
Copyright © 2018 MarkLogic Corporation. All rights reserved.

MarkLogic Server

Release Notes
1

MarkLogic 9
May, 2017

Last Revised: 9.0-7, September 2018

MarkLogic Server Table of Contents
Table of Contents

Release Notes

1.0 Introduction ..10

2.0 Installation and Upgrade ..11
2.1 Supported Platforms ...11
2.2 Supported Filesystems ..11
2.3 Upgrade Support ...11

3.0 New Features in MarkLogic 9 ...13
3.1 Template Driven Extraction (TDE) ..14
3.2 SQL Enhancements ...14
3.3 Optic API ..14
3.4 Enhanced Tiered Storage ..14
3.5 Encryption at Rest ...15
3.6 Element Level Security ...15
3.7 Redaction ..15
3.8 Geospatial Enhancements ...16
3.9 Entity Services API ...16
3.10 New Stemming and Tokenization ...16
3.11 Accurate Wildcard Expansion Options ...17
3.12 mlcp Enhancements ..18

3.12.1 Support for SSL Connections ...18
3.12.2 Greater Control over Host Connections ..18
3.12.3 Redaction ..18
3.12.4 Batch Support for Server-Side Import Transformations18
3.12.5 Ability to Access and Modify Metadata in a Transformation19

3.13 Java Client API Enhancements ...20
3.13.1 Bulk Asynchronous Data Movement ..20
3.13.2 Enhanced Temporal Document Support ...20
3.13.3 Security and Authentication Improvements ...20
3.13.4 Values Metadata Support ..21
3.13.5 Row-Based Search ..21
3.13.6 Geospatial Search Enhancements ...21

3.14 Node.js Client API Enhancements ..21
3.14.1 Authentication and Connection Security ..21
3.14.2 Enhanced Temporal Document Support ...21
3.14.3 Values Metadata Support ..22
3.14.4 Geospatial Search Enhancements ...22
3.14.5 Minimum Distance on Near Queries ..22
MarkLogic 9—May, 2017 Release Notes—Page 2

MarkLogic Server Table of Contents
3.15 Rest Client API Enhancements ...22
3.15.1 Enhanced Temporal Document Support ...22
3.15.2 Row-Based Data Evaluation ...23
3.15.3 Point-in-Time Operations ...23
3.15.4 cts:query Support ..23
3.15.5 Values Metadata Support ..23

3.16 Telemetry ..23
3.17 XQuery 3.x Features ...24
3.18 Query Console Enhancements ..24
3.19 Application Display Environment Customization ..25
3.20 Rolling Upgrades ..25
3.21 Bi-temporal Compliance Enhancements ..25
3.22 Secure Credentials ..25
3.23 Certificate Authentication ...26
3.24 New REST Management APIs ...26
3.25 New Features in MarkLogic 9.0-2 ..27

3.25.1 Geospatial Enhancements ...27
3.25.1.1 Extended Units Support in Region Indexes27
3.25.1.2 Crosses, Equals, and Touches Region Comparison Operators .28
3.25.1.3 New Functions for Probing Region Relationships28
3.25.1.4 Support for Specifying Tolerance ...28

3.25.2 Additional REST Client API Support for cts:query29
3.25.3 REST Client API Supports QBE in a Combined Query29
3.25.4 New Server-Side Transaction Controls ..29
3.25.5 XCC: New Session Methods for Transaction Control30

3.26 New Features in MarkLogic 9.0-3 ..31
3.26.1 REST Management API: Advancing LSQT ...31
3.26.2 REST Client API: Advancing LSQT ..31
3.26.3 Ops Director ..32
3.26.4 Amazon Web Services (AWS) 1-Click ..32
3.26.5 Entity Services Enhancements ..32

3.26.5.1 JSON Envelope Document Support ..32
3.26.5.2 Support for Element Range Indexes ..32
3.26.5.3 Entity Instance Namespace Support ..33
3.26.5.4 Generated Code Refactoring ...33

3.26.6 Search Result Sorting Enhancements ...33
3.26.7 Redaction Built-in for Masking Numbers ..33
3.26.8 Client APIs: Performance Improvements for JavaScript Extensions and

Transforms 34
3.26.9 Java Client API: Values and Tuples Query Support for cts:query34

3.27 New Features in MarkLogic 9.0-4 ..34
3.27.1 Redaction: Support for Salting of Deterministic Masking Values34
3.27.2 Redaction: New redact-datetime Built-In Function34
3.27.3 Separate Download and Installation of Converters and Filters35
3.27.4 Node.js Client API Enhancements ..35
3.27.5 Client API Support for JavaScript Patch Content Constructors35
MarkLogic 9—May, 2017 Release Notes—Page 3

MarkLogic Server Table of Contents
3.27.6 Database Restore Enhancement ..36
3.27.7 1-Click AWS Support ...36
3.27.8 Restricted XPath Changes ..36
3.27.9 Protected Path Sets Added to Element Level Security36

3.28 New Features in MarkLogic 9.0-5 ..37
3.28.1 MarkLogic Data Hub Framework ...37
3.28.2 Entity Enrichment and Extraction Enhancements37
3.28.3 Query Console: Explore Database by URI Pattern38
3.28.4 Configuration Management API (CMA) XQuery and JavaScript Libraries

38
3.28.5 Configuration Management API (CMA) REST Endpoints39
3.28.6 Ops Director Enhancements ...39
3.28.7 Monitoring History Enhancements ...40
3.28.8 Tolerance Support in Geospatial Region Queries40
3.28.9 Database Replication Enhancements ..40
3.28.10Fast Fail-over ..41

3.29 New Features in MarkLogic 9.0-6 ..41
3.29.1 Switching from Internal to External KMS ..41
3.29.2 Multiple KMS Hosts for Failover ...42
3.29.3 Geospatial Region Query Tolerance Improvements42

3.30 New Features in MarkLogic 9.0-7 ..42
3.30.1 Database Access with Granular Privileges ...42
3.30.2 Forest Access with Granular Privileges ..43
3.30.3 Query Console: Content Editing ...43
3.30.4 Request Monitoring ..43
3.30.5 MarkLogic Services in the Cloud ...43
3.30.6 Java Client API: Load Balancer Improvements44

4.0 Known Incompatibilities with Previous Releases ..45
4.1 JavaScript: ValueIterator Replaced By Sequence ..46
4.2 Database Stemming is Off, Word Searches On By Default46
4.3 Collection Lexicon and Triple Index Enabled by Default47
4.4 XCC .NET API No Longer Available ..47
4.5 Changes in Semantic Query Behavior ..47

4.5.1 Triple Index and SPARQL Engine Changes ..47
4.5.2 Forest IDs Removed From sem:sparql Function48

4.6 Triple Count Increased After Inserting Same Data Twice48
4.7 Database max merge size Now Defaults to 48 GB ...48
4.8 Changes to Range Index Reference Resolution ..48
4.9 Default Stemming and Tokenization Libraries Changed for Most Languages49
4.10 SQL DESCRIBE No Longer Supported by xdmp:sql ..50
4.11 Application-Specific Logging ...50
4.12 Change to Classification of Some Special Symbol Tokens51
4.13 Change to xdmp:user-last-login ..51
4.14 Changed Interfaces for xdmp:document-insert and xdmp:document-load51
4.15 search:parse Returns a Different Type for cts:query Output Format51
MarkLogic 9—May, 2017 Release Notes—Page 4

MarkLogic Server Table of Contents
4.16 Default Client API Search Behavior Change on Port 800052
4.17 JSON Property Scope and Container Queries Match Array Items Differently52
4.18 REST Client API Incompatibilities ..55

4.18.1 keyvalue Service Removed ...55
4.18.2 Collections in Request Parameters are OR Related55
4.18.3 Default value of Document Management “repair” parameter changed56

4.19 Java Client API Incompatibilities ...56
4.19.1 Java Client API: Removal of Deprecated Interfaces57
4.19.2 Java Client API: JAR File Name and Maven Artifact ID Change59
4.19.3 Logging Turned Off by Default ..60

4.20 Node.js Client API Incompatibilities ..60
4.20.1 Changes to Return Value of documents.remove60
4.20.2 Transaction Creation Returns an Object by Default60
4.20.3 Default Search Result Slice is Zero-Based ...60

4.21 Geospatial Region Accessors Can Now Return Double Values61
4.22 User-Defined Function Plugins Must Be Recompiled ...62
4.23 SLES 12 No Longer Supported ..62
4.24 Solaris No Longer Supported ...62
4.25 Nagios Plugin No Longer Supported ..62
4.26 Application Builder and Information Studio No Longer Available63
4.27 Admin Interface No Longer Selects a Default Schemas Database63
4.28 Internal Security ON with External Security Object Behavior Change63
4.29 REST Management API Changes in MarkLogic 9 ..64
4.30 Configuration Packaging Format Incompatibilities ..65
4.31 Java Client API 4.1.1 Incompatibilities ..65

4.31.1 Load Balancer Configuration for DMDSDK Jobs65
4.32 Incompatibilities Between 9.0-5 and 9.0-6 ...66

4.32.1 Changes to Accepted XML Character Set ..66
4.33 Incompatibilities Between 9.0-4 and 9.0-5 ...67

4.33.1 Minimum Required Version of HDP is 2.6 ..67
4.33.2 Reindex Recommended for Geospatial Region Indexes67
4.33.3 Geospatial Region Query Results Might Differ67
4.33.4 return-query Option Output Format Change ..68

4.34 Incompatibilities Between 9.0-3 and 9.0-4 ...68
4.34.1 Redaction: Deterministic Masking Values Differ68

4.35 Incompatibilities Between 9.0-2 and 9.0-3 ...68
4.35.1 Changes to Authentication Behavior with Client Certificate69
4.35.2 XCC ContentSource.newSession Interface Change69
4.35.3 Document Digest Authorization Behavior Changed in 9.0-369
4.35.4 1-click AMIs, new compatible CloudFormation, and additional upgrade

procedures 69
4.35.5 map:new Retains Keys with Empty Values ..70

4.36 Incompatibilities Between 9.0-1 and 9.0-2 ...70
4.36.1 The mlcp Option -tolerate_errors is Ignored ..70
4.36.2 Changes to jsearch.facets Output Structure ..70
4.36.3 Array Type is Preserved in x509 Certificate with Array-Valued Properties
MarkLogic 9—May, 2017 Release Notes—Page 5

MarkLogic Server Table of Contents
71
4.36.4 Node.js Client API: valuesBuilder.slice is Now Zero-Based71
4.36.5 Changes to xdmp:update XQuery Prolog Option72
4.36.6 Java Client API 4.0.2 Ignores HttpClientConfigurator72

4.37 MarkLogic 8 Incompatibilities ...72
4.37.1 JSON Related Incompatibilities ..73

4.37.1.1 Documents Created as JSON With MarkLogic 7 REST API or
MLCP Must Be Converted to Native JSON 74

4.37.1.2 json:unquotedString Primitive No Longer Available75
4.37.1.3 xdmp:to-json and json:transform-to-json Now Returns a docu-

ment-node() 75
4.37.1.4 Search, Java, REST: json-key Is Now json-property in Options

and Structured Query 76
4.37.1.5 Java and REST: Specifying a Language for JSON Documents is

Deprecated 76
4.37.1.6 Java and REST: Default Path Language for JSON Document

Patches is Now XPath 77
4.37.1.7 Java and REST: New Restrictions on Patching JSON Content 77
4.37.1.8 Java and REST: Transforms and Extensions That Manipulate

JSON Must Be Rewritten 78
4.37.1.9 Java and REST: JSON Array Items and Property Values No Lon-

ger Distinguishable in QBE 78
4.37.1.10 Field Range Query and Field Value Query on JSON May Behave

Differently 79
4.37.2 Semantics Incompatibilites ...79

4.37.2.1 Changed Function: sem:sparql ..80
4.37.2.2 Changed Function: sem:sparql-values80
4.37.2.3 Changed Function: sem:sparql-values80
4.37.2.4 Deprecated Function: sem:sparql-triples80
4.37.2.5 Changed Behavior: Graphs ...80

4.37.3 REST and Java Client API Incompatibilites ...81
4.37.3.1 Must Upgrade to Java Client API v3.081
4.37.3.2 REST API Instance Must Use the Declarative Rewriter on the

App Server 81
4.37.3.3 Default Transaction Mode for the POST Method of Resource Ser-

vice Extensions is Now Query 82
4.37.3.4 REST API: Empty Bulk Read by Query Now Returns 200 Status

82
4.37.3.5 Error Reporting Format and Detail Changes82
4.37.3.6 Deprecated Interface: Keyvalue Queries84
4.37.3.7 Transaction ID Format Has Changed ..84
4.37.3.8 A Transaction Can No Longer Be Shared Across Users85
4.37.3.9 Java: QBE Search Results No Longer Automatically Match the

Query Format 85
4.37.4 Document Library Services (DLS) Repositories Need To Perform A Bulk

Upgrade Operation 85
MarkLogic 9—May, 2017 Release Notes—Page 6

MarkLogic Server Table of Contents
4.37.5 Linux Now Requires Red Hat 6 ..87
4.37.6 mlsql On Linux No Longer Ships With Server ..87
4.37.7 Cyrillic Tokenization Changes ...87
4.37.8 Application Builder Applications Must Be Re-Deployed in MarkLogic 8 ..

88
4.37.9 Application Builder and Information Studio Links Removed88
4.37.10Search API Incompatibilities ..88

4.37.10.1 search:parse Output is Now Unannotated cts:query XML89
4.37.10.2 Deprecated Option: extract-metadata ..89
4.37.10.3 Deprecated Functions: search:unparse, search:remove-constraint

89
4.37.10.4 Structured Query: locks-query and properties-query Renamed 89
4.37.10.5 sort-order Query Option Requires an Index90

4.37.11Locks and Properties Query Built-In Functions Renamed90
4.37.12xdmp:uri-content-type Of an XML Document Now Returns application/

xml, Can Affect CPF Applications 90
4.37.13xdmp:function Signature Change ...91
4.37.14Incompatibilities Between 8.0-5 and 8.0-6 ...91

4.37.14.1 Terms Matched by additional-query Are Highlighted in Snippets
91

4.37.15Incompatibilities Between 8.0-3 and 8.0-4 ...91
4.37.15.1 xdmp.multipartDecode Now Returns a JSON Payload for Headers

92
4.37.15.2 In JavaScript, Some Thesaurus and Spelling Function Have Dif-

ferent Return Type 92
4.37.15.3 xdmp.databaseRestoreStatus Now Returns an Object92
4.37.15.4 Serialization Error Code Changes ...93
4.37.15.5 Change to Required Java Version ...93
4.37.15.6 Deprecated mlcp Command Line Options93
4.37.15.7 REST APIs That Have JSON or XML Payloads Cannot Have

Empty Payloads 93
4.37.15.8 Geospatial Namespace and Data Version Changes94

4.37.16Incompatibilities Between 8.0-2 and 8.0-3 ...96
4.37.16.1 spell.suggestDetailed, xdmp.filesystemDirectory, and xdmp.en-

codingLanguageDetect Now Return ValueIterator 97
4.37.16.2 xdmp.databaseRestoreStatus Now Returns an Array97
4.37.16.3 xdmp.gssServerNegotiate Now Returns a JavaScript Object ...97
4.37.16.4 Use of String Transaction Ids in Node.js To Be Deprecated97
4.37.16.5 CDH 4.3 is No Longer a Supported Hadoop Distribution97
4.37.16.6 Changes to How MarkLogic Locates Java and Hadoop Libraries

for HDFS Forest Storage 98
4.37.17Incompatibilities Between 8.0-1 and 8.0-2 ...98

4.37.17.1 Array Input Differences in fn.distinctValues, fn.subsequence, and
Other Functions 98

4.37.17.2 The Second Parameters of xdmp.eval, xdmp.invoke, xdmp.xque-
ryEval, and xdmp.spawn Now Take a Single Object 99
MarkLogic 9—May, 2017 Release Notes—Page 7

MarkLogic Server Table of Contents
4.37.17.3 extract-document-data Results Now Inline By Default99
4.37.17.4 XCC v8.0-2 May Require Config Change When Used with Older

Versions of MarkLogic 99
4.37.17.5 Client APIs: JavaScript Extension and Transform Error Reporting

Convention Change 100
4.37.17.6 Some JavaScript Built-In Functions that Returned XML Struc-

tures Now Return JSON Structures 100
4.38 MarkLogic 7 Incompatibilites ..101

4.38.1 Incompatibilities Between MarkLogic 7.0-3 and 7.0-2101
4.38.1.1 HDP No Longer a Supported Hadoop Platform101
4.38.1.2 Java API: ContentVersionRequest Property Deprecated101
4.38.1.3 REST API: content-versions Property Deprecated102
4.38.1.4 REST API: JSON documents Cannot be Retrieved as XML ..102

4.38.2 Float Precision Greater in 7.0-3 ..103
4.38.3 Incompatibilities Between MarkLogic 7.0-2 and 7.0-1103

4.38.3.1 Change to JSON Output from the REST API103
4.38.3.2 Changes to the MarkLogic Connector for Hadoop API103

4.38.4 Incompatibilities Between MarkLogic 7.0-1 and MarkLogic 6103
4.38.4.1 XQuery HTTP Client Built-In Functions Now Require a Privilege

104
4.38.4.2 HTTP Client Functions Are Now HTTP 1.1 Compliant104
4.38.4.3 xdmp:get-request-username and xdmp:get-request-user Changes

105
4.38.4.4 Specifying a Forest Now Only Works With Strict Locking ...105
4.38.4.5 Custom Dictionaries for Japanese and Chinese Languages Need to

be Re-saved 105
4.38.4.6 Default Attributes on XML Copy Changes106
4.38.4.7 Serialization of Alerting, Reverse, and Path Range Queries

Change 107
4.38.4.8 Java and REST Client API Incompatibilities107
4.38.4.9 Namespace Change for Properties Persisted Using JSON109
4.38.4.10 mlcp Incompatibilities ...115
4.38.4.11 REST Management API Version Incremented to v2116
4.38.4.12 Changes to the Configuration Manager119
4.38.4.13 xdmp:plan Now Requires a Privilege119
4.38.4.14 fn:analyze-string Now Returns Output in a Different Namespace

119

5.0 Planning for Future Upgrades ..120
5.1 Packaging API Deprecated ...120
5.2 info and infodev APIs Deprecated ..121
5.3 Annotated Query Output from search:parse Deprecated122
5.4 Search API Grammar Customization Deprecated ..122
5.5 The mlcp Option -tolerate_errors Deprecated ..122
5.6 xdmp:transaction-mode XQuery Prolog Option Deprecated123
5.7 Deprecation of transaction-mode Option to xdmp:eval124
MarkLogic 9—May, 2017 Release Notes—Page 8

MarkLogic Server Table of Contents
5.8 XCC Session.setTransactionMode is Deprecated ..124
5.9 Java Client API 4.0.2 Deprecations ..125
5.10 Java Client API 4.0.4 Deprecations ..125

5.10.1 NamespacesManager Interface Deprecated ..126
5.10.2 QueryBatcher.getQuerySuccessListeners Deprecated126

5.11 REST Client API Namespace Configuration Deprecation126
5.12 Configuration Packaging XQuery Library Deprecated126
5.13 Configuration Manager Deprecated ..128

6.0 Other Notes ..129
6.1 Memory and Disk Space Requirements ..129
6.2 Compatibility with XQuery Specifications ...130
6.3 XQuery Extensions ...130
6.4 SQL Queries ...130
6.5 Documentation ..131
6.6 Browser Requirements ..135
6.7 Security: Prevent Abuse of System Entity Expansion ..135

7.0 Technical Support ..136

8.0 Copyright ...137
8.0 COPYRIGHT ..137
MarkLogic 9—May, 2017 Release Notes—Page 9

MarkLogic Server Introduction

MarkLogic 9—May, 2017 Release Notes—Page 10

1.0 Introduction
10

MarkLogic 9 is a major release of MarkLogic Server that includes many new features. The new
features are described in “New Features in MarkLogic 9” on page 13. The following lists some of
the major features with links to where they are described:

• Template Driven Extraction (TDE)

• SQL Enhancements

• Optic API

• Enhanced Tiered Storage

• Encryption at Rest

• Element Level Security

• Redaction

• Geospatial Enhancements

• Entity Services API

• Bulk Asynchronous Data Movement

For a description of these and many more new features, see “New Features in MarkLogic 9” on
page 13.

If you are upgrading from MarkLogic 8, some applications will require minor changes to run
correctly on MarkLogic 9. For details, see “Known Incompatibilities with Previous Releases” on
page 45.

For a list of bugs fixed in the latest maintenance release and a list of known bugs, see the
MarkLogic Technical Support website at http://support.marklogic.com (supported customers only).

http://support.marklogic.com/

MarkLogic Server Installation and Upgrade
2.0 Installation and Upgrade
This chapter describes the supported platforms and upgrade paths for MarkLogic Server, and has
the following sections:

• Supported Platforms

• Supported Filesystems

• Upgrade Support

2.1 Supported Platforms
12

For a complete list of supported platforms, see Supported Platforms in the Installation Guide.

2.2 Supported Filesystems
For a complete list of supported filesystems, see Supported Filesystems in the Installation Guide.

2.3 Upgrade Support
This section describes upgrade support to MarkLogic 9. For details on installing MarkLogic
Server and for the upgrade procedure, see the Installation Guide.

Warning MarkLogic Early Access does not support upgrade. This section describes upgrade
for 9.0-1 and later.

Upgrading is supported from 7.0-6 or later. If you are running a release prior to 7.0, you must first
upgrade to MarkLogic 7 or MarkLogic 8 before upgrading to MarkLogic 9. If you are upgrading
a cluster, you must first upgrade the node in which the Security database forest is located before
you upgrade other nodes in the cluster.

Note: MarkLogic Corporation strongly recommends performing a backup of your
databases before upgrading to MarkLogic 9. Additionally, MarkLogic Corporation
recommends that you first upgrade to the latest maintenance release of
MarkLogic 7 or MarkLogic 8 before upgrading to MarkLogic 9.

An upgrade from MarkLogic 7 or MarkLogic 8 does not require a reindex. If you are upgrading
from a previous release that does require a reindex and you choose not to reindex your databases,
the database will run in compatibility mode, depending on the version of MarkLogic Server in
which they were last loaded or reindexed. Running in compatibility mode will disable certain
MarkLogic 9 features (as well as earlier features depending upon which compatibility mode it
runs) and may treat all content in the database as English language content. For details on
database compatibility, see the Installation Guide.
MarkLogic 9—May, 2017 Release Notes—Page 11

MarkLogic Server Installation and Upgrade
MarkLogic 7 and later includes a new rebalancing feature with a more efficient document
placement algorithm. Upon upgrade, databases from previous MarkLogic releases are set to use
the legacy document assignment policy, which is the same as used in previous MarkLogic
releases. If you do plan on reindexing an upgraded database, MarkLogic recommends that you
consider setting your databases to use the new bucket document assignment policy. The bucket
policy is more efficient for rebalancing your database across forests if you add or remove forests
from your configuration. For more details, see Database Rebalancing in the Administrator’s Guide.

There are some known incompatibilities between MarkLogic 8 and MarkLogic 9. You might
need to make some minor code changes to your MarkLogic 8 applications before they can run
correctly in MarkLogic 9. For details on the incompatibilities, see “Known Incompatibilities with
Previous Releases” on page 45. For instructions on upgrading to MarkLogic 9, including
information about database compatibility between MarkLogic 8 and MarkLogic 9, see the
Installation Guide.

If you are upgrading to MarkLogic 9.0-4 or later, you may have to install MarkLogic Converters
package separately. For more details, see MarkLogic Converters Installation Changes Starting at
Release 9.0-4 in the Installation Guide.

If you upgrade to MarkLogic 9.0-5 or later from an earlier version of MarkLogic 9 and you use a
geospatial region index, you should reindex. For more details, see “Tolerance Support in
Geospatial Region Queries” on page 40.
MarkLogic 9—May, 2017 Release Notes—Page 12

MarkLogic Server New Features in MarkLogic 9
3.0 New Features in MarkLogic 9
44

This chapter describes the new features in MarkLogic 9.

• Template Driven Extraction (TDE)

• SQL Enhancements

• Optic API

• Enhanced Tiered Storage

• Encryption at Rest

• Element Level Security

• Redaction

• Geospatial Enhancements

• Entity Services API

• New Stemming and Tokenization

• Accurate Wildcard Expansion Options

• mlcp Enhancements

• Java Client API Enhancements

• Node.js Client API Enhancements

• Rest Client API Enhancements

• Telemetry

• XQuery 3.x Features

• Query Console Enhancements

• Application Display Environment Customization

• Rolling Upgrades

• Bi-temporal Compliance Enhancements

• Secure Credentials

• Certificate Authentication

• New REST Management APIs

• New Features in MarkLogic 9.0-2

• New Features in MarkLogic 9.0-3

• New Features in MarkLogic 9.0-4

• New Features in MarkLogic 9.0-5
MarkLogic 9—May, 2017 Release Notes—Page 13

MarkLogic Server New Features in MarkLogic 9
• New Features in MarkLogic 9.0-6

• New Features in MarkLogic 9.0-7

3.1 Template Driven Extraction (TDE)
MarkLogic 9 enables you to define a relational lens over your document data, so you can query
parts of your data using SQL or the new Optic API. Templates let you specify which parts of
documents make up rows in a view. You can also use templates to define a semantic lens,
specifying which values from a document make up triples in the triple index.

For more details, see Template Driven Extraction (TDE) in the Application Developer’s Guide.

3.2 SQL Enhancements
MarkLogic is a NoSQL database, where the unit of storage and indexing is a document. The
document model makes it possible to express rich, related, varying structures — anything from a
scientific journal article to a complex derivative trade. Many users want to view parts of these rich
structures as though they were simple tables — to see the data in those documents through a
relational lens. While it is possible to create and query SQL views with MarkLogic 8, MarkLogic
9 further enhances the SQL capabilities with a number of new features, including Templates, the
new Optic API, and an updated ODBC driver.

In MarkLogic 9, you can define a template that specifies which parts of the document make up a
row in a view, and then query that view from a server-side program with xdmp:sql() or
xdmp.sql() or via ODBC. You can also query that view server-side from the new MarkLogic
Optic API — a fluent JavaScript interface with the ability to perform joins and aggregates on
views over documents.

3.3 Optic API
The Optic API blends the relational world with rich NoSQL document features by providing the
capability to perform joins and aggregates over documents. One of the enabling features,
Template Driven Extraction, makes it possible to create a relational lens over documents stored in
MarkLogic by using templates to specify the parts of a document that make up a row in a view.
You can access that data using the Optic API in XQuery, JavaScript, or Java.

For more details, see Optic API for Multi-Model Data Access in the Application Developer’s Guide.

3.4 Enhanced Tiered Storage
MarkLogic 9 adds more flexibility to the Tiered Storage feature. First, it allows documents to be
matched to a tier based on a query, in addition to the current solution that is based on a range
index pair of boundary values. That means that any complex query can be used to create a policy
to match data or metadata about documents in order to decide in which tier to save or move the
document. Second, it allows tiered storage queries to match dates using age, for instance, you can
write a query for high-end tier that matches documents created in the last 30 days, and another for
MarkLogic 9—May, 2017 Release Notes—Page 14

MarkLogic Server New Features in MarkLogic 9
mid-end tier that matches documents created between 1 and 3 years, rather than the fixed pair of
boundary values in the current solution. Third, it removes the need of using super databases to
create tiers, simplifying the life of developers, which were required to understand the tiering
policy in order to write high performance queries or any update.

MarkLogic 9 adds more performance to the Tiered Storage feature. Now queries that use elements
which are part of the tiering policy are optimized to run against the nodes that are more likely to
have that data. That means that if you have a query that uses the same element as the tiering
policy, for instance an element range query on create date > 30 days, the query engine will direct
the search only to the data nodes that store that data, in this example high-end tier nodes.

3.5 Encryption at Rest
MarkLogic 9 introduces the ability to encrypt “data at rest” - data that is on media (on disk or in
the cloud), as opposed to data that is being used in a process. Encryption can be applied to newly
created files, configuration files, or log files. Existing data files can be encrypted by triggering a
merge or re-index of the data.

For more information about using Encryption at Rest, see Encryption at Rest in the MarkLogic
Security Guide.

3.6 Element Level Security
Element Level Security is an addition to the MarkLogic security model that allows you to specify
more complex security rules for specific elements within documents. Element Level Security can
be applied to either JSON or XML documents. Users without the appropriate permissions cannot
view the secured element or JSON property.

Element Level Security can be used in addition to the existing document level security and
compartment security. For details about using Element Level Security, see Element Level Security
in the Security Guide.

3.7 Redaction
MarkLogic 9 introduces a new library module and mlcp command line option that enable you to
redact sensitive data when extracting documents from the database. Redaction enables you to
obscure or hide portions of a document using a rule-based read transformation.

Redaction is available through the following interfaces:

• The mlcp -redaction command line option.

• The rdt:redact XQuery function.

• The rdt.redact Server-Side JavaScript function.

For more details, see Redacting Document Content in the Application Developer’s Guide and
Redacting Content During Export or Copy Operations in the mlcp User Guide.
MarkLogic 9—May, 2017 Release Notes—Page 15

MarkLogic Server New Features in MarkLogic 9
3.8 Geospatial Enhancements
MarkLogic 9 includes the following enhancements to geospatial operations:

• Geospatial region search, including a new geospatial region index type

• ETRS-89 coordinate system support

• Double precision coordinate support

• Support for kilometers, meters, and feet as units of measure

You can take advantage of these enhancements using all of the MarkLogic geospatial and search
related interfaces, including cts:search, search:search, JSearch, and the REST, Java, and
Node.js Client APIs.

Note: The performance of geospatial region queries for geographic coordinate systems
(WGS84 and ETRS89) has not yet been fully optimized. Performance will be
improved in a future release.

For details, see Geospatial Search Applications in the Search Developer’s Guide.

3.9 Entity Services API
The Entity Services API enables you to quickly and easily model your business entities and
relationships between them and then generate code and configuration artifacts that provide a
framework for an entity based application.

The artifacts you generate with the Entity Services API make it easier to create entities from raw
source data, query entities and the relationships between them, and manage your entities and
models.

For details, see the Entity Services Developer’s Guide.

3.10 New Stemming and Tokenization
In MarkLogic 9 the default tokenization and stemming code has been changed for all languages
(except English tokenization). Some tokenization and stemming behavior will change between
MarkLogic 8 and MarkLogic 9. We expect that in most cases results will be better in
MarkLogic 9.

You can now customize stemming and tokenization for a language by selecting one of several
built-in stemmer and lexer plug-ins, or by creating your own stemmer and lexer plug-ins in C++.

You can also configure a custom stemming and/or tokenization dictionary for any language.
Previously, you could not distinguish between stemming and tokenization dictionaries, and you
could not install a dictionary for an unsupported language.

For more details, see the following topics:
MarkLogic 9—May, 2017 Release Notes—Page 16

MarkLogic Server New Features in MarkLogic 9
• Tokenization and Stemming in the Search Developer’s Guide

• User-Defined Lexer Plugins in the Search Developer’s Guide

• Using a User-Defined Stemmer Plugin in the Search Developer’s Guide

• Custom Dictionaries for Tokenizing and Stemming in the Search Developer’s Guide

• “Default Stemming and Tokenization Libraries Changed for Most Languages” on page 49

3.11 Accurate Wildcard Expansion Options
MarkLogic 9 adds three new cts:query constructor options for controlling wildcard expansion.

When evaluating a wildcarded search term, MarkLogic must sometimes make a tradeoff between
speed and accuracy. MarkLogic attempts to expand a wildcard term from the lexicon. To prevent
this expansion from taking too long, there is a limit on how many words MarkLogic will extract
from the lexicon. When the limit is reached, MarkLogic falls back on alternative strategies that
accurate for all possible terms containing wildcard characters.

