MarkLogic Server

Query Performance and Tuning Guide

MarkLogic 9
May, 2017

Last Revised: 9.0-8, December, 2018

Copyright © 2018 MarkLogic Corporation. All rights reserved.

MarkLogic Server Table of Contents

Table of Contents

Query Performance and Tuning Guide

1.0 Tuning Query Performance in MarkLOgiC SEIVErcccovvevivviieecieccieeinenn, 5
1.1 Overview of Query PerformanCeccccoeieiiinieienie e 5
12 Genera Techniquesto TunNe PerformancCecoooererereninieeeeieeseese e 6

1.2.1 SearcCh BUilt-IN APIS ..o s 6
1.2.2 Lexicons For Unique Word or Value LOOKUPSccccevveereriieneeniesienneene 7
1.2.3 Range Queriesfor Constraining Searchesto a Range of Values 7
1.2.4 Positions Indexes Can Help Speed Phrase Searchescoccccveeevieciecneee, 7
1.2.5 UseQuery Meters and Query Trace to Characterize Performance.............. 7
1.2.6 Profiler APL ...ttt 7
1.2.7 Monitoring APl and StatuS SCreeNScoeeveeieeieesecie e 7
1.2.8 Index Options, Range Indexes, Fields ... 8
1.3 Understanding MarkLogiC Server Cachesccoevirerineneneneeee e 8
1.4 Rulesof Thumb fOr SIZINGccocoeeiiiieiee e 9

2.0 Fast Pagination and Unfiltered Searches ..., 10
21 Understanding the Search ProCesSscccccvvievieieccee st 10
2.2 Understanding Unfiltered SEarchesccoccocreneniineenese e 11
2.3 Using Unfiltered Searchesfor Fast Paginationcccoceveneneneneneneseseeeenes 13
24 Example: Determining the Number of False-Positive Matchescccceeeeeee. 14

3.0 Tuning Queries with query-meters and qUEry-tracecccccevevrcveereecnenne 15
3.1 Indexes, XPath Expressions, and Query Performanceccccocvveveeieseenieenen, 16
3.2 Understanding qUery-meters OULPULccoveeriereereriieneesiesiee s see e sseeseeseeseens 17

3.21 Output From Xdmp:QUENY-MELEN'Scceiereririenierieeeseeee e 17

3.2.2 Understanding the Cache StatistiCSceveeveiievicce e 18

3.3 Understanding qQUEry-traCe OULPULcceerueriirreerierierseesie e sree e see e eas 19
331 What QUENY-TraCe LOGScoverveiirieniiriesieie et e 20
3.3.1.1 XPath Expression AnalySiISMESSAgESccccevuevreeiveeeesreesresnnenns 20

3.3.1.2 Constraint ANalySISMESSAZEScovoererrieerierierieesie e 20

3.3.1.3 Search EXeCution MESSAgESccceoererieririnieienie e 21

3.3.2 Interpreting the LOg MESSAJESccveieiieiricie et 22

3.3.3 Fully Searchable Paths and cts:search Operationscccceveeeereeriennenne 23

34 Using xdmp:planto View the Evaluation Planccccceeveevecce v, 24
35 EXAMPIES oo e e ns 24
3.5.1 Sample xdmp:query-meters OUIPULccceevereererienennieeiesee e 25

3.5.2 Sample xdmp:query-trace OULPULccceeeieereereerieseeseee e esee e 26

3.5.3 Logging Both query-meters and query-trace Outputccceeveeverneene. 27

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 2

MarkLogic Server Table of Contents

4.0 Sorting Searches Using RaNge INAEXESccceveevieeiieccie e 32
4.1 Using acts.order Specification in actS:Searchccccocvveeiine v 32

4.1.1 Creating acts.order SPeCIfiCationcccceceevveiesieerie s 32

4.1.2 Usingthe cts.order SpecificationinaSearchccccccooeveecvicieccece, 33

4.2 Optimizing Order By Expressions With Range INdexescccceceveeiennniennen. 33

4.2.1 Speed Up Order By Performancecccccvceeveeveseeneseseese e eee e 33

4.2.2 Rulesfor Order By Optimizationcccoceeveeieeieeieseeseeie e 33

4.2.3 Creating RANGE INEXEScccoviieririeieieeere e e 35

4.2.4 Example Order BY QUENEScccocceriereeie e eeeseesiesee e eae e 35

4.2.4.1 Orderby aSingleElementccooeiiiieieie e 36

4.2.4.2 Order by Multiple EIementsccocverinineniinineseseeeeeees 37

5.0 Profiling Requeststo Evaluate Performancecccccevveeceeieecieecee e, 38
51 Enabling Profiling 0N an AP SEIVEN ... 38

5.2 Understanding XQUErY Profilingccocceeierieniieiesie e 38

5.2.1 Déefinitions and Terminology for the XQuery Profilingcccccvevenneee. 39

522 XQuery Profiling OVEIVIEWcceeiiiiiieiesiesiesesesee e 39

5.2.3 XQUErY Profiling APlooueeeeeeeee ettt 40

5.3 Understanding Server-Side JavaScript Profilingcccccovveeevecvecce v, 41

54 Profiling EXaMPIESc.ooiiiiiiiiieee et 42

5.4.1 Simple Enable and Disable XQuery Examplec.cccovvveevveceieeiienenne 42

5.4.2 Returning a Part of the XQuery Profile Reportccovveeveeececciecnee, 44

5.4.3 JavaScript Profile EXamMPpPle ... 44

6.0 Disk Storage CONSIErationsScccceereririeererriieesee e e seee e seeessesseeenes 47
6.1 Disk Storage and MarkLOQIC SEIVEYccoeeieiiieriesesesiesesee e 47

6.2 Fast DataDireCtory ON FOrEStScccceiveieiieereeieseeseeieseeseesee e e see e e nae e 47

6.3 Large Data DireCtory 0N FOFESEScooviieiieeiieieesie e ctee sttt s 48

6.4 HDFS, MapR-FS, and S3 Storage 0N FOrestSccovvvereeieneeieseesie e 48

6.4.1 HDFS SIOIAQEveeeiiieiciie ettt 48

6.4.2 MaPR-FSSIOrageccooiiiiiiiecieieces e 50

6.4.3 S SLOMBOEcveeiieieetieie et 50

6.4.3.1 S3and MarkLOQIC ...cceeeevieeiecieceee e 50

6.4.3.2 Entering Your S3 Credentials for aMarkLogic Cluster 52

6.5 Windows Shared Disk Registry Settings and PErmiSSionsccccceeevenencneenne. 52

7.0 Monitoring MarkLogic Server Performanceccocceveencennensiessen s 53
7.1 Waysto Monitor Performance and ACHIVILYccccoverererenininieeeeeseesee e 53

7.1.1 Monitoring History Dashboardccceeeeveeneeeseee e 53

T.1.2 SEIVEN LOGS ...ueieiieiiieeiieeiee et e ettt be e s e s st e sseesneesneesnneeseessanesnneennes 54

7.1.3 Status Screensinthe Admin INterfaceccccovvveevveercveceseece e 55

7.1.4 Create Your OWn SErver REPOITSccceviiieeiiiinniiee e 57

7.2 SEVEr MONITONNG APIS ..ot st 57

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 3

MarkLogic Server Table of Contents

8.0 Endpoints and Request MONITONNGccccveiieiieeiie e 58
8.1 MONItOrNNG REQUESEScoouiiiiiiiesiieie ettt st ae e e 58

8.2 App Server ReQUESE MONITOMNG ...oovveeeeiieeieeieseesieeeesieeseeseesreeseesee e essesseesseenes 58

8.3 XDBC Server Request MONItOMNNGcccueeeeirierieeeeseesieseesieesee e sresaesreesneeee s 59

8.3.1 XDBC INVOKE REQUESEScccueiuieiirieiieerieeie et 59

8.3.2 XDBC EVal REQUESES ..ottt sttt 59

8.4 Creating ENdpoint DECIAralioNnsccccieeiieeeeiieie e ee et 59

8.4.1 TheEndpoint Declaration File ... 60

8.4.2 CoNSraiNtS ON MELEISooviieiriiieeiirie e 65

8.4.3 Enabling Request MONItOrNNGcoovevueieeiieeieciese e 65

8.4.4 TheDefault Declaration Fileccovvieiieiiieseee e 67

845 REJUESE LOGS . .viiiiiiiiiiiesieie st sree e sitee st e st s sns e snnessnnneesnnes 67

85 ReqUESt CanCEliNG ...c.ccoueeeeiece e 69

8.6 Request MONItOrNG APIS ..o s 69

9.0 TeChniCal SUPPOITeoevieiieeee e e 71
0 X O @0 o)V [0 o | AP 72
10.0 COPYRIGHT .ottt bbb 72

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 4

MarkLogic Server Tuning Query Performance in MarkLogic Server

1.0 Tuning Query Performance in MarkLogic Server

This chapter describes some general issues involving query performance in MarkLogic Server,
and includes the following sections:

e OQverview of Query Performance

e General Technigues to Tune Performance

¢ Understanding MarklLoqic Server Caches

e Rules of Thumb for Sizing

1.1 Overview of Query Performance

MarkLogic Server is designed to search extremely large content sets, while providing
fine-grained control over the search and access of the content. Performance is always an
important component in a search application. In many cases, applications will be extremely fast
with no tuning whatsoever. There are, however, many tools and techniques to help make queries
faster.

There are several things to consider when looking at query performance:

* Application requirements: how fast does performance need to be for your application?Itis
often useful to quantify this at application design time. Factors such as who will be using
the application, what any user expectations for performance are, and whether the
application will be publicly available are important considerations in defining
performance requirements.

* Indexing options. what indexes are defined for the database? Indexing options play an
important role in how well queries can be resolved from the indexes. The fastest way to
resolve aquery is directly from the indexes. For details on database options, see the
chapters Databases and Text Indexing in the Administrator’s Guide.

* XQuery code: isyour code written in the most efficient way possible? Sometimes, code
runs more slowly than necessary because there are redundant or unneeded function calls.
Or there may be a MarkL ogic XQuery built-in function that performs an equivalent task
more efficiently. Functions such as xdmp: estimate, cts:search, lexicon functions, and so
on are all designed for fast performance.

* Moreindexes and lexicons. can range indexes and lexicons speed up your queries? For
gueries that access values and/or do comparisons on those values, range indexes can
greatly speed performance. Range indexes are memory mapped structures, so they can
retrieve the values without ever needing to access the documents. Lexicons are lists of
words or values, and they too can greatly speed up certain types of queries.

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 5

MarkLogic Server Tuning Query Performance in MarkLogic Server

» Server tuning: are your server parameters set appropriately for your system? In most
cases, the parameters set during installation work well for the system in which MarkL ogic
Server isinstalled. Nevertheless, there are cases where you might need to change some
parameters, either for a short-term need or for ongoing needs.

» Scalability: isyour system sufficiently large for your needs? Memory, disk space and
quality, swap space, number of processors, and number of serversall contribute to the
overall scalability of aMarkLogic Server system. MarkLogic Server is designed to scale
to very large clusters with extremely large amounts of content.

This chapter and this book, as well as the Application Developer’s Guide, provide information
and techniques on tuning a system for optimal performance. The nature of tuning exercisesisthat
they tend to be content-specific, so you cannot always pinpoint a particular recipe that will work
for every situation. Getting to know the tools available, the XQuery APIs, and how MarkL ogic
Server works is the best way to make your applications run extremely fast.

1.2 General Techniques to Tune Performance

This section lists some general techniques useful in tuning performance, and provides links to
places in the documentation where there is more information on a subject. It contains the
following parts:

e Search Built-In APIs

e Lexicons For Unigue Word or Value Lookups

* Range Queries for Constraining Searches to a Range of Values

e Positions Indexes Can Help Speed Phrase Searches

* Use Query Meters and Query Trace to Characterize Performance

* Profiler API

* Monitoring APl and Status Screens

* Index Options, Range Indexes, Fields

1.2.1 Search Built-In APIs

The search built-in XQuery APIs are designed to provide very fast searches. The APIs

(cts :search, xdmp:estimate, cts:element-values, and so on) use the indexes for fast search
performance. The composable cts: query constructors make it easy to compose complex search
gueries with fast performance. For details on the search built-in XQuery APIs, see MarkLogic
XQuery and XSLT Function Reference. For details on the constructors, see Composing cts:query
Expressions in the Search Developer’s Guide.

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 6

MarkLogic Server Tuning Query Performance in MarkLogic Server

1.2.2 Lexicons For Unique Word or Value Lookups

MarkLogic Server allows you to create lexicons, which are lists of unique words or valuesin a

database. Lexicons allow for very fast lookups, and in the case of values, also provide very fast

counts. For details on lexicons, see the chapter Browsing With Lexicons in the Search Developer’s
Guide.

1.2.3 Range Queries for Constraining Searches to a Range of Values

Range queries allow you to specify queries that use range indexesin acts:query EXpression.
Range queries can both improve performance and make it easier to build applications that
constrain on values. For details on range queries, see Using Range Queries in cts:query Expressions
in the Search Developer’s Guide.

1.2.4 Positions Indexes Can Help Speed Phrase Searches

If you specify word positions in the database configuration, it can speed phrase searches. During
the index resolution phase of query processing, MarkLogic Server determinesif words are next to
each other based on their positions. For example, if you search for the phrase "to be or not to
ve", MarkLogic Server can eliminate as possible matches, based on positions, most occurrences
of these common words because they do not have the proper word next to it. This speeds
performance in two ways: it lowers the number of 1/0Os needed to retrieve candidate fragments,
and it makes the filtering phase faster because there are less candidate fragments to filter. For
details about how search processing works, see “Understanding the Search Process” on page 10.

1.2.5 Use Query Meters and Query Trace to Characterize Performance

There are two XQuery functions to help you characterize the performance of queries:

xdmp : query-meters aNd xdmp : query-trace. The former provides timi ng of aquery and the latter
logs details of the query evaluation to the exrrorrog. txt file. For details on these APIs, see
“Tuning Queries with query-meters and query-trace” on page 15 and the MarkLogic XQuery and
XSLT Function Reference.

1.2.6 Profiler API

MarkLogic Server hasaprofiler to help determine where a query is spending time processing. For
details on the profiler, see “ Profiling Requests to Evaluate Performance”’ on page 38 and the
MarkLogic XQuery and XSLT Function Reference.

1.2.7 Monitoring APl and Status Screens

There are APIs and status screens in the Admin Interface to monitor activities on your system.
These can be useful in identifying bottlenecks on your system. For details, see “Monitoring
MarkL ogic Server Performance” on page 53.

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 7

MarkLogic Server Tuning Query Performance in MarkLogic Server

1.2.8 Index Options, Range Indexes, Fields

There are many types of index options, including several types of wildcard indexes, el ement
indexes, stemmed indexes, element and attribute range indexes, and so on. Depending on your
needs, these indexes can help speed performance. Indexes tend to take more disk space and
increase loading times, but can greatly improve performance.

Fields are another way of improving performance, especially if you are only interested in
searching through certain included elements, or you want your searches to exclude particular
elements. For details on fields, see Fields Database Settings in the Administrator’s Guide.

1.3 Understanding MarkLogic Server Caches

MarkL ogic Server has several caches used in query processing, defined on the group
configuration page. The list cache stores termlists in memory, the compressed tree cache stores
compressed fragment datain memory, and the expanded tree cache stores uncompressed fragment
datain memory. Additionally, there are several other caches used for security objects, modules,
schemas, and so on; these other caches cannot be configured. In most cases, if the cachesfill up,
they will move older data out to make room for newer content.

In some cases, however, it is possible to run aquery that will fail because a cache was full.
Particularly, when the expanded tree cache gets full, a query can fail with an xpmp-TrEECACHEFULL
exception. The following are some guidelines to avoid xpvp- TREECACHEFULL €fTOrS:

» Avoid queriesthat return the entire database. Instead, return the results in batches (a page
at atime, like a classic search page, for example).

* Try torewrite the query in amore efficient way.

* Make sure swap space is configured properly on your server.

* If you do not have sufficient memory on your server, consider adding more memory to the
system.

* You canraisethe sizes of the caches, but that might be atemporary fix.

* 64-bit systems are recommended. 64-bit systems can hold alot more memory, and more
memory means larger caches.

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 8

MarkLogic Server Tuning Query Performance in MarkLogic Server

1.4

Rules of Thumb for Sizing

The following are some rule-of-thumb sizing recommendations. These recommendations are best
practices based on experience with MarkLogic Server implementations. Also, some of these
recommendations are content specific. Performing experiments on your own content is a good
way to validate any expansions of these rules of thumb, but these provide a good starting point.

