkLogic Server Creating JavaScript Search Applications
The following diagram contrasts two possible approaches to implementing such a faceted
navigation control. The middle column represents a faceted navigation control when the user’s
selection criteria are applied symmetrically to all facets through the where method. The rightmost
column represents the same control when the user’s criteria are applied asymmetrically using
othersWhere. Notice that, in the rightmost column, the user can always see and select alternative
criteria.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 324

MarkLogic Server Creating JavaScript Search Applications
Author

Media Format

Mark Twain (4)
Robert Frost (1)
John Steinbeck (3)

audiobook (1)
hardback (3)
paperback (4)

Author

Media Format

Mark Twain (4)
Robert Frost (1)
John Steinbeck (3)

Author

Media Format

Mark Twain (2)
Robert Frost (1)
John Steinbeck (1)

audiobook (1)
hardback (3)
paperback (4)

Author

Media Format

Mark Twain (2)
Robert Frost (1)
John Steinbeck (1)

Author

Media Format

Mark Twain (4)
Robert Frost (1)
John Steinbeck (3)

audiobook (1)
hardback (3)
paperback (4)

Author

Media Format

Mark Twain (4)

hardback (2)
paperback (2)

Author

Media Format

Mark Twain (2)
Robert Frost (1)
John Steinbeck (1)

paperback (4)

Author

Media Format

Mark Twain (2)

paperback (2)

Selections apply to ALL
facets (where())

Selections apply to OTHER
facets (othersWhere())

No
selection
criteria

author:
Mark Twain

format:
paperback

author:
Mark Twain

format:
paperback

AND

Facet
criteria

hardback (2)
paperback (2)

hardback (2)
paperback (2)
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 325

MarkLogic Server Creating JavaScript Search Applications
The remainder of this example walks through the code that backs the results in both columns.

Before the user selects any criteria, the baseline facets are generated with the following request.
Facet values are generated for the “author” and “format” JSON properties. The documents in the
“/books/” directory seed the initial search results that the user can drill down on. (Matched
documents are not shown.)

// baseline - no selection criteria
import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.facets([

jsearch.facet('Author', 'author'),
jsearch.facet('MediaFormat', 'format')

], jsearch.documents())
.where(cts.directoryQuery('/books/'))
.result()

Consider the case where the user then selects an author, and the application applies the selection
criteria unconditionally, resulting in the following filtering control changes:

The user can no longer readily see the other available authors. These results were generated by the
following query, where the cts.directoryQuery query represents the baseline search, and the
jsearch.byExample query represents the user selection. Passing the author query to the where
method applies it to all facets and the document search.

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.facets(

[jsearch.facet('Author', 'author'),
jsearch.facet('MediaFormat', 'format')],

jsearch.documents())
.where([cts.directoryQuery('/books/'),

jsearch.byExample({author: 'Mark Twain'})])
.result()

Author

Media Format

Mark Twain (4)
Robert Frost (1)
John Steinbeck (3)

audiobook (1)
hardback (3)
paperback (4)

Author

Media Format

Mark Twain (4)

hardback (2)
paperback (2)

User selects
Mark Twain

No selections Selections applied
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 326

MarkLogic Server Creating JavaScript Search Applications
By moving the author query to an othersWhere modifier on the author facet, you can apply the
selection to other facets, such as format, and to the document search, but leave the author facet
unaffected by the selection criteria. For example:

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.facets(

[jsearch.facet('Author', 'author')
.othersWhere(jsearch.byExample({author: 'Mark Twain'})),

jsearch.facet('MediaFormat', 'format')],
jsearch.documents())

.where(cts.directoryQuery('/books/'))

.result()

Using using othersWhere instead of where to pass the criteria results in the following display. The
user can clearly see the alternative author choices and the number of items that match each other.
Yet, the user can still see how his author selection affects the available media formats and the
matching documents. The diagram below illustrates how the application might display the
returned facet values. Snippets are returned for all documents with “Mark Twain” as the author.

If the user chooses to further filter on the “paperback” media format, you can use othersWhere on
the format facet to apply this criteria to the author facet values and the document search, but leave
all the format facets values available. For example:

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.facets(

[jsearch.facet('Author', 'author')
.othersWhere(jsearch.byExample({author: 'Mark Twain'})),

jsearch.facet('MediaFormat', 'format')
.othersWhere(jsearch.byExample({format: 'paperback'}))],

jsearch.documents())
.where(cts.directoryQuery('/books/'))
.result()

Author

Media Format

Mark Twain (4)
Robert Frost (1)
John Steinbeck (3)

audiobook (1)
hardback (3)
paperback (4)

User selects
Mark Twain

Author

Media Format

Mark Twain (4)
Robert Frost (1)
John Steinbeck (3)

hardback (2)
paperback (2)

No selections Selections applied
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 327

MarkLogic Server Creating JavaScript Search Applications
The above query results in the following display. The user can easily see and select a different
author or format. The matched documents are not shown, but they consist of documents that
match both the author and format selections.

7.6 Controlling the Ordering of Results

Use the orderBy function to control the order in which your query results are returned. You can
apply an orderBy “clause” to a document search, word lexicon query, values query, or tuples
query.

Though you can use orderBy with all these query types, the specifics vary. For example, you can
only specify content-based sort keys in a document search, and you can only choose between item
order and frequency order on a values or tuples query.

This section covers the following topics.

• Sorting Document Search Results

• Sorting Values or Tuples Query Results

• Sorting Word Lexicon Query Results

• Sorting Facet Values

7.6.1 Sorting Document Search Results

By default, search results are returned in relevance order, with most relevant results displayed
first. That is, the sort key is the relevance score and the sort order is descending.

Author

Media Format

Mark Twain (4)
Robert Frost (1)
John Steinbeck (3)

audiobook (1)
hardback (3)
paperback (4)

User selects
Mark Twain &

Author

Media Format

Mark Twain (2)
Robert Frost (1)
John Steinbeck (1)

hardback (2)
paperback (2)

paperback

No selections Selections applied
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 328

MarkLogic Server Creating JavaScript Search Applications
You can use the DocumentsSearch.orderBy method to change the sort key and ordering
(ascending/descending). You can sort the results by features of your content, such as the value of
a specified JSON property, and by attributes of the match, such as fitness, confidence, or
document order. You must configure a range index for each JSON property, XML element, XML
attribute, field, or path on which you sort.

For example, the following code sorts results by value of the JSON property named “title”. A
range index for the “title” property must exist.

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.documents()

.where(jsearch.byExample({'author': { '$word': 'twain' }}))

.orderBy('title')

.result();

The use of a simple name in the orderBy call implies a cts.jsonPropertyReference. You can also
explicitly construct a cts.reference by calling an index reference constructor such as
cts.jsonPropertyReference, cts.elementReference, cts.fieldReference, or cts.pathReference.
For example, the following call specifies ordering on the JSON property “price”:

orderBy(cts.jsonPropertyReference('price'))

To sort results based on search metadata such as confidence, fitness, and quality, use the
cts.order constructors. For example, the following orderBy specifies sorting by confidence rather
than relevance score:

orderBy(cts.confidenceOrder())

You can also use the cts.order constructors to control whether results are sorted in ascending or
descending order with respect to a sort key. For example, the following call sorts by the JSON
property “price”, in ascending order:

orderBy(
cts.indexOrder(cts.jsonPropertyReference('price'), 'ascending'))

You can specify more than one sort key. When there are multiple keys, they’re applied in the order
they appear in the array passed to orderBy. For example, the following call says to first order
results by the “price” JSON property values, and then by the “title” values.

orderBy(['price', 'title'])

For details, see DocumentsSearch.orderBy in the MarkLogic Server-Side JavaScript Function
Reference and Sorting Searches Using Range Indexes in the Query Performance and Tuning Guide.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 329

MarkLogic Server Creating JavaScript Search Applications
7.6.2 Sorting Values or Tuples Query Results

By default, values and tuples query results are returned in ascending item order. You can use the
ValuesSearch.orderBy and TuplesSearch.orderBy methods to specify whether to order the results
by value (item order) or frequency, and whether to use ascending or descending order.

For example, the following query returns all the values of the price JSON property, in ascending
order of the values:

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.values('price').result()

==> [8, 9, 10, 16, 18, 20, 30]

The following code modifies the query to return the results in frequency order. By default,
frequency order returns results in descending order (most to least frequent). In this case, the
database contained multiple documents with price 18, and only a single document containing each
of the other price points, so the 18 value sorted to the front of the result array, and the remaining
values that share the same frequency appear in document order.

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.values('price').orderBy('frequency').result()

==> [18, 8, 9, 10, 16, 20, 30]

To order the results by ascending frequency value, pass 'ascending' as the second parameter of
orderBy. For example:

orderBy('frequency', 'ascending')

You can also include the frequency values in the results using the map or reduce methods. For
details, see “Querying the Values in a Lexicon or Index” on page 354.

7.6.3 Sorting Word Lexicon Query Results

When you query a word lexicon using the jsearch.words resource selector method, results are
returned in ascending order. Use the WordsSearch.orderBy method to control whether the results
are returned in ascending or descending order.

For example, the following query returns the first 10 results in the default (ascending) order:

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.words('title').result()

==>
["Adventures", "and", "Collected",
"East", "Eden", "Finn", "Grapes",
"Huckleberry", "Men", "Mice"]
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 330

MarkLogic Server Creating JavaScript Search Applications
You can use orderBy to change the order of results. For example, the following call returns the 10
results when the words in title are sorted in descending order:

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.words('title').orderBy('descending').result()

==>
["Wrath", "Works", "Tom", "The",
"Sawyer", "Of", "of", "Mice",
"Men", "Huckleberry"]

Note that this example assumes the database configuration includes a word lexicon on the “title”
JSON property. For more details on querying word lexicons, see “Querying Values in a Word
Lexicon” on page 359.

7.6.4 Sorting Facet Values

When you generate facets with frequencies using jsearch.facets, the values of each facet are
expressed as a JSON object, so they are effectively unordered. You can use
FacetDefinition.orderBy to control the sort order and change the output to a structure that can be
meaningfully ordered (an array of arrays).

For more details, see “Sorting Facet Values with OrderBy” on page 318.

7.7 Returning a Result Subset

You can use the slice method to return a subset of the results from a top level documents, values,
tuples, or words query, or when generating facets.

A slice specification works like Array.slice and has the following form:

slice(firstPosToReturn, lastPosToReturn + 1)

The positions use a 0-based index. That is, the first item is position 0 in the result list. Thus, the
following returns the first 3 documents in the “classics” collection:

import jsearch from '/MarkLogic/jsearch.mjs';
const classics = jsearch.collections('classics');

classics.documents()
.slice(0,3)
.result()

You cannot request items past the end of result set, so it is possible get fewer than the requested
number of items back. When the search results are exhausted, the results property of the return
value is null, just as for a search which matches nothing. For example:

{ results: null, estimate: 4 }
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 331

MarkLogic Server Creating JavaScript Search Applications
Applying slice iteratively to the same query enables you to return successive “pages” of results.
For example, the following code iterates over search results in blocks of three results at a time:

import jsearch from '/MarkLogic/jsearch.mjs';
const sliceStep = 3; // max results per batch
const sliceStart = 0;
const sliceEnd = sliceStep;
const response = {};
do {

response = jsearch.documents().slice(sliceStart, sliceEnd).result();
if (response.results != null) {

// do something with the results
sliceStart += response.results.length;
sliceEnd += sliceStep;

}
} while (response.results != null);

You can set the slice end position to zero to suppress returning results when you’re only interested
in query metadata, such as the estimate or when using returnQueryPlan:true. For example, the
following returns the estimate without results:

import jsearch from '/MarkLogic/jsearch.mjs';

jsearch.documents()
.where(cts.jsonPropertyValueQuery('author', 'Mark Twain'))
.slice(0,0)
.result()

==>

{ results: null, estimate: 4 }

For details, see the following methods:

• DocumentsSearch.slice

• FacetDefinition.slice

• ValuesSearch.slice

• TuplesSearch.slice

• WordsSearch.slice

7.8 Including Snippets of Matching Content in Search Results

When you perform a document search using jsearch.documents, the result is an array or Iterable
over descriptors of each match. Each descriptor includes the contents of the matching document
by default. You can use snippeting to a include portion of the content around the match in each
result, instead of (or in addition to) the complete document.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 332

MarkLogic Server Creating JavaScript Search Applications
This section covers the following topics:

• Enabling Snippet Generation

• Configuring the Built-In Snippet Generator

• Returning Snippets and Documents Together

• Generating Custom Snippets

• Standalone Snippet Generation

7.8.1 Enabling Snippet Generation

You can include snippets in a document query by adding a map clause to your query that sets the
built-in mapper configuration property snippet to true or setting snippet to a configuration
object, as described in “Configuring the Built-In Snippet Generator” on page 334. (Snippets are
generated by default when you include any document query in a jsearch.facets operation.)

For example, the following query matches occurrences of the word “california” and returns the
default snippets instead of the matching document:

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.documents()

.where(jsearch.byExample({synopsis: {$word: 'california'}}))

.map({snippet: true})

.result()

==>
{"results":[

{"score":28672,
 "fitness":0.681636929512024,
 "uri":"/books/steinbeck1.json",
 "path":"fn:doc(\"/books/steinbeck1.json\")",
 "confidence":0.529645204544067,
 "index":0,
 "matches":[{

 "path":"fn:doc(\"/books/steinbeck1.json\")/text(\"synopsis\")",
 "matchText":[

 "...from their homestead and forced to the promised land of ",
 {"highlight":"California"}, "."

]
 }]
},
{ ... }, ...
],
"estimate":3

}

If this was a default search (no snippets), there would be a “document” property instead of the
“matches” property, as shown in “Example: Basic Document Search” on page 298.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 333

MarkLogic Server Creating JavaScript Search Applications
For more details, see DocumentsSearch.map.

7.8.2 Configuring the Built-In Snippet Generator

You can configure the built-in snippet generator by setting the built-in mapper snippet property
to a configuration object instead of a simple boolean vaue.

You can set the following snippet configuration properties:

For example, the following configuration only returns snippets for matches occurring in the
synopsis property and surrounds the highlighted matching text by at most 5 tokens.

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.documents()

.where(cts.wordQuery('california'))

.map({snippet: {
preferredMatches: ['synopsis'],
perMatchTokens: 5

}})
.result()

Property Description

maxMatches The maximum number of nodes containing a highlighted term to
include in the snippet. Default: 4.

perMatchTokens The maximum number of tokens (typically words) per matching node
that surround the highlighted term(s) in the snippet. Default: 30.

maxSnippetChars The maximum total snippet size, in characters. Default: 200.

preferredMatches The snippet alogorithm looks for matches first in the specified XML
element or JSON property nodes in each snippet. If no matches are
found in the preferred elements or properties, the algorithm falls back
to default content. XML element names can be namespace qualified;
use the namespaces property (sibling of snippet) to define your
prefixes.

query Generate snippets based on matches to the specified query. Required
when snippeting with documentSelect, optional when snippeting with
documents. This is only useful for documents().map() when the snippet
query needs to be different from the document retrieval query (e.g. the
query in the where clause).
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 334

MarkLogic Server Creating JavaScript Search Applications
Thus, if the word query for occurrences of “california” matched text in both the title and
synopsis for some documents, only the matches in synopsis are returned. Also, the snippet match
text is shorter, as shown below.

// match text in snippet with default perMatchTokens
"matchText":[

"...an unlikely pair of drifters who move from
job to job as farm laborers in ",

{"highlight":"California"},
", until it all goes horribly awry."

]

// match text in snippet with perMatchTokens set to 5
"matchText":[

"...farm laborers in ",
{"highlight":"California"},
", until it..."

]

When snippeting over XML documents and using preferredMatches, use a QName rather than a
simple string to specify namespace-qualified elements. For example:

{snippet: {
preferredMatches: [fn.QName('/my/namespace','synopsis')]

}}

For more details, see DocumentsSearch.map.

7.8.3 Returning Snippets and Documents Together

To return snippets and complete documents or document projections together, set snippet to true
and configure the extract property of the built-in mapper to select the desired document contents.
For details about extract, see “Extracting Portions of Each Matched Document” on page 337.

The following example returns the entire matching document in an extracted property and the
snippets in the matches property of the results:

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.documents()

.where(jsearch.byExample({synopsis: {$word: 'California'}}))

.map({snippet: true, extract: {selected: 'all'}})

.result()

==>
{"results":[

{"score":28672,
 "fitness":0.681636929512024,
 "uri":"/books/steinbeck1.json",
 "path":"fn:doc(\"/books/steinbeck1.json\")",
"extracted":[{

"title":"The Grapes of Wrath",
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 335

MarkLogic Server Creating JavaScript Search Applications
"author":"John Steinbeck",
"edition":{"format":"paperback", "price":9.99},
"synopsis":"Chronicles the 1930s Dust Bowl migration of one

Oklahoma farm family, from their homestead and forced to
the promised land of California."

}]
 "confidence":0.529645204544067,
 "index":0,
"matches":[{
 "path":"fn:doc(\"/books/steinbeck1.json\")/text(\"synopsis\")",
 "matchText":[

 "...from their homestead and forced to the promised land of ",
 {"highlight":"California"}, "."

]
 }]
},
{ ... }, ...
],
"estimate":3

}

For more details, see DocumentsSearch.map.

7.8.4 Generating Custom Snippets

If the snippets and projections generated by the built-in mapper do not meet the needs of your
application, you can use a custom mapper to generate customized results. For details, see
“Transforming Results with Map and Reduce” on page 343.

7.8.5 Standalone Snippet Generation

You can use the jsearch.documentSelect method to generate snippets from an arbitrary set of
documents, such as the output from cts.search or fn.doc. The output is a Sequence of results.

If the input is the result of a search that matches text, then the results include search result
metadata such as score, along with your snippets. Search metadata is not included if the input is
an arbitrary set of documents or the result of a search that doesn’t match text, such as a collection
or directory query.

You must include a query in the snippet configuration when using documentSelect so the
snippeter has search matches against which to generate snippets. You can also include the other
properties described in “Configuring the Built-In Snippet Generator” on page 334.

The following example uses documentSelect to generate snippets from the result of calling
cts.search (instead of jsearch.documents).

import jsearch from '/MarkLogic/jsearch.mjs';
const myQuery =

cts.andQuery([
cts.directoryQuery('/books/'),
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 336

MarkLogic Server Creating JavaScript Search Applications
cts.jsonPropertyWordQuery('synopsis', 'california')])
jsearch.documentSelect(

cts.search(myQuery),
{snippet: {query: myQuery}})

7.9 Extracting Portions of Each Matched Document

You can use the built-in mapper of document search to return selected portions of each document
that matches a search. You can use the extraction feature with jsearch.documents and
jsearch.documentSelect.

This section includes the following topics:

• Extraction Overview

• How selected Affects Extraction

• Combining Extraction With Snippeting

7.9.1 Extraction Overview

By default, a document search returns the complete document for each search match. You can use
extract feature of the built-in documents mapper to extract only selected parts of each matching
document instead. Such a subset of the content in a document is sometimes called a sparse
document projection. This feature is similar to the query option extract-document-data. available
to the XQuery Search API and the Client APIs.

You use XPath expressions to identify the portions of the document to include or exclude. XPath
is a standard expression language for addressing XML content. MarkLogic has extended XPath so
you can also use it to address JSON. For details, see Traversing JSON Documents Using XPath in the
Application Developer’s Guide and XPath Quick Reference in the XQuery and XSLT Reference
Guide.

To generate sparse projections, configure the extract property of the built-in mapper of a
document search. The property has the following form:

extract: {
paths: xPathExpr | [xPathExprs],
selected: 'include' | 'include-with-ancestors' | 'exclude' | 'all'

}

Specify one or more XPath expressions in the paths value; use an array for specifying multiple
expressions. The selected property controls how the content selected by the paths affects the
document projection. The selected property is optional and defaults to 'include' if not present;
for details, see “How selected Affects Extraction” on page 339.

For example, the following code extracts just the title and author properties of documents
containing the word “California” in the synopsis property.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 337

MarkLogic Server Creating JavaScript Search Applications
import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.documents()

.where(jsearch.byExample({synopsis: {$word: 'California'}}))

.map({extract: {paths: ['/title', '/author']}})

.result()

The table below displays the default output of the query (without a mapper) on the left and the
result of using the example extraction on the right. Notice that the document property that contains
the complete document contents has been replaced with an extracted property that contains just
the requested subset of content.

When extracting XML content that uses namespaces, you can use namespace prefixes in your
extract paths. Define the prefix bindings in the namespaces property of the mapper configuration
object. For example, the following configuration binds the prefix “my” to the namespace URI
“/my/namespace”, and then uses the “my” prefix in an extract path.

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.documentSelect(fn.doc('/books/some.xml'),

{
namespaces: {my: '/my/namespace'},
extract: {paths: ['/my:book/my:title']}

})

Default Output With Extract

{ "results": [
{ "index": 0,

"uri": "/books/steinbeck1.json",
"score": 34816,
"confidence": 0.54882669448852,
"fitness": 0.6809344291687,
"document": {

"title": "The Grapes of Wrath",
"author": "John Steinbeck",
"edition": {
"format": "paperback",
"price": 10

},
"synopsis": "Chronicles the

1930s Dust Bowl migration
of one Oklahoma farm family,
from their homestead and
forced to the promised land
of California."

}
}, ...additonal results...],
"estimate": 3

}

{ "results": [
{ "index": 0

"uri": "/books/steinbeck1.json",
"score": 18432,
"confidence": 0.4903561770916,
"fitness": 0.71398365497589,
"path": "fn:doc(\"/books/steinb...",

"extracted": [
{ "title": "The Grapes of Wrath" },
{ "author": "John Steinbeck" }

],
}, ...additional results...],
"esitmate": 3

}

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 338

MarkLogic Server Creating JavaScript Search Applications
Since the extraction feature is a capability of the built-in mapper for a document search, you
cannot use it when using a custom mapper. If you want to return document subsets when using a
custom mapper, you must construct the projections yourself.

For more details on using and configuring mappers, see “Transforming Results with Map and
Reduce” on page 343.

7.9.2 How selected Affects Extraction

The selected property of the extract configuration for DocumentsSearch.map determines what to
include in the extracted content. By default, the extracted content includes only the content
selected by the path expressions. However, you can use the select property to configure these
alternatives:

• include enclosing objects or elements (ancestors) in addition to the named nodes

• exclude the specified nodes rather than include them

• include all nodes, effectively ignoring the specified paths and including the whole
document

For example, the documents loaded by “Preparing to Run the Examples” on page 375 have the
following form:

{ "title": string,
"author": string,
"edition": {

"format": string,
"price": number

},
"synopsis": string

}

The table below illustrates how various selected settings affect the extraction of the title and
price properties. The first row ('include') also represents the default behavior when selected is
not explicitly set.

extract Configuration extracted Value

{extract: {
paths: ['/title','/price'],
selected: 'include'

}}

"extracted":[
{"title": "The Grapes of Wrath"},
{"price": 10}

]

{extract: {
paths: ['/title','/price'],
selected: 'include-with-ancestors'

}}

"extracted":[{
"title": "The Grapes of Wrath",
"edition": {"price":10}

}]
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 339

MarkLogic Server Creating JavaScript Search Applications
If the combination of paths and select selects no content for a given document, then the results
contain an extractedNone property instead of an extracted property. For example:

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.documents()

.where(jsearch.byExample({synopsis: {$word: 'California'}}))

.map({extract: {paths: ['/no/matches'], selected: 'include'}})

.result()

==>

{"results":[
{ ...,

"extractedNone":true,
...

}]}

7.9.3 Combining Extraction With Snippeting

By default, snippets are not generated when you use extraction, but you can configure your search
to return both snippets and extracted content by setting snippet to true in the mapper
configuration. For example, the following search:

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.documents()

.where(jsearch.byExample({synopsis: {$word: 'California'}}))

.map({snippet: true, extract: {paths: ['/title', '/author']}})

.result()

Produces output similar to the following, with the document projects in the extracted property and
the snippets in the matches property:

{extract: {
paths: ['/title','/price'],
selected: 'exclude'

}}

"extracted":[{
"author": "John Steinbeck",
"edition": {"format":"paperback"},
"synopsis": ...

}]

{extract: {
paths: ['/title','/price'],
selected: 'all'

}}

"extracted":[{
"title":"The Grapes of Wrath",
"author":"John Steinbeck",
"edition":{

"format":"paperback",
"price":10

},
"synopsis": ...

}]

extract Configuration extracted Value
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 340

MarkLogic Server Creating JavaScript Search Applications
{ "results": [
{ "score": 18432,

"fitness": 0.71398365497589,
"uri": "/books/steinbeck1.json",
"path": "fn:doc(\"/books/steinbeck1.json\")",
"extracted": [

{ "title": "The Grapes of Wrath" },
{ "author": "John Steinbeck" }

],
"confidence": 0.4903561770916,
"index": 0,
"matches": [{

"path": "fn:doc(\"/books/steinbeck1.json\")/text(\"synopsis\")",
"matchText": [
"...from their homestead and forced to the promised land of ",
{ "highlight": "California" },
"."

]
}]

}, ...]
}

Similarly, you can include both snippet and extract specifications in the configuration for
jsearch.documentSelect. For example:

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.documentSelect(

cts.search(cts.jsonPropertyWordQuery('synopsis', 'California')),
{snippet: {

query: cts.jsonPropertyWordQuery('synopsis', 'California') }
extract: {paths: ['/title', '/author'], selected: 'include'}

}
)

For more details on snippeting, see “Including Snippets of Matching Content in Search Results”
on page 332.

7.10 Using Options to Control a Query

You can control a document search with options in two ways:

• Specify query-specific options during construction of a query.

• Specify search-wide options using the DocumentsSearch.withOptions method.

Other JSearch operations, such as lexicon searches, use a similar convention for passing options
to a specific query or applying them to the entire operation.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 341

MarkLogic Server Creating JavaScript Search Applications
For example, the following query uses the query-specific $exact option of QBE to disable exact
match semantics on the value query constructed with jsearch.byExample. However, this setting
has no effect on the query constructed by cts.jsonPropertyValueQuery or on the top level
cts.orQuery.

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.documents()

.where(cts.orQuery([
jsearch.byExample({author: {$value: 'mark twain', $exact: false}}),
cts.jsonPropertyValueQuery('author', 'john steinbeck')

]))
.result()

The available per-query options depend on the type of query. The mechanism for specifying
per-query options depends on the construction method you choose. For details, consult the
appropriate API reference.

For example, cts.jsonPropertyValueQuery accepts a set of options as a parameter. through these
options you can control attributes such as whether or not to enable stemming:

cts.jsonPropertyValueQuery(
'author', 'mark twain', ['case-insensitive', 'lang=en'])

Options that can apply to the entire search are specified using the withOptions method. For
example, you can use withOptions to pass options to the underlying cts.search operation of a
documents search:

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.documents()

.where(cts.jsonPropertyValueQuery('author','mark twain'))

.withOptions({search: ['format-xml','score-logtf']})

.result()

For more details, see the following methods:

• DocumentsSearch.withOptions

• ValuesSearch.withOptions

• TuplesSearch.withOptions

• WordsSearch.withOptions

• FacetsSearch.withOptions

• FacetDefinition.withOptions

Note that, specifically in the case of passing options through to cts.search, some commonly used
options are surfaced directly through JSearch methods, such as the DocumentsSearch.filter
method. You should use the JSearch mechanism when this overlap is present.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 342

MarkLogic Server Creating JavaScript Search Applications
7.11 Transforming Results with Map and Reduce

The top level JSearch query options such as documents, values, tuples, and words include map
and reduce methods you can use to tailor the final results in a variety of ways, such as including
snippets in a document search or applying a content transformation.

This section includes the following topics:

• Map and Reduce Overview

• Configuring the Built-In Mapper

• Using a Custom Mapper

• Configuring the Built-In Reducer

• Using a Custom Reducer

• Example: Returning Only Documents

• Example: Using a Custom Mapper for Content Transformation

• Example: Custom Reducer For Document Search

• Example: Custom Reducer For Values Query

7.11.1 Map and Reduce Overview

The top level JSearch operations for document search (documents) and lexicon queries (values,
tuples, and words) include map and reduce methods for customizing your query results. You can
choose to use either map or reduce, but not both.

A mapper takes in a single value and produces zero results or one result. The mapper is invoked
once for each item (search result, value, or tuple) processed by the query operation. The output
from the mapper is pushed on to the results array. A mapper is well suited for applying
transformations to results.

In broad strokes, a reducer takes in a previous result and a single value and returns either an item
to pass to next invocation of the reducer, or a final result. The output from the final invocation
becomes the result. Reducers are well suited for computing aggregates over a set of results.

You can supply a custom mapper or reducer by passing a function reference to the map or reduce
method. Some operations also have a built-in mapper and/or reducer that you can invoke by
passing a configuration object in to the map or reduce method. For example, the built-in mapper
for document search can be used to generate snippets.

Thus, your map or reduce call can have one of the following forms:

// configure the built-in mapper, if supported
.map({configProperties...})
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 343

MarkLogic Server Creating JavaScript Search Applications
// use a custom mapper
.map(function (currentItem) {...})

// configure the built-in reducer, if supported
.reduce({configProperties...})

// use a custom reducer
.reduce(function (prevResult, currentItem, index, state) {...})

The available configuration properties and behavior of the built-in mapper and reducer depend on
the operation you apply map or reduce to. For details, see “Configuring the Built-In Mapper” on
page 344.

The following methods support map and reduce operations. For configuration details, see the
MarkLogic Server-Side JavaScript Function Reference.

• DocumentsSearch.map and DocumentsSearch.reduce

• FacetDefinition.map and FacetDefinition.reduce

• ValuesSearch.map and ValuesSearch.reduce

• TuplesSearch.map and TuplesSearch.reduce

• WordsSearch.map and WordsSearch.reduce

7.11.2 Configuring the Built-In Mapper

The capabilities of the built-in mapper vary, depending on the type of query operation (documents,
values, or tuples). For example, the built-in mapper for a document search can be configured to
generate snippets and document projections, while the built-in mapper on a values query can be
configured to include frequency values in the results.

Configure the built-in mapper by passing a configuration object to the map method instead of a
function reference. For example, the following call chain configures the built-in mapper for
document search to return snippets:

jsearch.documents().map({snippet:true}).result()
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 344

MarkLogic Server Creating JavaScript Search Applications
The table below outlines the capabilities of the built-in mapper for each JSearch query operation.

7.11.3 Using a Custom Mapper

You can supply a custom mapper to the map method of the documents, values, tuples, and words
queries. To use a custom mapper, pass a function reference to the map method in your query call
chain:

... .map(funcRef)

The mapper function must have the following signature and should produce either no result or a
single result. If the function returns a value, it is pushed on to the final results array or iterator.

function (currentItem)

The currentItem parameter can be a search result, tuple, value, or word, depending on the calling
context. For example, the mapper on a document search (the documents method) takes a single
search result descriptor as input.

Any value returned by your mapper is pushed on to the “results” array.

The following example uses a custom mapper on a document search to add a property named
“iWasHere” to each search result. The input in this case is the search result for one document.

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.documents()

.where(cts.jsonPropertyValueQuery('author','Mark Twain'))

.map(function (value) {value.iWasHere = true; return value;})

Operation Built-In Mapper Capabilities

documents Generation of snippets, document projections, and/or URIs for similar
documents. For details, see “Including Snippets of Matching Content in
Search Results” on page 332, “Extracting Portions of Each Matched
Document” on page 337, and DocumentsSearch.map in the MarkLogic
Server-Side JavaScript Function Reference.

values Control and generation of frequency data in the results. Optionally, add labels
to returned values and frequencies. For details, see ValuesSearch.map in the
MarkLogic Server-Side JavaScript Function Reference.

tuples Control and generation of frequency data in the results. Optionally, adds
labels to returned tuples and frequencies. For details, TuplesSearch.map in the
MarkLogic Server-Side JavaScript Function Reference.

words None. The words operation only supports a custom mapper.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 345

MarkLogic Server Creating JavaScript Search Applications
.result()

==>
{"results":[

 {"index":0,
"uri":"/books/twain4.json",
"score":14336,
"confidence":0.3745157122612,
"fitness":0.7490314245224,
"document":{...},
"iWasHere":true

 },
 {"index":1, ...},
 ...
],
"estimate":4

}

Your mapper is not required to return a value. If you return nothing or explicitly return undefined,
then the final results will contain no value corresonding to the current input item. For example,
the following mapper eliminates every other search result:

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.documents()

.map(function (value) {
if (value.index % 2 > 0) {

return value;
}

})
.result().results.length

If your database contains only the documents from “Preparing to Run the Examples” on page 375,
then the script should produce the answer 4 when run in Query Console.

For an additional example, see “Example: Using a Custom Mapper for Content Transformation”
on page 349.

7.11.4 Configuring the Built-In Reducer

The capabilities of the built-in reducer vary, depending on the type of query operation. Currently,
only values offers a built-in reducer.

Configure the built-in reducer by passing a configuration object to the reduce method instead of a
function reference. For example, the following configures the built-in reducer for a values query
to return item frequency data along with the values:

jsearch.values('price').reduce({frequency: 'item'}).result()
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 346

MarkLogic Server Creating JavaScript Search Applications
The table below outlines the capabilities of the built-in reducer for each JSearch query operation.

7.11.5 Using a Custom Reducer

To use a custom reducer, pass a function reference and optional initial seed value to the reduce
method of your query call chain:

... .reduce(funcRef, seedValue)

The reducer function must have the following signature:

function (prevResult, currentItem, index, state)

If you pass a seed value, it becomes the value of prevResult on the first invocation of your
function. For example, the following reduce call seeds an accumulator object with initial values.
On the first call to myFunc, prevResult contains {count: 0, value: 0, matches: []}.

... .reduce(myFunc, {count: 0, value: 0, matches: []}) ...

For example, the following call chain uses a custom mapper with an initial seed value as part of a
document search.

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.documents()

.where(cts.jsonPropertyValueQuery('author','Mark Twain'))

.reduce(function (prev, match, index, state) {
// do something

}, {count: 0, value: 0, matches: []})
.result()

The value returned by the last invocation of your reducer becomes the final result of the query.
You can detect or signal the last invocation through state.isLast.

Operation Built-In Reducer Capabilities

documents None. The documents operation only supports a custom reducer.

values Control and generation of frequency data in the results. Optionally, adds
labels to returned values and frequencies. For details, see
ValuesSearch.reduce in the MarkLogic Server-Side JavaScript Function
Reference.

tuples None. The tuples operation only supports a custom reducer.

words None. The words operation only supports a custom reducer.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 347

MarkLogic Server Creating JavaScript Search Applications
The following table describes the inputs to the reducer function:

Note that the map and reduce methods are exclusive of one another. If your query uses reduce, it
cannot use map.

For more examples, see the following:

• “Example: Custom Reducer For Document Search” on page 351

• “Example: Custom Reducer For Values Query” on page 353

7.11.6 Example: Returning Only Documents

The following example uses a custom mapper to strip everything out of the results of a document
search except the matched document. For more details, see “Using a Custom Mapper” on
page 345 and DocumentsSearch.map.

By default, a document search returns a structure that includes metadata about each match, such
as uri and score, as well as the matched document. For example:

{ "results":[
{ "index":0,

"uri":"/books/frost1.json",

Parameter Description

prevResult The value returned by the previous invocation of your function during this
reduction. If a seed value is passed to reduce, then the seed is the value of
prevResult on the first invocation. Otherwise, prevResult is null on the first
invocation.

currentItem The current value to act upon. The structure of the value depends on the
calling context:

• word: The current word.

• documents: The search result object.

• values: The current value.

• tuples: The current n-way co-ocurrence tuple.

index The zero-based index of the currentItem in the set of items being iterated
over.

state An object describing the state of the reduction. It contains an isLast property
that is true only if this is the last invocation of the reducer for this reduction.
You can explicitly set isLast to true to force early termination.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 348

MarkLogic Server Creating JavaScript Search Applications
"score":22528,
"confidence":0.560400724411011,
"fitness":0.698434412479401,
"document": ...document node...

}, ...]}

The following code uses a custom mapper (expressed as a lambda function) to eliminate
everything except the value of the document property. That is, it eliminates everything but the
matched document node.

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.documents()

.where(cts.jsonPropertyValueQuery('format','paperback'))

.slice(0,2)

.map(match => match.document)

.result()

The result is output similar to the following:

{ "results": [
{ "title": "Collected Works",

"author": "Robert Frost",
"edition": {

"format": "paperback",
"price": 29.99

},
"synopsis": "The complete works of the American Poet Robert Frost."

},
{ "title": "The Grapes of Wrath",

"author": "John Steinbeck",
"edition": {

"format": "paperback",
"price": 9.99

},
"synopsis": "Chronicles the 1930s Dust Bowl migration of

one Oklahoma farm family, from their homestead
and forced to the promised land of California."

}],
 "estimate": 4
}

The custom mapper lambda function (.map(match => match.document)) is equivalent to the
following:

.map(function(match) { return match.document; })

7.11.7 Example: Using a Custom Mapper for Content Transformation

The following example demonstrates using a custom mapper to transform document content
returned by a search. For more details, see “Using a Custom Mapper” on page 345 and
DocumentsSearch.map.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 349

MarkLogic Server Creating JavaScript Search Applications
The following example code uses a custom mapper to redact the value of the JSON property
“author” in each document matched by the search.

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.documents()

.where(cts.jsonPropertyValueQuery('format','paperback'))

.slice(0,2)

.map(function (match) {
match.document = match.document.toObject();
match.document.author = 'READACTED';
return match;

})
.result()

Each time the mapper is invoked, the “author” property value is changed to “REDACTED” in the
document embedded in the search result. Notice the application of toObject to the document:

match.document = match.document.toObject();

This is necessary because match.document is initially a read-only document node. Applying
toObject to the document node creates an in-memory, mutable copy of the contents.

If your database contains the documents created by “Preparing to Run the Examples” on
page 375, then running the script produces output similar to the following. The part of each result
affected by the mapper is shown in bold. Only two results are returned because of the slice(0,2)
clause on the search.

{ "results": [
{ "index": 0,

"uri": "/books/frost1.json",
"score": 14336,
"confidence": 0.43245348334312,
"fitness": 0.7490314245224,
"document": {
"title": "Collected Works",
"author": "REDACTED",
"edition": {

"format": "paperback",
"price": 29.99

},
"synopsis": "The complete works of the American Poet

Robert Frost."
}

},
{ "index": 1,

"uri": "/books/steinbeck1.json",
"score": 14336,
"confidence": 0.43245348334312,
"fitness": 0.7490314245224,
"document": {
"title": "The Grapes of Wrath",
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 350

MarkLogic Server Creating JavaScript Search Applications
"author": "REDACTED",
"edition": {

"format": "paperback",
"price": 9.99

},
"synopsis": "Chronicles the 1930s Dust Bowl migration of

one Oklahoma farm family, from their homestead
and forced to the promised land of California."

}
}

],
"estimate": 4

}

7.11.8 Example: Custom Reducer For Document Search

The following example demonstrates using DocumentsSearch.reduce to apply a custom reducer as
part of a document search.

The search selects a random sample of 1000 documents by setting the search scoring algorithm to
“score-random” in withOptions. and the slice size to 1000 with slice. Notice that there is no
where clause, so the search matches all documents in the database.

The following code snippet is the core search that drives the reduction:

jsearch.documents()
.slice(0, 1000)
.reduce(...)
.withOptions({search: 'score-random'})
.result();

The reducer iterates over the node names (JSON property names or XML element names) in each
document, adding each name to a map, along with a corresponding counter.

function nameExtractor(previous, match, index, state) {
const nameCount = 0;
for (const name of match.document.xpath('//*/fn:node-name(.)')) {

nameCount = previous[name];
previous[name] = (nameCount > 0) ? nameCount + 1 : 1;

}
return previous;
}

Each time the reducer is invoked, the match parameter contains the search result for a single
document. That is, input of the following form. The precise properties in the input object can vary
somewhat, depending on the search options.

{ index: 0,
uri: '/my/document/uri',
score: 14336,
confidence: 0.3745157122612,
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 351

MarkLogic Server Creating JavaScript Search Applications
fitness: 0.7490314245224,
document: { documentContents }

}

The following code puts all of the above together in a complete script. Notice that an empty object
({ }) is passed to reduce as a seed value for the initial value of the previous input parameter.

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.documents()

.slice(0, 1000)

.reduce(function nameExtractor(previous, match, index, state) {
const nameCount = 0;
for (const name of match.document.xpath('//*/fn:node-name(.)')) {
nameCount = previous[name];
previous[name] = (nameCount > 0) ? nameCount + 1 : 1;

}
return previous;

}, {})
.withOptions({search: 'score-random'})
.result();

Running this script with the documents created by “Preparing to Run the Examples” on page 375
produces output similar to the following.

{"results":{
"title":8,
"author":8,
"edition":8,
"format":8,
"price":8,
"synopsis":8

},
"estimate":8}

The property names are the JSON property names found in the sample documents. The property
values are the number of occurrencesoccurrences of each name in the sampled documents. The
values in this case are all the same because all the sample documents contain exactly the same
properties. However, if you run the query on a less homogeneous set of documents you might get
results such as the following:

{"results":{
"Placemark":52,
"name":53,
"Style":52,
"ExtendedData":52,
"SimpleData":208,
"Polygon":574,
"coordinates":610,
"MultiGeometry":24,

},
"estimate":58

}

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 352

MarkLogic Server Creating JavaScript Search Applications
If you want to retain the search results along with whatever computation is performed by your
reducer, you must accumulate them yourself. For example, the reducer in the following script
accumulates the results in an array in the result object:

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.documents()

.where(cts.jsonPropertyValueQuery('author','Mark Twain'))

.reduce(function (prev, match, index, state) {
prev.count++;
prev.value += match.document.edition.price;
prev.matches.push(match);
if (state.isLast) {

return {avgCost: prev.value / prev.count, matches: prev.matches};
} else {

return prev;
}

}, {count: 0, value: 0, matches: []})
.result()

When run against the sample data from “Preparing to Run the Examples” on page 375, the output
is similar to the following:

{"results":{
"avgCost": 13.25,
"matches": [{"index":0, "uri": ...}, ...more matches...]

},
estimate: 4

}

7.11.9 Example: Custom Reducer For Values Query

This example demonstrates using ValuesSearch.reduce to apply a custom reducer that computes
an aggregate value from the results of a values query. The example relies on the sample data from
“Preparing to Run the Examples” on page 375.

The query that produces the inputs to the reduction is a values query over the price JSON
property. The database configuration should include a range index over price with scalar type
float. The scalar type of the index determines the datatype of the value passed into the second
parameter of the reducer.

The following code computes an average of the values of the price JSON property. Each call to
the reducer accumulates the count and sum contributing to the final answer. When state.isLast
becomes true, the final aggregate value is computed and returned. The reduction is seeded with an
initial accumulator value of {count: 0, sum: 0}, through the second parameter passed to
reduce.

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.values('price')

.where(cts.directoryQuery('/books/'))

.reduce(function (accum, value, index, state) {
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 353

MarkLogic Server Creating JavaScript Search Applications
 const freq = cts.frequency(value);
 accum.count += freq;
 accum.sum += value * freq;
 return state.isLast ? (accum.sum / accum.count) : accum;

 }, {count: 0, sum: 0})
.result();

If you run the query in Query Console using the data from “Preparing to Run the Examples” on
page 375, you should see output similar to the following:

16.125

Notice the use of cts.frequency in the example. The reducer is called once for each unique value
in the index. If you’re doing a reduction that depends on frequency, use cts.frequency on the
input value to get this information.

Average and sum are only used here as a convenient simple example. In practice, if you needed to
compute the average or sum, you would use built-in aggregate functions. For details, see
“Computing Aggregates Over Range Indexes” on page 362.

7.12 Querying Lexicons and Range Indexes

• Querying the Values in a Lexicon or Index

• Finding Value Co-Occurrences in Lexicons and Indexes

• Querying Values in a Word Lexicon

• Computing Aggregates Over Range Indexes

• Constructing Lexicon and Range Index References

7.12.1 Querying the Values in a Lexicon or Index

Use jsearch.values to begin building a query over the values in a values lexicon or range index,
and then use result to execute the query and return results. You can also use the values method
to compute aggregates lexicon and index values; for details, see “Computing Aggregates Over
Range Indexes” on page 362.

For example, the following code creates a values query over a range index on the “title” JSON
property. The returned values are limited to those found in documents matching a directory query
(where) and those that match the pattern “*adventure*” (match). The results are returned in
frequency order (orderBy). Only the first 3 results are returned (slice).

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.values('title')

.where(cts.directoryQuery('/books/'))

.match('*adventure*')

.orderBy('frequency')
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 354

MarkLogic Server Creating JavaScript Search Applications
.slice(0,3)

.result()

This query produces the following output when run against the sample data from “Preparing to
Run the Examples” on page 375.

["Adventures of Huckleberry Finn", "Adventures of Tom Sawyer"]

Your database configuration must include an index or range index on each JSON property, XML
element, XML element attribute, field, or path used in a values query.

For general information on lexicon queries, see “Browsing With Lexicons” on page 445.

Build and execute your values query following the pattern described in “Query Design Pattern”
on page 291. The following table maps the applicable JSearch methods to the steps in the design
pattern. Note that all the pipeline stages in Step 2 are optional, but you must use them in the order
shown. For more details, see ValuesSearch in the MarkLogic Server-Side JavaScript Function
Reference.

Pattern Step Method(s) Notes

1 Select resource values Required. Select index and lexicon values as the
resource to work with. Supply one or more lexicon or
index references or JSON property names as input to
values.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 355

https://docs.marklogic.com/10.0/js/ValuesSearch

MarkLogic Server Creating JavaScript Search Applications
2 Add a query
definition and
result set
pipeline

where Optional. Constrain the set of results (and frequency
computation) to values from documents matching a
query, as described in “Constraining Lexicon Searches
to a cts:query Expression” on page 456. If you pass in
multiple queries, they are implicitly AND’d together.
You can create a cts.query from a QBE, query text,
cts.query constructors, or any other technique that
creates a cts.query. For details, see “Creating a
cts.query” on page 300.

match |
groupInto

Optional. You cannot use match and groupInto
together. Use match to limit values to those matching a
wildcard pattern. For example:

jsearch.values('title')
.where(cts.directoryQuery('/books/'))
.match('*adventure*')

Use groupInto to group values into value range
buckets. For details and examples, see “Grouping
Values and Facets Into Buckets” on page 367.

orderBy Optional. Specify the order of results. You can choose
whether to order by frequency or item value, and
ascending or descending order. For details, see
“Controlling the Ordering of Results” on page 328

slice Optional. Select a subset of values from the result set.
The default slice is the first 10 values. For details, see
“Returning a Result Subset” on page 331.

map | reduce Optional. Apply a mapper or reducer function to the
results. You cannot use map and reduce together. For
details, see “Transforming Results with Map and
Reduce” on page 343.

3 Add advanced
options

withOptions Optional. Specify additional, advanced options that
customize the query behavior. For details, see “Using
Options to Control a Query” on page 341 and
ValuesSearch.withOptions.

4 Evaluate the
query and get
results

result Required. Execute the query and receive your results,
optionally specifying whether to receive the results as
a value or an Iterable. The default is a value (typically
an array).

Pattern Step Method(s) Notes
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 356

MarkLogic Server Creating JavaScript Search Applications
7.12.2 Finding Value Co-Occurrences in Lexicons and Indexes

Use the jsearch.tuples method to find co-occurrences of values in lexicons and range indexes.
Use tuples to begin building your query, and then use result to execute the query and return
results. You can also use the tuples method to compute aggregates over tuples; for details, see
“Computing Aggregates Over Range Indexes” on page 362.

For example, the following code creates a tuples query for 2-way co-occurences of the values in
the “author” and “format” JSON properties. Only tuples in documents matching the directory
query are considered (where). The results are returned in item order (orderBy).

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.tuples(['author','format'])

.where(cts.directoryQuery('/books/'))

.orderBy('item')

.result()

This query produces the following output when applied to the data from “Preparing to Run the
Examples” on page 375.

[["John Steinbeck", "audiobook"], ["John Steinbeck", "hardback"],
["John Steinbeck", "paperback"], ["Mark Twain", "hardback"],
["Mark Twain", "paperback"], ["Robert Frost", "paperback"]]

Your database configuration must include an index or range index on each JSON property, XML
element, XML element attribute, field, or path used in a tuples query.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 357

MarkLogic Server Creating JavaScript Search Applications
Build and execute your tuples query following the pattern described in “Query Design Pattern” on
page 291. The following table maps the applicable JSearch methods to the steps in the design
pattern. Note that all the pipeline stages in Step 2 are optional, but you must use them in the order
shown. For more details, see TuplesSearch in the MarkLogic Server-Side JavaScript Function
Reference.

Pattern Step Method(s) Notes

1 Select resource tuples Required. Select index and lexicon value
co-occurrences as the resource to work with. Supply
one or more lexicon or index references or JSON
property names as input to values.

2 Add a query
definition and
result set
pipeline

where Optional. Constrain the set of tuples (and frequency
computation) to values in documents matching a
query, as described in “Constraining Lexicon Searches
to a cts:query Expression” on page 456. If you pass in
multiple queries, they are implicitly AND’d together.
You can create a cts.query from a QBE, query text,
cts.query constructors, or any other technique that
creates a cts.query. For details, see “Creating a
cts.query” on page 300.

orderBy Optional. Specify the order of results. You can choose
whether to order by frequency or item value, and
ascending or descending order. For details, see
“Controlling the Ordering of Results” on page 328

slice Optional. Select a subset of tuples from the result set.
The default slice is the first 10 tuples. For details, see
“Returning a Result Subset” on page 331.

map | reduce Optional. Apply a mapper or reducer function to the
results. You cannot use map and reduce together. For
details, see “Transforming Results with Map and
Reduce” on page 343.

3 Add advanced
options

withOptions Optional. Specify additional, advanced options that
customize the query behavior. For details, see “Using
Options to Control a Query” on page 341 and
TuplesSearch.withOptions.

4 Evaluate the
query and get
results

result Required. Execute the query and receive your results,
optionally specifying whether to receive the results as
a value or an Iterable. The default is a value (typically
an array).
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 358

https://docs.marklogic.com/10.0/js/TuplesSearch

MarkLogic Server Creating JavaScript Search Applications
7.12.3 Querying Values in a Word Lexicon

Use the jsearch.words method to create a word lexicon query, and then use result to execute the
query and return results.

For example, the following code performs a word lexicon query for all words in the synopsis
JSON property that begin with ‘c’ (match). Only occurrences in documents where the author
property contains “steinbeck” (where) are returned. At most the first 5 words are returned (slice).

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.words('synopsis')

.where(cts.jsonPropertyWordQuery('author', 'steinbeck'))

.match('c*')

.slice(0,5)

.result();

When run against the data from “Preparing to Run the Examples” on page 375, this query
produces the following output:

["Cain", "California", "Chronicles"]

Your database configuration must either enable the database-wide word lexicon or include a word
lexicon on each JSON property, XML element, XML element attribute, or field used in a words
query. For details on lexicon configuration, see Range Indexes and Lexicons in the Administrator’s
Guide.

For general information on lexicon queries, see “Browsing With Lexicons” on page 445.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 359

MarkLogic Server Creating JavaScript Search Applications
Build and execute your word query following the pattern described in “Query Design Pattern” on
page 291. The following table maps the applicable JSearch methods to the steps in the design
pattern. Note that all the pipeline stages in Step 2 are optional, but you must use them in the order
shown. For more details, see WordsSearch in the MarkLogic Server-Side JavaScript Function
Reference.

Pattern Step Method(s) Notes

1 Select resource words Required. Select index and word lexicons as the
resource to work with. Supply one or more lexicon or
index references or JSON property names as input to
values. For example:

// query word lexicon on a JSON property
jsearch.words('synopsis'). ...

// query the database wide word lexicon
jsearch.words(jsearch.databaseLexicon()).
...

// query the word lexicon on an XML element
jsearch.words(

jsearch.elementLexicon(
fn.QName(

'http://marklogic.com/example',
'myElem')))
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 360

https://docs.marklogic.com/10.0/js/WordsSearch

MarkLogic Server Creating JavaScript Search Applications
2 Add a query
definition and
result set
pipeline

where Optional. Constrain the set of tuples (and frequency
computation) to words in documents matching a query,
as described in “Constraining Lexicon Searches to a
cts:query Expression” on page 456. If you pass in
multiple queries, they are implicitly AND’d together.
You can create a cts.query from a QBE, query text,
cts.query constructors, or any other technique that
creates a cts.query. For details, see “Creating a
cts.query” on page 300.

match Optional. Limit words to those matching a wildcard
pattern. For example, the following match clause
selects words beginning with ‘c’:

import jsearch from
'/MarkLogic/jsearch.mjs';
jsearch.words('synopsis')

.where(cts.directoryQuery('/books/'))

.match('c*')

orderBy Optional. Specify whether to list the results in
ascending or descending order. For details, see
“Controlling the Ordering of Results” on page 328

slice Optional. Select a subset of tuples from the result set.
The default slice is the first 10 results. For details, see
“Returning a Result Subset” on page 331.

map | reduce Optional. Apply a mapper or reducer function to the
results. You cannot use map and reduce together. For
details, see “Transforming Results with Map and
Reduce” on page 343.

3 Add advanced
options

withOptions Optional. Specify additional, advanced options that
customize the query behavior. For details, see “Using
Options to Control a Query” on page 341 and
WordsSearch.withOptions.

4 Evaluate the
query and get
results

result Required. Execute the query and receive your results,
optionally specifying whether to receive the results as
a value or an Iterable. The default is a value (typically
an array).

Pattern Step Method(s) Notes
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 361

MarkLogic Server Creating JavaScript Search Applications
7.12.4 Computing Aggregates Over Range Indexes

You can compute aggregate values over range indexes and lexicons using built-in or user-defined
aggregate functions using ValuesSearch.aggregate or TuplesSearch.aggregate. This section
covers the following topics:

• Aggregate Function Overview

• Using Built-In Aggregate Functions

• Using Aggregate User-Defined Functions

7.12.4.1 Aggregate Function Overview

An aggregate function performs an operation over values or tuples in lexicons and range indexes.
For example, you can use an aggregate function to compute the sum of values in a range index.
You can apply an aggregate computation to the results of a values or tuples query using
ValuesSearch.aggregate or TuplesSearch.aggregate.

MarkLogic Server provides built-in aggregate functions for many common analytical functions;
for a list of functions, see “Using Built-In Aggregate Functions” on page 364. For a more detailed
description of each built-in, see Using Builtin Aggregate Functions in the Search Developer’s Guide.

You can also implement aggregate user-defined functions (UDFs) in C++ and deploy them as
native plugins. Aggregate UDFs must be installed before you can use them. For details, see
Implementing an Aggregate User-Defined Function in the Application Developer’s Guide. You must
install the native plugin that implements your UDF according to the instructions in Using Native

Plugins in the Application Developer’s Guide.

Note: You cannot use the JSearch API to apply aggregate UDFs that require additional
parameters.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 362

MarkLogic Server Creating JavaScript Search Applications
Build and execute your aggregate computation following the pattern described in “Query Design
Pattern” on page 291. The following table maps the applicable JSearch methods to the steps in the
design pattern. Note that you must use the pipeline stages in Step 2 in the order shown. For more
details, see ValuesSearch or TuplesSearch in the MarkLogic Server-Side JavaScript Function
Reference.

Pattern Step Method(s) Notes

1 Select resource values |
tuples

Required. Select index and lexicon values or tuples
(co-occurrences) as the resource to work with. Supply
one or more lexicon or index references or JSON
property names as input.

2 Add a query
definition and
result set
pipeline

where Optional. Constrain the values or tuples to values in
documents matching a query, as described in
“Constraining Lexicon Searches to a cts:query
Expression” on page 456. If you pass in multiple
queries, they are implicitly AND’d together. You can
create a cts.query from a QBE, query text, cts.query
constructors, or any other technique that creates a
cts.query. For details, see “Creating a cts.query” on
page 300.

aggregate Required. Specify one or more built-in or user-defined
aggregate functions. You can combine built-in and
user-defined aggregates in the same query. For details,
see “Using Built-In Aggregate Functions” on page 364
and “Using Aggregate User-Defined Functions” on
page 365.

3 Add advanced
options

withOptions Optional. Specify additional, advanced options that
customize the query behavior. For details, see “Using
Options to Control a Query” on page 341 and
ValuesSearch.withOptions or
TuplesSearch.withOptions.

4 Evaluate the
query and get
results

result Required. Execute the query and receive your results,
optionally specifying whether to receive the results as a
value or an Iterable. The default is a value (typically an
array).
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 363

../../js/ValuesSearch
../../js/TuplesSearch

MarkLogic Server Creating JavaScript Search Applications
7.12.4.2 Using Built-In Aggregate Functions

To use a builtin aggregate function, pass the name of the function to the aggregate method of a
values or tuples query. The built-in aggregate functions only support tuples queries on 2-way
co-occurrences. That is, you cannot use them on tuples queries involving more than 2 lexicons or
indexes.

The following example uses built-in aggregate functions to compute the minimum, maximum,
and average of the values in the price JSON property and produces the results shown. As with all
values queries, the database must include a range index over the target property or XML element.

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.values('price')

.aggregate(['min','max','avg'])

.result();

==> {"min":8, "max":30, "avg":16.125}

The following built-in aggregate functions are supported on values queries:

Values Aggregate Name Description

avg Compute the average of the values in a lexicon or range index. For
details, see cts.avgAggregate.

count Returns a count of the values in a lexicon or range index. For
details, see cts.countAggregate.

max Compute the maximum of the values in a lexicon or range index.
For details, see cts.max.

min Compute the minimum of the values in a lexicon or range index.
For details, see cts.min.

stddev Compute the frequency-weighted sample standard deviation of the
values in a lexicon or range index. For details, see cts.stddev.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 364

MarkLogic Server Creating JavaScript Search Applications
The following built-in aggregate functions are supported on tuples queries:

7.12.4.3 Using Aggregate User-Defined Functions

An aggregate UDF is identified by the function name and a relative path to the plugin that
implements the aggregate, as described in “Using Aggregate User-Defined Functions” on
page 465. You must install your UDF plugin on MarkLogic Server before you can use it in a
query. For details on creating and installing aggregate UDFs, see Aggregate User-Defined Functions
in the Application Developer’s Guide.

Once you install your plugin, use jsearch.udf to create a reference to your UDF, and pass the
reference to the aggregate clause of a values or tuples query. For example, the following script
uses a native UDF called “count” provided by a plugin installed in the modules database under
“native/sampleplugin”:

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.values('price')

.aggregate(jsearch.udf('native/sampleplugin', 'count'))

.result();

stddev-population Compute the frequency-weighted sample standard deviation of the
population from the values in a lexicon or range index. For details,
see cts.stddevP.

sum Compute the sum of the values in a lexicon or range index. For
details, see cts.sumAggregate.

variance Compute the frequency-weighted sample variance of the values in a
lexicon or range index. For details, see cts.variance.

variance-population Compute the frequency-weighted variance of population of the
values in a lexicon or range index. For details, see cts.varianceP.

Tuples Aggregate Name Description

correlation Compute the frequency-weighted correlation of 2-way
co-occurences. For details, see cts.correlation.

covariance Compute the frequency-weighted correlation of 2-way
co-occurrences. For details, see cts.covariance.

covariance-population Compute the frequency-weighted correlation of the population of
2-way co-occurrences. For details, see cts.covarianceP.

Values Aggregate Name Description
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 365

MarkLogic Server Creating JavaScript Search Applications
For more details, see ValuesSearch.aggregate and TuplesSearch.aggregate.

7.12.5 Constructing Lexicon and Range Index References

This section provides a brief overview of the functions available for constructing the index and
lexicon reference you may need for values queries, tuples queries, and facet generation.

Most JSearch interfaces that accept index or lexicon references also accept a simple JSON
property name string. In most contexts, this is interpreted as a cts.jsonPropertyReference for a
string property. If the referenced property (and associated index) have a type other than string,
you can create a properly typed index reference as shown in these examples:

cts.jsonPropertyReference('price', ['type=float'])
cts.jsonPropertyReference('start', ['type=date'])

Similar reference constructors are available for XML element indexes, XML element attribute
index, path indexes, field indexes, and geospatial property, element, and path indexes. The
following is a small sample of the available constructors:

• cts.elementReference

• cts.field-reference

• cts.path-reference

• cts.geospatialJsonPropertyReference

Use the following reference constructors for the database-wide URI and collection lexicons.
(These lexicons must be enabled on the database before you can use them.)

• cts.uriReference

• cts.collectionReference

JSearch also provides the following word lexicon reference constructors for constructing
references to word lexicons specifically for use with jsearch.words. Using these constructors
ensures you only create word lexicons queries on lexicon types that support them.

• jsearch.databaseLexicon

• jsearch.jsonPropertyLexicon

• jsearch.elementLexicon

• jsearch.elementAttributeLexicon

• jsearch.fieldLexicon

For more details, see the MarkLogic Server-Side JavaScript Function Reference and “Browsing
With Lexicons” on page 445.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 366

MarkLogic Server Creating JavaScript Search Applications
7.13 Grouping Values and Facets Into Buckets

This section covers the following topics related to using the ValuesSearch.groupInto and
FacetDefinition.groupInto to group values by range:

• Bucketing Overview

• Example: Generating Buckets With makeBuckets

• Example: Grouping Using Custom Buckets

7.13.1 Bucketing Overview

You can use the groupInto method to group values into ranges when performing a values query or
generating facets. Such grouping is sometimes called “bucketed search”. The groupInto method
of values and facets has the following form:

groupInto(bucketDefinition)

You can apply groupInto to a values query or a facet definition. For example:

// using groupInto with a values query
jsearch.values(...).groupInto(bucketDefinition).result()

// using groupInto for facet generation
jsearch.facets(

jsearch.facet(...).groupInto(bucketDefinition),
...more facet definitions...

).result()

A bucket definition can be an array of boundary values or an array of alternating bucket names
and boundary value pairs. For geospatial buckets, a boundary value can be an object with lat and
lon properties ({lat: latVal, lon: lonVal}). The JSearch API includes helper functions for
creating bucket names (jsearch.bucketName), generating a set of buckets from a value range and
step (jsearch.makeBuckets), and generating buckets corresponding to a geospatial heatmap
(jsearch.makeHeatmap).

Buckets can be unnamed, use names generated from the boundary values, or use custom names.
For example:

// Unnamed buckets with boundaries X < 10, 10 <= X < 20, and X > 20
groupInto([10,20])

// The same set of buckets with generated default bucket names
groupInto([

jsearch.bucketName(),10,
jsearch.bucketName(),20,
jsearch.bucketName()])

// The same set of buckets with custom bucket names
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 367

MarkLogic Server Creating JavaScript Search Applications
groupInto([
jsearch.bucketName('under $10'), 10,
jsearch.bucketName('$10 to $19.99'), 20,
jsearch.bucketName('over $20')])

// Explictly specify geospatial bucket boundaries
groupInto([

jsearch.bucketName(),{lat: lat1, lon: lon1,
jsearch.bucketName(),{lat: lat2, lon: lon2,
jsearch.bucketName(),{lat: lat3, lon: lon3}])

You can create a bucket definition in the following ways:

• Define a set of unnamed buckets by creating an array of boundary values. For example,
[10,20] defines 3 buckets with boundaries X < 10, 10 <= X < 20, and X > 20.

• Define a set of named buckets by creating an array of (bucketName, upperBound) pairs. Use
the buckeName helper function to generate the name of each bucket. You can specify
custom bucket names or groupInto generate bucket names from the boundary values.

• Use the makeBuckets helper function to create a set of buckets over a range of values (min
and max) and a step or number of divisions. For example, create a series of buckets that
each correspond to a decade over a 100 year time span.

• Use the makeHeatMap helper function to generate buckets from a geospatial lexicon based
on a heatmap box with latitude and longitude divisions.

The bounds for bucket for a scalar value or date/time range are determined by an explicit upper
bound and the position of the bucket in a set of bucket definitions. For example, in the following
custom bucket definition, each line represents one bucket as a name and upper bound.

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.values('price')

.groupInto([
jsearch.bucketName(), 10,
jsearch.bucketName(), 20,
jsearch.bucketName()])

.result()

The first bucket has no lower bound because it occurs first. The lower bound of the second bucket
is the upper bound of the previous bucket (10), inclusive. The upper bound of the second bucket is
20, exclusive. The last bucket has no upper bound. When plugged into a values or facets query,
the results are grouped into the following ranges:

x < 10
10 <= x < 20
20 <= x
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 368

MarkLogic Server Creating JavaScript Search Applications
For geospatial data, you can use makeHeatMap to sub-divide a region into boxes. For example, the
following constraint includes a heat map that corresponds very roughly to the continental United
States, and divides the region into a set of 20 boxes (5 latitude divisions and 4 longitude
divisions).

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.values('incidents')

.groupInto(makeHeatMap({
north: 49.0,
east: -67.0,
south: 24.0,
west: -125.0,
lonDivs: 4,
latDivs: 5

}))
.result()

When combined with a reducer that returns frequency, you can use the resulting set of boxes and
frequencies to illustrate the concentration of points in each box, similar to a grid-based heat map.

You can create more customized geospatial buckets by specifying a series of latitude bounds and
longitude bounds that define a grid in an object of the form {lat:[...], lon:[...]}. The points
defined by the latitude bounds and longitude bounds are divided into box-shaped buckets. The lat
and lon values must be ascending order. For example:

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.values('incidents')

.groupInto({lat: [15, 30, 45, 60, 75], lon: [0, 30, 60, 90, 120]})

.result()

For more details, see jsearch.makeHeatmap, cts:geospatial-boxes, and “Creating Geospatial
Facets” on page 525.

7.13.2 Example: Generating Buckets With makeBuckets

The examples in this section demonstrate the following features:

• Using jsearch.makeBuckets to generate buckets for a values query.

• Using jsearch.makeBuckets to generate bucketed facets.

• Using a custom mapper to decorate your buckets.

The example uses makeBuckets to group date information by month, leveraging MarkLogic’s
built-in support for date, time and duration data..
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 369

MarkLogic Server Creating JavaScript Search Applications
The example assumes the following conditions exist in the database:

• The database contains documents of the following form describing events. Each document
includes a start property that represents the start date of the event.

{ title: 'San Francisco Ocean Film Festival',
venue: 'Fort Mason, San Francisco',
start: '2015-02-27',
end: '2015-03-01'

}

• All the event documents of interest are in a collection with the URI ‘events’.

• The database configuration includes an element range index of type ‘date’ on the start
proeprty.

The following query groups the values in the lexicon for the year 2015 by month, using
jsearch.makeBuckets and ValuesSearch.groupInto. The results include frequency data in each
bucket.

import jsearch from '/MarkLogic/jsearch.mjs';
const events = jsearch.collections('events');
events.values(cts.jsonPropertyReference('start', ['type=date']))

.groupInto(jsearch.makeBuckets({
min: xs.date('2015-01-01'),
max: xs.date('2015-12-31'),
step: xs.yearMonthDuration('P1M')}))

.map({frequency: 'item', names: ['bucket', 'count']})

.result()

Notice the use of a 1 month duration (‘P1M’) for the step between buckets. You can use many
MarkLogic date, dateTime, and duration operations from Server-side JavaScript. For details, see
JavaScript Duration and Date Arithmetic and Comparison Methods in the JavaScript Reference Guide.

The query generates results similar to the following:

[{
"bucket": {

"minimum": "2015-02-27",
"maximum": "2015-02-27",
"lowerBound": "2015-02-01",
"upperBound": "2015-03-01"

},
"count": 1

},
{

"bucket": {
"minimum": "2015-03-07",
"maximum": "2015-03-14",
"lowerBound": "2015-03-01",
"upperBound": "2015-04-01"

},
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 370

MarkLogic Server Creating JavaScript Search Applications
"count": 2
},
...

]

You can use a custom mapper to name each bucket after the month it covers. Note that plugging
in a custom mapper also eliminates the frequency data, so you must add it back in explicitly. The
following example mapper adds a month name and count property to each bucket:

// For mapping month number to user-friendly bucket name
const months = [

'January', 'February', 'March',
'April', 'May', 'June',
'July', 'August', 'September',
'October', 'November', 'December'
];

// Add a name and count field to each bucket. Use month for name.
function supplementBucket(bucket) {

// get a mutable copy of the input
const result = bucket.toObject();
// Compute index into month names. January == month 1 == index 0.
const monthNum = fn.monthFromDate(xs.date(bucket.lowerBound)) - 1;

result.name = months[monthNum];
result.count = cts.frequency(bucket);
return result;

};

// Generate buckets and counts
import jsearch from '/MarkLogic/jsearch.mjs';
const events = jsearch.collections('events');
events.values(cts.jsonPropertyReference('start', ['type=date']))

.groupInto(jsearch.makeBuckets({
min: xs.date('2015-01-01'),
max: xs.date('2015-12-31'),
step: xs.yearMonthDuration('P1M')}))

.map(supplementBucket)

.result()

The output generated is similar to the following:

[{
"minimum": "2015-02-27",
"maximum": "2015-02-27",
"lowerBound": "2015-02-01",
"upperBound": "2015-03-01",
"name": "February",
"count": 1

}, {
"minimum": "2015-03-07",
"maximum": "2015-03-14",
"lowerBound": "2015-03-01",
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 371

MarkLogic Server Creating JavaScript Search Applications
"upperBound": "2015-04-01",
"name": "March",
"count": 2

}, ...
]

Similarly, you can use the FacetDefinition.groupInto and FacetDefinition.map when generating
facets for a document search with jsearch.facets. For example, the following query generates
facets based on the same set of buckets:

import jsearch from '/MarkLogic/jsearch.mjs';
const events = jsearch.collections('events');
events.facets(

events.facet('events', cts.jsonPropertyReference('start', ['type=date']))

.groupInto(jsearch.makeBuckets({
min: xs.date('2015-01-01'),
max: xs.date('2015-12-31'),
step: xs.yearMonthDuration('P1M')}))

.map(supplementBucket),
events.documents()

).result()

The output from this query is similar to the following:

{"facets": {
"events": [{

"minimum": "2015-02-27",
"maximum": "2015-02-27",
"lowerBound": "2015-02-01",
"upperBound": "2015-03-01",
"name": "February",
"count": 1

}, {
"minimum": "2015-03-07",
"maximum": "2015-03-14",
"lowerBound": "2015-03-01",
"upperBound": "2015-04-01",
"name": "March",
"count": 2

}, ...
]},
"documents": [...]

}

For more details on faceting, see “Including Facets in Search Results” on page 308.

7.13.3 Example: Grouping Using Custom Buckets

This example demostrates how to use custom buckets for grouping. The example applies the
grouping to facet generation, but you can use the same technique with a values query.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 372

MarkLogic Server Creating JavaScript Search Applications
The following code defines custom buckets that group the values of the ‘price’ JSON property
into 3 price range buckets.

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.facets(

jsearch.facet('Price','price')
.groupInto([

jsearch.bucketName('under $10'), 10,
jsearch.bucketName('$10 to $19.99'), 20,
jsearch.bucketName('over $20')

]))
.where(cts.directoryQuery('/books/'))
.result();

If the lexicon contains the values [8, 9, 10, 16, 18, 20, 30], then the query results in the
following output. (Comments were added for clarity and are not part of the actual output.)

{"facets": {
"price": {

"under $10": { // bucket label (for display purposes)
"value": {
"minimum": 8, // min value found in bucket range
"maximum": 9, // max value found in bucket range
"upperBound": 10 // bucket upper bound

},
"frequency": 2

},
"$10 to $19.99": {

"value": {
"minimum": 10,
"maximum": 18,
"lowerBound": 10,
"upperBound": 20

},
"frequency": 4

},
"over $20": {

"value": {
"minimum": 20,
"maximum": 30,
"lowerBound": 20

},
"frequency": 2

}
}

} }

The results tell you, for example, that the price lexicon contains values under 10, with the
maximum value in that range being 9 and the minimum being 8. Similarly, the lexicon contains
values greater than or equal to 10, but less than 20. The minimum value found in that range is 10
and the maximum value is 18.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 373

MarkLogic Server Creating JavaScript Search Applications
f you use the same grouping specification with ValuesSearch.groupInto, you get the same
information, but it is arranged slightly differently. For example, the following output was
produced using the values operation with the same groupInto clause.

[{
"minimum": 8,
"maximum": 9,
"upperBound": 10,
"name": "under $10"

}, {
"minimum": 10, // min value found in bucket range
"maximum": 18, // max value found in bucket range
"lowerBound": 10, // bucket lower bound
"upperBound": 20, // bucket upper bound
"name": "$10 to $19.99" // bucket label (for display purposes)

}, {
"minimum": 20,
"maximum": 30,
"lowerBound": 20,
"name": "over $20"

}]

If you specify an empty bucket name, a default name is generated from the bucket bounds. For
example, the following code applies a similar set of buckets to a values query, using generated
bucket names:

import jsearch from '/MarkLogic/jsearch.mjs';
jsearch.values('price')

.where(cts.directoryQuery('/books/'))

.groupInto([
jsearch.bucketName(), 10,
jsearch.bucketName(), 20,
jsearch.bucketName()
])

.result();

This code produces the following output. The bucket min, max, and bounds are the same as
before, but the bucket names are the default generated ones:

[{
"minimum": 8,
"maximum": 9,
"upperBound": 10,
"name": "x < 10"

}, {
"minimum": 10,
"maximum": 19,
"lowerBound": 10,
"upperBound": 20,
"name": "10 <= x < 20"

}, {
"minimum": 20,
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 374

MarkLogic Server Creating JavaScript Search Applications
"maximum": 30,
"lowerBound": 20,
"name": "20 <= x"

}]

7.14 Preparing to Run the Examples

Use the instructions and scripts in this section to set up your MarkLogic environment to run the
examples in this chapter. This includes loading the sample documents and configuring your
database to have the required indexes and lexicons.

• Configuring the Database

• Loading the Sample Documents

7.14.1 Configuring the Database

This section guides you through creation of a database configured to run the examples in this
chapter. Many examples do not require the indexes, and only the word lexicon query examples
require a word lexicon. However, this setup will ensure you have the configuration needed for all
the examples.

Running the setup scripts below will do the following. The configuration details are summarized
in a table at the end of the section.

• Create a database named jsearch-ex with one forest, named jsearch-ex-1, attached.

• Create element range indexes on the title, author, format, and price JSON properties
found in the sample documents.

• Create an element word lexicon on the title JSON property found in the sample
documents.

The instructions below use Query Console and XQuery to create and configure the database. You
do not need to know XQuery to use these instructions. However, if you prefer to do the setup
manually using the Admin Interface, see the table at the end of this section for configuration
details.

Follow this procedure to create and configure the example database.

1. In your browser, navigate to Query Console and authenticate as a user with Admin
privileges. For example, navigate to the following URL is MarkLogic is installed on
localhost:

http://localhost:8000/qconsole

2. Use the “+” button to create a new, empty script.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 375

MarkLogic Server Creating JavaScript Search Applications
3. Select XQuery in the Query Type dropdown.

4. Paste the following in Query Console as the text of the script just created.

xquery version "1.0-ml";

(: Create the database and forest :)
import module namespace admin = "http://marklogic.com/xdmp/admin"

at "/MarkLogic/admin.xqy";

let $config := admin:get-configuration()
let $config :=

admin:database-create(
$config, "jsearch-ex",
xdmp:database("Security"),
xdmp:database("Schemas"))

let $config :=
admin:forest-create(

$config, "jsearch-ex-1",
xdmp:host(), (), (), ())

return admin:save-configuration($config);

(: Attach the forest to the database :)
import module namespace admin = "http://marklogic.com/xdmp/admin"

at "/MarkLogic/admin.xqy";

let $config := admin:get-configuration()
let $config :=

admin:database-attach-forest(
$config, xdmp:database("jsearch-ex"),
xdmp:forest("jsearch-ex-1"))

return admin:save-configuration($config);

5. Click the Run button to execute the script. The database and forest are created.

6. Optionally, confirm creation of the database using the Admin Interface. For example,
navigate to the following URL:

http://localhost:8001

7. In Query Console, click “+” to create another new script. Confirm that the Query Type is
still XQuery.

8. Paste the following in Query Console as the text of the script just created. This script will
create the indexes and lexicons needed by the examples.

xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin"

at "/MarkLogic/admin.xqy";

let $title-index := admin:database-range-element-index(
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 376

MarkLogic Server Creating JavaScript Search Applications
"string", "", "title", "http://marklogic.com/collation/",
fn:false())
let $author-index := admin:database-range-element-index(

"string", "", "author", "http://marklogic.com/collation/",
fn:false())
let $format-index := admin:database-range-element-index(

"string", "", "format", "http://marklogic.com/collation/",
fn:false())
let $price-index := admin:database-range-element-index(

"float", "", "price", "", fn:false())
let $config := admin:get-configuration()
let $config :=

admin:database-add-range-element-index(
$config, xdmp:database("jsearch-ex"),
($title-index, $author-index, $format-index, $price-index))

return admin:save-configuration($config);

import module namespace admin = "http://marklogic.com/xdmp/admin"
at "/MarkLogic/admin.xqy";

let $title-lexicon := admin:database-element-word-lexicon(
"", "title", "http://marklogic.com/collation/")

let $config := admin:get-configuration()
let $config :=

admin:database-add-element-word-lexicon(
$config, xdmp:database("jsearch-ex"),
($title-lexicon))

return admin:save-configuration($config);

9. Click the Run button. The range indexes and word lexicon are created.

You should now proceed to “Loading the Sample Documents” on page 379.

If you choose to create the example environment manually with the Admin Interface, use the
configuration summary below.

Resource
Configuration

Setting Value

Forest name jsearch-ex-1

Database name jsearch-ex
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 377

MarkLogic Server Creating JavaScript Search Applications
title element range
index

type string

namespace URI none

localname title

collation http://marklogic.com/collation/

range value positions false

author element range
index

type string

namespace URI none

localname author

collation http://marklogic.com/collation/

range value positions false

format element range
index

type string

namespace URI none

localname format

collation http://marklogic.com/collation/

range value positions false

price element range
index

type float

namespace URI none

localname price

range value positions false

title element wod
lexicon

namespace URI none

localname title

collation http://marklogic.com/collation/

Resource
Configuration

Setting Value
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 378

MarkLogic Server Creating JavaScript Search Applications
7.14.2 Loading the Sample Documents

After you create and configure the sample database, follow the instructions in this section to load
the sample documents.

1. In your browser, navigate to Query Console and authenticate as a user with write
privileges for the jsearch-ex database. For example, navigate to the following URL is
MarkLogic is installed on localhost:

http://localhost:8000/qconsole

2. Use the “+” button to create a new, empty script.

3. Select JavaScript in the Query Type dropdown.

4. Select jsearch-ex in the Content Source dropdown.

You will not see it if you have just finished creating and configuring the database and are
still using the same Query Console session. If this happen, reload Query Console in your
browser to refresh the Content Source list.

5. Paste the following in Query Console as the text of the script just created.

const directory = '/books/';
const books = [

{uri: 'frost1.json',
 data: { title: 'Collected Works', author: 'Robert Frost',

edition: {format: 'paperback', price: 30 },
synopsis: 'The complete works of the American Poet Robert

Frost.'
 }},

{uri: 'twain1.json',
 data: { title: 'Adventures of Tom Sawyer', author: 'Mark Twain',

edition: {format: 'paperback', price: 9 },
synopsis: 'Tales of mischief and adventure along the

Mississippi River with Tom Sawyer, Huck Finn, and Becky Thatcher.'
 }},

{uri: 'twain2.json',
 data: { title: 'Adventures of Tom Sawyer', author: 'Mark Twain',

edition: {format: 'hardback', price: 18 },
synopsis: 'Tales of mischief and adventure along the

Mississippi River with Tom Sawyer, Huck Finn, and Becky Thatcher.'
 }},

{uri: 'twain3.json',
 data: { title: 'Adventures of Huckleberry Finn', author: 'Mark

Twain',
edition: {format: 'paperback', price: 8 },

 synopsis: 'The adventures of Huck, a boy of 13, and Jim,
an escaped slave, rafting down the Mississippi River in pre-Civil War
America.'

 }},
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 379

MarkLogic Server Creating JavaScript Search Applications
{uri: 'twain4.json',
 data: { title: 'Adventures of Huckleberry Finn', author: 'Mark

Twain',
edition: {format: 'hardback', price: 18 },

 synopsis: 'The adventures of Huck, a boy of 13, and Jim,
an escaped slave, rafting down the Mississippi River in pre-Civil War
America.'

 }},
{uri: 'steinbeck1.json',
 data: { title: 'The Grapes of Wrath', author: 'John Steinbeck',

edition: {format: 'paperback', price: 10 },
synopsis: 'Chronicles the 1930s Dust Bowl migration of one

Oklahoma farm family, from their homestead and forced to the promised
land of California.'

}},
{uri: 'steinbeck2.json',
 data: { title: 'Of Mice and Men', author: 'John Steinbeck',

edition: {format: 'hardback', price: 20 },
 synopsis: 'A tale of an unlikely pair of drifters who move

from job to job as farm laborers in California, until it all goes
horribly awry.'

}},
{uri: 'steinbeck3.json',
 data: { title: 'East of Eden', author: 'John Steinbeck',

edition: {format: 'audiobook', price: 16 },
synopsis: 'Follows the intertwined destinies of two

California families whose generations reenact the fall of Adam and Eve
and the rivalry of Cain and Abel.'

}}
];

books.forEach(function(book) {
xdmp.eval(

'declareUpdate(); xdmp.documentInsert(uri, data,
xdmp.defaultPermissions(), ["classics"]);',

{uri: directory + book.uri, data: book.data}
);

});

6. Click the Run button to execute script. The sample documents are inserted into the
database.

7. Optionally, click the Explore button to examine the database contents. You should see 8
JSON documents with URIs such as “/books/frost1.json”.

The jsearch-ex database is now fully configured to support all the samples in this chapter in Query
Console. When running the examples, set the Content Source to jsearch-ex and the Query Type
to JavaScript.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 380

MarkLogic Server Search Customization Using Query Options
8.0 Search Customization Using Query Options
421

When you use the XQuery Search API, REST API, or Java API, you can customize and control
your searches using query options. This chapter highlights key query option features. The
following topics are covered:

• Introduction

• Getting the Default Query Options

• Checking Query Options for Errors

• Constraint Options

• Operator Options

• Return Options

• Searchable Expression Option

• Fragment Scope Option

• Searching Key-Value Metadata Fields

• Modifying Your Snippet Results

• Extracting a Portion of Matching Documents

• Customizing Search Results with a Decorator

• Other Search Options

• Query Options Examples

For details on the syntax of each option, see “Appendix: Query Options Reference” on page 816.

8.1 Introduction

Query options enable you to control many aspects of content and values searches, including
limiting the scope of a search, customizing the string search grammar, defining sort order, and
specifying the contents and format of search results.

MarkLogic Server defines a set of default query options that are applied when you do not include
custom query options in a search. You can modify the default query options if you are using the
REST or Java API. You can override the default options by defining custom query options and
apply them to individual searches.

Query options can be specified in XML for all APIs. The REST and Java APIs also support a
JSON representation. XML query options are always expressed as a search:options element in
the following namespace:

http://marklogic.com/appservices/search
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 381

MarkLogic Server Search Customization Using Query Options
Most search operations in the XQuery, REST and Java APIs accept optional query options,
including the following:

• XQuery: The functions search:search, search:resolve, search:values, and search:parse

• REST: The /search, /values, /qbe services

• Java: Searches performed using the com.marklogic.client.query.QueryManager class.

8.2 Getting the Default Query Options

If you do not include any query options in a search operation that accepts them, the default query
options are used. You can retrieve the default query options definition using the XQuery or REST
APIs.

To retrieve the default query options using XQuery, call search:get-default-options.

To retrieve the default query options using REST, make a GET request to /config/query/default.
For details, see the REST Client API Reference.

8.3 Checking Query Options for Errors

Query options can be fairly complex. The XQuery, REST and Java APIs include mechanisms for
checking your query options for errors.

In XQuery, use the function search:check-options. This function validates your options and
reports any errors it finds. It returns empty if the options are valid. If it finds errors, they are
returned in the form of one or more search:report nodes.

The REST API can perform an equivalent check when you persist query options through the
/config/query service. The Java API performs this check when you call
com.marklogic.client.admin.QueryOptionsManager.writeOptions.

It is a good idea to only use query option validation in development, as it can slow down queries
to check the options on every search. You can also set the debug option to true in a search:options
node to return the output of search:check-options as part of your response.

A common MarkLogic XQuery design pattern is to add a $debug option to your code that defaults
to false, and when true, runs search:check-options or adds the debug option your query options.
Set the $debug variable to true for development and false for production.

8.4 Constraint Options

A constraint is a mechanism the Search API and Client APIs use to limit the scope of a search.
For example, find a term only when it occurs in the value of a particular XML element or JSON
property.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 382

MarkLogic Server Search Customization Using Query Options
Constraints are designed to take advantage of range indexes, lexicons, and fields that exist in the
database, and the structures of documents in the database (for example, element values, attribute
values, words, and so on). Constraints are primarily used for the following purposes:

• To provide a way to specify the constraint in a string query. For information on search
parsing and grammar, see “The Default String Query Grammar” on page 68.

• To return information designed to be used in creating facets in an application. For
information on facets, see “Constrained Searches and Faceted Navigation” on page 34.

• To enhance search suggestions. For example, when using search:suggest. For
information on search suggestions, see “Search Term Completion” on page 36.

A constraint must have a name, and that name must be unique across all operators and constraints
in your query options. The name may not contain whitespace.

You can use a constraint name in a string query with operators such as “:”, “<“, and “>=”. For
example, if you define a range constraint named “price” that limits the scope of the search to an
XML element or JSON property named “price”, then the following query text matches
occurrences where the value in that element or property is less than 10:

price < 10

For more details about the search grammar, see “Automatic Query Text Parsing and Grammar” on
page 32 and “The Default String Query Grammar” on page 68. For more details on defining
constraints, see “constraint” on page 822.

Similarly, if your “price” constraint defines value range buckets with the names “under10”,
“10to20”, and “20+”, then the following query matches occurrences where the value of the price
element or property is in the range of the “under10” bucket:

price:under10

For more details on bucketed constraints, see “Bucketed Range Constraint Example” on
page 391.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 383

MarkLogic Server Search Customization Using Query Options

lent
The following table lists the types of constraints you can build with query options. For more
details, see “constraint” on page 822 in the options reference.

Constraint Description
cts:query Equivalent for

constraint
Lexicon API Equiva

for Facets

value Constrains on an element
value or on an attribute
value or on a field value.

cts:element-value-query,
cts:element-attribute-va

lue-query,
cts:field-value-query

No facets for value
constraints.

Example value constraint:

<options xmlns="http://marklogic.com/appservices/search">
<constraint name="my-value">

 <value>
 <element ns="my-namespace" name="my-localname"/>
 </value>

</constraint>
</options>

For more details, see “Value Constraint Example” on page 389 and “value” on
page 831.

word Constrains on a
word-query of either
element, attribute, or
field.

cts:element-word-query,
cts:element-attribute-wo

rd-query,
cts:field-word-query

No facets for word
constraints.

Example word constraint:

<options xmlns="http://marklogic.com/appservices/search">
<constraint name="name">

 <word>
 <element ns="http://authors-r-us.com" name="name"/>
 </word>

</constraint>
</options>

For more details, see “Word Constraint Examples” on page 389 and “word” on
page 835 in the options reference.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 384

MarkLogic Server Search Customization Using Query Options

on”

te-

te-

ges

lent
collection Requires the collection
lexicon to be enabled in the
database.

cts:collection-query cts:collections

Example collection constraint:

<options xmlns="http://marklogic.com/appservices/search">
<constraint name="subject">

<collection prefix="/my-collections/"/>
</constraint>

</options>

For more details, see “Collection Constraint Example” on page 390 and “collecti
on page 839 in the options reference.

range Requires the underlying
range index to exist in the
database. All range
constraints are type aware
for the element or attribute
values or for the field
values, and the constraint
can optionally include
either bucket or
computed-bucket elements.
For examples, see
“Bucketed Range
Constraint Example” on
page 391, “Buckets
Example” on page 62,
“Computed Buckets
Example” on page 64. and
the search:search options
node description in the
MarkLogic XQuery and
XSLT Function Reference.

The lexicon APIs, such as
cts:element-range-query,
cts:element-attribute-ra

nge-query,
cts:path-range-query,
and
cts:field-range-query

cts:element-values,
cts:element-attribu

values,
cts:values,
cts:field-values,
cts:element-value-

ranges,
cts:element-attribu

value-ranges,
cts:value-ranges,
cts:values
cts:field-value-ran

Constraint Description
cts:query Equivalent for

constraint
Lexicon API Equiva

for Facets
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 385

MarkLogic Server Search Customization Using Query Options

r

es

lent
container Restricts qtext to a
particular XML element or
JSON property. Requires
position indexes enabled
on the database for the best
performancce.

cts:element-query No facets for containe
constraints.

Example element-query constraint:

<options xmlns="http://marklogic.com/appservices/search">
<constraint name="sample-element-constraint">

<container>
<element name="title" ns="http://my/namespace" />

</container>
</constraint>

</options>

properties Finds matches on the
corresponding properties
documents.

cts:properties-fragment-
query

No facets for properti
constraints.

Example properties constraint:

<options xmlns="http://marklogic.com/appservices/search">
<constraint name="sample-property-constraint">

<properties />
</constraint>

</options>

Constraint Description
cts:query Equivalent for

constraint
Lexicon API Equiva

for Facets
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 386

MarkLogic Server Search Customization Using Query Options

bute

om

lent
geo-attr-pair
geo-elem-pair
geo-elem
geo-path
geo-json-prop
ty
geo-json-prop
erty-pair

These geospatial
constraints find matches on
geospatial data. To use as a
facet, the <constraint>
element requires a
<heatmap> child; for
details, see “Geospatial
Constraint Example” on
page 393.

cts:element-attribute

-pair-geospatial-query,
cts:element-pair-geospa-

tial-query,
cts:element-geospa-

tial-query,
cts:element-child-geo-

spatial-query

cts:element-attri
-pair-geospatial
-boxes
cts:element-pair
-geospatial-boxes
cts:element-
geospatial-boxes

Example geo-* constraints:

<options xmlns="http://marklogic.com/appservices/search">
<constraint name="my-geo-attr-pair">

<!-- Uses cts:element-attribute-pair-geospatial-query, and
cts:element-attribute-pair-geospatial-boxes for the
heatmap facet. -->

 <geo-attr-pair>
 <heatmap s="23.2" w="-118.3" n="23.3" e="-118.2"
 latdivs="4" londivs="4"/>
 <facet-option>empties</facet-option>
 <parent ns="ns1" name="elem1"/>
 <lat ns="ns2" name="attr2"/>
 <lon ns="ns3" name="attr3"/>
 </geo-attr-pair>
</constraint>
<constraint name="geo-elem-child">

<geo-elem>
<parent ns="" name="g-elem-child-parent" />
<element ns="" name="g-elem-child-point" />

</geo-elem>
</constraint>
</options>

custom Create your own type of
constraint by
implementing your own
functions for parsing and
for creating facets. For an
example, see “Creating a
Custom Constraint” on
page 42.

Depends on your custom
code implementation

Depends on your cust
code implementation

Constraint Description
cts:query Equivalent for

constraint
Lexicon API Equiva

for Facets
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 387

MarkLogic Server Search Customization Using Query Options
Constraints are designed to be fast. When they have facets, they must generate fast and accurate
counts and distinct values. Therefore the constraints that allow facets require a range index on the
element or attribute on which they apply, or require a particular lexicon to exist in the database.
Other constraints (value and word constraints) do not require any special indexing, and they
cannot be used to create facets.

WhenMarkLogic Server parses a constraint in a query (using search:parse or search:search for
example), it looks for the joiner string and then applies the value to the right of the joiner string,
parsing the value as a cts:query. If the constraint is not defined in your query options and the
value is a single search term, then the joiner string is treated as part of the search term. For
example:

search:parse('unrecognized-constraint:hello')
=>
<cts:word-query qtextref="cts:text"

xmlns:cts="http://marklogic.com/cts">
<cts:text>unrecognized-constraint:hello</cts:text>

</cts:word-query>

If the constraint is not defined in your query options and the value is quoted text, then the Search
API ignores the constraint and the joiner when parsing the query, but saves the original text as an
attribute. For example:

search:parse('unrecognized-constraint:"hello world"')
=>
<cts:word-query qtextpre="unrecognized-constraint:""

qtextref="cts:text" qtextpost="""
xmlns:cts="http://marklogic.com/cts">

<cts:text>hello world</cts:text>
</cts:word-query>

The following examples show constraints of the following types:

• Value Constraint Example

• Word Constraint Examples

• Collection Constraint Example

• Bucketed Range Constraint Example

• Exact Match (Unbucketed) Range Constraint Example

• Geospatial Constraint Example

For an example of a custom constraint, see “Creating a Custom Constraint” on page 42.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 388

MarkLogic Server Search Customization Using Query Options
8.4.1 Value Constraint Example

The following query options define two value constraints: one for an element and one for an
attribute.

<options xmlns="http://marklogic.com/appservices/search">
<constraint name="my-value">

 <value>
 <element ns="my-namespace" name="my-localname"/>
 </value>

</constraint>
<constraint name="my-attribute-value">

 <value>
 <attribute ns="" name="my-attribute"/>
 <element ns="my-namespace" name="my-localname"/>
 </value>

</constraint>
</options>

Using these constraints, you can use string queries such as the following to use these constraints:

my-value:"This is an element value."
my-attribute-value:123456

Both parts of the above queries would match the following document:

<my-document xmlns="my-namespace">
<my-localname>This is an element value.</my-localname>
<my-localname my-attribute="123456"/>

</my-document>

For more details, see “value” on page 831 in the options reference.

8.4.2 Word Constraint Examples

The following query options define two word constraints: One for the <name/> element in the
namespace http://authors-r-us.com and one for the field my-field. one for a
cts:element-word-query and one for a cts:field-word-query:

<options xmlns="http://marklogic.com/appservices/search">
<constraint name="name">

 <word>
 <element ns="http://authors-r-us.com" name="name"/>
 </word>

</constraint>
<constraint name="description">

 <word>
 <field name="my-field"/>
 </word>

</constraint>
</options>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 389

MarkLogic Server Search Customization Using Query Options
You can create string and structured queries that use these constraints. For example, the following
string query uses the name constraint.

name:raymond

When parsed, it becomes a cts:element-word-query:

<cts:element-word-query>
 <cts:element xmlns:_1="http://authors-r-us.com">

_1:name
</cts:element>

 <cts:text>raymond</cts:text>
</cts:element-word-query>

This query matches the following document (because a cts:word-query("raymond") would
match):

<my-document xmlns="http://authors-r-us.com">
<name>Raymond Carver</name>

</my-document>

Similarly, the following string query using the description constraint parses into a
cts:field-word-query:

description:author

This query matches the above document if the name element is included in the definition of the
field named my-field. For details on fields, see Fields Database Settings in the Administrator’s
Guide.

For more details, see “word” on page 835 in the query options reference.

Word constraints can also be used in structured queries. For example, the following structured
query is equivalent to the name:raymond string query:

<search:query xmlns:search="http://marklogic.com/appservices/search">
 <search:word-constraint-query>
 <search:constraint-name>name</search:constraint-name>
 <search:text>raymond</search:text>
 </search:word-constraint-query>
</search:query>

For details, see “Searching Using Structured Queries” on page 74.

8.4.3 Collection Constraint Example

The following query options define a collection constraint, which allows you to constrain your
search to documents that are in a specified collection.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 390

MarkLogic Server Search Customization Using Query Options
Note: You must enable the collection lexicon in the database to use collection
constraints. If the collection lexicon is not enabled, an exception is thrown when
you use a query with a collection constraint.

If you include a prefix attribute in the definition of a collection constraint, then the collection
name is derived from the prefix concatenated with the constraint value.

One use for a collection constraint is to allow faceted navigation based on collections. For
example, if you have collections based on subjects (for example, one called history, one called
math, and so on), then you can use a collection constraint to narrow the search to one of the
subjects.

<options xmlns="http://marklogic.com/appservices/search">
<constraint name="subject">

<collection prefix="/my-collections/"/>
</constraint>

</options>

Assuming that all documents in your database have collection URIs that begin with the string
/my-collections/ like the following:

/my-collections/math
/my-collections/economics
/my-collections/zoology

Then the following query text examples will match documents in the corresponding collections:

subject:math
subject:economics
subject:zoology

If the database contains no documents in the specified collection, then the search returns no
matches. For information on collections, see “Collections” on page 693.

You can also use collection constraints in a structured query, using collection-constraint-query.
For details, see “Searching Using Structured Queries” on page 74.

8.4.4 Bucketed Range Constraint Example

Range constraints operate on typed element, element attribute, JSON property, field, or path
values that have a corresponding range index in the database. Without the correct range index,
queries using range constraints throw a runtime exception.

Range constraints can match on either all of the individual values in the constrained scope
(element, property, field, etc.), or on ranges of values defined as “buckets”. You can define two
types of buckets in a range constraint specification.

• Use the bucket portion of a range constraint to define a value range in terms of fixed
values.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 391

MarkLogic Server Search Customization Using Query Options
• Use the computed-bucket portion of a range constraint to define a value range in terms of a
dynamic time that is computed at runtime. For more information about computed-bucket
range constraints, see “Computed Buckets Example” on page 64.

The following example uses search:parse with query options that define a bucket range
constraint. The constraint definition is based on the JSON data from “Preparing to Run the
Examples” on page 375, but you can create a similar constraint on XML data.

xquery version "1.0-ml";
import module namespace search =
 "http://marklogic.com/appservices/search"
 at "/MarkLogic/appservices/search/search.xqy";

search:parse('price:under10',
<options xmlns="http://marklogic.com/appservices/search">

<constraint name="price">
<range type="xs:float" facet="true">

<bucket lt="10" name="under10">under $10</bucket>
<bucket ge="10" lt="21" name="10to20">$10 to $20</bucket>
<bucket ge="21" name="20+">$20+</bucket>
<facet-option>limit=10</facet-option>
<json-property>/edition/price</json-property>

</range>
</constraint>

</options>)

With the given constraint definition, the query text “price:under10” parses into the following
cts:query:

<cts:and-query xmlns:cts="http://marklogic.com/cts">
 <cts:json-property-range-query operator=">=">
 <cts:property>/edition/price</cts:property>
 <cts:value xsi:type="xs:float"

xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

10
</cts:value>

 </cts:json-property-range-query>
 <cts:json-property-range-query operator="<">
 <cts:property>/edition/price</cts:property>
 <cts:value xsi:type="xs:float"

xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

21
</cts:value>

 </cts:json-property-range-query>
</cts:and-query>

For other range constraint examples, see “Buckets Example” on page 62 and “Computed Buckets
Example” on page 64, and the following example.

For syntax details, see “bucket” on page 880 of the query options appendix.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 392

MarkLogic Server Search Customization Using Query Options
8.4.5 Exact Match (Unbucketed) Range Constraint Example

The following example shows an exact match year range constraint. It returns results that match
the xs:gYear value “1964” when it is the value of an XML element named “nominee”, in the
namespace “http://marklogic.com/wikipedia”. The database configuration must include a range
index matching the constraint definition.

xquery version "1.0-ml";

import module namespace search =
 "http://marklogic.com/appservices/search"
 at "/MarkLogic/appservices/search/search.xqy";

let $options :=
<options xmlns="http://marklogic.com/appservices/search">
 <constraint name="year">
 <range type="xs:gYear" facet="true">
 <facet-option>limit=10</facet-option>
 <attribute ns="" name="year"/>
 <element ns="http://marklogic.com/wikipedia"
 name="nominee"/>
 </range>
 </constraint>
</options>
return
search:search("year:1964", $options)

You can also try out these query options with the Java and REST APIs. For details, see Apply

Dynamic Query Options to Document Searches in the Java Application Developer’s Guide or
Specifying Dynamic Query Options with Combined Query in the REST Application Developer’s Guide.

8.4.6 Geospatial Constraint Example

The following example shows how to use a geospatial constraint to generate geospatial facets in
the form of boxes. For details on these options, see “Appendix: Query Options Reference” on
page 816. For details on the concept of geospatial facets, see “Creating Geospatial Facets” on
page 525.

Suppose the database contains documents of the following form, describing earthquake events:

<event xmlns="http://quakeml.org/xmlns/bed/1.2">
 <time>2015-03-24T09:39:15.500Z</time>
 <latitude>36.5305</latitude>
 <longitude>-98.8456</longitude>
 <depth>8.72</depth>
 <mag>3.4</mag>
 <magType>mb_lg</magType>
 <id>us10001q5d</id>
 <place>33km ENE of Mooreland, Oklahoma</place>
 <type>earthquake</type>
</event>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 393

MarkLogic Server Search Customization Using Query Options
If you define a geospatial element pair range index on the /event/latitude and /event/longitude
elements, then you can use query options to define an associated constraint that can be used to
generate geospatial facets by including a heatmap element in the constraint definition.

The heatmap element defines a region over which to generate facets, along with the number of
latitude and longitude divisions to use in sub-divisions the region into boxes. When you perform a
search with the constraint in scope, the search response includes a set of search:box elements that
give you the frequency of matches in each sub-division. You can use this box data for faceting or
heatmap generation.

For example, the following constraint includes a heat map that corresponds very roughly to the
continental United States, and divides the region into a set of 20 boxes (5 latitude divisions and 4
longitude divisions):

<constraint name="qgeo">
 <geo-elem-pair facet="true">
 <parent ns="http://quakeml.org/xmlns/bed/1.2" name="event"/>
 <lat ns="http://quakeml.org/xmlns/bed/1.2" name="latitude"/>
 <lon ns="http://quakeml.org/xmlns/bed/1.2" name="longitude"/>
 <heatmap s="24.0" n="49.0" e="-67.0" w="-125.0"

latdivs="5" londivs="4" />
 <facet-option>gridded</facet-option>
 </geo-elem-pair>
</constraint>

If you also define an element range index on /event/mag, then the following search finds
earthquakes with a magnitude (mag) greater than 4.0 within the continental US.

xquery version "1.0-ml";
import module namespace search =
"http://marklogic.com/appservices/search" at
"/MarkLogic/appservices/search/search.xqy";

let $options :=
<options xmlns="http://marklogic.com/appservices/search">
 <constraint name="qgeo">
 <geo-elem-pair>
 <parent ns="http://quakeml.org/xmlns/bed/1.2" name="event"/>
 <lat ns="http://quakeml.org/xmlns/bed/1.2" name="latitude"/>
 <lon ns="http://quakeml.org/xmlns/bed/1.2" name="longitude"/>
 <heatmap s="24.0" n="49.0" e="-67.0" w="-125.0"

latdivs="5" londivs="4" />
 <facet-option>gridded</facet-option>
 </geo-elem-pair>
 </constraint>
 <constraint name="mag">
 <range type="xs:float" facet="false">
 <element ns="http://quakeml.org/xmlns/bed/1.2" name="mag"/>
 </range>
 </constraint>
 <return-facets>true</return-facets>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 394

MarkLogic Server Search Customization Using Query Options
</options>
return search:search("mag GT 4", $options)

The search response includes the following frequency count per geographic region, based on the
geo constraint in the options:

<search:boxes name="qgeo">
 <search:box count="3" s="-18.9346" w="-178.4936"

n="-17.8151" e="-174.9279"/>
 <search:box count="2" s="-48.36" w="-87.3529"

n="7.6115" e="-81.8738"/>
 <search:box count="8" s="-20.7243" w="-73.0949"

n="6.8852" e="151.9563"/>
 <search:box count="2" s="36.2665" w="70.65"

n="36.4086" e="140.0085"/>
 <search:box count="3" s="53.6477" w="160.0923"

n="53.8233" e="161.7353"/>
</search:boxes>

By default, the returned boxes are the smallest box within each grid box that encompasses all the
matched documents. To return boxes corresponding to the grid divisions instead, add
<facet-option>gridded</facet-option> to the geo constraint definition. In this example it results
in the following boxes:

<search:boxes name="qgeo">
 <search:box count="3" s="-90" w="-180" n="24" e="-125"/>
 <search:box count="2" s="-90" w="-96" n="24" e="-81.5"/>
 <search:box count="8" s="-90" w="-81.5" n="24" e="180"/>
 <search:box count="2" s="34" w="-81.5" n="39" e="180"/>
 <search:box count="3" s="44" w="-81.5" n="90" e="180"/>
</search:boxes>

For an example of expression a geospatial constraint in JSON, see “geo-attr-pair” on page 847
and “heatmap” on page 877.

Note that the generated facets will bucket all matched points, even if they’re outside the extent of
the box defined in the heatmap. If you want to facet only within bounds of the heatmap, then your
search results must be similarly constrained.

For example, you could add an additional-query option that constrains the search to the same
box as defined by the heatmap using a cts:element-pair-geospatial-query.

8.5 Operator Options

Search operators enable you to define operators in your string query grammar that provide
runtime, user-controlled configuration and search choices. A typical search operator might control
sorting, thereby allowing the user to specify the sort order directly in a string query or query text.
For details, see “operator” on page 908 in the query options appendix.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 395

MarkLogic Server Search Customization Using Query Options
For example, the following options XML defines an operator named sort that enables you to sort
by relevance or by date:

<options xmlns="http://marklogic.com/appservices/search">
<search:operator name="sort">

<search:state name="relevance">
<search:sort-order>

<search:score/>
</search:sort-order>

</search:state>
<search:state name="date">

<search:sort-order direction="descending" type="xs:dateTime">
<search:element ns="my-ns" name="date"/>

</search:sort-order>
<search:sort-order>

<search:score/>
</search:sort-order>

</search:state>
</search:operator>

</options>

This operator definition in the query options allows you to add text like the following to a string
query, and MarkLogic Server will parse the string and sort it according to the operator
specification.

sort:date

sort:relevance

Each operator is named, and the name must be unique across all operators and constraints in your
query options. When you specify an operator in a string query, you use the name as an operator in
the search grammar followed by the apply="constraint" joiner string (a colon character [:] by
default). The joiner string joins the operator (or the constraint) with its value. For example, the
following query text:

sort:date

specifies using the operator named sort with a value of date. You can also include operator
settings in structured queries, using the operator-state element. For details, see “operator-state”
on page 192.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 396

MarkLogic Server Search Customization Using Query Options
The following figure shows each portion of the operator query text:

For more details about the search grammar, see “Automatic Query Text Parsing and Grammar” on
page 32 and “The Default String Query Grammar” on page 68.

The search:state element is a child of the search:operator element, and the following options
XML elements are allowed as a child of search:state element:

• additional-query

• debug

• forest

• page-length

• quality-weight

• search-option

• searchable-expression

Note: Due to security and performance considerations, beginning in MarkLogic 9.0-10,
the searchable-expression property/element in query options is deprecated.
Please see Search API searchable-expression Deprecated in the Release Notes for
more information.

• sort-order

• transform-results

Operators use the same syntax as constraints, but control other aspects of the search (for example,
the sort order) besides which results are returned.

sort:date

joiner
string

matches the name attribute
for a state in the

(default is
colon [:])

operator definition

operator name
—comes from
the name
attribute on
the operator
option
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 397

MarkLogic Server Search Customization Using Query Options
8.6 Return Options

You can specify a number of options that control what is include in a search response, such as the
results returned by the XQuery Search API function search:search, a GET request to the /search
service of the REST API, or the Java API method
com.marklogic.client.query.QueryManager.search. These include the following boolean
options:

• return-aggregates

• return-constraints

• return-facets

• return-frequencies

• return-metrics

• return-plan

• return-qtext

• return-query

• return-results

• return-similar

• return-values

For details on these and other options, see “Appendix: Query Options Reference” on page 816.

Setting one of these options to true includes the specified information in the search:response
returned by a search. Setting to false omits the information from the response. For example, the
following specifies to return query statistics and facets in the result, but not to return the search
hits:

<options xmlns="http://marklogic.com/appservices/search">
<return-metrics>true</return-metrics>
<return-facets>true</return-facets>
<return-results>false</return-results>

</options>

Only the needed parts of the response are computed, so if you do not return results (as in the
above example) or do not return something else, then the work needed to perform that part of the
response is not done, and the search runs faster.

For details on each return option, including their default values, see the search:search function
documentation in MarkLogic XQuery and XSLT Function Reference.

8.7 Searchable Expression Option

Use the searchable-expression option to specify what expression to search over and what is
returned in the search results. The expression corresponds to the first parameter to cts:search,
and must be a fully searchable expression. For details on fully searchable expressions, see Fully

Searchable Paths and cts:search Operations in Query Performance and Tuning Guide.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 398

MarkLogic Server Search Customization Using Query Options
Note: Due to security and performance considerations, beginning in MarkLogic 9.0-10,
the searchable-expression property/element in query options is deprecated.
Please see Search API searchable-expression Deprecated in the Release Notes for
more information.

By default, searches apply to the whole database (fn:collection()). In most cases, your
searchable-expression should search over fragment roots, although searching below fragment
roots is allowed.

The following example shows a searchable expression that searches over both CITATION elements
and html elements:

<searchable-expression xmlns:xh="http://www.w3.org/1999/xhtml">
/(xh:html | CITATION)

</searchable-expression>

If an expression is not fully searchable, it will throw an XDMP-UNSEARCHABLE exception at runtime.

For more details, see “searchable-expression” on page 921 in the query options appendix.

8.8 Fragment Scope Option

You can specify a fragment-scope option which controls the fragments over which a search or a
constraint operates. A fragment-scope can be either documents or properties. By default, the
scope is documents. A fragment-scope of documents searches over documents fragments, and a
fragment-scope of properties searches over properties fragments.

There are two types of fragment-scope options: a global fragment scope, which applies to the
both the search and any constraints in the search, and a local fragment scope, which applies to a
given constraint. A global fragment-scope is specified as a child of <options>, and a local
fragment scope is specified as a child of a <term> or a contraint kind (for example, a child of
<range>, <value>, or <word>). Any local fragment scope will override the global fragment scope.

A local fragment scope of properties on a range constraint with a global fragment scope of
documents allows you to create a facet on data that is in a properties fragment. For example, the
following query returns results from documents and a dateTime last-modified facet from the
prop:last-modified system property:

xquery version "1.0-ml";
import module namespace search =
"http://marklogic.com/appservices/search"
 at "/MarkLogic/appservices/search/search.xqy";

search:search("the",
<options xmlns="http://marklogic.com/appservices/search">
<fragment-scope>documents</fragment-scope>
 <constraint name="last-modified">
 <range type="xs:dateTime">
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 399

MarkLogic Server Search Customization Using Query Options
 <element ns="http://marklogic.com/xdmp/property"
name="last-modified"/>

 <fragment-scope>properties</fragment-scope>
 </range>
 </constraint>
 <debug>true</debug>
</options>)

Setting fragment scope in a <term> definition causes term queries to be evaluated in the specified
scope. However, the local fragment scope is ignored under the following conditions:

• The <term> definition includes an inline word, value, or range constraint or a reference to
another constraint. In this case, the fragment scope of the constraint definition applies.

• The <term> definition specifies a custom term processing function using apply/ns/at. In
this case, the custom function controls scope.

For more details, see “fragment-scope” on page 899 in the query options appendix.

8.9 Searching Key-Value Metadata Fields

You can associate key-value metadata with a document using the “metadata” option during
document insertion, or using builtin functions such as the xdmp:document-set-metadata XQuer
function or the xdmp.documentSetMetadata Server-Side JavaScript function.

To make key-value metadata searchable, you must define a metadata field on the key, as
described in Configuring a New Metadata Field in the Administrator’s Guide. You might also need to
enable field value searches on your database or configure a field range index, depending on the
type of query you want to perform.

Once you define a field over a metadata key, you can include that key-value pair in searches using
any of the field query capabilities.

The following example defines a constraint named “by” over a metadata field named “author”,
and then uses the constraint in a string query. The search only matches occurrences of “twain” in
the metadata key-value pair with the key “author”. It will not match occurrences in document
content or under a different key.

xquery version "1.0-ml";
import module namespace search =
 "http://marklogic.com/appservices/search"
 at "/MarkLogic/appservices/search/search.xqy";

let $options :=
<options xmlns="http://marklogic.com/appservices/search">
 <constraint name="by">
 <word>
 <field name="author"/>
 </word>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 400

MarkLogic Server Search Customization Using Query Options
 </constraint>
</options>
return search:search("by:twain", $options)

For more details, see Metadata Fields in the Administrator’s Guide.

8.10 Modifying Your Snippet Results

The transform-results option enables you to specify options for the snippet code for your
application. A snippet is the search result blurb (an abbreviated and highlighted summary) that
typically comes up in search results. A snippet is created by taking the matching search result
node and running it through transformation code. The transformation typically displays the
portion of the result you want in your results page, perhaps highlighting the query matches and
showing some text around it, often discarding the rest of the result. This section describes the
following ways to control and modify the snippet results from the Search API:

• Specifying transform-results Options

• Specifying Your Own Code in transform-results

8.10.1 Specifying transform-results Options

By default, the Search API has its own code to take search result matches and transform them into
snippets used in the search results. By default, the Search API uses the apply="snippet" attribute
on the transform-results option. Snippets tend to be very application specific, and the built-in
apply="snippet" option has several parameters that you can control with a transform-results
options node.

The following is the default transform-results options node:

<transform-results apply="snippet">
 <per-match-tokens>30</per-match-tokens>
 <max-matches>4</max-matches>
 <max-snippet-chars>200</max-snippet-chars>
 <preferred-matches/>
</transform-results>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 401

MarkLogic Server Search Customization Using Query Options
The following table describes the transform-results options when apply="snippet", each of
which is configurable at search runtime by specifying your own values for the options. For more
details, see “transform-results” on page 936 in the query options appendix.

There are also three other built-in snippetting options, which are exposed as attributes on the
transform-results options node:

• apply="raw"

• apply="empty-snippet"

• apply="metadata-snippet"

Note: The apply attribute for the transform-results element is only applicable to the
search:search and search:resolve functions; search:snippet always uses the
default snippetting option of snippet and ignores anything specified in the apply
attribute.

transform-results
Child Element

Description

per-match-tokens Maximum number of tokens (typically words) per matching node
that surround the highlighted term(s) in the snippet.

max-matches The maximum number of nodes containing a highlighted term that
will display in the snippet.

max-snippet-chars Limit total snippet size to this many characters.

preferred-matches Specify zero or more XML elements or JSON properties that the
snippet algorithm looks in first to find matches. For example, if you
want any matches in the TITLE element to take preference, specify
TITLE as a preferred element as in the following sample:

<transform-results apply="snippet">
<preferred-matches>

<element ns="" name="TITLE"/>
</preferred-matches>

</transform-results>

For JSON properties, use a json-property child element or property.
For example:

<transform-results apply="snippet">
<preferred-matches>

<json-property>title</json-property>
</preferred-matches>

</transform-results>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 402

MarkLogic Server Search Customization Using Query Options
The apply="raw" snippetting option looks as follows:

<transform-results apply="raw" />

The apply="raw" option returns the whole node (with no highlighting) in the search:response
output. You can then take the node and do your own transformation on it, or just return it as-is, or
whatever else makes sense for your application.

The apply="empty-snippet" snippetting option is as follows:

<transform-results apply="empty-snippet" />

The apply="empty-snippet" option returns no result node, but does return an empty
search:snippet element for each search:result. The search:result wrapper element does have
the information (for example, the URI and path to the node) needed to access the node and
perform your own transformation on the matching search node(s), so you can write your own
code outside of the Search API to process the results.

The apply="metadata-snippet" snippeting option is as follows:

<transform-results apply="metadata-snippet">
<preferred-matches>

<!-- Specify namespace and local name for elements that exist
in properties documents -->

<element ns="http://my.namespace" name="my-local-name"/>
</preferred-matches>

</transform-results>

The apply="metadata-snippet" option returns the specified preferred elements from the
properties documents. If no <preferred-matches> element is specified, then the metadata-snippet
option returns the prop:last-modified element for its snippet, and if the prop:last-modified
element does not exist, it returns an empty snippet.

8.10.2 Specifying Your Own Code in transform-results

If the default snippet code does not meet your application requirements, you can use your own
snippet code to use for a given search.

To specify your own snippet code, use the design pattern described in “Search Customization Via
Options and Extensions” on page 36. The function you implement must have a signature
compatible with the following signature:

declare function search:snippet(
$result as node(),
$ctsquery as schema-element(cts:query),
$options as element(search:transform-results)?

) as element(search:snippet)
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 403

MarkLogic Server Search Customization Using Query Options
The Search API will pass the function the result node and the cts:query XML representation and
your custom function can transform it any way you see fit. An options node that specifies a
custom transformation looks as follows:

<options xmlns="http://marklogic.com/appservices/search">
<transform-results apply="my-snippet" ns="my-namespace"

at="/my-snippet.xqy">
</transform-results>

</options>

You must generate an XML <search:snippet/> element, even when producing snippets for JSON
documents. You can embed JSON in your generated snippet as text. If you include a
format="json" attribute in your snippet, the REST, Java, and Node.js client APIs will treat the
embedded text as JSON and unquote when returning search results as JSON. For example:

declare function my:snippeter(
 $result as node(),
 $ctsquery as schema-element(cts:query),
 $options as element(search:transform-results)?

) as element(search:snippet) {
element search:snippet {

attribute format { "json" },
text {'{"MY":"CUSTOM SNIPPET"}'}

}
};

You can optionally pass additional information into your custom snippeting function by adding
extra children to the transform-results option. The Search API passes the transform-results
element into your function, and if you want to use any part of the option, you can write code to
parse the option and extract whatever you need from it.

8.11 Extracting a Portion of Matching Documents

This sections explains how to use the extract-document-data option to project selected XML
elements, XML attributes, and JSON properties out of documents matched by a search. For more
details, see “extract-document-data” on page 895.

By default, a search returns only the search:response result summary. When you use
extract-document-data, you can embed selected portions of each matching document in the
search results or return the selected portions as documents instead in a search:response.

The projected contents are specified through absolute XPath expressions in
extract-document-data and a selected attribute that specifies how to treat the selected content.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 404

MarkLogic Server Search Customization Using Query Options
For example, suppose your database includes the following documents:

Then, if you search for “content” both of the above documents match.

search:search("content")

If you add the following extract-document-data option, the search response includes the
projected content in each search result, similar to the way sinippets are returned. Each projection
contains only the target element or property specified by the option.

xquery version "1.0-ml";
import module namespace search =
"http://marklogic.com/appservices/search"

at "/MarkLogic/appservices/search/search.xqy";

search:search("content",
<options xmlns="http://marklogic.com/appservices/search">

<extract-document-data>
<extract-path>/root/body/target</extract-path>

</extract-document-data>
<search-option>filtered</search-option>

</options>
)

==>

<search:response snippet-format="snippet" total="2" start="1" ...>
<search:result index="1" uri="/extract/doc1.xml"

 path="fn:doc("/extract/doc1.xml")" ...>
<search:snippet>...</search:snippet>
<search:extracted context="fn:doc("/extract/doc1.xml")">

<target>content</target>
</search:extracted>

</search:result>
<search:result index="2" uri="/extract/doc2.json"

 path="fn:doc("/extract/doc2.json")" ...>
<search:snippet>...</search:snippet>

XML JSON

URI: /extract/doc1.xml

<root>
<a>foo
<body>

<target>content</target>
</body>
bar

</root>

URI: /extract/doc2.json
{"root": {
"a": "foo",
"body": { "target":"content" },
"b": "bar"

}}
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 405

MarkLogic Server Search Customization Using Query Options
<search:extracted format="json" kind="object"
context="fn:doc("/extract/doc2.json")">

{"target":"content"}
</search:extracted>

</search:result>
...