For many searches, these inaccuracies are an acceptable tradeoff for the fast response of an
unfiltered search. Where the inaccuracies are not acceptable, you can use the following new
options to change the default behavior: -lexicon-expansion-limit=N, -limit-check,
-no-limit-check.

For more details, see the function reference documentation for the following functions:

XQuery Server-Side JavaScript

cts:word-query cts.wordQuery

cts:element-word-query cts.elementWordQuery

cts:element-attribute-word-query cts.elementAttributeWordQuery

cts:field-word-query cts.fieldWordQuery

cts:json-property-word-query cts.jsonPropertyWordQuery

cts:element-value-query cts.elementValueQuery

cts:element-attribute-value-query cts.elementAttributeValueQuery

cts:field-value-query cts.fieldValueQuery

cts:json-property-value-query cts.jsonPropertyValueQuery
MarkLogic 9—May, 2017 Release Notes—Page 17

MarkLogic Server New Features in MarkLogic 9
3.12 mlcp Enhancements
The following capabilities have been added to the mlcp command line tool:

• Support for SSL Connections

• Greater Control over Host Connections

• Redaction

• Batch Support for Server-Side Import Transformations

• Ability to Access and Modify Metadata in a Transformation

In addition the mlcp source code is now available for download through the GitHub
marklogic-contentpump project. For details, see Accessing the mlcp Source Code in the mlcp User
Guide.

3.12.1 Support for SSL Connections
The mlcp command line tool can now connect to MarkLogic via an SSL (Secure Socket Layer)
connections. For details, see Connecting to MarkLogic Using SSL in the mlcp User Guide.

3.12.2 Greater Control over Host Connections
You can now specify multiple hosts for mlcp to connect to during import, export, and copy jobs.
Used by itself, this feature enables mlcp to fall back an alternative host if the initial host is not
available.

You can also use this capability in conjunction with the new -restrict_hosts option to prevent
mlcp from connecting to any hosts except the ones on the initial host list.

For more details, see Controlling How mlcp Connects to MarkLogic in the mlcp User Guide.

3.12.3 Redaction
MarkLogic 9 introduces the ability to redact sensitive data when extracting documents from the
database with the export or copy commands by specifying redaction rule collections in the -redact
option.

For more details, see Redacting Content During Export or Copy Operations in the mlcp User Guide
and Redacting Document Content in the Application Developer’s Guide.

3.12.4 Batch Support for Server-Side Import Transformations
Previously, the batch size was always one when applying a server-side transformation during an
mlcp import or copy job. This restriction has been lifted in MarkLogic 9. All documents in a batch
are now transformed and inserted into the database as a single statement, greatly improving
performance when using a transformation.
MarkLogic 9—May, 2017 Release Notes—Page 18

MarkLogic Server New Features in MarkLogic 9
3.12.5 Ability to Access and Modify Metadata in a Transformation
Collections, permissions, document quality, and temporal collection specified by the client are
now available to a transformation function via the context parameter. In addition, a transformation
function can set collections, permissions, quality, temporal collection, and values metadata for its
output document(s).

For details, see Transforming Content During Ingestion in the mlcp User Guide.
MarkLogic 9—May, 2017 Release Notes—Page 19

MarkLogic Server New Features in MarkLogic 9
3.13 Java Client API Enhancements
The following capabilities have been added to the Java Client API:

• Bulk Asynchronous Data Movement

• Enhanced Temporal Document Support

• Security and Authentication Improvements

• Values Metadata Support

• Row-Based Search

• Geospatial Search Enhancements

3.13.1 Bulk Asynchronous Data Movement
The new Data Movement SDK feature of the Java Client API enables you to move large amounts
of data into, out of, or within a MarkLogic cluster asynchronously. These interfaces leverage your
entire cluster for scale-out performance. The feature supports streaming, asynchronous, long
running data movement tasks.

For details, see the com.marklogic.client.datamovement package in the Java Client API
Documentation and Asynchronous Multi-Document Operations in the Java Application Developer’s
Guide.

3.13.2 Enhanced Temporal Document Support
You can now pass a temporal document URI when creating, updating, and patching temporal
documents. This is logical document URI in a temporal collection. For more details, see the
methods of com.marklogic.client.bitemporal.TemporalDocumentManager that accept a
temporalDocumentURI parameter and Working with Temporal Documents in the Developing
Applications With the Java Client API.

If you have sufficient privileges, you can now wipe (completely remove) a temporal document
using TemporalDocumentManager.wipe.

You can use the Java Client API to protect a temporal document against update, deletion, or wipe
for a specified time. See TemporalDocumentManage.protect.

3.13.3 Security and Authentication Improvements
You can now use Kerberos or certificate-based authentication to authenticate with MarkLogic.
You can also connect to MarkLogic via a SSL (Secure Socket Layer) connection.

For more details, see Authentication and Connection Security in the Developing Applications With
the Java Client API.
MarkLogic 9—May, 2017 Release Notes—Page 20

MarkLogic Server New Features in MarkLogic 9
3.13.4 Values Metadata Support
MarkLogic 9 adds the ability to associate key-value metadata with a document. You can use the
Java Client API to add, update, delete, and search values metadata. For more details, see Values
Metadata in the Developing Applications With the Java Client API.

3.13.5 Row-Based Search
You can use the Java Client API to execute a plan produced by the Optic API and receive
row-based results in your Java application. For details, see Optic Java API for Relational Operations
in the Developing Applications With the Java Client API.

3.13.6 Geospatial Search Enhancements
MarkLogic 9 includes enhancements to geospatial search such as region searches, double
precision coordinates, additional coordinate systems. These features are exposed through the Java
Client API. For more details, see “Geospatial Enhancements” on page 16, Creating Region Queries
Using the Client APIs in the Search Developer’s Guide, and StructuredQueryBuilder.geospatial in
the Java Client API Documentation.

3.14 Node.js Client API Enhancements
The following capabilities have been added to the Node.js Client API:

• Authentication and Connection Security

• Enhanced Temporal Document Support

• Values Metadata Support

• Geospatial Search Enhancements

• Minimum Distance on Near Queries

3.14.1 Authentication and Connection Security
You can now use Kerberos or certificate-based authentication to authenticate with MarkLogic.
You can also connect to MarkLogic via a SSL (Secure Socket Layer) connection.

For more details, see Authentication and Connection Security in the Node.js Application Developer’s
Guide.

3.14.2 Enhanced Temporal Document Support
You can now pass a temporal document URI when creating, updating, and patching temporal
documents. This is the logical document URI in a temporal collection. For more details, see the
methods in the documents namespace that accept a temporalDocument parameter and Working with
Temporal Documents in the Node.js Application Developer’s Guide.

If you have sufficient privileges, you can now wipe (completely remove) a temporal document
using TemporalDocumentManager.wipe.
MarkLogic 9—May, 2017 Release Notes—Page 21

MarkLogic Server New Features in MarkLogic 9
3.14.3 Values Metadata Support
MarkLogic 9 adds the ability to associate key-value metadata with a document. You can use the
Node.js Client API to add, update, delete, and search values metadata. For more details, see the
metadataValues metadata category in Working with Metadata in the Node.js Application
Developer’s Guide.

3.14.4 Geospatial Search Enhancements
MarkLogic 9 includes enhancements to geospatial search such as region searches, double
precision coordinates, additional coordinate systems. These features are exposed through the
Node.js Client API. For more details, see “Geospatial Enhancements” on page 16, Creating Region
Queries Using the Client APIs in the Search Developer’s Guide, and
queryBuilder.geospatialRegion in the Node.js Client API Reference.

3.14.5 Minimum Distance on Near Queries
The queryBuilder.near method now accepts a minimum distance for near queries. Previously, you
could only specify a maximum distance. For details, see the Node.js Client API Reference and
cts:near-query.

3.15 Rest Client API Enhancements
The following capabilities have been added to the REST Client API:

• Enhanced Temporal Document Support

• Row-Based Data Evaluation

• Point-in-Time Operations

• Values Metadata Support

• cts:query Support

3.15.1 Enhanced Temporal Document Support
You can now pass a temporal document URI when creating, updating, and patching temporal
documents. This is logical document URI in a temporal collection. For more details see Working
with Temporal Documents in the REST Application Developer’s Guide and the /v1/documents
methods that accept a temporal-document parameter.

If you have sufficient privileges, you can now wipe (completely remove) a temporal document
using DELETE /v1/documents?result=wiped. For more details, see DELETE:/v1/documents in the
MarkLogic REST API Reference.

The new POST:/v1/documents/protection method enables you to protect a temporal document
against update, deletion, or wipe for a specified time period. For more details, see the MarkLogic
REST API Reference.
MarkLogic 9—May, 2017 Release Notes—Page 22

MarkLogic Server New Features in MarkLogic 9
3.15.2 Row-Based Data Evaluation
The new /rows service enables you to execute a plan produced by the Optic API and receive
results in a variety of row-based formats. For more details, see:

• GET:/v1/rows in the MarkLogic REST API Reference

• POST:/v1/rows in the MarkLogic REST API Reference

• Optic API for Multi-Model Data Access in the Application Developer’s Guide

3.15.3 Point-in-Time Operations
Most read and search operations now accept a timestamp request parameter that enables you to
make successive requests that will evaluated against the state of the database at a point in time.
The timestamp can be obtained from the ML-Effective-Timestamp header returned by the same
methods.

For more details, see Performing Point-in-Time Operations in the REST Application Developer’s
Guide.

3.15.4 cts:query Support
You can use a serialized cts:query in place of a structured query in GET:/v1/search and
POST:/v1/search. For more details, see Searching With cts:query in the REST Application
Developer’s Guide and the MarkLogic REST API Reference.

3.15.5 Values Metadata Support
MarkLogic 9 adds the ability to associate key-value metadata with a document. You can use the
REST Client API to add, update, delete, and search values metadata. You can use the new
metadata category metadata-values when working with this type of metadata.

For more details, see Working with Metadata in the REST Application Developer’s Guide.

3.16 Telemetry
Telemetry is part of our continuous effort to provide better and faster support by automating the
data collection process required on most support tickets. When Telemetry is enabled, it collects,
encrypts, and sends diagnostic and anonymized system-level information about a MarkLogic
cluster to a secure MarkLogic destination.

The Telemetry feature collects only system level information, and sends it to a protected and
secure location where it can only be accessed by the MarkLogic technical teams, to be used to
facilitate troubleshooting and monitor performance. Telemetry does not collect any personally
identifiable information, user data or application logs. See Telemetry in the Monitoring MarkLogic
Guide for more information.
MarkLogic 9—May, 2017 Release Notes—Page 23

MarkLogic Server New Features in MarkLogic 9
3.17 XQuery 3.x Features
MarkLogic now supports selected features from the XQuery 3.0 and XQuery 3.1 specifications.
These features are only available when using the “1.0-ml” XQuery dialect.

For more details, see XQuery 3.x Features in the XQuery and XSLT Reference Guide.

3.18 Query Console Enhancements
MarkLogic 9 includes the following new features and enhancements in the Query Console
application. For more details, see the Query Console User Guide.

• Support for profiling Server-Side JavaScript. The profiling output differs from the
XQuery output in being sampling based.

• Auto-complete suggestions. As you type into a query, Query Console displays a list of
functions, keywords, and in-scope variables suggests. For functions, you also see the
function reference documentation.

• The editor now provides auto-closure of parentheses, quotes, braces, and other grouping
symbols.

• Each query has now has its own tab for displaying results. The results of one query are not
lost if you switch to another query and run it.

• Query results description differentiates between a result that is a single item versus a
sequence of one item so that you can tell whether or not the query returns a sequence.

• Query execution time is displayed along with the results. For example, Query Console
will report “Returned sequence of 2 items in 230ms”. The display also includes the time
delta between the current and previous run.

• You can now select a content source and App Server independent of one another.

• MarkLogic 9 enhances the database Explorer to enable you to view metadata such as
collections, permissions, key-value metadata, and document quality, along with the
contents of a document. This feature is available when you select a document from the
Explorer document list.

• You can reorder queries in a workspace and reorder tabs in the editor using drag-and-drop.

• Query results larger than 5M will be truncated.
MarkLogic 9—May, 2017 Release Notes—Page 24

MarkLogic Server New Features in MarkLogic 9
3.19 Application Display Environment Customization
Administrators can now customize the display environment of MarkLogic applications such as
Query Console and the Monitoring Dashboard in the following ways:

• Display a notification dialog when a user navigates to one of the MarkLogic application
pages.

• Display a customized banner across the top of each page of the MarkLogic applications.
This enables you to easily differentiate between environments such as production and
staging.,

For more details, see Configuring a MarkLogic Application Message and Banner in the Administrator’s
Guide.

3.20 Rolling Upgrades
A rolling upgrade is one way to address the need for highly available clusters under heavy
transaction loads to upgrade to a newer version of MarkLogic in a seamless manner. Hosts in a
cluster are upgraded one by one, without incurring any downtime in availability or interruption of
transactions.

For more details, see Rolling Upgrades in the Administrator’s Guide.

3.21 Bi-temporal Compliance Enhancements
The MarkLogic bi-temporal data management feature has been enhanced to provide the option to
store valid and system axes and archival information outside of temporal documents in metadata,
rather than directly in the documents. Storing the axes times in metadata enables MarkLogic to
update the axes timestamps without changing the documents and invoking reindexing.

The ability to update nodes in temporal documents has been added.

Temporal documents can be protected from certain temporal operations, such as update, delete or
wipe for a specified period of time and then automatically archived to a WORM (Write Once
Read Many) device.

MarkLogic also supports uni-temporal documents that have only a system axes.

3.22 Secure Credentials
Secure credentials enable a security administrator to manage credentials and to be made available
to less privileged users for authentication to other systems without giving them access to the
credentials themselves.
MarkLogic 9—May, 2017 Release Notes—Page 25

MarkLogic Server New Features in MarkLogic 9
3.23 Certificate Authentication
Certificate-based authentication requires internal and external users and HTTPS clients to
authenticate themselves to MarkLogic via a client certificate, either in addition to, or rather than a
password.

3.24 New REST Management APIs
In MarkLogic 9, a number of REST Management APIs have been added. A few of the APIs have
been updated as well. This table summarizes the changes.

Added Updated

GET:/manage/v2/credentials/properties

PUT:/manage/v2/credentials/properties

GET:/manage/v2?view=describe

GET:/manage/v2/credentials/secure

POST:/manage/v2/credentials/secure

GET:/manage/v2/databases/{id|name}/partition-queries

POST:/manage/v2/databases/{id|name}/partition-queries

DELETE:/manage/v2/databases/{id|name}/partition-queries/{partition-number}

GET:/manage/v2/databases/{id|name}/partition-queries/{partition-number}

GET:/manage/v2/databases/{id|name}/partition-queries/{partition-number}/properties

PUT:/manage/v2/databases/{id|name}/partition-queries/{partition-number}/properties

PUT:/manage/v2/databases/{id|name}/partition-queries/{partition-number}/properties

POST:/manage/v2/hosts

GET:/manage/v2/meters

GET:/manage/v2/protected-paths

POST:/manage/v2/protected-paths

GET:/manage/v2/protected-paths/{id}/properties

PUT:/manage/v2/protected-paths/{id}/properties

DELETE:/manage/v2/protected-paths/{id|name}

GET:/manage/v2/protected-paths/{id|name}

GET:/manage/v2/query-rolesets

POST:/manage/v2/query-rolesets

DELETE:/manage/v2/query-rolesets/{id|name}
MarkLogic 9—May, 2017 Release Notes—Page 26

MarkLogic Server New Features in MarkLogic 9
3.25 New Features in MarkLogic 9.0-2
MarkLogic version 9.0-2 contains the following new features:

• Geospatial Enhancements

• Additional REST Client API Support for cts:query

• REST Client API Supports QBE in a Combined Query

• New Server-Side Transaction Controls

• XCC: New Session Methods for Transaction Control

3.25.1 Geospatial Enhancements
MarkLogic 9.0-2 contains the following enhancements related to geospatial region support:

• Extended Units Support in Region Indexes

• Crosses, Equals, and Touches Region Comparison Operators

• New Functions for Probing Region Relationships

• Support for Specifying Tolerance

3.25.1.1 Extended Units Support in Region Indexes
You can specify additional units (feet, kilometers, meters) when creating a geospatial region
index. Previously, you could only specify miles. The units are only meaningful when using a
geodetic coordinate system such as WGS84.

For more details, see admin:database-geospatial-region-path-index in the MarkLogic XQuery
and XSLT Function Reference.

GET:/manage/v2/query-rolesets/{id|name}

GET:/manage/v2/query-rolesets/{id|name}/properties

PUT:/manage/v2/query-rolesets/{id|name}/properties

GET:/manage/v2/security

POST:/manage/v2/security

GET:/manage/v2/security/properties

PUT:/manage/v2/security/properties

Added Updated
MarkLogic 9—May, 2017 Release Notes—Page 27

MarkLogic Server New Features in MarkLogic 9
3.25.1.2 Crosses, Equals, and Touches Region Comparison Operators
You can now use the “crosses”, “equals” and “touches” operators for geospatial region queries
and other region computation functions that previously accepted region comparison operators.

For example, you can uses “crosses” as an operator name to functions such as
cts:geospatial-region-query (XQuery) or cts.geospatialRegionQuery (JavaScript). You can
also use DE9IM_CROSSES in query text passed to cts:parse (XQuery) or cts.parse (JavaScript).

3.25.1.3 New Functions for Probing Region Relationships
The following new functions are available for comparing geospatial region values:

• geo:region-relate (XQuery) and geo.regionRelate (JavaScript) - test whether two
regions satisfy a relationship such as “crosses” or “overlaps”

• geo:region-de9im (XQuery) and geo.regionDe9im (JavaScript) - compute the DE9-IM
intersection matrix between two regions.

For more details, see the function reference documentation in the MarkLogic XQuery and XSLT
Function Reference or the MarkLogic Server-Side JavaScript Function Reference.

3.25.1.4 Support for Specifying Tolerance
Tolerance is the largest allowable variation in geometry comparisons. If the distance between two
points is less than tolerance, then the two points are considered equal. For more details, see
Understanding Tolerance in the Search Developer’s Guide.

The following functions now support a “tolerance” option. For more details, see the function
reference documentation.

XQuery Server-Side JavaScript

geo:arc-intersection geo.arcIntersection

geo:box-intersects geo.boxIntersects

geo:circle-intersects geo.circleIntersects

geo:polygon-intersects geo.polygonIntersects

geo:complex-polygon-intersects geo.complexPolygonIntersects

geo:region-intersects geo.regionIntersects
MarkLogic 9—May, 2017 Release Notes—Page 28

MarkLogic Server New Features in MarkLogic 9
3.25.2 Additional REST Client API Support for cts:query
You can use a serialized cts:query in place of a structured query in the following methods:

• GET:/v1/search and POST:/v1/search

• GET:/v1/values/{name} and POST:/v1/values/{name}

On the GET methods, specify the cts:query as the value of the structuredQuery request parameter.
On the POST methods, put the cts:query in the POST body.

In addition, you can include a cts:query serialized as XML or JSON in place of a structured
query in a combined query. This is applicable to any method that accepts a combined query input,
such as a POST request to /v1/search or /v1/values/{name}.

For more details, see Searching With cts:query in the REST Application Developer’s Guide and the
MarkLogic REST API Reference.

3.25.3 REST Client API Supports QBE in a Combined Query
You can now include a Query By Example (QBE) in a combined query when using the REST
Client API. For more details, see Specifying Dynamic Query Options with Combined Query in the
REST Application Developer’s Guide.

3.25.4 New Server-Side Transaction Controls
You can now configure the commit mode (auto or explicit) and transaction type (query, update, or
auto) independently when configuring a new transaction. This change manifests in the following
ways:

• The xdmp:update XQuery prolog option accepts a new value, “auto”, which specifies that
MarkLogic should determine the transaction/statement type (query or update) through
static analysis. The pre-existing value “false” now means the transaction/statement type is
query. Use this option plus xdmp:commit instead of the now-deprecated
xdmp:transaction-mode prolog option.

• A new XQuery prolog option, xdmp:commit, has been added for specifying whether a main
module should run as a single-statement, auto-commit transaction (the default) or a

geo:polygon-contains geo.polygonContains

geo:complex-polygon-contains geo.complexPolygonContains

geo:region-contains geo.regionContains

geo:geohash-encode geo.geohashEncode

XQuery Server-Side JavaScript
MarkLogic 9—May, 2017 Release Notes—Page 29

MarkLogic Server New Features in MarkLogic 9
multi-statement explicit-commit transaction. Use this option plus xdmp:update instead of
the now-deprecated xdmp:transaction-mode prolog option.

• New commit and update options have been added to the functions listed in the table below.
Use these in preference to the transaction-mode option, which has been deprecated.

The following functions support the new commit and update options. For more details, see the
function reference documentation for xdmp:eval (XQuery) or xdmp.eval (JavaScript).

For more details on the new capabilities, see Understanding Transactions in MarkLogic Server in the
Application Developer’s Guide.

For details on transitioning from the old transaction controls to the new ones, see the following
topics:

• “Changes to xdmp:update XQuery Prolog Option” on page 72

• “xdmp:transaction-mode XQuery Prolog Option Deprecated” on page 123

• “Deprecation of transaction-mode Option to xdmp:eval” on page 124.

3.25.5 XCC: New Session Methods for Transaction Control
The following methods have been added to the Session class for configuring transactions and
querying transaction configuration:

• Session.setAutoCommit and Session.isAutoCommit

• Session.setUpdate and Session.getUpdate

You should use these methods rather Session.setTransactionMode, which has been deprecated.
For details, see “XCC Session.setTransactionMode is Deprecated” on page 124.

Session.setAutoCommit controls whether requests submitted during the session run in a
transaction with auto-commit semantics (the default) or explicit commit semantics. Executing a
request with commit set to explicit starts a multi-statement transaction.

XQuery JavaScript

xdmp:eval xdmp.eval

xdmp:javascript-eval xdmp.xqueryEval

xdmp:invoke xdmp.invoke

xdmp:invoke-function xdmp.invokeFunction

xdmp:spawn xdmp.spawn

xdmp:spawn-function
MarkLogic 9—May, 2017 Release Notes—Page 30

MarkLogic Server New Features in MarkLogic 9
Session.setUpdate controls whether requests submitted during the session run in a query
transaction, an update transaction, or if the transaction type should be automatically detected by
MarkLogic through analysis of the submitted code. Auto detection is the default behavior.

Note that if you override the Session transaction configuration in an ad hoc query, the behavior
differs depending on whether you configure the session using setTransactionMode or
setAutoCommit and setUpdate. With setAutoCommit and setUpdate, the transaction configuration
reverts to the Session settings once the transaction involving the override completes. With
setTransactionMode, the override persists and affects future transactions unless you explicitly
change it.

3.26 New Features in MarkLogic 9.0-3
MarkLogic version 9.0-3 contains the following new features:

• REST Management API: Advancing LSQT

• REST Client API: Advancing LSQT

• Ops Director

• Amazon Web Services (AWS) 1-Click

• Entity Services Enhancements

• Search Result Sorting Enhancements

• Redaction Built-in for Masking Numbers

• Client APIs: Performance Improvements for JavaScript Extensions and Transforms

• Java Client API: Values and Tuples Query Support for cts:query

3.26.1 REST Management API: Advancing LSQT
You can use the following new method of the REST Management API to advance LSQT on a
temporal collection:

POST /manage/v2/databases/{id|name}/temporal/collections?collection=collname

For more details, see
POST:/manage/v2/databases/{id|name}/temporal/collections?collection={name} in the
MarkLogic REST API Reference.

3.26.2 REST Client API: Advancing LSQT
You can now use the following new method of the REST Client API to advance LSQT on a
temporal collection:

POST /v1/temporal/collections/{name}
MarkLogic 9—May, 2017 Release Notes—Page 31

MarkLogic Server New Features in MarkLogic 9
For more details, see POST:/v1/temporal/collections/{name} in the MarkLogic REST API
Reference.

3.26.3 Ops Director
Ops Director presents a consolidated view of your MarkLogic infrastructure via dashboards that
streamline monitoring and troubleshooting of clusters with alerting, performance, and log data.
For details, see the Ops Director Guide.

3.26.4 Amazon Web Services (AWS) 1-Click
MarkLogic is now available for deployment on Amazon Web Services (AWS) by means of AWS
1-Click. For details, see http://developer.marklogic.com/products/cloud/aws.

3.26.5 Entity Services Enhancements
The Entity Services API offers the following additional capabilities as of MarkLogic 9.0-3:

• JSON Envelope Document Support

• Support for Element Range Indexes

• Entity Instance Namespace Support

• Generated Code Refactoring

3.26.5.1 JSON Envelope Document Support
You can now work with either XML or JSON envelope documents. Previously, only XML was
supported.

As part of this change, some of the functions generated in instance converter modules have been
extended to accept a format parameter. If you omit the format, these functions generate XML
instances and envelopes, as they did prior to MarkLogic 9.0-3.

The following generated function interfaces now accept an optional format parameter, for some
entity type T.

• T:instance-to-canonical

• T:instance-to-envelope

If you want to use JSON envelopes, you should regenerate your instance converter and version
translator code.

For more details, see Entity Instance Concepts in the Entity Services Developer’s Guide.

3.26.5.2 Support for Element Range Indexes
An entity type can now include specifications for entity properties that should be backed by an
element range index. Previously, you could only specify a path range index.
MarkLogic 9—May, 2017 Release Notes—Page 32

http://developer.marklogic.com/products/cloud/aws

MarkLogic Server New Features in MarkLogic 9
In an XML model descriptor, use the path-range-index and element-range-index elements to
specify entity properties that should be backed by an index. The path-range-index element is
identical to the pre-existing range-index element.

In a JSON model descriptor, use the pathRangeIndex and elementRangeIndex properties to specify
entity properties that should be backed by an index. The pathRangeIndex property is identical to
the pre-existing rangeIndex property.

For more details, see Identifying Entity Properties for Indexing in the Entity Services Developer’s
Guide.

3.26.5.3 Entity Instance Namespace Support
An entity type definition can now include a namespace URI and namespace prefix for XML
instances of that type. The namespace binding is used when generating entity instances in XML,
and when generating index configuration and query option artifacts.

For more details, see Defining a Namespace URI for an Entity Type in the Entity Services Developer’s
Guide.

3.26.5.4 Generated Code Refactoring
The instance converter and version translator code you can generate using Entity Services has
been refactored to improve readability and ease of customization, and to accommodate both XML
and JSON envelopes. Previously generated code will continue to work as-is.

For more details, see Generating Code and Other Artifacts in the Entity Services Developer’s Guide.

3.26.6 Search Result Sorting Enhancements
The Search API and REST, Java, and Node.js Client APIs now support additional search result
ordering choices through the sort-order query option.

Previously, you could only specify score ordering. You can now sort based on score, fitness,
quality, and more. For details, see sort-order in the Search Developer’s Guide.

3.26.7 Redaction Built-in for Masking Numbers
A new built-in redaction function, redact-number, is available as of MarkLogic 9.0-3. This
function provides fine-grained control over the type, range, and format of masking values for
numeric data. You can use redact-number with mlcp’s redaction capability, the rdt:redact
XQuery function, or the rdt.redact Server-Side JavaScript function.

For details, see redact-number in the Application Developer’s Guide.
MarkLogic 9—May, 2017 Release Notes—Page 33

MarkLogic Server New Features in MarkLogic 9
3.26.8 Client APIs: Performance Improvements for JavaScript Extensions
and Transforms

Performance improvements have for Client API server-side transformations and extensions
implemented in Server-Side JavaScript. This affects applications using transformations or
extensions with the REST, Java, or Node.js Client APIs.

Note: Your applications will only benefit from the improved performance if you reinstall
your Server-Side JavaScript transforms and extensions.

3.26.9 Java Client API: Values and Tuples Query Support for cts:query
As of Java Client API version 4.0.3, you can use a serialized cts:query as an additional constraint
on a values or tuples query.

3.27 New Features in MarkLogic 9.0-4
MarkLogic 9.0-4 introduces the following new features:

• Redaction: Support for Salting of Deterministic Masking Values

• Redaction: New redact-datetime Built-In Function

• Separate Download and Installation of Converters and Filters

• Node.js Client API Enhancements

• Client API Support for JavaScript Patch Content Constructors

• Database Restore Enhancement

• 1-Click AWS Support

• Restricted XPath Changes

• Protected Path Sets Added to Element Level Security

3.27.1 Redaction: Support for Salting of Deterministic Masking Values
As of MarkLogic 9.0-4, the mask-deterministic built-in redaction function supports two new
options for specifying a salt value for masking value generation. Salting can provide a higher
level of security. For more details, see the discussion of the salt and extend-salt options of
mask-deterministic in the Application Developer’s Guide.

Note that the introduction of these options changes the default behavior of deterministic masking
value generation. For details, see “Redaction: Deterministic Masking Values Differ” on page 68.

3.27.2 Redaction: New redact-datetime Built-In Function
As of MarkLogic 9.0-4, you can use the redact-datetime built-in redaction function in your
redaction rules. You can mask a dateTime value with a random dateTime value or using a picture
string.
MarkLogic 9—May, 2017 Release Notes—Page 34

MarkLogic Server New Features in MarkLogic 9
For more details, see redact-datetime in the Application Developer’s Guide.

3.27.3 Separate Download and Installation of Converters and Filters
As of MarkLogic release 9.0-4, MarkLogic converters/filters are offered as a separate package
(called MarkLogic Converters package) from MarkLogic Server package.

This change provides better flexibility and enables you to install/uninstall MarkLogic
converters/filters separately from MarkLogic Server.

For more details, see MarkLogic Converters Installation Changes Starting at Release 9.0-4 in the
Installation Guide.

3.27.4 Node.js Client API Enhancements
The following new features are available as of Node.js Client API v2.1.1. Unless otherwise noted,
MarkLogic 9 is required to take advantage of these changes.

• Support for Optic API queries. The Optic API enables you to query documents, triples,
and lexicons to extract row oriented data from MarkLogic. For more details, see Using the
Optic API for Relational Operations in the Node.js Application Developer’s Guide.

• Point-in-time query support. Many read-only operations, such as document read and
query, now support a timestamp parameter or option to enable successive requests to share
a consistent view of the database at a given timestamp. For details, see Performing
Point-in-Time Operations in the Node.js Application Developer’s Guide.

• Partial update (document patch) improvements. Prior to MarkLogic 9.0-4, you could not
perform the following operations in a patch. These limitations have been removed. For
more details, see Patching Document Content or Metadata in the Node.js Application
Developer’s Guide.

• Insert a property immediately under the root node of a JSON object node using
“last-child” position.

• Address items in nested arrays.

• Support for advancing LSQT for temporal collections. See the function
documents.advanceLsqt in the Node.js Client API Reference.

3.27.5 Client API Support for JavaScript Patch Content Constructors
The partial update or “patch” feature of the REST and Java Client APIs now support replacement
content constructor functions implemented in Server-Side JavaScript. Versions of MarkLogic
prior to 9.0-4 only support XQuery implementations.

For more details, see Writing an XQuery User-Defined Replacement Constructor in the REST
Application Developer’s Guide.
MarkLogic 9—May, 2017 Release Notes—Page 35

MarkLogic Server New Features in MarkLogic 9
3.27.6 Database Restore Enhancement
As of MarkLogic release 9.0-4, you can restore a database from a backup, even if the number of
database forests are asymmetrical to the backup forests. As a result, the Admin Interface and
related API database restore functions have been changed.

For details, see Restoring a Reconfigured Database in the Administrator’s Guide.