Y ou should have approximately 10-20 GB of forest dataper 1 GB of RAM. More memory
will help, too, especialy if you have alot of range indexes and/or lexicons.

64-bit systems are good—they greatly increase the address space so you can address more
than 4GB of RAM.

Forests should not grow too much past 256GB or 128-million fragments; before aforest
size approaches 256 GB or 128-million fragments, think about creating a new forest.
MarkL ogic logs Warning messages when the forest grows past 104-million fragments, at
128-million fragments it logs Error messages, and continues to log increasing severity
messages if the forest continues to grow. If your forest grows near this limit, add more
forests to the database and rebalance the database to move fragments into the new forests.

Do not have more than 1024 primary forests in a single database.

Make sure you have at least 2x memory for swap space (or the recommended amount for
your platform, as described in Memory, Disk Space, and Swap Space Requirements in the
Installation Guide). Thisisimportant to make sure MarkL ogic Server does not run out of
memory. At query time, MarkLogic Server asks the operating system to reserve both
memory and swap space. If there is not enough of either, the query can fail with
svc-MEMALLOC Messages. These messages can happen if you do not have the recommended
amount of swap space. If you do have enough swap space and still get these errors, it can
indicate that you either need to increase the amount of memory in the system or lower the
amount of memory being used, either by modifying your queries or lowering some of the
sizes of server caches, lowering the number of threads the server can service, and so on.

For updates, make the journal sizelarger if you have alot of range index data. A symptom
of thisas a problem isjournal-full errors.

For updates, make the journal size larger if your transactions span multiple forests. The
journals must keep the lock information for all documentsinvolved in the transaction, not
just for the documentsin the journal for the forest in which the document exists. A
symptom of this as a problem is journal-full errors.

Thereisalimit of 65k for the size of astring literal or atoken in an XQuery program. If
you need to input a string longer than 65k, use an external variable with the xdmp : invoke
API. Externa variables are limited to a single node or a string, and in XCC are limited to
string only. In XCC, if you need to input a node as an external variable, you must quote it
asastring on input and then unquote it (xdmp : unquote) INtO a node in your X Query
function. Note that thislimit is only for the size of a string literal or atoken; XQuery
program sizes are limited only by the cache size.

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 9

MarkLogic Server Fast Pagination and Unfiltered Searches

2.0 Fast Pagination and Unfiltered Searches

MarkLogic Server provides a powerful XML-enabled search capability through the cts:search
XQuery built-in function. As part of the search capability, MarkL ogic Server allows you to issue
cts:search expressions that return results directly from the indexes, without performing the
filtering necessary to ensure there are no false-positive results. This chapter describes the search
process, including unfiltered searches, and includes the following sections:

e Understanding the Search Process

e Understanding Unfiltered Searches

e Using Unfiltered Searches for Fast Pagination

e Example: Determining the Number of False-Positive Matches

2.1 Understanding the Search Process

When evaluating cts:search expressions (and also when resolving X Path expressions within
XQuery code), MarkLogic Server performs a two-step process.

1 A list of candidate fragment IDsis generated directly from the indexes, based on the
index-resolvable criteriaincorporated in the various parameters passed tO cts: search.
Fragment |1Ds are ordered according to relevance criteria. This step is called index
resolution.

2. The candidate fragment IDs are used to load fragments from disk. Each fragment is then
examined in order, using the complete criteriaincorporated in the various parameters
passed to cts:search, tO determine if the fragment contains zero, one, or more than one
result that matches the given cts:search expression. This step is called filtering.

The purpose of index resolution isto narrow the set of candidate fragmentsto as small a set as
possible, without missing any. In some circumstances, the index resolution step can yield a
precisely correct set of candidate fragments, rendering the filtering step redundant. In other
circumstances, index resolution can reduce the set of candidate fragments somewhat, but in the
candidate fragment list there are still false-positive results (that is, candidate fragments that in fact
contain no matching results). In still other circumstances, the candidate fragment list can contain
fragments that contain more than one matching result.

To better understand fal se-positive results, imagine a database configuration which has not
enabled fast case-sensitiveindexes (fast case sensitive searches ON the database configuration
page). This meansthat the full-text indexes only maintain direct |ookups for words independent of
their case. In this scenario, if you are searching for "pog, the indexes can only tell you what
fragments contain the word dog, in any case-combination of text (for example, "daog", "poc",
"Dog", "doG", and SO 0n). So when index resolution generates a candidate fragment list for "pogr,

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 10

MarkLogic Server Fast Pagination and Unfiltered Searches

that list could include a fragment that has the word "aog" but not the word "pog. Thisis where
filtering comes in—by loading that fragment and examining it prior to returning it as a match,
MarkLogic Server is able to determine that it isnot in fact a match for the specified query, and
ruleit out. The fragment is afalse-positive result, and should not be returned to the query.

To understand how a candidate fragment can contain more than one match, consider a
single-fragment document that contains multiple <autnhor> elements as follows:

<author>Bruce Smith</authors>
<author>Betty Smith</authors>
<author>Gordon Blair</authors>

Now consider the following query:

cts:search(//author, "Smith")

During index resolution, this query generates the fragment for that document as a single candidate
fragment. In fact, that single document should generate two results—one for each of Bruce and
Betty Smith. During the filtering step, MarkLogic Server identifies that there is more than one
element in this document that matches the search requirements, and returns both of the first two
<author> €lements as results.

Asyou can see from these exampl es, the combination of index resolution and filtering combine to
provide both performance and accuracy. The algorithm is designed to allow you to write complex
queries, and have MarkLogic Server determine the most efficient path providing accurate results.

There are disadvantages to the algorithm, however. Sometimes, you might know better than the
search engine, and through careful design of your XML and your fragmentation, you might know
that filtering is simply unnecessary. In this case, filtering takes unneeded cycles. In another
situation, if you want to jump deep into aresult set (for example, retrieving the 1,000,000th result
from areally large result set), the emphasis MarkL ogic Server has on accuracy through filtering
might provide an impractical constraint for your application, because filtering the first 999,999
results will take far too long. Furthermore, it might not matter to your application if, when you
jump to the 1,000,000th result, you actually end up at approximately that result (even if in reality
it isthe 949,237th result).

Consequently, MarkLogic Server provides you with tools to influence the evaluation of
cts:search EXpressions, indicating whether or not filtering is required.

2.2 Understanding Unfiltered Searches

An unfiltered search omits the filtering step, which validates whether each candidate fragment
result actually meets the search criteria. Unfiltered searches, therefore, are guaranteed to be fast,
while filtered searches are guaranteed to be accurate. By default, searches are filtered; you must
gpecify the "unfiltered" Option tO cts:search tO return an unfiltered search. Unfiltered searches
have the following characteristics:

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 11

MarkLogic Server Fast Pagination and Unfiltered Searches

» They determine the results directly from the indexes, without filtering for validation. This
makes unfiltered results most comparable to traditional search-engine style results.

* They include false-positive results. False-positive results can originate from a number of
situations, including phrase searches containing 3 or more words, certain wildcard
searches, punctuation-sensitive, diacritic-sensitive, and/or case-sensitive searches.

» They will be significantly affected by fragmentation policy.

The following are some useful guidelines for when to use unfiltered searches:

* You should only perform unfiltered searches on top-level nodes or on fragment roots,
otherwise you might get unexpected answers. Thisis because, for queries below the
fragment level, there is no guarantee that a particular unfiltered search even matches the
guery (that is, there is a match somewhere in the fragment, but not necessarily a match in
the node you are searching).

» If you choose to specify an XPath other than a top-level node or a fragment root, your
XPath expression will give correct resultsif thereis only one possible node to match in
each fragment (or if the only possible match isin the first node specified). Thisis because
unfiltered searches stop after encountering the first node per fragment that matches the
specified X Path expression. If you are sure that the node you specify only has one instance
per fragment, then it will not miss any results (although it might get fal se-positive results).
An example of thisis aestract in MEDLINE citatation, where asstract is below the
fragment root, but there is only one asstract node per fragment. If you specify below a
fragment root and there are multiple nodes in the fragment, the search may missresults (it
will only find resultsif they are in the first fragment).

Finally, it isuseful to understand that cts:contains implements the filtering step of the two-step
search process:

unfiltered cts:search + cts:contains = normal (filtered) cts:search

Breaking a cts:search operation into an unfiltered search and a cts:contains alowsyou to do
the search so it is always fast, but then only do the false-positive result removal if you want or
need to. Thisistrue aslong as thefirst parameter to cts:search isat afragment root node. If it is
below aroot node, it is only true if you know that the first node is the only possible hit for the
search (for example, if thereisonly one node, asin the asstracT example above).

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 12

MarkLogic Server Fast Pagination and Unfiltered Searches

2.3 Using Unfiltered Searches for Fast Pagination

There are many useful applications for unfiltered searches. Applications of unfiltered searches
tend to have one or more of the following characteristics:

* Your content and search terms are such that you know the unfiltered searches are also
accurate (for example, the searches are al performed at document or fragment roots, they
are single-term queries, and are not wildcard, punctuation-sensitive, diacritic-sensitive,
and/or capitalization-sensitive searches).

* Youdo not mindif there are some fal se-positive results because the results are an estimate
(that is, they need to be fast, but are not required to be exact).

* Your searches return alarge number of results and you want efficient waysto jump to a
particular portion of those results.

The last point describes the situation for fast pagination. Fast pagination isaway to get an
approximate count of the total number of result hits and then provide efficient ways to jump deep
to an arbitrary point in the result sequence. Such pagination is common in search engine-style
results, where a particular result might return 1 million hits and the search interface returns them
10 at atime. There is usually some sort of counter that says something like “displaying 1-10 of
1,000,000 results,” and then there are links to go to the next page of results or to go to the tenth,
twentieth, or any page of the results. Often it isnot critical that going to the twentieth page
actually getsyou to the 200th hit; it is OK if there were some fal se-positive results, and when you
click that link you actually get to the 176th result.

When you implement afast pagination application, you will need to jump into aposition in an
unfiltered search. To maximize the efficiency of this search, you must immediately follow the
unfiltered cts:search expression with the position predicate, with no X Path steps in between. For
example, to jump into the 1,000,001st hit of an unfiltered search for the phrase “ one two three”,
the search might look like the following:

cts:search(fn:doc (), "one two three", "unfiltered") [1000001 to 1000010]

This search will skip directly to the 1,000,001st unfiltered hit and return the 10 fragments
specified in the position predicate; it will not need to fetch any other fragments.

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 13

MarkLogic Server Fast Pagination and Unfiltered Searches

2.4 Example: Determining the Number of False-Positive Matches

The following code sample prints out the number of false-positive matches from a search.

xquery version "1.0-ml";
declare boundary-space preserve;
declare namespace gm="http://marklogic.com/xdmp/query-meters";

let StrueCounter := 0
let S$falseCounter := 0
let S$searchTerms := "one! two three"
let $x :=
for Sresult in cts:search(fn:doc (), S$searchTerms, "unfiltered")
return
(
if (cts:contains(Sresult, $searchTerms))

then (xdmp:set ($trueCounter, $trueCounter + 1))
else (xdmp:set($falseCounter, $falseCounter + 1))
)

return

<results>
<resultTotal>{$trueCounter}</resultTotal>
<false-positiveTotal>{$falseCounter}</false-positiveTotal>
<elapsed-time>{xdmp:query-meters () /gqm:elapsed-time/text ()}
</elapsed-time>

</results>

Because the specified ssearchTerms cOntains punctuation in the middle of the phrase, any
document that has the phrase “one two three” will prove to be afalse-positive result. If you
substitute in your query terms for the ssearchTerms variable, you can see if your own unfiltered
search yields false-positive results.

The above code uses the xdmp : set function to keep track of the number of matches and the
number of false-positive results. It runs the unfiltered search and then usesS cts: contains to check
if each result is actually amatch. If it isamatch, then increment the struecounter variable,
otherwise increment the sfalsecounter Variable.

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 14

MarkLogic Server Tuning Queries with query-meters and query-trace

3.0 Tuning Queries with query-meters and query-trace

MarkL ogic Server isdesigned for very fast query performance over large amounts of data. While
query performance is usualy very fast, sometimes you will issue queries that do not perform as
well as you would like. MarkLogic Server includes functions to help you optimize the
performance of queries.

This Chapter describes how to use the xdmp : query-meters and xdmp : query-trace functionsto
understand and tune the performance of queries. It includes the following sections:

* Indexes, XPath Expressions, and Query Performance

e Understanding query-meters Output

¢ Understanding query-trace Output

¢ Using xdmp:plan to View the Evaluation Plan

e Examples

e 2004-12-08 15:48:01.502 Info: **** **** Bagin query trace and meter log ****
004-12-08 15:48:01.502 Info: line 9: Analyzing path:
doc("/myDocsf/file.xml")/descendant::Node-1

2004-12-08 15:48:01.502 Info: line 9: Step 1 is searchable: doc("/myDocs/file.xml")

004-12-08 15:48:01.502 Info: line 2: Step 2 axis does not use indexes: descendant

004-12-08 15:48:01.502 Info: line 2: Step 2 test is searchable: Node-2

004-12-08 15:48:01.502 Info: line 2: Step 2 is searchable: descendant::Node-2

004-12-08 15:48:01.502 Info: line 2: Path is searchable.

004-12-08 15:48:01.502 Info: line 2: Gathering constraints.

2004-12-08 15:48:01.502 Info: line 2: Step 2 test contributed 1 constraint: Node-2

2004-12-08 15:48:01.502 Info: line 2: Executing search.

004-12-08 15:48:01.502 Info: line 2: Selected 1 fragment to filter

2004-12-08 15:48:01.502 Info: <gm:query-meters xsi:schemal ocation="http://marklogic.com/xdm

p/query-meters query-meters.xsd" xmins:xsi="http://www.w3.0rg/2001/XML Schema-instance"
xmlns:gm="http://marklogic.com/xdmp/query-meters"> <gm:elapsed-time>PT0.0000685S
</gm:elapsed-time> <gm:requests>0 </gm:requests> <gm:list-cache-hits>0
</gm:list-cache-hits> <gm:list-cache-misses>0 </gm:list-cache-misses> <gm:list-size>0
</gm:list-size> <gm:in-memory-list-hits>0 </gm:in-memory-list-hits> <gm:triple-cache-hits>0
</gm:triple-cache-hits> <gm:triple-cache-misses>0 </gm:triple-cache-misses>
<gm:triple-value-cache-hits>0 </gm:triple-value-cache-hits> <gm:triple-value-cache-misses>0
</gm:triple-value-cache-misses> <gm:expanded-tree-cache-hits>0
</gm:expanded-tree-cache-hits> <gm:expanded-tree-cache-misses>0
</gm:expanded-tree-cache-misses> <gm:compressed-tree-cache-hits>0
</gm:compressed-tree-cache-hits> <gm:compressed-tree-cache-misses>0
</gm:compressed-tree-cache-misses> <gm:compressed-tree-size>0
</gm:compressed-tree-size> <gm:in-memory-compressed-tree-hits>0
</gm:in-memory-compressed-tree-hits> <gm:value-cache-hits>0 </gm:value-cache-hits>
<gm:value-cache-misses>0 </gm:value-cache-misses> <gm:regexp-cache-hits>0
</gm:regexp-cache-hits> <gm:regexp-cache-misses>0 </gm:regexp-cache-misses>
<gm:link-cache-hits>0 </gm:link-cache-hits> <gm:link-cache-misses>0
</gm:link-cache-misses> <gm:filter-hits>0 </gm:filter-hits> <gm:filter-misses>0
</gm:filter-misses> <gm:fragments-added>0 </gm:fragments-added>
<gm:fragments-deleted>0 </gm:fragments-deleted> <gm:fs-program-cache-hits>0

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 15

MarkLogic Server Tuning Queries with query-meters and query-trace

</gm:fs-program-cache-hits> <gm:fs-program-cache-misses>0
</gm:fs-program-cache-misses> <gm:db-program-cache-hits>0 </gm:db-program-cache-hits>
<gm:db-program-cache-misses>1 </gm:db-program-cache-misses>
<gm:env-program-cache-hits>0 </gm:env-program-cache-hits>
<gm:env-program-cache-misses>0 </gm:env-program-cache-misses>
<gm:fs-main-module-sequence-cache-hits>0 </gm:fs-main-module-sequence-cache-hits>
<gm:fs-main-module-sequence-cache-misses>0
</gm:fs-main-module-sequence-cache-misses> <gm:db-main-module-sequence-cache-hits>0
</gm:db-main-module-sequence-cache-hits> <gm:db-main-module-sequence-cache-misses>0
</gm:db-main-module-sequence-cache-misses> <gm:fs-library-module-cache-hits>0
</gm:fs-library-module-cache-hits> <gm:fs-library-module-cache-misses>0
</gm:fs-library-module-cache-misses> <gm:db-library-module-cache-hits>0
</gm:db-library-module-cache-hits> <gm:db-library-module-cache-misses>0
</gm:db-library-module-cache-misses> <gm:read-locks>0 </gm:read-locks>
<gm:write-locks>0 </gm:write-locks> <gm:lock-time>0 </gm:lock-time>
<gm:contemporaneous-timestamp-time>0 </gm:contemporaneous-timestamp-time>
<gm:compile-time>0.0001729 </gm:compile-time> <gm:commit-time>0 </gm:commit-time>
<gm:run-time>0 </gm:run-time> <gm:indexing-time>0 </gm:indexing-time>
<gm:fs-schema-cache-hits>0 </gm:fs-schema-cache-hits> <gm:fs-schema-cache-misses>0
</gm:fs-schema-cache-misses> <gm:db-schema-cache-hits>0 </gm:db-schema-cache-hits>
<gm:db-schema-cache-misses>0 </gm:db-schema-cache-misses>
<gm:env-schema-cache-hits>0 </gm:env-schema-cache-hits>
<gm:env-schema-cache-misses>0 </gm:.env-schema-cache-misses> <gm:fragments>
</gm:fragments> <gm:documents> </gm:documents> <gm:hosts> </gm:hosts>
</gm:query-meters> 2004-12-08 15:48:01.502 Info: **** **** End query trace and meter log ****

General Methodology for Tuning a Query

3.1 Indexes, XPath Expressions, and Query Performance

When you load data into a MarkL ogic Server database, indexes are created based on the index
configuration for that database. The indexes help to optimize searches, X Path expressions, and
other query patterns.