</search:response>

Using extract-document-data with search:resolve has a similar effect. However, if you use the
option with search:resolve-nodes, you get the projected content as sparse documents instead of a
search:response. For example:

xquery version "1.0-ml";
import module namespace search =
"http://marklogic.com/appservices/search"

at "/MarkLogic/appservices/search/search.xqy";

search:resolve-nodes(
search:parse("content"),
<options xmlns="http://marklogic.com/appservices/search">

<extract-document-data>
<extract-path>/root/body/target</extract-path>

</extract-document-data>
<search-option>filtered</search-option>

</options>
)

==>

(
<?xml version="1.0" encoding="UTF-8"?>
<search:extracted context="fn:doc("/extract/doc1.xml")"

xmlns:search="http://marklogic.com/appservices/search">
 <target>content</target>

</search:extracted>,

{"context":"fn:doc(\"/extract/doc2.json\")",
"extracted":[{"target":"content"}]}

)

You can specify multiple extract-path elements. For paths to XML elements and attributes,
namespaces in scope on the search:options (or search:search for a combined query) can be used
for namespace prefix bindings on the path expressions.

For performance and security reasons, the path expression in extract-path is limited to a subset
of XPath. For details, see The extract-document-data Query Option in the XQuery and XSLT
Reference Guide.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 406

MarkLogic Server Search Customization Using Query Options
Use the selected attribute to specify how to use the content selected by extract-path in the
returned documents. You can set the attribute to include (default), include-with-ancestors,
exclude, or all. If you choose anything except include, the output for each match is a sparse
representation of the original document instead of a document with an extracted element or
JSON property; see the examples in the table below.

The table below demonstrates how extract-document-data/@selected affects the content
extracted from the two sample documents.

When selected is include or include-with-ancestors and no content for a given search result is
matched by the extract-path expressions, an extracted-none placeholder is returned to preserve
the presence of the document in the result list. For example:

<search:extracted-none
context="fn:doc("/extract/doc1.xml&")" ... />

{ "context":"fn:doc(\"/extract/doc2.json\")",
"extracted-none":null}

selected XML JSON

include <target>content</target> {"target":"content"}

include-with-ancestors <root>
<body>

<target>content</target>
</body>

</root>

{"root":{
"body":{

"target":"content"
}

}}

exclude <root>
<a>foo
<body/>
bar

</root>

{"root":{
"a":"foo",
"body":{},
"b":"bar"

}}

all <root>
<a>foo
<body>

<target>content</target>
</body>
bar

</root>

{"root":{
"a":"foo",
"body":{

"target":"content"
},
"b":"bar"

}}
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 407

MarkLogic Server Search Customization Using Query Options
The Node.js Client API supports extract-document-data through the queryBuilder.extract
method. By default, DatabaseClient.documents.query is a multi-document read, so it returns the
extracted content as individual documents. You can request a search result summary instead,
including the extracted content by using queryBuilder.withOptions({categories: 'none'}). For
details, see Extracting a Portion of Each Matching Document in the Node.js Application Developer’s
Guide.

The Java Client API supports extract-document-data via the QueryManager.search and
DocumentManager.search interfaces. For details on embedding extracted content in the search
results, see Extracting a Portion of Matching Documents in the Java Application Developer’s Guide.
For details on retrieving extracted content in document form, see Extracting a Portion of Each

Matching Document in the Java Application Developer’s Guide.

When you use extract-document-data with the REST Client API /v1/search service, whether the
extracted content is returned in the search response or as separate documents depends on the
Accept header. A multi-document read returns the extracted content as documents. A simple
search returns the extracted content in the search response. For details, see Extracting a Portion of

Each Matching Document in the REST Application Developer’s Guide.

8.12 Customizing Search Results with a Decorator

This section describes how to implement a custom search result decorator function to add extra
information to the search results for your application. The following topics are covered:

• Understanding Search Result Decorators

• Writing a Custom Search Result Decorator

• Installing a Custom Search Result Decorator

• Using a Custom Search Result Decorator

8.12.1 Understanding Search Result Decorators

When you perform a query, MarkLogic Server returns a <search:response/> containing a
<search:result> for each document or fragment that satisfies your query. You can use a search
result decorator to add additional information to the each <search:result/>, without changing the
basic structure or default contents.

For example, the MarkLogic REST API uses an internal result decorator to add href, mimetype,
and format attributes to search results. The following output shows the extended information
added by the REST API default decorator:

<search:response snippet-format="snippet" total="1" ...>
<search:result ...

href="/v1/documents?uri=/docs/example.xml"
mimetype="text/xml" format="xml">

...
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 408

MarkLogic Server Search Customization Using Query Options
</search:result>
</search:response>

Applications using the XQuery Search API can use custom result decorators to similarly add
attributes and elements to a <search:result/>.

Note: Users of the REST API, Java, or Node.js Client API should use search result
transformations to modify search results, rather than result decorators. It is
possible to override the builtin REST API result decorator, but it is not
recommended. If you use a custom result decorator in a Client API context, it
completely replaces the default decorator that adds href, mimetype, and format data
to results. Also, any data added by a decorator is returned as serialized XML, even
when the client requests results in JSON.

To create and use a search result decorator, do the following:

1. Write an XQuery function that conforms to the decorator interface.

2. Install your function in the modules database or modules directory associated with your
App Server.

3. Instruct MarkLogic Server to use your function by specifying it in a result-decorator
query option that you supply with your search.

The rest of this section covers these steps in detail.

8.12.2 Writing a Custom Search Result Decorator

To create a custom decorator, implement an XQuery function that conforms to the following
interface:

declare function your-name($uri as xs:string) as node()*

The $uri input parameter is the URI of a document containing search matches. The nodes
returned by your function become attributes or child nodes of the search:result element on
whose behalf it is called.

Your result decorator should always produce XML, even when working with JSON documents or
producing output for a client expecting JSON search results.

The following example is a custom decorator function that returns the same information as the
default REST API decorator (href, mimetype, and format), with the attribute names changed so
you can see them in use. The example also adds a <my-elem/> element to the search results.

xquery version "1.0-ml";

module namespace my-lib = "http://marklogic.com/example/my-lib";
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 409

MarkLogic Server Search Customization Using Query Options
declare function my-lib:decorator($uri as xs:string) as node()*
{

let $format := xdmp:uri-format($uri)
let $mimetype := xdmp:uri-content-type($uri)
return (

attribute my-href { concat("/documents/are/here?uri=", $uri) },

if (empty($mimetype)) then ()
else attribute my-mimetype {$mimetype},

if (empty($format)) then ()
else attribute my-format { $format }

element my-elem { "Extra Goodness" }
)

};

To use your function, install it as a module in your App Server, and then specify it in a
result-decorator query option. For details, see “Installing a Custom Search Result Decorator” on
page 410 and “Using a Custom Search Result Decorator” on page 410.

8.12.3 Installing a Custom Search Result Decorator

Install the XQuery library module containing your decorator function in the modules database or
under the filesystem root associated with your App Server.

For example, running the following query in Query Console loads an XQuery module into the
modules database with the URI /my.domain/decorator.xqy, assuming you select the modules
database as the Content Source in Query Console:

xquery version "1.0-ml";
xdmp:document-load(
 "/space/rest/decorator.xqy",
 <options xmlns="xdmp:document-load">
 <uri>/my.domain/decorator.xqy</uri>
 </options>)

If you use the REST API or Java API, install the module in the modules database associated with
your REST API instace.

8.12.4 Using a Custom Search Result Decorator

To use a custom search result decorator, specify it in a result-decorator query option that is
included with your query.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 410

MarkLogic Server Search Customization Using Query Options
For example, if you install the custom decorator from “Writing a Custom Search Result
Decorator” on page 409 as /my.domain/decorator.xqy, then you can reference it in query options
as follows:

<options xmlns="http://marklogic.com/appservices/search">
<result-decorator apply="decorator"

ns="http://marklogic.com/example/my-lib"
at="/my.domain/decorator.xqy"/>

</options>

The following example uses the above query options in a search:

xquery version "1.0-ml";
import module namespace search =

"http://marklogic.com/appservices/search"
 at "/MarkLogic/appservices/search/search.xqy";

search:search(
"cat AND dog",
<options xmlns="http://marklogic.com/appservices/search">

<result-decorator apply="decorator"
ns="http://marklogic.com/example/my-lib"
at="/my.domain/decorator.xqy" />

</options>
)

The decorator adds the my-href, my-mimetype, and my-format attributes and the my-elem element to
the search results, similar to the following:

<search:response ...>
<search:result index="1" uri="/docs/example.xml"

 path="fn:doc("/docs/example.xml")" ...
 my-href="/documents/are/here?uri=/docs/example.xml"
 my-mimetype="text/xml" my-format="xml">

<my-elem>Extra Goodness!</my-elem>
...

</search:result>
</search:response>

8.13 Other Search Options

There are many other options in the Search API, including additional-query (an additional
cts:query combined as an and-query to the active query in your search), term-option (pass any of
the cts:query options such as case-sensitive to your cts:query), and others. For a complete list,
see “Appendix: Query Options Reference” on page 816.

8.14 Query Options Examples

This section includes the following additional query options examples:
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 411

MarkLogic Server Search Customization Using Query Options
• Example: Values and Tuples Query Options

• Example: Field Constraint Query Options

• Example: Collection Constraint Query Options

• Example: Path Range Index Constraint Query Options

• Example: Element Attribute Range Constraint Query Options

• Example: Geospatial Constraint Query Options

8.14.1 Example: Values and Tuples Query Options

This examples demonstrates how to create and use a values or tuples query option. For more
details, see “values” on page 945 and “tuples” on page 941 in the query options appendix.

This example sets up the following configurations:

• A values tuple /v1/values/pop, which gets the values from the element range index from
xs:QName("popularity") (in no namespace), and is typed as an xs:int.

• A values tuple /v1/values/score, which gets the values from the element range index
from a QName with namespace "http://test.aggr.com" and local name "score", typed
as an xs:decimal.

• A tuple /v1/values/pop-rate-tups, which combines the range index from from
xs:QName("popularity") (in no namespace), and typed as an xs:int, and the range index
from a QName with namespace "http://test.aggr.com" and local name "score", typed
as an xs:decimal.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 412

MarkLogic Server Search Customization Using Query Options
Format Options

XML <search:options
xmlns:search="http://marklogic.com/appservices/search">
<search:values name="pop-aggr">

<search:range type="xs:int">
<search:element ns="" name="popularity"/>

</search:range>
</search:values>
<search:values name="score-aggr">

<search:range type="xs:decimal">
<search:element ns="http://test.aggr.com" name="score"/>

</search:range>
</search:values>
<search:tuples name="pop-rate-tups">

<search:range type="xs:int">
<search:element ns="" name="popularity"/>

</search:range>
<search:range type="xs:int">

<search:element ns="http://test.tups.com" name="rate"/>
</search:range>

</search:tuples>
</search:options>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 413

MarkLogic Server Search Customization Using Query Options
JSON { "options": {
"values": [{

"name": "pop-aggr",
"range": {

"type": "xs:int",
"element": {

 "ns": "",
 "name": "popularity"

}
}

},
{

"name": "score-aggr",
"range": {

"type": "xs:decimal",
"element": {

"ns": "http://test.aggr.com",
"name": "score"

}
}

}],
"tuples": [{

"name": "pop-rate-tups",
"range": [

 {
 "type": "xs:int",
 "element": {

 "ns": "",
 "name": "popularity"

 }
 },
 {

 "type": "xs:int",
 "element": {

 "ns": "http://test.tups.com",
 "name": "rate"

 }
 }

]
}]

} }

Format Options
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 414

MarkLogic Server Search Customization Using Query Options
8.14.2 Example: Field Constraint Query Options

This example constructs a simple options node that sets up just one constraint, based on the field
named "bbqtext". It creates a word constraint, therefore when you search for

summary:"hot dog"

It constrains the search to documents that have the phrase "hot dog" in the field called "bbqtext".

For more details, see “constraint” on page 822 in the query options appendix.

8.14.3 Example: Collection Constraint Query Options

The query options in this example do the following:

• Sets flags that modify the search results (return-metrics and return-qtext).

• Specifies a builtin transform-results function that will return raw document search
results.

• Defines a collection constraint that uses the collection URIs.

Format Options

XML <search:options
xmlns:search="http://marklogic.com/appservices/search">
<search:constraint name="summary">

<search:word>
<search:field name="bbqtext"/>

</search:word>
</search:constraint>

</search:options>

JSON { "options": {
"constraint": [{

"name": "summary",
"word": {

"field": { "name": "bbqtext" }
}

}]
} }
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 415

MarkLogic Server Search Customization Using Query Options
The collection constraint named "coll" uses the collection URIs with "http://test.com" stripped
off.

For more details, see “collection” on page 839 in the query options appendix.

8.14.4 Example: Path Range Index Constraint Query Options

This example shows how to configure a constraint with a path range index. With this in place,
searching for:

pindex:low

Searches for values less than 5 from the nodes at /Employee/fn (in no namespace). It is a string
range index, faceted, scoped to documents, with a nice looking unicode label. The facet values are
returned with any search.

Format Options

XML <search:options
xmlns:search="http://marklogic.com/appservices/search">

<search:debug>true</search:debug>
<search:constraint name="coll">

<search:collection prefix="http://test.com"/>
</search:constraint>
<search:return-metrics>false</search:return-metrics>
<search:return-qtext>false</search:return-qtext>
<search:transform-results apply="raw">

<search:preferred-matches/>
</search:transform-results>

</search:options>

JSON { "options": {
"debug": true,
"constraint": [{

"name": "coll",
"collection": { "prefix": "http://test.com" }

}],
"return-metrics": false,
"return-qtext": false,
"transform-results": {

"apply": "raw",
"preferred-matches": ""

}
} }
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 416

MarkLogic Server Search Customization Using Query Options
Format Options

XML <search:options
xmlns:search="http://marklogic.com/appservices/search">

<search:constraint name="pindex">
<search:range type="xs:string" facet="true"

collation="http://marklogic.com/collation/">
<search:path-index>/Employee/fn</search:path-index>
<search:fragment-scope>documents</search:fragment-scope>
<search:bucket name="low" ge="5">0 to 5</search:bucket>
<search:bucket name="medium" lt="10" ge="5"

>5 to 10</search:bucket>
<search:bucket name="high" lt="15" ge="10"

>10 to 15</search:bucket>
</search:range>

</search:constraint>
</search:options>

JSON { "options": {
"constraint": [{

"name": "pindex",
"range": {

"type": "xs:string",
"facet": true,
"collation": "http://marklogic.com/collation/",
"path-index": { "text": "/Employee/fn" },
"fragment-scope": "documents",
"bucket": [

{
"name": "low",
"lt": "5",
"label": "0 to 5"

},
{

"name": "medium",
"lt": "10",
"ge": "5",
"label": "5 to 10"

},
{

"name": "high",
"lt": "15",
"ge": "10",
"label": "10 to 15"

}
]

}
}]

} }
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 417

MarkLogic Server Search Customization Using Query Options
8.14.5 Example: Element Attribute Range Constraint Query Options

This example shows an element attribute range index, with computed buckets. When you search,
the facets will be filled out depending on the values of {http://example.com}entry/@date.

Format Options

XML <search:options
xmlns:search="http://marklogic.com/appservices/search">

<search:constraint name="date">
<search:range type="xs:dateTime" facet="true">

<search:attribute ns="" name="date"/>
<search:element ns="http://example.com" name="entry"/>
<search:fragment-scope>documents</search:fragment-scope>
<search:computed-bucket name="older" lt="-P1Y"

anchor="start-of-year">Older</search:computed-bucket>
<search:computed-bucket name="year" lt="P1Y" ge="P0Y"

anchor="start-of-year">This Year</search:computed-bucket>
<search:computed-bucket name="month" lt="P0M" ge="P1M"

anchor="start-of-month">This
Month</search:computed-bucket>

<search:computed-bucket name="today" lt="P0D" ge="P1D"
anchor="start-of-day">Today</search:computed-bucket>

<search:computed-bucket name="future" ge="P0D"
anchor="now">Future</search:computed-bucket>

</search:range>
</search:constraint>

</search:options>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 418

MarkLogic Server Search Customization Using Query Options
JSON { "options": {
"constraint": [{

"name": "date",
"range": {

"type": "xs:dateTime",
"facet": true,
"attribute": {

"ns": "",
"name": "date"

},
"element": {

"ns": "http://example.com",
"name": "entry"

},
"fragment-scope": "documents",
"computed-bucket": [

{
"name": "older",
"lt": "-P1Y",
"anchor": "start-of-year",
"label": "Older"

},
{

"name": "year",
"lt": "P1Y",
"ge": "P0Y",
"anchor": "start-of-year",
"label": "This Year"

},
{

"name": "month",
"lt": "P0M",
"ge": "P1M",
"anchor": "start-of-month",
"label": "This Month"

},
{

"name": "today",
"lt": "P0D",
"ge": "P1D",
"anchor": "start-of-day",
"label": "Today"

},
{

"name": "future",
"ge": "P0D",
"anchor": "now",
"label": "Future"

}
]

}}]}}

Format Options
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 419

MarkLogic Server Search Customization Using Query Options
8.14.6 Example: Geospatial Constraint Query Options

This example shows geospatial constraint query options. In addition to having a search results
configuration setting (page-length), this sets up three geospatial constraints and three element
constraints.

Format Options

XML <search:options
xmlns:search="http://marklogic.com/appservices/search">

<search:debug>true</search:debug>
<search:return-metrics>false</search:return-metrics>
<search:page-length>25</search:page-length>
<search:constraint name="geo-elem">

<search:geo-elem>
<search:element ns="" name="g-elem-point"/>

</search:geo-elem>
</search:constraint>
<search:constraint name="geo-elem-pair">

<search:geo-elem-pair>
<search:lat ns="" name="lat"/>
<search:lon ns="" name="long"/>
<search:parent ns="" name="g-elem-pair"/>

</search:geo-elem-pair>
</search:constraint>
<search:constraint name="geo-attr-pair">

<search:geo-attr-pair>
<search:lat ns="" name="lat"/>
<search:lon ns="" name="long"/>
<search:parent ns="" name="g-attr-pair"/>

</search:geo-attr-pair>
</search:constraint>

</search:options>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 420

MarkLogic Server Search Customization Using Query Options
JSON { "options": {
"debug": true,
"return-metrics": false,
"page-length": 25,
"constraint": [

{ "name": "geo-elem",
"geo-elem": {

"element": {
"ns": "",
"name": "g-elem-point"

}
}

},
{ "name": "geo-elem-pair",

"geo-elem-pair": {
"lat": {

"ns": "",
"name": "lat"

},
"lon": {

"ns": "",
"name": "long"

},
"parent": {

"ns": "",
"name": "g-elem-pair"

}
}

},
{ "name": "geo-attr-pair",

"geo-attr-pair": {
"lat": {

"ns": "",
"name": "lat"

},
"lon": {

"ns": "",
"name": "long"

},
"parent": {

"ns": "",
"name": "g-attr-pair"

}
}

}
]

} }

Format Options
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 421

MarkLogic Server Relevance Scores: Understanding and Customizing
9.0 Relevance Scores: Understanding and Customizing
444

Search results in MarkLogic Server return in relevance order; that is, the result that is most
relevant to the cts:query expression in the search is the first item in the search return sequence,
and the least relevant is the last. There are several tools available to control the relevance score
associated with a search result item. This chapter describes the different methods available to
calculate relevance, and includes the following sections:

• Understanding How Scores and Relevance are Calculated

• How Fragmentation and Index Options Influence Scores

• Using Weights to Influence Scores

• Proximity Boosting With the distance-weight Option

• Boosting Relevance Score With a Secondary Query

• Including a Range or Geospatial Query in Scoring

• Interaction of Score and Quality

• Using cts:score, cts:confidence, and cts:fitness

• Relevance Order in cts:search Versus Document Order in XPath

• Exploring Relevance Score Computation

• Sample cts:search Expressions

9.1 Understanding How Scores and Relevance are Calculated

When you perform a cts:search operation, MarkLogic Server produces a result set that includes
items matching the cts:query expression and, for each matching item, a score. The score is a
number that is calculated based on statistical information, including the number of documents in a
database, the frequency in which the search terms appear in the database, and the frequency in
which the search term appears in the document. The relevance of a returned search item is
determined based on its score compared with other scores in the result set, where items with
higher scores are deemed to be more relevant to the search. By default, search results are returned
in relevance order, so changing the scores can change the order in which search results are
returned.

As part of a cts:search expression, you can specify the following different methods for
calculating the score, each of which uses a different formula in its score calculation:

• log(tf)*idf Calculation

• log(tf) Calculation

• Simple Term Match Calculation

• Random Score Calculation
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 422

MarkLogic Server Relevance Scores: Understanding and Customizing
• Term Frequency Normalization

You can use the relevance-trace option with cts:relevance-info to explore score calculations in
detail. For details, see “Exploring Relevance Score Computation” on page 442.

9.1.1 log(tf)*idf Calculation

The logtfidf method of relevance calculation is the default relevance calculation, and it is the
option score-logtfidf of cts:search. The logtfidf method takes into account term frequency
(how often a term occurs in a single fragment) and document frequency (in how many documents
does the term occur) when calculating the score. Most search engines use a relevance formula that
is derived by some computation that takes into account term frequency and document frequency.

The logtfidf method (the default scoring method) uses the following formula to calculate
relevance:

log(term frequency) * (inverse document frequency)

The term frequency is a normalized number representing how many terms are in a document. The
term frequency is normalized to take into account the size of the document, so that a word that
occurs 10 times in a 100 word document will get a higher score than a word that occurs 100 times
in a 1,000 word document.

The inverse document frequency is defined as:

log(1/df)

where df (document frequency) is the number of documents in which the term occurs.

For most search-engine style relevance calculations, the score-logtfidf method provides the
most meaningful relevance scores. Inverse document frequency (IDF) provides a measurement of
how “information rich” a document is. For example, a search for “the” or “dog” would probably
put more emphasis on the occurences of the term “dog” than of the term “the”.

9.1.2 log(tf) Calculation

The option score-logtf for cts:search computes scores using the logtf method, which does not
take into account how many documents have the term. The logtf method uses the following
formula to calculate scores:

log(term frequency)

where the term frequency is a normalized number representing how many terms are in a
document. The term frequency is normalized to take into account the size of the document, so that
a word that occurs 10 times in a 100 word document will get a higher score than a word that
occurs 100 times in a 1,000 word document.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 423

MarkLogic Server Relevance Scores: Understanding and Customizing
When you use the logtf method, scores are based entirely on how many times a document
matches the search term, and does not take into account the “information richness” of the search
terms.

9.1.3 Simple Term Match Calculation

The option score-simple on cts:search performs a simple term-match calculation to compute the
scores. The score-simple method gives a score of 8*weight for each matching term in the
cts:query expression, and then scales the score up by multiplying by 256. It does not matter how
many times a given term matches (that is, the term frequency does not matter); each match
contributes 8*weight to the score. For example, the following query (assume the default weight of
1) would give a score of 8*256=2048 for any fragment with one or more matches for “hello”, a
score of 16*256=4096 for any fragment that also has one or more matches for “goodbye”, or a
score of zero for fragments that have no matches for either term:

cts:or-query(("hello", "goodbye"))

Use this option if you want the scores to only reflect whether a document matches terms in the
query, and you do not want the score to be relative to frequency or “information-richness” of the
term.

9.1.4 Random Score Calculation

The option score-random on cts:search computes a randomly-generated score for each search
match. You can use this to randomly choose fragments matching a query. If you perform the same
search multiple times using the score-random option, you will get different ordering each time
(because the scores are randomly generated at runtime for each search).

9.1.5 Term Frequency Normalization

The scoring methods that take into account term frequency (score-logtfidf and score-logtf)
will, by default, normalize the term frequency (how many search term matches there are for a
document) based on the size of the document. The idea of this normalization is to take into
account how frequent a term occurs in the document, relative to the other documents in the
database. You can think of this is the density of terms in a document, as opposed to simply the
frequency of the terms. The term frequency normalization makes a document that has, for
example, 10 occurrences of the word "dog" in a 10,000,000 word document have a lower
relevance than a document that has 10 occurrences of the word "dog" in a 100 words document.
With the default term frequency normalization of scaled-log, the smaller document would have a
higher score (and therefore be more relevant to the search), because it has a greater “term density”
of the word "dog". For most search applications, this behavior is desirable.

If you would like to change that behavior, you can set the tf normalization option on the
database configuration to lessen or eliminate the effects of the size of the matching document in
the score calculation, which in turn would strengthen the effect of its term frequency (the number
of matches in that document). The unscaled-log option does no scaling based on document size,
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 424

MarkLogic Server Relevance Scores: Understanding and Customizing
and the scaled-log option (the default) does the maximum scaling of the document based on
document size. Additionally, there are four intermediate settings, weakest-scaled-log,
weakly-scaled-log, moderately-scaled-log, and strongly-scaled-log, which have increasing
degrees of scaling in between none and the most scaling. If you change this setting in the database
and reindexer enable is set to true, then the database will begin reindexing.

9.2 How Fragmentation and Index Options Influence Scores

Scores are calculated based on index data, and therefore based on unfiltered searches. That has
several implications to scores:

• Scores are fragment-based, so term frequency and document frequency are calculated
based on term frequency per fragment and fragment frequency respectively.

• Scores are based on unfiltered searches, so they include false-positive results.

Because scores are based on fragments and unfiltered searches, index options will affect scores,
and in some case will make the scores more “accurate”; that is, base the scores on searches that
return fewer false-positive results. For example, if you have word positions enabled in the
database configuration, searches for three or more term phrases will have fewer false-positive
matches, thereby improving the accuracy of the scores.

For details on unfiltered searches and how you can tell if there are false-positive matches, see
“Using Unfiltered Searches for Fast Pagination” in the Query Performance and Tuning Guide.

9.3 Using Weights to Influence Scores

Use a weight in a query sub-expression to either boost or lower the sub-expression contribution to
the relevance score.

For example, you can specify weights for leaf-level cts:query constructors, such as
cts:word-query and cts:element-value-query; for details, see XQuery and XSLT Reference
Guide. You can also specify weights in the equivalent Search API abstractions, such as the
structured query constructs value-query and word-constraint-query, or when defining a word or
value constraint in query options.

The default weight is 1.0. Use the following guidelines for choosing custom weights:

• To boost the score contribution, set the weight higher than 1.0.

• To lower the score contribution, set the weight between 0 and 1.0.

• To contribute nothing to the score, set the weight to 0.

• To make the score contribution negative, set the weight to a negative number.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 425

MarkLogic Server Relevance Scores: Understanding and Customizing
Scores are normalized, so a weight is not an absolute multiplier on the score. Instead, weights
indicate how much terms from a given query sub-expression are weighted in comparison to other
sub-expressions in the same expression. A weight of 2.0 doubles the contribution to the score for
terms that match that query. Similarly, a weight of 0.5 halves the contribution to the score for
terms that match that query. In some cases, the score reaches a maximum, so a weight of 2.0 and a
weight of 20,000 can yield the same contribution to the score.

Adding weights is particularly useful if you have several components in a query expression, and
you want matches for some parts of the expression to be weighted more heavily than other parts.
For an example of this, see “Increase the Score for some Terms, Decrease for Others” on
page 444.

9.4 Proximity Boosting With the distance-weight Option

If you have the word positions indexing option enabled in your database, you can use the
distance-weight option to the leaf-level cts:query constructors, and then all of the terms passed
into that cts:query constructors will consider the proximity of the terms to each other for the
purposes of scoring. This proximity boosting will make documents with matches close together
have higher scores. Because search results are sorted by score, it will have the effect of making
documents having the search terms close together have higher relevance ranking. This section
provides some examples that use the distance-weight option along with explanations of the
examples, and includes the following parts:

• Example of Simple Proximity Boosting

• Using Proximity Boosting With cts:and-query Semantics

• Using cts:near-query to Achieve Proximity Boosting

9.4.1 Example of Simple Proximity Boosting

The distance weight is only applied to the matches for cts:query constructors in which the
distance-weight occurs. For example, consider the following cts:query constructor:

cts:word-query(("cat", "dog")), "distance-weight=3")

If one document has an instance of "cat" very near "dog", and another document has the same
number of "cat" and "dog" terms, but they are not very near, then the one with the "cat" near
"dog" will have a higher score.

For example, consider the following:

xquery version "1.0-ml";
(: make sure word positions are enabled in the database :)
(:

create 3 documents, then run two searches, one with
distance-weight and one without, printing out the scores

:)
xdmp:document-insert("/2.xml",
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 426

MarkLogic Server Relevance Scores: Understanding and Customizing
 <p>The cat is pretty near a dog.</p>) ;

xdmp:document-insert("/1.xml",
 <p>The cat dog is very near.</p>) ;

xdmp:document-insert("/3.xml",
 <p>The cat is not very near the very large dog.</p>) ;

for $x in (cts:search(fn:doc(), cts:word-query(("cat", "dog") ,
 "distance-weight=3")),
 cts:search(fn:doc(), cts:word-query(("cat", "dog"))))
return
element hit{attribute uri {xdmp:node-uri($x)},
 attribute score {cts:score($x)},
 attribute text{fn:string($x/p)}}

This returns the following results:

<hit uri="/1.xml" score="146" text="The cat dog is very near."/>
<hit uri="/2.xml" score="140" text="The cat is pretty near a dog."/>
<hit uri="/3.xml" score="135"

text="The cat is not very near the very large dog."/>
<hit uri="/3.xml" score="72"

text="The cat is not very near the very large dog."/>
<hit uri="/2.xml" score="72" text="The cat is pretty near a dog."/>
<hit uri="/1.xml" score="72" text="The cat dog is very near."/>

Notice that the first three hits use the distance-weight, and the ones with the terms closer together
have higher scores, and thus rank higher in the search. The last three hits have the same score
because they all have the same number of each term in the cts:query and there is no proximity
taken into account in the scores.

9.4.2 Using Proximity Boosting With cts:and-query Semantics

Because the distance-weight option applies to the terms in individual cts:query constructors, the
terms are combined as an or-query (that is, any term match is a match for the query). Therefore,
the example above would also return results for documents that contain "cat" and not "dog" and
vice versa. If you want to have and-query semantics (that is, all terms must match for the query to
match) and also have proximity boosting, you will have to construct a cts:query that does an and
of all of the terms in addition to the cts:query with the distance-weight option.

For example:

xquery version "1.0-ml";
cts:search(fn:doc(), cts:and-query((
 cts:word-query("cat"),
 cts:word-query("dog"),
 cts:word-query(("cat", "dog") ,
 "distance-weight=3"))))
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 427

MarkLogic Server Relevance Scores: Understanding and Customizing
The difference between this query and the previous one is that the previous one would return a
document that contained "cat" but not "dog" (or vice versa), and this one will only return
documents containing both "cat" and "dog".

If you have a large corpus of documents and you expect to have many matches for your searches,
then you might find you do not need to use the cts:and-query approach. The reason a large corpus
has an effect is because document frequency is taken into account in the relevance calculation, as
described in “Understanding How Scores and Relevance are Calculated” on page 422. You might
find that the most relevant documents still float to the top of your search even without the
cts:and-query. What you do will depend on your application requirements, your preferences, and
your data.

9.4.3 Using cts:near-query to Achieve Proximity Boosting

Another technique that makes results with closer proximity have higher scores is to use
cts:near-query. Searches that use the cts:near-query constructor will take proximity into
account when calculating scores, as long as the word positions index option is enabled in the
database. Additionally, you can use the distance-weight parameter to further boost the effect of
proximity on scoring.

Because cts:near-query takes a distance argument, you have to think about how near you want
results to be in order for them to match. With the distance parameter to cts:near-query, there is a
tradeoff between the size of the distance and performance. The higher the number for the
distance, the more work MarkLogic Server does to resolve the query. For many queries, this
amount of work might be very small, but for some complex queries it can be noticeable.

To construct a query that uses cts:near-query for proximity boosting, pass the cts:query for your
search as the first parameter to a cts:near-query, and optionally add a distance-weight parameter
to further boost the proximity. The cts:near-query matches will always take distance into
account, but setting a distance-weight will further boost the proximity weight. For example,
consider how the following query, which uses the same data as the above examples, produces
similar results:

xquery version "1.0-ml";
cts:search(fn:doc(),

cts:near-query(
cts:and-query((

cts:word-query("cat"),
cts:word-query("dog"))),

1000, (), 3))

This query uses a distance of 1,000, therefore documents that have "cat" and "dog" that are more
than 1,000 words apart are not included in its result. The size you use is dependent on your data
and the performance characteristics of your searches. If you were more concerned about missing
document where the matches are more than 1,000 words away, then you should raise that number;
if you are seeing performance issues and want faster performance, and you are OK with missing
results that are above the distance threshold (which are probably not relevant anyway), then you
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 428

MarkLogic Server Relevance Scores: Understanding and Customizing
should make the number smaller. For databases with a large amount of documents, keep in mind
that not returning the documents with words that are far apart from each other will probably result
in very similar search results, especially for the most relevant hits (because the results with the
matches far apart have low relevance scores compared to the ones that have matches close
together).

9.5 Boosting Relevance Score With a Secondary Query

You can use cts:boost-query to modify the relevance score of search results that match a
secondary (or “boosting”) query. The following example returns results from all documents
containing the term "dog", and assigns a higher score to results that also contain the term "cat".
The relevance score of matches for the first query are boosted by matches for the second query.

cts:search(fn:doc(),
cts:boost-query(

cts:word-query("dog"),
cts:word-query("cat"))

)

As discussed in “Understanding How Scores and Relevance are Calculated” on page 422, many
factors affect relevance score, so the exact quantitative effect of a boosting query on relevance
score varies. However, the effect is always proportional to the weighting of the boosting query.

For example, suppose the database includes two documents, /example/dogs.xml and
/example/llamas.xml that have the following contents:

/example/dogs.xml:
<data>This is my dog. I do not have a cat.</data>

/example/llamas.xml:
<data>This is my llama. He likes to spit at dogs.</data>

Then an unboosted search for the word "dog" returns the following matches:

cts:search(fn:doc(), cts:word-query("dog"))

<data>This is my dog. I do not have a cat.</data>
<data>This is my llama. He likes to spit at dogs.</data>

Assume these matches have the same relevance score. If you repeat the search as a boost query
with default weight, the first match has a score that is roughly double that of the 2nd match. (The
actual score values do not matter, only their relative values.)

for $n in (cts:search(fn:doc(),
cts:boost-query(

cts:word-query("dog"),
cts:word-query("cat"))))

return fn:concat(fn:document-uri($n), " : ", cts:score($n))
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 429

MarkLogic Server Relevance Scores: Understanding and Customizing
==>
/example/dogs.xml : 22528
/example/llamas.xml : 11264

If you increase the weight on the boosting query to 10.0, the relevance score of the document
containing both terms becomes roughly 10x that of the document that only contains "dog".

for $n in (cts:search(fn:doc(),
cts:boost-query(

cts:word-query("dog"),
cts:word-query("cat", (), 10.0))))

return cts:score($n)

==>
/example/dogs.xml : 22528
/example/llamas.xml : 2048

If the primary (or “matching”) query returns no results, the boosting query is not evaluated. A
boosting query is ignored in an XPath expression or any other context in which the score is zero
or randomized.

The BOOST string query operator allows equivalent boosting in string search; for details, see
“Query Components and Operators” on page 68. The boost-query structured query component
also exposes the same functionality as cts:boost-query; for details, see “boost-query” on
page 105.

9.6 Including a Range or Geospatial Query in Scoring

By default, range queries do not influence relevance score. However, you can enable range and
geospatial queries score contribution using the score-function and slope-factor options. This
section covers the following topics:

• How a Range Query Contributes to Score

• Use Cases for Range Query Score Contributions

• Enabling Range Query Score Contribution

• Understanding Slope Factor

• Performance Considerations

• Range Query Scoring Examples
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 430

MarkLogic Server Relevance Scores: Understanding and Customizing
9.6.1 How a Range Query Contributes to Score

By default, a range query makes no contribution to score. If you enable scoring for a given range
query, it has the same impact as a word query. The contribution from a range query is just one of
many factors influencing the overall score, especially in a complex query. As with any query, you
can use weights to change the influence a range query has on score; for details, see “Using
Weights to Influence Scores” on page 425.

The difference between a matching value and the reference value does not contribute directly to
the score. A function is applied to the delta, with suitable scaling based on datatype, such that the
resulting range is comparable to the term frequency (TF) contribution from a word query. You
control the scaling using the slope factor of the function; for details, see “Understanding Slope
Factor” on page 433.

The type of function (linear or reciprocal) determines whether values closest to or furthest from
the reference value contribute more to the score. The reference value is the constraining value in
the query. For example, if a range query expresses a constraint such as “> 5”, then the reference
value is 5. You cannot choose the function, but you can choose the type of function.

If a document contains multiple matching values, the highest contribution is used in the overall
score computation.

9.6.2 Use Cases for Range Query Score Contributions

Range query score contributions are useful in cases such as the following:

• Boost the score of newer documents over similar older documents, where “newness” is a
function of dateTime or another numeric element value. For example, boost the score of
recently published documents.

• Boost the score based on how close some element value is to a reference value. For
example, boost scores for documents containing prices closest to an ideal of $20.

• Boost the score based on how far away some element value is from a reference value. For
example, boost scores for items with a price furthest below a maximum of $20.

• Boost the score based on geospatial distance. For example, find all hotels within 5 miles,
boosting the scores for those closest to my current location.

For examples of how to realize these use cases, see “Range Query Scoring Examples” on
page 436.

9.6.3 Enabling Range Query Score Contribution

Add the score-function option to a range or geospatial query constructor to enable score
contributions. You can also use the slope-factor option to scale the contribution; for details, see
“Understanding Slope Factor” on page 433.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 431

MarkLogic Server Relevance Scores: Understanding and Customizing
For example, the following search boosts the score more for documents with high ratings (furthest
from the reference value 0). Setting the slope factor to 10 decreases the range of values that make
a distinct contribution and increases the difference between the amount of contribution.

(: Scoring for positive ratings in range 1 to 100 :)
cts:search(doc(),
 cts:element-range-query(xs:QName("ratings"), ">", 0,
 ("score-function=linear","slope-factor=10")))

For examples of constructing a similar query with other MarkLogic Server APIs, see “Range
Query Scoring Examples” on page 436.

You can set the value of score-function to one of the following function types:

You can specify a score function and slope factor with the following XQuery query constructors,
or the equivalent structured or QBE range query constructs.

• cts:element-range-query

• cts:element-attribute-range-query

• cts:field-range-query

• cts:path-range-query

• cts:element-geospatial-query

• cts:element-child-geospatial-query

• cts:element-pair-geospatial-query

• cts:element-attribute-pair-geospatial-query

• cts:path-geospatial-query

• cts:triple-range-query

Score Function Description

zero Default. The score contribution of the range query is zero.

reciprocal Use a reciprocal function to calculate the scoring contribution. Document
values nearer to the reference value receive higher scores.

linear Use a linear function to calculate the scoring contribution. Document val-
ues further from the reference value receive higher scores.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 432

MarkLogic Server Relevance Scores: Understanding and Customizing
9.6.4 Understanding Slope Factor

In addition to specifying a score function for a range query, you can use the slope-factor option
to specify a multiplier on the slope of the scoring function applied to a range query. The slope
factor affects how the range of differences between a matching value and the reference value
affect the score contribution. You should experiment with your application to determine the best
slope factor for a given range query. This section provides details to guide your experimentation.

The delta for a given range query match is the difference between the matching value and the
reference value in a range query:

delta = reference_value - matching_value

For example, if a range query expresses “greater than 5” and the matching value is 3, then the
delta is 2. This delta is the basis of the score contribution for a given match, though it is not the
actual score contribution.

Each possible delta value does not make a different score contribution because contribution is
bucketed. The range of delta values is bounded by a min and max delta value, beyond which all
deltas make the same contribution. The granularity represents the size of each bucket within that
range. All deltas that fall in the same bucket make the same score contribution, so granularity
determines the range of deltas that make a distinct score contribution.

The number of buckets does not change as you vary the slope factor, so changing the slope factor
affects the min, max, and granularity of the score function.

The figure below shows the relationship between slope, minimum delta, maximum delta, and
granularity for a linear score function.

min max
delta

c
o
n
tr

ib
u
ti

o
n

sl
op

e

g g = granularity

-∞ ∞
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 433

MarkLogic Server Relevance Scores: Understanding and Customizing
A slope factor greater than 1 results in finer granularity, but a more narrow range of delta values.
A slope factor less than 1 gives a coarser granularity, but a greater range of delta values. Doubling
the slope factor with a linear function gives you half the range and half the granularity.

The minimum delta, maximum delta, and granularity for a given slope factor depend upon the
type of the range index. The table below shows minimum delta, maximum delta, and granularity
for each range index type with the default slope factor (1.0). The granularity is not linear for a
reciprocal score function.

Range Index Type Lower Bound Upper Bound Granularity

integer 1 1024 4

float 1.0 1024.0 ~3.98

double 1.0 1024.0 ~3.98

decimal 1.0 1024.0 ~3.98

string 1 64 1

point (wgs84) 1.0 mile
~0.87 deg

100.0 miles
~1.45 degrees

0.39 miles
~0.34 min.

point (raw) 1.0 100.0 ~0.39

date 1 day 1 year ~1.5 days

time 1 min 24 h ours ~5.5 min

dateTime 1 min 30 days ~2.6 hours

dayTimeDuration 1 min 24 hours ~5.5 min

yearMonthDuration 1 month 25 years 1 month

gYear 1 year 100 years 1 year

gMonth 1 month 1 year 1 month

gDay 1 day 1 month 1 day

gYearMonth 1 month 25 years 1 month
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 434

MarkLogic Server Relevance Scores: Understanding and Customizing
For example, the table contains the following information about range queries over dateTime with
the default slope factor:

Min delta: 1 minute
Max delta: 30 days
Granularity: ~2.6 hours

From this, you can deduce the following for a slope factor of 1.0:

• Any delta smaller than 1 minute makes the same contribution as 1 minute

• Any delta greater than 30 days makes the same contribution as 30 days.

• Deltas within ~2.6 hours of each other can make the same contribution. For example, a
delta of 5 minutes and a delta of 2 hours make the same contribution because they both fall
into the bucket for “1 min. < delta ≤ 2.6 hours”.

In a dateTime range query where the deltas are on the order of hours, the default slope factor
provides a good spread of contributions. However, if you need to distinguish between deltas of a
few minutes or seconds, you would increase the slope factor to provide a finer granularity. When
you do this, the minimum and maximum delta values get closer together, so the overall range of
distinguishable delta values becomes smaller.

Another way to look at slope factor is based on the target minimum or maximum delta. For
example, if the default maximum delta for your datatype is 1024 and the range of “interesting”
delta values for your range query is only 1 to 100, you probably want to set slope-factor to 10,
which lowers the maximum delta to 100 (1024 div 10).

9.6.5 Performance Considerations

The performance impact of enabling range query score contributions depends on the nature of
your query. The cost is highest for queries that return many matches and queries on strings.

The number of matches affects cost because the scoring calculation is performed for each match.
The value type affects the cost because the score calculation is significantly more complex for
string values.

Range query score contribution calculations are skipped (and therefore have no negative
performance impact) if any of the following conditions apply:

• The score-function option is not set or is set to zero.

• The range query has a weight of 0.

• The scoring method does not use term frequency. That is, the scoring method is not
score-logtfidf or score-logtf.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 435

MarkLogic Server Relevance Scores: Understanding and Customizing
9.6.6 Range Query Scoring Examples

This section contains examples that illustrate the use cases outlined in “Use Cases for Range
Query Score Contributions” on page 431, plus examples of how to use the feature with additional
APIs, such as structured query and QBE.

The following examples are included:

• Example: Most Recently Published

• Example: Closest to a Target Price

• Example: Best Price Below a Maximum

• Example: Closest to a Location

• Example: Use in a Structured Query

• Example: Use in Query By Example

9.6.6.1 Example: Most Recently Published

Boost the score of newer documents over similar older documents, where “newness” is a function
of dateTime or another numeric element value. The following example boosts the score of
recently published documents, where the publication date is stored in a pubdate element:

cts:element-range-query(
xs:QName("pubdate"), "<=", current-dateTime(),
"score-function=reciprocal")

The example uses a reciprocal score function so that pubdate values closest to “now” contribute
the most to the score. That is, the smallest deltas make the biggest contribution.

9.6.6.2 Example: Closest to a Target Price

Boost the score based on how close some element value is to a reference value. The following
example boost scores for documents containing prices closest to an ideal of $20, assuming the
price is an attribute of the item element:

cts:element-attribute-range-query(
xs:QName("item"), xs:QName("price"), ">=", 20.0,
"score-function=reciprocal")

The example uses a reciprocal score function so that the smallest deltas between actual and ideal
price ($20) make the highest contribution.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 436

MarkLogic Server Relevance Scores: Understanding and Customizing
9.6.6.3 Example: Best Price Below a Maximum

Boost the score based on how far away some element value is from a reference value. For
example, boost scores for items with a price furthest below a maximum of $20:

cts:element-attribute-range-query(
xs:QName("item"), xs:QName("price"), "<=", xs:decimal(20.0),
("score-function=linear","slope-factor=51.2"))

The example uses a linear function so that the largest deltas between the actual price and the
maxiumum price ($20) make the highest contribution.

The slope factor is increased to bring the range of interesting delta values down. As shown in
“Understanding Slope Factor” on page 433, the default maximum delta for xs:decimal is 1024.0.
However, in this example, the interesting deltas are all in the range of 0 to 20.0. To bring the upper
bound down to ~20.0, we calculate the slope factor as follows:

slope-factor = 1024.0 / 20.0 = 51.2

Increasing the slope factor also reduces the granularity, so smaller price differences make
different score contributions. With the default slope factor, the granularity is ~3.98, which is very
coarse for a delta range of 0-20.0.

9.6.6.4 Example: Closest to a Location

Boost the score based on geospatial distance. For example, find all hotels within 10 miles,
boosting the scores for those closest to my current location:

cts:and-query(("hotel",
cts:element-geospatial-query(

xs:QName("pt"), cts:circle(10, $current-location),
("score-function=reciprocal", "slope-factor=10.0))))

The example uses a reciprocal score function so that points closest to the reference location (the
smallest deltas) make the greatest score contribution.

The slope factor is increased because the range of interesting delta values is only 0 to 10 (“within
10 miles”). As shown in “Understanding Slope Factor” on page 433, the default maximum delta
for a point is 100.0 miles. To bring the maximum delta down to 10.0, slope factor is computed as
follows:

slope-factor = 100.0 / 10.0 = 10.0

9.6.6.5 Example: Use in a Structured Query

The following example is a structured query containing a range query for ratings greater than
zero, boosting the score more as the rating increases. Documents with a higher rating receive a
higher range query score contribution.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 437

MarkLogic Server Relevance Scores: Understanding and Customizing
For details, see “Searching Using Structured Queries” on page 74 and the following interfaces:

Format Query

XML <search:query xmlns:search="http://marklogic.com/appservices/search"
<search:range-query type="xs:integer">

<search:element ns="" name="rating"/>
<search:range-operator>GT</range-operator>
<search:value>0</value>
<search:range-option>score-function=linear</range-option>
<search:range-option>slope-factor=10</range-option>

</search:range-query>
</search:query>

JSON { "query": {
 "queries": [{

"range-query": {
"type": "xs:integer",
"element": {

"ns": "",
"name": "rating"

},
"range-operator": "GT",
"value": [0],
"range-option": [

"score-function=linear",
"slope-factor=10"

]
}

 }]
}}

Interface Interface More Information

Search API search:resolve XQuery and XSLT Reference Guide

REST API GET/POST methods of the /search
service

Querying Documents and Metadata in
REST Application Developer’s Guide

Java API RawStructuredQueryDefinition or
StructuredQueryBuilder in
com.marklogic.client.query

Search Documents Using Structured

Query Definition in Java Application
Developer’s Guide
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 438

MarkLogic Server Relevance Scores: Understanding and Customizing
9.6.6.6 Example: Use in Query By Example

The following example is a QBE that contains a range query for ratings greater than zero,
boosting the score more as the rating increases. Documents with a higher rating receive a higher
range query score contribution.

This query is suitable for use with the REST API /qbe service or the Java API
RawQueryByExampleDefinition interface.

For details, see “Searching Using Query By Example” on page 195 and the following interfaces:

Format Example

XML <q:qbe xmlns:q="http://marklogic.com/appservices/querybyexample">
 <q:query>

<rating>
<q:gt score-function="linear" slope-factor="10">0</q:gt>

</rating>
 </q:query>
</q:qbe>

JSON { "$query": {
"rating": {

"$gt": 0,
"$score-function": "linear",
"$slope-factor": 10

}
} }

Interface Interface More Information

Search API search:resolve XQuery and XSLT Reference Guide

REST API GET/POST methods of the /qbe ser-
vice

Using Query By Example to Prototype a

Query in REST Application Devel-
oper’s Guide

Java API RawQueryByExampleDefinition in
com.marklogic.client.query

Prototype a Query Using Query By

Example in Java Application Devel-
oper’s Guide
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 439

MarkLogic Server Relevance Scores: Understanding and Customizing
9.7 Interaction of Score and Quality

Each document contains a quality value, and is set either at load time or with
xdmp:document-set-quality. You can use the optional $QualityWeight parameter to cts:search to
force document quality to have an impact on scores. The scores are then determined by the
following formula:

Score = Score + (QualityWeight * Quality)

The default of QualityWeight is 1.0 and the default quality on a document is 0, so by default,
documents without any quality set have no quality impact on score. Documents that do have
quality set, however, will have impact on the scores by default (because the default QualityWeight
is 1, effectively boosting the score by the document quality).

If you want quality to have a smaller impact on the score, set the QualityWeight between 0 and
1.0. If you want the quality to have no impact on the score, set the QualityWeight to 0. If you want
the quality to have a larger impact on raising the score, set the QualityWeight to a number greater
than 1.0. If you want the quality to have a negative effect on scores, set the QualityWeight to a
negative number or set document quality to a negative number.

Note: If you set document quality to a negative number and if you set QualityWeight to a
negative number, it will boost the score with a positive number.

9.8 Using cts:score, cts:confidence, and cts:fitness

You can get the score for a result node by calling cts:score on that node. The score is a number,
where higher numbers indicate higher relevance for that particular result set.

Similarly, you can get the confidence by calling cts:confidence on a result node. The confidence
is a number (of type xs:float) between 0.0 and 1.0. The confidence number does not include any
quality settings that might be on the document. Confidence scores are calculated by first bounding
the scores between 0 and 1.0, and then taking the square root of the bounded number.

As an alternate to cts:confidence, you can get the fitness by calling cts:fitness on a result node.
The fitness is a number (of type xs:float) between 0.0 and 1.0. The fitness number does not
include any quality settings that might be on the document, and it does not use document
frequency in the calculation. Therefore, cts:fitness returns a number indicating how well the
returned node satisfies the query issued, which is subtly different from relevance, because it does
not take into account other documents in the database.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 440

MarkLogic Server Relevance Scores: Understanding and Customizing
9.9 Relevance Order in cts:search Versus Document Order in XPath

When understanding the order an expression returns in, there are two main rules to consider:

• cts:search expressions always return in relevance order (the most relevant to the least
relevant).

• XPath expressions always return in document order.

A subtlety to note about these rules is that if a cts:search expression is followed by some XPath
steps, it turns the expression into an XPath expression and the results are therefore returned in
document order. For example, consider the following query:

cts:search(fn:doc(), "my search phrase")

This returns a relevance-ordered sequence of document nodes that contain the specified phrase.
You can get the scores of each node by using cts:score. Things will change if you then add an
XPath step to the expression as follows:

cts:search(fn:doc(), "my search phrase")//TITLE

This will now return a document-ordered sequence of TITLE elements. Also, in order to compute
the answer to this query, MarkLogic Server must first perform the search, and then reorder the
search in document order to resolve the XPath expression. If you need to perform this type of
query, it is usually more efficient (and often much more efficient) to use cts:contains in an XPath
predicate as follows:

fn:doc()[cts:contains(., "my search phrase")]//TITLE

Note: In most cases, this form of the query (all XPath expression) will be much more
efficient than the previous form (with the XPath step after the cts:search
expression). There might be some cases, however, where it might be less efficient,
especially if the query is highly selective (does not match many fragments).

When you write queries as XPath expressions, MarkLogic Server does not compute scores, so if
you need scores, you will need to use a cts:search expression. Also, if you need a query like the
above examples but need the results in relevance order, then you can put the search in a FLWOR
expression as follows:

for $x in cts:search(fn:doc(), "my search phrase")
return
$x//TITLE

This is more efficient than the cts:search with an XPath step following it, and returns
relevance-ranked and scored results.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 441

MarkLogic Server Relevance Scores: Understanding and Customizing
9.10 Exploring Relevance Score Computation

You can use the relevance-trace search option to explore how the relevance scores are computed
for a query. For example, you can use this feature to explore the impact of varying query weight
and document quality weight.

Note: Collecting score computation information during a search is costly, so you should
only use the relevance-trace option when you intend to generate a score
computation report from the collected trace.

When you use the relevance-trace option on a search, MarkLogic Server collects detailed
information about how the relevance score is computed. You can access the information in one of
the following ways:

• If you search using cts:search, call cts:relevance-info on your search results to
generate an XML report.

• If you search using the Search API (search:search or search:resolve), REST API, or
Java API, an XML report is automatically returned in the relevance-info section of each
search result. (The REST and Java APIs can also return a JSON report.)

The following example generates a score computation report from the results of cts:search.

for $x in cts:search(fn:doc(), "example", "relevance-trace")
return cts:relevance-info($x)

The resulting score computation report looks similar to the following:

<qry:relevance-info xmlns:qry="http://marklogic.com/cts/query">
 <qry:score

formula="(256*scoreSum/weightSum)+(256*qualityWeight*documentQuality)"
computation="(256*208/1)+(256*1*0)">53248</qry:score>

 <qry:confidence formula="sqrt(score/(256*8*maxlogtf*maxidf))"
computation="sqrt(53248/(256*8*18*log(848)))">0.462837</qry:confidence>

 <qry:fitness formula="sqrt(score/(256*8*maxlogtf*avgidf))"
computation="sqrt(53248/(256*8*18*(3.13196/1)))">0.679113</qry:fitness>

 <qry:uri>/example.xml</qry:uri>
 <qry:path>fn:doc("/example.xml")</qry:path>
 <qry:term weight="3.25">
 <qry:score formula="8*weight*logtf" computation="26*8">208</qry:score>
 <qry:key>16979648098685758574</qry:key>
 <qry:annotation>word("example")</qry:annotation>
 </qry:term>
</qry:relevance-info>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 442

MarkLogic Server Relevance Scores: Understanding and Customizing
Each qry:score element contains a @formula describing the computation, and a @computation
showing the values plugged into the formula. The data in the score element is the result of the
computation. For example:

<qry:score
formula="(256*scoreSum/weightSum)+(256*qualityWeight*documentQuality)"
computation="(256*154/2)+(256*1*0)">

19712
</qry:score>

The following example generates a score computation report using the XQuery Search API:

xquery version "1.0-ml";
import module namespace search =

"http://marklogic.com/appservices/search"
 at "/MarkLogic/appservices/search/search.xqy";

search:search("example",
 <search:options xmlns="http://marklogic.com/appservices/search">
 <search-option>relevance-trace</search-option>
 </search:options>
)

The query generates results similar to the following:

<search:response snippet-format="snippet" total="1" start="1" ...>
 <search:result index="1" uri="/example.xml"

path="fn:doc("/example.xml")" score="14336"
confidence="0.749031" fitness="0.749031">

 <search:snippet>...</search:snippet>
 <qry:relevance-info xmlns:qry="http://marklogic.com/cts/query">
 <qry:score

formula="(256*scoreSum/weightSum)+(256*qualityWeight*documentQuality)"
computation="(256*56/1)+(256*1*0)">14336</qry:score>

 <qry:confidence formula="sqrt(score/(256*8*maxlogtf*maxidf))"
computation="sqrt(14336/(256*8*18*log(2)))">0.749031</qry:confidence>

 <qry:fitness formula="sqrt(score/(256*8*maxlogtf*avgidf))"
computation="sqrt(14336/(256*8*18*(0.693147/1)))">
0.749031
</qry:fitness>

 <qry:uri>/example.xml</qry:uri>
 <qry:path>fn:doc("/example.xml")</qry:path>
 <qry:term weight="0.875">
 <qry:score formula="8*weight*logtf" computation="7*8">56</qry:score>
 <qry:key>16979648098685758574</qry:key>
 <qry:annotation>word("example")</qry:annotation>
 </qry:term>
 </qry:relevance-info>
 </search:result>
 <search:qtext>example</search:qtext>
 ...
</search:response>

The REST and Java APIs use the same query options as the above Search API example, and
return a report in the same way, inside each search:result.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 443

MarkLogic Server Relevance Scores: Understanding and Customizing
9.11 Sample cts:search Expressions

This section lists several cts:search expressions that include weight and/or quality parameters. It
includes the following examples:

• Magnify the Score Boost for Documents With Quality

• Increase the Score for some Terms, Decrease for Others

9.11.1 Magnify the Score Boost for Documents With Quality

The following search will make any documents that have a quality set (set either at load time or
with xdmp:document-set-quality) give much higher scores than documents with no quality set.

cts:search(fn:doc(), cts:word-query("my phrase"), (), 3.0)

Note: For any documents that have a quality set to a negative number less than -1.0, this
search will have the effect of lowering the score drastically for matches on those
documents.

9.11.2 Increase the Score for some Terms, Decrease for Others

The following search will boost the scores for documents that satisfy one query while decreasing
the scores for documents that satisfy another query.

cts:search(fn:doc(), cts:and-query((
cts:word-query("alfa", (), 2.0), cts:word-query("lada", (), 0.5)
)))

This search will boost the scores for documents that contain the word alfa while lowering the
scores for document that contain the word lada. For documents that contain both terms, the
component of the score from the word alfa is boosted while the component of the score from the
word lada is lowered.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 444

MarkLogic Server Browsing With Lexicons
10.0 Browsing With Lexicons
458

MarkLogic Server allows you to create lexicons, which are lists of unique words or values, either
throughout an entire database (words only) or within named elements or attributes (words or
values). Also, you can define lexicons that allow quick access to the document and collection
URIs in the database, and you can create word lexicons on named fields. This chapter describes
the lexicons you can create in MarkLogic Server and describes how to use the API to browse
through them. This chapter includes the following sections:

• About Lexicons

• Creating Lexicons

• Word Lexicons

• Element/Element-Attribute/Path Value Lexicons

• Field Value Lexicons

• Value Co-Occurrences Lexicons

• Geospatial Lexicons

• Range Lexicons

• URI and Collection Lexicons

• Performing Lexicon-Based Queries

10.1 About Lexicons

A word lexicon stores all of the unique, case-sensitive, diacritic-sensitive words, either in a
database, in an element defined by a QName, or in an attribute defined by a QName. A value
lexicon stores all of the unique values for an element or an attribute defined by a QName (that is,
the entire and exact contents of the specified element or attribute). A value co-occurrences lexicon
stores all of the pairs of values that appear in the same fragment. A geospatial lexicon returns
geospatial values from the geospatial index. A range lexicon stores buckets of values that occur
within a specified range of values. A URI lexicon stores the URIs of the documents in a database,
and a collection lexicon stores the URIs of all collections in a database.

All lexicons determine their order and uniqueness based on the collation specified (for xs:string
types), and you can create multiple lexicons on the same object with different collations. For
information on collations, see “Collations” on page 804. You can also create value lexicons on
non-string values.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 445

MarkLogic Server Browsing With Lexicons
All of these types of lexicons have the following characteristics:

• Lexicon terms and values are case-sensitive.

• Lexicon terms and values are unstemmed.

• Lexicon terms and values are diacritic-sensitive.

• Lexicon terms and values do not have any relevance information associated with them.

• Uniqueness in lexicons is based on the specified collation of the lexicon.

• Lexicon terms in word lexicons do not include any punctuation. For example, the term
case-sensitive in a database will be two terms in the lexicon: case and sensitive.

• Lexicon values in value lexicons do include punctuation.

• In order to perform lexicon-based queries, the appropriate lexicon must be created. If the
lexicon has not been created, the lexicon query will throw an exception.

• Lexicons are used with the Search API to create constraints. Lexicons based on range
indexes are used to create value constraints, which are used for facets. For details on the
Search API, constraints, and facets, see “Search API: Understanding and Using” on
page 30.

Even though the lexicons store terms case-sensitive, unstemmed, and diacritic-sensitive, you can
still do case-insensitive and diacritic-insensitive lexicon-based queries by specifying the
appropriate option(s). For details on the syntax, see the MarkLogic XQuery and XSLT Function
Reference.

10.2 Creating Lexicons

You must create the appropriate lexicon before you can run lexicon-based queries. You can create
lexicons using the Admin Interface or the Admin API. For detailed information on creating
lexicons, see the “Text Indexing” and “Element/Attribute Range Indexes and Lexicons” chapters
of the Administrator’s Guide. You must complete at least one of the following task before you can
successfully run lexicon-based queries:

• Create/enable the lexicon before you load data into the database, or

• Reindex the database after creating/enabling the lexicon, or

• Reload the data after creating/enabling the lexicon.

The following is a brief summary of how to create each of the various types of lexicons:

• To create a word lexicon for the entire database, enable the word lexicon setting on the
Admin Interface Database Configuration page (Databases > db_name) and specify a
collation for the lexicon (for example, http://marklogic.com/collation/ for the UCA
Root Collation).
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 446

MarkLogic Server Browsing With Lexicons
• To create an element word lexicon, specify the element namespace URI, local name, and
collation on the Admin Interface Element Word Lexicon Configuration page (Databases >
db_name > Element Word Lexicons).

• To create an element attribute word lexicon, specify the element and attribute namespace
URIs, local names, and collation on the Admin Interface Element Attribute Word Lexicon
Configuration page (Databases > db_name > Attribute Word Lexicons).

• To create an element value lexicon, specify the element namespace URI and local name,
the collation (for xs:string), and the type (for example, xs:string) on the Admin
Interface Range Element Index Configuration page (Databases > db_name > Element
Indexes).

• To create an element attribute value lexicon, specify the element and attribute namespace
URIs and local names, the collation (for xs:string), and the type (for example, xs:string)
on the Admin Interface Range Element-Attribute Index Configuration page
(Databases > db_name > Attribute Indexes).

• To create a field value lexicon, first create a field in the Admin Interface
(Databases > db_name > Fields). Then create the field value lexicon by specifying the
type (for example, xs:string) and the field name on the Admin Interface Field Range
Index Configuration page (Databases > db_name > Field Range Indexes).

Note: If your system is set to reindex/refragment, newly created lexicons will not be
available until reindexing is completed.

10.3 Word Lexicons

There are several types of word lexicons:

• Word Lexicon for the Entire Database

• Element/Element-Attribute Word Lexicons

• JSON Property Word Lexicons

• Field Word Lexicons

10.3.1 Word Lexicon for the Entire Database

A word lexicon covers the entire database, and holds all of the unique terms in the database, with
uniqueness determined by the specified collation. You enable the word lexicon in the database
page of the Admin Interface by enabling the word lexicon database setting. If the database
already has content loaded, you must reindex the database before you can perform any lexicon
queries. The following are the APIs for the word lexicon:

• cts:words

• cts:word-match
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 447

MarkLogic Server Browsing With Lexicons
10.3.2 Element/Element-Attribute Word Lexicons

An XML element word lexicon or an XML element-attribute word lexicon contains all of the
unique terms in the specified element or attribute, with uniqueness determined by the specified
collation. The element word lexicons only contain words that exist in immediate text node
children of the specified element as well as any text node children of elements defined in the
Admin Interface as element-word-query-throughs or phrase-throughs; it does not include words
from any other children of the specified element.

Create element and element-attribute word lexicons in the Admin Interface with the Element Word
Lexicons and Attribute Word Lexicons links under the database in which you want to create the
lexicons. You can also use the following Admin API functions:

• admin:database-add-element-word-lexicon

• admin:database-add-element-attribute-word-lexicon

Use the following functions to query element and element attribute word lexicons:

• cts:element-words

• cts:element-word-match

• cts:element-attribute-words

• cts:element-attribute-word-match

10.3.3 JSON Property Word Lexicons

A JSON property word lexicon contains all of the unique terms in the specified JSON property,
with uniqueness determined by the specified collation. A JSON property word lexicon only
contains words occurring in string values of the specified JSON property.

Create a JSON property word lexicon using the interfaces for XML element word lexicons. To
create a lexicon with the Admin Interface, use the Element Word Lexicons section under the
database in which you want to create the lexicon. To create a lexicon with the Admin API, use the
function admin:database-add-element-word-lexicon.

Use the following functions to query JSON property word lexicons:

• cts:json-property-words

• cts:json-property-word-match
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 448

MarkLogic Server Browsing With Lexicons
10.3.4 Field Word Lexicons

A field is a named object that you create at the database level, and it defines a set of elements
which can be accessed together through the field. You can create word lexicons on fields, which
list all of the unique words that are included in the field. You can create field word lexicons in the
configuration page for each field. Like all other lexicons, field word lexicons are unique to a
collation, and you can, if you need to, create multiple lexicons in different collations. For details
on fields, see Fields Database Settings in the Administrator’s Guide. The following are the APIs for
the field word lexicons:

• cts:field-words

• cts:field-word-match

10.4 Element/Element-Attribute/Path Value Lexicons

An element value lexicon, element-attribute value lexicon, or a path value lexicon contains all of
the unique values in the specified element or attribute. The values are the entire and exact contents
of the specified element or attribute. You create element and element-attribute value lexicons in
the Admin Interface by creating a range index of a particular type (for example, xs:string) for the
element or attribute to which you want the value lexicon. The following are the APIs for the
element, element-attribute, and path value lexicons:

• cts:element-values

• cts:element-value-match

• cts:element-attribute-values

• cts:element-attribute-value-match

• cts:values

• cts:value-match

The cts:element-values and cts:element-value-match functions are used to return values from
element value lexicons implemented using element range indexes. The
cts:element-attribute-values and cts:element-attribute-value-match functions are used to
return values from attribute value lexicons implemented using attribute range indexes. The
cts:values and cts:value-match functions are used to return values from path value lexicons
implemented using path range indexes. A path value lexicon can be either an element or an
attribute.

Note: You can only create element value lexicons on simple elements (that is, the
elements cannot have any element children).
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 449

MarkLogic Server Browsing With Lexicons
When you have a value lexicon on an element or an attribute, you can also use the cts:frequency
API to get fast and accurate counts of how many times the value occurs. You can either get counts
of the number of fragments that have at least one instance of the value (using the default
fragment-frequency option to the value lexicon APIs) or you can get total counts of values in
each item (using the item-frequency option). For details and examples, see the documentation for
cts:frequency and for the value lexicon APIs in the MarkLogic XQuery and XSLT Function
Reference.

10.5 Field Value Lexicons

A field value lexicon contains all of the unique values for the specified field. You create field
value lexicons in the Admin Interface by creating a range index of a particular type (for example,
xs:string) for the field to which you want a field lexicon. The following are the APIs for field
value lexicons:

• cts:field-values

• cts:field-value-match

When you have a value lexicon on a field, you can also use the cts:frequency API to get fast and
accurate counts of how many times the value occurs. You can either get counts of the number of
fragments that have at least one instance of the value (using the default fragment-frequency
option to the value lexicon APIs) or you can get total counts of values in each item (using the
item-frequency option). For details and examples, see the documentation for cts:frequency and
for the value lexicon APIs in the MarkLogic XQuery and XSLT Function Reference.

Field value lexicons are useful in cases where something you want to treat as a discreet value does
not occur in a single element or attribute. For example, consider the following XML structure:

<name>
<first>Raymond</first>
<middle>Clevie</middle>
<last>Carver</last>

</name>

If you want to normalize names in the form firstname lastname, then you can create a field on
this structure. The field might include the element name and exclude the element middle. The
value of this instance of the field would then be Raymond Carver. If your document contained other
name elements with the same structure, their values would be derived similarly. The range index
for the field stores each unique instance of the field value.

For details on fields, see Fields Database Settings in the Administrator’s Guide.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 450

MarkLogic Server Browsing With Lexicons
10.6 Value Co-Occurrences Lexicons

Value co-occurrence lexicons find pairs of element or attribute values that occur in the same
fragment. If you have positions enabled in your range indexes, you can also specify a maximum
word distance (proximity=N option) that the values must be from each other in order to match as a
co-occurring pair. The following APIs support these lexicons:

• cts:element-value-co-occurrences

• cts:element-attribute-value-co-occurrences

• cts:value-co-occurrences

• cts:field-value-co-occurrences

These APIs return XML structures containing the pairs of co-occurring values. You can use
cts:frequency on the output of these functions to find the frequency (the counts) of each
co-occurrence.

Additionally, you can get co-occurrences from geospatial lexicons, as described in “Geospatial
Lexicons” on page 453.

Note: Because the URI and collection lexicons are implemented as range indexes, you
can specify a special QName for the document URI or collection URI lexicons to
get the list of values with their URI or collections. The QNames are in the
http://marklogic.com/xdmp namespace and the URI index has the local name
document and the collection index has the local name collection, both using the
http://marklogic.com/collation/codepoint collation. You can then use these
QNames (for example, xdmp:document and xdmp:collection, as xdmp is bound to
that namespace by default in the 1.0-ml dialect) in
cts:element-value-co-occurrences as one of the element QNames to find element
value/document URI pairs or element value/collection URI pairs. Make sure to
also specify the codepoint collation option for these QNames (for example,
"collation-2=http://marklogic.com/collation/codepoint" if you are specifying
one of these QNames as the second argument to
cts:element-value-co-occurences).
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 451

MarkLogic Server Browsing With Lexicons
Consider the following example with a document with the URI /george.xml that looks as follows:

<text>
<e:person xmlns:e="http://marklogic.com/entity">George
Washington</e:person> was the first President of the
<e:gpe xmlns:e="http://marklogic.com/entity">United States</e:gpe>.
<e:person xmlns:e="http://marklogic.com/entity">Martha
Washington</e:person> was his wife. They lived at
<e:location xmlns:e="http://marklogic.com/entity">Mount
Vernon</e:location>.

</text>

Before creating this document, create two string element range indexes: one for the e:person
element and one for the e:location element, where e is bound to the namespace
http://marklogic.com/entity.

Now you can run the following co-occurrence query to find all co-occurring people and locations:

xquery version "1.0-ml";

declare namespace e="http://marklogic.com/entity";
cts:element-value-co-occurrences(xs:QName("e:person"),

xs:QName("e:location"))

This produces the following output:

<cts:co-occurrence xmlns:cts="http://marklogic.com/cts"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <cts:value xsi:type="xs:string">George Washington</cts:value>
 <cts:value xsi:type="xs:string">Mount Vernon</cts:value>
</cts:co-occurrence>
<cts:co-occurrence xmlns:cts="http://marklogic.com/cts"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <cts:value xsi:type="xs:string">Martha Washington</cts:value>
 <cts:value xsi:type="xs:string">Mount Vernon</cts:value>
</cts:co-occurrence>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 452

MarkLogic Server Browsing With Lexicons
If you wanted to get the frequency of how many of each co-occurring pair exist, either in each
item or in each fragment (depending on whether you use the item-frequency or the default
fragment-frequency option), use cts:frequency on the lexicon lookup as follows:

xquery version "1.0-ml";
declare namespace e="http://marklogic.com/entity";
for $x in cts:element-value-co-occurrences(xs:QName("e:person"),
 xs:QName("e:location"))
return cts:frequency($x)
(:

returns a frequency of 1 for each pair if /george.xml
is the only document in the database

:)

10.7 Geospatial Lexicons

The following APIs use geospatial point lexicons:

• cts:element-attribute-pair-geospatial-boxes

• cts:element-attribute-pair-geospatial-value-match

• cts:element-attribute-pair-geospatial-values

• cts:element-attribute-value-geospatial-co-occurrences

• cts:element-child-geospatial-boxes

• cts:element-child-geospatial-value-match

• cts:element-child-geospatial-values

• cts:element-geospatial-boxes

• cts:element-geospatial-value-match

• cts:element-geospatial-values

• cts:element-pair-geospatial-boxes

• cts:element-pair-geospatial-value-match

• cts:element-pair-geospatial-values

• cts:element-value-geospatial-co-occurrences

You must create the appropriate geospatial point index to use its corresponding geospatial
lexicon. For example, to use cts:element-geospatial-values, you must first create a geospatial
element point index. Use the Admin Interface (Databases > database_name > Geospatial Point
Indexes) or the Admin API to create geospatial indexes for a database.

The *-boxes APIs return XML elements that show buckets of ranges, each bucket containing one
or more cts:box values.

To learn more about geospatial features in MarkLogic, see “Geospatial Search Applications” on
page 476.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 453

MarkLogic Server Browsing With Lexicons
10.8 Range Lexicons

The range lexicons return values divided into buckets. The ranges are ranges of values of the type
of the lexicon. A range index is required on the element(s) or attribute(s) specified in the range
lexicon. The following APIs support these lexicons:

• cts:element-attribute-value-ranges

• cts:element-value-ranges

• cts:value-ranges

• cts:field-value-ranges

Additionally, there are the following geospatial box lexicons to find ranges of geospatial values
divided into buckets:

• cts:element-attribute-pair-geospatial-boxes

• cts:element-child-geospatial-boxes

• cts:element-geospatial-boxes

• cts:element-pair-geospatial-boxes

The range lexicons return a sequence of XML nodes, one node for each bucket. You can use
cts:frequency on the result set to determine the number of items (or fragments) in the buckets.
The "empties" option specifies that an XML node is returned for buckets that have no values (that
is, for buckets with a frequency of zero). By default, empty buckets are not included in the result
set. For details about all of the options to the range lexicons, see the MarkLogic XQuery and XSLT
Function Reference.

10.9 URI and Collection Lexicons

The URI and Collection lexicons respectively list all of the document URIs and all of the
collection URIs in a database. To enable or disable these lexicons, use the Database Configuration
page in the Admin Interface. Use these lexicons to quickly search through all of the URIs in a
database. The following APIs support these lexicons:

• cts:collection-match

• cts:collections

• cts:uri-match

• cts:uris
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 454

MarkLogic Server Browsing With Lexicons
10.10 Performing Lexicon-Based Queries

Lexicon queries return a sequence of words (or values in the case of value lexicons) from the
appropriate lexicon. For string values, the words or values are returned in collation order, and the
terms are case- and diacritic-sensitive. For other data types, the values are returned in order, where
values that are “greater than” return before values that are “less than”. This section lists the
lexicon APIs and provides some examples and explanation of how to perform lexicon-based
queries. It includes the following parts:

• Lexicon APIs

• Constraining Lexicon Searches to a cts:query Expression

• Using the Match Lexicon APIs

• Determining the Number of Fragments Containing a Lexicon Term

10.10.1 Lexicon APIs

Use the following Search Built-in XQuery APIs to perform lexicon-based queries:

• cts:words

• cts:word-match

• cts:element-words

• cts:element-word-match

• cts:element-attribute-words

• cts:element-attribute-word-match

• cts:element-values

• cts:element-value-match

• cts:element-attribute-values

• cts:element-attribute-value-match

• cts:values

• cts:value-match

• cts:field-values

• cts:field-value-match

• cts:collection-match

• cts:collections

• cts:uri-match

• cts:uris

In order to perform lexicon-based queries, the appropriate lexicon must be created. If the lexicon
has not been created, the lexicon query will throw an exception.

The cts:*-words APIs return all of the words in the lexicon (or all of the words from a starting
point if the optional $start parameter is used). The cts:*-match APIs return only words in the
lexicon that match the wildcard pattern.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 455

MarkLogic Server Browsing With Lexicons
For details about the individual functions, see the Search APIs in the MarkLogic XQuery and
XSLT Function Reference.

10.10.2 Constraining Lexicon Searches to a cts:query Expression

You can use the $query option of the lexicon APIs to constrain your lexicon lookups to fragments
matching a particular cts:query expression. When you specify the $query option, the lexicon
search returns all of the terms (or values for lexicon value queries) in the fragments that match the
specified cts:query expression.

For example, the following is a query against a database of all of Shakespeare’s plays fragmented
at the SCENE level:

cts:words("et", (), "et tu")[1 to 10]

=> et ete even ever every eyes fais faith fall familiar

This query returns the first 10 words from the lexicon of words, starting with the word et, for all
of the fragments that match the following query:

cts:word-query("et tu")

In the case of the Shakespeare database, there are 2 scenes that match this query, one from The
Tragedy of Julius Caesar and one from The Life of Henry the Fifth. Note that this is a different set
of words than if you omitted the $query parameter from the search. The following shows the
query without the $query parameter. The results represent the 10 words in the entire word lexicon
for all of the Shakespeare plays, starting with the word et:

cts:words("et")

=> et etc etceteras ete eternal eternally eterne eternity
eternized etes

Note that when you constrain a lexicon lookup to a cts:query expression, it returns the lexicon
items for any fragment in which the cts:query expression returns true. No filtering is done to the
cts:query expression to validate that the match actually occurs in the fragment. In some cases,
depending on the index options you have set, it can return true in cases where there is no actual
match. For example, if you do not have fast element word searches enabled in the database
configuration, it is possible for a cts:element-word-query to match a fragment because both the
word and the element exist in the fragment, but not in the same element. The filtering stage of
cts:search resolves these discrepancies, but they are not resolved in lexicon APIs that use the
$query option. For details about how this works, see Understanding the Search Process and
Understanding Unfiltered Searches sections in the Query Performance and Tuning Guide.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 456

MarkLogic Server Browsing With Lexicons
10.10.3 Using the Match Lexicon APIs

Each type of lexicon (word, element word, element-attribute word, element value, and
element-attribute value) has a function (cts:*-match) which allows you to use a wildcard pattern
to constrain the lexicon entries returned; the cts:*-match APIs return only words or values in the
lexicon that match the wildcard pattern. The following query finds all of the words in the lexicon
that start with zou:

cts:word-match("zou*")

=> Zounds zounds

It returns both the uppercase and lowercase words that match because search defaults to
case-insensitive when all of the letters in the base of the wildcard pattern are lowercase. If you
want to match the pattern case-sensitive, diacritic-sensitive, or with some other option, add the
appropriate option to the query. For example:

cts:word-match("zou*", "case-sensitive")

=> zounds

For details on the query options, see the MarkLogic XQuery and XSLT Function Reference. For
details on wildcard searches, see “Understanding and Using Wildcard Searches” on page 683.

10.10.4 Determining the Number of Fragments Containing a Lexicon Term

The lexicon contains the unique terms in a database. To minimize redundant disk I/Os when you
are performing estimates following a query-constrained word lexicon lookup, and therefore for
this type of query to be resolved as efficiently as possible, the cts:word-query should have the
following characteristics:

• Specify the unstemmed, case-sensitive, and diacritic-sensitive options.

• Specify a weight of 0.

These characteristics ensure that the word being estimated is exactly the same as the word
returned from the lexicon.

For example, if you want to figure out how many fragments contain a lexicon term, you can
perform a query like the following:

<words>{
for $word in cts:words("aardvark", (),

cts:directory-query("/", "infinity"))[1 to 1000]
let $count := xdmp:estimate(cts:search(fn:doc(),

cts:word-query($word,("unstemmed","case-sensitive",
"diacritic-sensitive"),0)))

return <word text="{$word}" count="{$count}"/> }
</words>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 457

MarkLogic Server Browsing With Lexicons
This query returns one word element per lexicon term, along with the matching term and counts of
the number of fragments that have the term, under the specified directory (/), starting with the
term aardvark. Sample output from this query follows:

<words>
<word text="aardvark" count="10"/>
<word text="aardvarks" count="10"/>
<word text="aardwolf" count="5"/>

...
</words>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 458

MarkLogic Server Using Range Queries in cts:query Expressions
11.0 Using Range Queries in cts:query Expressions
462

MarkLogic Server allows you to access range indexes in a cts:query expression to constrain a
search by a range of values in an element or attribute. This chapter describes some details about
these range queries and includes the following sections:

• Overview of Range Queries

• Range Query cts:query Constructors

• Examples of Range Queries

11.1 Overview of Range Queries

This section provides an overview of what range queries are and why you might want to use them,
and includes the following sections:

• Uses for Range Queries

• Requirements for Using Range Queries

• Performance and Coding Advantages of Range Queries

11.1.1 Uses for Range Queries

Range queries are designed to constrain searches on ranges of a value. For example, if you want
to find all articles that were published in 2005, and if your content has an element (or an attribute
or a property) named PUBLISHDATE with type xs:date, you can create a range index on the element
PUBLISHDATE, then specify in a search that you want all articles with a PUBLISHDATE greater than
December 31, 2004 and less than January 1, 2006. Because that element has a range index,
MarkLogic Server can resolve the query extremely efficiently.

Because you can create range indexes on a wide variety of XML datatypes, there is a lot of
flexibility in the types of content with which you can use range queries to constrain searches. In
general, if you need to constrain on a value, it is possible to create a range index and use range
queries to express the ranges in which you want to constrain the results.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 459

MarkLogic Server Using Range Queries in cts:query Expressions
11.1.2 Requirements for Using Range Queries

Keep in mind the following requirements for using range queries in your cts:search operations:

• Range queries require a range index to be defined on the element or attribute in which you
want to constrain the results.

• The range index must be in the same collation as the one specified in the range query.

• If no collation is specified in the range query, then the query takes on the collation of the
query (for example, if a collation is specified in the XQuery prolog, that is used). For
details on collation defaults, see “How Collation Defaults are Determined” on page 809.

Because range queries require range indexes, keep in mind that range indexes take up space, add
to memory usage on the machine(s) in which MarkLogic Server runs, and increase
loading/reindexing time. As such, they are not exactly “free”, although, particularly if you have a
relatively small number of them, they will not use a huge amount of resources. The amount of
resources used depends a lot on the content; how many documents have the elements and/or
attributes specified, how often do those elements/attributes appear in the content, how large is the
content set, and so on. As with many performance improvements, there are trade-offs to analyze,
and the best way to analyze the impact is to experiment and see if the cost is worth the
performance improvement. For details about range indexes and procedures for creating them, see
the Range Indexes and Lexicons chapter in the Administrator’s Guide.

11.1.3 Performance and Coding Advantages of Range Queries

Most of what you can express using range queries you can also express using predicates in XPath
expressions. There are two big advantages of using range queries over XPath predicates:

• Performance

• Ease of coding

Using range queries in cts:query expressions can produce faster performance than using XPath
predicates. Range indexes are in-memory structures, and because range indexes are required for
range queries, they are usually very fast. There is no requirement for the range index when
specifying an XPath predicate, and it is therefore possible to specify a predicate that might need to
scan a large number of fragments, which could take considerable time. Additionally, because
range queries are cts:query objects, you can use registered queries to pre-compile them, adding
more performance advantages.

There are also coding advantages to range queries over XPath predicates. Because range queries
are leaf-level cts:query constructors, they can be combined with other constructors (including
other range query constructors) to form complex expressions. It is fairly easy to write XQuery
code that takes user input from a form (from drop-down lists, text boxes, radio buttons, and so on)
and use that user input to generate extremely complex cts:query expressions. It is very difficult to
do that with XPath expressions. For details on cts:query expressions, see “Composing cts:query
Expressions” on page 248.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 460

MarkLogic Server Using Range Queries in cts:query Expressions
11.2 Range Query cts:query Constructors

The following XQuery APIs are included in the range query constructors:

• cts:element-attribute-range-query

• cts:element-range-query

• cts:path-range-query

• corresponding accessor functions

Each API takes QNames, the type of operator (for example, >=, <=, and so on), values, and a
collation as inputs. For details of these APIs and for their signatures, see the MarkLogic XQuery
and XSLT Function Reference.

Note: For release 3.2, range queries do not contribute to the score, regardless of the
weight specified in the cts:query constructor.

11.3 Examples of Range Queries

The following are some examples that use range query constructors.

Consider a document with a URI /dates.xml with the following structure:

<root>
 <entry>
 <date>2007-01-01</date>
 <info>Some information.</info>
 </entry>
 <entry>
 <date>2006-06-23</date>
 <info>Some other information.</info>
 </entry>
 <entry>
 <date>1971-12-23</date>
 <info>Some different information.</info>
 </entry>
</root>

Assume you have defined an element range index of type xs:date on the QName date (note that
you must either load the document after defining the range index or complete a reindex of the
database after defining the range index).

You can now issue queries using the cts:element-range-query constructor. The following query
searches the entry element of the document /dates.xml for entries that occurred on or before
January 1, 2000.

cts:search(doc("/dates.xml")/root/entry,
 cts:element-range-query(xs:QName("date"), "<=",
 xs:date("2000-01-01")))
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 461

MarkLogic Server Using Range Queries in cts:query Expressions
This query returns the following node, because it is the only one that satisfies the range query:

<entry>
 <date>1971-12-23</date>
 <info>Some different information.</info>
</entry>

The following query uses a cts:and-query to combine two date ranges, dates after
January 1, 2006 and dates before January 1, 2008.

cts:search(doc("/dates.xml")/root/entry,
 cts:and-query((
 cts:element-range-query(xs:QName("date"), ">",
 xs:date("2006-01-01")),
 cts:element-range-query(xs:QName("date"), "<",
 xs:date("2008-01-01")))))

This query returns the following two nodes:

<entry>
 <date>2007-01-01</date>
 <info>Some information.</info>
</entry>

<entry>
 <date>2006-06-23</date>
 <info>Some other information.</info>
</entry>

For queries against a dateTime index, when $value is an xs:dayTimeDuration or
xs:yearMonthDuration, the query is executed as an age query. $value is subtracted from
fn:current-dateTime() to create a xs:dateTime used in the query. If there is more than one item
in $value, they must all be the same type.

For example, given a dateTime index on element startDateTime, queries
cts:element-range-query(xs:QName ("startDateTime"), ">", xs:dayTimeDuration("P1D")) and
cts:element-range-query(xs:QName ("startDateTime"), ">", fn:current-dateTime() -

xs:dayTimeDuration("P1D")) are the same; both match values within the last day.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 462

MarkLogic Server Using Aggregate Functions
12.0 Using Aggregate Functions
467

This chapter describes how to use builtin aggregate functions and aggregate user-defined
functions (UDFs) to analyze values in lexicons and range indexes.

This chapter contains the following sections:

• Introduction to Aggregate Functions

• Using Builtin Aggregate Functions

• Using Aggregate User-Defined Functions

12.1 Introduction to Aggregate Functions
An aggregate function performs an operation over the values in one or more range indexes. For
example, computing a sum or count over an element, attribute, or field range index. Aggregate
functions are best used for analytics that produce a small number of results, such as computing a
single numeric value across a set of range index values.

Aggregate functions use In-Database MapReduce, which greatly improves performance because:

• Analysis is parallelized across the hosts in a cluster, as well as across the database forests
on each host.

• Analysis is performed close to the data.

MarkLogic Server provides builtin aggregate functions for common mathematical and statistical
operations. You can also implement your own aggregate functions, using the Aggregate UDF
interface. For details, see Implementing an Aggregate User-Defined Function in the Application
Developer’s Guide.

12.2 Using Builtin Aggregate Functions

MarkLogic Server provides the following builtin aggregate functions, accessible through the
XQuery, REST, and Java APIs.

XQuery Function REST and Java Aggregate Name

cts:avg-aggregate avg

cts:correlation correlation

cts:count-aggregate count

cts:covariance covariance
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 463

MarkLogic Server Using Aggregate Functions
The table below summarizes how to call an aggregate function directly using the XQuery, REST
and Java APIs:

cts:covariance-p covariance-population

cts:max max

cts:median median

cts:min min

cts:stddev stddev

cts:stddev-p stddev-population

cts:sum-aggregate sum

cts:variance variance

cts:variance-p variance-population

Interface Mechanism Example

XQuery Call the builtin function directly from
your XQuery code.

cts:sum-aggregate(
cts:element-reference(
xs:QName("Amount")

)
)

REST Send a GET /version/values/{name}
request, naming the function in the
aggregates request parameter. For
details, see Analyzing Lexicons and

Range Indexes With Aggregate Functions
in the REST Application Developer’s
Guide.

GET
/v1/values/amount?options=my-index-d
efns&aggregate=sum

Java Specify the aggregate name using
ValuesDefinition.setAggregate and
pass the ValuesDefinition to
QueryManager.values or
QueryManager.tuples. For details, see
Java Application Developer’s Guide.

QueryManager qm = ...;
ValuesDefinition vdef =

qm.newValuesDefinition(...);
vdef.setAggregate("sum");

TuplesHandle t =
qm.tuples(vdef,

new TuplesHandle());

XQuery Function REST and Java Aggregate Name
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 464

MarkLogic Server Using Aggregate Functions
You can also specify an aggregate function in a <values/> or <tuples/> element of query options.
For example:

<options xmlns="http://marklogic.com/appservices/search">
<values name="my-values">

<aggregate apply="sum" />
...

</values>
</options>

For more details, see “Search API: Understanding and Using” on page 30, the Java Application
Developer’s Guide, the REST Application Developer’s Guide, or the Node.js Application
Developer’s Guide.

12.3 Using Aggregate User-Defined Functions

You can create an aggregate user-defined function (UDF) to analyze the values in one or more
range indexes. An aggregate UDF must be installed before you can use it. For information on
creating and installing aggregate UDFs, see Aggregate User-Defined Functions in the Application
Developer’s Guide.

Aggregate UDFs are best for analyses that compute a small number of results over the values in
one or more range indexes, rather than analyses that produce results in proportion to the number
of range index values or the number of documents processed.

UDFs are identified by a relative path and a function name. The path is the path under which the
plugin is installed. The path is scope/plugin-id, where scope is the scope passed to
plugin:install-from-zip when the plugin is installed, and plugin-id is the ID specified in <id/>
in the plugin manifest. For details, see Installing a Native Plugin in the Application Developer’s
Guide.

The following example uses an aggregate UDF called “myAvg” that is provided by the plugin
installed with the path native/sampleplugin:

cts:aggregate("native/sampleplugin", "myAvg", ...)

Node.js Specify the aggregate name using
valuesBuilder.aggregates and use
DatabaseClient.values.read to
perform the computation. For details,
see Analyzing Lexicons and Range

Indexes with Aggregate Functions in the
Node.js Application Developer’s
Guide.

const vb =
marklogic.valuesBuilder;

db.values.read(
 vb.fromIndexes('Amount')
 .aggregates('sum')
 .slice(0)
)...

Interface Mechanism Example
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 465

MarkLogic Server Using Aggregate Functions
The table below summarizes how to invoke aggregate UDFs in XQuery, Java, and RESTful
applications.

Note: You can only pass extra parameters to an aggregate UDF from XQuery.

Interface Mechanism Example

XQuery Call cts:aggregate, supplying the path
to the native plugin that implements
the aggregate and the aggregate name.
Pass aggregate-specific parameters
through the 4th argument.

cts:aggregate(
"native/samplePlugin",
"myAvg",
cts:element-reference(
xs:QName("Amount")),

(plugin-arg1, plugin-arg2)
)

REST Send a GET request to the /val-
ues/{name} service, supplying the path
to the native plugin in aggregatePath
and the function name in aggregate.
For details, Analyzing Lexicons and

Range Indexes With Aggregate Functions
in the REST Application Developer’s
Guide.

GET
/v1/values/amount?options=myoptions&
aggregatePath=native/samplePlugi
n&aggregate=myAvg

Java Set the aggregate name and path on a
ValuesDefinition, then pass the
ValuesDefinition to
QueryManager.values or
QueryManager.tuples. For details, see
the Java Application Developer’s
Guide.

QueryManager qm = ...;
ValuesDefinition vdef =
qm.newValuesDefinition(...);

vdef.setAggregate("myAvg");
vdef.setAggregatePath(
"native/samplePlugin");

TuplesHandle t =
qm.values(vdef,

new ValuesHandle());

Node.js Set the aggregate name and path using
valuesBuilder.udf and
valuesBuilder.aggregates, then use
DatabaseClient.values.read to
perform the computation. For details,
see Analyzing Lexicons and Range

Indexes with Aggregate Functions in the
Node.js Application Developer’s
Guide.

const vb =
marklogic.valuesBuilder;

db.values.read(
 vb.fromIndexes('Amount')
 .aggregates(

vb.udf(
'/native/samplePlugin,
'myAvg'))

 .slice(0)
)...
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 466

MarkLogic Server Using Aggregate Functions
You can also specify an aggregate UDF in a <values/> or <tuples/> element of query options. For
example:

xquery version "1.0-ml";
import module namespace search =
"http://marklogic.com/appservices/search"
 at "/MarkLogic/appservices/search/search.xqy";

<options xmlns="http://marklogic.com/appservices/search">
<values name="my-values">

<aggregate apply="myAvg" udf="native/samplePlugin" />
...

</values>
</options

For more details, see “Search API: Understanding and Using” on page 30, the Java Application
Developer’s Guide, or the REST Application Developer’s Guide.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 467

MarkLogic Server Highlighting Search Term Matches
13.0 Highlighting Search Term Matches
475

This chapter describes ways you can use cts:highlight to wrap terms that match a search query
with any markup. It includes the following sections:

• Overview of cts:highlight

• General Search and Replace Function

• Built-In Variables For cts:highlight

• Using cts:highlight to Create Snippets

• cts:walk Versus cts:highlight

• Common Usage Notes

For the syntax of cts:highlight, see the MarkLogic XQuery and XSLT Function Reference.

13.1 Overview of cts:highlight

When you execute a search in MarkLogic Server, it returns a set of nodes, where each node
contains text that matches the search query. A common application requirement is to display the
results with the matching terms highlighted, perhaps in bold or in a different color. You can satisfy
these highlighting requirements with the cts:highlight function, which is designed with the
following main goals:

• Make the task of highlighting search hits easy.

• Make queries that do text highlighting perform well.

• Make it possible to do more complex actions than simple text highlighting.

Even though it is designed to make it easy to highlight search term hits, the cts:highlight
function is implemented as a general purpose function. The function substitutes search hits with
an XQuery expression specified in the third argument. Because you can substitute the search term
hits with any XQuery expression, you can perform all kinds of search and replace actions on
terms that match a query. These search and replace operations will perform well, too, because
cts:highlight is built-in to MarkLogic Server.

13.1.1 All Matching Terms, Including Stemmed, and Capitalized

When you use the standard XQuery string functions such as fn:replace and fn:contains to find
matches, you must specify the exact string you want to match. If you are trying to highlight
matches from a cts:search query, exact string matches will not find all of the hits that match the
query. A cts:highlight query match, however, is anything that matches the cts:query specified
as the second argument of cts:highlight.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 468

MarkLogic Server Highlighting Search Term Matches
If you have stemmed searches enabled, matches can be more than exact text matches. For
example, run, running, and ran all match a query for run. For details on stemming, see
“Understanding and Using Stemmed Searches” on page 652.

Similarly, query matches can have different capitalization than the exact word for which you
actually searched. Additionally, wildcard matches (if wildcard indexes are enabled) will match a
whole range of queries. Queries that use cts:highlight will find all of these matches and replace
them with whatever the specified expression evaluates to.

13.2 General Search and Replace Function

Although it is designed to make highlighting easy, cts:highlight can be used for much more
general search and replace operations. For example, if you wanted to replace every instance of the
term content database with contentbase, you could issue a query similar to the following:

for $x in cts:search(//mynode, "content database")
return
cts:highlight($x, "content database", "contentbase")

This query happens to use the same search query in the cts:search as it does in the
cts:highlight, but that is not required (although it is typical of text highlighting requirements).
For example, the following query finds all of the nodes that contain the word foo, and then
replaces the word bar in those nodes with the word baz:

for $x in cts:search(fn:doc(), "foo")
return
cts:highlight($x, "bar", "baz")

Because you can use any XQuery expression as the replace expression, you can perform some
very complex search and replace operations with a relatively small amount of code.

13.3 Built-In Variables For cts:highlight

The cts:highlight function has three built-in variables which you can use in the replace
expression. The expression is evaluated once for each query match, so each variable is bound to a
sequence of query matches, and the value of the variables is the value of the query match for each
iteration. This section describes the three variables and explains how to use them in the following
subsections:

• Using the $cts:text Variable to Access the Matched Text

• Using the $cts:node Variable to Access the Context of the Match

• Using the $cts:queries Variable to Feed Logic Based on the Query

• Using $cts:start to Capture the String-Length Position

• Using $cts:action to Stop Highlighting
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 469

MarkLogic Server Highlighting Search Term Matches
13.3.1 Using the $cts:text Variable to Access the Matched Text

The $cts:text variable holds the strings representing of the query match. For example, assume
you have the following document with the URI test.xml in a database in which stemming is
enabled:

<root>
<p>I like to run to the market.</p>
<p>She is running to catch the train.</p>
<p>He runs all the time.</p>

</root>

You can highlight text from a query matching the word run as follows:

for $x in cts:search(doc("test.xml")/root/p, "run")
return
cts:highlight($x, "run", {$cts:text})

The expression {$cts:text} is evaluated once for each query match, and it replaces the
query match with whatever it evaluates to. Because run, running, and ran all match the cts:query
for run, the results highlight each of those words and are as follows:

<p>I like to run to the market.</p>
<p>She is running to catch the train.</p>
<p>He runs all the time.</p>

13.3.2 Using the $cts:node Variable to Access the Context of the Match

The $cts:node variable provides access to the text node in which the match occurs. By having
access to the node, you can create expressions that do things in the context of that node. For
example, if you know your XML has a structure with a hierarchy of book, chapter, section, and
paragraph elements, you can write code in the highlight expression to display the section in which
each hit occurs. The following code snippet shows an XPath statement that returns the first
element named chapter above the text node in which the highlighted term occurs:

$cts:node/ancestor::chapter[1]

You can then use this information to do things like add a link to display that chapter, search for
some other terms within that chapter, or whatever you might need to do with the information.
Once again, because cts:highlight evaluates an arbitrary XQuery expression for each search
query hit, the variations of what you can do with it are virtually unlimited.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 470

MarkLogic Server Highlighting Search Term Matches
The following example shows how to use the $cts:node variable in a test to print the highlighted
term in blue if its immediate parent is a p element, otherwise to print the highlightled term in red:

let $doc := <root>
<p>This is blue.</p>
<p><i>This is red italic.</i></p>

</root>
return
cts:highlight($doc, cts:or-query(("blue", "red")),
 (if ($cts:node/parent::p)
 then ({$cts:text})
 else ({$cts:text}))
)

This query returns the following results:

<root>
<p>This is blue.</p>
<p><i>This is reditalic.</i></p>

</root>

13.3.3 Using the $cts:queries Variable to Feed Logic Based on the Query

The $cts:queries variable provides access to the cts:query that satisfies the query match. You
can use that information to drive some logic about how you might highlight different queries in
different ways.

For example, assume you have the following document with the URI hellogoodbye.xml in your
database:

<root>
<a>It starts with hello and ends with goodbye.

</root>

You can then run the following query to use some simple logic which displays queries for hello in
blue and queries for goodbye in red:

cts:highlight(doc("hellogoodbye.xml"),
cts:and-query((cts:word-query("hello"),

cts:word-query("goodbye"))),
if (cts:word-query-text($cts:queries) eq "hello")
then ({$cts:text})
else ({$cts:text}))

returns:

<root>
<a>It starts with hello
and ends with goodbye.

</root>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 471

MarkLogic Server Highlighting Search Term Matches
13.3.4 Using $cts:start to Capture the String-Length Position

The $cts:start variable returns the starting position of the matching text ($cts:text), based on
the string-length of the text node being processed ($cts:node).

13.3.5 Using $cts:action to Stop Highlighting

Use xdmp:set to change the value of $cts:action and specify what action should occur after
processing a match. You can use this variable to control highlighting, typically based on some
condition (such as how many matches have already occurred) that you have coded into your
application). ou can specify for highlighting to continue (the default), to skip highlighting the
remainder of the matches in the current text node, or to break, stopping highlighting for the rest of
the input.

13.4 Using cts:highlight to Create Snippets

When you are performing searches, you often want to highlight the result of the search, showing
only the part of the document in which the search match occurs. These portions of the document
where the search matches are often called snippets. This section shows a simple example that
describes the basic design pattern for using cts:highlight to create snippets. The example shown
here is trivial in that it only prints out the parent element for the search hit, but it shows the pattern
you can use to create useful snippets. A typical snippet might show the matched results in bold
and show a few words before and after the results.

The basic design pattern to create snippets is to first run a cts:search to find your results, then,
for search each match, run cts:highlight on the match to mark it up. Finally, you run the
highlighted match through a recursive transformation or through some other processing to write
out the portion of the document you are interested in. For details about recursive transformations,
see Transforming XML Structures With a Recursive typeswitch Expression in the Application
Developer’s Guide.

The following example creates a very simple snippet for a search in the Shakespeare database. It
simply returns the parent element for the text node in which the search matches. It uses
cts:highlight to create a temporary element (named HIGHLIGHTME) around the element containing
the search match, and then uses that temporary element name to find the matching element in the
transformation.

xquery version "1.0-ml";
declare function local:truncate($x as item()) as item()*
{
 typeswitch ($x)
 case element(HIGHLIGHTME) return $x/node()

case element(TITLE) return if ($x/../../PLAY) then $x else ()
 default return for $z in $x/node() return local:truncate($z)
};

let $query := "to be or not to be"
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 472

MarkLogic Server Highlighting Search Term Matches
for $x in cts:search(doc(), $query)
return
local:truncate(cts:highlight($x, $query,
 <HIGHLIGHTME>{$cts:node/parent::element()}</HIGHLIGHTME>))
(:

returns:
<TITLE>The Tragedy of Hamlet, Prince of Denmark</TITLE>
<LINE>To be, or not to be: that is the question:</LINE>

:)

This example simply returns the elements in which the match occurs (in this case, only one
element matches the query) and the TITLE element that contains the title of the play. You can add
any logic you want to create a snippet that is right for your application. For example, you might
want to also print out the name of the act and the scene title for each search result, or you might
want to calculate the line number for each result. Because you have the whole document available
to you in the transformation, it is easy to do many interesting things with the content.

Note: The use of a recursive typeswitch makes sense assuming you are doing something
interesting with various parts of the node returned from the search (for example,
printing out the play title, act number, and scene name). If you only want to return
the element in which the search match occurs, you can do something simpler. For
example, you can use XPath on the highlighted expression to simplify this design
pattern as follows:

let $query := "to be or not to be"
for $x in cts:search(doc(), $query)
return
cts:highlight($x, $query, <HIGHLIGHTME>{

$cts:node/parent::element()}</HIGHLIGHTME>)//HIGHLIGHTME/node()

13.5 cts:walk Versus cts:highlight

The function cts:walk is similar to cts:highlight, but instead of returning a copy of the node
passed in with the specified changes, it returns only the expression evaluations for the text node
matches specified in the cts:walk call. Because cts:walk does not construct a copy of the node, it
is faster than cts:highlight. In cases where you only need to return the expression evaluations,
cts:walk will be more efficient than cts:highlight.

13.6 Common Usage Notes

This section shows some common usage patterns to be aware of when using cts:highlight. The
following topics are included:

• Input Must Be a Single Node

• Using xdmp:set Side Effects With cts:highlight

• No Highlighting with cts:similar-query or cts:element-attribute-*-query
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 473

MarkLogic Server Highlighting Search Term Matches
13.6.1 Input Must Be a Single Node

The input to cts:highlight must be a single node. If you want to highlight query hits from a
cts:search operation that returns multiple nodes, you must iteratively apply cts:highlight to
each result.

Note: The input node to cts:highlight must be a document node or an element node; it
cannot be a text node.

For example, the following query matches all documents that contain MarkLogic, and then
highlights each query match by enclosing it in a b element. Each result is bound to a variable ($x)
so cts:highlight can be applied to it.

for $x in cts:search(fn:doc(), "MarkLogic")
return
cts:highlight($x, "MarkLogic", {$cts:text})

13.6.2 Using xdmp:set Side Effects With cts:highlight

If you want to keep the state of the highlighted terms so you can handle some instances differently
than others, you can define a variable and then use the xdmp:set function to change the value of
the variable as the highlighted terms are processed. Some common uses for this functionality are:

• Highlight only the first instance of a term.

• Highlight the first term in a different color then the rest of the terms.

• Keep a count on the number of terms matching the query.

The ability to change the state (also known as side effects) opens the door for infinite possibilities
of what to do with matching terms.

The following example shows a query that highlights the first query match with a bold tag and
returns only the matching text for the rest of the matches.

Assume you have following document with the URI /docs/test.xml in your database:

<html>
<p>hello hello hello hello</p>

</html>

You can then run the following query to highlight just the first match:

let $count := 0
return

cts:highlight(doc("/docs/test.xml"), "hello",
(: Increment the count for each query match :)
(xdmp:set($count, $count + 1),
if ($count = 1)
then ({$cts:text})
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 474

MarkLogic Server Highlighting Search Term Matches
else ($cts:text))
)

Returns:

<html>
<p>hello hello hello hello</p>

</html>

Because the expression is evaluated once for each query match, the xdmp:set call changes the
state for each query match, having the side effect of the conditions being evaluated differently for
each query match.

13.6.3 No Highlighting with cts:similar-query or
cts:element-attribute-*-query

You cannot use cts:highlight to highlight results from queries containing cts:similar-query or
any of the cts:element-attribute-*-query functions. Using cts:highlight with these queries
will return the nodes without any highlighting.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 475

MarkLogic Server Geospatial Search Applications
14.0 Geospatial Search Applications
585

This chapter describes how to use the geospatial features of MarkLogic and describes the type of
applications that might use these functions. MarkLogic supports geospatial data represented in
either XML or JSON, and supports geospatial search in several languages, include XQuery,
Server-Side JavaScript, Java, and Node.js.

This chapter includes the following sections:

• Terms and Definitions

• Licensing Requirements for Geospatial Features

• Geospatial Features Overview

• Understanding Coordinate Systems

• Understanding MarkLogic Geospatial Region Types

• Understanding Geospatial Query and Index Types

• Searching for Matching Points

• Searching for Matching Regions

• Controlling Coordinate System and Precision

• Understanding Tolerance

• Summary of Other Geospatial Operations

• Converting To and From Common Geospatial Representations

• Constructing Geospatial Point and Region Values

• Geospatial Query Support in Other APIs

• Preparing to Run the Examples
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 476

MarkLogic Server Geospatial Search Applications
14.1 Terms and Definitions

You should be familiar with the following terms and definition before using geospatial features of
MarkLogic Server:

Term Definition

coordinate system A geospatial coordinate system is a set of mappings that map places on
Earth to a set of numbers. The vertical axis is represented by a longitude
coordinate, and the horizontal axis is represented by a latitude
coordinate. Together they make up a coordinate system that is used to
map places on the Earth. For more details, see “Understanding Geodetic
Coordinates” on page 483.

distance The distance between two geospatial objects refers to the geographical
closeness of those geospatial objects.

ETRS89 ETRS89, or European Terrestrial Reference System 1989, is an
earth-centered geodetic coordinate system. This is one of the coordinate
systems you can use for computations, search and indexing of geospatial
data. For details, see “Multiple Coordinate Systems” on page 480.

point A geospatial point is a discrete location, identified by two coordinates. In
a geodetic coordinate system, a point is identified by its latitude and
longitude coordinates. For more details, see “Understanding Points” on
page 483.

point query A point query matches points in documents against point or other region
search criteria. When the criteria are expressed as points, a document
matches if a point in the document is equal to the input criteria. When the
criteria are expressed as other region types, a document matches if a
point in the document is within the input region. Use a region query to
match non-point regions in documents.

proximity The proximity of search results is how close matches are to each other in
a document. Proximity can apply to any type of search terms, including
geospatial search terms. For example, you might want to find the term
“dog” within 10 words of a point in a given zip code.

raw A Euclidean coordinate system. This is one of the coordinate systems
you can use for computations, search and indexing of geospatial data. For
details, see “Multiple Coordinate Systems” on page 480.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 477

MarkLogic Server Geospatial Search Applications
14.2 Licensing Requirements for Geospatial Features

You must have an Advanced Geospatial License Option to use the following geospatial features:

• The functions geo:complex-polygon-contains, geo:complex-polygon-intersects,
geo.complexPolygonContains, geo.complexPolygonIntersects.

• Double precision coordinates, including wgs84/double, etrs89/double, and raw/double.

region A region is a set of points that describe a point, box, circle, polygon, or
linestring. For details, see “Understanding Coordinate Systems” on
page 483.

region query A region query matches regions in documents against region search
criteria. A document matches if a region in the document satisfies a
specified relationship with the input regions, such as overlaps, intersects,
contains, or within. When searching for matching points, you should
usually use a point query instead of a region query. For details, see
“Searching for Matching Regions” on page 528.

tolerance A distance within which two points are considered equal, a point is
considered “on” an edge, or two edges are considered “touching”, even
when the coordinate values do match exactly. For details, see
“Understanding Tolerance” on page 558.

WGS84 WGS84, or World Geodetic System version 1984, is an earth-centered
geodetic coordinate system. This is one of the coordinate systems you
can use for computations, search and indexing of geospatial data. For
details, see “Multiple Coordinate Systems” on page 480.

WKT WKT, or Well Known Text, is a common string representation of
geospatial data. You can convert to and from WKT and the internal
MarkLogic representation of a region or point. For details, see
“Converting To and From Common Geospatial Representations” on
page 562.

WKB WKB, or Well Known Binary, is a common binary representation of
geospatial data. You can convert to and from WKT and the internal
MarkLogic representation of a region or point. For details, see
“Converting To and From Common Geospatial Representations” on
page 562.

governing
coordinate system

The coordinate system/precision combination in effect during a
geospatial operation. For details, see “The Governing Coordinate
System” on page 486.

Term Definition
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 478

MarkLogic Server Geospatial Search Applications
• cts:reverse-query or cts.reverseQuery with geospatial constraints. This is sometimes
called “geo alerting”.

No other geospatial features or capabilities in MarkLogic require the Advanced Geospatial
License Option.

14.3 Geospatial Features Overview

This section provides a brief overview of key features of the geospatial capabilities of MarkLogic
Server. Each topic includes pointers to deeper discussion of the feature. The following topics are
covered:

• Search for Points, Polygons, and Other Regions

• Geospatial Type System

• Multiple Coordinate Systems

• Support for Common Geospatial Representations

• Flexible Data Layout

• Support for Single and Double Precision Coordinates

• Geospatial Computational Utility Functions

• Geospatial Format Conversion Functions

• Support in Multiple APIs

14.3.1 Search for Points, Polygons, and Other Regions

In MarkLogic, you can construct searches based on either points (discrete locations) or regions
(areas). A geospatial query can match points, polygons, and other regions in your documents
against points, boxes, circles, polygons, complex polygons, and linestrings search criteria.

You can compare points for equality to other points or for containment in regions. You can
compare polygons and other regions using a rich set of topological operators that includes
containment, overlap, and intersection.

For example, you can use geospatial search in MarkLogic to find documents matching criteria
such as the following:

• Match points against other points. For example, find documents containing this point.

• Match points within regions. For example, find documents containing a point within this
circle.

• Match regions against each other: For example, find documents containing a polygon that
overlaps this polygon, or find documents containing a region that intersects this linestring.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 479

MarkLogic Server Geospatial Search Applications
Notice that the first two query types match points in documents. These are called point queries.
You can only use a point query to test for equality to another point or containment within a region.

To search for regions satisfying relationships such as intersection, containment, and overlap, use a
region query.

For more details, see:

• “Understanding Geospatial Query and Index Types” on page 493

• “Searching for Matching Points” on page 509

• “Searching for Matching Regions” on page 528

14.3.2 Geospatial Type System

The geospatial interfaces in MarkLogic operate on a geospatial type hierarchy based on point and
region primitive types. The type system includes region “subtypes” for specific region types, such
as circle, box, and linestring.

The cts:point XQuery type and cts.point JavaScript type represents a point. Points are used as
building blocks for the region types. The cts:region XQuery type and the cts.region JavaScript
is the base type for all regions.

The geospatial interfaces include constructors for creating points and all supported region types.
For example, you can create a polygon value using the cts:polygon XQuery constructor or the
cts.polygon JavaScript constructor.

For more details, see “Constructing Geospatial Point and Region Values” on page 567.

14.3.3 Multiple Coordinate Systems

The geospatial data can be expressed in one of several coordinate systems, including WGS84,
ETRS89, and raw. WGS84 and ETRS89 are earth-centered geodetic coordinate systems. Raw is a
flat plane, cartesian coordinate system. For more details, see “Supported Coordinate Systems” on
page 485.

MarkLogic also supports both single and double precision coordinates for each coordinate
system. The precision is coupled with the coordinate system in most contexts. For example, when
constructing a geospatial point index, your choice of coordinate system includes both “wgs84”
(single precision) and “wgs84/double” (double precision).

For details, see the following topics:

• “Supported Coordinate Systems” on page 485

• “Controlling Coordinate System and Precision” on page 549
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 480

MarkLogic Server Geospatial Search Applications
14.3.4 Support for Common Geospatial Representations

Many MarkLogic interfaces work with geospatial data in common formats, such as Well Known
Text (WKT), Well Know Binary (WKB), KML, GML, and GeoJson.

For more details, see:

• “Converting To and From Common Geospatial Representations” on page 562

14.3.5 Flexible Data Layout

Geospatial data in MarkLogic is stored in XML elements and/or attributes, and JSON properties.
The coordinates of a point or region thus stored can be represented in several different ways. You
can also identify the location of your geospatial data in several different ways.

For point queries, you can specify the location of coordinates in your documents by XPath
expression, XML element name, XML element attribute name, or JSON property name. In
addition, the coordinates of a point can be either a single, compound value ("10.5 32.7") or
separate latitude and longitude values.

For region queries, specify the location of the region coordinates using an XPath expression.
Region coordinates must be stored as WKT or serialized cts:region values.

Coordinates can also be stored, indexed, and interpreted as either single or double precision
values. The original precision is always preserved in your documents, but the configured
precision determines the precision at which coordinates are indexed and interpreted during
computations.

For more details, see:

• “Understanding Geospatial Query and Index Types” on page 493

• “Understanding Coordinate Systems” on page 483

14.3.6 Support for Single and Double Precision Coordinates

You can evaluate geospatial queries and create geospatial indexes that interpret coordinates as
either single (float) or double precision values. You should usually choose single precision, unless
your application requires fine-grained accuracy (less than 1 meter).

The default precision depends on your evaluation context. If you do nothing to explictly configure
the precision of your App Server or evaluation context, then single precision is used.

For details, see the following topics:

• “Understanding Coordinate Systems” on page 483
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 481

MarkLogic Server Geospatial Search Applications
• “Controlling Coordinate System and Precision” on page 549

14.3.7 Geospatial Computational Utility Functions

MarkLogic provides a rich set of geospatial utility functions, including the following:

• Computing distance and bearing computations

• Counting region vertices

• Finding the point at which two arcs intersect

• Generating a set of bounding boxes that cover a region

For more details, see “Summary of Other Geospatial Operations” on page 560.

14.3.8 Geospatial Format Conversion Functions

MarkLogic provides XQuery and JavaScript library modules to translate Metacarta, GML, KML,
GeoRSS, and GeoJSON formats to MarkLogic primitive geospatial types.

The functions in these libraries are designed to convert geospatial data in supported formats and
convert it into primitive MarkLogic geospatial primitive types for use with geospatial query
constructors and other geospatial operations.

For more details, see the following topics:

• “Converting To and From Common Geospatial Representations” on page 562

14.3.9 Support in Multiple APIs

This chapter focuses on performing geospatial queries in MarkLogic Server using the cts:search
XQuery function or cts.search Server-Side JavaScript function. You can also configure and use
geospatial search with the following MarkLogic APIs:

• Search API (XQuery or Server-Side JavaScript); see “Appendix: Query Options
Reference” on page 816 and “Searching Using Structured Queries” on page 74.

• JSearch API (Server-Side JavaScript); see “Creating JavaScript Search Applications” on
page 289 and the examples in this chapter.

• Client APIs for Node.js, Java, and REST; see “Creating Point Queries with the Client
APIs” on page 522 and “Creating Region Queries Using the Client APIs” on page 542

• REST Management API (for creating and managing geospatial indexes); see the
Monitoring MarkLogic Guide and MarkLogic REST API Reference.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 482

MarkLogic Server Geospatial Search Applications
14.4 Understanding Coordinate Systems

In its most basic form, geospatial data is a set of coordinates. The interpretation of the coordinates
is based on a coordinate system. For example, a geodetic coordinate system inteprets the
coordinates as latitude and longitude values applying to the surface of the earth.

MarkLogic supports both geodetic and Euclidean coordinate systems.

This section covers the following topics:

• Understanding Points

• Understanding Geodetic Coordinates

• Understanding Euclidean Coordinates

• Supported Coordinate Systems

• Understanding MarkLogic Geospatial Region Types

• The Governing Coordinate System

• How Precision Affects Geospatial Operations

14.4.1 Understanding Points

A point represents a discrete location. In a geodetic coordinate system such as WGS84, a point
represents a discrete location on the earth. In a Euclidean coordinate system such as raw, a point
represents a discrete location in the Euclidean space.

A point is represented by an ordered pair of numbers called coordinates. In a geodetic coordinate
system, these numbers represent latitude and longitude values on the earth; for more details, see
“Understanding Geodetic Coordinates” on page 483. In a 2-dimensional Euclidean coordinate
system, these numbers represent horizontal (x) and verical (y) values; for more details, see
“Understanding Euclidean Coordinates” on page 484.

The cts:point XQuery type and cts.point JavaScript type represent a point in MarkLogic
Server. Use the cts:point or cts.point constructor to construct a point from a pair of coordinates.

Points are also to used define the other regions in MarkLogic Server, and constructor functions
are available for these regions, such cts:box in XQuery or cts.polygon in JavaScript. To learn
about supported region types, see “Understanding MarkLogic Geospatial Region Types” on
page 487.

14.4.2 Understanding Geodetic Coordinates

A geodetic coordinate system maps points to locations on the Earth. MarkLogic supports geodetic
coordinate systems such as WGS84 and ETRS89.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 483

MarkLogic Server Geospatial Search Applications
The coordinates of a point in a geodetic coordinate system represent latitude and longitude
positions on the Earth. A point has one latitude coordinate and one longitude coordinate. The
latitude coordinate represents the north/south position of the point on the Earth. The longitude
coordinate represents the east/west position of the point on the Earth.

Point coordinates are expressed in decimal degrees. Distance is measured in units such as miles,
feet, kilometers, and meters.

In a geodetic coordinate system, the shortest distance between two points is a curve called a
“geodesic arc” or simply a “geodesic”. (In a spherical coordinate system, a geodesic is the same
as a “great circle”.) The edges of a polygon in a geodetic coordinate system are geodesics, not
straight lines.

Latitude values are in the range -90 to 90 degrees. The equator has latitude zero. Negative latitude
values are south of the equator, with -90 at the south pole. Positive latitude values are north of the
equator, with 90 at the north pole.

Longitude values are in the range -180 to 180 degrees. The Prime Meridian has longitude 0.
Negative longitude values span the 180 degrees west of the Prime Meridian. Positive longitude
values span the 180 degrees east of the Prime Meridian.

14.4.3 Understanding Euclidean Coordinates

A Euclidean coordinate system maps points to locations on a two-dimensional Euclidean plane.
The “raw” coordinate system in MarkLogic is a Euclidean coordinate system; for more details,
see “Raw Coordinate System” on page 485.

