
Copyright © 2018 MarkLogic Corporation. All rights reserved.

MarkLogic Server

Query Performance and Tuning Guide
1

MarkLogic 9
May, 2017

Last Revised: 9.0-8, December, 2018

MarkLogic Server Table of Contents
Table of Contents

Query Performance and Tuning Guide

1.0 Tuning Query Performance in MarkLogic Server ...5
1.1 Overview of Query Performance ..5
1.2 General Techniques to Tune Performance ..6

1.2.1 Search Built-In APIs ...6
1.2.2 Lexicons For Unique Word or Value Lookups ..7
1.2.3 Range Queries for Constraining Searches to a Range of Values7
1.2.4 Positions Indexes Can Help Speed Phrase Searches7
1.2.5 Use Query Meters and Query Trace to Characterize Performance7
1.2.6 Profiler API ...7
1.2.7 Monitoring API and Status Screens ..7
1.2.8 Index Options, Range Indexes, Fields ..8

1.3 Understanding MarkLogic Server Caches ..8
1.4 Rules of Thumb for Sizing ..9

2.0 Fast Pagination and Unfiltered Searches ...10
2.1 Understanding the Search Process ..10
2.2 Understanding Unfiltered Searches ..11
2.3 Using Unfiltered Searches for Fast Pagination ...13
2.4 Example: Determining the Number of False-Positive Matches14

3.0 Tuning Queries with query-meters and query-trace15
3.1 Indexes, XPath Expressions, and Query Performance ...16
3.2 Understanding query-meters Output ...17

3.2.1 Output From xdmp:query-meters ...17
3.2.2 Understanding the Cache Statistics ...18

3.3 Understanding query-trace Output ..19
3.3.1 What query-trace Logs ..20

3.3.1.1 XPath Expression Analysis Messages20
3.3.1.2 Constraint Analysis Messages ...20
3.3.1.3 Search Execution Messages ..21

3.3.2 Interpreting the Log Messages ..22
3.3.3 Fully Searchable Paths and cts:search Operations23

3.4 Using xdmp:plan to View the Evaluation Plan ...24
3.5 Examples ...24

3.5.1 Sample xdmp:query-meters Output ..25
3.5.2 Sample xdmp:query-trace Output ...26
3.5.3 Logging Both query-meters and query-trace Output27
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 2

MarkLogic Server Table of Contents
4.0 Sorting Searches Using Range Indexes ...32
4.1 Using a cts:order Specification in a cts:search ...32

4.1.1 Creating a cts:order Specification ...32
4.1.2 Using the cts:order Specification in a Search ...33

4.2 Optimizing Order By Expressions With Range Indexes33
4.2.1 Speed Up Order By Performance ...33
4.2.2 Rules for Order By Optimization ..33
4.2.3 Creating Range Indexes ..35
4.2.4 Example Order By Queries ...35

4.2.4.1 Order by a Single Element ..36
4.2.4.2 Order by Multiple Elements ..37

5.0 Profiling Requests to Evaluate Performance ...38
5.1 Enabling Profiling on an App Server ..38
5.2 Understanding XQuery Profiling ..38

5.2.1 Definitions and Terminology for the XQuery Profiling39
5.2.2 XQuery Profiling Overview ..39
5.2.3 XQuery Profiling API ...40

5.3 Understanding Server-Side JavaScript Profiling ..41
5.4 Profiling Examples ...42

5.4.1 Simple Enable and Disable XQuery Example ..42
5.4.2 Returning a Part of the XQuery Profile Report ..44
5.4.3 JavaScript Profile Example ...44

6.0 Disk Storage Considerations ..47
6.1 Disk Storage and MarkLogic Server ..47
6.2 Fast Data Directory on Forests ...47
6.3 Large Data Directory on Forests ...48
6.4 HDFS, MapR-FS, and S3 Storage on Forests ...48

6.4.1 HDFS Storage ...48
6.4.2 MapR-FS Storage ...50
6.4.3 S3 Storage ...50

6.4.3.1 S3 and MarkLogic ...50
6.4.3.2 Entering Your S3 Credentials for a MarkLogic Cluster52

6.5 Windows Shared Disk Registry Settings and Permissions52

7.0 Monitoring MarkLogic Server Performance ..53
7.1 Ways to Monitor Performance and Activity ...53

7.1.1 Monitoring History Dashboard ...53
7.1.2 Server Logs ...54
7.1.3 Status Screens in the Admin Interface ..55
7.1.4 Create Your Own Server Reports ...57

7.2 Server Monitoring APIs ..57
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 3

MarkLogic Server Table of Contents
8.0 Endpoints and Request Monitoring ..58
8.1 Monitoring Requests ...58
8.2 App Server Request Monitoring ...58
8.3 XDBC Server Request Monitoring ...59

8.3.1 XDBC Invoke Requests ..59
8.3.2 XDBC Eval Requests ..59

8.4 Creating Endpoint Declarations ..59
8.4.1 The Endpoint Declaration File ..60
8.4.2 Constraints on Meters ...65
8.4.3 Enabling Request Monitoring ...65
8.4.4 The Default Declaration File ..67
8.4.5 Request Logs ...67

8.5 Request Cancelling ...69
8.6 Request Monitoring APIs ...69

9.0 Technical Support ..71

10.0 Copyright ...72
10.0 COPYRIGHT ..72
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 4

MarkLogic Server Tuning Query Performance in MarkLogic Server
1.0 Tuning Query Performance in MarkLogic Server
9

This chapter describes some general issues involving query performance in MarkLogic Server,
and includes the following sections:

• Overview of Query Performance

• General Techniques to Tune Performance

• Understanding MarkLogic Server Caches

• Rules of Thumb for Sizing

1.1 Overview of Query Performance

MarkLogic Server is designed to search extremely large content sets, while providing
fine-grained control over the search and access of the content. Performance is always an
important component in a search application. In many cases, applications will be extremely fast
with no tuning whatsoever. There are, however, many tools and techniques to help make queries
faster.

There are several things to consider when looking at query performance:

• Application requirements: how fast does performance need to be for your application? It is
often useful to quantify this at application design time. Factors such as who will be using
the application, what any user expectations for performance are, and whether the
application will be publicly available are important considerations in defining
performance requirements.

• Indexing options: what indexes are defined for the database? Indexing options play an
important role in how well queries can be resolved from the indexes. The fastest way to
resolve a query is directly from the indexes. For details on database options, see the
chapters Databases and Text Indexing in the Administrator’s Guide.

• XQuery code: is your code written in the most efficient way possible? Sometimes, code
runs more slowly than necessary because there are redundant or unneeded function calls.
Or there may be a MarkLogic XQuery built-in function that performs an equivalent task
more efficiently. Functions such as xdmp:estimate, cts:search, lexicon functions, and so
on are all designed for fast performance.

• More indexes and lexicons: can range indexes and lexicons speed up your queries? For
queries that access values and/or do comparisons on those values, range indexes can
greatly speed performance. Range indexes are memory mapped structures, so they can
retrieve the values without ever needing to access the documents. Lexicons are lists of
words or values, and they too can greatly speed up certain types of queries.
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 5

MarkLogic Server Tuning Query Performance in MarkLogic Server
• Server tuning: are your server parameters set appropriately for your system? In most
cases, the parameters set during installation work well for the system in which MarkLogic
Server is installed. Nevertheless, there are cases where you might need to change some
parameters, either for a short-term need or for ongoing needs.

• Scalability: is your system sufficiently large for your needs? Memory, disk space and
quality, swap space, number of processors, and number of servers all contribute to the
overall scalability of a MarkLogic Server system. MarkLogic Server is designed to scale
to very large clusters with extremely large amounts of content.

This chapter and this book, as well as the Application Developer’s Guide, provide information
and techniques on tuning a system for optimal performance. The nature of tuning exercises is that
they tend to be content-specific, so you cannot always pinpoint a particular recipe that will work
for every situation. Getting to know the tools available, the XQuery APIs, and how MarkLogic
Server works is the best way to make your applications run extremely fast.

1.2 General Techniques to Tune Performance

This section lists some general techniques useful in tuning performance, and provides links to
places in the documentation where there is more information on a subject. It contains the
following parts:

• Search Built-In APIs

• Lexicons For Unique Word or Value Lookups

• Range Queries for Constraining Searches to a Range of Values

• Positions Indexes Can Help Speed Phrase Searches

• Use Query Meters and Query Trace to Characterize Performance

• Profiler API

• Monitoring API and Status Screens

• Index Options, Range Indexes, Fields

1.2.1 Search Built-In APIs

The search built-in XQuery APIs are designed to provide very fast searches. The APIs
(cts:search, xdmp:estimate, cts:element-values, and so on) use the indexes for fast search
performance. The composable cts:query constructors make it easy to compose complex search
queries with fast performance. For details on the search built-in XQuery APIs, see MarkLogic
XQuery and XSLT Function Reference. For details on the constructors, see Composing cts:query
Expressions in the Search Developer’s Guide.
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 6

MarkLogic Server Tuning Query Performance in MarkLogic Server
1.2.2 Lexicons For Unique Word or Value Lookups

MarkLogic Server allows you to create lexicons, which are lists of unique words or values in a
database. Lexicons allow for very fast lookups, and in the case of values, also provide very fast
counts. For details on lexicons, see the chapter Browsing With Lexicons in the Search Developer’s
Guide.

1.2.3 Range Queries for Constraining Searches to a Range of Values

Range queries allow you to specify queries that use range indexes in a cts:query expression.
Range queries can both improve performance and make it easier to build applications that
constrain on values. For details on range queries, see Using Range Queries in cts:query Expressions
in the Search Developer’s Guide.

1.2.4 Positions Indexes Can Help Speed Phrase Searches

If you specify word positions in the database configuration, it can speed phrase searches. During
the index resolution phase of query processing, MarkLogic Server determines if words are next to
each other based on their positions. For example, if you search for the phrase "to be or not to
be", MarkLogic Server can eliminate as possible matches, based on positions, most occurrences
of these common words because they do not have the proper word next to it. This speeds
performance in two ways: it lowers the number of I/Os needed to retrieve candidate fragments,
and it makes the filtering phase faster because there are less candidate fragments to filter. For
details about how search processing works, see “Understanding the Search Process” on page 10.

1.2.5 Use Query Meters and Query Trace to Characterize Performance

There are two XQuery functions to help you characterize the performance of queries:
xdmp:query-meters and xdmp:query-trace. The former provides timing of a query and the latter
logs details of the query evaluation to the ErrorLog.txt file. For details on these APIs, see
“Tuning Queries with query-meters and query-trace” on page 15 and the MarkLogic XQuery and
XSLT Function Reference.

1.2.6 Profiler API

MarkLogic Server has a profiler to help determine where a query is spending time processing. For
details on the profiler, see “Profiling Requests to Evaluate Performance” on page 38 and the
MarkLogic XQuery and XSLT Function Reference.

1.2.7 Monitoring API and Status Screens

There are APIs and status screens in the Admin Interface to monitor activities on your system.
These can be useful in identifying bottlenecks on your system. For details, see “Monitoring
MarkLogic Server Performance” on page 53.
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 7

MarkLogic Server Tuning Query Performance in MarkLogic Server
1.2.8 Index Options, Range Indexes, Fields

There are many types of index options, including several types of wildcard indexes, element
indexes, stemmed indexes, element and attribute range indexes, and so on. Depending on your
needs, these indexes can help speed performance. Indexes tend to take more disk space and
increase loading times, but can greatly improve performance.

Fields are another way of improving performance, especially if you are only interested in
searching through certain included elements, or you want your searches to exclude particular
elements. For details on fields, see Fields Database Settings in the Administrator’s Guide.

1.3 Understanding MarkLogic Server Caches

MarkLogic Server has several caches used in query processing, defined on the group
configuration page. The list cache stores termlists in memory, the compressed tree cache stores
compressed fragment data in memory, and the expanded tree cache stores uncompressed fragment
data in memory. Additionally, there are several other caches used for security objects, modules,
schemas, and so on; these other caches cannot be configured. In most cases, if the caches fill up,
they will move older data out to make room for newer content.

In some cases, however, it is possible to run a query that will fail because a cache was full.
Particularly, when the expanded tree cache gets full, a query can fail with an XDMP-TREECACHEFULL
exception. The following are some guidelines to avoid XDMP-TREECACHEFULL errors:

• Avoid queries that return the entire database. Instead, return the results in batches (a page
at a time, like a classic search page, for example).

• Try to rewrite the query in a more efficient way.

• Make sure swap space is configured properly on your server.

• If you do not have sufficient memory on your server, consider adding more memory to the
system.

• You can raise the sizes of the caches, but that might be a temporary fix.

• 64-bit systems are recommended. 64-bit systems can hold a lot more memory, and more
memory means larger caches.
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 8

MarkLogic Server Tuning Query Performance in MarkLogic Server
1.4 Rules of Thumb for Sizing

The following are some rule-of-thumb sizing recommendations. These recommendations are best
practices based on experience with MarkLogic Server implementations. Also, some of these
recommendations are content specific. Performing experiments on your own content is a good
way to validate any expansions of these rules of thumb, but these provide a good starting point.

• You should have approximately 10-20 GB of forest data per 1 GB of RAM. More memory
will help, too, especially if you have a lot of range indexes and/or lexicons.

• 64-bit systems are good—they greatly increase the address space so you can address more
than 4GB of RAM.

• Forests should not grow too much past 256GB or 128-million fragments; before a forest
size approaches 256 GB or 128-million fragments, think about creating a new forest.
MarkLogic logs Warning messages when the forest grows past 104-million fragments, at
128-million fragments it logs Error messages, and continues to log increasing severity
messages if the forest continues to grow. If your forest grows near this limit, add more
forests to the database and rebalance the database to move fragments into the new forests.

• Do not have more than 1024 primary forests in a single database.