Sometimes, however, a query cannot use the indexes, and that leads to slower performance. In
these cases, there are two main types of things you can do to speed up the query performance:
* Rewrite the query so it makes better use of the indexes.
* Add moreindexes.

The xdmp : query-meters and xdmp : query-trace functions provide information to help you
determine where the problem areas in the query are, and can help you determine ways to easily
and, in many cases, dramatically improve query performance. Understanding the output of these
functionsisthe key to analyzing a query and tuning it for maximum performance.

To use these functionsin a query:

* Add xamp:query-meters () t0the end of aquery, with the concatenate operator (,) before
the function.

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 16

MarkLogic Server Tuning Queries with query-meters and query-trace

* Add xdmp:query-trace (true ()) t0 the beginning of the portion of the query you want to
analyze, with the concatenate operator (,) after the function. Then add
xdmp : query-trace (false ()) a the end of the portion of the query you want to analyze,
with the concatenate operator (,) before the function.

3.2 Understanding query-meters Output

The xamp : query-meters function provides statistics about query execution. To use
xdmp : query-meters, concatenate the xdamp : query-meters () function to the end of your query. For
example, the following query produces both the initial query results and the query-meters OUtpuL:

doc ("/myDocuments/hello.xml") //a/b/c
, xdmp:query-meters ()

Theresult is a sequence of < nodes from the /mybocuments/hel1o.xm1 document followed by a
gm:query-meters node containi ng the query-meters OUtPUL.

For its function signature, see the xdmp: query-meters function in MarkLogic XQuery and XSLT
Function Reference.

The following subsections describe the output of the xdmp : query-meters function:

* Qutput From xdmp:query-meters

e Understanding the Cache Statistics

3.2.1 Output From xdmp:query-meters

The xdmp : query-meters function produces an XML document that conformsto the
query-meters.xsd schema. The query-meters.xsd schemais loaded into the schemas database
and iscopied to the <install dir>/config directory at installation time.

The output shows elapsed time for the query, hits and misses from the various query caches, and
information about fragments and documents the query accessed. The fragment output prints one
element per fragment root name (not one element per fragment). The document output prints one
element per document URI. For sample xdmp : query-meters OUtpUt, See “ Sample
xdmp:query-meters Output” on page 25.

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 17

MarkLogic Server Tuning Queries with query-meters and query-trace

3.2.2 Understanding the Cache Statistics

There are several elementsin the xdmp : query-meters output that list the number of hits and misses
on the query caches. Cache hits are good, and indicate the query is running in an optimized
fashion. Cache misses indicate that the query could not retrieve its results directly from the cache,
and had to read the data from disk. Because disk 1/0 is expensive relative to reading from
memory, cache misses indicate that the query might be able to be optimized, either by rewriting
the parts of the query that have cache misses to better take advantage of the indexes or by adding
indexes that the query can use.

MarkL ogic Server has several different caches used for query processing. In general, these caches
load index datainto memory, providing optimized query processing for alarge variety of queries.

The xdmp : query-meters function lists hits and misses for the following caches:

» list cache
The list cache holds search term lists in memory and helps optimize XPath expressions
and text searches.

» expanded tree cache
The expanded tree cache holds the uncompressed XML datain memory (in its expanded
format).

e compressed tree cache
The compressed tree cache holds compressed XML tree datain memory. The dataiis
cached in memory in the same compressed format that is stored on disk.

* in-memory cache
The in-memory cache holds data that was recently added to the system and is till in an
in-memory stand; that is, it holds data that has not yet been written to disk.

» valuecache

The value cache exists only for the duration of aquery. It holds typed values and
optimizes queries that perform frequent conversion of nodes to typed values. Each miss
for the value cache indicates that an XML node must be converted to atyped value.

» regular expression cache

Theregular expression cache (regexp-cache) exists only for the duration of a query. It
holds compiled regular expressions, and optimizes queries that use aregular expression
multiple times.

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 18

MarkLogic Server Tuning Queries with query-meters and query-trace

* link cache

Thelink cache exists only for the duration of aquery. The link cache holds the
relationships between parent and child nodes, reusing that relationship throughout the
guery execution to optimize query processing.

The cache hits and misses are also broken down by fragment and by document. Each fragment
element represents al of the fragments with the specified name. Each document element
represents a document with the specified URI. The fragment and document elements of the
xdmp : query-meters OUtpUt show cache hits and misses for the expanded tree cache. These
statistics can help you isolate which documents or fragments are being optimally processed. If a
given document or fragment gets cache misses, you might be able to add indexes or rewrite the
query to speed performance.

To help tune query performance, run the xdmp : query-meters function with your query and look
for cache misses in the xdmp : query-meters OUtpUL; cache misses indicate areas where the query
can be tuned (either by rewriting or by adding indexes) for better performance.

3.3 Understanding query-trace Output

The xdmp : query-trace function |OgS OUtpUt to the <data_dirs>/Logs/ErrorLog.txt file duri ng
guery execution. To start query tracing, concatenate the xdmp : query-trace (true ()) function at the
part of your query where you want the tracing to begin, and add xdmp : query-trace (false ())
where you want tracing to stop. For example, the following query produces results for the query
and Iogs the query-trace OUtpUt tO the ErrorLog.txt file:

xdmp : query-trace (true()),
doc (" /myDocuments/hello.xml") //a/b/c
, xdmp:query-trace (false())

For its function signature, see the xdmp : query-trace function in MarkLogic XQuery and XS.T
Function Reference.

The following subsections describe the output of the xdmp : query-trace function:

e What query-trace Logs

¢ |Interpreting the Log Messages

e Fully Searchable Paths and cts:search Operations

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 19

MarkLogic Server Tuning Queries with query-meters and query-trace

3.3.1 What query-trace Logs

The xamp : query-trace function prints INFO-level messagesto the log file while aquery is
executing. It prints one log message for each X Path expression, and at |east one log message for
each step in the XPath expression. It also prints messages for predicates and other parts of query
evaluation. Therefore, xdmp : query-trace can potentially log alarge number of messages to the
log file, particularly for complex queries that contain very deep X Path expressions and many
searches.

The xamp : query-trace function logs the following information about the query processing and
execution:

e XPath Expression Analysis Messages

e Constraint Analysis Messages

e Search Execution Messages

3.3.1.1 XPath Expression Analysis Messages

The xdmp : query-trace function prints INFO-level messages to the log file about the X Path
expressionsin the query. The messages log whether an XPath expression is searchable. A
searchable €XpPression isone which can be optimized by using the indexes. The query-trace
output shows which stepsin the XPath expression are or are not searchable With the indexes.

For query tuning, the most important thing the log output has is the information about whether an
EXPression is searchable OF NOt. IN general, searchable EXPressions can use the indexes to
execute, and therefore execute fast. Expressionsthat are unsearchabie cannot use the indexes, and
must fetch the data from disks. For a summary of how to read the log messages, see “Interpreting
the Log Messages’ on page 22.

3.3.1.2 Constraint Analysis Messages

The constraint analysis phase of the query-trace output prints log messages about predicatesin
XPath expressions and where clauses. At the beginning of each constraint analysis section, you
will see amessage similar to the following:

2004-12-06 11:57:18.325 Info: line 21: Gathering constraints.

The output logs one message for each step in the X Path expression that contributes to the
constraint. It only prints messages about constraints that can be evaluated using the indexes;
unoptimized constraints do not generate any query-trace output. When the predicate constraint is
reached, the log shows a message similar to the following:

2004-12-15 10:44:57.734 Info: line 2: Comparison contributed hash value
constraint: Heading-2 = "hello"

This message corresponds to an X Path expression with a predicate like the following:

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 20

MarkLogic Server Tuning Queries with query-meters and query-trace

doc ("/myDocuments/hello.xml") /XML//Heading-2[. = "hello"]

The log message text hash value constraint indicates that the optimizer used the standard
indexes (word search, stemmed search, and so on, as set up in the database configuration) to
evauate this predicate. Equality constraints on predicates use the standard indexes for evaluation,
and this makes the evaluation perform fast.

Inequality constraints such as greater than (gt or ») and less than (1t or <) cannot be evaluated
using the standard indexes. For inequality constraints to be optimized, you must have an element
(range) index on the element used in the comparison. If you have an inequality constraint and
have an element index on the element used in the comparison, the log shows a message similar to
the following for the constraint eading-2 > "hello":

2004-12-15 10:44:57.734 Info: line 2: Comparison contributed range
value constraint: Heading-2 > "hello"

The log message text range value constraint indicates that the optimizer used an element index
to evaluate the query.

Note: If neither the standard indexes nor an element index is used to evaluate a
constraint, no such log message appears, and the constraint is not optimized.

3.3.1.3 Search Execution Messages

The xamp : query-trace function also logs detailed information about how many fragments are
used to evaluate a query. These messages show the number of fragments that are filtered. When a
fragment isfiltered, it means that the indexes found a possible match for the query in that
fragment, and the fragment must then be retrieved to make sure it meets all of the query criteria.
In awell-optimized query, the number of fragments filtered will be close to the number of
fragments that satisfy the query.

If aquery returns no results, or if it can be answered directly from the indexes, there will be no
fragments filtered, and the log shows messages similar to the following:

2004-12-15 10:44:57.367 Info: line 2: Executing search.
2004-12-15 10:44:57.367 Info: line 2: Selected 0 fragments to filter

If the query results come from a single fragment, and the query uses either the standard or element
(range) indexes for its evaluation, the log shows messages similar to the following:

2004-12-15 11:14:10.926 Info: line 2: Executing search.
2004-12-15 11:14:10.926 Info: line 2: Selected 1 fragment to filter

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 21

MarkLogic Server Tuning Queries with query-meters and query-trace

Thelinethat says selected 1 fragment to filter indicates how many candidate fragment
references were returned from the index resolution stage of query processing. For a query that
makes good use of the indexes, the number of fragments filtered is close to the number of
fragments returned in the query results. For example, if there are 45 fragments that match agiven
query, and if xdmp: query-trace Shows 45 fragments filtered, then that query is making good use
of the indexes (because it does not have to filter any fragments that end up not contributing to the
query result).

In most cases, the smaller the number of fragments selected to filter, the faster the query performs.
An exception to thisisif you are doing unfiltered searches, as unfiltered search skip the filtering
stage of query processing. For details on unfiltered searches, see “Fast Pagination and Unfiltered
Searches’ on page 10.

3.3.2 Interpreting the Log Messages

The messages written to the log from the xdmp : query-trace function help you to determine if
there are ways to optimize the performance of aquery. The following is asummary of some
important things to look for when interpreting the xdmp : query-trace output:

e Theoutput iswritten to the errorrog. txt file.

» Log messages with the term searchabie are good—this means indexes can be used to
execute this part of the query (which in turn means the query will execute fast).

» Suspect problem areas when you see log messages with the term unsearchabile—this
means the indexes cannot be used to execute this part of the query.

* Log messages with theterm does not use indexes mean that there might be X Path steps
below this step that are searchabie, but this step or predicate will not be resolved directly
from the indexes (known as conditionally searchable). Thisis not necessarily bad, as
searches with steps that do not use the indexes can still be fast, but it is not as good as

searchable.

* Log messages with theterm comparison contributed hash value COnStraint indicate that
this predicate used the standard indexes to execute (which in turn indicates an optimized
predicate evaluation).

* Log messages with the tefm comparison contributed range value CONstraint indicate that
this predicate used an element (range) index to execute (which in turn indicates an
optimized predicate evaluation).

* NoOnash Or range Message in the constraint section indicates that the constraint needed to
scan the fragment to execute, and could not be optimized from the indexes.

* Inthe execution phase, the xdmp : query-trace output has alog message indicating the
number of fragmentsfiltered. In afully optimized query, that number is equal to the
number of fragments that the query returns (the number you would get if you wrapped the
search portion of the query in an xdmp: estimate cal). Asthe number of fragmentsfiltered
increases, and particularly as the number of fragments filtered grows past the number of

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 22

MarkLogic Server Tuning Queries with query-meters and query-trace

fragments that ultimately match the query, the amount of work needed to execute the
guery increases (which in turn causes performance to slow).

» XPath predicates that cross fragment boundaries are unsearchable (Cannot use indexes).
For example, if adocument is fragmented at the » element, then you should make sure
predicates do not cross the b boundary. Therefore, the following expression:

/a/ble="1"1/../d

will run faster than the following expression:

/alb/c="1"]/4d

3.3.3 Fully Searchable Paths and cts:search Operations

A fully searchable X Path expression is one that can be efficiently resolved using the indexes. The
following are examples of contexts requiring a fully searchable expression:

» Thefirst parameter of the cts:search XQuery function. This parameter identifies the
nodes to which MarkLogic applies the search query.

* Thesearchable-expression query option usable with the Search API and the Client APIs.

* Optimization of the XQuery order by clause of a FLOWR expression; for details, see
“Sorting Searches Using Range Indexes’ on page 32.

(Search operations such asthe cts.search Or jsearch.documents JavaScript functions or the
search:search XQuery function implicitly use the (fully searchable) expression £n:doc () for the
same purpose as the first parameter of cts:search.)

A searchable XPath expression or path step is one that can be fully resolved out of the indexes.
An XPath expression is searchableif it meets the following criteria:

* Rootedinan £n:doc, fn:collection, O xdmp:document-properties Call in XQuery, orin
dN fn.doc, cts.doc, fn.collection, OF xdmp.document -properties cal in Server-Side

JavaScript.
» Usesonly forward element axes, such as“/” and “/I.

A path step issearchableif it can be resolved out of the indexes. Generally, thismeans arelatively
simple expression. For example, if it uses predicates, the predicates are searchable and the step
uses only forward axes.

A path step can be searchable (resolvable out of the indexes), unsearchable (not resolvable out of
the indexes), or conditionally searchable (might or might not be resolvable out of the indexes). A
searchable expression can include predicates, but some predicates will make a path step
conditionally searchable.

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 23

MarkLogic Server Tuning Queries with query-meters and query-trace

A fully searchable X Path expression is one in which no path steps are unsearchable and the last
step is searchable. In a context such as the first parameter of cts:search, the XPath expressions
must be fully searchable. In other contexts, such as when traversing to a node, MarkLogic will
still attempt to satsify unsearchable or conditionally searchable path steps without using the
indexes, but performance will suffer.

You can often make an XPath expression fully searchable by rewriting the expression or adding
new indexes.

A partially searchable XPath expression is onein which the first path step is searchable, but the
rest of the expression does not meet the requirements for fully searchable. For example, apartially
searchable X Path expression might contain an unsearchable path step. A partially searchable
expression cannot be evaluated as efficiently as afully searchable expression.