A Euclidean coordinate can be used to represent non-Earth spatial data in local coordinate
systems, such as for mathematical modeling or when projecting geographic points on to a flat
plane.

A point in the raw coordinate system is represented by an (x,y) value pair, where x represents the
horizontal position on the plane and y represents the vertical position. The interpretation of the
coordinates is application specific, as is the range of values.

Point coordinates and distances in a Euclidean coordinate system are interpreted in an
application-specific way. The units for x, y, and distance are assumed to be the same. The edges of
a polygon are straight lines in a Euclidean coordinate system.

Most of the geospatial interfaces and documentation in MarkLogic refer to the coordinates of a
point or region using “latitude” and “longitude” terminology. However, when working with a raw
coordinate system, the coordinates do not actually represent latitude and longitude values.
Instead, latitude refers to the x coordinate and longitude refers to the y coordinate.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 484

MarkLogic Server Geospatial Search Applications
14.4.4 Supported Coordinate Systems

MarkLogic Server supports the following coordinate systems for geospatial data:

• WGS84 Coordinate System

• ETRS89 Coordinate System

• Raw Coordinate System

14.4.4.1 WGS84 Coordinate System

By default, MarkLogic Server uses the World Geodetic System version 1984 (WGS84) as the
basis for geocoding. WGS84 is a widely accepted standard for global point representation.
WGS84 is an earth-centered geodetic coordinate system with a coordinate system origin at the
Earth’s center of mass.

WGS84 is widely used for mapping locations on the Earth, and is used by a wide range of
services, including satellite services such as Global Positioning System (GPS) and Google Maps.
There are other coordinate systems, some of which have advantages or disadvantages over
WGS84. For example, some are more accurate in a given region, while others may be used
historically in legacy data.

For details on WGS84, see http://en.wikipedia.org/wiki/World_Geodetic_System.

14.4.4.2 ETRS89 Coordinate System

The European Terrestrial Reference System (ETRS89) is an earth-centered, earth-fixed geodetic
coordinate system, designed primarily for mapping locations in Europe.

This coordinate system is fixed to the stable part of the Eurasian tectonic plate. As such, it is not
subject to continental drift. ETRS89 and WGS84 coordinates are not interchangeable because of
this difference in the handling of continental drift.

For more details, see http://en.wikipedia.org/wiki/European_Terrestrial_Reference_System_1989.

14.4.4.3 Raw Coordinate System

The “raw” coordinate is a Euclidean coordinate system.

The coordinates of a point in the raw coordinate system represent a position on a two-dimensional
Euclidean plane. For details, see “Understanding Euclidean Coordinates” on page 484.

The raw coordinate system is a simple cartesian coordinate system, best suited for working with
non-geospatial data. However, you can use the raw coordinate system to represent geographical
points projected on to a flat plane.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 485

http://en.wikipedia.org/wiki/World_Geodetic_System
http://en.wikipedia.org/wiki/European_Terrestrial_Reference_System_1989

MarkLogic Server Geospatial Search Applications
14.4.5 The Governing Coordinate System

The governing coordinate system is the coordinate system/precision combination in effect during
a geospatial operation. It affects the handling of input values, calculations, comparisons, and
return values.

A precision is always implied by the coordinate system name. For example, “wgs84” implies
single precision, while “wgs84/double” implies double precision. However, some operations
accept a precision option that enables you to override the precision implicit in the coordinate
system name. For details, see “Specifying a Per-Operation Coordinate System and Precision” on
page 556.

The governing coordinate system is based on a precedence ordering of the coordinate system and
precision specified in the App Server configuration, a main module prolog (XQuery only), and
the parameters or options of a geospatial function (from lowest to highest precedence). For
details, see “How MarkLogic Selects the Governing Coordinate System” on page 551.

14.4.6 How Precision Affects Geospatial Operations

The governing coordinate system always has an associated precision, either float (single) or
double. Some operations allow you to override the precision implied by the coordinate system
through an option.

• The original precision of your data is always preserved in your documents.

• Geospatial data is indexed using the precision configured for the index.

• Geospatial points and regions are serialized at the precision of the governing coordinate
system.

• Comparison operations on geospatial regions use the precision of the governing
coordinate system.

• Functions operating on geospatial data interpret their input, perform their calculations, and
return their results using the governing coordinate system.

• Functions that return geospatial points or regions return either single or double precision
coordinates, depending on the governing coordinate system.

• Accessor functions for geospatial points or region return either a single or double
precision value, depending on the governing coordinate system. This applies to XQuery
functions such as cts:point-latitude, cts:circle-radius, cts:box-west, and their
Server-Side JavaScript equivalents.

• Latitude and longitude bounds on box functions are not truncated to the single precision
range if the governing coordinate system is double precision. This applies to XQuery
functions such as cts:geospatial-boxes and cts:element-geospatial-boxes, and their
Server-Side JavaScript equivalents.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 486

MarkLogic Server Geospatial Search Applications
• Geospatial operations perform calculations using the precision of the governing
coordinate system. This applies to functions such as cts:distance, cts:polygon-contains,
and cts:bounding-boxes, and their Server-Side JavaScript equivalents.

• The input pattern parameter to value-match functions can be either single or double
precision, depending on the governing coordinate system. This applies to XQuery
functions such as cts:element-geospatial-value-match and their Server-Side JavaScript
equivalents.

• Searches involving geospatial queries use the precision of the governing coordinate
system for determining matches and calculating scores.

14.5 Understanding MarkLogic Geospatial Region Types

This section provides a conceptual overview of the types of regions supported by MarkLogic.
Points are the building block of most regions; to learn more about points, see “Understanding
Points” on page 483.

Most geospatial interfaces in MarkLogic work with geospatial data represented as a cts:region
(XQuery) or cts.region (Server-Side JavaScript), or an equivalent serialization. The cts region
type is an abstraction that can represent any of the following concrete geospatial types:

• Boxes

• Polygons

• Complex Polygons

• Linestrings

• Circles

14.5.1 Boxes

A geospatial box is a rectangular region consisting of all the points whose latitude and longitude
coordinates are within the region bounds.

In a geodetic coordinate system, a box is a projection from the three-dimensional Earth onto a flat
surface. On the surface of the Earth, the edges of a box are arcs. When you project the edges onto
a flat plane, they become two-dimensional latitude and longitude lines, and the space defined by
those lines forms a rectangle.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 487

MarkLogic Server Geospatial Search Applications
The following diagram uses a plate caree projection to illustrate the difference between the region
defined by a box on the surface of the Earth and its projection into a rectangular region on a flat
plane.

Warning In a geodetic coordinate system, the north and south edges of a box are latitude
lines, not geodesic arcs. The east and west edges of a box are longitude lines,
which are geodesic arcs. A box is not equivalent to a polygon with the same four
vertices.

A point is contained in a box if its latitude coordinate is between the north and south latitude
coordinates of the box, and its longitude coordinate is between the west and east longitude
coordinates of the box.

In a Euclidean coordinate system, a box is simply a rectangle with boundaries defined by north,
south, east, and west coordinates. In a Euclidean coordinate system, a box is equivalent to a
polygon with the same four vertices.

The following assumptions and restrictions only apply to boxes in a geodetic coordinate system:

• In a geodetic coordinate system, the west/east extent of a box is determined by starting at
the western longitude coordinate and heading east toward the eastern longitude
coordinate. If the west coordinate is less than the east coordinate, the box will not cross the
anti-meridian. If the east coordinate is less than the west coordinate, the box crosses the
anti-meridian.

• In a geodetic coordinate system, the south/north extent of a box is determined by starting
at the southern latitude coordinate and heading north to the northern latitude coordinate.

N Lat

W Long E Long

S Lat

Projecting coordinates from the curved earth into a flat box

S Lat

N Lat

W Long E Longbox

Region on the curved
surface of the Earth

Region projected on to
a flat plane to form a box

projection
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 488

MarkLogic Server Geospatial Search Applications
However, you cannot cross the pole: The northern coordinate must be greater than the
southern coordinate.

The following assumptions and restrictions apply to boxes under both geodetic and Euclidean
coordinate systems:

• If the western and eastern coordinates are the same, the box is a meridian line segment
between the southern and northern coordinates passing through that longitude coordinate.

• If the southern and northern coordinates are the same, the box is a latitude line segment
between the western and eastern coordinates passing through that longitude coordinate.

• If the western and eastern coordinates are the same, and the southern and northern
coordinates are the same, then the box is a point specified by those coordinates.

• During a search, the query options determine whether the boundaries of a box are included
in or excluded from the box. Various boundary options on the geospatial query
constructors control this behavior).

In the “raw” coordinate system, the western coordinates are always less than or equal to the
eastern coordinates, and the southern coordinates are always less than or equal to the northern
coordinates.

The cts:box XQuery type and cts.box JavaScript type represent a box in MarkLogic Server. You
can create a box using the cts:box XQuery constructor or the cts.box JavaScript constructor. You
can also create a box using one of the conversion utility functions such as geogml:box (XQuery) or
geojson.box (JavaScript). For more details, see “Constructing Geospatial Point and Region
Values” on page 567.

14.5.2 Polygons

A geospatial polygon is a region with three or more sides. The following diagram illustrates
several polygons.

In a geodetic coordinate system, a polygon can represent any area on the Earth (with the
exceptions described below). For example, you might create a polygon to represent a country or a
geographical region.

Polygons
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 489

MarkLogic Server Geospatial Search Applications
Polygons offer a large degree of flexibility compared to circles or boxes. In exchange for the
flexibility, operations on geospatial polygons are not quite as fast or accurate as geospatial box
and circle operations.

The efficiency of polygon operations is proportional to the number of sides to the polygon. For
example, a typical 10-sided polygon will likely perform faster than a typical 1000-sided polygon.
The speed is dependent on many factors, including where the polygon is, the nature of your
geospatial data, and so on.

The following assumptions and restrictions apply to polygons only under a geodetic coordinate
system in MarkLogic:

• A geodetic coordinate system treats the earth as an ellipsoid. In such a system, the edges
of a polygon are geodesic arcs, not latitude lines.

• A polygon cannot include both poles and cannot have both poles as a boundary (regardless
of whether the boundaries are included). Thus, a polygon cannot encompass the full 180
degrees of latitude.

• The span of the arc described by a polygon edge in a geodetic coordinate system must be
between 0 and 180 degrees and cannot cross a pole. If you need to span more than 180
degrees, define multiple edges that cover the desired span.

Note: Latitude lines are distinct from geodesic arcs. Except for the equator, the shortest
distance between two points at the same latitude does not follow the latitude line.
The edges of polygons are geodesic arcs, not latitude lines. You can approximate a
latitude line by adding vertices evenly spaced along the latitude line. The north and
south edges of a box are latitude lines; if the region to be described is a box, use a
cts:box or cts.box instead of a polygon.

The following assumptions and restrictions apply to polygons under either a geodetic or
Euclidean coordinate system in MarkLogic.

• No two edges of a polygon or complex polygon may overlap or cross.

• Coordinate system is considered at search time rather than when you construct a polygon
value. Therefore, a search will throw a runtime exception if a polygon is not valid for the
governing coordinate system.

• The boundaries of a polygon are either in or out of the polygon, depending on the
operation and query options. The DE9IM operators include specific boundary behaviors;
for other operations, you can use query constructor options to control the boundary
behavior.

You can construct a polygon by specifying the points that make up the vertices of the polygon. All
points that are bounded by the resulting region are defined to be contained within the region.

For details, see the cts:polygon XQuery function or the cts.polygon JavaScript function.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 490

MarkLogic Server Geospatial Search Applications
14.5.3 Complex Polygons

A complex polygon is a polygon with one more holes. For example, the following graphic
illustrates the difference between polygon and a complex polygon. The complex polygon is the
shaded region in the region on the right. The unshaded region, or inner polygon, represents a hole
in the outer polygon.

You can construct a complex polygon by constructing an outer polygon with zero or more outer
polygons. All inner polygons must be completely contained in the interior of the outer polygon.
No two edges can cross or overlap. Use the cts:complex-polygon XQuery function or the
cts.complexPolygon JavaScript function to construct a complex polygon.

You can also cast a cts:complex-polygon or cts.complexPolygon with no holes (that is, with no
inner polygons) to a cts:polygon or cts.polygon. If you specify multiple inner polygons, none of
them should overlap each other.

Polygon Complex Polygon

vs
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 491

MarkLogic Server Geospatial Search Applications
14.5.4 Linestrings

A linestring is a connected sequence of edges. In a geodetic coordinate system, edges are geodesic
arcs. In a Euclidean coordinate system such as “raw”, the edges are straight lines.

A linestring does not necessarily form a closed loop as the boundary of a polygon does, although
it is permissible for a linestring to form a closed loop. The following diagram demonstrates some
examples of linestrings.

You can compare linestrings for equality or inequality. Two linestrings are equal if all of their
vertices are equal, or if they are both empty.

To construct a linestring, use the cts:linestring XQuery function or the cts.linestring
JavaScript function.

14.5.5 Circles

A geospatial circle consists of all the points within a certain distance (the radius) of a given center
point. A geospatial region that represents a circle is defined by its center point and radius. The
points that are the distance of the radius from the center define the boundary of the region.

Use the cts:circle XQuery function or the cts.circle JavaScript function to construct a circle.

Linestrings

Center Point

Radius

Circle
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 492

MarkLogic Server Geospatial Search Applications
14.6 Understanding Geospatial Query and Index Types

This topic discusses the types of geospatial query you can create, the index types that support each
query type, and the data layout expected by each query and index type. The following topics are
covered:

• Introduction to Geospatial Query and Index Types

• Geospatial Query Creation

• Geospatial Index Creation

• Geospatial XML Element Point Queries and Indexes

• Geospatial XML Element Child Point Queries and Indexes

• Geospatial XML Element Pair Point Queries and Indexes

• Geospatial XML Attribute Pair Point Queries and Indexes

• Geospatial Path Point Queries and Indexes

• Geospatial JSON Property Point Queries and Indexes

• Geospatial JSON Property Child Point Queries and Indexes

• Geospatial JSON Property Pair Point Queries and Indexes

• Geospatial Region Queries and Indexes

• Geospatial Index Positions

• Geospatial Lexicons

• Index Reference Resolution

14.6.1 Introduction to Geospatial Query and Index Types

MarkLogic supports several types of query for searching geospatial data contained in documents.
In general, geospatial queries fall into the following two categories, based on the kind of
geospatial document content to be matched:

• Point query: Match points in documents against points or other regions specified as input
criteria. For example, “Find all documents containing a point within this circle.”

• Region query: Match other regions in documents that satisfy one of a number of
relationships when compared to regions specified as input criteria. For example, “Find all
documents containing polygons that intersect with this polygon.”

For best performance, a point query should be supported by a corresponding geospatial index. A
region query always requires a backing geospatial region index. MarkLogic supports several
types of geospatial index, corresponding to the different geospatial query types.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 493

MarkLogic Server Geospatial Search Applications
Select a geospatial point query or index type based on the layout of your data. The query or index
type varies depending on whether the data is represented in XML or JSON, and whether the point
coordinates are represented as a single compound value (“lat lon”) or as distinct latitude and
longitude values. For example, you might use a cts:element-geospatial-query and a geospatial
element index for points represented as a single compound XML element value.

The data layout for a region query or region index must be WKT or a serialized cts region, such as
a cts:polygon. The region data is located within a document using an XPath expression when
creating a query or index. Therefore, you use a cts:geospatial-region-query and a geospatial
region path index for querying by region.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 494

MarkLogic Server Geospatial Search Applications
The following table summarizes the query and index types MarkLogic supports, based on the axes
of geospatial content type (point or other region) and layout.

Geo
Content to

Search
Identified By Example Data Layout More Information

Point

XPath Expression Any coordinate pair
addressable with an indexable
XPath expression.

/Placemark/Point/coordinates

Geospatial Path Point

Queries and Indexes

XML Layout

<coords>1.0 2.0</coords> Geospatial XML Element

Point Queries and Indexes

<container>
<coords>1.0 2.0</coords>

<container>

Geospatial XML Element
Child Point Queries and
Indexes

<coords>
<lat>1.0</lat>
<lon>2.0</lon>

</coords>

Geospatial XML Element
Pair Point Queries and
Indexes

<coords lat="1.0" lon="2.0"
/>

Geospatial XML Attribute
Pair Point Queries and
Indexes

JSON Layout

{"coords": "1.0 2.0" }

{"coords": [1.0, 2.0] }

Geospatial JSON Property

Point Queries and Indexes

{"container": {
{"coords": "1.0 2.0" }

}}

{"container": {
{"coords": [1.0, 2.0] }

}}

Geospatial JSON Property
Child Point Queries and
Indexes

{"coords": {
"lat": 1.0,
"lon": 2.0

}}

Geospatial JSON Property
Pair Point Queries and
Indexes

Other
Region

XPath Expression Any serialized cts region or
WKT value addressable with an
indexable XPath expression.

/envelope/cts-region

Geospatial Region Queries

and Indexes
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 495

MarkLogic Server Geospatial Search Applications
14.6.2 Geospatial Query Creation

You can create a geospatial cts query in the following ways.

• Using an XQuery or Server-Side JavaScript query constructor, such as
cts:element-geospatial-query (XQuery) or cts.pathGeospatialQuery (JavaScript).

• Parsing query text containing a geospatial search term. For details, see “Constructing a
Point Query in XQuery” on page 518 or “Constructing a Region Query from Query Text”
on page 540.

You can also create a geospatial structured query or Query By Example for use with the Search
API or the Client APIs. The Java and Node.js Client APIs include builder interfaces for creating
structured queries.

For more details, see the sections on each query/index type elsewhere in this section and the
following topics:

• “Searching for Matching Points” on page 509

• “Searching for Matching Regions” on page 528

14.6.3 Geospatial Index Creation

Region queries require a region index, but an index is optional for some point queries. For best
performance, you should usually create a geospatial index for both query types.

Note: You must have a valid geospatial license key to create or use any geospatial
indexes.

Use a geospatial region path index when matching regions in your documents. Use a geospatial
point index when matching points in your documents; the type of point index depends on the
layout of your content . For details, see “Introduction to Geospatial Query and Index Types” on
page 493.

When creating a point index, you can specify the coordinate system, coordinate value precision,
and point type (long-lat or lat-long). When creating a region index, you can specify the coordinate
system and geohash precision. The default coordinate system is WGS84. The default coordinate
precision is float (single precision), and the default point type is “point” (lat-long).

When you create an index using the Admin API, index properties such as coordinate system and
precision are specified through the index reference constructor function, such as
admin:database-geospatial-element-index or admin:database-geospatial-region-path-index.
For an example of index creation using the Admin API, see “Configuring the Indexes” on
page 573.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 496

MarkLogic Server Geospatial Search Applications
You can create a geospatial index using the following methods:

• Interactively, using the Admin Interface. See the Geospatial Point Indexes or Geospatial
Region Indexes section under Database > database_name in the Admin Interface.

• Programmatically, using the server-side Admin API functions. For example, to create a
geospatial element index, use the XQuery function
admin:database-add-geospatial-element-index or the JavaScript function
admin.databaseAddGeospatialElementIndex.

• Programmatically, using the REST Management API. For details, see the
PUT:/manage/v2/databases/{id|name}/properties method.

For more details, see the sections on each query/index type, below.

14.6.4 Geospatial XML Element Point Queries and Indexes

Use a geospatial element query when the point coordinates in your documents are represented as
the value of a single XML element, with the latitude and longitude values separated by
whitespace or punctuation (except +, -, or .). For example:

<coords>37.52 -122.25</coords>

By default, the first coordinate is the latitude value, and the second coordinate is the longitude
value. You can override the default order by specifying a longitude-first ordering when creating
queries and indexes.

If the element value contains other coordinates, they are ignored. For example, KML data can
include an additional altitude coordinate. The altitude can be present but is ignored.

When you use a geospatial element query, you should also create a corresponding geospatial
element index for best performance.

For JSON documents with similar layout, see “Geospatial JSON Property Point Queries and
Indexes” on page 503.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 497

MarkLogic Server Geospatial Search Applications
You can use the following interfaces to create a geospatial element query:

You can use the following interfaces to create a geospatial element index:

14.6.5 Geospatial XML Element Child Point Queries and Indexes

Use a geospatial element child index for geospatial point data when the coordinates are contained
in an XML element value, separated by whitespace or punctuation (except +, -, or .), and you want
to identify the container element as a child of another specific element. For example:

<parent-name>
<child-name>37.52 -122.25</child-name>

</parent-name>

By default, the first coordinate is the latitude value, and the second coordinate is the longitude
value. You can override the default order by specifying a longitude-first ordering when creating
queries and indexes.

If the element value contains other coordinates, they are ignored. For example, KML data can
include an additional altitude coordinate. The altitude can be present but is ignored.

Interface Query Constructor

XQuery cts:element-geospatial-query

Server-Side JavaScript cts.elementGeospatialQuery

Structured Query geo-elem-query

Java Client API com.marklogic.client.query.StructuredQueryBuilder.geoElement

plus
com.marklogic.client.query.StructuredQueryBuilder.geospatial

Node.js Client API queryBuilder.geoElement

Interface Index Construction Method

Admin Interface Databases >...> Geospatial Point Indexes > Geospatial Element Indexes

XQuery Admin
API (also usable
with JavaScript)

admin:database-add-geospatial-element-index

REST
Management API

PUT:/manage/v2/databases/{id|name}/properties
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 498

/jsdoc/queryBuilder.html#geoElement

MarkLogic Server Geospatial Search Applications
When you use a geospatial element child query, you should also create a corresponding geospatial
element child index for best performance.

For JSON documents with similar layout, see “Geospatial JSON Property Child Point Queries
and Indexes” on page 504.

You can use the following interfaces to create a geospatial element child query:

You can use the following interfaces to create a geospatial element child index:

14.6.6 Geospatial XML Element Pair Point Queries and Indexes

Use a geospatial element pair index for geospatial point data when the longitude and latitude are
values in two different elements that are children of the same parent element. For example:

<container-name>
<latitude>37.52</latitude>
<longitude>-122.25</longitude>

</container-name>

Interface Query Constructor

XQuery cts:element-child-geospatial-query

Server-Side JavaScript cts.elementChildGeospatialQuery

Structured Query geo-elem-query

Java Client API com.marklogic.client.query.StructuredQueryBuilder.geoElement

and
com.marklogic.client.query.StructuredQueryBuilder.geospatial

Node.js Client API queryBuilder.geoElement

Interface Index Construction Method

Admin Interface Databases > ... > Geospatial Point Indexes > Geospatial Element
Child Indexes

XQuery Admin
API (also usable
with JavaScript)

admin:database-add-geospatial-element-child-index

REST
Management API

PUT:/manage/v2/databases/{id|name}/properties
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 499

/jsdoc/queryBuilder.html#geoElement

MarkLogic Server Geospatial Search Applications
For JSON data requirements, see “Geospatial JSON Property Pair Point Queries and Indexes” on
page 505.

You can use the following interfaces to create a geospatial element pair query:

You can use the following interfaces to create a geospatial element pair index:

14.6.7 Geospatial XML Attribute Pair Point Queries and Indexes

Use a geospatial attribute pair index for geospatial point data when the longitude and latitude are
values in two different attributes of the same parent XML element. For example:

<element-name latitude="37.52" longitude="-122.25"/>

When you use a geospatial attribute pair query, you should also create a corresponding geospatial
attribute pair index for best performance.

Interface Query Constructor

XQuery cts:element-pair-geospatial-query

Server-Side
JavaScript

cts.elementPairGeospatialQuery

Structured Query geo-elem-pair-query

Java Client API com.marklogic.client.query.StructuredQueryBuilder.geoElementPair
and

com.marklogic.client.query.StructuredQueryBuilder.geospatial

Node.js Client API queryBuilder.geoElementPair

Interface Index Construction Method

Admin Interface Databases > ... > Geospatial Point Indexes > Geospatial Element
Pair Indexes

XQuery Admin
API (also usable
with JavaScript)

admin:database-add-geospatial-element-child-index

REST
Management API

PUT:/manage/v2/databases/{id|name}/properties
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 500

/jsdoc/queryBuilder.html#geoElementPair

MarkLogic Server Geospatial Search Applications
You can use the following interfaces to create a geospatial element attribute pair query:

You can use the following interfaces to create a geospatial element attribute pair index:

14.6.8 Geospatial Path Point Queries and Indexes

Use a geospatial path query and index for matching points when you want to express the location
of the points using an XPath expression. The data layout must be one of the following:

• A single XML element value with the latitude and longitude coordinates separated by
whitespace or punctuation, as for a geospatial element query.

• A single JSON property value with the latitude and longitude coordinates separated by
whitespace or punctuation, as for a geospatial JSON property query.

• A JSON array value containing a latitude element and a longitude element, as for a
geospatial JSON property query.

By default, the first coordinate is the latitude value, and the second coordinate is the longitude
value. You can override the default order by specifying a longitude-first ordering when creating
queries and indexes.

Interface Query Constructor

XQuery cts:element-attribute-pair-geospatial-query

Server-Side JavaScript cts.elementAttributePairGeospatialQuery

Structured Query geo-attr-pair-query

Java Client API com.marklogic.client.query.StructuredQueryBuilder.geoElement
and

com.marklogic.client.query.StructuredQueryBuilder.geospatial

Node.js Client API queryBuilder.geoElement

Interface Index Construction Method

Admin Interface Databases > ... > Geospatial Point Indexes > Geospatial Attribute
Pair Indexes

XQuery Admin
API (also usable
with JavaScript)

admin:database-add-geospatial-element-attribute-pair-index

REST
Management API

PUT:/manage/v2/databases/{id|name}/properties
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 501

/jsdoc/queryBuilder.html#geoElement

MarkLogic Server Geospatial Search Applications
The path expression with which you define the index is limited to a subset of XPath for
performance reasons. For details, see Path Field and Path-Based Range Index Configuration in the
XQuery and XSLT Reference Guide.

The following table demonstrates the XPath expression to use when creating a path range index
for several forms of example geospatial data.

Note: Once you create a geospatial path range index, you cannot change the path
expression. To change the path, you must remove the existing geospatial path
range index and create a new one.

You can use the following interfaces to create a geospatial path query:

Document
Type

Example Data Indexing Path Expression

XML <a:data>
<a:geo>37.52 -122.25</a:geo>

</a:data>

/a:data/a:geo

XML <a:data>
<a:geo data="37.52 -122.25"/>

</a:data>

/a:data/a:geo/@data

JSON { "geometry" : {
"type": "Point",
"coordinates": [37.52,-122.25]

}
}

/geometry[type="Point"]/array-n
ode("coordinates")

Interface Query Constructor

XQuery cts:path-geospatial-query

Server-Side JavaScript cts.pathGeospatialQuery

Structured Query geo-path-query

Java Client API com.marklogic.client.query.StructuredQueryBuilder.geoPath
and

com.marklogic.client.query.StructuredQueryBuilder.geospatial

Node.js Client API queryBuilder.geoPath and queryBuilder.geospatial
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 502

/jsdoc/queryBuilder.html#geoPath
/jsdoc/queryBuilder.html#geospatial

MarkLogic Server Geospatial Search Applications
You can use the following interfaces to create a geospatial path index:

14.6.9 Geospatial JSON Property Point Queries and Indexes

Use a geospatial element index to index geospatial data in JSON documents when the point
coordinates are contained in a single JSON property. The geospatial data must be represented in
the property value as either whitespace/punctuation separated values in a string, or as an array of
values. For example:

"prop-name": "37.52 -122.25"

"prop-name": [37.52, -122.25]

By default, the first coordinate is the latitude value, and the second coordinate is the longitude
value. You can override the default order by specifying a longitude-first ordering when creating
queries and indexes. The property value can include other entries, but they are ignored (for
example, KML has an additional altitude coordinate, which can be present but is ignored).

You can use the following interfaces to create a geospatial JSON property query:

Interface Index Construction Method

Admin Interface Databases > ... > Geospatial Point Indexes > Geospatial Path
Indexes

XQuery Admin
API (also usable
with JavaScript)

admin:database-add-geospatial-path-index

REST
Management API

PUT:/manage/v2/databases/{id|name}/properties

Interface Query Constructor

XQuery cts:json-property-geospatial-query

Server-Side
JavaScript

cts.jsonPropertyGeospatialQuery

Structured Query geo-json-property-query

Java Client API com.marklogic.client.query.StructuredQueryBuilder.geoJSONProperty
and

com.marklogic.client.query.StructuredQueryBuilder.geospatial

Node.js Client API queryBuilder.geoProperty
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 503

/jsdoc/queryBuilder.html#geoProperty

MarkLogic Server Geospatial Search Applications
You can use the following interfaces to create an index for a geospatial JSON property query.
Note you should create a geospatial element index, even though you are indexing JSON content.

14.6.10 Geospatial JSON Property Child Point Queries and Indexes

Use a geospatial element child index to index geospatial data in JSON when you want to limit the
index to coordinate properties contained in a specific property. The geospatial data must be
represented in the child property value as either whitespace/punctuation separated values in a
string, or as an array of values.

For example, if your data looks like one of the following, you could create a geospatial element
child index specifying "theParent" as the parent element (property) and "theChild" as the child
element (property).

"theParent": {
"theChild": "37.52 -122.25"

}

"theParent": {
"theChild": [37.52, -122.25]

}

By default, the first coordinate is the latitude value, and the second coordinate is the longitude
value. You can override the default order by specifying a longitude-first ordering when creating
queries and indexes. The property value can include other entries, but they are ignored (for
example, KML has an additional altitude coordinate, which can be present but is ignored).

Interface Index Construction Method

Admin Interface Databases > ... > Geospatial Point Indexes > Geospatial Element
Indexes

XQuery Admin
API (also usable
with JavaScript)

admin:database-add-geospatial-element-index

REST
Management API

PUT:/manage/v2/databases/{id|name}/properties
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 504

MarkLogic Server Geospatial Search Applications
You can use the following interfaces to create a geospatial JSON property child query:

You can use the following interfaces to create an index for a geospatial JSON property child
query. Note you should create a geospatial element child index, even though you are indexing
JSON content.

14.6.11 Geospatial JSON Property Pair Point Queries and Indexes

Use a geospatial element pair index to index geospatial data in JSON when the point coordinates
are contained in sibling JSON properties. For example, use this type of index when working with
data similar to the following:

"theParent" : {
"latitude": 37.52,
"longitude": -122.25

}

Interface Query Constructor

XQuery cts:json-property-child-geospatial-query

Server-Side
JavaScript

cts.jsonPropertyChildGeospatialQuery

Structured Query geo-json-property-query

Java Client API com.marklogic.client.query.StructuredQueryBuilder.geoJSONProperty
and

com.marklogic.client.query.StructuredQueryBuilder.geospatial

Node.js Client API queryBuilder.geoProperty

Interface Index Construction Method

Admin Interface Databases > ... > Geospatial Point Indexes > Geospatial Element
Child Indexes

XQuery Admin
API (also usable
with JavaScript)

admin:database-add-geospatial-element-child-index

REST
Management API

PUT:/manage/v2/databases/{id|name}/properties
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 505

/jsdoc/queryBuilder.html#geoProperty

MarkLogic Server Geospatial Search Applications
You can use the following interfaces to create a geospatial JSON property pair query:

You can use the following interfaces to create an index for a geospatial JSON property pair query.
Note you should create a geospatial element pair index, even though you are indexing JSON
content.

14.6.12 Geospatial Region Queries and Indexes

Use a geospatial region path index to index geospatial regions, such as polygons, rather than
points. A geospatial region path index supports operations such as the
cts:geospatial-region-query XQuery function and the cts.geospatialRegionQuery JavaScript
function. These functions enable you to test for relationships between regions, such as overlaps
and contains.

Note: Region indexes over geodetic coordinate systems are based on geohashing.
Geohashes of circles are calculated by approximating the circle by a polygon. The
approximation is accurate to within 0.001% of the radius of the circle. If you
require more precision, use geo:circle-polygon to convert circles in your data.

Interface Query Constructor

XQuery cts:json-property-pair-geospatial-query

Server-Side
JavaScript

cts.jsonPropertyPairGeospatialQuery

Structured Query geo-json-property-pair-query

Java Client API com.marklogic.client.query.StructuredQueryBuilder.geoJSONProperty
Pair

and
com.marklogic.client.query.StructuredQueryBuilder.geospatial

Node.js Client API queryBuilder.geoPropertyPair

Interface Index Construction Method

Admin Interface Databases > ... > Geospatial Point Indexes > Geospatial Element
Pair Indexes

XQuery Admin
API (also usable
with JavaScript)

admin:database-add-geospatial-element-pair-index

REST
Management API

PUT:/manage/v2/databases/{id|name}/properties
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 506

/jsdoc/queryBuilder.html#geoPropertyPair

MarkLogic Server Geospatial Search Applications
Note: When working with large circular regions, you might need to adjust the tolerance
in your geospatial operations. For details, see “Understanding Tolerance” on
page 558.

The path expression with which you define a region index is limited to a subset of XPath for
performance reasons. For details, see Path Field and Path-Based Range Index Configuration in the
XQuery and XSLT Reference Guide.

The content referenced by the path expression in a geospatial region index must be a region
represented as either WKT or a serialized cts:region. For example:

If your data is not in the expected format, you can use an “envelope pattern” to encapsulate your
original data along with a supported format. For more details, see “Example: Using the Envelope
Pattern to Encode Regions” on page 548.

You can use the following interfaces to create a geospatial region path query. For more details,
see “Searching for Matching Regions” on page 528.

Format Example Data Indexing Path Expression

XML <a:data>
<a:region>POLYGON ((30 10, 40 40,

20 40, 10 20, 30 10))</a:region>
</a:data>

/a:data/a:region

XML <a:data>
<a:loc region="POLYGON ((30 10,

40 40, 20 40, 10 20, 30 10))"/>
</a:data>

/a:data/a:loc/@region

JSON { "location" : {
"region": "POLYGON ((30 10, 40

40, 20 40, 10 20, 30 10))"
}

}

/location/region

Interface Query Constructor

XQuery cts:geospatial-region-query

Server-Side JavaScript cts.geospatialRegionQuery

Structured Query geo-region-path-query and geo-region-constraint-query
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 507

MarkLogic Server Geospatial Search Applications
You can use the following interfaces to create a geospatial region path index.

14.6.13 Geospatial Index Positions

Each geospatial point index has a range value positions option. Enabling range value positions
speeds up queries that constrain a search by the distance between geospatial data and other search
terms in a document, such as when using cts:near-query in XQuery or cts.nearQuery in
Javascript.

Additionally, enabling element positions improves index resolution (more accurate estimates) for
XML element and JSON property queries that involve geospatial point queries (with a geospatial
index with positions enabled for the geospatial data).

14.6.14 Geospatial Lexicons

Geospatial point indexes enable geospatial lexicon lookups. The lexicon lookups enable very fast
retrieval of geospatial values. For details on geospatial lexicons, see “Geospatial Lexicons” on
page 453.

14.6.15 Index Reference Resolution

Many geospatial operations either require or will take advantage of available geospatial indexes.
Depending on the operation, the index reference might be explicit or implicit. For example, if you
supply a cts:reference to an operation, the index reference is explicit. By contrast, when you
supply an XPath expression, XML element QName, or JSON property name to a query
constructor, the index reference is implicit.

Java Client API com.marklogic.client.query.StructuredQueryBuilder.geoRegionPa
th

and
com.marklogic.client.query.StructuredQueryBuilder.geospatial

Node.js Client API queryBuilder.geoPath and queryBuilder.geospatialRegion

Interface Index Construction Method

Admin Interface Databases > ... > Geospatial Region Indexes

XQuery Admin
API (also usable
with JavaScript)

admin:database-add-geospatial-region-path-index

REST
Management API

PUT:/manage/v2/databases/{id|name}/properties

Interface Query Constructor
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 508

/jsdoc/queryBuilder.html#geospatialRegion
/jsdoc/queryBuilder.html#geoPath

MarkLogic Server Geospatial Search Applications
Often, an index reference doesn’t fully specify the characteristics of an index. For example, if you
create a region path query and specify no options, you’ve only supplied the type of index
(geospatial region path index) and the path. You have not explicitly specified the coordinate
system, precision, or point type. Thus, they implicitly default to “wgs84”, single, and “point”,
respectively.

MarkLogic attempts to resolve an index reference from the information in the call, including
options, plus the defaults. If this is sufficient to identify a unique index, that index will be used. If
it is not, an error is raised.

For example, suppose you create a geospatial region index on the path /coordinates, with
coordinate-system and precision “wgs84/double”. If you then construct a region query on the path
/coordinates and specify the option “coordinate-system=wgs84”, the precision is implicitly
single precision, which will not match the only available index. You will get a XDMP-GIDXNOTFOUND
error.

Similarly, suppose you create one geospatial region index on the path /coordinates, with
coordinate-system and precision “wgs84/double” and another on the same path with “wgs84”
(single precision). If you then create a region path query on /coordinates and do not specify the
coordinate system, the index reference is ambiguous and you will get a XDMP-GIDXAMBIGUOUS error.

14.7 Searching for Matching Points

This section describes how to use a point query to find documents containing specific points or
documents containing points in specific regions. You should use a point query rather than a region
query when searching for points because point queries are usually faster than region queries.

This section covers the following topics:

• Point Search Overview

• Example: Point Query Using XQuery

• Example: Point Query Using JavaScript

• Constructing a Point Query in XQuery

• Constructing a Point Query in JavaScript

• Constructing a Point Query from Query Text

• Creating Point Queries with the Client APIs

• Creating Geospatial Facets
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 509

MarkLogic Server Geospatial Search Applications
14.7.1 Point Search Overview

A point query finds documents containing one or more points that match search criteria regions.
The search criteria regions can be points, circles, linestrings, polygons, or any other cts region
type. (To find matching regions, rather than points, see “Searching for Matching Regions” on
page 528).

The following are key features of searching with point queries:

• A point matches a criteria region if it is contained in the region.

• You can use options to control whether or not the criteria region boundaries should be
considered in the match. Boundaries are included by default.

• You can use point queries with the same search framework as other kinds of queries, such
as cts:search, cts.search, jsearch.documents, search:search, or the Client APIs.

• You can use a point query by itself or as a component of a more complex query, such as a
cts:and-query (XQuery) or cts.andQuery (JavaScript).

• You can construct a geospatial point query using an XQuery or JavaScript query
constructor, by parsing query text, or using the REST, Java, or Node.js Client APIs.

• Creating appropriate geospatial point indexes can improve speed and accuracy.

Indexes are required for certain kinds of queries, such as range queries. Indexes are
optional for queries such as value queries, but only if you use unfiltered search. For
details, see Fast Pagination and Unfiltered Searches in the Query Performance and Tuning
Guide.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 510

MarkLogic Server Geospatial Search Applications
For example, the following search uses an element child geospatial query to match documents
containing at least one point in the circle with center (37.5073428,-122.2465038) and radius 1
mile. The circle criteria region is constructued using the cts:circle XQuery function or
cts.circle JavaScript function.

(The above queries were written for sample documents containing KML geospatial data, so an
element child query is used to confine matches to coordinates in KML <Point/> elements. The
long-lat point type is used because KML coordinates are expressed in longitude-first order.)

The MarkLogic APIs also include geospatial utility functions useful for constructing criteria and
analyzing search matches. For example, you can use the geo:region-contains XQuery function
or the geo.regionContains JavaScript function to test whether one region contains another. The
utility functions are usable with in-memory geospatial data, as well as data in documents in the
database. For details, see “Summary of Other Geospatial Operations” on page 560.

Language Example

XQuery xquery version "1.0-ml";
cts:search(fn:collection("geo-example"),

cts:element-child-geospatial-query(
fn:QName("http://www.opengis.net/kml/2.2", "Point"),
fn:QName("http://www.opengis.net/kml/2.2", "coordinates"),
cts:circle(1, cts:point(37.5073428,-122.2465038)),
("type=long-lat-point")

)
)//*:name/fn:data()

(: returns just the names of the matched places :)

JavaScript import * as jsearch from '/MarkLogic/jsearch.mjs';
const geoSamples = jsearch.collections('geo-example');
const matchedPlaces = [];

geoSamples.documents()
.where(cts.elementChildGeospatialQuery(

fn.QName('http://www.opengis.net/kml/2.2', 'Point'),
fn.QName('http://www.opengis.net/kml/2.2', 'coordinates'),
cts.circle(1, cts.point(37.5073428,-122.2465038)),
['type=long-lat-point']

))
.result().results.forEach(function(result) {

// extract just the names of the matched places
matchedPlaces.push(

result.document.xpath('//*:name/fn:data()'))
});

matchedPlaces
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 511

MarkLogic Server Geospatial Search Applications
14.7.2 Example: Point Query Using XQuery

This example uses XQuery to demonstrate the following type of point queries:

• Find documents containing this point

• Find documents containing points in this region

For an equivalent Server-Side JavaScript example, see “Example: Point Query Using JavaScript”
on page 514. The example assumes the data and database configuration from “Preparing to Run
the Examples” on page 569.

The sample data is XML documents containing KML data of the following form. For more details
on the sample documents, see “Overview of the Sample Data” on page 569.

<envelope>
<Placemark xmlns="http://www.opengis.net/kml/2.2">

<name>MarkLogic HQ</name>
<Point>

<coordinates>-122.2465038,37.5073428</coordinates>
</Point>

</Placemark>
</envelope>

The example uses cts:element-child-geospatial-query to find matches in coordinates element
of a KML Point element. Limiting the scope to coordinates in a Point element prevents false
positives from the documents containing other kinds of regions. For example:

cts:element-child-geospatial-query(
fn:QName("http://www.opengis.net/kml/2.2", "Point"),
fn:QName("http://www.opengis.net/kml/2.2", "coordinates"),
cts:point(37.5073428, -122.2465038),
("type=long-lat-point")

The query includes the “type=long-lat-point” option because KML uses longitude-first coordinate
order while the default in MarkLogic is latitude-first ("type=point").

The database configuration includes a corresponding geospatial element child index on
kml:Point/kml:coordinates with long-lat point type.

The following code performs one search for documents containing the coordinates of the
MarkLogic headquarters (cts:point(37.5073428, -122.2465038)) and one search for
documents containing points in the “MarkLogic Neighborhood” polygon. The polygon
coordinates are extracted from one of the sample documents, but you could also construct them
inline.

xquery version "1.0-ml";

(: Find docs containing a point that matches another point.
 : The criteria point corresponds to the MarkLogic HQ feature :)
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 512

MarkLogic Server Geospatial Search Applications
let $point-matches :=
cts:search(fn:collection("geo-xml-examples"),

cts:element-child-geospatial-query(
fn:QName("http://www.opengis.net/kml/2.2", "Point"),
fn:QName("http://www.opengis.net/kml/2.2", "coordinates"),
cts:point(37.5073428, -122.2465038),
("type=long-lat-point")

)
)

(: Find docs containing a point contained in a region. The
 : MarkLogic Neighborhood polygon is used as the criteria region. :)
let $region-matches :=

cts:search(fn:collection("geo-xml-examples"),
cts:element-child-geospatial-query(

fn:QName("http://www.opengis.net/kml/2.2", "Point"),
fn:QName("http://www.opengis.net/kml/2.2", "coordinates"),
fn:doc("/geo-examples/MarkLogic-Neighborhood.xml")//cts-region,
("type=long-lat-point")

)
)

(: Format results for display in QC :)
return (

fn:concat("Features containing the cirteria point: ",
fn:string-join($point-matches//*:name/data(), ", ")),

fn:concat("Features containing points in the criteria region: ",
fn:string-join($region-matches//*:name/data(), ", "))

)

If you run this query in Query Console, it produces output similar to the following:

Features containing the cirteria point: MarkLogic HQ
Features containing points in the criteria region:

Restaurant, Museum, MarkLogic HQ

You can compose complex queries by combining geospatial queries with other query types. For
example, the following code matches documents that contains points within a circle and that also
contain the word “MarkLogic”:

cts:search(fn:collection("geo-xml-examples"),
cts:and-query((

cts:word-query("MarkLogic"),
cts:element-child-geospatial-query(

fn:QName("http://www.opengis.net/kml/2.2", "Point"),
fn:QName("http://www.opengis.net/kml/2.2", "coordinates"),
cts:circle(1, cts:point(37.5073428,-122.2465038)),
("type=long-lat-point")

)
))

)//*:name/data()
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 513

MarkLogic Server Geospatial Search Applications
Though the previous examples only searched the XML sample documents, you can apply a
geospatial query to either XML or JSON documents, or both. For example, the following code
searches both the XML and JSON sample documents by combining two geospatial queries in an
OR query. (The point search criteria matches the “MarkLogic HQ” feature in the sample
documents.)

let $matches :=
cts:search(fn:collection("geo-examples"),

cts:or-query((
cts:path-geospatial-query(
'geometry[type = "Point"]/array-node("coordinates")',
cts:point(37.5073428, -122.2465038),
('type=long-lat-point')

),
cts:element-child-geospatial-query(
fn:QName('http://www.opengis.net/kml/2.2', 'Point'),
fn:QName('http://www.opengis.net/kml/2.2', 'coordinates'),
cts:point(37.5073428, -122.2465038),
('type=long-lat-point')

)
))

)
return

for $match in ($matches)
return xdmp:node-uri($match)

Running this query in Query Console produces the following output:

/geo-examples/MarkLogic-HQ.json
/geo-examples/MarkLogic-HQ.xml

14.7.3 Example: Point Query Using JavaScript

This example uses Server-Side JavaScript to demonstrate the following type of point queries:

• Find documents containing this point

• Find documents containing points in this region

For an equivalent XQuery example, see “Example: Point Query Using XQuery” on page 512.
This example assumes the data and database configuration from “Preparing to Run the Examples”
on page 569.

The sample data includes JSON documents containing GeoJSON data of the following form. For
more details on the sample documents, see “Overview of the Sample Data” on page 569.

{ "envelope": {
"feature": {

"type": "Feature",
"geometry": {

"type": "Point",
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 514

MarkLogic Server Geospatial Search Applications
"coordinates": [-122.2465038, 37.5073428]
},
"properties": { "name": "MarkLogic HQ" }

} } }

The example uses cts.pathGeospatialQuery to find matching documents. You must use a path
query for point queries on GeoJSON for the reasons described in Geospatial Data in the
Application Developer’s Guide. The following path addresses the coordinates array of a point
feature in the sample documents:

geometry[type = "Point"]/array-node("coordinates")

Thus, the core of the search is a path query of the following form. The query includes the
“type=long-lat-point” option because GeoJSON uses longitude-first coordinate order while the
default in MarkLogic is latitude-first ("type=point").

cts.pathGeospatialQuery(
'geometry[type = "Point"]/array-node("coordinates")',
cts.circle(0.25, cts.point(37.5073428, -122.2465038)),
("type=long-lat-point")

)

The database configuration must include a corresponding geospatial path index. The instructions
in “Preparing to Run the Examples” on page 569 include creating a suitable index.

The following code uses the JSearch API to perform 2 searches: one search for documents
containing a point (cts.point(37.5073428, -122.2465038)), and one for documents
containing points in a region. The region coordinates are extracted from one of the sample
documents for convenience, but you could also construct the region inline using a geospatial
constructor such as cts.polygon.

'use strict';
import * as jsearch from '/MarkLogic/jsearch.mjs';
const geoSamples = jsearch.collections('geo-examples');

// Find docs containing a point that matches another point.
// The criteria point corresponds the MarkLogic HQ feature.
const pointMatches =

geoSamples.documents().where(
cts.pathGeospatialQuery(

'geometry[type = "Point"]/array-node("coordinates")',
cts.point(37.5073428, -122.2465038),
("type=long-lat-point")

)
).map(desc => desc.document.envelope.feature.properties.name)
.result();

const regionMatches =
geoSamples.documents().where(

cts.pathGeospatialQuery(
'geometry[type = "Point"]/array-node("coordinates")',
fn.head(fn.doc('/geo-examples/MarkLogic-Neighborhood.json'))
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 515

MarkLogic Server Geospatial Search Applications
.toObject().envelope.ctsRegion,
["type=long-lat-point"]

)
).map(desc => desc.document.envelope.feature.properties.name)
.result();

// Format the results for display.
const results = 'Features containing the cirteria point: '

+ pointMatches.results.join(", ")
+ '\nFeatures containing points in the criteria region: '
+ regionMatches.results.join(', ');

results;

If you run this query in Query Console, it produces output similar to the following:

Features containing the cirteria point: MarkLogic HQ
Features containing points in the criteria region:

Restaurant, Museum, MarkLogic HQ

Note that a lambda expression and the map method are used to extract just the feature names from
the matched documents:

geoSamples.documents()
.where(...)
.map(desc => desc.document.envelope.feature.properties.name)
.result();

This is a contrivance used to keep the example output brief. If you remove the map call, the search
returns a Sequence of document descriptors that include the full document. For more details, see
“Creating JavaScript Search Applications” on page 289.

You can also use cts.search to perform an equivalent search. For example:

// Find docs containing a point that matches another point.
// The criteria point corresponds the MarkLogic HQ feature.
const pointMatches =

cts.search(
cts.andQuery([

cts.collectionQuery('geo-json-examples'),
cts.pathGeospatialQuery(
'geometry[type = "Point"]/array-node("coordinates")',
cts.point(37.5073428, -122.2465038),
('type=long-lat-point')

)
])

);
// Find docs containing points contained in a region. The MarkLogic
// Neighborhood polygon is used as the criteria to be matched.
const regionMatches =

cts.search(
cts.andQuery([

cts.collectionQuery('geo-json-examples'),
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 516

MarkLogic Server Geospatial Search Applications
cts.pathGeospatialQuery(
'geometry[type = "Point"]/array-node("coordinates")',
fn.head(fn.doc('/geo-examples/MarkLogic-Neighborhood.json'))

.toObject().envelope.ctsRegion,
['type=long-lat-point']

)
])

);

// Format the results for display.
const results = 'Features containing the cirteria point: ';
const featureNames = [];
for (let doc of pointMatches) {

featureNames.push(doc.toObject().envelope.feature.properties.name);
}
results += featureNames.join(', ');

results += '\nFeatures containing points in the criteria region: ';
featureNames = [];
for (let doc of regionMatches) {

featureNames.push(doc.toObject().envelope.feature.properties.name);
}
results + featureNames.join(', ');

You can include multiple criteria in a single query; when you do so, encapsulate the criteria in an
array. For example, you could search for matches to both the point and the region with a query
such as the following. A document matches if it matches any one of the criteria

cts.andQuery([
cts.collectionQuery('geo-json-examples'),
cts.pathGeospatialQuery(

'geometry[type = "Point"]/array-node("coordinates")',
[cts.point(37.5073428, -122.2465038),
fn.head(fn.doc('/geo-examples/MarkLogic-Neighborhood.json'))

.toObject().envelope.ctsRegion],
['type=long-lat-point']

)])

Since the MarkLogic HQ feature document satisfies both cirteria and the Museum and Restaurant
feature documents satisfy the region criteria, the above query matches the Restaurant, Museum,
and MarkLogic HQ features.

You can compose complex queries by combining geospatial queries with other query types.
Notice that the above cts.search example search uses a cts.andQuery to combine the geospatial
path query with a collection query that constrains the search to the JSON documents in the sample
set.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 517

MarkLogic Server Geospatial Search Applications
To include the XML sample documents in the search, add a cts.elementChildGeospatialQuery on
the KML data. For example, the following query finds documents containing the MarkLogic HQ
coordinates in either the XML or JSON sample documents, and prints out the URIs of the
matched documents:

'use strict';
import * as jsearch from '/MarkLogic/jsearch.mjs';
const geoSamples = jsearch.collections('geo-examples');

geoSamples.documents().where(
cts.orQuery([

cts.pathGeospatialQuery(
'geometry[type = "Point"]/array-node("coordinates")',
cts.point(37.5073428, -122.2465038),
['type=long-lat-point']

),
cts.elementChildGeospatialQuery(

fn.QName('http://www.opengis.net/kml/2.2', 'Point'),
fn.QName('http://www.opengis.net/kml/2.2', 'coordinates'),
cts.point(37.5073428, -122.2465038),
['type=long-lat-point']

)
])

).map(desc => desc.uri)
 .result().results;

Running the above query in Query Console, produces the following output:

["/geo-examples/MarkLogic-HQ.json",
"/geo-examples/MarkLogic-HQ.xml"]

14.7.4 Constructing a Point Query in XQuery

This section is a quick reference of available XQuery geospatial point query constructors. These
functions create a cts:query object. For an equivalent JavaScript reference, see “Constructing a
Point Query in JavaScript” on page 519. To create geospatial queries from query text, see
“Constructing a Point Query from Query Text” on page 520.

Use the following functions to construct a point query. Select the query constructor that
corresponds to the type of region and layout of the data to be searched, as described in
“Understanding Geospatial Query and Index Types” on page 493. You can use these constructors
with each other and with other cts:query constructors to build up complex queries.

• cts:element-attribute-pair-geospatial-query

• cts:element-child-geospatial-query

• cts:element-geospatial-query

• cts:element-pair-geospatial-query
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 518

MarkLogic Server Geospatial Search Applications
• cts:json-property-child-geospatial-query

• cts:json-property-geospatial-query

• cts:json-property-pair-geospatial-query

• cts:path-geospatial-query

Every query constructor includes parameters that identify the content to search, either by path,
name, or index reference; and one or more geospatial values to match. For example:

cts:element-geospatial-query(
xs:QName("feature"), (: element to search :)
cts:circle(20, cts:point(37.65, -122.42)) (: criteria :)

)

A geospatial query is constrained to the XML elements, XML attributes, and JSON properties
identified in the query constructor. To cross multiple formats in a single search, use cts:or-query
to combine multiple geospatial queries.

For a complete example, see “Example: Point Query Using XQuery” on page 512. For more
details about constructing geospatial search criteria, see “Constructing Geospatial Point and
Region Values” on page 567 and “Converting To and From Common Geospatial Representations”
on page 562.

14.7.5 Constructing a Point Query in JavaScript

This section is a quick reference of available Server-Side JavaScript geospatial point query
constructors. These functions create a cts.query object. For an equivalent XQuery reference, see
“Constructing a Point Query in XQuery” on page 518. To create geospatial queries from query
text, see “Constructing a Point Query from Query Text” on page 520.

The following JavaScript geospatial query constructors are available. You can use these
constructors with each other and with other cts:query constructors to build up complex queries.
Select the query constructor that corresponds to the type of region and layout of the data to be
searched, as described in “Understanding Geospatial Query and Index Types” on page 493.

• cts.elementAttributePairGeospatialQuery

• cts.elementChildGeospatialQuery

• cts.elementGeospatialQuery

• cts.elementPairGeospatialQuery

• cts.jsonPropertyChildGeospatialQuery

• cts.jsonPropertyGeospatialQuery

• cts.jsonPropertyPairGeospatialQuery

• cts.pathGeospatialQuery
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 519

MarkLogic Server Geospatial Search Applications
Every query constructor includes parameters that identify the content to search, either by path,
name, or index reference; and one or more geospatial values to match. For example:

cts.elementGeospatialQuery(
"feature", // element to search
cts.circle(20, cts.point(37.65, -122.42)) // criteria

)

A geospatial query is constrained to the XML elements, XML attributes, and JSON properties
identified in the query constructor. To cross multiple formats in a single search cts.orQuery to
combine multiple geospatial queries.

For a complete example, see “Example: Point Query Using XQuery” on page 512. For more
details about constructing geospatial search criteria, see “Constructing Geospatial Point and
Region Values” on page 567.

14.7.6 Constructing a Point Query from Query Text

You can use the cts:parse XQuery function or the cts.parse JavaScript function to create a
geospatial point query from query text. The parse creates a cts query object. This grammar is only
supported by the cts parser; the grammar used by search:search or search:resolve does not
support geospatial terms.

The cts parse grammar supports search terms expressing points, circles, boxes, polygons, and
other regions, bound a geospatial index reference. For details, see “Binding to a Geospatial Index
Reference” on page 269.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 520

MarkLogic Server Geospatial Search Applications
The following example queries create a geospatial element child query over KML point
coordinates. The bindings define the interpretation of the “poi” (point of interest) tag as a
reference to a geospatial element child index. The query text “@1 -122.2465038,37.5073428”
represents a circle with radius 1 mile (the default units) and center (37.5073428, -122.2465038).
The query includes the option “type=long-lat-point” because KML uses longitude-first ordering
for points, while the MarkLogic default ordering is latitude-first.

The parse produces a cts query similar to the following:

For more details, see “Creating a Query From Search Text With cts:parse” on page 253.

Language Example

XML xquery version "1.0-ml";
let $bindings := map:map()
let $_ := map:put(

$bindings, "poi",
cts:geospatial-element-child-reference(

fn:QName("http://www.opengis.net/kml/2.2", "Point"),
fn:QName("http://www.opengis.net/kml/2.2", "coordinates"),
("type=long-lat-point")

))
return

cts:parse('poi:"@1 -122.2465038,37.5073428"', $bindings)

JavaScript const bindings = {
'poi': cts.geospatialElementChildReference(

fn.QName("http://www.opengis.net/kml/2.2", "Point"),
fn.QName("http://www.opengis.net/kml/2.2",

"coordinates"),
["type=long-lat-point"])

};
cts.parse('poi:"@1 -122.2465038,37.5073428"', bindings);

Language Example Output

XQuery cts:element-child-geospatial-query(
fn:QName("http://www.opengis.net/kml/2.2","Point"),
fn:QName("http://www.opengis.net/kml/2.2","coordinates"),
cts:circle("@1 -122.2465,37.507343"),
("type=long-lat-point"), 1)

JavaScript cts.elementChildGeospatialQuery(
[fn.QName("http://www.opengis.net/kml/2.2","Point")],
[fn.QName("http://www.opengis.net/kml/2.2","coordinates")],
cts.circle("@1 -122.2465,37.507343"),
["type=long-lat-point"], 1)
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 521

MarkLogic Server Geospatial Search Applications
14.7.7 Creating Point Queries with the Client APIs

The REST, Java, and Node.js Client APIs expose geospatial queries through the use of structured
queries and query builders, rather than through standalone query constructor functions.

The following topics provide examples of using a point query from the Client APIs:

• Java Client API

• Node.js Client API

You can also use a serialized cts query or a structured query with the Node.js, Java, or REST
Client APIs and Search API functions such as search:resolve. See the following topics for
details on including a point query in a structured query:

• “geo-elem-query” on page 130

• “geo-elem-pair-query” on page 134

• “geo-attr-pair-query” on page 138

• “geo-path-query” on page 142

• “geo-json-property-query” on page 146

• “geo-json-property-pair-query” on page 150

14.7.7.1 Java Client API

This topic assumes you are already familiar with the search features of the Java Client API. If you
are not, see the Java Application Developer’s Guide.

You are most likely to construct a geospatial point query with the Java Client API using a
StructuredQueryBuilder object. You could also embed a structured point query in a
RawCombinedQuery; this technique is not covered here. You cannot create a geospatial point query
in Java using query text or QBE.

Each geospatial point query can only reference a single point index. To search more than one
index, construct multiple point queries and combine them with an OR query.

Use StructuredQueryDefinition.geospatial to create a point query. Choose an overload that
accepts a GeospatialIndex as input. A GeospatialIndex object identifies the point index to be
searched.

To construct a GeospatialIndex object, use one of the geospatial index builders of
StructuredQueryBuilder, such as StructuredQueryBuilder.geoElement. Choose the index builder
that matches your index and data layout; for details, see “Understanding Geospatial Query and
Index Types” on page 493.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 522

/javadoc/client/com/marklogic/client/query/StructuredQueryBuilder.html

MarkLogic Server Geospatial Search Applications
For example, the following code snippet identifies a geospatial element child point index
corresponding to the KML Point features in the data from “Preparing to Run the Examples” on
page 569.

DatabaseClient client = ...;
QueryManager qm = client.newQueryManager();
StructuredQueryBuilder sqb = qm.newStructuredQueryBuilder();
...
sqb.geoElement(

sqb.element(new QName("http://www.opengis.net/kml/2.2", "Point")),
sqb.element(

new QName("http://www.opengis.net/kml/2.2", "coordinates"))),
...

The following example uses the Java Client API to find XML documents containing the feature
named “MarkLogic HQ”.

package examples;

import com.marklogic.client.DatabaseClient;
import com.marklogic.client.DatabaseClientFactory;
import com.marklogic.client.io.SearchHandle;
import com.marklogic.client.query.MatchDocumentSummary;
import com.marklogic.client.query.QueryManager;
import com.marklogic.client.query.StructuredQueryBuilder;
import
com.marklogic.client.query.StructuredQueryBuilder.FragmentScope;
import com.marklogic.client.query.StructuredQueryDefinition;

import javax.xml.namespace.QName;

public class GeoPointQuery {
public static void main(String[] args) {

public static void main(String[] args) {
// MODIFY THIS CALL TO MATCH YOUR ENV
DatabaseClient client = DatabaseClientFactory.newClient(

hostname, port, databaseName,
new DatabaseClientFactory.DigestAuthContext(

username, password));

QueryManager qm = client.newQueryManager();
StructuredQueryBuilder sqb = qm.newStructuredQueryBuilder();
SearchHandle results = new SearchHandle();
StructuredQueryDefinition query = sqb.geospatial(

sqb.geoElement(
sqb.element(new QName("http://www.opengis.net/kml/2.2",

"Point")),
sqb.element(new QName("http://www.opengis.net/kml/2.2",

"coordinates"))),
FragmentScope.DOCUMENTS,
new String[] {"type=long-lat-point"},
sqb.circle(37.507, -122.246, 0.25));
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 523

MarkLogic Server Geospatial Search Applications
qm.search(query, results);
for (MatchDocumentSummary match : results.getMatchResults()) {

System.out.println(match.getUri());
}

client.release();
}
}

If you run the above program against the sample data and database configuration from “Preparing
to Run the Examples” on page 569, you should see output similar to the following:

/geo-examples/MarkLogic-HQ.xml

The example as written will only match the XML sample documents from “Preparing to Run the
Examples” on page 569. You can match the JSON sample documents by changing the index
builder to use StructuredQueryBuilder.geoPath and the path geometry[type =
"Point"]/array-node("coordinates"), similar to the example in “Example: Point Query Using
JavaScript” on page 514.

For more details, see Searching in the Java Application Developer’s Guide.

14.7.7.2 Node.js Client API

This topic assumes you are familiar with the search features of the Node.js Client API. If you are
not, you should review the Node.js Application Developer’s Guide.

To construct a geospatial point query, use queryBuilder.geospatial. Use one of the geospatial index
reference builders such as queryBuilder.geoPath or queryBuilder.geoElement to construct the
point index specification. Choose the builder that corresponds to your index and data layout, as
described in “Understanding Geospatial Query and Index Types” on page 493. Use helper
functions such as queryBuilder.point to construct the criteria point(s) or regions(s).

Each geospatial point query can only reference a single index. To search more than one index,
construct multiple region queries and combine them with an OR query.

The following example performs the same search as “Example: Simple Intersection Region
Query” on page 530. The example relies on the sample documents and database configuration
from “Preparing to Run the Examples” on page 569. Before running the example, modify the
connection information in connInfo.

const marklogic = require('marklogic');

// MODIFY THIS VAR TO MATCH YOUR ENV
const connInfo = {

host: 'localhost',
port: 8000,
user: username,
password: password,
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 524

/jsdoc/queryBuilder.html#geospatial

MarkLogic Server Geospatial Search Applications
database: 'Documents'
};

const db = marklogic.createDatabaseClient(connInfo);
const qb = marklogic.queryBuilder;

db.documents.query(
qb.where(

qb.geospatial(
qb.geoElement(
qb.qname('http://www.opengis.net/kml/2.2', 'Point'),
qb.qname('http://www.opengis.net/kml/2.2', 'coordinates')),

qb.fragmentScope('documents'),
qb.geoOptions('type=long-lat-point'),
qb.circle(0.25, qb.latlon(37.507, -122.246))

))
).result(function(results) {

for (let result of results) {
console.log(result.uri);

}
});

If you run the example against the sample data from “Preparing to Run the Examples” on
page 569, you should see output similar to the following:

/geo-examples/MarkLogic-HQ.xml

As written, the sample code will only match the XML documents in the sample data. To match
the JSON documents, use queryBuilder.geoPath instead of queryBuilder.geoElement and the path
geometry[type = "Point"]/array-node("coordinates"), similar to the example in “Example:
Point Query Using JavaScript” on page 514.

For more details, see Querying Documents and Metadata in the Node.js Application Developer’s
Guide.

14.7.8 Creating Geospatial Facets

Faceted navigation of search results enables users to filter large or complex search results by
properties of the data. For example, filter a list of clothing items by size, color, and material. One
technique for faceting the results of a point query is to define geospatial boxes that enclose the
matched points.

If you divide a geospatial box into a grid of boxes, you can bucket matched points by the
sub-divisions. Each subdivision represents a facet.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 525

MarkLogic Server Geospatial Search Applications
For example, the following diagram plots a series of matched points on a 5x5 grid.

You can use the number of points in each box and the box extent with mapping APIs like Google
Maps to generate a heat map from the search results.

You can generate such geospatial facet data using the cts:*-geospatial-boxes XQuery functions
and the cts.*GeospatialBoxes Server-Side JavaScript functions, such as
cts:element-geospatial-boxes or cts.elementGeospatialBoxes. You can use the cts:frequency
XQuery function or the cts.frequency JavaScript function to compute the number of points in
each box.

The XQuery Search API, JavaScript jsearch API, and the Client APIs an equivalent capability at a
higher level of abstraction through the heatmap component of a geospatial constraint definition.

All of these interfaces enable you to define the extent of the box over which to generate facets,
and the latitudes and longitudes of the subdivisions.

You can also control whether the returned facet box extents are based on an even grid or the
minimum bounding box that encompasses the points in a given bucket, as shown in the following
diagram. By default, MarkLogic generates the minimum bounding boxes. Use the “gridded”
option to override the default.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 526

MarkLogic Server Geospatial Search Applications
The following diagram illustrates the difference between gridded and non-gridded faceting:

The following XQuery example generates geospatial facets and their counts
cts:element-pair-geospatial-boxes:

xquery version "1.0-ml";

(: compute even divisions between two coordinates :)
declare function local:compute-divs($coord1, $coord2, $ndivs)
as xs:double*
{

let $bound-size := abs(($coord1 - $coord2) div $ndivs)
let $start := if ($coord2 < $coord1) then $coord2 else $coord1
return

for $count in (1 to $ndivs)
return ($start + ($count - 1) * $bound-size)

};

(: box dimensions :)
let $n := 49.0
let $s := 24.0
let $e := -67.0
let $w := -125.0

(: number of latitude and longitude divisions for facet bucketing :)
let $n-lat-divs := 5
let $n-lon-divs := 5

(: query with which to constrain points to facet :)
let $query := cts:and-query((

cts:element-range-query(xs:QName("magnitude"), ">", 7),
cts:element-pair-geospatial-query(

xs:QName("quake"), xs:QName("lat"), xs:QName("long"),
cts:box($s, $w, $n, $e))

))

Gridded Facet
Box Boundary

Default Facet
Box Boundary
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 527

MarkLogic Server Geospatial Search Applications
(: facet the matching points :)
let $boxes := cts:element-pair-geospatial-boxes(

xs:QName("quake"), xs:QName("lat"), xs:QName("long"),
local:compute-divs($n, $s, $n-lat-divs),
local:compute-divs($e, $w, $n-lon-divs),
"gridded",
$query)

(: count the points in each facet :)
let $counts := cts:frequency($boxes)

return for $i in (1 to fn:count($boxes))
return (fn:subsequence($boxes, $i, 1),

fn:subsequence($counts, $i, 1))

For the Server-Side JavaScript jsearch API, use jsearch.makeHeatMap with
FacetDefinition.groupInto to define geospatial facets. For details, see “Grouping Values and
Facets Into Buckets” on page 367.

For the XQuery SearchAPI and the client APIs, use the heatmap component of a geospatial
constraint query option. In these interfaces, you need only specify the faceting box extent and the
number of latitude and longitude divisions in the heatmap component. The underlying API
computes the grid, the facet boxes, and the counts for you. For example:

<options xmlns="http://marklogic.com/appservices/search">
 <constraint name="geo">
 <geo-elem-pair>
 <parent ns="" name="quake"/>
 <lat ns="" name="lat"/>
 <lon ns="" name="long"/>
 <heatmap s="24.0" n="49.0" e="-67.0" w="-125.0"
 latdivs="5" londivs="5" />
 <facet-option>gridded</facet-option>
 </geo-elem-pair>
 </constraint>

<return-facets>true</return-facets>
</options>

For a more complete example, see “Geospatial Constraint Example” on page 393.

14.8 Searching for Matching Regions

This section describes how to use a region query to search for regions in your documents. You can
match regions using topological operators such as as containment and intersection.

This section covers the following topics:

• Region Match Overview

• Example: Simple Intersection Region Query
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 528

MarkLogic Server Geospatial Search Applications
• Example: Using Region Queries in a Composed Query

• Constructing a Region Query Using a Constructor

• Constructing a Region Query from Query Text

• Creating Region Queries Using the Client APIs

• Example: Using the Envelope Pattern to Encode Regions

14.8.1 Region Match Overview

A region query matches geospatial regions in your documents against one or more criteria
regions. The relationship between the regions that must be satisfied for a “match” is determined
by the operator configured into the query. For example, you can create a query that matches
documents containing a region that overlaps or intersects your criteria region(s).

Note: MarkLogic Server does not support region queries using multi-part (WKT/WKB)
geometries. Multi-part geometries (MULTI*) include MULTIPOINT,
MULTIPOLYGON, and so on. For a list of WKT/WKB geometries, see Mapping

of WKT and WKB Types to MarkLogic Types.

To construct a region query, use the XQuery cts:geospatial-region-query function or the
JavaScript cts.geospatialRegionQuery function. Region queries require a geospatial region path
index.

For example, the following code snippet creates a query the matches documents containing a
region the intersects a circle. For a complete example, see “Example: Simple Intersection Region
Query” on page 530.

The following are key points about using region queries:

Language Example

XQuery cts:geospatial-region-query(
cts:geospatial-region-path-reference("/envelope/cts-region"),
"intersects",
cts:circle(0.25, cts:point(37.507343,-122.2465))

)

JavaScript cts.geospatialRegionQuery(
cts.geospatialRegionPathReference('/envelope/ctsRegion'),
'intersects',
cts.circle(0.25, cts.point(37.507343,-122.2465))

)

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 529

MarkLogic Server Geospatial Search Applications
• One region matches another if it satisfies the topological operator configured into the
query. You can choose from the following operators: contains, covered-by, covers,
crosses, disjoint, equals, intersects, overlaps, within. For details, see
cts:geospatial-region-query in the MarkLogic XQuery and XSLT Function Reference or
cts.geospatialRegionQuery in the MarkLogic Server-Side JavaScript Function
Reference.

• You must define a geospatial region path index on any regions you want to search with a
region query. For details, see “Geospatial Region Queries and Indexes” on page 506.

• The regions in your documents must be in WKT or serialized cts:region format. If your
data is not in one of these formats, you must transform it to conform. For one possible
solution, see “Example: Using the Envelope Pattern to Encode Regions” on page 548.

• You can use a region query with the same search framework as other kinds of queries,
such as cts:search, cts.search, jsearch.documents, search:search, or the Client APIs.

• You can use a region query by itself or as a component of a more complex query, such as
a cts:and-query (XQuery) or cts.andQuery (JavaScript).

• You can construct a geospatial region query using an XQuery or JavaScript query
constructor, by parsing query text, or using the REST, Java, or Node.js Client APIs.

• For best performance, when matching against individual points in your documents, you
should usually use a point query rather than a region query.

• For highest accuracy when using a region query to match regions in documents, include
only one region per document.

The MarkLogic APIs also include geospatial utility functions useful for constructing criteria and
analyzing search matches. For example, you can use the cts:region-contains XQuery function
or the cts.region-contains JavaScript function to test whether one region contains another. The
utility functions are usable with in-memory geospatial data, as well as data in documents in the
database. For details, see “Summary of Other Geospatial Operations” on page 560.

14.8.2 Example: Simple Intersection Region Query

This example depends on the data and configuration in “Preparing to Run the Examples” on
page 569.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 530

MarkLogic Server Geospatial Search Applications
Run one of the following queries in Query Console to find documents that contain a region that
intersects with a polygon. The criteria polygon corresponds to the “MarkLogic Neighborhood”
region in the sample data. The query produces the feature names from the matched documents.

Language Example

XQuery xquery version "1.0-ml";
declare namespace kml="http://www.opengis.net/kml/2.2";

(: This region corresponds to the MarkLogic Neighborhood polygon :)
let $criteria-region := cts:polygon((

cts:point(37.519087, -122.26346),
cts:point(37.521299, -122.24805),
cts:point(37.512279, -122.24462),
cts:point(37.50336, -122.24556),
cts:point(37.506185, -122.25981),
cts:point(37.513436, -122.26337),
cts:point(37.519087, -122.26346)

))
return cts:search(

fn:collection("geo-xml-examples"),
cts:geospatial-region-query(

cts:geospatial-region-path-reference("/envelope/cts-region"),
"intersects", $criteria-region

)
)/envelope/kml:Placemark/kml:name/fn:data()
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 531

MarkLogic Server Geospatial Search Applications
If you run one of these queries in Query Console, the following feature names should be
displayed:

• Holly St

• Wildlife Refuge

• Hwy 101

• Airport

• MarkLogic Neighborhood

JavaScript // This region corresponds to the MarkLogic Neighborhood polygon
const criteriaRegion = cts.polygon([

cts.point(37.519087, -122.26346),
cts.point(37.521299, -122.24805),
cts.point(37.512279, -122.24462),
cts.point(37.50336, -122.24556),
cts.point(37.506185, -122.25981),
cts.point(37.513436, -122.26337),
cts.point(37.519087, -122.26346)

])

// Perform the search
const results = cts.search(cts.andQuery([

cts.collectionQuery('geo-json-examples'),
cts.geospatialRegionQuery(
cts.geospatialRegionPathReference('/envelope/ctsRegion'),
'intersects', criteriaRegion

)
]))

// Iterate over the results, accumulating the feature names in
// an array for convenient display in Query Console.
const matchedRegions = [];
for (let result of results) {

matchedRegions.push(
result.toObject().envelope.feature.properties.name)

}
matchedRegions

Language Example
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 532

MarkLogic Server Geospatial Search Applications
You can also work with XML documents in JavaScript and work with JSON documents in
XQuery, as shown below. The following example performs the same region search against the
“opposite” document type.

Language Example

XQuery xquery version "1.0-ml";
declare namespace kml="http://www.opengis.net/kml/2.2";

(: This region corresponds to the MarkLogic Neighborhood polygon :)
let $criteria-region := cts:polygon((

cts:point(37.519087, -122.26346),
cts:point(37.521299, -122.24805),
cts:point(37.512279, -122.24462),
cts:point(37.50336, -122.24556),
cts:point(37.506185, -122.25981),
cts:point(37.513436, -122.26337),
cts:point(37.519087, -122.26346)

))
return cts:search(

fn:collection("geo-json-examples"),
cts:geospatial-region-query(

cts:geospatial-region-path-reference("/envelope/ctsRegion"),
"intersects", $criteria-region

)
)/envelope/feature/properties/name
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 533

MarkLogic Server Geospatial Search Applications
Notice that the result processing in JavaScript is significantly different because you cannot handle
the matched XML documents as native javascript objects.

JavaScript // This region corresponds to the MarkLogic Neighborhood polygon
const criteriaRegion = cts.polygon([

cts.point(37.519087, -122.26346),
cts.point(37.521299, -122.24805),
cts.point(37.512279, -122.24462),
cts.point(37.50336, -122.24556),
cts.point(37.506185, -122.25981),
cts.point(37.513436, -122.26337),
cts.point(37.519087, -122.26346)

])

// Perform the search
const results = cts.search(cts.andQuery([

cts.collectionQuery('geo-xml-examples'),
cts.geospatialRegionQuery(
cts.geospatialRegionPathReference('/envelope/cts-region'),
'intersects', criteriaRegion

)
]))

// Iterate over the results, accumulating the feature names in
// an array for convenient display in Query Console.
const matchedRegions = [];
for (let result of results) {

matchedRegions.push(fn.head(result.xpath(
'/envelope/kml:Placemark/kml:name/fn:data()',
{kml: 'http://www.opengis.net/kml/2.2'})))

}
matchedRegions

Language Example
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 534

MarkLogic Server Geospatial Search Applications
The following example searches the combined set of both XML and JSON documents. Notice
that you can pass multiple region index references into the geospatial region query constructor. A
document satisfies the query if a match is found using any of the indexes.

Language Example

XQuery xquery version "1.0-ml";

(: This region corresponds to the MarkLogic Neighborhood polygon :)
let $criteria-region := cts:polygon((

cts:point(37.519087, -122.26346),
cts:point(37.521299, -122.24805),
cts:point(37.512279, -122.24462),
cts:point(37.50336, -122.24556),
cts:point(37.506185, -122.25981),
cts:point(37.513436, -122.26337),
cts:point(37.519087, -122.26346)

))
let $matches := cts:search(

fn:collection("geo-examples"),
cts:geospatial-region-query(

(cts:geospatial-region-path-reference("/envelope/cts-region"),
cts:geospatial-region-path-reference("/envelope/ctsRegion")),

"intersects", $criteria-region
)

)
for $doc in $matches order by xdmp:node-uri($doc)
return xdmp:node-uri($doc)
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 535

MarkLogic Server Geospatial Search Applications
If you run one of these queries in Query Console, it emits the following list of URIs:

/geo-examples/Airport.json
/geo-examples/Airport.xml
/geo-examples/Holly-St.json
/geo-examples/Holly-St.xml
/geo-examples/Hwy-101.json
/geo-examples/Hwy-101.xml
/geo-examples/MarkLogic-Neighborhood.json
/geo-examples/MarkLogic-Neighborhood.xml
/geo-examples/Wildlife-Refuge.json
/geo-examples/Wildlife-Refuge.xml

JavaScript // This region corresponds to the MarkLogic Neighborhood polygon
const criteriaRegion = cts.polygon([

cts.point(37.519087, -122.26346),
cts.point(37.521299, -122.24805),
cts.point(37.512279, -122.24462),
cts.point(37.50336, -122.24556),
cts.point(37.506185, -122.25981),
cts.point(37.513436, -122.26337),
cts.point(37.519087, -122.26346)

]);

// Perform the search
const results = cts.search(cts.andQuery([

cts.collectionQuery('geo-examples'),
cts.geospatialRegionQuery(

[cts.geospatialRegionPathReference('/envelope/cts-region'),
cts.geospatialRegionPathReference('/envelope/ctsRegion')],

'intersects', criteriaRegion
)

]));

// Accumulate the matched URIs in an array for
// convenient display of brief results in Query Console.
const matchedRegions = [];
for (let result of results) {

matchedRegions.push(xdmp.nodeUri(result))
}
matchedRegions.sort()

Language Example
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 536

MarkLogic Server Geospatial Search Applications
14.8.3 Example: Using Region Queries in a Composed Query

This example depends on the data and configuration in “Preparing to Run the Examples” on
page 569.

You can use geospatial region queries along with other query types to compose more complex
queries. For example, the following queries find documents containing a region that intersects
with the “MarkLogic Neighborhood” region, but that do not contain a region that is covered by
the “MarkLogic Neighborhood” region.

Language Example

XQuery xquery version "1.0-ml";
declare namespace kml="http://www.opengis.net/kml/2.2";

(: This region corresponds to the MarkLogic Neighborhood polygon :)
let $criteria-region := cts:polygon((

cts:point(37.519087, -122.26346),

cts:point(37.521299, -122.24805),

cts:point(37.512279, -122.24462),

cts:point(37.50336, -122.24556),

cts:point(37.506185, -122.25981),

cts:point(37.513436, -122.26337),

cts:point(37.519087, -122.26346)
))
return cts:search(

fn:collection("geo-example"),

cts:and-not-query(

cts:geospatial-region-query(

cts:geospatial-region-path-reference("/envelope/cts-region"),

 "intersects", $criteria-region

),

cts:geospatial-region-query(

cts:geospatial-region-path-reference("/envelope/cts-region"),

"covered-by", $criteria-region

)

)
)/envelope/kml:Placemark/kml:name/fn:data()
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 537

MarkLogic Server Geospatial Search Applications
Query Console displays the following feature names if the query is successful:

Wildlife Refuge
Hwy 101

14.8.4 Constructing a Region Query Using a Constructor

This section demonstrates how to use the constructor functions cts:geospatial-region-query
(XQuery) or cts.geospatialRegionQuery (JavaScript) to construct a region query on MarkLogic
Server. You can also construct a region query from query text using cts:parse (XQuery) or
cts.parse (JavaScript); for details, see “Constructing a Region Query from Query Text” on
page 540.

JavaScript const criteriaRegion = cts.polygon([
cts.point(37.519087, -122.26346),

cts.point(37.521299, -122.24805),

cts.point(37.512279, -122.24462),

cts.point(37.50336, -122.24556),

cts.point(37.506185, -122.25981),

cts.point(37.513436, -122.26337),

cts.point(37.519087, -122.26346)
]);

// Perform the search
const results = cts.search(cts.andQuery([

cts.collectionQuery('geo-example'),

cts.andNotQuery(

cts.geospatialRegionQuery(

cts.geospatialRegionPathReference('/envelope/cts-region'),

 'intersects', criteriaRegion

),

cts.geospatialRegionQuery(

cts.geospatialRegionPathReference('/envelope/cts-region'),

'covered-by', criteriaRegion

)

)
]));

// Iterate over the results. We accumulate the feature names in
// an array just for convenient display in Query Console.
const matchedRegions = [];
for (let result of results) {

matchedRegions.push(fn.head(result.xpath(

'/envelope/kml:Placemark/kml:name/fn:data()',

{kml: 'http://www.opengis.net/kml/2.2'})))
}
matchedRegions

Language Example
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 538

MarkLogic Server Geospatial Search Applications
A region query has the following form:

The options and weight parameters are optional. You can specify multiple region indexes and
multiple criteria regions, which is treated as an implicit OR query. That is, a document matches if
it satisfies any of the comparisons.

Note: A region query must be backed by a corresponding geospatial region path index.
For more details, see “Geospatial Region Queries and Indexes” on page 506.

For example, the following constructor creates a region query that matches region data located at
the XPath “/envelope/cts-region” the overlap with a circle with center (-122.2465,37.507343) and
radius 1 mile.

The operator must be a string with one of the following values, corresponding to the DE9-IM
predicates.

• contains

• covered-by

• covers

• crosses

• disjoint

• equals

XQuery JavaScript

cts:geospatial-region-query(
$region-index-references,
$operator,
$criteria-regions,
$options,
$weight)

cts.geospatialRegionQuery(
[regionIndexReference, ...],
operator,
[criteriaRegion, ...],
[option, ...],
weight)

Language Example Output

XQuery cts:geospatial-region-query(
cts:geospatial-region-path-reference("/envelope/cts-region"),
"overlaps",
cts:circle("@1 -122.2465,37.507343"))

JavaScript cts.geospatialRegionQuery(
[cts.geospatialRegionPathReference("/envelope/cts-region")],
"overlaps",
cts.circle("@1 -122.2465,37.507343"))
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 539

MarkLogic Server Geospatial Search Applications
• intersects

• overlaps

• touches

• within

You can construct your criteria regions using region constructors such as the cts:polygon
(XQuery) or cts.polygon (JavaScript), the geospatial format conversion functions such as
geogml:linestring (XQuery) or geojson.circle (JavaScript), or using WKT or WKB.

A geospatial query is constrained to the XML elements, XML attributes, and JSON properties
identified in the query constructor. To cross multiple formats in a single search, use cts:or-query
in XQuery or cts.orQuery in JavaScript to combine multiple geospatial queries.

For more details, see the following topics:

• “Converting To and From Common Geospatial Representations” on page 562

• “Constructing Geospatial Point and Region Values” on page 567

• cts:geospatial-region-query in the MarkLogic XQuery and XSLT Function Reference

• http://en.wikipedia.org/wiki/DE-9IM.

14.8.5 Constructing a Region Query from Query Text

You can use the cts:parse XQuery function or the cts.parse JavaScript function to create a
geospatial region query from query text. If you bind a tag to a geospatial region path index, then
you can use the tag in an expression of the following form in your query text:

boundTag operator criteriaRegion [options]

For example, if “reg” is the name of a tag bound to a geospatial region index, then the following
expression parses to a geospatial region query than matches regions in your documents that
overlap with the given polygon

reg DE9IM_OVERLAPS POLYGON((1 1,2 2,0 1,1 1))

The operator must be one of the following. For more details on the operators, see “Operators
Usable with Geospatial Queries” on page 260 and http://en.wikipedia.org/wiki/DE-9IM.

• DE9IM_CONTAINS

• DE9IM_COVERED_BY

• DE9IM_COVERS

• DE9IM_CROSSES

• DE9IM_DISJOINT
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 540

http://en.wikipedia.org/wiki/DE-9IM
http://en.wikipedia.org/wiki/DE-9IM

MarkLogic Server Geospatial Search Applications
• DE9IM_EQUALS

• DE9IM_INTERSECTS

• DE9IM_OVERLAPS

• DE9IM_TOUCHES

• DE9IM_WITHIN

The following example queries illustrate the tag binding and parsing necessary to search using
this query text. The binding specifies the tag “reg” represents a geospatial region path index
reference for the XPath expression “/envelope/cts-region”. The query text
“@1 -122.2465038,37.5073428” represents a circle with radius 1 mile (the default units) and
center (37.5073428, -122.2465038).

Language Example

XML xquery version "1.0-ml";
let $bindings := map:map()
let $_ := map:put(

$bindings, "reg",
cts:geospatial-region-path-reference(

"/envelope/cts-region")
)
return cts:parse(

'reg DE9IM_OVERLAPS "@1 -122.2465038,37.5073428"',
$bindings

)

JavaScript const bindings = {
'reg': cts.geospatialRegionPathReference(

'/envelope/cts-region')
};
cts.parse(

'reg DE9IM_OVERLAPS "@1 -122.2465038,37.5073428"',
bindings);
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 541

MarkLogic Server Geospatial Search Applications
The parse produces a cts query similar to the following:

For more details, see “Creating a Query From Search Text With cts:parse” on page 253.

14.8.6 Creating Region Queries Using the Client APIs

See the following topics for an overview and example of using a region query in a search in the
Client APIs.

• JavaClient API

• Node.js Client API

• REST Client API

14.8.6.1 JavaClient API

This topic assumes you are already familiar with the search features of the Java Client API. If you
are not, see the Java Application Developer’s Guide.

You are most likely to construct a geospatial region query with the Java Client API using the
StructuredQueryBuilder. You could also embed a structured region query in a RawCombinedQuery;
this technique is not covered here. You cannot create a geospatial region query in Java using
query text or QBE.

Each geospatial region query can only reference a single region index. To search more than one
index, construct multiple region queries and combine them with an OR query.

Language Example Output

XQuery cts:geospatial-region-query(
(cts:geospatial-region-path-reference(

"/envelope/cts-region",("coordinate-system=wgs84"))
), "overlaps",
cts:circle("@1 -122.2465,37.507343"),
(), 1)

JavaScript cts.geospatialRegionQuery([
cts.geospatialRegionPathReference(

"/envelope/cts-region",
["coordinate-system=wgs84"])

],
"overlaps",
cts.circle("@1 -122.2465,37.507343"),
[], 1)
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 542

/javadoc/client/com/marklogic/client/query/StructuredQueryBuilder.html

MarkLogic Server Geospatial Search Applications
Use StructuredQueryDefinition.geospatial to create a region query. Choose an overload that
accepts a GeospatialRegionIndex as input. A GeospatialRegionIndex object identifies the region
index to be searched.

To construct a GeospatialRegionIndex object, use StructuredQueryBuilder.geoRegionPath.
When defining the index, you must include a PathIndex value, and you may also include
coordinate system and precision information.

For example, the following code snippet identifies a region index on the path
/envelope/cts-region with the coordinate system “wgs84”.

DatabaseClient client = ...;
QueryManager qm = client.newQueryManager();
StructuredQueryBuilder sqb = qm.newStructuredQueryBuilder();
...
sqb.geoRegionPath(

sqb.pathIndex("/envelope/cts-region"),
StructuredQueryBuilder.CoordinateSystem.WGS84)

...

The following example uses the Java Client API to build a structured query equivalen to the query
in “Example: Simple Intersection Region Query” on page 530. The example as written will only
match the XML sample documents from “Preparing to Run the Examples” on page 569. You can
match the JSON sample documents by changing the index path to /envelope/ctsRegion.

package examples;

import com.marklogic.client.DatabaseClient;
import com.marklogic.client.DatabaseClientFactory;
import com.marklogic.client.io.SearchHandle;
import com.marklogic.client.query.MatchDocumentSummary;
import com.marklogic.client.query.QueryManager;
import com.marklogic.client.query.StructuredQueryBuilder;
import
com.marklogic.client.query.StructuredQueryBuilder.GeoSpatialOperator;
import com.marklogic.client.query.StructuredQueryDefinition;

public class GeoRegionQuery {
public static void main(String[] args) {

// MODIFY THIS CALL TO MATCH YOUR ENV
DatabaseClient client = DatabaseClientFactory.newClient(

hostname, port, databaseName,
new DatabaseClientFactory.DigestAuthContext(

username, password));

QueryManager qm = client.newQueryManager();
StructuredQueryBuilder sqb = qm.newStructuredQueryBuilder();
SearchHandle results = new SearchHandle();

StructuredQueryDefinition query = sqb.geospatial(
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 543

MarkLogic Server Geospatial Search Applications
sqb.geoRegionPath(
sqb.pathIndex("/envelope/cts-region"),
StructuredQueryBuilder.CoordinateSystem.WGS84),

GeospatialOperator.INTERSECTS,
sqb.polygon(

sqb.point(37.519087, -122.26346),
sqb.point(37.521299, -122.24805),
sqb.point(37.512279, -122.24462),
sqb.point(37.50336, -122.24556),
sqb.point(37.506185, -122.25981),
sqb.point(37.513436, -122.26337),
sqb.point(37.519087, -122.26346)

));
qm.search(query, results);
for (MatchDocumentSummary match : results.getMatchResults()) {

System.out.println(match.getUri());
}

client.release();
}

}

If you run the above program against the sample data and database configuration from “Preparing
to Run the Examples” on page 569, you should see output similar to the following:

/geo-examples/Hwy-101.xml
/geo-examples/Holly-St.xml
/geo-examples/Wildlife-Refuge.xml
/geo-examples/Shopping-Center.xml
/geo-examples/MarkLogic-Neighborhood.xml
/geo-examples/Airport.xml

14.8.6.2 Node.js Client API

This topic assumes you are familiar with the search features of the Node.js Client API. If you are
not, you may want to review the Node.js Application Developer’s Guide.

To construct a geospatial region query, use queryBuilder.geospatialRegion. You cannot create a
region query using queryBuilder.parsedFrom or queryBuilder.byExample. Use
queryBuilder.geoPath to construct the region index specification, and helper functions such as
queryBuilder.polygon to construct the criteria region(s).

Each geospatial region query can only reference a single region index. To search more than one
index, construct multiple region queries and combine them with an OR query.

The following example performs the same search as “Example: Simple Intersection Region
Query” on page 530. The example relies on the sample documents and database configuration
from “Preparing to Run the Examples” on page 569. Before running the example, modify the
connection information in connInfo.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 544

/jsdoc/queryBuilder.html#geospatialRegion

MarkLogic Server Geospatial Search Applications
const marklogic = require('marklogic');

// MODIFY THIS VAR TO MATCH YOUR ENV
const connInfo = {

host: 'localhost',
port: 8000,
user: username,
password: password,
database: 'Documents'

};
const db = marklogic.createDatabaseClient(connInfo);
const qb = marklogic.queryBuilder;

db.documents.query(
qb.where(

qb.geospatialRegion(
qb.geoPath('/envelope/ctsRegion', qb.coordSystem('wgs84')),
'intersects',
qb.polygon(
qb.point(37.519087, -122.26346),
qb.point(37.521299, -122.24805),
qb.point(37.512279, -122.24462),
qb.point(37.50336, -122.24556),
qb.point(37.506185, -122.25981),
qb.point(37.513436, -122.26337),
qb.point(37.519087, -122.26346))

))
).result(function(results) {

for (let result of results) {
console.log(result.uri);

}
});

If you run the example against the sample data from “Preparing to Run the Examples” on
page 569, you should see output similar to the following:

/geo-examples/Hwy-101.json
/geo-examples/Wildlife-Refuge.json
/geo-examples/Holly-St.json
/geo-examples/Airport.json
/geo-examples/Shopping-Center.json
/geo-examples/MarkLogic-Neighborhood.json

For more details, see the Node.js Application Developer’s Guide.

14.8.6.3 REST Client API

This topic assumes you are already familiar with the search features of the REST Client API. If
you are not, refer to the REST Application Developer’s Guide.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 545

MarkLogic Server Geospatial Search Applications
To evaluate a geospatial region using the REST Client API, you can use either a
cts:geospatial-region-query or a structured query that contains a geo-region-path-query or a
geo-region-constraint-query. Your cts or structured query can be standalone or part of a combined
query. You cannot construct query text or a QBE that represents a region query.

Each structured region query can reference only one region index. To search more than one region
index at a time, create multiple region queries and combine them with an or-query.

The following example uses the REST Client API and a structured query to perform the same
search as the one in “Example: Simple Intersection Region Query” on page 530. The example as
written will only match the XML sample documents from “Preparing to Run the Examples” on
page 569. You can match the JSON documents by changing the path-index to
/envelope/ctsRegion.

Copy the following query into a file. You will use it the file as the POST body of a search request.
The example curl command below assumes the filename is body.xml.

<query xmlns="http://marklogic.com/appservices/search">
<geo-region-path-query coord="wgs84">

<path-index>/envelope/cts-region</path-index>
<geospatial-operator>intersects</geospatial-operator>
<polygon>
<point>

<latitude>37.519087</latitude><longitude>-122.26346</longitude>
</point>
<point>

<latitude>37.521299</latitude><longitude>-122.24805</longitude>
</point>
<point>

<latitude>37.512279</latitude><longitude>-122.24462</longitude>
</point>
<point>

<latitude>37.50336</latitude><longitude>-122.24556</longitude>
</point>
<point>

<latitude>37.506185</latitude><longitude>-122.25981</longitude>
</point>
<point>

<latitude>37.513436</latitude><longitude>-122.26337</longitude>
</point>
<point>

<latitude>37.519087</latitude><longitude>-122.26346</longitude>
</point>

</polygon>
</geo-region-path-query>

</query>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 546

MarkLogic Server Geospatial Search Applications
Run a curl command similar the following to perform the search. Before running the command,
change the username and password. If you are not using the Document database as your content
database, you will need to add a database request parameter to the URL.

curl --anyauth --user user:password -X POST -i \
-d @./body.xml -H "Content-type: application/xml" \
'http://localhost:8000/v1/search'

The search should match the following documents:

/geo-examples/Hwy-101.xml
/geo-examples/Holly-St.xml
/geo-examples/Wildlife-Refuge.xml
/geo-examples/Shopping-Center.xml
/geo-examples/MarkLogic-Neighborhood.xml
/geo-examples/Airport.xml

The following is the equivalent structured query, expressed as JSON.

{"query": {
"geo-region-path-query": {

"path-index": { "text": "/envelope/cts-region" },
"coord": "wgs84",
"geospatial-operator": "intersects",
"polygon": [

{ "point": [
{ "latitude": 37.519087, "longitude": -122.26346 },
{ "latitude": 37.521299, "longitude": -122.24805 },
{ "latitude": 37.512279, "longitude": -122.24462 },
{ "latitude": 37.50336, "longitude": -122.24556 },
{ "latitude": 37.506185, "longitude": -122.25981 },
{ "latitude": 37.513436, "longitude": -122.26337 },
{ "latitude": 37.519087, "longitude": -122.26346 }

] }
]

}
}}

You can use this query with a curl command similar to the XML example. Just change the request
body content type and, potentially, name of the file containing the body. For example:

curl --anyauth --user user:password -X POST -i \
-d @./body.json -H "Content-type: application/json" \
'http://localhost:8000/v1/search'

For more details, see Using and Configuring Query Features in the REST Application Developer’s
Guide and “Searching Using Structured Queries” on page 74.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 547

MarkLogic Server Geospatial Search Applications
14.8.7 Example: Using the Envelope Pattern to Encode Regions

Content you search with a region query must be in WKT or serialized cts:region format. This
example illustrates using the “envelope pattern” to encapsulate the searchable region format with
original data in an incompatible format. This is not the only solution to this problem. For example,
you can tranform your content before ingesting it into MarkLogic, or you can replace the
unsupported original format entirely, rather than persisting both.

The example reads in a file from the file system that contains an aggregate XML element contains
a several KML Placemark elements. The data is disaggregated into one file per Placemark, and
then each Placmark is wrapped in an “envelope” that contains both the original data and the
serialized representation of a cts:region that corresponds to the region in the original data.

For example, if the original input file has the following structure:

<kml xmlns="http://www.opengis.net/kml/2.2">
<Placemark>

<name>Hwy 101</name>
<description>...</description>
<LineString>

<extrude>0</extrude>
<tessellate>1</tessellate>
<altitudeMode>clampedToGround</altitudeMode>
<coordinates>
-122.2637558,37.5206187 -122.2428131,37.5020318

</coordinates>
</LineString>

</Placemark>
<Placemark>...</Placemark>
...

</kml>

Then the result is one document per Placemark, with the following structure. The envelope root
element and the cts-region element are created by the ingest transformation.

<envelope>
<cts-region>LINESTRING(-122.26376 37.520619,-122.24281

37.502032)</cts-region>
<Placemark xmlns="http://www.opengis.net/kml/2.2">

<name>Hwy 101</name>
<description>...</description>
<LineString>

<extrude>0</extrude>
<tessellate>1</tessellate>
<altitudeMode>clampedToGround</altitudeMode>
<coordinates>
-122.2637558,37.5206187 -122.2428131,37.5020318

</coordinates>
</LineString>

</Placemark>
<envelope>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 548

MarkLogic Server Geospatial Search Applications
The following example query ingests the original data and creates a document from the envelope
it wraps around each Placemark:

xquery version "1.0-ml";
import module namespace geokml = "http://marklogic.com/geospatial/kml"

 at "/MarkLogic/geospatial/kml.xqy";
declare namespace kml="http://www.opengis.net/kml/2.2";

(: Convert the KML regions into cts regions :)
declare function local:region-convert(

$nodes as node()*
) as cts:region*
{

for $n in $nodes return
typeswitch($n)

case element(kml:Polygon) return geokml:parse-kml($n)
case element(kml:LineString) return geokml:parse-kml($n)
case element(kml:Point) return ()
default return local:region-convert($n/node())

};

(: Create a doc for each KML Placemark, with a wrapper around
 : the KML that contains the cts region equiv of the KML region :)
let $file := xdmp:document-get("/space/geo/ml2.xml")
return

for $place in $file//*:Placemark
let $basename := fn:string-join(fn:tokenize($place/*:name, " "),"-")
return xdmp:document-insert(

fn:concat("/example/",$basename,".xml"),
<envelope>{
 let $converted-region := local:region-convert($place)
 return if (fn:empty($converted-region))

 then ()
 else <cts-region>{$converted-region}</cts-region>

}
{$place}
</envelope>,
xdmp:default-permissions(), "geo-example")

Points are not translated by the above example simply because it was not necessary for this
purpose. You can index and use point queries on in KML points without transformation. You only
need to transform them if you want to use a region query on point data.

14.9 Controlling Coordinate System and Precision

• The Relationship Between Precision and Coordinate System

• Determining the Best Precision for Your Application

• How MarkLogic Selects the Governing Coordinate System

• Probing the Governing Coordinate System Name
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 549

MarkLogic Server Geospatial Search Applications
• Specifying the App Server Default Coordinate System

• Specifying the Per-Module Coordinate System

• Specifying a Per-Operation Coordinate System and Precision

• Specifying Coordinate System During Index Creation

14.9.1 The Relationship Between Precision and Coordinate System

The coordinate system and precision are conflated in the coordinate system name in many
operations that accept a coordinate system name as input.

For example, when you specify “wgs84” as the value of the “coordinate-system” option in a query
constructor, it also implicitly specifies single precision. Similarly, a value of “wgs84/double”
specifies both the WGS84 coordinate system and double precision.

In many interfaces, you can use a precision option or parameter to override the precision implied
by the coordinate system name.

14.9.2 Determining the Best Precision for Your Application

MarkLogic always preserves the precision of geospatial data in your documents. For example, if
you ingest documents containing double precision coordinate values, those values retain full
precision, even if the governing coordinate system during ingestion specifies single precision.

However, the precision of values in a geospatial index is determined by the configuration of the
index. Thus, you might have double precision values in your documents, but single precision
values in the corresponding geospatial index.

A double precision index enables a greater degree of accuracy when computing geospatial search
matches, but at the cost of increased memory requirements and some computational overhead.

Note: Greater precision does not equate to greater accuracy. Most applications do not
require double precision indexing.

For example, geospatial queries against single precision indexes are accurate to within 1 meter for
geodetic coordinate systems. If your application does not require sub-meter accuracy, then there is
no reason to incur the overhead of a double precision index.

The following are examples of geospatial applications that might require double precision:

• Tracking equipment moving around a facility.

• Tracking room-to-room movements within a building.

• Tracking slow-moving objects that move in sub-meter increments, such as fault lines and
tectonic plates.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 550

MarkLogic Server Geospatial Search Applications
• Tracking assets that require high placement precision, such on which side of a street a fire
hydrant is located.

Excessive precision can cause difficulty for geospatial operations. For example, when comparing
two points at double precision, they will fail a test for equality if the coordinate values differ when
compared at the level of microns. Most applications would consider such a difference “in the
noise” and consider these points the same. Comparison of double-precision coordinates assumes a
tolerance of zero by default, meaning they must match exactly, at all digits of precision. This
affects operations such as comparison of points, testing whether a point is on a edge, and testing
two edges for adjacency. You can use the tolerance option available on some operations to enable
less precise comparisons. For more details, see “Understanding Tolerance” on page 558.

An application can use a mix of single and double precision geospatial indexes and operations.
For example, you can define both a single and a double precision index over the same data. You
can specify precision per operation.

You can control geospatial precision in the following ways:

• Specify float or double precision when creating a geospatial point or region index. This
determines the precision of values stored in the index. For details, see “Determining the
Best Precision for Your Application” on page 550.

• Configure an App Server default precision. This specifies the precision to use in
geospatial queries and computations when no other precision override is in effect. The
default is single (float) precision. For details, see “Specifying the App Server Default
Coordinate System” on page 554.

• In XQuery, you can specify a default precision for a main module. This overrides the App
Server default precision. For details, see “Specifying the Per-Module Coordinate System”
on page 555.

• Specify precision on an operation, such as when constructing a geospatial query,
computing a distance, or accessing the coordinates of a box. This overrides the App Server
and module default precision. For details, see “Specifying a Per-Operation Coordinate
System and Precision” on page 556.

You can specify precision in conjunction with the coordinate system name in most MarkLogic
geospatial interfaces. For example, the “wgs84” and “raw” coordinate system names imply single
precision, while the “wgs84/double” and “raw/double” coordinate system names specify double
precision.

14.9.3 How MarkLogic Selects the Governing Coordinate System

When MarkLogic evaluates your XQuery or Server-Side JavaScript code, the governing
coordinate system is the first of the following settings found. For more details, see “The
Governing Coordinate System” on page 486.

• Per-operation coordinate system option or parameter
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 551

MarkLogic Server Geospatial Search Applications
• Per-module coordinate system, as specified by the XQuery xdmp:coordinate-system
prolog option. (This feature is only available in XQuery main modules.)

• App Server default coordinate system

If you specify a precision using the precision option of an operation, the specified precision
always takes precedence over the precision implied by the governing coordinate system name.

The following examples illustrate the governing coordinate system applied in several calling
contexts if the App Server default coordinate system is “wgs84”.

Language Example

XQuery
No prolog option

(: app server default is wgs84 :)
xquery version "1.0-ml";
<wrapper>

<wgs84>{ (: app server default coord-sys :)
geo:distance(cts:point(1.0,1.0), cts:point(2.0,2.0))

}</wgs84>
<wgs84d>{ (: per-operation coord-sys :)

geo:distance(cts:point(1.0,1.0), cts:point(2.0,2.0),
 ("coordinate-system=wgs84/double"))

}</wgs84d>
<raw>{ (: per-op coord-sys, with precision override

:)
geo:distance(cts:point(1.0,1.0), cts:point(2.0,2.0),

 ("coordinate-system=raw/double",
"precision=float"))

}</raw>
</wrapper>

(: produces:
<wrapper>

<wgs84>97.4783192326097</wgs84>
<wgs84-d>97.4783199874495</wgs84-d>
<raw>1.4142135623731</raw>

</wrapper>
:)
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 552

MarkLogic Server Geospatial Search Applications
XQuery
Prolog option

(: app server default is wgs84 :)
xquery version "1.0-ml";
declare option xdmp:coordinate-system "raw";
<wrapper>

<raw>{ (: per module coord-sys :)
geo:distance(cts:point(1.0,1.0), cts:point(2.0,2.0))

}</raw>
<wgs84d>{ (: per-operation coord-sys :)

geo:distance(cts:point(1.0,1.0), cts:point(2.0,2.0),
 ("coordinate-system=wgs84/double"))

}</wgs84d>
<wgs84>{ (: per-op coord-sys, with precision override

:)
geo:distance(cts:point(1.0,1.0), cts:point(2.0,2.0),

 ("coordinate-system=wgs84/double",
"precision=float"))

}</wgs84>
</wrapper>

(: produces:
<wrapper>

<raw>1.4142135623731</raw>
<wgs84d>97.4783199874495</wgs84d>
<wgs84>97.4783192326097</wgs84>

</wrapper>
:)

Server-Side
JavaScript

const result = {
wgs84: // app server default coord-sys

geo.distance(cts.point(1.0,1.0), cts.point(2.0,2.0)),
wgs84d: // op specific coord-sys

geo.distance(cts.point(1.0,1.0), cts.point(2.0,2.0),
['coordinate-system=wgs84/double']),

raw: // op specific coord-sys w precision override
geo.distance(cts.point(1.0,1.0), cts.point(2.0,2.0),

['coordinate-system=raw/double',
'precision=float'])

};
result

/* produces:
{ "wgs84":97.4783192326097,

"wgs84d":97.4783199874495,
"raw":1.4142135623731

}

*/

Language Example
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 553

MarkLogic Server Geospatial Search Applications
See the following topics for instructions on setting the coordinate system and precision at various
levels:

• “Specifying the App Server Default Coordinate System” on page 554

• “Specifying the Per-Module Coordinate System” on page 555

• “Specifying a Per-Operation Coordinate System and Precision” on page 556

14.9.4 Probing the Governing Coordinate System Name

You can probe the governing coordinate system using the XQuery function
geo:default-coordinate-system or the JavaScript function geo.defaultCoordinateSystem. (This
function can only account for the App Server default and per-module settings.)

The following examples illustrate how to retrieve the name of the governing coordinate system.

14.9.5 Specifying the App Server Default Coordinate System

You can use the following Admin library functions to set and get the default coordinate
system/precision combination for an App Server. If you do not explicitly set the coordinate
system and precision, it is “wgs84” (single precision).

• admin:appserver-set-coordinate-system

• admin:appserver-get-coordinate-system

For example, the following XQuery code sets the default coordinate system for the App Server
named “MyAppServer” to “wgs84/double”.

xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin"

at "/MarkLogic/admin.xqy";

let $config := admin:get-configuration()

Language Example

XQuery xquery version "1.0-ml";
geo:default-coordinate-system();
(: returns the app server default coordinate system :)

xquery version "1.0-ml";
declare option xdmp:coordinate-system "wgs84/double";
geo:default-coordinate-system();
(: returns the per-module setting, wgs84/double :)

Server-Side
JavaScript

geo.defaultCoordinateSystem();

// returns the app server default coordinate system
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 554

MarkLogic Server Geospatial Search Applications
let $groupid := admin:group-get-id($config, "Default")
return admin:save-configuration(

admin:appserver-set-coordinate-system(
$config,
admin:appserver-get-id($config, $groupid, "MyAppServer"),
"wgs84/double")

)

You can also use the XQuery Admin library module from Server-Side JavaScript. The following
example is equivalent to the previous XQuery code.

const admin = require('/MarkLogic/admin');
const config = admin.getConfiguration();
const groupId = admin.groupGetId(config, 'Default');
admin.saveConfiguration(

admin.appserverSetCoordinateSystem(
config,
admin.appserverGetId(config, groupId, 'MyAppServer'),
'wgs84/double')

)

To determine the canonical name for a coordinate system/precision combination, use the XQuery
function geo:coordinate-system-canonical or the JavaScript function
geo.coordinateSystemCanonical.

For more details, see the XQuery and XSLT Reference Guide.

14.9.6 Specifying the Per-Module Coordinate System

In XQuery, you can use the xdmp:coordinate-system prolog option to override the App Server
default coordinate system module-wide. This option is only available in XQuery. For example:

declare option xdmp:coordinate-system "wgs84/double";

The override only takes effect when you declare the option in an XQuery main module, but it
affects any library module functions subsequently invoked from that main module.

Note: REST, Java, and Node.js Client API resource extensions are library modules, so
you cannot override the coordinate system in your extension implementation. Use
the ad-hoc query (eval or invoke) of the Client APIs or a per-operation override if
you need to override the App Server default with these APIs.

For example, if you create a library function that just returns the result of calling
geo:default-coordinate-system, then the following main module will return “wgs84/double” for
the coordinate system.

xquery version "1.0-ml";
import module namespace my = "http://marklogic.com/example/my-lib"

at "/my/lib.xqy";
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 555

MarkLogic Server Geospatial Search Applications
declare option xdmp:coordinate-system "wgs84/double";
my:get-coord-sys()

14.9.7 Specifying a Per-Operation Coordinate System and Precision

Many geospatial operations accept options for specifying the coordinate system and/or precision.
A per-operation specification overrides the governing coordinate system. For example:

Where both the coordinate-system and precision options are supported, you can specify the
precision either as part of the coordinate system canonical name or independently. Where there is
a conflict between the precision in the coordinate system name and the precision option, the
precision option takes precedence.

The following example illustrates how the option settings interact:

You can get the canonical name for a coordinate system/precision combination using the XQuery
function geo:coordinate-system-canonical or the JavaScript function
geo.coordinateSystemCanonical.

Language Example

XQuery (: xquery :)
geo:distance(

cts:point(1.0,1.0), cts:point(2.0,2.0),
("coordinate-system=wgs84", "precision=double"))

Server-Side
JavaScript

(: javascript :)
geo.distance(

cts.point(1.0,1.0), cts.point(2.0,2.0),
['coordinate-system=wgs84', 'precision=double'])

Options Resulting Coordinate System

coordinate-system=wgs84/double wgs84/double

coordinate-system=wgs84
precision=double

wgs84/double

coordinate-system=wgs84/double
precision=float

wgs84 (single precision)
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 556

MarkLogic Server Geospatial Search Applications
14.9.8 Specifying Coordinate System During Index Creation

You can choose single or double precision when creating a geospatial index. This determines the
precision of the values stored in the index. For example, you can create a single precision index
over your geospatial data even if the data in your documents is double precision.

Specify precision during index creation through the coordinate system name. You can use the
XQuery function geo:coordinate-system-canonical or the JavaScript function
geo.coordinateSystemCanonical to generate the canonical name of the desired coordinate system
and precision combination.

For example, the following code creates a geospatial element index for double precision wgs84
point values:

For more details on geospatial indexes, see “Understanding Geospatial Query and Index Types”
on page 493.

Language Example

XQuery xquery version "1.0-ml";
import module namespace admin =
"http://marklogic.com/xdmp/admin"

at "/MarkLogic/admin.xqy";

let $config := admin:get-configuration()
let $dbid := xdmp:database("Documents")
let $geo-index-spec := admin:database-geospatial-element-index(

"/my/namespace", "elementname",
geo:coordinate-system-canonical("wgs84", "double"),
fn:false())

return admin:save-configuration(
admin:database-add-geospatial-element-index(

$config, $dbid, $geo-index-spec)
)

Server-Side
JavaScript

const admin = require('/MarkLogic/admin');

const config = admin.getConfiguration()
const dbid = xdmp.database('Documents')
const geoIndexSpec = admin.databaseGeospatialElementIndex(

'/my/namespace', 'elementName',

geo.coordinateSystemCanonical('wgs84', 'double'),
false)

admin.saveConfiguration(
admin.databaseAddGeospatialElementIndex(config, dbid, geoIndexSpec)

)

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 557

MarkLogic Server Geospatial Search Applications
14.10 Understanding Tolerance

Tolerance is the largest allowable variation in geometry calculations. Tolerance is a distance
within which two points are considered equal, a point is consider “on” an edge, or two edges are
considered touching. Many geospatial functions in MarkLogic accept a “tolerance” option.

See the following topics for more details:

• How Tolerance Affects Geometric Comparisons

• Considerations for Tolerance Selection

14.10.1 How Tolerance Affects Geometric Comparisons

Tolerance defines the “largest acceptable error” when comparing two points for equality.

For example, a tolerance of zero means two points only match if they’re exactly the same, out to
the least significant digit. Thus, two points separated by a distance measurable in microns would
not match. If you’re trying to determine whether a truck is parked at the door of a building, such a
high degree of precision is a hindrance. Use tolerance to filter out differences that are “in the
noise”.

The following diagram illustrates how tolerance affects point comparison. A, B, and C are points.
The shaded circle describes the space within which points are considered “equal to” A, based on
the tolerance. Point B falls within tolerance of A, so A and B are considered equal. Point C is
further from A than the tolerance allows, so A and C are not considered equal.

When comparing edges, a point is considered as lying “on the edge” if the distance from the point
to the edge is within the tolerance.

A

C

B

tolerance

Effect of Tolerance on Point Comparison
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 558

MarkLogic Server Geospatial Search Applications
For example, in the following diagram, any point in the two circles coincides with an endpoint of
the edge. Any point within the center region lies on the edge. Thus, point A coincides with an
endpoint and point B lies on the edge. Point C is outside the the tolerance range, so it is not
considered to lie on the edge.

Operations such as computing whether two polygons intersect require comparing two edges. Two
edges overlap if both endpoints of one edge lie on the other, or if an endpoint of each edge lies on
the other.

For example, the following diagram illustrates the effect of two different tolerance values on
determining overlap. The circles represent the tolerance of each endpoint. With the smaller
tolerance, the edges do not overlap. With the larger tolerance, both endpoints of one edge are
within tolerance of the other edge, so the edges overlap.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 559

MarkLogic Server Geospatial Search Applications
14.10.2 Considerations for Tolerance Selection

If you do not explicitly set tolerance, MarkLogic uses the default tolerance appropriate for the
coordinate system.

To ensure accuracy, MarkLogic enforces a minimum tolerance for each coordinate system. If
tolerance is too precise, then the calculation of distance might not be accurate to the specified
level of precision.

You cannot choose a tolerance value less than zero.

For most operations, MarkLogic interprets a tolerance of zero as the minimum tolerance for the
coordinate system. The only exceptions are the XQuery function geo:bounding-boxes and the
JavaScript function geo.boundingBoxes, as follows:

When computing bounding boxes, a non-zero tolerance causes the bounding boxes to be
“padded” by the tolerance amount. This ensures the bounding box covers the “thickened”
boundary of the region under consideration. If you set tolerance to zero when computing
bounding boxes, then the bounding boxes are not padded at all.

When considering a polygon, tolerance effectively “thickens” the boundary of the polygon. If you
set the tolerance too high relative to the size of the polygon, the polygon degenerates. This can
result in unexpected results or errors.

You can use the XQuery geo:region-approximate or the Server-Side JavaScript function
geo.regionApproximate to simply your region(s) before performing geometric computations. The
simplification can sometimes help you balance tolerance against polygon degneration.

Geospatial computational and comparison operations that do not accept a tolerance option behave
as if tolerance is set to zero.

14.11 Summary of Other Geospatial Operations

The following APIs are used to perform various operations and calculations on geospatial data:

XQuery JavaScript

geo:polygon-contains geo.polygonContains

geo:complex-polygon-contains geo.complexPolygonContains

geo:region-contains geo.regionContains

geo:arc-intersection geo.arcIntersection
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 560

MarkLogic Server Geospatial Search Applications
geo:box-intersects geo.boxIntersects

geo:circle-intersects geo.circleIntersects

geo:polygon-intersects geo.polygonIntersects

geo:complex-polygon-intersects geo.complexPolygonIntersects

geo:region-intersects geo.regionIntersects

geo:region-approximate geo.regionApproximate

geo:region-clean geo.regionClean

geo:bounding-boxes geo.boundingBoxes

geo:polygon-to-linestring geo.polygonToLinestring

geo:linestring-reverse geo.linestringReverse

geo:linestring-concat geo.linestringConcat

geo:circle-polygon geo.circlePolygon

geo:ellipse-polygon geo.ellipsePolygon

geo:interior-point geo.interiorPoint

geo:count-vertices geo.countVertices

geo:count-distinct-vertices geo.countDistinctVertices

geo:remove-duplicate-vertices geo.removeDuplicateVertices

geo:distance geo.distance

geo:shortest-distance geo.shortestDistance

geo:destination geo.destination

geo:bearing geo.bearing

geo:approx-center geo.approxCenter

geo:region-affine-transform geo.regionAffineTransform

geo:region-relate geo.regionRelate

geo:region-de9im geo.regionDe9im

XQuery JavaScript
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 561

MarkLogic Server Geospatial Search Applications
For signatures and more details, see the Library Module section of the MarkLogic XQuery and
XSLT Function Reference or the MarkLogic Server-Side JavaScript Function Reference.

14.12 Converting To and From Common Geospatial Representations

MarkLogic provides interfaces for converting between MarkLogic geospatial primitive types and
several common geospatial text, XML, and JSON representations. This section covers the
following topics:

• Conversion Overview

• WKT and WKB Conversions in XQuery

• WKT and WKB Conversions in JavaScript

• Mapping of WKT and WKB Types to MarkLogic Types

14.12.1 Conversion Overview

You can use MarkLogic APIs to convert to and from the following common geospatial
representations:

• Well-Known Text (WKT)

• Well-Known Binary (WKB)

• GML

• KML

• GeoJSON

• GeoRSS

For example, the following XQuery code uses geogml:parse-gml to convert a GML region into a
cts:region (a polygon in this case). This function determines the output cts:region type from the
kind of input GML region.

import module namespace geogml ="http://marklogic.com/geospatial/gml"
at "/MarkLogic/geospatial/gml.xqy";

geogml:parse-gml(
<gml:Polygon srsName="ML:wgs84"

xmlns:gml="http://www.opengis.net/gml/3.2">
<gml:exterior>

<gml:LinearRing>
<gml:posList srsDimension="2">

5.0 1.0 8.0 1.0 8.0 6.0 5.0 7.0 5.0 1.0
</gml:posList>

</gml:LinearRing>
</gml:exterior>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 562

MarkLogic Server Geospatial Search Applications
</gml:Polygon>
)

If you know the input region type, you can also use one of the region-specific constructors to
perform the equivalent conversion. For example, the above code could use geogml:polygon
instead of geogml:parse-gml. For details, see “Constructing Geospatial Point and Region Values”
on page 567.