• Make sure you have at least 2x memory for swap space (or the recommended amount for
your platform, as described in Memory, Disk Space, and Swap Space Requirements in the
Installation Guide). This is important to make sure MarkLogic Server does not run out of
memory. At query time, MarkLogic Server asks the operating system to reserve both
memory and swap space. If there is not enough of either, the query can fail with
SVC-MEMALLOC messages. These messages can happen if you do not have the recommended
amount of swap space. If you do have enough swap space and still get these errors, it can
indicate that you either need to increase the amount of memory in the system or lower the
amount of memory being used, either by modifying your queries or lowering some of the
sizes of server caches, lowering the number of threads the server can service, and so on.

• For updates, make the journal size larger if you have a lot of range index data. A symptom
of this as a problem is journal-full errors.

• For updates, make the journal size larger if your transactions span multiple forests. The
journals must keep the lock information for all documents involved in the transaction, not
just for the documents in the journal for the forest in which the document exists. A
symptom of this as a problem is journal-full errors.

• There is a limit of 65k for the size of a string literal or a token in an XQuery program. If
you need to input a string longer than 65k, use an external variable with the xdmp:invoke
API. External variables are limited to a single node or a string, and in XCC are limited to
string only. In XCC, if you need to input a node as an external variable, you must quote it
as a string on input and then unquote it (xdmp:unquote) into a node in your XQuery
function. Note that this limit is only for the size of a string literal or a token; XQuery
program sizes are limited only by the cache size.
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 9

MarkLogic Server Fast Pagination and Unfiltered Searches
2.0 Fast Pagination and Unfiltered Searches
14

MarkLogic Server provides a powerful XML-enabled search capability through the cts:search
XQuery built-in function. As part of the search capability, MarkLogic Server allows you to issue
cts:search expressions that return results directly from the indexes, without performing the
filtering necessary to ensure there are no false-positive results. This chapter describes the search
process, including unfiltered searches, and includes the following sections:

• Understanding the Search Process

• Understanding Unfiltered Searches

• Using Unfiltered Searches for Fast Pagination

• Example: Determining the Number of False-Positive Matches

2.1 Understanding the Search Process

When evaluating cts:search expressions (and also when resolving XPath expressions within
XQuery code), MarkLogic Server performs a two-step process.

1. A list of candidate fragment IDs is generated directly from the indexes, based on the
index-resolvable criteria incorporated in the various parameters passed to cts:search.
Fragment IDs are ordered according to relevance criteria. This step is called index
resolution.

2. The candidate fragment IDs are used to load fragments from disk. Each fragment is then
examined in order, using the complete criteria incorporated in the various parameters
passed to cts:search, to determine if the fragment contains zero, one, or more than one
result that matches the given cts:search expression. This step is called filtering.

The purpose of index resolution is to narrow the set of candidate fragments to as small a set as
possible, without missing any. In some circumstances, the index resolution step can yield a
precisely correct set of candidate fragments, rendering the filtering step redundant. In other
circumstances, index resolution can reduce the set of candidate fragments somewhat, but in the
candidate fragment list there are still false-positive results (that is, candidate fragments that in fact
contain no matching results). In still other circumstances, the candidate fragment list can contain
fragments that contain more than one matching result.

To better understand false-positive results, imagine a database configuration which has not
enabled fast case-sensitive indexes (fast case sensitive searches on the database configuration
page). This means that the full-text indexes only maintain direct lookups for words independent of
their case. In this scenario, if you are searching for "Dog", the indexes can only tell you what
fragments contain the word "dog", in any case-combination of text (for example, "dog", "DOG",
"Dog", "doG", and so on). So when index resolution generates a candidate fragment list for "Dog",
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 10

MarkLogic Server Fast Pagination and Unfiltered Searches
that list could include a fragment that has the word "dog" but not the word "Dog". This is where
filtering comes in—by loading that fragment and examining it prior to returning it as a match,
MarkLogic Server is able to determine that it is not in fact a match for the specified query, and
rule it out. The fragment is a false-positive result, and should not be returned to the query.

To understand how a candidate fragment can contain more than one match, consider a
single-fragment document that contains multiple <author> elements as follows:

<author>Bruce Smith</author>
<author>Betty Smith</author>
<author>Gordon Blair</author>

Now consider the following query:

cts:search(//author, "Smith")

During index resolution, this query generates the fragment for that document as a single candidate
fragment. In fact, that single document should generate two results—one for each of Bruce and
Betty Smith. During the filtering step, MarkLogic Server identifies that there is more than one
element in this document that matches the search requirements, and returns both of the first two
<author> elements as results.

As you can see from these examples, the combination of index resolution and filtering combine to
provide both performance and accuracy. The algorithm is designed to allow you to write complex
queries, and have MarkLogic Server determine the most efficient path providing accurate results.

There are disadvantages to the algorithm, however. Sometimes, you might know better than the
search engine, and through careful design of your XML and your fragmentation, you might know
that filtering is simply unnecessary. In this case, filtering takes unneeded cycles. In another
situation, if you want to jump deep into a result set (for example, retrieving the 1,000,000th result
from a really large result set), the emphasis MarkLogic Server has on accuracy through filtering
might provide an impractical constraint for your application, because filtering the first 999,999
results will take far too long. Furthermore, it might not matter to your application if, when you
jump to the 1,000,000th result, you actually end up at approximately that result (even if in reality
it is the 949,237th result).

Consequently, MarkLogic Server provides you with tools to influence the evaluation of
cts:search expressions, indicating whether or not filtering is required.

2.2 Understanding Unfiltered Searches

An unfiltered search omits the filtering step, which validates whether each candidate fragment
result actually meets the search criteria. Unfiltered searches, therefore, are guaranteed to be fast,
while filtered searches are guaranteed to be accurate. By default, searches are filtered; you must
specify the "unfiltered" option to cts:search to return an unfiltered search. Unfiltered searches
have the following characteristics:
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 11

MarkLogic Server Fast Pagination and Unfiltered Searches
• They determine the results directly from the indexes, without filtering for validation. This
makes unfiltered results most comparable to traditional search-engine style results.

• They include false-positive results. False-positive results can originate from a number of
situations, including phrase searches containing 3 or more words, certain wildcard
searches, punctuation-sensitive, diacritic-sensitive, and/or case-sensitive searches.

• They will be significantly affected by fragmentation policy.

The following are some useful guidelines for when to use unfiltered searches:

• You should only perform unfiltered searches on top-level nodes or on fragment roots,
otherwise you might get unexpected answers. This is because, for queries below the
fragment level, there is no guarantee that a particular unfiltered search even matches the
query (that is, there is a match somewhere in the fragment, but not necessarily a match in
the node you are searching).

• If you choose to specify an XPath other than a top-level node or a fragment root, your
XPath expression will give correct results if there is only one possible node to match in
each fragment (or if the only possible match is in the first node specified). This is because
unfiltered searches stop after encountering the first node per fragment that matches the
specified XPath expression. If you are sure that the node you specify only has one instance
per fragment, then it will not miss any results (although it might get false-positive results).
An example of this is ABSTRACT in MEDLINE citatation, where ABSTRACT is below the
fragment root, but there is only one ABSTRACT node per fragment. If you specify below a
fragment root and there are multiple nodes in the fragment, the search may miss results (it
will only find results if they are in the first fragment).

Finally, it is useful to understand that cts:contains implements the filtering step of the two-step
search process:

unfiltered cts:search + cts:contains = normal (filtered) cts:search

Breaking a cts:search operation into an unfiltered search and a cts:contains allows you to do
the search so it is always fast, but then only do the false-positive result removal if you want or
need to. This is true as long as the first parameter to cts:search is at a fragment root node. If it is
below a root node, it is only true if you know that the first node is the only possible hit for the
search (for example, if there is only one node, as in the ABSTRACT example above).
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 12

MarkLogic Server Fast Pagination and Unfiltered Searches
2.3 Using Unfiltered Searches for Fast Pagination

There are many useful applications for unfiltered searches. Applications of unfiltered searches
tend to have one or more of the following characteristics:

• Your content and search terms are such that you know the unfiltered searches are also
accurate (for example, the searches are all performed at document or fragment roots, they
are single-term queries, and are not wildcard, punctuation-sensitive, diacritic-sensitive,
and/or capitalization-sensitive searches).

• You do not mind if there are some false-positive results because the results are an estimate
(that is, they need to be fast, but are not required to be exact).

• Your searches return a large number of results and you want efficient ways to jump to a
particular portion of those results.

The last point describes the situation for fast pagination. Fast pagination is a way to get an
approximate count of the total number of result hits and then provide efficient ways to jump deep
to an arbitrary point in the result sequence. Such pagination is common in search engine-style
results, where a particular result might return 1 million hits and the search interface returns them
10 at a time. There is usually some sort of counter that says something like “displaying 1-10 of
1,000,000 results,” and then there are links to go to the next page of results or to go to the tenth,
twentieth, or any page of the results. Often it is not critical that going to the twentieth page
actually gets you to the 200th hit; it is OK if there were some false-positive results, and when you
click that link you actually get to the 176th result.

When you implement a fast pagination application, you will need to jump into a position in an
unfiltered search. To maximize the efficiency of this search, you must immediately follow the
unfiltered cts:search expression with the position predicate, with no XPath steps in between. For
example, to jump into the 1,000,001st hit of an unfiltered search for the phrase “one two three”,
the search might look like the following:

cts:search(fn:doc(), "one two three", "unfiltered")[1000001 to 1000010]

This search will skip directly to the 1,000,001st unfiltered hit and return the 10 fragments
specified in the position predicate; it will not need to fetch any other fragments.
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 13

MarkLogic Server Fast Pagination and Unfiltered Searches
2.4 Example: Determining the Number of False-Positive Matches

The following code sample prints out the number of false-positive matches from a search.

xquery version "1.0-ml";
declare boundary-space preserve;
declare namespace qm="http://marklogic.com/xdmp/query-meters";

let $trueCounter := 0
let $falseCounter := 0
let $searchTerms := "one! two three"
let $x :=
 for $result in cts:search(fn:doc(), $searchTerms, "unfiltered")
 return
 (
 if (cts:contains($result, $searchTerms))
 then (xdmp:set($trueCounter, $trueCounter + 1))
 else (xdmp:set($falseCounter, $falseCounter + 1))
)
return
<results>
 <resultTotal>{$trueCounter}</resultTotal>
 <false-positiveTotal>{$falseCounter}</false-positiveTotal>

<elapsed-time>{xdmp:query-meters()/qm:elapsed-time/text()}
</elapsed-time>

</results>

Because the specified $searchTerms contains punctuation in the middle of the phrase, any
document that has the phrase “one two three” will prove to be a false-positive result. If you
substitute in your query terms for the $searchTerms variable, you can see if your own unfiltered
search yields false-positive results.

The above code uses the xdmp:set function to keep track of the number of matches and the
number of false-positive results. It runs the unfiltered search and then uses cts:contains to check
if each result is actually a match. If it is a match, then increment the $trueCounter variable,
otherwise increment the $falseCounter variable.
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 14

MarkLogic Server Tuning Queries with query-meters and query-trace
3.0 Tuning Queries with query-meters and query-trace
31

MarkLogic Server is designed for very fast query performance over large amounts of data. While
query performance is usually very fast, sometimes you will issue queries that do not perform as
well as you would like. MarkLogic Server includes functions to help you optimize the
performance of queries.

This chapter describes how to use the xdmp:query-meters and xdmp:query-trace functions to
understand and tune the performance of queries. It includes the following sections:

• Indexes, XPath Expressions, and Query Performance

• Understanding query-meters Output

• Understanding query-trace Output

• Using xdmp:plan to View the Evaluation Plan

• Examples

• 2004-12-08 15:48:01.502 Info: **** **** Begin query trace and meter log ****
004-12-08 15:48:01.502 Info: line 9: Analyzing path:

doc("/myDocs/file.xml")/descendant::Node-1
2004-12-08 15:48:01.502 Info: line 9: Step 1 is searchable: doc("/myDocs/file.xml")
004-12-08 15:48:01.502 Info: line 2: Step 2 axis does not use indexes: descendant
004-12-08 15:48:01.502 Info: line 2: Step 2 test is searchable: Node-2
004-12-08 15:48:01.502 Info: line 2: Step 2 is searchable: descendant::Node-2
004-12-08 15:48:01.502 Info: line 2: Path is searchable.
004-12-08 15:48:01.502 Info: line 2: Gathering constraints.
2004-12-08 15:48:01.502 Info: line 2: Step 2 test contributed 1 constraint: Node-2
2004-12-08 15:48:01.502 Info: line 2: Executing search.
004-12-08 15:48:01.502 Info: line 2: Selected 1 fragment to filter
2004-12-08 15:48:01.502 Info: <qm:query-meters xsi:schemaLocation="http://marklogic.com/xdm
p/query-meters query-meters.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:qm="http://marklogic.com/xdmp/query-meters"> <qm:elapsed-time>PT0.0000685S
</qm:elapsed-time> <qm:requests>0 </qm:requests> <qm:list-cache-hits>0
</qm:list-cache-hits> <qm:list-cache-misses>0 </qm:list-cache-misses> <qm:list-size>0
</qm:list-size> <qm:in-memory-list-hits>0 </qm:in-memory-list-hits> <qm:triple-cache-hits>0
</qm:triple-cache-hits> <qm:triple-cache-misses>0 </qm:triple-cache-misses>
<qm:triple-value-cache-hits>0 </qm:triple-value-cache-hits> <qm:triple-value-cache-misses>0
</qm:triple-value-cache-misses> <qm:expanded-tree-cache-hits>0
</qm:expanded-tree-cache-hits> <qm:expanded-tree-cache-misses>0
</qm:expanded-tree-cache-misses> <qm:compressed-tree-cache-hits>0
</qm:compressed-tree-cache-hits> <qm:compressed-tree-cache-misses>0
</qm:compressed-tree-cache-misses> <qm:compressed-tree-size>0
</qm:compressed-tree-size> <qm:in-memory-compressed-tree-hits>0
</qm:in-memory-compressed-tree-hits> <qm:value-cache-hits>0 </qm:value-cache-hits>
<qm:value-cache-misses>0 </qm:value-cache-misses> <qm:regexp-cache-hits>0
</qm:regexp-cache-hits> <qm:regexp-cache-misses>0 </qm:regexp-cache-misses>
<qm:link-cache-hits>0 </qm:link-cache-hits> <qm:link-cache-misses>0
</qm:link-cache-misses> <qm:filter-hits>0 </qm:filter-hits> <qm:filter-misses>0
</qm:filter-misses> <qm:fragments-added>0 </qm:fragments-added>
<qm:fragments-deleted>0 </qm:fragments-deleted> <qm:fs-program-cache-hits>0
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 15