You cannot use a partially searchable expression asthefirst parameter of cts:search, but you can
use one to select nodes in other contexts, such aswhen selecting nodes via X Path for anon-search
operation. You can also use a partially searchable expression as the value of the
-document_selector Option of an mlcp export command.

The best way to determine if an XPath expression and it’s path steps are searchable is to examine
the output of xdmp : query-trace (X Query) OI xdmp . queryTrace (JavaScrlpt) If the trace output
contains no entries tagged as unsearchable, then the expression is fully searchable. For an
example, see “ Sample xdmp:query-trace Output” on page 26.

3.4 Using xdmp:plan to View the Evaluation Plan

You can use the xdmp : p1an built-in function to see the search and execution plan for aquery. It
takes an XQuery expression, and it returns an XML report providing information about how the
indexeswill be used if you were to run the expression. It provides much of the information shown
IN xdmp : query-trace, @S Well as some more information about the query terms selected from the
index. The xamp: p1an Output is useful in determining if an expression is optimized properly and if
your range indexes are being used as you expect them to be.

Running an xdmp: p1an ON @ search is similar to running an xdmp: est imate ON @ search, and the
results of the estimate are included in the xdmp : p1an output. If the search cannot berunin aplan or

estimate, then it will throw an xpwe-unsearcuasLE €xception. For more details and the signature of
xdmp : plan, See the MarkLogic XQuery and XSLT Function Reference.

3.5 Examples

This section shows sample output from the xdmp : query-meters and xdmp : query-trace functions.
The following examples are included:

e Sample xdmp:query-meters Output

e Sample xdmp:query-trace Output

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 24

MarkLogic Server Tuning Queries with query-meters and query-trace

* | ogaging Both guery-meters and query-trace Output

3.5.1 Sample xdmp:query-meters Output

The following listing shows sample output from the xdmp : query-meters function:

<gm:query-meters xsi:schemalocation="http://marklogic.com/xdmp/query-m

eters query-meters.xsd" xmlns:gm="http://marklogic.com/xdmp/query-mete

rs" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" >
<gm:elapsed-time>PT0.000283S</gm:elapsed-time>
<gm:requests>0</gm:requests>
<gm:list-cache-hits>0</gm:list-cache-hits>
<gm:list-cache-misses>0</gm:list-cache-misses>
<gm:list-size>0</gm:list-size>
<gm:in-memory-list-hits>0</gm:in-memory-list-hits>
<gm:triple-cache-hits>0</gm:triple-cache-hits>
<gm:triple-cache-misses>0</gm:triple-cache-misses>
<gm:triple-value-cache-hits>0</gm:triple-value-cache-hits>
<gm:triple-value-cache-misses>0</gm:triple-value-cache-misses>
<gm:expanded-tree-cache-hits>0</gm:expanded-tree-cache-hits>
<gm:expanded-tree-cache-misses>0</gm:expanded-tree-cache-misses>
<gm:compressed-tree-cache-hits>0</gm: compressed-tree-cache-hits>
<gm:compressed-tree-cache-misses>0</gm: compressed-tree-cache-misses>
<gm:compressed-tree-size>0</gm:compressed-tree-size>
<gm:in-memory-compressed-tree-hits>0

</gm:in-memory-compressed-tree-hits>
<gm:value-cache-hits>0</gm:value-cache-hits>
<gm:value-cache-misses>0</gm:value-cache-misses>
<gm:regexp-cache-hits>0</gm: regexp-cache-hits>
<gm:regexp-cache-misses>0</gm: regexp-cache-misses>
<gm:link-cache-hits>0</gm:1link-cache-hits>
<gm:link-cache-misses>0</gm:link-cache-misses>
<gm:filter-hits>0</gm:filter-hits>
<gm:filter-misses>0</gm:filter-misses>
<gm: fragments-added>0</gm: fragments-added>
<gm: fragments-deleted>0</gm: fragments-deleted>
<gm: fs-program-cache-hits>0</qm: fs-program-cache-hits>
<gm: fs-program-cache-misses>0</qm: fs-program-cache-misses>
<gm:db-program-cache-hits>0</gm:db-program-cache-hits>
<gm:db-program-cache-misses>1</gm:db-program-cache-misses>
<gm:env-program-cache-hits>0</gm:env-program-cache-hits>
<gm:env-program-cache-misses>0</gm:env-program-cache-misses>
<gm: fs-main-module-sequence-cache-hits>0
</gqm:fs-main-module-sequence-cache-hits>

<gm: fs-main-module-sequence-cache-misses>0

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 25

MarkLogic Server Tuning Queries with query-meters and query-trace

</gqm:fs-main-module-sequence-cache-misses>
<gm:db-main-module-sequence-cache-hits>0
</gm:db-main-module-sequence-cache-hits>
<gm:db-main-module-sequence-cache-misses>0
</gm:db-main-module-sequence-cache-misses>
<gm:fs-library-module-cache-hits>0</gm:fs-library-module-cache-hits>
<gm:fs-library-module-cache-misses>0
</gqm:fs-library-module-cache-misses>
<gm:db-library-module-cache-hits>0</gm:db-library-module-cache-hits>
<gm:db-library-module-cache-misses>0
</gqm:db-library-module-cache-misses>
<gm:read-locks>0</gm:read-locks>
<gm:write-locks>0</gm:write-locks>
<gm:lock-time>0</gm:lock-time>
<gm:contemporaneous-timestamp-time>1.1le-06
</gm:contemporaneous-timestamp-time>
<gm:compile-time>0.0001972</gm:compile-time>
<gm:commit-time>0</gm:commit-time>
<gm:run-time>0</gm:run-time>
<gm: indexing-time>0</gm: indexing-time>
<gm: fs-schema-cache-hits>0</gm: fs-schema-cache-hits>
<gm: fs-schema-cache-misses>0</qgm: fs-schema-cache-misses>
<gm:db-schema-cache-hits>0</gm:db-schema-cache-hits>
<gm:db-schema-cache-misses>0</gm:db-schema-cache-misses>
<gm:env-schema-cache-hits>0</gm:env-schema-cache-hits>
<gm:env-schema-cache-misses>0</gm:env-schema-cache-misses>
<gm: fragments></gm: fragments>
<gm:documents></gm:documents>
<gm:hosts></gm:hosts>
</gm:query-meters>

3.5.2 Sample xdmp:query-trace Output

The following sample query:

XQuery Server-Side JavaScript
xquery version "1.0-ml"; 'use strict';
xdmp :query-trace (fn:true()), xdmp .queryTrace (true) ;
fn:doc ("/myDocs/file.xml") //Node-2, cts.doc ("/myDocs/file.xml") //Node-2;
xdmp:query-trace (fn:false()) xdmp .queryTrace (false) ;

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 26

MarkLogic Server Tuning Queries with query-meters and query-trace

produces xdmp : query-trace OUtput sSimilar to the following in the erroriog. txt file of your App
Server. The timestamp and “Info:” message prefix has been elided for readability.

. Analyzing path: doc("/myDocs/file.xml")/descendant: :Node-2
Step 1 is searchable: doc (" /myDocs/file.xml")
Step 2 axis does not use indexes: descendant
Step 2 test is searchable: Node-2
Step 2 1s searchable: descendant: :Node-2
Path is searchable.
Gathering constraints.
Step 1 contributed 1 constraint: fn.doc("/myDocs/file.xml")
Executing search.
Selected 1 fragment to filter

3.5.3 Logging Both query-meters and query-trace Output

You can use the xamp : 10g function to write the xdmp : query-meters output to the log file with the
xdmp : query-trace OUtpUt as follows:

xdmp:log ("

* k k%

**** Begin query trace and meter log

* kkk

Il) ,

xdmp : query-trace (true()),

doc ("/myDocs/file.xml") //Heading-2[. = "hello"]
xdmp: log (xdmp : query-meters ())

xdmp:log ("

* kk*k

***%* End query trace and meter log
* kk*k

n)
This query produces log output in the errorrog. txt file like the following:

2004-12-08 15:48:01.502 Info:

* kK k

*x** Begin query trace and meter log
*kk*x

004-12-08 15:48:01.502 Info: line 9: Analyzing path:
doc ("/myDocs/file.xml") /descendant: :Node-1
2004-12-08 15:48:01.502 Info: line 9: Step 1 is searchable:
doc ("/myDocs/file.xml")
004-12-08 15:48:01.502 Info: line 2: Step 2 axis does not use
indexes: descendant
004-12-08 15:48:01.502 Info: line 2: Step 2 test is searchable: Node-2
004-12-08 15:48:01.502 Info: line 2: Step 2 is searchable:
descendant : :Node-2

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 27

MarkLogic Server Tuning Queries with query-meters and query-trace

004-12-08 15:48:01.502 Info: line 2: Path is searchable.
004-12-08 15:48:01.502 Info: line 2: Gathering constraints.
2004-12-08 15:48:01.502 Info: line 2: Step 2 test contributed 1
constraint: Node-2

2004-12-08 15:48:01.502 Info: line 2: Executing search.
004-12-08 15:48:01.502 Info: line 2: Selected 1 fragment to filter
2004-12-08 15:48:01.502 Info: <gm:query-meters xsi:schemalocation="htt
p://marklogic.com/xdmp/query-meters query-meters.xsd"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:gm="http://marklogic.com/xdmp/query-meters">
<gm:elapsed-time>PT0.0000685S

</gqm:elapsed-time>

<gm:requests>0

</gm:requests>

<gm:list-cache-hits>0

</gm:1list-cache-hits>

<gm:list-cache-misses>0

</gqm:1list-cache-misses>

<gm:list-size>0

</gqm:list-size>

<gm:in-memory-list-hits>0

</gm:in-memory-list-hits>

<gm:triple-cache-hits>0

</gqm:triple-cache-hits>

<gm:triple-cache-misses>0

</gqm:triple-cache-misses>

<gm:triple-value-cache-hits>0

</gqm:triple-value-cache-hits>

<gm:triple-value-cache-misses>0

</gqm:triple-value-cache-misses>

<gm:expanded-tree-cache-hits>0

</gm:expanded-tree-cache-hits>

<gm:expanded-tree-cache-misses>0

</gm:expanded-tree-cache-misses>

<gm:compressed-tree-cache-hits>0

</gm:compressed-tree-cache-hits>

<gm:compressed-tree-cache-misses>0

</gm:compressed-tree-cache-misses>

<gm:compressed-tree-size>0

</gm:compressed-tree-sizes>

<gm:in-memory-compressed-tree-hits>0

</gm:in-memory-compressed-tree-hits>

<gm:value-cache-hits>0

</gm:value-cache-hits>

<gm:value-cache-misses>0

</gm:value-cache-misses>

<gm:regexp-cache-hits>0

</gm:regexp-cache-hits>

<gm:regexp-cache-misses>0

</gm:regexp-cache-misses>

<gm:link-cache-hits>0

</gm:1link-cache-hits>

<gm:link-cache-misses>0

</gm:1link-cache-misses>

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 28

MarkLogic Server

<gm:filter-hits>0
</gqm:filter-hits>
<gm:filter-misses>0
</gqm:filter-misses>

<gm: fragments-added>0

</gm: fragments-added>

<gm: fragments-deleted>0
</gqm:fragments-deleted>

<gm: fs-program-cache-hits>0
</qm:fs-program-cache-hits>
<gm: fs-program-cache-misses>0
</qm:fs-program-cache-misses>
<gm:db-program-cache-hits>0
</gm:db-program-cache-hits>
<gm:db-program-cache-misses>1
</gqm:db-program-cache-misses>
<gm:env-program-cache-hits>0
</gm:env-program-cache-hits>
<gm:env-program-cache-misses>0
</gm:env-program-cache-misses>
<gm: fs-main-module-sequence-cache-hi

Tuning Queries with query-meters and query-trace

ts>0

</gm:fs-main-module-sequence-cache-hits>

<gm: fs-main-module-sequence-cache-mi

sses>0

</gm:fs-main-module-sequence-cache-misses>

<gm:db-main-module-sequence-cache-hi

ts>0

</gm:db-main-module-sequence-cache-hits>

<gm:db-main-module-sequence-cache-mi

sses>0

</gm:db-main-module-sequence-cache-misses>

<gm:fs-library-module-cache-hits>0
</gqm:fs-library-module-cache-hits>
<gm:fs-library-module-cache-misses>0
</gqm:fs-library-module-cache-misses>
<gm:db-library-module-cache-hits>0
</gqm:db-library-module-cache-hits>
<gm:db-library-module-cache-misses>0
</gm:db-library-module-cache-misses>
<gm:read-locks>0

</gqm:read-locks>

<gm:write-locks>0

</gqm:write-locks>

<gm:lock-time>0

</qm:lock-time>
<gm:contemporaneous-timestamp-time>0
</gm:contemporaneous-timestamp-times>
<gm:compile-time>0.0001729
</gm:compile-time>

<gm:commit-time>0

</gm:commit-time>

<gm:run-time>0

</gm:run-time>

<gm:indexing-time>0
</gm:indexing-time>

<gm: fs-schema-cache-hits>0
</qm:fs-schema-cache-hits>

MarkLogic 9—May, 2017

Query Performance and Tuning Guide—Page 29

MarkLogic Server Tuning Queries with query-meters and query-trace

<gm: fs-schema-cache-misses>0
</qm:fs-schema-cache-misses>
<gm:db-schema-cache-hits>0
</gqm:db-schema-cache-hits>
<gm:db-schema-cache-misses>0
</gqm:db-schema-cache-misses>
<gm:env-schema-cache-hits>0
</gm:env-schema-cache-hits>
<gm:env-schema-cache-misses>0
</gm:env-schema-cache-misses>
<gm: fragments>
</qm: fragments>
<gm:documentss>
</gm:documents>
<gm:hosts>
</gqm:hosts>
</gm:query-meters>
2004-12-08 15:48:01.502 Info:

*k k%

***%* End query trace and meter log
* kkx

General Methodology for Tuning a Query

The following are general steps you can take to analyze and tune query performance. These steps
represent a methodology; the actual steps you take will depend on your application and queries.

1.

2.

MarkLogic 9—May, 2017

|dentify the application where you see query performance slower than you expect.

In the application, break apart different parts of the query into separate queries and run
them separately.

If you identify code that appearsto run slowly, append xdmp : query-meters () to the end of
the code and run it again. For details, see “ Understanding query-meters Output” on

page 17.

IN the xdmp : query-meters OUtpUL, record the elapsed time and ook for cache misses.

Run the query several times and compare the xdmp : query-meters output between the
different runs. There are some query caches that are popul ated when a query runsthe first
time, and can improve the performance of subsequent query runs.

Continue to try and simplify the query, helping to isolate where it might be running slow.

When you have isolated the query down to as simple a case as possible, add
xdmp : query-trace (true ()) t0 the beginning of the query and run it again. For details, see
“Understanding query-trace Output” on page 19.

Examine the query-trace output in the errorrog. txt file. Look for XPath stepsthat are

unsearchable.

Query Performance and Tuning Guide—Page 30

MarkLogic Server Tuning Queries with query-meters and query-trace

0.

10.

11.

12.

13.

14.

If you find unsearchable Steps, seeif there are ways to rewrite the query so those steps
become searchable.

Examine the constraints entries of the query-trace l0g output. For details, see
“Constraint Analysis Messages’ on page 20.

Check the query-trace log output for the number of fragments used to filter. This number
should be the close to or the same as the number of fragments that match the searchable
expression (the number returned from xdmp : estimate) if the query is well optimized.

Check your indexing options. Add indexes if the proper indexes are not built. For
example, if stemmed or word indexes are not built, many XPath steps will be
unsearchable. AlSO, if your query contains inequality constraints, you will need element
(range) indexes to optimize those constraints.

After making query and/or index changes, rerun the query with xdmp: query-meters () t0
seeif the execution time has decreased and the number of cache misses has decreased.

Continue iteratively with this methodology until you are satisfied that the query execution
isfast and well optimized.

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 31

MarkLogic Server Sorting Searches Using Range Indexes

4.0 Sorting Searches Using Range Indexes

Range indexes are value indexes that are typed and are sorted in type order. You can run searches
in MarkL ogic and efficiently sort the search using arange index value. There are two waysto
specify the range indexes in a search:

* Using a cts:order Specification in a cts:search

e Optimizing Order By Expressions With Range Indexes

The first way, introduced in MarkLogic 8, isthe easier way; the second way still works for
backward compatibility.