The following Server-Side JavaScript code converts a GeoJSON polygon into a cts.polygon:

// Create a cts.polygon from a GeoJSON polygon
const geojson = require('/MarkLogic/geospatial/geojson.xqy');

geojson.polygon(
{ type: 'Polygon',

coordinates: [
[[100.0,0.0], [101.0, 0.0], [101.0, 1.0], [100.0, 1.0], [100.0, 0.0]]

] }
)

For each format, the XQuery API includes a parse-format function for converting from the
common representation to a MarkLogic geospatial primitive type, and the JavaScript API
includes a parseFormat function for the same purpose. This operation is equivalent to calling the
geo:parse XQuery function or the geo.parse JavaScript function with input of the same format.
The API also includes a to-format XQuery function and toFormat JavaScript function for
converting from a MarkLogic primitive type to the target format.

For example, the GeoJSON library module includes the following functions that can be used to
convert data between GeoJSON and cts:region.

XQuery JavaScript

geojson:parse-geojson geojson.parseGeojson

geojson:to-geojson geojson.toGeojson

geojson:box geojson.box

geojson:circle geojson.circle

geojson:complex-polygon geojson.complexPolygon

geojson:linestring geojson.linestring

geojson:multi-linestring geojson.multiLinestring

geojson:point geojson.point

geojson:polygon geojson.polygon
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 563

MarkLogic Server Geospatial Search Applications
You can use the built-in geo:parse XQuery function or geo.parse JavaScript function to convert
nodes in any of the supported formats into an equivalent MarkLogic geospatial primitive type,
without regard to the input format or region type. For best performance, if you know the format,
use the equivalent format-specific functions.

14.12.2 WKT and WKB Conversions in XQuery

MarkLogic represents geospatial data using the cts:region type and types derived from it, such as
cts:point, cts:polygon, and cts:circle. You can convert from WKT or WKB into cts:region
items and from cts:region into WKT or WKB.

Use the geo:parse-wkt function to convert WKT data into a sequence of cts:region items.
Similarly, use geo:parse-wkb to convert WKB data into a sequence of cts:region items. You can
use the resulting items in geospatial cts:query constructors or geospatial operations.

For example, the following call converts a WKT polygon with an inner and outer boundary into a
cts:complex-polygon:

geo:parse-wkt("
 POLYGON(

(0 0, 0 10, 10 10, 10 0, 0 0),
(0 5, 0 7, 5 7, 5 5, 0 5))")

The input to geo:parse-wkb is a binary node that contains a WKB byte sequence. For example, the
following code converts a WKB byte sequence representing the coordinates (-73.700380647,
40.739754168) into a cts:point:

geo:parse-wkb(
binary { "010100000072675909D36C52C0E151BB43B05E4440" }

)

To convert from cts:region to WKT, use geo:to-wkt. For example, the following code returns a
WKT POINT:

geo:to-wkt(cts:point(1, 2))

Similarly, the following code returns a WKB POINT:

geo:to-wkb(cts:point(1, 2))

You cannot convert a cts:circle or a cts:box to WKT. For more details on WKT, see
http://en.wikipedia.org/wiki/Well-known_text.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 564

http://en.wikipedia.org/wiki/Well-known_text

MarkLogic Server Geospatial Search Applications
14.12.3 WKT and WKB Conversions in JavaScript

MarkLogic represents geospatial data using the cts.region type and types derived from it, such as
cts.point, cts.polygon, and cts.circle. MarkLogic provides the following conversions between
WKT or WKB and cts.region: You can use the cts.region representation cts:query
constructors or geospatial operations.

• Explict conversion from WKT or WKB to cts.region using the geo.parseWkt function.
For example:

// Convert WKT polygon into a cts.complexPolygon
geo.parseWkt(

'POLYGON((0 0, 0 10, 10 10, 10 0, 0 0),(0 5, 0 7, 5 7, 5 5, 0 5))'
)

// Convert WKB bye sequence representing the coordinates
// (-73.700380647, 40.739754168) into a cts.point
geo.parseWkb(

new NodeBuilder()
.addBinary('010100000072675909D36C52C0E151BB43B05E4440')
.toNode()

)

• Explicit converstion from cts.region to WKT or WKB using the geo.toWkt or geo.toWkb
functions. For example:

// cts.point to WKT
geo.toWkt(cts.point(1, 2))

// cts.point to WKB
geo.toWkb(cts.point(1, 2))

• Implicit conversion from WKT to cts.region where the expected type is a cts.region.
For example:

// create a cts.polygon from WKT via implicit conversion
cts.polygon('POLYGON ((30 10, 40 40, 20 40, 10 20, 30 10))')

Note that geo.parseWkt and geo.toWkt return a Sequence rather than an array or a single value.
The input to geo.parseWkb is a binary node that contains a WKB byte sequence.

The supported conversions from WKT to cts.region mean all the following calls pass the same
cts.polygon value to geo.polygonContains, which returns true.:

// Use a cts.polygon created from a set of cts.point values
geo.polygonContains(

cts.polygon([
cts.point(30,10), cts.point(40,40), cts.point(20,40),
cts.point(10,30), cts.point(30,10)]),

cts.point(25,25))
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 565

MarkLogic Server Geospatial Search Applications
// Use a cts.polygon created by explicitly converting from WKT
geo.polygonContains(

geo.parseWkt('POLYGON ((30 10, 40 40, 20 40, 10 20, 30 10))'),
cts.point(25,25))

// Use a cts.polygon created by implicitly converting from WKT
geo.polygonContains(

cts.polygon('POLYGON ((30 10, 40 40, 20 40, 10 20, 30 10))'),
cts.point(25,25))

You cannot convert a cts.circle or a cts.box to WKT. For more details on WKT, see
http://en.wikipedia.org/wiki/Well-known_text.

14.12.4 Mapping of WKT and WKB Types to MarkLogic Types

The following table shows how the WKT and WKB types map to the MarkLogic geospatial types.
That is, the equivalent value type resulting from calling the geo:parse-wkt XQuery function or
geo.parseWkt JavaScript function, or the WKB equivalents.

WKT/WKB Geometry MarkLogic XQuery Type MarkLogic JavaScript Type

POINT cts:point cts.point

POINT EMPTY
(WKT only)

cts:point
(flagged as empty)

cts.point
(flagged as empty)

POLYGON cts:complex-polygon
| cts:polygon

cts.complexPolygon
| cts.polygon

POLYGON EMPTY cts:complex-polygon
(flagged as empty)

cts.complexPolygon
(flagged as empty)

LINESTRING cts:linestring cts.linestring

LINESTRING EMPTY cts:linestring
(flagged as empty)

cts.linestring

(flagged as empty)

TRIANGLE cts:polygon cts.polygon

TRIANGLE EMPTY cts:complex-polygon
(flagged as empty)

cts.complexPolygon

(flagged as empty)

MULTIPOINT cts:point* zero or more cts.point nodes

MULTIPOINT EMPTY () an empty Sequence

MULTILINESTRING cts:linestring* zero or more cts.linestring
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 566

http://en.wikipedia.org/wiki/Well-known_text

MarkLogic Server Geospatial Search Applications
14.13 Constructing Geospatial Point and Region Values

Use the following APIs to construct geospatial regions. You can use the resulting region values in
geospatial query constructors and other geospatial operations, such as those listed in “Summary of
Other Geospatial Operations” on page 560.

These constructors accept either the raw data, such as a pair of float values for constructing a
point, or a string representing the serialization of the underlying primitive type. The serialized
representation can be either the MarkLogic internal representation, such as a serilaized cts:point,
or a WKT serialization. If the primitive is not constructible from the string input, an exception is
thrown.

Each constructor produces a region value of the corresponding primitive type. For example, the
cts:box constructor function creates a value of type cts:box. Each of the geospatial primitive
types is an instance of the cts:region base type (cts.region in JavaScript).

MULTILINESTRING EMPTY () null, empty array, or empty
Sequence

MULTIPOLYGON (cts:polygon
| cts:complex-polygon)*

(cts.polygon
| cts.complexPolygon)*

MULTIPOLYGON EMPTY () null, empty array, or empty
Sequence

GEOMETRYCOLLECTION cts:region* zero or more cts.region
nodes

GEOMETRYCOLLECTION
EMPTY

() null, empty array, or empty
Sequence

others throws XDMP-BADWKT throws XDMP-BADWKT

XQuery JavaScript

cts:box cts.box

cts:circle cts.circle

cts:complex-polygon cts.complexPolygon

cts:linestring cts.linestring

cts:point cts.point

cts:polygon cts.polygon

WKT/WKB Geometry MarkLogic XQuery Type MarkLogic JavaScript Type
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 567

MarkLogic Server Geospatial Search Applications
For example, the following call constructs a cts:polygon from a string that is a serialized cts:point
value (space-separated points):

You can also construct the primitive types from XML or JSON nodes that contain geospatial data
in the supported formats. For example, the following XQuery code uses the geokml:box function
to construct a cts:box from an XML element containing a KML LatLongBox.

xquery version "1.0-ml";
import module namespace geokml = "http://marklogic.com/geospatial/kml"

at "/MarkLogic/geospatial/kml.xqy";

geokml:box(
<LatLongBox xmlns="http://www.opengis.net/kml/2.2">

<north>30</north>
<south>12.5</south>
<east>-122.24</east>
<west>-127.24</west>

</LatLongBox>)

Similarly, the following example uses geojson.box JavaScript function to construct a cts.box from
a JSON node that contains a suitable GeoJSON polygon. For example:

const geojson = require('/MarkLogic/geospatial/geojson.xqy');

geojson.box(
{ type: 'Feature',

bbox: [-180.0, -90.0, 180.0, 90.0],
geometry: {

type: 'Polygon',
coordinates: [[
[-180.0, 10.0], [20.0, 90.0], [180.0, -5.0], [-30.0, -90.0]

]]
}}

)

For details and examples on these functions, see the MarkLogic XQuery and XSLT Function
Reference or the MarkLogic Server-Side JavaScript Function Reference.

XQuery JavaScript

cts:polygon("38,-10 40,-10 39, -15") cts.polygon('38,-10 40,-10 39, -15')
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 568

MarkLogic Server Geospatial Search Applications
14.14 Geospatial Query Support in Other APIs

The Search API enables geospatial queries through the following features:

• Define geospatial constraints using query options such as geo-elem-pair-constraint,
geo-path-constraint, and geo-json-property-constraint. For details, see search:search
and “Search Customization Using Query Options” on page 381.

• Create geospatial structured queries using composers such as geo-elem-query and
geo-json-property-pair-query. For details, see “Searching Using Structured Queries” on
page 74.

• Add a heatmap to a geospatial point constraint to generate geospatial facets. For an
example, see “Geospatial Constraint Example” on page 393.

For information on specific geospatial query options, see “Appendix: Query Options Reference”
on page 816.

The Client APIs for REST, Java and Node.js applications provide similar support. For more
details and example see the following topics:

• “Creating Point Queries with the Client APIs” on page 522

• “Creating Region Queries Using the Client APIs” on page 542

14.15 Preparing to Run the Examples

Use the instructions in this section to load the data and configure the indexes used in several
examples in this chapter. The following topics are covered:

• Overview of the Sample Data

• Configuring the Indexes

• Creating the Input Data Files

• Loading the Sample Data

14.15.1 Overview of the Sample Data

The sample data contains points, linestrings, and polygons associated with landmarks near the
MarkLogic headquarters. The following diagram approximates the relative positions of the
features in the sample data.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 569

MarkLogic Server Geospatial Search Applications
This geospatial data is made available in two formats: KML (XML) and GeoJSON. Each
document describes a single point or a region. The points and regions are the same in the two
types of documents (XML and JSON). For example, the documents “/geo-examples/Airport.xml”
and “/geo-examples/Airport.json” describe the same region.

Airport

Shopping Center

Wildlife
Refuge

Hwy 101

Holly St

MarkLogic
Neighborhood

A

BC

Point A: MarkLogic HQ
Point B: Museum
Point C: Restaurant
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 570

MarkLogic Server Geospatial Search Applications
The documents are added to the following collections to make it easy to select the type of data to
work with just XML, just JSON, or both formats.

Each document uses the envelope pattern to encapsulate the original KML or GeoJSON region
coordinates with a serialized cts region that is suitable for use with cts:geospatial-region-query.
The unprocessed KML input is a single XML file that contains a series of KML Placemark
elements. The following data snippet shows the structure of the raw input:

<kml xmlns="http://www.opengis.net/kml/2.2">
<Folder>

<Placemark>
<name>Hwy 101</name>
<LineString>

<extrude>0</extrude>
<tessellate>1</tessellate>
<coordinates>
-122.2637558,37.5206187 -122.2428131,37.5020318

</coordinates>
</LineString>

</Placemark>
<Placemark>...</Placemark>
...

</Folder>
</kml>

The ingestion process splits the input into one document per Placemark. The envelope pattern is
used to encapsulate the original Placemark with an equivalent serialized cts:region if the
Placemark represents a non-point region. Region queries only operate on regions expressed as
WKT or serialized cts:regions, so you cannot query the Placemark coordinates directly. (Point
regions are left untranslated for convenience in demonstrating point queries; you could choose to
treat them the same way.)

The following examples shows the final document format, with the envelope root element and the
cts-region element created by the ingest transformation. If a Placemark represents a point, then
no cts-region element is added because it is not needed.

<envelope>
<cts-region>LINESTRING(-122.26376 37.520619,-122.24281

37.502032)</cts-region>
<Placemark xmlns="http://www.opengis.net/kml/2.2">

<name>Hwy 101</name>

Document Set Collections

KML geo-examples, geo-xml-examples

GeoJSON geo-examples, geo-json-examples
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 571

MarkLogic Server Geospatial Search Applications
<LineString>
<extrude>0</extrude>
<tessellate>1</tessellate>
<coordinates>
-122.2637558,37.5206187 -122.2428131,37.5020318

</coordinates>
</LineString>

</Placemark>
<envelope>

The GeoJSON data receives similar treatment. The raw input is a feature collection. Ingestion
creates one document per feature. The envelope pattern is used to encapsulate each feature with
an equivalent serialized cts:region to facilitate queries. Point regions are not transformed.

For example, the raw GeoJSON input has the following structure:

{ "type": "FeatureCollection",
"features": [

{ "type": "Feature",
"geometry": {
"type": "Point",
"coordinates": [-122.2465038,37.5073428]},

"properties": {"name": "MarkLogic HQ"}
},
{ "type": "Feature", ...},
...

]
}

Ingestion produces documents of the following form. For documents containing a region, the
ingestion transformation adds the envelope wrapper and a ctsRegion. For documents containing a
point, the ingestion transformation just adds the envelope wrapper.

{ "envelope": {
"feature": {

"type": "Feature",
"geometry": {

"type": "LineString",
"coordinates": [...]

}
"properties": { "name": "Holly St" } },

"ctsRegion": "LINESTRING(...))"
} }

You can thus use region queries on /envelope/cts-region (XML) or /envelope/ctsRegion
(JSON) and point queries on /envelope/kml:Placemark/Point/coordinates (XML) or
geometry[type = 'Point']/array-node('coordinates') (JSON).
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 572

MarkLogic Server Geospatial Search Applications
14.15.2 Configuring the Indexes

This section walks through configuring a point index and a region index over the XML and JSON
samples documents, for a total of 4 indexes. Separate indexes are used for each data set to
showcase a variety of indexes and to make it easy to focus on one content type or the other.

Point indexes are optional for some types of geospatial point queries, but required for geospatial
point range queries and lexicon operations. An index is usually recommended for best
performance.

Geospatial region queries always required an index.

You can skip over indexes related to content that does not interest you. For example, you can skip
the XML-related indexes if you are only interested in JSON. However, some examples in this
chapter may not work properly without the related indexes.

Choose one of the following methods to create the indexes.

• Creating Indexes Using the Admin Interface

• Creating the Indexes with XQuery

• Creating the Indexes with JavaScript

You can also create indexes using the REST Management API. This method is not included here.
For details, see the MarkLogic REST API Reference.

14.15.2.1Creating Indexes Using the Admin Interface

The following table summarizes the configuration characteristics of the indexes you will create in
the Admin Interface. Use this information in Steps 5 and 7 of the following procedure. Use the
default value for any characteristic not specified here.

Index Type Characteristics

Geospatial
Element Child
Index

(Point, XML)

Parent namespace URI: http://www.opengis.net/kml/2.2
Parent localname: Point
Child namespace URI: http://www.opengis.net/kml/2.2
Child localname: coordinates
Coordinate system: wgs84
Point format: long-lat-point

Geospatial Path
Index

(Point, JSON)

Path expression: geometry[type = 'Point']/array-node('coordinates')
Coordinate system: wgs84
Point format: long-lat-point
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 573

MarkLogic Server Geospatial Search Applications
Use the following procedure to create the geospatial indexes using the above configuration
information. For more information about the Admin Interface, see Administrator’s Guide.

1. Navigate to the Admin Interface in your browser. For example, navigate to
http://localhost:8001 if your MarkLogic installation is on localhost. Authenticate as a
user with administrative privileges.

2. Click Databases in the tree menu on the left to expand the list of databases. The tree menu
expands to display the available databases.

3. Click the name of the database for which you want to create an index. For example, click
Documents. The tree menu expands to display the configuration categories for this
database.

4. Click Geospatial Indexes icon in the tree menu, under the selected database.

5. To create a point index:

a. Click Geospatial Point Indexes in the tree menu, under the selected database.

b. Click the type of point index you want to create. For example, click Geospatial
Element Child Indexes. The configuration page for this index type is displayed on the
right.

6. To create a region index, click Geospatial Region Indexes in the tree menu, under the
selected database. The configuration page for this index type is displayed on the right.

7. Click the Add tab at the top of the configuration page.

8. Fill in the configuration from the data in the table above.

9. Click OK to create the index.

10. Repeat from Step 5 until you have created all the required indexes.

Geospatial
Region Index
(XML)

Path expression: /envelope/cts-region
Coordinate system: wgs84
Geohash precision: 2

Geospatial
Region Index
(JSON)

Path expression: /envelope/cts-region
Coordinate system: wgs84
Geohash precision: 2

Index Type Characteristics
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 574

MarkLogic Server Geospatial Search Applications
14.15.2.2Creating the Indexes with XQuery

Use the procedure in this section to create the indexes using XQuery and Query Console. If you
are not familiar with Query Console, see the Query Console User Guide. For equivalent
JavaScript instructions, see “Creating the Indexes with JavaScript” on page 576.

The following procedure creates two point indexes and two region indexes.

1. Navigate to Query Console in your browser. For example, navigate to
http://localhost:8000 if your MarkLogic installation is on localhost.

2. Copy the following code into a new query tab in Query Console.

xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin"

at "/MarkLogic/admin.xqy";

let $database := "Documents"
let $config := admin:get-configuration()
let $config := (: point index for XML docs :)

admin:database-add-geospatial-element-child-index(
$config, admin:database-get-id($config, $database),
admin:database-geospatial-element-child-index(

"http://www.opengis.net/kml/2.2", "Point",
"http://www.opengis.net/kml/2.2", "coordinates",
"wgs84", fn:false(), "long-lat-point", "reject")

)
let $config := (: point index for JSON docs :)

admin:database-add-geospatial-path-index(
$config, admin:database-get-id($config, $database),
admin:database-geospatial-path-index(

"geometry[type = 'Point']/array-node('coordinates')",
"wgs84", fn:false(), "long-lat-point", "reject")

)
let $config := (: region index over XML docs :)

admin:database-add-geospatial-region-path-index(
$config, admin:database-get-id($config, $database),
admin:database-geospatial-region-path-index(

"/envelope/cts-region", "wgs84", 2, "reject")
)

let $config := (: region index over JSON docs :)
admin:database-add-geospatial-region-path-index(

$config, admin:database-get-id($config, $database),
admin:database-geospatial-region-path-index(

"/envelope/ctsRegion", "wgs84", 2, "reject")
)

(: create the configured indexes :)
return admin:save-configuration($config)

3. If you are not using the Documents database for your content database, modify the value
of the $database variable.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 575

MarkLogic Server Geospatial Search Applications
4. Select XQuery in the Query Type dropdown if it is not already selected.

5. Click the Run button in Query Console to create the indexes.

The script produces no output when it is successful. You can use the Admin Interface to explore
the geospatial indexes and confirm the indexes were created.

For the next step, see “Creating the Input Data Files” on page 577.

14.15.2.3Creating the Indexes with JavaScript

Use the procedure in this section to create the indexes using Server-Side JavaScript and Query
Console. If you are not familiar with Query Console, see the Query Console User Guide. For
equivalent XQuery instructions, see “Creating the XML Input File” on page 577.

The following procedure creates two point indexes and two region indexes.

1. Navigate to Query Console in your browser. For example, navigate to
http://localhost:8000 if your MarkLogic installation is on localhost.

2. Copy the following code into a new query tab in Query Console.

const admin = require('/MarkLogic/admin');

const database = 'Documents';
const config = admin.getConfiguration();

// Point index over the XML samples
config = admin.databaseAddGeospatialElementChildIndex(

config, admin.databaseGetId(config, database),
admin.databaseGeospatialElementChildIndex(

'http://www.opengis.net/kml/2.2', 'Point',
'http://www.opengis.net/kml/2.2', 'coordinates',
'wgs84', false, 'long-lat-point', 'reject')

);
// Point index over the JSON samples
config = admin.databaseAddGeospatialPathIndex(

config, admin.databaseGetId(config, database),
admin.databaseGeospatialPathIndex(

'geometry[type = "Point"]/array-node("coordinates")',
'wgs84', false, 'long-lat-point', 'reject')

);
// Region index over the XML samples
config = admin.databaseAddGeospatialRegionPathIndex(

config, admin.databaseGetId(config, database),
admin.databaseGeospatialRegionPathIndex(

'/envelope/cts-region', 'wgs84', 2, 'reject')
);

// Region index over the JSON samples
config = admin.databaseAddGeospatialRegionPathIndex(
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 576

MarkLogic Server Geospatial Search Applications
config, admin.databaseGetId(config, database),
admin.databaseGeospatialRegionPathIndex(

'/envelope/ctsRegion', 'wgs84', 2, 'reject')
);

// Create the configured indexes.
admin.saveConfiguration(config);

3. If you are not using the Documents database for your content database, modify the value
of the database variable.

4. Select JavaScript in the Query Type dropdown if it is not already selected.

5. Click the Run button in Query Console to create the indexes.

The script produces no output when it is successful. You can use the Admin Interface to explore
the geospatial indexes and confirm the indexes were created.

14.15.3 Creating the Input Data Files

Follow the instructions in this section to create two files containing the raw XML and JSON
sample data. These files are used by the procedure in “Loading the Sample Data” on page 582.
Create both files, unless you plan to skip the examples involving one document format.

• Creating the XML Input File

• Creating the JSON Input File

14.15.3.1Creating the XML Input File

Copy the following data to a file on the filesystem. Choose a location that is readable by your
MarkLogic installation. You can use any file name, but the subsequent instructions assume
“geo-examples.xml”.

Next, create the JSON data file following the instructions in “Creating the JSON Input File” on
page 580.

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">

<Placemark>
<name>MarkLogic HQ</name>
<description></description>
<Point>

<altitudeMode>clampedToGround</altitudeMode>
<coordinates>-122.2465038,37.5073428</coordinates>

</Point>
</Placemark>
<Placemark>

<name>Restaurant</name>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 577

MarkLogic Server Geospatial Search Applications
<description></description>
<Point>

<altitudeMode>clampedToGround</altitudeMode>
<coordinates>-122.2581983,37.5128407</coordinates>

</Point>
</Placemark>
<Placemark>

<name>Hiller Aviation Museum</name>
<description></description>
<Point>

<altitudeMode>clampedToGround</altitudeMode>
<coordinates>-122.2527051,37.5128917</coordinates>

</Point>
</Placemark>
<Placemark>

<name>Hwy 101</name>
<description>Length: 2.775 km (1.724 mi)</description>
<visibility>1</visibility>
<open>0</open>
<LineString>

<extrude>0</extrude>
<tessellate>1</tessellate>
<altitudeMode>clampedToGround</altitudeMode>
<coordinates>
-122.2637558,37.5206187 -122.2428131,37.5020318

</coordinates>
</LineString>

</Placemark>
<Placemark>

<name>Holly St</name>
<description>Length: 1.384 km (0.86 mi)</description>
<visibility>1</visibility>
<open>0</open>
<LineString>

<extrude>0</extrude>
<tessellate>1</tessellate>
<altitudeMode>clampedToGround</altitudeMode>
<coordinates>
-122.2598934,37.5096578 -122.2551727,37.5148321
-122.2536278,37.5172148 -122.2523403,37.5185083
-122.2520828,37.5202102

</coordinates>
</LineString>

</Placemark>
<Placemark>

<name>Wildlife Refuge</name>
<description>Length: 3.104 km (1.929 mi)</description>
<visibility>1</visibility>
<open>0</open>
<Polygon>

<extrude>0</extrude>
<tessellate>1</tessellate>
<altitudeMode>clampedToGround</altitudeMode>
<outerBoundaryIs>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 578

MarkLogic Server Geospatial Search Applications
<LinearRing>
<coordinates>

-122.2428131,37.5173510 -122.2468472,37.5131641
-122.2422123,37.5069683 -122.2356892,37.5102365
-122.2384787,37.5154788 -122.2428131,37.5173510

</coordinates>
</LinearRing>

</outerBoundaryIs>
</Polygon>

</Placemark>
<Placemark>

<name>MarkLogic Neighborhood</name>
<description>Length: 5.591 km (3.474 mi)</description>
<visibility>1</visibility>
<open>0</open>
<styleUrl>#track</styleUrl>
<Polygon>

<extrude>0</extrude>
<tessellate>1</tessellate>
<altitudeMode>clampedToGround</altitudeMode>
<outerBoundaryIs>
<LinearRing>

<coordinates>
-122.2634554,37.5190870 -122.2480488,37.5212994
-122.2446156,37.5122790 -122.2455597,37.5033596
-122.2598076,37.5061853 -122.2633696,37.5134364
-122.2634554,37.5190870

</coordinates>
</LinearRing>

</outerBoundaryIs>
</Polygon>

</Placemark>
<Placemark>

<name>Shopping Center</name>
<description>Length: 0.746 km (0.463 mi)</description>
<visibility>1</visibility>
<open>0</open>
<styleUrl>#track</styleUrl>
<Polygon>

<extrude>0</extrude>
<tessellate>1</tessellate>
<altitudeMode>clampedToGround</altitudeMode>
<outerBoundaryIs>
<LinearRing>

<coordinates>
-122.2485638,37.5033937 -122.2465038,37.5015552
-122.2478342,37.5003635 -122.2502375,37.5022020
-122.2485638,37.5033937

</coordinates>
</LinearRing>

</outerBoundaryIs>
</Polygon>

</Placemark>
<Placemark>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 579

MarkLogic Server Geospatial Search Applications
<name>Airport</name>
<description>Length: 2.787 km (1.732 mi)</description>
<visibility>1</visibility>
<open>0</open>
<styleUrl>#track</styleUrl>
<Polygon>

<extrude>0</extrude>
<tessellate>1</tessellate>
<altitudeMode>clampedToGround</altitudeMode>
<outerBoundaryIs>
<LinearRing>

<coordinates>
-122.2487354,37.5181339 -122.2481775,37.5121769
-122.2457314,37.5086705 -122.2466755,37.5083982
-122.2543144,37.5148321 -122.2537994,37.5157171
-122.2509670,37.5177254 -122.2487354,37.5181339

</coordinates>
</LinearRing>

</outerBoundaryIs>
</Polygon>

</Placemark>
</kml>

14.15.3.2Creating the JSON Input File

Copy the following data to a file on the filesystem. Choose a location that is readable by your
MarkLogic installation. You can use any file name, but the subsequent instructions assume
“geo-examples.json”.

After saving the data to a file, load the sample data into the database using the instructions in
“Loading the Sample Data” on page 582.

{ "type": "FeatureCollection",
"features": [

{ "type": "Feature",
"geometry": {"type": "Point", "coordinates":

[-122.2465038,37.5073428]},
"properties": {"name": "MarkLogic HQ"}

},
{ "type": "Feature",

"geometry": {"type": "Point", "coordinates":
[-122.2581983,37.5128407]},

"properties": {"name": "Restaurant"}
},
{ "type": "Feature",

"geometry": {"type": "Point", "coordinates":
[-122.2527051,37.5128917]},

"properties": {"name": "Museum"}
},
{ "type": "Feature",

"geometry": {
"type": "LineString",
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 580

MarkLogic Server Geospatial Search Applications
"coordinates": [
[-122.2637558,37.5206187], [-122.2428131,37.5020318]

]
},
"properties": { "name": "Hwy 101" }

},
{ "type": "Feature",

"geometry": {
"type": "LineString",
"coordinates": [

[-122.2598934,37.5096578], [-122.2551727,37.5148321],
[-122.2536278,37.5172148], [-122.2523403,37.5185083],
[-122.2520828,37.5202102]

]
},
"properties": { "name": "Holly St" }

},
{ "type": "Feature",

"geometry": {
"type": "Polygon",
"coordinates": [

[
[-122.2428131,37.5173510], [-122.2468472,37.5131641],
[-122.2422123,37.5069683], [-122.2356892,37.5102365],
[-122.2384787,37.5154788], [-122.2428131,37.5173510]

]
]

},
"properties": { "name": "Wildlife Refuge" }

},
{ "type": "Feature",

"geometry": {
"type": "Polygon",
"coordinates": [

[
[-122.2634554,37.5190870], [-122.2480488,37.5212994],
[-122.2446156,37.5122790], [-122.2455597,37.5033596],
[-122.2598076,37.5061853], [-122.2633696,37.5134364],
[-122.2634554,37.5190870]

]
]

},
"properties": { "name": "MarkLogic Neighborhood" }

},
{ "type": "Feature",

"geometry": {
"type": "Polygon",
"coordinates": [

[
[-122.2485638,37.5033937], [-122.2465038,37.5015552],
[-122.2478342,37.5003635], [-122.2502375,37.5022020],
[-122.2485638,37.5033937]

]
]

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 581

MarkLogic Server Geospatial Search Applications
},
"properties": { "name": "Shopping Center" }

},
{ "type": "Feature",

"geometry": {
"type": "Polygon",
"coordinates": [

[
[-122.2487354,37.5181339], [-122.2481775,37.5121769],
[-122.2457314,37.5086705], [-122.2466755,37.5083982],
[-122.2543144,37.5148321], [-122.2537994,37.5157171],
[-122.2509670,37.5177254], [-122.2487354,37.5181339]

]
]

},
"properties": { "name": "Airport" }

}
]

}

14.15.4 Loading the Sample Data

The procedures in this section load the raw data from “Creating the Input Data Files” on page 577
into documents of the form discussed in “Overview of the Sample Data” on page 569.

This section uses XQuery to load the XML documents and Server-Side JavaScript to load the
JSON documents. You could use either language to load both, but the XML transformations flow
more naturally in XQuery, while the JSON transformations flow more naturally in JavaScript.

You can load either or both data sets, but some examples in this chapter will not work if you do
not load both. You do not need to be familiar with either XQuery or JavaScript to follow the
instructions in this section.

• Loading the XML Sample Data

• Loading the JSON Sample Data

14.15.4.1Loading the XML Sample Data

The procedure in this section uses XQuery to load the sample data because it is easier to do XML
transformations using XQuery. You do not need to be familiar with XQuery to follow this
procedure.

Before you begin, you should have completed the steps in “Creating the Input Data Files” on
page 577.

1. Open the Query Console tool in your browser. For example, if MarkLogic is installed on
localhost, navigate to the following URL: http://localhost:8000.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 582

MarkLogic Server Geospatial Search Applications
2. Copy the following query into a new query tab in Query Console:

xquery version "1.0-ml";
import module namespace geokml = "http://marklogic.com/geospatial/kml"

 at "/MarkLogic/geospatial/kml.xqy";
declare namespace kml="http://www.opengis.net/kml/2.2";

(: *** CHANGE THIS VAR VALUE TO MATCH YOUR ENV *** :)
declare variable $INPUT-FILE := "/my/dir/geo-examples.xml";

(: Convert the KML regions into cts regions :)
declare function local:region-convert(

$nodes as node()*
) as cts:region*
{

for $n in $nodes return
typeswitch($n)

case element(kml:Polygon) return geokml:parse-kml($n)
case element(kml:LineString) return geokml:parse-kml($n)
case element(kml:Point) return () (: return geokml:parse-kml($n) :)
default return local:region-convert($n/node())

};

(: Create a doc for each KML Placemark, with a wrapper around
 : the KML that contains the cts region equiv of the KML region :)
let $file := xdmp:document-get($INPUT-FILE)
return

for $place in $file//*:Placemark
let $basename := fn:string-join(fn:tokenize($place/*:name, " "),"-")
return xdmp:document-insert(

fn:concat("/geo-examples/",$basename,".xml"),
<envelope>{

 let $converted-region := local:region-convert($place)
 return
 if (fn:empty($converted-region))
 then ()
 else <cts-region>{$converted-region}</cts-region>

}
{$place}
</envelope>,
xdmp:default-permissions(), ("geo-xml-examples", "geo-examples"))

3. Modify the query to set the value of the $INPUT-FILE variable to the absolute path to the
file containing the raw XML input data. This is the file you created in “Creating the Input
Data Files” on page 577.

4. Choose XQuery in the Query Type dropdown list.

5. Choose the database into which you want to insert the documents in the Database
dropdown list. For example, choose the Documents database.

6. Click the Run button to evaluate the query and create documents in the database.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 583

MarkLogic Server Geospatial Search Applications
7. Optionally, click the explorer icon to the right of the Database dropdown to explore the
database contents and examine the new documents.

If the query is successful, the following documents are created. All the documents have a
“/geo-examples/” directory prefix and are in collections named “geo-xml-examples” and
“geo-examples”.

• /geo-examples/Airport.xml

• /geo-examples/Holly-St.xml

• /geo-examples/Hwy-101.xml

• /geo-examples/MarkLogic-HQ.xml

• /geo-examples/MarkLogic-Neighborhood.xml

• /geo-examples/Museum.xml

• /geo-examples/Restaurant.xml

• /geo-examples/Shopping-Center.xml

• /geo-examples/Wildlife-Refuge.xml

For more information about the data, see “Overview of the Sample Data” on page 569.

Next, load the JSON sample documents using the instructions in “Loading the JSON Sample
Data” on page 584.

14.15.4.2Loading the JSON Sample Data

The procedure in this section uses Server-Side JavaScript to load the sample data because it is
easier to do JSON transformations using JavaScript. You do not need to be familiar with
JavaScript to follow this procedure.

1. Open the Query Console tool in your browser. For example, if MarkLogic is installed on
localhost, navigate to the following URL: http://localhost:8000.

2. Copy the following query into a new query tab in Query Console:

declareUpdate();
const geojson = require('/MarkLogic/geospatial/geojson');

// *** CHANGE FILE NAME TO MATCH YOUR ENV ***
const inputFilename = '/my/dir/geo-examples.json';

const rawData = fn.head(xdmp.documentGet(inputFilename)).toObject();
for (let feature of rawData.features) {

// replace whitespace in feature name with a dash
const uri = '/geo-examples/' +

feature.properties.name.replace(/\s+/g,'-') + '.json';
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 584

MarkLogic Server Geospatial Search Applications
const newDoc = { envelope: {feature: feature} };
if (feature.geometry.type != "Point") {

newDoc.envelope.ctsRegion =
fn.head(geojson.parseGeojson(feature.geometry));

}
xdmp.documentInsert(

uri, newDoc,
xdmp.defaultPermissions(),
['geo-json-examples', 'geo-examples']

);
}

3. Modify the query to set the value of the $INPUT-FILE variable to the absolute path to the
file containing the raw input data. This is the file you created in “Creating the Input Data
Files” on page 577.

4. Choose JavaScript in the Query Type dropdown list.

5. Choose the database into which you want to insert the documents in the Database
dropdown list. For example, choose the Documents database.

6. Click the Run button to evaluate the query and create documents in the database.

7. Optionally, click the explorer icon to the right of the Database dropdown to explore the
database contents and examine the new documents.

If the query is successful, the following documents are created. All the documents have a
“/geo-examples/” directory prefix and are in collections named “geo-json-examples” and
“geo-examples”.

• /geo-examples/Airport.json

• /geo-examples/Holly-St.json

• /geo-examples/Hwy-101.json

• /geo-examples/MarkLogic-HQ.json

• /geo-examples/MarkLogic-Neighborhood.json

• /geo-examples/Museum.json

• /geo-examples/Restaurant.json

• /geo-examples/Shopping-Center.json

• /geo-examples/Wildlife-Refuge.json

For more information about the data, see “Overview of the Sample Data” on page 569.

Your database is now properly configured to run the examples in this chapter.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 585

MarkLogic Server Entity Extraction and Enrichment
15.0 Entity Extraction and Enrichment
634

This chapter describes how to perform entity extraction or enrichment in MarkLogic Server. You
can use these features to identify entities such as people and places in text, and then either add
markup around the entities in your documents or extract a list of entities. You can use entity
enrichment and extraction to classify documents and improve search accuracy.

This chapter covers the following topics:

• Overview of Entity Extraction and Enrichment

• Understanding Dictionary-Based Extraction and Enrichment

• Creating an Entity Dictionary

• Dictionary-Based Entity Enrichment

• Dictionary-Based Entity Extraction

• Using an Entity Type Map for Extraction or Enrichment

• Overlapping Entity Match Handling

• Entity Identification Using Reverse Query

• Entity Enrichment Pipelines

15.1 Overview of Entity Extraction and Enrichment

Entity extraction and entity enrichment are the process of identifying words or phrases that
represent logical or business entities, and then either extracting a list of the entities from your
content or enriching the content with information about the entities. Many industries have
domain-specific entities that are useful to identify, such as extracting or marking up references to
prescription drugs in patient history documents.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 586

MarkLogic Server Entity Extraction and Enrichment
The following diagram illustrates the extraction process at a high level. Suppose you have entity
rules that say the term “Nixon” represents a “person” entity and the term “Paris” represents a
“place” entity. Then you could use the rules to extract a “person” and a “place” entity from the
phrase “Nixon visited Paris” in an XML document:

Similarly, you could use the rules to enrich the phrase “Nixon visited Paris” with markup around
the “person” and “place” entities:

MarkLogic provides out-of-the-box support for expressing entity rules as an opaque entity
dictionary or a search query. MarkLogic APIs support both approaches. You can create
dictionaries in various ways, including deriving one from a Simple Knowledge Organization
System (SKOS) ontology.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 587

MarkLogic Server Entity Extraction and Enrichment
You can also use third-party entity enrichment services by integrating them into a the Content
Processing Framework (CPF) pipeline. MarkLogic includes some sample entity enrichment
pipelines; for details, see “Entity Enrichment Pipelines” on page 634.

The following table can help you select the right extraction or enrichment approach for your
application:

15.2 Understanding Dictionary-Based Extraction and Enrichment

MarkLogic comes with a set of built-in and library module functions that support basic entity
extraction and enrichment using entity dictionaries.

These interfaces can only be used when simple codepoint equality can be used to identify entity
matches. You can control whether the comparison should be case sensitive, but you cannot use
pattern matching, stemming, or diacritic sensitivity. If you need such features, use the technique
described in “Entity Identification Using Reverse Query” on page 631.

You can create an entity dictionary from tab-delimited text, from a SKOS ontology, or from a set
of entity objects created using cts:entity (XQuery) or cts.entity (JavaScript). For more details,
see “Creating an Entity Dictionary” on page 589.

Once you create a dictionary that describes your entities, you can use it for operations such as the
following:

• Extract entities from text as XML nodes constructed by MarkLogic or with custom
markup. For details, see “Dictionary-Based Entity Extraction” on page 609.

• Enrich text with markup constructed by MarkLogic or with custom markup. For more
details, see “Dictionary-Based Entity Enrichment” on page 598.

Use Case Recommended Interface

Your entities can be identitied using
simple string matching

Entity dictionaries and the entity enrichment and
extraction APIs described in this chapter. For details,
see “Understanding Dictionary-Based Extraction and
Enrichment” on page 588.

Your entities can best be described
by a cts query, or you require
advanced string matching such as
stemming or diacritic sensitivity

Reverse query and cts:highlight or cts.highlight.
For more details, see “Entity Identification Using
Reverse Query” on page 631.

You want to use a 3rd party entity
extraction library

A Content Processing Framework (CPF) pipeline. For
more details, see “Entity Enrichment Pipelines” on
page 634.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 588

MarkLogic Server Entity Extraction and Enrichment
The following table summarizes the entity dictionary-based built-in and library functions. The
functions in the entity library module provide an easy-to-use interface with limited
customization options. The built-in cts functions provide finer control, at the cost of increased
complexity.

15.3 Creating an Entity Dictionary

This section covers the following topics related to entity dictionary creation:

• Understanding Entity Dictionaries

• Creating a Dictionary Using Entity Constructors

• Creating a Dictionary From Text

• Creating a Dictionary From a SKOS Ontology

• Persisting or Retrieving an Entity Dictionary

• Serializing a Dictionary as Text

Operation XQuery Server-Side JavaScript

Dictionary
Management

cts:entity-dictionary

entity:skos-dictionary

cts:entity

cts:entity-dictionary-parse

cts:get-entity-dictionary

entity:dictionary-insert

entity:dictionary-load

cts.entityDictionary

entity.skosDictionary

cts.entity

cts.entityDictionaryParse

cts.getEntityDictionary

entity.dictionaryInsert

entity.dictionaryLoad

Content
Enrichment

entity:enrich

cts:entity-highlight

entity.enrich

cts.entityHighlight

Entity Extraction cts:entity-walk

entity:extract

cts.entityWalk

entity.extract
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 589

MarkLogic Server Entity Extraction and Enrichment
15.3.1 Understanding Entity Dictionaries

An entity dictionary is a set of entity definitions that specify the following characteristics of each
entity:

• entity id - A unique id for the entity.

• normalized text - The normalized form of the entity.

• text - The word or phrase to match against this entry during entity extraction.

• entity type - The type of the entity.

You can create an entity dictionary in memory from the following sources.

• A Simple Knowledge Organization System (SKOS) ontology, stored in MarkLogic as a
graph. For details, see “Creating a Dictionary From a SKOS Ontology” on page 592.

• Tab-delimited text. For details, see “Creating a Dictionary From Text” on page 591.

• A sequence of cts:entity (XQuery) or cts.entity (Server-Side JavaScript) objects. For
details, see “Creating a Dictionary Using Entity Constructors” on page 591.

For efficient re-use, you should persist your entity dictionaries in MarkLogic. For details, see
“Persisting or Retrieving an Entity Dictionary” on page 595.

When you use the dictionary-based APIs, such as entity:enrich or entity.enrich, matching is
based on strict codepoint equality. You can only tailor the matching by specifying whether or not
matches against a given dictionary should be case-insensitive. You cannot use an entity dictionary
to find matches that depend on pattern matching, stemming, or other advanced algorithms.

A dictionary can contain multiple entries for the same entity id. For example, suppose former
United States President Richard Nixon is a logical entity in your application domain. You might
create dictionary entries that specify the phrases “Richard Nixon”, “Richard M. Nixon”, and
“President Nixon” resolve to equivalent entities, with the same id, entity type, and normalized
text. That is, you might create a dictionary that includes the following entries:

Thus, entity extraction or enrichment can map any of the phrases “Richard M. Nixon”, “Richard
Nixon”, and “President Nixon” to the “person” entity with the id 11208172.

Id Normalized Text Text Type

11208172 Nixon Richard M. Nixon person

11208172 Nixon Richard Nixon person

11208172 Nixon President Nixon person
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 590

MarkLogic Server Entity Extraction and Enrichment
If your dictionary includes entries whose text overlaps, then multiple entries can match
overlapping portions of a text node. For example, if your dictionary contains both “President
Nixon” and “Nixon Library”, applying the dictionary to the phrase “President Nixon Library”
results in overlapping entity matches. You can use the dictionary creation options
“allow-overlaps” and “remove-overlaps” to affect overlap handling. The default behavior is
“allow-overlaps”. For more details, see “Overlapping Entity Match Handling” on page 627.

15.3.2 Creating a Dictionary Using Entity Constructors

In XQuery, you can use cts:entity to construct opaque dictionary entry objects, and then use
cts:entity-dictionary to create an in-memory entity dictionary from them.

In Server-Side JavaScript, you can use cts.entity to construct opaque dictionary entry objects,
and then use cts.entityDictionary to create an in-memory entity dictionary from them.

For example, the following example construct an in-memory entity dictionary contianing four
entries:

You can persist the dictionary in MarkLogic using cts:dictionary-insert (XQuery) or
cts.dictionaryInsert (JavaScript). For details, see “Persisting or Retrieving an Entity
Dictionary” on page 595.

15.3.3 Creating a Dictionary From Text

You can construct an entity dictionary from specially formatted text using
cts:entity-dictionary-parse (XQuery) or cts.entityDictionaryParse (JavaScript). The input
must be strings containing dictionary entry lines of the following form. Dictionary entries must be
newline separated, and the fields of entry must be tab separated.

id normalizedText text entityType

Language Example

XQuery cts:entity-dictionary((
cts:entity("11208172", "Nixon", "Nixon", "person"),
cts:entity("11208172", "Nixon", "Richard Nixon", "person"),
cts:entity("09145751", "Paris", "Paris", "district:town"),
cts:entity("09500217", "Paris", "Paris", "mythical being")

))

Server-Side
JavaScript

const dictionary = cts.entityDictionary([
 cts.entity('11208172', 'Nixon', 'Nixon', 'person'),
 cts.entity('11208172', 'Nixon', 'Richard Nixon', 'person'),
 cts.entity('09145751', 'Paris', 'Paris', 'district:town'),
 cts.entity('09500217', 'Paris', 'Paris', 'mythical being')
]);
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 591

MarkLogic Server Entity Extraction and Enrichment
This is the same format produced when you serialize a dictionary; for details, see “Serializing a
Dictionary as Text” on page 597.

For example, suppose you have a file “/my/ent-dict.txt” on the filesystem containing the
following lines of tab-delimited text:

11208172 Nixon Nixon person:head of state
11208172 Nixon Richard Nixon person:head of state
09145751 Paris Paris administrative district:town
09500217 Paris Paris imaginary being:mythical being

Then the following example code creates an in-memory entity dictionary from the file contents.

You can persist such an in-memory dictionary in MarkLogic using entity:dictionary-insert
(XQuery) or entity.dictionaryInsert (JavaScript). You can also load the text representation of
an entity dictionary directly into MarkLogic using entity:dictionary-load (XQuery) or
entity.dictionaryLoad (JavaScript). For details, see “Persisting or Retrieving an Entity
Dictionary” on page 595.

15.3.4 Creating a Dictionary From a SKOS Ontology

You can create an entity dictionary from a Simple Knowledge Organization System (SKOS)
ontology. A SKOS is a semantic graph composed of RDF triples; for details, see
https://www.w3.org/TR/skos-primer/. SKOS ontologies are available for many application domains.
A SKOS ontology includes exactly the kind of information used in a MarkLogic entity dictionary
entry: An entity ID, with one or more matching terms, a normalized form, and an entity type.

Use the following steps to create an entity dictionary from a SKOS ontology:

1. Insert the graph representing the ontology into MarkLogic, as described in Loading

Semantic Triples in the Semantic Graph Developer’s Guide.

2. Use the library function entity:skos-dictionary (XQuery) or entity.skosDictionary
(JavaScript) to create a dictionary from the graph.

Language Example

XQuery xquery version "1.0-ml";
cts:entity-dictionary-parse(
 xdmp:document-get('/my/ent-dict.txt'))

Server-Side
JavaScript

cts.entityDictionaryParse(
xdmp.documentGet('/my/ent-dict.txt'));
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 592

https://www.w3.org/TR/skos-primer/

MarkLogic Server Entity Extraction and Enrichment
A dictionary entry is created for each skos:Concept in the graph, where skos is shorthand for the
namespace http://www.w3.org/2004/02/skos/core#. Dictionary entries will not be extracted for
triples that use any other SKOS namespace.

The following table provides an overview of the mapping from SKOS properties to dictionary
entry attributes. For more details on the mapping, see the function reference for
entity:skos-dictionary (XQuery) or entity.skosDictionary (JavaScript).

For example, suppose you have a file on the filesystem with path “/examples/canal.rdf” that
contains the following simplified SKOS ontology:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:skos="http://www.w3.org/2004/02/skos/core#">
 <skos:Concept rdf:about="http://www.my.com/#canals">
 <skos:definition>A feature type category for places such as

the Erie Canal</skos:definition>
 <skos:prefLabel>canals</skos:prefLabel>
 <skos:altLabel>canal bends</skos:altLabel>
 <skos:altLabel>canalized streams</skos:altLabel>
 <skos:altLabel>ditch mouths</skos:altLabel>
 <skos:altLabel>ditches</skos:altLabel>
 <skos:altLabel>drainage canals</skos:altLabel>
 <skos:altLabel>drainage ditches</skos:altLabel>
 <skos:broader

rdf:resource="http://www.my.com/#hydrographic%20structures"/>
 <skos:related rdf:resource="http://www.my.com/#channels"/>
 <skos:related rdf:resource="http://www.my.com/#locks"/>
 <skos:related

rdf:resource="http://www.my.com/#transportation%20features"/>
 <skos:related rdf:resource="http://www.my.com/#tunnels"/>
 <skos:scopeNote>Manmade waterway used by watercraft or for

drainage, irrigation, mining, or water power</skos:scopeNote>
 </skos:Concept>
</rdf:RDF>

Entity Component SKOS Source

id The concept IRI.

normalized text The skos:prefLabel.

text The skos:prefLabel, plus any additional lablels (skos:altLabel,
skos:hiddenLabel).

entity type If the concept is in a skos:ConceptScheme, the rdfs:label or dc:title
from the concept scheme; otherwise, the graph URI.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 593

MarkLogic Server Entity Extraction and Enrichment
Then you can load the ontology into a graph in MarkLogic with the URI
“http://marklogic.com/examples/canal” as follows:

Now, you can create an entity dictionary from the graph and save it in MarkLogic as shown by the
following example. Note that your dictionary URI should not be the same as the graph URI. To
learn more about creating graphs in MarkLogic, see Semantic Graph Developer’s Guide.

Language Example

XQuery xquery version "1.0-ml";
import module namespace sem = "http://marklogic.com/semantics"
 at "/MarkLogic/semantics.xqy";

sem:graph-insert(
 sem:iri("http://marklogic.com/examples/canal"),
 sem:rdf-get("/examples/canal.rdf", ("rdfxml"))
)

Server-Side
JavaScript

declareUpdate();
const sem = require('/MarkLogic/semantics');

sem.graphInsert(
 sem.iri('http://marklogic.com/examples/canal'),
 sem.rdfGet('/examples/canal.rdf', ['rdfxml']));

Language Example

XQuery import module namespace entity="http://marklogic.com/entity"
 at "/MarkLogic/entity.xqy";

entity:dictionary-insert("/ontology/canal",
 entity:skos-dictionary(
 "http://marklogic.com/examples/canal",

"en", "case-insensitive")
)

Server-Side
JavaScript

'use strict';
declareUpdate();
const entity = require('/MarkLogic/entity');

entity.dictionaryInsert('/ontology/canal',
 entity.skosDictionary(

'http://marklogic.com/examples/canal',
'en', ['case-insensitive'])

);
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 594

MarkLogic Server Entity Extraction and Enrichment
The resulting entity dictionary contains the following entries. All the terms share the same entity
type because the trivial example onotology defines only one concept.

15.3.5 Persisting or Retrieving an Entity Dictionary

For best performance, large dictionaries and dictionaries you use frequently should be stored in
MarkLogic. To persist a dictionary in the database, use the following functions:

• entity:dictionary-insert (XQuery) or entity.dictionaryInsert (JavaScript): Save an
in-memory dictionary in the database.

• entity:dictionary-load (XQuery) or entity.dictionaryLoad (JavaScript): Read in
dictionary entries from a tab-delimited text file and save the results in the database. For
format details, see “Creating a Dictionary From Text” on page 591.

ID
Norm.
Text

Text Entity Type

http://www.my.com/#canal canals canal
bends

http://marklogic.com/examples/canal

http://www.my.com/#canals canals canalized
streams

http://marklogic.com/examples/canal

http://www.my.com/#canals canals canals http://marklogic.com/examples/canal

http://www.my.com/#canals canals ditch
mouths

http://marklogic.com/examples/canal

http://www.my.com/#canals canals ditch http://marklogic.com/examples/canal

http://www.my.com/#canals canals ditches http://marklogic.com/examples/canal

http://www.my.com/#canals canals drainage
canals

http://marklogic.com/examples/canal

http://www.my.com/#canals canals drainage
ditches

http://marklogic.com/examples/canal
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 595

MarkLogic Server Entity Extraction and Enrichment
For example, the following code creates an in-memory dictionary using entity constructors, and
then saves it in the database:

The following example loads a properly serialized dictionary on the filesystem directly into
MarkLogic. The expected format is the same as that described in “Creating a Dictionary From
Text” on page 591 and “Serializing a Dictionary as Text” on page 597.

To retrieve a dictionary stored in MarkLogic, use cts:entity-dictionary-get (XQuery) or
cts.entityDictionaryGet (JavaScript).

Language Example

XQuery xquery version "1.0-ml";
import module namespace entity="http://marklogic.com/entity"

at "/MarkLogic/entity.xqy";
let $dictionary := cts:entity-dictionary((

cts:entity("11208172", "Nixon", "Nixon", "person"),
cts:entity("11208172", "Nixon", "Richard Nixon", "person")

))
return entity:dictionary-insert("/dict/people", $dictionary)

Server-Side
JavaScript

'use strict';
declareUpdate();
const entity = require('/MarkLogic/entity');

const dictionary = cts.entityDictionary([
 cts.entity('11208172', 'Nixon', 'Nixon', 'person'),
 cts.entity('11208172', 'Nixon', 'Richard Nixon', 'person'),
]);

entity.dictionaryInsert('/dict/people', dictionary);

Language Example

XQuery xquery version "1.0-ml";
import module namespace entity="http://marklogic.com/entity"

at "/MarkLogic/entity.xqy";

entity:dictionary-load(
'/path/to/my/dict.txt', '/dict/people');

Server-Side
JavaScript

declareUpdate();
const entity = require('/MarkLogic/entity');

entity.dictionaryLoad(
'/path/to/my/dict.txt', '/dict/people');
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 596

MarkLogic Server Entity Extraction and Enrichment
For example:

15.3.6 Serializing a Dictionary as Text

You can serialize an entity dictionary as text, suitable for exporting to a file. You can use
cts:entity-dictionary-parse or cts.entityDictionaryParse to re-create a cts:entity-dictionary
object from the serialization.

The following example serializes an in-memory dictionary:

Language Example

XQuery xquery version "1.0-ml";
import module namespace entity="http://marklogic.com/entity"

at "/MarkLogic/entity.xqy";
let $dictionary :=
cts:entity-dictionary-get("/ontology/fibo/vocabulary")
return dictionary

Server-Side
JavaScript

'use strict';
const entity = require('/MarkLogic/entity');
const dictionary =
cts.entityDictionaryGet('/ontology/fibo/vocabulary');
dictionary;

Language Example

XQuery xquery version "1.0-ml";
let $dictionary := cts:entity-dictionary((
 cts:entity("11208172", "Nixon", "Nixon", "person"),
 cts:entity("11208172", "Nixon", "Richard Nixon", "person"),
 cts:entity("09145751", "Paris", "Paris", "district:town"),
 cts:entity("09500217", "Paris", 'Paris', "mythical being")
), ("remove-overlaps", "case-insensitive"))
return xdmp:quote($dictionary)

Server-Side
JavaScript

const dictionary = cts.entityDictionary([
 cts.entity('11208172', 'Nixon', 'Nixon', 'person'),
 cts.entity('11208172', 'Nixon', 'Richard Nixon', 'person'),
 cts.entity('09145751', 'Paris', 'Paris', 'district:town'),
 cts.entity('09500217', 'Paris', 'Paris', 'mythical being')],
 ['remove-overlaps', 'case-insensitive']);
xdmp.quote(dictionary);
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 597

MarkLogic Server Entity Extraction and Enrichment
This example produces the following output. Each serialized dictionary entry is separated by a
newline. Each field within an entry is separated by a TAB character. The first line, with the “##”
prefix, encodes the options used to create the dictionary.

remove-overlaps case-insensitive
11208172 Nixon Nixon person
11208172 Nixon Richard Nixon person
09145751 Paris Paris district:town
09500217 Paris Paris mythical being

15.4 Dictionary-Based Entity Enrichment

Entity enrichment is the process of adding markup to a document that identifies the occurrence of
entities in the text. MarkLogic provides a set up of APIs that enable you to define the set of
possible entities in one or more entity dictionaries, and then tag matching entities in your XML
documents. To generate a list of entities found in a document rather than add enrichment, use
entity extraction; for details, see “Dictionary-Based Entity Extraction” on page 609.

This section covers the following topics related to using the dictionary-based APIs for entity
enrichment:

• API Summary

• Using entity:enrich or entity.enrich

• Using cts:entity-highlight or cts.entityHighlight

• XQuery Example: entity:enrich

• XQuery Example: cts:entity-highlight

• JavaScript Example: entity.enrich

• JavaScript Example: cts.entityHighlight
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 598

MarkLogic Server Entity Extraction and Enrichment
15.4.1 API Summary

The following table summarizes the dictionary-based APIs available for adding entity enrichment
to your XML documents. These APIs require you to create one or more entity dictionaries, as
described in “Creating an Entity Dictionary” on page 589.

The enrich function is the easiest to use, and suitable for many applications. Use
cts:entity-highlight or cts.entityHighlight if you require fine-grained control over the
enrichment.

15.4.2 Using entity:enrich or entity.enrich

When you call entity:enrich or entity.enrich with just an input node and one or more
dictionaries, MarkLogic wraps matched text in an <entity/> element that has a type attribute
whose value is the entity type from the matching dictionary entry.

For example, if you call enrich in the form shown below:

Then the enrichment uses a wrapper such as the following:

<e:entity xmlns:e="http://marklogic.com/entity">
type="person:head of state">Nixon</e:entity>

Function Description

entity:enrich (XQuery)

entity.enrich (JavaScript)

Enclose words and phrases matching dictionary entries in
a wrapper element decorated with the entity type. Some
customization is available.

cts:entity-highlight (XQuery)

cts.entityHighlight (JavaScript)

Replace words and phrases matching dictionary entries
with content of your choosing.

Language Example

XQuery xquery version "1.0-ml";
import module namespace entity="http://marklogic.com/entity"

at "/MarkLogic/entity.xqy";

let $some-dictionary := ...
entity:enrich($some-node, $some-dictionary)

Server-Side
JavaScript

const entity = require('/MarkLogic/entity');

const someDictionary = ...;
entity.enrich(someNode, someDictionary);
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 599

MarkLogic Server Entity Extraction and Enrichment
For a complete example, see “XQuery Example: entity:enrich” on page 601 or “JavaScript
Example: entity.enrich” on page 605.

You can further tailor the enrichment as follows:

• Use the “full” option to decorate the wrapper element with additional information from
the matched dictionary entry, such as the entity id and normalized text.

• Pass in a mapping between entity type names and element QNames to change the QName
of the wrapper element. For details, see “Using an Entity Type Map for Extraction or
Enrichment” on page 622.

If you pass multiple dictionaries to enrich, then the dictionaries are applied in turn, in the order
provided.

For example, suppose you have an entity dictionary that defines the word “Nixon” as an entity of
type “person:head of state”. Further, suppose you define a mapping from “person:head of state” to
the QName “entity:vip”. Then, the following table summarizes different forms of enrichment
available using entity:enrich or entity.enrich.

If this level of customization does not meet the needs of your application, see “Using
cts:entity-highlight or cts.entityHighlight” on page 600.

15.4.3 Using cts:entity-highlight or cts.entityHighlight

The XQuery function cts:entity-highlight and the JavaScript function cts.entityHighlight
give you complete control over construction of enriched content, at the cost of somewhat greater
complexity.

Use Case Example

original text Nixon

default markup <e:entity xmlns:e="http://marklogic.com/entity">
type="person:head of state">Nixon</e:entity>

“full” option to add
additional entity
attributes

<e:entity xmlns:e="http://marklogic.com/entity"
id="11208172" norm="Nixon"
type="person:head of state">Nixon</e:entity>

entity type map to
change wrapper
QName

<entity:vip>Nixon</entity:vip>

map plus “full”
option

<entity:vip id="11208172" norm="Nixon">Nixon</entity:vip>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 600

MarkLogic Server Entity Extraction and Enrichment
The cts:entity-highlight XQuery function accepts a block of inline XQuery code that gets
evaluated for each entity match. Use this code block to construct your enrichment. Nodes returned
by your inline code are inserted into the final result.

The cts.entityHighlight JavaScript function accepts a callback function as a parameter. Your
function gets called for each entity match. Your callback adds enriched content to the final result
by interacting with the NodeBuilder passed in by MarkLogic.

In both XQuery and JavaScript, details about the matching dictionary entry are made available to
your generator code. For details, see the function reference documentation for
cts:entity-highlight and cts.entityHighlight.

For example, the following snippets use the entity type and matched text information provided by
Marklogic to construct enriched replacement content for the matched text.

For a complete example, see “XQuery Example: cts:entity-highlight” on page 603 or “JavaScript
Example: cts.entityHighlight” on page 607.

15.4.4 XQuery Example: entity:enrich

This example uses entity:enrich to add entity-based markup to XML content, as described in
“Using entity:enrich or entity.enrich” on page 599. The example demonstrates the use of various
customization features of entity:enrich.

The example uses an in-memory dictionary that defines the following:

• An entity of type “person:head of state” for various phrases that describe former United
States President Richard Nixon.

• Several different entity types for the word “Paris”.

Language Example

XQuery cts:entity-highlight(
 $input-node,
 (element { fn:replace($cts:entity-type, ":| ", "-") }

{ $cts:text }),
 $dictionary)

Server-Side
JavaScript

cts.entityHighlight(inputNode,
 function(builder, entityType, text, normText,

entityId, node, start) {
builder.addElement(

fn.replace(entityType, ':| ', '-'), text);
},
resultNodeBuilder, dictionary

);
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 601

MarkLogic Server Entity Extraction and Enrichment
The example uses the dictionary add enrichment around the phrases “Nixon” and “Paris” in the
following input node:

<node>Nixon visited Paris</node>

The example uses an in-memory dictionary and input data for the sake of self-containment. In a
real application, you would usually store the dictionary in MarkLogic, as described in “Persisting
or Retrieving an Entity Dictionary” on page 595. The input node can also be an XML document
or other node in MarkLogic.

Copy and paste the following code into Query Console, set the Query Type to XQuery, and run it.
If you are unfamiliar with Query Console, see the Query Console User Guide.

xquery version "1.0-ml";
import module namespace entity="http://marklogic.com/entity"
 at "/MarkLogic/entity.xqy";

let $dictionary := cts:entity-dictionary((
cts:entity("11208172", "Nixon", "Nixon", "person:head of state"),
cts:entity("11208172", "Nixon", "Richard Nixon", "person:head of state"),

cts:entity("11208172", "Nixon", "Richard M. Nixon", "person:head of state"),

cts:entity("11208172", "Nixon", "Richard Milhous Nixon",
"person:head of state"),

cts:entity("11208172", "Nixon", "President Nixon", "person:head of state"),

cts:entity("08932568", "Paris", "Paris",
"administrative district:national capital"),

cts:entity("09145751", "Paris", "Paris", "administrative district:town"),

cts:entity("09500217", "Paris", "Paris", "imaginary being:mythical being")

))
let $mapping :=
 map:new((
 map:entry("",xs:QName("entity:entity")),
 map:entry("administrative district",xs:QName("entity:gpe")),
 map:entry("person",

map:map() => map:with("", xs:QName("entity:location"))
=> map:with("head of state",

xs:QName("entity:vip")))
))
let $input-node := <node>Nixon visited Paris</node>

return (
"------- default -------",

 entity:enrich($input-node, $dictionary),
 "------- full option -------",
 entity:enrich($input-node, $dictionary, "full"),
 "------- mapping -------",
 entity:enrich($input-node, $dictionary, (), $mapping),
 "------- full + mapping -------",
 entity:enrich($input-node, $dictionary, "full", $mapping)
)

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 602

MarkLogic Server Entity Extraction and Enrichment
You should see output similar to the following. (Whitespace has been added to improve
readability. The enrichment does not introduce new whitespace or comments.)

------- default -------
<node xmlns:e="http://marklogic.com/entity">

<e:entity type="person:head of state">Nixon</e:entity>
visited
<e:entity type="administrative district:national capital">Paris</e:entity>

</node>

------- full option -------
<node xmlns:e="http://marklogic.com/entity">

<e:entity id="11208172" norm="Nixon"
type="person:head of state">Nixon</e:entity>

visited <e:entity id="08932568" norm="Paris"
type="administrative district:national capital">Paris

</e:entity>
</node>

------- mapping -------
<node xmlns:entity="http://marklogic.com/entity">

<entity:vip>Nixon</entity:vip>
visited
<entity:gpe>Paris</entity:gpe>

</node>

------- mapping -------
<node xmlns:entity="http://marklogic.com/entity">

<entity:vip id="11208172" norm="Nixon">Nixon</entity:vip>
visited
<entity:gpe id="08932568" norm="Paris">Paris</entity:gpe>

</node>

15.4.5 XQuery Example: cts:entity-highlight

This example illustrates how you can use cts:entity-highlight to enrich content when you need
more control than that provided by entity:enrich. For details, see “Using cts:entity-highlight or
cts.entityHighlight” on page 600.

The example uses an in-memory dictionary that defines the following:

• An entity of type “person:head of state” for various phrases that describe former United
States President Richard Nixon.

• Several different entity types for the word “Paris”.

The example uses the dictionary add enrichment around the phrases “Nixon” and “Paris” in the
following input node:

<node>Nixon visited Paris</node>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 603

MarkLogic Server Entity Extraction and Enrichment
The example uses an in-memory dictionary and input data for the sake of self-containment. In a
real application, you would usually store the dictionary in MarkLogic, as described in “Persisting
or Retrieving an Entity Dictionary” on page 595. The input node can also be an XML document
or other node in MarkLogic.

Copy and paste the following code into Query Console, set the Query Type to XQuery, and run it.
If you are unfamiliar with Query Console, see the Query Console User Guide.

xquery version "1.0-ml";

let $dictionary := cts:entity-dictionary((
 cts:entity("11208172","Nixon","Nixon","person:head of state"),
 cts:entity("11208172","Nixon","Richard Nixon","person:head of state"),
 cts:entity("11208172","Nixon","Richard M. Nixon","person:head of state"),
 cts:entity("11208172","Nixon","Richard Milhous Nixon",
 "person:head of state"),
 cts:entity("11208172","Nixon","President Nixon","person:head of state"),
 cts:entity("08932568","Paris","Paris",
 "administrative district:national capital"),
 cts:entity("09145751","Paris","Paris","administrative district:town"),
 cts:entity("09500217","Paris","Paris","imaginary being:mythical being")
))
let $input-node := <node>Nixon visited Paris</node>
return cts:entity-highlight(
 $input-node,
 (if ($cts:text ne "")
 then element { fn:replace($cts:entity-type, ":| ", "-") } { $cts:text }
 else ()),
 $dictionary)

The example produces the following output. Whitespace has been added to improve readability.
The enrichment does not introduce new whitespace.

<node>
<person-head-of-state>Nixon</person-head-of-state>
visited
<administrative-district-national-capital>Paris</administrative-district-nat

ional-capital>
</node>

Each time cts:entity-highlight identifies a word or phrase that matches a dictionary entry, it
evaluates the expression passed in as the second parameter. The example code simiply generates
an entity wrapper that uses the entity type name as the wrapper element QName, after replacing
any occurrences of ":" or " " with a dash ("-").

element { fn:replace($cts:entity-type, ":| ", "-") } { $cts:text }

The special variables $cts:text and $cts:entity-type are populated with information from the
matching dictionary entry. Your code has access to other data from the matching dictionary entry,
such as the normalized text ($cts:entity-id) and the entity id ($cts:entity-id). For details, see
the function reference for cts:entity-highlight.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 604

MarkLogic Server Entity Extraction and Enrichment
If text matches more than one dictionary entry, your code is evaluated for each match, but
$cts:text will be empty for all but the first match. The example as given tests for an empty
$cts:text and only generates replacement content for the first match.

if ($cts:text ne "")
then element { fn:replace($cts:entity-type, ":| ", "-") } { $cts:text }
else ()

For example, the term “Paris” matches 3 entries in the dictionary. If you remove the empty string
test, as follows:

cts:entity-highlight(
 $input-node,
 (element { fn:replace($cts:entity-type, ":| ", "-") } { $cts:text }),
 $dictionary)

Then the example produces the following element related to the term “Paris”. The same wrapper
is generated for the first match, but the subsequent matches insert an entity tag with no text
content.

<administrative-district-national-capital>Paris</administrative-district-natio
nal-capital>
<administrative-district-town/>
<imaginary-being-mythical-being/>

15.4.6 JavaScript Example: entity.enrich

This example uses entity.enrich to add entity-based markup to XML content, as described in
“Using entity:enrich or entity.enrich” on page 599. The example demonstrates the use of various
customization features of entity.enrich.

The example uses an in-memory dictionary that defines the following:

• An entity of type “person:head of state” for various phrases that describe former United
States President Richard Nixon.

• Several different entity types for the word “Paris”.

The example uses the dictionary add enrichment around the phrases “Nixon” and “Paris” in the
following input node:

<node>Nixon visited Paris</node>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 605

MarkLogic Server Entity Extraction and Enrichment
The example uses an in-memory dictionary and input data for the sake of self-containment. In a
real application, you would usually store the dictionary in MarkLogic, as described in “Persisting
or Retrieving an Entity Dictionary” on page 595. The input node can also be an XML document
or other node in MarkLogic.

Copy and paste the following code into Query Console, set the Query Type to JavaScript, and run
it. If you are unfamiliar with Query Console, see the Query Console User Guide.

'use strict';
const entity = require('/MarkLogic/entity');

// NOTE: The fields of each string below must be TAB separated.
const dictionary = cts.entityDictionary([

cts.entity('11208172','Nixon','Nixon','person:head of state'),
cts.entity('11208172','Nixon','Richard Nixon','person:head of state'),
cts.entity('11208172','Nixon','Richard M. Nixon','person:head of state'),
cts.entity('11208172','Nixon','Richard Milhous Nixon',

'person:head of state'),
cts.entity('11208172','Nixon','President Nixon','person:head of state'),
cts.entity('08932568','Paris','Paris',

'administrative district:national capital'),
cts.entity('09145751','Paris','Paris','administrative district:town'),
cts.entity('09500217','Paris','Paris','imaginary being:mythical being')

]);
const mapping = {
 '' : fn.QName('http://marklogic.com/entity', 'entity:entity'),
 'administrative district': fn.QName('http://marklogic.com/entity',

'entity:gpe'),
 person: {
 '': fn.QName('http://marklogic.com/entity', 'entity:person'),
 'head of state': fn.QName('http://marklogic.com/entity',

'entity:vip')
 }
};
const inputNode = new NodeBuilder()
 .addElement('node', 'Nixon visited Paris')
 .toNode();
const result = [
 entity.enrich(inputNode, dictionary),
 entity.enrich(inputNode, dictionary, ['full']),
 entity.enrich(inputNode, dictionary, null, mapping),
 entity.enrich(inputNode, dictionary, ['full'], mapping)
];
result;

The example code generates XML of the forms shown below. Whitespace and comments have
been added to improve readability. The enrichment does not introduce new whitespace or
comments. (Due to the way Query Console formats XML for display, the generated XML appears
as strings in the Query Console results window. In fact, they are XML element nodes.)

<!-- default enrichment -->
<node xmlns:e="http://marklogic.com/entity">
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 606

MarkLogic Server Entity Extraction and Enrichment
<e:entity type="person:head of state">Nixon</e:entity>
visited
<e:entity type="administrative district:national capital">Paris</e:entity>

</node>

<!-- using the "full" option adds @id and @norm data -->
<node xmlns:e="http://marklogic.com/entity">

<e:entity id="11208172" norm="Nixon"
type="person:head of state">Nixon</e:entity>

visited <e:entity id="08932568" norm="Paris"
type="administrative district:national capital">Paris

</e:entity>
</node>

<!-- using the entity type map changes the wrapper elements from
-- e:entity to entity:vip and entity:gep -->

<node xmlns:entity="http://marklogic.com/entity">
<entity:vip>Nixon</entity:vip>
visited
<entity:gpe>Paris</entity:gpe>

</node>

<!-- using the "full" option and the entity type map -->
<node xmlns:entity="http://marklogic.com/entity">

<entity:vip id="11208172"
norm="Nixon">Nixon</entity:vip>

visited
<entity:gpe id="08932568" norm="Paris">Paris</entity:gpe>

</node>

15.4.7 JavaScript Example: cts.entityHighlight

This example illustrates how you can use cts.entityHighlight to enrich content when you need
more control than that provided by entity.enrich. The example uses an in-memory dictionary
that defines the following:

• An entity of type “person:head of state” for various phrases that describe former United
States President Richard Nixon.

• Several different entity types for the word “Paris”.

The example uses the dictionary add enrichment around the phrases “Nixon” and “Paris” in the
following input node:

<node>Nixon visited Paris</node>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 607

MarkLogic Server Entity Extraction and Enrichment
The example uses an in-memory dictionary and input data for the sake of self-containment. In a
real application, you would usually store the dictionary in MarkLogic, as described in “Persisting
or Retrieving an Entity Dictionary” on page 595. The input node can also be an XML document
or other node in MarkLogic.

Copy and paste the following code into Query Console, set the Query Type to JavaScript, and run
it. If you are unfamiliar with Query Console, see the Query Console User Guide.

'use strict';

const dictionary = cts.entityDictionary([
 cts.entity('11208172', 'Nixon', 'Nixon', 'person:head of state'),
 cts.entity('11208172', 'Nixon', 'Richard Nixon', 'person:head of state'),
 cts.entity('11208172', 'Nixon', 'Richard M. Nixon', 'person:head of state'),
 cts.entity('11208172', 'Nixon', 'Richard Milhous Nixon', 'person:head of
state'),
 cts.entity('11208172', 'Nixon', 'President Nixon', 'person:head of state'),
 cts.entity('08932568', 'Paris', 'Paris', 'administrative district:national
capital'),
 cts.entity('09145751', 'Paris', 'Paris', 'administrative district:town'),
 cts.entity('09145751', 'Paris', 'Paris', 'being:mythical being')
]);
const inputNode = new NodeBuilder()
 .addElement('node', 'Richard Nixon visited Paris.')
 .toNode();
const resultBuilder = new NodeBuilder();
cts.entityHighlight(inputNodeode,
 function(builder, entityType, text, normText, entityId, node, start)

{
 if (text != '') {
 builder.addElement(fn.replace(entityType, ':| ', '-'), text);
 }
 },
 resultBuilder, dictionary);
resultBuilder.toNode();

The example produces the following output. Whitespace has been added to improve readability.
The enrichment does not introduce new whitespace.

<node>
<person-head-of-state>Nixon</person-head-of-state>
visited
<district-national-capital>Paris</district-national-capital>

</node>

The builder parameter of the callblack contains the NodeBuilder object you pass into
cts.entityHighlight. The remaining parameters, such as text and entityType are populated with
information from the matching dictionary entry. For details, see the function reference for
cts.entityHighlight.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 608

MarkLogic Server Entity Extraction and Enrichment
Each time cts.entityHighlight identifies a word or phrase that match a dictionary entry, it
invokes the callback function passed in as the second parameter. The example function simiply
generates an entity wrapper that uses the entity type name as the wrapper element QName, after
replacing any occurrences of ":" or " " with a dash ("-").

builder.addElement(fn.replace(entityType, ':| ', '-'), text)

Note that you are responsible for extracting the final result from the NodeBuilder when the
highlighting walk completes. For example, by calling NodeBuilder.toNode().

If text matches more than one dictionary entry, your callback is invoked for each match, but the
text parameter will be an empty string for all but the first match. The example as given tests for
an empty text string and only generates replacement content for the first match.

function(builder, entityType, text, normText, entityId, node, start) {
if (text != '') {

builder.addElement(fn.replace(entityType, ':| ', '-'), text);
}

}

For example, the term “Paris” actually matches 3 entries in the dictionary. If you remove the
empty string test from the callback function, then the example produces the following output. The
same wrapper is generated for the first match, but the subsequent matches insert an entity tag with
no text content because text parameter is an empty string.

<administrative-district-national-capital>Paris</administrative-distri
ct-national-capital>
<administrative-district-town/>
<being-mythical-being/>

You can control the entity traversal through the value returned by the callback. The default action
is “continue”. If you return “skip” or “break”, then you can interrupt the walk. For example, the
following call exits the walk after the first match:

function(builder, entityType, text, normText, entityId, node, start) {
if (text != '') {

builder.addElement(fn.replace(entityType, ':| ', '-'), text);
return 'break';

}
}

15.5 Dictionary-Based Entity Extraction

You can use entity extraction to generate a list of entities from an XML document or other XML
node. You define the set of possible entities in one or more entity dictionaries. You can use
extracted entities for purposes such as creating searchable metadata or maintaining classification
data outside of the original content. To mark up entity data inline, use entity enrichment; for
details see “Dictionary-Based Entity Enrichment” on page 598.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 609

MarkLogic Server Entity Extraction and Enrichment
This section covers the following topics related to using the dictionary-based APIs for entity
extraction:

• API Summary

• Extraction Using entity:extract or entity.extract

• Extraction Using cts:entity-walk or cts.entityWalk

• XQuery Example: entity:extract

• XQuery Example: cts:entity-walk

• JavaScript Example: entity.extract

• JavaScript Example: cts.entityWalk

15.5.1 API Summary

The following table summarizes the dictionary-based APIs available for extracting entities from
your XML documents. These APIs require you first to create one or more entity dictionaries, as
described in “Creating an Entity Dictionary” on page 589.

The entity:extract or entity.extract function generates entity elements of the same form as the
replacement content generated by entity:enrich or entity.enrich. The output from extract
should satisfy the needs of most applications. If you require more control, you can use
cts:entity-walk or cts.entityWalk extraction instead.

Function Description

entity:extract (XQuery)

entity.extract (JavaScript)

Identify entities in a node and extract it as an XML
element decorated with the entity type. Some
customization of the generated XML is available.

cts:entity-walk (XQuery)

cts.entity-walk (JavaScript)

Identify entities in a node and extract them in a custom
format.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 610

MarkLogic Server Entity Extraction and Enrichment
15.5.2 Extraction Using entity:extract or entity.extract

When you call entity:extract (XQuery) or entity.extract (JavaScript) with just an input node
and one or more entity dictionaries, then the extracted entities are wrapped in an <entity/>
element with a type attribute that contains the entity type.

For example, the following element nodes were generated by enrich on content that contained
text matching five entity dictionary entries for the terms “Richard Nixon”, “Nixon”, and “Paris”.

<e:entity type="person:head of state"
xmlns:e="http://marklogic.com/entity">Richard Nixon</e:entity>

<e:entity type="person:head of state"
xmlns:e="http://marklogic.com/entity">Nixon</e:entity>

<e:entity type="administrative district:national capital"
xmlns:e="http://marklogic.com/entity">Paris</e:entity>

<e:entity type="administrative district:town"
xmlns:e="http://marklogic.com/entity">Paris</e:entity>

<e:entity type="imaginary being:mythical being"
xmlns:e="http://marklogic.com/entity">Paris</e:entity>

For a complete example, see “XQuery Example: entity:extract” on page 614 or “JavaScript
Example: entity.extract” on page 618.

If you pass multiple dictionaries to extract, then the dictionaries are applied in turn, in the order
provided.

You can further tailor the output of extract as follows:

• Use the “full” option to decorate the entity element with additional information from the
matched dictionary entry, such as the entity id and normalized text.

• Pass in a mapping between entity type names and element QNames to change the QName
of the entity element based on the entity type.

Language Example

XQuery xquery version "1.0-ml";
import module namespace entity="http://marklogic.com/entity"

at "/MarkLogic/entity.xqy";

let $some-dictionary := ...
entity:extract($some-node, $some-dictionary)

Server-Side
JavaScript

const entity = require('/MarkLogic/entity');

const someDictionary = ...;
entity.extract(someNode, someDictionary);
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 611

MarkLogic Server Entity Extraction and Enrichment
For example, suppose you have an entity dictionary that defines the word “Nixon” as an entity of
type “person:head of state”. Further, suppose you define a mapping from “person:head of state” to
the QName “entity:vip”. Then, the following table illustrates different ways of formatting the
extracted entities:

If this level of customization does not meet the needs of your application, see “Extraction Using
cts:entity-walk or cts.entityWalk” on page 612.

15.5.3 Extraction Using cts:entity-walk or cts.entityWalk

When you use cts:entity-walk or cts.entityWalk , MarkLogic runs caller-specified code
whenever text matches an entity dictionary entry. This means you have complete control over the
result of the walk.

• Using cts:entity-walk in XQuery

• Using cts.entityWalk in JavaScript

15.5.3.1 Using cts:entity-walk in XQuery

When you use XQuery, you pass an inline entity generator expression to cts:entity-walk as an
inline expression. The walk returns whatever items your generator produces.

Use Case Example

original text Nixon

default extracted
entity element

<e:entity xmlns:e="http://marklogic.com/entity">
type="person:head of state">

Nixon
</e:entity>

“full” option to add
additional entity
attributes

<e:entity id="11208172" norm="Nixon" start="1"
path="/node/text()" type="person:head of state"
xmlns:e="http://marklogic.com/entity">

Nixon
</e:entity>

entity type map to
change wrapper
QName

<entity:vip xmlns:entity="http://marklogic.com/entity">
Nixon

</entity:vip>

map plus “full”
option

<entity:vip id="11208172" norm="Nixon" start="1"
path="/node/text()"
xmlns:entity="http://marklogic.com/entity">

Nixon
</entity:vip>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 612

MarkLogic Server Entity Extraction and Enrichment
MarkLogic makes information about the match available to your code through special variables
such as $cts:entity-type, $cts:text, $cts:entity-id, $cts:normalized-text, and $cts:start.
For details, see the function reference documentation for cts:entity-walk.

For example, the following code returns a sequence of JSON objects containing details about each
match. The $cts:* variables are populated with details about the match by cts:entity-walk.

cts:entity-walk($input-node,
 (object-node {
 "type": $cts:entity-type,
 "text": $cts:text,
 "normText": $cts:normalized-text,
 "id": $cts:entity-id,
 "start": $cts:start
 }), $dictionary)

You can control the walk by using xdmp:set to set the variable $cts:action to “continue”, “skip”,
or “break”. The default action is to continue.

For a complete example, see “XQuery Example: cts:entity-walk” on page 616.

15.5.3.2 Using cts.entityWalk in JavaScript

When you use Server-Side JavaScript, you pass an entity generator callback function to
cts.entityWalk. MarkLogic invokes the callback whenever an entity match is found. The
callback function has the following signature:

function(entityType, text, normText, entityId, node, start)

MarkLogic populates these parameters with details from the input node and matched entity
dictionary entry.

You’re responsible for accumulating any data created by the extraction in a variable in scope at
the point of call. For example, the following code creates a JavaScript object containing details
about each match and accumulats the objects in a results variable.

const results = [];
cts.entityWalk(inputNode,
 function(entityType, text, normText, entityId, node, start) {
 results.push({
 type: entityType,
 text: text,
 norm: normText,
 id: entityId,
 start: start
 });
 },
 dictionary);
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 613

MarkLogic Server Entity Extraction and Enrichment
The value returned by your callback controls the walk. The default action is to continue the walk.
You can return “skip” or “break” to halt the walk.

For a complete JavaScript example, see “JavaScript Example: cts.entityWalk” on page 620.

15.5.4 XQuery Example: entity:extract

This example uses entity:extract to extract entities from XML content, as described in
“Extraction Using entity:extract or entity.extract” on page 611. The example demonstrates the use
of various cutomization features of entity:extract.

The example uses an in-memory dictionary that defines the following:

• An entity of type “person:head of state” for various phrases that describe former United
States President Richard Nixon.

• Several different entity types for the word “Paris”.

The example uses an in-memory dictionary and input data for the sake of self-containment. In a
real application, you would usually store the dictionary in MarkLogic, as described in “Persisting
or Retrieving an Entity Dictionary” on page 595.

The example uses the dictionary to extract entities for the phrases “Nixon” and “Paris” in the
following input node:

<node>Nixon visited Paris</node>

Copy and paste the following code into Query Console, set the Query Type to XQuery, and run it.
If you are unfamiliar with Query Console, see the Query Console User Guide.

xquery version "1.0-ml";
import module namespace entity="http://marklogic.com/entity"
 at "/MarkLogic/entity.xqy";

let $dictionary := cts:entity-dictionary((
cts:entity("11208172","Nixon","Nixon","person:head of state"),
cts:entity("11208172","Nixon","Richard Nixon","person:head of state"),
cts:entity("11208172","Nixon","Richard M. Nixon","person:head of state"),
cts:entity("11208172","Nixon","Richard Milhous Nixon",

"person:head of state"),
cts:entity("11208172","Nixon","President Nixon","person:head of state"),
cts:entity("08932568","Paris","Paris",

"administrative district:national capital"),
cts:entity("09145751","Paris","Paris","administrative district:town"),
cts:entity("09500217","Paris","Paris","imaginary being:mythical being")

))
(: Entity type to element QName map :)
let $mapping := map:map()
 => map:with("", xs:QName("entity:entity"))
 => map:with("administrative district", xs:QName("entity:gpe"))
 => map:with("person",
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 614

MarkLogic Server Entity Extraction and Enrichment
 map:map() => map:with("", xs:QName("entity:location"))
 => map:with("head of state", xs:QName("entity:vip")))
let $input-node := <node>Nixon visited Paris</node>
return (
 "------- default -------",
 entity:extract($input-node, $dictionary),
 "------- full option -------",
 entity:extract($input-node, $dictionary, ("full")),
 "------- mapping -------",
 entity:extract($input-node, $dictionary, (), $mapping),
 "------- full + mapping -------",
 entity:extract($input-node, $dictionary, ("full"), $mapping)
)

The example extracts four entities, in different formats: One match for “Nixon”, and three for
“Paris”. The following entities are extracted by the various parameter and option combinations:

------- default -------
<e:entity type="person:head of state"
 xmlns:e="http://marklogic.com/entity">Nixon</e:entity>
<e:entity type="administrative district:national capital"
 xmlns:e="http://marklogic.com/entity">Paris</e:entity>
<e:entity type="administrative district:town"
 xmlns:e="http://marklogic.com/entity">Paris</e:entity>
<e:entity type="imaginary being:mythical being"
 xmlns:e="http://marklogic.com/entity">Paris</e:entity>
------- full option -------
<e:entity id="11208172" norm="Nixon" start="1"
 path="/node/text()" type="person:head of state"
 xmlns:e="http://marklogic.com/entity">Nixon</e:entity>
<e:entity id="08932568" norm="Paris" start="15"
 path="/node/text()" type="administrative district:national capital"
 xmlns:e="http://marklogic.com/entity">Paris</e:entity>
<e:entity id="09145751" norm="Paris" start="15"
 path="/node/text()" type="administrative district:town"
 xmlns:e="http://marklogic.com/entity">Paris</e:entity>
<e:entity id="09500217" norm="Paris" start="15"
 path="/node/text()" type="imaginary being:mythical being"
 xmlns:e="http://marklogic.com/entity">Paris</e:entity>
------- mapping -------
<entity:vip
 xmlns:entity="http://marklogic.com/entity">Nixon</entity:vip>
<entity:gpe
 xmlns:entity="http://marklogic.com/entity">Paris</entity:gpe>
<entity:gpe
 xmlns:entity="http://marklogic.com/entity">Paris</entity:gpe>
<entity:entity type="imaginary being:mythical being"
 xmlns:entity="http://marklogic.com/entity">Paris</entity:entity>
------- full + mapping -------
<entity:vip id="11208172" norm="Nixon" start="1" path="/node/text()"
 xmlns:entity="http://marklogic.com/entity">Nixon</entity:vip>
<entity:gpe id="08932568" norm="Paris" start="15" path="/node/text()"
 xmlns:entity="http://marklogic.com/entity">Paris</entity:gpe>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 615

MarkLogic Server Entity Extraction and Enrichment
<entity:gpe id="09145751" norm="Paris" start="15" path="/node/text()"
 xmlns:entity="http://marklogic.com/entity">Paris</entity:gpe>
<entity:entity id="09500217" norm="Paris" start="15" path="/node/text()"

type="imaginary being:mythical being"
 xmlns:entity="http://marklogic.com/entity">Paris</entity:entity>

If the “full” option and entity type map features of entity:extract do not provide enough control
of the output to meet the needs of your application, use cts:entity-walk instead.

For more details on entity type maps, see “Using an Entity Type Map for Extraction or
Enrichment” on page 622.

15.5.5 XQuery Example: cts:entity-walk

This example uses cts:entity-walk to extract entities as JSON object nodes, rather than as XML
elements as you would get using entity:extract. Each object contains details about the match,
such as the entity type, entity id, and codepoint offset in the input node.

For more details, see “Extraction Using cts:entity-walk or cts.entityWalk” on page 612.

The example uses an in-memory dictionary that defines the following:

• An entity of type “person:head of state” for various phrases that describe former United
States President Richard Nixon.

• Several different entity types for the word “Paris”.

The example uses an in-memory dictionary and input data for the sake of self-containment. In a
real application, you would usually store the dictionary in MarkLogic, as described in “Persisting
or Retrieving an Entity Dictionary” on page 595.

The example uses the dictionary to extract entities for the phrases “Nixon” and “Paris” in the
following input node:

<node>Nixon visited Paris</node>

Copy and paste the following code into Query Console, set the Query Type to XQuery, and run it.
If you are unfamiliar with Query Console, see the Query Console User Guide.

xquery version "1.0-ml";

let $dictionary := cts:entity-dictionary((
cts:entity("11208172","Nixon","Nixon","person:head of state"),
cts:entity("11208172","Nixon","Richard Nixon","person:head of state"),
cts:entity("11208172","Nixon","Richard M. Nixon","person:head of state"),
cts:entity("11208172","Nixon","Richard Milhous Nixon",

"person:head of state"),
cts:entity("11208172","Nixon","President Nixon","person:head of state"),
cts:entity("08932568","Paris","Paris",

"administrative district:national capital"),
cts:entity("09145751","Paris","Paris","administrative district:town"),
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 616

MarkLogic Server Entity Extraction and Enrichment
cts:entity("09500217","Paris","Paris","imaginary being:mythical being")
))
let $input-node := <node>Nixon visited Paris</node>
return cts:entity-walk($input-node,
 (object-node {
 "type": $cts:entity-type,
 "text": $cts:text,
 "normText": $cts:normalized-text,
 "id": $cts:entity-id,
 "start": $cts:start
 }), $dictionary)

You should get output similar to the following:

{ "type":"person:head of state",
"text":"Nixon", "normText":"Nixon",
"id":"11208172", "start":1}

{ "type":"administrative district:national capital",
"text":"Paris", "normText":"Paris",
"id":"08932568", "start":15}

{ "type":"administrative district:town",
"text":"Paris", "normText":"Paris",
"id":"09145751", "start":15}

{ "type":"imaginary being:mythical being",
"text":"Paris", "normText":"Paris",
"id":"09500217", "start":15}

The $cts:* variables used to populate the JSON property values are set by cts:entity-walk,
based on the matched text and dictionary entry.

You can control the walk by setting $cts:action. The default action is “continue”. If you set the
action to “skip” or “break” using xdmp:set, then you can interrupt the walk. For example, the
following call exits the walk after the first match:

cts:entity-walk($input-node,
 (xdmp:set($cts:action, "break"),

object-node {
 "type": $cts:entity-type,
 "text": $cts:text,
 "normText": $cts:normalized-text,
 "id": $cts:entity-id,
 "start": $cts:start
 }), $dictionary)
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 617

MarkLogic Server Entity Extraction and Enrichment
15.5.6 JavaScript Example: entity.extract

This example uses entity.extract to identify entities in your content and generate a sequence of
entity elements that describe the matches, as described in “Extraction Using entity:extract or
entity.extract” on page 611. The example demonstrates the use of various customization features
of entity.extract.

The example uses an in-memory dictionary that defines the following:

• An entity of type “person:head of state” for various phrases that describe former United
States President Richard Nixon.

• Several different entity types for the word “Paris”.

The example uses an in-memory dictionary and input data for the sake of self-containment. In a
real application, you would usually store the dictionary in MarkLogic, as described in “Persisting
or Retrieving an Entity Dictionary” on page 595.

The example uses the dictionary to extract entities for the phrases “Nixon” and “Paris” in the
following input node:

<node>Nixon visited Paris</node>

Copy and paste the following code into Query Console, set the Query Type to JavaScript, and run
it. If you are unfamiliar with Query Console, see the Query Console User Guide.

'use strict';
const entity = require('/MarkLogic/entity');

// Construct the dictionary. Could also get it from the db.
const dictionary = cts.entityDictionary([
 cts.entity('11208172', 'Nixon', 'Nixon', 'person:head of state'),
 cts.entity('11208172', 'Nixon', 'Richard Nixon', 'person:head of state'),
 cts.entity('11208172', 'Nixon', 'Richard M. Nixon', 'person:head of state'),
 cts.entity('11208172', 'Nixon', 'Richard Milhous Nixon', 'person:head of
state'),
 cts.entity('11208172', 'Nixon', 'President Nixon', 'person:head of state'),
 cts.entity('08932568', 'Paris', 'Paris', 'administrative district:national
capital'),
 cts.entity('09145751', 'Paris', 'Paris', 'administrative district:town'),
 cts.entity('09500217', 'Paris', 'Paris', 'being:mythical being')
]);
// Entity type to wrapper element QName map
const mapping = {
 '' : fn.QName('http://marklogic.com/entity', 'entity:entity'),
 'administrative district':

fn.QName('http://marklogic.com/entity', 'entity:gpe'),
 person: {
 '': fn.QName('http://marklogic.com/entity', 'entity:person'),
 'head of state': fn.QName('http://marklogic.com/entity', 'entity:vip')
 }
};
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 618

MarkLogic Server Entity Extraction and Enrichment
// Construct <node>Nixon visited Paris</node>
const inputNode = new NodeBuilder()
 .addElement('node', 'Nixon visited Paris')
 .toNode();
const resultBuilder = new NodeBuilder();
const result = [
 entity.extract(inputNode, dictionary),
 entity.extract(inputNode, dictionary, ['full']),
 entity.extract(inputNode, dictionary, null, mapping),
 entity.extract(inputNode, dictionary, ['full'], mapping)
];
result;

The example extracts four entities, in different formats: One match for “Nixon”, and three for
“Paris”. The example extracts the following entities, based on the various parameter and option
combinations:

------- default -------
<e:entity type="person:head of state"
 xmlns:e="http://marklogic.com/entity">Nixon</e:entity>
<e:entity type="administrative district:national capital"
 xmlns:e="http://marklogic.com/entity">Paris</e:entity>
<e:entity type="administrative district:town"
 xmlns:e="http://marklogic.com/entity">Paris</e:entity>
<e:entity type="imaginary being:mythical being"
 xmlns:e="http://marklogic.com/entity">Paris</e:entity>
------- full option -------
<e:entity id="11208172" norm="Nixon" start="1"
 path="/node/text()" type="person:head of state"
 xmlns:e="http://marklogic.com/entity">Nixon</e:entity>
<e:entity id="08932568" norm="Paris" start="15"
 path="/node/text()" type="administrative district:national capital"
 xmlns:e="http://marklogic.com/entity">Paris</e:entity>
<e:entity id="09145751" norm="Paris" start="15"
 path="/node/text()" type="administrative district:town"
 xmlns:e="http://marklogic.com/entity">Paris</e:entity>
<e:entity id="09500217" norm="Paris" start="15"
 path="/node/text()" type="imaginary being:mythical being"
 xmlns:e="http://marklogic.com/entity">Paris</e:entity>
------- mapping -------
<entity:vip
 xmlns:entity="http://marklogic.com/entity">Nixon</entity:vip>
<entity:gpe
 xmlns:entity="http://marklogic.com/entity">Paris</entity:gpe>
<entity:gpe
 xmlns:entity="http://marklogic.com/entity">Paris</entity:gpe>
<entity:entity type="imaginary being:mythical being"
 xmlns:entity="http://marklogic.com/entity">Paris</entity:entity>
------- full + mapping -------
<entity:vip id="11208172" norm="Nixon" start="1" path="/node/text()"
 xmlns:entity="http://marklogic.com/entity">Nixon</entity:vip>
<entity:gpe id="08932568" norm="Paris" start="15" path="/node/text()"
 xmlns:entity="http://marklogic.com/entity">Paris</entity:gpe>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 619

MarkLogic Server Entity Extraction and Enrichment
<entity:gpe id="09145751" norm="Paris" start="15" path="/node/text()"
 xmlns:entity="http://marklogic.com/entity">Paris</entity:gpe>
<entity:entity id="09500217" norm="Paris" start="15" path="/node/text()"

type="imaginary being:mythical being"
 xmlns:entity="http://marklogic.com/entity">Paris</entity:entity>

If the “full” option and entity type map features of cts:extract do not provide enough control of the
output to meet the needs of your application, use cts.entityWalk instead.

For more details on entity type maps, see “Using an Entity Type Map for Extraction or
Enrichment” on page 622.

15.5.7 JavaScript Example: cts.entityWalk

This example uses cts.entityWalk to extract entities as JSON object nodes, rather than as the
XML elements you get from entity.extract. Each object contains details about the match, such
as the entity type, entity id, and codepoint offset in the input node.

For more details, see “Extraction Using cts:entity-walk or cts.entityWalk” on page 612.

The example uses an in-memory dictionary that defines the following:

• An entity of type “person:head of state” for various phrases that describe former United
States President Richard Nixon.

• Several different entity types for the word “Paris”.

The example uses an in-memory dictionary and input data for the sake of self-containment. In a
real application, you would usually store the dictionary in MarkLogic, as described in “Persisting
or Retrieving an Entity Dictionary” on page 595.

The example uses the dictionary to extract entities for the phrases “Nixon” and “Paris” in the
following input node:

<node>Nixon visited Paris</node>

Copy and paste the following code into Query Console, set the Query Type to JavaScript, and run
it. If you are unfamiliar with Query Console, see the Query Console User Guide.

'use strict';

// Construct the dictionary. Could also get it from the db.
const dictionary = cts.entityDictionary([
 cts.entity('11208172', 'Nixon', 'Nixon', 'person:head of state'),
 cts.entity('11208172', 'Nixon', 'Richard Nixon', 'person:head of state'),
 cts.entity('11208172', 'Nixon', 'Richard M. Nixon', 'person:head of state'),
 cts.entity('11208172', 'Nixon', 'Richard Milhous Nixon', 'person:head of
state'),
 cts.entity('11208172', 'Nixon', 'President Nixon', 'person:head of state'),
 cts.entity('08932568', 'Paris', 'Paris', 'administrative district:national
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 620

MarkLogic Server Entity Extraction and Enrichment
capital'),
 cts.entity('09145751', 'Paris', 'Paris', 'administrative district:town'),
 cts.entity('09500217', 'Paris', 'Paris', 'being:mythical being')
]);
// Construct <node>Nixon visited Paris</node>
const inputNode = new NodeBuilder()
 .addElement('node', 'Richard Nixon visited Paris')
 .toNode();
const resultBuilder = new NodeBuilder();
const results = [];
cts.entityWalk(inputNode,
 function(entityType, text, normText, entityId, node, start) {
 results.push({
 type: entityType,
 text: text,
 norm: normText,
 id: entityId,
 start: start
 });
 },
 dictionary);

results;

The example constructs a JavaScript object for each match. Each object contains details about the
match, such as the entity type, entity id, and code-point offset in the input node. You should get
output similar to the following:

[{"type":"person:head of state",
"text":"Nixon", "normText":"Nixon",
"id":"11208172", "start":1},

{ "type":"administrative district:national capital",
"text":"Paris", "normText":"Paris",
"id":"08932568", "start":15},

{ "type":"administrative district:town",
"text":"Paris", "normText":"Paris",
"id":"09145751", "start":15},

{ "type":"imaginary being:mythical being",
"text":"Paris", "normText":"Paris",
"id":"09500217", "start":15}]

The parameter values passed to your callback are populated by cts.entityWalk based on the
matched text and dictionary entry.

You can control the walk by returning an action string value. The default action is “continue”. If
you return “skip” or “break”, then you can interrupt the walk. For example, the following call
exits the walk after the first match:
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 621

MarkLogic Server Entity Extraction and Enrichment
cts.entityWalk(inputNode,
 function(entityType, text, normText, entityId, node, start) {
 results.push({
 type: entityType,
 text: text,
 norm: normText,
 id: entityId,
 start: start
 });
 return 'break';
 },
 dictionary);

15.6 Using an Entity Type Map for Extraction or Enrichment

This section describes how to use the entity type map parameter accepted by the XQuery
functions entity:extract and entity:enrich, or the JavaScript functions entity.extract and
entity.enrich. Such a mapping gives you more control over the format of the extracted entities or
enrichment markup.

This section covers the following topics:

• Entity Type Map Basics

• The Default Entity Type Map

• Handling Compound Entity Types

• Filtering Entity Types With a Mapping

15.6.1 Entity Type Map Basics

When you use the XQuery functions entity:enrich and entity:extract, or the JavaScript
functions entity.enrich and entity.extract, you can pass in a mapping from entity type names
to XML element QNames.

MarkLogic defines a default mapping that the enrich and extract functions use if you do not
provide your own enitity type mapping. For details, see “The Default Entity Type Map” on
page 624.

An entity type map enables you to change the QName of the generated entity wrapper element
based on the entity type of a matching dictionary entry. For example, you can create a mapping
that generates a my:person wrapper element when the entity type is “person”, instead of the
default e:entity wrapper element.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 622

MarkLogic Server Entity Extraction and Enrichment
In XQuery, use a map:map to define the entity type mappings. In JavaScript, use a JavaScript
object.

The key value pairs in the mapping have the following characteristics:

• The key is an entity type name.

• A key that is an empty string specifies the QName to use when no explicit mapping exists
for a type.

• The value is either a QName or another entity type map. When the value is a map, it
defines a mapping for a segment of a compound entity type such as “place:building”. For
more details, see “Handling Compound Entity Types” on page 626.

• If you map a type to the default entity QName
(fn:QName("http://marklogic.com/entity", "entity")), then the generated wrapper
element includes a type attribute, just as it does when you do not use a map. If you map a
type to any other QName, then the wrapper element has no type attribute because the type
is implicit in the mapping.

If you use a type map, then any entity that is not covered by the map is discarded. That is, text of
an umapped type is not treated as an entity, even if it matches an entity dictionary entry.

For example, the default entity wrapper generated by enrich and extract is of the following form:

<e:entity xmlns:e=... type="theEntityType">theText</e:entity>

Suppose you do not want all entities to generate an <e:entity/>. Instead, you want the following
behavior:

If the entity type is Then generate a wrapper with QName

person my:person

location my:place

anything else e:entity
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 623

MarkLogic Server Entity Extraction and Enrichment
The followig map produces the desired behavior:

The example map produce entities of the following forms.

<my:person xmlns:my=...>somePerson</my:person>
<my:place xmlns:my=...>somePlace</my:place>
<e:entity xmlns:e=... type="thing">someThing</e:entity>

Notice that only the e:entity element includes a type attribute. This is because the entity type is
assumed to be implicit in the QName customization when you use a custom QName.

In JavaScript, you can also use associative array syntax to construct a map. For example:

map[''] = fn.QName('http://marklogic.com/entity', 'entity:entity');
map['location' = fn.QName('http://my/example', 'my:place');
map['person'] = person: fn.QName('http://my/example', 'my:person');

15.6.2 The Default Entity Type Map

If you do not pass your own entity type map into the extract and enrich library functions,
MarkLogic uses its default map. The default map enables you to create a dictionary for some
commonly used entity abstractions without adopting a complex external ontology or defining
your own type system.

The wrapper elements generated using the default map are all in the namespace
http://marklogic.com/entity. For example:

<e:entity xmlns:e="http://marklogic.com/entity">...</e:entity>

The default map defines mappings for common entity abstractions such as person, location, url,
and currency. For example, the entity type name PERSON maps to the QName e:person, and the
entity type IDENTIFIER:URL maps to e:url. Any unrecognized entity type maps to the QName
e:entity.

Language Example

XQuery let $map := map:map()
 => map:with("", xs:QName("entity:entity"))
 => map:with("person", fn:QName("http://my/example","my:person"))
 => map:with("location", fn:QName("http://my/example","my:place"))

Server-Side
JavaScript

const map = {
 '' : fn.QName('http://marklogic.com/entity', 'entity:entity'),
 location: fn.QName('http://my/example', 'my:place'),
 person: fn.QName('http://my/example', 'my:person')
}

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 624

MarkLogic Server Entity Extraction and Enrichment
For a complete list of the default key-value pairs, see the function reference for the XQuery
functions entity:enrich or entity:extract, or the JavaScript functions entity.enrich and
entity.extract.

The following example defines an entity dictionary that uses entity types from the default map
(LOCATION, IDENTIFIER:MONEY, and NATIONALITY) and one type (thing) that is not used
by the default map.

The example extracts the following sequence of entities. Notice that the entity "trip", whose type
does not have an entry in the default map, is extracted as an e:entity element.

<e:entity type="thing" xmlns:e="http://marklogic.com/entity">cost</e:entity>
<e:location xmlns:e="http://marklogic.com/entity">Washington, DC</e:location>
<e:nationality xmlns:e="http://marklogic.com/entity">Japanese</e:nationality>
<e:money xmlns:e="http://marklogic.com/entity">Yen</e:money>

Language Example

XQuery xquery version "1.0-ml";
import module namespace entity="http://marklogic.com/entity"
 at "/MarkLogic/entity.xqy";

let $dictionary := cts:entity-dictionary((
 cts:entity("1234", "Tokyo", "Tokyo", "LOCATION"),
 cts:entity("2345", "Yen", "Yen", "IDENTIFIER:MONEY"),
 cts:entity("4567", "Japanese", "Japanese", "NATIONALITY"),

cts:entity("5678", "trip", "trip", "thing")
))
let $input-node :=
 <node>The cost of the trip to Tokyo was paid in Japanese Yen.</node>
return entity:extract($input-node, $dictionary)

Server-Side
JavaScript

'use strict';

const entity = require('/MarkLogic/entity');
const dictionary = cts.entityDictionary([
 cts.entity('1234', 'Tokyo', 'Tokyo', 'LOCATION'),
 cts.entity('2345', 'Yen', 'Yen', 'IDENTIFIER:MONEY'),
 cts.entity('4567', 'Japanese', 'Japanese', 'NATIONALITY'),

cts.entity('5678', 'trip', 'trip', 'thing')
]);
const inputNode =
 new NodeBuilder()
 .addElement('node', 'The cost of the trip to Tokyo was paid
in Japanese Yen.')
 .toNode();
entity.extract(inputNode, dictionary);
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 625

MarkLogic Server Entity Extraction and Enrichment
15.6.3 Handling Compound Entity Types

A compound entity type is composed of colon (“:”) separated segments that specify sub-types of
that type. For example, an entity type such as “person:head of state” has two segments: “person”
and “head of state” and specifies a sub-type of person. You can create an entity type map that
takes such specialization into consideration by creating a key-value pair where the value is a map.

For example, suppose you want to create a mapping that has the following effect:

Then you can use the following map get the desired behavior. Notice that the value for the
“person” key is itself a type map.

You can nest the type maps as deeply as necessary to cover additional type segments.

15.6.4 Filtering Entity Types With a Mapping

When you use type map, any entity type not covered by the map is discarded. That is, text that
matches an unmapped type is not treated as an entity reference for purposes of enrichment or
extraction. In this way, an entity type map can serve as a filter.

If the entity type is Then generate a wrapper with QName

person person

person:artist artiste

person:head of state vip

person:anythingElse person

Language Example

XQuery map:map()
=> map:with("person",

map:map() => map:with("", "person")
=> map:with("artist", xs:QName("artiste")
=> map:with("head of state", xs:QName("vip")

Server-Side
JavaScript

{person: {
'': 'person',
artist: fn.QName('', 'artiste'),
'head of state': fn.QName('', 'vip')

} }
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 626

MarkLogic Server Entity Extraction and Enrichment
For example, if you have an entity dictionary that contains entries for the entity types “person”,
“location” and “thing”, but you are only interested in extracting “person” entities, then you can
define a map that only covers the “person” entity type, causing any “location” or “thing” entities
to be treated as non-entity text, and thus not extracted. Note that you still incur the cost of entity
matching.

The following example defines a map that covers only a single entity type, “person”. If used with
an entity dictionary that also defines “location” and “thing” entity types, such entities would not
be extracted when used with the map.

15.7 Overlapping Entity Match Handling

This section discusses how the dictionary-based APIs behave when more than one entity
definition applies to the same piece of text. See the following topics for more details:

• Understanding Entity Overlaps

• Overlap Handling Options

• Example: Overlap Handling in entity:extract and entity.extract

• Example: Overlap Handling in entity:enrich and entity.enrich

• Interaction with the Walk and Highlight Functions

15.7.1 Understanding Entity Overlaps

An entity overlap occurs when the same run of input text matches more than one entry in the same
entity dictionary. For example, suppose you create a dictionary with entries for the terms “cat”,
“black cat”, and “cat fur”. Then the phrase “A black cat fur ball” contains overlapping text runs
matching all three of these entries:

The best treatment for such overlaps depends on your application. Allowing overlaps is often the
best choice for entity extraction, but may not produce desirable results for entity enrichment.

Language Example

XQuery map:map()=> map:with("person", xs:QName("entity:entity"))

Server-Side
JavaScript

{'person' :
fn.QName('http://marklogic.com/entity', 'entity:entity') }
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 627

MarkLogic Server Entity Extraction and Enrichment
When you allow overlaps during enrichment, the text “captured” for enrichment can be an empty
string if one entity match is completely contained in another (“cat” in “black cat”), or a partial
string if the matches partially overlap (“black cat” and “cat fur”). For more details, see “Example:
Overlap Handling in entity:enrich and entity.enrich” on page 629.

MarkLogic supports both allowing and removing overlaps through options that are available
during dictionary creation. For details, see “Overlap Handling Options” on page 628.

Overlaps are only a concern within a single dictionary. You can pass multiple dictionaries to the
extract and enrich library functions, and those dictionaries can contain entries whose text
overlaps, but the dictionary with the first match always “wins”.

15.7.2 Overlap Handling Options

When you create an entity dictionary, you can use the following options to control the handling of
overlaps. These options are mutually exclusive.

• allow-overlaps: During extraction, include all overlapping matches. During enrichment,
enrich the non-overlapping portions of each match; do not enrich entities completely
contained within another match.

• remove-overlaps: MarkLogic selects a single “best” match and discards the others. The
“best” match is the longest match when the text is scanned from left to right. If more than
one match qualifies, select the leftmost.

By default, dictionaries are created with “allow-overlaps”.

For more details, see “Example: Overlap Handling in entity:extract and entity.extract” on
page 628 and “Example: Overlap Handling in entity:enrich and entity.enrich” on page 629.

These options also affect how often your extraction or enrichment code is called and with which
values when you use cts:entity-highlight, cts:entity-walk, cts.entityHighlight, or
cts.entityWalk. For details, see “Interaction with the Walk and Highlight Functions” on
page 631.

15.7.3 Example: Overlap Handling in entity:extract and entity.extract

This section explores how the overlap option set for a dictionary affects the output of
entity:extract and entity.extract.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 628

MarkLogic Server Entity Extraction and Enrichment
Suppose you have an entity dictionary containing the following entries:

Suppose that your input data is the following XML element node:

<node>A black cat fur ball</node>

Then the following table illustrates default results from calling entity:extract or entity.extract
with the example data and a dictionary using different overlap options. (Whitespace has been
added to the sample output to improve readability.)

Notice that when you use “remove-overlaps”, extract returns only the “black cat” entity match
because this is longest match.

15.7.4 Example: Overlap Handling in entity:enrich and entity.enrich

This section explores how the overlap option set for a dictionary affects the output of
entity:enrich and entity.enrich.

ID Norm. Text Text Entity Type

1234 cat cat feline

2345 black cat black cat superstition

3456 cat fur cat fur allergen

Option Extraction Result

allow-overlaps <e:entity type="superstition" xmlns:e=...>
black cat

</e:entity>
<e:entity type="allergen" xmlns:e=...>

cat fur
</e:entity>
<e:entity type="feline" xmlns:e=...>

cat
</e:entity>

remove-overlaps <e:entity type="superstition" xmlns:e=...>
black cat

</e:entity>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 629

MarkLogic Server Entity Extraction and Enrichment
Suppose you have an entity dictionary containing the following entries:

Suppose that your input data is the following XML element node:

<node>A black cat fur ball</node>

The following table illustrates default results from calling entity:enrich or entity.enrich with
the example data and a dictionary using different overlap options. (Whitespace has been added to
the sample output to improve readability.)

Notice the following about using a dictionary with “allow-overlaps”enabled during enrichment:

• The “cat” entity is not reflected in the output because the matched text (“cat”) is
completely encapsulated in another match, “black cat”. The term “cat” cannot be marked
up without adding new, duplicate text to the content, which the API never does.

• The “cat fur” entity markup only captures the text “ fur” because this is the
non-overlapping portion of the matched text. Again, it is not possible to mark up the
whole phrase “cat fur” without introducing duplicate text.

Thus, you usually want to use a dictionary with “remove-overlaps” enabled for enrichment.

ID Norm. Text Text Entity Type

1234 cat cat feline

2345 black cat black cat superstition

3456 cat fur cat fur allergen

Option Enrichment Result

allow-overlaps <node xmlns:e="http://marklogic.com/entity">A
<e:entity type="superstition">black cat</e:entity>
<e:entity type="allergen"> fur</e:entity> ball

</node>

remove-overlaps <node xmlns:e="http://marklogic.com/entity">
A <e:entity type="superstition">black cat</e:entity> fur

ball
</node>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 630

MarkLogic Server Entity Extraction and Enrichment
15.7.5 Interaction with the Walk and Highlight Functions

The XQuery functions cts:entity-walk or cts:entity-highlight and the Server-Side JavaScript
functions cts.entityWalk or cts.entityHighlight interact with overlaps as follows:

• When “remove-overlaps” is enabled on a dictionary, your code is only evaluated for the
“best” match, as previously described.

• When “allow-overlaps” is enabled on a dictionary, your code is evaluated for every
overlapping match in the dictionary.

• When “allow-overlaps” is enabled, then the text value made available to your code by
cts:entity-highlight and cts.entityHighlight will be an empty string if it is completely
contained in another match (as with “cat” and “black cat”)

• When “allow-overlaps” is enabled, then the text value made available to your code by
cts:entity-highlight and cts.entityHighlight will be only the non-overlapping part of
a partial overlap (as with “black cat” and “cat fur”).

For examples of cases where you might get an empty or partial string during entity highlighting,
see “Example: Overlap Handling in entity:enrich and entity.enrich” on page 629. The enrich
library function is basically an abstraction on top of cts:entity-highlight and
cts.entityHighlight.

15.8 Entity Identification Using Reverse Query

If your entities cannot be identified by string matching, but can be described by a query, you can
use a reverse query for entity identification. A “normal” query says “find all documents that
match this query”. A reverse query says “find all queries that would match this document”.

Use the following procedure:

1. Create a rule document containing a serialized cts query that describe the entity.

2. Use cts:reverse-query (XQuery) or cts.reverseQuery (JavaScript) to find the rule
documents that contain revere queries satisfied by your content.

3. If you want to enrich the content, apply cts:highlight (XQuery) or cts.highlight
(JavaScript) to the input and matching rules.

4. If you want to extract entities, apply cts:walk (XQuery) or cts.walk (JavaScript) to the
input and matching rules.

For example, suppose you want to annotate terms in your content that correspond to activities
such as hiking, biking, and running. However, you want to use a stemmed word query instead of a
simple string match so that terms such as “run”, “ran”, and “running” match the “run” activity.
You cannot use entity:enrich or entity.enrich because dictionary matching does use stemmed
search.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 631

MarkLogic Server Entity Extraction and Enrichment
The following node can serve as an entity matching rule for terms that stem to “run”, “swim”,
“hike”, and “bike”.

<activity type="outdoor">
<query>{cts:word-query(("run", "swim", "hike", "bike"))}</query>

</activity>

If you insert such rules into MarkLogic in a collection with the URI “activity”, then the following
query finds words that match the rules, and wraps each matched word in an wrapper element
whose local name is the same as the type attribute on the matching rule:

Language Example

XQuery xquery version "1.0-ml";

let $input-node := <node>I ran 5 miles and then went hiking</node>
return
fn:fold-left(function($prev, $next) {
 cts:highlight($prev, cts:query($next/activity/query/*),
 element {$next/activity/@type} {
 $cts:text
 }
)},
 $input-node,
 cts:search(fn:collection("activity"), cts:reverse-query($input-node))
)

Server-Side
JavaScript

'use strict';
const entity = require('/MarkLogic/entity');

const inputNode =
new NodeBuilder()

.addElement('node', 'I ran 5 miles and then went hiking')

.toNode();
const matchingRules = cts.search(

cts.andQuery([
cts.collectionQuery('activity'),
cts.reverseQuery(inputNode)]));

const resultBuilder = new NodeBuilder();

for (let rule of matchingRules) {
 cts.highlight(inputNode,
 cts.query(fn.head(rule.xpath('/activity/query/*'))),
 function(builder, text, node, queries, start) {

builder.addElement(
fn.head(rule.xpath('/activity/@type/data()')), text);

 },
 resultBuilder);
}
resultBuilder.toNode();
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 632

MarkLogic Server Entity Extraction and Enrichment
If the “activity” collection includes the rule for “run”, “swim”, “hike”, and “bike” shown above,
then the example produces the following output:

<node>
I <outdoor>ran</outdoor> 5 miles and then went <outdoor>hiking</outdoor>

</node>

If you use cts:walk or cts.walk instead of cts:highlight or cts.highlight, then you can extract
entities, rather than enrich the content. For example:

Language Example

XQuery xquery version "1.0-ml";

let $input-node := <node>I ran 5 miles and then went hiking</node>
return
fn:fold-left(function($prev, $next) {
 cts:walk($prev, cts:query($next/activity/query/*),
 element {$next/activity/@type} {
 $cts:text
 }
)},
 $input-node,
 cts:search(fn:collection("activity"), cts:reverse-query($input-node))
)

Server-Side
JavaScript

'use strict';
const entity = require('/MarkLogic/entity');

const inputNode =
 new NodeBuilder()
 .addElement('node', 'I ran 5 miles and then went hiking')
 .toNode();
const matchingRules = cts.search(
 cts.andQuery([
 cts.collectionQuery('activity'),
 cts.reverseQuery(inputNode)]));
const results = [];

for (let rule of matchingRules) {
 cts.walk(inputNode,
 cts.query(fn.head(rule.xpath('/activity/query/*'))),
 function(text, node, queries, start) {

const localname = fn.head(rule.xpath('/activity/@type/data()'));

results.push(
new NodeBuilder().addElement(localname, text).toNode());

 });
}
results;
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 633

MarkLogic Server Entity Extraction and Enrichment
The example produces the following extracted entities:

<outdoor>ran</outdoor>
<outdoor>hiking</outdoor>

15.9 Entity Enrichment Pipelines

If your entities cannot be identified using a dictionary (string matching) or a query, you can use a
3rd party entity extraction or enrichment library.