MarkLogic Server Tuning Queries with query-meters and query-trace
</qm:fs-program-cache-hits> <qm:fs-program-cache-misses>0
</qm:fs-program-cache-misses> <qm:db-program-cache-hits>0 </qm:db-program-cache-hits>
<qm:db-program-cache-misses>1 </qm:db-program-cache-misses>
<qm:env-program-cache-hits>0 </qm:env-program-cache-hits>
<qm:env-program-cache-misses>0 </qm:env-program-cache-misses>
<qm:fs-main-module-sequence-cache-hits>0 </qm:fs-main-module-sequence-cache-hits>
<qm:fs-main-module-sequence-cache-misses>0
</qm:fs-main-module-sequence-cache-misses> <qm:db-main-module-sequence-cache-hits>0
</qm:db-main-module-sequence-cache-hits> <qm:db-main-module-sequence-cache-misses>0
</qm:db-main-module-sequence-cache-misses> <qm:fs-library-module-cache-hits>0
</qm:fs-library-module-cache-hits> <qm:fs-library-module-cache-misses>0
</qm:fs-library-module-cache-misses> <qm:db-library-module-cache-hits>0
</qm:db-library-module-cache-hits> <qm:db-library-module-cache-misses>0
</qm:db-library-module-cache-misses> <qm:read-locks>0 </qm:read-locks>
<qm:write-locks>0 </qm:write-locks> <qm:lock-time>0 </qm:lock-time>
<qm:contemporaneous-timestamp-time>0 </qm:contemporaneous-timestamp-time>
<qm:compile-time>0.0001729 </qm:compile-time> <qm:commit-time>0 </qm:commit-time>
<qm:run-time>0 </qm:run-time> <qm:indexing-time>0 </qm:indexing-time>
<qm:fs-schema-cache-hits>0 </qm:fs-schema-cache-hits> <qm:fs-schema-cache-misses>0
</qm:fs-schema-cache-misses> <qm:db-schema-cache-hits>0 </qm:db-schema-cache-hits>
<qm:db-schema-cache-misses>0 </qm:db-schema-cache-misses>
<qm:env-schema-cache-hits>0 </qm:env-schema-cache-hits>
<qm:env-schema-cache-misses>0 </qm:env-schema-cache-misses> <qm:fragments>
</qm:fragments> <qm:documents> </qm:documents> <qm:hosts> </qm:hosts>

</qm:query-meters> 2004-12-08 15:48:01.502 Info: **** **** End query trace and meter log ****
General Methodology for Tuning a Query

3.1 Indexes, XPath Expressions, and Query Performance

When you load data into a MarkLogic Server database, indexes are created based on the index
configuration for that database. The indexes help to optimize searches, XPath expressions, and
other query patterns.

Sometimes, however, a query cannot use the indexes, and that leads to slower performance. In
these cases, there are two main types of things you can do to speed up the query performance:

• Rewrite the query so it makes better use of the indexes.

• Add more indexes.

The xdmp:query-meters and xdmp:query-trace functions provide information to help you
determine where the problem areas in the query are, and can help you determine ways to easily
and, in many cases, dramatically improve query performance. Understanding the output of these
functions is the key to analyzing a query and tuning it for maximum performance.

To use these functions in a query:

• Add xdmp:query-meters() to the end of a query, with the concatenate operator (,) before
the function.
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 16

MarkLogic Server Tuning Queries with query-meters and query-trace
• Add xdmp:query-trace(true()) to the beginning of the portion of the query you want to
analyze, with the concatenate operator (,) after the function. Then add
xdmp:query-trace(false()) at the end of the portion of the query you want to analyze,
with the concatenate operator (,) before the function.

3.2 Understanding query-meters Output

The xdmp:query-meters function provides statistics about query execution. To use
xdmp:query-meters, concatenate the xdmp:query-meters() function to the end of your query. For
example, the following query produces both the initial query results and the query-meters output:

doc("/myDocuments/hello.xml")//a/b/c
, xdmp:query-meters()

The result is a sequence of c nodes from the /myDocuments/hello.xml document followed by a
qm:query-meters node containing the query-meters output.

For its function signature, see the xdmp:query-meters function in MarkLogic XQuery and XSLT
Function Reference.

The following subsections describe the output of the xdmp:query-meters function:

• Output From xdmp:query-meters

• Understanding the Cache Statistics

3.2.1 Output From xdmp:query-meters

The xdmp:query-meters function produces an XML document that conforms to the
query-meters.xsd schema. The query-meters.xsd schema is loaded into the schemas database
and is copied to the <install_dir>/Config directory at installation time.

The output shows elapsed time for the query, hits and misses from the various query caches, and
information about fragments and documents the query accessed. The fragment output prints one
element per fragment root name (not one element per fragment). The document output prints one
element per document URI. For sample xdmp:query-meters output, see “Sample
xdmp:query-meters Output” on page 25.
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 17

MarkLogic Server Tuning Queries with query-meters and query-trace
3.2.2 Understanding the Cache Statistics

There are several elements in the xdmp:query-meters output that list the number of hits and misses
on the query caches. Cache hits are good, and indicate the query is running in an optimized
fashion. Cache misses indicate that the query could not retrieve its results directly from the cache,
and had to read the data from disk. Because disk I/O is expensive relative to reading from
memory, cache misses indicate that the query might be able to be optimized, either by rewriting
the parts of the query that have cache misses to better take advantage of the indexes or by adding
indexes that the query can use.

MarkLogic Server has several different caches used for query processing. In general, these caches
load index data into memory, providing optimized query processing for a large variety of queries.

The xdmp:query-meters function lists hits and misses for the following caches:

• list cache

The list cache holds search term lists in memory and helps optimize XPath expressions
and text searches.

• expanded tree cache

The expanded tree cache holds the uncompressed XML data in memory (in its expanded
format).

• compressed tree cache

The compressed tree cache holds compressed XML tree data in memory. The data is
cached in memory in the same compressed format that is stored on disk.

• in-memory cache

The in-memory cache holds data that was recently added to the system and is still in an
in-memory stand; that is, it holds data that has not yet been written to disk.

• value cache

The value cache exists only for the duration of a query. It holds typed values and
optimizes queries that perform frequent conversion of nodes to typed values. Each miss
for the value cache indicates that an XML node must be converted to a typed value.

• regular expression cache

The regular expression cache (regexp-cache) exists only for the duration of a query. It
holds compiled regular expressions, and optimizes queries that use a regular expression
multiple times.
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 18

MarkLogic Server Tuning Queries with query-meters and query-trace
• link cache

The link cache exists only for the duration of a query. The link cache holds the
relationships between parent and child nodes, reusing that relationship throughout the
query execution to optimize query processing.

The cache hits and misses are also broken down by fragment and by document. Each fragment
element represents all of the fragments with the specified name. Each document element
represents a document with the specified URI. The fragment and document elements of the
xdmp:query-meters output show cache hits and misses for the expanded tree cache. These
statistics can help you isolate which documents or fragments are being optimally processed. If a
given document or fragment gets cache misses, you might be able to add indexes or rewrite the
query to speed performance.

To help tune query performance, run the xdmp:query-meters function with your query and look
for cache misses in the xdmp:query-meters output; cache misses indicate areas where the query
can be tuned (either by rewriting or by adding indexes) for better performance.

3.3 Understanding query-trace Output

The xdmp:query-trace function logs output to the <data_dir>/Logs/ErrorLog.txt file during
query execution. To start query tracing, concatenate the xdmp:query-trace(true()) function at the
part of your query where you want the tracing to begin, and add xdmp:query-trace(false())
where you want tracing to stop. For example, the following query produces results for the query
and logs the query-trace output to the ErrorLog.txt file:

xdmp:query-trace(true()),
doc("/myDocuments/hello.xml")//a/b/c
, xdmp:query-trace(false())

For its function signature, see the xdmp:query-trace function in MarkLogic XQuery and XSLT
Function Reference.

The following subsections describe the output of the xdmp:query-trace function:

• What query-trace Logs

• Interpreting the Log Messages

• Fully Searchable Paths and cts:search Operations
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 19

MarkLogic Server Tuning Queries with query-meters and query-trace
3.3.1 What query-trace Logs

The xdmp:query-trace function prints INFO-level messages to the log file while a query is
executing. It prints one log message for each XPath expression, and at least one log message for
each step in the XPath expression. It also prints messages for predicates and other parts of query
evaluation. Therefore, xdmp:query-trace can potentially log a large number of messages to the
log file, particularly for complex queries that contain very deep XPath expressions and many
searches.

The xdmp:query-trace function logs the following information about the query processing and
execution:

• XPath Expression Analysis Messages

• Constraint Analysis Messages

• Search Execution Messages

3.3.1.1 XPath Expression Analysis Messages

The xdmp:query-trace function prints INFO-level messages to the log file about the XPath
expressions in the query. The messages log whether an XPath expression is searchable. A
searchable expression is one which can be optimized by using the indexes. The query-trace
output shows which steps in the XPath expression are or are not searchable with the indexes.

For query tuning, the most important thing the log output has is the information about whether an
expression is searchable or not. In general, searchable expressions can use the indexes to
execute, and therefore execute fast. Expressions that are unsearchable cannot use the indexes, and
must fetch the data from disks. For a summary of how to read the log messages, see “Interpreting
the Log Messages” on page 22.

3.3.1.2 Constraint Analysis Messages

The constraint analysis phase of the query-trace output prints log messages about predicates in
XPath expressions and where clauses. At the beginning of each constraint analysis section, you
will see a message similar to the following:

2004-12-06 11:57:18.325 Info: line 21: Gathering constraints.

The output logs one message for each step in the XPath expression that contributes to the
constraint. It only prints messages about constraints that can be evaluated using the indexes;
unoptimized constraints do not generate any query-trace output. When the predicate constraint is
reached, the log shows a message similar to the following:

2004-12-15 10:44:57.734 Info: line 2: Comparison contributed hash value
constraint: Heading-2 = "hello"

This message corresponds to an XPath expression with a predicate like the following:
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 20

MarkLogic Server Tuning Queries with query-meters and query-trace
doc("/myDocuments/hello.xml")/XML//Heading-2[. = "hello"]

The log message text hash value constraint indicates that the optimizer used the standard
indexes (word search, stemmed search, and so on, as set up in the database configuration) to
evaluate this predicate. Equality constraints on predicates use the standard indexes for evaluation,
and this makes the evaluation perform fast.

Inequality constraints such as greater than (gt or >) and less than (lt or <) cannot be evaluated
using the standard indexes. For inequality constraints to be optimized, you must have an element
(range) index on the element used in the comparison. If you have an inequality constraint and
have an element index on the element used in the comparison, the log shows a message similar to
the following for the constraint Heading-2 > "hello":

2004-12-15 10:44:57.734 Info: line 2: Comparison contributed range
value constraint: Heading-2 > "hello"

The log message text range value constraint indicates that the optimizer used an element index
to evaluate the query.

Note: If neither the standard indexes nor an element index is used to evaluate a
constraint, no such log message appears, and the constraint is not optimized.

3.3.1.3 Search Execution Messages

The xdmp:query-trace function also logs detailed information about how many fragments are
used to evaluate a query. These messages show the number of fragments that are filtered. When a
fragment is filtered, it means that the indexes found a possible match for the query in that
fragment, and the fragment must then be retrieved to make sure it meets all of the query criteria.
In a well-optimized query, the number of fragments filtered will be close to the number of
fragments that satisfy the query.

If a query returns no results, or if it can be answered directly from the indexes, there will be no
fragments filtered, and the log shows messages similar to the following:

2004-12-15 10:44:57.367 Info: line 2: Executing search.
2004-12-15 10:44:57.367 Info: line 2: Selected 0 fragments to filter

If the query results come from a single fragment, and the query uses either the standard or element
(range) indexes for its evaluation, the log shows messages similar to the following:

2004-12-15 11:14:10.926 Info: line 2: Executing search.
2004-12-15 11:14:10.926 Info: line 2: Selected 1 fragment to filter
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 21

MarkLogic Server Tuning Queries with query-meters and query-trace
The line that says Selected 1 fragment to filter indicates how many candidate fragment
references were returned from the index resolution stage of query processing. For a query that
makes good use of the indexes, the number of fragments filtered is close to the number of
fragments returned in the query results. For example, if there are 45 fragments that match a given
query, and if xdmp:query-trace shows 45 fragments filtered, then that query is making good use
of the indexes (because it does not have to filter any fragments that end up not contributing to the
query result).

In most cases, the smaller the number of fragments selected to filter, the faster the query performs.
An exception to this is if you are doing unfiltered searches, as unfiltered search skip the filtering
stage of query processing. For details on unfiltered searches, see “Fast Pagination and Unfiltered
Searches” on page 10.

3.3.2 Interpreting the Log Messages

The messages written to the log from the xdmp:query-trace function help you to determine if
there are ways to optimize the performance of a query. The following is a summary of some
important things to look for when interpreting the xdmp:query-trace output:

• The output is written to the ErrorLog.txt file.