4.1 Using a cts:order Specification in a cts:search

By default, acts:search iS sorted in relevance order. If you want to instead sort the search by a
value in the documents returned, you can create a range index on the sort value and then specify
that index in the cts:search. The easiest way to specify a sort order in asearch is by adding a
cts:order SPeCification to your cts: search Statment. This section describes how to construct such
searches, and includes the following parts:

e Creating a cts:order Specification

e Using the cts:order Specification in a Search

41.1 Creating a cts:order Specification

The cts:order typeisanative typein MarkLogic. You can create cts: order Specifications using
the following constructors:

e cts:index-order
e cts:score-order
e cts:confidence-order
e cts:fitness-order
e cts:quality-order
e cts:document-order
e cts:unordered
You can specify a sequence of cts:order constructors and it will result ordering by thefirst in the

sequence, followed by the next, and so on. For example, you might want to order first on a path
range index of /a/b/c, with asecondary orderingon //tit1e.

Note: Any order you specify with a cts:index-order constructor requires the appropriate

range index to be created in MarkL ogic, otherwise the search will throw an
exception.

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 32

MarkLogic Server Sorting Searches Using Range Indexes

The default sort order isequivalent to (cts:score-order ("descending") , cts:document -

order ("ascending")).

4.1.2 Using the cts:order Specification in a Search

You can use the cts.order specification in acts:search INn XQUery or acts.search in Javascript.
The cts:order iSpart of the soptions parameter.

4.2 Optimizing Order By Expressions With Range Indexes

When you have queriesthat include an order by expression, you can create range indexes (for
example, element indexes, attribute indexes, or path indexes) on the element(s) or attributes(s) in
the order by expression to speed performance of those types of queries. This chapter describes
this optimization and how to useit in your queries, and includes the following parts:

¢ Speed Up Order By Performance

* Rules for Order By Optimization

e Creating Range Indexes

e Example Order By Queries

Note: Starting with MarkLogic 8, you can get the same sorting results by specifying a
cts:order SPecification in asearch. For details, see “Using a cts.order
Specification in a cts:search” on page 32.

4.2.1 Speed Up Order By Performance

MarkL ogic Server allows you to create indexes on e ements to speed up performance of queries
that order the results based on that element. The order by Clauseisthe“O” in the XQuery rrwor
expression, and it allows you to sort the results of a query based on one ore more elements. The
order by Optimization speeds up queries that order the results and then return a subset of those
results (for example, the first 10 results).

4.2.2 Rules for Order By Optimization
The following rules apply to aquery in order for the order by Optimization to apply:

* Optimizes subsets of order by queries. For example:
(FLWOR) [1 to 20]

where rLwor IS an XQuery rLwor EXpPression.

» Usesrange indexes (for example, element, attribute, and/or path range indexes).

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 33

MarkLogic Server Sorting Searches Using Range Indexes

* The sequence bound to the ror variable must be fully searchable XPath expression or a
cts:search expression. See “Fully Searchable Paths and cts:search Operations’ on

page 23.

» Theorder by expression must be on variables bound in the for clause; queries that have
order by EXPressions on variables bound to a sequencein aiet clause are not optimized.

* There must be arange index on the last step of the order by expression. For example:
order by $x/bar/foo

needs a range index on foo to execute with the order by Optimization.

* Thetype of the order by expression must be the type of the range index, either implicitly,
through a schema, or through an explicit cast. If thereis acast in the order by expression,
than it must be to the type of the range index.

* You can have order by expressions with multiple items, aslong as there is arange index
on each item. For example:

order by s$x/foo, $x/bar

aslong asthere are range indexes for foo and var.

» The XPath expression in the order by expression must be a simple relative path; no math
or other expressions are allowed.

* |t does not matter what the 1et, where, Or return clauses are; these do not effect the
optimization.

o |If you order by cts:score ($x), cts:confidence ($x), Of cts:quality ($x), NO range index
isrequired.

* You can specify either ascending Of descending Orders (optionally).

* You can specify either empty greatest Or empty 1least, but empties always need to be at
the end for the order by optimizations to work. For example, empty greatest iSoptimized
with ascending, empty least iSOpti mized with descending. If neither is speC|f|ed,

MarkL ogic chooses the order that is optimized.

* Optimized order by clausesimplicitly add order by expressionsfor cts:score and
document order to the end of the order by expression.

» |If you have afunction that is a rLwor expression (with the required fully searchable path,
etc.), subsets of that will be optimized. for example

xquery version "1.0-ml";
declare function local:foo()

{

for $x in //a/b/c
order by $x/d
return $x

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 34

MarkLogic Server Sorting Searches Using Range Indexes

}i

(local:foo()) I[1 to 10]

» The search or XPath expression must be part of the rLwor, not bound to avariable that is
referenced in the rLwor. For example, the following will not be optimized:

let $x := cts:search(/foo, "hello")
return

(for Sy in $x

order by Sy/element

return $y) [1 to 10]

but the following will (given the other rules are followed):

(for Sy in cts:search(/foo, "hello")
order by Sy/element
return Sy) [1 to 10]

* YOu can use xdmp: query-trace t0 determineif aquery isusing the range indexesto
optimize an order by expression. For details on using xdmp : query-trace, See
“Understanding query-trace Output” on page 19.

* When using an order by with a cts:search, further optimization occursif you specify the
"unfiltered" OPtiON tO cts:search. FOr example, if you order by asimple XPath
expression and that expression returns a sequence, if the cts:search iSnfiltered" (Which
is the default) then the search will throw an exception (becauseit isillegal to order by a
sequence of more than one item), but if you usethe "unfiltered" Optionto cts:search,
the search will complete and will use the range index. If there are multiple values that
match the order by expression in an unfiltered cts: search, then it will use the maximum
vaue (fn:max (Sresult/item())) for order by ascending and the minimum value
(fn:min($result/item())) for order by decending. FOr more details about unfiltered
cts:search, See “Fast Pagination and Unfiltered Searches’” on page 10.

4.2.3 Creating Range Indexes

You must create range indexes over the elements or attributes in which you order your result by in
the order by expression. You create range indexes using the Admin interface by going to the
Databases > database _name > Element Indexes or Attribute Indexes or Path Range Index page.
Be sure to select the proper type for the element or attribute, or specify a path defining the
element(s) and/or attributes(s) you want to index. For more details on creating indexes, see the
Administrator’s Guide.

4.2.4 Example Order By Queries

This section shows the following simple queries that use the order by optimizations:

* Order by a Single Element

e Order by Multiple Elements

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 35

MarkLogic Server Sorting Searches Using Range Indexes

4.2.4.1 Order by a Single Element

The following query returns the first 100 1astname €lements. In order for this query to run
optimized, there must be arange index defined on the 1astname element.

(for $x in //myNode
order by $x/lastname
return

$x/lastname) [1 to 100]

If you enabled query tracing on this query (by adding xdmp: query-trace (fn:true()), tothe
beginning of the query, for example), the query trace output will show if the range index is being
used for the optiomization. If the range index is not being used, the query-trace output looks
similar to the following:

2009-05-15 15:56:05.046 Info: myAppServer: line 2:

xdmp:eval ("xdmp:query-trace (fn:true()) , 
 (for $x in
//myNode&#...", (), <options
xmlns="xdmp:eval"><database>661882637959476934</database><modules>0</m
odules><defa...</options>)

2009-05-15 15:56:05.068 Info: myAppServer: line 2: Analyzing path for
$Sx: collection () /descendant: :myNode

2009-05-15 15:56:05.068 Info: myAppServer: line 2: Step 1 is
searchable: collection()

2009-05-15 15:56:05.068 Info: myAppServer: line 2: Step 2 is
searchable: descendant: :myNode

2009-05-15 15:56:05.068 Info: myAppServer: line 2: Path is fully
searchable.

2009-05-15 15:56:05.068 Info: myAppServer: line 2: Gathering
constraints.

2009-05-15 15:56:05.068 Info: myAppServer: line 2: Step 2 test
contributed 1 constraint: myNode

2009-05-15 15:56:05.068 Info: myAppServer: line 2: Executing search.
2009-05-15 15:56:05.089 Info: myAppServer: line 2: Selected 6 fragments
to filter.

The above output does not show that the range index is being used. This could be because the
range index does not exist or it could indicate that one of the criteriafor the order by
optimizations is not met, as described in “Rules for Order By Optimization” on page 33.

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 36

MarkLogic Server Sorting Searches Using Range Indexes

When the correct range index isin place and the query is being optimized, the query-trace output
will look similar to the following:

2009-05-15 15:58:04.145 Info: myAppServer: line 2:

xdmp:eval ("xdmp:query-trace (fn:true()) , 
 (for $x in
//myNode&#...", (), <options
xmlns="xdmp:eval"><database>661882637959476934</database><modules>0</m
odules><defa...</options>)

2009-05-15 15:58:04.145 Info: myAppServer: line 2: Analyzing path for
$x: collection () /descendant: :myNode

2009-05-15 15:58:04.145 Info: myAppServer: line 2: Step 1 is
searchable: collection()

2009-05-15 15:58:04.145 Info: myAppServer: line 2: Step 2 is
searchable: descendant::myNode

2009-05-15 15:58:04.145 Info: myAppServer: line 2: Path is fully
searchable.

2009-05-15 15:58:04.146 Info: myAppServer: line 2: Gathering
constraints.

2009-05-15 15:58:04.146 Info: myAppServer: line 2: Step 2 test
contributed 1 constraint: myNode

2009-05-15 15:58:04.146 Info: myAppServer: line 2: Order by clause
contributed 1 range ordering constraint for $x: order by $x/lastname
ascending

2009-05-15 15:58:04.146 Info: myAppServer: line 2: Executing search.
2009-05-15 15:58:04.183 Info: myAppServer: line 2: Selected 6 fragments
to filter.

Notice the line that SadySorder by clause contributed 1 range constraint. That line indicates
that the query is being optimized by the range index (which is good).

4.2.4.2 Order by Multiple Elements

The following query returns the first 100 mynode €lements, ordered by 1astname and then
firstname. FOr this query to run optimized, there must be arange index defined on the 1astname
and £irstname € ements.

(for $x in //myNode

order by $x/lastname, $x/firstname
return

$x) [1 to 100]

If you run query-trace with this query, that will verify whether the range indexes are being used.

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 37

MarkLogic Server Profiling Requests to Evaluate Performance

5.0 Profiling Requests to Evaluate Performance

This chapter describes how to use the Performance Profiler built-in functions to examine the
performance characteristics of XQuery and Server-Side JavaScript requestsin MarkLogic Server.
The profiling APIs enable you to gather statistics about the evaluation of your code on a
per-request basis.

This chapter covers the following topics:

e Enabling Profiling on an App Server

e Understanding XQuery Profiling

¢ Understanding Server-Side JavaScript Profiling

* Profiling Examples

You can aso use Query Console to profile your programs, as described in Profiling a Query in the
Query Console User Guide.

5.1 Enabling Profiling on an App Server

To use the profiling API, you must first enable profiling on the App Server hosting your XQuery
or Server-Side JavaScript program (or on the task server if you are profiling spawned queries).

The profile allow option must be set to true on the App Server configuraton page in the Admin Ul.
For example:

profile allow f true . falze
Allowy profiling on this setver.

5.2 Understanding XQuery Profiling
This section describes profiling XQuery code and includes the following topics:

e Definitions and Terminology for the XQuery Profiling

e XOQuery Profiling Overview

e XQuery Profiling API

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 38

MarkLogic Server Profiling Requests to Evaluate Performance

521 Definitions and Terminology for the XQuery Profiling

The following table lists some terms and their definitions used in describing the XQuery profile
API. Several of these terms are used in the data you can generate with the profiling API.

Term Definition

XQuery Program | The XQuery main module fully expanded with any XQuery library
modules needed for its evaluation. An XQuery program is sometimes
referred to as a query, a statement, or a request. For more details on this
terminology, see Understanding Transactions in MarkLogic Server in the
Application Developer’s Guide.

profiler An application which measures the performance characteristics of a
running program (in the case MarkLogic Server, of an XQuery program).

expression The basic parse element of an XQuery program. Expressions can
represent literal values, arithmetic operations, functions, function calls,
and so on. Expressions can contain other expressions.

shallow time The time spent evaluating a specific expression, not including time spent
evaluating any expressions contained within the specific expression.
deep time Thetotal time spent evaluating an expression, including time spent
evaluating any expressions contained within the specific expression.
elapsed time Both shallow and deep time are expressed in elapsed wall clock time.
profile report An XML report containing statistics for all of the expressions evaluated

while profiling was enabled. For a sample profile report, see “ Simple
Enable and Disable XQuery Example” on page 42.

5.2.2 XQuery Profiling Overview

The XQuery profiling APl in MarkLogic Server is not aquery profile application (aprofiler), but
you could use the profiling API to build such an application. A profiler would measure the
performance characteristics of an XQuery or JavaScript program.

You can use Query Console to generate and review a profiling report; for details, see Profiling a
Query in the Query Console User Guide. You can also simply use the profiling API to generate
profiling data and then either manually analyze the data or use XQuery to extract details and
format areport.

When profiling is enabled, you can use the prof : enable, prof : report, and other profile functions
to generate profiling statistics for the evaluation of individual XQuery programs.

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 39

MarkLogic Server Profiling Requests to Evaluate Performance

The XQuery profiling API cannot “seeinto” a Server-Side JavaScript function. If your code calls
a JavaScript function, you will only see data for the top level call, not any JavaScript functions
called by that function. The time spent appears as a single block.

Profiling helps you see where a query is spending its processing time. MarkLogic gathers
statistics during the evaluation portion of the query, at the individual expression level. Time spent
in the data node portion of the query (time spent gathering content from the forests) isincluded in
the expression time for the expression that requested the content from the forest (for example, a
cts:search). FOr each expression, the profile report shows the shallow time and the deep time
(see " Definitions and Terminology for the XQuery Profiling” on page 39 for these definitions).

All profiling information is gathered on a per-request basis; there is no notion of profiling a set of
requests, although it is possible to write an application that performs such aggregation.

5.2.3 XQuery Profiling API

The following functions are included in the XQuery Performance Profiler API:

¢ prof:allowed
® prof:disable
® prof:enable
® prof:eval

® prof:invoke
® prof:report
® prof:reset

For details on the APIs and for their function signatures, see the MarkLogic XQuery and XSLT
Function Reference. Note the following about the XQuery profile APIs.
» If profiling is not enabled on the App Server and in the XQuery program (via
prof :enable), then profile APIs do not do anything except return the empty sequence.

* You can profile the currently running request (prof : enable (xdmp: request ())), an
evaluated request (prof :eval), Or an invoked module (prof : invoke). TO profile other
requests, you need to debug the request; if you try to profile another request, MarkL ogic
Server throws the pee-NoTsToPPED EXCEpLiON.

» Constants (for example, 47 or "he11o") do not show up in the profile report.
» Constructed elements do not show up in the profile report.

» Profiletime starts after the static analysis phase of query evaluation; it does not include
the query parsing time.

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 40

MarkLogic Server Profiling Requests to Evaluate Performance

o All of the profiIeAPIsare inthe http://marklogic.com/xdmp/profile NAMESPACE. The
prof prefix isbound to this namespace, and is pre-configured in MarkLogic Server (so
there is no need to define this namespace in your XQuery prolog).

» If you profile arequest besides the currently running request, or if you start a new request
for profiling using prof :eval O prof : invoke, YOU Need one of the privileges
http://marklogic.com/xdmp/privileges/profile-my-requests (tO profi Iearequest issued
by the same user | D) Of http://marklogic.com/xdmp/privileges/profile-any-requests
(to profile arequest issued by any user ID). If you are profiling the currently running
request, no privileges are required.

5.3 Understanding Server-Side JavaScript Profiling

Profiling for Server-Side JavaScript is only available through the prof . eva1 built-in function or
through Query Console. Profiling must be enabled for your App Server, asdescribed in “Enabling
Profiling on an App Server” on page 38. To learn about generating a profiling report using Query
Console, see Profiling a Query in the Query Console User Guide.

When you profile Server-Side JavaScript, MarkL ogic collects a CPU Profile from the JavaScript
engine. The profiling data generated for JavaScript is based on sampling, so it will not reflect all

functions called or accurate function hit counts. However, those areas of your code that consume
the most CPU will still be readily apparent.

The JavaScript profiler cannot profile XQuery code. If your JavaScript code callsinto X Query,
the time spent inside the XQuery function isasingle block. The called XQuery function name
will not include a namespace identifier in the profiling data.

You can save the output from profiling JavaScript to afile and import the datainto the Profilestab
of the Chrome devel opers to analyze the data outside of MarkL ogic. Query Console enables you
to download a profiling report from within its Ul.