MarkLogic Server includes Content Processing Framework (CPF) applications to perform entity
enrichment on your XML. You can use the CPF applications for third-party entity extraction
technologies, or you can create custom applications with your own technology or some other
third-party technology. This section includes the following parts:

• Sample Pipelines Using Third-Party Technologies

• Custom Entity Enrichment Pipelines

These CPF applications require you to install content processing on your database. For details on
CPF, including information about domains and pipelines, see the Content Processing Framework
Guide guide.

15.9.1 Sample Pipelines Using Third-Party Technologies

There are sample pipelines and CPF applications which connect to third-party entity enrichment
tools. The sample pipelines are installed in the <marklogic-dir>/Installer/samples directory.
There are sample pipelines for the following entity enrichment tools:

• Expert System Cogito® and TEMIS Luxid®

• Calais OpenCalais

• SRA NetOwl

• Data Harmony

MarkLogic Server connects to these tools via a web service. Sample code is provided on an as-is
basis; the sample code is not intended for production applications and is not supported. For
details, including setup instructions, see the README.txt file and the samples-license.txt file in
the <marklogic-dir>/Installer/samples directory.

15.9.2 Custom Entity Enrichment Pipelines

You can create custom CPF applications to enrich your documents using other third-party
enrichment applications. To create a custom CPF application you will need the third party
application, a way to connect to it (via a web service, for example), and you will need to write
XQuery code and a pipeline file similar to the ones used for the sample applications described in
the previous section.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 634

MarkLogic Server Creating Alerting Applications
16.0 Creating Alerting Applications
646

This chapter describes how to create alerting applications in MarkLogic Server as well as
describes the components of alerting applications, and includes the following sections:

• Overview of Alerting Applications in MarkLogic Server

• cts:reverse-query Constructor

• XML Serialization of cts:query Constructors

• Security Considerations of Alerting Applications

• Indexes for Reverse Queries

• Alerting API

• Alerting Sample Application

Note: This chapter describes how to create alerting applications using XQuery and XML.
You can also create alerting applications using JavaScript and JavaScript objects.
It is a best practice to pass XML when the alert action is implemented by an
XQuery module and a JavaScript object when the action is implemented by a
JavaScript file.

16.1 Overview of Alerting Applications in MarkLogic Server

An alerting application is used to notify users when new content is available that matches a
predefined (and usually stored) query. MarkLogic Server includes several infrastructure
components that you can use to create alerting applications that have very flexible features and
perform and scale to very large numbers of stored queries.

A sample alerting application, which uses the Alerting API, is available as an open source project
on github (https://github.com/marklogic/alerting). The sample application has all of the low-level
components needed in many enterprise-class alerting applications, but it is packaged in a sample
application with a user interface designed to demonstrate the functionality of an alert application;
your own applications would likely have a very different and more powerful user interface. Also,
the sample application is for demonstration purposes only, and is not designed to be put into
production; see the samples-license.txt file for more information. If you do not care about
understanding the low-level components of an alerting application, you can skip to the sections of
this chapter about the Alerting API and the sample application, “Alerting API” on page 639 and
“Alerting Sample Application” on page 646.

The heart of the components for alerting applications is the ability to create reverse queries. A
reverse query (cts:reverse-query) is a cts:query that returns true if the node supplied to the
reverse query would match a query if that query were run in a search. For more details about
cts:reverse-query, see “cts:reverse-query Constructor” on page 636.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 635

https://github.com/marklogic/alerting

MarkLogic Server Creating Alerting Applications
Alerting applications use reverse queries and several other components, including serialized
cts:query constructors, reverse query indexes, MarkLogic Server security components, the
Alert API, Content Processing Framework domains and pipelines, and triggers.

16.2 cts:reverse-query Constructor

The cts:reverse-query constructor is used in a cts:query expression. It returns true for
cts:query nodes that match an input. For example, consider the following:

let $node := <a>hello there
let $query := <xml-element>{cts:word-query("hello")}</xml-element>
return
cts:contains($query, cts:reverse-query($node))
(: returns true :)

This query returns true because the cts:query in $query would match $node. In concept, the
cts:reverse-query constructor is the opposite of the other cts:query constructors; while the other
cts:query constructors match documents to queries, the cts:reverse-query constructor matches
queries to documents. This functionality is the heart of an alerting application, as it allows you to
efficiently run searches that return all queries that, if they were run, would match a given node.

The cts:reverse-query constructor is fully composable; you can combine the cts:reverse-query
constructor with other constructors, just like you can any other cts:query constructor. The
Alerting API abstracts the cts:reverse-query constructor from the developer, as it generates any
needed reverse queries. For details about how cts:query constructors work, see “Composing
cts:query Expressions” on page 248.

16.3 XML Serialization of cts:query Constructors

A cts:query expression is used in a search to specify what to search for. A cts:query expression
can be very simple or it can be arbitrarily complex. In order to store cts:query expressions,
MarkLogic Server has an XML representation of a cts:query. Alerting applications store the
serialized XML representation or cts:query expressions and index them with the reverse index.
This provides fast and scalable answers to searches that ask “what queries match this document.”
Storing the XML representation of a cts:query in a database is one of the components of an
alerting application. The Alerting API abstracts the XML serialization from the developer. For
more details about serializing a cts:query to XML, see the Serializations of cts:query Constructors
section of the chapter “Composing cts:query Expressions” on page 248.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 636

MarkLogic Server Creating Alerting Applications
16.4 Security Considerations of Alerting Applications

Alerting applications typically allow individual users to create their own criteria for being alerted,
and therefore there are some inherent security requirements in alerting applications. For example,
you don’t want everyone to be alerted when a particular user’s alerting criteria is met, you only
want that particular user alerted. This section describes some of the security considerations and
includes the following parts:

• Alert Users, Alert Administrators, and Controlling Access

• Predefined Roles for Alerting Applications

16.4.1 Alert Users, Alert Administrators, and Controlling Access

Because there is both a need to manage an alerting application and a need for users of the alerting
application to have some ability to perform actions on the database, alerting applications need to
manage security. Users of an alerting application need to run some queries that they might not be
privileged to run. For example, they need to look at configuration information in a controlled way.
To manage this, alerting applications can use amps to allow users to perform operations for which
they do not have privileges by providing the needed privileges only in the context of the alerting
application. For details about amps and the MarkLogic Server security model, see the Security
Guide guide.

The Alerting API, along with the built-in roles alert-admin and alert-user, abstracts all of the
complex security logic so you can create a applications that properly deal with security, but
without having to manage the security yourself.

16.4.2 Predefined Roles for Alerting Applications

There are two pre-defined roles designed for use in alerting applications that are built using the
Alerting API, as well as some internal roles that the Alerting API uses:

• Alert-Admin Role

• Alert-User Role

• Roles For Internal Use Only

16.4.2.1 Alert-Admin Role

The alert-admin role is designed to give administrators of an alerting applications all of the
privileges that are needed to create configurations (alert configs) with the Alerting API. It has a
significant amount of privileges, including the ability to run code as any user that has a rule, so
only trusted users (users who are assumed to be non-hostile, appropriately trained, and follow
proper administrative procedures) should be granted the alert-admin role. Assign the
alert-admin role to administrators of your alerting application.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 637

MarkLogic Server Creating Alerting Applications
16.4.2.2 Alert-User Role

The alert-user role is a minimally privileged role. It is used in the Alerting API to allow regular
alert users (as opposed to alert-admin users) to be able to execute code in the Alerting API. Some
of that code needs to read and update documents used by the alerting application (configuration
files, rules, and so on), and this role provides a mechanism for the Alerting API to give the access
needed (and no more access) to users of an alerting application.

The alert-user role only has privileges that are used by the Alerting API; it does not provide
execute privileges to any functions outside the scope of the Alerting API. The Alerting API uses
the alert-user role as a mechanism to amp more privileged operations in a controlled way. It is
therefore reasonably safe to assign this role to any user whom you trust to use your alerting
application.

16.4.2.3 Roles For Internal Use Only

There are also two other roles used by the Alerting API which you should not explicitly grant to
any user or role: alert-internal and alert-execution. These roles are used to amp special
privileges within the context of certain functions of the Alerting API, and giving these roles to any
users would give them privileges on the system that you might not want them to have; do not
grant these roles to any users.

16.5 Indexes for Reverse Queries

You enable or disable the reverse query index in the database configuration by setting the fast
reverse searches index setting to true:

The fast reverse searches index speeds up searches that use cts:reverse-query. For alerting
applications to scale to large numbers of rules, you should enable fast reverse searches.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 638

MarkLogic Server Creating Alerting Applications
16.6 Alerting API

The Alerting API is designed to help you build a robust alerting application. The API handles the
details for security in the application, as well as provides mechanisms to set up all of the
components of an alerting application. It is designed to make it easy to use triggers and CPF to
keep the state of documents being alerted. This section describes the Alerting API and includes
the following parts:

• Alerting API Concepts

• Using the Alerting API

• Using CPF With an Alerting Application

The Alerting API is implemented as an XQuery library module. For the individual function
signatures and descriptions, see the MarkLogic XQuery and XSLT Function Reference.

16.6.1 Alerting API Concepts

There are three main concepts to understand when using the Alerting API:

• Alert Config

• Actions to Execute When an Alert Fires

• Rules For Firing Alerts

16.6.1.1 Alert Config

The alert config is the XML representation of an alerting configuration for an alerting application.
Typically, an alerting application needs only one alert config, although you can have many if you
need them. The Alerting API defines an XML representation of an alert config, and that XML
representation is returned from the alert:make-config function. You then persist the config in the
database using the alert:config-insert function. The Alerting API also has setter and getter
functions to manipulate an alert config. The alert config is designed to be created and updated by
an administrator of the alerting application, and therefore users who manipulate the alert config
must have the alert-admin role.

16.6.1.2 Actions to Execute When an Alert Fires

An action is some XQuery or JavaScript code to execute when an alert occurs. An action could be
to update a document in the database, to send an email, or whatever makes sense for your
application. The action is an XQuery main module, and the Alerting API defines an XML
representation of an action, and that XML representation is returned from the alert:make-action
function. The action XML representation points to the XQuery main module that performs the
action. You then persist this XML representation of an alert action in the database using the
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 639

MarkLogic Server Creating Alerting Applications
alert:action-insert function. The Alerting API also has setter and getter functions to
manipulate an alert action. Alert actions are designed to be created and updated by an
administrator of the alerting application, and therefore users who manipulate alert actions must
have the alert-admin role.

Alert actions are invoked or spawned with alert:invoke-matching-actions or
alert:spawn-matching-actions, and the actions can accept the following external variables:

declare namespace alert = "http://marklogic.com/xdmp/alert";

declare variable $alert:config-uri as xs:string external;
declare variable $alert:doc as node() external;
declare variable $alert:rule as element(alert:rule) external;
declare variable $alert:action as element(alert:action) external;

These external variables are available to the action if it needs to use them. To use the variables,
the above variable declarations must be in the prolog of the action module that is invoked or
spawned.

16.6.1.3 Rules For Firing Alerts

A rule is the criteria for which a user is alerted combined with a reference to an action to perform
if that criteria is met. For example, if you are interested in any new or changed content that
matches a search for jelly beans, you can define a rule that fires an alert when a new or changed
document comes in that has the term jelly beans in it. This might translate into the following
cts:query:

cts:word-query("jelly beans")

The rule also has an action associated with it, which will be performed if the document matches
the query. Alerting applications are designed to support very large numbers of rules with fast,
scalable performance. The amount of work for each rule also depends on what the action is for
each rule. For example, if you have an application that has an action to send an email for each
matching rule, you must consider the impact of sending all of those emails if you have large
numbers of matching rules.

The Alerting API defines an XML representation of a rule, and that XML representation is
returned from the alert:make-rule function. You then persist the rule in the database using the
alert:rule-insert function. Rules are designed to be created and updated by regular users of the
alerting application. The Alerting API also has setter and getter functions to manipulate an alert
rule. Because those regular users who create rules must have the needed privileges and
permissions to perform certain tasks (such as reading and updating certain documents), a minimal
set of privileges are required to insert a rule. Therefore users who create rules in an alerting
application must have the alert-user role, which has a minimum set of privileges.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 640

MarkLogic Server Creating Alerting Applications
16.6.2 Using the Alerting API

Once you understand the concepts described in the previous section, using the Alerting API is
straight-forward. This section describes the following details of using the Alerting API:

• Set Up the Configuration (User With alert-admin Role)

• Set Up Actions (User With alert-admin Role)

• Create Rules (Users With alert-user Role)

• Run the Rules Against Content

16.6.2.1 Set Up the Configuration (User With alert-admin Role)

The first step in using the Alerting API is to create an alert config. For details about an alert
config, see “Alert Config” on page 639. You should create the alert config as an alerting
application administrator (a user with the alert-admin role or the admin role). The following
sample code demonstrates how to create an alert config:

(: run this a user with the alert-admin role :)
xquery version "1.0-ml";
import module namespace alert = "http://marklogic.com/xdmp/alert"
 at "/MarkLogic/alert.xqy";

let $config := alert:make-config(
 "my-alert-config-uri",
 "My Alerting App",
 "Alerting config for my app",
 <alert:options/>)
return
alert:config-insert($config)

16.6.2.2 Set Up Actions (User With alert-admin Role)

An alerting application administrator must also set up actions to be performed when an alert
occurs. An action is an XQuery main module and can be arbitrarily simple or arbitrarily complex.
Alert actions can perform any action you can write in XQuery. For details about alert actions, see
“Actions to Execute When an Alert Fires” on page 639.

In practice, setting up an alerting action requires a good understanding of what you are trying to
accomplish in an alerting application. The following is an extremely simple action that sends a log
message to the error log.

xdmp:log(fn:concat(xdmp:get-current-user(), " was alerted"))

You must install your action implementation in the modules database associated with your App
Server. Once the implementation is installed, you can register it using the XQuery functions
alert:make-action and alert:action-insert or the ServerSide JavaScript functions
alert.makeAction and alert.actionInsert.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 641

MarkLogic Server Creating Alerting Applications
The following procedure outlines the steps for creating, installing, and registering an alerting
action:

1. Implement your action in an XQuery library module. For example, the following is a
simple action that logs a message to the error log:

xquery version "1.0-ml";
xdmp:log(fn:concat(xdmp:get-current-user(), " was alerted"))

2. Install your action module in the modules database associated with your App Server. For
example, if your logging action is stored in a filesystem file with the path
/my/action/log.xqy, then the following code installs it in the modules database with the
URI /alerts/log.xqy when you run it against your App Server.

xquery version "1.0-ml";
xdmp:eval(

'xdmp:document-load("/my/action/log.xqy",
map:map() => map:with("uri", "/alerts/log.xqy")

=> map:with("format", "text"))',
(), map:map() => map:with("database", xdmp:modules-database())

)

3. Associate your module with an alerting action using the XQuery function
alert:action-insert or the Server-Side JavaScript function alert.actionInsert. This
step must be performed as a user with the alert-admin role. For example:

xquery version "1.0-ml";
import module namespace alert = "http://marklogic.com/xdmp/alert"

at "/MarkLogic/alert.xqy";

let $action := alert:make-action(
"logalert",
"log to ErrorLog.txt",
xdmp:modules-database(),
xdmp:modules-root(),
"/alerts/log.xqy",
<alert:options>put anything here</alert:options>)

return
alert:action-insert("my-alert-config-uri", $action)

You can also create and insert an action using the REST Management API. For details, see
POST:/manage/v2/databases/{id|name}/alert/actions.

For a more complex example of an alert logging action, see
MARKLOGIC_INSTALL_DIR/Modules/MarkLogic/alert/log.xqy in your MarkLogic installation.

16.6.2.3 Create Rules (Users With alert-user Role)

To create a rule, use the XQuery functions alert:make-rule and alert:rule-insert, or the
Server-Side JavaScript functions alert.makeRule and alert.ruleInsert.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 642

MarkLogic Server Creating Alerting Applications
You should set up the alerting application so that regular users of the application can create rules.
You might have a form, for example, to assist users in creating the rules.

The following example inserts a rule named “simple” that will fire the action named “logalert”
whenever the specified word query matches. (See “Set Up Actions (User With alert-admin Role)”
on page 641 for the implementation of the “logalert” action.) You must run this code as a user
with the alert-user role or equivalent privileges. Note that equivalent production code will
usually be much more complex, as this example has no user interface.

xquery version "1.0-ml";
import module namespace alert = "http://marklogic.com/xdmp/alert"
 at "/MarkLogic/alert.xqy";

let $rule := alert:make-rule(
 "simple",
 "hello world rule",
 0, (: equivalent to xdmp:user(xdmp:get-current-user()) :)
 cts:word-query("hello world"),
 "logalert",
 <alert:options/>)
return
alert:rule-insert("my-alert-config-uri", $rule)

Note: If your action performs any privileged activities, including reading or creating
documents in the database, you will need to add the appropriate execute privileges
and URI privileges to users running the application.

16.6.2.4 Run the Rules Against Content

To make the application fire alerts (that is, execute the actions for rules), you must run the rules
against some content. You can do this in several ways, including setting up triggers with the
Alerting API (alert:create-triggers), using CPF and the Alerting pipeline, or creating your
own mechanism to run the rules against content.

To run the rules manually, you can use the alert:spawn-matching-actions or
alert:invoke-matching-actions APIs. These are useful to run alerts in any context, either within
an application or as an easy way to test your rules. The alert:spawn-matching-actions is good
when you have many alerts that might fire at once, because it will spawn the actions to the task
server to execute asynchronously. The alert:invoke-matching-actions API runs the action
immediately, so be careful using this if there can be large numbers of matching actions, as they
will all be run in the same context. You can run these APIs as any user, and whether or not they
produce an action will depend upon what each rule’s owner has permissions to see. The following
is a very simple example that fires the previously created alert:
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 643

MarkLogic Server Creating Alerting Applications
xquery version "1.0-ml";
import module namespace alert = "http://marklogic.com/xdmp/alert"
 at "/MarkLogic/alert.xqy";

alert:invoke-matching-actions("my-alert-config-uri",
 <doc>hello world</doc>, <options/>)

If you created the config, action, and rule as described in the previous sections, this logs the
following to your ErrorLog.txt file when running the code as a user named some-user who has
the alert-user role (assuming this user created the rule):

some-user was alerted

Note: If you have very large numbers of alerts, and if the actions for your rules are
resource-intensive, invoking or spawning matching actions can produce a
significant amount of query activity for your system. This is OK, as that is the
purpose of an alerting application, but you should plan your resources accordingly.

16.6.3 Using CPF With an Alerting Application

It is a natural fit to use alerting applications built using the Alerting API with the Content
Processing Framework (CPF). CPF is designed to keep state for documents, so it is easy to use
CPF to keep track of when a document in a particular scope is created or updated, and then
perform some action on that document. For alerting applications, that action involves running a
reverse query on the changed documents and then firing alerts for any matching rules (the
Alerting API abstracts the reverse query from the developer).

To simplify using CPF with alerting applications, there are pre-built pipelines for alerting. The
pipelines are designed to be used with an alerting application built with the Alerting API. This
Alerting CPF application will run alerts on all new and changed content within the scope of the
CPF domain to which the Alerting pipeline is attached. The Alerting pipleine is suitable for most
alerting applications. The Alerting (spawn) pipeline spawns the actions in separate tasks, and
therefore will result in increased parallelism which is beneficial if you have many actions that
result from a single document change. For example, if you have an application that allows users to
specify a query to alert on, and if many people specify the same query (for example, the name of a
popular singer), then with the Alerting pipeline, each of those actions is run serially, and the
actions will recover even if there is a failure in the middle of them; with the Alerting (spawn)
pipeline, each action is spawned as a separate request, allowing more parallelism, but if there is a
failure during the actions, the actions will not restart. Furthermore, if your alerting action updates
the document being alerted on, then you must use the Alerting (spawn) pipeline, as the Alerting
pipeline would result in a deadlock.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 644

MarkLogic Server Creating Alerting Applications
If you use the Alerting pipelines with any of the other pipelines included with MarkLogic Server
(for example, the conversion pipelines and/or the modular documents pipelines), the Alerting
pipeline is defined to have a priority such that it runs after all of the other pipelines have
completed their processing. This way, alerts happen on the final view of content that runs through
a pipeline process. If you have any custom pipelines that you use with the Alerting pipeline,
consider adding priorities to those pipelines so the alerting occurs in the order in which you are
expecting.

Note: When you use mlcp to import documents without extensions, CPF alerts do not
work.

To set up a CPF application that uses alerting, perform the following steps:

1. Enable the reverse index for your database, as described in “Indexes for Reverse Queries”
on page 638.

2. Set up the alert config and alert actions as a user with the alert-admin role, as described in
“Set Up the Configuration (User With alert-admin Role)” on page 641 and “Set Up
Actions (User With alert-admin Role)” on page 641.

3. Set up an application to have users (with the alert-user role) define rules, as described in
“Create Rules (Users With alert-user Role)” on page 642.

4. Install Content Processing in your database, if it is not already installed (Databases >
database_name > Content Processing > Install tab).

5. Set up the domain scope for a domain.

6. Attach the Alerting pipeline and the Status Change Handling pipeline to the domain. You
can also attach any other pipelines you need to the domain (for example, the various
conversion pipelines).

7. Use the alert:config-set-cpf-domain-names function to notify the alerting configuration
of the domain so the alerting action can determine which alerting configuration to use.

For example, if your CPF domain name is Default Documents, you could do the
following.

alert:config-insert(
alert:config-set-cpf-domain-names(

alert:config-get($config-uri),
("Default Documents")))

Note: An alerting configuration can be used with multiple CPF domains, in which case
you set a sequence of multiple domain names or IDs.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 645

MarkLogic Server Creating Alerting Applications
Any new or updated content within the domain scope will cause all matching rules to fire their
corresponding action. If you will have many alerts that are spawned to the task server, make sure
the task server is configured appropriately for your machine. For example, if you are running on a
machine that has 16 cores, you might want to raise the threads setting for the task server to a
higher number then the default of 4. What you set the threads setting depends on what other work
is going on your machine.

For details about CPF, see the Content Processing Framework Guide guide.

16.7 Alerting Sample Application

A sample alerting application is available on http://developer.marklogic.com/code/alerting. The
sample application uses the Alerting API, and has all of the low-level components needed in
many enterprise-class alerting applications, but it is packaged in a sample application with a user
interface designed to demonstrate the functionality of an alert application; your own applications
would likely have a very different and more powerful user interface. This sample code is provided
on an as-is basis; the sample code is not intended for production applications and is not supported.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 646

http://developer.marklogic.com/code/alerting

MarkLogic Server Using fn:count vs. xdmp:estimate
17.0 Using fn:count vs. xdmp:estimate
651

This chapter descibes some of the differences between the fn:count and xdmp:estimate functions,
and includes the following sections:

• fn:count is Accurate, xdmp:estimate is Fast

• The xdmp:estimate Built-In Function

• Using cts:remainder to Estimate the Size of a Search

• When to Use xdmp:estimate

17.1 fn:count is Accurate, xdmp:estimate is Fast

The XQuery language provides general support for counting the number of items in a sequence
through the use of the fn:count function. However, the general-purpose nature of fn:count
makes it difficult to optimize. Sequences to be counted can include arbitrarily complex
combinations of sequences stored in the database, constructed dynamically, filtered after retrieval
or construction, etc. In most cases, MarkLogic Server must process the sequence in order to count
it. This can have significant I/O requirements that would impact performance.

MarkLogic Server provides the xdmp:estimate XQuery built-in as an efficient way to approximate
fn:count. Unlike fn:count, which frequently must process its answer by inspecting the data
directly (hence the heavy I/O loads), xdmp:estimate computes its answer directly from indexes.
In certain situations, the index-derived value will be identical to the value returned by fn:count.
In others, the values differ to a varying degree depending on the specified sequence and the data.
In instances where xdmp:estimate is not able to return a fast estimate, it will throw an error.
Hence, you can depend on xdmp:estimate to be fast, just as you can depend on fn:count to be
accurate.

Effectively, xdmp:estimate puts the decision to optimize counting through use of the indexes in
the hands of the developer.

17.2 The xdmp:estimate Built-In Function

xdmp:estimate accepts searchable XPath expressions as its parameter and returns an
approximation of the number of items in the sequence:

xdmp:estimate(/book)
xdmp:estimate(//titlepage[cts:contains(., "primer")])
xdmp:estimate(cts:search(//titlepage, cts:word-query("primer")))
xdmp:estimate(/object[.//id = "57483"])

xdmp:estimate does not always return the same value as fn:count. The fn:count function returns
the exact number of items in the sequence that is provided as a parameter. In contrast,
xdmp:estimate provides an answer based on the following rules:
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 647

MarkLogic Server Using fn:count vs. xdmp:estimate
1. If the parameter passed to xdmp:estimate is a searchable XPath expression, xdmp:estimate
returns the number of fragments that it will select from the database for post-filtering.
This number is computed directly from the indexes at extremely high performance. It
may, however, differ from the actual fn:count of the sequence specified if either (a) there
are multiple matching items within a single fragment or (b) there are fragments
provisionally selected by the indexes that do not actually contain a matching item.

2. If the parameter passed to xdmp:estimate is not a searchable XPath expression (that is, it is
not an XPath rooted at a doc, collection(), or input() function, or a / or // step),
xdmp:estimate will throw an error.

xdmp:estimate is defined in this way to ensure a sharp contrast against the fn:count function.
xdmp:estimate will always execute quickly. fn:count will always return the “correct” answer.
Over time, as MarkLogic improves the server's underlying optimization capability, there will be
an increasing number of scenarios in which fn:count is both correct and fast. But for the moment,
we put the decision about which approach to take in the developer's hands.

17.3 Using cts:remainder to Estimate the Size of a Search

When you need to retrieve both search results and an estimate of the number of matching
fragments as part of the same query statement, use the cts:remainder function. Running
cts:remainder on a node or nodes returned by a search is more efficient that running
xdmp:estimate on the sequence of nodes returned by cts:search. If you just need the estimate, but
not the search results, then xdmp:estimate is more efficient.

cts:remainder returns the number of nodes remaining from a particular node of a search result
set. When you run it on the first node, it returns the same result as xdmp:estimate on the search.
cts:remainder also has the flexibility to return the estimated results of a search starting with any
item in the search (for example, how many results remain after the 500th search item), and it does
this in an efficient way.

Like xdmp:estimate, cts:remainder uses the indexes to find the approximate results based on
unfiltered results. For an explanation of unfiltered results, see “Using Unfiltered Searches for Fast
Pagination” in the Query Performance and Tuning Guide. For the syntax and examples of
cts:remainder, see the MarkLogic XQuery and XSLT Function Reference.

17.4 When to Use xdmp:estimate

MarkLogic Server uses its indexes to approximate the identification of XML fragments that may
contain constructs that matches the specified XPath. This set of fragments is then filtered to
determine the exact nodes to return for further processing.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 648

MarkLogic Server Using fn:count vs. xdmp:estimate
For searchable XPath expressions, xdmp:estimate returns the number of fragments selected in the
first approximation step described above. Because this operation is carried out directly from
indexes, the operation is virtually instantaneous. However, there are two scenarios in which this
approximation will not match the results that would be returned by fn:count:

1. If a fragment contains more than one matching item for the XPath specified,
xdmp:estimate will undercount these items as a single item whereas fn:count would count
them individually.

2. In addition, it is possible to overcount. Index optimization sometimes must over-select in
order to ensure that no matching item is missed. During general query processing, these
over-selected fragments are discarded in the second-stage filtering process. But
xdmp:estimate will count these fragments as matching items whereas fn:count would
exclude them.

Consider the sample query outlined below. The first step in the optimization algorithm outlined
above is illustrated by the xdmp:query-trace output shown after the query:

Query:

/MedlineCitationSet/MedlineCitation//Author[LastName="Smith"])

Query trace output:

2004-04-06 17:49:39 Info: eval line 5: Analyzing path:
fn:doc()/child::MedlineCitationSet/child::MedlineCitation/
descendant::Author[child::LastName = "Smith"]
2004-04-06 17:49:39 Info: eval line 5: Step 1 is searchable: fn:doc()
2004-04-06 17:49:39 Info: eval line 4: Step 2 axis does not use
indexes:child
2004-04-06 17:49:39 Info: eval line 4: Step 2 test is searchable:
MedlineCitationSet
2004-04-06 17:49:39 Info: eval line 5: Step 2 is searchable:
child::MedlineCitationSet
2004-04-06 17:49:39 Info: eval line 4: Step 3 axis does not use
indexes:child
2004-04-06 17:49:39 Info: eval line 4: Step 3 test is searchable:
MedlineCitation
2004-04-06 17:49:39 Info: eval line 5: Step 3 is searchable:
child::MedlineCitation
2004-04-06 17:49:39 Info: eval line 5: Step 4 axis does not use
indexes:descendant
2004-04-06 17:49:39 Info: eval line 5: Step 4 test is searchable:
Author
2004-04-06 17:49:39 Info: eval line 5: Step 4 predicate 1 is
searchable:
child::LastName = "Smith"
2004-04-06 17:49:39 Info: eval line 5: Step 4 is searchable:
descendant::Author[child::LastName = "Smith"]
2004-04-06 17:49:39 Info: eval line 5: Path is searchable.
2004-04-06 17:49:39 Info: eval line 5: Gathering constraints.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 649

MarkLogic Server Using fn:count vs. xdmp:estimate
2004-04-06 17:49:39 Info: eval line 4: Step 2 test contributed 1
constraint: MedlineCitationSet
2004-04-06 17:49:39 Info: eval line 4: Step 3 test contributed 2
constraints: MedlineCitation
2004-04-06 17:49:39 Info: eval line 5: Step 4 test contributed 1
constraint: Author
2004-04-06 17:49:39 Info: eval line 4: Comparison contributed hash
value constraint: LastName = "Smith"
2004-04-06 17:49:39 Info: eval line 5: Step 4 predicate 1 contributed 1
constraint: child::LastName = "Smith"
2004-04-06 17:49:39 Info: eval line 5: Executing search.
2004-04-06 17:49:39 Info: eval line 5: Selected 263 fragments to filter

In this scenario, applying fn:count to the XPath provided would tell us that there are 271 authors
with a last name of "Smith" in the database. Using xdmp:estimate yields an answer of 263. In this
example, xdmp:estimate undercounted because there are fragments with multiple authors named
"Smith" in the database, and xdmp:estimate only counts the number of fragments.

Understanding when these situations will occur with a given database and dataset requires an in-
depth understanding of the optimizer. Given that the optimizer evolves with every release of the
server, this is a daunting task.

The following three sets of guidelines will help you know when and how to use xdmp:estimate:

• When Estimates Are Good Enough

• When XPaths Meet The Right Criteria

• When Empirical Tests Demonstrate Correctness

17.4.1 When Estimates Are Good Enough

In some situations, an estimate of the correct answer is good enough. Many search engines use
this approach today, only estimating the total number of "hits" when displaying the first twenty
results to the user. In scenarios in which the exact count is not important, it makes sense to use
xdmp:estimate.

17.4.2 When XPaths Meet The Right Criteria

If you need to get the precise answer rather than just an approximation, there are some simple
criteria to keep in mind if you want to use xdmp:estimate for its performance benefits:

1. Counting nodes that are either fragment or document roots will always return the correct
result.

Examples:

xdmp:estimate(/node-name) is equivalent to count(/node-name)
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 650

MarkLogic Server Using fn:count vs. xdmp:estimate
xdmp:estimate(//MedlineCitation) is equivalent to count(//MedlineCitation)

if MedlineCitation is a fragment-root. For example, this constraint is how the sample
Medline application is configured in the sample code on http://support.marklogic.com.

2. If a single fragment can contain more than one element that matches a predicate, you have
the potential for undercounting. Assume that the sample data below resides in a single
fragment:

<authors>
 <author>
 <last-name>Smith</last-name>
 <first-name>Alison</first-name>
 </author>
 <author>
 <last-name>Smith</last-name>
 <first-name>James</first-name>
 </author>
 <author>
 <last-name>Peterson</last-name>
 <first-name>David</first-name>
 </author>
</authors>

In this case, an XPath which specifies fn:doc()//author[last-name = "Smith"] will
undercount, counting only one item for the two matches in the above sample data.

3. If the XPath contains multiple predicates, you have the potential of overcounting. Using
the sample data above, an XPath which specifies fn:doc()//author[last-name =
"Smith"][first-name = "David"] will not have any matches. However, since the above
fragment contains author elements that satisfy the predicates [last-name = "Smith"] and
[first-name = "David"] individually, it will be selected for post-filtering. In this case,
xdmp:estimate will consider the above fragment a match and overcount.

17.4.3 When Empirical Tests Demonstrate Correctness

As a last step, you can use two techniques to understand the value that will be returned by
xdmp:estimate:

1. At development time, use xdmp:estimate and fn:count to count the same sequence and see
if the results are different for datasets which exhibit all the structural variation you expect
in your production dataset.

2. Turn on xdmp:query-trace, evaluate the XPath sequence that you wish to use with
xdmp:estimate, and inspect the query-trace output in the log file. This output will tell you
how much of the XPath was searchable, how many fragments were selected (this is the
answer that xdmp:estimate will provide), and how many ultimately matched (this is the
answer that fn:count will provide).
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 651

MarkLogic Server Understanding and Using Stemmed Searches
18.0 Understanding and Using Stemmed Searches
664

This chapter describes how to use the stemmed search functionality in MarkLogic Server. The
following sections are included:

• Stemming in MarkLogic Server

• Enabling Stemming

• Stemmed Searches Versus Word Searches

• Using cts:highlight to Emphasize a Query Match

• Using cts:contains to Test for a Stemmed Match

• Interaction With Wildcard Searches

• Using a User-Defined Stemmer Plugin

18.1 The Role of Stemming and Tokenization in Search

Tokenization splits a run of text into individual tokens, such as words, whitespace, and
punctuation. The rules used to split text into tokens is language-specific. For example, in a
language like English, word tokens are usually separated by whitespace and punctuation tokens.
Thus, a string such as “ran, slept” tokenizes to the following in English:

• “ran” (token)

• “ “ (whitespace)

• “,” (punctuation)

• “ “ (whitespace)

• “slept” (word)

Tokenization is applied to documents when they are indexed, and to query text when you perform
a search.

Stemming maps a word to its common lemma (stem). Thus, in the example above, “ran” stems to
the verb “run” and “slept” stems to the verb “sleep”. Like tokenization, stemming rules are
language-specific.

An unstemmed search matches only the word form you’re searching for. For example, searching
for “ran” will not match a document containing “runs”. When stemmed search is enabled, the
search matches the exact term, plus words with the same stem. Thus, a search for “ran” will also
match documents containing “runs” or “running” because they all share the stem “run” in English.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 652
Contains SAP BusinessObjects Text Analysis XI from SAP AG. Copyright © 1996-2011. All rights reserved.

MarkLogic Server Understanding and Using Stemmed Searches
18.2 Stemming in MarkLogic Server

MarkLogic Server supports stemming in English and other languages. For a list of languages in
which stemming is supported, see “Supported Languages” on page 761. You can also create a
user-defined stemmer to add support for other languages; for details, see “Using a User-Defined
Stemmer Plugin” on page 656.

The stem of a word is not based on spelling. For example, card and cardiac have different stems
even though the spelling of cardiac begins with card. On the other hand, running and ran have
the same stem (run) even though their spellings are quite different. If you want to search for a
word based on partial pattern matching (like the card and cardiac example above), use wildcard
searches as described in “Understanding and Using Wildcard Searches” on page 683.

The stemming supported in MarkLogic Server does not cross different parts of speech. For
example, conserve (verb) and conservation (noun) are not considered to have the same stem
because they have different parts of speech. Consequently, if you search for conserve with
stemmed searches enabled, the results will include documents containing conserve and
conserves, but not documents with conservation (unless conserve or conserves also appears).

Stemming is language-specific. Each word evaluated in the context of a specific language. A term
in one language will not match a stemmed search for the same term in another language. The
language can be specified with an xml:lang attribute or by several other methods. For details on
how languages affect queries, see “Querying Documents By Languages” on page 758.

18.3 Enabling Stemming

To use stemming in your searches, stemming must be enabled in your database configuration. All
new databases created in MarkLogic Server have stemmed searches disabled by default. You can
enable stemmed searches after initial creation of your database.

Stemmed searches are supported by special indexes. If you enable stemmed searches in an
existing database, you must either reload or reindex the database to ensure that you get stemmed
results from searches. You should plan on allocating additional disk space of about twice the size
of the source content if you enable stemmed searches.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 653

MarkLogic Server Understanding and Using Stemmed Searches
There are three types of stemming available in MarkLogic Server: basic, advanced, and
decompounding. The following table describes the stemming options available on the database
configuration page of the Admin Interface.

When stemmed searches are enabled for a database, you can enable and disable the use of
stemming on a per query basis through options. Query constructors such as cts:word-query,
cts:element-word-query, and cts:element-value-query support “stemmed” and “unstemmed”
options. For more details on these functions, see the MarkLogic XQuery and XSLT Function
Reference.

Query terms that contain a wildcard will not be stemmed. If you leave the stemming option
unspecified, the database configuration determines whether or not stemming is applied to words
that do not contain a wildcard.

If stemming is turned off in the database, and stemming is explicitly specified in the query, the
query will throw an error.

18.4 Stemmed Searches Versus Word Searches

The stemmed search indexes and word search (unstemmed) indexes have overlapping
functionality, and there is a good chance you can get the results you want with only the stemmed
search indexes enabled (that is, leaving the word search indexes turned off).

Stemmed searches return relevance-ranked results for the words you search for as well as for
words with the same stem as the words you search for. Therefore, you will get the same results as
with a word search plus the results for items containing words with the same stem. In most search
applications, this is the desirable behavior.

Stemming Option Description

OFF No words are indexed for stemming. This is the default.

Basic Each word is indexed to a single stem.

Advanced Each word is indexed to one or more stems. Some words can have two or
more meanings, and can therefore have multiple stems. For example, the
word further stems to further (as in he attended the party to further his
career) and it stems to far (as in she was further along in her studies
than he).

Decompounding All stems for each word are indexed, and smaller component words of
large compound words are also indexed. Mostly used in languages such
as German that use compound words.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 654

MarkLogic Server Understanding and Using Stemmed Searches
The only time you need to also have word search indexes enabled is when your application
requires an exact word search to only return the exact match results (that is, to not return results
based on stemming).

Additionally, the stemmed search indexes take up less disk space than the word search
(unstemmed) indexes. You can therefore save some disk space and decrease load time when you
use the settings of stemmed search enabled and word search turned off in the database
configuration. Every index has a cost in terms of disk space used and increased load times. You
have to decide based on your application requirements if the cost of creating extra indexes is
worthwhile for your application, and whether you can fulfill the same requirements without some
of the indexes.

If you do need to perform word (unstemmed) searches when you only have stemmed search
indexes enabled (that is, when word searches are turned off in the database configuration), you
must do so by first doing a stemmed search and then filtering the results with an unstemmed
cts:query, as described in “Unstemmed Searches” on page 759.

18.5 Using cts:highlight to Emphasize a Query Match

Because stemming enables query matches for terms that do not have the same spelling, it can
sometimes be difficult to find the words that actually caused the query to match. You can use
cts:highlight to test and/or highlight the words that actually matched the query. For details on
cts:highlight, see the MarkLogic XQuery and XSLT Function Reference and “Highlighting
Search Term Matches” on page 468.

18.6 Using cts:contains to Test for a Stemmed Match

You can use cts:contains to test if a word matches a query. The cts:contains function returns
true if there is a match, false if there is no match. For example, you can use the following
function to test if a word has the same stem as another word.

xquery version "1.0-ml";
declare function local:same-stem(

$word1 as xs:string, $word2 as xs:string)
as xs:boolean

{
cts:contains(text{$word1},$word2)

};

(: The following returns true because
running has the same stem as run :)

local:same-stem("run", "running")
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 655

MarkLogic Server Understanding and Using Stemmed Searches
18.7 Interaction With Wildcard Searches

For information about how stemmed searches and Wildcard searches interact, see “Interaction
with Other Search Features” on page 687.

18.8 Using a User-Defined Stemmer Plugin

You can use a user-defined stemmer plugin to affect how MarkLogic matches a word to its stems
during search term resolution. You create a user-defined stemmer in C++ by implementing a
subclass of the marklogic::StemmerUDF base class and deploying it to MarkLogic as a native plugin.
The StemmerUDF class is a UDF (User Defined Function) interface.

MarkLogic also provides several built-in stemmer plugins that you can use to customize
stemming instead of implementing your own. For details, see “Customization Using a Built-In
Lexer or Stemmer” on page 766.

This section covers the following topics:

• When to Consider a User-Defined Stemmer

• StemmerUDF Interface Summary

• Understanding User-Defined Stemmer Control Flow

• Implementation Guidelines for User-Defined Stemmers

• Creating and Deploying a User-Defined Stemmer Plugin

• Registering a User-Defined Stemmer with MarkLogic

• Testing a User-Defined Stemmer

• Error Handling and Logging

18.8.1 When to Consider a User-Defined Stemmer

MarkLogic provides several built-in stemmers that you can configure for a language if you are not
satisfied with the default stemmer. The following are some use cases in which you might consider
implementing a your own stemmer:

• You need to stem a language that is not directly supported by MarkLogic.

• You want to use a specific 3rd party library for stemming for a given language.

• You need to use advanced stemming to obtain variants such as normalization and spelling
variants not otherwise available.

• You require special format stemming in the context of specific data fields where the
requirements are more complicated than simple reclassification.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 656

MarkLogic Server Understanding and Using Stemmed Searches
In some cases, you might also need a custom lexer or custom dictionary. For example, if you’re
working with a language not supported by MarkLogic, you probably also need a custom lexer. For
details, see “Custom Tokenization” on page 785 and “Custom Dictionaries for Tokenizing and
Stemming” on page 665.

18.8.2 StemmerUDF Interface Summary

You implement a user-defined stemmer as a subclass of the MarkLogic::StemmerUDF base class.
StemmerUDF is defined in MARKLOGIC_INSTALL_DIR/include/MarkLogic.h. You can find detailed
documentation about the class in the User-Defined Function API reference and in MarkLogic.h. You
can find an example implementation in MARKLOGIC_INSTALL_DIR/Samples/NativePlugins.

The following table contains a brief summary of the key methods of StemmerUDF. For a discussions
of how the methods are used by MarkLogic, see “Understanding User-Defined Stemmer Control
Flow” on page 658.

LexerUDF Method Description

initialize Initialize a StemmerUDF object after construction. This method is only
called once per stemmer object.

reset Prepare the stemmer to iterate over stems for a word. The first stem
should be available through StemmerUDF::stem after calling this method.
The preferred stem (if one exists) should be the first stem available.

start Set the stemmer to the start of the list of stems. It should be possible to
iterate over the stems repeatedly by successively calling start.

next Advance the stemmer to the next stem. Returns false if there are no more
stems.

stem Return the current stem. Returns null if there is no current stem.

delegate Returns true if stemming delegates to the default stemmer, instead of or
in addition to this custom stemmer. For details, see “Understanding
Stemming Delegation” on page 775.

close Release the stemmer resources. This method is called when the stemmer
is no longer needed.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 657

/cpp/udf/index.html

MarkLogic Server Understanding and Using Stemmed Searches
18.8.3 Understanding User-Defined Stemmer Control Flow

When stemmed searches are enabled, MarkLogic can use either the default stemming plugin for a
language, a user-defined stemming plugin, or both (via delegation). This section describes how
MarkLogic interacts with a user-defined stemmer. See the following topics:

• When MarkLogic Uses a User-Defined Stemmer

• StemmerUDF Object Creation and Management

• Interaction During Stemming

18.8.3.1 When MarkLogic Uses a User-Defined Stemmer

When stemmed searches are enabled, stemming is performed when indexing documents and
when evaluating queries. For more details, see “Tokenization and Stemming” on page 752.

When a word is eligible for stemming:

• MarkLogic first checks for matching entries in any custom dictionary for the language. If
an entry is found, the stems from the dictionary are used.

• If no custom dictionary entry is found, then MarkLogic consults any configured custom
stemmer, which could be a built-in stemmer plugin or a user-defined stemmer plugin, as
described in “Stemming Customization” on page 763.

• MarkLogic might also consult the default stemming plugin for the language, depending on
the delegation configuration. For details, see “Understanding Stemming Delegation” on
page 775.

Thus, a user-defined stemming plugin will only be invoked when all the following conditions are
met:

• Stemmed search is enabled on the database. For details, see Understanding the Text Index

Settings in the Administrator’s Guide.

• Stemming is needed in a language configured to use a user-defined stemming plugin. For
details, see “Configuring Tokenization and Stemming Plugins” on page 764.

• No custom stemming dictionary is configured for the current language, or the configured
dictionary contains no entry for the word under consideration.

For more information on custom dictionaries, see “Custom Dictionaries for Tokenizing and
Stemming” on page 665.

18.8.3.2 StemmerUDF Object Creation and Management

StemmerUDF objects are created on demand and kept in a pool for re-use.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 658

MarkLogic Server Understanding and Using Stemmed Searches
Stemmers tend to be heavy-weight objects, so MarkLogic maintains a (per-language) pool of
stemmer objects for re-use. When MarkLogic needs one of your StemmerUDF objects, it first
checks to see if one is available from the pool. If not, MarkLogic creates one using the object
factory obtained during plugin registration. MarkLogic then calls the object’s initialize method.

When a stemming task completes, the stemmer is returned to the pool unless it is marked as stale.
MarkLogic can choose to mark a stemmer stale, or a stemmer can flag itself as stale by returning
true from its StemmerUDF::isStale method.

When a stemmer is no longer needed, MarkLogic calls its StemmerUDF::close method. This
enables the stemmer to deallocate memory and release other resources, as needed.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 659

MarkLogic Server Understanding and Using Stemmed Searches
18.8.3.3 Interaction During Stemming

The following diagram is a high level illustration of how MarkLogic interacts with a StemmerUDF
object while finding stems. The actual stemming process is more complex and has parts not
represented here.

It is common to iterate over the stems for a word more than once. The StemmerUDF::start method
is used to reset the iteration back to the first stem.

You can choose to have the default stemmer contribute stems instead of or in addition to your
stemmer by returning true from the delegate method. For details, see “Understanding Stemming
Delegation” on page 775.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 660

MarkLogic Server Understanding and Using Stemmed Searches
18.8.4 Implementation Guidelines for User-Defined Stemmers

When implementing a StemmerUDF subclass, keep the following guidelines in mind.

Note: Your implementation runs in the same memory and process space as MarkLogic
Server, so errors in your implementation can crash MarkLogic Server. Before
deploying a custom lexer, you should read and understand Using Native Plugins in
the Application Developer’s Guide. See also “Testing a User-Defined Stemmer”
on page 663.

• You must implement a subclass of marklogic::StemmerUDF for each stemming algorithm
you want to use.

• Stemming is a low-level, inner-loop operation that MarkLogic performs during indexing
(including document ingestion) and query evaluation. Your stemmer should introduce as
little overhead as possible.

• If the input word has a preferred stem, it should be the first stem returned after calling
StemmerUDF::reset or StemmerUDF::start. The preferred stem is the only stem used when
stemmed search is configured at the “basic” level.

• Indicate contractions with the “=” character and compound words with the “#” character.
For example, “de=le” for the French word “du”, or “Kind#Platz” for the German word
“Kinderplatz”.

• The tokenizer can optionally pass along a Part of Speech (POS) for the word being
stemmed. The POS is supplied to StemmerUDF::reset. Stemming only makes use of this
data for Japanese by default, but you can choose to use it in your stemmer.

• The stemmer owns the memory allocated for the stem returned by the stem method, and is
responsible for releasing it when appropriate. Your stemmer can be called many times per
word, so you should choose an efficient allocation strategy.

• Your implementation does not have to be thread safe. MarkLogic will instantiate a new
stemmer object in each thread in which it wants to perform stemming.

• Report errors using the Reporter object that is passed to most StemmerUDF methods, rather
than by throwing exceptions. For details, see “Error Handling and Logging” on page 663.

• You might also want to support your language with a custom lexer and/or a custom
dictionary. To learn more about customization options, see “Stemming and Tokenization
Customization” on page 762.

18.8.5 Creating and Deploying a User-Defined Stemmer Plugin

Follow the steps below to create and deploy a stemmer UDF in MarkLogic as a native plugin. A
complete example is available in MARKLOGIC_DIR/Samples/NativePlugins.

1. Implement a subclass of the C++ class marklogic::StemmerUDF. See
MARKLOGIC_DIR/include/MarkLogic.h for interface details.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 661

MarkLogic Server Understanding and Using Stemmed Searches
2. Implement an extern "C" function called marklogicPlugin to perform plugin registration.
For details, see Registering a Native Plugin at Runtime in the Application Developer’s Guide.

3. Build a dynamically linked library containing your UDF and registration function. You
should use the Makefile in MARKLOGIC_DIR/Samples/NativePlugins as the basis for
building your plugin. For more details, see Building a Native Plugin Library in the Application
Developer’s Guide.

4. Following the directions in Using Native Plugins to package and install your plugin. See the
note below about dependent libraries.

5. Configure your stemmer as the stemmer plugin for at least one language. For details, see
“Configuring Tokenization and Stemming Plugins” on page 764.

The native plugin interface includes support for bundling dependent libraries in the native plugin
zip file. However, many 3rd party natural language processing tools are large, complex, and have
strict installation directory requirements. If you are using such a packge, you should install the 3rd
party package package independently on each host in the cluster, rather than trying to include it
inside your native plugin package.

18.8.6 Registering a User-Defined Stemmer with MarkLogic

A native plugin becomes available for use once you install it, but it will not be loaded until there
is a reason to use it. For example, a plugin containing only a stemmer UDF is only loaded if it is
associated with at least one language and MarkLogic needs to stem a word in that language.

When MarkLogic loads a native plugin, it performs a registration handshake to obtain details
about the plugin such as what capabilities the plugin provides. This handshake is performed
through an extern "C" function named marklogicPlugin that must be part of every native plugin.

The following code is an example of a registration function for a plugin that registers only a single
stemmer capability. Assume the plugin implements a StemmerUDF subclass named MyStemmerUDF.
The stemmer is registered with the plugin id “sample_stemmer”.

extern "C" PLUGIN_DLL void
marklogicPlugin(Registry& r)
{
 r.version();

r.registerStemmer<MyStemmerUDF>("sample_stemmer");
}

The plugin id returned by the registerStemmer method, along with the relative path under which
the plugin is installed, is used elsewhere to identify your user-defined stemming plugin.

For details, see Registering a Native Plugin at Runtime in the Application Developer’s Guide. For a
complete example, see the code in MARLOGIC_DIR/Samples/NativePlugins.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 662

MarkLogic Server Understanding and Using Stemmed Searches
18.8.7 Testing a User-Defined Stemmer

You can test your stemmer implementation in the following ways:

• Create standalone test scaffolding.

• Use the cts:stem XQuery function or the cts.stem Server-Side JavaScript function to
exercise your plugin after it is installed and configured for at least one language.

Testing your stemmer standalone during development is highly recommended. It is much easier to
debug your code in this setup. Also, since it is possible for native plugin code to crash MarkLogic,
it is best to test and stabilize your code outside the server environment.

You can find example test scaffolding in
MARKLOGIC_DIR/Samples/NativePlugins/TestStemTok.cpp. See the main() function for a starting
point.

18.8.8 Error Handling and Logging

Use marklogic::Reporter to log messages and notify MarkLogic Server of fatal errors. Your code
should not report errors to MarkLogic Server by throwing exceptions.

Report non-fatal errors and other messages using marklogic::Reporter::log. This method logs a
message to the MarkLogic Server error log and returns control to your code. Most methods of
LexerUDF accept a marklogic::Reporter input parameter.

Report fatal errors using marklogic::Reporter::error. You should reserve calls to
Reporter::error for serious errors from which no recovery is possible. Reporting an error via
Reporter::error has the following effects:

• If you report a fatal stemming error during document insertion, the insertion transaction
aborts.

• If you report a fatal stemming error during reindexing, reindexing of the document fails.

• Control does not return to your code. Stemming stops.

• MarkLogic Server returns XDMP-UDFERR to the application. Your error message is included
in the XDMP-UDFERR error.

The following snippet reports an error and aborts tokenization:

#include "MarkLogic.h"
using namespace marklogic;
...
void ExampleUDF::next(Reporter& r)
{

...
r.log(Reporter::Error, "Bad codepoint.");

}

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 663

MarkLogic Server Understanding and Using Stemmed Searches
For more details, see the marklogic::Reporter class in MARKLOGIC_DIR/include/MarkLogic.h.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 664

MarkLogic Server Custom Dictionaries for Tokenizing and Stemming
19.0 Custom Dictionaries for Tokenizing and Stemming
673

Custom dictionaries are used to customize the way words are stemmed and tokenized for each
language. This chapter describes custom dictionaries and contains the following sections:

• Custom Dictionaries in MarkLogic Server

• Custom Dictionary Format

• Custom Dictionary Function Summary

• Example: Managing a Custom Dictionary in XQuery

• Example: Managing a Custom Dictionary in JavaScript

• Example: Exercising a Custom Dictionary

19.1 Custom Dictionaries in MarkLogic Server

One way you can customize stemming and/or tokenization in MarkLogic is by defining a custom
stemming or tokenization dictionary for a language. A given language can have at most one
custom stemming dictionary and one custom tokenization dictionary. Some languages, such as
Japanese and Chinese, use a single dictionary for both stemming and tokenization.

Stemming is the process of reducing a word to one or more stems. A stemming dictionary maps a
word to its lemma (stem). A stemmer can use a stemming dictionary to improve the precision of a
search. For example, the default stemming dictionary for English enables MarkLogic to map the
words “views”, “viewed”, and “viewing” back to their common stem, “view”. To learn more
about stemming, see “Understanding and Using Stemmed Searches” on page 652.

Tokenization is the process of partitioning text into a sequence of word, whitespace, and
punctuation tokens. A tokenization dictionary identifies runs of text that should be considered
words. A tokenizer can use this data to model text and split it into tokens of the appropriate types.

The following list contains some use cases for creating a custom dictionary:

• For languages that do not tokenize based on whitespace, such as Japanese (ja), Simplified
Chinese (zh), and Traditional Chinese (zh_hant), you can change the tokenizer’s behavior
with a custom tokenization dictionary.

• Dictionaries for languages which tokenize based on whitespace and punctuation map
inflections of words to their dictionary form, such as “viewing” mapping to “view” in
English. The same is true of Japanese. You can use a custom dictionary to modify which
words map to which stems.

• Handling spelling variation and technical vocabulary, for words like “aluminum” and
“aluminium”. Due to a dictionary entry, these two spellings are effectively the same for
anything in the server based on stemming.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 665

MarkLogic Server Custom Dictionaries for Tokenizing and Stemming
Custom dictionaries are validated when you install them so that errors do not occur every time
you use the dictionary. Duplicate entries are not detected; such entries are unnecessary but do not
cause errors. Validation does not detect non-Latin characters in a dictionary for a Latin based
language such as English.

When you configure a dictionary for a language, you are also associating the dictionary with the
lexer (for a tokenization dictionary) or stemmer (for a stemming dictionary) configured for that
language. Each lexer or stemmer plugin has its own tokenization or stemming rules, so the
“modifications” to those rules implied by a custom dictionary do not necessarily make sense for a
different plugin.

Note: If you change the lexer or stemmer configured for a language, you must reinstall
the dictionary to update the lexer/stemmer-to-dictionary association.

You can create privileges to provide fine-grained control over who can manage the custom
dictionary associated with a given stemmer or lexer plugin. For more details, see “Custom
Dictionary Security Considerations” on page 776.

Custom dictionaries are stored in the data directory, so they survive MarkLogic server upgrades.

Note: You should reindex if you change a custom dictionary.

19.2 Custom Dictionary Format

A custom dictionary can only be expressed as XML. A custom dictionary consists of a
<dictionary/> root element with zero or more <entry/> child elements. Use the following
structure for constructing a custom dictionary:

<dictionary xmlns="http://marklogic.com/xdmp/custom-dictionary">
<entry>

<word>wordToBeStemmed</word>
<stem>theStem</stem>
<pos>partOfSpeech</pos>

</entry>
</dictionary>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 666

MarkLogic Server Custom Dictionaries for Tokenizing and Stemming
The child elements of a dictionary entry have the following meaning:

Stemming and tokenization dictionaries use the same format. For a tokenization dictionary, a
dictionary entry effectively tells the tokenizer “this is a word token”.

Japanese ("ja"), Simplified Chinese ("zh"), and Traditional Chinese ("zh_Hant") use a linguistic
tokenizer to divide text into tokens (words and punctuation). A custom dictionary affects the
tokenizer for these languages. For Japanese, a custom dictionary also affects the stemmer. For all
of these languages, a custom dictionary entry may have an optional cdict:pos element to give the
part of speech for that word.

19.3 Custom Dictionary Function Summary

The custom dictionary interfaces are available to your application through the custom-dictionary
XQuery library module. To use the functions in your own code, you must bring the module into
scope, as shown below:

Element Description

word Required. The word to be stemmed or identified as a token. The element
value must not be empty.

stem Required. The stem for the word specified in <word/>. The element value
must not be empty. This value is not used in tokenization dictionaries.

pos Optional. The part of speech classification of the word in <word/>. This is
used primarily for languages without space-separated words, such as
Chinese and Japanese. The element value must be one of the following
values: Adj (adjective), Adv (adverb), Interj (interjection), Nn (noun),
NN-Prop (proper noun), Verb (verb). If this element is not present, proper
noun (NN-Prop) is assumed.

Language Example

XQuery import module namespace cdict =
"http://marklogic.com/xdmp/custom-dictionary" at
"/MarkLogic/custom-dictionary.xqy";

Server-Side JavaScript const cdict = require('/MarkLogic/custom-dictionary');
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 667

MarkLogic Server Custom Dictionaries for Tokenizing and Stemming
The dictionary library module contains functions for performing the following tasks. For more
details on each function, see the MarkLogic XQuery and XSLT Function Reference or JavaScript
Reference Guide.

19.4 Example: Managing a Custom Dictionary in XQuery

This section walks you through installing, updating and deleting a custom dictionary using
XQuery. See the following topics for details:

• Install the Dictionary

• Modify and Update the Dictionary

• Delete the Dictionary

19.4.1 Install the Dictionary

The following example installs a custom stemming dictionary for English. The dictionary
contains two entries: One that specifies the stem of “Furbies” is “Furby”, and one that specifies
the stem of “servlets” is “servlet”.

xquery version "1.0-ml";
import module namespace cdict =
"http://marklogic.com/xdmp/custom-dictionary"
 at "/MarkLogic/custom-dictionary.xqy";

let $dict :=
 <cdict:dictionary xmlns:cdict="http://marklogic.com/xdmp/custom-dictionary">
 <cdict:entry>

Task Function

Insert or update a custom dictionary XQuery: cdict:dictionary-write

JavaScript: cdict.dictionaryWrite

Retrieve a custom dictionary XQuery: cdict:dictionary-read

JavaScript: cdict.dictionaryRead

Delete a custom dictionary XQuery: cdict:dictionary-delete

JavaScript: cdict.dictionaryDelete

Get a list of licensed languages XQuery: cdict:get-languages

JavaScript: cdict.getLanguages
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 668

MarkLogic Server Custom Dictionaries for Tokenizing and Stemming
 <cdict:word>Furbies</cdict:word>
 <cdict:stem>Furby</cdict:stem>
 </cdict:entry>
 <cdict:entry>
 <cdict:word>servlets</cdict:word>
 <cdict:stem>servlet</cdict:stem>
 </cdict:entry>
 </cdict:dictionary>
return cdict:dictionary-write("en", $dict)

Since no tokenization parameter is passed to the function, the dictionary is installed as a
stemming-only dictionary by default.

19.4.2 Modify and Update the Dictionary

The following example reads back the dictionary created in “Install the Dictionary” on page 668,
modifies it, and updates the installed dictionary. The dictionary is modified by removing the entry
for “servlets” and adding an entry for “meetings”.

To update a dictionary, you must make a copy and apply your changes to the constructed copy.
You cannot use operations such as xdmp:node-replace because you are modifying an in-memory
element, not a node in the database.

xquery version "1.0-ml";
import module namespace cdict =
"http://marklogic.com/xdmp/custom-dictionary"
 at "/MarkLogic/custom-dictionary.xqy";

let $current-dict := cdict:dictionary-read("en")
let $new-dict :=
 element {fn:node-name($current-dict)} {
 for $entry in $current-dict//*:entry return
 if ($entry/*:word eq "servlets") then ()
 else element {fn:node-name($entry)} {
 $entry/@*,
 $entry/*
 },
 <cdict:entry xmlns:cdict="http://marklogic.com/xdmp/custom-dictionary">
 <cdict:word>meeting</cdict:word>
 <cdict:stem>meeting</cdict:stem>
 </cdict:entry>
}
return cdict:dictionary-write("en", $new-dict)

If you read back the updated dictionary with cdict:dictionary-read, you should see output
similar to the following:

<cdict:dictionary xmlns:cdict="http://marklogic.com/xdmp/custom-dictionary">
 <cdict:entry>
 <cdict:word>Furbies</cdict:word>
 <cdict:stem>Furby</cdict:stem>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 669

MarkLogic Server Custom Dictionaries for Tokenizing and Stemming
 </cdict:entry>
 <cdict:entry>
 <cdict:word>meeting</cdict:word>
 <cdict:stem>meeting</cdict:stem>
 </cdict:entry>
</cdict:dictionary>

19.4.3 Delete the Dictionary

The following example deletes the dictionary created in “Install the Dictionary” on page 668.

xquery version "1.0-ml";
import module namespace cdict =
"http://marklogic.com/xdmp/custom-dictionary"
 at "/MarkLogic/custom-dictionary.xqy";

cdict:dictionary-delete("en")

Calling the function again (when there is no custom dictionary installed for English) has no effect.

19.5 Example: Managing a Custom Dictionary in JavaScript

This section walks you through installing, updating and deleting a custom dictionary using
Server-Side JavaScript. See the following topics for details:

• Install the Dictionary

• Modify and Update the Dictionary

• Delete the Dictionary

19.5.1 Install the Dictionary

The following example installs a custom stemming dictionary for English. The dictionary
contains two entries: One that specifies the stem of “Furbies” is “Furby”, and one that specifies
the stem of “servlets” is “servlet”.

'use strict';
const cdict = require('/MarkLogic/custom-dictionary');

const dict = fn.head(xdmp.unquote(
 '<cdict:dictionary
xmlns:cdict="http://marklogic.com/xdmp/custom-dictionary">' +
 '<cdict:entry>' +
 '<cdict:word>Furbies</cdict:word>' +
 '<cdict:stem>Furby</cdict:stem>' +
 '</cdict:entry>' +
 '<cdict:entry>' +
 '<cdict:word>servlets</cdict:word>' +
 '<cdict:stem>servlet</cdict:stem>' +
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 670

MarkLogic Server Custom Dictionaries for Tokenizing and Stemming
 '</cdict:entry>' +
 '</cdict:dictionary>'
)).root;
cdict.dictionaryWrite('en', dict);

Since no tokenization parameter is passed to the function, the dictionary is installed as a
stemming-only dictionary by default.

19.5.2 Modify and Update the Dictionary

The following example reads back the dictionary created in “Install the Dictionary” on page 670,
modifies it, and updates the installed dictionary. The dictionary is modified by removing the entry
for “servlets” and adding an entry for “meetings”.

To update a dictionary, you must make a copy and apply your changes to the constructed copy.
You cannot use operations such as xdmp.nodeReplace because you are modifying an in-memory
element, not a node in the database.

Manipulating XML is much simpler in XQuery than in JavaScript, so you might find it easier to
write dictionary data manipulation code using XQuery. The example below uses the NodeBuilder
interface to create a modified copy of the dictionary in JavaScript. For an equivalent example in
XQuery, see “Modify and Update the Dictionary” on page 669.

'use strict';
const cdict = require('/MarkLogic/custom-dictionary');

const dict = cdict.dictionaryRead('en');
const builder = new NodeBuilder();

// start a new dictionary
builder.startElement(

'dictionary',
'http://marklogic.com/xdmp/custom-dictionary');

// Copy all the entry elems except the one for "servlets"
for (let entry of dict.xpath('//*:entry')) {
 if (fn.data(fn.head(entry.xpath('*:word'))) != 'servlets') {
 builder.startElement(entry.localName, entry.namespaceURI);
 const entryChildren = entry.childNodes;
 for (i = 0; i < entryChildren.length; i++) {
 const child = entryChildren.item(i);
 builder.addElement(

child.localName, child.textContent, child.namespaceURI);
 }
 builder.endElement(); // entry
 }
}

// Create a new entry for "meeting"
builder.startElement('entry',
'http://marklogic.com/xdmp/custom-dictionary');
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 671

MarkLogic Server Custom Dictionaries for Tokenizing and Stemming
builder.addElement('word', 'meeting',
'http://marklogic.com/xdmp/custom-dictionary');
builder.addElement('stem', 'meeting',
'http://marklogic.com/xdmp/custom-dictionary');
builder.endElement(); // entry

builder.endElement(); // dictionary

// Install the updated dictionary
cdict.dictionaryWrite('en', builder.toNode());

If you read back the updated dictionary with cdict.dictionaryRead, you should see output similar
to the following:

<cdict:dictionary xmlns:cdict="http://marklogic.com/xdmp/custom-dictionary">
 <cdict:entry>
 <cdict:word>Furbies</cdict:word>
 <cdict:stem>Furby</cdict:stem>
 </cdict:entry>
 <cdict:entry>
 <cdict:word>meeting</cdict:word>
 <cdict:stem>meeting</cdict:stem>
 </cdict:entry>
</cdict:dictionary>

19.5.3 Delete the Dictionary

The following example deletes the dictionary created in “Install the Dictionary” on page 670.

'use strict';
const cdict = require('/MarkLogic/custom-dictionary');
cdict.dictionaryDelete('en');

Calling the function again (when there is no custom dictionary installed for English) has no effect.

19.6 Example: Exercising a Custom Dictionary

You can perform a simple test of a custom tokenization dictionary using the cts:tokenize
XQuery function or the cts.tokenize JavaScript function.You can perform a simple test of a
custom stemming dictionary using the cts:stem XQuery function or the cts.stem JavaScript
function. You can also exercise you dictionary by performing a search against content in a
configured language.

For example, suppose you have the following dictionary:

<cdict:dictionary xmlns:cdict="http://marklogic.com/xdmp/custom-dictionary">
 <cdict:entry>
 <cdict:word>servlets</cdict:word>
 <cdict:stem>servletti</cdict:stem>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 672

MarkLogic Server Custom Dictionaries for Tokenizing and Stemming
 </cdict:entry>
</cdict:dictionary>

If you install this dictionary as a stemming dictionary for, say, French, then you can exercise it
using the following code:

The word “servlets” should stem to “servletti”.

If you install the same dictionary as a tokenization dictionary for French, then you can exercise it
using the following code:

The input should tokenize to three tokens: "a", "servlets", "e".

Language Example

XQuery xquery version "1.0-ml";
cts:stem("servlets", "fr")

JavaScript 'use strict';
cts.stem('servlets', 'fr')

Language Example

XQuery xquery version "1.0-ml";
cts:tokenize("aservletse", "fr")

JavaScript 'use strict';
cts.tokenize('aservletse', 'fr')
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 673

MarkLogic Server Extracting Metadata and Text From Binary Documents
20.0 Extracting Metadata and Text From Binary Documents
682

This chapter describes how to extract metadata and/or text from binary documents. It contains the
following sections:

• Metadata and Text Extraction Overview

• Usage Examples

• Supported Binary Formats

20.1 Metadata and Text Extraction Overview

Binary documents often have various associated metadata. For example, a JPEG image from a
camera may have metadata of the camera’s type and model number, a timestamp of when it was
taken, and so on.

MarkLogic Server can access binary document metadata and then store it as XML in a properties
document. You can then search and retrieve the metatdata using MarkLogic Server’s rich XML
search capabilities. In addition, for text-based binary documents, such as those in Microsoft Word
format, MarkLogic can extract and index their text content.

MarkLogic Server server offers the XQuery built-in, xdmp:document-filter, and JavaScript
method, xdmp.documentFilter, to extract and associate metadata from binary documents: These
functions extract metadata and text from binary documents as XHTML. The results may be used
as document properties. The extracted text contains little formatting or structure, so it is best used
for search, classification, or other text processing.

20.2 Usage Examples

The following sections show how xdmp:document-filter works with various file types. The
Microsoft Word section also provides code to extract only the metadata elements from combined
metadata and text results.

• Microsoft Word

• File Archives

• PowerPoint

20.2.1 Microsoft Word

The following query and results are for a Microsoft Word document containing only the text “This
is a test”:

xquery version "1.0-ml";
xdmp:document-filter(doc("/documents/test.docx"))
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 674

MarkLogic Server Extracting Metadata and Text From Binary Documents
Returns:

<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml">

<head>
<meta name="content-type" content="application/msword"/>
<meta name="filter-capabilities"

content="text subfiles HD-HTML"/>
<meta name="AppName" content="Microsoft Office Word"/>
<meta name="Author" content="Clark Kent"/>
<meta name="Company" content="MarkLogic"/>
<meta name="Creation_Date" content="2011-10-11T02:40:00Z"/>
<meta name=”Description”

content=”This is my comment.”/>
<meta name="Last_Saved_Date" content="2011-10-11T02:41:00Z"/>
<meta name="Line_Count" content="1"/>
<meta name="Paragraphs_Count" content="1"/>
<meta name="Revision" content="1"/>
<meta name="Template" content="Normal"/>
<meta name="Typist" content="Clark Kent"/>
<meta name="Word_Count" content="4"/>
<meta name="isys" content="SubType: Word 2007"/>
<meta name="size" content="12691"/>

</head>
<body>

<p>
</p>
<p>

This is a test.</p>
<p>
</p>

</body>
</html>

In the document, the word “test” is both italicized and bolded. xdmp:document-filter does not
return such text formatting.

Expanding on the previous example, the following code uses xdmp:document-filter to extract
only the metadata from that same Microsoft Word document:

xquery version "1.0-ml";
let $url := "/documents/test.docx"
return xdmp:document-set-properties(

$url,
for $meta in xdmp:document-filter(fn:doc($the-document))//*:meta
return element {$meta/@name} {fn:string($meta/@content)}

)

The properties document now looks as follows:

xdmp:document-properties(“/documents/test.docx”)
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 675

MarkLogic Server Extracting Metadata and Text From Binary Documents
returns:

<prop:properties xmlns:prop="http://marklogic.com/xdmp/property">
<content-type>application/msword</content-type>
<filter-capabilities>text subfiles HD-HTML</filter-capabilities>
<AppName>Microsoft Office Word</AppName>
<Author>Clark Kent</Author>
<Company>MarkLogic</Company>
<Creation_Date>2011-10-11T02:40:00Z</Creation_Date>
<Description>This is my comment.</Description>
<Last_Saved_Date>2011-10-11T02:41:00Z</Last_Saved_Date>
<Line_Count>1</Line_Count>
<Paragraphs_Count>1</Paragraphs_Count>
<Revision>1</Revision>
<Subject>Creating binary doc props</Subject>
<Template>Normal/Template>
<Typist>Clark Kent</Typist>
<Word_Count>4</Word_Count>
<isys>SubType: Word 2007</isys>
<size>12691</size>
<prop:last-modified>2011-10-12T09:47:10-07:00</prop:last-modified>

</prop:properties>

20.2.2 File Archives

If you need to extract files from zip archives for individual processing, use xdmp:zip-manifest
and xdmp:zip-get. Use xdmp:document-filter if you just want all the text from the archive, since
it does not preserve the embedded files’ structure, but includes all of the documents’ text. This is
useful for finding the original location in search results; if you search for “Elvis” and use
xdmp:document-filter on the various files, the results include every binary containing “Elvis”,
whether it is a zip archive, Word document, or photo.

In this example, xdmp:document-filter runs on the file archive test.zip, which consists of two
Word files and a JPEG file,

xquery version "1.0-ml";
xdmp:document-filter(doc("/documents/test.zip"))

returns

<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml">

<head>
<meta name="content-type" content="application/zip"/>
<meta name="filter-capabilities" content="subfiles"/>
<meta name="AppName" content="Microsoft Office Word"/>
<meta name="Author" content="Lois Lane"/>
<meta name="Company" content="MarkLogic"/>
<meta name="Creation_Date" content="2011-10-14T21:11:00Z"/>
<meta name="Last_Saved_Date" content="2011-10-14T21:11:00Z"/>
<meta name="Line_Count" content="1"/>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 676

MarkLogic Server Extracting Metadata and Text From Binary Documents
<meta name="Paragraphs_Count" content="1"/>
<meta name="Revision" content="2"/>
<meta name="Template" content="Normal"/>
<meta name="Typist" content="Lois Lane"/>
<meta name="Word_Count" content="3"/>
<meta name="isys" content="SubType: Word 2007"/>
<meta name="Focal_Length" content="4"/>
<meta name="Make" content="LG Electronics"/>
<meta name="Model" content="VM670"/>
<meta name="Original_Date_Time" content="2011:10:19 14:59:24"/>
<meta name="Original_Date_Time.datetime"

content="2011-10-19T14:59:24Z"/>
<meta name="ResolutionUnit" content="2"/>
<meta name="XResolution" content="72.000000"/>
<meta name="YResolution" content="72.000000"/>
<meta name="AppName" content="Microsoft Office Word"/>
<meta name="Author" content="Clark Kent"/>
<meta name="Company" content="MarkLogic"/>
<meta name="Creation_Date" content="2011-10-11T02:40:00Z"/>
<meta name="Last_Saved_Date" content="2011-10-11T02:41:00Z"/>
<meta name="Line_Count" content="1"/>
<meta name="Paragraphs_Count" content="1"/>
<meta name="Revision" content="1"/>
<meta name="Template" content="Normal"/>
<meta name="Typist" content="Clark Kent"/>
<meta name="Word_Count" content="2"/>
<meta name="isys" content="SubType: Word 2007"/>
<meta name="size" content="47730"/>

</head>
<body>
<p>
</p>
<p>
This is a another test.</p>
<p>
</p>
<p>

This is a test.</p>
<p>
</p>

</body>
</html>

While each sentence in this example’s returned HTML body text is from a different file, there is
no way to distinguish which text comes from which file. Similarly, the returned subfile metadata
is not guaranteed to be returned in file order (for example, name=”a”, name=”b” might be from
different documents in the archive) and so also cannot be correctly associated with an individual
subfile.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 677

MarkLogic Server Extracting Metadata and Text From Binary Documents
Also, individual subfiles in the archive are not necessarily distinguishable at all. In the above
example, you cannot tell from the output how many files, or what file types, are in the archive.
When using xdmp:document-filter on an archive, you should think of the archive as a single file,
rather than a compilation of subfiles. You will get back all the metadata and text contained in the
single archive file, but will have no way of associating that returned information with the
individual subfiles it came from.

20.2.3 PowerPoint

The following query and results are for a two slide PowerPoint document, where each slide has a
title and separate content:

xquery version "1.0-ml";
xdmp:document-filter(doc("/documents/test.pptx"))

returns:

<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml">

<head>
<meta name="content-type"

content="application/vnd.ms-powerpoint"/>
<meta name="filter-capabilities" content="text subfiles HD-HTML"/>
<title>This is a test </title>
<meta name="AppName" content="Microsoft Office PowerPoint"/>
<meta name="Author" content="Clark Kent"/>
<meta name="Company" content="MarkLogic"/>
<meta name="Creation_Date" content="2011-10-17T19:58:34Z"/>
<meta name="Last_Saved_Date" content="2011-10-17T20:00:13Z"/>
<meta name="Paragraphs_Count" content="4"/>
<meta name="Presentation_Format" content="On-screen Show (4:3)"/>
<meta name="Revision" content="1"/>
<meta name="Slide_Count" content="2"/>
<meta name="Typist" content="Clark Kent"/>
<meta name="Word_Count" content="12"/>
<meta name="isys" content="SubType: PowerPoint 2007"/>
<meta name="size" content="36909"/>

</head>
<body>

<p>
</p>
<p>
This is a test </p>
<p>
Of PowerPoint</p>
<p>

</p>
<p>
Test #3
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 678

MarkLogic Server Extracting Metadata and Text From Binary Documents
</p>
<p>
Second Slide.</p>
<p>

</p>
</body>
</html>

Similarly, any text formatting is not returned, nor is any indicator of what role the text played on a
slide (title, body, etc.), nor is there any way to tell what text belongs to which slide.

20.3 Supported Binary Formats

The following sections list the binary file formats and file extensions from which
xdmp:document-filter can extract metadata and, depending on the format, text from. Due to the
large number of formats, they are first broken down into general application areas, such as
Databases or Multimedia, then each area lists its applicable formats and extensions.

Some formats can be identified by xdmp:document-filter, but have no text or metadata to extract,
such as executables. For these, the returned <meta name="content-type" content=.../>
identifies the file’s format.

• Archives

• Databases

• Email and Messaging

• Multimedia

• Other

• Presentation

• Raster Image

• Spreadsheet

• Text and Markup

• Vector Image

• Word Processing and General Office

20.3.1 Archives

Formats: 7-Zip, ACE, ARJ, Bzip2, ISO Disk Image, Java Archive, LZH, Microsoft Cabinet,
Microsoft Office Binder, RedHat Package Manager, Roshal Archive, Self-extracting .exe, StuffIt,
StuffIt Self Extracting Archive, SuffIt X, GNU Zip, UNIX cpio, UNIX Tar, Zip, PKZip, WinZip
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 679

MarkLogic Server Extracting Metadata and Text From Binary Documents
Extensions: .7Z, .ACE, .ARJ, .BZ2, .CAB, .CPIO, .EXE, .GZ, .ISO, JAR, LZH, .ORD, .RAR,
.RPM, .SIT, .SEA, .SITX, .TAR, .TBZ2, .ZIP

20.3.2 Databases

Formats: dBase, dBase III, Microsoft Access, Paradox Database

Extensions: .DB, .DBF, .DB3, .MDB

20.3.3 Email and Messaging

Formats: Encoded mail messages of any of the forms MHT, Multipart Alternative, Multipart
Digest, Multipart Mixed, Multipart Newsgroup, Multipart Signed, and TNEF. Also, the individual
formats Eudora, Microsoft Outlook, Microsoft Outlook3, Microsoft Outlook Express3. Microsoft
Outlook Forms Template, Sendmail “mbox”, Thunderbird

Extensions: .EML, .MBOX, .MBX, .MHT, .MSG, .OFT, .PST

20.3.4 Multimedia

Formats: 3GP, Adobe Flash, Adobe Flash Video, Audio Video Interleave (AVI), DVD
Information File, DVD Video Object, Microsoft Windows Movie Maker, Musical Instrument
Digital Interface (MIDI), MPEG Video, MPEG-1 Audio Layer 3, MPEG-4 Video, MPEG-2
Audio Layer 3, OGG Flac Audio, OGG Vorbis Audio, QuickTime, Real Media, Waveform Audio
File Format (WAVE), Window Media Audio, Windows Media Video.

Extensions: .3GP, .AIFF, .AVI, .BUP, .FLAC, .FLV, .IFO, .MID, .MIDI, .MOV, .MP3, .MP4,
.MPG, .MSWMM, .OGG, .RM, .SMF, .SWF, .VOB, .WAV, .WMA, .WMV

20.3.5 Other

Formats: Apple Executable, BIN HEX Encoded, BitTorrent Metafile, Linux Executable and
Linkable Format, Log File, Microsoft Project, Microsoft Windows DLL, Microsoft Windows
Executable, Microsoft Windows Installer, Microsoft Windows, Shortcut, Open Access II (OAII),
VCard, Uniplex

Extensions: .BIN, .COM, .DLL, .ELF, .EXE, .HBX, .HEX, .HQXX, .LNK, .LOG, .MPP, .MPX,
.MSI, .SYS, .TORRENT, .VCF

20.3.6 Presentation

Formats: IBM Lotus Symphony Presentation, LibreOffice Presentation, Microsoft PowerPoint
for Windows or Macintosh, OpenOffice Impress, StarOffice Impress

Extensions: .ODP, .ODS, .PPT, .PPTX, .SDI, .SDP, .SXI
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 680

MarkLogic Server Extracting Metadata and Text From Binary Documents
20.3.7 Raster Image

Formats: Encapsulated PostScript, Grapics Interchange Format (GIF), Joint Photographic
Experts Group (JPEG), Microsoft Document Imaging, Microsoft Windows Bitmap, PCX,
Portable Network Graphic (PNG), Progressive JPEG, Tagged Image Format File (TIFF)

Extensions: .BMP, .EPS, .GFA, .GIF, .GIFF, .JIF, .JPEG, .JPG, .JPE, .MDI, .PCX, .PNG, .TIF,
.TIFF

20.3.8 Spreadsheet

Formats: Comma Separated Values, Franeword Spreadsheet, IBM Lotus Symphony, LibreOffice
Spreadsheet, Lotus 1-2-3, Microsoft Excel for Windows or Mac, Microsoft Works SS for DOS or
Windows, OpenOffice Calc, StarOffice Calc

Extensions: .CSV, .FW3, .ODS, .SX, .SXC, .SXS, .XLS, XLSB, .XLSX, .WK., .WK3, .WK4,
.WKS, .WPS

20.3.9 Text and Markup

Formats: ASCII Text (7 and 8 bit) , ANSI Text (7 and 8 bit), HTML (text only, codes revealed,
metadata only), IBM DCA, Microsoft HTML Help, Microsoft OneNote, Rich Text Format,
SGML Text, Source, Transcript, Unicode UTF8 and UTF16 and UCS2, XML, Windows
Enhanced Meta File, Windows Meta File

Extensions: .CHM, .DCA, .EMF, .HTM, .HTML,.ONE, .RFT, .RTF, .SGML, .TXT, .XML,
.WMF

20.3.10 Vector Image

Formats: Adobe Illustrator, Adobe InDesign, Adobe Photoshop, AutoCAD Drawing, AutoCAD
drawing Exchange Format, Corel Draw Image, Intergraph-Microstation CAD, MathCAD,
Microsoft XPS, Microsoft Visio

Extensions: .AI, .CDR, .DGN, .DWG, .DXF, .INDD, .MCD, .OXPS, .PSD, .VSD, .XMCD, .XPS
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 681

MarkLogic Server Extracting Metadata and Text From Binary Documents
20.3.11 Word Processing and General Office

Formats: Adobe PDF, Adobe PostScript, Ami Pro for Windows, Apple iWork, Framework WP,
Hangul, IBM DCA/FFT, IBM DisplayWrite, IBM Lotus Symphony Document, JustSystems
Ichitaro, LibreOfffice Document, Lotus Manuscript, Lotus Notes, Mass 11, Microsoft Publisher,
Microsoft Word for DOS/Windows/Macintosh, QuarkXpress, MultiMate, MultiMate Advantage,
OpenOffice Writer, Professional Write for DOS, Professional Write Plus for Windows, Q&A
Write, QuickBooks Backup, QuickBooks for Windows, StarOffice Writer, TrueType Font,
VCalendar Electronic Calendar, Wang IWP, Wang WP Plus, Windows Write, WinWord,
WordPerfect for DOS/Macintosh/Windows, Wordstar for DOS/Windows, Wordstar 2000 for
DOS, XYwrite

Extensions: .AMI, .DCA, DOC, .DOCX, .DOX, .DW4, .FFT, .FW3, .ICS, .IWP, .JTD, .JBW,
.JTT, ,KEY, .M11, .MAN, .MANU, .MNU, .NSF, .NUMBERS, .ODT, PAGES, .PDF, .PS, .PUT,
.QCx, .QXx, .PW, .PW1, .PW2, .QA, .QA3, .QBB, .QBW, .RFT, .SAM, .SXW, .SDW, .TTF,
.VCS, .WPD, WRI, .WS, .WS2, .WSD, .XY
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 682

MarkLogic Server Understanding and Using Wildcard Searches
21.0 Understanding and Using Wildcard Searches
692

This chapter describes wildcard searches in MarkLogic Server. The following sections are
included:

• Wildcards in MarkLogic Server

• Enabling Wildcard Searches

• Interaction with Other Search Features

21.1 Wildcards in MarkLogic Server

Wildcard searches enable MarkLogic Server to return results that match combinations of
characters and wildcards. Wildcard searches are not simply exact string matches, but are based on
character pattern matching between the characters specified in a query and words in documents
that contain those character patterns. This section describes wildcards and includes the following
topics:

• Wildcard Characters

• Rules for Wildcard Searches

21.1.1 Wildcard Characters

MarkLogic Server supports two wildcard characters: * and ?.

• * matches zero or more non-space characters.

• ? matches exactly one non-space character.

For example, he* will match any word starting with he, such as he, her, help, hello, helicopter,
and so on. On the other hand, he? will only match three-letter words starting with he, such as hem,
hen, and so on.

21.1.2 Rules for Wildcard Searches

The following are the basic rules for wildcard searches in MarkLogic Server:

• There can be more than one wildcard in a single search term or phrase, and the two
wildcard characters can be used in combination. For example, m*?? will match words
starting with m with three or more characters.

• Spaces are used as word breaks, and wildcard matching only works within a single word.
For example, m*th* will match method but not meet there.

• If the * wildcard is specified by itself in a value query (for example,
cts:element-value-query, cts:element-value-match), it matches everything (spanning
word breaks). For example, * will match the value meet me there.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 683

MarkLogic Server Understanding and Using Wildcard Searches
• If the * wildcard is specified with a non-wildcard character, it will match in value lexicon
queries (for example, cts:element-value-match), but will not match in value queries (for
example, cts:element-value-query). For example, m* will match the value meet me there
for a value lexicon search (for example, cts:element-value-match) but will not match the
value for a value query search (for example, cts:element-value-query), because the value
query only matches the one word. A value search for m* * will match the value (because
m* matches the first word and * matches everything after it).

• If "wildcarded" is explicitly specified in the cts:query expression, then the search is
performed as a wildcard search.

• If neither "wildcarded" nor "unwildcarded" is specified in the cts:query expression, the
database configuration and query text determine wildcarding. If the database has any
wildcard indexes enabled (three character searches, two character searches, one
character searches, or trailing wildcard searches) and if the query text contains either
of the wildcard characters ? or *, then the wildcard characters are treated as wildcards and
the search is performed "wildcarded". If none of the wildcard indexes are enabled, the
wildcard characters are treated as punctuation and the search is performed unwildcarded
(unless "wildcarded" is specified in the cts:query expression).

• If the query has the punctuation-sensitive option, then punctuation is treated as word
characters for wildcard searches. For example, a punctuation-sensitive wildcard search
for d*benz would match daimler-benz.

• If the query has the whitespace-sensitive option, then whitespace is treated as word
characters. This can be useful for matching spaces in wildcarded value queries. You can
use the whitespace-sensitive option in wildcarded word queries, too, although it might
not make much sense, as it will match more than you might expect.

• You can only perform wildcard matches against JSON properties with text (string) values.
Numbers, booleans, nulls are indexed separately in JSON. For details, see Creating Indexes

and Lexicons Over JSON Documents in the Application Developer’s Guide.

Note: Combined punctuation-sensitive/whitespace-sensitive wildcards options require
the character index and will not work with lexicon only. Lexicon expansion itself
cannot handle whitespace and punctuation cases.

21.2 Enabling Wildcard Searches

Wildcard searches use character indexes, lexicons, and trailing wildcard indexes to speed
performance. To ensure that wildcard searches are fast, you should enable at least one wildcard
index (three character searches, trailing wildcard searches, two character searches, and/or one
character searches) and fast element character searches (if you want fast searches within specific
elements) in the Admin Interface database configuration screen. Wildcard searches are disabled
by default. If you enable character indexes, you should plan on allocating an additional amount of
disk space approximately three times the size of the source content.

This section describes the following topics:
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 684

MarkLogic Server Understanding and Using Wildcard Searches
• Specifying Wildcards in Queries

• Recommended Wildcard Index Settings

• Understanding the Wildcard Indexes

21.2.1 Specifying Wildcards in Queries

If any wildcard indexes are enabled for the database, you can further control the use of wildcards
at the query level. You can use wildcards with any of the MarkLogic cts:query leaf-level
functions, such as cts:word-query, cts:element-word-query, and cts:element-value-query. For
details on the cts:query functions, see “Composing cts:query Expressions” on page 248. You can
use the "wildcarded" and "unwildcarded" query option to turn wildcarding on or off explicitly in
the cts:query constructor functions. See the MarkLogic XQuery and XSLT Function Reference
for more details.

If you leave the wildcard option unspecified and there are any wildcard indexes enabled,
MarkLogic Server will perform a wildcard query if * or ? is present in the query. For example, the
following search function:

cts:search(fn:doc(), cts:word-query("he*"))

will result in a wildcard search. Therefore, as long as any wildcard indexes are enabled in the
database, you do not have to turn on wildcarding explicitly to perform wildcard searches.

When wildcard indexing is enabled in the database, the system will also deliver higher
performance for fn:contains, fn:matches, fn:starts-with and fn:ends-with for most query
expressions.

Note: If character indexes, lexicons, and trailing wildcard indexes are all disabled in a
database and wildcarding is explicitly enabled in the query (with the "wildcarded"
option to the leaf-level cts:query constructor), the query will execute, but might
require a lot of processing. Such queries will be fast if they are very selective and
only need to do the wildcard searches over a relatively small amount of content,
but can take a long time if they actually need to filter out results from a large
amount of content.

21.2.2 Recommended Wildcard Index Settings

To enable any kind of wildcard query functionality with a good combination of performance and
database size, MarkLogic recommends you enable the following index settings:

• word searches

• three character searches

• word positions

• word lexicon in the codepoint collation

• three character word positions
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 685

MarkLogic Server Understanding and Using Wildcard Searches
For details, see “Understanding the Wildcard Indexes” on page 686 and Understanding the Text

Index Settings in the Administrator’s Guide.

This combination will provide accurate and fast wildcard queries for a wide variety of wildcard
searches, including leading and trailing wildcarded searches. If you add the trailing wildcard
searches index, you will get slightly more efficient trailing wildcard searches, but with increased
database size.

If you only need wildcards against specific XML elements, XML attributes, JSON properties, or
fields, you should consider using an element or field word lexicon instead of a general word
lexicon. Doing so can improve the speed and accuracy of wildcard matching. Consider this option
if you’re primarily performing wildcard searches using the following query types or their
equivalent:

• cts:element-value-query

• cts:element-attribute-value-query

• cts:json-property-value-query

• cts:field-value-query

21.2.3 Understanding the Wildcard Indexes

You configure the index settings at the database level, using the Admin Interface or Admin APIs
(XQuery, Server-Side JavaScript, or REST). For details on configuring database settings and on
other text indexes, see Database Settings and Text Indexing in the Administrator’s Guide.

The following database settings can affect the performance and accuracy of wildcard searches.
For details, see Understanding the Text Index Settings in the Administrator’s Guide.

• word lexicons

• element, element attribute, and field word lexicons. (Use an element word lexicon for a
JSON property).

• three character searches, two character searches, or one character searches. You do
not need one or two character searches if three character searches is enabled.

• three character word positions

• trailing wildcard searches, trailing wildcard word positions, fast element
trailing wildcard searches

• fast element character searches
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 686

MarkLogic Server Understanding and Using Wildcard Searches
The three character searches index combined with the word lexicon provides the best
performance for most queries, and the fast element character searches index is useful when
you submit element queries. One and two character searches indexes are only used if you submit
wildcard searches that try and match only one or two characters and you do not have the
combination of a word lexicon and the three character searches index. Because one and two
character searches generally return a large number of matches, they might not justify the disk
space and load time trade-offs.

Note: If you have the three character searches index enabled and two and one
character indexes disabled, and if you have no word lexicon, it is still possible to
issue a wildcard query that searches for a two or one character stem (for example,
ab* or a*); these searches are allowed, but will not be fast. If you have a search
user interface that allows users to enter such queries, you might want to check for
these two or one character wildcard search patterns and issue an error, as these
searches without the corresponding indexes can be slow and resource-intensive.
Alternatively, add a codepoint collation word lexicon to your database.

As with all indexing, choosing which indexes to use is a trade-off. Enabling more indexes
provides improved query performance, but uses more disk space and increases load and
reindexing time. For most environments where wildcard searches are required, MarkLogic
recommends enabling the three character searches and a codepoint collation word lexicon, but
disabling one and two character searches.

If you only need to perform wildcard searches on specific elements, attributes, JSON properties,
or fields, you can save some space and potentially improve accuracy by using an element,
attribute, or field word lexicon instead of a general word lexicon.

Also, if you just want to apply wildcard searches to selected content, fields enable you to leave the
wildcard indexes disabled at the database level, while still enabling them at the field level. For
details, see Understanding Field Configurations in the Administrator’s Guide.

21.3 Interaction with Other Search Features

This section describes the interactions between wildcard, stemming, and other search features in
MarkLogic Server. The following topics are included:

• Wildcarding and Stemming

• Wildcarding and Punctuation Sensitivity
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 687

MarkLogic Server Understanding and Using Wildcard Searches
21.3.1 Wildcarding and Stemming

Wildcard searches can be used in combination with stemming (for details on stemming, see
“Understanding and Using Stemmed Searches” on page 652); that is, queries can perform
stemmed searches and wildcard searches at the same time. However, the system will not perform
a stemmed search on words that are wildcarded. For example, assume a search phrase of running
car*. The term running will be matched based on its stem. However, car* will be matched based
on a wildcard search, and will match car, cars, carriage, carpenter and so on; stemmed word
matches for the words matching the wildcard are not returned.

21.3.2 Wildcarding and Punctuation Sensitivity

Stemming and punctuation sensitivity perform independently of each other. However, there is an
interaction between wildcarding and punctuation sensitivity. This section describes this
interaction and includes the following parts:

• Implicitly and Explicitly Specifying Punctuation

• Rules for Punctuation and Wildcarding Interaction

• Examples of Wildcard and Punctuation Interactions

21.3.2.1 Implicitly and Explicitly Specifying Punctuation

MarkLogic Server allows you to explicitly specify whether a query is punctuation sensitive and
whether it uses wildcards. You specify this in the options for the query, as in the following
example:

cts:search(fn:doc(), cts:word-query("hello!", "punctuation-sensitive"))

If you include a wildcard character in a punctuation sensitive search, it will treat the wildcard as
punctuation. For example, the following query matches hello*, but not hellothere:

cts:search(fn:doc(), cts:word-query("hello*", "punctuation-sensitive"))

If the punctuation sensitivity option is left unspecified, the system performs a punctuation
sensitive search if there is any non-wildcard punctuation in the query terms. For example, if
punctuation is not specified, the following query:

cts:search(fn:doc(), cts:word-query("hello!"))

will result in a punctuation sensitive search, and the following query:

cts:search(fn:doc(), cts:word-query("hello"))

will result in a punctuation insensitive search.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 688

MarkLogic Server Understanding and Using Wildcard Searches
If a search is punctuation sensitive (whether implicitly or explicitly), MarkLogic Server will
match the punctuation as well as the search term. Note that punctuation is not considered to be
part of a word. For example, mark! is considered to be a word mark next to an exclamation point. If
a search is punctuation insensitive, punctuation will match spaces.

21.3.2.2 Rules for Punctuation and Wildcarding Interaction

The characters ? and * are considered punctuation in documents loaded into the database.
However, ? and * are also treated as wildcard characters in a query. This makes for interesting
(and occasionally confusing) interaction between wildcarding and punctuation sensitivity.

The following are the rules for the interaction between punctuation and wildcarding. They will
help you determine how the system behaves when there are interactions between the punctuation
and wildcard characters.

1. When wildcard indexes are disabled in the database, all queries default to "unwildcarded",
and wildcard characters are treated as punctuation. If you specify "wildcarded" in the
query, the query is a wildcard query and wildcard characters are treated as wildcards.

2. Wildcarding trumps (has precedence over) punctuation sensitivity. That is, if the * and/or ?
characters are present in a query, * and ? are treated as wildcards and not punctuation
unless wildcarding is turned off. If wildcarding is turned off in the query
("unwildcarded"), they are treated as punctuation.

3. If wildcarding and punctuation sensitivity are both explicitly off and punctuation
characters (including * and ?) are in the query, they are treated as spaces.

4. Wildcarding and punctuation sensitivity can be on at the same time. In this case,
punctuation in a document is treated as characters, and wildcards in the query will match
any character in the query, including punctuation characters. Therefore, the following
query will match both hello* and hellothere:

cts:search(fn:doc(),
cts:word-query("hello*",

("punctuation-sensitive", "wildcarded"))
)

21.3.2.3 Examples of Wildcard and Punctuation Interactions

This section contains examples of the output of queries in the following categories:

• Wildcarding and Punctuation Sensitivity Not Specified (Wildcard Indexes Enabled)

• Wildcarding Explicitly Off, Punctuation Sensitivity Not Specified

• Wildcarding Not Specified, Punctuation Sensitivity Explicitly On (Wildcard Indexes Enabled)

Wildcarding and Punctuation Sensitivity Not Specified (Wildcard Indexes Enabled)
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 689

MarkLogic Server Understanding and Using Wildcard Searches
The following examples show queries that are run when at least one wildcard index is enabled and
no options are explicitly set on the cts:word-query.

• Example query: cts:word-query("hello world")

Actual behavior: Wildcarding off, punctuation insensitive

Will match: hello world, hello ?! world, hello? world! and so on

• Example query: cts:word-query("hello?world")

Actual behavior: Wildcarding on, punctuation insensitive

Will match: helloaworld

Will not match: hello world, hello!world

• Example query: cts:word-query("hello*world")

Actual behavior: Wildcarding on, punctuation insensitive

Will match: helloabcworld

Will not match: hello to world, hello-to-world

• Example query: cts:word-query("hello * world")

Actual behavior: Wildcarding on, punctuation insensitive

Will match: hello to world, hello-to-world

Will not match: helloaworld, hello world, hello ! world

Note: Adjacent spaces are collapsed for string comparisons in the server. In the query
phrase hello * world, the two spaces on each side of the asterisk are not collapsed
for comparison since they are not adjacent to each other. Therefore, hello world is
not a match since there is only a single space between hello and world but
hello * world requires two spaces because the spaces were not collapsed. The
phrase hello ! world is also not a match because ! is treated as a space
(punctuation insensitive), and then all three consecutive spaces are collapsed to a
single space before the string comparison.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 690

MarkLogic Server Understanding and Using Wildcard Searches
• Example query: cts:word-query("hello! world")

Actual behavior: Wildcarding off, punctuation sensitive

Will match: hello! world

Will not match: hello world, hello; world

• Example query: cts:word-query("hey! world?")

Actual behavior: Wildcarding on, punctuation sensitive

Will match: hey! world?, hey! world!, hey! worlds

Will not match: hey. world

Wildcarding Explicitly Off, Punctuation Sensitivity Not Specified

The following examples show the matches for queries that specify "unwildcarded" and do not
specify anything about punctuation-sensitivity.

• Example query: cts:word-query("hello?world", "unwildcarded")

Actual behavior: Wildcarding off, punctuation sensitive

Will match: hello?world

Will not match: hello world, hello;world

• Example query: cts:word-query("hello*world", "unwildcarded")

Actual behavior: Wildcarding off, punctuation sensitive

Will match: hello*world

Will not match: helloabcworld

Wildcarding Not Specified, Punctuation Sensitivity Explicitly On (Wildcard Indexes Enabled)

The following examples show queries that are run when at least one wildcard index is enabled and
the "punctuation-sensitive" option is explicitly set on the cts:word-query.

• Example query: cts:word-query("hello?world", "punctuation-sensitive")

Actual behavior: Wildcarding on, punctuation sensitive

Will match: hello?world, hello.world, hello*world

Will not match: hello world, hello ! world
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 691

MarkLogic Server Understanding and Using Wildcard Searches
• Example query: cts:word-query("hello * world", "punctuation-sensitive")

Actual behavior: Wildcarding on, punctuation sensitive

Will match: hello abc world, hello ! world

Will not match: hello-!- world

• Example query: cts:word-query("hello? world", "punctuation-sensitive")

Actual behavior: Wildcarding on, punctuation sensitive

Will match: hello! world, (hello) world

Note: (hello) world is a match because ? matches) and (is not considered part of the
word hello.

Will not match: ahello) world, hello to world.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 692

MarkLogic Server Collections
22.0 Collections
700

MarkLogic Server includes collections, which are groups of documents that enable queries to
efficiently target subsets of content within a MarkLogic database.

Collections are described as part of the W3C XQuery specification, but their implementation is
undefined. MarkLogic has chosen to emphasize collections as a powerful and high-performance
mechanism for selecting sets of documents against which queries can be processed. This chapter
introduces the collection() function, explains how collections are defined and accessed, and
describes some of the basic performance characteristics with which developers should be familiar.
This chapter includes the following sections:

• The collection() Function

• Collections Versus Directories

• Defining Collections

• Collection Membership

• Collections and Security

• Performance Characteristics

22.1 The collection() Function

The collection() function can be used anywhere in your XQuery that the doc() or input()
functions are used. The collection() function has the following signature:

fn:collection($URI as xs:string*) as node*

Note: The MarkLogic Server implementation of the collection() function takes a
sequence of URIs, so you can call the collection() function on one or more
collections. The signature of the function in the W3C XQuery documentation only
takes a single string. Also, the fn namespace is built-in to MarkLogic Server, so it
is not necessary to prefix the function with its namespace.

To illustrate what the collection() function is used for, consider the following two XPath
expressions:

fn:doc()//sonnet/line[cts:contains(., "flower")]

collection("english-lit/shakespeare")//sonnet/
line[cts:contains(., "flower")]

The first expression returns a sequence of line nodes, each of which must be the child of a sonnet
node, and each of which must contain the term flower, matched on a case-insensitive basis.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 693

MarkLogic Server Collections
The second expression returns the same sequence, except that only line nodes contained within
documents that are members of the english-lit/shakespeare collection. MarkLogic Server
optimizes this expression. The operation that uses the collection() function, along with the rest
of the XPath expression, is executed very efficiently through a series of index lookups.

As mentioned previously, the collection() function accepts either a single collection, as
illustrated above, or a sequence of collections, as illustrated below:

collection(("english-lit/shakespeare",
"american-lit/poetry"))//sonnet/

line[cts:contains(., "flower")]

The query above returns a sequence of line nodes that match the stated predicates that are
members of either the english-lit/shakespeare collection or the american-lit/poetry collection
or both. With this modification to the collection() function, its format now closely matches the
format of the doc() function, which also takes a sequence of URIs. While there is currently no
XPath-level support for more complex boolean membership conditions (for example, requiring
membership in multiple collections (and), excluding documents that belong to certain collections
(not) or requiring pure either-or membership (exclusive or)), you can achieve these conditions
through the where clause in a surrounding FLWOR expression (see “Collection Membership” on
page 697 for an example).

22.2 Collections Versus Directories

Collections are used to organize documents in a database. You can also use directories to organize
documents in a database. The key differences in using collections to organize documents versus
using directories are:

• Collections do not require member documents to conform to any URI patterns. They are
not hierarchical; directories are. Any document can belong to any collection, and any
document can also belong to multiple collections.

• You can delete all documents in a collection with the xdmp:collection-delete function.
Similarly, you can delete all documents in a directory (as well as all recursive
subdirectories and any documents in those directories) with the xdmp:directory-delete
function.

• You cannot set properties on a collection; you can on a directory.

Except for the fact that you can use both collections and directories to organize documents,
collections are unrelated to directories. For details on directories, see Properties Documents and

Directories in the Application Developer’s Guide.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 694

MarkLogic Server Collections
22.3 Defining Collections

Collection membership for a document is defined implicitly. Rather than describing collections
top-down (that is, specifying the list of documents that belong to a given collection), MarkLogic
Server determines membership in a bottoms-up fashion, by aggregating the set of documents that
describe themselves as being a member of the collection. You can use MarkLogic Server's
security scheme to manage policies around collection membership.

Collections are named using URIs. Any URI is a legal name for a collection. The URI must be
unique within the set of collections (both protected and unprotected) in your database.

The URIs that are used to name collections serve only as identifiers to the server. In particular,
collections are not modeled on filesystem directories. Rather, collections are interpreted as sets,
not as hierarchies. A document that belongs to collection english-lit/poetry/sonnets need not
belong to collection english-lit/poetry. In fact, the existence of a collection with URI
english-lit/poetry/sonnets does not imply the existence of collections with URI
english-lit/poetry or URI english-lit.

There are two types of collections supported by MarkLogic Server: unprotected collections and
protected collections. The two types are identical in terms of the syntactic application of the
collection() function. However, differences emerge in the way they are defined, in who can
access the collections, and in who can modify, add or remove documents from them. The
following subsections descripe these two ways of defining collection:

• Implicitly Defining Unprotected Collections

• Explicitly Defining Protected Collections

22.3.1 Implicitly Defining Unprotected Collections

Unprotected collections are created implicitly.

When a document is first loaded into the system, the load directive (whether through XQuery or
XDBC) optionally can specify the collections to which that document belongs. In that list of
collections, the specification of a collection URI that has not previously been used is the only
action that is needed to create that new unprotected collection.

If collections are left unspecified in the load directive, the document is added to the database with
collection membership determined by the default collections that are defined for the current user
through the security model and by inheritance from the current user's roles. The invocation of
these default settings can also result in the creation of a new unprotected collection. If collections
are left unspecified in the load directive and the current user has no default collections defined,
the document will be added to the database without belonging to any collections.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 695

MarkLogic Server Collections
In addition, once a document is loaded into the database, you can adjust its membership in
collections with any of the following built-in XQuery functions (assuming you possess the
appropriate permissions to modify the document in question):

• xdmp:document-add-collections

• xdmp:document-remove-collections

• xdmp:document-set-collections

If a collection URI that is not otherwise used in the database is passed as a parameter to
xdmp:document-add-collections or xdmp:document-set-collections, a new unprotected
collection is created.

Unprotected collections disappear when there are no documents in the database that are members.
Consequently, using xdmp:document-remove-collections, xdmp:document-set-collections or
xdmp:document-delete may result in unprotected collections disappearing.

The xdmp:collection-delete function, which deletes every document in a database that belongs
to a particular collection (assuming that the current user has the required permissions on a per-
document basis), always results in the specified unprotected collection disappearing.

Note: The xdmp:collection-delete function will delete all documents in a collection,
regardless of their membership in other collections.

22.3.2 Explicitly Defining Protected Collections

Protected collections are created explicitly.

Protected collections afford certain security protections not available with unprotected collections
(see “Collections and Security” on page 697). Consequently, rather than the implicit model
described above, protected collections must be explicitly defined using the Admin Interface
before any documents are assigned to that collection.

Once a protected collection and its security policies have been defined, documents can be added
to that collection through the same mechanisms as described above for unprotected collections.
However, in addition to the appropriate permissions to modify the document, the user also needs
to have the appropriate permissions to modify the protected collection. The permissions on a
protected collection do not provide document level security; they only prevent unprivileged users
from adding documents to the collection.

Just as protected collections are created explicitly, the collection does not disappear if the state of
the database changes and there are no documents currently belonging to that protected collection.
To remove a protected collection from the database, the Admin Interface must be used to delete
that collection's definition.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 696

MarkLogic Server Collections
22.4 Collection Membership

As described above, the collections (unprotected and protected) to which a specific document
belongs can be specified at load-time and can be modified once the document has been loaded
into the database. Documents can belong to many collections simultaneously.

If specific collections are not defined at load-time, the server will automatically assign collection
membership for the document based on both the user's and the user's aggregate roles' default
collection membership settings. To load a document that does not belong to any collections,
explicitly specify the empty sequence as the collections parameter.

Collection membership can be leveraged in any XPath expression that the collection(), doc(), or
input() functions are used. In addition, collection membership for a particular document or node
can be queried using the xdmp:document-get-collections built-in.

For example, the following expression returns a sequence of line nodes, each of which must be
the child of a sonnet node, and each of which must contain the term flower, matched on a
case-insensitive basis, that belong to either the english-lit/shakespeare collection or the
american-lit/poetry collection or both:

collection(("english-lit/shakespeare",
"american-lit/poetry"))//sonnet/

line[cts:contains(., "flower")]

By contrast, the following expression returns a similar sequence of line nodes, except that the
resulting nodes must belong to either the english-lit/poetry collection or the
american-lit/poetry collection or both, but not to the english-lit/shakespeare collection:

for $line in collection(("english-lit/poetry", "american-lit/
poetry"))//sonnet/line[cts:contains(., "flower")]

where xdmp:document-get-collections($line) !=
"english-lit/shakespeare"

return $line

22.5 Collections and Security

Collections interact with the MarkLogic Server security model in three basic ways:

• All users and roles can optionally specify default collections. These are the collections to
which newly inserted documents are added if collections are not explicitly specified at
load-time.

• Adding a document to a collection—both at load-time and after the document has been
loaded into the database—is contingent on the user possessing permissions to insert or
update the document in question.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 697

MarkLogic Server Collections
• Removing a document from a collection and using xdmp:collection-delete are similarly
contingent on the user's having appropriate permissions to update the document(s) in
question.

Protected collections interact with the MarkLogic Server security model in three additional ways:

• Protected collections can be configured using the security module of the Admin Interface
or by means of the POST:/manage/v2/protected-collections REST endpoint.

• Protected collections specify the roles that have read, insert and/or update permissions for
the protected collection.

• Collection permissions control who can add documents to a protected collection, but they
do not provide document access control. You must use document permissions to control
document access. For example, a user with read permissions on a document in a protected
collection can read the document whether or not they have any permissions on the
collection.

• You can only add a document to a protected collection if you have insert or update
permissions on the collection, as well as appropriate document permissions.

22.5.1 Unprotected Collections

To add to the database a new document that belongs to one or more unprotected collections, the
user must have (directly or indirectly) the permissions required to add the document. This means
that the user must either possess the admin role or have both of the following:

• The privilege to execute the xdmp:document-load function, if that is the document insertion
directive being used.

• Either the unprotected-uri privilege, the any-uri privilege, or an appropriate URI
privilege on the specific path of the document to be inserted. For example, if the document
being inserted has the URI /docs/poetry/love.xml, the appropriate URI privileges are /,
/docs, /docs/poetry.

To modify the set of collections to which a document belongs, the user must either possess the
admin role or have update permissions on the document.

To access an unprotected collection in an XPath expression, no special permissions are used.
Access to each of the individual documents that belong to the specified collection is governed by
that individual document's read permissions.

22.5.2 Protected Collections

Protected collections enable you to control additions to a collection. They do not provide
document access control.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 698

MarkLogic Server Collections
To add to the database a new document that belongs to one or more protected collections, the user
must have (directly or indirectly) the permissions required to add the document as well as the
permissions required to add to the protected collection(s). This means that the user must either
possess the admin role or have all of the following:

• The insert permission on the protected collection.

• The privilege to execute the xdmp:document-load function, if that is the document insertion
directive being used.

• Either the unprotected-uri privilege, the any-uri privilege, or an appropriate URI
privilege on the specific path of the document to be inserted. For example, if the document
being inserted has the URI /docs/poetry/love.xml, the appropriate URI privileges are /,
/docs, /docs/poetry.

To modify the set of protected collections to which a document belongs, the user must either
possess the admin role or have:

• Update permissions on the collection

• Update permissions on the document

Collection permissions only affect collection membership operations. Access to the documents in
a collection, protected or otherwise, is controlled by document permissions. A user with no
permissions on a protected collection can still read, search, update, or delete a document in the
protected collection if he has sufficient document permissions.

The user can convert an unprotected collection into a protected collection using the Security
Function Library module sec:protect-collection. Access to this library module is dependent on
the user's having the protect-collection privilege.

The user can convert a protected collection into an unprotected collection using the Security
Function Library module sec:unprotect-collection. Access to this library module is dependent
on the user's having the unprotect-collection privilege and update permissions on the protected
collection.

22.6 Performance Characteristics

MarkLogic's implementation of collections is designed to optimize query performance against
large volumes of documents. As with all designs, the implementation involves some trade-offs.
This section provides a brief overview of the performance characteristics of collections and
includes the following subsections:

• Number of Collections to Which a Document Belongs

• Adding/Removing Existing Documents To/From Collections
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 699

MarkLogic Server Collections
22.6.1 Number of Collections to Which a Document Belongs

At document load time, collection information is embedded into the document and stored in the
database.

This design enables a MarkLogic database to handle millions of collections without difficulty. It
also enables the collection() function itself to be extremely efficient, able to subset large
datasets by collection with a single index operation. If the collection() function specifies more
than one collection, an additional index operation is required for each collection specified.
Assuming queries target similar collections, these index operations should be resolved within
cache at extremely high performance.

One trade-off with this design is a practical constraint on the number of collections to which a
single document should belong. While there is no architectural limit, the size of the database will
grow as the average number of collections per document increases. This database growth is driven
by an increase in the size of individual document fragments. The fragment size increases because
each collection to which the document belongs embeds a small amount of information in the
fragment. As fragments grow, the corresponding storage I/O time increases, resulting in
performance degradation. It is important to note that the average number of collections per
document does not impact index resolution time, merely the time to retrieve the content
(fragments) from storage.

A practical guideline is that a document with fragments averaging 50K in size should not belong
to more than 100 collections. This should keep the average fragment size increase to less than
10%.

22.6.2 Adding/Removing Existing Documents To/From Collections

A second trade-off with MarkLogic's implementation of collections is that adding or removing
documents from collections once those documents are already in the database can be relatively
resource-intensive. Changing the collections to which a document belongs requires rewriting
every fragment of the document. For large documents, this can be demanding on both CPU and
I/O resources. If collection membership is highly dynamic in your application, a better approach
may be to use elements within the document itself to characterize membership.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 700

MarkLogic Server Using the Thesaurus Functions
23.0 Using the Thesaurus Functions
713

MarkLogic Server includes functions that enable applications to provide thesaurus capabilities.
Thesaurus applications use thesaurus (synonym) documents to find words with similar meaning
to the words entered by a user. A common example application expands a user search to include
words with similar meaning to those entered in a search. For example, if the application uses a
thesaurus document that lists car brands as synonyms for the word car, then a search for car might
return results for Alfa Romeo, Ford, and Hyundai, as well as for the word car.

This chapter describes how to use the thesaurus functions and contains the following sections:

• The Thesaurus Module

• Function Reference

• Thesaurus Schema

• Capitalization

• Managing Thesaurus Documents

• Expanding Searches Using a Thesaurus in XQuery

23.1 The Thesaurus Module

There is an XQuery module to perform thesarus functions. You can use this module either in
XQuery or in Server-Side JavaScript. The thesaurus functions are installed into the following
XQuery module file:

• install_dir/Modules/MarkLogic/thesaurus.xqy

where install_dir is the directory in which MarkLogic Server is installed. The functions in the
thesaurus module use the thsr: namespace prefix, which you must specify in your XQuery
program (or specify your own namespace). To use any of the functions in XQuery, include the
module and namespace declaration in the prolog of your XQuery program as follows:

import module namespace thsr="http://marklogic.com/xdmp/thesaurus"
at "/MarkLogic/thesaurus.xqy";

To use any of the functions in a JavaScript program, include a line similar to the following in your
Server-Side JavaScript program:

const thsr = require("/MarkLogic/thesaurus");

23.2 Function Reference

The reference information for the thesaurus module functions is included in the MarkLogic
XQuery and XSLT Function Reference and the MarkLogic Server-Side JavaScript Function
Reference available through docs.marklogic.com.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 701

http://docs.marklogic.com

MarkLogic Server Using the Thesaurus Functions
23.3 Thesaurus Schema

Any thesaurus documents loaded into MarkLogic Server must conform to the thesaurus schema,
installed into the following file:

• install_dir/Config/thesaurus.xsd

where install_dir is the directory in which MarkLogic Server is installed.

23.4 Capitalization

Thesaurus documents and the thesaurus functions are case-sensitive. Therefore, a thesaurus term
for Car is different from a thesaurus term for car and any lookups for these terms are
case-sensitive.

If you want your applications to be case-insensitive (that is, if you want the term Car to return
thesaurus entries for both Car and car), your application must handle the case of the terms you
want to lookup. There are several ways to handle case. For example, you can lowercase all the
entries in your thesaurus documents and then lowercase the terms before performing the lookup
from the thesaurus. For an example of lowercasing terms in a thesaurus document, see
“Lowercasing Terms When Inserting a Thesaurus Document” on page 704.

23.5 Managing Thesaurus Documents

You can have any number of thesaurus documents in a database. You can also add to or modify
any thesaurus documents that already exist. This section describes how to load and update
thesaurus documents, and contains the following sections:

• Loading Thesaurus Documents in XQuery

• Loading Thesaurus Documents in JavaScript

• Lowercasing Terms When Inserting a Thesaurus Document

• Loading the XML Version of the WordNet Thesaurus

• Updating a Thesaurus Document

• Security Considerations With Thesaurus Documents

• Example Queries Using Thesaurus Management Functions
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 702

MarkLogic Server Using the Thesaurus Functions
23.5.1 Loading Thesaurus Documents in XQuery

To use a thesaurus in a query, use the thsr:load function or the thsr:insert function to load a
document as a thesaurus. For example, to load a thesaurus document with a URI
/myThsrDocs/wordnet.xml, execute a query similar to the following:

xquery version "1.0-ml";
import module namespace thsr="http://marklogic.com/xdmp/thesaurus"

at "/MarkLogic/thesaurus.xqy";

thsr:load("c:\thesaurus\wordnet.xml", "/myThsrDocs/wordnet.xml")

This XQuery adds all of the <entry> elements from the c:\thesaurus\wordnet.xml file to a
thesaurus with the URI /myThsrDocs/wordnet.xml. If the document already exists, then it is
overwritten with the new content from the specified file.

Note: If you have a thesaurus document that is too large to fit into an in-memory list, you
can split the thesaurus into multiple documents. If you do this, you must specify all
of the thesaurus documents in the thesaurus APIs that take URIs as a parameter.
Also, ensure that there are no duplicate entries between the different thesaurus
documents.

23.5.2 Loading Thesaurus Documents in JavaScript

To use a thesaurus in a Server-Side JavaScript program, use the thsr.load function or the
thsr.insert function to load a document as a thesaurus. For example, to load a thesaurus
document with a URI /myThsrDocs/wordnet.xml, execute a query similar to the following:

const thsr = require("/MarkLogic/thesaurus");
declareUpdate();

thsr.load("c:\thesaurus\wordnet.xml", "/myThsrDocs/wordnet.xml")

This JavaScript program adds all of the <entry> elements from the c:\thesaurus\wordnet.xml file
to a thesaurus with the URI /myThsrDocs/wordnet.xml. If the document already exists, then it is
overwritten with the new content from the specified file.

Note: If you have a thesaurus document that is too large to fit into an in-memory list, you
can split the thesaurus into multiple documents. If you do this, you must specify all
of the thesaurus documents in the thesaurus APIs that take URIs as a parameter.
Also, ensure that there are no duplicate entries between the different thesaurus
documents.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 703

MarkLogic Server Using the Thesaurus Functions
23.5.3 Lowercasing Terms When Inserting a Thesaurus Document

You can use the thsr:insert function to perform transformation on a document before inserting it
as a thesaurus document. The following example shows how you can use the xdmp:get function to
load a document into memory, then walk through the in-memory document and construct a new
document which has lowercase terms.

xquery version "1.0-ml";
import module namespace thsr="http://marklogic.com/xdmp/thesaurus"
 at "/MarkLogic/thesaurus.xqy";

thsr:insert("newThsr.xml",
let $thsrMem := xdmp:get("C:\myFiles\thesaurus.xml")
return

<thesaurus xmlns="http://marklogic.com/xdmp/thesaurus">
{

for $entry in $thsrMem/thsr:entry
return

(: Write out and lowercase the term, then write out all of
the children of this entry except for the term, which was
already written out and lowercased :)

<thsr:entry>
<thsr:term>{lower-case($entry/thsr:term)}</thsr:term>

{$entry/*[. ne $entry/thsr:term]}
</thsr:entry>

}
</thesaurus>

)

23.5.4 Loading the XML Version of the WordNet Thesaurus

You can download an XML version of the WordNet from the MarkLogic Developer site
(developer.marklogic.com/code/dictionaries). Once you download the thesaurus file, you can load it
as a thesaurus document using the thsr:load XQuery function or the thsr.load JavaScript
function.