3.27.7 1-Click AWS Support
MarkLogic now supports the 1-click launch option in AWS Marketplace. Because of this, the
published MarkLogic AMIs will have data volume predefined.

3.27.8 Restricted XPath Changes
The following features impose restrictions on XPath expressions used in their configuration. The
existence of the restrictions is unchanged. However, as of MarkLogic 9.0-4, the restrictions have
been more formally defined for each feature and somewhat relaxed for some features.

The following list summarizes how the restrictions have changed for affected features. In all
cases, the changes enable a larger subset of XPath and do not introduce backward
incompatibilities.

• Indexable path expressions: The path expressions usable for defining path-based indexes
can include function calls to selected functions in predicates.

• TDE context path expressions: The path expressions usable for defining path-based
indexes can include function calls to selected functions in predicates. You can use “/” as a
context path.

• Element Level Security protected paths: The path expressions usable for defining
path-based indexes can include function calls to selected functions in predicates.

• Extracting document data from search results (extract-document-data query option),
document patch feature of the REST Client APIs, Optic API xpath constructor: The path
expressions usable for defining path-based indexes can include function calls to selected
functions in predicates. You can use an unnamed node test in the leaf step of a path
expression.

For more details, see Restricted XPath in the XQuery and XSLT Reference Guide.

3.27.9 Protected Path Sets Added to Element Level Security
As part of MarkLogic 9.0-4, Element Level Security now includes the protected path set feature.
A protected path set is a way to allow multiple protected paths to cover and secure the same
element, with both AND and OR relationships between the permissions. The information (the
name of the protected path set) is simply a “tag” on the protected path definition. This enables
multiple arbitrary security markings for an element.

For more details, see Protected Path Sets in the Security Guide.
MarkLogic 9—May, 2017 Release Notes—Page 36

MarkLogic Server New Features in MarkLogic 9
3.28 New Features in MarkLogic 9.0-5
MarkLogic 9.0-5 introduces the following new features:

• MarkLogic Data Hub Framework

• Entity Enrichment and Extraction Enhancements

• Query Console: Explore Database by URI Pattern

• Configuration Management API (CMA) XQuery and JavaScript Libraries

• Configuration Management API (CMA) REST Endpoints

• Ops Director Enhancements

• Monitoring History Enhancements

• Tolerance Support in Geospatial Region Queries

• Database Replication Enhancements

• Fast Fail-over

3.28.1 MarkLogic Data Hub Framework
MarkLogic 9.0-5 introduces full support for MarkLogic Data Hub Framework (DHF) version 3.0.
DHF is an Open Source data integration framework and set of tools that enable you to quickly
integrate data from multiple sources into a single MarkLogic database, and then expose that
integrated data through MarkLogic.

DHF includes both client-side libraries and tools for integration and modeling, and server-side
framework support. To learn more about DHF, see the following:

• DHF documentation and tutorial: https://marklogic.github.io/marklogic-data-hub/

• DHF Open Source project: https://github.com/marklogic/marklogic-data-hub

To use DHF, you will need DHF version 3.0 or later, MarkLogic 9.0-5 or later, and Oracle Java 8
JRE (client-side). For details, see the DHF documentation.

3.28.2 Entity Enrichment and Extraction Enhancements
MarkLogic 9.0-5 introduces new built-in and library functions for entity enrichment and
extraction. The new interfaces use entity dictionaries to identify entities. You can create an entity
dictionary in several ways, including from a graph created from a SKOS ontology. For more
details, see Entity Extraction and Enrichment in the Search Developer’s Guide.
MarkLogic 9—May, 2017 Release Notes—Page 37

https://marklogic.github.io/marklogic-data-hub/
https://github.com/marklogic/marklogic-data-hub

MarkLogic Server New Features in MarkLogic 9
Use the following new functions for entity enrichment and extraction:

Use the following new functions for creating and managing entity dictionaries:

3.28.3 Query Console: Explore Database by URI Pattern
You can now apply a URI filter to the documents listed in the Explorer view. You can specify a
single URI (“/my/interesting/document.xml”) or a wildcard expression (“/my/interesting/*.xml”).
For more details, see Filtering the Explorer View by URI in the Query Console User Guide.

3.28.4 Configuration Management API (CMA) XQuery and JavaScript
Libraries

MarkLogic 9.0-5 introduces new library functions for configuration management.

The configuration management functions can be used to:

• retrieve a configuration of an individual resource, a set of resources, or a full cluster;

• generate a configuration from scenarios, such as High Availability (HA) scenario;

XQuery Server-Side JavaScript

entity:enrich entity.enrich

entity:extract entity.extract

cts:entity-highlight cts.entityHighlight

cts:entity-walk cts.entityWalk

XQuery Server-Side JavaScript

entity:dictionary-insert entity.dictionaryInsert

entity:dictionary-load entity.dictionaryLoad

entity:skos-dictionary entity.skosDictionary

cts:entity-highlight cts.entityHighlight

cts:entity-dictionary cts.entityDictionary

cts:entity-dictionary-get cts.entityDictionaryGet

cts:entity-dictionary-parse cts:entityDictionaryParse
MarkLogic 9—May, 2017 Release Notes—Page 38

MarkLogic Server New Features in MarkLogic 9
• apply a named configuration, overriding parameters and setting options.

Use the following new functions for configuration management:

For more details, see MarkLogic XQuery and XSLT Function Reference and MarkLogic
Server-Side JavaScript Function Reference.

3.28.5 Configuration Management API (CMA) REST Endpoints
MarkLogic 9.0-5 introduces a new REST API for configuration management: Configuration
Management API (CMA).

The Configuration Management API is a RESTful API that allows retrieving, generating, and
applying configurations for MarkLogic clusters, databases, and application servers.

Use the following new endpoints for configuration management:

For more details, see MarkLogic REST API Reference.

3.28.6 Ops Director Enhancements
MarkLogic 9.0-5 includes the new version of the Ops Director application: Ops Director 1.1-1.

The Ops Director 1.1-1 has the following new features and enhancements:

• Enhanced security: default authentication changed from “application level” to “digest”.

• Improved support for data integration with other applications. In particular, you may
export all tables from the Manage view, the Support view, and the Console Settings view.

XQuery Server-Side JavaScript

cma:generate-config cma.generateConfig

cma:apply-config cma.applyConfig

Endpoint Description

GET /manage/v3 This endpoint enables retrieving configuration of an individual
resource, a set of resources, or a full cluster. It also enables generat-
ing new configurations from scenarios.

POST /manage/v3 This endpoint enables applying named configurations to MarkLogic
resources, overriding parameters and setting options.
 The configurations may be applied to an individual resource, a set of
resources, or a full cluster.
MarkLogic 9—May, 2017 Release Notes—Page 39

MarkLogic Server New Features in MarkLogic 9
The tables are exported into CSV files, which might be later on imported into other
applications (e.g. Excel) for further data processing and analysis. Also, you may export all
metrics from charts in the Analyze view.

• Improved Role Based Access Control (RBAC): added “inherited” access to resources
driven by hierarchical relationships in resource groups.

• Implemented functionality for upgrading Ops Director and updating its configuration.

• Added UX enhancements, such as preserving view state between navigations, and UI
performance improvements, such as enhanced rendering speed of the pages.

For more details, see the Ops Director Guide.

3.28.7 Monitoring History Enhancements
The Monitoring History application in MarkLogic 9.0-5 was enhanced with new metrics for
XDQP Server Requests performance. For details, see XDQP Server Requests Performance Data in
the Monitoring MarkLogic Guide.

3.28.8 Tolerance Support in Geospatial Region Queries
As of MarkLogic 9.0-5, geospatial region queries support a “tolerance” option.

Tolerance is the largest allowable variation in geometry comparisons. If the distance between two
points is less than tolerance, then the two points are considered equal. For more details, see
Understanding Tolerance in the Search Developer’s Guide.

This change affects the functions cts:geospatial-region-query (XQuery),
cts.geospatialRegionQuery (JavaScript), the geo-option portion of a Search API geo-region-path
constraint option, the geo-option portion of a geo-region-path-query or
geo-region-constraint-query, and the options you can specify in a region query using the Java
Client API and Node.js Client API.

Due to the improved tolerance support, when upgrading to MarkLogic 9.0-5 or later from an
earlier version of MarkLogic 9, you might not get accurate results for geospatial region queries
until you reindex.

3.28.9 Database Replication Enhancements
MarkLogic 9.0-5 and later versions enable you to more easily enable/disable or suspend/resume
database replication.

Disabling database replication changes the database configuration, so the disabled state persists
across restarts and failovers. Use suspend/resume when lag is high and you need to stop database
replication quickly.
MarkLogic 9—May, 2017 Release Notes—Page 40

MarkLogic Server New Features in MarkLogic 9
Suspending database replication for a forest does not change the configuration, so replication
resumes after a restart or failover. Use enable/disable when you want to stop replication for a long
period, such as when you move a replica site.

This capability is exposed in the following ways:

• In the Admin UI, navigate to the Database Replication settings for a database, click on the
Summary tab, and use the enable, disable, suspend, or resume buttons of the Summary tab.
For more details, see Enabling, Disabling, Suspending, and Resuming Database Replication in
the Database Replication Guide.

• Use the XQuery functions xdmp:forest-database-replication-suspend and
xdmp:forest-database-replication-resume or the Server-Side JavaScript functions
xdmp.forestDatabaseReplicationSuspend and xdmp.forestDatabaseReplicationResume.

3.28.10 Fast Fail-over
If one or more host forests are configured for local-disk or shared-disk failover, you now have the
option to failover those forests when you shut down the host. A new option, “Immediately fail
over forests to replica hosts,” has been added to the Host Shutdown confirmation page to enable
you to fail over the forests to replica hosts.

3.29 New Features in MarkLogic 9.0-6
MarkLogic 9.0-6 introduces the following new features:

• Switching from Internal to External KMS

• Multiple KMS Hosts for Failover

• Geospatial Region Query Tolerance Improvements

3.29.1 Switching from Internal to External KMS
In MarkLogic 9.0-6, when switching from an external KMS to an internal KMS, encryption at
rest does not limit the files that can be decrypted to only those encrypted with keys that are in the
internal KMS. MarkLogic can decrypt any file encrypted with the internal MarkLogic KMS or an
external KMS.

It is no longer necessary to decrypt your data before transitioning files encrypted with an external
KMS to the internal MarkLogic KMS. In MarkLogic 9.0-5, you needed to decrypt all your data
before switching from an external KMS back to internal KMS. This is no longer necessary.
MarkLogic 9—May, 2017 Release Notes—Page 41

MarkLogic Server New Features in MarkLogic 9
3.29.2 Multiple KMS Hosts for Failover
In MarkLogic 9.0-6, you can now specify multiple hosts, multiple ports, and multiple KMIP
credentials to connect to KMIP servers. MarkLogic can store more than one set of external KMIP
server credentials, to be used in encrypting and decrypting data. In the case where a KMIP server
is unavailable and the first specified KMIP server stops responding, MarkLogic will try to
connect to each of the other hosts in the user-specified list until it succeeds.

3.29.3 Geospatial Region Query Tolerance Improvements
MarkLogic 9.0-6 includes refinements to tolerance support in geospatial region queries. Some
tolerance related edge cases now produce more accurate results. You can only benefit from this
change if you reindex.

If your region queries do not involve polygons that fall into these edge cases, you will not see any
change in geospatial region query results even if you do reindex.

3.30 New Features in MarkLogic 9.0-7
MarkLogic 9.0-7 introduces the following new features:

• Database Access with Granular Privileges

• Forest Access with Granular Privileges

• Query Console: Content Editing

• Request Monitoring

• MarkLogic Services in the Cloud

• Java Client API: Load Balancer Improvements

3.30.1 Database Access with Granular Privileges
In MarkLogic 9.0-7, you can now enable a user to create, reindex, update properties, run
operations on, or delete a database if they have the manage role and one of the following granular
privileges:

http://marklogic.com/xdmp/privileges/admin/database/database-ID

http://marklogic.com/xdmp/privileges/admin/database/activity/database-ID

where activity is one of the following:

• backup

• merge

• restore

• clear
MarkLogic 9—May, 2017 Release Notes—Page 42

MarkLogic Server New Features in MarkLogic 9
• index

3.30.2 Forest Access with Granular Privileges
In MarkLogic 9.0-7, you can now enable a user to create, update properties, run operations on, or
delete a forest if they have the manage role and one of the following granular privileges:

http://marklogic.com/xdmp/privileges/admin/forest

http://marklogic.com/xdmp/privileges/admin/forest/forest-ID

3.30.3 Query Console: Content Editing
The database Explorer in Query Console now enables you to do the following operations without
writing any code:

• Insert a new document into a database.

• Modify an existing document in the database.

• Delete one or selected documents from a database.

For more details, see Editing Database Content in the Query Console User Guide.

3.30.4 Request Monitoring
The Request Monitoring feature enables you to configure logging of information related to
requests, including metrics collected during request execution. This feature lets you enable
logging of internal preset metrics for requests on specific endpoints. You can also log custom
request data by calling the provided Request Logging APIs. This logged information may help
you evaluate server performance.

For more details, see Endpoints and Request Monitoring in the Query Performance and Tuning
Guide.

3.30.5 MarkLogic Services in the Cloud
In MarkLogic 9.0-7 you can now access both Query Service and Data Hub Service as services on
AWS. Query Service enables you to respond to varying query workloads for your MarkLogic
cluster. This elastic query service eliminates the need to set up and manage the underlying
infrastructure required to scale for capacity. MarkLogic Query Service work by attaching
MarkLogic e-nodes to to your existing MarkLogic cluster, and auto-scaling as your workload
requires. For more information, see https://cloudservices.marklogic.com/ and
https://www.marklogic.com/product/marklogic-database-overview/query-service/.
MarkLogic 9—May, 2017 Release Notes—Page 43

https://cloudservices.marklogic.com/
https://www.marklogic.com/product/marklogic-database-overview/query-service/

MarkLogic Server New Features in MarkLogic 9
MarkLogic Data Hub Service is a cloud service providing the features of the Data Hub
Framework in a managed instance available on AWS. The Data Hub Service enables you to create
an Operational Data Hub in the cloud. The service is designed to be transparent, scaleable, and
easy to deploy. For more details, see
https://www.marklogic.com/product/marklogic-database-overview/data-hub-service/. To learn more
about Data Hub Framework see the Data Hub Framework website.

3.30.6 Java Client API: Load Balancer Improvements
As of Java Client API 4.1.1, you can specify a connection type when creating a DatabaseClient.
The connection type defaults to DIRECT, meaning that direct connections to hosts in your
MarkLogic cluster are possible. Specify the GATEWAY connection type when connecting to
MarkLogic through a load balancer. A GATEWAY connection is required when using the Data
Movement SDK with a load balancer.

For more details, see Connecting Through a Load Balancer in the Java Application Developer’s
Guide.
MarkLogic 9—May, 2017 Release Notes—Page 44

https://marklogic.github.io/marklogic-data-hub/
https://www.marklogic.com/product/marklogic-database-overview/data-hub-service/

MarkLogic Server Known Incompatibilities with Previous Releases
4.0 Known Incompatibilities with Previous Releases
119

Most applications implemented on previous versions of MarkLogic will run either without
modifications or with very minor modifications in MarkLogic 9. This section summarizes product
changes that can cause compatibility issues for applications developed using previous releases
and includes the following topics:

• JavaScript: ValueIterator Replaced By Sequence

• Database Stemming is Off, Word Searches On By Default

• Collection Lexicon and Triple Index Enabled by Default

• XCC .NET API No Longer Available

• Changes in Semantic Query Behavior

• Triple Count Increased After Inserting Same Data Twice

• Database max merge size Now Defaults to 48 GB

• Changes to Range Index Reference Resolution

• Default Stemming and Tokenization Libraries Changed for Most Languages

• SQL DESCRIBE No Longer Supported by xdmp:sql

• Application-Specific Logging

• Change to Classification of Some Special Symbol Tokens

• Change to xdmp:user-last-login

• Changed Interfaces for xdmp:document-insert and xdmp:document-load

• search:parse Returns a Different Type for cts:query Output Format

• Default Client API Search Behavior Change on Port 8000

• JSON Property Scope and Container Queries Match Array Items Differently

• REST Client API Incompatibilities

• Java Client API Incompatibilities

• Node.js Client API Incompatibilities

• Geospatial Region Accessors Can Now Return Double Values

• User-Defined Function Plugins Must Be Recompiled

• SLES 12 No Longer Supported

• Solaris No Longer Supported

• Nagios Plugin No Longer Supported

• Application Builder and Information Studio No Longer Available
MarkLogic 9—May, 2017 Release Notes—Page 45

MarkLogic Server Known Incompatibilities with Previous Releases
• Admin Interface No Longer Selects a Default Schemas Database

• Internal Security ON with External Security Object Behavior Change

• REST Management API Changes in MarkLogic 9

• Configuration Packaging Format Incompatibilities

• Java Client API 4.1.1 Incompatibilities

• Incompatibilities Between 9.0-5 and 9.0-6

• Incompatibilities Between 9.0-4 and 9.0-5

• Incompatibilities Between 9.0-3 and 9.0-4

• Incompatibilities Between 9.0-2 and 9.0-3

• Incompatibilities Between 9.0-1 and 9.0-2

• MarkLogic 8 Incompatibilities

• MarkLogic 7 Incompatibilites

4.1 JavaScript: ValueIterator Replaced By Sequence
The ValueIterator interface used to represent sequences of value in MarkLogic 8 has been
replaced by the new Sequence interface. A Sequence is a JavaScript Iterable object. All functions
which previously operated on or returned a ValueIterator now use a Sequence instead.

In many cases, this change is transparent to your code. However, code that depends on the
following ValueIterator properties and methods must be changed:

• ValueIterator.next - Use a for..of loop to iterate over a Sequence. Use fn.head if you
just want to pick off the first or only value in a Sequence.

• ValueIterator.count - Use fn.count instead.

• ValueIterator.clone - No longer needed. You can iterate over the same Sequence
multiple times.

For more details, see Sequence in the JavaScript Reference Guide and Sequence in the MarkLogic
Server-Side JavaScript Function Reference.

4.2 Database Stemming is Off, Word Searches On By Default
In MarkLogic 9, when you create a new database, the stemmed searches property is off by
default. In MarkLogic 8 and earlier, the default is basic.

In MarkLogic 9, when you create a new database, word searches are enabled by default. In
MarkLogic 8 and earlier releases, word searches were disabled by default.

To achieve the pre-MarkLogic 9 default behavior, configure your database to turn off stemmed
searches and set word searches to true.
MarkLogic 9—May, 2017 Release Notes—Page 46

/js/Sequence

MarkLogic Server Known Incompatibilities with Previous Releases
These changes only affect databases you create after upgrading to MarkLogic 9. Databases that
exist when you upgrade will retain their previous settings.

4.3 Collection Lexicon and Triple Index Enabled by Default
In MarkLogic 9, a fresh install of MarkLogic 9 will enable the triple index and collection lexicon
for all databases. Databases that exist when you upgrade to MarkLogic 9 will retain their previous
settings. Any new databases created after upgrading to MarkLogic 9 will have the triple index and
collection lexicon enabled.

4.4 XCC .NET API No Longer Available
The XCC .NET interfaces have been removed from MarkLogic. Current users of XCC .NET are
encouraged to use the REST Client API to create equivalent interfaces. For details, see the REST
Application Developer’s Guide.

The XCC Java Library continues to be available.

4.5 Changes in Semantic Query Behavior
MarkLogic 9 introduces the following changes to the behavior of semantic queries:

• Triple Index and SPARQL Engine Changes

• Forest IDs Removed From sem:sparql Function

4.5.1 Triple Index and SPARQL Engine Changes
The triple index and SPARQL engine have been changed in MarkLogic 9. Now as part of a query,
two triples are considered equal if their subjects, predicates, and objects compare as equal with
the SPARQL “=” operator.

Previously, these triples would be treated as two different, non-identical triples:

sem:triple(xs:anyURI("http://a"), xs:anyURI("http://b"),
xs:anyURI("http://c")),
sem:triple("http://a", "http://b", "http://c").

In MarkLogic 9, values of type xs:string and xs:anyURI can compare equal if they have the same
lexical form according to the SPARQL “=” operator. This functionality is called D-entailment (D
as in datatype). The two triples in the example are now considered to be the same, and the
de-duplication process removes the duplicate. If you return frequencies, you would see the second
triple show up as one extra in the frequencies.

Also note that the query may return either sem:triple(xs:anyURI("http://a"),
xs:anyURI("http://b"), xs:anyURI("http://c")), or sem:triple("http://a", "http://b",
"http://c") as the result since they are considered equal.
MarkLogic 9—May, 2017 Release Notes—Page 47

MarkLogic Server Known Incompatibilities with Previous Releases
4.5.2 Forest IDs Removed From sem:sparql Function
The forest ID options for the sem:sparql function, which were part of MarkLogic 7, were
removed in MarkLogic 8, but their functionality was kept for backwards compatibility. In
MarkLogic 9, the forest ID option will no longer work with sem:sparql.

4.6 Triple Count Increased After Inserting Same Data Twice
During a rolling upgrade, while the cluster is in a mixed mode (not all hosts committed to the new
version yet) the triple count of semantice triples may be increased after inserting the same data
twice. During a rolling upgrade, the MarkLogic 9 triple index is not able to return triples in the
correct order for MarkLogic 8 semantics. For this situation to occur, a user would need to have
multiple triples that are identical except for the types of the values.

4.7 Database max merge size Now Defaults to 48 GB
The database parameter max merge size defaults to 48 GB (49152 MB) for new databases created
in MarkLogic 9. Previously, the default was 32 GB. Existing databases will keep whatever
max merge size setting is configured after upgrading to MarkLogic 9. The new setting reflects
advances in storage systems and should be appropriate for most databases.

4.8 Changes to Range Index Reference Resolution
In MarkLogic 9, index reference resolution in range index construction, query constructors, and
lexicon operations will now succeed in some cases that would have thrown an XDMP-RIDXNOTFOUND
error in previous releases. If the index reference contains enough information to unambiguously
match an existing index, MarkLogic will now do so. Previously, MarkLogic assumed default
values for some “missing” index attributes, resulting in an error.

Code that previously succeeded will continue to do so. Some code that would previously have
gotten an error will no longer do so.

For example, suppose you define a geospatial element range index on element
xs:QName("coords") with type long-lat-point and coordinate system wgs84, and then refer to the
index by just the element QName (cts:element-geospatial-values(xs:QName("coord")).
Previously, the reference would have been an error because the default point type (point) would
have been assumed. Now, the reference resolves correctly as long as there is not a second
geospatial element range index on the same QName with different coordinate system or point
type.

When an ambiguous range index reference is detected, MarkLogic 9 throws one of the new
exceptions XDMP-RIDXAMBIGUOUS (range index) or XDMP-GIDXAMBIGUOUS (geospatial index).
MarkLogic 9—May, 2017 Release Notes—Page 48

MarkLogic Server Known Incompatibilities with Previous Releases
4.9 Default Stemming and Tokenization Libraries Changed for Most
Languages

In MarkLogic 9 the default tokenization and stemming libraries have been changed for all
languages (except English tokenization). Consequently, some tokenization and stemming
behavior will change between MarkLogic 8 and MarkLogic 9. We expect that, in most cases,
stemming and tokenization will be more precise in MarkLogic 9.

If you upgrade to MarkLogic 9 from an earlier version of MarkLogic, your installation will
continue to use the legacy stemming and tokenization libraries as the language baseline. Any
fresh installation of MarkLogic will use the new libraries. You can change the baseline
configuration using admin:cluster-set-language-baseline.

Note: Changing the baseline requires a cluster-wide restart and a reindex to avoid
stemming and tokenization anomalies.

Note: Use of the legacy libraries is deprecated. These libraries will be removed from
MarkLogic in a future release.

Unless you use the legacy language baseline, reindexing is required for content in the following
languages:

• Chinese

• Danish

• Dutch, if you want to query with decompounding

• Finish

• German

• Hungarian

• Japanese

• Korean, unless you use decompounding

• Norwegian (Bokmal and Nynorsk) if you want to query with decompounding

• Norwegian (generic ‘no’ lang code), though use of generic ‘no’ is not recommended

• Romanian

• Russian

• Swedish, if you want to query with decompounding

• Tamil

• Turkish

For other languages (except English), you might be able to avoid incompatibilities depending on
the nature of your queries, but reindexing is still strongly recommended.
MarkLogic 9—May, 2017 Release Notes—Page 49

MarkLogic Server Known Incompatibilities with Previous Releases
Tokenization and stemming are significantly different for Japanese. Tokenization is significantly
different for Chinese (both simplified and traditional). The impact on other languages is more
nuanced, but should lead to better results, overall. You might observe some relevance score
changes on stemmed searches due to the higher degree of precision. If you require low-level
details about the impact on a specific language, please contact MarkLogic Technical Support.

For more details on incompatibilities related to the changes to stemming and tokenization, see the
Knowledge Base article entitled “MarkLogic Server v9 Tokenization and Stemming” from
MarkLogic Technical Support, available at the following URL:

https://help.marklogic.com/knowledgebase/article/View/484

For more information about the new tokenization and stemming support, see “New Stemming and
Tokenization” on page 16.

4.10 SQL DESCRIBE No Longer Supported by xdmp:sql
In MarkLogic 9, the SQL DESCRIBE function is not supported. MarkLogic does support DESCRIBE
queries over ODBC, but not from xdmp:sql().

4.11 Application-Specific Logging
MarkLogic 9 now provides application-specific access to logging. Instead of logging all errors to
ErrorLog.txt, the xdmp:log function now writes to an app-server-specific log file - for example
8000_ErrorLog.txt or 8020_ErrorLog.txt. Anything event running on the task server is logged to
TaskServer_ErrorLog.txt. The ErrorLog.txt file is now for MarkLogic “system” logging only.

Splitting the log files in this manner enables custormer log files (which could potentionally
contain confidential information) to be separated from system log files. This helps ensure the
privacy of customer data when they interact with Support and use the new Telemetry feature.

In a Unix environment you can watch the multiple log files using something like this:

tail -f /path/file1 /path/file2 etc.
MarkLogic 9—May, 2017 Release Notes—Page 50

https://help.marklogic.com/knowledgebase/article/View/484

MarkLogic Server Known Incompatibilities with Previous Releases
4.12 Change to Classification of Some Special Symbol Tokens
The classification of some symbols has changed for purposes of tokenization, including the
symbols in the table below. These changes can affect search results.

4.13 Change to xdmp:user-last-login
The userid parameter has been removed from xdmp:user-last-login. In MarkLogic 8 the
xdmp:user-last-login took one parameter (userid). If the userid was different from the current
user, the function returned an empty sequence. If the userid was the same as that of the current
user, it only returned the last login information.

In MarkLogic 9 the function does not take a parameter. The xdmp:user-last-login function only
returns the last login information for the current user.

4.14 Changed Interfaces for xdmp:document-insert and
xdmp:document-load

These two functions, xdmp:document-insert and xdmp:document-load, have significantly changed
interfaces in MarkLogic 9. The interfaces will still work for purposes of backward compatibility,
but are no longer documented.

4.15 search:parse Returns a Different Type for cts:query Output Format
In MarkLogic 8, search:parse returned the XML serialization of a cts:query by default. You
could also explicitly select this return type by specifying “cts:query” as the value of the $output
parameter.

Symbols Old Classification New Classification

spacing accents
(5E, 60, A8, AF, B4, B8)

punctuation diacritic

copyright (A9)
registered (AE)
degree (B0)

punctuation symbol

Spanish masculine/feminine ordinals
(AA, BA)

punctuation diacritic

superscript numbers
(B2, B3, B9)

punctuation diacritic

micro (B5) punctuation greek

fractions (BC, BD, BE) punctuation symbol
MarkLogic 9—May, 2017 Release Notes—Page 51

MarkLogic Server Known Incompatibilities with Previous Releases
In MarkLogic 9, if you explicitly specify “cts:query” as the value of the $output parameter, you
will now get a cts:query object instead of a serialized query. The default return type from
search:parse is unchanged.

If your code explicitly sets the output type to “cts:query” and passes the output of search:parse
straight through to functions such as search:resolve or cts:search, no code changes are required.

If your code explicitly sets the output type to “cts:query” and then transforms or traverses the
output query XML, then you must change your code to use the new “schema-element(cts:query)”
for the $output parameter of search:parse.

For example, the following call generates the XML serialization of a cts:query in MarkLogic 9:

search:parse("cat AND dog", (), "schema-element(cts:query)")

4.16 Default Client API Search Behavior Change on Port 8000
The defined default search behavior for the Java, Node.js, and REST Client APIs is unfiltered
search unless you override the default with your own options. Prior to MarkLogic 9, this default
behavior was not honored when you used the Client APIs to interact with MarkLogic through the
pre-defined App Server on port 8000.

As of MarkLogic 9, searches via the Client APIs on port 8000 will default to unfiltered search. To
get the old behavior, use query options that explicitly specify filtered search.

4.17 JSON Property Scope and Container Queries Match Array Items
Differently

In MarkLogic 8, the query constructed by the XQuery function cts:json-property-scope-query
and the Server-Side JavaScript function cts.jsonPropertyScopeQuery matched if it’s criteria
query matched anywhere within the configured scope. In MarkLogic 9, the behavior has changed
for certain JSON property scope queries where the scope property value is an array of objects.

The behavior has changed for searches that have the following characteristics:

• The query parameter of the property scope query is an and-query. Such a scope query
effectively finds co-occurrences of matches to the and-query criteria within the specified
scope.

• In the document to be matched, the value of the scope property is an array of objects. The
item type is determined by examining only the first item in the array.

Given this setup, in MarkLogic 9, the query only matches if all the sub-queries of the and-query
occur in the same array item. In MarkLogic 8, the query matches even when the and-query
matches occur in different array items. All other forms of JSON property scope query are
unchanged.
MarkLogic 9—May, 2017 Release Notes—Page 52

MarkLogic Server Known Incompatibilities with Previous Releases
This change makes it possible to construct a JSON property scope query that constrains matches
to occurrences with a single array item. In MarkLogic 8, this was not possible.

This change also affects the container-query element of a structured query and QBE container
queries.

The following example query is of the form affected by this change. It finds co-occurences of
“prop1” with value “value1” and “prop2” with “value2” within the scope of “root”. (The
and-query criteria can be arbitrarily complex.)

Language Example Query

XQuery cts:json-property-scope-query(
"root",
cts:and-query((

cts:json-property-value-query("prop1", "value1"),
cts:json-property-value-query("prop2", "value2")

))
)

Server-Side
JavaScript

cts.jsonPropertyScopeQuery(
'root',
cts.andQuery([

cts.jsonPropertyValueQuery('prop1', 'value1'),
cts.jsonPropertyValueQuery('prop2', 'value2')

])
);
MarkLogic 9—May, 2017 Release Notes—Page 53

MarkLogic Server Known Incompatibilities with Previous Releases
If you search the following documents with the query shown above, you get the results shown.
The JSON properties that match the and-query criteria are shown in bold.

Document (1) does not match in MarkLogic 9 because both and-query criteria are not satisfied in
the same array item. Document (2) matches in MarkLogic 9 because both and-query criteria are
satisfied in the same array item. The Document (3) results are unaffected because the value of the
“root” property is not an array of objects.