You can also generate and save your own profiling report from prof . eva1l With code similar to the
following:

'use strict';

const myQuery = "your code (as string) here";
xdmp . save (

' /space/rest/junk.cpuprofile’',

fn.head (prof.eval (myQuery))
)i

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 41

MarkLogic Server Profiling Requests to Evaluate Performance

5.4 Profiling Examples

The following are code examples showing some simple usage patterns for the profile API. For
detailson the APIs, see the MarkLogic XQuery and XSLT Function Reference. This section shows
the following examples:

e Simple Enable and Disable XQuery Example

¢ Returning a Part of the XQuery Profile Report

e JavaScript Profile Example

54.1 Simple Enable and Disable XQuery Example

The following examples show simple uses for the profile API.

let Sreq := xdmp:request ()
let $dummyl := prof:enable($req)
let Sversion := xdmp:version ()
let Snode :=

<foo>

<versions>{$version}</versions
<request>{$req}</request>

</foo>
let $dummy2 := prof:disable($req)
let $dummy3 := fn:current-dateTime ()
let $dummy4 := prof:enable($req)
let sdummy5 := 47
let $dummyé := S$node/foo/request
let $dummyé6 := prof:disable($req)
return

prof:report (Sreq)
This query returns the following report:

<prof:report
xsi:schemalLocation="http://marklogic.com/xdmp/profile profile.xsd"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:prof="http://marklogic.com/xdmp/profile">
<prof:metadatas>
<prof:overall-elapsed>PT0S</prof:overall-elapsed>
<prof :created>2014-03-19T14:20:18.763-07:00</prof:created>
<prof:server-version>7.0-4</prof:server-versions>
</prof :metadata>
<prof:histogram>
<prof :expression>
<prof :expr-1d>6467258264555963988</prof :expr-id>
<prof :expr-source>xdmp:version () </prof :expr-source>
<prof:uri/>
<prof:line>3</prof:line>
<prof :count>1l</prof:count>

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 42

MarkLogic Server Profiling Requests to Evaluate Performance

<prof:shallow-time>PT0S</prof:shallow-time>
<prof :deep-time>PT0S</prof :deep-time>

</prof :expression>

<prof :expression>
<prof :expr-1d>127913224145561857</prof :expr-id>
<prof :expr-source>prof :disable ($Sreq) </prof :expr-source>
<prof:uri/>
<prof:line>9</prof:line>
<prof :count>1l</prof:count>
<prof:shallow-time>PT0S</prof:shallow-time>
<prof :deep-time>PT0S</prof :deep-time>

</prof :expression>

<prof :expression>
<prof :expr-1d>8377097069965042614</prof :expr-id>
<prof :expr-source>prof :disable (S$Sreq) </prof :expr-source>
<prof:uri/>
<prof:line>l4</prof:line>
<prof :count>1l</prof:count>
<prof:shallow-time>PT0S</prof:shallow-time>
<prof :deep-time>PT0S</prof :deep-time>

</prof :expression>

<prof :expression>
<prof :expr-1d>10959125668150171452</prof :expr-id>
<prof :expr-source>prof :enable (Sreq) </prof : expr-source>
<prof:uri/>
<prof:line>2</prof:line>
<prof :count>1l</prof:count>
<prof:shallow-time>PT0S</prof:shallow-time>
<prof :deep-time>PT0S</prof :deep-time>

</prof :expression>

<prof :expression>
<prof :expr-1d>1823871875827665493</prof :expr-id>
<prof :expr-source>$node/child: :foo/child: :request

</prof :expr-source>

<prof:uri/>
<prof:line>l4</prof:line>
<prof :count>1l</prof:count>
<prof:shallow-time>PT0S</prof:shallow-time>
<prof :deep-time>PT0S</prof :deep-time>

</prof :expression>

<prof:expression>
<prof :expr-1d>16669888445989754369</prof :expr-id>
<prof :expr-source>prof :enable ($Sreq) </prof : expr-source>
<prof:uri/>
<prof:line>ll</prof:line>
<prof :count>1l</prof:count>
<prof:shallow-time>PT0S</prof:shallow-time>
<prof :deep-time>PT0S</prof :deep-time>

</prof :expression>

</prof :histogram>
</prof :report>

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 43

MarkLogic Server Profiling Requests to Evaluate Performance

You might note that the times are all zero. That is because this example does atrivial amount of
work, and each expression took |ess than a millisecond to complete. But it does illustrate some
things that are useful when looking at the report:

* Thefn:current-dateTime () function does not appear in the report, because profiling was
disabled at this stage of the XQuery program.

* Theexpressions are not necessarily in the order they are in the XQuery program. If you
want them in order, you can take the prof : expression €lements and order them by the
prof:1ine €lement (or one of the time elements, or whatever makes sense for your
reports).

* Whilethe expression 47 occurs while profiling is enabled, it does not show up in the
output because it isjust a constant, and constants do not appear in the profile report.

5.4.2 Returning a Part of the XQuery Profile Report

Because the profile report is XML, you can use XQuery to manipulate the report to suit your
needs. The following example returns only a expression elements of the profile report, wrapsit in
an element, and ordersit by the deep time element.

xquery version "1.0-ml";

let $Sreqg := xdmp:request ()
let $dummy := prof:enable(Sreq)
let $foo := for $i in fn:doc() return xdmp:node-uri($i)
let Sdummy2 := prof:disable(S$Sreq)
return <foo>{
for $j in prof:report (Sreq)//*:expression

order by xs:dayTimeDuration ($j/*:deep-time)

return $j
}</foo>

To see the results, copy the code and run it against MarkL ogic Server. You will need to enable
profiling on the HTTP Server Configuration page, otherwise the report will be empty.

5.4.3 JavaScript Profile Example

In Server-Side JavaScript, you can profile a JavaScript program as shown below. You can load
this output into the Profiles tab of the Chrome developer tools to for further analysis:

prof.eval ('cts.search("hello") ')

=>

{"head":
{"functionName":" (root)",
"scriptId":O0,
Ilurlll . nn ,
"lineNumber":0,
"columnNumber": 0,

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 44

MarkLogic Server Profiling Requests to Evaluate Performance

"hitCount":0,
"callUID":1,
"children": [

{"functionName":"",
"scriptId":42,
"url":"/gconsole/endpoints/evaljs.sjs",

"lineNumber":1,
"columnNumber":1,
"hitCount":0,
"callUID":2,
"children": [
{"functionName":"addResponseHeader",
"scriptId":O0,
"yrl":.nr,
"lineNumber":0,
"columnNumber":0,
"hitCount":0,
"callUID":3,
"children": [
{"functionName":"doEval",
"scriptId":49,
"url":
"/MarkLogic/appservices/qconsole/qconsole-js-amped.sjs",
"lineNumber":3,
"columnNumber":20,
"hitCount":0,
"callUID":4,
"children": [

{"functionName":"eval",
"scriptId":O0,
"url n . nmn ,

"lineNumber":0,
"columnNumber":0,
"hitCount":0,
"callUID":5,
"children": [
{"functionName":"",
"scriptId":50,
"yrlm."v,
"lineNumber":1,
"columnNumber":1,
"hitCount":0,

"callUID":6,
"children": [
{"functionName":"eval",
"scriptId":O0,
||url n . nn ,

"lineNumber":0,

"columnNumber":0,

"hitCount":1,

"callUID":5,

"children": [],

"idv:7}1,
"idv:6}1],

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 45

MarkLogic Server

"idv:5}1,
"idv:4}1,
"idv:3}1,
midv:2}1,

nidn:1},
"startTime":3800158243229,
"endTime":3800158265495,
"samples": [7],
"timestamps": [3800158243229]

MarkLogic 9—May, 2017

Profiling Requests to Evaluate Performance

Query Performance and Tuning Guide—Page 46

MarkLogic Server Disk Storage Considerations

6.0 Disk Storage Considerations

This chapter describes how disk storage can affect performance of MarkL ogic Server, and some
of the storage options available for forests. It includes the following sections:

¢ Disk Storage and MarklLogic Server

e Fast Data Directory on Forests

e Large Data Directory on Forests

e HDFES, MapR-FS, and S3 Storage on Forests

* Windows Shared Disk Reqistry Settings and Permissions

6.1 Disk Storage and MarkLogic Server

MarkL ogic Server applications can be very disk-intensive in their system demands. It is therefore
very important to size your hardware appropriate for your workload and performance
requirements. The topic of disk storage performance is complicated; there are many factors that
can influence performance including disk controllers, network latency, the speed and quality of
the disks, and other disk technologies such as storage area networks (SANSs) and solid state drive
(SSD). Aswith most performance issues, there are price/performance trade-offs to consider.

For example, SSDs are quite expensive compared with rotating drives. Conversely, HDFS
(Hadoop Distributed Filesystem) or Amazon S3 (Simple Storage Service) storage can be quite
inexpensive, but might not offer all of the speed of conventional disk systems.

6.2 Fast Data Directory on Forests

In the forest configuration for each forest, you can configure a Fast Data Directory. The Fast Data
Directory is designed for fast filesystems such as SSDs with built-in disk controllers. The Fast
Data Directory stores the forest journals and as many stands as will fit onto the filesystem; if the
forest never grows beyond the size of the Fast Data Directory, then the entire forest will be stored
in that directory. If there are multiple forests on the same host that point to the same Fast Data
Directory, MarkL ogic Server divides the space equally between the different forests.

When the Fast Data Directory beginsto approach its capacity, during periodic merges, MarkLogic
Server will start to put datain the regular Data Directory. By specifying a Fast Data Directory, you
can get much of the advantage of using thefast disk hardware while only buying arelatively small
SSD (or other fast disk system). For example, consider a scenario where you have an 8-core
MarkLogic Server d-host that is hosting 4 forests. If you have good quality commodity
server-class rotating disk system with many magnetic disk spindles (for example, 6 disksin some
RAID configuration) having 2 terabytes of storage, and if you have a 250 gigabyte SSD (for
example, a PCl 1/0 accelerator card) for the fast data directory, then you can get a significant

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 47

MarkLogic Server Disk Storage Considerations

amount of the benefit of having the SSD storage while keeping the cost down (because the
rotating storage is several times|less expensive than the SSD storage). In this scenario, each of the
4 forests could use up to 1/4 of the size of the SSD, or about 62.5 GB. Once the forest size grows
close to that limit, then the Data Directory with the rotating storage is used.

6.3 Large Data Directory on Forests

Just like you might want a different class of disk for the Fast Data Directory, you might also want
adifferent class of disk for the Large Data Directory. The Large Data Directory stores binary
document that are larger than the Large Size Threshold specified in the database configuration.
Thisfilesystem istypically avery large filesystem, and it may use a different class of disk than
your regular filesystem (or it may just be on a different set of the same disks). For more details
about binary documents, see Working With Binary Documents in the Application Devel oper’s Guide.

6.4 HDFS, MapR-FS, and S3 Storage on Forests

HDFS (Hadoop Distributed Filesystem) and Amazon S3 (Simple Storage Service) storage
represent two approachesto large distributed filesystems, and it is possible to use both HDFS and
S3to store MarkL ogic forest data. This section describes considerations for using HDFS and S3
for storing forest datain MarkL ogic and contains the following topics:

e HDES Storage
* MapR-FS Storage

e S3 Storage

Both HDFS and S3 can be very useful when implementing atiered storage solution. For detailson
tiered storage, see Tiered Storage in the Administrator’s Guide.

6.4.1 HDFS Storage

HDFSisastorage solution that uses Hadoop to manage a distributed filesystem. Hadoop hastools
to specify how many copies of each file are replicated on how many different servers. HDFS
gives you a high degree of control over your filesystem, as you can choose the disks to use, the
computers to use, as well as configuration settings such as number of copiesto replicate.

MarkL ogic can use K erberos Secured HDFS as afile system on Linux platforms, as described in
Kerberos Authentication for Secured HDFS in the Security Guide.

HDFS storage is supported with MarkL ogic on the following HDFS platform:

* ClouderaCDH version 5.8
e Hortonworks HDP version 2.6

Internally, MarkL ogic Server uses NI to access HDFS. When you specify an HDFS path for one
of the data directories, MarkL ogic will write the forest data directly to HDFS according to the
path specification.

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 48

MarkLogic Server Disk Storage Considerations

When you set up an HDFS path as aforest directory, the path must be readable and writable by the
user in which the MarkL ogic Server processis running.

Because you can set up HDFS as avery large shared filesystem, it can be good not only for forest
data, but as a destination for database backups.

An HDFS path is of the following form:

hdfs://<machine-names>:<port>/directory

so the following path would be to an hdfs filesystem accessed on a machine named
raymond.marklogic.com ON port 12345:

hdfs://raymond.marklogic.com:12345/directory

Each MarkL ogic host that uses HDFS for forest storage requires access to the following:

* The Oracle/Sun Java JDK (or an Oracle/Sun JRE that includes JNI)
» Hadoop HDFS client JAR files
* Your Hadoop HDFS configuration files

The following HDFS configuration property settings are required:

®* dfs.support.append. rue. Thisisthe default value.

b dfs.namenode.accesstime.precisionZ1
The remainder of this section describes how to configure your hosts so that MarkLogic can find
these components.

For details on the supported Java versions and how MarkL ogic locates a JRE, see “ Java Virtual
Machine Requirements” on page 7 in the Installation Guide.

Though MarkL ogic does not ship with HDFS client libraries, you can download client library
bundles from http://developer.marklogic.com/products/hadoop.

Follow this procedure to make the bundled libraries and configuration files available to
MarkLogic Server. You must follow this procedure on each MarkL ogic host that uses HDFS for
forest storage.

1 Download the Hadoop client bundle that corresponds to your Hadoop distribution from
http://developer.marklogic.com/products/hadoop.

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 49

http://developer.marklogic.com/products/hadoop
http://developer.marklogic.com/products/hadoop

MarkLogic Server Disk Storage Considerations

2. Unpack the bundle to one of the following locations:. /usr, /opt, /space. FOr example, if
you download the HDP bundle for MarkLogic 9.0-7 to /opt, then the following
commands unpack the bundle to /opt.

cd /opt
gunzip hadoop-hdfs-hdp-9.0-7.tar.gz
tar xf hadoop-hdfs-hdp-9.0-7.tar

The bundle unpacks to a directory named “hadoop”, so the above commands create
/opt /hadoop/. The version portion of your bundle download filename may differ.

3. Make your Hadoop HDFS configuration files available under /etc/hadoop/cont/. YOU
must include at least your 109475 .properties configuration file in thislocation.

4, Ensure the libraries and config files are readable by MarkLogic.
For more information on Hadoop and HDFS, see the Apache Hadoop documentation.

6.4.2 MapR-FS Storage
MarkL ogic supports MapR-FS through NFS. For details on how to mount MapR-FS as NFS, see:

¢ http://maprdocs.mapr.com/51/DevelopmentGuide/c-mounting-the-cluster.html

e http://maprdocs.mapr.com/51/AdministratorGuide/c _set_up_mapr_nfs.html

6.4.3 S3 Storage

S3 isacloud-based storage solution from Amazon. S3is like afilesystem, but you accessit via
HTTP. MarkLogic Server usesHTTPto access S3, and you can put an S3 path into any of the data
directory specifications on aforest, and MarkLogic will then writeto S3 for that directory. For
more details about Amazon S3, see the Amazon web site http://aws.amazon.com/s3/. This section
describes S3 usage in MarkL ogic and includes the following parts:

e S3 and MarkLoagic

e Entering Your S3 Credentials for a MarkLogic Cluster

6.4.3.1 S3 and MarkLogic

Storage on S3 has an “eventual consistency” property, meaning that write operations might not be
available immediately for reading, but they will be available at some point. Because of this, S3
data directoriesin MarkLogic have arestriction that MarkL ogic does not create Journals on S3.
Therefore, MarkL ogic recommends that you use S3 only for backups and for read-only forests,
otherwise you risk the possibility of dataloss. If your forests are read-only, then there is no need
to have journals.

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 50

http://aws.amazon.com/s3/
http://hadoop.apache.org
http://maprdocs.mapr.com/51/DevelopmentGuide/c-mounting-the-cluster.html
http://maprdocs.mapr.com/51/AdministratorGuide/c_set_up_mapr_nfs.html

MarkLogic Server Disk Storage Considerations

When you set up an S3 path as aforest directory, the path must be readable and writable by the
user in which the MarkL ogic Server processis running. Typically, this means you must set
Upload/Delete, View Permissions, and Edit Permissions on the AWS S3 bucket. Thisistrue for
both forest paths and for backup paths.