Perform the following steps to download and load the WordNet Thesaurus:

1. Go to the code section of developer.marklogic.com and find the following page:

http://developer.marklogic.com/code/dictionaries

2. Click the GitHub link.

3. Navigate to the thesaurus document section and find the thesaurus.xml document.

4. Save thesaurus.xml to a file (for example, c:\thesaurus\thesaurus.xml). Alternately,
clone the GitHub repository.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 704

http://developer.marklogic.com/code/dictionaries

MarkLogic Server Using the Thesaurus Functions
5. Load the thesaurus with an XQuery statement similar to the following:

xquery version "1.0-ml";
import module namespace thsr="http://marklogic.com/xdmp/thesaurus"

at "/MarkLogic/thesaurus.xqy";

thsr:load("c:\thesaurus\thesaurus.xml", "/myThsrDocs/wordnet.xml")

Or you can load the thesaurus in JavaScript with a program similar to the following:

const thsr = require("/MarkLogic/thesaurus");
declareUpdate();

thsr.load("c:\thesaurus\wordnet.xml", "/myThsrDocs/wordnet.xml");

This loads the thesaurus with a URI of /myThsrDocs/wordnet.xml. You can now use this URI
with the thesaurus module functions.

23.5.5 Updating a Thesaurus Document

Use the following thesaurus functions to modify existing thesaurus documents:

Additionally, the thsr:insert / thsr.insert function adds entries to an existing thesaurus
document (as well as creates a new one if one does not exist at the specified URI).

Note: The transactional unit in MarkLogic Server is a query; therefore, if you are
performing multiple updates to the same thesaurus document, be sure to perform
those updates as part of separate queries. In XQuery, you can place a semi-colon
between the update statements to start a new query (and therefore a new
transaction). If you use a semicolon to start any new queries that uses thesaurus
functions in XQuery, each query must include the import statement in the prolog
to resolve the thesaurus namespace.

XQuery Function Server-Side JavaScript Function

thsr:set-entry thsr.setEntry

thsr:add-synonym thsr.addSynonym

thsr:remove-entry thsr.removeEntry

thsr:remove-term thsr.removeTerm

thsr:remove-synonym thsr.removeSynonym
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 705

MarkLogic Server Using the Thesaurus Functions
23.5.6 Security Considerations With Thesaurus Documents

Thesaurus documents are stored in XML format in the database. Therefore, they can be queried
just like any other document. Note the following about security and thesaurus documents:

• By default, thesaurus documents are loaded into the following collections:

• http://marklogic.com/xdmp/documents

• http://marklogic.com/xdmp/thesaurus

• Thesaurus documents are loaded with the default permissions of the user who loads them.
Make sure users who load thesaurus documents have approriate privileges, otherwise the
documents might not have the needed permissions for reading and updating. For more
information, see Setting Document Permissions in the Loading Content Into MarkLogic
Server Guide.

• If you want to control access (read and/or write) to thesaurus documents beyond the
default permissions with which the documents are loaded, perform an
xdmp:document-set-permissions after a thsr:load operation.

23.5.7 Example Queries Using Thesaurus Management Functions

This section includes the following examples, in both XQuery and JavaScript:

• Example: Adding a New Thesaurus Entry in XQuery

• Example: Adding a New Thesaurus Entry in JavaScript

• Example: Removing a Thesaurus Entry

• Example: Removing Term(s) from a Thesaurus in XQuery

• Example: Removing Term(s) from a Thesaurus in JavaScript

• Example: Adding a Synonym to a Thesaurus Entry in XQuery

• Example: Adding a Synonym to a Thesaurus Entry in JavaScript

• Example: Removing a Synonym From a Thesaurus in XQuery

• Example: Removing a Synonym From a Thesaurus in JavaScript
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 706

MarkLogic Server Using the Thesaurus Functions
23.5.7.1 Example: Adding a New Thesaurus Entry in XQuery

The following XQuery uses the thsr:set-entry function to add an entry for Car to the thesaurus
with URI /myThsrDocs/wordnet.xml:

xquery version "1.0-ml";
import module namespace thsr="http://marklogic.com/xdmp/thesaurus"
 at "/MarkLogic/thesaurus.xqy";

thsr:set-entry("/myThsrDocs/wordnet.xml",
<entry xmlns="http://marklogic.com/xdmp/thesaurus">
 <term>Car</term>

<part-of-speech>noun</part-of-speech>
 <synonym>
 <term>Ford</term>
 <part-of-speech>noun</part-of-speech>
 </synonym>
 <synonym>
 <term>automobile</term>
 <part-of-speech>noun</part-of-speech>
 </synonym>

<synonym>
 <term>Fiat</term>
 <part-of-speech>noun</part-of-speech>
 </synonym>
</entry>)

If the /myThsrDocs/wordnet.xml thesaurus has an identical entry, there will be no change to the
thesaurus. If the thesaurus has no entry for car or has an entry for car that is not identical (that is,
where the nodes are not equivalent), it will add the new entry. The new entry is added to the end
of the thesaurus document.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 707

MarkLogic Server Using the Thesaurus Functions
23.5.7.2 Example: Adding a New Thesaurus Entry in JavaScript

The JavaScript thsr.setEntry function allows you to use a JavaScript object to update your
thesaurs documents. The following JavaScript uses the thsr.setEntry function to add an entry for
Car to the thesaurus with URI /myThsrDocs/wordnet.xml:

const thsr = require("/MarkLogic/thesaurus");
declareUpdate();

thsr.setEntry("/myThsrDocs/wordnet.xml",
{
 "term":"Car",

"partOfSpeech":"noun",
"synonyms":[

 {"term":"Ford",
 "partOfSpeech":"noun"
 },
 {"term":"automobile",
 "partOfSpeech":"noun"
 },
 {"term":"Fiat",
 "partOfSpeech":"noun"
 }
]
 });

If the /myThsrDocs/wordnet.xml thesaurus has an identical entry, there will be no change to the
thesaurus. If the thesaurus has no entry for car or has an entry for car that is not identical (that is,
where the nodes are not equivalent), it will add the new entry. The new entry is added to the end
of the thesaurus document.

23.5.7.3 Example: Removing a Thesaurus Entry

The following XQuery uses the thsr:remove-entry function to remove the second entry for Car
from the thesaurus with URI /myThsrDocs/wordnet.xml:

xquery version "1.0-ml";
import module namespace thsr="http://marklogic.com/xdmp/thesaurus"
 at "/MarkLogic/thesaurus.xqy";

thsr:remove-entry("/myThsrDocs/wordnet.xml",
thsr:lookup("/myThsrDocs/wordnet.xml","Car")[2])
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 708

MarkLogic Server Using the Thesaurus Functions
Similarly, the following is a JavaScript example to do the same thing:

const thsr = require("/MarkLogic/thesaurus");
declareUpdate();

thsr.removeEntry("/myThsrDocs/roget.xml",
thsr.lookup("/myThsrDocs/roget.xml","Car").toObject()[1])

This removes the second Car entry from the /myThsrDocs/wordnet.xml thesaurus document.

23.5.7.4 Example: Removing Term(s) from a Thesaurus in XQuery

The following XQuery uses the thsr:remove-term function to remove all entries for the term Car
from the thesaurus with URI /myThsrDocs/wordnet.xml:

xquery version "1.0-ml";
import module namespace thsr="http://marklogic.com/xdmp/thesaurus"
 at "/MarkLogic/thesaurus.xqy";

thsr:remove-term("/myThsrDocs/wordnet.xml", "Car")

This removes all of the Car terms from the /myThsrDocs/wordnet.xml thesaurus document. If you
only have a single term for Car in the thesaurus, the thsr:remove-term function does the same as
the thsr:remove-entry function.

23.5.7.5 Example: Removing Term(s) from a Thesaurus in JavaScript

The following JavaScript program uses the thsr.removeTerm function to remove all entries for the
term Car from the thesaurus with URI /myThsrDocs/wordnet.xml:

const thsr = require("/MarkLogic/thesaurus");
declareUpdate();

thsr.removeTerm("/myThsrDocs/wordnet.xml", "Car")

This removes all of the Car terms from the /myThsrDocs/wordnet.xml thesaurus document. If you
only have a single term for Car in the thesaurus, the thsr.removeTerm function does the same as
the thsr.removeEntry function.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 709

MarkLogic Server Using the Thesaurus Functions
23.5.7.6 Example: Adding a Synonym to a Thesaurus Entry in XQuery

The following XQuery adds the synonym Alfa Romeo to the thesaurus entry for car in the
thesaurus with URI /myThsrDocs/wordnet.xml:

xquery version "1.0-ml";
import module namespace thsr="http://marklogic.com/xdmp/thesaurus"
 at "/MarkLogic/thesaurus.xqy";

thsr:add-synonym(thsr:lookup("/myThsrDocs/wordnet.xml", "car"),
 <thsr:synonym>
 <thsr:term>Alfa Romeo</thsr:term>
 </thsr:synonym>)

This query assumes that the lookup for the car thesaurus entry returns a single entry. If the car
lookup returns multiple entries, you must specify a single entry. For example, if you wanted to
add the synonym to the first car entry in the thesaurus, specify the first argument as follows:

thsr:lookup("/myThsrDocs/wordnet.xml", "car")[1]

23.5.7.7 Example: Adding a Synonym to a Thesaurus Entry in JavaScript

The following JavaScript program adds the synonym Alfa Romeo to the thesaurus entry for car in
the thesaurus with URI /myThsrDocs/wordnet.xml:

const thsr = require("/MarkLogic/thesaurus");
declareUpdate();

thsr.addSynonym(
thsr.lookup("/myThsrDocs/wordnet.xml", "car"

// requires the "elements" option because addSynonym takes an
// element, not a JSON object
"elements"),

{"synonym":{
"term": "Alfa Romeo"}

})

This assumes that the lookup for the car thesaurus entry returns a single entry. If the car lookup
returns multiple entries, you must specify a single entry. Notice also that the lookup must specify
"elements" because thsr.addSynonym requires an element entry. For example, if you wanted to
add the synonym to the first car entry in the thesaurus, specify the first argument using the first
variable from the following code:

fn.subsequence(
thsr.lookup("/myThsrDocs/wordnet.xml", "car"), 2, 1))
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 710

MarkLogic Server Using the Thesaurus Functions
23.5.7.8 Example: Removing a Synonym From a Thesaurus in XQuery

The following XQuery removes the synonym Fiat from the thesaurus entry for car in the
thesaurus with URI /myThsrDocs/wordnet.xml:

xquery version "1.0-ml";
import module namespace thsr="http://marklogic.com/xdmp/thesaurus"
 at "/MarkLogic/thesaurus.xqy";

thsr:remove-synonym(thsr:lookup("/myThsrDocs/wordnet.xml", "car"),
 <thsr:synonym>
 <thsr:term>Fiat</thsr:term>
 </thsr:synonym>)

This query assumes that the lookup for the car thesaurus entry returns a single entry. If the car
lookup returns multiple entries, you must specify a single entry. For example, if you wanted to
remove the synonym from the first car entry in the thesaurus, specify the first argument as
follows:

thsr:lookup("/myThsrDocs/wordnet.xml", "car")[1]

23.5.7.9 Example: Removing a Synonym From a Thesaurus in JavaScript

The following JavaScript program removes the synonym Fiat from the thesaurus entry for car in
the thesaurus with URI /myThsrDocs/wordnet.xml:

const thsr = require("/MarkLogic/thesaurus");
declareUpdate();

thsr.removeSynonym(thsr.lookup("/myThsrDocs/wordnet.xml", "car",
"elements"),
{"term": "Fiat"});

This query assumes that the lookup for the car thesaurus entry returns a single entry. If the car
lookup returns multiple entries, you must specify a single entry. For example, if you wanted to
remove the synonym from the first car entry in the thesaurus, specify the first argument as
follows:

fn.subsequence(
thsr.lookup("/myThsrDocs/wordnet.xml", "car"), 2, 1))
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 711

MarkLogic Server Using the Thesaurus Functions
23.6 Expanding Searches Using a Thesaurus in XQuery

You can expand a search to include terms from a thesaurus as well as the terms entered in the
search. Consider the following XQuery statement:

xquery version "1.0-ml";
import module namespace thsr="http://marklogic.com/xdmp/thesaurus"

at "/MarkLogic/thesaurus.xqy";

cts:search(
doc("/Docs/hamlet.xml")//LINE,
thsr:expand(
 cts:word-query("weary"),
 thsr:lookup("/myThsrDocs/thesaurus.xml", "weary"),
 (),
 (),
 ())
)

This query finds all of the lines in Shakespeare’s Hamlet that have the word weary or any of the
synonyms of the word weary.

Thesaurus entries can have many synonyms, though. Therefore, when you expand a search, you
might want to create a user interface in the application which provides a form allowing a user to
specify the desired synonyms from the list returned by thsr:expand. Once the user chooses which
synonyms to include in the search, the application can add those terms to the search and submit it
to the database.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 712

MarkLogic Server Using the Thesaurus Functions
23.7 Expanding Searches Using a Thesaurus in JavaScript

You can expand a search to include terms from a thesaurus as well as the terms entered in the
search. Consider the following JavaScript program:

const thsr = require("/MarkLogic/thesaurus");

let res = [];
for (const x of
cts.doc("/shakespeare/plays/hamlet.xml").xpath("//LINE")) {
if (cts.contains(x,
 thsr.expand(
 cts.wordQuery("weary"),
 thsr.lookup("/myThsrDocs/thesaurus.xml", "weary"),
 null, null, null))) {
 res.push(x) } };
res;

This returns an array containing all of the lines in Shakespeare’s Hamlet that have the word weary
or any of the synonyms of the word weary.

Thesaurus entries can have many synonyms, though. Therefore, when you expand a search, you
might want to create a user interface in the application which provides a form allowing a user to
specify the desired synonyms from the list returned by thsr.expand. Once the user chooses which
synonyms to include in the search, the application can add those terms to the search and submit it
to the database.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 713

MarkLogic Server Using the Spelling Correction Functions
24.0 Using the Spelling Correction Functions
722

MarkLogic Server includes functions that enable applications to provide spelling capabilities.
Spelling applications use dictionary documents to find possible misspellings for words entered by
a user. A common example application will prompt a user for words that might be misspelled. For
example, if a user enters a search for the word albetros, an application that uses the spelling
correction functions might prompt the user if she means albatross.

This chapter describes how to use the spelling correction functions and contains the following
sections:

• Overview of Spelling Correction

• The Spelling Dictionary Management Module Functions

• Function Reference

• Dictionary Documents

• Capitalization

• Managing Dictionary Documents

• Testing if a Word is Spelled Correctly

• Getting Spelling Suggestions for Incorrectly Spelled Words

24.1 Overview of Spelling Correction

The spelling correction functions enable you to create applications that check if words are spelled
correctly. It uses one or more dictionaries that you load into the database and checks words
against a dictionary you specify. You can control everything about what words are in the
dictionary. There are functions to manage the dictionaries, check spelling, and suggest words for
misspellings.

24.2 Function Reference

The reference information for the spelling module functions is included in the MarkLogic XQuery
and XSLT Function Reference and the MarkLogic Server-Side JavaScript Function Reference
available through docs.marklogic.com. The spelling functions are divided into the following
categories:

• The Spelling Built-In Functions

• The Spelling Dictionary Management Module Functions
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 714

http://docs.marklogic.com

MarkLogic Server Using the Spelling Correction Functions
24.2.1 The Spelling Built-In Functions

The spelling correction functions are built-in functions and do not require the import module
statement in the XQuery prolog. The following are the spelling correction functions:

The spell:double-metaphone / spell.doubleMetaphone and spell:levenshtein-distance /
spell.levenshteinDistance functions return the raw values from which spell:suggest /
spell.suggest, spell:suggest-detailed / spell.levenshteinDistance, and spell:is-correct /
spell.isCorrect calculate their values.

The difference between spell:suggest (JavaScript spell.suggest) and spell:suggest-detailed
(JavaScript spell.suggestDetailed) is that spell:suggest-detailed provides some of the
information used in calculating the suggestions, and it returns a report (an XML representaiton in
XQuery and an array of objects in JavaScript), whereas spell:suggest returns a sequence of
suggested words. For most spelling applications, spell:suggest is sufficient, but if you want finer
control of the suggestions you provide (for example, if you want to calculate your own order of
returning the suggestions), you can use spell:suggest-detailed and then filter on some of the
criteria returned in its XML or JSON output.

24.2.2 The Spelling Dictionary Management Module Functions

There is an XQuery module to perform management of dictionary documents. You can use this
module in either XQuery or in Server-Side JavaScript. The spelling correction dictionary
management functions are installed into the following XQuery module file:

• install_dir/Modules/MarkLogic/spell.xqy

where install_dir is the directory in which MarkLogic Server is installed. The functions in the
spelling module use the spell: namespace prefix, which is predefined in the server.

To use the functions in this module in an XQuery program, include the module declaration in the
prolog of your XQuery program as follows:

import module namespace spell = "http://marklogic.com/xdmp/spell"
at "/MarkLogic/spell.xqy";

XQuery Function Server-Side JavaScript Function

spell:is-correct spell.isCorrect

spell:suggest spell.suggest

spell:suggest-detailed spell.suggestDetailed

spell:double-metaphone spell.doubleMetaphone

spell:levenshtein-distance spell.levenshteinDistance
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 715

MarkLogic Server Using the Spelling Correction Functions
To use the functions in this module in a JavaScript program, include a line similar to the following
in your Server-Side JavaScript program:

const spell = require("/MarkLogic/spell");

24.3 Dictionary Documents

There are two types of dictionary documents you can load into MarkLogic:

• XML Dictionary Document

• JSON Dictionary Document

There are sample XML and JSON dictionary documents available at the following GitHub
repository:

https://github.com/marklogic/dictionaries

You can use these documents or create your own dictionaries. You can also use the
spell:make-dictionary / spell.makeDictionary spelling management function to create a
dictionary document, and then use spell:load / spell.load to load the dictionary into the
database.

24.3.1 XML Dictionary Document

Any XML dictionary documents loaded into MarkLogic must have the following basic structure:

<dictionary xmlns="http://marklogic.com/xdmp/spell">
<metadata>
</metadata>
<word></word>
<word></word>
......

</dictionary>

The <metadata> element is optional. Use spell:make-dictionary / spell.makeDictionary and
spell:load / spell.load to create your own dictionary documents.

24.3.2 JSON Dictionary Document

Any JSON dictionary documents loaded into MarkLogic must have the following basic structure:

{
"metadata": { ... },
"words": ["word1", "word2", ...]

}

The metadata property is optional. Use spell:make-dictionary / spell.makeDictionary and
spell:load / spell.load to create your own dictionary documents.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 716

https://github.com/marklogic/dictionaries

MarkLogic Server Using the Spelling Correction Functions
24.4 Capitalization

The spelling lookup functions (spell:is-correct, spell:suggest, and spell:suggest-detailed in
XQuery, spell.isCorrect, spell.suggest, and spell.suggestDetailed in JavaScript) are
case-sensitive, so case is important for words in a dictionary. Additionally, there are some special
rules to handle the first character in a spelling lookup. The following are the capitalization rules
for the spelling correction functions:

• A capital first letter in a spelling lookup query does not make the spelling incorrect for
spell:is-correct / spell.isCorrect. For example, Word will match an entry for word in
the dictionary.

• If a word has the first letter capitalized in the dictionary, then only exact matches will be
correct for spell:is-correct / spell.isCorrect. For example, if Word is in the dictionary,
then word is incorrect.

• If a word has other letters capitalized in the dictionary, then only exact matches (or exact
matches except for the case of the first letter in the word) will match for spell:is-correct
/ spell.isCorrect. For example, word will not match an entry for woRd, nor will WOrd,
but WoRd will match.

• The spell:suggest /spell.suggest functions and the spell:suggest-detailed /
spell.suggestDetailed functions all observe the capitalization of the first letter only. For
example, spell:suggest("THe") will return The, Thee, They, and so on as suggestions,
while spell:suggest("tHe") will give the, thee, they, and so on. In other words, if you
capitalize the first letter of the argument to the spell:suggest / spell.suggest function,
the suggestions will all begin with a capital letter. Otherwise, you will get lowercase
suggestions.

If you want your applications to ignore case, then you should create a dictionary with all
lowercase words and lowercase (using the XQuery fn:lower-case function, for example) the
word arguments of all spell:is-correct / spell.isCorrect and spell:suggest / spell.suggest
functions before submitting your queries.

24.5 Managing Dictionary Documents

You can have any number of dictionary documents in a database. You can also add to or modify
any dictionary documents that already exist. This section describes how to load and update
dictionary documents, and contains the following topics:

• Loading Dictionary Documents in XQuery

• Loading Dictionary Documents in JavaScript

• Loading one of the Sample XML Dictionaries

• Updating a Dictionary Document

• Security Considerations With Dictionary Documents
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 717

MarkLogic Server Using the Spelling Correction Functions
24.5.1 Loading Dictionary Documents in XQuery

To use a dictionary in a query, it must be in the database. To load a dictionary document using
XQuery, use the spell:load function or the spell:insert function. For example, to load a
dictionary document with a URI /mySpell/spell.xml, execute a query similar to the following:

xquery version "1.0-ml";
import module "http://marklogic.com/xdmp/spell"

at "/MarkLogic/spell.xqy";

spell:load("c:\dictionaries\spell.xml", "/mySpell/spell.xml")

This XQuery adds all of the <word> elements from the c:\dictionaries\spell.xml file to a
dictionary with the URI /mySpell/spell.xml. If the document already exists, then it is overwritten
with the new content from the specified file.

24.5.2 Loading Dictionary Documents in JavaScript

To use a dictionary in a query, it must be in the database. To load a dictionary document using
JavaScript, use the spell.load function or the spell.insert function. For example, to load a
dictionary document with a URI /mySpell/spell.json, execute a program similar to the
following:

const spell = require("/MarkLogic/spell");
declareUpdate();
spell.load("c:/dictionaries/spell.json", "/mySpell/spell.json");

This loads the file at the specified path into the dictionary JSON document at the specified URI.

24.5.3 Loading one of the Sample XML Dictionaries

You can download a sample dictionary from the MarkLogic Community site
(developer.marklogic.com/code#dictionaries). The community site links to github, which has small,
medium, and large versions of the dictionary. Once you download a dictionary XML file, you can
load it as a dictionary document using the spell:load function.

Perform the following steps to download and load a sample dictionary:

1. Go to the Code page of developer.marklogic.com:

http://developer.marklogic.com/code/#dictionaries

2. Navigate to the dictionary document section, then click the github link:

https://github.com/marklogic/dictionaries
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 718

http://developer.marklogic.com/code#dictionaries
http://developer.marklogic.com/code#dictionaries
http://developer.marklogic.com/code/#dictionaries
https://github.com/marklogic/dictionaries

MarkLogic Server Using the Spelling Correction Functions
3. In the dictionaries folder, choose the small-dictionary.xml, medium-dictionary.xml, or
large-dictionary.xml file (or any other dictionary docments that might be available). The
large dictionary has approximately 100,000 words and is about 3 MB to download.
ALternately, you can choose small-dictionary.json, medium-dictionary.json, or
large-dictionary.json file to load a JSON dictionary.

4. Save <size>-dictionary.xml (or the corresponding JSON document) to a file (for
example, c:\dictionaries\spell.xml).

5. Load the dictionary with a command similar to the following:

xquery version "1.0-ml";
import module "http://marklogic.com/xdmp/spell" at

"/MarkLogic/spell.xqy";

spell:load("c:\dictionaries\spell.xml", "/mySpell/spell.xml")

This loads the dictionary with a URI of /mySpell/spell.xml. You can now use this URI with the
spelling correction module functions.

24.5.4 Updating a Dictionary Document

Use the following dictionary functions to modify existing dictionary documents:

• spell:add-word / spell.addWord

• spell:remove-word / spell.removeWord

The spell:insert XQuery function or the spell.insert JavaScript function will overwrite an
existing dictionary if you specify an existing dictionary document (as well as creates a new one if
one does not exist at the specified URI).

Note: The transactional unit in MarkLogic Server is a query; therefore, if you are
performing multiple updates to the same dictionary document, be sure to perform
those updates as part of separate queries. In XQuery, you can place a semi-colon
between the update statements to start a new query (and therefore a new
transaction). If you use a semicolon to start any new queries that uses spelling
correction functions in XQuery, each query must include the import statement in
the prolog to resolve the spelling module.

The following topics are about updating dictionary documents:

• Example: Adding a New Word to a Dictionary in XQuery

• Example: Adding a New Word to a Dictionary in JavaScript

• Example: Removing a Word From a Dictionary in XQuery

• Example: Removing a Word From a Dictionary in JavaScript
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 719

MarkLogic Server Using the Spelling Correction Functions
24.5.4.1 Example: Adding a New Word to a Dictionary in XQuery

The following XQuery uses the spell:add-word function to add an entry for albatross to the
dictionary with URI /mySpell/Spell.xml:

xquery version "1.0-ml";
import module "http://marklogic.com/xdmp/spell" at

"/MarkLogic/spell.xqy";

spell:add-word("/mySpell/spell.xml", "albatross")

If the /mySpell/spell.xml dictionary has an identical entry, there will be no change to the
dictionary. Otherwise, an entry for albatross is added to the dictionary.

24.5.4.2 Example: Adding a New Word to a Dictionary in JavaScript

The following JavaScript program uses the spell.addWord function to add an entry for albatross
to the dictionary with URI /mySpell/Spell.json:

const spell = require("/MarkLogic/spell.xqy");
declareUpdate();

spell.addWord("/mySpell/spell.json", "albatross");

If the /mySpell/spell.json dictionary has an identical entry, there will be no change to the
dictionary. Otherwise, an entry for albatross is added to the dictionary.

24.5.4.3 Example: Removing a Word From a Dictionary in XQuery

The following XQuery uses the spell:remove-word function to remove the entry for albatross
dictionary with URI /mySpell/Spell.xml:

xquery version "1.0-ml";
import module "http://marklogic.com/xdmp/spell" at

"/MarkLogic/spell.xqy";

spell:remove-word("/mySpell/spell.xml", "albatross")

This removes the word albatross from the /mySpell/spell.xml dictionary document.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 720

MarkLogic Server Using the Spelling Correction Functions
24.5.4.4 Example: Removing a Word From a Dictionary in JavaScript

The following JavaScript program uses the spell.removeWord function to remove the entry for
albatross dictionary with URI /mySpell/Spell.json:

const spell = require("/MarkLogic/spell.xqy");
declareUpdate();

spell.removeWord("/mySpell/spell.json", "albatross")

This removes the word albatross from the /mySpell/spell.json dictionary document.

24.5.5 Security Considerations With Dictionary Documents

Dictionary documents are stored in XML or JSON format in the database. Therefore, they can be
queried just like any other document. Note the following about security and dictionary
documents:

• By default, dictionary documents are loaded into the following collections:

• http://marklogic.com/xdmp/documents

• http://marklogic.com/xdmp/spell

• Dictionary documents are loaded with the default permissions of the user who loads them.
Make sure users who load dictionary documents have appropriate privileges, otherwise
the documents might not have the needed permissions for reading and updating. For more
information, see Setting Document Permissions in the Loading Content Into MarkLogic
Server Guide.

• If you want to control access (read and/or write) to dictionary documents beyond the
default permissions with which the documents are loaded, perform an
xdmp:document-set-permissions (JavaScript xdmp.documentSetPermissions) after a
spell:load / spell.load operation.

24.6 Testing if a Word is Spelled Correctly

You can use the spell:is-correct XQuery function or the spell.isCorrect JavaScript function
to see if a word is spelled correctly (according to the specified dictionary). Consider the following
XQuery statement:

spell:is-correct("/mySpell/spell.xml", "alphabet")

This returns true because the word alphabet is spelled correctly. The following is the equivalent in
JavaScript:

spell.isCorrect("/mySpell/spell.xml", "alphabet");
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 721

MarkLogic Server Using the Spelling Correction Functions
Now consider the following XQuery statement:

spell:is-correct("/mySpell/spell.xml", "alfabet")

This returns false because the word alfabet is not spelled correctly. The following is the
equivalent in JavaScript:

spell.isCorrect("/mySpell/spell.xml", "alfabet");

24.7 Getting Spelling Suggestions for Incorrectly Spelled Words

You can write a query which returns spelling suggestions based on words in the specified
dictionary. Consider the following XQuery statement:

spell:suggest("/mySpell/spell.xml", "alfabet")

Or the equivalent JavaScript program:

spell.suggest("/mySpell/spell.xml", "alfabet");

This returns the following results:

alphabet albeit alphabets aloft abet alphabeted affable alphabet's
alphabetic offbeat

The results are ranked in the order, where the first word is the one most likely to be the real
spelling. Your application can then prompt the user if one of the suggested words was the actual
word intended.

Now consider the following XQuery statement:

spell:suggest("/mySpell/spell.xml", "alphabet")

Or the equivalent JavaScript program:

spell.suggest("/mySpell/spell.xml", "alphabet");

This returns the empty sequence, indicating that the word is spelled correctly.

Note: The spelling correction functions only provide suggestions for words that are less
than 64 characters in length, and the functions only return suggestions that are less
than 64 characters.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 722

MarkLogic Server Distinctive Terms and cts:similar-query
25.0 Distinctive Terms and cts:similar-query
726

MarkLogic Server includes cts:similar-query and cts:distinctive-terms. With these search
APIs, you can find what is distinctive about nodes, typically from search results, from a search
perspective. This chapter describes cts:similar-query and cts:distinctive-terms, and includes
the following sections:

• Understanding cts:similar-query

• Finding the Distinctive Terms of a Set of Nodes

• Understanding the cts:distinctive-terms Output

• Example Design Pattern: Making a Tag Cloud

25.1 Understanding cts:similar-query

You can use cts:similar-query to find nodes that are similar, from a search perspecitve, to the
model nodes that you pass into the first parameter. The cts:similar-query constructor is a
cts:query constructor, and you can combine it with other cts:query constructors as described in
“Composing cts:query Expressions” on page 248.

Instead of looking in the indexes to find the terms that match the query, like other cts:query
constructors, cts:similar-query takes the nodes passed in, runs them through an indexing
process, and returns a cts:query that would match the model nodes with a high degree of
relevance. You can pass various index and score options into cts:similar-query to influence the
cts:query that it produces.

The query that it generates finds distinctive terms of the model nodes based on the other
documents in the database.

25.2 Finding the Distinctive Terms of a Set of Nodes

If you want to find the terms that cts:similar-query uses to generate its cts:query, you can use
cts:distinctive-terms. The output of cts:distinctive-terms is a cts:class element with
several cts:term children. Each cts:term element contains a cts:query constructor, representing a
term. Each cts:term element also contains scores and confidence for that term. MarkLogic Server
uses these scores in calculating relevance.

You can pass many different options into cts:distinctive-terms to control which terms it
generates. The database options control which terms will be most “relevant” to the model nodes,
and therefore affect the cts:distinctive-terms output. If you take an iterative approach, you can
try different indexing options to see which ones give the best results for your model nodes.

The distinctive terms generated or distinctive based on the other documents in the database,
therfore, you will get much better results running this against a sizable database.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 723

MarkLogic Server Distinctive Terms and cts:similar-query
25.3 Understanding the cts:distinctive-terms Output

The following shows a simple cts:distinctive-terms query with its output:

let $node := doc("/shakespeare/plays/hamlet.xml")
return cts:distinctive-terms($node,
 <options xmlns="cts:distinctive-terms"
 xmlns:db="http://marklogic.com/xdmp/database">
 <use-db-config>false</use-db-config>
 <max-terms>3</max-terms>
 <db:word-searches>false</db:word-searches>
 <db:stemmed-searches>basic</db:stemmed-searches>
 <db:fast-phrase-searches>false</db:fast-phrase-searches>
 <db:fast-element-word-searches>false</db:fast-element-word-searches>
 <db:fast-element-phrase-searches>false</db:fast-element-phrase-searches>
 </options>)
=>
<cts:class name="dterms /shakespeare/plays/hamlet.xml" offset="0"
xmlns:cts="http://marklogic.com/cts">
 <cts:term id="7783238741996929314" val="981" score="981"
confidence="0.811494" fitness="1">
 <cts:word-query>
 <cts:text xml:lang="en">guildenstern</cts:text>
 <cts:option>case-insensitive</cts:option>
 <cts:option>diacritic-insensitive</cts:option>
 <cts:option>stemmed</cts:option>
 <cts:option>unwildcarded</cts:option>
 </cts:word-query>
 </cts:term>
 <cts:term id="4731147985682913359" val="956" score="956"
confidence="0.801087" fitness="1">
 <cts:word-query>
 <cts:text xml:lang="en">polonius</cts:text>
 <cts:option>case-insensitive</cts:option>
 <cts:option>diacritic-insensitive</cts:option>
 <cts:option>stemmed</cts:option>
 <cts:option>unwildcarded</cts:option>
 </cts:word-query>
 </cts:term>
 <cts:term id="1100490632300558572" val="949" score="949"
confidence="0.798149" fitness="1">
 <cts:word-query>
 <cts:text xml:lang="en">horatio</cts:text>
 <cts:option>case-insensitive</cts:option>
 <cts:option>diacritic-insensitive</cts:option>
 <cts:option>stemmed</cts:option>
 <cts:option>unwildcarded</cts:option>
 </cts:word-query>
 </cts:term>
</cts:class>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 724

MarkLogic Server Distinctive Terms and cts:similar-query
The output is a cts:class element, and each child is a cts:term element. The cts:term elements
represent terms in a database, identified by a cts:query. Each term has numbers for val, score,
confidence, and fitness.

The val and score attributes are values that approximate the score contribution of that term. The
confidence attribute represents the cts:confidence value for the term. The fitness attribute
represents the cts:fitness value for the term. For details on score, fitness, and confidence, see
“Relevance Scores: Understanding and Customizing” on page 422.

The previous query only consider word-query terms. You can also have cts:element-word-query
terms and cts:near-query terms for terms that are within an element or that are a word pair (a
cts:near-query with a distance of 1). To see some of these kind of terms, try running a query like
the following:

let $node := doc("/shakespeare/plays/hamlet.xml")
return cts:distinctive-terms($node,
 <options xmlns="cts:distinctive-terms"
 xmlns:db="http://marklogic.com/xdmp/database">
 <use-db-config>false</use-db-config>
 <max-terms>100</max-terms>
 <db:word-searches>false</db:word-searches>
 <db:stemmed-searches>basic</db:stemmed-searches>
 <db:fast-phrase-searches>true</db:fast-phrase-searches>
 <db:fast-element-word-searches>true</db:fast-element-word-searches>
 <db:fast-element-phrase-searches>true</db:fast-element-phrase-searches>
 </options>)

This query enables the db:fast-element-word-searches and db:fast-element-phrase-searches
options, which will cause terms to appear in the output that are constrained to a particular
element. Changing the database options to cts:distictive-terms and looking at the differences
in the output will help you to understand both how the index options affect which terms are
distinctive and, since cts:similar-query can use these same settings, how cts:similar-query
decides if a document is “similar” to the model nodes.

25.4 Example Design Pattern: Making a Tag Cloud

Tag clouds are a popular visualization that show various terms, usually relevant to a search, and
show the more relevant ones in a larger and/or more colorful font. You can use
cts:distinctive-terms feed the data used to make a tag cloud. The basic design pattern is as
follows:

• Experiment with options to create a cts:distinctive-terms query that produces results
you are happy with.

• Set a max-terms size that is equal to the number of terms you want in your tag cloud.

• Come up with some algorithm to convert score (or fitness) into font size. For example,
you might want to take the fitness and multiply it by 20 to get a font size.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 725

MarkLogic Server Distinctive Terms and cts:similar-query
• Use the above algorithm to iterate through your results and generate some html that
creates a tag cloud.

The following sample code is a simplied example of this design pattern:

xquery version "1.0-ml";

let $hits :=
 let $terms :=
 let $node := doc("/shakespeare/plays/hamlet.xml")//LINE
 return cts:distinctive-terms($node,
 <options xmlns="cts:distinctive-terms"
 xmlns:db="http://marklogic.com/xdmp/database">
 <use-db-config>false</use-db-config>
 <max-terms>100</max-terms>
 <db:word-searches>false</db:word-searches>
 <db:stemmed-searches>basic</db:stemmed-searches>
 <db:fast-phrase-searches>false</db:fast-phrase-searches>
 <db:fast-element-word-searches>false</db:fast-element-word-searches>
 <db:fast-element-phrase-searches>false</db:fast-element-phrase-searches>
 </options>)//cts:term
 for $wq in $terms
 where $wq/cts:word-query
 return element word {
 attribute score {
 fn:round(($wq/@val div 20))},
 $wq/cts:word-query/cts:text/string() }
return <p>{
for $hit in $hits
order by $hit/string()
return (
<span style="{fn:concat("font-size: ",
 $hit/@score)}">{$hit/string()}
, " ") }</p>

The above query returns html which, when displayed in a browser, shows the 100 most distinctive
with the most “relevant” terms in a larger font.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 726

MarkLogic Server Training the Classifier

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 727

26.0 Training the Classifier
742

MarkLogic Server includes an XML support vector machine (SVM) classifier. This chapter
describes the classifier and how to use it on your content, and includes the following sections:

• Understanding How Training and Classification Works

• Classifier API

• Leveraging XML With the Classifier

• Creating a Training Set

• Methodology For Determining Thresholds For Each Class

• Example: Training and Running the Classifier

26.1 Understanding How Training and Classification Works
The classifier is a set of APIs that allow you to define classes, or categories of nodes. By running
samples of classes through the classifier to train it on what constitutes a given class, you can then
run that trained classifier on unknown documents or nodes to determine to which classes each
belongs. The process of classification uses the full-text indexing capabilities of MarkLogic
Server, as well as its XML-awareness, to perform statistical analysis of terms in the training
content to determine class membership. This section describes the concepts behind the classifier
and includes the following parts:

• Training and Classification

• XML SVM Classifier

• Hyper-Planes and Thresholds for Classes

• Training Content for the Classifier

26.1.1 Training and Classification
There are two basic steps to using the classifier: training and classification. Training is the process
of taking content that is known to belong to specified classes and creating a classifier on the basis
of that known content. Classification is the process of taking a classifier built with such a training
content set and running it on unknown content to determine class membership for the unknown
content. Training is an iterative process whereby you build the best classifier possible, and
classification is a one-time process designed to run on unknown content.

26.1.2 XML SVM Classifier
The MarkLogic Server classifier implements a support vector machine (SVM). An SVM
classifier uses a well-known algorithm to determine membership in a given class, based on
training data. For background on the mathematics behind support vector machine (SVM)
classifiers, try doing a web search for svm classifier, or start by looking at the information on
Wikipedia.

http://en.wikipedia.org/wiki/Support_vector_machines

MarkLogic Server Training the Classifier

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 728

The basic idea is that the classifier takes a set of training content representing known examples of
classes and, by performing statistical analysis of the training content, uses the knowledge gleaned
from the training content to decide to which classes other unknown content belongs. You can use
the classifier to gain knowledge about your content based on the statistical analysis performed
during training.

Traditional SVM classifiers perform the statistical analysis using term frequency as input to the
support vector machine calculations. The MarkLogic XML SVM classifier takes advantage of
MarkLogic Server’s XML-aware full-text indexing capabilities, so the terms that act as input to
the classifier can include content (for example, words), structure information (for example,
elements), or a combination of content and structure (for example, element-word relationships).
All of the MarkLogic Server index options that affect terms are available as options in the
classifier API, so you can use a wide variety of indexing techniques to tune the classifier to work
the best for your sample content.

First you define your classes on a set of training content, and then the classifier uses those classes
to analyze other content and determine its classification. When the classifier analyzes the content,
there are two sometimes conflicting measurements it uses to help determine if the information in
the new content belongs in or out of a class:

• Precision: The probability that what is classified as being in a class is actually in that
class. High precision might come at the expense of missing some results whose terms
resemble those of other results in other classes.

• Recall: The probability that an item actually in a class is classified as being in that class.
High recall might come at the expense of including results from other classes whose terms
resemble those of results in the target class.

When you are tuning your classifier, you need to find a balance between high precision and high
recall. That balance depends on what your application goals and requirements are. For example, if
you are trying to find trends in your content, then high precision is probably more important; you
want to ensure that your analysis does not include irrelevant nodes. If you need to identify every
instance of some classification, however, you probably need a high recall, as missing any
members would go against your application goals. For most applications, you probably need
somewhere in between. The process of training your classifier is where you determine the optimal
values (based on your training content set) to make the trade-offs that make sense to your
application.

26.1.3 Hyper-Planes and Thresholds for Classes
There are two main things that the computations behind the XML SVM classifier do:

• Determine the boundaries between each class. This is done during training.

• Determine the threshold for which the boundaries return the most distinctive results when
determining class membership.

MarkLogic Server Training the Classifier

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 729

There can be any number of classes. A term vector is a representation of all of the terms (as
defined by the index options) in a node. Therefore, classes consist of sets of term vectors which
have been deemed similar enough to belong to the same class.

Imagine for a moment that each term forms a dimension. It is easy to visualize what a
2-dimensional picture of a class looks like (imagine an x-y graph) or even a 3-dimensional picture
(imagine a room with height, width, and length). It becomes difficult, however, to visualize what
the picture of these dimensions looks like when there are more than three dimensions. That is
where hyper-planes become a useful concept.

Before going deeper into the concept of hyper-planes, consider a content set with two classes, one
that are squares and one that are triangles. In the following figures, each square or triangle
represents a term vector that is a member of either the square or triangle class, respectively.

Now try to draw a line to separate the triangles from the squares. In this case, you can draw such a
line that nicely divides the two classes as follows:

MarkLogic Server Training the Classifier

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 730

If this were three dimensions, instead of a line between the classes it would be a plane between
the classes. When the number of dimensions grows beyond three, the extension of the plane is
called a hyper-plane; it is the generalized representation of a boundary of a class (sometimes
called the edge of a class).

The previous examples are somewhat simplified; they are set up such that the hyper-planes can be
drawn such that one class is completely on one side and the other is completely on the other. For
most real-world content, there are members of each class on the other side of the boundaries as
follows:

In these cases, you can draw other lines parallel to the boundaries (or in the n-dimensional cases,
other hyper-planes). These other lines represent the thresholds for the classes. The distance
between the boundary line and the threshold line represents the threshold value, which is a
negative number indicating how far the outlier members of the class are from the class boundary.
The following figure represents these thresholds.

MarkLogic Server Training the Classifier

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 731

The dotted lines represent some possible thresholds. The lines closer to the boundary represent
thresholds with higher precision (but not complete precision), while the lines farther from the
boundaries represent higher recall. For members of the triangle class that are on the other side of
the square class boundaries, those members are not in the class, but if they are within the
threshold you choose, then they are considered part of the class.

One of the classifier APIs (cts:thresholds) helps you find the right thresholds for your training
content set so you can get the right balance between precision and recall when you run unknown
content against the classifier to determin class membership.

The following figure shows the triangle class boundary, including the precision and recall
calculations based on a threshold (the triangle class is below the threshold line):

Triangle Precision = 16/25 = .64
Triangle Recall = 16/17 = .94

MarkLogic Server Training the Classifier

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 732

26.1.4 Training Content for the Classifier
To find the best thresholds for your content, you need to train the classifier with sample content
that represents members of all of the classes. It is very important to find good training samples, as
the quality of the training will directly impact the quality of your classification.

The samples for each class should be statistically relevant, and should have samples that include
both solid examples of the class (that is, samples that fall well into the positive side of the
threshold from the class boundary) and samples that are close to the boundary for the class. The
samples close to the boundary are very important, because they help determine the best thresholds
for your content. For more details about training sets and setting the threshold, see “Creating a
Training Set” on page 734 and “Methodology For Determining Thresholds For Each Class” on
page 736.

26.2 Classifier API
The classifier has three XQuery built-in functions. This section gives an overview and explains
some of the features of the API, and includes the following parts:

• XQuery Built-In Functions

• Data Can Reside Anywhere or Be Constructed

• API is Extremely Tunable

• Supports Versus Weights Classifiers

• Kernels (Mapping Functions)

• Find Thresholds That Balance Precision and Recall

For details about the syntax and usage of the classifier API, see the MarkLogic XQuery and XSLT
Function Reference.

26.2.1 XQuery Built-In Functions
The classifier API includes three XQuery functions:

• cts:classify

• cts:thresholds

• cts:train

You use these functions to take training nodes use them to compute classifiers. Creating a
classifier specification is an iterative process whereby you create training content, train the
classifier (using cts:train) with the training content, test your classifier on some other training
content (using cts:classify), compute the thresholds on the training content (using
cts:threshold), and repeat this process until you are satisfied with the results. For details about
the syntax and usage of the classifier API, see the MarkLogic XQuery and XSLT Function
Reference.

MarkLogic Server Training the Classifier

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 733

26.2.2 Data Can Reside Anywhere or Be Constructed
The classifier APIs take nodes and elements, so you can either use XQuery to construct the data
for the nodes you are classifying or training, or you can store them in the database (or somewhere
else), whichever is more convenient. Because the APIs take nodes as parameters, there is a lot of
flexibility in how you store your training and classification data.

Note: There is an exception to this: if you are using the supports form of the classifier,
then the training data must reside in the database, and you must pass in the training
nodes when you perform classification (that is, when you run cts:classify) on
unknown content.

26.2.3 API is Extremely Tunable
The classifier API has many options, and is therefore extremely tunable. You can choose the
different index options and kernel types for cts:train, as well as specify limits and thresholds.
When you change the kernel type for cts:train, it will effect the results you get from
classification, as well as effect the performance. Because classification is an iterative process,
experimentation with your own content set tends to help get better results from the classifier. You
might change some parameters during different iterations and see which gives the better
classification for your content.

The following section describes the differences between the supports and weights forms of the
classifier. For details on what each option of the classifier does, see the MarkLogic XQuery and
XSLT Function Reference.

26.2.4 Supports Versus Weights Classifiers
There are two forms of the classifier:

• supports: allows the use of some of the more sophisticated kernels. It encodes the
classifier by reference to specific documents in the training set, and is therefore more
accurate because the whole training document can be used for classification; however, that
means that the whole training set must be available during classification, and it must be
stored in the database. Furthermore, since constructing a term vector is exactly equivalent
to indexing, each time the classifier is invoked it regenerates the index terms for the whole
training set. On the other hand, the actual representation of the classifier (the XML
returned from cts:train) may be a lot more compact. The other advantage of the supports
form of the classifier is that it can give you error estimates for specific training documents,
which may be a sign that those are misclassified or that other parameters are not set to
optimal values.

• weights: encodes weights for each of the terms. For mathematical reasons, it cannot be
used with the Gaussian or Geodesic kernels, although for many problems, those kernels
give the best results. Since there will not be a weight for every term in training set
(because of term compression), this form of the classifier is intrinsically less precise. If
there are a lot of classes and a lot of terms, the classifier representation itself can get quite
large. However, there is no need to have the training set on hand during classification, nor

MarkLogic Server Training the Classifier

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 734

to construct term vectors from it (in essence to regenerate the index terms), so
cts:classify runs much faster with the weights form of the classifier.

Which one you choose depends on your answers to several questions and criteria, such as
performance (does the supports form take too much time and resources for your data?), accuracy
(are you happy with the results you get with the weights form with your data?), and other factors
you might encounter while experimenting with the different forms. In general, the classifier is
extremely tunable, and getting the best results for your data will be an iterative process, both on
what you use for training data and what options you use in your classification.

26.2.5 Kernels (Mapping Functions)
You can choose different kernels during the training phase. The kernels are mapping functions,
and they are used to determine the distance of a term vector from the edge of the class. For a
description of each of the kernel mapping functions, see the documentation for cts:train in the
MarkLogic XQuery and XSLT Function Reference.

26.2.6 Find Thresholds That Balance Precision and Recall
As part of the iterative nature of training to create a classifier specification, one of the overriding
goals is to find the best threshold values for your classes and your content set. Ideally, you want to
find thresholds that strike a balance between good precision and good recall (for details on
precision and recall, see “XML SVM Classifier” on page 727). You use the cts:thresholds
function to calculate the thresholds based on a training set. For an overview of the iterative
process of finding the right thresholds, see “Methodology For Determining Thresholds For Each
Class” on page 736.

26.3 Leveraging XML With the Classifier
Because the classifier operates from an XQuery context, and because it is built into MarkLogic
Server, it is intrinsically XML-aware. This has many advantages. You can choose to classify
based on a particular element or element hierarchy (or even a more complicated XML construct),
and then use that classifier against either other like elements or element hierarchies, or even
against a totally different set of element or element hierarchies. You can perform XML-based
searches to find the best training data. If you have built XML structure into your content, you can
leverage that structure with the classifier.

For example, if you have a set of articles that you want to classify, you can classify against only
the <executive-summary> section of the articles, which can help to exclude references to other
content sections, and which might have a more universal style and language than the more
detailed sections of the articles. This approach might result in using terms that are highly relevant
to the topic of each article for determining class membership.

26.4 Creating a Training Set
This section describes the training content set you use to create a classifier, and includes the
following parts:

MarkLogic Server Training the Classifier

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 735

• Importance of the Training Set

• Defining Labels for the Training Set

26.4.1 Importance of the Training Set
The quality of your classification can only be as good as the training set you use to run the
classifier. It is extremely important to choose sample training nodes that not only represent
obvious examples of a class, but also samples which represent edge cases that belong in or out of
a class.

Because the process of classification is about determining the edges of the classes, having good
samples that are close to this edge is important. You cannot always determine what constitutes an
edge sample, though, by examining the training sample. It is therefore good practice to get as
many different kinds of samples in the training set as possible.

As part of the process of training the classifier, you might need to add more samples, verify that
the samples are actually good samples, or even take some samples away (if they turn out to be
poor samples) from some classes. Also, you can specify negative samples for a class. It is an
iterative process of finding the right training data and setting the various training options until you
end up with a classifier that works well for your data.

26.4.2 Defining Labels for the Training Set
The second parameter to cts:train is a label specification, which is a sequence of cts:label
elements, each one having a one cts:class child. Each cts:label element represents a node in the
training set. The cts:label elements must be in the order corresponding to the specified training
nodes, and they each specify to which class the corresponding training node belongs. For
example, the following cts:label nodes specifies that the first training node is in the class comedy,
the second in the class tragedy, and the third in the class history:

<cts:label>
 <cts:class name="comedy"/>
</cts:label>
<cts:label>
 <cts:class name="tragedy"/>
</cts:label>
<cts:label>
 <cts:class name="history"/>
</cts:label>

Because the labels must be in the order corresponding to the training nodes, you might find it
convenient to generate the labels from the training nodes. For example, the following code
extracts the class name for the labels from a property names playtype stored in the property
corresponding to the training nodes:

for $play in xdmp:directory("/plays/", "1")
return
 <cts:label>

MarkLogic Server Training the Classifier

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 736

 <cts:class name="{
 xdmp:document-property(xdmp:node-uri($play))//playtype/text()}"/>
 </cts:label>

If you have training samples that represent negative samples for a class (that is, they are examples
of what does not belong in the class), you can label them such by specifying the val="-1" attribute
on the cts:class element as follows:

<cts:class name="comedy" val="-1"/>

Additionally, you can include multiple classes in a label (because membership in one class is
independent of membership in another). For example:

<cts:label>
 <cts:class name="comedy" val="-1"/>
 <cts:class name="tragedy"/>
 <cts:class name="history"/>
</cts:label>

26.5 Methodology For Determining Thresholds For Each Class
Use the following methodology to determine appropriate per-class thresholds for classification:

1. Partition the training set into two parts. Ideally, the partitions should be statistically equal.
One way to achieve this is to randomize which nodes go into one partition and which go
into the other.

2. Run cts:train on the first half of the training set.

3. Run cts:classify on the second half of the training set with the output of cts:train from
the first half in the previous step. This is to validate that the training data you used
produced good classification. Use the default value for the thresholds option for this run.
The default value is a very large negative number, so this run will measure the distance
from the actual class boundary for each node in the training set.

4. Run cts:thresholds to compute thresholds for the second half of the training set. This
will further validate your training data and the parameters you set when running cts:train
on your training data.

5. Iterate through the previous steps until you are satisfied with the results from your training
content (that is, you until you are satisfied with the classifier you create). You might need
to experiment with the various option settings for cts:train (for example, different
kernels, different index settings, and so on) until you get the classification you desire.

6. After you are satisfied that you are getting good results, run cts:classify on the unknown
documents, using the computed thresholds (the values from cts:thresholds) as the
boundaries for deciding on class membership.

MarkLogic Server Training the Classifier

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 737

Note: Any time you pass thresholds to cts:train, the thresholds apply to cts:classify.
You can pass them either with cts:train or cts:classify, though, and the effect is
the same.

The following diagram illustrates this iterative process:

26.6 Example: Training and Running the Classifier
This section describes the steps needed to train the classifier against a content set of the plays of
William Shakespeare. This is meant is a simple example for illustrating how to use the classifier,
not necessarily as an example of the best results you can get out of the classifier. The steps are
divided into the following parts:

• Shakespeare’s Plays: The Training Set

• Comedy, Tragedy, History: The Classes

• Partition the Training Content Set

• Create Labels on the First Half of the Training Content

• Run cts:train on the First Half of the Training Content

Good
Results?

Partition
training content set

cts:train

first half of
training content set

cts:classify

second half of
training content set

Compute
thresholds on second

half of training content set

No Yes

Change cts:train
options and/or
improve the

training content set

Run cts:classify
on your unknown

content set

MarkLogic Server Training the Classifier

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 738

• Run cts:classify on the Second Half of the Content Set

• Use cts:thresholds to Compute the Thresholds on the Second Half

• Evaluating Your Results, Make Changes, and Run Another Iteration

• Run the Classifier on Other Content

26.6.1 Shakespeare’s Plays: The Training Set
When you are creating a classifier, the first step is to choose some training content. In this
example, we will use the plays of William Shakespeare as the training set from which to create a
classifier.

The Shakespeare plays are available in XML at the following URL (subject to the copyright
restrictions stated in the plays):

http://www.oasis-open.org/cover/bosakShakespeare200.html

This example assumes the plays are loaded into a MarkLogic Server database under the directory
/shakespeare/plays/. There are 37 plays.

26.6.2 Comedy, Tragedy, History: The Classes
After deciding on the training set, the next step is to choose classes in which you divide the set, as
well as choosing labels for those classes. For Shakespeare, the classes are COMEDY, TRAGEDY, and
HISTORY. You must decide which plays belong to each class. To determine which Shakespeare
plays are comedies, tragedies, and histories, consult your favorite Shakespeare scholars (there is
reasonable, but not complete agreement about which plays belong in which classes).

For convenience, we will store the classes in the properties document at each play URI. To create
the properties for each document, perform something similar to the following for each play
(inserting the appropriate class as the property value):

xdmp:document-set-properties("/shakespeare/plays/hamlet.xml",
 <playtype>TRAGEDY</playtype>)

For details on properties in MarkLogic Server, see Properties Documents and Directories in the
Application Developer’s Guide.

26.6.3 Partition the Training Content Set
Next, we will divide the training set into two parts, where we know the class of each node in both
parts. We will use the first part to train and the second part to validate the classifier built from the
first half of the training set. The two parts should be statistically random, and to do that we will
simply take the first half in the order that the documents return from the xdmp:directory call. You
can choose a more sophisticated randomization technique if you like.

http://www.oasis-open.org/cover/bosakShakespeare200.html

MarkLogic Server Training the Classifier

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 739

26.6.4 Create Labels on the First Half of the Training Content
As we are taking the first half of the play for the training content, we will need labels for each
node (in this example, we are using the document node for each play as the training nodes). To
create the labels on the first half of the content, run a query statement similar to the following:

for $x in xdmp:directory("/shakespeare/plays/", "1")[1 to 19]
return
<cts:label>
 <cts:class name="{xdmp:document-properties(xdmp:node-uri($x))
 //playtype/text()}"/>
</cts:label>

Note: For simplicity, this example uses the first 19 items of the content set as the training
nodes. The samples you use should use a statistically random sample of the content
for the training set, so you might want to use a slightly more complicated method
(that is, one that ensures randomness) for choosing the training set.

26.6.5 Run cts:train on the First Half of the Training Content
Next, you run cts:train with your training content and labels. The following code constructs the
labels and runs cts:train to generate a classifier specification:

let $firsthalf := xdmp:directory("/shakespeare/plays/", "1")[1 to 19]
let $labels := for $x in $firsthalf
 return
 <cts:label>
 <cts:class name="{xdmp:document-properties(xdmp:node-uri($x))
 //playtype/text()}"/>
 </cts:label>
return
cts:train($firsthalf, $labels,
 <options xmlns="cts:train">
 <classifier-type>supports</classifier-type>
 </options>)

You can either save the generated classifier specification in a document in the database or run this
code dynamically in the next step.

MarkLogic Server Training the Classifier

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 740

26.6.6 Run cts:classify on the Second Half of the Content Set
Next, you take the classifier specification created with the first half of the training set and run
cts:classify on the second half of the content set, as follows:

let $firsthalf := xdmp:directory("/shakespeare/plays/", "1")[1 to 19]
let $secondhalf := xdmp:directory("/shakespeare/plays/", "1")[20 to 37]
let $classifier :=
 let $labels := for $x in $firsthalf
 return
 <cts:label>
 <cts:class name="{xdmp:document-properties(xdmp:node-uri($x))
 //@name}"/>
 </cts:label>
 return
 cts:train($firsthalf, $labels,
 <options xmlns="cts:train">
 <classifier-type>supports</classifier-type>
 </options>)
return
cts:classify($secondhalf, $classifier,
 <options xmlns="cts:classify"/>,
 $firsthalf)

MarkLogic Server Training the Classifier

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 741

26.6.7 Use cts:thresholds to Compute the Thresholds on the Second Half
Next, calculate cts:label elements for the second half of the content and use it to compute the
thresholds to use with the classifier. The following code runs cts:train and cts:classify again
for clarity, although the output of each could be stored in a document.

let $firsthalf := xdmp:directory("/shakespeare/plays/", "1")[1 to 19]
let $secondhalf := xdmp:directory("/shakespeare/plays/", "1")[20 to 37]
let $firstlabels := for $x in $firsthalf
 return
 <cts:label>
 <cts:class name="{xdmp:document-properties(xdmp:node-uri($x))
 //playtype/text()}"/>
 </cts:label>
let $secondlabels := for $x in $secondhalf
 return
 <cts:label>
 <cts:class name="{xdmp:document-properties(xdmp:node-uri($x))
 //playtype/text()}"/>
 </cts:label>
let $classifier :=
 cts:train($firsthalf, $firstlabels,
 <options xmlns="cts:train">
 <classifier-type>supports</classifier-type>
 </options>)
let $classifysecond :=
 cts:classify($secondhalf, $classifier,
 <options xmlns="cts:classify"/>,
 $firsthalf)
return
cts:thresholds($classifysecond, $secondlabels)

This produces output similar to the following:

<thresholds xmlns="http://marklogic.com/cts">
 <class name="TRAGEDY" threshold="-0.00215207" precision="1"
 recall="0.666667" f="0.8" count="3"/>
 <class name="COMEDY" threshold="0.216902" precision="0.916667"
 recall="1" f="0.956522" count="11"/>
 <class name="HISTORY" threshold="0.567648" precision="1"
 recall="1" f="1" count="4"/>
</thresholds>

26.6.8 Evaluating Your Results, Make Changes, and Run Another Iteration
Finally, you can analyze the results from cts:thresholds. As an ideal, the thresholds should be
zero. In practice, a negative number relatively close to zero makes a good threshold. The
threshold for tragedy above is quite good, but the thresholds for the other classes are not quite as
good. If you want the thresholds to be better, you can try running everything again with different
parameters for the kernel, for the indexing options, and so on. Also, you can change your training
data (to try and find better examples of comedy, for example).

MarkLogic Server Training the Classifier

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 742

26.6.9 Run the Classifier on Other Content
Once you are satisfied with your classifier, you can run it on other content. For example, you can
try running it on SPEECH elements in the shakespeare plays, or try it on plays by other
playwrights.

MarkLogic Server Results Clustering Using cts:cluster
27.0 Results Clustering Using cts:cluster
750

MarkLogic Server includes cts:cluster, which uses statistical algorithms to find and label
clusters of search results. This chapter describes cts:cluster and includes the following sections:

• Understanding cts:cluster

• Options to cts:cluster

• Understanding the cts:cluster Output

• Example that Creates an HTML Report of the Cluster

For details about the signature, the parameter syntax, and more examples, see cts:cluster in the
MarkLogic XQuery and XSLT Function Reference.

27.1 Understanding cts:cluster

The cts:cluster function takes a set of nodes, typically from a search result set (although it can
be any set of nodes), and provides a report that categorizes the result nodes in clusters. A cluster
is a subset of the results that are statistically similar. For each cluster, it generates a label from the
most distinctive terms in that cluster.

The output is an XML node, and you can use the output to generate a user interface that displays
the results. For sample output, see “Understanding the cts:cluster Output” on page 745.

The clusterer creates clusters by taking the nodes you pass into cts:cluster and running it
through the MarkLogic Server indexer. This is very similar to the process when you load a
document into the database, but the indexing for results clustering is all done in memory, whereas
in the database the indexes are stored to disk. The product of indexing is terms, with each term
having a frequency (the number of times it occurs in the document and in the result set).
Depending on which index settings you use, you will get a different set of terms. The clusterer
takes into account each of the terms, as well as information about the terms (for example, weights
and term frequency), to calculate the clusters.

You pass options into cts:cluster that determine the behavior of the cluster as well as specify the
index settings to use when creating the clusters. For more information about the options, see
“Options to cts:cluster” on page 744, as well as the API documentation for cts:cluster in the
MarkLogic XQuery and XSLT Function Reference.

When deciding how to use the clusterer, think about what your requirements are. Many settings
you choose in the clusterer are trade-offs between performance and the quality of the results
clusters. You might need to experiment to find what works well for your application.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 743

MarkLogic Server Results Clustering Using cts:cluster
Note the following about the clusterer:

• Every time you cluster, the indexer is run on the supplied nodes to generate the data.

• The more nodes you send to cts:cluster, the longer it will take. For real time analysis,
more than a few thousand might get too slow for a user to wait. Ideally, between 100 and
1000 nodes is a good balance between performance and good results.

• You can set <hierararchical-levels> to a value of greater than 1 to generate clusters of
clusters. The parent attribute tells you which cluster is its parent. You can then iterate
through the result set to create a user interface that shows the tree-like hierarchy.

• The labels might change from run-to-run. Specifying a higher value of <num-tries> tends
to make the labels more consistent from run-to-run, but will increase the time it takes to
produce the clusters.

• The labels come from the most distinctive terms. Some terms (such element terms) are
turned into strings. If you want to see the terms used to create the labels, set the
<details>true</details> option.

27.2 Options to cts:cluster

You can set options to cts:cluster in an options node. You can set the following types of options:

• Clustering (cts:cluster) Options

• Indexing (db:) Options

Each of these types of options is in its own namespace.

27.2.1 Clustering (cts:cluster) Options

The clustering options are in the cts:cluster namespace. These options determine the output and
the behavior of the clusterer. Note the following about the clusterer options:

• When tuning the options, try to balance performance, accuracy, and quality of the results.

• The <details> option returns the distinctive terms (these are cts terms) used for each
cluster. You can use these to try and construct your own labels by generating cts:query
constructors from each term. You can then use those queries against some of your data to
generate some labels, if that makes sense for your application.

• The <algorithm> option sets the algorithm MarkLogic Server uses to calculate the
clusters: k-means or lsi. Both are statistical algorithms and have well-known and
published papers describing them (to learn more, you can start here:
http://en.wikipedia.org/wiki/K-means_clustering and
http://en.wikipedia.org/wiki/Latent_semantic_indexing). The default is k-means, which tends to
be slightly faster, but gives slightly less stable results than lsi.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 744

http://en.wikipedia.org/wiki/K-means_clustering
http://en.wikipedia.org/wiki/Latent_semantic_indexing

MarkLogic Server Results Clustering Using cts:cluster
• You can control the number of clusters using <min-clusters> and <max-clusters>
settings. It is possible for cts:cluster to return less than the number of clusters in
<min-clusters> if the most it can calculate based on your data is less than that value.

• The <num-tries> option specifies the number of times to run the clusterer against the
specified data. The default is 1. Because of the way the algorithms work, running the
cluster multiple times will increase the number of terms, and tends to improve the
accuracy of the clusters. It does so at the cost of performance, as each time it runs, it has to
do more work.

27.2.2 Indexing (db:) Options

The indexing options control which terms are created. MarkLogic Server uses these terms to
calculate the clusters, based on term frequency, distinctive terms, and other factors relating to
relevancy. Note the following about the db options:

• They are set in the options node, and are in the http://marklogic.com/xdmp/database
namespace.

• The cts:cluster database options are the same as the database options for
cts:distinctive-terms.

• You can construct the options by hand or use the Admin API to construct the options.

• Fields are a good way of indexing only the words you are interested in, and allows you to
set weights for certain elements. For details on how fields work, see Fields Database

Settings in the Administrator’s Guide.

• The <use-db-options> cts:cluster option (in the cts:cluster namespace) takes the
combination of the database options set in the context database, the specified database
options, and any default values for options. This can be a convenient way for setting
complicated options.

• Iterate with different options to get the right mix of performance and term choices.

27.3 Understanding the cts:cluster Output

The following shows sample cts:cluster output:

<clustering xmlns="http://marklogic.com/cts">
 <cluster id="15899142696064772767" label="law, his, hath" count="8" nodes="2
11 22 24 27 30 40 78"/>
 <cluster id="161987570467386344" label="earth, lose, hast" count="1"
nodes="28"/>
 <cluster id="14947979602052601851" label="mark, most, talbot" count="91"
nodes="1 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 19 20 21 23 25 26 29 31 32 33 34
35 36 37 38 39 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 79 80 81 82 83 84 85 86 87 88
89 90 91 92 93 94 95 96 97 98 99 100"/>
 <cluster id="143845517505877166" parent-id="15899142696064772767"
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 745

MarkLogic Server Results Clustering Using cts:cluster
label="note, captain, antony" count="4" nodes="2 22 30 40"/>
 <cluster id="12625796822979427066" parent-id="15899142696064772767"
label="king, from, so" count="4" nodes="11 24 27 78"/>
 <cluster id="9134217245415181471" parent-id="14947979602052601851"
label="talbot, somerset, who" count="4" nodes="62 72 73 74"/>
 <cluster id="1248501351668626361" parent-id="14947979602052601851"
label="pompey, wall, cleopatra" count="44" nodes="1 4 5 6 12 13 14 19 33 34 37
39 41 42 45 46 47 48 49 50 51 53 54 55 56 58 60 61 64 65 68 71 75 77 84 87 88
89 92 95 96 97 98 99"/>
 <cluster id="6447791006134911106" parent-id="14947979602052601851"
label="our, voice, these" count="10" nodes="17 29 59 69 79 80 91 93 94 100"/>
 <cluster id="7874080124275500326" parent-id="14947979602052601851"
label="which, peace, blood" count="33" nodes="3 7 8 9 10 15 16 18 20 21 23 25
26 31 32 35 36 38 43 44 52 57 63 66 67 70 76 81 82 83 85 86 90"/>
 <options xmlns="cts:cluster" xmlns:db="http://marklogic.com/xdmp/database">
 <algorithm>k-means</algorithm>
 <db:word-searches>true</db:word-searches>
 <db:fast-phrase-searches>false</db:fast-phrase-searches>
 <db:fast-element-word-searches>true</db:fast-element-word-searches>
 <db:language>en</db:language>
 <max-clusters>10</max-clusters>
 <min-clusters>3</min-clusters>
 <hierarchical-levels>2</hierarchical-levels>
 <initialization>smart</initialization>
 <max-terms>200</max-terms>
 <label-max-terms>3</label-max-terms>
 <label-ignore-words>a as of s the when</label-ignore-words>
 <num-tries>1</num-tries>
 <score>logtfidf</score>
 <use-db-config>false</use-db-config>
 <details>false</details>
 <overlapping>false</overlapping>
 </options>
</clustering>

The output is a cts:clustering element. The output includes each cluster, as well as the options
node used to create it. You can use XQuery or XSLT to iterate through the output, creating a
report (for example, in HTML) of the results.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 746

MarkLogic Server Results Clustering Using cts:cluster
The attributes on the <cluster> element describe the cluster. The following table describes the
attributes on the <cluster> element:

27.4 Example that Creates an HTML Report of the Cluster

The following example creates an HTML report of the cluster. It uses the Shakespeare plays
database. To see the results, cut and paste the example and run it against a database that contains
the Shakespeare plays (modify the URI of the directory used in the cts:search to the URI of the
database directory in which you have loaded the Shakespeare plays).

xquery version "1.0-ml" ;

(: cluster the Shakespeare speeches, disregarding the speaker,
 and show the results in an html table :)

declare namespace db="http://marklogic.com/xdmp/database" ;
declare namespace cl="cts:cluster" ;
declare namespace dt="cts:distinctive-terms" ;

(: generally we want to cluster the top N results, where N is
 around 100 to 1,000 (smaller numbers for best performance).
 all speeches = 31,029;
 speeches that contain "love" = 1,864;
 "war" = 359; "joy" = 201;
 "beast" = 94;
 "aunt"=24
:)
let $search-term := xdmp:get-request-field("search-term", "aunt")

cluster Attribute Description

id A random number used to identify the cluster.

parent-id The ID of the parent cluster, when <hierarchical-levels> is set
to a value greater than 1.

label The terms that comprise the label, comma separated. To make
your own label, return the <details> and use the terms to
generate a label.

count The number of nodes in the cluster.

nodes A set of NMTOKEN values, where each value lists the position
of the node. The position is ordered by relevance, the first being
the most relevant to the cluster and the last being the least
relevant. The number refers to the position in the nodes input to
cts:cluster. For example, a value of 10 indicates that it is the
tenth node in the sequence passed into the first parameter of
cts:cluster.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 747

MarkLogic Server Results Clustering Using cts:cluster
let $max-terms := xdmp:get-request-field("max-terms", "100")
let $use-db-config :=
 xdmp:get-request-field("use-db-config", "false")
let $algorithm := xdmp:get-request-field("algorithm", "k-means")
let $options-node :=
 <options xmlns="cts:cluster" >
 <hierarchical-levels>5</hierarchical-levels>
 <overlapping>false</overlapping>
 <label-max-terms>1</label-max-terms>
 <label-ignore-words>a of the when s as</label-ignore-words>
 <max-clusters>10</max-clusters>
 <algorithm>{ $algorithm }</algorithm>
 <!-- turn all database-level indexing options OFF - only use field
terms -->
 <db:word-searches>false</db:word-searches>
 <db:stemmed-searches>false</db:stemmed-searches>

<db:fast-case-sensitive-searches>false</db:fast-case-sensitive-searche
s>

<db:fast-diacritic-sensitive-searches>false</db:fast-diacritic-sensiti
ve-searches>
 <db:fast-phrase-searches>false</db:fast-phrase-searches>
 <db:phrase-throughs/>
 <db:phrase-arounds/>

<db:fast-element-word-searches>false</db:fast-element-word-searches>

<db:fast-element-phrase-searches>false</db:fast-element-phrase-searche
s>
 <db:element-word-query-throughs/>

<db:fast-element-character-searches>false</db:fast-element-character-s
earches>
 <db:range-element-indexes/>
 <db:range-element-attribute-indexes/>
 <db:one-character-searches>false</db:one-character-searches>
 <db:two-character-searches>false</db:two-character-searches>
 <db:three-character-searches>false</db:three-character-searches>

<db:trailing-wildcard-searches>false</db:trailing-wildcard-searches>

<db:fast-element-trailing-wildcard-searches>false</db:fast-element-tra
iling-wildcard-searches>
 <db:fields>
 <field xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://marklogic.com/xdmp/database">
 <field-name>speeches</field-name>
 <include-root>false</include-root>
 <word-lexicons/>
 <!-- create stem and phrase terms for this field -->
 <!-- if the XML were richer, we would have used
 fast-element-word-searches and
 fast-element-phrase-searches too -->
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 748

MarkLogic Server Results Clustering Using cts:cluster
 <stemmed-searches>advanced</stemmed-searches>
 <db:fast-phrase-searches>true</db:fast-phrase-searches>
 <included-elements>
 <included-element>
 <namespace-uri/>
 <localname>LINE</localname>
 <weight>1.0</weight>
 <attribute-namespace-uri/>
 <attribute-localname/>
 <attribute-value/>
 </included-element>
 <included-element>
 <namespace-uri/>
 <localname>SPEECH</localname>
 <weight>1.0</weight>
 <attribute-namespace-uri/>
 <attribute-localname/>
 <attribute-value/>
 </included-element>
 </included-elements>
 <excluded-elements>
 <excluded-element>
 <namespace-uri/>
 <localname>SPEAKER</localname>
 </excluded-element>
 </excluded-elements>
 </field>
 </db:fields>
 </options>

(: build the page :)
let $page :=
<html>
<head><title>Example - clustering - speeches</title></head>
<body>
<table border="1" cellpadding="1" cellspacing="1">
<tr>
<th>Label</th>
<th>Count</th>
<th>Speakers</th>
</tr>
{
let $things-to-cluster :=
 cts:search(

(: specify the directory in which you have loaded the plays :)
 xdmp:directory("/shakespeare/plays/")//SPEECH,
 $search-term
)
(: iterate through the cts:cluster results node :)
for $cluster in
 cts:cluster($things-to-cluster, $options-node)/cts:cluster
return
 <tr>
 <td>{ fn:data($cluster/@label) }</td>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 749

MarkLogic Server Results Clustering Using cts:cluster
 <td>{ fn:data($cluster/@count) }</td>
 <td>
 <table>{
 for $clustered-node-ref in fn:data($cluster/@nodes)
 return
 <tr><td>{ fn:string(
 $things-to-cluster[$clustered-node-ref]//SPEAKER)
 }</td></tr>
 }</table>
 </td>
 </tr>}
</table>
</body>
</html>

return (xdmp:set-response-content-type("text/html"),
 $page, xdmp:elapsed-time())
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 750

MarkLogic Server Language Support in MarkLogic Server
28.0 Language Support in MarkLogic Server
784

MarkLogic Server supports loading and querying content in multiple languages. This chapter
describes how languages are handled in MarkLogic Server, and includes the following sections:

• Overview of Language Support in MarkLogic Server

• Tokenization and Stemming

• Language Aspects of Loading and Updating Documents

• Querying Documents By Languages

• Supported Languages

• Generic Language Support

• Stemming and Tokenization Customization

• Configuring Tokenization and Stemming Plugins

• Language Support in JSON

28.1 Overview of Language Support in MarkLogic Server

In MarkLogic Server, the language of the content is specified when you load the content and the
language of the query is specified when you query the content. At load-time, the content is
tokenized, indexed, and stemmed (if enabled) based on the language specified during the load.
Also, MarkLogic Server uses any languages specified at the element level in the XML markup for
the content (see “xml:lang Attribute” on page 755), making it possible to load documents with
multiple languages. In a JSON document, the language or lang properties are used for the same
purpose.

Similarly, at query time, search terms are tokenized (and stemmed) based on the language
specified in the cts:query expression. The result is that a query performed in one language might
not yield the same results as the same query performed in another language, as both the indexes
that store the information about the content and the queries against the content are
language-aware.

Even if your content is entirely in a single language, MarkLogic Server is still multiple-language
aware. For MarkLogic to behave as if there is only a single language, all the following must be
true:

• Your content is all in a single language.

• That language is the default language for that database.

• The XML content doesn’t include any xml:lang attributes.

• The JSON content doesn’t include any language or lang properties.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 751

MarkLogic Server Language Support in MarkLogic Server
• Your queries all explicitly specify (or default to) the language in which the content is
loaded.

Because MarkLogic Server is multiple-language aware, it is important to understand the
fundamental aspects of languages when loading and querying content in MarkLogic Server. The
remainder of this chapter describes these details, particularly the following topics:

• “Language Aspects of Loading and Updating Documents” on page 755

• “Querying Documents By Languages” on page 758

Note: You will need to manually trigger a database reindex when a license key is applied
that has advanced language options. MarkLogic does not automatically reindex
when the new license key is applied.

28.2 Tokenization and Stemming

To understand the language implications of querying and loading documents, you must first
understand tokenization and stemming, which are both language-specific. This section describes
these topics, and has the following parts:

• Language-Specific Tokenization

• Stemmed Searches in Different Languages

28.2.1 Language-Specific Tokenization

When you search for a string (typically a word or a phrase) in MarkLogic Server, or when you
load content (which is made up of text strings) into MarkLogic Server, the string is split into parts,
each of which is called a token. Each token is classified as a word, punctuation, or whitespace.
The process of breaking down strings into tokens is called tokenization.

Tokenization occurs during document loading as well as during query evaluation. The two
processes are independent of each other. The tokenization of documents during loading affects
indexing. The tokenization of query text affects how search terms are resolved. Though the
processes are independent, they use the same tokenizer (for a given language).

Tokenization is language-specific; that is, a given string is tokenized differently depending on the
language in which it is tokenized. The language is determined based on the language specified at
load or query time (or the database default language if no language is specified) and on any
xml:lang attributes in the XML content (for details, see “xml:lang Attribute” on page 755). For
JSON content, the language or lang properties determine language-specific tokenization (for
details, see Language Support in JSON).

Note the following about the way strings are tokenized in MarkLogic Server:
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 752

MarkLogic Server Language Support in MarkLogic Server
• You can use cts:tokenize XQuery function or the cts.tokenize Server-Side JavaScript
function to see how text is tokenized for a given language.

• If you wrap a call to xdmp:describe around a call to cts:tokenize in XQuery, you can
review both the tokens and their classification. Similarly if you wrap xdmp.describe
around a call to cts.tokenize in JavaScript. For example:

xdmp:describe(cts:tokenize("this is, obviously, a phrase", "en"), 100)
=> (cts:word("this"), cts:space(" "), cts:word("is"),

cts:punctuation(","), cts:space(" "), cts:word("obviously"),
cts:punctuation(","), cts:space(" "), cts:word("a"),
cts:space(" "), cts:word("phrase"))

• Every query has a language associated with it; if the language is not explicitly specified in
the cts:query expression, then it takes on the default language of the database.

• MarkLogic Server comes configured such that when an element is in an Asian or Middle
Eastern language, the Latin characters tokenize as English. This allows searches to find
English words inside Asian or Middle Eastern language elements. For example, a search
in English can find Latin characters in a Simplified Chinese element as in the following:

let $x := <el xml:lang="zh">Chinese-text-here hello</el>
return
$x//el[cts:contains(.,
 cts:word-query("hello", ("stemmed", "lang=en")))]

=> <el xml:lang="zh">Chinese-text-here hello</el>

A stemmed search for the Latin characters in a non-English language, however, will not
find the non-English word stems (it will only find the non-English word itself, which
stems to itself). Similarly, Asian or Middle Eastern characters will tokenize in a language
appropriate to the character set, even when they occur in elements that are not in their
language. The result is that searches in English sometimes match content that is labeled in
an Asian or Middle Eastern character set, and vice-versa. For example, consider the
following (zh is the language code for Simplified Chinese):

let $x :=
<root>
<el xml:lang="en">hello</el>
<el xml:lang="fr">hello</el>
<el xml:lang="zh">hello</el>

</root>
return
$x//el[cts:contains(.,
 cts:word-query("hello", ("stemmed", "lang=en")))]

=> <el xml:lang="en">hello</el>
<el xml:lang="zh">hello</el>

This search, even though in English, returns both the element in English and the one in
Chinese. It returns the Chinese element because the word “hello” is in Latin characters and
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 753

MarkLogic Server Language Support in MarkLogic Server
therefore tokenizes as English, and it matches the Chinese query (which also tokenizes
“hello” in English).

• If your application has specialized tokenization requirements, you can use custom
tokenizer overrides or a custom lexer to modify how characters are grouped into tokens.
For details, see “Custom Tokenization” on page 785.

28.2.2 Stemmed Searches in Different Languages

A stemmed search for a term matches all the terms that have the same stem as the search term
(which includes the exact same terms in the language specified in the query). The purpose of
stemming is to increase the recall for a search. For details about how stemming works in
MarkLogic Server, including the different types of stemming available, see “Understanding and
Using Stemmed Searches” on page 652. This section describes how the language settings affect
stemmed searches.

Words derived from the same meaning and part of speech have the same stem (for example,
“mouse” and “mice”). A word can have multiple stems if the word can be used as multiple parts
of speech (for example, “play” can be both a noun and a verb in English), or if there are two
words with the same spelling. If you enable advanced stemming, then stemmed searches find all
of the words having the same stem as any of the stems. Advanced stemming finds multiple stems
for a word.

Stemming is a language-specific operation. For example, the word “chat” is a different word in
French than it is in English. In French, “chat” is a noun meaning “cat”, while in English, it is a
verb. In French, “chatting” is not a word, and therefore it does not stem to “chat”. But in English,
“chatting” does stem to “chat”. Therefore, stemmed searches in one language might find different
results than stemmed searches in another.

When you construct a query, you can specify a language to use for stemmed search. For example,
the following cts:query expression specifies a stemmed search in French for the word “chat”, and
it only matches tokens that are stemmed in French.

cts:word-query("chat", ("stemmed", "lang=fr"))

For more details about how languages affect queries, see “Querying Documents By Languages”
on page 758.

At load time, the specified language is used to determine in which language to stem the words in
the document. For more details about the language aspects of loading documents, see “Language
Aspects of Loading and Updating Documents” on page 755.

For details about the syntax of the various cts:query constructors, see the MarkLogic XQuery and
XSLT Function Reference.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 754

MarkLogic Server Language Support in MarkLogic Server
28.3 Language Aspects of Loading and Updating Documents

This section describes the impact of languages on loading and updating documents, and includes
the following sections:

• Tokenization and Stemming

• xml:lang Attribute

• Language-Related Notes About Loading and Updating Documents

• Protecting JSON Files That Should not be Stemmed

28.3.1 Tokenization and Stemming

Tokenization and stemming occur when loading documents, just as they do when querying
documents (for details, see “Language-Specific Tokenization” on page 752 and “Stemmed
Searches in Different Languages” on page 754). When loading documents, the stemmed search
indexes are created based on the language. The tokenization and stemming at load time is
completely independent from the tokenization and stemming at query time.

28.3.2 xml:lang Attribute

You can specify languages in XML documents at the element level by using the xml:lang
attribute. MarkLogic Server uses the xml:lang attribute to determine the language with which to
tokenize and stem the contents of that element. Note the following about the xml:lang attribute:

• The xml:lang attribute (see https://www.w3.org/TR/xml/#sec-lang-tag) has some special
properties such as not needing to declare the namespace bound to the xml prefix, and that it
is inherited by all children of the element (unless they explicitly have a different xml:lang
value).

• You can explicitly add an xml:lang attribute to the root node of an XML document during
loading by specifying the default-language option to xdmp:document-load; without the
default-language option, the root node will remain as-is.

• If no xml:lang attribute is present, then the document is processed in the default language
of the database into which it is loaded.

• For the purpose of indexing terms, the language specified by the xml:lang attribute only
applies to stemmed search terms; the word searches (unstemmed) database configuration
setting indexes terms irrespective of language. Tokenization of terms honors the xml:lang
value for both stemmed searches and word searches index settings in the database
configuration.

• All of the text node children and text node descendants of an element with an xml:lang
attribute are treated as the language specified in the xml:lang attribute, unless a child
element has an xml:lang attribute with a different value. If so, any text node children and
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 755

https://www.w3.org/TR/xml/#sec-lang-tag

MarkLogic Server Language Support in MarkLogic Server
text node descendants are treated as the new language, and so on until no other xml:lang
attributes are encountered.

• The value of the xml:lang attribute must conform to the following lexical standard:
http://www.ietf.org/rfc/rfc3066.txt. The following are some typical xml:lang attributes
(specifying French, Simplified Chinese, and English, respectively):

xml:lang="fr"
xml:lang="zh"
xml:lang="en"

• If an element has an xml:lang attribute with a value of the empty string (xml:lang=""),
then any xml:lang value in effect (from some ancestor xml:lang value) is overridden for
that element; its value takes on the database language default. Additionally, if a
default-language option is specified during loading, any empty string xml:lang values are
replaced with the language specified in the default-language option. For example,
consider the following XML:

<rhone xml:lang="fr">
<wine>vin rouge</wine>
<wine xml:lang="">red wine</wine>

</rhone>

In this sample, the phrase “vin rouge” is treated as French, and the phrase “red wine” is
treated in the default language for the database (English by default).

If this sample was loaded with a default-language option specifying Italian (specifying
<default-language>it</default-language> for the xdmp:document-load option, for
example), then the resulting document would be as follows:

<rhone xml:lang="fr">
<wine>vin rouge</wine>
<wine xml:lang="it">red wine</wine>

</rhone>
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 756

http://www.ietf.org/rfc/rfc3066.txt

MarkLogic Server Language Support in MarkLogic Server
28.3.3 Language-Related Notes About Loading and Updating Documents

When you load content into MarkLogic Server, it determines how to index the content based on
several factors, including the language specified during the load operation, the default language of
the database, and any languages encoded into the XML content with xml:lang attributes, or into
the JSON content with language or lang properties. Note the following about languages with
respect to loading content, updating content, and changing language settings on a database:

• Changing the default language starts a reindex operation if reindex enable is set to true.

• XML documents with no xml:lang attribute are indexed upon load or update in the
database default language.

• JSON documents with no language or lang properties are indexed upon load or update in
the database default language.

• Any XML content within an element having an xml:lang attribute is indexed in that
language. Additionally, the xml:lang value is inherited by all of the descendants of that
element, until another xml:lang value is encountered.

• Any JSON content within a scope that contains a language or lang property is indexed in
that language. Additionally, the language or lang property is inherited by all of the
descendants of that element, until another language or lang property is encountered.

• MarkLogic Server comes configured such that when an element is in an Asian or Middle
Eastern language, the Latin characters tokenize as English. Therefore, a document with
Latin characters in a non-English language will create stemmed index terms in English for
those Latin characters. Similarly, Asian or Middle Eastern characters will tokenize in their
respective languages, even in elements that are not in their language.

28.3.4 Protecting JSON Files That Should not be Stemmed

The special zxx language code, which means no natural language present, allows users to protect
their own configuration files (or other documents, elements, properties that contain no
human-readable content) from customized and plugin tokenizers, as well as from stemmers. In the
absence of these language codes, text will always be processed using the default database
language. These files also process faster, because they are never stemmed and only use a simple
tokenizer.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 757

MarkLogic Server Language Support in MarkLogic Server
28.4 Querying Documents By Languages

Full-text search queries (queries that use cts:search or cts:contains) are language-aware; that is,
they search for text, tokenize the search terms, and stem (if enabled) in a particular language. This
section describes how queries are language-aware and describes their behavior. It includes the
following topics:

• Tokenization, Stemming, and the xml:lang Attribute

• Language-Aware Searches

• Unstemmed Searches

• Unknown Languages

28.4.1 Tokenization, Stemming, and the xml:lang Attribute

Tokenization and stemming are both language-specific; that is, a string can be tokenized and
stemmed differently in different languages. By default, a query uses the default language of the
database. You can also specify a language when constructing a query. For more details, see
“Tokenization and Stemming” on page 752.

For XML nodes constructed in XQuery, any xml:lang attributes are treated the same way as if the
document were loaded into a database. For details, see “xml:lang Attribute” on page 755.

Constructed JSON nodes that contain the language or lang properties are indexed in that
language. If neither of these properties is present, then they use the default language configured
for the database.

28.4.2 Language-Aware Searches

All searches in MarkLogic Server are language-aware. You can specify a language when
constructing a query. For example, most cts:query constructors accept a language option. If the
language is not explicitly specified, MarkLogic uses the default language configured for the
database. For details on the cts:query constructors, see “Composing cts:query Expressions” on
page 248.

The language governing a query determines how to tokenize the search terms, whether stemmed
search is enabled or not. If stemmed search is enabled, the language is also used to derive stems.
Unstemmed searches use the unstemmed (word searches) indexes, which are language
independent.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 758

MarkLogic Server Language Support in MarkLogic Server
28.4.3 Unstemmed Searches

An unstemmed search matches terms that are exactly like the search term; it does not take into
consideration the stem of the word. Unstemmed searches match terms in a language independent
way, but tokenize the search according to the specified language. Therefore, when you specify a
language in an unstemmed query, the language applies only to tokenization; the unstemmed query
will match any text in any language that matches the query.

Note the following characteristics of unstemmed searches:

• Unstemmed searches require word search indexes, otherwise they throw an exception.
However, you can perform unstemmed searches without word search indexes using
cts:contains. To perform unstemmed searches without the word search indexes enabled,
use a let to bind the results of a stemmed search to a variable, and then filter the results
using cts:contains with an unstemmed query.

The following example binds the stemmed search results to a variable, then iterates over
the results, filtering out all but the unstemmed results in the where clause (using
cts:contains with a cts:query that specifies the unstemmed option).

let $search := cts:search(doc(), cts:word-query("my words",
("stemmed", "lang=en")))

for $x in $search
where cts:contains($x, cts:word-query("my words", "unstemmed"))
return $x

Note: While it is likely that everything returned by this search will have an English
match to the cts:query, it is not guaranteed that everything returned is in English.
It is possible for a document to contain words in another language that do not
match the language-specific query, but do match the unstemmed query (if the
document contains text in multiple languages, and if it has “my words” in some
other language than the one specified in the stemmed cts:query).

• The word search indexes are language-agnostic.

• Unstemmed searches use the lang=<language> query constructor option to determine the
language for tokenization.

• Unstemmed searches search all content, regardless of language (and regardless of
lang=<language> option). The language only affects how the search terms are tokenized.
For example, the following unstemmed search returns true:

(: returns true :)
let $x := <el xml:lang="fr">chat</el>
return
cts:contains($x, cts:word-query("chat", ("unstemmed", "lang=en")))

whereas the following stemmed search returns false:
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 759

MarkLogic Server Language Support in MarkLogic Server
(: returns false :)
let $x := <el xml:lang="fr">chat</el>
return
cts:contains($x, cts:word-query("chat", ("stemmed", "lang=en")))

28.4.4 Unknown Languages

If the language specified in a search is not one of the languages in which language-specific
stemming and tokenization are supported, or if it is a language for which you do not have a license
key, then it is treated as a generic language. Typically, generic languages with Latin script are
tokenized the same way as English, with token breaks at whitespace and punctuation, and with
each word stemming to itself, but this is not always the case (especially for languages supported
by MarkLogic Server—see “Supported Languages” on page 761—but for which you are not
licensed). For details, see “Generic Language Support” on page 762.

You can implement a custom lexer (for tokenization) and stemmer if the default behavior for an
unsupported language does not meet the needs of your application. For details, see “User-Defined
Lexer Plugins” on page 795 and “Using a User-Defined Stemmer Plugin” on page 656.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 760

MarkLogic Server Language Support in MarkLogic Server
28.5 Supported Languages

This section lists languages with advanced stemming and tokenization support in MarkLogic
Server. All of the languages except English require a license key with support for the language. If
your license key does not include support for a given language, the language is treated as a
generic language (see “Generic Language Support” on page 762). The following are the
supported languages:

• English

• French

• Italian

• German

• Russian

• Spanish

• Arabic

• Chinese (Simplified and Traditional)

• Korean

• Persian (Farsi)

• Dutch

• Japanese

• Portuguese

• Norwegian (Nynorsk and Bokmål)

• Swedish

For a list of base collations and character sets used with each language, see “Collations and
Character Sets By Language” on page 811.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 761

MarkLogic Server Language Support in MarkLogic Server
28.6 Generic Language Support

You can load and query documents in any language into MarkLogic Server, as long as you can
convert the character encoding to UTF-8. If the language is not one of the languages with
advanced support, or if the language is one for which you are not licensed, then the tokenization is
performed in a generic way (on whitespace and punctuation characters for non-Asian characters,
and on each character for Asian characters), and each term stems to itself.

For example, if you load the following document:

<doc xml:lang="cz">
<a>Some text in any language here.

</doc>

then that document is loaded as the language cz, and a stemmed search in any other language
would not match. Therefore, the following does not match the document:

(: does not match because it was stemmed as "cz" :)
cts:search(doc(), cts:word-query("language", ("stemmed", "lang=en"))

The following search does match the document because it uses the same language:

(: does match because the query specifies "cz" as the language :)
cts:search(doc(), cts:word-query("language", ("stemmed", "lang=cz"))

Generic language support enables you to query documents in any language, regardless of which
languages you are licensed for or which languages have advanced support. Because the generic
language support only stems words to themselves, queries in these languages will not include
variations of words based on their meanings in the results.

If you desire more than the generic language support for some unsupported language, you can
create a custom lexer and or stemmer plugin to enable language-specific handling. For details, see
“Stemming and Tokenization Customization” on page 762.

28.7 Stemming and Tokenization Customization

This section summarizes the features available to you for customizing the stemming and
tokenization processes. You can use these features separately or together.

• Tokenization Customization

• Stemming Customization
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 762

MarkLogic Server Language Support in MarkLogic Server
28.7.1 Tokenization Customization

With no customizations, each language has a default lexer and default tokenization dictionary
associated with it. The default lexer is one of the built-in lexers described in “Built-in Lexer
Plugin Reference” on page 778 and varies by language.

You can use the following tools to customize tokenization. You can use these features singly or in
combination.

• Define tokenizer overrides. Overrides can affect whether a codepoint is classified as a
word, punctuation or whitespace character. Overrides are applied independent of the
configured lexer. For details, see “Custom Tokenizer Overrides” on page 785.

• Custom tokenization dictionary. You can install a custom dictionary to influence how text
is tokenized. You configure custom dictionaries per language. For more details, see
“Custom Dictionaries for Tokenizing and Stemming” on page 665.

• Custom lexer. You can use one of the built-in lexer plugins that come with MarkLogic, or
create a user-defined lexer plugin using the marklogic::LexerUDF native C++ intefaces.
You associate a custom lexer with a specific language. For details, see “User-Defined
Lexer Plugins” on page 795 and “Configuring Tokenization and Stemming Plugins” on
page 764.

You can use tokenization customizations in conjunction with stemming customizations. For
details, see “Stemming Customization” on page 763.

Tokenization is a trusted operation. You should be selective about which users can register
user-defined lexer plugins and customize language configurations.

28.7.2 Stemming Customization

With no customizations, each language has a base stemmer and stemming dictionary associated
with it. The default stemmer is one of the built-in stemmer plugins that come with MarkLogic,
and varies by language. For details, see “Built-in Stemmer Plugin Reference” on page 779.

You can use the following tools to customize stemming. You can use these customizations singly
or in combination.

• Database text index options. For example, you can enable/disable stemmed searches, and
set the level of complexity of the stemmer. For details, see Understanding the Text Index

Settings in the Administrator’s Guide.

• Custom dictionary. You can install a custom stemming dictionary to influence how words
are stemmed. You configure custom dictionaries per language. For more details, see
“Custom Dictionaries for Tokenizing and Stemming” on page 665.

• Custom stemmer. You can use one of the built-in stemmer plugins that come with
MarkLogic, or create a user-defined stemmer plugin using the marklogic::StemmerUDF
native C++ intefaces. You associate a custom stemmer with a specific language. For
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 763

MarkLogic Server Language Support in MarkLogic Server
details, see “Using a User-Defined Stemmer Plugin” on page 656 and “Configuring
Tokenization and Stemming Plugins” on page 764.

You can use stemming customizations in conjunction with tokenization customizations. For
details, see “Tokenization Customization” on page 763.

Stemming is a trusted operation. You should be selective about which users can register
user-defined stemming plugins and customize language configurations.

28.8 Configuring Tokenization and Stemming Plugins

One way you can affect the results of tokenization and stemming is to configure a custom lexer or
stemmer plugin for a language. Your customization can use either a built-in or user-defined
plugin.

This section provides an overview of how to configure a custom lexer or stemmer for a language
using the Custom Language Management library module. The following topics are covered:

• Function Summary for Custom Language Management

• Customization Using a Built-In Lexer or Stemmer

• Customization Using a User-Defined Lexer or Stemmer

• Example: Adding Configuration for a Language

• Example: Removing Configuration for a Language

• Example: Resetting Configuration for All Languages

• Understanding Stemming Delegation

• Custom Dictionary Security Considerations

• Built-in Lexer Plugin Reference

• Built-in Stemmer Plugin Reference

For more information on creating user-defined lexer and stemmer plugins, see the following
topics:

• “User-Defined Lexer Plugins” on page 795

• “Using a User-Defined Stemmer Plugin” on page 656

• Using Native Plugins in the Application Developer’s Guide
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 764

MarkLogic Server Language Support in MarkLogic Server
28.8.1 Function Summary for Custom Language Management

Lexer and stemmer plugin configuration is done through the custom language management
library module. The module includes the following functions. For more details, see the
XQuery/XSLT Function Reference or the MarkLogic Server-Side JavaScript Function Reference.

Function Description

clang:language-config-read (XQuery)

clang.languageConfigRead (JavaScript)

Read the current custom language configuration.
You should always begin your configuration
changes by calling this function.

clang:language-config-write (XQuery)

clang.languageConfigWrite (JavaScript)

Commit custom language configuration changes.
Your changes will not take effect unless you call
this function. Note: Calling this function restarts
MarkLogic.

clang:language-config-delete (XQuery)

clang.languageConfigDelete (JavaScript)

Remove all custom language configuration from
your MarkLogic installation. Note: Calling this
function restarts MarkLogic.

clang:update-user-language (XQuery)

clang.updateUserLanguage (JavaScript)

Modify a language config element to add/replace
configuration for a specific language. Your
change will not take effect until you call
clang:language-config-write (XQuery) or
clang.languageConfigWrite (JavaScript).

clang:delete-user-language (XQuery)

clang.deleteUserLanguage (JavaScript)

Modify a language config element to remove
configuration for a specific language. Your
change will not take effect until you call
clang:language-config-write (XQuery) or
clang.languageConfigWrite (JavaScript).

clang:user-language (XQuery)

clang.userLanguage (JavaScript)

Construct a custom language-to-plugin binding
that can be used to update the custom language
configuration. This is the “unit of change” for
clang:update-user-language and
clang.updateUserLanguage.

clang:user-language-plugin (XQuery)

clang.userLanguagePlugin (JavaScript)

Construct a custom lexer/stemmer plugin
reference that can be used to update the
configuration for a language.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 765

MarkLogic Server Language Support in MarkLogic Server
28.8.2 Customization Using a Built-In Lexer or Stemmer

This sections describes how to construct a custom lexer or stemmer configuration item based on
one of the built-in lexers or stemmers, rather than on a user-defined plugin.

Setting the library argument of clang:user-language-plugin or clang.userLanguagePlugin to an
empty string tells MarkLogic you are referencing a built-in plugin. For example, the following
call constructs a stemmer configuration item based on the built-in Snowball stemmer. Notice that
the first parameter (library) is an empty string.

XQuery: clang:user-language-plugin("",(),clang:stemmer("snowball"))

JavaScript: clang.userLanguagePlugin('', null, clang.stemmer('snowball')

The first argument of the stemmer constructor should be one of the built-in stemmer names from
“Built-in Stemmer Plugin Reference” on page 779. You can configure a custom lexer at the same
time by including a clang.lexer or clang.lexer configuration item as the 3rd parameter.

Note: If you associate a custom lexer dictionary with a language, you must reinstall it if
you change the lexer plugin for the language. Similarly, if you associate a custom
stemming dictionary with a language, you must reinstall it if you change the
stemmer plugin for the language.

clang:lexer (XQuery)

clang.lexer (JavaScript)

Construct a reference to a lexer capability in a
native plugin. Use the output of this function as
input to clang:user-language-plugin or
clang.userLanguagePlugin.

clang:stemmer (XQuery)

clang.stemmer (JavaScript)

Construct a reference to a stemmer capability in a
native plugin. Use the output of this function as
input to clang:user-language-plugin or
clang.userLanguagePlugin.

Function Description
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 766

MarkLogic Server Language Support in MarkLogic Server
The following example creates a configuration item for German. The default lexer for German is
ICU. The default stemmer for German is Bitext. The new configuration specifies Snowball as the
custom lexer and leaves the default lexer unchanged. In addition, the Snowball stemmer is
configured to use the german2 stemming algorithm.

Note that this example doesn’t actually change the language configuration because it does not call
clang:language-config-write (XQuery) or clang.languageConfigWrite (JavaScript).

If you run the example in Query Console, you should see output similar to the following:

<lang:user-languages xml:lang="zxx"
xmlns:lang="http://marklogic.com/xdmp/language">
 <lang:user-language>
 <lang:name>de</lang:name>
 <lang:plugin>
 <lang:library/>
 <lang:stemmer>

<lang:variant>snowball</lang:variant>
<lang:arg>code=german2</lang:arg>

 </lang:stemmer>
 </lang:plugin>
 </lang:user-language>
</lang:user-languages>

Language Example

XQuery xquery version "1.0-ml";
import module namespace clang =

"http://marklogic.com/xdmp/custom-language"
 at "/MarkLogic/custom-language.xqy";

let $stemmer :=
clang:stemmer("snowball",(),("code=german2"))

let $plugin := clang:user-language-plugin("",(),$stemmer)
let $german := clang:user-language("de",$plugin)

return
clang:update-user-language(

clang:language-config-read(), $german)

Server-Side
JavaScript

'use strict';
const clang = require('/MarkLogic/custom-language');

const stemmer = clang.stemmer(
'snowball', null, Sequence.from(['code=german2']));

const plugin = clang.userLanguagePlugin('', null, stemmer);
const germanConfig = clang.userLanguage('de', plugin);

clang.updateUserLanguage(
 clang.languageConfigRead(), germanConfig);
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 767

MarkLogic Server Language Support in MarkLogic Server
28.8.3 Customization Using a User-Defined Lexer or Stemmer

This describes how to construct a custom lexer or stemmer configuration item based on a
user-defined plugin, rather than on one of the built-in plugins. A user-defined lexer or stemmer
must be installed as a native plugin before you can use it.

When you construct a lexer (or stemmer) configuration item for a user-defined plugin, you must
identify the native plugin and the capability from the plugin library that exposes the LexerUDF or
StemmerUDF implementation.

For a lexer, set the variant argument of clang:lexer or clang.lexer to a LexerUDF capability
registered by plugin. For a stemmer, set the variant argument of clang:stemmer or clang.stemmer
to a StemmerUDF capability registered by plugin. For both, set the library argument to
“plugin_path/plugin_id”.

For example, if you install a plugin with the path “native” and plugin id “sampleplugin”, and the
lexer UDF capability registered by the plugin is named “sample_lexer”, then you’d construct a
lexer configuration item for it as follows:

XQuery: clang:lexer("sample_lexer", (), (), "native/sampleplugin")

JavaScript: clang.lexer('sample_lexer', null, null, 'native/sampleplugin’)

If you configure both a stemmer and lexer from the same native plugin, you can set the plugin
library reference (“native/sampleplugin”) in clang:user-language-plugin or
clang.userLanguagePlugin instead. For example:

XQuery: clang:user-language-plugin(
"native/sampleplugin",
clang:lexer("sample_lexer"),
clang:stemmer("sample_stemmer"))

JavaScript: clang.userLanguagePlugin('
'native/sampleplugin',
clang.lexer('sample_lexer'),
clang.stemmer('sample_stemmer'));

When a library is specified in both the lexer/stemmer constructor and the language plugin
constructor, the library in the lexer/stemmer takes precedence.

Note: If you associate a custom lexer dictionary with a language, you must reinstall it if
you change the lexer plugin for the language. Similarly, if you associate a custom
stemming dictionary with a language, you must reinstall it if you change the
stemmer plugin for the language.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 768

MarkLogic Server Language Support in MarkLogic Server
The following example creates a configuration item for German. The default lexer for German is
ICU. The default stemmer for German is Bitext. The new configuration specifies a user-defined
lexer named “sample_lexer” as the custom lexer and leaves the default stemmer unchanged.
Assume the plugin configuration described above.

Note that this example doesn’t actually change the language configuration because it does not call
clang:language-config-write (XQuery) or clang.languageConfigWrite (JavaScript).

If you run the example in Query Console, you should see output similar to the following:

<lang:user-languages xml:lang="zxx"
xmlns:lang="http://marklogic.com/xdmp/language">

 <lang:user-language>
 <lang:name>de</lang:name>
 <lang:plugin>
 <lang:library/>
 <lang:lexer>
 <lang:library>native/sampleplugin</lang:library>
 <lang:variant>sample_lexer</lang:variant>
 </lang:lexer>
 </lang:plugin>
 </lang:user-language>
</lang:user-languages>

Language Example

XQuery xquery version "1.0-ml";
import module namespace clang =

"http://marklogic.com/xdmp/custom-language"
 at "/MarkLogic/custom-language.xqy";

let $lexer :=
clang:lexer("sample_lexer",(),(), "native/sampleplugin")

let $plugin := clang:user-language-plugin("", $lexer, ())
let $german := clang:user-language("de", $plugin)

return
clang:update-user-language(

clang:language-config-read(), $german)

Server-Side
JavaScript

'use strict';
const clang = require('/MarkLogic/custom-language');

const lexer = clang.lexer(
'sample_lexer', null, null, 'native/sampleplugin');

const plugin = clang.userLanguagePlugin('', lexer, null);
const germanConfig = clang.userLanguage('de', plugin);

clang.updateUserLanguage(
 clang.languageConfigRead(), germanConfig);
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 769

MarkLogic Server Language Support in MarkLogic Server
28.8.4 Example: Adding Configuration for a Language

Use the clang:user-language-plugin XQuery function or the clang.userLanguagePlugin
Server-Side JavaScript function to define a binding between a language and custom tokenization
and stemming plugins. For more details, see “Customization Using a Built-In Lexer or Stemmer”
on page 766 and “Customization Using a User-Defined Lexer or Stemmer” on page 768.

To put the configuration change into effect, use the following pattern. A complete example
follow.

This operation is an overwrite: Any previous configuration for the language will be replaced.
Thus, if you are going to configure both a lexer and a stemmer for a language, do it in a single call
to clang:update-user-language or clang.updateUserLanguage.

Note: Calling clang:language-config-write or clang.languageConfigWrite causes
MarkLogic to restart.

Language Example

XQuery clang:language-config-write(
clang:update-user-language(

clang:language-config-read(), $changed-lang)
)

JavaScript clang.languageConfigWrite(
 clang.updateUserLanguage(

clang.languageConfigRead(), changedLang));
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 770

MarkLogic Server Language Support in MarkLogic Server
The following example configures a custom stemmer and lexer for the Catalan language using a
user-defined plugin. Assume the plugin registers a lexer named “sample_lexer” and a stemmer
named “sample_stemmer.

Language Example

XQuery xquery version "1.0-ml";
import module namespace
clang="http://marklogic.com/xdmp/custom-language"
 at "/MarkLogic/custom-language.xqy";

(: Construct custom lexer and stemmer bindinf for Catalan :)
let $catalan :=
 clang:user-language("ca",
 clang:user-language-plugin("native/sampleplugin",
 clang:lexer("sample_lexer"),
 clang:stemmer("sample_stemmer")
)
)
(: Get the existing config so we update it :)
let $existing := clang:language-config-read()
return

(: Update the current config and commit the changes :)
(: NOTE: Causes a restart :)

 clang:language-config-write(
 clang:update-user-language($existing, $catalan)
)

JavaScript 'use strict';
const clang = require('/MarkLogic/custom-language.xqy');

// Construct a custom lexer and stemmer binding for Catalan
const catalan = clang.userLanguage(
 'ca',
 clang.userLanguagePlugin(
 'native/sampleplugin',
 clang.lexer('sample_lexer'),
 clang.stemmer('sample_stemmer'))
);
// Get the existing config so we can update it
const existing = clang.languageConfigRead();

// Update the current config and commit the changes.
// NOTE: Causes a restart
clang.languageConfigWrite(
 clang.updateUserLanguage(existing, catalan));
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 771

MarkLogic Server Language Support in MarkLogic Server
You can configure just a lexer or just a stemmer for a language by including just that reference
when calling clang:user-language-plugin or clang.userLanguagePlugin. For example, the
following code only configures a custom stemmer.

Language Example

XQuery xquery version "1.0-ml";
import module namespace
clang="http://marklogic.com/xdmp/custom-language"
 at "/MarkLogic/custom-language.xqy";

let $catalan :=
 clang:user-language("ca",
 clang:user-language-plugin("native/sampleplugin",
 (), clang:stemmer("sample_stemmer")
)
)
let $existing := clang:language-config-read()
return
 clang:language-config-write(
 clang:update-user-language($existing, $catalan)
)

JavaScript 'use strict';
const clang = require('/MarkLogic/custom-language.xqy');

const catalan = clang.userLanguage(
 'ca',
 clang.userLanguagePlugin(
 'native/sampleplugin', null,

clang.stemmer('sample_stemmer'))
);
const existing = clang.languageConfigRead();

clang.languageConfigWrite(
 clang.updateUserLanguage(existing, catalan));
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 772

MarkLogic Server Language Support in MarkLogic Server
To configure a lexer and stemmer from different plugin libraries for the same language, specify
the plugin path to the lexer and stemmer reference constructors. For example, the following code
configures a lexer and a stemmer from two different plugins:

28.8.5 Example: Removing Configuration for a Language

Use the clang:delete-user-language XQuery function or the clang.deleteUserLanguage
JavaScript function to remove the custom configuration for a specific language. You must call
clang:language-config-write (XQuery) or clang.languageConfigWrite (JavaScript) for your
change to take effect, and doing so will cause MarkLogic to restart.

Language Example

XQuery xquery version "1.0-ml";
import module namespace
clang="http://marklogic.com/xdmp/custom-language"
 at "/MarkLogic/custom-language.xqy";

let $catalan :=
 clang:user-language("ca",
 clang:user-language-plugin("",
 clang:lexer("my_lexer",(),(), "plugin1/lexers"),
 clang:stemmer("my_stemmer", (), (), "plugin2/stemmers")
)
)
let $existing := clang:language-config-read()
return
 clang:language-config-write(
 clang:update-user-language($existing, $catalan)
)

JavaScript 'use strict';
const clang = require('/MarkLogic/custom-language.xqy');

const catalan = clang.userLanguage(
 'ca',
 clang.userLanguagePlugin(
 '',
 clang.lexer('my_lexer', null, null, 'plugin1/lexers'),
 clang.stemmer('my_stemmer', null, null, 'plugin2/stemmers'))
);
const existing = clang.languageConfigRead();

clang.languageConfigWrite(
 clang.updateUserLanguage(existing, catalan));
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 773

MarkLogic Server Language Support in MarkLogic Server
The following example removes the configuration for the Catalan language (language code “ca”).

28.8.6 Example: Resetting Configuration for All Languages

To remove custom stemmer and lexer bindings for all languages, use the
clang:language-config-delete XQuery function or the clang.languageConfigDelete Server-Side
JavaScript function.

Note: Calling these functions restarts MarkLogic.

Language Example

XQuery xquery version "1.0-ml";
import module namespace
clang="http://marklogic.com/xdmp/custom-language"
 at "/MarkLogic/custom-language.xqy";

let $language := "ca"
let $existing := clang:language-config-read()
return
 clang:language-config-write(
 clang:delete-user-language($existing, $language)
)

JavaScript 'use strict';
const clang = require('/MarkLogic/custom-language.xqy');

const language = 'ca';
const existing = clang.languageConfigRead();

clang.languageConfigWrite(
 clang.deleteUserLanguage(existing, language));
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 774

MarkLogic Server Language Support in MarkLogic Server
The following example code removes all language customizations and restarts the server.

28.8.7 Understanding Stemming Delegation

You can use delegation to control whether stemming consults the default stemmer in addition to
the custom plugin for a language. Delegation can be controlled at two levels:

• User-defined stemming plugins and some built-in plugins include a delegation control on
their interface. For example, the built-in Bitext plugin accepts a delegation option, and
the StemmerUDF interface for user-defined plugins has a delegate method.

• The clang:user-language-plugin XQuery function and the clang.userLanguagePlugin
JavaScript function accept a boolean delegate parameter. When set to true (the default),
the stemming process asks the plugin whether or not to delegate.

If delegation is enabled at the language plugin configuration level, then the stemming process will
consult the custom plugin about whether or not to delegate. For example, it will call the delegate
method on StemmerUDF. If delegation is disabled at the language plugin configuration level, then
the stemming process will not consult the custom plugin and will never delegate to the default
stemmer.

Language Example

XQuery xquery version "1.0-ml";
import module namespace
clang="http://marklogic.com/xdmp/custom-language"
 at "/MarkLogic/custom-language.xqy";

clang:language-config-delete()

JavaScript 'use strict';
const clang = require('/MarkLogic/custom-language.xqy');

clang.languageConfigDelete();
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 775

MarkLogic Server Language Support in MarkLogic Server
Delegation has the following effect on the stemming results. The first column indicates whether
or not the delegate parameter of clang:user-language-plugin or clang.userLanguagePlugin is
set to true. The second column indicates whether or not the custom plugin agrees to delegate; for
example, whether StemmerUDF::delegate returns true.

The following table contains examples of the stemming result with various delegation and stem
count combinations. The “with Delegation” column signifies the plugin was consulted and agreed
to delegation. The “without Delegation” column signifies either the plugin was not consulted or
the plugin did not agree to delegation.

A custom plugin determines its own delegation policy. For example, a plugin might choose
among policies such as “always” (delegate regardless of the number of stems found), “never”
(never delegate), or “on empty” (delegate only if the plugin found no stems).

28.8.8 Custom Dictionary Security Considerations

When you configure a language to use a custom user-defined stemmer or lexer, and also associate
a custom dictionary with the language, then you can create special security privileges to enable
finer control over who can administer the dictionary.

Lang
Config

Delegate

Plugin
Says to

Delegate
Result

true true stems = (stems from plugin + stems from default)
if no stems are found, word is self-stemming

true false stems = stems from plugin
if no stems are found, word is self-stemming

false N/A stem = stem from plugin
if no stems are found, word is self-stemming

Input
Custom
Plugin
Stems

Default
Stems

Final Result with
Delegation

Final Result without
Delegation

moogled moogle moogle moogle

pabbling peeble pabble peeble, pabble peeble

furben furby furby furben (self-stem)

zorks zorks (self-stem) zorks (self-stem)
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 776

MarkLogic Server Language Support in MarkLogic Server
A custom dictionary is associated with both a language and a specific stemmer or lexer plugin.
The lexer or stemmer is implicit in the configuration of the language. Usually, any user with the
custom-dictionary-admin role or equivalent privileges can add, update, or delete a custom
dictionary for any language-stemmer or language-lexer configuration.

You can create a privileges of the following form to make it possible to control dictionary
management on a per stemmer/lexer basis.

http://marklogic.com/xdmp/privileges/custom-dictionary-admin/library
http://marklogic.com/xdmp/privileges/xdmp-write-cluster-config-file/library

Where library is of the form plugin_path/plugin_id and identifies a user-defined lexer or
stemmer plugin.

For example, if you install a user-defined lexer plugin with the plugin path “native” and the plugin
id “sampleplugin”, then you would create a privileges of the following form:

http://marklogic.com/xdmp/privileges/custom-dictionary-admin/native/sampleplug
in
http://marklogic.com/xdmp/privileges/xdmp-write-cluster-config-file/native/sam
pleplugin

MarkLogic will not create these privilege for you, but it will check for and enforce them if the
privileges exist.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 777

MarkLogic Server Language Support in MarkLogic Server
28.8.9 Built-in Lexer Plugin Reference

The table below lists the built-in lexers (tokenizers), which languages each one is configured for
by default, and what configuration options (if any) are available for customization. Use the
configuration lexer name and configuration options when calling the clang:lexer XQuery
function or the clang.lexer JavaScript function; for details, see “Customization Using a Built-In
Lexer or Stemmer” on page 766.

Lexer
Name

Description

simple
lexer

The default lexer for English, Norwegian, and languages without advanced support.
You cannot specify this lexer as a custom plugin, and it has no configuration
options.

icu Default tokenizer for most licensed languages. Users might want to switch to this
tokenizer for English to pick up better apostrophe and contraction handling, or for
languages without advanced support. This lexer accepts no extra arguments.

kytea Default tokenizer for Chinese. With the appropriate language model, this tokenizer
could be used for other languages. You can customize the behavior of this lexer
using the following arguments:

model_filename Required. The name of a model file in the
MARKLOGIC_DIR/Lang directory of all hosts in the cluster. The
model is used for tokenization. Only UTF-8 models are
supported. Create a model file using the KyTea tools on a
corpus, possible augmented with dictionaries.

KyTea offers Japanese models alternative models for
Chinese at http://www.phontron.com/kytea/model.html.

atilika Default tokenizer for Japanese. You can customize the behavior of this lexer using
the following arguments:

search-mode
normal-mode

Specify the handling of compound words: search-mode
breaks up compound words, while normal-mode does not.
Default: search-mode.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 778

http://www.phontron.com/kytea/model.html

MarkLogic Server Language Support in MarkLogic Server
28.8.10 Built-in Stemmer Plugin Reference

The tables below list the built-in stemmers. Use the stemmer name and options when constructing
a stemmer configuration item using the clang:stemmer XQuery function or the clang.stemmer
JavaScript function.

MarkLogic uses the following built-in stemmers by default:

See the following topics for configuration options.

• Bitext Stemmer Options

• Snowball Stemmer Options

• Atilika Stemmer Options

Stemmer Name Description

simple stemmer The default stemmer for languages without advanced stemming support.

bitext Default stemmer for all languages with advanced stemming support
except Chinese and Japanese. Chinese is not stemmed, and Japanese uses
the Atilika stemmer.

snowball Default stemmer for Danish, Finnish, Hungarian, Romanian, Tamil, and
Turkish.

atilika Default stemmer for Japanese.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 779

MarkLogic Server Language Support in MarkLogic Server
28.8.10.1Bitext Stemmer Options

The Bitext stemmer supports the following options that you can specify in the args parameter of
clang:stemmer or clang.stemmer.

Bitext Option Description

code=value A language code to be passed to Bitext. This is a 3-letter code, such as
DEU for German.

dict=value Which dictionary to use. You can specify multiple dictionaries by
specifying this argument multiple times. The dictionary must be in
MARKLOGIC_DIR/Lang on all hosts in the cluster. The dictionary must be in
Bitext’s format.

decompounding
no-decompounding

Enable/disable decompounding. If the language does not support
decompounding, this is a no-op. Default: no-decompounding.

delegation=value Whether to delegate to the base stemmer, if there is one. Allowed values:
always (always delegate, meaning Bitext stems are always added to the
base stemmer), on-empty (delegate to the base stemmer only if the Bitext
dictionary had no entry for the word), or never (no delegation). Default:
on-empty.

algorithm=value Which stemming algorithm to use. If not specified, MarkLogic uses the
default algorithm for the language.