You can restore the MarkLogic 8 behavior by using an and-query of multiple JSON property
scope queries. For example, the following query matches Document (1) in MarkLogic 9:

Sample Document MarkLogic 8 MarkLogic 9

// (1) criteria met in different array items
{"root": [

{ "prop1": "value1", "prop2": "v" },
{ "prop1": "v", "prop2": "value2" }

]}

Match No match

// (2) criteria met in the same array item
{"root": [

{ "prop1": "value1", "prop2": "value2" },
{ "prop1": "v", "prop2": "v" }

]}

Match Match

// (3) criteria met in a child property
{"root": {

"child": [
{ "prop1": "value1", "prop2": "v" },
{ "prop1": "v", "prop2": "value2" }

]
}}

Match Match

Language Example Query

XQuery cts:and-query((
cts:json-property-scope-query(

"root", cts:json-property-value-query("prop1", "value1")),
cts:json-property-scope-query(

"root", cts:json-property-value-query("prop2", "value2"))
))

Server-Side
JavaScript

cts.andQuery([
cts.jsonPropertyScopeQuery(

'root', cts.jsonPropertyValueQuery('prop1', 'value1')),
cts.jsonPropertyScopeQuery(

'root', cts.jsonPropertyValueQuery('prop2', 'value2'))
]);
MarkLogic 9—May, 2017 Release Notes—Page 54

MarkLogic Server Known Incompatibilities with Previous Releases
To ensure the modified queries match only when the and-query matches occur in the same
instance of the scope property (“root” in the above examples), wrap it in json property scope
query on the parent parent property. For example:

4.18 REST Client API Incompatibilities
MarkLogic 9 introduces the following backward incompatible changes to the REST Client API.

• keyvalue Service Removed

• Collections in Request Parameters are OR Related

• Default value of Document Management “repair” parameter changed

4.18.1 keyvalue Service Removed
The previously deprecated /keyvalue is no longer available. That is, the method GET
/v1/keyvalue is no longer available.

To perform similar operations, use the /search service with a structured query or combined query,
or the /qbe service.

4.18.2 Collections in Request Parameters are OR Related
When you specify multiple collections through the collection request parameter of the following
methods, they are now OR related:

• GET and POST /v1/search

• GET and POST /v1/qbe

• GET and POST /v1/values/name

Language Example Query

XQuery cts:json-property-scope-query("parent-of-root",
cts:and-query((

cts:json-property-scope-query(
"root", cts:json-property-value-query("prop1", "value1")),

cts:json-property-scope-query(
"root", cts:json-property-value-query("prop2", "value2"))

)))

Server-Side
JavaScript

cts.jsonPropertyScopeQuery('parentOfRoot',
cts.andQuery([

cts.jsonPropertyScopeQuery(
'root', cts.jsonPropertyValueQuery('prop1', 'value1')),

cts.jsonPropertyScopeQuery(
'root', cts.jsonPropertyValueQuery('prop2', 'value2'))

]));
MarkLogic 9—May, 2017 Release Notes—Page 55

MarkLogic Server Known Incompatibilities with Previous Releases
The new behavior is consistent with the semantics of cts:collection-query and the structured
query collection-query.

To get AND semantics, construct your own and-query of collection URIs as part of a structured or
combined query, or by defining a constraint in your query options.

The new behavior differs from previous behavior in the following way:

• In MarkLogic 8.0-6, the GET methods applied AND semantics to multiple collection
parameters, while the POST methods applied OR semantics.

• In MarkLogic 8.0-5 and earlier, both GET and POST methods applied AND semantics to
multiple collection parameters.

4.18.3 Default value of Document Management “repair” parameter
changed

The default value of the repair parameter in the Document Management PUT /v1/documents
function has changed in the following way:

• In Marklogic 8.0 and earlier, the default value for repair is full.

• In Marklogic 9.0 and later, the default value for repair is none.

4.19 Java Client API Incompatibilities
MarkLogic 9 introduces the following backwards incompatible changes to the Java Client API:

• Java Client API: Removal of Deprecated Interfaces

• Java Client API: JAR File Name and Maven Artifact ID Change

• Logging Turned Off by Default
MarkLogic 9—May, 2017 Release Notes—Page 56

MarkLogic Server Known Incompatibilities with Previous Releases
4.19.1 Java Client API: Removal of Deprecated Interfaces
Most of the previously deprecated packages, interfaces, classes, and methods of the Java Client
API have been removed. The following table lists what has been removed and provides guidance
for modifying your code.

In the table below, “c.m.c.” is an abbreviation for “com.marklogic.client.”.

Removed Package, Class, or Method Alternative

c.m.c.admin.ServerConfigurationManager:

• getContentVersionRequests

• setContentVersionRequests

Use the following equivalent methods instead.

• getUpdatePolicy

• setUpdatePolicy

c.m.c.admin.TransformExtensionsManager:

• writeXqueryTransform

• writeXSLTransform

Overloads of the listed methods that accept a
paramTypes map have been removed.

Use one of the overloads that does not accept
parameter metadata. This metadata is not
required to install or use a transform.

c.m.c.admin.config This package, its sub-packages, and all
contained classes, interfaces, and types have
been removed. This includes the QueryOptions
and QueryOptionsBuilder classes.

Create query options using your preferred JSON
or XML libraries, read options from a file, or
build options as a string. Read and write options
using appropriate handles, such as DOMHandle,
JacksonHandle, FileHandle, or StringHandle.

c.m.c.document.JSONDocumentManager:

• getLanguage

• setLanguage

Remove your usage. Language specifications
are not supported for JSON. Calls to these
methods were ignored in MarkLogic 8.
MarkLogic 9—May, 2017 Release Notes—Page 57

MarkLogic Server Known Incompatibilities with Previous Releases
c.m.c.io.QueryOptionsHandle Create query options using your preferred JSON
or XML libraries, read options from a file, or
build options as a string. Read and write options
using appropriate handles, such as DOMHandle,
JacksonHandle, FileHandle, or StringHandle.

This class is no longer needed with the removal
of QueryOptions and QueryOptionsBuilder.

c.m.c.query:

• KeyValueDefinition

• KeyLocator

• ElementLocator

The key-value search capability has been
removed. Build equivalent queries using a
StructuredQueryDefinition (JSON property
query or element query) or QBE.

c.m.c.query.QueryManager:

• newKeyValueDefinition

• newElementLocator

• newKeyLocator

The key-value search capability has been
removed. Build equivalent queries using a
StructuredQueryDefinition (JSON property
query or element query) or QBE.

c.m.c.io.SearchHandle.forceDOM Remove your usage. This setting was ignored in
MarkLogic 8.

c.m.c.query.StructuredQueryBuilder:

• FragmentScope.DOCUMENT

Use FragmentScope.DOCUMENTS.

Removed Package, Class, or Method Alternative
MarkLogic 9—May, 2017 Release Notes—Page 58

MarkLogic Server Known Incompatibilities with Previous Releases
4.19.2 Java Client API: JAR File Name and Maven Artifact ID Change
The JAR file for the Java Client API is now named marklogic-client-api-version.jar.
Previously, the name was java-client-api-version.jar. For example, the JAR file name for
version 3.0.6 is java-client-api-3.0.6.jar, but the JAR file name for version 4.0.1 is
marklogic-client-api-4.0.1.jar.

StructuredQueryBuilder (nested classes):

• AndNotQuery

• AndQuery

• BoostQuery

• CollectionConstraintQuery

• CollectionQuery

• CustomConstraintQuery

• DirectoryQuery

• DocumentFragmentQuery

• DocumentQuery

• ElementConstraintQuery

• GeospatialConstraintQuery

• LocksQuery

• NearQuery

• NotQuery

• OrQuery

• OrQuery

• PropertiesConstraintQuery

• PropertiesQuery

• RangeConstraintQuery

• TermQuery

• ValueConstraintQuery

• WordConstraintQuery

Continue to construct structured queries using
StructuredQueryDefinition methods, as before.
The return type from the query builder methods
is always StructuredQueryDefinition now. For
example, StructuredQueryDefinition.and()
used to return an AndQuery, but now returns a
StructuredQueryDefinition.

StructuredQueryBuilder.elementConstrain
t

StructuredQueryBuilder.containerConstraint

Removed Package, Class, or Method Alternative
MarkLogic 9—May, 2017 Release Notes—Page 59

MarkLogic Server Known Incompatibilities with Previous Releases
The Maven artifact ID for the Java Client API is now marklogic-client-api instead of
java-client-api. Update your build dependency configuration files, such as pom.xml or
build.gradle, accordingly.

4.19.3 Logging Turned Off by Default
The Logback library is no longer included in the Java Client API distribution. Logging is now off
by default. To re-enable logging, include Logback or another slf4j JAR in your classpath.

4.20 Node.js Client API Incompatibilities
The following incompatible changes have been made to the Node.js Client API:

• Changes to Return Value of documents.remove

• Transaction Creation Returns an Object by Default

• Default Search Result Slice is Zero-Based

4.20.1 Changes to Return Value of documents.remove
The method DatabaseClient.documents.remove previously returned an object with both a "uri"
property and a "uris" property that served the same purpose. The "uri" property has been removed.
The return value now has the following form:

{ "uris":[uri1, uri2, ...], "removed":true }

The value of the "uris" property is now always an array. Previously, if you passed in just a single
string as input, remove returned just the URI string, rather than an array of one item.

4.20.2 Transaction Creation Returns an Object by Default
Previously, DatabaseClient.transactions.open returned a transaction id string by default, and
you could use the withState parameter to request a transaction object instead. The use of the
string form was deprecated as of MarkLogic 8.

As of MarkLogic 9 and Node.js Client API v2.0.0, DatabaseClient.transactions.open defaults
to returning a transaction object.

To force the previous behavior, set withState to false when creating a transaction. This setting is
deprecated and will be removed in a future release.

4.20.3 Default Search Result Slice is Zero-Based
Previously, the slice clause on search (queryBuilder.slice) accepted a one-based starting
position and a page length:

slice(oneBasedStart,PageLength)
MarkLogic 9—May, 2017 Release Notes—Page 60

MarkLogic Server Known Incompatibilities with Previous Releases
As of MarkLogic 9 and Node.js Client API v2.0.0, queryBuilder.slice clause behaves like
Array.prototype.slice. That is, it takes a zero-based starting position and the (zero-based)
position after the last result to be retrieved. For example, the following slice call returns the first 5
results:

... .slice(0,5) ...

Also, you could previously use slice(0) to suppress the return of result documents and just
retrieve an abbreviated summary. Now, you must include both the start and end positions for the
same effect. For example: slice(0,0).

To restore the legacy behavior, use marklogic.setSliceMode. Note, however, that this form is
deprecated and will be removed in a later release.

Note: The semantics of valuesBuilder.slice are unchanged. This function still accepts as
1-based starting position and a page length.

4.21 Geospatial Region Accessors Can Now Return Double Values
The introduction of support for double precision coordinates in MarkLogic 9 means that some
geospatial operations may return different results than in the past.

Previously, geospatial region accessor functions such as the XQuery function cts:point-latitude
or the Server-Side JavaScript function cts.pointLatitude always returned float values. As of
MarkLogic 9, these functions can return either single or double precision values, depending on
the governing coordinate system. If you do not use a double precision coordinate system, you
should not notice a difference.

The following functions are affected.

For more details, see How Precision Affects Geospatial Operations in the Search Developer’s Guide.

XQuery Function JavaScript Function

cts:point-latitude cts.pointLatitude

cts:point-longitude cts.pointLongitude

cts:box-west cts.boxWest

cts:box-east cts.boxEast

cts:box-south cts.boxSouth

cts:box-north cts.boxNorth
MarkLogic 9—May, 2017 Release Notes—Page 61

MarkLogic Server Known Incompatibilities with Previous Releases
4.22 User-Defined Function Plugins Must Be Recompiled
The version of MarkLogic’s C++ User-Defined Function (UDF) interface has been incremented
to accomodate the following changes:

• The marklogic::Point class now accepts and returns longitude and latitude values as
doubles instead of floats.

• Support for new types of UDF plugins in support of custom stemming and tokenization
plugins.

You must recompile your UDF plugins for use with MarkLogic 9. UDFs from an earlier version
of MarkLogic will not work in a mixed cluster prior to commiting the new version. During a
rolling upgrade, you must finish the upgrade and then recompile your UDFs for use with
MarkLogic 9.

4.23 SLES 12 No Longer Supported
In MarkLogic 9, the SUSE Linux Enterprise Server operating system is not supported. If you are
using this discontinued platform, you will need to migrate your environment to a supported
platform. For details on supported platforms, see “Supported Platforms” on page 11.

4.24 Solaris No Longer Supported
In MarkLogic 9, the Solaris operating system is not supported. If you are using this discontinued
platform, you will need to migrate your environment to a supported platform. For details on
supported platforms, see “Supported Platforms” on page 11.

4.25 Nagios Plugin No Longer Supported
Support for the Nagios monitoring plugin has been discontinued in MarkLogic 9.

You can create your own MarkLogic monitoring integration using the MarkLogic REST
Management API; for details see the Monitoring MarkLogic Guide.

MarkLogic does not endorse or support any particular 3rd party monitoring integrations.
However, the MarkLogic open source community includes integrations with 3rd party monitoring
platforms such as New Relic and App Dynamics. For more details see:

• New Relic: https://github.com/marklogic-community/newrelic-plugin

• App Dynamics: https://github.com/Appdynamics/marklogic-monitoring-extension

In the future, Ops Director will be MarkLogic’s fully integrated monitoring solution. For details,
see the Ops Director Guide.
MarkLogic 9—May, 2017 Release Notes—Page 62

https://github.com/marklogic-community/newrelic-plugin
https://github.com/Appdynamics/marklogic-monitoring-extension

MarkLogic Server Known Incompatibilities with Previous Releases
4.26 Application Builder and Information Studio No Longer Available
The Application Builder and Information Studio applications have been removed from
MarkLogic. The info and infodev APIs remain, but they are deprecated; for details, see “info and
infodev APIs Deprecated” on page 121.

An Application Builder application deployed on MarkLogic 8 should continue to work after the
upgrade to MarkLogic 9. We do not support any mechanism to support redeploying such an app
against a MarkLogic 9 node. The methods and modules needed for this process have been
removed.

Porting an Application Builder application running in MarkLogic 7 to MarkLogic 9 is not
supported by MarkLogic Server. If you have an active maintenance contract, you can contact
MarkLogic Technical Support for guidance in porting this application.

4.27 Admin Interface No Longer Selects a Default Schemas Database
As of MarkLogic 9, you can create a database without an associated schemas database. Earlier
versions of MarkLogic required you to specify a schemas database when creating a new database.
This change has no impact on users creating databases through the Admin API. However, this
change affects the database creation page of the Admin Interface as follows:

The Admin Interface no longer automatically selects the pre-defined Schemas database as the
schemas database when you create a database through the UI. Instead, you must explicit select a
schemas database or else you will create a database with no associated schemas database.

Depending on the uses to which you put the database, some operations might fail if there is no
associated schemas database. For example, features such as temporal document management and
template driven extraction require a schemas database to be associated with the content database.

4.28 Internal Security ON with External Security Object Behavior Change
This section describes some changes related to external security support. You should be aware of
these changes, but they do not introduce incompatibilities or necessitate a change to your
application.

In MarkLogic 9, you can log into port 7001 on an LDAP account when “internal security” on
appserver port 7001 is set to “true” or “false”. In previous versions of MarkLogic, you can only
log into port 7001 on an LDAP account if “internal security” on appserver port 7001 is set to
“false”.

As of MarkLogic 9, you can assign multiple external security objects to an App Server. When
there are multiple external security objects assigned, a MarkLogic user is authenticated and
assigned to an external security based on the order in which the external security objects are
assigned. In previous version of MarkLogic, you could only assing one external security object to
an App Server.
MarkLogic 9—May, 2017 Release Notes—Page 63

MarkLogic Server Known Incompatibilities with Previous Releases

DEL

GET

PUT

GET
/ma

POS
/ma

GET
/ma

POS
/ma
If internal security is enabled for an App Server, then when a user attempts to authenticate with
MarkLogic, MarkLogic first checks to see if the user is in the security database. If so, then
MarkLogic verifies the credentials against the security database. When this verification fails, the
behavior of MarkLogic 8 and earlier versions differs from the behavior of MarkLogic 9 as
follows:

• In MarkLogic 8 and earlier, if Security database verification fails, then the login attempt
fails with an error.

• As of MarkLogic 9, if Security database verification fails, then MarkLogic attempts to
authenticate the user against any external security objects assigned to the App Server. If
there are no external security objects assigned or if the user cannot be authenticated
against any assigned external security objects, then the login fails with an error.

Thus, when internal security is enabled, there can be cases where a login will succeed in
MarkLogic 9 that would have failed with earlier versions. The behavior is unchanged if there are
no external security objects assigned to the App Server or internal security is disabled.

4.29 REST Management API Changes in MarkLogic 9
In MarkLogic 9, a number of REST Management API methods have been deleted and their
functionality has been moved elsewhere. The following table lists the deleted methods and the
new alternative.

Endpoint Deleted in 9.0 Alternative

ETE /manage/v2/credentials DELETE:/manage/v2/credentials/properties

 /manage/v2/credentials GET:/manage/v2/credentials/properties

 /manage/v2/credentials PUT:/manage/v2/credentials/properties

nage/v2/databases/{id|name}/sub-databases

GET:/manage/v2/databases

T
nage/v2/databases/{id|name}/sub-databases

POST:/manage/v2/databases

nage/v2/databases/{id|name}/super-databases

GET:/manage/v2/databases

T
nage/v2/databases/{id|name}/super-databases

POST:/manage/v2/databases
MarkLogic 9—May, 2017 Release Notes—Page 64

MarkLogic Server Known Incompatibilities with Previous Releases

DEL
/ma
tab

GET
/ma
tab

DEL
/ma
tab

GET
/ma
tab
4.30 Configuration Packaging Format Incompatibilities
Configuration packages created with the Packaging REST API and/or with the Configuration
Packaging XQuery library module are not compatible with the new configuration format
introduced in MarkLogic release 9.0-5.

These configuration packages cannot be used with the CMA REST API and/or with the
Configuration Management API XQuery/JavaScript library modules.

For more details, see the following sections:

• “Configuration Management API (CMA) REST Endpoints” on page 39;

• “Configuration Management API (CMA) XQuery and JavaScript Libraries” on page 38;

• “Packaging API Deprecated” on page 120;

• “Configuration Packaging XQuery Library Deprecated” on page 126.

4.31 Java Client API 4.1.1 Incompatibilities
Version 4.1.1 of the Java Client API introduces the following incompatibilities with earlier Java
Client API versions:

• Load Balancer Configuration for DMDSDK Jobs

4.31.1 Load Balancer Configuration for DMDSDK Jobs
This change does not affect you if you do not connect to MarkLogic through a load balancer or if
you do not use the Data Movement SDK (DMSDK) feature of the Java Client API.

ETE
nage/v2/databases/{sub-id-or-name}/super-da
ases/{super-id-or-name}

DELETE:/manage/v2/databases/{id|name}

nage/v2/databases/{sub-id-or-name}/super-da
ases/{super-id-or-name}

GET:/manage/v2/databases/{id|name}/properties

ETE
nage/v2/databases/{super-id-or-name}/sub-da
ases/{sub-id-or-name}

DELETE:/manage/v2/databases/{id|name}

nage/v2/databases/{super-id-or-name}/sub-da
ases/{sub-id-or-name}

GET:/manage/v2/databases/{id|name}/properties

Endpoint Deleted in 9.0 Alternative
MarkLogic 9—May, 2017 Release Notes—Page 65

MarkLogic Server Known Incompatibilities with Previous Releases
You must change the configuration of any DatabaseClient objects used to connect to MarkLogic
through a load balancer on behalf of a Data Movement SDK job. The following changes apply:

• You must add a connection type parameter value of GATEWAY when configuring a
DatabaseClient.

• Do not use a FilteredForestConfiguration to configure connections through a load
balancer.

For more details, see Working with a Load Balancer in the Java Application Developer’s Guide.

4.32 Incompatibilities Between 9.0-5 and 9.0-6
The following incompatibilities exist between MarkLogic 9.0-5 and MarkLogic 9.0-6:

• Changes to Accepted XML Character Set

4.32.1 Changes to Accepted XML Character Set
As of MarkLogic 9.0-6, parsing of XML documents with an XML declaration that explicitly
specifies XML version 1.1 (version="1.1") enforces the XML 1.1 character set. Consequently,
you can now create content containing characters not accepted by XML 1.0.

Characters in the XML 1.1 “restricted character” ranges must be given as character entities. This
enforcement applies to the following character ranges:

• 0x1-0x8

• 0xB-0xC

• 0xE-0x1F

• 0x7F-0x84

• 0x86-0x9F

The following character ranges that were previously disallowed are now accepted.

• 0x1-0x8

• 0xB-0xC

• 0xE-0x1F

Serializing content that contains characters allowed by XML 1.1 but not XML 1.0 can cause
problems for client layers that cannot handle the XML 1.1 character set. You can control whether
to serialize XML as version 1.0 or 1.1 by setting the output version in your App Server output
options, using methods such as the following:

• Admin Interface: Set the output version to “1.0” under Groups > yourGroup > App Servers
> yourAppServer > Output Options.
MarkLogic 9—May, 2017 Release Notes—Page 66

MarkLogic Server Known Incompatibilities with Previous Releases
• Admin API: Call admin:appserver-set-output-version with a value of “1.0” for the
$value parameter.

• REST Management API: Send a request to
PUT:/manage/v2/servers/{id|name}/properties that sets the output-version property to
“1.0”.

4.33 Incompatibilities Between 9.0-4 and 9.0-5
The following incompatibilities exist between MarkLogic 9.0-4 and MarkLogic 9.0-5:

• Minimum Required Version of HDP is 2.6

• Reindex Recommended for Geospatial Region Indexes

• Geospatial Region Query Results Might Differ

• return-query Option Output Format Change

4.33.1 Minimum Required Version of HDP is 2.6
As of MarkLogic 9.0-5, if you are using the Hortonworks Data Platform (HDP) with the
following MarkLogic technologies, you must use HDP v2.6.

• mlcp

• HDFS

• The MarkLogic Connector for Hadoop

4.33.2 Reindex Recommended for Geospatial Region Indexes
This change affects only database configuration that define a geospatial region index.

MarkLogic 9.0-5 introduces support for a “tolerance” option on geospatial region queries. As a
consequence, if you use geospatial region indexes, your region queries might not be accurate until
you reindex. This is applicable whether or not you take advantage of the new tolerance option.

4.33.3 Geospatial Region Query Results Might Differ
As of MarkLogic 9.0-5, MarkLogic uses the coordinate system default tolerance when evaluating
a geospatial region query. Previously, MarkLogic used the coordinate system minimum tolerance.

Consequently, some region queries might not give the same results after upgrading to MarkLogic
9.0-5. Use the “tolerance” option to adjust your region queries, if necessary.

To learn more about tolerance, see Understanding Tolerance in the Search Developer’s Guide.
MarkLogic 9—May, 2017 Release Notes—Page 67

MarkLogic Server Known Incompatibilities with Previous Releases
4.33.4 return-query Option Output Format Change
This change only affects users of the REST, Java, and Node.js Client APIs who use the
return-query query option and generate a search response summary in JSON.

In prior versions of MarkLogic, the return-query query option returned a serialized JSON
structured query in the query property of the search response in JSON, but a serialized cts:query
in an XML search response. As of MarkLogic 9.0-5, return-query always generates a serialized
cts:query. The serialized JSON representation can be passed to cts:query or cts.query to
reconstruct an in-memory query object on MarkLogic, just as you can with the XML serialization.

This change will not affect you if you do not use a JSON search response, do not use
return-query, or do not have code that depends on the serialization produced by return-query.

4.34 Incompatibilities Between 9.0-3 and 9.0-4
The following incompatibilities exist between MarkLogic 9.0-3 and Marklogic 9.0-4:

• Redaction: Deterministic Masking Values Differ

4.34.1 Redaction: Deterministic Masking Values Differ
MarkLogic 9.0-4 introduces support for salting in the generation of masking values by the
mask-deterministic redaction function. This means the same text redacted with
mask-deterministic in earlier versions of MarkLogic will not produce the same masking value by
default when redacted using MarkLogic 9.0-4.

To preserve the previous behavior, modify your mask-deterministic rules to set the salt and
extend-salt options to an empty value.

For more details, see mask-deterministic in the Application Developer’s Guide.

4.35 Incompatibilities Between 9.0-2 and 9.0-3
The following incompatibilities exist between MarkLogic 9.0-2 and MarkLogic 9.0-3:

• Changes to Authentication Behavior with Client Certificate

• XCC ContentSource.newSession Interface Change

• Document Digest Authorization Behavior Changed in 9.0-3

• 1-click AMIs, new compatible CloudFormation, and additional upgrade procedures

• map:new Retains Keys with Empty Values
MarkLogic 9—May, 2017 Release Notes—Page 68

MarkLogic Server Known Incompatibilities with Previous Releases
4.35.1 Changes to Authentication Behavior with Client Certificate
MarkLogic Server 9.0-3 authenticates using both a client certificate and a username/password.
This provides a greater level of security, by requiring that the user provide a client certificate that
matches the specified user. In MarkLogic 9.0-2, if the password is incorrect, but the user has the
correct client certificate, and the “ssl require client certificate” is false, authentication will
succeed. In MarkLogic 9.0-3 if the password is incorrect, but the user has the correct client
certificate and “ssl require client certificate is false”, authentication fails.

The “ssl require client certificate” is an appserver configuration. With the appserver, there are
different authentication options: basic, digest, application-level, certificate, and kerberos-ticket.
This change only applies to basic, digest or application-level authentication. This behavior only
happens when “ssl require client certificate” is set to false

In previous versions, MarkLogic would accept username/password for any internal user, once
MarkLogic verified that certificate was signed by the selected CA (certificate authority).
MarkLogic 9.0-1 and 9.0-2 authentication is restricted to an internal user with a matching
common name (CN). In MarkLogic 9.0-3, the username does not need to match the common
name (CN).

The behavior in MarkLogic 9.0-3 is the same as it is in MarkLogic 8.0. For more information, see
the Certificate topic in the Security Guide.

4.35.2 XCC ContentSource.newSession Interface Change
The XCC method ContentSource.newSession has been extended to include a new overload that
accepts a char[] value for the password parameter, rather than a String, to enable more secure
handling of passwords.

As a consequence of this change, passing null in the password parameter of newSession now
results in a compile time error because the compiler cannot determine the correct overload
without type information. Use a typecast to disambiguate your call.

4.35.3 Document Digest Authorization Behavior Changed in 9.0-3
Prior to MarkLogic 9.0-3, the server did not check the nonce for digest authentication. In
MarkLogic 9.0-3, the server checks the nonce, verifies that it is a valid nonce, and verifies that the
URI in the Authorization header is same as the request URI.

4.35.4 1-click AMIs, new compatible CloudFormation, and additional
upgrade procedures

In order to support 1-click deployment in AWS Marketplace, MarkLogic 9 AMIs have data
volume pre-configured (device on /dev/sdf). To be compatible with 1-click AMIs, new
CloudFormation templates are released on https://developer.marklogic.com/products/cloud/aws. To
upgrade existing clusters, new 1-click compatible CloudFormation templates are required.
MarkLogic 9—May, 2017 Release Notes—Page 69

https://developer.marklogic.com/products/cloud/aws

MarkLogic Server Known Incompatibilities with Previous Releases
If custom templates or scripts are used, additional steps may be required to handle blank data
volume that is part of the new marketplace AMIs. Please find more details about the upgrade
procedure on https://developer.marklogic.com/products/cloud/aws.

4.35.5 map:new Retains Keys with Empty Values
As of MarkLogic 9.0-4, the map:new function retains any input key-value pair whose value is an
empty sequence. Previous versions of MarkLogic 9 and versions of MarkLogic 8 prior to 8.0-7
discarded such key-value pairs.

For example:

map:keys(map:new(map:entry("noval",())))

(: Now returns "noval". Previously, returned an empty sequence. :)

4.36 Incompatibilities Between 9.0-1 and 9.0-2
The following incompatibilities exist between MarkLogic 9.0-1 and MarkLogic 9.0-2:

• The mlcp Option -tolerate_errors is Ignored

• Changes to jsearch.facets Output Structure

• Array Type is Preserved in x509 Certificate with Array-Valued Properties

• Node.js Client API: valuesBuilder.slice is Now Zero-Based

• Changes to xdmp:update XQuery Prolog Option

• Java Client API 4.0.2 Ignores HttpClientConfigurator

4.36.1 The mlcp Option -tolerate_errors is Ignored
The -tolerate_errors option of the mlcp import command is deprecated. As of MarkLogic 9.0-2,
mlcp ignores this option and always behaves as if -tolerate_errors is set to true. The option will
be removed in a future release.

4.36.2 Changes to jsearch.facets Output Structure
In previous versions of MarkLogic, calling jsearch.facets always produced a JSON object for
each facet, with object properties of the form facetValue:count. This structure prevented proper
sorting of facet values.

As of MarkLogic 9.0-2, the structure of each facet is an array of arrays instead of a JSON object if
and only if you include an explicit orderBy clause in your facet definition. If you do not use
orderBy, the output is unchanged.

For more details, see Sorting Facet Values with OrderBy in the Search Developer’s Guide.
MarkLogic 9—May, 2017 Release Notes—Page 70

https://developer.marklogic.com/products/cloud/aws

MarkLogic Server Known Incompatibilities with Previous Releases
4.36.3 Array Type is Preserved in x509 Certificate with Array-Valued
Properties

In MarkLogic 9.0-1, if you use xdmp.x509CertificateGenerate to generate a certificate, and the
configuration object includes array-valued properties, the array values were encoded as a single
string. As of MarkLogic 9.0-2, the array type is preserved. This change applies to any Relative
Distinguished Names (RDNs) within a Distinguished Name (DN), such as the issuer and subject
DNs.

For example, in the following snippet, the issuer.organizationName property has an array value.

var certObj = {
 version: "2",
 serialNumber: "BA0195369CD6B679",
 issuer: {
 countryName: "US",
 stateOrProvinceName: "CA",
 localityName: "San Carlos",
 organizationName: ["MarkLogic", "Mark Logic"],
 organizationalUnitName: "Eng",
 emailAddress: "jdonner@marklogic.com",
 commonName: "JGD Certificate Authority",
 },...
};
var privateKey = ...;
xdmp.x509CertificatExtract(

xdmp.x509CertificateGenerate(certObj, privateKey)
);

If you round trip the generated certificate through xdmp.x509CertificateExtract, you will see the
following output for issuer.organizationName in MarkLogic 9.0-1 vs MarkLogic 9.0-2.

// Marklogic 9.0-1
organizationName: "[\"MarkLogic\", \"Mark Logic\"]"

// MarkLogic 9.0-2 and later
organizationName: ["MarkLogic", "Mark Logic"]

If you do not have a certificate containing a multi-valued property, you will not notice any
difference in behavior.

4.36.4 Node.js Client API: valuesBuilder.slice is Now Zero-Based
Previously, the slice clause on values queries (valuesBuilder.slice) accepted a one-based
starting position and a page length:

slice(oneBasedStart,PageLength)
MarkLogic 9—May, 2017 Release Notes—Page 71

MarkLogic Server Known Incompatibilities with Previous Releases
As Node.js Client API v2.0.3, the valuesBuilder.slice clause behaves like
Array.prototype.slice. That is, it takes a zero-based starting position and the (zero-based)
position after the last result to be retrieved. For example, the following slice call returns the first 5
results:

... .slice(0,5) ...

To restore the legacy behavior, use marklogic.setSliceMode. Note, however, that this form is
deprecated and will be removed in a later release.

4.36.5 Changes to xdmp:update XQuery Prolog Option
Previously, setting the XQuery prolog option xdmp:update to “false” caused MarkLogic to
automatically detect whether a module should be evaluated as an update or a query transaction.

As of MarkLogic 9.0-2, setting the option to “false” tells MarkLogic to treat the code as a query
transaction. This could cause your program to get an error if you explicitly set the option to
“false” and your code performs an update operation.