• Log messages with the term searchable are good—this means indexes can be used to
execute this part of the query (which in turn means the query will execute fast).

• Suspect problem areas when you see log messages with the term unsearchable—this
means the indexes cannot be used to execute this part of the query.

• Log messages with the term does not use indexes mean that there might be XPath steps
below this step that are searchable, but this step or predicate will not be resolved directly
from the indexes (known as conditionally searchable). This is not necessarily bad, as
searches with steps that do not use the indexes can still be fast, but it is not as good as
searchable.

• Log messages with the term comparison contributed hash value constraint indicate that
this predicate used the standard indexes to execute (which in turn indicates an optimized
predicate evaluation).

• Log messages with the term comparison contributed range value constraint indicate that
this predicate used an element (range) index to execute (which in turn indicates an
optimized predicate evaluation).

• No hash or range message in the constraint section indicates that the constraint needed to
scan the fragment to execute, and could not be optimized from the indexes.

• In the execution phase, the xdmp:query-trace output has a log message indicating the
number of fragments filtered. In a fully optimized query, that number is equal to the
number of fragments that the query returns (the number you would get if you wrapped the
search portion of the query in an xdmp:estimate call). As the number of fragments filtered
increases, and particularly as the number of fragments filtered grows past the number of
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 22

MarkLogic Server Tuning Queries with query-meters and query-trace
fragments that ultimately match the query, the amount of work needed to execute the
query increases (which in turn causes performance to slow).

• XPath predicates that cross fragment boundaries are unsearchable (cannot use indexes).
For example, if a document is fragmented at the b element, then you should make sure
predicates do not cross the b boundary. Therefore, the following expression:

/a/b[c="1"]/../d

will run faster than the following expression:

/a[b/c="1"]/d

3.3.3 Fully Searchable Paths and cts:search Operations

A fully searchable XPath expression is one that can be efficiently resolved using the indexes. The
following are examples of contexts requiring a fully searchable expression:

• The first parameter of the cts:search XQuery function. This parameter identifies the
nodes to which MarkLogic applies the search query.

• The searchable-expression query option usable with the Search API and the Client APIs.

• Optimization of the XQuery order by clause of a FLOWR expression; for details, see
“Sorting Searches Using Range Indexes” on page 32.

(Search operations such as the cts.search or jsearch.documents JavaScript functions or the
search:search XQuery function implicitly use the (fully searchable) expression fn:doc() for the
same purpose as the first parameter of cts:search.)

A searchable XPath expression or path step is one that can be fully resolved out of the indexes.
An XPath expression is searchable if it meets the following criteria:

• Rooted in an fn:doc, fn:collection, or xdmp:document-properties call in XQuery, or in
an fn.doc, cts.doc, fn.collection, or xdmp.document-properties call in Server-Side
JavaScript.

• Uses only forward element axes, such as “/” and “//.

A path step is searchable if it can be resolved out of the indexes. Generally, this means a relatively
simple expression. For example, if it uses predicates, the predicates are searchable and the step
uses only forward axes.

A path step can be searchable (resolvable out of the indexes), unsearchable (not resolvable out of
the indexes), or conditionally searchable (might or might not be resolvable out of the indexes). A
searchable expression can include predicates, but some predicates will make a path step
conditionally searchable.
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 23

MarkLogic Server Tuning Queries with query-meters and query-trace
A fully searchable XPath expression is one in which no path steps are unsearchable and the last
step is searchable. In a context such as the first parameter of cts:search, the XPath expressions
must be fully searchable. In other contexts, such as when traversing to a node, MarkLogic will
still attempt to satsify unsearchable or conditionally searchable path steps without using the
indexes, but performance will suffer.

You can often make an XPath expression fully searchable by rewriting the expression or adding
new indexes.

A partially searchable XPath expression is one in which the first path step is searchable, but the
rest of the expression does not meet the requirements for fully searchable. For example, a partially
searchable XPath expression might contain an unsearchable path step. A partially searchable
expression cannot be evaluated as efficiently as a fully searchable expression.

You cannot use a partially searchable expression as the first parameter of cts:search, but you can
use one to select nodes in other contexts, such as when selecting nodes via XPath for a non-search
operation. You can also use a partially searchable expression as the value of the
-document_selector option of an mlcp export command.

The best way to determine if an XPath expression and it’s path steps are searchable is to examine
the output of xdmp:query-trace (XQuery) or xdmp.queryTrace (JavaScript). If the trace output
contains no entries tagged as unsearchable, then the expression is fully searchable. For an
example, see “Sample xdmp:query-trace Output” on page 26.

3.4 Using xdmp:plan to View the Evaluation Plan

You can use the xdmp:plan built-in function to see the search and execution plan for a query. It
takes an XQuery expression, and it returns an XML report providing information about how the
indexes will be used if you were to run the expression. It provides much of the information shown
in xdmp:query-trace, as well as some more information about the query terms selected from the
index. The xdmp:plan output is useful in determining if an expression is optimized properly and if
your range indexes are being used as you expect them to be.

Running an xdmp:plan on a search is similar to running an xdmp:estimate on a search, and the
results of the estimate are included in the xdmp:plan output. If the search cannot be run in a plan or
estimate, then it will throw an XDMP-UNSEARCHABLE exception. For more details and the signature of
xdmp:plan, see the MarkLogic XQuery and XSLT Function Reference.

3.5 Examples

This section shows sample output from the xdmp:query-meters and xdmp:query-trace functions.
The following examples are included:

• Sample xdmp:query-meters Output

• Sample xdmp:query-trace Output
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 24

MarkLogic Server Tuning Queries with query-meters and query-trace
• Logging Both query-meters and query-trace Output

3.5.1 Sample xdmp:query-meters Output

The following listing shows sample output from the xdmp:query-meters function:

<qm:query-meters xsi:schemaLocation="http://marklogic.com/xdmp/query-m
eters query-meters.xsd" xmlns:qm="http://marklogic.com/xdmp/query-mete
rs" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<qm:elapsed-time>PT0.000283S</qm:elapsed-time>
<qm:requests>0</qm:requests>
<qm:list-cache-hits>0</qm:list-cache-hits>
<qm:list-cache-misses>0</qm:list-cache-misses>
<qm:list-size>0</qm:list-size>
<qm:in-memory-list-hits>0</qm:in-memory-list-hits>
<qm:triple-cache-hits>0</qm:triple-cache-hits>
<qm:triple-cache-misses>0</qm:triple-cache-misses>
<qm:triple-value-cache-hits>0</qm:triple-value-cache-hits>
<qm:triple-value-cache-misses>0</qm:triple-value-cache-misses>
<qm:expanded-tree-cache-hits>0</qm:expanded-tree-cache-hits>
<qm:expanded-tree-cache-misses>0</qm:expanded-tree-cache-misses>
<qm:compressed-tree-cache-hits>0</qm:compressed-tree-cache-hits>
<qm:compressed-tree-cache-misses>0</qm:compressed-tree-cache-misses>
<qm:compressed-tree-size>0</qm:compressed-tree-size>
<qm:in-memory-compressed-tree-hits>0

</qm:in-memory-compressed-tree-hits>
<qm:value-cache-hits>0</qm:value-cache-hits>
<qm:value-cache-misses>0</qm:value-cache-misses>
<qm:regexp-cache-hits>0</qm:regexp-cache-hits>
<qm:regexp-cache-misses>0</qm:regexp-cache-misses>
<qm:link-cache-hits>0</qm:link-cache-hits>
<qm:link-cache-misses>0</qm:link-cache-misses>
<qm:filter-hits>0</qm:filter-hits>
<qm:filter-misses>0</qm:filter-misses>
<qm:fragments-added>0</qm:fragments-added>
<qm:fragments-deleted>0</qm:fragments-deleted>
<qm:fs-program-cache-hits>0</qm:fs-program-cache-hits>
<qm:fs-program-cache-misses>0</qm:fs-program-cache-misses>
<qm:db-program-cache-hits>0</qm:db-program-cache-hits>
<qm:db-program-cache-misses>1</qm:db-program-cache-misses>
<qm:env-program-cache-hits>0</qm:env-program-cache-hits>
<qm:env-program-cache-misses>0</qm:env-program-cache-misses>
<qm:fs-main-module-sequence-cache-hits>0

</qm:fs-main-module-sequence-cache-hits>
<qm:fs-main-module-sequence-cache-misses>0
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 25

MarkLogic Server Tuning Queries with query-meters and query-trace
</qm:fs-main-module-sequence-cache-misses>
<qm:db-main-module-sequence-cache-hits>0

</qm:db-main-module-sequence-cache-hits>
<qm:db-main-module-sequence-cache-misses>0

</qm:db-main-module-sequence-cache-misses>
<qm:fs-library-module-cache-hits>0</qm:fs-library-module-cache-hits>
<qm:fs-library-module-cache-misses>0

</qm:fs-library-module-cache-misses>
<qm:db-library-module-cache-hits>0</qm:db-library-module-cache-hits>
<qm:db-library-module-cache-misses>0

</qm:db-library-module-cache-misses>
<qm:read-locks>0</qm:read-locks>
<qm:write-locks>0</qm:write-locks>
<qm:lock-time>0</qm:lock-time>
<qm:contemporaneous-timestamp-time>1.1e-06

</qm:contemporaneous-timestamp-time>
<qm:compile-time>0.0001972</qm:compile-time>
<qm:commit-time>0</qm:commit-time>
<qm:run-time>0</qm:run-time>
<qm:indexing-time>0</qm:indexing-time>
<qm:fs-schema-cache-hits>0</qm:fs-schema-cache-hits>
<qm:fs-schema-cache-misses>0</qm:fs-schema-cache-misses>
<qm:db-schema-cache-hits>0</qm:db-schema-cache-hits>
<qm:db-schema-cache-misses>0</qm:db-schema-cache-misses>
<qm:env-schema-cache-hits>0</qm:env-schema-cache-hits>
<qm:env-schema-cache-misses>0</qm:env-schema-cache-misses>
<qm:fragments></qm:fragments>
<qm:documents></qm:documents>
<qm:hosts></qm:hosts>

</qm:query-meters>

3.5.2 Sample xdmp:query-trace Output

The following sample query:

XQuery Server-Side JavaScript

xquery version "1.0-ml";

xdmp:query-trace(fn:true()),
fn:doc("/myDocs/file.xml")//Node-2,
xdmp:query-trace(fn:false())

'use strict';

xdmp.queryTrace(true);
cts.doc("/myDocs/file.xml")//Node-2;
xdmp.queryTrace(false);
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 26

MarkLogic Server Tuning Queries with query-meters and query-trace
produces xdmp:query-trace output similar to the following in the ErrorLog.txt file of your App
Server. The timestamp and “Info:” message prefix has been elided for readability.

... Analyzing path: doc("/myDocs/file.xml")/descendant::Node-2

... Step 1 is searchable: doc("/myDocs/file.xml")

... Step 2 axis does not use indexes: descendant

... Step 2 test is searchable: Node-2

... Step 2 is searchable: descendant::Node-2

... Path is searchable.

... Gathering constraints.

... Step 1 contributed 1 constraint: fn.doc("/myDocs/file.xml")

... Executing search.

... Selected 1 fragment to filter

3.5.3 Logging Both query-meters and query-trace Output

You can use the xdmp:log function to write the xdmp:query-meters output to the log file with the
xdmp:query-trace output as follows:

xdmp:log("

**** Begin query trace and meter log

"),
xdmp:query-trace(true()),
doc("/myDocs/file.xml")//Heading-2[. = "hello"]
,
xdmp:log(xdmp:query-meters())
,
xdmp:log("

**** End query trace and meter log

")

This query produces log output in the ErrorLog.txt file like the following:

2004-12-08 15:48:01.502 Info:

**** Begin query trace and meter log

004-12-08 15:48:01.502 Info: line 9: Analyzing path:
doc("/myDocs/file.xml")/descendant::Node-1

2004-12-08 15:48:01.502 Info: line 9: Step 1 is searchable:
doc("/myDocs/file.xml")

004-12-08 15:48:01.502 Info: line 2: Step 2 axis does not use
indexes: descendant

004-12-08 15:48:01.502 Info: line 2: Step 2 test is searchable: Node-2
004-12-08 15:48:01.502 Info: line 2: Step 2 is searchable:

descendant::Node-2
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 27

MarkLogic Server Tuning Queries with query-meters and query-trace
004-12-08 15:48:01.502 Info: line 2: Path is searchable.
004-12-08 15:48:01.502 Info: line 2: Gathering constraints.
2004-12-08 15:48:01.502 Info: line 2: Step 2 test contributed 1

constraint: Node-2
2004-12-08 15:48:01.502 Info: line 2: Executing search.
004-12-08 15:48:01.502 Info: line 2: Selected 1 fragment to filter
2004-12-08 15:48:01.502 Info: <qm:query-meters xsi:schemaLocation="htt
p://marklogic.com/xdmp/query-meters query-meters.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:qm="http://marklogic.com/xdmp/query-meters">

<qm:elapsed-time>PT0.0000685S
</qm:elapsed-time>
<qm:requests>0
</qm:requests>
<qm:list-cache-hits>0
</qm:list-cache-hits>
<qm:list-cache-misses>0
</qm:list-cache-misses>
<qm:list-size>0
</qm:list-size>
<qm:in-memory-list-hits>0
</qm:in-memory-list-hits>
<qm:triple-cache-hits>0
</qm:triple-cache-hits>
<qm:triple-cache-misses>0
</qm:triple-cache-misses>
<qm:triple-value-cache-hits>0
</qm:triple-value-cache-hits>
<qm:triple-value-cache-misses>0
</qm:triple-value-cache-misses>
<qm:expanded-tree-cache-hits>0
</qm:expanded-tree-cache-hits>
<qm:expanded-tree-cache-misses>0
</qm:expanded-tree-cache-misses>
<qm:compressed-tree-cache-hits>0
</qm:compressed-tree-cache-hits>
<qm:compressed-tree-cache-misses>0
</qm:compressed-tree-cache-misses>
<qm:compressed-tree-size>0
</qm:compressed-tree-size>
<qm:in-memory-compressed-tree-hits>0
</qm:in-memory-compressed-tree-hits>
<qm:value-cache-hits>0
</qm:value-cache-hits>
<qm:value-cache-misses>0
</qm:value-cache-misses>
<qm:regexp-cache-hits>0
</qm:regexp-cache-hits>
<qm:regexp-cache-misses>0
</qm:regexp-cache-misses>
<qm:link-cache-hits>0
</qm:link-cache-hits>
<qm:link-cache-misses>0
</qm:link-cache-misses>
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 28