Because S3isavery large shared filesystem, it can be good not only for forest data, but as a
destination for database backups.

To specify an S3 path in MarkL ogic, use a URL of the following form:
s3://<bucket-name>/<path-to-location>

so the following path would be to an S3 filesystem with a bucket named my-bucket and a path
named my-directory:

s3://my-bucket/my-directory
Note: Amazon has other ways to set up S3 URLSs, but use the form above to specify the

S3 pathsin MarkL ogic; for more information on S3, see the Amazon
documentation.

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 51

MarkLogic Server Disk Storage Considerations

6.4.3.2 Entering Your S3 Credentials for a MarkLogic Cluster
S3 requires authentication with the following S3 creadentias:

* AWSAccessKey
* AWS Secret Key

The S3 creadentials for aMarkL ogic cluster are stored in the security database for the cluster. You
can only have one set of S3 credentials per cluster. You can set up security accessin S3, you can
access any paths that are allowed access by those credentials. Because of the flexibility of how
you can set up access in S3, you can set up any S3 account to allow access to any other account,
so if you want to allow the credentials you have set up in MarkL ogic to access S3 paths owned by
other S3 users, those users need to grant access to those paths to the AWS Access Key set up in
your MarkL ogic Cluster.

To set up the AW credentials for a cluster, enter the keys in the Admin Interface under
Security > Credentials. You can also set up the keys programmatically using the following
Security API functions:

e sec:credentials-get-aws
e sec:credentials-set-aws

The credentials are stored in the Security database. Therefore, you cannot use S3 as the forest
storage for a security database.

6.5 Windows Shared Disk Registry Settings and Permissions

If you are using remote machine file paths on Windows (for example, a path like
\\machine-name\dir, Whel€ machine-name iSthe name of the host and air isthe path it exposes as
ashare), you must set the following registry settingsto ZERO, as shown in
https://technet.microsoft.com/en-us/library/ff686200.aspx:

» FileInfoCachelLifetime
» FileNotFoundCacheL ifetime
» DirectoryCachelifetime
These DWORD registry keys settings are in the following registry:

HKEY LOCAL MACHINE\System\CurrentControlSet\Services\Lanmanworkstation
\Parameters

Additionally, the directory path must have read and write permissions for the SY STEM user, or
whichever user under which MarkLogic.exe 'UNS.

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 52

https://technet.microsoft.com/en-us/library/ff686200.aspx

MarkLogic Server Monitoring MarkLogic Server Performance

7.0 Monitoring MarkLogic Server Performance

This chapter provides an overview to various ways to monitor the statusin MarkLogic Server,
both through the Admin Interface and through Server Monitoring APIs designed to report status
of various parts of the system. This chapter includes the following sections:

¢ Ways to Monitor Performance and Activity

e Server Monitoring APIs

7.1 Ways to Monitor Performance and Activity
This section describes the following ways to monitor various activity on MarkLogic Server:

* Monitoring History Dashboard

e ServerlLogs

* Status Screens in the Admin Interface

* Create Your Own Server Reports

7.1.1 Monitoring History Dashboard

The Monitoring History dashboard is used to capture and make use of historical performance data
for aMarkL ogic cluster. Once the performance data has been collected, you can view the datain
the Monitoring History page. The top-level Monitoring History page provides an overview of the
performance metrics for all of the key resourcesin your cluster. For each resource, you can drill
down for more detail. You can aso adjust the time span of the viewed data and apply filtersto
view the datafor select resources to compare and spot exceptions.

For details on the Monitoring History dashboard, see the MarkLogic Server Monitoring History
chapter in the Monitoring MarkLogic Guide.

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 53

MarkLogic Server Monitoring MarkLogic Server Performance

7.1.2 Server Logs

Thelogsfor MarkLogic Server are an important source of information about activity on the
server, particularly information about error conditions. Thelogsareall stored in the Logs directory
under the MarkLogic Server datadirectory (typically c:\program Files\MarkLogic\Data\Logs IN
windows, /var/opt/MarkLogic/Logs Under UNIX-based systems). There are two types of logs:

* ErrorLog.txt, Which logs MarkLogic Server exceptions, startup activity, and so on.

* port no AccessLog.txt, Which logs access requests (for example, HT TP requests) for the
App Server running at the specified port.

You can configure how long to keep alog before starting anew one, at which level to log activity,
and how many old log files to keep before deleting (they have a number appended to their name,
for example, errorrog 5. txt indicates 5 new log files have been created since this one was used).
For more details on configuring the log files, see the Administrator’s Guide.

Another option you can configure, at the App Server level, isfor any uncaught application
exceptions to be written to the errorrog. txt file. Thisway, if your application throws an
exception (for example, if it has a syntax error), the error message is logged in addition to being
sent to the client. Thisis useful in debugging, especialy if queries are being generated via user
activity on abrowser or through a WebDAV client.

You can also code your own log messages into an application using xdmp: 1og. YOU Can use
xdmp: 1og t0 |0g any message at any level, and that message is written to the errorLog. txt file
when it is called. Log messages are useful in debugging during development, and are also useful
in logging certain activitiesin production.

For operational purposes, some developers write scripts or programs to monitor the logs for
specific messages. Then, if the specific message islogged, the script or program can send some
sort of alert out (for example, page someone or send a message to Someone).

The logs contain important information that can be used in monitoring MarkL ogic Server. The
logs can be a powerful tool in an overall monitoring policy. How you use that information
depends on your requirements.

Note: There must be sufficient disk space on the filesystem in which the log files reside.
If there is no space left on the log file device, MarkL ogic Server will abort.
Additionally, if there is no disk space available for thelog files, MarkLogic Server
will fail to start.

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 54

MarkLogic Server

7.1.3 Status Screens in the Admin Interface

Monitoring MarkLogic Server Performance

The Admin Interface includes many pages that list current activity and status for various parts of
MarkLogic Server. To access the status pages, click the status tab in the part of the Admin
Interface to which you want to find current system information.

Status

Thefollowing table lists the status pages available in the Admin Interface, along with the location
path to the status tab in the Admin Interface and a description of each page.

Name

Location

Description

System Status

Configure > Status

Provides a summary of all
information throughout the entire
MarkLogic Server cluster,
including host, App Server,
database, and forest information.
Also includes buttons to restart or
shutdown all of the hostsin the
cluster.

Group Status

Groups > group_name > Status

Provides a summary of all
information throughout the
MarkLogic Server group, including
host, App Server, database, and
forest information. Also includes
buttons to restart or shutdown all of
the hosts in the group.

Host Status

Hosts > host_name > Status

Provides a summary of the current
conditions on the host, including
information about App Servers,
forests, and active queries. Also
includes buttons to enter a new
license key, restart, or shutdown the
host.

App Server
Status

Groups > group_name > App Servers>
app_server_name > Status

Shows information about activity
on the App Server, including
gueries active on each host and the
ability to cancel the queries.

MarkLogic 9—May, 2017

Query Performance and Tuning Guide—Page 55

MarkLogic Server

Monitoring MarkLogic Server Performance

Name

Location

Description

Task Server
Status

Groups > group_name > Task Server >
Status

Shows information about activity
on the task serversfor the group,
including the number of requests
being processed and the number of
tasks queued on the task server.

Database
Status

Databases > db_name > Status

Shows activity on the specified
database. Shows if any merges are
in progress and if reindexingisin
progress, and gives estimates about
how long they will take. Shows
information about the database,
including the number of documents,
number of fragments, and its size.
Optionally shows forest status
information.

Forest Status

Forests > forest_name > Status

Shows information and activity
about the specified forest, including
merge activity, number of stands,
Size, space available, and so on.
Also includes a button to restart the
forest, which forces the forest to go
offline. Onceit is offline, it will
automatically attemptsto regjoin the
host, resulting in arestart of the
forest. If failover isenabled, a
restarted forest will first attempt to
join the primary host.

MarkLogic 9—May, 2017

Query Performance and Tuning Guide—Page 56

MarkLogic Server Monitoring MarkLogic Server Performance

7.1.4 Create Your Own Server Reports

The status pages in the Admin Interface provide alot of detail about many parts of the system. If
you want information about MarkL ogic Server statusin adifferent form, however, or if you want
to combine it with some other application-specific information, you can build your own server
reports using the Server Monitoring APIs. For more details, see the next section.

7.2 Server Monitoring APIs

The Server Monitoring APIs are XQuery functions that return XML representations of current
activity of various parts of MarkLogic Server. Because they are XQuery functions, you can build
any application you deem necessary with them. For example, perhaps you want a summary page
that shows some different information then the system status page in the Admin Interface, or
perhaps you want to combine some of that information with some content from your application.
Perhaps you want to integrate it with a site-wide monitoring system. Whatever your requirements,
because the APIsreturn XML, it is easy to write an application to display the information in
whatever way fits your needs.

The following are the monitoring functions available:

e xdmp:forest-counts

e xdmp:forest-status

e xdmp:host-status

e xdmp:request-cancel

e xdmp:request-status

e xdmp:server-status
The xdmp : forest-counts function can take some time to compute on large systems, as it must
query the forest to determine some of the counts. You can limit the work it performs with the

optional second argument. For more details about syntax and usage of these functions, see the
Server Monitoring functions in the MarkLogic XQuery and XS_T Function Reference.

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 57

MarkLogic Server Endpoints and Request Monitoring

8.0 Endpoints and Request Monitoring

The Request Monitoring feature enables you to configure logging of information related to
requests, including metrics collected during request execution. This feature lets you enable
logging of internal preset metrics for requests on specific endpoints. You can also log custom
request data by calling the provided Request Logging APIs. Thislogged information may help
you evaluate server performance.

This chapter provides an overview of creating endpoint declarations and using them to monitor
requests on MarkLogic Server. This chapter includes the following sections:

* Monitoring Requests

e App Server Reqguest Monitoring

e XDBC Server Request Monitoring

e Creating Endpoint Declarations

e Request Cancelling

¢ Request Monitoring APIs

8.1 Monitoring Requests

The Reguest Monitoring feature enables you to configure logging of information request-related
information, including metrics collected during request execution. You can switch on logging of
internal preset metrics for requests on specific endpoints, or you can choose to log additional
custom request data by calling the request logging APIs. The custom request data might contain a
query plan, traces, or whatever information you want to collect and log for arequest. Thislogged
information may help you spot offending requests and eval uate request history.

8.2 App Server Request Monitoring
You can trigger request logging for an App Server through one or more of the following options:
» For targeted endpoints (main modules), by switching on monitoring in their endpoint
declaration.
» For al requests on the App Server, by using a specia server declaration.
* By calling request logging APIsin modules.

To switch on monitoring for an endpoint, you must add amonitoring Section to the App Server
Endpoint Declaration file and specify which metrics will be logged. Request monitoring is
switched off by default for all metrics.

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 58

MarkLogic Server Endpoints and Request Monitoring

8.3 XDBC Server Request Monitoring

XDBC Server enables XCC and XDBC applications to communicate with MarkL ogic Server.
You can configure request monitoring for XDBC requests for specific endpoints and globally for
the XDBC Server. There are two types of XDBC requests where request monitoring are enabled:

e XDBC Invoke Requests

e XDBC Eval Requests

8.3.1 XDBC Invoke Requests

You can enable request monitoring at both the endpoint level and at the server level for XDBC
invoke request. For a specific endpoint, you must add amoni toring Section to the XDBC Server
Endpoint Declaration file and specify which metrics will be logged. To configure monitoring on a
global level, you must add a defauilt.api filein the modules root directory for the XDBC Server.

8.3.2 XDBC Eval Requests

For XDBC eval requests, request monitoring isonly available at the server level, as there are no
real endpoints. To seperate the monitoring configuration between the invoke and eval request, and
to add more control over the monitoring of the eval request, you can add an eva1.api fileto the
module root in addition to the default.api file. The eval.api file has the same format as the
default.api file, which contains only a monitoring section, but the settingsin eval.api override
thosein default. api.

8.4 Creating Endpoint Declarations

An Endpoint Declaration isa JSON file with the extension . api that residesin the module
database or file directory of an HTTP server. The App Server uses the declarationsin thisfile to
dispatch requests to corresponding main modules. The declarationsin this file also determine
which requests are to be logged.

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 59

MarkLogic Server

8.4.1

Endpoints and Request Monitoring

The Endpoint Declaration File

The name, parameters, and return value for each endpoint are declared inthe = . api file. The * . api
file contains a JSON data structure with the following properties:

error responses include stack traces:

* 1og (the default): log the stack trace on the server but do not return the
stack trace to the middle tier.

e return: include the stack trace in the exception on the middletier as
well aslog it on the server.

Property Declares

functionName | The name used to call the endpoint, which must match the name (without the
.api extension) of the declaration file.

desc Optional; plain text documentation for the endpoint.

params Optional; an array specifying the parameters of the endpoint. Thisis omitted
for endpoints with no parameters. Parameter objects have name, desc,
datatype, nullable, and multiple properti%.

return Optional; an object specifying the endpoint return value. Thisis omitted for
endpoints with no return value. The child object has desc, datatype, nullabie,
and multiple properties.

errorDetail Optional; specifies avalue from the following enumeration to control whether

Note: When monitoring a module that is not defined as an endpoint, none of the
properties defined in the preceding table are needed

Thefollowing isalist of meters that can be logged with the parameters that control them:

Monitoring Data Default
Flag Type | Vaue FEEITEEE

general object Enables all the general (non-custom) meters. The list
of parameters on which you can set constraintsisin
the next table.

enabled boolean | false Controls the logging of meters.

custom boolean | true Custom meters manipulated with the
xdmp : request-log-* APIS.

MarkLogic 9—May, 2017

Query Performance and Tuning Guide—Page 60

MarkLogic Server

Endpoints and Request Monitoring

Monitorin Data Default
J Parameters
Flag Type Value
fragments integer | 0 The maximum number of itemsto log. For each
fragrnent root, expandedTreeCacheHits,
expandedTreeCacheMisses
documents integer | 0 The maximum number of itemsto log. For each
docurnent:uri,expandedTreeCacheHits,
expandedTreeCacheMisses
hosts integer | 0 The maximum number of itemsto log. For each host:

host, roundTripTime, roundTripCount

The following parameters may beincluded in a . api file:

Parameter

Description

commit-time

The aggregate commit phase time, represented as a
double-precision value in seconds.

compile-time

The aggregate time spent compiling a module or a
program, represented as a double-precision valuein
seconds.

compressed-tree-size

The aggregate size in bytes read from disk by
unsuccessful compressed tree cache lookups. Each
unsuccessful compressed tree cache lookup is followed
by adisk access to load the compressed tree into the
cache.

compressedTreeCacheHits

The number of successful compressed tree cache
lookups. The compressed tree cache holds XML
document data in the compressed representation stored
on disk.

compressedTreeCacheMisses

The number of unsuccessful compressed tree cache
lookups. Each unsuccessful compressed tree cache
lookup was followed by adisk accessto load the
compressed tree into the cache.

contemporaneous-timestamp-time

The time spent by queries waiting for the
contemporaneous timestamp for which any transaction is
known to have committed, represented as a
double-precision value in seconds. When the
multi-version concurrency control is set
contemporaneous, queries can block waiting for the
contemporaneous transactions to fully commit.

MarkLogic 9—May, 2017

Query Performance and Tuning Guide—Page 61

MarkLogic Server Endpoints and Request Monitoring

Parameter Description

dbLibraryModuleCacheHits The number of library module cache hits from library
modules from the modul es database.

dbLibraryModuleCacheMisses The number of library module cache misses from library
modul es from the modul es database.

dbMainModuleSequenceCacheHits The number of main module cache hits from main
modules in a database.

dbMainModuleSequenceCacheMisses | The number of main module cache missesfrom main
modules in a database.

dbProgramCacheHits The number of module cache hits from the entire
program made from modules in a database (may contain
library modules from the special Modules directory).

dbProgramCacheMisses The number of module cache misses from the entire
program made from modules in a database (may contain
library modules from the special Modules directory).

elapsedTime The time elapsed since the start of the processing of this
guery, in the form of aduration. Use this parameter
instead of the deprecated xdmp: set-request-time-limit
function.

envProgramCacheHits The number of module cache hits from the entire
program made from ad hoc XSLT stylesheet nodes.

envProgramCacheMisses The number of module cache misses from the entire
program made from ad hoc XSLT stylesheet nodes.

expandedTreeCacheHits The number of successful expanded tree cache lookups.
The expanded tree cache cache holds XML document
datain the expanded representation used by the X Query
evaluator.

expandedTreeCacheMisses The number of unsuccessful expanded tree cache
lookups. Each unsuccessful expanded tree lookup was
followed by a compressed tree cache lookup to load the
expanded tree into the cache.

filterHits The number of successful search filter matches.

filterMisses The number of unsuccessful search filter matches.

fragmentsAdded The number of XML fragments added to the database by
an update.