The new “auto” option value is equivalent to the previous behavior of “false”.

For related changes, see the following topics:

• “New Server-Side Transaction Controls” on page 29

• “xdmp:transaction-mode XQuery Prolog Option Deprecated” on page 123

• “Deprecation of transaction-mode Option to xdmp:eval” on page 124

4.36.6 Java Client API 4.0.2 Ignores HttpClientConfigurator
As of version 4.0.2, the Java Client API uses OkHttp as its HTTP client for communicating with
MarkLogic over HTTP. This change should be transparent to most applications, but imposes the
following backward incompatibility on applications that customize their HTTP configuration:

Attaching a configurator based on HttpClientConfigurator to a DatabaseClientFactory object no
longer has any effect on the HTTP configuration. Use the new
com.marklogic.client.extra.okhttpclient.OkHttpClientConfigurator interface instead. The
HttpClientConfigurator interface is deprecated and will be removed in a future release.

4.37 MarkLogic 8 Incompatibilities
This section describes the incompatibilites between MarkLogic 7 and MarkLogic 8. This is here
just for convenience; for the MarkLogic 8 Release Notes, see docs.marklogic.com/8.0/guide/relnotes.
The following are the incompatibilies:

• JSON Related Incompatibilities

• Semantics Incompatibilites
MarkLogic 9—May, 2017 Release Notes—Page 72

MarkLogic Server Known Incompatibilities with Previous Releases
• REST and Java Client API Incompatibilites

• Document Library Services (DLS) Repositories Need To Perform A Bulk Upgrade Operation

• Linux Now Requires Red Hat 6

• mlsql On Linux No Longer Ships With Server

• Cyrillic Tokenization Changes

• Application Builder Applications Must Be Re-Deployed in MarkLogic 8

• Application Builder and Information Studio Links Removed

• Search API Incompatibilities

• Locks and Properties Query Built-In Functions Renamed

• xdmp:uri-content-type Of an XML Document Now Returns application/xml, Can Affect CPF
Applications

• xdmp:function Signature Change

• Incompatibilities Between 9.0-1 and 9.0-2

• Incompatibilities Between 8.0-5 and 8.0-6

• Incompatibilities Between 8.0-3 and 8.0-4

• Incompatibilities Between 8.0-2 and 8.0-3

• Incompatibilities Between 8.0-1 and 8.0-2

4.37.1 JSON Related Incompatibilities
MarkLogic 9 includes Native JSON support. In MarkLogic 7, there was support for JSON via a
set of libraries to convert between JSON and XML. If you are using the MarkLogic 7 JSON
support, you will have to migrate your code to use the native JSON support. This should end up
being more efficient, but will require you to do some minor code changes. This section lists the
incompatibilites related to working with JSON documents:

• Documents Created as JSON With MarkLogic 7 REST API or MLCP Must Be Converted to Native
JSON

• json:unquotedString Primitive No Longer Available

• xdmp:to-json and json:transform-to-json Now Returns a document-node()

• Search, Java, REST: json-key Is Now json-property in Options and Structured Query

• Java and REST: Default Path Language for JSON Document Patches is Now XPath

• Java and REST: Specifying a Language for JSON Documents is Deprecated

• Java and REST: New Restrictions on Patching JSON Content

• Java and REST: Transforms and Extensions That Manipulate JSON Must Be Rewritten

• Java and REST: JSON Array Items and Property Values No Longer Distinguishable in QBE

• Field Range Query and Field Value Query on JSON May Behave Differently
MarkLogic 9—May, 2017 Release Notes—Page 73

MarkLogic Server Known Incompatibilities with Previous Releases
4.37.1.1 Documents Created as JSON With MarkLogic 7 REST API or MLCP
Must Be Converted to Native JSON

In previous versions of MarkLogic, you can load JSON documents into MarkLogic using either
the REST Client API or the Java Client API. When you do so, the documents are transformed and
stored as XML, but are still queryable as and returned as JSON. In MarkLogic 8 this “XML
facade” is no longer needed, and the REST and Java Client APIs in MarkLogic 8 do not do the
translation to the XML facade anymore. Therefore, if you have any document that were loaded as
JSON in MarkLogic 7 and earlier, you must convert those document to native JSON in order to
query them as JSON using the REST API.

To help with the conversion, MarkLogic supplies a set of conversion scripts. These scripts do not
handle every case, and for any case it does not handle you will have to convert the documents
some other way. Because the conversion scripts do not handle all cases, it is very important to do
a backup of your database before attempting the conversion. The scripts are located in the
Samples/migrate-scripts directory under the MarkLogic installation directory (/opt/MarkLogic
on Linux, c:/Program Files/MarkLogic on Windows, and ~/Library/MarkLogic on Mac OS). The
scripts require bash and curl, and on Windows platforms they also require cygwin.

For more details, see the <marklogic-dir>/Samples/migrate-scripts/README file.

Generally, the conversion scripts perform the following:

• Converts the documents to native JSON.

• Updates index configurations to reference the JSON content.

• Updates existing saved search options. This includes changing references to the JSON
basic namespace to reference the new JSON content and changes occurrences of json-key
to json-property.

• Updates any alerting rules that reference the JSON content.

The scripts do not upgrade your application code. The types of things you will need to change in
your application include:

• Modify client code to update structured queries, combined queries, and query options that
reference json-key and anything in the http://marklogic.com/xdmp/json/basic
namespace. For more details see “Search, Java, REST: json-key Is Now json-property in
Options and Structured Query” on page 76.

• Rewrite and reinsert any server-side code (for example, transformations or custom
constraints) that operated over the internal XML representation of your JSON documents.
For details see “Java and REST: Transforms and Extensions That Manipulate JSON Must
Be Rewritten” on page 78.

• Modify client code that relies on the /v1/keyvalues endpoint for key/value searches over
JSON.
MarkLogic 9—May, 2017 Release Notes—Page 74

MarkLogic Server Known Incompatibilities with Previous Releases
• Modify client code to update patch specifications over JSON. For details see “Java and
REST: New Restrictions on Patching JSON Content” on page 77.

• Review index settings and queries over document properties, update as needed (because
you can no longer have JSON properties).

The basic steps to upgrade your MarkLogic 7 or earlier JSON to native JSON in MarkLogic 8 are
as follows:

1. Backup the database in which your JSON documents exist.

2. Make copies and edit the connection details and other information in the various
configuration files in the Samples/migrate-scripts/conf directory. This files have details
about your configuration and index settings.

3. Run the Samples/migrate-scripts/migrate script.

4. Test your results. Make sure the index changes that the scripts made match your newly
converted JSON data. It is especially important to review path and fields indexes to make
sure they are including the same content in the converted JSON is they were previously.

If you have problems upgrading your application, contact MarkLogic Technical Support.

4.37.1.2 json:unquotedString Primitive No Longer Available
MarkLogic 7 had a primitive to convert an XQuery string to an unquoted String called
json:unquotedString. In MarkLogic 8, that function is no longer available because it is no longer
needed, as MarkLogic 8 has much more extensive support for JSON. For details on working with
JSON in MarkLogic, see Working With JSON in the Application Developer’s Guide.

4.37.1.3 xdmp:to-json and json:transform-to-json Now Returns a
document-node()

In MarkLogic 8, the xdmp:to-json function returns a document-node(); previously, it returned a
string. If you have code that expects a JSON string, you might need to modify your code to
perform XPath on the document-node() to get the JSON node (which will serialize into a string);
depending on what your code does, you might or might not need to do this. For example:

(: 7.0 :)
xdmp:to-json(("a",fn:false()))
=> ["a",false]

(: 8.0 :)
xdmp:to-json(("a",fn:false()))/node()
=> ["a",false]

Note: The json:transform-to-json function uses xdmp:to-json, so it also returns a
document-node() in MarkLogic 8.
MarkLogic 9—May, 2017 Release Notes—Page 75

MarkLogic Server Known Incompatibilities with Previous Releases
4.37.1.4 Search, Java, REST: json-key Is Now json-property in Options and
Structured Query

All occurrences of json-key in query options and structured query are now json-property. If you
use the constructs listed below to search JSON documents by key/property name, you will need to
modify your query options (search:options, in XML) or structured queries.

The following query options are affected. For details, see search:search or Appendix: Query
Options Reference in the Search Developer’s Guide.

• container-constraint

• extract-metadata

• range-constraint

• sort-order

• value-constraint

• word-constraint

The following structured query components are affected. For more details, see the structured
query Syntax Reference in the Search Developer’s Guide.

• container-query

• range-query

• value-query

• word-query

The corresponding Java Client API structured query builder method name has also changed.
StructuredQueryBuilder.JSONKey is now StructuredQueryBuilder.JSONProperty.

4.37.1.5 Java and REST: Specifying a Language for JSON Documents is
Deprecated

Previously, you could specify a language when ingesting JSON documents. This was only
possible because JSON documents were represented internally as XML.

This parameter is now deprecated and will be ignored when present. This affects the following
interfaces:

• Java: JSONDocumentManager.setLanguage and JSONDocumentManager.getLanguage are
deprecated. Calling setLanguage has no effect.

• REST: The lang request parameter of PUT:/v1/documents is deprecated and will be
ignored.

• REST: The lang request parameter of POST:/v1/documents (all variants) is deprecated and
will be ignored.
MarkLogic 9—May, 2017 Release Notes—Page 76

MarkLogic Server Known Incompatibilities with Previous Releases
4.37.1.6 Java and REST: Default Path Language for JSON Document
Patches is Now XPath

This section applies to applications that use the Java Client API or REST Client API patch (partial
update) feature on JSON documents.

Previously, JSONPath was the default path language for identifying the target of update
operations in a JSON patch. XPath is now the default path language for both XML and JSON
patches.

Use of JSONPath is now deprecated. To convert your JSON patches to use XPath expressions
instead of JSONPath, see Traversing JSON Documents Using XPath in the Application Developer’s
Guide.

To continue using JSONPath, you can explicitly override the default path language in one of the
following ways:

• For a raw JSON patch, include a pathlang property as the sibling of the top level patch
property. For example:

{ "pathlang": "jsonpath",
"patch": [...] }

Raw patches are used by POST:/v1/documents and can be used with the Java Client API
method DocumentManager.patch.

• When using the Java Client API, use DocumentPatchBuilder.pathLanguage. to set the path
language to JSONPath, as shown in the following example:

DocumentPatchBuilder patchBldr = docMgr.newPatchBuilder();
patchBldr.pathLanguage(PathLanguage.JSONPATH);

4.37.1.7 Java and REST: New Restrictions on Patching JSON Content
The native JSON document model imposes some new restrictions on partial updates to JSON
documents. Therefore, some patch operations that were previously supported will now be rejected
or produce different results. For details, see Limitations of JSON Path Expressions in the REST
Application Developer’s Guide and Traversing JSON Documents Using XPath in the Application
Developer’s Guide.

For example, you cannot construct patch path expressions that address anonymous nodes. In the
JSON document model, object nodes and array nodes are anonymous. The name in a property
name-value pair addresses the value(s), not the containing node.

This means you cannot use “last-child” position to insert a new property or value under the root
node of a document or in an array because the parent node is anonymous and cannot be selected
by the context expression of the insert operation. Similarly, you cannot address an array node that
is nested inside another array ([1, [2, 3], 4]) because it is unnamed.
MarkLogic 9—May, 2017 Release Notes—Page 77

MarkLogic Server Known Incompatibilities with Previous Releases
You can no longer replace an entire property (name-value pair) in a single patch replace
operation for the same reason. To replace a property, you must delete it and then insert a new one.

4.37.1.8 Java and REST: Transforms and Extensions That Manipulate JSON
Must Be Rewritten

This section applies to REST Client API and Java Client API applications that use content
transformations, resource service extensions, and other server-side code to manipulate the XML
representation of JSON documents.

Previously, content transformations, resource service extensions, and other server-side code
manipulated JSON content as XML in the http://marklogic.com/xdmp/json/basic namespace.
Now, such code must operate on JSON document nodes instead of XML.

For example, previously, the JSON data { "key": "value" } was represented in the database as
XML of the following form, and this is what your server-side transforms and extensions worked
with:

<json type="object" xmlns="http://marklogic.com/xdmp/json/basic">
 <key type="string">value</key>
</json>

Thus, to access the value of the “key” property in XQuery, you could use a path expression like
this following:

$someDocument/json:json/json:key

With a native JSON document you reference the same data using the following path expression:

$someDocument/key

You should understand the native JSON document model before rewriting your code. For details,
see Working With JSON in the Application Developer’s Guide.

4.37.1.9 Java and REST: JSON Array Items and Property Values No Longer
Distinguishable in QBE

This change may affect applications that use QBE to search JSON documents using the Java
Client API or REST Client API.

Previously, you could construct a QBE that included a word or value query explictly scoped to an
array item or the . Now, it is not possible to distinguish between an array item and a property
value.

For example, given a document with the following context:

{ "notArray": "blue", "array": ["azure", "blue"] }
MarkLogic 9—May, 2017 Release Notes—Page 78

MarkLogic Server Known Incompatibilities with Previous Releases
Previously, the following QBE would only match the occurence of the value "blue" in the "array"
property. Now it matches both the occurrence in "array" and the occurrence in "notArray".

{"$query": [{"$value": ["blue"]}] }

This is because array nodes are unnamed in the native JSON document model, so they cannot be
explicitly identified in a QBE.

4.37.1.10Field Range Query and Field Value Query on JSON May Behave
Differently

This difference only applies to applications using field range queries or field value queries on
JSON documents.

JSON and XML are not indexed in exactly the same way. Some of the indexing differences affect
the behavior of field range queries and field value queries over JSON. Since JSON documents
were previously stored as XML, this means your field range queries and field value queries over
JSON may behave differently.

For example, previously you could construct a field value query for “John Smith” that would
match the following document by defining a field on the name property that excluded the middle
property.

{ "name": {
"first": "John",
"middle": "NMI",
"last": "Smith"

}

This was possible because the document was represented as XML and the text nodes in the field
were concatenated together so that the field value in the above document was “John Smith”. In
native JSON documents, this concatenation does not occur, and the values of the equivalent field
are “John” and “Smith”. To get the same effect now, you would have to use a construct such as a
near query.

For more details, see Creating Indexes and Lexicons Over JSON Documents and How Field Queries
Differ Between JSON and XML in the Application Developer’s Guide.

4.37.2 Semantics Incompatibilites
MarkLogic 8 introduces a number of new and changed Semantic features. This section describes
those and includes the following changes that might cause incompatibilites:

• Changed Function: sem:sparql

• Changed Function: sem:sparql-values

• Changed Function: sem:sparql-values
MarkLogic 9—May, 2017 Release Notes—Page 79

MarkLogic Server Known Incompatibilities with Previous Releases
• Deprecated Function: sem:sparql-triples

• Changed Behavior: Graphs

4.37.2.1 Changed Function: sem:sparql
In MarkLogic 8, the signature of sem:sparql has changed for the last parameters. The fourth
parameter is now a sem:store*, where previously there where two parameters at the end, one to
specify a cts:query and another to specify the forest ID. The old signature is still available, but is
deprecated. If you have any code from MarkLogic 7 that uses the fourth or fifth arguments to
sem:sparql, it will still work in MarkLogic 8, but you should migrate that code to use the new
signature using sem:store as the fourth parameter.

4.37.2.2 Changed Function: sem:sparql-values
In MarkLogic 8, sem:sparql-values now serializes a string as a cts:word-query when used as
part of an argument. In other words, string values will be passed as cts:query arguments. This is a
change from MarkLogic 7.

4.37.2.3 Changed Function: sem:sparql-values
The sem:sparql-values function no longer accepts forest-id as an option. This is an
incompatibility with MarkLogic 7 functionality.

4.37.2.4 Deprecated Function: sem:sparql-triples
The sem:sparql-triples function has been deprecated in favor of sem:in-memory-store in
MarkLogic 8. See documentation for details - Querying Triples in Memory in the Semantics
Developer’s Guide.

4.37.2.5 Changed Behavior: Graphs
In MarkLogic 8, graph documents containing metadata are created when triples are ingested,
whether they are ingested using SPARQL Update, mlcp, or SPARQL endpoints over REST. These
named graphs inherit the permissions of the user, unless specified as part of the ingest process.
The graph permissions are stored along with other metadata in the graph document.

When loading triples with mlcp, if the output-permissions parameter is set when loading RDF,
the graph will inherit the default permissions just as it would in a sem:sparql-update operation. If
the output_collection parameter is set when loading RDF, the graph document is only created for
the first collection specified (because a managed triple can only belong to one graph).

In an upgraded system, graph metadata for managed triples created in MarkLogic 7 will be
created the first time you add triples to the graph or modify triples in the graph. The graph will
either have the user’s permissions or the permissions specified as part of the operation. Make sure
the document permissions of documents containing managed triples created in MarkLogic 7 are
passed into sem:sparql-update as default-permissions to ensure the graph metadata created is
consistent with the permissions for existing managed triples created in MarkLogic 7.
MarkLogic 9—May, 2017 Release Notes—Page 80

MarkLogic Server Known Incompatibilities with Previous Releases
4.37.3 REST and Java Client API Incompatibilites
This section covers the incompatibilites for the REST API between MarkLogic 7 and
MarkLogic 8. that are not related to JSON. If you work with JSON documents using the REST
Client API or Java Client API, you should also see “JSON Related Incompatibilities” on page 73.

This section covers the following incompatibilities:

• Must Upgrade to Java Client API v3.0

• REST API Instance Must Use the Declarative Rewriter on the App Server

• Default Transaction Mode for the POST Method of Resource Service Extensions is Now Query

• REST API: Empty Bulk Read by Query Now Returns 200 Status

• Error Reporting Format and Detail Changes

• Deprecated Interface: Keyvalue Queries

• Transaction ID Format Has Changed

• A Transaction Can No Longer Be Shared Across Users

• Java: QBE Search Results No Longer Automatically Match the Query Format

4.37.3.1 Must Upgrade to Java Client API v3.0
You cannot use earlier versions of the Java Client API with MarkLogic 8. Update your application
to use version 3.0 or later.

4.37.3.2 REST API Instance Must Use the Declarative Rewriter on the App
Server

In MarkLogic 7, App Servers that are REST API Instances used a different URL rewriter than in
MarkLogic 8. In MarkLogic 8, the App Server is configured to use the declarative rewriter. If you
had not modified anything in your REST API Instance App Server setup, the upgrade to
MarkLogic 8 will reconfigure your App Server to use the new rewriter. If, however, you have
modified something in setup to use a different rewriter, then you will have to make similar
changes to the new setup (or consider not using those changes in the REST API Instance). For
details on the declarative rewriter, see Creating a Declarative XML Rewriter to Support REST Web
Services in the Application Developer’s Guide.
MarkLogic 9—May, 2017 Release Notes—Page 81

MarkLogic Server Known Incompatibilities with Previous Releases
4.37.3.3 Default Transaction Mode for the POST Method of Resource
Service Extensions is Now Query

In MarkLogic 7, the POST method of a resource service extension was always executed in update
mode. In MarkLogic 8, POST methods in a single-statement transaction are executed in query
mode. However, within a multi-statement transaction, they are in update mode. The new way is
safer because, generally speaking, if a function is not doing an update, it is much more efficient
for it to run as a query.

If you have a resource service extension that requires the transaction mode to be update, you need
to modify the extension code to add an annotation to the function to explicitly force it into update
mode. For example, to modify an extension that is a GET, add an annotation like the following to
your get function:

declare %rapi:transaction-mode("update") function testrstxn:get(
$context, $params) {

<Your code goes here>
};

The annotation %rapi:transaction-mode("update") forces the function to run as an update. For
details, see Controlling Transaction Mode in the REST Application Developer’s Guide.

4.37.3.4 REST API: Empty Bulk Read by Query Now Returns 200 Status
Previously, performing a bulk read by retrieving all documents that match a query would return a
404 Not Found response status if no documents matched the query. As of MarkLogic 8, such a
request returns a 200 OK status with an empty response body.

This change applies to the following methods, when the Accept header is set to multi-part/mixed
and the request does not ask for a search result summary in addition to the matching documents.

• GET:/v1/search

• POST:/v1/search

• GET:/v1/qbe

• POST:/v1/qbe

For more details on these interfaces, see Reading Multiple Documents Matching a Query in the REST
Application Developer’s Guide.

4.37.3.5 Error Reporting Format and Detail Changes
The changes in this section might affect your application if either of the following is true:

• Your REST or Java client application directly manipulates error details returned by
MarkLogic through a REST API instance. This is unlikely for Java applications because
the receive such errors as Java exceptions.

• Your application includes content transformations or resource service extensions that
report errors to the client.
MarkLogic 9—May, 2017 Release Notes—Page 82

MarkLogic Server Known Incompatibilities with Previous Releases
MarkLogic 8 introduces the following incompatible changes to error reporting for users of the

• Error Format Defaults to JSON and is a REST Instance Creation Property

• Error Detail Element and Property Names Have Changed

• Use RESTAPI-SRVEXERR to Report Errors from Transforms and Extensions

Error Format Defaults to JSON and is a REST Instance Creation Property
In previous versions, the default format for error messages returned by the REST Client API was
XML, and you could change it by setting the error-format instance configuration property. As of
MarkLogic 8, the default error format for new REST instances is JSON. You can now specify the
format when you create the REST instance, and you can subsequently change it using the Admin
Interface, admin:appserver-set-default-error-format, or the REST Management API.

This change has the following implications:

• The Java setErrorFormat and getErrorFormat methods of
com.marklogic.client.admin.ServerConfigurationManager have been removed. Set the
error message format when creating the REST instance instead.

• The REST GET and PUT /v1/config/properties/error-format methods are no longer
available. Set the error message format when creating a REST instance instead.

• You cannot include an error-format XML element or JSON property in the payload to
PUT:/v1/config/properties.

• The payload for POST:/v1/rest-apis can now include an error-format XML element or
JSON property. This is an attribute of the App Server.

• You can use the Accept or X-Error-Accept HTTP headers to override the default error
format for a particular request. For details, see Error Reporting in the REST Application
Developer’s Guide.

To set the error format when creating an instance, set the error-format configuration property.
For details, see Creating an Instance in the REST Application Developer’s Guide.

Error Detail Element and Property Names Have Changed
The error detail returned by the REST Client API has changed in the following ways. For
examples of the new format, see Error Reporting in the REST Application Developer’s Guide.

• XML: The root element of the error detail is an <error-response> element in the
namespace http://marklogic.com/xdmp/error. Previously, it was an <error/> element in
the namespace http://marklogic.com/rest-api.

• JSON: The top level property name is now errorResponse. Previously, it was error. Child
property names that previously used dashes to separate “words” now use camel case. For
example, message-code is now messageCode and status-code is now statusCode.

Use RESTAPI-SRVEXERR to Report Errors from Transforms and Extensions
MarkLogic 9—May, 2017 Release Notes—Page 83

MarkLogic Server Known Incompatibilities with Previous Releases
Resource service extensions and transformations previously reported errors to the client using
RESTAPI-EXTNERR and could specify a response payload in JSON or XML. The expected error
response content type was controlled by a caller supplied parameter. This parameter is now
ignored, and you should use RESTAPI-SRVEXERR instead of RESTAPI-EXTNERR. Your payload must be
compatible with the MIME type expected by the caller, which can vary, so it is best to restrict the
error detail to text. For details, see Reporting Errors in the REST Application Developer’s Guide.

4.37.3.6 Deprecated Interface: Keyvalue Queries
This topic applies to applications that use the Java Client API class KeyValueQueryDefinition or
the REST Client API method GET:/v1/keyvalue. These interfaces are now deprecated.

You can use Query By Example (QBE) or structured query to perform the same kind of search.

For example, to search for a JSON property named “author” with the value “Mark Twain”, use a
QBE such as the following:

{ "$query": { "author": "Mark Twain" } }

The following is a similar search for an XML element:

<q:qbe xmlns:q="http://marklogic.com/appservices/querybyexample">
 <q:query>
 <author>Mark Twain</author>
 </q:query>
</q:qbe>

With structured query, use value-query or container-query.

For details, see the following references:

• Searching Using Query By Example in the Search Developer’s Guide.

• Searching Using Structured Queries in the Search Developer’s Guide.

• RawQueryByExampleDefinition or StructuredQueryBuilder in the Java Client API javadoc.

• GET:/v1/search or POST:/v1/search in the MarkLogic REST API Reference.

4.37.3.7 Transaction ID Format Has Changed
Previously the transaction ids created using DatabaseClient.openTransaction (Java) or
POST:/v1/transactions (REST) were of the form hostId_transactionId. The hostId segment has
now been dropped.

As long as your application treats the transaction id as a “black box”, this change is transparent.
MarkLogic 9—May, 2017 Release Notes—Page 84

/javadoc/client/index.html

MarkLogic Server Known Incompatibilities with Previous Releases
4.37.3.8 A Transaction Can No Longer Be Shared Across Users
This change only affects Java Client API and REST Client API applications that use
multi-statement transactions and share the resulting transaction id across multiple users.

Previously, it was possible to create a multi-statement transaction as one MarkLogic user and then
perform operations within the transaction as another user. This is no longer possible. Now, all
operations within a transaction must be performed as the same user who created the transaction.

4.37.3.9 Java: QBE Search Results No Longer Automatically Match the
Query Format

Previously, using QueryManager.search with a Query By Example (QBE) automatically returned
results in the same format as the query. That is, XML results were returned for an XML QBE, and
JSON results were returned for a JSON QBE. Now, you must explicitly request JSON.

For example, if the qbe variable in the following statement contains a JSON QBE, then previously
you would receive JSON results. Now, you will receive XML by default, instead.

queryMgr.search(qbe.newStringHandle()).get();

To achieve the same result as before, explicitly set the format on the result handle to JSON. For
example:

queryMgr.search(qbe.newStringHandle().withFormat(Format.JSON)).get();

4.37.4 Document Library Services (DLS) Repositories Need To Perform A
Bulk Upgrade Operation

MarkLogic 8 includes an enhancement to Document Library Services to make it significantly
faster for large DLS repositories. This enhancement requires some metadata changes to the
documents under DLS control.

If you have any DLS repositories created in MarkLogic 7 or earlier, you must first set
compatibility mode for your repository, and then upgrade the documents in the repository, and
finally set the repository to upgraded. The upgrade process will touch all of the documents under
DLS control, so it will take a while, depending on the size of your DLS application. If you do not
perform at least the first part of this upgrade, DLS functions might produce incorrect results in
MarkLogic 8.

Because this is an upgrade that touches a large number of documents, MarkLogic strongly
recommends that you first back up your database and that you thoroughly test your process on a
development system before upgrading your production DLS repository.

To upgrade existing DLS repositories, perform the following steps:

1. Back up your database containing the documents under DLS control.
MarkLogic 9—May, 2017 Release Notes—Page 85

MarkLogic Server Known Incompatibilities with Previous Releases
2. As either a user with the admin role, set compatibility mode for your DLS repository by
running the following XQuery against your DLS database (for example, in Query
Console):

xquery version "1.0-ml";

import module namespace dls = "http://marklogic.com/xdmp/dls"
at "/MarkLogic/dls.xqy";

dls:set-upgrade-status(fn:false())

3. As a user with the admin role, run the following XQuery against your DLS database (for
example, in Query Console):

xquery version "1.0-ml";
(: This starts a task which will run for a time proportional to

the number of documents you have under DLS control. The
function returns immediately though. It is safe to rerun
this function if it is stopped or fails for any reason
such as a system restart. :)

import module namespace dls = "http://marklogic.com/xdmp/dls"
at "/MarkLogic/dls.xqy";

dls:start-upgrade()

If you stop the upgrade (for example, if the server is restarted or if there are errors in the
upgrade that you have fixed), you can restart the upgrade at any time by running the above
query.

4. You can check the progress at any time by looking at the upgrade-task-status.xml
document, ad in the following XQuery:

xquery version "1.0-ml";
(:

this document is updated every few minutes to show the
progress of the upgrade

:)
fn:doc("http://marklogic.com/dls/upgrade-task-status.xml")

5. You can check the progress at any time by running the following XQuery:

xquery version "1.0-ml";

import module namespace dls = "http://marklogic.com/xdmp/dls"
at "/MarkLogic/dls.xqy";

dls:latest-validation-results()
MarkLogic 9—May, 2017 Release Notes—Page 86

MarkLogic Server Known Incompatibilities with Previous Releases
6. The dls:latest-validation-results output has an element names
dls:validation-status. When the value of that element is completed, the process is
complete.

7. When you are satisfied that the process has completed (for example, if the previous step
shows the process is complete), the set the upgrade status to true by running the following,
either as a user with the admin role or a user with the dls-admin role:

xquery version "1.0-ml";

import module namespace dls = "http://marklogic.com/xdmp/dls"
at "/MarkLogic/dls.xqy";

dls:set-upgrade-status(fn:true())

Once the process is successful, you can use DLS as usual.

It is also possible to run DLS in compatibility mode without running the upgrade on the repository
(by not running the upgrade portion of the above procedure), but MarkLogic strongly
recommends performing this upgrade procedure. If you have any problems or questions, contact
MarkLogic Technical Support.

4.37.5 Linux Now Requires Red Hat 6
MarkLogic 8 Linux platforms now require Red Hat 6, and will no longer work on Red Hat 5; they
will fail to install on Red Hat 5. So if you are running MarkLogic 7 on Red Hat 5, you will have to
migrate that environment to Red Hat 6 in order to use MarkLogic 8.

4.37.6 mlsql On Linux No Longer Ships With Server
On Linux platforms, the mlsql utility no longer is packaged with the MarkLogic Server rpm
binary. To get mlsql on Linux now, you must install the ODBC Driver for Linux. For details on
the ODBC Driver for Linux, see Configuring the ODBC Driver on Linux in the SQL Data Modeling
Guide.

4.37.7 Cyrillic Tokenization Changes
The tokenization rules for Cyrillic script has changed such that mixed letter and number tokens
are handled consistently with Latin letter and number tokens. That is, the following now tokenizes
as a single token (previously it was two tokens):

Ё1 (Cyrillic A + the digit 1)

If you have Cyrillic content in your database, you should reindex the database or reload the
Cyrillic content so that it is properly tokenized and indexed in accordance with the new rules. If
you do not trigger a retokenization of any existing Cyrillic content, certain queries may behave
inconsistently between old content and newly loaded content.
MarkLogic 9—May, 2017 Release Notes—Page 87

MarkLogic Server Known Incompatibilities with Previous Releases
4.37.8 Application Builder Applications Must Be Re-Deployed in
MarkLogic 8

Applications deployed with Application Builder in MarkLogic 7 and earlier will not work
correctly in MarkLogic 8 until you fully re-deploy them.

If you have any applications built using Application Builder, you must remove the code from the
modules database of the deployed application and then re-deploy the application. Specifically, for
each Application Builder application that is upgraded from MarkLogic 7 or earlier:

1. Back up the application in case you need to restore it to its previous state.

2. In the modules database for the application, either clear the database or delete the
following directories:

/application
/Default

/marklogic.rest.resource
/marklogic.rest.transform

As well as the document at the following URI

/index.html

3. Go into Application Builder and re-deploy the application.

4. If you have extended your application with any customizations, re-deploy those
customizations.

5. Test your re-deployed application.

4.37.9 Application Builder and Information Studio Links Removed
The links in the navigation bar from Query Console and other tools no longer have links to
Application Builder and Information Studio. To use these applications, enter the URL directly (for
example, http://localhost:8000/appservices).