MarkLogic Server Tuning Queries with query-meters and query-trace
<qm:filter-hits>0
</qm:filter-hits>
<qm:filter-misses>0
</qm:filter-misses>
<qm:fragments-added>0
</qm:fragments-added>
<qm:fragments-deleted>0
</qm:fragments-deleted>
<qm:fs-program-cache-hits>0
</qm:fs-program-cache-hits>
<qm:fs-program-cache-misses>0
</qm:fs-program-cache-misses>
<qm:db-program-cache-hits>0
</qm:db-program-cache-hits>
<qm:db-program-cache-misses>1
</qm:db-program-cache-misses>
<qm:env-program-cache-hits>0
</qm:env-program-cache-hits>
<qm:env-program-cache-misses>0
</qm:env-program-cache-misses>
<qm:fs-main-module-sequence-cache-hits>0
</qm:fs-main-module-sequence-cache-hits>
<qm:fs-main-module-sequence-cache-misses>0
</qm:fs-main-module-sequence-cache-misses>
<qm:db-main-module-sequence-cache-hits>0
</qm:db-main-module-sequence-cache-hits>
<qm:db-main-module-sequence-cache-misses>0
</qm:db-main-module-sequence-cache-misses>
<qm:fs-library-module-cache-hits>0
</qm:fs-library-module-cache-hits>
<qm:fs-library-module-cache-misses>0
</qm:fs-library-module-cache-misses>
<qm:db-library-module-cache-hits>0
</qm:db-library-module-cache-hits>
<qm:db-library-module-cache-misses>0
</qm:db-library-module-cache-misses>
<qm:read-locks>0
</qm:read-locks>
<qm:write-locks>0
</qm:write-locks>
<qm:lock-time>0
</qm:lock-time>
<qm:contemporaneous-timestamp-time>0
</qm:contemporaneous-timestamp-time>
<qm:compile-time>0.0001729
</qm:compile-time>
<qm:commit-time>0
</qm:commit-time>
<qm:run-time>0
</qm:run-time>
<qm:indexing-time>0
</qm:indexing-time>
<qm:fs-schema-cache-hits>0
</qm:fs-schema-cache-hits>
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 29

MarkLogic Server Tuning Queries with query-meters and query-trace
<qm:fs-schema-cache-misses>0
</qm:fs-schema-cache-misses>
<qm:db-schema-cache-hits>0
</qm:db-schema-cache-hits>
<qm:db-schema-cache-misses>0
</qm:db-schema-cache-misses>
<qm:env-schema-cache-hits>0
</qm:env-schema-cache-hits>
<qm:env-schema-cache-misses>0
</qm:env-schema-cache-misses>
<qm:fragments>
</qm:fragments>
<qm:documents>
</qm:documents>
<qm:hosts>
</qm:hosts>

</qm:query-meters>
2004-12-08 15:48:01.502 Info:

**** End query trace and meter log

General Methodology for Tuning a Query

The following are general steps you can take to analyze and tune query performance. These steps
represent a methodology; the actual steps you take will depend on your application and queries.

1. Identify the application where you see query performance slower than you expect.

2. In the application, break apart different parts of the query into separate queries and run
them separately.

3. If you identify code that appears to run slowly, append xdmp:query-meters() to the end of
the code and run it again. For details, see “Understanding query-meters Output” on
page 17.

4. In the xdmp:query-meters output, record the elapsed time and look for cache misses.

5. Run the query several times and compare the xdmp:query-meters output between the
different runs. There are some query caches that are populated when a query runs the first
time, and can improve the performance of subsequent query runs.

6. Continue to try and simplify the query, helping to isolate where it might be running slow.

7. When you have isolated the query down to as simple a case as possible, add
xdmp:query-trace(true()) to the beginning of the query and run it again. For details, see
“Understanding query-trace Output” on page 19.

8. Examine the query-trace output in the ErrorLog.txt file. Look for XPath steps that are
unsearchable.
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 30

MarkLogic Server Tuning Queries with query-meters and query-trace
9. If you find unsearchable steps, see if there are ways to rewrite the query so those steps
become searchable.

10. Examine the constraints entries of the query-trace log output. For details, see
“Constraint Analysis Messages” on page 20.

11. Check the query-trace log output for the number of fragments used to filter. This number
should be the close to or the same as the number of fragments that match the searchable
expression (the number returned from xdmp:estimate) if the query is well optimized.

12. Check your indexing options. Add indexes if the proper indexes are not built. For
example, if stemmed or word indexes are not built, many XPath steps will be
unsearchable. Also, if your query contains inequality constraints, you will need element
(range) indexes to optimize those constraints.

13. After making query and/or index changes, rerun the query with xdmp:query-meters() to
see if the execution time has decreased and the number of cache misses has decreased.

14. Continue iteratively with this methodology until you are satisfied that the query execution
is fast and well optimized.
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 31

MarkLogic Server Sorting Searches Using Range Indexes
4.0 Sorting Searches Using Range Indexes

Range indexes are value indexes that are typed and are sorted in type order. You can run searches
in MarkLogic and efficiently sort the search using a range index value. There are two ways to
specify the range indexes in a search:

• Using a cts:order Specification in a cts:search

• Optimizing Order By Expressions With Range Indexes

The first way, introduced in MarkLogic 8, is the easier way; the second way still works for
backward compatibility.

4.1 Using a cts:order Specification in a cts:search

By default, a cts:search is sorted in relevance order. If you want to instead sort the search by a
value in the documents returned, you can create a range index on the sort value and then specify
that index in the cts:search. The easiest way to specify a sort order in a search is by adding a
cts:order specification to your cts:search statment. This section describes how to construct such
searches, and includes the following parts:

• Creating a cts:order Specification

• Using the cts:order Specification in a Search

4.1.1 Creating a cts:order Specification

The cts:order type is a native type in MarkLogic. You can create cts:order specifications using
the following constructors:

• cts:index-order

• cts:score-order

• cts:confidence-order

• cts:fitness-order

• cts:quality-order

• cts:document-order

• cts:unordered

You can specify a sequence of cts:order constructors and it will result ordering by the first in the
sequence, followed by the next, and so on. For example, you might want to order first on a path
range index of /a/b/c, with a secondary ordering on //title.

Note: Any order you specify with a cts:index-order constructor requires the appropriate
range index to be created in MarkLogic, otherwise the search will throw an
exception.
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 32

MarkLogic Server Sorting Searches Using Range Indexes
The default sort order is equivalent to (cts:score-order("descending"),cts:document-
order("ascending")).

4.1.2 Using the cts:order Specification in a Search

You can use the cts:order specification in a cts:search in XQuery or a cts.search in Javascript.
The cts:order is part of the $options parameter.

4.2 Optimizing Order By Expressions With Range Indexes

37

When you have queries that include an order by expression, you can create range indexes (for
example, element indexes, attribute indexes, or path indexes) on the element(s) or attributes(s) in
the order by expression to speed performance of those types of queries. This chapter describes
this optimization and how to use it in your queries, and includes the following parts:

• Speed Up Order By Performance

• Rules for Order By Optimization

• Creating Range Indexes

• Example Order By Queries

Note: Starting with MarkLogic 8, you can get the same sorting results by specifying a
cts:order specification in a search. For details, see “Using a cts:order
Specification in a cts:search” on page 32.

4.2.1 Speed Up Order By Performance

MarkLogic Server allows you to create indexes on elements to speed up performance of queries
that order the results based on that element. The order by clause is the “O” in the XQuery FLWOR
expression, and it allows you to sort the results of a query based on one ore more elements. The
order by optimization speeds up queries that order the results and then return a subset of those
results (for example, the first 10 results).

4.2.2 Rules for Order By Optimization

The following rules apply to a query in order for the order by optimization to apply:

• Optimizes subsets of order by queries. For example:

(FLWOR)[1 to 20]

where FLWOR is an XQuery FLWOR expression.

• Uses range indexes (for example, element, attribute, and/or path range indexes).
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 33

MarkLogic Server Sorting Searches Using Range Indexes
• The sequence bound to the for variable must be fully searchable XPath expression or a
cts:search expression. See “Fully Searchable Paths and cts:search Operations” on
page 23.

• The order by expression must be on variables bound in the for clause; queries that have
order by expressions on variables bound to a sequence in a let clause are not optimized.

• There must be a range index on the last step of the order by expression. For example:

order by $x/bar/foo

needs a range index on foo to execute with the order by optimization.

• The type of the order by expression must be the type of the range index, either implicitly,
through a schema, or through an explicit cast. If there is a cast in the order by expression,
than it must be to the type of the range index.

• You can have order by expressions with multiple items, as long as there is a range index
on each item. For example:

order by $x/foo, $x/bar

as long as there are range indexes for foo and bar.

• The XPath expression in the order by expression must be a simple relative path; no math
or other expressions are allowed.

• It does not matter what the let, where, or return clauses are; these do not effect the
optimization.

• If you order by cts:score($x), cts:confidence($x), or cts:quality($x), no range index
is required.

• You can specify either ascending or descending orders (optionally).

• You can specify either empty greatest or empty least, but empties always need to be at
the end for the order by optimizations to work. For example, empty greatest is optimized
with ascending; empty least is optimized with descending. If neither is specified,
MarkLogic chooses the order that is optimized.

• Optimized order by clauses implicitly add order by expressions for cts:score and
document order to the end of the order by expression.

• If you have a function that is a FLWOR expression (with the required fully searchable path,
etc.), subsets of that will be optimized. for example

xquery version "1.0-ml";
declare function local:foo()
{
for $x in //a/b/c
order by $x/d
return $x
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 34

MarkLogic Server Sorting Searches Using Range Indexes
};
(local:foo())[1 to 10]

• The search or XPath expression must be part of the FLWOR, not bound to a variable that is
referenced in the FLWOR. For example, the following will not be optimized:

let $x := cts:search(/foo, "hello")
return
(for $y in $x
order by $y/element
return $y)[1 to 10]

but the following will (given the other rules are followed):

(for $y in cts:search(/foo, "hello")
order by $y/element
return $y)[1 to 10]

• You can use xdmp:query-trace to determine if a query is using the range indexes to
optimize an order by expression. For details on using xdmp:query-trace, see
“Understanding query-trace Output” on page 19.

• When using an order by with a cts:search, further optimization occurs if you specify the
"unfiltered" option to cts:search. For example, if you order by a simple XPath
expression and that expression returns a sequence, if the cts:search is "filtered" (which
is the default) then the search will throw an exception (because it is illegal to order by a
sequence of more than one item), but if you use the "unfiltered" option to cts:search,
the search will complete and will use the range index. If there are multiple values that
match the order by expression in an unfiltered cts:search, then it will use the maximum
value (fn:max($result/item())) for order by ascending and the minimum value
(fn:min($result/item())) for order by decending. For more details about unfiltered
cts:search, see “Fast Pagination and Unfiltered Searches” on page 10.

4.2.3 Creating Range Indexes

You must create range indexes over the elements or attributes in which you order your result by in
the order by expression. You create range indexes using the Admin interface by going to the
Databases > database_name > Element Indexes or Attribute Indexes or Path Range Index page.
Be sure to select the proper type for the element or attribute, or specify a path defining the
element(s) and/or attributes(s) you want to index. For more details on creating indexes, see the
Administrator’s Guide.

4.2.4 Example Order By Queries

This section shows the following simple queries that use the order by optimizations:

• Order by a Single Element

• Order by Multiple Elements
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 35

MarkLogic Server Sorting Searches Using Range Indexes
4.2.4.1 Order by a Single Element

The following query returns the first 100 lastname elements. In order for this query to run
optimized, there must be a range index defined on the lastname element.

(for $x in //myNode
order by $x/lastname
return
$x/lastname)[1 to 100]

If you enabled query tracing on this query (by adding xdmp:query-trace(fn:true()), to the
beginning of the query, for example), the query trace output will show if the range index is being
used for the optiomization. If the range index is not being used, the query-trace output looks
similar to the following:

2009-05-15 15:56:05.046 Info: myAppServer: line 2:
xdmp:eval("xdmp:query-trace(fn:true()),
(for $x in
//myNode&#...", (), <options
xmlns="xdmp:eval"><database>661882637959476934</database><modules>0</m
odules><defa...</options>)
2009-05-15 15:56:05.068 Info: myAppServer: line 2: Analyzing path for
$x: collection()/descendant::myNode
2009-05-15 15:56:05.068 Info: myAppServer: line 2: Step 1 is
searchable: collection()
2009-05-15 15:56:05.068 Info: myAppServer: line 2: Step 2 is
searchable: descendant::myNode
2009-05-15 15:56:05.068 Info: myAppServer: line 2: Path is fully
searchable.
2009-05-15 15:56:05.068 Info: myAppServer: line 2: Gathering
constraints.
2009-05-15 15:56:05.068 Info: myAppServer: line 2: Step 2 test
contributed 1 constraint: myNode
2009-05-15 15:56:05.068 Info: myAppServer: line 2: Executing search.
2009-05-15 15:56:05.089 Info: myAppServer: line 2: Selected 6 fragments
to filter.