Choose from the following values: arabic, danish, dutch, english, finnish,
french, german, german2, hungarian, italian, porter (Porter algorithm for
English), portuguese, romanian, russian, spanish, swedish, turkish, tamil,
persian, korean, english2, french2, german3, italian2, spanish2,
swedish2. The values english2, french2, german3, italian2, spanish2, and
swedish2 specify a lemmatizing algorithm for that language, for use with
Bitext dictionaries.

pre-stemmer=value Which pre-stemming algorithm to use. Pre-stemmers perform
normalization on the input to make better use of the Bitext dictionaries.
Choose one of the following values: normalize_latin (map fullwidth
characters to regular Latin character; map ligatures to their components),
arabic_transliteration (transliterate Arabic characters to ASCII.
Required for Arabic since it uses transliterated dictionaries.).
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 780

MarkLogic Server Language Support in MarkLogic Server
28.8.10.2Snowball Stemmer Options

The Snowball stemmer supports the following options that you can specify in the args parameter
of clang:stemmer or clang.stemmer.

use-algorithm
no-use-algorithm

Enable/disable the stemming algorithm backing the Bitext dictionary.
Default: use-algorithm. Does not apply to the pre-stemmer.

use-dictionary
no-use-dictionary

Enable/disable the Bitext dictionary. Default: use-dictionary (look up
entries in the dictionary). If the dictionary is disabled, the stemmer will
perform pre-stemming and (if the algorithm is enabled) stemming.

lowercase
no-lowercase

Enable/disable lowercasing of the input string. Many of the standard
algorithms use uppercase letters as markers and will not work properly if
there are uppercase letters in the input. Default: no-lowercase.

nfkd
no-nfkd

Enable/disable NFKD normalization of the input string. Some stemming
algorithms do not work correctly when the input has been NFKD
normalized. Default: no-nfkd.

Snowball Option Description

code=value Which stemming algorithm to use. Optional. If unspecified, use the
default algorithm for the language.

Choose from the following values: arabic, danish, dutch, english, finnish,
french, german, german2, hungarian, italian, porter (Porter algorithm for
English), portuguese, romanian, russian, spanish, swedish, turkish, tamil,
persian, korean, english2, french2, german3, italian2, spanish2,
swedish2. The values english2, french2, german3, italian2, spanish2, and
swedish2 specify a lemmatizing algorithm for that language, for use with
Bitext dictionaries.

Bitext Option Description
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 781

MarkLogic Server Language Support in MarkLogic Server
28.8.10.3Atilika Stemmer Options

The Atilika stemmer supports the following options that you can specify in the arguments
parameter of clang:stemmer or clang.stemmer.

28.9 Language Support in JSON

• Overview

• API Changes

• JSON Serialization

• Upgrade Considerations

28.9.1 Overview

Beginning with version 10.0-1 of our server, MarkLogic allows natural language in JSON to be
tagged with a language other than the default database language. When a language or lang tag is
present in a JSON object, all textual content in that object will be interpreted as being processed
under the language referred to by the ISO code in that tag. JSON language processing is very
similar to XML language processing (see the ksjdf section, for details) with the following
differences:

• Because JSON has no attributes, the language applies to sibling properties, as well as
children of these properties.

• The xml:lang attribute has a schema in scope, you if it isn't a valid ISO code you may get
errors.

• If the language or lang tag does not contain a valid language code (per RFC4646), then it
will be treated analogously to such a value for xml:lang today: It will be treated as an
unknown language for tokenization and stemming purposes.

Atilika Option Description

add-reading
no-add-reading

Specify whether or not to add the Katakana reading as an alternative
stem. Default: no-add-reading. (MarkLogic’s default configuration for
Atilika uses add-reading, but if you’re configuring Atilika as a custom
plugin, the default is no-add-reading.)

delegation Whether or not to delegate to the base stemmer. Allowed values: never,
always, on-empty. Default: on-empty.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 782

https://tools.ietf.org/html/rfc4646
https://tools.ietf.org/html/rfc4646

MarkLogic Server Language Support in MarkLogic Server
A JSON document is allowed to have multiple language or lang tags in its content. A JSON node
containing the key language will be processed according to that language. All descendant nodes
will be processed according to that language. Language tags may be placed at any level in the
JSON and are applied in a simple hierarchical way.

{

language: "en-US", description: "This is US English text",
components: [

“Still US english”,
{

language: “nl”,
data: “Dutch stuff”

}
{

language: “es”,
data: “Spanish stuff”

}
{

data: “More US English”
}

]
}

In the above example, content indexed with a particular language will have the key for that
language added to the re-indexer keys stored with the document, as is now the case with XML
content.

Note: When JSON is being parsed (for example from a file), making the language tag
apply to preceding siblings would be expensive and require us to parse the whole
object before doing any node construction on it. Serialization will put the language
child first.

28.9.2 API Changes

The fn:lang function and the underlying datamodel functions that support it now handle JSON
nodes as well as XML nodes.

fn:lang($testlang as xs:string?, [$node as node()]) as xs:boolean

The function fn:lang already exists with the above signature. In previous versions, it always
returns false for a JSON node. Starting with version 10.0-1 of MarkLogic, it will return true if the
JSON node or one of its ancestors has a lang or language key that matches the $testlang per the
rules defined for the xml:lang attribute on XML nodes.

For example, the following will return true.

fn:lang("en", object-node{ "language" : "en-US", "item" : "example" })
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 783

MarkLogic Server Language Support in MarkLogic Server
28.9.3 JSON Serialization

Serialization of JSON objects will put the language tag first. (with the limitations noted above).

For example:

xdmp:to-json(object-node{ "item" : "example", "language" : "en-US" })

will return

{"language":"en-US", "item":"example"}

28.9.4 Upgrade Considerations

It is possible that you may already have JSON documents may already have language or lang
properties used for some other purpose. In that case, normal language processing attempts to look
up a given language, and will treat all unknown tags as equivalent. The content of the language
property itself will still be indexed normally: the issue is that content will be indexed as "unknown
language" instead of "default database language". That is a potential incompatibility, and a
potential risk. This risk is attenuated by the fact that some JSON formats already use language or
lang for precisely the purpose we want gives us some comfort that this will not be an issue in
practice. In addition, MarkLogic will only attempt to apply a language or lang property if the node
is a text node.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 784

MarkLogic Server Custom Tokenization
29.0 Custom Tokenization
802

The process of tokenization splits text in document content and query text into parts, classified as
word, whitespace, and punctuation tokens. You can customize tokenization in two ways:

• Custom Tokenizer Overrides: Customize how the tokenizer classifies tokens.

• User-Defined Lexer Plugins: Customize how the tokenizer divides text into tokens.

You can use these customizations individually or together.

29.1 Custom Tokenizer Overrides

Use custom tokenizer overrides on fields to change the classification of characters in content and
query text. Character re-classification affects searches because it changes the tokenization of text
blocks. The following topics are covered:

• Introduction to Custom Tokenizer Overrides

• How Character Classification Affects Tokenization

• Using xdmp:describe to Explore Tokenization

• Performance Impact of Using Tokenizer Overrides

• Defining a Custom Tokenizer Override

• Examples of Custom Tokenizer Overrides

29.1.1 Introduction to Custom Tokenizer Overrides

A custom tokenizer override enables you to change the tokenizer classification of a character
when it occurs within a field. You can use this flexibility to improve search efficiency, enable
searches for special character patterns, and normalize data.

Note: You can only define a custom tokenizer override on a field. For details, see
Overview of Fields in the Administrator’s Guide.

As discussed in “Tokenization and Stemming” on page 752, tokenization breaks text content and
query text into word, punctuation, and whitespace tokens. Built-in language specific rules define
how to break text into tokens. During tokenization, each character is classified as a word, symbol,
punctuation, or space character. Each symbol, punctuation, or space character is one token.
Adjacent word characters are grouped together into a single word token. Word and symbol tokens
are indexed; space and punctuation tokens are not.

For example, with default tokenization, a text run of the form “456-1111” breaks down into 2
word tokens and 1 punctuation token. You can use a query similar to the following one to examine
the break down:
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 785

MarkLogic Server Custom Tokenization
xquery version "1.0-ml";
xdmp:describe(cts:tokenize("456-1111"));

==> (cts:word("456"), cts:punctuation("-"), cts:word("1111"))

If you define a custom tokenizer override that classifies hyphen as a character to remove, the
tokenizer produces the single word token "4561111". In combination with other database
configuration changes, this can enable more accurate wildcard searches or allow searches to
match against variable input such as 456-1111 and 4561111. For a full example, see “Example:
Improving Accuracy of Wildcard-Enabled Searches” on page 790.

Tokenization rules apply to both content and query text. Since tokenizer overrides can only be
applied to fields, you must use field queries such as cts:field-word-query or
cts:field-value-query to take advantage of your overrides.

You cannot override a character to its default class. For example, the space character (“ “) has
class space by default, so you cannot define an override that classifies it as space.

You cannot override a composite character that decomposes into multiple characters when NFD
Unicode normalization is applied.

29.1.2 How Character Classification Affects Tokenization

You can define a custom tokenizer override to classify a character as one of the following
categories:

• space: Treat as whitespace. Whitespace is not indexed.

• word: Adjacent word characters are grouped into a single token that is indexed.

• symbol: Each symbol character forms a single token that is indexed.

• remove: Eliminate the character from consideration when creating tokens.

Note that re-classifying a character such that it is treated as punctuation in query text can trigger
punctuation-sensitive field word and field value queries. For details, see “Wildcarding and
Punctuation Sensitivity” on page 688.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 786

MarkLogic Server Custom Tokenization
The table below illustrates how each kind of override impacts tokenization:

29.1.3 Using xdmp:describe to Explore Tokenization

You can use xdmp:describe with cts:tokenize to explore how the use of fields and tokenizer
overrides affects tokenization. Passing the name of a field to cts:tokenize applies the overrides
defined on the field to tokenization.

The following example shows the difference between the default tokenization rules (no field), and
tokenization using a field named “dim” that defines tokenizer overrides. For configuration details
on the field used in this example, see “Example: Searching Within a Word” on page 792.

xquery version "1.0-ml";
xdmp:describe(cts:tokenize("20x40"));
xdmp:describe(cts:tokenize("20x40",(),"dim"))

==>
cts:word("20x40")
(cts:word("20"), cts:space("x"), cts:word("40"))

You can use this method to test the effect of new overrides.

You can also include a language as the second argument to cts:tokenize, to explore language
specific effects on tokenization. For example:

xdmp:describe(cts:tokenize("20x40","en","dim"))

Char
Class

Example
Input

Default
Tokenization

Override Result

space 10x40 10x40 (word) admin:database-tokenizer-override
("x","space")

10 (word)
x (space)
40 (word)

word 456-1111 456 (word)
- (punc.)
1111 (word)

admin:database-tokenizer-override
("-","word")

456-1111 (word)

symbol @1.2 @ (punc.)
1.2 (word)

admin:database-tokenizer-override
("@","symbol")

@ (symbol)
1.2 (word)

remove 456-1111 456 (word)
- (punc.)
1111 (word)

admin:database-tokenizer-override
("-","remove")

4561111 (word)
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 787

MarkLogic Server Custom Tokenization
For more details on the interaction between language and tokenization, see “Language Support in
MarkLogic Server” on page 751.

29.1.4 Performance Impact of Using Tokenizer Overrides

Using tokenizer overrides can make indexing and searching take longer, so you should only use
overrides when truly necessary. For example, if a custom override is in scope for a search, then
filtered field queries require retokenization of every text node checked during filtering.

If you have a small number of tokenizer overrides, the impact should be modest.

If you define a custom tokenizer on a field with a very broad scope, expect a larger performance
hit. Choosing to re-classify commonly occurring characters like “ “ (space) as a symbol or word
character can cause index space requirements to greatly increase.

29.1.5 Defining a Custom Tokenizer Override

You can only define a custom tokenizer override on a field. You can configure a custom tokenizer
override in the following ways:

• Programmatically, using the function admin:database-add-field-tokenizer-override in
the Admin API.

• Interactively, using the Admin Interface. For details, see Configuring Fields in the
Administrator’s Guide.

Note: Even if reindexing is disabled, when you add tokenizer overrides to a field, those
tokenization changes take effect immediately, so all new queries against the field
will use the new tokenization (even if it is indexed with the previous tokenization).

For example, assuming the database configuration already includes a field named phone, the
following XQuery adds a custom tokenizer override to the field that classifies "-" as a remove
character and "@" as a symbol:

xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin"
 at "/MarkLogic/admin.xqy";

let $dbid := xdmp:database("myDatabase")
let $config :=
 admin:database-add-field-tokenizer-override(
 admin:get-configuration(), $dbid, "phone",
 (admin:database-tokenizer-override("-","remove"),
 admin:database-tokenizer-override("@", "symbol"))
)
return admin:save-configuration($config)
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 788

MarkLogic Server Custom Tokenization
29.1.6 Examples of Custom Tokenizer Overrides

This section contains the following examples related to using custom tokenizer overrides:

• Example: Configuring a Field with Tokenizer Overrides

• Example: Improving Accuracy of Wildcard-Enabled Searches

• Example: Data Normalization

• Example: Searching Within a Word

• Example: Using the Symbol Classification

29.1.6.1 Example: Configuring a Field with Tokenizer Overrides

The following query demonstrates creating a field, field range index, and custom tokenizer
overrides using the Admin API. You can also perform these operations using the Admin Interface.

Use this example as a template if you prefer to use XQuery to configure the fields used in the
remaining examples in this section. Replace the database name, field name, included element
name, and tokenizer overrides with settings appropriate for your use case.

(: Create the field :)
xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin"
 at "/MarkLogic/admin.xqy";

let $config := admin:get-configuration()
let $dbid := xdmp:database("YourDatabase")
return admin:save-configuration(
 admin:database-add-field(
 $config, $dbid,
 admin:database-field("example", fn:false())
)
);

(: Configure the included elements and field range index :)
xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin"
 at "/MarkLogic/admin.xqy";

let $dbid := xdmp:database("YourDatabase")
let $config := admin:get-configuration()
let $config :=
 admin:database-add-field-included-element(
 $config, $dbid, "example",
 admin:database-included-element(

"", "your-element", 1.0, "", "", "")
)
let $config :=
 admin:database-add-range-field-index(
 $config, $dbid,
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 789

MarkLogic Server Custom Tokenization
 admin:database-range-field-index(
 "string", "example",

"http://marklogic.com/collation/", fn:false())
)
return admin:save-configuration($config);

(: Define custom tokenizer overrides :)
xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin"
 at "/MarkLogic/admin.xqy";

let $config := admin:get-configuration()
let $dbid := xdmp:database("YourDatabase")
return admin:save-configuration(
 admin:database-add-field-tokenizer-override(
 $config, $dbid, "example",
 (admin:database-tokenizer-override("(", "remove"),
 admin:database-tokenizer-override(")", "remove"),
 admin:database-tokenizer-override("-", "remove"))
)
);

29.1.6.2 Example: Improving Accuracy of Wildcard-Enabled Searches

This example demonstrates using custom tokenizers to improve the accuracy and efficiency of
unfiltered search on phone numbers when three character searches are enabled on the database to
support wildcard searches.

Run the following query in Query Console to load the sample data into the database.

xdmp:document-insert("/contacts/Abe.xml",
 <person>

<phone>(202)456-1111</phone>
 </person>);
xdmp:document-insert("/contacts/Mary.xml",
 <person>

<phone>(202)456-1112</phone>
 </person>);
xdmp:document-insert("/contacts/Bob.xml",
 <person>

<phone>(202)111-4560</phone>
 </person>);
xdmp:document-insert("/contacts/Bubba.xml",
 <person>

<phone>(456)202-1111</phone>
 </person>)

Use the Admin Interface or a query similar to the following to enable three character searches on
the database to support wildcard searches.

xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin"
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 790

MarkLogic Server Custom Tokenization
at "/MarkLogic/admin.xqy";

let $config := admin:get-configuration()
return admin:save-configuration(
 admin:database-set-three-character-searches($config,
 xdmp:database("YourDatabase"), fn:true())
)

With three character searches enabled, the following unfiltered search returns false positives
because the query text tokenizes into two word tokens, “202” and “456”, with the wildcard
applying only to the “456” token.

xquery version "1.0-ml";
cts:search(

fn:doc(),
cts:word-query("(202)456*"),
"unfiltered")//phone/text()

==>
(456)202-1111
(202)456-1111
(202)111-4560
(202)456-1112

To improve the accuracy of the search, define a field on the phone element and define tokenizer
overrides to eliminate all the punctuation characters from the field values. Use the Admin
Interface to define a field with the following characteristics, or modify the query in “Example:
Configuring a Field with Tokenizer Overrides” on page 789 and run it in Query Console.

Field Property Setting

Name phone

Field type root

Include root false

Included elements phone (no namespace)

Range field index scalar type: string
field name: phone
collation: http://marklogic.com/collation/ (default)
range value positions: false (default)
invalid values: reject (default)

Tokenizer overrides remove ((left parenthesis)
remove) (right parenthesis)
remove - (hyphen)
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 791

MarkLogic Server Custom Tokenization
This field definition causes the phone numbers to be indexed as single word tokens such as
“4562021111” and “2021114560”. If you perform the following search, the false positives are
eliminated:

xquery version "1.0-ml";
cts:search(fn:doc(),

cts:field-word-query("phone", "(202)456*"),
"unfiltered")//phone/text()

==>
(202)456-1111
(202)456-1112

If the field definition did not include the tokenizer overrides, the field word query would include
the same false positives as the initial word query.

29.1.6.3 Example: Data Normalization

In “Example: Improving Accuracy of Wildcard-Enabled Searches” on page 790, custom
tokenizer overrides are used to remove punctuation from phone numbers of the form
(202)456-1111. The overrides provide the additional benefit of normalizing query text because the
tokenizer overrides apply to query text as well as content.

If you define “(“, “)”, “-”, and “ “ (space) as remove characters, then a phone number such as
(202)456-1111 is indexed as the single word 2024561111, and all the following query text
examples will match exactly in an unfiltered search:

• (202)456-1111

• 202-456-1111

• 202 456-1111

• 2024561111

The same overrides also normalize indexing during ingestion: If the input data contains all of the
above patterns in the phone element, the data is normalized to a single word token for indexing in
all cases.

For sample input and details on configuring an applicable field, see “Example: Improving
Accuracy of Wildcard-Enabled Searches” on page 790.

29.1.6.4 Example: Searching Within a Word

This example demonstrates using custom tokenizer overrides to create multiple tokens out of
what would otherwise be considered a single word. This makes it possible to search successfully
for a portion of the word.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 792

MarkLogic Server Custom Tokenization
Suppose you have input documents that include a dimensions element of the form MxN, where M
and N are the number of feet. For example, “10x4” is the measurement of an area that is 10 feet by
4 feet. You cannot search for “all documents which includes at least one dimension of 10 feet”
because 10x4 tokenizes as a single word.

To demonstrate, run the following query in Query Console to load the sample documents:

xquery version "1.0-ml";
xdmp:document-insert("/plots/plot1.xml",
 <plot>
 <dimensions>10x4</dimensions>
 </plot>);
xdmp:document-insert("/plots/plot2.xml",
 <plot>
 <dimensions>25x10</dimensions>
 </plot>);
xdmp:document-insert("/plots/plot3.xml",
 <plot>
 <dimensions>5x4</dimensions>
 </plot>)

Next, run the following word query against the database and observe that there are no matches:

xquery version "1.0-ml";
cts:search(fn:doc(), cts:word-query("10"),"unfiltered")

Use the Admin Interface to define a field with the following characteristics, or modify the query
in “Example: Configuring a Field with Tokenizer Overrides” on page 789 and run it in Query
Console.

Field Property Setting

Name dim

Field type root

Include root false

Included elements dimensions (no namespace)

Range field index scalar type: string
field name: dim
collation: http://marklogic.com/collation/ (default)
range value positions: false (default)
invalid values: reject (default)

Tokenizer overrides space x
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 793

MarkLogic Server Custom Tokenization
The field divides each dimension text node into two tokens, split at “x”. Therefore, the following
field word query now finds matches in the example documents:

xquery version "1.0-ml";
cts:search(fn:doc(), cts:field-word-query("dim", "10"),"unfiltered")

==>
<plot>
 <dimensions>25x10</dimensions>
</plot>
<plot>
 <dimensions>10x4</dimensions>
</plot>

29.1.6.5 Example: Using the Symbol Classification

This example demonstrates the value of classifying some characters as symbol. Suppose you are
working with Twitter data, where the appearance of @word in Tweet text represents a user and
#word represents a topic identifier (“hash tag”). For this example, we want the following search
semantics to apply:

• If you search for a naked term, such as NASA, the search should match occurrences of the
naked term (“NASA”) or topics (“#NASA”), but not users (“@NASA”).

• If you search for a user (@NASA), the search should only match users, not naked terms or
topics.

• If you search for a topic (#NASA), the search should only match topics, not naked terms or
users.

The following table summarizes the desired search results:

If you do not define any token overrides, then the terms NASA, @NASA, and #NASA tokenize as
follows:

• NASA: cts:word("NASA")

• @NASA: cts:punctuation("@"), cts:word("NASA")

Query Text Should Match Should Not Match

NASA NASA
#NASA

@NASA

@NASA @NASA NASA
#NASA

#NASA #NASA NASA
@NASA
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 794

MarkLogic Server Custom Tokenization
• #NASA: cts:punctuation("#"), cts:word("NASA")

Assuming a punctuation-insensitive search, this means all three query strings devolve to
searching for just NASA.

If you define a tokenizer override for @ that classifies it as a word character, then @NASA tokenizes
as a single word and will not match naked terms or topics. That is, @NASA tokenizes as:

cts:word("@NASA")

However, classifying # as a word character does not have the desired effect. It causes the query
text #NASA to match topics, as intended, but it also excludes matches for naked terms. The solution
is to classify # as a symbol. Doing so causes the following tokenization to occur:

cts:word("#"),cts:word("NASA")

Now, searching for #NASA matches adjacent occurrences of # and NASA, as in a topic, and searching
for just NASA matches both topics and naked terms. Users (@NASA) continue to be excluded because
of the tokenizer override for @.

29.2 User-Defined Lexer Plugins

You can use a user-defined lexer plug-in to affect how MarkLogic splits the text in document
content and queries into parts. Create a user-defined lexer plugin in C++ by implementing a
subclass of the marklogic::LexerUDF class and deploying it to MarkLogic as a native plugin. The
LexerUDF class is a UDF (User Defined Function) interface.

MarkLogic also provides several built-in lexer plug-ins you can use to customize tokenization.
For details, see “Customization Using a Built-In Lexer or Stemmer” on page 766.

This section covers the following topics:

• When to Consider a User-Defined Lexer

• LexerUDF Interface Summary

• Understanding User-Defined Lexer Control Flow

• Implementation Guidelines for User-Defined Lexers

• Creating and Deploying a User-Defined Lexer Plugin

• Registering a Custom Tokenizer with MarkLogic

• Testing a User-Defined Lexer

• Error Handling and Logging
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 795

MarkLogic Server Custom Tokenization
29.2.1 When to Consider a User-Defined Lexer

MarkLogic provides several built-in lexers that you can configure for a language if you are not
satisfied with the default lexer. The following are some use cases in which you might consider
implementing a your own lexer:

• You need to tokenize a language that is not directly supported by MarkLogic.

• You want to use a specific 3rd party library for tokenization for a given language.

• Your data requires universal reassignment of certain characters to different tokenization
classes. Tokenizer overrides, which fulfill a similar need, only apply within specific fields
and come at the cost of retokenization.

• You require special format tokenization in the context of specific data fields where the
requirements are more complicated than the simple reclassification provided by tokenizer
overrides.

In some cases, you might also need a user-defined stemmer or custom dictionary. For example, if
you’re tokenizing a language not supported by MarkLogic and you wish to use stemmed searches
on that language, then you would also deploy a custom stemmer. For details, see “Using a
User-Defined Stemmer Plugin” on page 656 and “Custom Dictionaries for Tokenizing and
Stemming” on page 665.

29.2.2 LexerUDF Interface Summary

You implement a user-defined lexer as a subclass of the MarkLogic::LexerUDF base C++ class.
This class is defined in MARKLOGIC_INSTALL_DIR/include/MarkLogic.h. You can find detailed
documentation about the class in the User-Defined Function API reference and in MarkLogic.h. You
can find an example implementation in MARKLOGIC_INSTALL_DIR/Samples/NativePlugins.

The following table contains a brief summary of the key methods of LexerUDF. For a discussions
of how MarkLogic uses these methods, see “Understanding User-Defined Lexer Control Flow”
on page 797.

LexerUDF Method Description

initialize Initialize a LexerUDF after construction. This method is only called once
per lexer object.

reset Prepare the lexer to process a new text run. The first token should be
available to the token method after calling this method.

next Advance the lexer to the next token. Returns false if there are no more
tokens.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 796

/cpp/udf/index.html

MarkLogic Server Custom Tokenization
29.2.3 Understanding User-Defined Lexer Control Flow

A user-defined lexer is implemented as a subclass of marklogic::LexerUDF. Once your lexer is
installed as a native plugin and associated with a language, it will be applied automatically when
loading content or processing query text in the context of the configured language.

MarkLogic maintains a per-language pool of lexer objects. When MarkLogic needs one of your
LexerUDF objects, it first checks to see if one is available from the pool. If not, MarkLogic creates
one using the object factor created during plugin registration. MarkLogic then calls the
initialize method of the object.

token Return the current token. Returns null if there is no current token.

finish Clean up from the current tokenization run.

LexerUDF Method Description
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 797

MarkLogic Server Custom Tokenization
The following diagram illustrates how MarkLogic interacts with a LexerUDF object during
tokenization:

The lexer owns the memory allocated for the Token returned by the token method, and is
responsible for releasing it when appropriate, such as when the finish method is called.

If it is necessary to re-tokenize a text run, MarkLogic invokes the lexer’s reset method again.

When a tokenization run finishes, MarkLogic returns the lexer object to the pool. A lexer stays in
the pool until it becomes stale. MarkLogic can choose to mark a lexer stale, or a lexer can flag
itself as stale by returning true from its isStale method.

When a lexer is no longer needed, MarkLogic calls its close method. This enables the lexer to
deallocate memory and release other resources, as needed.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 798

MarkLogic Server Custom Tokenization
29.2.4 Implementation Guidelines for User-Defined Lexers

When implementing a LexerUDF subclass, keep the following guidelines in mind.

Note: Your UDF implementation runs in the same memory and process space as
MarkLogic Server, so errors in your implementation can crash MarkLogic Server.
Before deploying a user-defined lexer, you should read and understand Using

Native Plugins in the Application Developer’s Guide. See also “Testing a
User-Defined Lexer” on page 801.

• You must implement a subclass of LexerUDF for each tokenization algorithm you want to
use.

• Your lexer should partition its input into words, punctuation, and whitespace tokens with
no gaps, overlaps, or reordering because MarkLogic stores the sequence of tokens, not the
original input string.

• Tokenization is a low-level, inner-loop operation that MarkLogic performs during
indexing (including document ingestion) and query evaluation. Your stemmer should
introduce as little overhead as possible.

• Your lexer is not responsible for applying tokenizer overrides. If tokenizer overrides are
configured, MarkLogic will apply them to the tokens returned by the lexer.

• Your implementation does not have to be thread safe. MarkLogic will instantiate a new
lexer in each thread in which it wants to perform tokenization.

• You can include a Part of Speech indicator as part of Token object returned by
LexerUDF::token. This indicator can sometimes improve the precision of the stemmer. The
default stemmers only use this information for Japanese. When deciding whether and
which part of speech to use, keep the following mind:

• Including a Part of Speech is only useful when you use both a custom lexer and a
custom stemmer that acts on the PoS. The default stemmer only uses PoS for
Japanese.

• You should usually return UNSPECIFIED_POS for tokens in short strings such as
query text because there is not enough context to make a reliable classification. If
you use a custom stemmer, MarkLogic recommends your stemmer return all
possible stems for UNSPECIFIED_POS.

• If you are sure of the POS classification, tagging a token with a specific part of
speech can improve the precision of the stemmer or serve as a signal for stem
ordering.

• UNSPECIFIED_POS is more efficient in time and space for the stemmer. If you don’t
really need the extra precision or your stemmer plugin does not use POS, you
should not use specific parts of speech. Using specific parts of speech makes the
stemmed searches indexes bigger and adds to processing time.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 799

MarkLogic Server Custom Tokenization
• A single text run might need to be tokenized more than once. Your lexer should be
idempotent across calls to its restart method.

• Report errors using the Reporter object that is passed to most LexerUDF methods, rather
than by throwing exceptions. For details, see “Error Handling and Logging” on page 801.

• You might also want to support your language with a custom stemmer and/or a custom
dictionary. To learn more about customization options, see “Stemming and Tokenization
Customization” on page 762.

29.2.5 Creating and Deploying a User-Defined Lexer Plugin

Follow the steps below to create and deploy a lexer UDF in MarkLogic as a native plugin. A
complete example is available in MARKLOGIC_DIR/Samples/NativePlugins.

1. Implement a subclass of the C++ class marklogic::LexerUDF. See
MARKLOGIC_DIR/include/MarkLogic.h for interface details.

2. Implement an extern "C" function called marklogicPlugin to perform plugin registration.
For details, see Registering a Native Plugin at Runtime in the Application Developer’s Guide.

3. Build a dynamically linked library containing your UDF and registrationf unction. You
should use the Makefile in MARKLOGIC_DIR/Samples/NativePlugins as the basis for
building your plugin. For more details, see Building a Native Plugin Library in the Application
Developer’s Guide.

4. Following the directions in Using Native Plugins to package and install your plugin. See the
note below about dependent libraries.

5. Configure your lexer as the lexer plugin for at least one language. For details, see
“Configuring Tokenization and Stemming Plugins” on page 764.

The native plugin interface includes support for bundling dependent libraries in the native plugin
zip file. However, many 3rd party natural language processing tools are large, complex, and have
strict installation directory requirements. If you are using such a packge, you should install the 3rd
party package package independently on each host in the cluster, rather than trying to include it
inside your native plugin package.

29.2.6 Registering a Custom Tokenizer with MarkLogic

A native plugin becomes available for use once you install it, but it will not be loaded until there
is a reason to use it. A plugin containing only a lexer UDF is only loaded if it is associated with at
least one language, and the need to tokenize text in that language arises.

When MarkLogic loads a native plugin, it performs a registration handshake to obtain details
about the plugin such as what UDFs the plugin provides. This handshake is performed through an
extern "C" function named marklogicPlugin that must be part of every native plugin.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 800

MarkLogic Server Custom Tokenization
The following code is an example of a registration function for a plugin that registers only a single
lexer capability. Assume the plugin implements a LexerUDF subclass named MyLexerUDF. The code
registers the lexer with the plugin id “sample_lexer”.

extern "C" PLUGIN_DLL void
marklogicPlugin(Registry& r)
{
 r.version();

r.registerLexer<MyLexerUDF>("sample_lexer");
}

For details, see Registering a Native Plugin at Runtime in the Application Developer’s Guide. For a
complete example, see the code in MARLOGIC_DIR/Samples/NativePlugins.

29.2.7 Testing a User-Defined Lexer

You can test your LexerUDF implementation in the following ways:

• Create standalone test scaffolding.

• Use the cts:tokenize XQuery function or the cts.tokenize Server-Side JavaScript
function to exercise your plugin after it is installed and configured for at least one
language.

Testing your lexer standalone during development is highly recommended. It is much easier to
debug your code in this setup. Also, since it is possible for native plugin code to crash MarkLogic,
it is best to test and stabilize your code outside the server environment.

You can find example test scaffolding in
MARKLOGIC_DIR/Samples/NativePlugins/TestStemTok.cpp. See the main() function for a starting
point.

29.2.8 Error Handling and Logging

Use marklogic::Reporter to log messages and notify MarkLogic Server of fatal errors. Your code
should not report errors to MarkLogic Server by throwing exceptions.

Report non-fatal errors and other messages using marklogic::Reporter::log. This method logs a
message to the MarkLogic Server error log and returns control to your code. Most methods of
LexerUDF accept a marklogic::Reporter input parameter.

Report fatal errors using marklogic::Reporter::error. You should reserve calls to
Reporter::error for serious errors from which no recovery is possible. Reporting an error via
Reporter::error has the following effects:

• If you report a fatal tokenization error during document insertion, the insertion transaction
aborts.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 801

MarkLogic Server Custom Tokenization
• If you report a fatal tokenization error during reindexing, reindexing of the document fails.

• Control does not return to your code. Tokenization stops.

• MarkLogic Server returns XDMP-UDFERR to the application. Your error message is included
in the XDMP-UDFERR error.

The following snippet reports an error and aborts tokenization:

#include "MarkLogic.h"
using namespace marklogic;
...
void ExampleUDF::next(Reporter& r)
{

...
r.log(Reporter::Error, "Bad codepoint.");

}

For more details, see the marklogic::Reporter class in MARKLOGIC_DIR/include/MarkLogic.h.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 802

MarkLogic Server Encodings and Collations
30.0 Encodings and Collations
815

In addition to the language support described in “Language Support in MarkLogic Server” on
page 751, MarkLogic Server also supports many character encodings and has the ability to sort
the content in a variety of collations. This chapter describes the MarkLogic Server support of
encodings and collations, and includes the following sections:

• Character Encoding

• Collations

• Collations and Character Sets By Language

30.1 Character Encoding

MarkLogic Server stores all content in the UTF-8 encoding. If you try to load non-UTF-8 content
into MarkLogic Server without translating it to UTF-8, the server throws an exception. If you
have non-UTF-8 content, then you can specify the encoding for the content during ingestion, and
MarkLogic Server will translate it to UTF-8. If the content cannot be translated, MarkLogic
Server throws an exception indicating that there is non-UTF-8 content.

You can specify an explicit encoding in the following ways:

• If your content is ingested on behalf of an HTTP request, you can specify an encoding in
the HTTP headers, such as setting the charset parameter of the Content-type header.

• Set the encoding option of the functions listed in the following table.

Encoding is determined using the following precedence, from highest to lowest:

• The encoding option of the ingestion function, if set.

• The encoding specified by the HTTP headers, if present.

• Otherwise, assume UTF-8.

XQuery JavaScript

xdmp:document-load xdmp.documentLoad

xdmp:document-get xdmp.documentGet

xdmp:zip-get xdmp.zipGet

xdmp:gunzip xdmp.gunzip

xdmp:xslt-invoke xdmp.xsltInvoke
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 803

MarkLogic Server Encodings and Collations
If you set the encoding option to “auto”, then MarkLogic tries to determine the encoding from the
document content.

If the encoding is UTF-8 and any non-UTF-8 characters are found, an exception is thrown
indicating the content contains non-UTF-8 characters.

MarkLogic Server assumes the character set you specify is actually the character set of the
content. If you specify an encoding that is different from the actual content encoding, the result
can be unpredictable: You might get an exception in some situations, but you might end up with
the wrong characters in other situations.

For details on the syntax of the encoding option, see the MarkLogic XQuery and XSLT Function
Reference.

30.2 Collations

This section describes collations in MarkLogic Server. Collations specify the order in which
strings are sorted and how they are compared. The section includes the following parts:

• Overview of Collations

• Two Common Collation URIs

• Collation URI Syntax

• Backward Compatibility with 3.1 Range Indexes and Lexicons

• UCA Root Collation

• How Collation Defaults are Determined

• Specifying Collations

30.2.1 Overview of Collations

Note: Javascript does not have the concept of a prolog; therefore, there is no way to
declare a default collation in Javascript the way it is done in XQuery.

A collation specifies the order for sorting strings. The collation settings determine the order for
operations where the order is specified (either implicitly or explicitly) and for operations that use
Range Indexes. Examples of operations that specify the order are XQuery statements with an
order by clause, XQuery standard functions that compare order (for example, fn:compare,
fn:substring-after, fn:substring-before, and so on), and lexicon functions (for example,
cts:words, cts:element-word-match, cts:element-values, and so on). Additionally, collations
determine uniqueness in string comparisons, so two strings that are equal according to one
collation might be not be equal according to another.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 804

MarkLogic Server Encodings and Collations
The codepoint-order collation sorts according to the Unicode codepoint order, which does not
take into account any language-specific information. There are other collations that are often used
to specify language-specific sorting differences. For example, a code point sort puts all uppercase
letters before lower-case letters, so the word Zounds sorts before the word abracadabra. If you use
a collation that sorts upper and lower-case letters together (for example, the order A a B b C c,
and so on), then abracadabra sorts before Zounds.

Collations are specified with a URI (for example, http://marklogic.com/collation/). The
collation URIs are specific to MarkLogic Server, but they specify collations according to the
Unicode collation standards. There are many variations to collations, and many sort orders that
are based on preferences and traditions in various languages. The following section describes the
syntax of collation URIs. Although there are a huge number of collation URIs possible, most
applications will use only a small number of collations. For more information about collations,
see http://icu.sourceforge.net/userguide/Collate_Concepts.html.

30.2.2 Two Common Collation URIs

The following are two very common collation URIs used in MarkLogic Server:

• http://marklogic.com/collation/

• http://marklogic.com/collation/codepoint

The first one is the UCA Root Collation (see “UCA Root Collation” on page 809), and is the
system default. The second is the codepoint order collation, and was the default in pre-3.2 releases
of MarkLogic Server.

30.2.3 Collation URI Syntax

Collations in MarkLogic Server are specified by a URI. All collations begin with the string
http://marklogic.com/collation/. The syntax for collations is as follows:

http://marklogic.com/collation/<locale>[/<attribute>]*

This section describes the following parts of the syntax:

• Locale Portion of the Collation URI

• Attribute Portion of the Collation URI

30.2.3.1 Locale Portion of the Collation URI

The <locale> portion of the collation URI must be a valid locale, and is defined as follows:

<locale> ::= <language>[-<script>][_<region>][@(collation=<value>;)+]

For a list of valid language codes, see the following:

http://www.loc.gov/standards/iso639-2/php/code_list.php
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 805

http://icu.sourceforge.net/userguide/Collate_Concepts.html
http://www.loc.gov/standards/iso639-2/php/code_list.php

MarkLogic Server Encodings and Collations
For a list of valid script codes, see the following:

http://www.unicode.org/iso15924/iso15924-codes.html

For a list of valid region codes, see the following:

http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html

Some languages (for example, German and Chinese) have multiple collations you can specify in
the locale. To specify one of these language-specific collation variants, use the
@collation=<value> portion of the syntax.

If you do not specify a locale in the collation URI, the UCA Root Collation is used by default (for
details, see “UCA Root Collation” on page 809).

Note: While you can specify many valid language, script, or region codes, MarkLogic
Server only fully supports those that are relevant to and most commonly used with
the supported languages. For a list of supported languages along with their
common collations, see “Collations and Character Sets By Language” on
page 811.

The following table lists some typical locales, along with a brief description:

Locale Description Collation URI

en English language http://marklogic.com/collation/en

en_US English language
with United States
region

http://marklogic.com/collation/en_US

zh Chinese language http://marklogic.com/collation/zh

de@collation=phonebook German language
with the phonebook
collation

http://marklogic.com/collation/de@collation=phonebook
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 806

http://www.unicode.org/iso15924/iso15924-codes.html
http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html

MarkLogic Server Encodings and Collations
30.2.3.2 Attribute Portion of the Collation URI

There can be zero or more <attribute> portions of the collation URI. Attributes further specify
characteristics such as which collation to use, whether to be case sensitive or case insensitive, and
so on. You only need to specify attributes if they differ from the defaults for the specified locale.
Attributes have the following syntax:

<attribute> ::= <strength> | <case-level> | <case-first> |
<alternate> | <numeric-collation> |
<variable-top> | <normalization-checking> |
<french> | <hiragana>

The following table describes the various attributes. For simplicity, terms like case-sensitive,
diacritic-sensitive, and others are used. In actuality, the definitions of these terms for use in
collations are somewhat more complicated. For the exact technical meaning of each attribute, see
http://icu.sourceforge.net/userguide/Collate_Concepts.html.

Attribute Legal Values Descriptions

<strength>

The level of comparison to
use.

S1 Specifies case and diacritic insensitive.

S2 Specifies diacritic sensitive and case
insensitive.

S3 Specifies case and diacritic sensitive.

S4 Specifies punctuation sensitive.

SI Specifies identity (codepoint differentiated).

<case-level>

Enable or disable the case
sensitive level, skipping the
diacritic sensitive level. So
diacritic insensitive, case
sensitive is /S1/EO

Default: EX

EO Specifies enable case-level.

EX Specifies disable case-level.

<case-first>

Specifies whether uppercase
sorts before or after lowercase.

Default: CX

CU Specifies that uppercase sorts first.

CL Specifies that lowercase sorts first.

CX Off.
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 807

http://icu.sourceforge.net/userguide/Collate_Concepts.html

MarkLogic Server Encodings and Collations
<alternate>

Specifies how to handle
variable characters. (As
completely ignorable or as
normal characters.)

Default: AN

AN Specifies that all characters are
non-ignorable; that is, include all spaces and
punctuation characters when sorting
characters.

AS Specifies that variable characters are shifted
(ignored) according to the variable-top
setting.

<numeric-collation>

Order numbers as numbers
rather than collation order (for
example, 20 < 100).

Default: MX

MO Specifies numeric ordering.

MX Specifies non-numeric ordering (order
according to the collation).

<variable-top>

Used with alternate to
specify which variable
characters are ignorable. Any
character that is
primary-less-than (for details
on this concept, see the
Unicode link in “UCA Root
Collation” on page 809) the
cutoff character will be treated
as ignorable. Only meaningful
in combination with AS.

Default: T0000

T0000 Specifies that all variable characters
(typically whitespace and punctuation) are
ignored for sorting variable characters.

T0020 Specifies that whitespace is ignorable when
sorting characters. For example, /T0020/AS
means that period (a variable character)
would be treated as a regular character but
space would be ignorable. Therefore:

A B = AB and AB < A.B.

T00BB Specifies that most punctuation and space
characters are ignorable when sorting
characters. Specifically, characters whose
sort key is less than or equal to 00BB are
ignorable.

<normalization-checking>

Specifies whether to perform
Unicode normalization on the
input string.

Default: NX

NO Specifies normalize Unicode.

NX Specifies do not normalize Unicode.

Attribute Legal Values Descriptions
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 808

MarkLogic Server Encodings and Collations
30.2.4 Backward Compatibility with 3.1 Range Indexes and Lexicons

Range Indexes and lexicons that were created in MarkLogic Server 3.1 use the Unicode codepoint
collation order. If you want them to use a different collation in any of these indexes and/or
lexicons, you must change the collation and re-create the index, and then reindex the database (if
reindex enable is set to true, it will automatically begin reindexing).

30.2.5 UCA Root Collation

The Unicode collation algorithm (UCA) root collation in MarkLogic Server is used when no
default exists. It uses the Unicode codepoint collation with S3 (case and diacritic sensitive)
strength, and it has the following URI:

http://marklogic.com/collation/

The UCA root collation adds more useful case and diacritic sensitivity to the Unicode codepoint
order, so it will make more sensible sort orders when you take case sensitivity and diacritic
sensitivity into consideration. For more details about the UCA, see
http://www.unicode.org/unicode/reports/tr10/.

30.2.6 How Collation Defaults are Determined

The collation used for requests in MarkLogic Server is based on the settings of various parameters
in the Admin Interface and on what is specified in your XQuery code. Each App Server has a
default collation specified, and that is used in the absence of anything else that overrides it. Note
the following about collations and their defaults.

<french>

Specifies whether to apply the
French accent ordering rule
(that is, to reverse the ordering
at the S3 level).

Default: FX

FO Specifies French accent ordering.

FX Specifies normal ordering (according to the
collation).

<hiragana>

Specifies whether to add an
additional level to distinguish
Hiragana from Katakana.

Default: HX

HO Hiragana mode on.

HX Hiragana mode off.

Attribute Legal Values Descriptions
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 809

http://www.unicode.org/unicode/reports/tr10/

MarkLogic Server Encodings and Collations
• Collations are specified at the App Server level, on Range Indexes, and on lexicons.

• App Servers, Range Indexes, and lexicons upgraded from 3.1 remain in codepoint order
(http://marklogic.com/collation/codepoint).

• New App Servers default to the UCA Root Collation
(http://marklogic.com/collation/).

• New Range Indexes and lexicons default to UCA Root Collation
(http://marklogic.com/collation/).

• You can specify a default collation in an XQuery prolog, which overrides the App Server
default. For example, the following query will use the French collation:

xquery version "1.0-ml";
declare default collation "http://marklogic.com/collation/fr";

for $x in ("côte", "cote", "coté", "côté", "cpte")
order by $x
return $x

• The codepoint collation URI is as follows:

http://marklogic.com/collation/codepoint

The following is an alias to the codepoint collation URI (used with the 1.0 strict XQuery
dialect):

http://www.w3.org/2005/xpath-functions/collation/codepoint

• Collation URIs displayed in the Admin Interface are stored and displayed as the canonical
representation of the URI entered. The canonical representation is equivalent to the URI
entered, but changes the order and simplifies portions of the collation URI string to a
predetermined order. The xdmp:collation-canonical-uri built-in XQuery function
returns the canonical URI of any valid collation URI.

• The empty string URI becomes codepoint collation. Therefore, the following returns as
shown:

xdmp:collation-canonical-uri("")
=> http://marklogic.com/collation/codepoint

• The collation used in an XQuery module is determined on a per-module basis. Therefore,
a module might call another module that uses a different collation, as each module
determines its collation independent of the module that called it (based on the App Server
defaults, collation prolog declaration, and so on).

• When a module is invoked or spawned from another module, or when a request is
submitted via an xdmp:eval call from another module, the new request inherits the
collation context of the calling module. That context can be overridden in the query (for
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 810

MarkLogic Server Encodings and Collations
example, with a declare default collation expression in the prolog), but it will default
to the context from the calling module.

• If no other collations are in effect (for example, for scheduled tasks), the codepoint
collation is used.

30.2.7 Specifying Collations

You can specify collations in many places. Some common places to specify collations are:

• In the order by clause of a FLWOR expression.

• In an App Server configuration in the Admin Interface.

• In a lexicon or Range Index specification in the Admin Interface.

• In many W3C standard XQuery functions (for example, fn:compare, fn:contains,
fn:starts-with, fn:ends-with, fn:substring-after, fn:substring-before,
fn:deep-equals, fn:distinct-values, fn:index-of, fn:max, fn:min).

• In the lexicon APIs (cts:words, cts:word-match, cts:element-words, cts:element-values,
and so on).

• In the range query constructors (cts:element-range-query,
cts:element-attribute-range-query).

30.3 Collations and Character Sets By Language

The following table lists the languages for which MarkLogic Server supports language-specific
tokenization and stemming. It also lists some common collations and character sets for each
language.

Note that some of the listed character set names can be ambiguous. MarkLogic uses the
International Components for Unicode (ICU) library for character encoding and conversion. For
best accuracy, refer to the ICU converter alias mapping at http://demo.icu-project.org/icu-bin/convexp.

Language Base Collations Character Sets

English http://marklogic.com/collation/en case/diacritic sensitive ISO-8859-1
cp1252

http://marklogic.com/collation/en/S1 case/diacritic insensi-
tive

http://marklogic.com/collation/en/S2 diacritic sensitive

http://marklogic.com/collation/en/S1/EO case sensitive
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 811

http://demo.icu-project.org/icu-bin/convexp

MarkLogic Server Encodings and Collations
French http://marklogic.com/collation/fr case/diacritic sensitive ISO-8859-1
cp1252

http://marklogic.com/collation/fr/S1 case/diacritic insensi-
tive

http://marklogic.com/collation/fr/S2 diacritic sensitive

http://marklogic.com/collation/fr/S1/EO case sensitive

Italian http://marklogic.com/collation/it case/diacritic sensitive ISO-8859-1
cp1252

http://marklogic.com/collation/it/S1 case/diacritic insensi-
tive

http://marklogic.com/collation/it/S2 diacritic sensitive

http://marklogic.com/collation/it/S1/EO case sensitive

German http://marklogic.com/collation/de case/diacritic sensitive ISO-8859-1
cp1252

http://marklogic.com/collation/de/S1 case/diacritic insensi-
tive

http://marklogic.com/collation/de/S2 diacritic sensitive

http://marklogic.com/collation/de/S1/EO case sensitive

http://marklogic.com/collation/de@collation=phonebook alternate German col-
lation

Spanish http://marklogic.com/collation/es case/diacritic sensitive ISO-8859-1
cp1252

http://marklogic.com/collation/es/S1 case/diacritic insensi-
tive

http://marklogic.com/collation/es/S2 diacritic sensitive

http://marklogic.com/collation/es/S1/EO case sensitive

http://marklogic.com/collation/es@collation=traditional Treats ll and ch as dis-
tinct characters

Language Base Collations Character Sets
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 812

MarkLogic Server Encodings and Collations
Russian http://marklogic.com/collation/ru case/diacritic sensitive cp1251
KOI8-R
ISO-8859-5http://marklogic.com/collation/ru/S1 case/diacritic insensi-

tive

http://marklogic.com/collation/ru/S2 diacritic sensitive

http://marklogic.com/collation/ru/S1/EO case sensitive

Arabic http://marklogic.com/collation/ar form-variant sensitive cp1256
ISO-8859-6

http://marklogic.com/collation/ar/S1 form-variant insensi-
tive

Chinese
(Simplified
and Tradi-
tional)

http://marklogic.com/collation/zh
(simplified)

case/diacritic sensitive Simplified:

GB18030
GB2312
EUC-CN
hz-gb-2312
cp936

Traditional:

Big5
Big5-HKSCS
cp950
GB18030

http://marklogic.com/collation/zh-Hant
(traditional)

case/diacritic sensitive

http://marklogic.com/collation/zh-Hant@collation=stroke
(traditional with simplified order)

locale-specific variant

http://marklogic.com/collation/zh@collation=pinyan
(simplified with traditional order)

locale-specific variant

Korean http://marklogic.com/collation/ko case/diacritic sensitive ISO 2022-KR
EUC-KR
KS X 1001
cp949
GB12052
KSC 5636

http://marklogic.com/collation/ko/S1 case/diacritic insensi-
tive

Language Base Collations Character Sets
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 813

MarkLogic Server Encodings and Collations
Persian
(Farsi)

http://marklogic.com/collation/fa case/diacritic sensitive cp1256
ISO-8859-6

http://marklogic.com/collation/fa/S1 case/diacritic insensi-
tive

http://marklogic.com/collation/fa/S2 diacritic sensitive

http://marklogic.com/collation/fa/NX disable normalization

Dutch http://marklogic.com/collation/nl case/diacritic sensitive ISO-8859-1
cp1252

http://marklogic.com/collation/nl/S1 case/diacritic insensi-
tive

http://marklogic.com/collation/nl/S2 diacritic sensitive

http://marklogic.com/collation/nl/S1/EO case sensitive

Japanese http://marklogic.com/collation/ja
http://marklogic.com/collation/ja/S1

case/diacritic insensi-
tive

Shift JIS:
cp932
ibm-942
ibm-943

EUC-JP:
EUC-JISX0213
ibm-954

ISO-2022-JP:
ISO-2022-JP-1
ISO-2022-JP-2
ISO-2022-JP-3
ISO-2022-JP-2004

http://marklogic.com/collation/ja/S2 diacritic sensitive

http://marklogic.com/collation/ja/S1/EO case sensitive

http://marklogic.com/collation/ja/S4/HX Hiragana mode off

Portuguese http://marklogic.com/collation/pt case/diacritic sensitive ISO-8859-1
cp1252

http://marklogic.com/collation/pt/S1 case/diacritic insensi-
tive

http://marklogic.com/collation/pt/S2 diacritic sensitive

http://marklogic.com/collation/pt/S1/EO case sensitive

Language Base Collations Character Sets
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 814

MarkLogic Server Encodings and Collations
All of the languages except English require a license key to enable. If you do not have the license
key for one of the supported languages, it is treated as a generic language, and each word is
stemmed to itself and it is tokenized in a generic way (on whitespace and punctuation characters
for non-Asian characters, and on each character for Asian characters). For more information, see
“Generic Language Support” on page 762. The language-specific collations are available to all
languages, regardless of what languages are enabled in the license key.

Norwegian
(Nynorsk
and Bokmål)

http://marklogic.com/collation/nn
(Nynorsk)

case/diacritic sensitive ISO-8859-1
cp1252

http://marklogic.com/collation/nn/S1 case/diacritic
insensitive

http://marklogic.com/collation/nn/S2 diacritic sensitive

http://marklogic.com/collation/nn/S1/EO case sensitive

http://marklogic.com/collation/nb
(Bokmål)

case/diacritic sensitive

http://marklogic.com/collation/nb/S1 case/diacritic
insensitive

http://marklogic.com/collation/nb/S2 diacritic sensitive

http://marklogic.com/collation/nb/S1/EO case sensitive

Swedish http://marklogic.com/collation/sv case/diacritic sensitive ISO-8859-1
cp1252

http://marklogic.com/collation/sv/S1 case/diacritic insensi-
tive

http://marklogic.com/collation/sv/S2 diacritic sensitive

http://marklogic.com/collation/sv/S1/EO case sensitive

Language Base Collations Character Sets
MarkLogic 10—May, 2019 Search Developer’s Guide—Page 815

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 816

31.0 Appendix: Query Options Reference
955

This appendix is a reference guide to the query options used for search and lexicon analysis by the
XQuery Search API and the MarkLogic Client APIs (REST, Java, Node.js). This appendix
contains the following topics:

• How to Use This Reference

• Options Summary

• additional-query

• concurrency-level

• constraint

• debug

• default-suggestion-source

• extract-document-data

• forest

• fragment-scope

• grammar

• operator

• page-length

• quality-weight

• result-decorator

• return-aggregates

• return-constraints

• return-facets

• return-frequencies

• return-metrics

• return-plan

• return-qtext

• return-query

• return-results

• return-similar

• return-values

• search-option

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 817

• searchable-expression

• sort-order

• suggestion-source

• term

• transform-results

• tuples

• values

• Term Options

• Facet Options

• Range Options

• Geospatial Point Query Options

• Geospatial Region Query Options

• Suggestion Options

• Values Options

31.1 How to Use This Reference
This reference describes the layout of the query options structure usable with search and lexicon
query interfaces of the XQuery Search API (search:search, search:values, etc.) and the Client
APIs (REST, Java, Node.js). Both XML and JSON representations are shown, but not all APIs
support both representations; consult the reference for the API you’re using.

Some of the APIs provide builders for constructing query options, so you do not need to know the
syntax. However, this appendix can still be useful with a builder because it provides details on the
meaning, defaults, and limits for specific option components.

The Syntax Summary for each option shows all possible components, but not all are required and
some cannot be used together. Refer to the Component Description section for details on a given
option.

Option components that can be specified as repeating XML elements are usually represented by
array values in JSON. In many cases, you can omit the array wrapper if there is only one element.

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 818

31.2 Options Summary
A single options node or object can contain can contain options useful for document searches,
lexicon and index queries, and/or search term completion suggestions. However, not all options
are used by all operations. For example, the values and tuples options only apply to lexicon
query operations (search:values), default-suggestion-source only applies to search term
completion suggestion operations (search:suggest), and extract-document-data only applies to
document searches (search:search).

A set of query options has the following structure. You can only use the JSON form with selected
Client APIs, such as the REST Client API.

Where anyOption is zero or more of the child components summarized in the following table. For
more details about a given option, see the option-specific topic.

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<options>
 anyOption...
</options>

{"options": {
 anyOption, ...
}

Key Description

additional-query Additional serialized cts:query’s, as XML literals. This option has
array value in JSON and can appear multiple times in XML.

concurrency-level The maximum number of threads used to resolve facets.

constraint Zero or more constraints that limit the scope of a search and/or
define facets which can be returned as part of the search results.
This option has array value in JSON and can appear multiple times
in XML.

debug Whether or not to enable debugging mode. The default is false.

default-suggestion-source Defines the content to be used as the default source of suggestions
(see search:suggest).

extract-document-data Specify element, attribute, or JSON property content from the
search matches to return.

forest One or more forest IDs. This option has array value in JSON and
can appear multiple times in XML.

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 819

fragment-scope Controls the global fragment scope over which to search.

grammar A custom search grammar definition.

operator A list of state elements, each representing a unique run-time con-
figuration option. This option has array value in JSON and can
appear multiple times in XML.

page-length The number of results to return per page. The default value is 10.

quality-weight Specifies a weighting factor to use in the query. The default value
is 1.0.

return-aggregates Include the result of running a builtin or user-defined aggregate
function. Applies only to queries against values or tuples.

return-constraints Include the input constraint definitions in the results. The default is
false.

return-facets Include resolved facets in the results. The default is true.

return-frequencies Include frequencies in the results. The default is true.

return-metrics Include performance statistics in the results. The default is true.

return-plan Include xdmp:plan output in the results. The default is false.

return-qtext Include the original query text in the results. The default is true.

return-query Include the XML query representation in the results. The default is
false.

return-results Include search results in the output. The default is true.

return-similar Include with each search result a list of URLs of similar docu-
ments in the database. The default is false.

return-values When querying a range index or values lexicon, whether or not to
include the index/lexicon values in the results. Default: true.

search-option For advanced users, one or more options to pass to the underlying
query operation. This option has array value in JSON and can
appear multiple times in XML.

searchable-expression An XPath expression to be searched. Whatever expression is spec-
ified is returned from the search.

Key Description

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 820

31.3 additional-query
Use this option to specify one or more additional cts queries to apply when searching documents
and generating suggestions. The queries are AND’d with the input query. The query results are
constrained by the additional-query(s).

Specify each additional query value as the serialized XML representation of a cts:query.

• Syntax Summary

• Component Description

• Examples

• See Also

31.3.1 Syntax Summary
This option has the following structure. Note that you can only use the JSON form with selected
Client APIs, such as the REST Client API.

sort-order Set the default sort order. The first such value is the primary sort
order, the second is secondary sort order, and so on. This option
has array value in JSON and can appear multiple times in XML.

suggestion-source Specify a search term completion suggestion source.

transform-results Specify a function to use to process a search result for the snippet
output.

tuples Define one or more value lexicons query against, matching value
co-occurrences. That is, tuples of values, each of which appear in
the same fragment.

values Define one or more value lexicons to query against.

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<additional-query>
 serialized-cts-query
</additional-query>

"additional-query": [
 "serialized-cts-query"
]

Key Description

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 821

31.3.2 Component Description
The text value that represents each additional query is a serialized cts:query. In XML options, it
is represented as XML. In JSON options, it is a string containing the serialized XML.

If your query options include multiple additional queries, they are AND’d together, as if with
cts:and-query.

31.3.3 Examples
The following example constrains the results to the directory named /my/directory/. Whitespace
and linebreaks are added for readability.

31.3.4 See Also
For more details, see the following topics:

• “Serializations of cts:query Constructors” on page 284

• “Understanding cts:query” on page 248

• The built-in functions in the cts namespace in the XQuery and XSLT Reference Guide

31.4 concurrency-level
The maximum number of threads to use when resolving facets. The default is 8, which specifies
that at most 8 threads will be used concurrently to resolve facets. The value of this option should
be an integer value greater than 0. The default value is 8.

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <additional-query>
 <cts:directory-query xmlns:cts="http://marklogic.com/cts">
 <cts:uri>/my/directory/</cts:uri>
 </cts:directory-query>
 </additional-query>
</options>

JSON {"options": {
 "additional-query":[
 "<directory-query xmlns='http://marklogic.com/cts'>
 <uri>/my/directory/</uri>
 </directory-query>"
]
}}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 822

The following example specifies a concurrency level of 16.

31.5 constraint
This option forms the outer container for a constraint definition. Use constraints to limit the scope
of a search and/or define facets that can be returned as part of the search results. Constraints can
also be applicable when generating search suggestions. No constraints are defined by default.

Each constraint must include a name that is unique among the options in scope for a search. The
constraint name can be used as a term qualifier in a string query; for details, see “Searching Using
String Queries” on page 67. The name can also be used to identify the constraint in some kinds of
structured queries and QBE’s.

This section includes the following high level topics about the constraint option:

• Syntax Summary

• Component Description

• Examples

• See Also

This section also includes detailed descriptions of each of the following constraint types and the
more complex components of range and geospatial constraints, such as bucket, computed-bucket,
and heatmap.

• range

• value

• word

• collection

• container

• element-query

• properties

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <concurrency-level>16</concurrency-level>
</options>

JSON {"options": {
 "concurrency-level": 16
}}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 823

• geo-attr-pair

• geo-elem

• geo-elem-pair

• geo-json-property

• geo-json-property-pair

• geo-path

• geo-region-path

• custom

• path-index

31.5.1 Syntax Summary
This option has the following structure. Each constraint must include a name and exactly one
constraint specification. An options node can define multiple constraints. In JSON, the
constraint array can be empty. Note that you can only use the JSON form with selected Client
APIs, such as the REST Client API.

Where anyConstraintType is one of the following constraint specifications:

• range

• value

• word

• collection

• container

• element-query

• properties

• geo-attr-pair

• geo-elem

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<constraint name="uniqueName">
 <annotation/>
 anyConstraintType
</constraint>

"constraint": [
 {"name": "uniqueName",
 "annotation": string,
 anyConstraintType
 }
]

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 824

• geo-elem-pair

• geo-json-property

• geo-json-property-pair

• geo-path

• custom

31.5.2 Component Description
The components of this option have the following semantics. A constraint can contain the
following child elements or properties.

Element, Attribute
or Property Name

Description

name Required. An identifier for the constraint. The name must be unique
within the in-scope query options and may not contain whitespace.

annotation Your comments. Annotations have no effect on a query.

anyConstraintType A constraint specification. For a list of constraint types, see “Syntax
Summary” on page 823.

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 825

31.5.3 Examples
The following example defines two constraints: a container constraint that limits matches to those
that occur within an XML element named “TITLE”, and a value constraint that limits matches to
the values in an XML element named “COST”. For more examples, refer to the individual
constraint types.

31.5.4 See Also
For more details, see the following topics and the See Also topics for individual constraint types.

• “Constraint Options” on page 382

31.5.5 range
A component of a constraint option that specifies an XML element, XML element attribute, field,
JSON property, or XPath expression on which to constrain by range, as in a range query.

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <constraint name="title">
 <container>
 <element ns="" name="TITLE" />
 </container>
 </constraint>
 <constraint name="cost">
 <value>
 <element ns="" name="COST" />
 </value>
 </constraint>
</options>

JSON {"options": {
 "constraint": [
 { "name": "title",
 "container": {
 "element": {
 "ns": "",
 "name": "TITLE"
 }}},
 { "name": "cost",
 "value": {
 "element": {
 "ns": "",
 "name": "COST"
 }}}
]
}}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 826

There must be a range index of the specified type (and collation for string range indexes) defined
for the specified element, attribute, JSON property, field, or path.

For best performance of range constraints that include bucket or computed-bucket specifications,
define the buckets in a consistent, sorted order (ascending or descending). If the order is not
consistent, then the bucketed results are returned in the order specified, regardless of any sorting
facet-option in the specification.

• Syntax Summary

• Component Description

• Examples

• See Also

31.5.5.1 Syntax Summary
This option has the following structure. The definition must include exactly one of element,
field, json-property, or path-index descriptor. If there is an element, an attribute descriptor
may also be included. Note that you can only use the JSON form with selected Client APIs, such
as the REST Client API.

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<range type="indexedType"
 collation="collURI"
 facet="boolean"
 nullable="boolean">
 <element ns="namespace" name="name"/>
 <attribute ns="namespace" name="name"/>
 <field name="name"/>
 <json-property>name</json-property>
 <path-index/>
 <fragment-scope>scope</fragment-scope>
 <bucket/>
 <computed-bucket/>
 <facet-option>option</facet-option>
 <range-option>option</range-option>
 <weight>double</weight>
</range>

"range": {
 "type": string,
 "collation" : string,
 "facet": boolean,

 "element": {
 "ns": "namespace",
 "name": "name"
 },
 "attribute": {
 "ns": "namespace",
 "name": "name"
 },
 "field": {"name": "name"},
 "json-property": "name",
 "path-index": [path index desc],
 "fragment-scope": "scope",
 "bucket": [bucket descriptor],
 "computed-bucket": [bucket desc],
 "facet-option" : ["option"],
 "range-option": ["option"],
 "nullable" : boolean,
 "weight": double
}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 827

31.5.5.2 Component Description
The components of this option have the following semantics. The definition must include exactly
one of element, json-property, field, or path-index. All other components are optional.

Element, Attribute
or Property Name

Description

type The type of the values in the associated index. The database
configuration must include a range index with this type. Use collation to
further disambiguate range indexes of type xs:string.

collation A collation URI. If this value is present, the database configuration
should include a range index of type xs:string that uses this collation. If
not specified, the default Root Collation is assumed. For details, see
“Collations” on page 804.

facet Whether or not to include facets based on this constraint in the query
results.

nullable Whether or not to allow null values in tuples when making a values
query.

element Defines an XML element to constrain by. If there is an element, there
can also be an attribute. Specify the element local name in name. If the
element is in a namespace, specify the namespace URI in ns.

The database configuration must include a corresponding element or
element attribute range index.

attribute Defines an XML element attribute to constrain by. There must be an
accompanying element descriptor. Specify the attribute local name in
name. If the attribute is in a namespace, specify the namespace URI in ns.

The database configuration must include a corresponding element
attribute range index.

json-property Defines a JSON property to constrain by.

The database configuration must include a corresponding element range
index. (JSON properties are indexed using element range indexes.)

field Defines a field to constrain by.

The database configuration must include a corresponding field range
index.

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 828

path-index Defines a path range index reference to constrain by. For details, see
“path-index” on page 888. In XML, you can specify multiple indexes by
including this component multiple times. In JSON, you can specify
multiple indexes by setting the property value to an array of path index
descriptors.

The database configuration must include a corresponding path range
index.

fragment-scope Set a local fragment scope for this constraint. The local fragment scope
overrides the global fragment scope. For example, a fragment-scope of
properties on a range constraint enables you to facet on a value stored
in a property, even if you are searching over documents. Allowed values:
properties, documents (default).

bucket Zero or more named ranges of static values. For details, see “bucket” on
page 880.

computed-bucket Zero or more named ranges of dynamic values. For details, see
“computed-bucket” on page 884.

facet-option Specify faceting options to apply when generating facets. In XML,
specify multiple options by including the element multiple times. The
element or array item value is of the form option=value. For example:
<facet-option>limit=5</facet-option> in XML, or "facet-option":
["limit=5"] in JSON. For details, see “Facet Options” on page 950.

range-option Specify range options that influence the interpretation of the constraint.
In XML, specify multiple options by including the element multiple
times. The element or array item value is of the form option=value. For
example: <range-option>min-occurs=2</range-option> in XML, or
"range-option": ["min-occurs=2"] in JSON. For details, see “Range
Options” on page 951.

weight Higher weights move search results up in the relevance order. The
default is 1.0. The weight should be less than or equal to 64 and greater
than or equal to -16 (between -16 and 64); weights greater than 64 will
have the same effect as a weight of 64. Weights less than the absolute
value of 0.0625 (between -0.0625 and 0.0625) are rounded to 0, which
means that they do not contribute to the score.

Element, Attribute
or Property Name

Description

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 829

31.5.5.3 Examples
This section contains an example contains one of each type of range constraint and an example
that demonstrates the use of faceting options. For more examples, see “bucket” on page 880 and
“computed-bucket” on page 884.

The following example includes one of each basic type of range constraint: element, element
attribute, JSON property, field, and path index. The database configuration must include a range
index that corresponds to each constraint.

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <constraint name="elem">
 <range type="xs:string">
 <element ns="myNsURI" name="anElemName"/>
 </range>
 </constraint>
 <constraint name="attr">
 <range type="xs:string">
 <element ns="myNsURI" name="anElemName"/>
 <attribute ns="myNsURI" name="anAttrName" />
 </range>
 </constraint>
 <constraint name="json-prop">
 <range type="xs:string">
 <json-property>aPropName</json-property>
 </range>
 </constraint>
 <constraint name="field">
 <range type="xs:string"
 collation="http://marklogic.com/collation/codepoint">
 <field name="aFieldName"/>
 </range>
 </constraint>
 <constraint name="path">
 <range type="xs:gYear" facet="true">
 <path-index xmlns:my="http://example.com">
 /publication/my:meta/my:year
 </path-index>
 </range>
 </constraint>
</options>

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 830

JSON {"options": {
 "constraint": [
 { "name": "elem",
 "range": {
 "type": "xs:string",
 "element": { "ns": "myNsURI", "name": "anElemName" }
 }},
 { "name": "attr",
 "range": {
 "type": "xs:string",
 "element": { "ns": "myNsURI", "name": "anElemName" },
 "attribute": { "ns": "myNsURI", "name": "anAttrName" }
 }},
 { "name": "json-prop",
 "range": {
 "type": "xs:string",
 "json-property": { "name": "aPropName" }
 }},
 { "name": "field",
 "range": {
 "type": "xs:string",
 "collation": "http://marklogic.com/collation/codepoint",
 "field": { "name": "aFieldName" }
 }},
 { "name": "path",
 "range": {
 "type": "xs:gYear",
 "facet": true,
 "path-index": {
 "namespaces": {"my": "http://example.com"},
 "text": "/publication/my:meta/my:year"
 }
 }}
]
}}

Format Example

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 831

The following example defines a constraint that is used to generate facets. The facet-option
values are passed to the underlying lexicon calls.

31.5.5.4 See Also
For more details on using this option, see the following topics:

• “Constrained Searches and Faceted Navigation” on page 34

• “Constraint Options” on page 382

• “Using Relational Operators on Constraints” on page 72

• “Support for Multiple Query Types” on page 26

31.5.6 value
A component of a constraint option that specifies a XML element, XML attribute, JSON property,
or field on which to constrain, as in a value query. For JSON property constraints, you can
optionally specify a node using value/@type. If present, type must be one of string (default),
number, boolean, or null. You cannot create facets from a value constraint.

• Syntax Summary

• Component Description

• Examples

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <constraint name="color">
 <range type="xs:string" facet="true">
 <element ns="myNsURI" name="bodycolor"/>
 <facet-option>frequency-order</facet-option>
 <facet-option>descending</facet-option>
 </range>
 </constraint>
 <constraint name="owner">
</options>

JSON {"options": {
 "constraint": [
 { "name": "color",
 "range": {
 "type": "xs:string",
 "facet": true,
 "element": { "ns": "myNsURI", "name": "bodycolor" },
 "facet-option": ["frequence-order", "descending"]
 }}]
}}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 832

• See Also

31.5.6.1 Syntax Summary
A value constraint definition has the following structure. Note that you can only use the JSON
form with selected Client APIs, such as the REST Client API.

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<value type="jsonNodeType">
 <element ns="namespace" name="name"/>
 <attribute ns="namespace" name="name"/>
 <field name="fieldName"/>
 <json-property>name</json-property>
 <fragment-scope>scope</fragment-scope>
 <weight>double</weight>
 <term-option>option</term-option>
</value>

"value": {
 "type": "jsonNodeType"
 "element": {
 "ns": "namespace",
 "name": "name"
 },
 "attribute": {
 "ns": "namespace",
 "name": "name"
 },
 "json-property": "name",
 "field": {"name": "fieldName"},
 "weight": double,
 "fragment-scope": "scope",
 "term-option": ["option"]
}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 833

31.5.6.2 Component Description
The components of this option have the following semantics. The definition must include exactly
one of element, json-property, or field. If there is an element, there can also be an attribute.

Element, Attribute
or Property Name

Description

type A JSON node type, one of string (default), boolean, null, number. Only
meaningful for JSON content. Use type to constrain the matches to
values in this node type. Non-JSON documents never contain nodes of
these types. Optional.

element Defines an XML element on which to constrain queries If there is an
element, there can also be an attribute. Specify the element local name
in name. If the element is in a namespace, specify the namespace URI in
ns.

attribute Defines an XML element attribute on which to constrain queries. There
must be an accompanying element descriptor. Specify the attribute local
name in name. If the attribute is in a namespace, specify the namespace
URI in ns.

json-property Defines a JSON property on which to constrain queries.

field Defines a field on which to constrain queries.

weight Higher weights move search results up in the relevance order. The
default is 1.0. The weight should be less than or equal to 64 and greater
than or equal to -16 (between -16 and 64); weights greater than 64 will
have the same effect as a weight of 64. Weights less than the absolute
value of 0.0625 (between -0.0625 and 0.0625) are rounded to 0, which
means that they do not contribute to the score.

fragment-scope Set a local fragment scope for this constraint. The local fragment scope
overrides the global fragment scope. For example, a fragment-scope of
properties on a range constraint enables you to facet on a value stored
in a property, even if you are searching over documents. Allowed values:
properties, documents (default).

term-option Specify options to apply when generating facets. In XML, specify
multiple options by including the element multiple times. If the option
has a value, the element or array item value is of the form option=value.
For example: <term-option>lang=en</term-option> in XML, or
"term-option": ["lang=en"] in JSON. “Term Options” on page 950.

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 834

31.5.6.3 Examples
The following example includes a value constraint of each type: element, element attribute, JSON
property, and field.

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <constraint name="my-elem-value">
 <value>
 <element ns="my-namespace" name="my-localname"/>
 </value>
 </constraint>
 <constraint name="my-attr-value">
 <value>
 <attribute ns="" name="my-attribute"/>
 <element ns="my-namespace" name="my-localname"/>
 </value>
 </constraint>
 <constraint name="my-json-value">
 <value type="number">
 <json-property>myNumericPropName</json-property>
 </value>
 </constraint>
 <constraint name="my-field-value">
 <value>
 <field name="fieldvalue"/>
 <weight>2.0</weight>
 </value>
 </constraint>
</options>

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 835

31.5.6.4 See Also
For more details on using this option, see the following topics:

• “Constraint Options” on page 382

• “Value Constraint Example” on page 389

• “Support for Multiple Query Types” on page 26

31.5.7 word
A component of a constraint option that specifies the XML element, XML element attribute, JSON
property, or field on which to constrain by word. You cannot create facets from a word constraint.

• Syntax Summary

• Component Description

• Examples

• See Also

JSON {"options": {
 "constraint": [
 { "name": "my-elem-value",
 "value": {
 "element": {"ns": "my-namespace","name": "my-localname"}
 }},
 { "name": "my-attr-value",
 "value": {
 "element": {"ns": "my-namespace","name": "my-localname"},
 "attribute": {"ns": "","name": "my-attribute"}
 }},
 { "name": "my-json-value",
 "value": {
 "type": "number",
 "json-property": "myNumericPropName"
 }},
 { "name": "my-field-value",
 "value": {
 "field": {"name": "fieldName"},
 "weight": 2.0
 }}
]
}}

Format Example

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 836

31.5.7.1 Syntax Summary
This option has the following structure. Note that you can only use the JSON form with selected
Client APIs, such as the REST Client API.

31.5.7.2 Component Description
The child components of this option have the following semantics:

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<word>
 <element ns="namespace" name="name"/>
 <attribute ns="namespace" name="name"/>
 <field name="name"/>
 <json-property>name</json-property>
 <fragment-scope>scope</fragment-scope>
 <weight>double</weight>
 <term-option>option</term-option>
</word>

"word": {
 "element": {
 "ns": "namespace",
 "name": "name"
 },
 "attribute": {
 "ns": "namespace",
 "name": "name"
 },
 "json-property": "name",
 "field": {"name": "name"},
 "weight": double,
 "fragment-scope": "scope",
 "term-option": ["option"]
}

Element, Attribute
or Property Name

Description

element Defines an XML element on which to constrain queries If there is an
element, there can also be an attribute. Specify the element local name
in name. If the element is in a namespace, specify the namespace URI in
ns.

attribute Defines an XML element attribute on which to constrain queries. There
must be an accompanying element descriptor. Specify the attribute local
name in name. If the attribute is in a namespace, specify the namespace
URI in ns.

json-property Defines a JSON property on which to constrain queries.

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 837

field Defines a field on which to constrain queries.

weight Higher weights move search results up in the relevance order. The
default is 1.0. The weight should be less than or equal to 64 and greater
than or equal to -16 (between -16 and 64); weights greater than 64 will
have the same effect as a weight of 64. Weights less than the absolute
value of 0.0625 (between -0.0625 and 0.0625) are rounded to 0, which
means that they do not contribute to the score.

fragment-scope Set a local fragment scope for this constraint. The local fragment scope
overrides the global fragment scope. For example, a fragment-scope of
properties on a range constraint enables you to facet on a value stored
in a property, even if you are searching over documents. Allowed values:
properties, documents (default).

term-option Specify options to apply when generating facets. In XML, specify
multiple options by including the element multiple times. If the option
has a value, the element or array item value is of the form option=value.
For example: <term-option>lang=en</term-option> in XML, or
"term-option": ["lang=en"] in JSON. For details, see “Term Options”
on page 950.

Element, Attribute
or Property Name

Description

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 838

31.5.7.3 Examples
The following example includes a word constraint of each possible type (element, element
attribute, JSON property, and field). The JSON property constraint demonstrates the use of term
options. The field constraint demonstrates the use of a custom weight.

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <constraint name="my-elem-value">
 <word>
 <element ns="my-namespace" name="my-localname"/>
 </word>
 </constraint>
 <constraint name="my-attr-value">
 <word>
 <attribute ns="" name="my-attribute"/>
 <element ns="my-namespace" name="my-localname"/>
 </word>
 </constraint>
 <constraint name="my-json-value">
 <word>
 <json-property>myPropName</json-property>
 <term-option>case-sensitive</term-option>
 <term-option>unstemmed</term-option>
 </word>
 </constraint>
 <constraint name="my-field-value">
 <word>
 <field name="fieldvalue"/>
 <weight>2.0</weight>
 </word>
 </constraint>
</options>

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 839

31.5.7.4 See Also
For more details on using this option, see the following topics:

• “Constraint Options” on page 382

• “Word Constraint Examples” on page 389

• “Support for Multiple Query Types” on page 26

31.5.8 collection
A component of a constraint option that constrains results by collection, matching either
documents in the specified collections or in collections with the specified collection URI prefix.

• Syntax Summary

• Component Description

• Examples

• See Also

JSON {"options": {
 "constraint": [
 { "name": "my-elem-value",
 "word": {
 "element": {"ns": "my-namespace","name": "my-localname"}
 }},
 { "name": "my-attr-value",
 "word": {
 "element": {"ns": "my-namespace","name": "my-localname"},
 "attribute": {"ns": "","name": "my-attribute"}
 }},
 { "name": "my-json-value",
 "word": {
 "json-property": "myPropName",
 "term-option": ["case-sensitive", "unstemmed"]
 }},
 { "name": "my-field-value",
 "value": {
 "field": {"name": "fieldName"},
 "weight": 2.0
 }}
]
}}

Format Example

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 840

31.5.8.1 Syntax Summary
This option has the following structure. Note that you can only use the JSON form with selected
Client APIs, such as the REST Client API.

31.5.8.2 Component Description
The components of this option have the following semantics:

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<collection prefix="URIpfx" facet="boolean">
 <facet-option>option</facet-option>
</collection>

"collection": {
 "prefix": "URIprefix",
 "facet-option": ["option"],
 "facet": boolean
}

Element, Attribute
or Property Name

Description

prefix Constrain matches to collections with collection URIs matching this pre-
fix. Use this component to as shorthand when constraining by collec-
tions with a shared URI prefix. For details, see “Examples” on page 841.

facet Whether or not to generate facets from this constraint. Default: true.

facet-option Specify options to apply when generating facets. In XML, specify
multiple options by including the element multiple times. The element or
array item value is of the form option=value. For example:
<facet-option>limit=5</facet-option> in XML, or "facet-option":
["limit=5"] in JSON. “Facet Options” on page 950.

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 841

31.5.8.3 Examples
The following example defines a constraint that limits results to matches in documents in
collections with the URI prefix “/my/collection/”. The constraint also indicates facets should be
generated using the collection (facet is true). The facet option limit specifies that at most 5
results are returned.

For example, if your database includes documents in the collections “/my/collection/animals” and
“/my/collections/edibles”, then the following string query text matches documents containing the
term “aardvark” that are also in the collection “/my/collection/animals”.

mycoll:animals AND aardvark

Omit the prefix to constrain on complete collection URIs. For example, if you omit prefix from
the above constraint definition, then you would find the same documents with the following query
text:

mycoll:/my/collection/animals AND aardvark

31.5.8.4 See Also
For more details on using this option, see the following topics:

• “Collection Constraint Example” on page 390

• “Collections” on page 693

• “Constraint Options” on page 382

• cts:collection-query

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <constraint name="mycoll" facet="true">
 <collection prefix="/my/collection/"/>
 <facet-option>limit=5</facet-option>
 </collection>
 </constraint>
</options>

JSON {"options": {
 "constraint": [
 { "name": "mycoll",
 "collection": {
 "prefix": "/my/collection/",
 "facet": true,
 "facet-option": ["limit=5"]
 }}
]
}}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 842

31.5.9 container
A component of a constraint option that specifies a constraint that restricts a search to a specified
XML element or JSON property container. You cannot create facets from a container constraint.

• Syntax Summary

• Component Description

• Examples

• See Also

31.5.9.1 Syntax Summary
This option has the following structure. Note that you can only use the JSON form with selected
Client APIs, such as the REST Client API.

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<container>
 <element ns="namespace" name="name"/>
 <json-property>name</json-property>
 <fragment-scope>scope</fragment-scope>
</container>

"container": {
 "element": {
 "ns": "namespace",
 "name": "name"
 },
 "json-property": "name",
 "fragment-scope": "scope"
}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 843

31.5.9.2 Component Description
The components of this option have the following semantics. The constraint must include exactly
one of element or json-property.

Element, Attribute
or Property Name

Description

element Defines an XML element on which to constrain queries. Specify the
element local name in name. If the element is in a namespace, specify the
namespace URI in ns.

json-property Defines a JSON property on which to constrain queries.

fragment-scope Set a local fragment scope for this constraint to further constrain where
matches occur. The local fragment scope overrides the global fragment
scope. For example, a fragment-scope of properties on a range
constraint enables you to facet on a value stored in a property, even if
you are searching over documents. Allowed values: properties,
documents (default).

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 844

31.5.9.3 Examples
The following example includes two container constraints, one on an XML element and one on a
JSON property.

31.5.9.4 See Also
For more details on using this option, see the following topics:

• “Constraint Options” on page 382

• “Support for Multiple Query Types” on page 26

31.5.10 element-query
A component of a constraint option that specifies a constraint that restricts the search to the
specified element. You cannot create facets from an element-query constraint.

Note: This option is deprecated. Use container instead.

• Syntax Summary

• Component Description

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <constraint name="ele-container-constraint">
 <container>
 <element name="title" ns="http://my/namespace" />
 </container>
 </constraint>
 <constraint name="json-container-constraint">
 <container>
 <json-property>author</json-property>
 </container>
 </constraint>
</options>

JSON {"options": {
 "constraint": [
 { "name": "ele-container-constraint",
 "container": {
 "element": {"ns": "http://my/namespace","name": "title"}
 }},
 { "name": "json-container-constraint",
 "container": {
 "json-property": "author",
 }}
]
}}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 845

• Examples

31.5.10.1Syntax Summary
This option has the following structure. Note that you can only use the JSON form with selected
Client APIs, such as the REST Client API.

31.5.10.2Component Description
The components of this option have the following semantics:

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<element-query ns="namespace" name="name"/>
 <fragment-scope>scope</fragment-scope>
</element-query>

"element-query": {
 "ns": "namespace",
 "name": "name",
 "fragment-scope": "scope"
}

Element, Attribute
or Property Name

Description

ns The namespace of the element, if it is in a namespace.

name Required. The local name of the element.

fragment-scope Set a local fragment scope for this constraint to further constrain where
matches occur. The local fragment scope overrides the global fragment
scope. For example, a fragment-scope of properties on a range
constraint enables you to facet on a value stored in a property, even if
you are searching over documents. Allowed values: properties,
documents (default).

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 846

31.5.10.3Examples
The following example demonstrates an element-query constraint on the element “title” in the
namespace http://my/namespace. This option is deprecated; use container instead.

31.5.11 properties
A component of a constraint option that limits matches to those found in document properties. To
constrain by JSON property, see “container” on page 842.

• Syntax Summary

• Examples

• See Also

31.5.11.1Syntax Summary
This option has the following structure. Note that you can only use the JSON form with selected
Client APIs, such as the REST Client API.

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <constraint name="elem-constraint">
 <element-query name="title" ns="http://my/namespace" />
 </constraint>
</options>

JSON {"options": {
 "constraint": [
 { "name": "elem-constraint",
 "element-query": {
 "ns": "http://my/namespace",
 "name": "title"
 }}
]
}}

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<properties/>

{ "properties": null }

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 847

31.5.11.2Examples
The following example limits matches to those found in document properties.

31.5.11.3See Also
For more details on using this option, see the following topics:

• “Constraint Options” on page 382

• “Support for Multiple Query Types” on page 26

• cts:properties-fragment-query

31.5.12 geo-attr-pair
A component of a constraint option that models a geospatial index with coordinates stored as XML
element attributes. That is, geospatial data of the following form:

<parent lat="value" lon="value">

For similar JSON data, use geo-json-property-pair.

• Syntax Summary

• Component Description

• Examples

• See Also

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <constraint name="prop-constraint">
 <properties />
 </constraint>
</options>

JSON {"options": {
 "constraint": [{
 "name": "prop-constraint",
 "properties": null" }
 }]
}}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 848

31.5.12.1Syntax Summary
This option has the following structure. Note that you can only use the JSON form with selected
Client APIs, such as the REST Client API.

31.5.12.2Component Description
By default coordinates are stored as (latitude,longitude) points. To reverse the coordinate order,
add the geo-option "long-lat-point" to the query options configuration. For more details, see
cts:element-attribute-pair-geospatial-query.

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<geo-attr-pair>
 <parent ns="namespace" name="elemName" />
 <lat ns="namespace" name="attrName" />
 <lon ns="namespace" name="attrName" />
 <facet-option>option</facet-option>
 <heatmap>heatmap descriptor</heatmap>
 <fragment-scope>scope</fragment-scope>
 <geo-option>option</geo-option>
 <weight>double</weight>
</geo-attr-pair>

"geo-attr-pair": {
 "parent": [{
 "ns": "namespace",
 "name": "elemName",
 }],
 "lat": [{
 "ns": "namespace",
 "name": "attrName",
 }],
 "lon": [{
 "ns": "namespace",
 "name": "attrName",
 }],
 "facet-option": [option],
 "heatmap": {heatmap desc},
 "geo-option": [option],
 "fragment-scope": "scope",
 "weight": double
}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 849

The components of this option have the following semantics:

Element, Attribute
or Property Name

Description

parent Required. Identifies an element that can contain the latitude and
longitude attributes. Use ns and name to define the namespace (if any)
and local name of the element, respectively.

If multiple parents are defined, the query matches if any one of them
matches. This component can have array value in JSON.

lat Required. Identifies the attribute of parent that contains the latitude
value. Use ns and name to define the namespace (if any) and local name
of the element, respectively.

If multiple elements are defined, the query matches if any one of them
matches. However, only the first matching latitude attribute in any point
instance is checked. This component can have array value in JSON.

lon Required. Identifies the attribute of parent that contains the longitude
value. Use ns and name to define the namespace (if any) and local name
of the element, respectively.

If multiple elements are defined, the query matches if any one of them
matches. However, only the first matching longitude attribute in any
point instance is checked. This component can have array value in
JSON.

heatmap A model of a two-dimensional grid, used to categorize data along two
dimensions for geospatial faceting. For details, see “heatmap” on
page 877.

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 850

facet-option Specify options to apply when generating facets. You can only include
facet options when there is a heatmap. In XML, specify multiple options
by including the element multiple times. The element or array item value
is of the form option=value. For example:
<facet-option>limit=5</facet-option> in XML, or "facet-option":
["limit=5"] in JSON. For details, see “Facet Options” on page 950.

geo-option Specify options that customize the constraint, such as whether or not to
include boundaries. In XML, specify multiple options by including the
element multiple times. The element or array item value is of the form
option=value. For example:
<geo-option>score-function=linear</geo-option> in XML, or
"geo-option": ["score-function=linear"] in JSON. For details, see
“Geospatial Point Query Options” on page 952.

fragment-scope Set a local fragment scope for this constraint to further constrain where
matches occur. The local fragment scope overrides the global fragment
scope. For example, a fragment-scope of properties on a range
constraint enables you to facet on a value stored in a property, even if
you are searching over documents. Allowed values: properties,
documents (default).

weight Higher weights move search results up in the relevance order. The
default is 1.0. The weight should be less than or equal to 64 and greater
than or equal to -16 (between -16 and 64); weights greater than 64 will
have the same effect as a weight of 64. Weights less than the absolute
value of 0.0625 (between -0.0625 and 0.0625) are rounded to 0, which
means that they do not contribute to the score.

Element, Attribute
or Property Name

Description

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 851

31.5.12.3Examples
The following example defines a geospatial element attribute pair constraint named
“my-geo-attr-pair”. Facets will be generated for the constraint, using the region defined in the
heatmap.

31.5.12.4See Also
For more details on using this option, see the following topics:

• cts:element-attribute-pair-geospatial-query

• “Constraint Options” on page 382

• “Geospatial Search Applications” on page 476

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <constraint name="my-geo-attr-pair">
 <geo-attr-pair>
 <parent ns="ns1" name="my-elem"/>
 <lat ns="ns2" name="attr1"/>
 <lon ns="ns2" name="attr2"/>
 <facet-option>empties</facet-option>
 <heatmap s="23.2" w="-118.3" n="23.3" e="-118.2"
 latdivs="4" londivs="4"/>
 </geo-attr-pair>
 </constraint>
</options>

JSON {"options":{
 "constraint": [{
 "name": "my-geo-attr-pair",
 "geo-attr-pair": {
 "parent": { "ns": "ns1", "name": "my-elem" },
 "lat": { "ns": "ns2", "name": "attr1" },
 "lon": { "ns": "ns3", "name": "attr2" },
 "facet-option": ["empties"],
 "heatmap": {
 "s": 23.2, "w": -118.3, "n": 23.3, "e": -118.2,
 "latdivs": 4, "londivs": 4
 }
 }
 }]
}}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 852

31.5.13 geo-elem
A component of a constraint option that models a geospatial index with coordinates stored in a
single XML element. That is, geospatial data with the following structure. The specification of a
parent element is optional.

<parent>
 <elem>lat-lon-values</elem>
</parent>

For similar JSON data, use geo-json-property.

• Syntax Summary

• Component Description

• Examples

• See Also

31.5.13.1Syntax Summary
This option has the following structure. Note that you can only use the JSON form with selected
Client APIs, such as the REST Client API.

31.5.13.2Component Description
By default coordinates are stored as (latitude,longitude) points. To reverse the coordinate order,
add the geo-option "long-lat-point" to the query options configuration. For more details, see
cts:element-geospatial-query.

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<geo-elem>
 <parent ns="namespace" name="elemName" />
 <element ns="namespace" name="elemName" />
 <facet-option>option</facet-option>
 <heatmap>heatmap descriptor</heatmap>
 <fragment-scope>scope</fragment-scope>
 <geo-option>option</geo-option>
 <weight>double</weight>
</geo-elem>

"geo-attr-pair": {
 "parent": [{
 "ns": "namespace",
 "name": "elemName",
 }],
 "element": [{
 "ns": "namespace",
 "name": "elemName",
 }],
 "facet-option": [option],
 "heatmap": {heatmap desc},
 "geo-option": [option],
 "fragment-scope": "scope",
 "weight": double
}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 853

The components of this option have the following semantics:

Element, Attribute
or Property Name

Description

parent Optional. Identifies an element that can contain the latitude and
longitude elements. Use ns and name to define the namespace (if any)
and local name of the element, respectively.

If multiple parents are defined, the query matches if any one of them
matches. This component can have an array value in JSON, but need not
if there is only one item.

element Required. Identifies the element containing the latitude and longitude
values. Use ns and name to define the namespace (if any) and local name
of the element, respectively.

If multiple elements are defined, the query matches if any one of them
matches. This component can have an array value in JSON, but need not
if there is only one item.

heatmap A model of a two-dimensional grid, used to categorize data along two
dimensions for geospatial faceting. For details, see “heatmap” on
page 877.

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 854

facet-option Specify options to apply when generating facets. You can only include
facet options when there is a heatmap. In XML, specify multiple options
by including the element multiple times. The element or array item value
is of the form option=value. For example:
<facet-option>limit=5</facet-option> in XML, or "facet-option":
["limit=5"] in JSON. For details, see “Facet Options” on page 950.

geo-option Specify options that customize the constraint, such as whether or not to
include boundaries. In XML, specify multiple options by including the
element multiple times. The element or array item value is of the form
option=value. For example:
<geo-option>score-function=linear</geo-option> in XML, or
"geo-option": ["score-function=linear"] in JSON. For details, see
“Geospatial Point Query Options” on page 952.

fragment-scope Set a local fragment scope for this constraint to further constrain where
matches occur. The local fragment scope overrides the global fragment
scope. For example, a fragment-scope of properties on a range
constraint enables you to facet on a value stored in a property, even if
you are searching over documents. Allowed values: properties,
documents (default).

weight Higher weights move search results up in the relevance order. The
default is 1.0. The weight should be less than or equal to 64 and greater
than or equal to -16 (between -16 and 64); weights greater than 64 will
have the same effect as a weight of 64. Weights less than the absolute
value of 0.0625 (between -0.0625 and 0.0625) are rounded to 0, which
means that they do not contribute to the score.

Element, Attribute
or Property Name

Description

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 855

31.5.13.3Examples
The following example defines two geo-elem constraints, one without a parent element
specification and one with a parent element specification.

31.5.13.4See Also
For more details on using this option, see the following topics:

• cts:element-child-geospatial-query

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <constraint name="my-geo-elem">
 <geo-elem>
 <element ns="ns1" name="my-elem"/>
 <geo-option>type=long-lat-point</geo-option>
 </geo-elem>
 </constraint>
 <constraint name="my-geo-elem-child">
 <geo-elem>
 <parent ns="ns1" name="the-parent"/>
 <element ns="ns1" name="the-child"/>
 <facet-option>empties</facet-option>
 <heatmap s="23.2" w="-118.3" n="23.3" e="-118.2"
 latdivs="4" londivs="4"/>
 </geo-elem>
 </constraint>
</options>

JSON {"options":{
 "constraint": [
 { "name": "my-geo-elem",
 "geo-elem": {
 "element": { "ns": "ns1", "name": "my-elem" },
 "geo-option": ["type=long-lat-point"]
 }},
 { "name": "my-geo-elem-child",
 "geo-elem": {
 "parent": { "ns": "ns1", "name": "the-parent" },
 "element": { "ns": "ns1", "name": "the-child" },
 "facet-option": ["empties"],
 "heatmap": {
 "s": 23.2, "w": -118.3, "n": 23.3, "e": -118.2,
 "latdivs": 4, "londivs": 4
 }
 }}
]
}}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 856

• cts:element-geospatial-query

• “Geospatial Search Applications” on page 476

31.5.14 geo-elem-pair
A component of a constraint option that models a geospatial index with coordinates stored in 2
XML elements that are children of the same parent element. That is, geospatial data of the
following form:

<parent>
 <lat>latitudeValue</lat>
 <lon>longitudeValue</lon>
</parent>

For similar JSON data, use geo-json-property-pair.

• Syntax Summary

• Component Description

• Examples

• See Also

31.5.14.1Syntax Summary
This option has the following structure. Note that you can only use the JSON form with selected
Client APIs, such as the REST Client API.

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<geo-elem-pair>
 <parent ns="namespace" name="elemName" />
 <lat ns="namespace" name="attrName" />
 <lon ns="namespace" name="attrName" />
 <facet-option>option</facet-option>
 <heatmap>heatmap descriptor</heatmap>
 <fragment-scope>scope</fragment-scope>
 <geo-option>option</geo-option>
 <weight>double</weight>
</geo-elem-pair>

"geo-elem-pair": {
 "parent": [{
 "ns": "namespace",
 "name": "elemName",
 }],
 "lat": [{
 "ns": "namespace",
 "name": "attrName",
 }],
 "lon": [{
 "ns": "namespace",
 "name": "attrName",
 }],
 "facet-option": [option],
 "heatmap": {heatmap desc},
 "geo-option": [option],
 "fragment-scope": "scope",
 "weight": double
}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 857

31.5.14.2Component Description
By default coordinates are stored as (latitude,longitude) points. To reverse the coordinate order,
add the geo-option "long-lat-points" to the query options configuration. For more details, see
cts:element-pair-geospatial-query.

The components of this option have the following semantics:

Element, Attribute
or Property Name

Description

parent Required. Identifies an element that can contain the latitude and
longitude elements. Use ns and name to define the namespace (if any)
and local name of the element, respectively.

If multiple parents are defined, the query matches if any one of them
matches. This component can have an array value in JSON, but need not
if there is only one item.

lat Required. Identifies the element containing the latitude value. Use ns
and name to define the namespace (if any) and local name of the element,
respectively.

If multiple elements are defined, the query matches if any one of them
matches. However, only the first matching child in any point instance is
checked. This component can have an array value in JSON, but need not
if there is only one item.

lon Required. Identifies the element containing the longitude value. Use ns
and name to define the namespace (if any) and local name of the element,
respectively.

If multiple elements are defined, the query matches if any one of them
matches. However, only the first matching child in any point instance is
checked. This component can have an array value in JSON, but need not
if there is only one item.

heatmap A model of a two-dimensional grid, used to categorize data along two
dimensions for geospatial faceting. For details, see “heatmap” on
page 877.

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 858

facet-option Specify options to apply when generating facets. You can only include
facet options when there is a heatmap. In XML, specify multiple options
by including the element multiple times. The element or array item value
is of the form option=value. For example:
<facet-option>limit=5</facet-option> in XML, or "facet-option":
["limit=5"] in JSON. For details, see “Facet Options” on page 950.

geo-option Specify options that customize the constraint, such as whether or not to
include boundaries. In XML, specify multiple options by including the
element multiple times. The element or array item value is of the form
option=value. For example: <geo-option>score-function=lin-
ear</geo-option> in XML, or "geo-option": ["score-function=lin-
ear"] in JSON. For details, see “Geospatial Point Query Options” on
page 952.

fragment-scope Set a local fragment scope for this constraint to further constrain where
matches occur. The local fragment scope overrides the global fragment
scope. For example, a fragment-scope of properties on a range
constraint enables you to facet on a value stored in a property, even if
you are searching over documents. Allowed values: properties,
documents (default).

weight Higher weights move search results up in the relevance order. The
default is 1.0. The weight should be less than or equal to 64 and greater
than or equal to -16 (between -16 and 64); weights greater than 64 will
have the same effect as a weight of 64. Weights less than the absolute
value of 0.0625 (between -0.0625 and 0.0625) are rounded to 0, which
means that they do not contribute to the score.

Element, Attribute
or Property Name

Description

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 859

31.5.14.3Examples
The following example defines a geospatial element pair constraint named “my-geo-elem-pair”.

31.5.14.4See Also
For more details on using this option, see the following topics:

• “Geospatial Search Applications” on page 476

• cts:element-pair-geospatial-query

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <constraint name="my-geo-elem-pair">
 <geo-elem-pair>
 <parent ns="ns1" name="the-parent"/>
 <lat ns="ns2" name="child1"/>
 <lon ns="ns3" name="child2"/>
 <geo-option>boundaries-excluded</geo-option>
 <facet-option>empties</facet-option>
 <heatmap s="23.2" w="-118.3" n="23.3" e="-118.2"
 latdivs="4" londivs="4"/>
 </geo-elem-pair>
 </constraint>
</options>

JSON {"options":{
 "constraint": [{
 "name": "my-geo-elem-pair",
 "geo-elem": {
 "parent": { "ns": "ns1", "name": "the-parent" },
 "lat": { "ns": "ns2", "name": "child1" },
 "lon": { "ns": "ns3", "name": "child2" },
 "geo-option": ["boundaries-excluded"],
 "facet-option": ["empties"],
 "heatmap": {
 "s": 23.2, "w": -118.3, "n": 23.3, "e": -118.2,
 "latdivs": 4, "londivs": 4
 }
 }
 }]
}}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 860

31.5.15 geo-json-property
A component of a constraint option that models a geospatial index with coordinates stored in a
single JSON property. That is, geospatial data with the either of the following structures:

"parentProperty": { "property": lat-lon-values }

"property": lat-lon-values

This topic has the following sections:

• Syntax Summary

• Component Description

• Examples

• See Also

31.5.15.1Syntax Summary
This option has the following structure. Note that you can only use the JSON form with selected
Client APIs, such as the REST Client API.

31.5.15.2Component Description
By default coordinates are stored as (latitude,longitude) points. To reverse the coordinate order,
add the geo-option "long-lat-points" to the query options configuration. For more details, see
cts:json-property-geospatial-query.

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<geo-json-property>
 <parent-property>name</parent-property>
 <json-property>name</json-property>
 <facet-option>option</facet-option>
 <heatmap>heatmap descriptor</heatmap>
 <fragment-scope>scope</fragment-scope>
 <geo-option>option</geo-option>
 <weight>double</weight>
</geo-json-property>

"geo-json-property": {
 "parent-property": ["name"],
 "json-property": ["name"],
 "facet-option": [option],
 "heatmap": {heatmap desc},
 "geo-option": [option],
 "fragment-scope": "scope",
 "weight": double
}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 861

The components of this option have the following semantics:

Element, Attribute
or Property Name

Description

parent-property Optional. Identifies the parent JSON property that can contain the
latitude and longitude property.

If multiple parents are defined, the query matches if any one of them
matches. This component can have an array value in JSON, but need not
if there is only one item.

json-property Required. Identifies the JSON property containing the latitude and
longitude values.

If multiple properties are defined, the query matches if any one of them
matches. This component can have an array value in JSON, but need not
if there is only one item.

heatmap A model of a two-dimensional grid, used to categorize data along two
dimensions for geospatial faceting. For details, see “heatmap” on
page 877.

facet-option Specify options to apply when generating facets. You can only include
facet options when there is a heatmap. In XML, specify multiple options
by including the element multiple times. The element or array item value
is of the form option=value. For example:
<facet-option>limit=5</facet-option> in XML, or "facet-option":
["limit=5"] in JSON. For details, see “Facet Options” on page 950.

geo-option Specify options that customize the constraint, such as whether or not to
include boundaries. In XML, specify multiple options by including the
element multiple times. The element or array item value is of the form
option=value. For example: <geo-option>score-function=lin-
ear</geo-option> in XML, or "geo-option": ["score-function=lin-
ear"] in JSON. For details, see “Geospatial Point Query Options” on
page 952.

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 862

31.5.15.3Examples
The following example defines two geospatial JSON property constraints, one with a parent
property and one without. The second constraint also illustrates the use of the geo-option,
facet-option, and heatmap components.

fragment-scope Set a local fragment scope for this constraint to further constrain where
matches occur. The local fragment scope overrides the global fragment
scope. For example, a fragment-scope of properties on a range
constraint enables you to facet on a value stored in a property, even if
you are searching over documents. Allowed values: properties,
documents (default).

weight Higher weights move search results up in the relevance order. The
default is 1.0. The weight should be less than or equal to 64 and greater
than or equal to -16 (between -16 and 64); weights greater than 64 will
have the same effect as a weight of 64. Weights less than the absolute
value of 0.0625 (between -0.0625 and 0.0625) are rounded to 0, which
means that they do not contribute to the score.

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <constraint name="my-geo-json-child">
 <geo-json-property>
 <parent-property>parent<parent-property>
 <json-property>child</json-property>
 </geo-json-property>
 </constraint>
 <constraint name="my-geo-json-property">
 <geo-json-property>
 <json-property>location</json-property>
 <geo-option>boundaries-excluded</geo-option>
 <facet-option>empties</facet-option>
 <heatmap s="23.2" w="-118.3" n="23.3" e="-118.2"
 latdivs="4" londivs="4"/>
 </geo-json-property>
 </constraint>
</options>

Element, Attribute
or Property Name

Description

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 863

31.5.15.4See Also
For more details on using this option, see the following topics:

• “Geospatial Search Applications” on page 476

• cts:json-property-geospatial-query

• cts:json-property-child-geospatial-query

31.5.16 geo-json-property-pair
A component of a constraint option that models a geospatial index with coordinates stored in a pair
of JSON properties that are children of a specific parent property. That is, geospatial data of the
following form:

"parentProperty": {
 "latProperty": lat-value,
 "lonProperty": lon-value
}

This topic has the following sections:

• Syntax Summary

• Component Description

• Examples

• See Also

JSON {"options":{
 "constraint": [
 { "name": "my-geo-json-child",
 "geo-json-property": {
 "parent-property": "parent",
 "json-property": "child",
 }},
 { "name": "my-geo-json",
 "geo-json-property": {
 "json-property": "location",
 "geo-option": ["boundaries-excluded"],
 "facet-option": ["empties"],
 "heatmap": {
 "s": 23.2, "w": -118.3, "n": 23.3, "e": -118.2,
 "latdivs": 4, "londivs": 4
 }
 }},
]
}}

Format Example

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 864

31.5.16.1Syntax Summary
This option has the following structure. Note that you can only use the JSON form with selected
Client APIs, such as the REST Client API.

31.5.16.2Component Description
By default coordinates are stored as (latitude,longitude) points. To reverse the coordinate order,
add the geo-option "long-lat-points" to the query options configuration. For more details, see
cts:json-property-pair-geospatial-query.

The components of this option have the following semantics:

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<geo-json-property-pair>
 <parent-property>name</parent-property>
 <lat-property>name</lat-property>
 <lon-property>name</lon-property>
 <facet-option>option</facet-option>
 <heatmap>heatmap descriptor</heatmap>
 <fragment-scope>scope</fragment-scope>
 <geo-option>option</geo-option>
 <weight>double</weight>
</geo-json-property-pair>

"geo-json-property-pair": {
 "parent-property": ["name"],
 "lat-property": ["name"],
 "lon-property": ["name"],
 "facet-option": [option],
 "heatmap": {heatmap desc},
 "geo-option": [option],
 "fragment-scope": "scope",
 "weight": double
}

Element, Attribute
or Property Name

Description

parent-property Required. Identifies the parent JSON property that can contain the
latitude and longitude property.

If multiple parents are defined, the query matches if any one of them
matches. This component can have an array value in JSON, but need not
if there is only one item.

lat-property Required. Identifies the JSON property containing the latitude.

If multiple properties are defined, the query matches if any one of them
matches. However, only the first matching child in any point instance is
checked. This component can have an array value in JSON, but need not
if there is only one item.

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 865

lon-property Required. Identifies the JSON property containing the longitude.

If multiple properties are defined, the query matches if any one of them
matches. However, only the first matching child in any point instance is
checked. This component can have an array value in JSON, but need not
if there is only one item.

heatmap A model of a two-dimensional grid, used to categorize data along two
dimensions for geospatial faceting. For details, see “heatmap” on
page 877.

facet-option Specify options to apply when generating facets. You can only include
facet options when there is a heatmap. In XML, specify multiple options
by including the element multiple times. The element or array item value
is of the form option=value. For example:
<facet-option>limit=5</facet-option> in XML, or "facet-option":
["limit=5"] in JSON. For details, see “Facet Options” on page 950.

geo-option Specify options that customize the constraint, such as whether or not to
include boundaries. In XML, specify multiple options by including the
element multiple times. The element or array item value is of the form
option=value. For example: <geo-option>score-function=lin-
ear</geo-option> in XML, or "geo-option": ["score-function=lin-
ear"] in JSON. For details, see “Geospatial Point Query Options” on
page 952.

fragment-scope Set a local fragment scope for this constraint to further constrain where
matches occur. The local fragment scope overrides the global fragment
scope. For example, a fragment-scope of properties on a range
constraint enables you to facet on a value stored in a property, even if
you are searching over documents. Allowed values: properties,
documents (default).

weight Higher weights move search results up in the relevance order. The
default is 1.0. The weight should be less than or equal to 64 and greater
than or equal to -16 (between -16 and 64); weights greater than 64 will
have the same effect as a weight of 64. Weights less than the absolute
value of 0.0625 (between -0.0625 and 0.0625) are rounded to 0, which
means that they do not contribute to the score.

Element, Attribute
or Property Name

Description

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 866

31.5.16.3Examples
The following example defines a geospatial JSON property pair constraint, including the use of
the geo-option, facet-option, and heatmap components.

31.5.16.4See Also
For more details on using this option, see the following topics:

• “Geospatial Search Applications” on page 476

• cts:json-property-pair-geospatial-query

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <constraint name="my-geo-json-pair">
 <geo-json-property-pair>
 <parent-property>parent</parent-property>
 <lat-property>child1</lat-property>
 <lon-property>child2</lon-property>
 <geo-option>boundaries-excluded</geo-option>
 <facet-option>empties</facet-option>
 <heatmap s="23.2" w="-118.3" n="23.3" e="-118.2"
 latdivs="4" londivs="4"/>
 </geo-json-property-pair>
 </constraint>
</options>

JSON {"options":{
 "constraint": [
 { "name": "my-geo-json-pair",
 "geo-json-property": {
 "parent-property": "parent",
 "lat-property": "child1",
 "lon-property": "child2",
 "geo-option": ["boundaries-excluded"],
 "facet-option": ["empties"],
 "heatmap": {
 "s": 23.2, "w": -118.3, "n": 23.3, "e": -118.2,
 "latdivs": 4, "londivs": 4
 }
 }},
]
}}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 867

31.5.17 geo-path
A component of a constraint option that models a geospatial index with coordinates stored in an
XML element, XML attribute, or JSON property described by an XPath expression.

• Syntax Summary

• Component Description

• Examples

• See Also

31.5.17.1Syntax Summary
This option has the following structure. Note that you can only use the JSON form with selected
Client APIs, such as the REST Client API.

31.5.17.2Component Description
By default coordinates are stored as (latitude,longitude) points. To reverse the coordinate order,
add the geo-option "long-lat-points" to the query options configuration. For more details, see
cts:path-geospatial-query.

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<geo-path>
 <path-index/>
 <facet-option>option</facet-option>
 <heatmap>heatmap descriptor</heatmap>
 <fragment-scope>scope</fragment-scope>
 <geo-option>option</geo-option>
 <weight>double</weight>
</geo-path>

"geo-path": {
 "path-index": [path index desc],
 "facet-option": [option],
 "heatmap": {heatmap desc},
 "geo-option": [option],
 "fragment-scope": "scope",
 "weight": double
}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 868

The components of this option have the following semantics:

Element, Attribute
or Property Name

Description

path-index Required. A geospatial range index references to constrain by; for
details, see “path-index” on page 888. The path should reference a point
index; for region path indexes, see “geo-region-path” on page 871.

You can specify more than one path-index. The query matches if any
one of them matches. This component can have an array value in JSON,
but need not if there is only one item.

The database configuration must include a geospatial region path index
based on the same path. The path expression and namespace URIs must
match the index configuration; namespace prefixes do not have to
match.

heatmap A model of a two-dimensional grid, used to categorize data along two
dimensions for geospatial faceting. For details, see “heatmap” on
page 877.

facet-option Specify options to apply when generating facets. You can only include
facet options when there is a heatmap. In XML, specify multiple options
by including the element multiple times. The element or array item value
is of the form option=value. For example:
<facet-option>limit=5</facet-option> in XML, or "facet-option":
["limit=5"] in JSON. For details, see “Facet Options” on page 950.

geo-option Specify options that customize the constraint, such as whether or not to
include boundaries. In XML, specify multiple options by including the
element multiple times. The element or array item value is of the form
option=value. For example:
<geo-option>score-function=linear</geo-option> in XML, or
"geo-option": ["score-function=linear"] in JSON. For details, see
“Geospatial Point Query Options” on page 952.

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 869

fragment-scope Set a local fragment scope for this constraint to further constrain where
matches occur. The local fragment scope overrides the global fragment
scope. For example, a fragment-scope of properties on a range
constraint enables you to facet on a value stored in a property, even if
you are searching over documents. Allowed values: properties,
documents (default).

weight Higher weights move search results up in the relevance order. The
default is 1.0. The weight should be less than or equal to 64 and greater
than or equal to -16 (between -16 and 64); weights greater than 64 will
have the same effect as a weight of 64. Weights less than the absolute
value of 0.0625 (between -0.0625 and 0.0625) are rounded to 0, which
means that they do not contribute to the score.

Element, Attribute
or Property Name

Description

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 870

31.5.17.3Examples
The following example illustrates a geospatial path constraint for an XML element or JSON
property addressable with the XPath Expression “/a/b”.

31.5.17.4See Also
For more details on using this option, see the following topics:

• “Geospatial Search Applications” on page 476

• cts:path-geospatial-query

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <constraint name="my-geo-path">
 <geo-path>
 <path-index>/a/b</path-index>
 <geo-option>boundaries-excluded</geo-option>
 <facet-option>empties</facet-option>
 <heatmap s="23.2" w="-118.3" n="23.3" e="-118.2"
 latdivs="4" londivs="4"/>
 </geo-path>
 </constraint>
</options>

JSON {"options":{
 "constraint": [
 { "name": "my-geo-path",
 "geo-path": {
 "path-index": { "text" : "/a/b" },
 "geo-option": ["boundaries-excluded"],
 "facet-option": ["empties"],
 "heatmap": {
 "s": 23.2,
 "w": -118.3,
 "n": 23.3,
 "e": -118.2,
 "latdivs": 4,
 "londivs": 4
 }
 }},
]
}}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 871

31.5.18 geo-region-path
A component of a constraint option that models a geospatial region index with the location of
region coordinates described by an XPath expression.

• Syntax Summary

• Component Description

• Examples

• See Also

31.5.18.1Syntax Summary
This option has the following structure. Note that you can only use the JSON form with selected
Client APIs, such as the REST Client API.

31.5.18.2Component Description
By default, coordinates are assumed to be (latitude,longitude) points. To reverse the coordinate
order, add the geo-option "long-lat-points" to the query options configuration. For more details,
see cts:geospatial-region-query.

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<geo-region-path coord="coord-sys">
 <path-index/>
 <fragment-scope>scope</fragment-scope>
 <geo-option>option</geo-option>
 <weight>double</weight>
</geo-region-path>

"geo-region-path": {
 "path-index": [path index desc],
 "coord": "coord-sys",
 "geo-option": [option],
 "fragment-scope": "scope",
 "weight": double
}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 872

The components of this option have the following semantics:

Element, Attribute
or Property Name

Description

path-index Required. A geospatial region path range index descriptor for an XML
element or JSON property whose contents represent a region. Define any
required namespace bindings as part of the path-index element or
property. For details, see “path-index” on page 888. For geospatial point
constraints, see “geo-path” on page 867.

You can specify more than one path-index. The query matches if any
one of them matches. This component can have an array value in JSON,
but need not if there is only one item.

The database configuration must include a geospatial region path index
based on the same path. The path expression and namespace URIs must
match the index configuration; namespace prefixes do not have to
match.

coord The coordinate system of the region path index. If present, this value
must match the index configuration. If the coordinate system and
precision are not explicitly specified, “wgs84” (single precision) is
assumed. For a list of allowed values, see the options for
cts:geospatial-region-path-reference.

geo-option Specify options that customize the constraint, such as the units to be
used for computations. In XML, specify multiple options by including
the element multiple times. The element or array item value is of the
form option=value. For example:
<geo-option>units=feet</geo-option> in XML, or "geo-option":
["units=feet"] in JSON. For details, see “Geospatial Region Query
Options” on page 953.

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 873

31.5.18.3Examples
The following example defines a geospatial region constraint for an XML element or JSON
property addressable with the XPath Expression “/a/b”.

31.5.18.4See Also
For more details on using this option, see the following topics:

fragment-scope Set a local fragment scope for this constraint to further constrain where
matches occur. The local fragment scope overrides the global fragment
scope. For example, a fragment-scope of properties on a range
constraint enables you to facet on a value stored in a property, even if
you are searching over documents. Allowed values: properties,
documents (default).

weight Higher weights move search results up in the relevance order. The
default is 1.0. The weight should be less than or equal to 64 and greater
than or equal to -16 (between -16 and 64); weights greater than 64 will
have the same effect as a weight of 64. Weights less than the absolute
value of 0.0625 (between -0.0625 and 0.0625) are rounded to 0, which
means that they do not contribute to the score.

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <constraint name="my-geo-region">
 <geo-region-path coord="wgs84">
 <path-index>/a/b</path-index>
 <geo-option>units=feet</geo-option>
 </geo-region-path>
 </constraint>
</options>

JSON {"options":{
 "constraint": [
 { "name": "my-geo-region",
 "geo-region-path": {
 "path-index": {"text": "/a/b"},
 "coord": "wgs84",
 "geo-option": ["units=feet"]
 }}
]
}}

Element, Attribute
or Property Name

Description

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 874

• “Geospatial Search Applications” on page 476

• cts:geospatial-region-query (XQuery)

• cts.geospatialRegionQuery (Server-Side JavaScript)

31.5.19 custom
A component of a constraint that defines a custom constraint along with the functions that
implement it.

• Syntax Summary

• Component Description

• Examples

• See Also

Warning Custom constraints and other hooks on the Search API cannot be implemented as
JavaScript MJS modules.

31.5.19.1Syntax Summary
This option has the following structure. Note that you can only use the JSON form with selected
Client APIs, such as the REST Client API.

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<custom facet="boolean">
 <parse apply="funcName"
 ns="namespace"
 at="/path/to/module.xqy"/>
 <start-facet apply="funcName"
 ns="namespace"
 at="/path/to/module.xqy"/>
 <finish-facet apply="funcName"
 ns="namespace"
 at="/path/to/module.xqy"/>
 <facet-option>option</facet-option>
 <term-option>option</term-option>
</custom>

"custom": {
 "facet": boolean
 "parse": {
 "apply": "funcName",
 "ns": "namespace",
 "at": "/path/to/module.xqy"
 },
 "start-facet": {
 "apply": "funcName",
 "ns": "namespace",
 "at": "/path/to/module.xqy"
 },
 "finish-facet": {
 "apply": "funcName",
 "ns": "namespace",
 "at": "/path/to/module.xqy"
 },
 "facet-option": [option],
 "term-option": [option]
}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 875

31.5.19.2Component Description
The components of this option have the following semantics. The functions that implement the
constraint behavior are identified by a name (apply) and optional namespace (ns), and the full
path to the module that contains the function implementation (at).

Element, Attribute
or Property Name

Description

facet Required. Whether or not to use this constraint for faceting.

If facet is false, you do not need to specify start-facet or
finish-facet functions. If facet is true, you must specify a finish-facet
function and can specify a start-facet function.

parse Required. Identifies the function used to parse the input query text or
structured query.

start-facet Identifies a function that makes lexicon API calls to return the values
and counts used to construct facets from this constraint. Required if
facet is true and you use the concurrent facet option; optional
otherwise.

finish-facet Identifies a function that accepts input from the start-facet function (if
used) and constructs a facet element.

facet-option Specify options to apply when generating facets. In XML, specify
multiple options by including the element multiple times. The element or
array item value is of the form option=value. For example:
<facet-option>limit=5</facet-option> in XML, or "facet-option":
["limit=5"] in JSON. For details, see “Facet Options” on page 950.

term-option Specify options to apply when generating facets. In XML, specify
multiple options by including the element multiple times. If the option
has a value, the element or array item value is of the form option=value.
For example: <term-option>lang=en</term-option> in XML, or
"term-option": ["lang=en"] in JSON. For details, see “Term Options”
on page 950.

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 876

31.5.19.3Examples
The following example illustrates a custom constraint that supplies parse, start-facet, and
finish-facet functions. All three functions are in the namespace “my-namespace”, implemented
in an XQuery module installed as /my/module.xqy. For a complete example that includes function
implementations, see “Creating a Custom Constraint” on page 42.