4.37.10 Search API Incompatibilities
The following incompatible changes have been made to the Search API:

• search:parse Output is Now Unannotated cts:query XML

• Deprecated Option: extract-metadata

• Deprecated Functions: search:unparse, search:remove-constraint

• Structured Query: locks-query and properties-query Renamed

• sort-order Query Option Requires an Index
MarkLogic 9—May, 2017 Release Notes—Page 88

MarkLogic Server Known Incompatibilities with Previous Releases
4.37.10.1search:parse Output is Now Unannotated cts:query XML
Previously, search:parse produced XML representing an annotated cts:query that could be
passed directly to search:unparse. As of MarkLogic 9, the default output from search:parse does
not include annotations, so it cannot be passed to search:unparse.

You can get annotated output from search:parse in MarkLogic 9 using the $output parameter as
shown below:

search:parse("myQueryText", options, "cts:annotated-query")

4.37.10.2Deprecated Option: extract-metadata
The extract-metadata query option is now deprecated. Use extract-document-data instead. For
details, see search:search or Extracting a Portion of Matching Documents in the Search Developer’s
Guide.

The new extract-document-data option does not support extracting specific metadata properties,
but properties are available in other ways, such as using xdmp:document-properties or by fetching
all properties metadata through one of the client APIs.

4.37.10.3Deprecated Functions: search:unparse, search:remove-constraint
The search:unparse and search:remove-constraint functions are now deprecated. If you need to
deconstruct a query, modify it, and “put it back together”, use structured query or cts:query with
search:resolve instead.

For example, if you previously did something similar to the following:

let $ctsquery := search:parse("myQueryString", $options)
(: ...modify $ctsquery... :)
return search:search(search:unparse($ctsquery), $options)

Then you can achieve the same result doing the following:

let $ctsquery := search:parse("myQueryString", $options)
(: ...modify $ctsquery... :)
return search:resolve($ctsquery, $options)

To generate a structured query instead of a cts:query, set the third parameter of search:parse to
"search:query":

search:parse("myQueryString", $options, "search:query")

4.37.10.4Structured Query: locks-query and properties-query Renamed
The following structured query elements have been renamed to more accurately reflect their
purpose:
MarkLogic 9—May, 2017 Release Notes—Page 89

MarkLogic Server Known Incompatibilities with Previous Releases
• locks-query is now locks-fragment-query

• properties-query is now properties-fragment-query

For details, see locks-fragment-query and properties-fragment-query in the Search Developer’s Guide.

4.37.10.5sort-order Query Option Requires an Index
If you use the sort-order query option to sort search results by something other than score, such
as an XML element, JSON property, or field, then the database configuration must include a range
index on the entity used for a sort key. Failing to create such an index causes SEARCH-BADORDERBY
to be thrown when searching. Previously, the index requirement was not enforced.

For details, see sort-order in the Search Developer’s Guide.

4.37.11 Locks and Properties Query Built-In Functions Renamed
The following built-in functions related to locks and document properties queries have been
renamed to more accurately reflect their purpose.

• cts:locks-query is now cts:locks-fragment-query

• cts:locks-query-query is now cts:locks-fragment-query-query

• cts:properties-query is now cts:properties-fragment-query

• cts:properties-query-query is now cts:properties-fragment-query-query

4.37.12 xdmp:uri-content-type Of an XML Document Now Returns
application/xml, Can Affect CPF Applications

In 8.0, the xdmp:uri-content-type function returns application/xml. In 7.0, it returns text/xml.
Where MarkLogic previously returned text/xml for an xml document, it now returns
application/xml. If you have applications that are expecting text/xml, you will either need to
change the application to accept application/xml or you will have to modify your program to send
a content type of text/xml (for example, using xdmp:set-response-content-type). MarkLogic
will still accept text/xml for xml documents (in addition to application/xml). Similarly, JSON
documents return application/json but MarkLogic accepts either application/json or
text/json.

As a consequence of this change, if you have a CPF application that relies on the mimetype
text/xml to identify an XML document, you must change that application to instead rely on
application/xml. In the case of a CPF application, you will have to modify your CPF pipelines
and change any text/xml mimetypes (that were referring to XML documents) to
application/xml. If you are using the default pipelines, then reinstalling CPF for the database
should correct this incompatibility. Otherwise, those CPF applications will not trigger the change
actions for XML documents. Similar changes are required for CPF appliations that rely on
text/json to identify JSON documents; they need the mimitype changed to application/json.
MarkLogic 9—May, 2017 Release Notes—Page 90

MarkLogic Server Known Incompatibilities with Previous Releases
4.37.13 xdmp:function Signature Change
To allow for anonymous functions in Server-Side JavaScript, the first argument of the
xdmp:function built-in function takes an xs:QName? (zero or 1 QNames) in 8.0; previously, it took
an xs:QName (exactly one QName). If you have code that does not allow for zero or 1 QNames,
you will need to modify that code.

Also, if you are relying on function mapping with xdmp:function, you can no longer use function
mapping with it (because it no longer takes a singleton). If you have code that function maps with
xdmp:function, you will need to rewrite it to not use function mapping (by calling xdmp:function
in the return of a FLOWR statement for each item in your sequence of QNames, for example).

4.37.14 Incompatibilities Between 8.0-5 and 8.0-6
The following incompatibilities exist between MarkLogic 8.0-5 and MarkLogic 8.0-6:

• Terms Matched by additional-query Are Highlighted in Snippets

4.37.14.1Terms Matched by additional-query Are Highlighted in Snippets
Previously, the Search API documentation stated that terms matched by the query specified in an
additional-query query option were not highlighted in search result snippets. This is no longer
the case.

You should expect any terms matched by the additional-query option to be included in
highlighted sections of snippets.

4.37.15 Incompatibilities Between 8.0-3 and 8.0-4
There are a few incompatibilities made to the Server-Side JavaScript implementation in 8.0-3.
The following are the incompatibilities:

• xdmp.multipartDecode Now Returns a JSON Payload for Headers

• In JavaScript, Some Thesaurus and Spelling Function Have Different Return Type

• xdmp.databaseRestoreStatus Now Returns an Object

• Serialization Error Code Changes

• Change to Required Java Version

• Deprecated mlcp Command Line Options

• REST APIs That Have JSON or XML Payloads Cannot Have Empty Payloads

• Geospatial Namespace and Data Version Changes
MarkLogic 9—May, 2017 Release Notes—Page 91

MarkLogic Server Known Incompatibilities with Previous Releases
4.37.15.1xdmp.multipartDecode Now Returns a JSON Payload for Headers
In 8.0-4, the Server-Side JavaScript xdmp.multipartDecode function returns the headers (in the
first item of the returned ValueIterator) as a JSON array; previously, it was returned as an XML
element. If you have code that is expecting the XML element, you need to either rewrite your
code to parse the JSON array or use the XQuery version (xdmp:multipart-decode).

4.37.15.2In JavaScript, Some Thesaurus and Spelling Function Have
Different Return Type

In 8.0-4, there are changes to the thesaurus and spelling function modules to make them more
friendly to JavaScript users. If you have JavaScript code that imports these XQuery libraries, then
the following functions now return JavaScript Object by default:

• spell.makeDictionary

• thsr.lookup

• thsr.queryLookup

For each of these function, you can set a new optional parameter to change its output. By default,
these functions return XML output in XQuery and JavaScript Objects in JavaScript. If you have
existing JavaScript code that uses these functions, you either need to add the new option to your
code specifying the XML output or rework your code to accept the returned JavaScript Object.
For details on these functions, see the API documentation for each function. In XQuery, the
functions behave the same way they did in previous versions by default, but now allow you to
specify the optional parameter to output JavaScript Objects instead of XML, if you so choose.

4.37.15.3xdmp.databaseRestoreStatus Now Returns an Object
In 8.0-4, the Server-Side JavaScript API xdmp.databaseRestoreStatus now returns an Object;
previously, it returned an Array. The Array that was previously returned is now the value of the
"forest" key, and there is also a "status" key containing the current status of the restore. The
xdmp.databaseBackupStatus also contains this new "status" key, but the return type is not
changed. Similarly, the XQuery counterparts to these APIs (xdmp:database-backup-status and
xdmp:database-restore-status) also contain information about the status, but their signature has
not changed. If you have code that relies on any of the old behavior, you will need to modify that
code to work with the changed output.
MarkLogic 9—May, 2017 Release Notes—Page 92

MarkLogic Server Known Incompatibilities with Previous Releases
4.37.15.4Serialization Error Code Changes
In 8.0-4, the names of some error exception codes for serialization, as well as the message text,
have changed as shown in the following table:

If you have code that does a try/catch looking for one of the old exceptions or the old text, or if
you have tests that use the old exceptions as keys, you will have to rewrite that code to look for
the new exception.

4.37.15.5Change to Required Java Version
The following tools and libraries that depend on a Java Runtime Environment (JRE) now require
at least Java 7, rather than Java 6:

• mlcp

• MarkLogic Connector for Hadoop

• Java Client API

• XCC for Java (XCC/J)

4.37.15.6Deprecated mlcp Command Line Options
The -aggregate_uri_id and -delimited_uri_id command line options are now deprecated. Use
the more general -uri_id instead.

4.37.15.7REST APIs That Have JSON or XML Payloads Cannot Have Empty
Payloads

Starting in 8.0-4, any of the REST APIs that specifies a JSON or and XML content-type for its
payload cannot have an empty payload. Previously, it allowed an empty payload. REST calls that
specify a JSON or XML content-type with an empty payload throw a MANAGE_EMPTYPAYLOAD
exception beginning in 8.0-4. For example, POST:/admin/v1/init previously allowed an empty
payload with a JSON or XML content, but requires the payload in 8.0-4.

Old Error Code New Error Code

SER-DOCTYPESYSTEM2 SER-DOCTYPESYSTOPLEVTXT

SER-DOCTYPESYSTEM3 SER-DOCTYPESYSMULTIELEMROOT

SER-STANDALONE2 SER-STANDALONETOPLEVTXT

SER-STANDALONE3 SER-STANDALONEMULTIELEMROOT

SER-STANDALONE4 SER-STANDALONEOMITXMLDEC
MarkLogic 9—May, 2017 Release Notes—Page 93

MarkLogic Server Known Incompatibilities with Previous Releases
If you have code that does not send a payload, then you must either add an empty JSON or XML
document as the payload or change the content-type to one that allows an empty payload (for
example, text/plain).

4.37.15.8Geospatial Namespace and Data Version Changes
The following changes have been made to some of the geospatial built-in and library functions in
8.0-4:

• GML and KML Library Modules Moved to a New Namespace

• Some Built-In Geospatial Functions Moved to geo Namespace

• Older GML and KML Versions Deprecated

GML and KML Library Modules Moved to a New Namespace
The GML library module is now in a different namespace, and the library module no longer uses
the same namespace as GML and KML data.

You must update your module import declarations in XQuery or require statements JavaScript to
use the new namespace. In addition, since the module and the XML data of the same format no
longer use the same namespace, you may need to change the namespace prefix you use for the
module.

Module Old Module Namespace New Module Namespace

GML http://www.opengis.net/gml http://marklogic.com/geospatial/gml

KML http://earth.google.com/kml/2.0 http://marklogic.com/geospatial/kml
MarkLogic 9—May, 2017 Release Notes—Page 94

MarkLogic Server Known Incompatibilities with Previous Releases
The following code snippets demonstrate the required changes for KML and GML in XQuery.
The namespace URI in the module import declaration is changed to use the new URI, and the
module namespace prefix is changed to distinguish names in the module from names in the data.

Some Built-In Geospatial Functions Moved to geo Namespace
The following geospatial built-in functions are now deprecated and will be removed in a future
release. You should use the corresponding built-in function with a “geo” prefix instead. For
example, use geo:distance instead of cts:distance in XQuery, and use geo.distance instead of
cts.distance in Server-Side JavaScript.

Old New

xquery version "1.0-ml";
import module namespace kml =

"http://earth.google.com/kml/2.0" at
"/MarkLogic/geospatial/kml.xqy";

kml:box(
<kml:LatLongBox>...</kml:LatLongBox>)

xquery version "1.0-ml";
import module namespace geokml =
"http://marklogic.com/geospatial/kml"
at "/MarkLogic/geospatial/kml.xqy";

declare namespace kml =
"http://www.opengis.net/kml/2.2";

geokml:box(
<kml:LatLongBox>...</kml:LatLongBox>)

xquery version "1.0-ml";
import module namespace gml =

"http://www.opengis.net/gml"
at "/MarkLogic/geospatial/gml.xqy";

gml:box(
<gml:Envelope>...</gml:Envelope>)

xquery version "1.0-ml";
import module namespace geogml =
"http://marklogic.com/geospatial/gml"
at "/MarkLogic/geospatial/gml.xqy";

declare namespace gml =
http://www.opengis.net/gml/3.2";

geogml:box(
<gml:Envelope>...</gml:Envelope>)

XQuery Server-Side JavaScript

cts:approx-center cts.approxCenter

cts:arc-intersection cts.arcIntersection

cts:bearing cts.bearing

cts:box-intersects cts.boxIntersects

cts:circle-intersects cts.circleIntersects

cts:complex-polygon-contains cts.complexPolygonContains

cts:complex-polygon-intersects cts.complexPolygonIntersects

cts:destination cts.destination

cts:distance cts.distance
MarkLogic 9—May, 2017 Release Notes—Page 95

MarkLogic Server Known Incompatibilities with Previous Releases
Older GML and KML Versions Deprecated
As of MarkLogic 8.0-4, the default KML data version is 2.2 and the default GML data version is
3.2. Older versions are deprecated. You should convert your data.

To continue querying older versions of data with geokml:geospatial-query or
geogml:geospatial-query, specify the namespace URI of the older version in your query
constructor. For example:

GML
Old: gml:geospatial-query($regions, $options, $weight)
New: geogml:geospatial-query(

$regions, $options, $weight, "http://www.opengis.net/gml")

KML
Old: kml:geospatial-query($regions, $options, $weight)
New: geokml:geospatial-query(

$regions, $options, $weight, "http://earth.google.com/kml/2.0")

4.37.16 Incompatibilities Between 8.0-2 and 8.0-3
There are a few incompatibilites made to the Server-Side JavaScript implementation in 8.0-3. The
following are the incompatibilities:

• spell.suggestDetailed, xdmp.filesystemDirectory, and xdmp.encodingLanguageDetect Now
Return ValueIterator

• xdmp.databaseRestoreStatus Now Returns an Array

• xdmp.gssServerNegotiate Now Returns a JavaScript Object

• Use of String Transaction Ids in Node.js To Be Deprecated

• CDH 4.3 is No Longer a Supported Hadoop Distribution

• Changes to How MarkLogic Locates Java and Hadoop Libraries for HDFS Forest Storage

cts:parse-wkt cts.parseWkt

cts:polygon-contains cts.polygonContains

cts:polygon-intersects cts.polygonIntersects

cts:region-contains cts.regionContains

cts:region-intersects cts.regionIntersects

cts:shortest-distance cts.shortestDistance

cts:to-wkt cts.toWkt

XQuery Server-Side JavaScript
MarkLogic 9—May, 2017 Release Notes—Page 96

MarkLogic Server Known Incompatibilities with Previous Releases
4.37.16.1spell.suggestDetailed, xdmp.filesystemDirectory, and
xdmp.encodingLanguageDetect Now Return ValueIterator

In 8.0-3, the spell.suggestDetailed, xdmp.filesystemDirectory, and
xdmp.encodingLanguageDetect functions now return results in a ValueIterator. In 8.0-2 and
earlier, they returned results in an Array. If you have any code that expects an Array, you must
rework that code to accept a ValueIterator; for example, you can use xdmp.arrayValues to
convert the ValueIterator result into an Array result. For details on the ValueIterator JavaScript
type, see ValueIterator in the JavaScript Reference Guide.

4.37.16.2xdmp.databaseRestoreStatus Now Returns an Array
In 8.0-3, the xdmp.databaseRestoreStatus function now returns a JavaScript Array. Previously, it
returned an ArrayNode. If you have any code that expects the ArrayNode, you must rework that
code to accept an Array.

4.37.16.3xdmp.gssServerNegotiate Now Returns a JavaScript Object
In 8.0-3, the xdmp.gssServerNegotiate function (used for kerberos GSS authentication) returns a
JavaScript object. Previously, it returned an XML element.

4.37.16.4Use of String Transaction Ids in Node.js To Be Deprecated
The Node.js interfaces that open, manipulate, or pass around transaction ids now accept either a
simple id (as before) or a transaction object. You obtain a transaction object rather than an id by
passing true in for the new withState parameter of DatabaseClient.transactions.open. For
example:

// old forms: return a transaction id, for backward compatibility
db.transactions.open();
db.transactions.open({timeLimit: limit, transactionName: name});

// new forms: return transaction object; preferred.
db.transactions.open(true);
db.transactions.open({withState: true, ...});

In a future release, the default of withState will be changed to true and the use of transaction ids
will be deprecated.

If you do not modify your code to use transaction objects rather than ids, the session affinity
required by multi-statement transactions is not guaranteed to be properly preserved in all cases.

For details, see Managing Transactions in the Node.js Application Developer’s Guide.

4.37.16.5CDH 4.3 is No Longer a Supported Hadoop Distribution
The MarkLogic features and tools that rely on Hadoop no longer support CDH 4.3. Instead, use
one of the newer supported versions of Hadoop.
MarkLogic 9—May, 2017 Release Notes—Page 97

MarkLogic Server Known Incompatibilities with Previous Releases
This change affects MarkLogic Content Pump (mlcp), the MarkLogic Connector for Hadoop, and
forest storage on HDFS.

4.37.16.6Changes to How MarkLogic Locates Java and Hadoop Libraries for
HDFS Forest Storage

When you use HDFS for forest storage, MarkLogic must be able to find a suitable Java
installation and Hadoop HDFS libraries. The algorithm for where MarkLogic looks has changed
substantially as of 8.0-3.

You should now make the Hadoop libraries available to your MarkLogic hosts using one of the
new Hadoop HDFS client bundles. You must unpack one of these bundles under /opt, /usr, or
/space. For details, see HDFS Storage in the Query Performance and Tuning Guide.

MarkLogic now locates a suitable Java installation using a different algorithm. You might need to
either change the path to your JDK or set JAVA_HOME in the MarkLogic startup environment.
You can now make JAVA_HOME available to MarkLogic in a way that is preserved across
upgrades, using /etc/marklogic.conf. For details, see HDFS Storage in the Query Performance and
Tuning Guide.

4.37.17 Incompatibilities Between 8.0-1 and 8.0-2
There are a few incompatible changes made to the Server-Side JavaScript implementation in
8.0-2. The following are the incompatibilities:

• Array Input Differences in fn.distinctValues, fn.subsequence, and Other Functions

• The Second Parameters of xdmp.eval, xdmp.invoke, xdmp.xqueryEval, and xdmp.spawn Now
Take a Single Object

• extract-document-data Results Now Inline By Default

• XCC v8.0-2 May Require Config Change When Used with Older Versions of MarkLogic

• Client APIs: JavaScript Extension and Transform Error Reporting Convention Change

• Some JavaScript Built-In Functions that Returned XML Structures Now Return JSON Structures

4.37.17.1Array Input Differences in fn.distinctValues, fn.subsequence, and
Other Functions

In 8.0-2, the Server-Side JavaScript functions fn.distinctValues and fn.subsequence behave
differently from 8.0-1 if you pass in an array. In 8.0-1, these functions will extract the values out
of the array to make multiple inputs, one for each item in the array. In 8.0-2, these functions treat
the array as a single item. Therefore, to get the same behavior in 8.0-2, you need to call
xdmp.arrayValues on the array before you pass it into these functions. For example:

fn.distinctValues([1, 1, 2]);
// returns 1, 2 in 8.0-1
// returns [1, 1, 2] in 8.0-2
MarkLogic 9—May, 2017 Release Notes—Page 98

MarkLogic Server Known Incompatibilities with Previous Releases
To modify the above code in 8.0-2 to return the same answer as in 8.0-1:

fn.distinctValues(xdmp.arrayValues([1, 1, 2]));
// returns 1, 2 in 8.0-2

The nature of the change is that there are fewer times when MarkLogic coerces an array into its
values in 8.0-2 than there were in 8.0-1. The newer behavior is more natural to JavaScript
developers.

In addition to fn.distinctValues and fn.subsequence, this applies to any JavaScript function that
takes a ValueIterator as input to a parameter, including: fn.exactlyOne, fn.head,
fn.insertBefore, fn.reverse, fn.unordered, fn.empty, fn.remove, fn.reverse, fn.zeroOrOne,
fn.oneOrMore, fn.deepEqual, fn.count, cts.contains, xdmp.setSessionField,
xdmp.setServerField, and others.

4.37.17.2The Second Parameters of xdmp.eval, xdmp.invoke,
xdmp.xqueryEval, and xdmp.spawn Now Take a Single Object

In 8.0-2, the vars parameter to the Server-Side JavaScript functions xdmp.eval, xdmp.invoke,
xdmp.xqueryEval, and xdmp.spawn has been simplified so it only takes a single Object. If you have
any code that you used in 8.0-1 that passes the external variables (vars parameter) as an array of
Objects, as an array of stings, or as a ValueIterator, you must rewrite that code in 8.0-2 so it passes
a single Object.

4.37.17.3extract-document-data Results Now Inline By Default
The query option extract-document-data previously caused search:search and search:resolve
to return a sequence consisting of the search:response and the extracted documents. Now, this
option returns the extracted documents embedded in the search:response as search:extracted
elements.

When you use the option with the REST Client API, the /v1/search service returns the extracted
content inside the search response if the Accept header MIME type is application/xml or
application/json. The extracted content is still returned as individual documents when the
Accept header MIME type is multipart/mixed (a multi-document read).

For details, see Extracting a Portion of Matching Documents in the Search Developer’s Guide.

4.37.17.4XCC v8.0-2 May Require Config Change When Used with Older
Versions of MarkLogic

This change affects XCC applications that set the transaction mode
(Session.setTransactionMode) or transaction time limit (Session.setTransactionTimeout) and
use XCC v8.0-2 or later with MarkLogic Server 8.0-1 or earlier.

If your XCC application meets the above conditions, you must set the property
xcc.txn.compatible to true. If you do not do so, an exception is raised if you set the transaction
time limit or set the transaction mode to a value other than Session.TransactionMode.AUTO.
MarkLogic 9—May, 2017 Release Notes—Page 99

MarkLogic Server Known Incompatibilities with Previous Releases
You can set this system property on the java command line with an argument of the following
form:

java -Dxcc.txn.compatible=true

You can also set the property programmatically by calling System.setProperty.

4.37.17.5Client APIs: JavaScript Extension and Transform Error Reporting
Convention Change

The following change affects applications that use the REST Client API, Java Client API, or
Node.js Client API and that raise RESTAPI-SRVEXERR from a server-side JavaScript extension,
transform, or custom snippeter, or other custom code.

In MarkLogic Server 8.0-1, when calling fn.error to raise RESTAPI-SRVEXERR,error detail such as
the response status code and status text are passed to fn.error as an array. Starting with
MarkLogic Server 8.0-2, the error details must be passed as a sequence. You can use
xdmp.arrayValues to convert the array to a sequence.

For example, if you previously had an fn.error call in an extension similar to the following:

fn.error(null, 'RESTAPI-SRVEXERR',
[statusCode, statusMsg, body])

Then you should now wrap the array that is the 3rd argument to fn.error in a call to
xdmp.arrayValues, similar to the following:

fn.error(null, 'RESTAPI-SRVEXERR',
xdmp.arrayValues([statusCode, statusMsg, body]))

4.37.17.6Some JavaScript Built-In Functions that Returned XML Structures
Now Return JSON Structures

The following APIs return JSON output in 8.0-2.

• cts.plan

• cts.relevanceInfo

• xdmp.zipManifest

• xdmp.userExternalSecurity

• xdmp.userLastLogin

• xdmp.databasePathNamespaces

• cts.distinctiveTerms

• cts.cluster

• cts.train

• cts.classify

• cts.thresholds
MarkLogic 9—May, 2017 Release Notes—Page 100

MarkLogic Server Known Incompatibilities with Previous Releases
In 8.0-1, these APIs returned the same XML structures that their XQuery counterparts return. If
you have any JavaScript code that relies on the XML structures, you will need to modify that code
to use the new JSON output.

4.38 MarkLogic 7 Incompatibilites
MarkLogic 9 allows you to upgrade either from MarkLogic 5, MarkLogic 6, or MarkLogic 7. If
you are upgrading from 4.2, you must first upgrade to at least MarkLogic 5, and there are some
known incompatibilities between 4.2 and 5.0 that are documented in the 5.0 Release Notes. If you
are upgrading from MarkLogic 7, you can skip this section. For convenience, the
incompatibilities between MarkLogic 6 and MarkLogic 7 are repeated here, and are as follows:

• Incompatibilities Between MarkLogic 7.0-3 and 7.0-2

• Incompatibilities Between MarkLogic 7.0-2 and 7.0-1

• Incompatibilities Between MarkLogic 7.0-1 and MarkLogic 6

4.38.1 Incompatibilities Between MarkLogic 7.0-3 and 7.0-2
This section describes the incompatibilities between MarkLogic 7.0-3 and 7.0-2.

• HDP No Longer a Supported Hadoop Platform

• Java API: ContentVersionRequest Property Deprecated

• REST API: content-versions Property Deprecated

• REST API: JSON documents Cannot be Retrieved as XML

• Float Precision Greater in 7.0-3

4.38.1.1 HDP No Longer a Supported Hadoop Platform
Hortonworks Data Platform (HDP) is no longer a supported Hadoop distribution for use with the
MarkLogic Connector for Hadoop or the distributed mode of MarkLogic Content Pump (mlcp).

4.38.1.2 Java API: ContentVersionRequest Property Deprecated
The REST server configuration property ContentVersionRequest is now deprecated. If you
currently use com.marklogic.admin.ServerConfigurationManager.setContentVersionRequest()
and the related ServerConfiguration.Policy type, you should modify your application to use
com.marklogic.admin.ServerConfigurationManager.setUpdatePolicy() and
ServerConfigurationManager.UpdatePolicy instead. You should also change calls to
getContentVersionRequest() into call to getUpdatePolicy().
MarkLogic 9—May, 2017 Release Notes—Page 101

MarkLogic Server Known Incompatibilities with Previous Releases
The table below shows the correspondence between Policy values and UpdatePolicy values. The
behavior is unchanged with respect to these values.

4.38.1.3 REST API: content-versions Property Deprecated
The REST instance configuration property content-versions is now deprecated, in favor of the
new update-policy property.

If you currently set content-versions, you should modify your application to use the
update-policy configuration property instead. For example, if you set this property using PUT
/v1/config/properties or PUT /v1/config/properties/content-versions, then you should now
use PUT /v1/config/properties or PUT /v1/config/properties/update-policy to set
update-policy instead.

Similarly, you should modify any code that reads the configuration properties to expect
update-policy instead of content-versions.

The table below shows the correspondence between content-versions values and update-policy
values. The behavior is unchanged with respect to these values.

4.38.1.4 REST API: JSON documents Cannot be Retrieved as XML
In previous versions, you could use the REST Client API to retrieve the internal XML
representation of a JSON document using GET /v1/documents and specifying XML in the format
request parameter or application/xml in the Accept header.

If you used Policy
Value...

Then use UpdatePolicy
Value...

NONE MERGE_METADATA

REQUIRED VERSION_REQUIRED

OPTIONAL VERSION_OPTIONAL

If you used Policy
Value...

Then use UpdatePolicy
Value...

none merge-metadata

required version-required

optional version-optional
MarkLogic 9—May, 2017 Release Notes—Page 102

MarkLogic Server Known Incompatibilities with Previous Releases
As of MarkLogic 7.0-3, JSON documents are always returned as JSON. You can still examine the
internal representation of a JSON document using XQuery or the Query Console database
explorer.

4.38.2 Float Precision Greater in 7.0-3
In MarkLogic 7.0-3, the numeric precision of a float has increased. For example:

xs:float(3435.99884)
(: Returns 3436 in 7.0-2,

returns 3435.999 in 7.0-3 :)

In most cases, this will not cause an incompatibility, as it is just returning a more precise number.
But if you have application logic that relies on the old behavior, you will have to make changes to
account for the greater precision.

4.38.3 Incompatibilities Between MarkLogic 7.0-2 and 7.0-1
This section describes the incompatibilities between MarkLogic 7.0-1 and 7.0-2.

• Change to JSON Output from the REST API

• Changes to the MarkLogic Connector for Hadoop API

4.38.3.1 Change to JSON Output from the REST API
The JSON output from the manage REST resource addresses with the metrics view has been
changed and you may need to change any custom clients that consume this JSON data.

4.38.3.2 Changes to the MarkLogic Connector for Hadoop API
com.marklogic.mapreduce.MarkLogicDocument is now an interface instead of a class. The previous
functionality of MarkLogicDocument is provided by the new class
com.marklogic.mapreduce.DatabaseDocument.

Modify your code and job configuration to use DatabaseDocument instead of
MarkLogicDocument.

4.38.4 Incompatibilities Between MarkLogic 7.0-1 and MarkLogic 6
• XQuery HTTP Client Built-In Functions Now Require a Privilege

• HTTP Client Functions Are Now HTTP 1.1 Compliant

• xdmp:get-request-username and xdmp:get-request-user Changes

• Specifying a Forest Now Only Works With Strict Locking

• Custom Dictionaries for Japanese and Chinese Languages Need to be Re-saved

• Default Attributes on XML Copy Changes
MarkLogic 9—May, 2017 Release Notes—Page 103

MarkLogic Server Known Incompatibilities with Previous Releases
• Serialization of Alerting, Reverse, and Path Range Queries Change

• Java and REST Client API Incompatibilities

• Namespace Change for Properties Persisted Using JSON

• mlcp Incompatibilities

• REST Management API Version Incremented to v2

• Changes to the Configuration Manager

• xdmp:plan Now Requires a Privilege

• fn:analyze-string Now Returns Output in a Different Namespace

4.38.4.1 XQuery HTTP Client Built-In Functions Now Require a Privilege
The HTTP client XQuery APIs (xdmp:http-delete, xdmp:http-get, xdmp:http-post,
xdmp:http-put, and so on) now require a privilege. Previously, these functions did not require a
privilege. To support these privileges, the following privileges are added to MarkLogic 9:

• http://marklogic.com/xdmp/privileges/xdmp-http-get

• http://marklogic.com/xdmp/privileges/xdmp-http-head

• http://marklogic.com/xdmp/privileges/xdmp-http-options

• http://marklogic.com/xdmp/privileges/xdmp-http-delete

• http://marklogic.com/xdmp/privileges/xdmp-http-post

• http://marklogic.com/xdmp/privileges/xdmp-http-put

Additionally, the network-access role has been added, which contains all of these privileges.

If you have code that accesses these functions with a user that does not have the admin role, you
will have to add these privileges (or the network-access role) to the set of privileges inherited by
your users. For details on adding privileges, see Security Administration in the Administrator’s
Guide. For details on security, see Security Guide.

4.38.4.2 HTTP Client Functions Are Now HTTP 1.1 Compliant
The XQuery HTTP client functions (xdmp:http-delete, xdmp:http-get, xdmp:http-post,
xdmp:http-put, and so on) now fully implement HTTP 1.1, including the use of connection
keep-alives and built-in decoding of chunked transfer encoded responses. In most cases, this will
not cause any incompatible behavior, but if your code tried to perform some work to do HTTP 1.1
features such as taking a chunked response as a large binary and decoding the chunks in XQuery,
then that code might behave differently in MarkLogic 7. If you have such code, you might need to
rework it in MarkLogic 7.
MarkLogic 9—May, 2017 Release Notes—Page 104

MarkLogic Server Known Incompatibilities with Previous Releases
4.38.4.3 xdmp:get-request-username and xdmp:get-request-user Changes
The xdmp:get-request-username and xdmp:get-request-user functions have changed slightly in
MarkLogic 7.