The above output does not show that the range index is being used. This could be because the
range index does not exist or it could indicate that one of the criteria for the order by
optimizations is not met, as described in “Rules for Order By Optimization” on page 33.
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 36

MarkLogic Server Sorting Searches Using Range Indexes
When the correct range index is in place and the query is being optimized, the query-trace output
will look similar to the following:

2009-05-15 15:58:04.145 Info: myAppServer: line 2:
xdmp:eval("xdmp:query-trace(fn:true()),
(for $x in
//myNode&#...", (), <options
xmlns="xdmp:eval"><database>661882637959476934</database><modules>0</m
odules><defa...</options>)
2009-05-15 15:58:04.145 Info: myAppServer: line 2: Analyzing path for
$x: collection()/descendant::myNode
2009-05-15 15:58:04.145 Info: myAppServer: line 2: Step 1 is
searchable: collection()
2009-05-15 15:58:04.145 Info: myAppServer: line 2: Step 2 is
searchable: descendant::myNode
2009-05-15 15:58:04.145 Info: myAppServer: line 2: Path is fully
searchable.
2009-05-15 15:58:04.146 Info: myAppServer: line 2: Gathering
constraints.
2009-05-15 15:58:04.146 Info: myAppServer: line 2: Step 2 test
contributed 1 constraint: myNode
2009-05-15 15:58:04.146 Info: myAppServer: line 2: Order by clause
contributed 1 range ordering constraint for $x: order by $x/lastname
ascending
2009-05-15 15:58:04.146 Info: myAppServer: line 2: Executing search.
2009-05-15 15:58:04.183 Info: myAppServer: line 2: Selected 6 fragments
to filter.

Notice the line that says Order by clause contributed 1 range constraint. That line indicates
that the query is being optimized by the range index (which is good).

4.2.4.2 Order by Multiple Elements

The following query returns the first 100 myNode elements, ordered by lastname and then
firstname. For this query to run optimized, there must be a range index defined on the lastname
and firstname elements.

(for $x in //myNode
order by $x/lastname, $x/firstname
return
$x)[1 to 100]

If you run query-trace with this query, that will verify whether the range indexes are being used.
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 37

MarkLogic Server Profiling Requests to Evaluate Performance
5.0 Profiling Requests to Evaluate Performance
46

This chapter describes how to use the Performance Profiler built-in functions to examine the
performance characteristics of XQuery and Server-Side JavaScript requests in MarkLogic Server.
The profiling APIs enable you to gather statistics about the evaluation of your code on a
per-request basis.

This chapter covers the following topics:

• Enabling Profiling on an App Server

• Understanding XQuery Profiling

• Understanding Server-Side JavaScript Profiling

• Profiling Examples

You can also use Query Console to profile your programs, as described in Profiling a Query in the
Query Console User Guide.

5.1 Enabling Profiling on an App Server

To use the profiling API, you must first enable profiling on the App Server hosting your XQuery
or Server-Side JavaScript program (or on the task server if you are profiling spawned queries).

The profile allow option must be set to true on the App Server configuraton page in the Admin UI.
For example:

5.2 Understanding XQuery Profiling

This section describes profiling XQuery code and includes the following topics:

• Definitions and Terminology for the XQuery Profiling

• XQuery Profiling Overview

• XQuery Profiling API
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 38

MarkLogic Server Profiling Requests to Evaluate Performance
5.2.1 Definitions and Terminology for the XQuery Profiling

The following table lists some terms and their definitions used in describing the XQuery profile
API. Several of these terms are used in the data you can generate with the profiling API.

5.2.2 XQuery Profiling Overview

The XQuery profiling API in MarkLogic Server is not a query profile application (a profiler), but
you could use the profiling API to build such an application. A profiler would measure the
performance characteristics of an XQuery or JavaScript program.

You can use Query Console to generate and review a profiling report; for details, see Profiling a
Query in the Query Console User Guide. You can also simply use the profiling API to generate
profiling data and then either manually analyze the data or use XQuery to extract details and
format a report.

When profiling is enabled, you can use the prof:enable, prof:report, and other profile functions
to generate profiling statistics for the evaluation of individual XQuery programs.

Term Definition

XQuery Program The XQuery main module fully expanded with any XQuery library
modules needed for its evaluation. An XQuery program is sometimes
referred to as a query, a statement, or a request. For more details on this
terminology, see Understanding Transactions in MarkLogic Server in the
Application Developer’s Guide.

profiler An application which measures the performance characteristics of a
running program (in the case MarkLogic Server, of an XQuery program).

expression The basic parse element of an XQuery program. Expressions can
represent literal values, arithmetic operations, functions, function calls,
and so on. Expressions can contain other expressions.

shallow time The time spent evaluating a specific expression, not including time spent
evaluating any expressions contained within the specific expression.

deep time The total time spent evaluating an expression, including time spent
evaluating any expressions contained within the specific expression.

elapsed time Both shallow and deep time are expressed in elapsed wall clock time.

profile report An XML report containing statistics for all of the expressions evaluated
while profiling was enabled. For a sample profile report, see “Simple
Enable and Disable XQuery Example” on page 42.
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 39

MarkLogic Server Profiling Requests to Evaluate Performance
The XQuery profiling API cannot “see into” a Server-Side JavaScript function. If your code calls
a JavaScript function, you will only see data for the top level call, not any JavaScript functions
called by that function. The time spent appears as a single block.

Profiling helps you see where a query is spending its processing time. MarkLogic gathers
statistics during the evaluation portion of the query, at the individual expression level. Time spent
in the data node portion of the query (time spent gathering content from the forests) is included in
the expression time for the expression that requested the content from the forest (for example, a
cts:search). For each expression, the profile report shows the shallow time and the deep time
(see “Definitions and Terminology for the XQuery Profiling” on page 39 for these definitions).

All profiling information is gathered on a per-request basis; there is no notion of profiling a set of
requests, although it is possible to write an application that performs such aggregation.

5.2.3 XQuery Profiling API

The following functions are included in the XQuery Performance Profiler API:

• prof:allowed

• prof:disable

• prof:enable

• prof:eval

• prof:invoke

• prof:report

• prof:reset

For details on the APIs and for their function signatures, see the MarkLogic XQuery and XSLT
Function Reference. Note the following about the XQuery profile APIs.

• If profiling is not enabled on the App Server and in the XQuery program (via
prof:enable), then profile APIs do not do anything except return the empty sequence.

• You can profile the currently running request (prof:enable(xdmp:request())), an
evaluated request (prof:eval), or an invoked module (prof:invoke). To profile other
requests, you need to debug the request; if you try to profile another request, MarkLogic
Server throws the DBG-NOTSTOPPED exception.

• Constants (for example, 47 or "hello") do not show up in the profile report.

• Constructed elements do not show up in the profile report.

• Profile time starts after the static analysis phase of query evaluation; it does not include
the query parsing time.
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 40

MarkLogic Server Profiling Requests to Evaluate Performance
• All of the profile APIs are in the http://marklogic.com/xdmp/profile namespace. The
prof prefix is bound to this namespace, and is pre-configured in MarkLogic Server (so
there is no need to define this namespace in your XQuery prolog).

• If you profile a request besides the currently running request, or if you start a new request
for profiling using prof:eval or prof:invoke, you need one of the privileges
http://marklogic.com/xdmp/privileges/profile-my-requests (to profile a request issued
by the same user ID) or http://marklogic.com/xdmp/privileges/profile-any-requests
(to profile a request issued by any user ID). If you are profiling the currently running
request, no privileges are required.

5.3 Understanding Server-Side JavaScript Profiling

Profiling for Server-Side JavaScript is only available through the prof.eval built-in function or
through Query Console. Profiling must be enabled for your App Server, as described in “Enabling
Profiling on an App Server” on page 38. To learn about generating a profiling report using Query
Console, see Profiling a Query in the Query Console User Guide.

When you profile Server-Side JavaScript, MarkLogic collects a CPU Profile from the JavaScript
engine. The profiling data generated for JavaScript is based on sampling, so it will not reflect all
functions called or accurate function hit counts. However, those areas of your code that consume
the most CPU will still be readily apparent.

The JavaScript profiler cannot profile XQuery code. If your JavaScript code calls into XQuery,
the time spent inside the XQuery function is a single block. The called XQuery function name
will not include a namespace identifier in the profiling data.

You can save the output from profiling JavaScript to a file and import the data into the Profiles tab
of the Chrome developers to analyze the data outside of MarkLogic. Query Console enables you
to download a profiling report from within its UI.

You can also generate and save your own profiling report from prof.eval with code similar to the
following:

'use strict';

const myQuery = "your code (as string) here";
xdmp.save(
 '/space/rest/junk.cpuprofile',
 fn.head(prof.eval(myQuery))
);
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 41

MarkLogic Server Profiling Requests to Evaluate Performance
5.4 Profiling Examples

The following are code examples showing some simple usage patterns for the profile API. For
details on the APIs, see the MarkLogic XQuery and XSLT Function Reference. This section shows
the following examples:

• Simple Enable and Disable XQuery Example

• Returning a Part of the XQuery Profile Report

• JavaScript Profile Example

5.4.1 Simple Enable and Disable XQuery Example

The following examples show simple uses for the profile API.

let $req := xdmp:request()
let $dummy1 := prof:enable($req)
let $version := xdmp:version()
let $node :=

<foo>
<version>{$version}</version>
<request>{$req}</request>

</foo>
let $dummy2 := prof:disable($req)
let $dummy3 := fn:current-dateTime()
let $dummy4 := prof:enable($req)
let $dummy5 := 47
let $dummy6 := $node/foo/request
let $dummy6 := prof:disable($req)

return
prof:report($req)

This query returns the following report:

<prof:report
xsi:schemaLocation="http://marklogic.com/xdmp/profile profile.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:prof="http://marklogic.com/xdmp/profile">

 <prof:metadata>
 <prof:overall-elapsed>PT0S</prof:overall-elapsed>
 <prof:created>2014-03-19T14:20:18.763-07:00</prof:created>
 <prof:server-version>7.0-4</prof:server-version>
 </prof:metadata>
 <prof:histogram>
 <prof:expression>
 <prof:expr-id>6467258264555963988</prof:expr-id>
 <prof:expr-source>xdmp:version()</prof:expr-source>
 <prof:uri/>
 <prof:line>3</prof:line>
 <prof:count>1</prof:count>
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 42

MarkLogic Server Profiling Requests to Evaluate Performance
 <prof:shallow-time>PT0S</prof:shallow-time>
 <prof:deep-time>PT0S</prof:deep-time>
 </prof:expression>
 <prof:expression>
 <prof:expr-id>127913224145561857</prof:expr-id>
 <prof:expr-source>prof:disable($req)</prof:expr-source>
 <prof:uri/>
 <prof:line>9</prof:line>
 <prof:count>1</prof:count>
 <prof:shallow-time>PT0S</prof:shallow-time>
 <prof:deep-time>PT0S</prof:deep-time>
 </prof:expression>
 <prof:expression>
 <prof:expr-id>8377097069965042614</prof:expr-id>
 <prof:expr-source>prof:disable($req)</prof:expr-source>
 <prof:uri/>
 <prof:line>14</prof:line>
 <prof:count>1</prof:count>
 <prof:shallow-time>PT0S</prof:shallow-time>
 <prof:deep-time>PT0S</prof:deep-time>
 </prof:expression>
 <prof:expression>
 <prof:expr-id>10959125668150171452</prof:expr-id>
 <prof:expr-source>prof:enable($req)</prof:expr-source>
 <prof:uri/>
 <prof:line>2</prof:line>
 <prof:count>1</prof:count>
 <prof:shallow-time>PT0S</prof:shallow-time>
 <prof:deep-time>PT0S</prof:deep-time>
 </prof:expression>
 <prof:expression>
 <prof:expr-id>1823871875827665493</prof:expr-id>
 <prof:expr-source>$node/child::foo/child::request

</prof:expr-source>
 <prof:uri/>
 <prof:line>14</prof:line>
 <prof:count>1</prof:count>
 <prof:shallow-time>PT0S</prof:shallow-time>
 <prof:deep-time>PT0S</prof:deep-time>
 </prof:expression>
 <prof:expression>
 <prof:expr-id>16669888445989754369</prof:expr-id>
 <prof:expr-source>prof:enable($req)</prof:expr-source>
 <prof:uri/>
 <prof:line>11</prof:line>
 <prof:count>1</prof:count>
 <prof:shallow-time>PT0S</prof:shallow-time>
 <prof:deep-time>PT0S</prof:deep-time>
 </prof:expression>
 </prof:histogram>
</prof:report>
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 43

MarkLogic Server Profiling Requests to Evaluate Performance
You might note that the times are all zero. That is because this example does a trivial amount of
work, and each expression took less than a millisecond to complete. But it does illustrate some
things that are useful when looking at the report:

• The fn:current-dateTime() function does not appear in the report, because profiling was
disabled at this stage of the XQuery program.

• The expressions are not necessarily in the order they are in the XQuery program. If you
want them in order, you can take the prof:expression elements and order them by the
prof:line element (or one of the time elements, or whatever makes sense for your
reports).

• While the expression 47 occurs while profiling is enabled, it does not show up in the
output because it is just a constant, and constants do not appear in the profile report.

5.4.2 Returning a Part of the XQuery Profile Report

Because the profile report is XML, you can use XQuery to manipulate the report to suit your
needs. The following example returns only a expression elements of the profile report, wraps it in
an element, and orders it by the deep time element.

xquery version "1.0-ml";

let $req := xdmp:request()
let $dummy := prof:enable($req)
let $foo := for $i in fn:doc() return xdmp:node-uri($i)
let $dummy2 := prof:disable($req)
return <foo>{
 for $j in prof:report($req)//*:expression
 order by xs:dayTimeDuration($j/*:deep-time)
 return $j
}</foo>

To see the results, copy the code and run it against MarkLogic Server. You will need to enable
profiling on the HTTP Server Configuration page, otherwise the report will be empty.