31.5.19.4See Also
For more details on using this option, see the following topics:

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <constraint name="my-custom">
 <custom facet="true">
 <parse apply="my-parse-function"
 ns="my-namespace" at="/my/module.xqy"/>
 <start-facet apply="my-start-function"
 ns="my-namespace" at="/my/module.xqy"/>
 <finish-facet apply="my-finish-function"
 ns="my-namespace" at="/my/module.xqy"/>
 <facet-option>concurrent</facet-option>
 </custom>
 </constraint>
</options>

JSON {"options": {
 "constraint": [
 { "name": "my-custom",
 "custom": {
 "facet": true,
 "parse": {
 "apply": "my-parse-function",
 "ns": "my-namespace",
 "at": "/my/module.xqy"
 },
 "start-facet": {
 "apply": "my-start-function",
 "ns": "my-namespace",
 "at": "/my/module.xqy"
 },
 "finish-facet": {
 "apply": "my-finish-function",
 "ns": "my-namespace",
 "at": "/my/module.xqy"
 },
 "facet-option": ["concurrent"],
 }},
]
}}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 877

• “Creating a Custom Constraint” on page 42

31.5.20 heatmap
A component of a geospatial constraint that models a two-dimensional grid used to categorize data
along two dimensions. Use with geospatial indexes and queries to generate geospatial facets in the
form of boxes, similar to the boxes created by cts:geospatial-boxes.

A heatmap can only occur as a child of a geospatial constraint, such as geo-elem or
geo-json-property. A heatmap is required for generating facets from a geospatial constraint.

A heatmap is a bounding box defined by 4 cooridnates (n, w, e, s) and the number of latitudinal
and longitudinal divisions in which to subdivide the region for faceting purposes. The bounding
box is divided equally into the requested number of buckets. The bounding coordinates of the
buckets have single point float precision.

A geospatial facets takes the form of a geospatial box with a count of the number of matches
within the box. By default, each such box facet is the minimum bounding box of all points in the
enclosing bucket. Use the "gridded" facet option to return the bucket coordinates defined by the
lat and lon divisions instead. Empty buckets return no facets by default; use the "empties" facet
option to return empty bucket boxes.

• Syntax Summary

• Component Description

• Examples

• See Also

31.5.20.1Syntax Summary
This component has the following structure. Note that you can only use the JSON form with
selected Client APIs, such as the REST Client API.

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<heatmap s="double" w="double"
 n="double" e="double"
 latdivs="unsignedInt",
 londivs="unsignedInt" />

"heatmap": {
 "n": double,
 "s": double,
 "e": double,
 "w": double,
 "latdivs": unsignedInt,
 "londivs": unsignedInt
}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 878

31.5.20.2Component Description
The components of this option have the following semantics:

Element, Attribute
or Property Name

Description

n Required. Heatmap bounding box north coordinate.

s Required. Heatmap bounding box south coordinate.

e Required. Heatmap bounding box east coordinate.

w Required. Heatmap bounding box west coordinate.

latdivs Required. The number of latitude divisions to apply to the bounding box.

londivs Required. The number of longitude divisions to apply to the bounding
box.

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 879

31.5.20.3Examples
The following example defines a geospatial JSON property pair constraint, with latitude values in
event/latitude and longitude values in event/longitude. Since the constraint defines a heatmap,
geospatial facets are generated by default. Since the constraint includes the “gridded” facet
option, the boxes generated as facets use the dimensions defined by the lat and lon divs defined by
the heatmap, rather than the smallest box within each that encompasses all matching points.

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <constraint name="geo-pair">
 <geo-json-property-pair>
 <parent-property>event</parent-property>
 <lat-property>latitude</lat-property>
 <lon-property>longitude</lon-property>
 <facet-option>gridded</facet-option>
 <heatmap s="23.2" w="-118.3" n="23.3" e="-118.2"
 latdivs="4" londivs="4"/>
 </geo-json-property-pair>
 </constraint>
</options>

JSON {"options": {
 "constraint": [{
 "name": "geo-pair",
 "geo-json-property-pair": {
 "parent-property": "event",
 "lat-property": "latitude",
 "lon-property": "longitude",
 "facet-option": ["gridded"],
 "heatmap": {
 "s": 24.0, "n": 49.0,
 "e": -67.0,"w": -125.0,
 "latdivs": 5, "londivs": 4
 }}
 }]
}}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 880

Applied to a search, the heatmap causes the search response to include a boxes component, similar
to the following:

31.5.20.4See Also
For more details on using this option, see the following topics:

• “Geospatial Constraint Example” on page 393

• “Geospatial Search Applications” on page 476

• “Creating Geospatial Facets” on page 525

31.5.21 bucket
A component of a range constraint that defines a range of static values within the constraint that
can be used in range query expressions and for generating facets. For dynamic value ranges, refer
to “computed-bucket” on page 884.

Values assigned to a bucket meet the following criteria:

ge <= value < lt

Where ge and lt represent the "ge" and "lt" values specified in the bucket descriptor.

• Syntax Summary

Format Search Response Excerpt

XML ...
<boxes name="geo-pair">
 <box count="2" s="34" w="-125" n="39" e="-110.5"/>
 <box count="12" s="34" w="-110.5" n="39" e="-96"/>
</boxes>
...

JSON ...
"facets": {
 "geo-pair": {
 "boxes": [
 { "count": 2,
 "s": 34, "w": -125,
 "n": 39, "e": -110.5
 },
 { "count": 12,
 "s": 34, "w": -110.5,
 "n": 39, "e": -96
 }
]
...

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 881

• Component Description

• Examples

• See Also

31.5.21.1Syntax Summary
This component has the following structure. Note that you can only use the JSON form with
selected Client APIs, such as the REST Client API. The bucket definition must contain either a lt
or ge value and may contain both.

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<bucket name="name"
 ge="value" lt="value">
 displayLabel
</bucket>

"bucket": [{
 "name": "name",
 "label": "displayLabel",
 "lt": value,
 "ge": value
}]

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 882

31.5.21.2Component Description
The components of this option have the following semantics:

Element, Attribute
or Property Name

Description

name Required. The bucket identifier. The name should be unique within the
context of the enclosing constraint. The bucket name can be used in
string query terms to represent values that fall into the bucket. For
details, see “Examples” on page 886.

label (JSON)
fn:data() (XML)

Text that can be used to label the bucket when displaying facets. In
XML, this is the text data contained in the <bucket/> element. Optional.
The display label has no functional use in searches. If present, it is
returned in facets so that applications can use it for display purposes.

lt The upper bound for values assigned to this bucket. Optional, but a
bucket must include at least one boundary value. Values assigned to this
bucket must be less than this value. Must be an atomic value.

ge The lower bound for values assigned to this bucket. Optional, but a
bucket must include at least one boundary value. Value assigned to this
bucket must be greater than or equal to this value. Must be an atomic
value.

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 883

31.5.21.3Examples
The following example defines a path range constraint that includes 3 buckets for faceting,
corresponding to matches in the ranges (x < 5), (5 <= x < 10), and (10 <= x < 15). For display
purposes, these buckets are labeled “less than 5”, “5 to 9”, and “10 to 15”.

You can use the bucket names in string query range expressions. For example, a string search for
“pindex:low” finds values less than 5 in nodes with the path /Employee/fn.

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <constraint name="pindex">
 <range type="xs:string" facet="true">
 <path-index>/Employee/fn</path-index>
 <bucket name="low" lt="5">less than 5</bucket>
 <bucket name="medium" lt="10" ge="5">5 to 9</bucket>
 <bucket name="high" lt="15" ge="10">10 to 15</bucket>
 </range>
 </constraint>
</options>

JSON {"options": {
 "constraint": [{
 "name": "pindex",
 "range": {
 "type": "xs:string",
 "facet": true,
 "path-index": {"text": "/Employee/fn"},
 "bucket": [
 { "name": "low",
 "lt": "5",
 "label": "less than 5"
 },
 { "name": "medium",
 "ge": "5",
 "lt": "10",
 "label": "5 to 9"
 },
 { "name": "high",
 "ge": "10",
 "lt": "15",
 "label": "10 to 15"
 }
]
 }
 }]
}}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 884

31.5.21.4See Also
For more details on using this option, see the following topics:

• “range” on page 825

• “Buckets Example” on page 62

• “Example: Path Range Index Constraint Query Options” on page 416

31.5.22 computed-bucket
A component of a range constraint that defines a range of dynamic values within the constraint
that can be used in range query expressions and for generating facets. For static value ranges,
refer to “bucket” on page 880.

Values assigned to a given computed bucket meet the following criteria:

(anchor + ge) <= value < (anchor + lt)

Where anchor, ge, and lt are values specified in the bucket descriptor.

• Syntax Summary

• Component Description

• Examples

• See Also

31.5.22.1Syntax Summary
This component has the following structure. Note that you can only use the JSON form with
selected Client APIs, such as the REST Client API.

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 885

The bucket definition must include at least one of (ge, lt) and may include both. You must include
at least one anchor value. The anchor value can be shared by both boundaries or be
boundary-specific. For example, if the bucket definition includes a lt value, then it must include
either an anchor or lt-anchor value.

31.5.22.2Component Description
The components of this option have the following semantics.

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<computed-bucket name="name"
 ge="value" lt="value">
 anchor="anchorValue"
 lt-anchor="anchorValue"
 ge-anchor="anchorValue"
 displayLabel
</computed-bucket>

"computed-bucket": [{
 "name": "name",
 "label": "displayLabel",
 "lt": value,
 "ge": value,
 "anchor": "anchorValue",
 "lt-anchor": "anchorValue",
 "gt-anchor": "anchorValue"
}]

Element, Attribute
or Property Name

Description

name Required. The bucket identifier. The name should be unique within the
context of the enclosing constraint. The bucket name can be used in
string query terms to represent values that fall into the bucket. For
details, see “Examples” on page 886.

label (JSON)
data() (XML)

Text that can be used to label the bucket when displaying facets. In
XML, this is the text data contained in the <bucket/> element. Optional.
The display label has no functional use in searches. If present, it is
returned in facets so that applications can use it for display purposes.

lt The upper bound for values assigned to this bucket. Optional, but a
bucket must include at least one boundary definition. Values assigned to
this bucket must be less than this value. Must be an atomic value.

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 886

31.5.22.3Examples
The following example defines an element range constraint on xs:dateTime values that includes 4
buckets, corresponding to matches for the values in dynamic ranges relative to “now”.

ge The lower bound for values assigned to this bucket. Optional, but a
bucket must include at least one boundary definition. Value assigned to
this bucket must be greater than or equal to this value. Must be an atomic
value.

anchor A dynamic anchor literal value for the bucket. The bucket bounds are
relative to this dynamic value. Optional if you include a boundary-spe-
cific anchor (lt-anchor, ge-anchor) for the included boundary values.
Allowed values: now, start-of-day, start-of-month, start-of-year.

lt-anchor Overrides anchor for computing the bucket upper bound. Optional.
Allowed values: now, start-of-day, start-of-month, start-of-year.

ge-anchor Overrides anchor for computing the bucket lower bound. Optional.
Allowed values: now, start-of-day, start-of-month, start-of-year.

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <constraint name="made">
 <range type="xs:dateTime">
 <element ns="http://example.com" name="manufactured"/>
 <computed-bucket name="today" ge="P0D" lt="P1D"
 anchor="now">Today</computed-bucket>
 <computed-bucket name="30-days" ge="-P30D" lt="P1D"
 anchor="now">Last 30 days</computed-bucket>
 <computed-bucket name="60-days" ge="-P60D" lt="P1D"
 anchor="now">Last 60 Days</computed-bucket>
 <computed-bucket name="year" ge="-P1Y" lt="P1D"
 anchor="now">Last Year</computed-bucket>
 </range>
 </constraint>
</options>

Element, Attribute
or Property Name

Description

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 887

31.5.22.4See Also
For more details on using this option, see the following topics:

• “range” on page 825

• “Computed Buckets Example” on page 64

• “Example: Element Attribute Range Constraint Query Options” on page 418

JSON { "options": {
 "constraint": [{
 "name": "made",
 "range": {
 "type": "xs:dateTime",
 "element": {
 "ns": "http://example.com",
 "name": "manufactured"
 },
 "computed-bucket": [
 { "name": "today",
 "ge": "P0D",
 "lt": "P1D",
 "anchor": "now",
 "label": "Today"
 },
 { "name": "30-days",
 "ge": "-P30D",
 "lt": "P1D",
 "anchor": "now",
 "label": "Last 30 days"
 },
 { "name": "60-days",
 "ge": "-P60D",
 "lt": "P1D",
 "anchor": "now",
 "label": "Last 60 Days"
 },
 { "name": "year",
 "ge": "-P1Y",
 "lt": "P1D",
 "anchor": "now",
 "label": "Last Year"
 }
]
 }
 }]
}}

Format Example

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 888

31.5.23 path-index
This component identifies a path range index for use in a constraint definition.

• Syntax Summary

• Component Description

• Examples

• See Also

31.5.23.1Syntax Summary
This component has the following structure. Note that you can only use the JSON form with
selected Client APIs, such as the REST Client API.

31.5.23.2Component Description
In XML, specify the XPath expression as the path-index element value. Define any namespace
prefix bindings used in the path expression as xmlns attributes of the path-index element.

In JSON, specify the XPath expression as the value of the “text” property. Define any namespace
prefix bindings used in the path expression in the “namespaces” property. The value of a
path-index can be an array in contexts where you can specify multiple path index references.

The database configuration must include a corresponding path range index.

The path expression is limited to the subset of XPath that can be used to define a path range index.
For details, see Path Field and Path-Based Range Index Configuration in XQuery and XSLT Reference
Guide.

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<path-index xmlns:nsPrefix="nsURI">
 pathExpression
</path-index>

"path-index": {
 "text": "pathExpression"
 "namespaces": {
 "nsPrefix": "nsURI"
 }
}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 889

31.5.23.3Examples
The following option defines a path index based range constraint and a path index based values
specification. The range constraint references two path indexes, one of which uses namespace
prefixes. Path range indexes corresponding to the paths /data/a and /ns1:data/ns2:b must exist.

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <constraint name="myPathConstraint">
 <range type="xs:int">
 <path-index>/data/a</path-index>
 <path-index xmlns:ns1="/my/ns1"
 xmlns:ns2="/my/ns2">/ns1:data/ns2:b</path-index>
 </range>
 </constraint>
 <values name="myValuesSpec">
 <range type="xs:int">
 <path-index>/data/a</path-index>
 </range>
 </values>
</options>

JSON { "options": {
 "constraint": [{
 "name": "myPathConstraint",
 "range": {
 "type": "xs:int",
 "path-index": [
 { "text": "/data/a" },
 { "text": "/ns1:data/ns2:b",
 "namespaces": {
 "ns1": "/my/ns1",
 "ns2": "/my/ns2"
 }
 }
]
 }
 }],
 "values": [
 { "name": "myValuesSpec",
 "range": {
 "type": "xs:int",
 "path-index": { "text": "/data/a" }
 }
 }
]
} }

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 890

31.5.23.4See Also
For more details on using this option, see the following topics:

• “constraint” on page 822

• Defining Path Range Indexes in the Administrator’s Guide

31.6 debug
Whether or not to enable debug mode during a search or lexicon query. Allowed values: true,
false (default). When debug mode is enabled, additional report elements are included in the
search results summary.

The following example enables debug mode.

31.7 default-suggestion-source
This option defines a constraint source for generating suggestions for naked terms with
search:suggest. Suggestions are often used for type-ahead suggestions in a search user interface.
For terms qualified by a constraint prefix, such as “tag:value”, use the “suggestion-source” on
page 928 option. For more details, see default-suggestion-source Option in the Search Developer’s
Guide.

• Syntax Summary

• Component Description

• Examples

• See Also

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <debug>true</debug>
</options>

JSON {"options": {
 "debug": true
}}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 891

31.7.1 Syntax Summary
This option has the following structure. Note that you can only use the JSON form with selected
Client APIs, such as the REST Client API.

Either use ref to specify the name of a constraint defined elsewhere in the in-scope options, or
omit ref and define a single range, word, or collection constraint or word lexicon.

Your options can only include one default suggestion source.

Note: The use of word-lexicon (the database-wide word lexicon) is not recommended as
best practice; collection and range lexicons yield the best performance.

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<default-suggestion-source ref="constraint">
 <range/>
 <word/>
 <collection/>
 <word-lexicon collation="collURI">
 <fragment-scope>scope</fragment-scope>
 </word-lexicon>
 <suggestion-option>option</suggestion-option>
</default-suggestion-source>

"default-suggestion-source" : {
 "ref": "constraintName",
 "range": { constraint defn },
 "word": { constraint defn },
 "collection": {constr. defn},
 "word-lexicon": {
 "collation": "collURI",
 "fragment-scope": "scope"
 },
 "suggestion-option": [option]
}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 892

31.7.2 Component Description
The components of this option have the following semantics. Note that the range, word,
collection, and word-lexicon components are mutually exclusive of each other.

Element, Attribute or
Property Name

Description

ref The name of a constraint defined in the same set of query options.
Optional. If a ref value is present and a matching constraint exists,
that constraint takes precedence over any range, word, collection or
word-lexicon defined within this option.

range Defines a range constraint that limits suggestions to values that match
this constraint.

word Defines a word constraint that limits suggestions to words that match
this constraint.

collection Defines a collection constraint that limits suggestions to collection
names. If a prefix is present on the constraint definition, constrain sug-
gestions to collection names with the given prefix.

word-lexicon Limit suggestions to words found in the word lexicon.

suggestion-option Query options to use in generating suggestions. For details, see “Sug-
gestion Options” on page 953.

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 893

31.7.3 Examples
The following example constrains suggestions for naked terms to those values in the XML
element (or JSON property, in the JSON example) with the name “beast”. The constraint is
defined external to the default-suggestion-source. A range index must be configured on “beast”.
If you request suggestions for the partial search term “an”, the “animal:” constraint prefix is also
included in the suggestions because constraint names are always included.

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <constraint name="animal">
 <range type="xs:string">
 <element name="beast"/>
 </range>
 </constraint>
 <default-suggestion-source ref="animal"/>
</options>

JSON {"options": {
 "constraint": [{
 "name": "animal",
 "range": {
 "type": "xs:string",
 "json-property": "beast"
 }}],
 "default-suggestion-source" : {
 "ref": "animal"
 }
}}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 894

The following example has the same effect as the previous one, but the constraint is defined inside
the default-suggestion-source.

The following example generates suggestions from collection names with the prefix “/subject/”.
For example if you have documents in the collections "/subject/math" and "/subject/science" and
you request suggestions for the partial query text “sc”, then “science” is returned as a suggestion.

31.7.4 See Also
For more details on using this option, see the following topics:

• Search Term Completion Using search:suggest in the Search Developer’s Guide

• Java: Generating Search Term Completion Suggestions in the Java Application Developer’s
Guide

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <default-suggestion-source>
 <range type="xs:string">
 <element name="beast"/>
 </range>
 </default-suggestion-source>
</options>

JSON {"options": {
 "default-suggestion-source" : {
 "range": {
 "type": "xs:string",
 "json-property": "beast"
 }}
}}

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <default-suggestion-source>
 <collection prefix="/subject/" />
 </default-suggestion-source>
</options>

JSON {"options": {
 "default-suggestion-source" : {
 "collection": { "prefix": "/subject/" }
 }
}}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 895

• REST: Generating Search Term Completion Suggestions in the REST Application
Developer’s Guide

• Node.js: Generating Search Term Completion Suggestions in the Node.js Application
Developer’s Guide

31.8 extract-document-data
Use extract-document-data to select one or more XML elements, XML attributes, or JSON
properties from each matching document to return in the results of a document search. Selection is
via an absolute XPath expression. The XPath expression in extract-path is limited to a subset of
XPath; for details, see Restricted XPath in the XQuery and XSLT Reference Guide.

• Syntax Summary

• Component Description

• Examples

• See Also

Specify the elements, attributes, or properties as absolute XPath expressions in extract-path. Use
the selected property to indicate what data to return in the selected document components. If
extract-path is absent or contains no path expressions, the entire content of each matching
document is included in the result set.

The manner in which the extracted content is returned depends on the calling context. Using the
option in the following calling context returns the extracted content inside the search result
summary:

• XQuery: search:search or search:resolve functions

• REST Client API: GET:/v1/search or POST:/v1/search with an Accept header of
application/json or application/xml

• Node.js: DatabaseClient.documents.query that returns a search result summary instead of
documents (queryBuilder.withOptions({categories: 'none'})) and includes a result
slice with an extract clause.

• Java: QueryManager.search returns the extracted content in the search results. Access the
content using MatchDocumentSummary.getExtracted.

Using the option in the following calling contexts returns the extracted content as a sequence of
documents:

• XQuery: search:resolve-nodes

• REST Client API: GET:/v1/search or POST:/v1/search with an Accept header of
multipart/mixed (a multi-document read)

• Node.js: DatabaseClient.documents.query that returns documents and includes a result
slice with an extract clause.

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 896

• Java: The DocumentPage returned by DocumentManager.search contains an extracted
document instead of a full document for each match.

31.8.1 Syntax Summary
This option has the following structure. Note that you can only use the JSON form with selected
Client APIs, such as the REST Client API.

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<extract-document-data selected=value>
 <extract-path xmlns:pfx="nsURI">
 abs-xpath-expr
 </extract-path>
</extract-document-data>

"extract-document-data": {
 "selected": value,
 "extract-path": [abs-xpath-expr]
}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 897

31.8.2 Component Description
The components of this option have the following semantics. Setting selected to “all” or failing
to specify at least one extract-path XPath expression means to “extract” the entire document.

Element, Attribute
or Property Name

Description

selected How to handle the content selected by extract-path. Allowed values:

• include (default): Include the targeted item(s) in the results.
• include-with-ancestors: Include the targeted item(s) and all con-

taining ancestors.
• exclude: Include everything except the targeted item(s).
• all: Include the entire document
For examples of using each setting, see Extracting a Portion of Matching

Documents in the Search Developer’s Guide.

extract-path Optional. The absolute XPath expression of an XML element, XML
element attribute, or JSON property that is a target for extraction. You
can specify multiple paths.

The path expressions are limited to a subset of XPath. For details, see
The extract-document-data Query Option in the XQuery and XSLT
Reference Guide.

If a path requires namespace prefixes, define the binding on the
extract-path XML element, or predefine the binding using a capability
such as the REST Client API method PUT:/v1/config/namespaces or
Java Client API NamespaceManager interface.

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 898

31.8.3 Examples
The following example targets two items for extraction with the XPath expressions
“/my:location” and “/who/userName”. Since selected is “include”, just these elements (or JSON
properties) will be include in the extraction results.

A namespace binding is required for “/my:location”. In XML options, the binding can be
specified on the enclosing extract-path, as shown below. When defining options using JSON or
when using an API that does not provide this level of control, you must predefine the namespace
binding.

31.8.4 See Also
For more details on using this option, see the following topics:

• Extracting a Portion of Matching Documents in the Search Developer’s Guide

• REST: Using Namespace Bindings in the REST Application Developer’s Guide

• Java:

• Extracting a Portion of Matching Documents in the Java Application Developer’s
Guide

• Namespaces in the Java Application Developer’s Guide

• Node.js: Extracting a Portion of Each Matching Document in the Node.js Application
Developer’s Guide

31.9 forest
This option specifies forests to which a search or lexicon query will be constrained. Identify each
forest by an unsigned long forest id. If no forest ids are specified, all forests in the database are
searched, which is the default behavior.

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <extract-document-data selected="include">
 <extract-path xmlns:my="/my/namespace">/my:location</extract-path>
 <extract-path>/who/userName</extract-path>
 </extract-document-data>
</options>

JSON {"options": {
 "extract-document-data": {
 selected: "include",
 extract-path: ["/my:location", "/who/userName"]
 }
} }

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 899

Note: In the JSON representation, represent the forest ids as a strings because forest ids
can exceed the maximum number value supported by JSON.

The following example limits the search to two forests.

For additional examples, see cts:search.

31.10 fragment-scope
This option controls the global fragment scope over which to search. The global scope applies to
what the search returns (that is, if it returns results from document fragments or from property
fragments) and is inherited by any constraints that do not explicitly override the fragment-scope.

Allowed values: properties, documents (default)

You can override the global fragment scope by setting a local fragment scope inside a constraint
or term definition. For example, a fragment-scope of properties on a range constraint enables
faceting on a value stored in a property, even if you are searching over documents.

For details, see “Fragment Scope Option” on page 399.

The following example sets the global fragment scope to “properties”.

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <forest>13081837393370312889</forest>
 <forest>13081837393370234811</forest>
</options>

JSON {"options": {
 "forest": ["13081837393370312889","13081837393370234811"]
}}

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <fragment-scope>properties</fragment-scope>
</options>

JSON {"options": {
 "fragment-scope": "properties"
}}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 900

31.11 grammar

Warning Use of this option for grammar customization is deprecated as of MarkLogic 9.
You should use a 3rd party library if you require a custom string query grammar.
For details, see Search API Grammar Customization Deprecated in the Release Notes.

The wrapper element for a custom search grammar definition. The default grammar defines
"Google-style" parsing; for details, see “The Default String Query Grammar” on page 68.

• Syntax Summary

• Component Description

• Examples

See the following topics for a detailed description of the starter and joiner components of a
grammar.

• starter

• joiner

31.11.1 Syntax Summary
This option has the following structure. Note that you can only use the JSON form with selected
Client APIs, such as the REST Client API.

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<grammar>
 <quotation>quoteChar</quotation>
 <implicit options=">ctsQuery</implicit>
 <starter/>
 <joiner/>
</grammar>

"grammar": {
 "quotation": "quoteChar",
 "implict": "ctsQuery",
 "starter": [...],
 "joiner": [...]
}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 901

31.11.2 Component Description
The components of this option have the following semantics. The grammar should contain at least
one implicit, starter, or joiner. If the grammar is empty, then query text is parsed according to
the term options.

Element, Attribute
or Property Name

Description

quotation The string to use to delimit the start and end of a phrase. You cannot
specify a search that includes quotation character. For example, in the
default grammar, you cannot search for a double quote (") because this is
the quotation character.

implicit A serialized cts:query used to join two search terms when they are not
separated by an explicit operator. By default, the Search API uses a
cts:and-query,. For example, in the default grammar, “cat dog” is equiv-
alent to “cat AND dog”. Your grammar should include at most one
implicit component.

starter Define a unary operator or a pair of group delimiters. For example, the
default grammar includes a starter for the unary operator “-” that is
bound to cts:not-query and a starter for “(“ and “)” for grouping. For
details, see “starter” on page 903. Your grammar can include zero or
more starters.

joiner Define a binary operator that joins two query expressions. For example,
the default grammar defines joiners such as “AND”, “OR”, and “LT”.
For details, see “joiner” on page 905. Your grammar can include zero or
more joiners.

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 902

31.11.3 Examples
The following example is a subset of the default grammar. You can obtain the complete grammar
by calling search:get-default-options.

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <grammar>
<quotation>"</quotation>
 <implicit>
 <cts:and-query strength="20" xmlns:cts="http://marklogic.com/cts"/>
 </implicit>
 <starter strength="30" apply="grouping" delimiter=")">(</starter>
 <starter strength="40" apply="prefix" element="cts:not-query">-</starter>
 <joiner strength="10" apply="infix" element="cts:or-query"
 tokenize="word">OR</joiner>
 <joiner strength="20" apply="infix" element="cts:and-query"
 tokenize="word">AND</joiner>
 </grammar>
</options>

JSON {"options": {
 "grammar": {
 "starter": [
 {
 "strength": 30,
 "apply": "grouping",
 "delimiter": ")",
 "label": "("
 },
 {
 "strength": 40,
 "apply": "prefix",
 "element": "cts:not-query",
 "label": "-"
 },
],
 "joiner": [{
 "strength": 10,
 "apply": "infix",
 "element": "cts:or-query",
 "tokenize": "word",
 "label": "OR"
 }],
 "quotation": "\"",
 "implicit": "<cts:and-query strength=\"20\"
xmlns=\"http://marklogic.com/appservices/search\"
xmlns:cts=\"http://marklogic.com/cts\"/>"
 }
 }
}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 903

31.11.4 starter
A starter is a child of a grammar option that defines a unary operator or a group operator. For
more details, see “grammar” on page 900.

Use the apply-at-ns pattern described in Search Customization Via Options and Extensions in Search
Developer’s Guide to define the XQuery library function that implements the starter. The function
must produce a cts:query element of the type named by element.

• Syntax Summary

• Component Description

• Examples

31.11.4.1Syntax Summary
The starter component of a grammar option has the following structure. The operator token is the
text data of the starter element in XML and the value of the label property in JSON. Note that
you can only use the JSON form with selected Client APIs, such as the REST Client API.

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<starter strength="int"
 apply="funcName"
 ns="namespaceURI"
 at="modulePath"
 element="qName"
 options="optList"
 delimiter="delimChar"
 tokenize="value">
 opToken
</starter>

"starter": [{
 "label": "opToken",
 "strength": number,
 "apply": "funcName",
 "ns": "namespaceURI",
 "at": "modulePath",
 "element": "qName",
 "options": "optList",
 "tokenize": "value",
 "delimiter": "delimChar",
}]

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 904

31.11.4.2Component Description
The starter component of a grammar option has the following semantics:

Element, Attribute
or Property Name

Description

fn:data() (XML)
label (JSON)

Required. The starter operator token. For example, the default grammar
includes a starter with the minus sign (-) as the operator, which enables
query text such as “-cat”.

If defining a pair of grouping delimiters such as “(“ and “)”, place set
this component to the group start delimiter (“(“) and set delimiter to the
group end deliminter (“)”).

strength Required. The order of precedence of this starter relative to other
operators in this grammar. Higher strength tokens or groups are
processed before lower ones.

apply The local-name of a function that parses expressions using this starter.
This can be one of the functions pre-defined by the default grammar or a
custom function; for a custom function, you must also include ns and at
values.

ns The XQuery module that contains the apply function, if using a
user-defined function.

at The module from which the apply function is imported, if using a
user-defined function.

element A cts:query element name that identifies the type of cts:query element
produced by the parsing function. For example, the default grammar
defines a negation starter using the minus sign, which produces a
cts:not-query.

options A space-separated list of options that are passed through to the
underlying apply function.

tokenize Allowed values: “word” or “default”.

delimiter When defining a pair of grouping deliminters, the string to use as a the
delimiter of the end of the grouping. For example, if defining “(“ and “)”
as group delimiters, set delimiter to “)”.

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 905

31.11.4.3Examples
The following example shows the definition of the “-” (not) unary operator and “()” grouping
operator defined by the default grammar.

31.11.5 joiner
A joiner is a child of a grammar option that defines a binary operator. For more details, see
“grammar” on page 900.

Use the apply-at-ns pattern described in Search Customization Via Options and Extensions in Search
Developer’s Guide to define the XQuery library function that implements the joiner. The function
must produce a cts:query element of the type named by element.

• Syntax Summary

• Component Description

• Examples

Format Example

XML <starter strength="30" apply="grouping" delimiter=")">(</starter>
<starter strength="40" apply="prefix"
 element="cts:not-query">-</starter>

JSON "starter": [
 { "strength": 30,
 "apply": "grouping",
 "delimiter": ")",
 "label": "("
 },
 { "strength": 40,
 "apply": "prefix",
 "element": "cts:not-query",
 "label": "-"
 }
]

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 906

31.11.5.1Syntax Summary
The joiner component of a grammar option has the following structure. The operator token is the
text data of the starter element in XML and the value of the label property in JSON. Note that
you can only use the JSON form with selected Client APIs, such as the REST Client API.

31.11.5.2Component Description
The joiner component of a grammar option have the following semantics:

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<joiner strength="int"
 apply="funcName"
 ns="namespaceURI"
 at="modulePath"
 element="qName"
 options="optList"
 compare="operator"
 consume="nTokens"
 tokenize="value">
 opToken
</joiner>

"joiner": [{
 "label": "opToken",
 "strength": number,
 "apply": "funcName",
 "ns": "namespaceURI",
 "at": "modulePath",
 "element": "qName",
 "options": "optList",
 "compare": "operator",
 "consume": nTokens
 "tokenize": "value"
}]

Element, Attribute
or Property Name

Description

fn:data() (XML)
label (JSON)

Required. The joiner operator token. For example, the default grammar
includes a joiner with “AND” as the operator, which enables query text
such as “cat AND dog”.

strength Required. The order of precedence of this operator relative to other
operators in this grammar. Higher strength tokens or groups are
processed before lower ones.

apply The local-name of a function that parses expressions using this operator.
This can be one of the functions pre-defined by the default grammar or a
custom function; for a custom function, you must also include ns and at
values.

ns The XQuery module that contains the apply function, if using a
user-defined function.

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 907

at The module from which the apply function is imported, if using a
user-defined function.

element A cts:query element name that identifies the type of cts:query element
produced by the parsing function. For example, the default grammar
defines AND as a joiner that produces a cts:and-query.

options A space-separated list of options that are passed through to the
underlying apply function.

compare The range query comparison operator to apply when defining a
relational operator. Allowed values: LT, LE, GT, GE, NE, EQ.

consume The number of tokens to consume when parsing the right operand of the
joiner. For example, the near/ operator defined by the default grammar
consumes one token when parsing “A NEAR B”, but it consumes two
tokens when parsing the expression “A NEAR/3 B” (th count, 3, and B).

tokenize Allowed values: “word” or “default”.

Element, Attribute
or Property Name

Description

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 908

31.11.5.3Examples
The following examples from the default grammar define the AND and LT operators. For more
examples, see the default grammar.

31.12 operator
A named wrapper for one or more state elements, each representing a unique run-time
configuration option. An operator defines a set of options that can be applied at query time when
“opName:state” is encountered in the query text.

For example, if an operator with the name "sort" is defined, then the query text “sort:foo” will
select the "foo" of the “sort” operator at query runtime, using the options specified on that state
element. Options affecting query parsing (such as constraint, grammar, term, empty) may not be
configured via operators.

• Syntax Summary

• Component Description

• Examples

• Examples

Format Example

XML joiner strength="20" apply="infix" element="cts:and-query"
 tokenize="word">AND</joiner>
<joiner strength="50" apply="constraint" compare="LT"
 tokenize="word">LT</joiner>

JSON "joiner": [
 { "strength": 20,
 "apply": "infix",
 "element": "cts:and-query",
 "tokenize": "word",
 "label": "label"
 },
 { "strength": 50,
 "apply": "constraint",
 "compare": "LT",
 "tokenize": "word",
 "label": "LT"
 },
]

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 909

31.12.1 Syntax Summary
This option has the following structure. Note that you can only use the JSON form with selected
Client APIs, such as the REST Client API.

31.12.2 Component Description
The components of this option have the following semantics:

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<operator name="opName">
 <state name="stateName">
 <additional-query>
 ctsQuery
 </additional-query>
 <debug>boolean</debug>
 <forest>forestId</forest>
 <page-length>int</page-length>
 <quality-weight>double</quality-weight>
 <search-option>option</search-option>
 <searchable-expression>
 pathExpr
 </searchable-expression>
 <sort-order/>
 <transform-results/>
 </state>
</operator>

"operator: {
 "name": "opName",
 "state": [{
 "name": "stateName",
 "additional-query": "ctsQuery",
 "debug": boolean,
 "forest": forestId,
 "page-length": integer,
 "quality-weight": double,
 "search-option": ["option"],
 "searchable-expression":
 "pathExpr",
 "sort-order": [...],
 "transform-results": ...
 }]
}

Element, Attribute or Property
Name

Description

name Required. The name of this operator. The name must be
unique across all operators and constraints in scope.

state One or more state definitions for the operator.

state/name Required. The name of this state.

state/additional-query A cts:query to evaluate when the operator is in this state.

state/debug Whether or not to enable debug logging. Default: false.

state/forest A forest id. This must be an unsigned long value.

state/page-length The page length into which results should be chunked.

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 910

state/quality-weight Specifies a weighting factor to use in the query. The default
value is 1.0.

state/search-option Search options passed to the additional-query. You can
include zero or more options.

state/searchable-expression Specifies an XPath expression to search. For details, see
“searchable-expression” on page 921.

state/sort-order Specifies a sort order to apply. For details, see “sort-order”
on page 923.

state/transform-results Define a transformation to use when applying this state. For
details, see “transform-results” on page 936.

Element, Attribute or Property
Name

Description

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 911

31.12.3 Examples
The following example defines 2 operators, named “sort” and “page-length”. The “sort” operator
has 2 states, “down” and “up”. The “nresults” operator has 2 states, “few” and “many”. This
allows you, for example, to include a search term of the form sort:up to request results in
ascending order. Similarly, a search term of the form nresults:many cause 50 matches to be
returned.

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <operator name="sort">
 <state name="up">
 <sort-order>
 <direction>ascending</direction>
 <score/>
 </sort-order>
 </state>
 <state name="down">
 <sort-order>
 <direction>descending</direction>
 <score/>
 </sort-order>
 </state>
 </operator>
 <operator name="nresults">
 <state name="few">
 <page-length>10</page-length>
 </state>
 <state name="many">
 <page-length>50</page-length>
 </state>
 </operator>
</options>

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 912

31.12.4 See Also
For more details on using this option, see the following topics:

• “Operator Options” on page 395

31.13 page-length
This option specifies the number of search results to include in each page of returned results. The
default value is 10.

JSON {"options": {
 "operator": [
 { "name": "sort",
 "state": [
 { "name": "down",
 "sort-order": [{
 "direction": "descending",
 "score-order": null
 }]
 },
 { "name": "up",
 "sort-order": [{
 "direction": "ascending",
 "score-order": null
 }]
 }
]
 },
 { "name": "nresults",
 "state": [
 { "name": "few",
 "page-length": 10
 },
 { "name": "many",
 "page-length": 50
 }
]
 }]
} }

Format Example

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 913

The following example sets the page length to 20.

31.14 quality-weight
This option specifies a document quality weight to use when computing scores. The value should
be a double. The default value is 1.0.

The following example sets the quality weight to 2.0.

31.15 result-decorator
Defines a custom search result decorator XQuery function that is used to decorate each search
result with additional information. Before performing a search that uses this option, the XQuery
library module containing the function must be installed in the App Server modules database at
the XPath given by at.

• Syntax Summary

• Component Description

• Examples

Warning Result-decorator and other hooks on the Search API cannot be implemented as
JavaScript MJS modules.

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <page-length>20</page-length>
</options>

JSON {"options": {
 "page-length": 20
}}

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <quality-weight>2.0</quality-weight>
</options>

JSON {"options": {
 "quality-weight": 2.0
}}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 914

31.15.1 Syntax Summary
This option has the following structure. Note that you can only use the JSON form with selected
Client APIs, such as the REST Client API.

31.15.2 Component Description
The components of this option have the following semantics. The module identified by the option
must be installed under the App Server root or int he modules database at the location identified
by the at XPath expression.

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<result-decorator apply="funcName"
 ns="namespaceURI"
 at="modulePath" />

"result-decorator": {
 "apply": "funcName",
 "ns": "namespaceURI",
 "at": "modulePath"
}

Element, Attribute
or Property Name

Description

apply The local name of a custom result decorator function. You must also
specify ns and at.

ns The namespace of the function in apply. This must match the namespace
declaration of the XQuery library module containing the apply function.

at The XPath to the XQuery library module containing the apply function.

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 915

31.15.3 Examples
The following example specifies the function decorator in the XQuery library module located at
/ext/my.domain/decorator.xqy. assuming the module namespace is
http://marklogic.com/example/my-lib.

31.16 return-aggregates
This option specifies whether or not to include the result of running a builtin or user-defined
aggregate function in the result of a lexicon query, such as search:values. Aggregates are not
applicable to document searches (search:search).

Default: false (do not include). This option applies only to queries against values or tuples.

The following example sets the option to true.

For details, see the following topics:

• “Return Options” on page 398

• “Using Aggregate Functions” on page 463

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <result-decorator apply="decorator"
 ns="http://marklogic.com/example/my-lib"
 at="/ext/my.domain/decorator.xqy"/>
</options>

JSON {"options": {
 "result-decorator": {
 "apply": "decorator",
 "ns": "http://marklogic.com/example/my-lib",
 "at": "/ext/my.domain/decorator.xqy"
 }
} }

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <return-aggregates>true</return-aggregates>
</options>

JSON {"options": {
 "return-aggregates": true
}}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 916

• XQuery: search:values

• REST: Analyzing Lexicons and Range Indexes With Aggregate Functions in the REST
Application Developer’s Guide

31.17 return-constraints
This option specifies whether or not to include original constraint definitions in the result
summary (search:response) of a document search. Default: false (do not include). For details,
see “Return Options” on page 398.

The following example sets the option to true.

31.18 return-facets
This option specifies whether or not to include facets in the result summary (search:response)
from a document search. Default: true (include).

The following example sets the option to false.

For details, see the following topics:

• “Return Options” on page 398

• “Constrained Searches and Faceted Navigation” on page 34

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <return-constraints>true</return-constraints>
</options>

JSON {"options": {
 "return-constraints": true
}}

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <return-facets>false</return-facets>
</options>

JSON {"options": {
 "return-facets": false
}}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 917

31.19 return-frequencies
This option specifies whether or not to include term frequencies in the search result summary for
a values or tuples lexicon query. Default: true (include).

For details, see “Return Options” on page 398.

The following example sets the option to false.

31.20 return-metrics
This option specifies whether or not to include performance metrics in the search result summary
(search:response). Default: true (include).

For details, see “Return Options” on page 398.

The following example sets the option to false.

31.21 return-plan
This option specifies whether or not to include a query plan in the result summary
(search:response) of a document search. Default: false (do not include). The query plan enables
you to examine the evaluation plan for a query, which can aid query tuning. For example, you can
determine whether or not your range indexes are being used as you expect them to be.

For details, see “Return Options” on page 398 and xdmp:plan.

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <return-frequencies>false</return-frequencies>
</options>

JSON {"options": {
 "return-frequencies": false
}}

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <return-metrics>false</return-metrics>
</options>

JSON {"options": {
 "return-metrics": false
}}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 918

The following example sets the option to true.

31.22 return-qtext
This option specifies whether or not to include the original query text in the search result
summary (search:response). Default: true (include).

For details, see “Return Options” on page 398.

The following example sets the option to true.

31.23 return-query
This option specifies whether or not to include the final representation of your query as a
serialized cts:query in the result summary (search:response) of a document search. Default:
false (do not include).

For details, see “Return Options” on page 398.

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <return-plan>true</return-plan>
</options>

JSON {"options": {
 "return-plan": true
}}

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <return-qtext>true</return-qtext>
</options>

JSON {"options": {
 "return-qtext": true
}}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 919

The following example sets the option to true.

31.24 return-results
This option specifies whether or not to include search result details (search:result) in the result
summary (search:response) of a document search. Default: true (include). You can use the
transform-results option to control the formatting of the results.

For details, see “Return Options” on page 398.

The following example sets the option to false.

31.25 return-similar
This option specifies whether or not to include a list of similar documents in each search result in
the result summary (search:response) of a document search. Default: false (do not include).

For details, see “Return Options” on page 398.

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <return-query>true</return-query>
</options>

JSON {"options": {
 "return-query": true
}}

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <return-results>false</return-results>
</options>

JSON {"options": {
 "return-results": false
}}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 920

The following example sets the option to true.

31.26 return-values
This option specifies whether or not to include the index/lexicon values in the search results
summary when performing a lexicon or index query, such as with search:values. Default: true
(include).

For details, see “Return Options” on page 398.

The following example sets the option to false.

31.27 search-option
Advanced users can use this option to pass options to the underlying cts query option. For
example, use this option to pass through options such as “filtered”, “unfiltered”, and
“score-logtfidf”. See the XQuery function cts:search for a list of possible values.

This option can appear multiple times in XML and has array value in JSON.

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <return-similar>true</return-similar>
</options>

JSON {"options": {
 "return-similar": true
}}

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <return-values>false</return-values>
</options>

JSON {"options": {
 "return-values": false
}}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 921

The following example specifies two advanced search options.

31.28 searchable-expression

Note: Due to security and performance considerations, beginning in MarkLogic 9.0-10,
the searchable-expression property/element in query options is deprecated.
Please see Search API searchable-expression Deprecated in the Release Notes for
more information.

This option specifies an XPath expression to be searched when performing a document search.
For example, if you specify //p, then p elements that match the search criteria are returned.

The expression must be an inline fully searchable XPath expression, and all necessary
namespaces must be declared. The default value is fn:collection(), which searches all
documents in the database.

This option does not affect facet results. To constrain facets, use the additional-query option.

• Syntax Summary

• Component Description

• Examples

• See Also

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <search-option>filtered</search-option>
 <search-option>format-text</search-option>
</options>

JSON {"options": {
 "search-option": ["filtered", "format-text"]
}}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 922

31.28.1 Syntax Summary
This option has the following structure. Note that you can only use the JSON form with selected
Client APIs, such as the REST Client API.

31.28.2 Component Description
The components of this option have the following semantics:

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<searchable-expression xmlns:prefix="nsURI">
 xpathExpr
</searchable-expression>

"searchable-expression": {
 "text": "xpathExpr",
 "namespaces" : {
 "prefix": "nsURI"
 }
}

Element, Attribute or
Property Name

Description

fn:data() (XML)
text (JSON)

A fully searchable XPath expression. In XML, the expression is simply
the text data of the searchable-expression element. If the expression
uses namespace prefixes, you must define the prefixes in the option.

@xmlns:prefix (XML)
namespaces (JSON)

Define a binding between a prefix used in the searchable XPath expres-
sion and a namespace URI. In JSON, each child property of the
namespaces component is of the form "prefix": "namespaceURI". In
XML, define the binding using the standard xmlns attribute syntax.

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 923

31.28.3 Examples
The following example searches over elements addressed by the XPath expression
“/ex:orders/com:company”.

31.28.4 See Also
For more details on using this option, see the following topics:

• “Searchable Expression Option” on page 398

31.29 sort-order
Defines the sort order of an XML element, XML element attribute, field, or JSON property during
a document search.

A set of query options can contain multiple sort-order specifiers. The first such specification is
the primary sort order, the second is the secondary sort order, and so on. The default sort order is
to sort by score, descending.

• Syntax Summary

• Component Description

• Examples

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <searchable-expression xmlns:ex="http:example.com"
 xmlns:com="http://company.com">
 /ex:orders/com:company
 </searchable-expression>
</options>

JSON {"options": {
 "searchable-expression": {
 "text": "/ex:orders/com:company",
 "namespaces": {
 "ex": "http:example.com",
 "com": "http://company.com"
 }
 }
}}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 924

31.29.1 Syntax Summary
A sort-order option must contain exactly one element, field, or json-property child. If there is
an element child it can optionally have an attribute sibling (to specify an attribute of the
preceding element). Both the element and attribute must have ns and name attributes to specify
the namespace and local-name of the specified element and attribute.

A sort-order option can contain at most one of the ordering specifiers confidence-order,
document-order, fitness-order, quality-order, score-order, unordered, or score. Note that some
of these ordering algorithms are indistinguishable from each. For example, sorting by fitness and
sorting by score yield the same ordering.

The database configuration must include a range index on any XML element, XML element
attribute, JSON property, or field used to control sort order.

This option has the following structure. Note that you can only use the JSON form with selected
Client APIs, such as the REST Client API.

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<sort-order type="xsType" collation="collURI"
 direction="value">
 <element ns="namespace" name="name"/>
 <attribute ns="namespace" name="name"/>
 <field name="name"/>
 <json-property>name</json-property>
 <path-index/>
 <confidence-order/>
 <document-order/>
 <fitness-order/>
 <quality-order/>
 <undordered/>
 <score-order/>
 <score/>
</sort-order>

"sort-order": {
 "type": "xsType",
 "collation" : "collURI",
 "direction" : "value",
 "element": {
 "ns": "namespace",
 "name": "name"
 },
 "attribute": {
 "ns": "namespace",
 "name": "name"
 },
 "field": {"name": "name"},
 "json-property": "name",
 "path-index": [path index desc],
 "confidence-order": null,
 "document-order": null,
 "fitness-order": null,
 "quality-order": null,
 "unordered": null,
 "score-order": null,
 "score": null
}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 925

31.29.2 Component Description
The components of this option have the following semantics:

Element, Attribute
or Property Name

Description

element Identifies an XML element to which this sort order applies, or the ele-
ment containing the attribute to which this sort order applies. If specify-
ing only an element, you must set type to match the range index type of
this element. If an element is present, you cannot include a field,
json-property, or path-index child.

attribute Identifies the element attribute to which this sort order applies. You must
set type to match the range index type of this attribute. If an attribute
property is present, you cannot also specify a field, json-property, or
path-index, and you must specify element.

field Identifies the field to which this sort order applies. Cannot be used with
element, attribute, path-index, or json-property. You should not apply
sort-order to a field that has more than one included element.

json-property Identifies the JSON property to which this sort order applies. Cannot be
used with element, attribute, path-index, or field.

path-index Defines a path range index reference to which this sort order applies. For
details, see “path-index” on page 888. Cannot be used with element,
attribute, json-property, or field. The database configuration must
include a corresponding path range index.

type If you are sorting by an element, an attribute, or a JSON property, you
must specify a type property with a value corresponding to the range
index type of that element, attribute, or property. For example,
xs:string, xs:dateTime, and so on.

collation A collation URI. Optionally specify a collation when type is xs:string;
otherwise, use the collation of the query.

direction Specify the sorting direction. Default: ascending, except for score,
which defaults to descending. Allowed values: ascending, descending.

confidence-order Sort by confidence order, ascending. Use the direction specifier to
override the default direction. For details, see Relevance Scores: Under-

standing and Customizing in the Search Developer’s Guide. You can
define at most one of the ordering specifiers confidence-order, docu-
ment-order, fitness-order, quality-order, score-order, unordered, or
score.

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 926

document-order Sort by document order, ascending. Use the direction specifier to over-
ride the default direction. For details, see Relevance Scores: Understand-

ing and Customizing in the Search Developer’s Guide. You can define at
most one of the ordering specifiers confidence-order, document-order,
fitness-order, quality-order, score-order, unordered, or score.

fitness-order Sort by fitness order, ascending. Use the direction specifier to override
the default direction. For details, see Relevance Scores: Understanding and

Customizing in the Search Developer’s Guide. You can define at most one
of the ordering specifiers confidence-order, document-order, fit-
ness-order, quality-order, score-order, unordered, or score.

quality-order Sort by quality order, ascending. Use the direction specifier to override
the default direction. For details, see Relevance Scores: Understanding and

Customizing in the Search Developer’s Guide. You can define at most one
of the ordering specifiers confidence-order, document-order, fit-
ness-order, quality-order, score-order, unordered, or score.

score-order Sort by score order, ascending. Use the direction specifier to override
the default direction. For details, see Relevance Scores: Understanding and

Customizing in the Search Developer’s Guide. You can define at most one
of the ordering specifiers confidence-order, document-order, fit-
ness-order, quality-order, score-order, unordered, or score.

unordered Do not apply an ordering. For details, see Relevance Scores: Understand-

ing and Customizing in the Search Developer’s Guide. You can define at
most one of the ordering specifiers confidence-order, document-order,
fitness-order, quality-order, score-order, unordered, or score.

score Sort by score, descending. This selection is equivalent to using
sort-order with direction set to descending. For details, see Relevance

Scores: Understanding and Customizing in the Search Developer’s Guide.
You can define at most one of the ordering specifiers confidence-order,
document-order, fitness-order, quality-order, score-order, unordered,
or score.

Element, Attribute
or Property Name

Description

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 927

31.29.3 Examples
The following example specifies a primary sort order using the element value for my-element and
a secondary sort order of score descending. The database configuration must include a range
index on my-element with the specified collation.

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <sort-order type="xs:string"
 collation="http://marklogic.com/collation/"
 direction="ascending">
 <element ns="my-namespace" name="my-element"/>
 </sort-order>
 <sort-order direction="ascending">
 <score/>
 </sort-order>
</options>

JSON {"options": {
 "sort-order": [
 { "direction": "descending",
 "type": "xs:string",
 "collation": "http://marklogic.com/collation/",
 "element": {
 "name": "my-element",
 "ns": "my-namespace",
 }
 },
 { "direction": "ascending",
 "score": null
 }
]
} }

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 928

31.30 suggestion-source
This option defines a search term completion suggestion source for a constraint-qualified search
term using search:suggest (or an equivalent operation). That is, terms of the form “animal:cat”.
Suggestions are often used for type-ahead suggestions in a search user interface.

By default, suggestions for constraint-qualified terms are generated based on the qualifying
constraint. Use this option to specify an alternative source. This option is useful when you use a
named constraint for searching and facets, but you want to use a different source for type-ahead
suggestions without re-parsing your search terms.

For naked terms that are unqualified by a constraint prefix, such as “cat”, use the
default-suggestion-source option. For more details, see default-suggestion-source Option in the Search
Developer’s Guide.

• Syntax Summary

• Component Description

• Examples

• See Also

31.30.1 Syntax Summary
This option has the following structure. Note that you can only use the JSON form with selected
Client APIs, such as the REST Client API.

You must include ref, and it should refer to a named constraint defined elsewhere in your options.

Note: The use of word-lexicon (the database-wide word lexicon) is not recommended as
best practice; collection and range lexicons yield the best performance.

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<suggestion-source ref="constraint">
 <range/>
 <word/>
 <collection/>
 <word-lexicon collation="collURI">
 <fragment-scope>scope</fragment-scope>
 </word-lexicon>
 <suggestion-option>option</suggestion-option>
</suggestion-source>

"suggestion-source" : [{
 "ref": "constraintName",
 "range": { constraint defn },
 "word": { constraint defn },
 "collection": {constr. defn},
 "word-lexicon": {
 "collation": "collURI",
 "fragment-scope": "scope"
 },
 "suggestion-option": [option]
}]

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 929

31.30.2 Component Description
The components of this option have the following semantics. Use ref to identify the constraint to
override. Use range, word, collection, or word-lexicon to define the overriding suggestion
source. Note that the range, word, collection, and word-lexicon components are mutually
exclusive of each other.

A constraint defined within a suggestion-source can include a collation value, which specifies
the collation of the value lexicon used during query evaluation. If no collation is specified, then
the query uses the default collation for the context in which the query is evaluated.

Element, Attribute or
Property Name

Description

ref Required. The name of the constraint overridden by this option. The
named constraint must be defined elsewhere in the options.

If the option specifies only ref with no range, word, collection, or
word-lexicon, then no suggestions are generated when the named
constraint is applied.

range Defines a range constraint that limits suggestions to values that match
this constraint.

word Defines a word constraint that limits suggestions to words that match
this constraint.

collection Defines a collection constraint that limits suggestions to collection
names. If a prefix is present on the constraint definition, constrain
suggestions to collection names with the given prefix.

word-lexicon Limit suggestions to words found in the database-wide word lexicon.

The use of word-lexicon is not recommended as best practice;
collection and range lexicons yield the best performance.

suggestion-option Query options to use in generating suggestions. For details, see
“Suggestion Options” on page 953.

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 930

31.30.3 Examples
The following options define 3 constraints (“color”, “price”, and “pets”), along with a
suggestion-source option applicable to each. The suggestion source for “color” specifies
suggestions matches should be case-sensitive. The suggestion source for “price” specifies that no
suggestions should be generated from “price”. The suggestion source for “pets” specifies that
suggestions should be drawn from an alternative source, rather than the collection defined by the
original constraint

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <constraint name="color">
 <word>
 <json-property>color</json-property>
 </word>
 </constraint>
 <suggestion-source ref="color">
 <suggestion-option>case-sensitive</suggestion-option>
 </suggestion-source>

 <constraint name="price">
 <range type="xs:unsignedInt">
 <element ns="" name="price"/>
 </range>
 </constraint>
 <suggestion-source ref="price"/>

 <constraint name="pets">
 <collection prefix="/my/collection/" facet="true" />
 </constraint>
 <suggestion-source ref="pets">
 <collection prefix="/some/collection/subset/"
 </suggestion-source>
</options>

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 931

31.30.4 See Also
For more details on using this option, see the following topics:

• Search Term Completion Using search:suggest in the Search Developer’s Guide

• Java: Generating Search Term Completion Suggestions in the Java Application Developer’s
Guide

• REST: Generating Search Term Completion Suggestions in the REST Application
Developer’s Guide

• Node.js: Generating Search Term Completion Suggestions in the Node.js Application
Developer’s Guide

31.31 term
This option defines the handling of empty searches and controls options for how individual terms
(that is, terms not associated with a constraint) will be represented when parsing the search terms.
This option only applies to document searches and search term suggestions.

JSON {"options": {
 "constraint": [
 { "name": "color",
 "word": { "json-property": "color" }
 },
 { "name": "price",
 "range": {
 "type": "xs:unsignedInt",
 "element": { "ns": "", "name": "price" }
 }
 },
 { "name": "pets",
 "collection": { "prefix": "/my/collection", "facet": true}
 }
],
 "suggestion-source": [
 { "ref": "color", "suggestion-option": ["case-sensitive"] },
 { "ref": "price" },
 { "ref": "pets",
 "collection": { "prefix": "/my/collcetion/subset" }
 }
]
} }

Format Example

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 932

An “empty” search when you pass an empty query text string to search:search or an equivalent
operation. To control how empty searches (that is, the empty string passed into search:search)
are resolved, specify an empty child element with an apply attribute. The value of the apply
attribute specifies the behavior for empty searches: a value of all-results specifies that empty
searches return everything in the database, a value of no-results (the default) specifies that an
empty search returns nothing.

You can also specify a default child element which determines special handling to all terms, so
you can have all terms apply a set of rules such as query weighting, specifying a element or
attribute value or word query to be used as a default, or specifying a constraint to be applied by
default.

Include a fragment-scope element to limit the scope of term queries to document or fragment
scope. The local definition overrides a global fragment scope on the enclosing options element as
long as the term definition does not include a constraint definition or reference, or a custom
function specification.

A custom term function has the same signature as a custom constraint function. For details about
the signature, see Implementing a Structured Query parse Function.

• Syntax Summary

• Component Description

• Examples

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 933

31.31.1 Syntax Summary
This option has the following structure. Note that you can only use the JSON form with selected
Client APIs, such as the REST Client API.

31.31.2 Component Description
The components of this option have the following semantics:

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<term apply="funcName" ns="namespaceURI"
 at="modulePath">
 <default ref="constraintName">
 <word/>
 <value/>
 <range/>
 </default>
 <empty apply="value" />
 <weight>double</weight>
 <term-option>option</term-option>
 <fragment-scope>scope</fragment-scope>
</term>

"term": {
"default": {
 "ref": "constraintName",
 "word": ...,
 "value": ...,
 "range": ...
 },
 "empty": {
 "apply": "value",
 },
 "weight": double,
 "fragment-scope": "scope"
 "apply": "funcName",
 "ns": "namespaceURI",
 "at": "modulePath"
 "term-option": ["option"]
}

Element, Attribute
or Property Name

Description

apply The local-name of a function that parses expressions using this starter.
This can be one of the functions pre-defined by the default grammar or a
custom function; for a custom function, you must also include ns and at
values.

ns The XQuery module that contains the apply function, if using a
user-defined function.

at The module from which the apply function is imported, if using a
user-defined function.

default Specify default handling of naked terms. Either use ref to provide the
name of a constraint defined elsewhere in the options, or define a range,
value, or word constraint child to apply.

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 934

31.31.3 Examples
The following example specifies that an empty search should return no results, and that terms are
matched diacritic-insensitive and unwildcarded.

empty Specify how to resolve an empty, such as when an empty string query is
passed to search:search. Set apply to either "all-results" or
"no-results". Default: all-results.

weight A weighting factor to apply to individual terms. Default: 1.0.

term-option Zero or more options to apply to term matching. For details, see “Term
Options” on page 950.

fragment-scope Specifies a local fragment scope for evaluating term. The local frag-
ment-scope overrides any global fragment-scope. However, this local
scope is ignored if the containing term definition includes a constraint
definition, constraint reference, or a custom function (via apply).
Allowed values: properties, documents (default).

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <term>
 <empty apply="no-results" />
 <term-option>diacritic-insensitive</term-option>
 <term-option>unwildcarded</term-option>
 </term>
<options>

JSON {"options": {
 "term": {
 "empty": {"apply": "no-results"},
 "term-options": ["diacritic-insensitive", "unwildcarded"]
 }
}}

Element, Attribute
or Property Name

Description

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 935

The following example specifies a custom term handling function.

The following example specifies that terms with no constraint qualifier should be parsed as a
weighted word query on the element with QName foo:bar:

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <term apply="my-handler" ns="/my/namespace" at="/my/custom.xqy">
 <empty apply="all-results" />
 </term>

<options>

JSON {"options": {
 "term": {
 "apply": "my-handler",
 "ns": "/my/namespace",
 "at": "/my/custom.xqy",
 "empty": {"apply": "no-results"},
 }
}}

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <term>
 <default>
 <word>
 <element ns="foo" name="bar" />
 <weight>2.0</weight>
 </word>
 </default>
 </term>
<options>

JSON {"options": {
 "term": {
 "default": {
 "word": {
 "element": { "ns": "foo", "name": "bar" },
 "weight" 2.0
 }
 }
 }
}}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 936

The following example specifies that a constraint defined elsewhere in the options should be
applied to terms:

31.32 transform-results
Specifies a function to use to process a search result for the snippet output. The default is that each
result is formatted using the built-in default snippetting function. For details, see “Modifying
Your Snippet Results” on page 401.

You can also use one of the other pre-defined snippeting functions or define your own custom
snippet generation function. See the description of apply in “Component Description” on
page 938. When you define a custom function, you can pass in parameters using the param child
elements or properties.

• Syntax Summary

• Component Description

• Examples

• See Also

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <constraint name="my-constraint">...</constraint>
 <term>
 <default ref="my-constraint" />
 </term>
<options>

JSON {"options": {
 "constraint": { "name": "my-constraint", ... },
 "term": {
 "default": {
 "ref": { "my-constraint" }
 }
 }
}}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 937

31.32.1 Syntax Summary
Note that you can only use the JSON form with selected Client APIs, such as the REST Client
API.

When using a built-in snippeting function, this option can take one of the following forms:

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<transform-results apply="snippet">
 <preferred-matches>
 <element ns="namespace" name="elemName" />
 <json-property>name</json-property>
 </preferred-matches>
 <per-match-tokens>value</per-match-tokens>
 <max-matches>value</max-matches>
 <max-snippet-chars>value</max-snippet-chars>
</transform-results>

<transform-results apply="metadata-snippet">
 <preferred-matches>
 <element ns="namespace" name="elemName" />
 <json-property>name</json-property>
 </preferred-matches>
</transform-results>

<transform-results apply="raw" />

<transform-results apply="empty-snippet" />

"transform-results": {
 "apply": "snippet",
 "per-match-tokens": number,
 "max-matches": number,
 "max-snippet-chars": number,
 "preferred-matches": {
 "element": [{
 "ns": "namespaceURI",
 "name": "elemName"
 }],
 "json-property": ["name"]
 }
}

"transform-results": {
 "apply": "metadata-snippet",
 "preferred-matches": {
 "element": [{
 "ns": "namespaceURI",
 "name": "elemName"
 }],
 "json-property": ["name"]
 }
}

"transform-results": {
 "apply": "raw",
}

"transform-results": {
 "apply": "empty-snippet",
}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 938

To use a custom snippeting function, use the following form of the option:

31.32.2 Component Description
The components of this option have the following semantics:

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<transform-results apply="customFunc"
 ns="namespaceURI" at="modulePath">
 userDefinedParams
</transform-results>

Using the built-in snippeters:

"transform-results": {
 "apply": "funcName",
 "ns": "namespaceURI",
 "at": "modulePath",
 "userDefinedParam": value
}

Element, Attribute
or Property Name

Description

apply The local-name of a built-in or custom function* with which to produce
snippet output for a search result. The following are the builtin function
names; any other value is taken to be the name of a custom snippeting
function.

• snippet (default)
• raw: return the whole node
• empty-snippet: return an empty snippet
• metadata-snippet: return the snippet from the specified element in

the properties document

preferred-matches When using the snippet or metadata-snippet built-in function, the
snippet alogorithm looks for matches first in the specified XML element
or JSON property nodes in each snippet. If no matches are found in the
preferred elements and/or properties, the algorithm falls back to default
content.

per-match-tokens When using the snippet built-in function, the maximum number of
tokens (typically words) per matching node that surround the
highlighted term(s) in the snippet. Default: 30.

max-matches When using the snippet built-in function, the maximum number of
nodes containing a highlighted term that will display in the snippet.
Default: 4.

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 939

Warning *Custom constraints, decorators, and other hooks on the Search API cannot be
implemented as JavaScript MJS modules.

31.32.3 Examples
The following example modifies the characteristics of the default snippeting function
(apply=snippet is implicit because no function is named).

max-snippet-chars When using the snippet built-in function, limit total snippet size to this
many characters. Default: 200.

ns When using a custom snippeting function, the namespace URI of the
containing module.

at When using a custom snippeting function, the path to the module
containing the function.

userDefinedParams When using a custom snippeting function, specify parameters to pass to
the custom function as additional XML elements or JSON properties on
the option.

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <transform-results>
 <max-matches>5</max-matches>
 <max-snippet-chars>100</max-snippet-chars>
 <preferred-matches>
 <element ns="/my/namespace" name="some-element" />
 <json-property>myProperty</json-property>
 </preferred-matches>
 </transform-results>
</options>

JSON {"options": {
 "transform-results": {
 "max-matches": 5,
 "max-snippet-chars": 100,
 "preferred-matches": {
 "element": [{"ns": "/my/namespace", "name": "some-element"}],
 "json-property": ["myProperty"]
 }
 }
}}

Element, Attribute
or Property Name

Description

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 940

The following example illustrates how to use the “raw” built-in snippeter. Use the same form for
“empty-snippet”, but change the value of apply.

The following example demonstrates how to specify a custom snippet function and pass in some
parameter values:

31.32.4 See Also
For more details on using this option, see the following topics:

• “Modifying Your Snippet Results” on page 401

• Customizing Search Snippets in the REST Application Developer’s Guide

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <transform-results apply="raw">
 <max-matches>5</max-matches>
 </transform-results>
</options>

JSON {"options": {
 "transform-results": {"apply": "raw"}
}}

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <transform-results apply="my-snippeter"
 ns="/my/namespace" at="/my-library.xqy">
 <my-param1>42</my-param1>
 <my-param2>abc</my-param2>
 </transform-results>
</options>

JSON {"options": {
 "transform-results": {
 "apply": "my-snippeter",
 "ns": "/my/namespace",
 "at": "/my-library.xqy",
 "my-param1": 42,
 "my-param2": "abc"
 }
}}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 941

31.33 tuples
The tuples option identifies values range indexes or lexicons in which to find value
co-occurrences. Co-occurrences take the form of a values-response in the query response. Use
this option with search:values and equivalent lexicon query interfaces.

You can specify range and geospatial indexes or the collection or URI lexicons. Include an
aggregate child to specify an aggregate builtin or user-defined function to apply to the values.
You can further tailor your results using top level options such as return-frequencies, return-values,
and return-aggregates.

• Syntax Summary

• Component Description

• Examples

• See Also

31.33.1 Syntax Summary
This option has the following structure. Note that you can only use the JSON form with selected
Client APIs, such as the REST Client API.

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<tuples name="name" style="value">
 <range/>
 <geo-elem/>
 <geo-elem-pair/>
 <geo-attr-pair/>
 <geo-json-property/>
 <geo-json-property-pair/>
 <geo-path>
 <collection/>
 <uri/>
 <aggregate apply="funcName"
 udf="udfName" />
 <values-option>option</values-option>
</tuples>

"tuples": {
 "style": "value",
 "name": "name",
 "collection": ...,
 "range": ...,
 "geo-elem": ...,
 "geo-elem-pair": ...,
 "geo-attr-pair": ...,
 "geo-json-property": ...,
 "geo-json-property-pair": ...,
 "geo-path": ...,
 "collection": null,
 "uri": null,
 "aggregate": [{
 "apply": "funcName",
 "udf": string
 }],
"values-option": ["option"]
}

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 942

31.33.2 Component Description
The components of this option have the following semantics:

Element, Attribute or
Property Name

Description

name Required. The name identifying this tuples definition.

style How to format the results. Allowed values: default, consistent.
When set to consistent, the output is structured the same whether
returning single values or tuples. When set to default, the layout
differs between values and tuples results.

range A range constraint with which to extract values from a range
index or value lexicon.

geo-elem A geospatial element constraint with which to extract values from
a geospatial index.

geo-elem-pair A geospatial element pair constraint with which to extract values
from a geospatial index.

geo-attr-pair A geospatial element attribute constraint with which to extract
values from a geospatial index.

geo-json-property A geospatial JSON property constraint with which to extract val-
ues from a geospatial index.

geo-json-property-pair A geospatial JSON property pair constraint with which to extract
values from a geospatial index.

geo-path A geospatial path constraint with which to extract values from a
geospatial index.

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 943

collection Extract values from the collection lexicon.

uri Extract values from the URI lexicon.

aggregate Specify builtin or user-defined aggregate functions to apply to
lexicon values or value co-occurrences. The apply child is
required and names the built-in or user-defined aggregate func-
tion to apply. When using a UDF, use udf to specify the path to
the native plugin library containing the implementation of the
function. In XML, specify this element multiple times to compute
multiple aggregates.

values-option Specify zero or more options that affect the values under consid-
eration. For details, see “Values Options” on page 954.

Element, Attribute or
Property Name

Description

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 944

31.33.3 Examples
The following example specifies co-occurrences between editor and author element values.

31.33.4 See Also
For details on using this option, see the following topics:

• “Browsing With Lexicons” on page 445

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <tuples name="editor-author">
 <range type="xs:string"
 collation="http://marklogic.com/collation">
 <element name="editor" ns="" />
 </range>
 <range type="xs:string"
 collation="http://marklogic.com/collation">
 <element name="author" ns="" />
 </range>
 <values-option>limit=5</values-option>
 </tuples>
</options>

JSON {"options": {
 "tuples": [{
 "name": "editor-author",
 "indexes": [
 {"range": {
 "type": "xs:string",
 "collation": "http://marklogic.com/collation",
 "element": {
 "name": "editor",
 "ns": ""
 }
 } },
 {"range": {
 "type": "xs:string",
 "collation": "http://marklogic.com/collation",
 "element": {
 "name": "author",
 "ns": ""
 }
 } }
],
 "values-option": ["limit=5"]
 }]
} }

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 945

• “Returning Lexicon Values With search:values” on page 54

• “Using Aggregate Functions” on page 463

• Java: Apply Dynamic Query Options to Document Searches in the Java Application
Developer’s Guide

• Node.js: Querying Lexicons and Range Indexes in the Node.js Application Developer’s
Guide

• REST: Querying Lexicons and Range Indexes in the REST Application Developer’s Guide

31.34 values
The values option constrains a values search to one or more range indexes or lexicons. Matched
values take the form of a values-response in the query response. Use this option with
search:values and equivalent interfaces.

You can specify range and geospatial indexes or the collection or URI lexicons. Include an
aggregate child to specify an aggregate builtin or user-defined function to apply to the values.
You can further tailor your results using top level options such as return-frequencies, return-values,
and return-aggregates.

• Syntax Summary

• Component Description

• Examples

• See Also

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 946

31.34.1 Syntax Summary
This option has the following structure. Note that you can only use the JSON form with selected
Client APIs, such as the REST Client API.

31.34.2 Component Description
The components of this option have the following semantics. You can only include one
index/lexicon specification.

XML JSON

All elements are in the namespace
http://marklogic.com/appservices/search.

<values name="name" style="value">
 <range/>
 <geo-elem/>
 <geo-elem-pair/>
 <geo-attr-pair/>
 <geo-json-property/>
 <geo-json-property-pair/>
 <geo-path>
 <collection/>
 <uri/>
 <aggregate apply="funcName"
 udf="udfName" />
 <values-option>option</values-option>
</values>

"values": {
 "style": "value",
 "name": "name",
 "range": ...,
 "geo-elem": ...,
 "geo-elem-pair": ...,
 "geo-attr-pair": ...,
 "geo-json-property": ...,
 "geo-json-property-pair": ...,
 "geo-path": ...,
 "collection": null,
 "uri": null,
 "aggregate": [{
 "apply": "funcName",
 "udf": string
 }],
"values-option": ["option"]
}

Element, Attribute or
Property Name

Description

name Required. The name identifying this tuples definition.

style How to format the results. Allowed values: default, consistent.
When set to consistent, the output is structured the same whether
returning single values or tuples. When set to default, the layout
differs between values and tuples results.

range A range constraint with which to extract values from a range
index or value lexicon.

geo-elem A geospatial element constraint with which to extract values from
a geospatial index.

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 947

geo-elem-pair A geospatial element pair constraint with which to extract values
from a geospatial index.

geo-attr-pair A geospatial element attribute constraint with which to extract
values from a geospatial index.

geo-json-property A geospatial JSON property constraint with which to extract val-
ues from a geospatial index.

geo-json-property-pair A geospatial JSON property pair constraint with which to extract
values from a geospatial index.

geo-path A geospatial path constraint with which to extract values from a
geospatial index.

collection Extract values from the collection lexicon.

uri Extract values from the URI lexicon.

aggregate Specify builtin or user-defined aggregate functions to apply to the
lexicon values. The apply child is required and names the built-in
or user-defined aggregate function to apply. When using a UDF,
use udf to specify the path to the native plugin library containing
the implementation of the function.In XML, specify this element
multiple times to compute multiple aggregates.

values-option Specify zero or more options that affect the values under consid-
eration. For details, see “Values Options” on page 954.

Element, Attribute or
Property Name

Description

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 948

31.34.3 Examples
The following example illustrates several kinds of values query specification: An element range
index spec that uses values-option, a URI lexicon spec, a collection lexicon spec, and a JSON
property range index spec that applies a custom aggregate function to index values. For more
examples, see search:values.

Format Example

XML <options xmlns="http://marklogic.com/appservices/search">
 <values name="editor-author">
 <range type="xs:string"
 collation="http://marklogic.com/collation">
 <element name="editor" ns="" />
 </range>
 <values-option>limit=5</values-option>
 </values>
 <values name="uris">
 <uri/>
 </values>
 <values name="coll">
 <collection/>
 </values>
 <values name="aggregate">
 <range type="xs:double">
 <json-property>test</json-property>
 </range>
 <aggregate apply="mycalc" udf="sampleplugin" />
 </values>
</options>

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 949

31.34.4 See Also
For details on using this option, see the following topics:

• The XQuery function search:values

• “Browsing With Lexicons” on page 445

• “Returning Lexicon Values With search:values” on page 54

• “Using Aggregate Functions” on page 463

• Java: Apply Dynamic Query Options to Document Searches in the Java Application
Developer’s Guide

• Node.js: Querying Lexicons and Range Indexes in the Node.js Application Developer’s
Guide

• REST: Querying Lexicons and Range Indexes in the REST Application Developer’s Guide

JSON {"options": {
 "values": [
 { "name": "editor-author",
 "range": {
 "type": "xs:string",
 "collation": "http://marklogic.com/collation",
 "element": { "name": "editor", "ns": "" }
 },
 "values-option": "limit=5"
 },
 { "name": "uris",
 "uri": null
 },
 { "name": "coll",
 "collection": null
 },
 { "name": "aggregate",
 "range": {
 "type": "xs:double",
 "json-property": "test"
 },
 "aggregate": [{
 "apply": "mycalc",
 "udf": "sampleplugin"
 }]
 }
]
} }

Format Example

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 950

31.35 Term Options
The following options can be specified as the value of a term-option child in options that support
them, such as a value or word constraint. By default, a query uses the same default options as the
underlying cts:query constructors, and the defaults change based on your index configuration.

The following term options are supported:

• case-sensitive

• case-insensitive

• diacritic-sensitive

• diacritic-insensitive

• punctuation-sensitive

• punctuation-insensitive

• whitespace-sensitive

• whitespace-insensitive

• stemmed

• unstemmed

• wildcarded

• unwilcarded

• exact

• lang=iso639code

• distance-weight

• lexicon-expand=full

• lexicon-expand=prefix-postfix

• lexicon-expand=off

• lexicon-expand=heuristic

Both distance-weight and lexicon-expand options are new with MarkLogic version 8. The
following are new with MarkLogic version 9:

• lexicon-expansion-limit

• limit-check

• no-limit-check

31.36 Facet Options
The following options can be specified as the value of a facet-option child in constraint types that
can be used as a facet (any constraints except word, value, element-query, or property).

Legal values for a facet-option are generally any option that can be passed into the underlying
query or lexicon API. The following list enumerates the facet-option values, but be aware that
some options are only available with some range types. For more detail on these options, see the
documentation for the underlying range or lexicon APIs.

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 951

The following facet options are supported:

• ascending

• descending

• empties

• any

• document

• properties

• locks

• frequency-order

• item-order

• fragment-frequency

• item-frequency

• gridded (geospatial constraints only)

• type=type

• timezone=TZ

• limit=N

• sample=N

• truncate=N

• skip=N

• score-logtfidf

• score-logtf

• score-simple

• score-random

• checked

• unchecked

• eager

• lazy

• concurrent

• map

The concurrent and map options are removed in the latest version of MarkLogic version 7 and all
newer releases. The any, document, locks, and properties options are new with MarkLogic
version 8. The lazy and eager options are new with MarkLogic version 9.

31.37 Range Options
The following options can be specified as the value of a range-option child in options that
support them, such as a range constraint.

• score-function=zero (default)

• score-function=reciprocal

• score-function=linear

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 952

• slope-factor=number

• max-occurs=number

• min-occurs=number

• cached

• uncached

• cached-incremental

• synonym

For details, see Including a Range or Geospatial Query in Scoring and cts:element-range-query
(XQuery) or cts.elementRangeQuery (JavaScript), or equivalent functions for other constraint
types. The cached-incremental option is new with MarkLogic version 9.

31.38 Geospatial Point Query Options
The following options can be specified as the value of a geospatial-option child in options that
support them, such as a geo-elem or geo-json-property.

• coordinate-system=coord_sys/precision

• coordinate-system=raw

• coordinate-system=wgs84/double

• coordinate-system=etrs89/double

• coordinate-system=raw/double

• cached-incremental

• precision=float

• precision=double

• units=units

• boundaries-included

• boundaries-excluded

• boundaries-latitude-excluded

• boundaries-longitude-excluded

• boundaries-south-excluded

• boundaries-north-excluded

• boundaries-east-excluded

• boundaries-west-excluded

• boundaries-circle-excluded

• type=point

• type=long-lat-point

• score-function=zero (default)

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 953

• score-function=reciprocal

• score-function=linear

• slope-factor=number

• cached

• uncached

• synonym

31.39 Geospatial Region Query Options
The following options can be specified as the value of a geospatial-option child in a geospatial
region query, such as a geo-region-path. For more information about the options, see
cts:geospatial-region-query.

• score-function=zero (default)

• score-function=reciprocal

• score-function=linear

• slope-factor=number

• synonym

• tolerance=distance

• units=units

31.40 Suggestion Options
The following options can be specified as the value of a suggestion-option child in a
default-suggestion-source or suggestion-source option.

• case-sensitive

• case-insensitive

• diacritic-sensitive

• diacritic-insensitive

• ascending

• descending

• frequency-order

• item-order

• fragment-frequency

• item-frequency

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 954

• type=type

• timezone=TZ

• sample=N

• truncate=N

• score-logtfidf

• score-logtf

• score-simple

• score-random

• checked

• unchecked

• any

• document

• locks

• properties

The any, document, locks, and properties options are new with MarkLogic version 8.

31.41 Values Options
The following options can be specified as the value of a values-option child in a tuples or values
option. For a description of these options, see cts:values and cts:value-tuples in the XQuery
and XSLT Reference Guide. Some options can only be used when defining a values
configurations; others can only be used when defining tuples.

• ascending

• descending

• any

• document

• properties

• locks

• frequency-order

• item-order

• fragment-frequency

• item-frequency

• timezone=TZ

• limit=N

• skip=N

• sample=N

• truncate=N

• score-logtfidf

MarkLogic Server Appendix: Query Options Reference

MarkLogic 10—May, 2019 Search Developer’s Guide—Page 955

• score-logtf

• score-simple

• score-random

• score-zero

• checked

• unchecked

• eager

• lazy

• concurrent

• map (for values only)

• ordered (for tuples only)

• proximity=N (for tuples only)

• too-many-positions-error

The any, document, locks, too-many-positions-error and properties options are new with
MarkLogic version 8. The eager and lazy options are new with MarkLogic version 9.

MarkLogic Server Technical Support
32.0 Technical Support
957

MarkLogic provides technical support according to the terms detailed in your Software License
Agreement or End User License Agreement.

We invite you to visit our support website at http://help.marklogic.com to access information on
known and fixed issues, knowledge base articles, and more. For licensed customers with an active
maintenance contract, see the Support Handbook for instructions on registering support contacts
and on working with the MarkLogic Technical Support team.

Complete product documentation, the latest product release downloads, and other useful
information is available for all developers at http://developer.marklogic.com. For technical
questions, we encourage you to ask your question on Stack Overflow.
MarkLogic 11

http://help.marklogic.com/
https://stackoverflow.com/questions/tagged/marklogic
http://developer.marklogic.com
http://www.marklogic.com/files/Mark_Logic_Support_Handbook.pdf

MarkLogic Server Technical Support
MarkLogic 11—December, 2022 Installation Guide for All Platforms—Page 957

MarkLogic Server Copyright
33.0 Copyright
999

MarkLogic Server 10.0 and supporting products.
Last updated: February, 2022

Copyright © 2022 MarkLogic Corporation. All rights reserved.
This technology is protected by U.S. Patent No. 7,127,469B2, U.S. Patent No. 7,171,404B2, U.S.
Patent No. 7,756,858 B2, and U.S. Patent No 7,962,474 B2, US 8,892,599, and US 8,935,267.

The MarkLogic software is protected by United States and international copyright laws, and
incorporates certain third party libraries and components which are subject to the attributions,
terms, conditions and disclaimers set forth below.

For all copyright notices, including third-party copyright notices, see the Combined Product
Notices for your version of MarkLogic.
MarkLogic 11

MarkLogic Server Copyright
MarkLogic 11—December, 2022 Installation Guide for All Platforms—Page 959

	Search Developer’s Guide
	Table of Contents
	1.0 Developing Search Applications in MarkLogic Server
	1.1 Overview of Search Features in MarkLogic Server
	1.1.1 High Performance Full Text Search
	1.1.2 APIs for Multiple Programming Languages
	1.1.3 Support for Multiple Query Styles
	1.1.4 Support for Multiple Query Types
	1.1.5 Full XPath Search Support in XQuery
	1.1.6 Lexicon and Range Index-Based APIs
	1.1.7 Stemming, Wildcard, Spelling, and Much More Functionality
	1.1.8 Alerting API and Built-Ins

	1.2 Where to Find Search Information

	2.0 Search API: Understanding and Using
	2.1 Understanding the Search API
	2.1.1 Making the Search API Available to Your Application
	2.1.2 Simple search:search Example and Response Output
	2.1.3 Automatic Query Text Parsing and Grammar
	2.1.4 Constrained Searches and Faceted Navigation
	2.1.5 Built-In Snippetting
	2.1.6 Search Term Completion
	2.1.7 Search Customization Via Options and Extensions
	2.1.8 Speed and Accuracy

	2.2 Controlling a Search With Query Options
	2.3 Search Term Completion Using search:suggest
	2.3.1 default-suggestion-source Option
	2.3.2 Choose Suggestions With the suggestion-source Option
	2.3.3 Use Multiple Query Text Inputs to search:suggest
	2.3.4 Make Suggestions Based on Cursor Position
	2.3.5 search:suggest Examples

	2.4 Creating a Custom Constraint
	2.4.1 Implementing the parse Function
	2.4.2 Implementing the start-facet Function
	2.4.3 Implementing the finish-facet Function
	2.4.4 Example: Creating a Simple Custom Constraint
	2.4.5 Example: Creating a Custom Constraint for Structured Queries
	2.4.6 Example: Creating a Custom Constraint Geospatial Facet

	2.5 Search Grammar
	2.6 Returning Lexicon Values With search:values
	2.6.1 Specifying the Input Lexicons
	2.6.2 Constraining and Filtering Your Results
	2.6.3 Example: Using a Query to Constrain Results
	2.6.4 Example: Filtering with Starting Value, Limit, and Page Length
	2.6.5 Example: Finding Value Co-Occurrences
	2.6.6 Additional Interfaces

	2.7 JSON Support in the Search API
	2.8 More Search API Examples
	2.8.1 Buckets Example
	2.8.2 Computed Buckets Example
	2.8.3 Sort Order Example

	3.0 Searching Using String Queries
	3.1 String Query Overview
	3.2 The Default String Query Grammar
	3.2.1 Query Components and Operators
	3.2.2 Operator Precedence
	3.2.3 Using Relational Operators on Constraints
	3.2.4 String Query Examples

	4.0 Searching Using Structured Queries
	4.1 Structured Query Overview
	4.2 Structured Query Concepts
	4.2.1 Major Query Categories
	4.2.2 Understanding the Difference Between Term and Word Queries
	4.2.3 Understanding Containment
	4.2.4 Text Match Semantics
	4.2.5 Structured Query Sub-Query Taxonomy

	4.3 Constructing a Structured Query
	4.4 Syntax Summary
	4.5 Examples of Structured Queries
	4.5.1 Example: Simple Structured Search
	4.5.2 Example: Structured Search With Constraint References as Text
	4.5.3 Example: Structured Search With Constraint References
	4.5.4 Example: Structured Search on Key-Value Metadata Fields

	4.6 Syntax Reference
	4.6.1 query
	4.6.2 term-query
	4.6.3 and-query
	4.6.4 or-query
	4.6.5 and-not-query
	4.6.6 not-query
	4.6.7 not-in-query
	4.6.8 true-query
	4.6.9 false-query
	4.6.10 near-query
	4.6.11 boost-query
	4.6.12 properties-fragment-query
	4.6.13 directory-query
	4.6.14 collection-query
	4.6.15 container-query
	4.6.16 document-query
	4.6.17 document-fragment-query
	4.6.18 locks-fragment-query
	4.6.19 range-query
	4.6.20 value-query
	4.6.21 word-query
	4.6.22 geo-elem-query
	4.6.23 geo-elem-pair-query
	4.6.24 geo-attr-pair-query
	4.6.25 geo-path-query
	4.6.26 geo-json-property-query
	4.6.27 geo-json-property-pair-query
	4.6.28 geo-region-path-query
	4.6.29 range-constraint-query
	4.6.30 value-constraint-query
	4.6.31 word-constraint-query
	4.6.32 collection-constraint-query
	4.6.33 container-constraint-query
	4.6.34 element-constraint-query
	4.6.35 properties-constraint-query
	4.6.36 custom-constraint-query
	4.6.37 geospatial-constraint-query
	4.6.38 geo-region-constraint-query
	4.6.39 lsqt-query
	4.6.40 period-compare-query
	4.6.41 period-range-query
	4.6.42 operator-state

	5.0 Searching Using Query By Example
	5.1 QBE Overview
	5.1.1 Search Criteria Based on Document Structure
	5.1.2 Logical Operators
	5.1.3 Comparison Operators
	5.1.4 Query by Value or Word
	5.1.5 Search Result Customization
	5.1.6 Options for Controlling Search Behavior

	5.2 Example
	5.2.1 XML Example
	5.2.2 JSON Example

	5.3 Understanding QBE Sub-Query Types
	5.3.1 Value Query
	5.3.2 Word Query
	5.3.3 Range Query
	5.3.4 Composed Query
	5.3.5 Container Query

	5.4 Search Criteria Quick Reference
	5.4.1 XML Search Criteria Quick Reference
	5.4.2 JSON Search Criteria Quick Reference
	5.4.3 Searching Entire Documents

	5.5 QBE Structural Reference
	5.5.1 Top Level Structure
	5.5.2 Query Components
	5.5.3 Response Components
	5.5.4 XML-Specific Considerations
	5.5.5 JSON-Specific Considerations

	5.6 How Indexing Affects Your Query
	5.7 Adding Options to a QBE
	5.7.1 Specifying Options in XML
	5.7.2 Specifying Options in JSON
	5.7.3 Option List
	5.7.4 Using Persistent Query Options

	5.8 Customizing Search Results
	5.8.1 When to Include a Response in Your Query
	5.8.2 Using the snippet Formatter
	5.8.3 Using the extract Formatter
	5.8.4 Example: Search Customization

	5.9 Scoping a Search by Document Type
	5.10 Converting a QBE to a Combined Query
	5.11 Validating a QBE

	6.0 Composing cts:query Expressions
	6.1 Understanding cts:query
	6.1.1 cts:query Hierarchy
	6.1.2 Use to Narrow the Search
	6.1.3 Understanding cts:element-query
	6.1.4 Understanding cts:element-word-query
	6.1.5 Understanding Field Word and Value Query Constructors
	6.1.6 Understanding the Range Query Constructors
	6.1.7 Understanding the Reverse Query Constructor
	6.1.8 Understanding the Geospatial Query Constructors
	6.1.9 Specifying the Language in a cts:query

	6.2 Creating a Query From Search Text With cts:parse
	6.2.1 String Query Overview
	6.2.2 Grammar Components and Operators
	6.2.3 Including Options and Weights in Query Text
	6.2.4 Binding a Tag to a Reference, Field, or Query Generator
	6.2.5 Customizing Naked Term Handling With Bindings
	6.2.6 Query Text Parsing Examples

	6.3 Combining multiple cts:query Expressions
	6.3.1 Using cts:and-query and cts:or-query
	6.3.2 Proximity Queries using cts:near-query
	6.3.3 Using Bounded cts:query Expressions
	6.3.4 Matching Nothing and Matching Everything

	6.4 Joining Documents and Properties with cts:properties-query or cts:document-fragment-query
	6.5 Registering cts:query Expressions to Speed Search Performance
	6.5.1 Registered Query APIs
	6.5.2 Must Be Used Unfiltered
	6.5.3 Registration Does Not Survive System Restart
	6.5.4 Storing Registered Query IDs
	6.5.5 Registered Queries and Relevance Calculations
	6.5.6 Example: Registering and Using a cts:query Expression

	6.6 Adding Relevance Information to cts:query Expressions:
	6.7 Serializations of cts:query Constructors
	6.7.1 Serializing a cts:query as XML
	6.7.2 Serializing a cts.query as JSON
	6.7.3 Add Arbitrary Annotations With cts:annotation
	6.7.4 Constructing a cts:query From XML
	6.7.5 Constructing a cts.query From a JavaScript Object or JSON String

	6.8 Example: Creating a cts:query Parser

	7.0 Creating JavaScript Search Applications
	7.1 JSearch Introduction
	7.1.1 JSearch Feature Summary
	7.1.2 Top Level Function Summary
	7.1.3 Query Design Pattern
	7.1.4 How JSearch Relates to Other MarkLogic Search APIs
	7.1.5 Running the Examples in This Chapter

	7.2 Scoping Operations by Collection
	7.3 Searching Documents
	7.3.1 Document Search Basics
	7.3.2 Example: Basic Document Search

	7.4 Creating a cts.query
	7.4.1 Using byExample to Create a Query
	7.4.2 Using Query Text to Create a cts.query
	7.4.3 Using cts.query Constructors

	7.5 Including Facets in Search Results
	7.5.1 Introduction to Facets
	7.5.2 Basic Steps for Generating Facets
	7.5.3 Example: Generating Facets From JSON Properties
	7.5.4 Creating a Facet Definition
	7.5.5 Understanding the Output of Facets
	7.5.6 Sorting Facet Values with OrderBy
	7.5.7 Retrieving Facets and Content in a Single Operation
	7.5.8 Multi-Facet Interactions Using othersWhere
	7.5.9 Example: Multi-Facet Interactions Using othersWhere

	7.6 Controlling the Ordering of Results
	7.6.1 Sorting Document Search Results
	7.6.2 Sorting Values or Tuples Query Results
	7.6.3 Sorting Word Lexicon Query Results
	7.6.4 Sorting Facet Values

	7.7 Returning a Result Subset
	7.8 Including Snippets of Matching Content in Search Results
	7.8.1 Enabling Snippet Generation
	7.8.2 Configuring the Built-In Snippet Generator
	7.8.3 Returning Snippets and Documents Together
	7.8.4 Generating Custom Snippets
	7.8.5 Standalone Snippet Generation

	7.9 Extracting Portions of Each Matched Document
	7.9.1 Extraction Overview
	7.9.2 How selected Affects Extraction
	7.9.3 Combining Extraction With Snippeting

	7.10 Using Options to Control a Query
	7.11 Transforming Results with Map and Reduce
	7.11.1 Map and Reduce Overview
	7.11.2 Configuring the Built-In Mapper
	7.11.3 Using a Custom Mapper
	7.11.4 Configuring the Built-In Reducer
	7.11.5 Using a Custom Reducer
	7.11.6 Example: Returning Only Documents
	7.11.7 Example: Using a Custom Mapper for Content Transformation
	7.11.8 Example: Custom Reducer For Document Search
	7.11.9 Example: Custom Reducer For Values Query

	7.12 Querying Lexicons and Range Indexes
	7.12.1 Querying the Values in a Lexicon or Index
	7.12.2 Finding Value Co-Occurrences in Lexicons and Indexes
	7.12.3 Querying Values in a Word Lexicon
	7.12.4 Computing Aggregates Over Range Indexes
	7.12.5 Constructing Lexicon and Range Index References

	7.13 Grouping Values and Facets Into Buckets
	7.13.1 Bucketing Overview
	7.13.2 Example: Generating Buckets With makeBuckets
	7.13.3 Example: Grouping Using Custom Buckets

	7.14 Preparing to Run the Examples
	7.14.1 Configuring the Database
	7.14.2 Loading the Sample Documents

	8.0 Search Customization Using Query Options
	8.1 Introduction
	8.2 Getting the Default Query Options
	8.3 Checking Query Options for Errors
	8.4 Constraint Options
	8.4.1 Value Constraint Example
	8.4.2 Word Constraint Examples
	8.4.3 Collection Constraint Example
	8.4.4 Bucketed Range Constraint Example
	8.4.5 Exact Match (Unbucketed) Range Constraint Example
	8.4.6 Geospatial Constraint Example

	8.5 Operator Options
	8.6 Return Options
	8.7 Searchable Expression Option
	8.8 Fragment Scope Option
	8.9 Searching Key-Value Metadata Fields
	8.10 Modifying Your Snippet Results
	8.10.1 Specifying transform-results Options
	8.10.2 Specifying Your Own Code in transform-results

	8.11 Extracting a Portion of Matching Documents
	8.12 Customizing Search Results with a Decorator
	8.12.1 Understanding Search Result Decorators
	8.12.2 Writing a Custom Search Result Decorator
	8.12.3 Installing a Custom Search Result Decorator
	8.12.4 Using a Custom Search Result Decorator

	8.13 Other Search Options
	8.14 Query Options Examples
	8.14.1 Example: Values and Tuples Query Options
	8.14.2 Example: Field Constraint Query Options
	8.14.3 Example: Collection Constraint Query Options
	8.14.4 Example: Path Range Index Constraint Query Options
	8.14.5 Example: Element Attribute Range Constraint Query Options
	8.14.6 Example: Geospatial Constraint Query Options

	9.0 Relevance Scores: Understanding and Customizing
	9.1 Understanding How Scores and Relevance are Calculated
	9.1.1 log(tf)*idf Calculation
	9.1.2 log(tf) Calculation
	9.1.3 Simple Term Match Calculation
	9.1.4 Random Score Calculation
	9.1.5 Term Frequency Normalization

	9.2 How Fragmentation and Index Options Influence Scores
	9.3 Using Weights to Influence Scores
	9.4 Proximity Boosting With the distance-weight Option
	9.4.1 Example of Simple Proximity Boosting
	9.4.2 Using Proximity Boosting With cts:and-query Semantics
	9.4.3 Using cts:near-query to Achieve Proximity Boosting

	9.5 Boosting Relevance Score With a Secondary Query
	9.6 Including a Range or Geospatial Query in Scoring
	9.6.1 How a Range Query Contributes to Score
	9.6.2 Use Cases for Range Query Score Contributions
	9.6.3 Enabling Range Query Score Contribution
	9.6.4 Understanding Slope Factor
	9.6.5 Performance Considerations
	9.6.6 Range Query Scoring Examples

	9.7 Interaction of Score and Quality
	9.8 Using cts:score, cts:confidence, and cts:fitness
	9.9 Relevance Order in cts:search Versus Document Order in XPath
	9.10 Exploring Relevance Score Computation
	9.11 Sample cts:search Expressions
	9.11.1 Magnify the Score Boost for Documents With Quality
	9.11.2 Increase the Score for some Terms, Decrease for Others

	10.0 Browsing With Lexicons
	10.1 About Lexicons
	10.2 Creating Lexicons
	10.3 Word Lexicons
	10.3.1 Word Lexicon for the Entire Database
	10.3.2 Element/Element-Attribute Word Lexicons
	10.3.3 JSON Property Word Lexicons
	10.3.4 Field Word Lexicons

	10.4 Element/Element-Attribute/Path Value Lexicons
	10.5 Field Value Lexicons
	10.6 Value Co-Occurrences Lexicons
	10.7 Geospatial Lexicons
	10.8 Range Lexicons
	10.9 URI and Collection Lexicons
	10.10 Performing Lexicon-Based Queries
	10.10.1 Lexicon APIs
	10.10.2 Constraining Lexicon Searches to a cts:query Expression
	10.10.3 Using the Match Lexicon APIs
	10.10.4 Determining the Number of Fragments Containing a Lexicon Term

	11.0 Using Range Queries in cts:query Expressions
	11.1 Overview of Range Queries
	11.1.1 Uses for Range Queries
	11.1.2 Requirements for Using Range Queries
	11.1.3 Performance and Coding Advantages of Range Queries

	11.2 Range Query cts:query Constructors
	11.3 Examples of Range Queries

	12.0 Using Aggregate Functions
	12.1 Introduction to Aggregate Functions
	12.2 Using Builtin Aggregate Functions
	12.3 Using Aggregate User-Defined Functions

	13.0 Highlighting Search Term Matches
	13.1 Overview of cts:highlight
	13.1.1 All Matching Terms, Including Stemmed, and Capitalized

	13.2 General Search and Replace Function
	13.3 Built-In Variables For cts:highlight
	13.3.1 Using the $cts:text Variable to Access the Matched Text
	13.3.2 Using the $cts:node Variable to Access the Context of the Match
	13.3.3 Using the $cts:queries Variable to Feed Logic Based on the Query
	13.3.4 Using $cts:start to Capture the String-Length Position
	13.3.5 Using $cts:action to Stop Highlighting

	13.4 Using cts:highlight to Create Snippets
	13.5 cts:walk Versus cts:highlight
	13.6 Common Usage Notes
	13.6.1 Input Must Be a Single Node
	13.6.2 Using xdmp:set Side Effects With cts:highlight
	13.6.3 No Highlighting with cts:similar-query or cts:element-attribute-*-query

	14.0 Geospatial Search Applications
	14.1 Terms and Definitions
	14.2 Licensing Requirements for Geospatial Features
	14.3 Geospatial Features Overview
	14.3.1 Search for Points, Polygons, and Other Regions
	14.3.2 Geospatial Type System
	14.3.3 Multiple Coordinate Systems
	14.3.4 Support for Common Geospatial Representations
	14.3.5 Flexible Data Layout
	14.3.6 Support for Single and Double Precision Coordinates
	14.3.7 Geospatial Computational Utility Functions
	14.3.8 Geospatial Format Conversion Functions
	14.3.9 Support in Multiple APIs

	14.4 Understanding Coordinate Systems
	14.4.1 Understanding Points
	14.4.2 Understanding Geodetic Coordinates
	14.4.3 Understanding Euclidean Coordinates
	14.4.4 Supported Coordinate Systems
	14.4.5 The Governing Coordinate System
	14.4.6 How Precision Affects Geospatial Operations

	14.5 Understanding MarkLogic Geospatial Region Types
	14.5.1 Boxes
	14.5.2 Polygons
	14.5.3 Complex Polygons
	14.5.4 Linestrings
	14.5.5 Circles

	14.6 Understanding Geospatial Query and Index Types
	14.6.1 Introduction to Geospatial Query and Index Types
	14.6.2 Geospatial Query Creation
	14.6.3 Geospatial Index Creation
	14.6.4 Geospatial XML Element Point Queries and Indexes
	14.6.5 Geospatial XML Element Child Point Queries and Indexes
	14.6.6 Geospatial XML Element Pair Point Queries and Indexes
	14.6.7 Geospatial XML Attribute Pair Point Queries and Indexes
	14.6.8 Geospatial Path Point Queries and Indexes
	14.6.9 Geospatial JSON Property Point Queries and Indexes
	14.6.10 Geospatial JSON Property Child Point Queries and Indexes
	14.6.11 Geospatial JSON Property Pair Point Queries and Indexes
	14.6.12 Geospatial Region Queries and Indexes
	14.6.13 Geospatial Index Positions
	14.6.14 Geospatial Lexicons
	14.6.15 Index Reference Resolution

	14.7 Searching for Matching Points
	14.7.1 Point Search Overview
	14.7.2 Example: Point Query Using XQuery
	14.7.3 Example: Point Query Using JavaScript
	14.7.4 Constructing a Point Query in XQuery
	14.7.5 Constructing a Point Query in JavaScript
	14.7.6 Constructing a Point Query from Query Text
	14.7.7 Creating Point Queries with the Client APIs
	14.7.8 Creating Geospatial Facets

	14.8 Searching for Matching Regions
	14.8.1 Region Match Overview
	14.8.2 Example: Simple Intersection Region Query
	14.8.3 Example: Using Region Queries in a Composed Query
	14.8.4 Constructing a Region Query Using a Constructor
	14.8.5 Constructing a Region Query from Query Text
	14.8.6 Creating Region Queries Using the Client APIs
	14.8.7 Example: Using the Envelope Pattern to Encode Regions

	14.9 Controlling Coordinate System and Precision
	14.9.1 The Relationship Between Precision and Coordinate System
	14.9.2 Determining the Best Precision for Your Application
	14.9.3 How MarkLogic Selects the Governing Coordinate System
	14.9.4 Probing the Governing Coordinate System Name
	14.9.5 Specifying the App Server Default Coordinate System
	14.9.6 Specifying the Per-Module Coordinate System
	14.9.7 Specifying a Per-Operation Coordinate System and Precision
	14.9.8 Specifying Coordinate System During Index Creation

	14.10 Understanding Tolerance
	14.10.1 How Tolerance Affects Geometric Comparisons
	14.10.2 Considerations for Tolerance Selection

	14.11 Summary of Other Geospatial Operations
	14.12 Converting To and From Common Geospatial Representations
	14.12.1 Conversion Overview
	14.12.2 WKT and WKB Conversions in XQuery
	14.12.3 WKT and WKB Conversions in JavaScript
	14.12.4 Mapping of WKT and WKB Types to MarkLogic Types

	14.13 Constructing Geospatial Point and Region Values
	14.14 Geospatial Query Support in Other APIs
	14.15 Preparing to Run the Examples
	14.15.1 Overview of the Sample Data
	14.15.2 Configuring the Indexes
	14.15.3 Creating the Input Data Files
	14.15.4 Loading the Sample Data

	15.0 Entity Extraction and Enrichment
	15.1 Overview of Entity Extraction and Enrichment
	15.2 Understanding Dictionary-Based Extraction and Enrichment
	15.3 Creating an Entity Dictionary
	15.3.1 Understanding Entity Dictionaries
	15.3.2 Creating a Dictionary Using Entity Constructors
	15.3.3 Creating a Dictionary From Text
	15.3.4 Creating a Dictionary From a SKOS Ontology
	15.3.5 Persisting or Retrieving an Entity Dictionary
	15.3.6 Serializing a Dictionary as Text

	15.4 Dictionary-Based Entity Enrichment
	15.4.1 API Summary
	15.4.2 Using entity:enrich or entity.enrich
	15.4.3 Using cts:entity-highlight or cts.entityHighlight
	15.4.4 XQuery Example: entity:enrich
	15.4.5 XQuery Example: cts:entity-highlight
	15.4.6 JavaScript Example: entity.enrich
	15.4.7 JavaScript Example: cts.entityHighlight

	15.5 Dictionary-Based Entity Extraction
	15.5.1 API Summary
	15.5.2 Extraction Using entity:extract or entity.extract
	15.5.3 Extraction Using cts:entity-walk or cts.entityWalk
	15.5.4 XQuery Example: entity:extract
	15.5.5 XQuery Example: cts:entity-walk
	15.5.6 JavaScript Example: entity.extract
	15.5.7 JavaScript Example: cts.entityWalk

	15.6 Using an Entity Type Map for Extraction or Enrichment
	15.6.1 Entity Type Map Basics
	15.6.2 The Default Entity Type Map
	15.6.3 Handling Compound Entity Types
	15.6.4 Filtering Entity Types With a Mapping

	15.7 Overlapping Entity Match Handling
	15.7.1 Understanding Entity Overlaps
	15.7.2 Overlap Handling Options
	15.7.3 Example: Overlap Handling in entity:extract and entity.extract
	15.7.4 Example: Overlap Handling in entity:enrich and entity.enrich
	15.7.5 Interaction with the Walk and Highlight Functions

	15.8 Entity Identification Using Reverse Query
	15.9 Entity Enrichment Pipelines
	15.9.1 Sample Pipelines Using Third-Party Technologies
	15.9.2 Custom Entity Enrichment Pipelines

	16.0 Creating Alerting Applications
	16.1 Overview of Alerting Applications in MarkLogic Server
	16.2 cts:reverse-query Constructor
	16.3 XML Serialization of cts:query Constructors
	16.4 Security Considerations of Alerting Applications
	16.4.1 Alert Users, Alert Administrators, and Controlling Access
	16.4.2 Predefined Roles for Alerting Applications

	16.5 Indexes for Reverse Queries
	16.6 Alerting API
	16.6.1 Alerting API Concepts
	16.6.2 Using the Alerting API
	16.6.3 Using CPF With an Alerting Application

	16.7 Alerting Sample Application

	17.0 Using fn:count vs. xdmp:estimate
	17.1 fn:count is Accurate, xdmp:estimate is Fast
	17.2 The xdmp:estimate Built-In Function
	17.3 Using cts:remainder to Estimate the Size of a Search
	17.4 When to Use xdmp:estimate
	17.4.1 When Estimates Are Good Enough
	17.4.2 When XPaths Meet The Right Criteria
	17.4.3 When Empirical Tests Demonstrate Correctness

	18.0 Understanding and Using Stemmed Searches
	18.1 The Role of Stemming and Tokenization in Search
	18.2 Stemming in MarkLogic Server
	18.3 Enabling Stemming
	18.4 Stemmed Searches Versus Word Searches
	18.5 Using cts:highlight to Emphasize a Query Match
	18.6 Using cts:contains to Test for a Stemmed Match
	18.7 Interaction With Wildcard Searches
	18.8 Using a User-Defined Stemmer Plugin
	18.8.1 When to Consider a User-Defined Stemmer
	18.8.2 StemmerUDF Interface Summary
	18.8.3 Understanding User-Defined Stemmer Control Flow
	18.8.4 Implementation Guidelines for User-Defined Stemmers
	18.8.5 Creating and Deploying a User-Defined Stemmer Plugin
	18.8.6 Registering a User-Defined Stemmer with MarkLogic
	18.8.7 Testing a User-Defined Stemmer
	18.8.8 Error Handling and Logging

	19.0 Custom Dictionaries for Tokenizing and Stemming
	19.1 Custom Dictionaries in MarkLogic Server
	19.2 Custom Dictionary Format
	19.3 Custom Dictionary Function Summary
	19.4 Example: Managing a Custom Dictionary in XQuery
	19.4.1 Install the Dictionary
	19.4.2 Modify and Update the Dictionary
	19.4.3 Delete the Dictionary

	19.5 Example: Managing a Custom Dictionary in JavaScript
	19.5.1 Install the Dictionary
	19.5.2 Modify and Update the Dictionary
	19.5.3 Delete the Dictionary

	19.6 Example: Exercising a Custom Dictionary

	20.0 Extracting Metadata and Text From Binary Documents
	20.1 Metadata and Text Extraction Overview
	20.2 Usage Examples
	20.2.1 Microsoft Word
	20.2.2 File Archives
	20.2.3 PowerPoint

	20.3 Supported Binary Formats
	20.3.1 Archives
	20.3.2 Databases
	20.3.3 Email and Messaging
	20.3.4 Multimedia
	20.3.5 Other
	20.3.6 Presentation
	20.3.7 Raster Image
	20.3.8 Spreadsheet
	20.3.9 Text and Markup
	20.3.10 Vector Image
	20.3.11 Word Processing and General Office

	21.0 Understanding and Using Wildcard Searches
	21.1 Wildcards in MarkLogic Server
	21.1.1 Wildcard Characters
	21.1.2 Rules for Wildcard Searches

	21.2 Enabling Wildcard Searches
	21.2.1 Specifying Wildcards in Queries
	21.2.2 Recommended Wildcard Index Settings
	21.2.3 Understanding the Wildcard Indexes

	21.3 Interaction with Other Search Features
	21.3.1 Wildcarding and Stemming
	21.3.2 Wildcarding and Punctuation Sensitivity

	22.0 Collections
	22.1 The collection() Function
	22.2 Collections Versus Directories
	22.3 Defining Collections
	22.3.1 Implicitly Defining Unprotected Collections
	22.3.2 Explicitly Defining Protected Collections

	22.4 Collection Membership
	22.5 Collections and Security
	22.5.1 Unprotected Collections
	22.5.2 Protected Collections

	22.6 Performance Characteristics
	22.6.1 Number of Collections to Which a Document Belongs
	22.6.2 Adding/Removing Existing Documents To/From Collections

	23.0 Using the Thesaurus Functions
	23.1 The Thesaurus Module
	23.2 Function Reference
	23.3 Thesaurus Schema
	23.4 Capitalization
	23.5 Managing Thesaurus Documents
	23.5.1 Loading Thesaurus Documents in XQuery
	23.5.2 Loading Thesaurus Documents in JavaScript
	23.5.3 Lowercasing Terms When Inserting a Thesaurus Document
	23.5.4 Loading the XML Version of the WordNet Thesaurus
	23.5.5 Updating a Thesaurus Document
	23.5.6 Security Considerations With Thesaurus Documents
	23.5.7 Example Queries Using Thesaurus Management Functions

	23.6 Expanding Searches Using a Thesaurus in XQuery
	23.7 Expanding Searches Using a Thesaurus in JavaScript

	24.0 Using the Spelling Correction Functions
	24.1 Overview of Spelling Correction
	24.2 Function Reference
	24.2.1 The Spelling Built-In Functions
	24.2.2 The Spelling Dictionary Management Module Functions

	24.3 Dictionary Documents
	24.3.1 XML Dictionary Document
	24.3.2 JSON Dictionary Document

	24.4 Capitalization
	24.5 Managing Dictionary Documents
	24.5.1 Loading Dictionary Documents in XQuery
	24.5.2 Loading Dictionary Documents in JavaScript
	24.5.3 Loading one of the Sample XML Dictionaries
	24.5.4 Updating a Dictionary Document
	24.5.5 Security Considerations With Dictionary Documents

	24.6 Testing if a Word is Spelled Correctly
	24.7 Getting Spelling Suggestions for Incorrectly Spelled Words

	25.0 Distinctive Terms and cts:similar-query
	25.1 Understanding cts:similar-query
	25.2 Finding the Distinctive Terms of a Set of Nodes
	25.3 Understanding the cts:distinctive-terms Output
	25.4 Example Design Pattern: Making a Tag Cloud

	26.0 Training the Classifier
	26.1 Understanding How Training and Classification Works
	26.1.1 Training and Classification
	26.1.2 XML SVM Classifier
	26.1.3 Hyper-Planes and Thresholds for Classes
	26.1.4 Training Content for the Classifier

	26.2 Classifier API
	26.2.1 XQuery Built-In Functions
	26.2.2 Data Can Reside Anywhere or Be Constructed
	26.2.3 API is Extremely Tunable
	26.2.4 Supports Versus Weights Classifiers
	26.2.5 Kernels (Mapping Functions)
	26.2.6 Find Thresholds That Balance Precision and Recall

	26.3 Leveraging XML With the Classifier
	26.4 Creating a Training Set
	26.4.1 Importance of the Training Set
	26.4.2 Defining Labels for the Training Set

	26.5 Methodology For Determining Thresholds For Each Class
	26.6 Example: Training and Running the Classifier
	26.6.1 Shakespeare’s Plays: The Training Set
	26.6.2 Comedy, Tragedy, History: The Classes
	26.6.3 Partition the Training Content Set
	26.6.4 Create Labels on the First Half of the Training Content
	26.6.5 Run cts:train on the First Half of the Training Content
	26.6.6 Run cts:classify on the Second Half of the Content Set
	26.6.7 Use cts:thresholds to Compute the Thresholds on the Second Half
	26.6.8 Evaluating Your Results, Make Changes, and Run Another Iteration
	26.6.9 Run the Classifier on Other Content

	27.0 Results Clustering Using cts:cluster
	27.1 Understanding cts:cluster
	27.2 Options to cts:cluster
	27.2.1 Clustering (cts:cluster) Options
	27.2.2 Indexing (db:) Options

	27.3 Understanding the cts:cluster Output
	27.4 Example that Creates an HTML Report of the Cluster

	28.0 Language Support in MarkLogic Server
	28.1 Overview of Language Support in MarkLogic Server
	28.2 Tokenization and Stemming
	28.2.1 Language-Specific Tokenization
	28.2.2 Stemmed Searches in Different Languages

	28.3 Language Aspects of Loading and Updating Documents
	28.3.1 Tokenization and Stemming
	28.3.2 xml:lang Attribute
	28.3.3 Language-Related Notes About Loading and Updating Documents
	28.3.4 Protecting JSON Files That Should not be Stemmed

	28.4 Querying Documents By Languages
	28.4.1 Tokenization, Stemming, and the xml:lang Attribute
	28.4.2 Language-Aware Searches
	28.4.3 Unstemmed Searches
	28.4.4 Unknown Languages

	28.5 Supported Languages
	28.6 Generic Language Support
	28.7 Stemming and Tokenization Customization
	28.7.1 Tokenization Customization
	28.7.2 Stemming Customization

	28.8 Configuring Tokenization and Stemming Plugins
	28.8.1 Function Summary for Custom Language Management
	28.8.2 Customization Using a Built-In Lexer or Stemmer
	28.8.3 Customization Using a User-Defined Lexer or Stemmer
	28.8.4 Example: Adding Configuration for a Language
	28.8.5 Example: Removing Configuration for a Language
	28.8.6 Example: Resetting Configuration for All Languages
	28.8.7 Understanding Stemming Delegation
	28.8.8 Custom Dictionary Security Considerations
	28.8.9 Built-in Lexer Plugin Reference
	28.8.10 Built-in Stemmer Plugin Reference

	28.9 Language Support in JSON
	28.9.1 Overview
	28.9.2 API Changes
	28.9.3 JSON Serialization
	28.9.4 Upgrade Considerations

	29.0 Custom Tokenization
	29.1 Custom Tokenizer Overrides
	29.1.1 Introduction to Custom Tokenizer Overrides
	29.1.2 How Character Classification Affects Tokenization
	29.1.3 Using xdmp:describe to Explore Tokenization
	29.1.4 Performance Impact of Using Tokenizer Overrides
	29.1.5 Defining a Custom Tokenizer Override
	29.1.6 Examples of Custom Tokenizer Overrides

	29.2 User-Defined Lexer Plugins
	29.2.1 When to Consider a User-Defined Lexer
	29.2.2 LexerUDF Interface Summary
	29.2.3 Understanding User-Defined Lexer Control Flow
	29.2.4 Implementation Guidelines for User-Defined Lexers
	29.2.5 Creating and Deploying a User-Defined Lexer Plugin
	29.2.6 Registering a Custom Tokenizer with MarkLogic
	29.2.7 Testing a User-Defined Lexer
	29.2.8 Error Handling and Logging

	30.0 Encodings and Collations
	30.1 Character Encoding
	30.2 Collations
	30.2.1 Overview of Collations
	30.2.2 Two Common Collation URIs
	30.2.3 Collation URI Syntax
	30.2.4 Backward Compatibility with 3.1 Range Indexes and Lexicons
	30.2.5 UCA Root Collation
	30.2.6 How Collation Defaults are Determined
	30.2.7 Specifying Collations

	30.3 Collations and Character Sets By Language

	31.0 Appendix: Query Options Reference
	31.1 How to Use This Reference
	31.2 Options Summary
	31.3 additional-query
	31.3.1 Syntax Summary
	31.3.2 Component Description
	31.3.3 Examples
	31.3.4 See Also

	31.4 concurrency-level
	31.5 constraint
	31.5.1 Syntax Summary
	31.5.2 Component Description
	31.5.3 Examples
	31.5.4 See Also
	31.5.5 range
	31.5.6 value
	31.5.7 word
	31.5.8 collection
	31.5.9 container
	31.5.10 element-query
	31.5.11 properties
	31.5.12 geo-attr-pair
	31.5.13 geo-elem
	31.5.14 geo-elem-pair
	31.5.15 geo-json-property
	31.5.16 geo-json-property-pair
	31.5.17 geo-path
	31.5.18 geo-region-path
	31.5.19 custom
	31.5.20 heatmap
	31.5.21 bucket
	31.5.22 computed-bucket
	31.5.23 path-index

	31.6 debug
	31.7 default-suggestion-source
	31.7.1 Syntax Summary
	31.7.2 Component Description
	31.7.3 Examples
	31.7.4 See Also

	31.8 extract-document-data
	31.8.1 Syntax Summary
	31.8.2 Component Description
	31.8.3 Examples
	31.8.4 See Also

	31.9 forest
	31.10 fragment-scope
	31.11 grammar
	31.11.1 Syntax Summary
	31.11.2 Component Description
	31.11.3 Examples
	31.11.4 starter
	31.11.5 joiner

	31.12 operator
	31.12.1 Syntax Summary
	31.12.2 Component Description
	31.12.3 Examples
	31.12.4 See Also

	31.13 page-length
	31.14 quality-weight
	31.15 result-decorator
	31.15.1 Syntax Summary
	31.15.2 Component Description
	31.15.3 Examples

	31.16 return-aggregates
	31.17 return-constraints
	31.18 return-facets
	31.19 return-frequencies
	31.20 return-metrics
	31.21 return-plan
	31.22 return-qtext
	31.23 return-query
	31.24 return-results
	31.25 return-similar
	31.26 return-values
	31.27 search-option
	31.28 searchable-expression
	31.28.1 Syntax Summary
	31.28.2 Component Description
	31.28.3 Examples
	31.28.4 See Also

	31.29 sort-order
	31.29.1 Syntax Summary
	31.29.2 Component Description
	31.29.3 Examples

	31.30 suggestion-source
	31.30.1 Syntax Summary
	31.30.2 Component Description
	31.30.3 Examples
	31.30.4 See Also

	31.31 term
	31.31.1 Syntax Summary
	31.31.2 Component Description
	31.31.3 Examples

	31.32 transform-results
	31.32.1 Syntax Summary
	31.32.2 Component Description
	31.32.3 Examples
	31.32.4 See Also

	31.33 tuples
	31.33.1 Syntax Summary
	31.33.2 Component Description
	31.33.3 Examples
	31.33.4 See Also

	31.34 values
	31.34.1 Syntax Summary
	31.34.2 Component Description
	31.34.3 Examples
	31.34.4 See Also

	31.35 Term Options
	31.36 Facet Options
	31.37 Range Options
	31.38 Geospatial Point Query Options
	31.39 Geospatial Region Query Options
	31.40 Suggestion Options
	31.41 Values Options

	32.0 Technical Support
	33.0 Copyright