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 62

MarkLogic Server

Endpoints and Request Monitoring

Parameter

Description

fragmentsDeleted

The number of XML fragments deleted from the
database by an update.

fsLibraryModuleCacheHits

The number of library module cache hits from library
modules on the file system.

fsLibraryModuleCacheMisses

The number of library module cache misses from library
modules on the file system.

fsMainModuleSequenceCacheHits

The number of main module cache hits from main
modules on the file system.

fsMainModuleSequenceCacheMisses

The number of main module cache misses from main
modules on the file system.

fsProgramCacheHits

The number of module cache hits from the entire
program made from modules on the file system.

fsProgramCacheMisses

The number of module cache misses from the entire
program made from modules on the file system.

inMemoryCompressedTreeHits

The number of successful compressed tree lookupsin
in-memory stands.

inMemoryListHits

The number of successful list lookupsin in-memory
stands.

indexing-time

The indexing time of documents before they are inserted
into database, represented as a double-precision valuein
seconds.

linkCacheHits

The number of successful link cache lookups. The link
cacheisatransient cache that exists only for the duration
of one query. It holds pointers to expanded trees, and is
used to accelerate the frequent dereferencing of link
nodes.

linkCacheMisses

The number of unsuccessful link cache lookups. Each
unsuccessful link cache lookup was followed by asearch
for the link target tree.

list-size

The aggregate size in bytes read from disk by
unsuccessful list cache lookups. Each unsuccessful list
cache lookup is followed by adisk accessto load the
search term list into the cache.

MarkLogic 9—May, 2017

Query Performance and Tuning Guide—Page 63

MarkLogic Server

Endpoints and Request Monitoring

Parameter

Description

listCacheHits

The number of successful list cache lookups. The list
cache holds search termlists used to accelerate path
expressions and text searches.

listCacheMisses

The number of unsuccessful list cache lookups. Each
unsuccessful list cache lookup was followed by a disk
access to load the search termlist into the cache.

lock-time

The aggregate time forests spend waiting for
transactional read and write locks, represented as a
double-precision value in seconds. Thistime can exceed
the run-time.

read-locks

The number of read locks.

regexpCacheHits

The number of successful regular expression cache
lookups. The regular expression cache is atransient
cache that exists only for the duration of one query. It
holds compiled regular expressions, and is used to

accel erate the frequent use of regular expressions during
the evaluation of a query.

regexpCacheMisses

The number of unsuccessful regular expression cache
lookups. Each unsuccessful regular expression cache
lookup was followed by a compilation of aregular
expression from source text.

requests

The number of requests.

run-time

The aggregate time spent evaluating or running amodule
or aprogram, represented as a double-precision valuein
seconds.

valueCacheHits

The number of successful value cache lookups. The
value cache is atransient cache that exists only for the
duration of one query. It holds typed values, and is used
to accelerate the frequent conversion of nodes to typed
values.

valueCacheMisses

The number of unsuccessful value cache lookups. Each
unsuccessful value cache lookup was followed by a
conversion of an XML node to atyped value.

write-locks

The number of write locks.

MarkLogic 9—May, 2017

Query Performance and Tuning Guide—Page 64

MarkLogic Server Endpoints and Request Monitoring

8.4.2 Constraints on Meters

To control the number of meters that are logged, you can put the following constraints on meters:

Operator Description

1t Lessthan

gt Greater than

le Lessthan or equal to

ge Greater than or equal to

The declaration format of aconstraint is:

meter name : {"operator":value, "operator":value, ...]
For example:
"constraints": ({

"tripleCacheHits" : { "ge":1 }

}

In thisexample, tripilecachenits islogged only if the the value of triplecachenits iS>= 1.

Meters with zero or empty values are not normally logged. Thisis done to minimize the size of
the Request Log file. To log a zero or empty value, use the following code:

"constraints": ({
"meter name" : { "ge":0 }

}

The default constraint value on any meter is:

\\gtll -0

8.4.3 Enabling Request Monitoring

You can call any server-side JavaScript («.sqs) or XQuery (».xqy) functionsin filesthat reside in
the modules directory as declared on the HTTP server viathe Admin interface, and you can
create other = . api filesin the same directory or, if using the file system, in the same subdirectory
asthe JavaScript or XQuery file being called. For more information on configuring HTTP servers
and the modules directory, see the “HTTP Servers” chapter in the Administrator’s Guide.

The following exampleis caled countdocs . api. The function getcount is defined in afile called

countdocs.sjs that residesin the same di rectory. The general Obj ect under the monitoring section
of the file has enab1e and custom Set t0 true; this enables request logging.

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 65

MarkLogic Server

Endpoints and Request Monitoring

"functionName" : "getCount",
"params": [
{
"name":"collection",
"datatype":"string",
"multiple":false,
"nullable":false

"name" : "method",
"datatype":"int",
"multiple":false,
"nullable":false

1,

"return": {
"datatype":"string",
"nullable":false,
"multiple":false

b

"monitoring" : {
"general": {
"enabled": true,
"constraints":
"tripleCacheHits"

}
b

"custom": true ,

"documents": 10,
"fragments" 0,
"hosts" : 4

{ "ger:1)

MarkLogic 9—May, 2017

Query Performance and Tuning Guide—Page 66

MarkLogic Server Endpoints and Request Monitoring

8.4.4 The Default Declaration File

You can configure request monitoring globally for all requests on an App Server by adding a
default.api filewherethe modulesroot isconfigured for the App Server (either to the modules
database or to the file system). The default.api file only contains a monitoring section.

Thefollowing isasample default.api file:

{
"monitoring": {
"general": {
"enabled": true,
"constraints":
"tripleCacheHits" : { "ge":0 }
}
I

"custom": true,

"documents": 10,
"fragments" : 10,
"hosts" : 5 }

When you make arequest to an endpoint and do not specify an App Server Endpoint Declaration
file, the default.api file in the module database or file directory is used if it exists. If amodule
hasa «.api file associated with it, the monitoring settingsin the = . api file for that module are
used instead of those in the default . api file.

8.4.5 Request Logs

Thelogs for MarkL ogic Server containing information about the requests you have chosen to log
are stored in the Logs directory under the MarkLogic Server data directory (typically

c:\Program Files\MarkLogic\Data\Logs ON Windows, /var/opt/MarkLogic/Logs ON UNIX-based
systems) in thefile port no rRequestLog.txt. Each RequestLog.txt file will contain the meters
from multiple monitored endpoints that:

» are configured on an App Server with some monitoring switched on.

* havecdlsto xdmp : request-log-put in their module.

The collected dataislogged in JSON format at the rate of one line per request information. Even
if monitoring is completely switched off on an endpoint, callsto

xdmp : request-log-put (key, value) during arequest will result in data being logged for al the
(key, value) pairsthat have been stored during the request.

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 67

MarkLogic Server Endpoints and Request Monitoring

Thefollowing is an example of arequest log where different meters are logged for two endpoints:

{"time":"2018—08—10Tl7:45:29—07:00", "url":"/funcfoo.sjs",
"user":"userl", "customKeyl":"valuel", "elapsedTime":"PT0.017017S",
"listCacheHits":1, "expandedTreeCacheHits":1,
"fsProgramCacheMisses":1, "fsMainModuleSequenceCacheMisses":1}

{"time":"2018—08—10Tl7:45:44—07:00", "url":"/funcfoo.sjs",
"user":"user2", "customKeyl":"valuel", "elapsedTime":"PT0.013671S",
"listCacheHits":1, "expandedTreeCacheHits":1,
"fsProgramCacheHits":1}

{"time":"2018—08—10Tl7:46:06—07:00", "url":"/funcbaz.sjs",
"user":"userl", "customKey2":"value2", "elapsedTime":"PT0.010562S",
"listCacheHits":1, "expandedTreeCacheHits":1,
"fsProgramCacheHits":1}

{"time":"2018—08—10Tl7:46:09—07:00", "url":"/funcfoo.sjs",
"user":"userl", "customKeyl":"valuel", "elapsedTime":"PT0.007012S",
"listCacheHits":1, "expandedTreeCacheHits":1,
"fsProgramCacheHits":1}

{"time":"2018—08—10Tl7:46:21—07:00", "url":"/funcfoo.sjs",
"user":"user3", "customKey3":"value3", "elapsedTime":"PT0.009766S",
"listCacheHits":1, "expandedTreeCacheHits":1,
"fsProgramCacheHits":1}

{"time":"2018-08-10T17:46:54-07:00", "url":"/funcbaz.sjs",
"user":"user2", "customKeyl":"valuel", "elapsedTime":"PT0.01306S",
"listCacheHits":1, "expandedTreeCacheHits":1,
"fsProgramCacheHits":1}

{"time":"2018—08—10Tl7:47:00—07:00", "url":"/funcbaz.sjs",
"user":"userl", "customKey4":"value4", "elapsedTime":"PT0.013853S",
"listCacheHits":1, "expandedTreeCacheHits":1,
"fsProgramCacheHits":1}

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 68

MarkLogic Server Endpoints and Request Monitoring

8.5 Request Cancelling

This section describes the procedure to setup and enable request cancelling for an endpoint, a
main module, or globally on an App Server or XDBC Server. Request cancelling is disabled by
default for all meters. You can enable request cancelling by adding a1inits section to the
monitoring section in the endpoint declaration, asin the following example:

{

"monitoring":
"limits" : {
"lockCount" : 100,
"readSize" : 1000000

}
}
}

The following limits are available:

Meter Unit Description

elapsedTime seconds | Equivalent to calling xdmp: set-request-time-1limit ()

readsize bytes Combined size read from disk (1istsize + compressedTreesize)

lockCount count Combined count for the number of times aread or awrite lock was
acquired (readrocks + writeLocks)

You can update the 1imits configuration while the server is running without having to restart the
Server.

8.6 Request Monitoring APIs

The Reguest Monitoring APIs are XQuery and JavaScript functions enable you to log additional
information in request logs. The following are the request monitoring functions available:

® xdmp:request-log-put

® xdmp:request-log-get

® xdmp:request-log-delete

® xdmp:set-request-limit

® xdmp.requestLogPut

® xdmp.requestLogGet

® xdmp.requestLogDelete

® xdmp:request-status

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 69

MarkLogic Server Endpoints and Request Monitoring

Whatever islogged with xdmp : request-10g-put displaysin the log files unless the custom flag is
set to ra1se. When the custom flag is set to faise, al custom logging is muted.

For more details about syntax and usage of these functions, see the AppServer functionsin the
MarkLogic XQuery and XSLT Function Reference and the MarkLogic JavaScript Reference
Guide.

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 70

MarkLogic Server Technical Support

9.0 Technical Support

MarkL ogic provides technical support according to the terms detailed in your Software License
Agreement or End User License Agreement.

We invite you to visit our support website at http://help.marklogic.com to access information on
known and fixed issues, knowledge base articles, and more. For licensed customers with an active
maintenance contract, see the Support Handbook for instructions on registering support contacts
and on working with the MarkL ogic Technical Support team.

Complete product documentation, the latest product release downloads, and other useful
information is available for al developers at http:/developer.marklogic.com. For technical
guestions, we encourage you to ask your question on Stack Overflow.

MarkLogic 9

http://help.marklogic.com/
https://stackoverflow.com/questions/tagged/marklogic
http://developer.marklogic.com
http://www.marklogic.com/files/Mark_Logic_Support_Handbook.pdf

MarkLogic Server Copyright

10.0 Copyright

MarkLogic Server 9.0 and supporting products.
Last updated: April 28, 2018

COPYRIGHT

Copyright © 2018 MarkL ogic Corporation. All rights reserved.
Thistechnology is protected by U.S. Patent No. 7,127,469B2, U.S. Patent No. 7,171,404B2, U.S.
Patent No. 7,756,858 B2, and U.S. Patent No 7,962,474 B2, US 8,892,599, and US 8,935,267.

The MarkL ogic software is protected by United States and international copyright laws, and
incorporates certain third party libraries and components which are subject to the attributions,
terms, conditions and disclaimers set forth below.

For all copyright notices, including third-party copyright notices, see the Combined Product
Notices for your version of MarkLogic.

MarkLogic 9

	Query Performance and Tuning Guide
	Table of Contents
	1.0 Tuning Query Performance in MarkLogic Server
	1.1 Overview of Query Performance
	1.2 General Techniques to Tune Performance
	1.2.1 Search Built-In APIs
	1.2.2 Lexicons For Unique Word or Value Lookups
	1.2.3 Range Queries for Constraining Searches to a Range of Values
	1.2.4 Positions Indexes Can Help Speed Phrase Searches
	1.2.5 Use Query Meters and Query Trace to Characterize Performance
	1.2.6 Profiler API
	1.2.7 Monitoring API and Status Screens
	1.2.8 Index Options, Range Indexes, Fields

	1.3 Understanding MarkLogic Server Caches
	1.4 Rules of Thumb for Sizing

	2.0 Fast Pagination and Unfiltered Searches
	2.1 Understanding the Search Process
	2.2 Understanding Unfiltered Searches
	2.3 Using Unfiltered Searches for Fast Pagination
	2.4 Example: Determining the Number of False-Positive Matches

	3.0 Tuning Queries with query-meters and query-trace
	3.1 Indexes, XPath Expressions, and Query Performance
	3.2 Understanding query-meters Output
	3.2.1 Output From xdmp:query-meters
	3.2.2 Understanding the Cache Statistics

	3.3 Understanding query-trace Output
	3.3.1 What query-trace Logs
	3.3.2 Interpreting the Log Messages
	3.3.3 Fully Searchable Paths and cts:search Operations

	3.4 Using xdmp:plan to View the Evaluation Plan
	3.5 Examples
	3.5.1 Sample xdmp:query-meters Output
	3.5.2 Sample xdmp:query-trace Output
	3.5.3 Logging Both query-meters and query-trace Output

	4.0 Sorting Searches Using Range Indexes
	4.1 Using a cts:order Specification in a cts:search
	4.1.1 Creating a cts:order Specification
	4.1.2 Using the cts:order Specification in a Search

	4.2 Optimizing Order By Expressions With Range Indexes
	4.2.1 Speed Up Order By Performance
	4.2.2 Rules for Order By Optimization
	4.2.3 Creating Range Indexes
	4.2.4 Example Order By Queries

	5.0 Profiling Requests to Evaluate Performance
	5.1 Enabling Profiling on an App Server
	5.2 Understanding XQuery Profiling
	5.2.1 Definitions and Terminology for the XQuery Profiling
	5.2.2 XQuery Profiling Overview
	5.2.3 XQuery Profiling API

	5.3 Understanding Server-Side JavaScript Profiling
	5.4 Profiling Examples
	5.4.1 Simple Enable and Disable XQuery Example
	5.4.2 Returning a Part of the XQuery Profile Report
	5.4.3 JavaScript Profile Example

	6.0 Disk Storage Considerations
	6.1 Disk Storage and MarkLogic Server
	6.2 Fast Data Directory on Forests
	6.3 Large Data Directory on Forests
	6.4 HDFS, MapR-FS, and S3 Storage on Forests
	6.4.1 HDFS Storage
	6.4.2 MapR-FS Storage
	6.4.3 S3 Storage

	6.5 Windows Shared Disk Registry Settings and Permissions

	7.0 Monitoring MarkLogic Server Performance
	7.1 Ways to Monitor Performance and Activity
	7.1.1 Monitoring History Dashboard
	7.1.2 Server Logs
	7.1.3 Status Screens in the Admin Interface
	7.1.4 Create Your Own Server Reports

	7.2 Server Monitoring APIs

	8.0 Endpoints and Request Monitoring
	8.1 Monitoring Requests
	8.2 App Server Request Monitoring
	8.3 XDBC Server Request Monitoring
	8.3.1 XDBC Invoke Requests
	8.3.2 XDBC Eval Requests

	8.4 Creating Endpoint Declarations
	8.4.1 The Endpoint Declaration File
	8.4.2 Constraints on Meters
	8.4.3 Enabling Request Monitoring
	8.4.4 The Default Declaration File
	8.4.5 Request Logs

	8.5 Request Cancelling
	8.6 Request Monitoring APIs

	9.0 Technical Support
	10.0 Copyright
	COPYRIGHT