5.4.3 JavaScript Profile Example

In Server-Side JavaScript, you can profile a JavaScript program as shown below. You can load
this output into the Profiles tab of the Chrome developer tools to for further analysis:

prof.eval('cts.search("hello")')

=>
{"head":

{"functionName":"(root)",
"scriptId":0,
"url":"",
"lineNumber":0,
"columnNumber":0,
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 44

MarkLogic Server Profiling Requests to Evaluate Performance
"hitCount":0,
"callUID":1,
"children":[

{"functionName":"",
"scriptId":42,
"url":"/qconsole/endpoints/evaljs.sjs",
"lineNumber":1,
"columnNumber":1,
"hitCount":0,
"callUID":2,
"children":[
{"functionName":"addResponseHeader",
"scriptId":0,
"url":"",
"lineNumber":0,
"columnNumber":0,
"hitCount":0,
"callUID":3,
"children":[

{"functionName":"doEval",
"scriptId":49,
"url":

"/MarkLogic/appservices/qconsole/qconsole-js-amped.sjs",
"lineNumber":3,
"columnNumber":20,
"hitCount":0,
"callUID":4,
"children":[

{"functionName":"eval",
"scriptId":0,
"url":"",
"lineNumber":0,
"columnNumber":0,
"hitCount":0,
"callUID":5,
"children":[

{"functionName":"",
"scriptId":50,
"url":"",
"lineNumber":1,
"columnNumber":1,
"hitCount":0,
"callUID":6,
"children":[

{"functionName":"eval",
"scriptId":0,
"url":"",
"lineNumber":0,
"columnNumber":0,
"hitCount":1,
"callUID":5,
"children":[],
"id":7}],

"id":6}],
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 45

MarkLogic Server Profiling Requests to Evaluate Performance
"id":5}],
"id":4}],

"id":3}],
"id":2}],

"id":1},
"startTime":3800158243229,
"endTime":3800158265495,
"samples":[7],
"timestamps":[3800158243229]

}

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 46

MarkLogic Server Disk Storage Considerations
6.0 Disk Storage Considerations
52

This chapter describes how disk storage can affect performance of MarkLogic Server, and some
of the storage options available for forests. It includes the following sections:

• Disk Storage and MarkLogic Server

• Fast Data Directory on Forests

• Large Data Directory on Forests

• HDFS, MapR-FS, and S3 Storage on Forests

• Windows Shared Disk Registry Settings and Permissions

6.1 Disk Storage and MarkLogic Server

MarkLogic Server applications can be very disk-intensive in their system demands. It is therefore
very important to size your hardware appropriate for your workload and performance
requirements. The topic of disk storage performance is complicated; there are many factors that
can influence performance including disk controllers, network latency, the speed and quality of
the disks, and other disk technologies such as storage area networks (SANs) and solid state drive
(SSD). As with most performance issues, there are price/performance trade-offs to consider.

For example, SSDs are quite expensive compared with rotating drives. Conversely, HDFS
(Hadoop Distributed Filesystem) or Amazon S3 (Simple Storage Service) storage can be quite
inexpensive, but might not offer all of the speed of conventional disk systems.

6.2 Fast Data Directory on Forests

In the forest configuration for each forest, you can configure a Fast Data Directory. The Fast Data
Directory is designed for fast filesystems such as SSDs with built-in disk controllers. The Fast
Data Directory stores the forest journals and as many stands as will fit onto the filesystem; if the
forest never grows beyond the size of the Fast Data Directory, then the entire forest will be stored
in that directory. If there are multiple forests on the same host that point to the same Fast Data
Directory, MarkLogic Server divides the space equally between the different forests.

When the Fast Data Directory begins to approach its capacity, during periodic merges, MarkLogic
Server will start to put data in the regular Data Directory. By specifying a Fast Data Directory, you
can get much of the advantage of using the fast disk hardware while only buying a relatively small
SSD (or other fast disk system). For example, consider a scenario where you have an 8-core
MarkLogic Server d-host that is hosting 4 forests. If you have good quality commodity
server-class rotating disk system with many magnetic disk spindles (for example, 6 disks in some
RAID configuration) having 2 terabytes of storage, and if you have a 250 gigabyte SSD (for
example, a PCI I/O accelerator card) for the fast data directory, then you can get a significant
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 47

MarkLogic Server Disk Storage Considerations
amount of the benefit of having the SSD storage while keeping the cost down (because the
rotating storage is several times less expensive than the SSD storage). In this scenario, each of the
4 forests could use up to 1/4 of the size of the SSD, or about 62.5 GB. Once the forest size grows
close to that limit, then the Data Directory with the rotating storage is used.

6.3 Large Data Directory on Forests

Just like you might want a different class of disk for the Fast Data Directory, you might also want
a different class of disk for the Large Data Directory. The Large Data Directory stores binary
document that are larger than the Large Size Threshold specified in the database configuration.
This filesystem is typically a very large filesystem, and it may use a different class of disk than
your regular filesystem (or it may just be on a different set of the same disks). For more details
about binary documents, see Working With Binary Documents in the Application Developer’s Guide.

6.4 HDFS, MapR-FS, and S3 Storage on Forests

HDFS (Hadoop Distributed Filesystem) and Amazon S3 (Simple Storage Service) storage
represent two approaches to large distributed filesystems, and it is possible to use both HDFS and
S3 to store MarkLogic forest data. This section describes considerations for using HDFS and S3
for storing forest data in MarkLogic and contains the following topics:

• HDFS Storage

• MapR-FS Storage

• S3 Storage

Both HDFS and S3 can be very useful when implementing a tiered storage solution. For details on
tiered storage, see Tiered Storage in the Administrator’s Guide.

6.4.1 HDFS Storage

HDFS is a storage solution that uses Hadoop to manage a distributed filesystem. Hadoop has tools
to specify how many copies of each file are replicated on how many different servers. HDFS
gives you a high degree of control over your filesystem, as you can choose the disks to use, the
computers to use, as well as configuration settings such as number of copies to replicate.
MarkLogic can use Kerberos Secured HDFS as a file system on Linux platforms, as described in
Kerberos Authentication for Secured HDFS in the Security Guide.

HDFS storage is supported with MarkLogic on the following HDFS platform:

• Cloudera CDH version 5.8

• Hortonworks HDP version 2.6

Internally, MarkLogic Server uses JNI to access HDFS. When you specify an HDFS path for one
of the data directories, MarkLogic will write the forest data directly to HDFS according to the
path specification.
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 48

MarkLogic Server Disk Storage Considerations
When you set up an HDFS path as a forest directory, the path must be readable and writable by the
user in which the MarkLogic Server process is running.

Because you can set up HDFS as a very large shared filesystem, it can be good not only for forest
data, but as a destination for database backups.

An HDFS path is of the following form:

hdfs://<machine-name>:<port>/directory

so the following path would be to an hdfs filesystem accessed on a machine named
raymond.marklogic.com on port 12345:

hdfs://raymond.marklogic.com:12345/directory

Each MarkLogic host that uses HDFS for forest storage requires access to the following:

• The Oracle/Sun Java JDK (or an Oracle/Sun JRE that includes JNI)

• Hadoop HDFS client JAR files

• Your Hadoop HDFS configuration files

The following HDFS configuration property settings are required:

• dfs.support.append: true. This is the default value.

• dfs.namenode.accesstime.precision: 1

The remainder of this section describes how to configure your hosts so that MarkLogic can find
these components.

For details on the supported Java versions and how MarkLogic locates a JRE, see “Java Virtual
Machine Requirements” on page 7 in the Installation Guide.

Though MarkLogic does not ship with HDFS client libraries, you can download client library
bundles from http://developer.marklogic.com/products/hadoop.

Follow this procedure to make the bundled libraries and configuration files available to
MarkLogic Server. You must follow this procedure on each MarkLogic host that uses HDFS for
forest storage.

1. Download the Hadoop client bundle that corresponds to your Hadoop distribution from
http://developer.marklogic.com/products/hadoop.
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 49

http://developer.marklogic.com/products/hadoop
http://developer.marklogic.com/products/hadoop

MarkLogic Server Disk Storage Considerations
2. Unpack the bundle to one of the following locations: /usr, /opt, /space. For example, if
you download the HDP bundle for MarkLogic 9.0-7 to /opt, then the following
commands unpack the bundle to /opt.

cd /opt
gunzip hadoop-hdfs-hdp-9.0-7.tar.gz
tar xf hadoop-hdfs-hdp-9.0-7.tar

The bundle unpacks to a directory named “hadoop”, so the above commands create
/opt/hadoop/. The version portion of your bundle download filename may differ.

3. Make your Hadoop HDFS configuration files available under /etc/hadoop/conf/. You
must include at least your log4j.properties configuration file in this location.

4. Ensure the libraries and config files are readable by MarkLogic.

For more information on Hadoop and HDFS, see the Apache Hadoop documentation.

6.4.2 MapR-FS Storage

MarkLogic supports MapR-FS through NFS. For details on how to mount MapR-FS as NFS, see:

• http://maprdocs.mapr.com/51/DevelopmentGuide/c-mounting-the-cluster.html

• http://maprdocs.mapr.com/51/AdministratorGuide/c_set_up_mapr_nfs.html

6.4.3 S3 Storage

S3 is a cloud-based storage solution from Amazon. S3 is like a filesystem, but you access it via
HTTP. MarkLogic Server uses HTTP to access S3, and you can put an S3 path into any of the data
directory specifications on a forest, and MarkLogic will then write to S3 for that directory. For
more details about Amazon S3, see the Amazon web site http://aws.amazon.com/s3/. This section
describes S3 usage in MarkLogic and includes the following parts:

• S3 and MarkLogic

• Entering Your S3 Credentials for a MarkLogic Cluster

6.4.3.1 S3 and MarkLogic

Storage on S3 has an “eventual consistency” property, meaning that write operations might not be
available immediately for reading, but they will be available at some point. Because of this, S3
data directories in MarkLogic have a restriction that MarkLogic does not create Journals on S3.
Therefore, MarkLogic recommends that you use S3 only for backups and for read-only forests,
otherwise you risk the possibility of data loss. If your forests are read-only, then there is no need
to have journals.
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 50

http://aws.amazon.com/s3/
http://hadoop.apache.org
http://maprdocs.mapr.com/51/DevelopmentGuide/c-mounting-the-cluster.html
http://maprdocs.mapr.com/51/AdministratorGuide/c_set_up_mapr_nfs.html

MarkLogic Server Disk Storage Considerations
When you set up an S3 path as a forest directory, the path must be readable and writable by the
user in which the MarkLogic Server process is running. Typically, this means you must set
Upload/Delete, View Permissions, and Edit Permissions on the AWS S3 bucket. This is true for
both forest paths and for backup paths.

Because S3 is a very large shared filesystem, it can be good not only for forest data, but as a
destination for database backups.

To specify an S3 path in MarkLogic, use a URL of the following form:

s3://<bucket-name>/<path-to-location>

so the following path would be to an S3 filesystem with a bucket named my-bucket and a path
named my-directory:

s3://my-bucket/my-directory

Note: Amazon has other ways to set up S3 URLs, but use the form above to specify the
S3 paths in MarkLogic; for more information on S3, see the Amazon
documentation.
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 51

MarkLogic Server Disk Storage Considerations
6.4.3.2 Entering Your S3 Credentials for a MarkLogic Cluster

S3 requires authentication with the following S3 creadentials:

• AWS Access Key

• AWS Secret Key

The S3 creadentials for a MarkLogic cluster are stored in the security database for the cluster. You
can only have one set of S3 credentials per cluster. You can set up security access in S3, you can
access any paths that are allowed access by those credentials. Because of the flexibility of how
you can set up access in S3, you can set up any S3 account to allow access to any other account,
so if you want to allow the credentials you have set up in MarkLogic to access S3 paths owned by
other S3 users, those users need to grant access to those paths to the AWS Access Key set up in
your MarkLogic Cluster.

To set up the AW credentials for a cluster, enter the keys in the Admin Interface under
Security > Credentials. You can also set up the keys programmatically using the following
Security API functions:

• sec:credentials-get-aws

• sec:credentials-set-aws

The credentials are stored in the Security database. Therefore, you cannot use S3 as the forest
storage for a security database.

6.5 Windows Shared Disk Registry Settings and Permissions

If you are using remote machine file paths on Windows (for example, a path like
\\machine-name\dir, where machine-name is the name of the host and dir is the path it exposes as
a share), you must set the following registry settings to ZERO, as shown in
https://technet.microsoft.com/en-us/library/ff686200.aspx:

• FileInfoCacheLifetime

• FileNotFoundCacheLifetime

• DirectoryCacheLifetime

These DWORD registry keys settings are in the following registry:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Lanmanworkstation
\Parameters

Additionally, the directory path must have read and write permissions for the SYSTEM user, or
whichever user under which MarkLogic.exe runs.
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 52

https://technet.microsoft.com/en-us/library/ff686200.aspx

MarkLogic Server Monitoring MarkLogic Server Performance
7.0 Monitoring MarkLogic Server Performance
57

This chapter provides an overview to various ways to monitor the status in MarkLogic Server,
both through the Admin Interface and through Server Monitoring APIs designed to report status
of various parts of the system. This chapter includes the following sections:

• Ways to Monitor Performance and Activity

• Server Monitoring APIs

7.1 Ways to Monitor Performance and Activity

This section describes the following ways to monitor various activity on MarkLogic Server:

• Monitoring History Dashboard

• Server Logs

• Status Screens in the Admin Interface

• Create Your Own Server Reports

7.1.1 Monitoring History Dashboard

The Monitoring History dashboard is used to capture and make use of historical performance data
for a MarkLogic cluster. Once the performance data has been collected, you can view the data in
the Monitoring History page. The top-level Monitoring History page provides an overview of the
performance metrics for all of the key resources in your cluster. For each resource, you can drill
down for more detail. You can also adjust the time span of the viewed data and apply filters to
view the data for select resources to compare and spot exceptions.