In previous releases, xdmp:get-request-username always returned the user in the Authorization
HTTP header; in MarkLogic 7, if you are using application-level authentication, then it returns
the user from the last successful call to xdmp:login (when using any other authentication scheme,
it is unchanged from previous releases and returns the user in the Authorization HTTP header).

In previous releases, xdmp:get-request-user returned the ID of the current user; in MarkLogic 7,
if you are using application-level authentication, then it returns the user ID from the last
successful call to xdmp:login (when using any other authentication scheme, it now returns the user
ID corresponding to the user in the Authorization HTTP header). If you want the old behavior of
returning the ID of the current user, use the new function xdmp:get-current-userid.

If you have any code that uses the xdmp:get-request-username or xdmp:get-request-user
functions, you might need to change it to work with the current behavior.

4.38.4.4 Specifying a Forest Now Only Works With Strict Locking
The various loading APIs (for example, xdmp:document-load and xdmp:document-insert) have an
option to specify the forest in which a document is loaded. In MarkLogic 7, those forest options
are only available with the locking parameter on the database set to strict (the default is fast). If
you try to specify forest placement with fast locking, it will throw an
XDMP-PLACEKEYSLOCKING exception. Previously, this operation would be allowed.

In most cases, it is not recommended to specify a placekey, as MarkLogic does a good job of
distributing data. If you want to continue to use the forest placekeys when loading or updating,
you must change your locking parameter to strict or change your code to no longer use forest
placekeys. You can also consider using Tiered Storage to control what data goes into which
forests. For details on Tiered Storage, see Tiered Storage in the Administrator’s Guide.

4.38.4.5 Custom Dictionaries for Japanese and Chinese Languages Need to
be Re-saved

In MarkLogic 7, there is a change to the way custom dictionaries are stored for languages that use
a unified cd (Japanese and both Simplified and Traditional Chinese). The custom dictionaries for
those languages now have separate files for tokenization and for stemming. If you are using these
languages and you have created a custom dictionary, you must re-save the custom dictionary in
MarkLogic 7, which will save it in the new format.

For example, if you have a Japanese language custom dictionary, run the following XQuery
program to re-save the custom dictionary:

import module namespace
cdict="http://marklogic.com/xdmp/custom-dictionary"
at "/MarkLogic/custom-dictionary.xqy";
MarkLogic 9—May, 2017 Release Notes—Page 105

MarkLogic Server Known Incompatibilities with Previous Releases
cdict:dictionary-save("ja", cdict:dictionary-read("ja"))

This will re-save the dictionary to the new format.

4.38.4.6 Default Attributes on XML Copy Changes
In MarkLogic 7, the behavior of default attributes has changed when you are copying XML nodes
that have an in-scope schema with default attributes. In MarkLogic 6, the default attributes were
applied in the copied node. In MarkLogic 7, the default attributes are still applied in the data
model of the copied node, but they will only be serialized if default-attributes=yes is set in the
serialization options (for example, the xdmp:output option). This is true for copied nodes in both
XQuery (for example, see below) and XSLT (for example, xsl:copy).

The following shows an example using the XHTML schema, which is always in-scope.

xquery version "1.0-ml";
declare option xdmp:output "default-attributes=no";
(: the above xdmp:output declaration is the default :)

<x>{xdmp:unquote('<html xmlns="http://www.w3.org/1999/xhtml">
 <body>
 <p>hello</p>
 </body>
</html>
')}</x>
=>
In MarkLogic 7 returns: (no default attributes on html element)

<x>
 <html xmlns="http://www.w3.org/1999/xhtml">
 <body>
 <p>hello</p>
 </body>
 </html>
</x>

In MarkLogic 6 returns: (added default attribute version
on html element)

<x>
 <html version="-//W3C//DTD XHTML 1.1//EN"

xmlns="http://www.w3.org/1999/xhtml">
 <body>
 <p>hello</p>
 </body>
 </html>
</x>
MarkLogic 9—May, 2017 Release Notes—Page 106

MarkLogic Server Known Incompatibilities with Previous Releases
If the xdmp:output option is set to default-attributes=yes, then the attributes will continue to be
serialized in MarkLogic 7. Furthermore, if the copied node is used in another schema that has
different default values for the default attributes, then the resulting default value for those
attributes comes from the copied node, not the new schema. This change is not likely to impact
very many applications, and the new behavior is what most people would expect, but if you have
code that relies on the old behavior, you will need to explicitly set the xdmp:output option is set to
default-attributes=yes.

4.38.4.7 Serialization of Alerting, Reverse, and Path Range Queries Change
The serialization of path range index queries has changed to use cts:path-expression rather than
cts:path as the element name. This affects not only stored path range index queries, but also
stored Alerting queries and reverse queries. All such queries must be transformed to the new
serialization and reloaded.

The following XSLT stylesheet makes the required change:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:cts="http://marklogic.com/cts"
 version="2.0">
 <xsl:template match="cts:path">
 <xsl:element name="cts:path-expression">
 <xsl:copy-of select="namespace::*|@*|node()"/>
 </xsl:element>
 </xsl:template>
</xsl:stylesheet>

You can apply the stylesheet to affected documents using a query similar to the following:

xquery version "1.0-ml";
for $query in fn:collection("my-stored-queries")
return xdmp:node-replace($query, xdmp:xslt-eval($stylesheet, $query)

4.38.4.8 Java and REST Client API Incompatibilities
Unless otherwise noted, the following changes can affect applications using either the REST or
Java Client API:

• Content Transformations on JSON Documents Operate on XML

• Resource Service Extensions Moved to Modules Database on Upgrade

• JSON Key Name Change for System Properties

• Java Batch Example Package Name Change

Content Transformations on JSON Documents Operate on XML
This topic applies to REST and Java Client API applications that include custom content
transformations for JSON documents.
MarkLogic 9—May, 2017 Release Notes—Page 107

MarkLogic Server Known Incompatibilities with Previous Releases
JSON documents are stored in MarkLogic Server as XML. In MarkLogic 6, content
transformation functions were invoked on JSON documents after conversion from JSON to XML.
In MarkLogic 7, content transformations are applied before this conversion.

If you created a content transformation for MarkLogic 6 that expects JSON input, you must
modify your implementation to expect XML in the http://marklogic.com/xdmp/json/basic
namespace instead of JSON text. For details on the XML representation, see Working With JSON in
Application Developer’s Guide.

Transformations invoked during ingestion must similarly be modified to produce XML that
conforms to the internal representation for JSON documents. Transformations invoked during
document retrieval can either produce conforming XML or JSON text as when generating JSON
output.

For details on the new expectations, see Expected Input and Output in REST Application
Developer’s Guide.

Resource Service Extensions Moved to Modules Database on Upgrade
This topic applies to REST and Java Client API applications running on a REST API instance
created with MarkLogic 6.0-1 or later that use resource service extensions.

REST API instances created with MarkLogic Server version 6.0-1 stored resource service
extensions in the Extensions database. REST API instances created with MarkLogic Server
version 6.0-2 or later install resource service extensions in the modules database associated with
the instance.

When you upgrade from MarkLogic 6 to MarkLogic 7 or later, any resource service extensions
stored in the Extensions database on behalf of a 6.0-1 REST API instance are automatically
migrated from the Extensions database to the modules database for you.

If your resource extension has dependent libraries or other assets that you installed in the
Extensions database, you should migrate them by re-installing them using the new /ext service.
For details, see Managing Dependent Libraries and Other Assets in REST Application Developer’s
Guide.

JSON Key Name Change for System Properties
This topic applies to REST applications that reference document properties using the JSON
representation.

When you retrieve document properties in JSON format, protected system properties such as
last-modified are now enclosed in an object with the key $ml.prop. In MarkLogic 6, such
properties were immediate children of the properties container. User-defined property naming is
unchanged.

The example output below shows the change in how the last-modified property value is returned
by a request of the form GET /v1/documents?uri=your-uri&category=properties&format=json:
MarkLogic 9—May, 2017 Release Notes—Page 108

MarkLogic Server Known Incompatibilities with Previous Releases
Java Batch Example Package Name Change
The Java example application in the package com.marklogic.client.example.batch is now in the
package com.marklogic.client.example.extension. If your application references any classes or
interfaces from this package, you must change your package imports and recompile.

4.38.4.9 Namespace Change for Properties Persisted Using JSON
This topic applies to REST and Java Client API applications that insert or update document
properties using JSON and either of the following are true:

• You define indexes based on JSON property keys.

• Your application includes a content transformation, resource extension, or other code that
that manipulates JSON property metadata in its XML representation.

In MarkLogic 6, inserting or updating user-defined document properties using JSON stored the
properties as XML elements in the namespace http://marklogic.com/json. In MarkLogic 7, such
properties are stored as elements in the namespace http://marklogic.com/xdmp/json/basic. If
you insert or update a property using JSON using MarkLogic 7, the new namespace is used.

If you convert properties in the old namespace to the new namespace, then all pre-existing and
future properties will use the new namespace. If you do not perform such a conversion, then you
should adapt your indexes and queries to accommodate both namespaces because pre-existing
properties will be in the MarkLogic 6 namespace while new or updated properties will be in the
MarkLogic 7 namespace.

After upgrading to MarkLogic 7, use one of the following solutions to adapt your content and
application to this change:

• Modify Pre-Existing Propertie

• Modify Queries to Use Both Namespaces

• Create a Field That Spans Both Namespaces

MarkLogic 6 MarkLogic 7

{"properties":{
"last-modified":"value"

}}

{"properties":{
"$ml.prop":{

"last-modified":"value"
}

}}
MarkLogic 9—May, 2017 Release Notes—Page 109

MarkLogic Server Known Incompatibilities with Previous Releases
Modify Pre-Existing Propertie
Use a query similar to the one in this section to change the namespace of all properties in the old
namespace. The example query uses xdmp:spawn to perform the property update in batches,
thereby avoiding overly large transactions.

The procedure below assumes you have an App Server, such as a REST API instance, associated
with your content database. If you are not familiar with Query Console, see Query Console User
Guide.

The following procedure walks you through installing a transform query in the modules root of an
App Server attached to an affected database, and then running the query to modify a specific
property.

1. Save the following transform query to a file, such as update-props.xqy. You will changed
the bolded text in the next step.

xquery version "1.0-ml";

declare namespace prop = "http://marklogic.com/xdmp/property";
declare namespace old-ns = "http://marklogic.com/json";

declare default function namespace
"http://www.w3.org/2005/xpath-functions";

declare option xdmp:mapping "false";

declare function local:transform(
 $elem as element()
) as element()
{
 let $elem-name :=
 if (exists($elem/self::old-ns:*))
 then QName("http://marklogic.com/xdmp/json/basic",

local-name($elem))
 else node-name($elem)
 return element {$elem-name} {
 $elem/@*,
 for $child in $elem/node()
 return
 typeswitch ($child)
 case element() return local:transform($child)
 default return $child
 }
};

let $max := 100
let $batch :=
 subsequence(
 cts:search(collection(),
 cts:properties-query(
 cts:element-query(xs:QName("old-ns:my-prop"),

cts:and-query(()))
MarkLogic 9—May, 2017 Release Notes—Page 110

MarkLogic Server Known Incompatibilities with Previous Releases
)
),
 1,
 $max
)/document-uri(.)
return
 if (empty($batch)) then ()
 else (
 for $doc-uri in $batch
 let $current-props := xdmp:document-properties($doc-uri) /
 prop:properties/(* except prop:last-modified)
 let $modified-props := $current-props/local:transform(.)
 return xdmp:document-set-properties($doc-uri, $modified-props),
 if (count($batch) lt $max) then ()
 else xdmp:spawn("/some/path/update-props.xqy")
)

2. Modify the saved query to match your environment by making the following changes:

a. Change occurrences of “my-prop” to the name of an affected property in your content.

b. Change the module path in the xdmp:spawn call to the path where you will install the query
in your modules root.

3. Install the saved file in the modules database or modules root of your App Server. Install
the module under the path you chose in Step 2b.

a. To install the modules database of a REST API instance using the REST API, see
Managing Dependent Libraries and Other Assets in REST Application Developer’s Guide.

b. To install in the modules database of a REST API instance using Java API, see Managing
Dependent Libraries and Other Assets in Java Application Developer’s Guide.

c. To install in the modules database using XQuery, run a query similar to the following in
Query Console, after modifying the filesystem path and database URI. The file must be
accessible to MarkLogic Server. Run the query with the modules database as the content
source.

xquery version "1.0-ml";
xdmp:document-load(
 "/filesystem/path/update-props.xqy",
 <options xmlns="xdmp:document-load">
 <uri>/some/path/update-props.xqy</uri>
 </options>
)

4. Run the transform query using Query Console.
MarkLogic 9—May, 2017 Release Notes—Page 111

MarkLogic Server Known Incompatibilities with Previous Releases
a. Create a new query in Query Console with the following contents:

xquery version "1.0-ml";
xdmp:invoke("/my.domain/update-props.xqy")

b. Modify the module URI in the xdmp:spawn call to the URI under which you installed the
module in Step 3.

c. In the Query Console Content Source dropdown, select the source that corresponds to
your content database and the modules database in which you installed the transform
query in Step 3.

d. Click the Run button to perform the transformation.

5. If your database is large, you might exceed the maximum number of spawned queries. If
this happens, wait for the previous spawns to complete, and then run the query again.

You must also modify any range indexes, queries, or query options for this property that depend
on the old namespace. Change occurrences of http://marklogic.com/json to
http://marklogic.com/xdmp/json/basic.

For example, if in MarkLogic 6 you defined an element range index over the property
my-property in the namespace http://marklogic.com/json, modify the your index configuration
to use the namespace URI http://marklogic.com/xdmp/json/basic.
MarkLogic 9—May, 2017 Release Notes—Page 112

MarkLogic Server Known Incompatibilities with Previous Releases
Similarly, if you have queries or constraint definitions using the old namespace, change them to
use the new namespace. The table below contains an example of how to modify a properties
constraint to use the new namespace:

Modify Queries to Use Both Namespaces
You can modify your queries and query options to accommodate both namespaces. For example,
if your query options already include a constraint on the old namespace, add a constraint for the
new namespace, and then use an OR query to apply both constraints.

The following example uses a JSON structured or-query to demonstrate this technique. It assumes
the existence of an element range index on the property in the new namespace.

{"search": {
 "options": {
 "constraint": [
 {
 "name": "old-prop",
 "range": {
 "type": "xs:string",
 "element": {
 "name": "my-property",
 "ns": "http://marklogic.com/json"
 },
 "fragment-scope": "properties"
 }
 },
 {
 "name": "new-prop",

Version Example

MarkLogic 6 <options xmlns="http://marklogic.com/appservices/search">
 <constraint name="my-prop">
 <range type="xs:string">
 <element name="my-property"

ns="http://marklogic.com/json" />
 <fragment-scope>properties</fragment-scope>
 </range>
 </constraint>
</options>

MarkLogic 7 <options xmlns="http://marklogic.com/appservices/search">
 <constraint name="my-prop">
 <range type="xs:string">
 <element name="my-property"

ns="http://marklogic.com/xdmp/json/basic" />
 <fragment-scope>properties</fragment-scope>
 </range>
 </constraint>
</options>
MarkLogic 9—May, 2017 Release Notes—Page 113

MarkLogic Server Known Incompatibilities with Previous Releases
 "range": {
 "type": "xs:string",
 "element": {
 "name": "my-property",
 "ns": "http://marklogic.com/xdmp/json/basic"
 },
 "fragment-scope": "properties"
 }
 }
]
 },
 "query" : {
 "or-query" : {
 "queries" : [
 {"range-constraint-query": {
 "constraint-name": "old-prop",
 "value": "the value"
 }},
 {"range-constraint-query": {
 "constraint-name": "new-prop",
 "value": "the value"
 }}
]}
 }
}}

Create a Field That Spans Both Namespaces
Use this procedure to replace an existing element range index over the property in the old
namespace with a field range index that covers both namespaces, and then modify your code and
queries to the use new index. To learn more about fields, see Fields Database Settings in
Administrator’s Guide.

1. Use the Admin Interface to define namespace prefixes for http://marklogic.com/json
and http://marklogic.com/xdmp/json/basic. For details, see Steps 1-8 of Defining Path
Range Indexes in Administrator’s Guide.

2. Create a field that includes two paths, one for the property in each namespace. Use the
namespace prefixes defined in Step 1. For example, add the paths old-ns:my-property and
new-ns:my-property. For details, see Configuring a New Path or Root Field in Administrator’s
Guide.

3. Create a field range index over the new field. For details, see Creating a Range Index on a
Field in Administrator’s Guide.

4. Modify any extensions, transformations, queries or query options that rely on the old
element range index to use the new field range index. The example below shows a
combined query modified to use the new field range index instead of the old element
range index.
MarkLogic 9—May, 2017 Release Notes—Page 114

MarkLogic Server Known Incompatibilities with Previous Releases
4.38.4.10mlcp Incompatibilities
MarkLogic Content Pump (mlcp) version 1.1 includes the following changes that potentially
affect compatibility for users of mlcp version 1.0-*.

• Compressed Input Default URI Includes Input Filename

• Default Character Encoding Changed to UTF-8

Compressed Input Default URI Includes Input Filename
The following change might affect you if you use mlcp to load documents from compressed files
(-input_compressed). Documents created with mlcp v1.0 used the following default URI
template:

/path/inside/zip/filename

Starting with version 1.1, the default URI template is:

/compressed-file-path/path/inside/zip/filename

This change can affect the -output_uri_replace patterns needed to create documents with the
same URIs as those created with mlcp 1.0.

For details, see Default Document URI Construction in the mlcp User Guide.

Default Character Encoding Changed to UTF-8

Old New

{ "search": {
 "options": {
 "constraint": {
 "name": "my-prop",
 "range": {
 "type": "xs:string",
 "element": {
 "name": "my-property",
 "ns": "http://marklogic.com/json"
 },
 "fragment-scope": "properties"
 }}},
 "query" : {
 "range-constraint-query": {
 "constraint-name": "my-prop",
 "value": "the value"
 }}
}}

{"search": {
 "options": {
 "constraint": {
 "name": "my-prop",
 "range": {
 "type": "xs:string",
 "field": {

"name": "my-new-property"
},

 "fragment-scope": "properties"
 }}},
 "query" : {
 "range-constraint-query": {
 "constraint-name": "my-prop",
 "value": "the value"
 }}
}}
MarkLogic 9—May, 2017 Release Notes—Page 115

MarkLogic Server Known Incompatibilities with Previous Releases
The default content character encoding when importing and exporting documents with mlcp has
changed to UTF-8. Previously, mlcp used the platform default encoding for the host which mlcp
was running.

You can get the previous behavior by using the following option setting:

-content-encoding system

4.38.4.11REST Management API Version Incremented to v2
The REST Management API version has been incremented to v2. The v1 services are no longer
available. If you send a request using a v1 URL, MarkLogic Server responds with status code 410
(Gone) and a MANAGE-UNSUPPORTEDVERSION error.

Requests that use LATEST as the version when constructing requests will continue to work.
However, you may need to make other changes due to the behavior changes between v1 and v2.

The incompatibilities between v1 and v2 are detailed in the remainder of this section

• View Parameter Required Instead of Path Steps

• JSON Output Includes Units

• Element/Key Name Changes in Status Views

• Changes to the Management API Plugins

• Changes to the Packaging API

View Parameter Required Instead of Path Steps
In previous releases, there were two ways to access some views: by path step or using the view
request parameter. In MarkLogic 7, the path step form of URL has been removed. You must now
use the view parameter. For example, MarkLogic 6 supported the following two ways of
requesting database status, where version is v1 or LATEST:

GET /manage/version/databases/{id|name}/status
GET /manage/version/databases/{id|name}?view=status

In MarkLogic 7, only the second form is supported, as shown in the example below, where
version is v2 or LATEST.

GET /manage/version/databases/{id|name}?view=status

This change applies to the config, counts, edit, and status views for clusters, databases, forests,
groups, hosts, and servers. The table below lists the affected GET methods and the equivalent
MarkLogic 7 URL.
MarkLogic 9—May, 2017 Release Notes—Page 116

MarkLogic Server Known Incompatibilities with Previous Releases
JSON Output Includes Units
JSON output for the various GET methods now includes units for metrics that were previously
flat key-value pairs. The following template summarizes the difference:

• MarkLogic 6: "key" : the-value

• MarkLogic 7: "key" : { "units" : "the-units", "value" : the-value }

For example, in MarkLogic 6, elapsed-time was reported as follows:

"elapsed-time" : "0.023453"

Previous Form MarkLogic 7 Form

/manage/v1/clusters/{id|name}/config /manage/v2/clusters/{id|name}?view=config

/manage/v1/clusters/{id|name}/status /manage/v2/clusters/{id|name}?view=status

/manage/v1/databases/{id|name}/config /manage/v2/databases/{id|name}?view=config

/manage/v1/databases/{id|name}/counts /manage/v2/databases/{id|name}?view=counts

/manage/v1/databases/{id|name}/edit /manage/v2/databases/{id|name}?view=edit

/manage/v1/databases/{id|name}/status /manage/v2/databases/{id|name}?view=status

/manage/v1/forests/{id|name}/config /manage/v2/forests/{id|name}?view=config

/manage/v1/forests/{id|name}/counts /manage/v2/forests/{id|name}?view=counts

/manage/v1/forests/{id|name}/edit /manage/v2/forests/{id|name}?view=edit

/manage/v1/forests/{id|name}/status /manage/v2/forests/{id|name}?view=status

/manage/v1/groups/{id|name}/config /manage/v2/groups/{id|name}?view=config

/manage/v1/groups/{id|name}/counts /manage/v2/groups/{id|name}?view=counts

/manage/v1/groups/{id|name}/edit /manage/v2/groups/{id|name}?view=edit

/manage/v1/groups/{id|name}/status /manage/v2/groups/{id|name}?view=status

/manage/v1/hosts/{id|name}/config /manage/v2/hosts/{id|name}?view=config

/manage/v1/hosts/{id|name}/counts /manage/v2/hosts/{id|name}?view=counts

/manage/v1/hosts/{id|name}/edit /manage/v2/hosts/{id|name}?view=edit

/manage/v1/hosts/{id|name}/status /manage/v2/hosts/{id|name}?view=status

/manage/v1/servers/{id|name}/config /manage/v2/servers/{id|name}?view=config

/manage/v1/servers/{id|name}/edit /manage/v2/servers/{id|name}?view=edit

/manage/v1/servers/{id|name}/status /manage/v2/servers/{id|name}?view=status
MarkLogic 9—May, 2017 Release Notes—Page 117

MarkLogic Server Known Incompatibilities with Previous Releases
In MarkLogic 7, this field include a unit, as shown in this example:

"elapsed-time" : { "units" : "sec", "value" : "0.023453" }

Element/Key Name Changes in Status Views
The following XML element/JSON key name changes have been made:

• Many element/key names with a “total-” prefix in status views no longer use this prefix.
This change affects the load-detail and rate-detail sections of the status views for
clusters, databases, forests, groups, and hosts.

• The on-disk-size element/key of the databases status view has been renamed to
data-size. This change affects GET /manage/version/databases/{id|name}?view=status
output.

For example, in earlier releases, the load-detail section of the report returned by GET
/manage/LATEST/hosts/{id|name}?view=status includes a total-query-read-load element/key.
The equivalent data is now named query-read-load.

Changes to the Management API Plugins
There have been some changes to the Management API plugins for MarkLogic 9, so if you have a
plugin written against previous versions, depending upon the plugin, you might need to update it.

In previous releases (MarkLogic 5 and MarkLogic 6), plugins are installed in the following
folder:

Assets/plugins/marklogic/manage/v1

Plugins installed to this directory will continue to work with the following exceptions:

• Previous releases support 3 types of plugins: "format", "resource", and "view extender". In
MarkLogic 7:

• No changes are necessary for "format" plugins, these will continue to work as
before with no changes to the plugin module or on the client side.

• New plugins installed in MarkLogic 7 or later should be created in:

Assets/plugins/marklogic/manage/extensions

• For "resource" plugins, clients must change the version step to LATEST (from v1). For
example, /manage/LATEST/myplugin. No changes are required to the plugin code.

• Support is no longer available for the third type of plugin ("view extender"). If you have a
plugin of this type, you can rewrite it as a resource plugin in MarkLogic 7 to provide the
same functionality.

For details on extending the Management API with plugins, see Extending Management API with
Plugins in the Monitoring MarkLogic Guide.
MarkLogic 9—May, 2017 Release Notes—Page 118

MarkLogic Server Known Incompatibilities with Previous Releases
Changes to the Packaging API
The Packaging REST API has changed for MarkLogic 7. Applications written using the
MarkLogic 6 Packaging REST API (v1) must be rewritten to work with the MarkLogic 7
Packaging REST API (v2).

The differences between the v1 and v2 versions of the Packaging REST API are summarized in
the table below.

4.38.4.12Changes to the Configuration Manager
The Configuration Manager Packaging feature has been more tightly integrated with the
Configuration Manager. Rather than exporting configurations to an XML file, as in MarkLogic 6,
configurations in MarkLogic 7 are now exported, as XML, to a ZIP file.

You can import a configuration saved by MarkLogic 6 into MarkLogic 7. However, you cannot
import a configuration saved in MarkLogic 7 into MarkLogic 6.

4.38.4.13xdmp:plan Now Requires a Privilege
In MarkLogic 7, the xdmp:plan function requires a privilege
(http://marklogic.com/xdmp/privileges/xdmp-plan). Previously, it did not require a privilege. If
you have any code that calls xdmp:plan that is run by non-privileged users, you will need to add
the privilege to a role that the users are granted (or to a role that they already have).

4.38.4.14fn:analyze-string Now Returns Output in a Different Namespace
In MarkLogic 7, the fn:analyze-string function returns an XML node in the
http://www.w3.org/2005/xpath-functions namespace, which is the namespace specified by the
working draft of the latest XQuery specification. Previously, this function was not fully specified
and it returned XML in the http://www.w3.org/2009/xpath-functions/analyze-string
namespace. If you have code that is expecting output in the old namespace, you will need to
change that code to expect the new namepsace.

MarkLogic 6 MarkLogic 7

/v1/list/package/appserver={name}
(GET)

/v2/servers/{name}?view=package (GET)

/v2/packages/{pkgname} (POST)

/v1/list/package/database={name} (GET) /v2/databases/{name}?view=package (GET)

/v2/packages/{pkgname} (POST)

/v1/package/compare (GET) /v2/packages/{pkgname}?view=differences (GET)

/v1/package/install (POST) /v2/packages/{pkgname}/install (POST)

/v1/package-tickets/revert (POST) /v2/tickets/{ticketnumber}/revert (PUT)
MarkLogic 9—May, 2017 Release Notes—Page 119

MarkLogic Server Planning for Future Upgrades
5.0 Planning for Future Upgrades
128

This chapter provides guidelines and warnings for preparing for changes expected in a future
release, such as announcements of deprecated interfaces. You are not required to make changes
related to the topics in this section at this time, but you should plan to do so in the future.

• Packaging API Deprecated

• info and infodev APIs Deprecated

• Annotated Query Output from search:parse Deprecated

• Search API Grammar Customization Deprecated

• The mlcp Option -tolerate_errors Deprecated

• xdmp:transaction-mode XQuery Prolog Option Deprecated

• Deprecation of transaction-mode Option to xdmp:eval

• XCC Session.setTransactionMode is Deprecated

• Java Client API 4.0.2 Deprecations

• Java Client API 4.0.4 Deprecations

• REST Client API Namespace Configuration Deprecation

• Configuration Packaging XQuery Library Deprecated

• Configuration Manager Deprecated

5.1 Packaging API Deprecated
In MarkLogic 9, the Packaging API has been deprecated. It will be removed from the product in
MarkLogic 10.
MarkLogic 9—May, 2017 Release Notes—Page 120

MarkLogic Server Planning for Future Upgrades
The following table lists the deprecated endpoints and the new alternative.

5.2 info and infodev APIs Deprecated
The XQuery library modules in the info and infodev namespaces are deprecated as of
MarkLogic 9 and will be removed from the product in a future release. For example, the functions
info:ticket and infodev:ticket-create are deprecated.

Deprecated Endpoints Alternative

Base path /manage/v2/packages:

• GET /manage/v2/packages

• POST /manage/v2/packages

• GET /manage/v2/packages/{pkgname}

• POST /manage/v2/packages/{pkgname}

• HEAD /manage/v2/packages/{pkgname}

• DELETE /manage/v2/packages/{pkgname}

• GET /manage/v2/packages/{pkgname}/databases

• GET /manage/v2/packages/{pkgname}/databases/{name}

• POST /manage/v2/packages/{pkgname}/databases/{name}

• HEAD /manage/v2/packages/{pkgname}/databases/{name}

• DELETE /manage/v2/packages/{pkgname}/databases/{name}

• POST /manage/v2/packages/{pkgname}/install

• GET /manage/v2/packages/{pkgname}/servers

• GET /manage/v2/packages/{pkgname}/servers/{name}

• POST /manage/v2/packages/{pkgname}/servers/{name}

• HEAD /manage/v2/packages/{pkgname}/servers/{name}

• DELETE /manage/v2/packages/{pkgname}/servers/{name}

Use the following
endpoints of CMA
REST API instead:

• GET /manage/v3

• POST /manage/v3

For more details, see
.“Configuration
Management API
(CMA) REST
Endpoints” on page 39.

Base path /manage/v2/tickets:

• POST /manage/v2/tickets/{ticketnumber}/revert
MarkLogic 9—May, 2017 Release Notes—Page 121

MarkLogic Server Planning for Future Upgrades
5.3 Annotated Query Output from search:parse Deprecated
The search:parse XQuery function and search.parse Server-Side JavaScript functions can return
an annotated cts:query if you pass in "cts:annotated-query" as the output format parameter
value. As of MarkLogic 9, use of "cts:annotated-query" is deprecated. Support for this format
will be removed in a future release.

If you currently use the annotated query output as an intermediate step in a transformation, you
should use the structured query ("search:query") output format instead. Runtime modification of
queries is a primary use case for structured query. For more details, see Searching Using Structured
Queries in the Search Developer’s Guide.

If you currently use the annotated query output format to recover the original query text using
search:unparse, you should cache the original query text yourself.

5.4 Search API Grammar Customization Deprecated
Customizing the string query grammar through the Search API grammar query option is now
deprecated. Support for this feature will be removed in a future release.

If your application currently relies on a Search API grammar customization, you should consider
alternatives such as the following:

• xqysp (http://github.com/mblakele/xqysp) for XQuery.

• PEG.js (http://pegjs.org/) or Jison (http://github.com/zaach/jison) for Server-Side JavaScript.

5.5 The mlcp Option -tolerate_errors Deprecated
The -tolerate_errors option of the mlcp import command is deprecated (and ignored) as of
MarkLogic 9.0-2. The option will be removed in a future release. Mlcp now always tolerates
errors.
MarkLogic 9—May, 2017 Release Notes—Page 122

http://github.com/mblakele/xqysp
http://pegjs.org/
https://github.com/zaach/jison

MarkLogic Server Planning for Future Upgrades
5.6 xdmp:transaction-mode XQuery Prolog Option Deprecated
The XQuery prolog option xdmp:transaction-mode is deprecated as of MarkLogic 9.0-2. Use the
xdmp:commit and xdmp:update prolog options instead.

Note that the new prolog options differ from xdmp:transaction-mode in that they affect only the
transaction create after their declaration, where as xdmp:transaction-mode settings persist across
an entire session.

The following table illustrates the correspondence between the old and new options settings.

Note that the default values for xdmp:commit and xdmp:update are both “auto”, so you do not need
to set this value explicitly in most cases.

For more details, see xdmp:update and xdmp:commit in the XQuery and XSLT Reference Guide.

xdmp:transaction-mode
Value Equivalent xdmp:commit and xdmp:update Option Settings

"auto" declare option xdmp:commit "auto";
declare option xdmp:update "auto";

"update-auto-commit" declare option xdmp:commit "auto";
declare option xdmp:update "true";

"update" declare option xdmp:commit "explicit";
declare option xdmp:update "true";

"query" declare option xdmp:commit "explicit";
declare option xdmp:update "false";
MarkLogic 9—May, 2017 Release Notes—Page 123

MarkLogic Server Planning for Future Upgrades
5.7 Deprecation of transaction-mode Option to xdmp:eval
The transaction-mode option of the xdmp:eval XQuery function and the xdmp.eval JavaScript
function is deprecated as of MarkLogic 9.0-2. Use the commit and update options instead. For
more details, see the function reference documentation for xdmp:eval (XQuery) and xdmp.eval
(JavaScript).

This option deprecation (and alternative option settings apply to the following functions:

The following table illustrates the correspondence between the old and new option settings:

5.8 XCC Session.setTransactionMode is Deprecated
Use of Session.setTransactionMode to specify commit semantics and transaction type is
deprecated as MarkLogic 9.0-2. This function will be removed in a future version. Use the new
Session.setAutoCommit and Session.setUpdate methods instead.

XQuery JavaScript

xdmp:eval xdmp.eval

xdmp:javascript-eval xdmp.xqueryEval

xdmp:invoke xdmp.invoke

xdmp:invoke-function xdmp.invokeFunction

xdmp:spawn xdmp.spawn

xdmp:spawn-function

transaction-mode
Option Value Equivalent commit and update Option Values

auto commit: "auto"
update: "auto"

update-auto-commit commit: "auto"
update: "true"

update commit: "explicit"
update: "true"

query commit "explicit"
update "false"
MarkLogic 9—May, 2017 Release Notes—Page 124

MarkLogic Server Planning for Future Upgrades
The following table illustrates how to replace calls to setTransactionMode with equivalent calls to
setAutoCommit and setUpdate.

5.9 Java Client API 4.0.2 Deprecations
Java Client API 4.0.2 introduces the following deprecations.

The com.marklogic.client.extra.httpclient.HttpClientConfigurator interface is deprecated
and will be removed in a future release. Use the new
com.marklogic.client.extra.okhttpclient.OkHttpClientConfigurator interface instead.
Attaching a configurator based on HttpClientConfigurator to a DatabaseClientFactory object no
longer has any effect on the HTTP configuration.

The single parameter version of DatabaseClientFactory.SecurityContext.withSSLContext has
been deprecated and will be removed in a future release. Instead, use the new version that requires
an X509TrustManager as its second parameter. This change affects all classes that implement
DatabaseClientFactory.SecurityContext, such as
DatabaseClientFactory.CertificateAuthContext, DatabaseClientFactory.KerberosAuthContext,
and DatabaseClientFactory.DigestAuthContext.

5.10 Java Client API 4.0.4 Deprecations
Java Client API 4.0.4 deprecates the following interfaces:

• NamespacesManager Interface Deprecated

• QueryBatcher.getQuerySuccessListeners Deprecated

If you call
setTransactionMode

with this value:
Then replace it with the following calls on the same Session object

AUTO setAutoCommit(true);
setUpdate(Session.Update.AUTO);

MULTI_AUTO setAutoCommit(false);
setUpdate(Session.Update.AUTO);

UPDATE setAutoCommit(false);
setUpdate(Session.Update.TRUE);

QUERY setAutoCommit(false);
setUpdate(Session.Update.FALSE);

UPDATE_AUTO_COMMIT setAutoCommit(true);
setUpdate(Session.Update.TRUE);

QUERY_SINGLE_STATEMENT setAutoCommit(true);
setUpdate(Session.Update.FALSE);
MarkLogic 9—May, 2017 Release Notes—Page 125

MarkLogic Server Planning for Future Upgrades
5.10.1 NamespacesManager Interface Deprecated
The Java Client API interfaces for configuration namespace bindings are deprecated as of version
4.0.4 and will be removed in a future release.

Instead, you should use the REST Management API to define namespace bindings for your App
Server. For details, see the namespaces property of the payload for PUT:/manage/v2/servers/
{id|name}/properties.

This deprecation notice affects the following components of the Java Client API:

• The com.marklogic.client.admin.NamespacesManager interface.

• The com.marklogic.client.admin.ServerConfigurationManager.newNamespacesManager
method.

5.10.2 QueryBatcher.getQuerySuccessListeners Deprecated
The method QueryBatcher.getQuerySuccessListeners is deprecated as of Java Client API 4.0.0
and will be removed in a future release. Use QueryBatcher.getUrisReaderListeners instead.

Both methods do the same thing in the same way. You do not need to change anything but the
method name.

5.11 REST Client API Namespace Configuration Deprecation
The REST Client API methods for configuring namespace bindings are deprecated as of
MarkLogic 9.0-5 and will be removed in a future release.

Instead, you should use the REST Management API to define namespace bindings for your App
Server. For details, see the namespaces property of the payload for PUT:/manage/v2/servers/
{id|name}/properties.

This deprecation notice affects the following methods of the REST Client API:

• GET, POST, PUT and DELETE on /v1/config/namespaces

• GET, PUT, and DELETE on /v1/config/namespaces/{prefix}

5.12 Configuration Packaging XQuery Library Deprecated
In MarkLogic 9.0-5, the Configuration Packaging XQuery API library has been deprecated. It
will be removed from the product in a future release.
MarkLogic 9—May, 2017 Release Notes—Page 126

MarkLogic Server Planning for Future Upgrades
The following table lists the deprecated methods and the new alternative.

Deprecated Methods Alternative

Configuration Packaging (pkg:) library:

• pkg:create

• pkg:database-configuration

• pkg:delete

• pkg:differences

• pkg:errors

• pkg:exists

• pkg:get-database

• pkg:get-database-list

• pkg:get-modules

• pkg:get-package

• pkg:get-package-list

• pkg:get-server

• pkg:get-server-list

• pkg:install

• pkg:installable

• pkg:put-database

• pkg:put-modules

• pkg:put-server

• pkg:remove-database

• pkg:remove-modules

• pkg:remove-server

• pkg:revert

• pkg:server-configuration

• pkg:valid

Use the following methods of
Configuration Management (cma:)
library instead:

• cma:generate-config

• cma:apply-config

For more details, see “Configuration
Management API (CMA) XQuery and
JavaScript Libraries” on page 38.
MarkLogic 9—May, 2017 Release Notes—Page 127

MarkLogic Server Planning for Future Upgrades
5.13 Configuration Manager Deprecated
The Configuration Manager tool is deprecated starting with MarkLogic release 9.0-5 and will be
removed from the product in a future release.
MarkLogic 9—May, 2017 Release Notes—Page 128

MarkLogic Server Other Notes
6.0 Other Notes
135

This section provides the following information about MarkLogic Server:

• Memory and Disk Space Requirements

• Compatibility with XQuery Specifications

• XQuery Extensions

• SQL Queries

• Documentation

• Browser Requirements

• Security: Prevent Abuse of System Entity Expansion

6.1 Memory and Disk Space Requirements
MarkLogic Server requires at least 2 GB of system memory.

The first time it runs, MarkLogic Server automatically configures itself to the amount of memory
on the system, reserving as much as it can for its own use. If you need to change the default
configuration, you can manually override these defaults at a later time using the Admin Interface.

MarkLogic recommends the following two guidelines for server sizing:

• Configure your server with 1 GB of physical memory for every 16 GB of source content
you expect to manage.

• Configure your server with at least one CPU (or core) per 100 GB of source content.

Pragmatically, we recommend running most configurations with a minimum of two CPUs (or two
cores).

MarkLogic Server requires 1.5 times the disk space of the total forest size. Specifically, each
forest on a filesystem requires its filesystem to have at least 1.5 times the forest size in disk space
(or, for each forest less than 48 GB, 3 times the forest size) when the merge max size database
merge setting is set to the default of 48 GB. This translates to approximately 1.5 times the disk
space of the source content after it is loaded. For example, if you plan on loading content that will
result in a 200 GB database, reserve at least 300 GB of disk space. The disk space reserve is
required for merges. *

It is critical for swap space to be properly configured on your system according to the
recommendations for your platform, as described in Memory, Disk Space, and Swap Space
Requirements in the Installation Guide.
MarkLogic 9—May, 2017 Release Notes—Page 129

MarkLogic Server Other Notes
For more details about memory, disk, and swap requirements, see Memory, Disk Space, and Swap
Space Requirements in the Installation Guide.

* You need at least 2 times the merge max size of free space per forest, regardless of the forest
size. Therefore, with the default merge max size of 48 GB, you need at least 96 GB of free space.
Additionally, if your journals are not yet created, you need 2 times the journal size of free disk
space (if the journal space is not yet allocated). Therefore, to be safe, you need (with the default
merge max size and a 2G journal size) at least 100 GB of free space for each forest, no matter
what size the forest is.

6.2 Compatibility with XQuery Specifications
MarkLogic implements the XQuery language, functions and operators specified in the W3C
XQuery 1.0 Recommendations:

• http://www.w3.org/TR/xquery/

• http://http://www.w3.org/TR/xquery-operators/

Additionally, there is backwards compatibility with the May 2003 version of the XQuery 1.0
Draft specification used in MarkLogic Server 3.2 and previous versions. For details on the
XQuery implementation in MarkLogic Server 4.1, including the three different dialects
supported, see the XQuery and XSLT Reference Guide.

6.3 XQuery Extensions
Working within the W3C XQuery 1.0 Recommendation, MarkLogic has created a number of
language extensions enabling key functionality not supported in the current release of the
language specification. These extensions provide transactional update capabilities, assorted
search and retrieval features, various data manipulation functions, and administrative tools.

The extensions, as well as the XQuery standard functions, are documented at
http://developer.marklogic.com.

6.4 SQL Queries
This section lists the SQL queries that are known not to work in 9.0-7 and those that are not yet
fully optimized.

• Sub-select / sub-query (with any operator - IN, NOT IN, =, >, etc) is not optimized.

• Queries that return tens of thousands of rows are not optimized. Use LIMIT to restrict the
number of rows returned, or focus your query with more filters in the WHERE clause or a
cts:query to restrict by collection, date range, etc. If you are using a BI Tool, configure it
to avoid an unrestricted SELECT * FROM table.

• Special use of the MATCH keyword is retained in MarkLogic 9.0-7, but MATCH queries run
filtered (MATCH does not use the Universal Index).

• FULL OUTER JOIN is not supported in 9.0-7
MarkLogic 9—May, 2017 Release Notes—Page 130

http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery-operators/
http://developer.marklogic.com/pubs/

MarkLogic Server Other Notes
• SQL is read-only in 9.0-7. The only way to create a persistent view is by means of a
template view or a range view. You can't create a view over views and save it. And you
can't create a TEMP table. Applications, such as BI Tools, that rely on creating TEMP tables to
cache results need to be configured to use some other method.

6.5 Documentation
MarkLogic Server includes the following documentation, available through the developer web
site at http://developer.marklogic.com/:

Documentation Description

MarkLogic Server-Side
JavaScript Function Reference

API documentation for the Server-Side MarkLogic built-in
extensions to the JavaScript standard functions.

MarkLogic XQuery and XSLT
Function Reference

API documentation for the MarkLogic built-in and module
extensions to the XQuery standard functions, as well as API
documentation for the W3C functions implemented in
MarkLogic Server.

Getting Started with MarkLogic
Server

A quick, step-by-step overview of how to get up and running
with MarkLogic Server.

Installation Guide Provides procedures for installing MarkLogic Server.

Release Notes Contains a summary of new features and upgrade compatible
information.

Concepts Guide Provides an overview of MarkLogic and conceptual
information about the server architecture.

Application Developer’s Guide Provides procedures, methodologies, and conceptual
information about general MarkLogic Server application
development tasks.

Search Developer’s Guide Provides procedures, methodologies, and conceptual
information about search-based application development
tasks.

Node.js Application
Developer’s Guide

Provides procedures, methodologies, and conceptual
information about developing MarkLogic Server
applications using the Node.js Client API.

Java Application Developer’s
Guide

Provides procedures, methodologies, and conceptual
information about developing MarkLogic Server
applications using the Java API.
MarkLogic 9—May, 2017 Release Notes—Page 131

http://developer.marklogic.com/pubs/

MarkLogic Server Other Notes
XCC Developer’s Guide An overview of the what you can do with the XCC libraries,
examples of how to use XCC, and an overview of the sample
applications included with XCC.

MarkLogic Connector for
Hadoop Developer’s Guide

Provides information on the MarkLogic Connector for
Hadoop, a Java library to help you build applications that
combine MarkLogic Server and Hadoop map-reduce jobs.

REST Application Developer’s
Guide

Provides information on MarkLogic Server administration
and application development using the MarkLogic REST
API.

Semantics Developer’s Guide Provides procedures, methodologies, and conceptual
information about semantic application development tasks
and MarkLogic SPARQL and triple support.

Temporal Developer’s Guide Provides information on developing applications using
MarkLogic bi-temporal features.

Entity Services Developer’s
Guide

Provides procedures, methodologies, and conceptual
information about developing MarkLogic Applications using
entity relationship modeling and the Entity Services API.

Reference Application
Architecture Guide

Provides an overview of reference application architectures
for multi-tiered applications built using MarkLogic as the
database.

Administrator’s Guide Provides procedures for administrative tasks such as creating
servers, creating databases, backing up databases, creating
users, setting up your security policy, and so on.

Scripting Administrative Tasks
Guide

Provides information on writing code to script various
administrative tasks such as creating and modifying
databases, App Servers, and so on.

Database Replication Guide Provides information on database replication, useful for
disaster recovery scenarios.

Flexible Replication Guide Provides information on Flexible Replication, useful for
information sharing from one database to another.

Ops Director Guide Provides procedures for setting up and using Ops Director
for monitoring MarkLogic clusters.

Monitoring MarkLogic Guide Provides information on monitoring MarkLogic Server,
including using the built-in monitoring tools and integrating
with external tools such as HP Operations Manager.

Documentation Description
MarkLogic 9—May, 2017 Release Notes—Page 132

MarkLogic Server Other Notes
MarkLogic Connector for
SharePoint® Administrator’s
Guide

Documentation for the MarkLogic Connector for
SharePoint®, which allows you to mirror documents from a
Microsoft SharePoint repository in MarkLogic Server.

JavaScript Reference Guide A language reference for the MarkLogic Server-Side
JavaScript language. This book includes MarkLogic-specific
Object reference, but is not a comprehensive language
reference.

XQuery and XSLT Reference
Guide

A condensed overview of the XQuery language, including
information on the three XQuery dialects in MarkLogic
Server. This book does include some syntax information,
although it is primarily intended as in introduction and
quick-reference to the language, not as a comprehensive
reference.

mlcp User Guide A procedural guide that explains how to use MarkLogic
Content Pump (mlcp) command line tool to load content into
MarkLogic, extract content from MarkLogic, or copy content
between databases.

Content Processing Framework
Guide

Provides an introduction to the Content Processing
Framework and procedures for installing the default content
processing framework.

Query Performance and Tuning
Guide

Provides performance-related information that is useful to
application developers and administrators.

Scalability, Availability, and
Failover Guide

Provides information on large-scale system architecture,
clustering, availability, and details on setting up shared-disk
and local-disk failover.

Security Guide Provides information on the role-based security model in
MarkLogic Server.

MarkLogic Server on Amazon
Web Services (AWS) Guide

Information about running MarkLogic Server in an EC2
environment.

Query Console User Guide Provides step-by step information on using Query Console, a
tool to create and run arbitrary XQuery code.

Loading Content Into
MarkLogic Server Guide

Provides procedures, methodologies, and conceptual
information about loading content into MarkLogic Server.
Includes an overview of ingestion techniques available using
XQuery, Java, REST, .NET, and the MarkLogic Content
Pump (mlcp).

Documentation Description
MarkLogic 9—May, 2017 Release Notes—Page 133

MarkLogic Server Other Notes
XQuery language documentation is provided through the W3C working group drafts specified in
“Compatibility with XQuery Specifications” on page 130. Sample code is provided through the
demo server at http://localhost:8000/, which is automatically installed as part of the MarkLogic
Server installation process. Additionally, there are many samples available on the MarkLogic
developer site (http://developer.marklogic.com).

XQuery language extensions specific to MarkLogic Server are documented online in the
MarkLogic XQuery and XSLT Function Reference. Example code snippets are provided as part of
that documentation. The Admin Interface provides a large-scale example of complex XQuery
programming, using many of the MarkLogic XQuery language extensions.

The Admin Interface includes built-in help screens that explain the purpose of the various
controls and parameters in the Admin Interface.

Known bugs are documented online as we find them or as they are reported to us. See
http://support.marklogic.com (supported customers only) for more details.

SQL Data Modeling Guide Provides information on how to use MarkLogic’s SQL
interface, including the creation of relational schemas and
views.

Messages and Codes Reference
Guide

A reference guide to MarkLogic Server and MarkLogic
Application Services error and log messages.

Glossary, Copyright, and
Support

Includes a glossary of terms as well as copyright and support
information.

MarkLogic REST API
Reference

API documentation for the REST API.

Java Client API Documentation API documentation for the MarkLogic Java Client API.

Node.js Client API Reference API documentation for the MarkLogic Node.js Client API.

XCC Javadoc API
Documentation

API documentation for the MarkLogic XML Contentbase
Connector for Java API (XCC/J).

XCC .NET C# API
Documentation

API documentation for the MarkLogic XML Contentbase
Connector for .NET XCC C# API.

MarkLogic Hadoop
MapReduce Connector API

API documentation for the MarkLogic Hadoop MapReduce
Connector.

C++ UDF API Reference API documentation for the C++ User Defined Function
(UDF) API.

Documentation Description
MarkLogic 9—May, 2017 Release Notes—Page 134

http://localhost:8000/
http://support.marklogic.com
http://developer.marklogic.com

MarkLogic Server Other Notes
6.6 Browser Requirements
The Admin Interface and the other GUI tools (Query Console, Ops Director, and so on) are
certified as follows:

• Internet Explorer 11 on Windows 8 and Windows 10.

• Firefox 45 on Windows and Mac OS.

• Chrome 58 on Windows and Mac OS.

Other browser/platform combinations may work but are not as thoroughly tested.

6.7 Security: Prevent Abuse of System Entity Expansion
Normal XML processing allows for external entities to be referenced and included in the parsed
content of XML files. If you want to disable this processing, set the trace event “Disable XML
External Entities”.
MarkLogic 9—May, 2017 Release Notes—Page 135

MarkLogic Server Technical Support

MarkLogic 9

7.0 Technical Support
136

MarkLogic provides technical support according to the terms detailed in your Software License
Agreement or End User License Agreement.

We invite you to visit our support website at http://help.marklogic.com to access information on
known and fixed issues, knowledge base articles, and more. For licensed customers with an active
maintenance contract, see the Support Handbook for instructions on registering support contacts
and on working with the MarkLogic Technical Support team.

Complete product documentation, the latest product release downloads, and other useful
information is available for all developers at http://developer.marklogic.com. For technical
questions, we encourage you to ask your question on Stack Overflow.

http://help.marklogic.com/
https://stackoverflow.com/questions/tagged/marklogic
http://developer.marklogic.com
http://www.marklogic.com/files/Mark_Logic_Support_Handbook.pdf

MarkLogic Server Copyright

MarkLogic 9

8.0 Copyright
999

MarkLogic Server 9.0 and supporting products.
Last updated: April 28, 2018

COPYRIGHT
Copyright © 2018 MarkLogic Corporation. All rights reserved.
This technology is protected by U.S. Patent No. 7,127,469B2, U.S. Patent No. 7,171,404B2, U.S.
Patent No. 7,756,858 B2, and U.S. Patent No 7,962,474 B2, US 8,892,599, and US 8,935,267.

The MarkLogic software is protected by United States and international copyright laws, and
incorporates certain third party libraries and components which are subject to the attributions,
terms, conditions and disclaimers set forth below.

For all copyright notices, including third-party copyright notices, see the Combined Product
Notices for your version of MarkLogic.

	Release Notes
	Table of Contents
	1.0 Introduction
	2.0 Installation and Upgrade
	2.1 Supported Platforms
	2.2 Supported Filesystems
	2.3 Upgrade Support

	3.0 New Features in MarkLogic 9
	3.1 Template Driven Extraction (TDE)
	3.2 SQL Enhancements
	3.3 Optic API
	3.4 Enhanced Tiered Storage
	3.5 Encryption at Rest
	3.6 Element Level Security
	3.7 Redaction
	3.8 Geospatial Enhancements
	3.9 Entity Services API
	3.10 New Stemming and Tokenization
	3.11 Accurate Wildcard Expansion Options
	3.12 mlcp Enhancements
	3.12.1 Support for SSL Connections
	3.12.2 Greater Control over Host Connections
	3.12.3 Redaction
	3.12.4 Batch Support for Server-Side Import Transformations
	3.12.5 Ability to Access and Modify Metadata in a Transformation

	3.13 Java Client API Enhancements
	3.13.1 Bulk Asynchronous Data Movement
	3.13.2 Enhanced Temporal Document Support
	3.13.3 Security and Authentication Improvements
	3.13.4 Values Metadata Support
	3.13.5 Row-Based Search
	3.13.6 Geospatial Search Enhancements

	3.14 Node.js Client API Enhancements
	3.14.1 Authentication and Connection Security
	3.14.2 Enhanced Temporal Document Support
	3.14.3 Values Metadata Support
	3.14.4 Geospatial Search Enhancements
	3.14.5 Minimum Distance on Near Queries

	3.15 Rest Client API Enhancements
	3.15.1 Enhanced Temporal Document Support
	3.15.2 Row-Based Data Evaluation
	3.15.3 Point-in-Time Operations
	3.15.4 cts:query Support
	3.15.5 Values Metadata Support

	3.16 Telemetry
	3.17 XQuery 3.x Features
	3.18 Query Console Enhancements
	3.19 Application Display Environment Customization
	3.20 Rolling Upgrades
	3.21 Bi-temporal Compliance Enhancements
	3.22 Secure Credentials
	3.23 Certificate Authentication
	3.24 New REST Management APIs
	3.25 New Features in MarkLogic 9.0-2
	3.25.1 Geospatial Enhancements
	3.25.2 Additional REST Client API Support for cts:query
	3.25.3 REST Client API Supports QBE in a Combined Query
	3.25.4 New Server-Side Transaction Controls
	3.25.5 XCC: New Session Methods for Transaction Control

	3.26 New Features in MarkLogic 9.0-3
	3.26.1 REST Management API: Advancing LSQT
	3.26.2 REST Client API: Advancing LSQT
	3.26.3 Ops Director
	3.26.4 Amazon Web Services (AWS) 1-Click
	3.26.5 Entity Services Enhancements
	3.26.6 Search Result Sorting Enhancements
	3.26.7 Redaction Built-in for Masking Numbers
	3.26.8 Client APIs: Performance Improvements for JavaScript Extensions and Transforms
	3.26.9 Java Client API: Values and Tuples Query Support for cts:query

	3.27 New Features in MarkLogic 9.0-4
	3.27.1 Redaction: Support for Salting of Deterministic Masking Values
	3.27.2 Redaction: New redact-datetime Built-In Function
	3.27.3 Separate Download and Installation of Converters and Filters
	3.27.4 Node.js Client API Enhancements
	3.27.5 Client API Support for JavaScript Patch Content Constructors
	3.27.6 Database Restore Enhancement
	3.27.7 1-Click AWS Support
	3.27.8 Restricted XPath Changes
	3.27.9 Protected Path Sets Added to Element Level Security

	3.28 New Features in MarkLogic 9.0-5
	3.28.1 MarkLogic Data Hub Framework
	3.28.2 Entity Enrichment and Extraction Enhancements
	3.28.3 Query Console: Explore Database by URI Pattern
	3.28.4 Configuration Management API (CMA) XQuery and JavaScript Libraries
	3.28.5 Configuration Management API (CMA) REST Endpoints
	3.28.6 Ops Director Enhancements
	3.28.7 Monitoring History Enhancements
	3.28.8 Tolerance Support in Geospatial Region Queries
	3.28.9 Database Replication Enhancements
	3.28.10 Fast Fail-over

	3.29 New Features in MarkLogic 9.0-6
	3.29.1 Switching from Internal to External KMS
	3.29.2 Multiple KMS Hosts for Failover
	3.29.3 Geospatial Region Query Tolerance Improvements

	3.30 New Features in MarkLogic 9.0-7
	3.30.1 Database Access with Granular Privileges
	3.30.2 Forest Access with Granular Privileges
	3.30.3 Query Console: Content Editing
	3.30.4 Request Monitoring
	3.30.5 MarkLogic Services in the Cloud
	3.30.6 Java Client API: Load Balancer Improvements

	4.0 Known Incompatibilities with Previous Releases
	4.1 JavaScript: ValueIterator Replaced By Sequence
	4.2 Database Stemming is Off, Word Searches On By Default
	4.3 Collection Lexicon and Triple Index Enabled by Default
	4.4 XCC .NET API No Longer Available
	4.5 Changes in Semantic Query Behavior
	4.5.1 Triple Index and SPARQL Engine Changes
	4.5.2 Forest IDs Removed From sem:sparql Function

	4.6 Triple Count Increased After Inserting Same Data Twice
	4.7 Database max merge size Now Defaults to 48 GB
	4.8 Changes to Range Index Reference Resolution
	4.9 Default Stemming and Tokenization Libraries Changed for Most Languages
	4.10 SQL DESCRIBE No Longer Supported by xdmp:sql
	4.11 Application-Specific Logging
	4.12 Change to Classification of Some Special Symbol Tokens
	4.13 Change to xdmp:user-last-login
	4.14 Changed Interfaces for xdmp:document-insert and xdmp:document-load
	4.15 search:parse Returns a Different Type for cts:query Output Format
	4.16 Default Client API Search Behavior Change on Port 8000
	4.17 JSON Property Scope and Container Queries Match Array Items Differently
	4.18 REST Client API Incompatibilities
	4.18.1 keyvalue Service Removed
	4.18.2 Collections in Request Parameters are OR Related
	4.18.3 Default value of Document Management “repair” parameter changed

	4.19 Java Client API Incompatibilities
	4.19.1 Java Client API: Removal of Deprecated Interfaces
	4.19.2 Java Client API: JAR File Name and Maven Artifact ID Change
	4.19.3 Logging Turned Off by Default

	4.20 Node.js Client API Incompatibilities
	4.20.1 Changes to Return Value of documents.remove
	4.20.2 Transaction Creation Returns an Object by Default
	4.20.3 Default Search Result Slice is Zero-Based

	4.21 Geospatial Region Accessors Can Now Return Double Values
	4.22 User-Defined Function Plugins Must Be Recompiled
	4.23 SLES 12 No Longer Supported
	4.24 Solaris No Longer Supported
	4.25 Nagios Plugin No Longer Supported
	4.26 Application Builder and Information Studio No Longer Available
	4.27 Admin Interface No Longer Selects a Default Schemas Database
	4.28 Internal Security ON with External Security Object Behavior Change
	4.29 REST Management API Changes in MarkLogic 9
	4.30 Configuration Packaging Format Incompatibilities
	4.31 Java Client API 4.1.1 Incompatibilities
	4.31.1 Load Balancer Configuration for DMDSDK Jobs

	4.32 Incompatibilities Between 9.0-5 and 9.0-6
	4.32.1 Changes to Accepted XML Character Set

	4.33 Incompatibilities Between 9.0-4 and 9.0-5
	4.33.1 Minimum Required Version of HDP is 2.6
	4.33.2 Reindex Recommended for Geospatial Region Indexes
	4.33.3 Geospatial Region Query Results Might Differ
	4.33.4 return-query Option Output Format Change

	4.34 Incompatibilities Between 9.0-3 and 9.0-4
	4.34.1 Redaction: Deterministic Masking Values Differ

	4.35 Incompatibilities Between 9.0-2 and 9.0-3
	4.35.1 Changes to Authentication Behavior with Client Certificate
	4.35.2 XCC ContentSource.newSession Interface Change
	4.35.3 Document Digest Authorization Behavior Changed in 9.0-3
	4.35.4 1-click AMIs, new compatible CloudFormation, and additional upgrade procedures
	4.35.5 map:new Retains Keys with Empty Values

	4.36 Incompatibilities Between 9.0-1 and 9.0-2
	4.36.1 The mlcp Option -tolerate_errors is Ignored
	4.36.2 Changes to jsearch.facets Output Structure
	4.36.3 Array Type is Preserved in x509 Certificate with Array-Valued Properties
	4.36.4 Node.js Client API: valuesBuilder.slice is Now Zero-Based
	4.36.5 Changes to xdmp:update XQuery Prolog Option
	4.36.6 Java Client API 4.0.2 Ignores HttpClientConfigurator

	4.37 MarkLogic 8 Incompatibilities
	4.37.1 JSON Related Incompatibilities
	4.37.2 Semantics Incompatibilites
	4.37.3 REST and Java Client API Incompatibilites
	4.37.4 Document Library Services (DLS) Repositories Need To Perform A Bulk Upgrade Operation
	4.37.5 Linux Now Requires Red Hat 6
	4.37.6 mlsql On Linux No Longer Ships With Server
	4.37.7 Cyrillic Tokenization Changes
	4.37.8 Application Builder Applications Must Be Re-Deployed in MarkLogic 8
	4.37.9 Application Builder and Information Studio Links Removed
	4.37.10 Search API Incompatibilities
	4.37.11 Locks and Properties Query Built-In Functions Renamed
	4.37.12 xdmp:uri-content-type Of an XML Document Now Returns application/xml, Can Affect CPF Applications
	4.37.13 xdmp:function Signature Change
	4.37.14 Incompatibilities Between 8.0-5 and 8.0-6
	4.37.15 Incompatibilities Between 8.0-3 and 8.0-4
	4.37.16 Incompatibilities Between 8.0-2 and 8.0-3
	4.37.17 Incompatibilities Between 8.0-1 and 8.0-2

	4.38 MarkLogic 7 Incompatibilites
	4.38.1 Incompatibilities Between MarkLogic 7.0-3 and 7.0-2
	4.38.2 Float Precision Greater in 7.0-3
	4.38.3 Incompatibilities Between MarkLogic 7.0-2 and 7.0-1
	4.38.4 Incompatibilities Between MarkLogic 7.0-1 and MarkLogic 6

	5.0 Planning for Future Upgrades
	5.1 Packaging API Deprecated
	5.2 info and infodev APIs Deprecated
	5.3 Annotated Query Output from search:parse Deprecated
	5.4 Search API Grammar Customization Deprecated
	5.5 The mlcp Option -tolerate_errors Deprecated
	5.6 xdmp:transaction-mode XQuery Prolog Option Deprecated
	5.7 Deprecation of transaction-mode Option to xdmp:eval
	5.8 XCC Session.setTransactionMode is Deprecated
	5.9 Java Client API 4.0.2 Deprecations
	5.10 Java Client API 4.0.4 Deprecations
	5.10.1 NamespacesManager Interface Deprecated
	5.10.2 QueryBatcher.getQuerySuccessListeners Deprecated

	5.11 REST Client API Namespace Configuration Deprecation
	5.12 Configuration Packaging XQuery Library Deprecated
	5.13 Configuration Manager Deprecated

	6.0 Other Notes
	6.1 Memory and Disk Space Requirements
	6.2 Compatibility with XQuery Specifications
	6.3 XQuery Extensions
	6.4 SQL Queries
	6.5 Documentation
	6.6 Browser Requirements
	6.7 Security: Prevent Abuse of System Entity Expansion

	7.0 Technical Support
	8.0 Copyright
	COPYRIGHT