For details on the Monitoring History dashboard, see the MarkLogic Server Monitoring History
chapter in the Monitoring MarkLogic Guide.
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 53

MarkLogic Server Monitoring MarkLogic Server Performance
7.1.2 Server Logs

The logs for MarkLogic Server are an important source of information about activity on the
server, particularly information about error conditions. The logs are all stored in the Logs directory
under the MarkLogic Server data directory (typically c:\Program Files\MarkLogic\Data\Logs in
windows, /var/opt/MarkLogic/Logs under UNIX-based systems). There are two types of logs:

• ErrorLog.txt, which logs MarkLogic Server exceptions, startup activity, and so on.

• port_no_AccessLog.txt, which logs access requests (for example, HTTP requests) for the
App Server running at the specified port.

You can configure how long to keep a log before starting a new one, at which level to log activity,
and how many old log files to keep before deleting (they have a number appended to their name,
for example, ErrorLog_5.txt indicates 5 new log files have been created since this one was used).
For more details on configuring the log files, see the Administrator’s Guide.

Another option you can configure, at the App Server level, is for any uncaught application
exceptions to be written to the ErrorLog.txt file. This way, if your application throws an
exception (for example, if it has a syntax error), the error message is logged in addition to being
sent to the client. This is useful in debugging, especially if queries are being generated via user
activity on a browser or through a WebDAV client.

You can also code your own log messages into an application using xdmp:log. You can use
xdmp:log to log any message at any level, and that message is written to the ErrorLog.txt file
when it is called. Log messages are useful in debugging during development, and are also useful
in logging certain activities in production.

For operational purposes, some developers write scripts or programs to monitor the logs for
specific messages. Then, if the specific message is logged, the script or program can send some
sort of alert out (for example, page someone or send a message to someone).

The logs contain important information that can be used in monitoring MarkLogic Server. The
logs can be a powerful tool in an overall monitoring policy. How you use that information
depends on your requirements.

Note: There must be sufficient disk space on the filesystem in which the log files reside.
If there is no space left on the log file device, MarkLogic Server will abort.
Additionally, if there is no disk space available for the log files, MarkLogic Server
will fail to start.
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 54

MarkLogic Server Monitoring MarkLogic Server Performance
7.1.3 Status Screens in the Admin Interface

The Admin Interface includes many pages that list current activity and status for various parts of
MarkLogic Server. To access the status pages, click the status tab in the part of the Admin
Interface to which you want to find current system information.

The following table lists the status pages available in the Admin Interface, along with the location
path to the status tab in the Admin Interface and a description of each page.

Name Location Description

System Status Configure > Status Provides a summary of all
information throughout the entire
MarkLogic Server cluster,
including host, App Server,
database, and forest information.
Also includes buttons to restart or
shutdown all of the hosts in the
cluster.

Group Status Groups > group_name > Status Provides a summary of all
information throughout the
MarkLogic Server group, including
host, App Server, database, and
forest information. Also includes
buttons to restart or shutdown all of
the hosts in the group.

Host Status Hosts > host_name > Status Provides a summary of the current
conditions on the host, including
information about App Servers,
forests, and active queries. Also
includes buttons to enter a new
license key, restart, or shutdown the
host.

App Server
Status

Groups > group_name > App Servers >
app_server_name > Status

Shows information about activity
on the App Server, including
queries active on each host and the
ability to cancel the queries.
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 55

MarkLogic Server Monitoring MarkLogic Server Performance
Task Server
Status

Groups > group_name > Task Server >
Status

Shows information about activity
on the task servers for the group,
including the number of requests
being processed and the number of
tasks queued on the task server.

Database
Status

Databases > db_name > Status Shows activity on the specified
database. Shows if any merges are
in progress and if reindexing is in
progress, and gives estimates about
how long they will take. Shows
information about the database,
including the number of documents,
number of fragments, and its size.
Optionally shows forest status
information.

Forest Status Forests > forest_name > Status Shows information and activity
about the specified forest, including
merge activity, number of stands,
size, space available, and so on.
Also includes a button to restart the
forest, which forces the forest to go
offline. Once it is offline, it will
automatically attempts to rejoin the
host, resulting in a restart of the
forest. If failover is enabled, a
restarted forest will first attempt to
join the primary host.

Name Location Description
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 56

MarkLogic Server Monitoring MarkLogic Server Performance
7.1.4 Create Your Own Server Reports

The status pages in the Admin Interface provide a lot of detail about many parts of the system. If
you want information about MarkLogic Server status in a different form, however, or if you want
to combine it with some other application-specific information, you can build your own server
reports using the Server Monitoring APIs. For more details, see the next section.

7.2 Server Monitoring APIs

The Server Monitoring APIs are XQuery functions that return XML representations of current
activity of various parts of MarkLogic Server. Because they are XQuery functions, you can build
any application you deem necessary with them. For example, perhaps you want a summary page
that shows some different information then the system status page in the Admin Interface, or
perhaps you want to combine some of that information with some content from your application.
Perhaps you want to integrate it with a site-wide monitoring system. Whatever your requirements,
because the APIs return XML, it is easy to write an application to display the information in
whatever way fits your needs.

The following are the monitoring functions available:

• xdmp:forest-counts

• xdmp:forest-status

• xdmp:host-status

• xdmp:request-cancel

• xdmp:request-status

• xdmp:server-status

The xdmp:forest-counts function can take some time to compute on large systems, as it must
query the forest to determine some of the counts. You can limit the work it performs with the
optional second argument. For more details about syntax and usage of these functions, see the
Server Monitoring functions in the MarkLogic XQuery and XSLT Function Reference.
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 57

MarkLogic Server Endpoints and Request Monitoring
8.0 Endpoints and Request Monitoring
70

The Request Monitoring feature enables you to configure logging of information related to
requests, including metrics collected during request execution. This feature lets you enable
logging of internal preset metrics for requests on specific endpoints. You can also log custom
request data by calling the provided Request Logging APIs. This logged information may help
you evaluate server performance.

This chapter provides an overview of creating endpoint declarations and using them to monitor
requests on MarkLogic Server. This chapter includes the following sections:

• Monitoring Requests

• App Server Request Monitoring

• XDBC Server Request Monitoring

• Creating Endpoint Declarations

• Request Cancelling

• Request Monitoring APIs

8.1 Monitoring Requests

The Request Monitoring feature enables you to configure logging of information request-related
information, including metrics collected during request execution. You can switch on logging of
internal preset metrics for requests on specific endpoints, or you can choose to log additional
custom request data by calling the request logging APIs. The custom request data might contain a
query plan, traces, or whatever information you want to collect and log for a request. This logged
information may help you spot offending requests and evaluate request history.

8.2 App Server Request Monitoring

You can trigger request logging for an App Server through one or more of the following options:

• For targeted endpoints (main modules), by switching on monitoring in their endpoint
declaration.

• For all requests on the App Server, by using a special server declaration.

• By calling request logging APIs in modules.

To switch on monitoring for an endpoint, you must add a monitoring section to the App Server
Endpoint Declaration file and specify which metrics will be logged. Request monitoring is
switched off by default for all metrics.
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 58

MarkLogic Server Endpoints and Request Monitoring
8.3 XDBC Server Request Monitoring

XDBC Server enables XCC and XDBC applications to communicate with MarkLogic Server.
You can configure request monitoring for XDBC requests for specific endpoints and globally for
the XDBC Server. There are two types of XDBC requests where request monitoring are enabled:

• XDBC Invoke Requests

• XDBC Eval Requests

8.3.1 XDBC Invoke Requests

You can enable request monitoring at both the endpoint level and at the server level for XDBC
invoke request. For a specific endpoint, you must add a monitoring section to the XDBC Server
Endpoint Declaration file and specify which metrics will be logged. To configure monitoring on a
global level, you must add a default.api file in the modules root directory for the XDBC Server.

8.3.2 XDBC Eval Requests

For XDBC eval requests, request monitoring is only available at the server level, as there are no
real endpoints. To seperate the monitoring configuration between the invoke and eval request, and
to add more control over the monitoring of the eval request, you can add an eval.api file to the
module root in addition to the default.api file. The eval.api file has the same format as the
default.api file, which contains only a monitoring section, but the settings in eval.api override
those in default.api.

8.4 Creating Endpoint Declarations

An Endpoint Declaration is a JSON file with the extension .api that resides in the module
database or file directory of an HTTP server. The App Server uses the declarations in this file to
dispatch requests to corresponding main modules. The declarations in this file also determine
which requests are to be logged.
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 59

MarkLogic Server Endpoints and Request Monitoring
8.4.1 The Endpoint Declaration File

The name, parameters, and return value for each endpoint are declared in the *.api file. The *.api
file contains a JSON data structure with the following properties:

Note: When monitoring a module that is not defined as an endpoint, none of the
properties defined in the preceding table are needed

The following is a list of meters that can be logged with the parameters that control them:

Property Declares

functionName The name used to call the endpoint, which must match the name (without the
.api extension) of the declaration file.

desc Optional; plain text documentation for the endpoint.

params Optional; an array specifying the parameters of the endpoint. This is omitted
for endpoints with no parameters. Parameter objects have name, desc,
datatype, nullable, and multiple properties.

return Optional; an object specifying the endpoint return value. This is omitted for
endpoints with no return value. The child object has desc, datatype, nullable,
and multiple properties.

errorDetail Optional; specifies a value from the following enumeration to control whether
error responses include stack traces:

• log (the default): log the stack trace on the server but do not return the
stack trace to the middle tier.

• return: include the stack trace in the exception on the middle tier as
well as log it on the server.

Monitoring
Flag

Data
Type

Default
Value Parameters

general object Enables all the general (non-custom) meters. The list
of parameters on which you can set constraints is in
the next table.

enabled boolean false Controls the logging of meters.

custom boolean true Custom meters manipulated with the
xdmp:request-log-* APIs.
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 60

MarkLogic Server Endpoints and Request Monitoring
The following parameters may be included in a *.api file:

fragments integer 0 The maximum number of items to log. For each
fragment: root, expandedTreeCacheHits,
expandedTreeCacheMisses

documents integer 0 The maximum number of items to log. For each
document: uri, expandedTreeCacheHits,
expandedTreeCacheMisses

hosts integer 0 The maximum number of items to log. For each host:
host, roundTripTime, roundTripCount

Parameter Description

commit-time The aggregate commit phase time, represented as a
double-precision value in seconds.

compile-time The aggregate time spent compiling a module or a
program, represented as a double-precision value in
seconds.

compressed-tree-size The aggregate size in bytes read from disk by
unsuccessful compressed tree cache lookups. Each
unsuccessful compressed tree cache lookup is followed
by a disk access to load the compressed tree into the
cache.

compressedTreeCacheHits The number of successful compressed tree cache
lookups. The compressed tree cache holds XML
document data in the compressed representation stored
on disk.

compressedTreeCacheMisses The number of unsuccessful compressed tree cache
lookups. Each unsuccessful compressed tree cache
lookup was followed by a disk access to load the
compressed tree into the cache.

contemporaneous-timestamp-time The time spent by queries waiting for the
contemporaneous timestamp for which any transaction is
known to have committed, represented as a
double-precision value in seconds. When the
multi-version concurrency control is set
contemporaneous, queries can block waiting for the
contemporaneous transactions to fully commit.

Monitoring
Flag

Data
Type

Default
Value Parameters
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 61

MarkLogic Server Endpoints and Request Monitoring
dbLibraryModuleCacheHits The number of library module cache hits from library
modules from the modules database.

dbLibraryModuleCacheMisses The number of library module cache misses from library
modules from the modules database.

dbMainModuleSequenceCacheHits The number of main module cache hits from main
modules in a database.

dbMainModuleSequenceCacheMisses The number of main module cache misses from main
modules in a database.

dbProgramCacheHits The number of module cache hits from the entire
program made from modules in a database (may contain
library modules from the special Modules directory).

dbProgramCacheMisses The number of module cache misses from the entire
program made from modules in a database (may contain
library modules from the special Modules directory).

elapsedTime The time elapsed since the start of the processing of this
query, in the form of a duration. Use this parameter
instead of the deprecated xdmp:set-request-time-limit
function.

envProgramCacheHits The number of module cache hits from the entire
program made from ad hoc XSLT stylesheet nodes.

envProgramCacheMisses The number of module cache misses from the entire
program made from ad hoc XSLT stylesheet nodes.

expandedTreeCacheHits The number of successful expanded tree cache lookups.
The expanded tree cache cache holds XML document
data in the expanded representation used by the XQuery
evaluator.

expandedTreeCacheMisses The number of unsuccessful expanded tree cache
lookups. Each unsuccessful expanded tree lookup was
followed by a compressed tree cache lookup to load the
expanded tree into the cache.

filterHits The number of successful search filter matches.

filterMisses The number of unsuccessful search filter matches.

fragmentsAdded The number of XML fragments added to the database by
an update.

Parameter Description
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 62

MarkLogic Server Endpoints and Request Monitoring
fragmentsDeleted The number of XML fragments deleted from the
database by an update.

fsLibraryModuleCacheHits The number of library module cache hits from library
modules on the file system.

fsLibraryModuleCacheMisses The number of library module cache misses from library
modules on the file system.

fsMainModuleSequenceCacheHits The number of main module cache hits from main
modules on the file system.

fsMainModuleSequenceCacheMisses The number of main module cache misses from main
modules on the file system.

fsProgramCacheHits The number of module cache hits from the entire
program made from modules on the file system.

fsProgramCacheMisses The number of module cache misses from the entire
program made from modules on the file system.

inMemoryCompressedTreeHits The number of successful compressed tree lookups in
in-memory stands.

inMemoryListHits The number of successful list lookups in in-memory
stands.

indexing-time The indexing time of documents before they are inserted
into database, represented as a double-precision value in
seconds.

linkCacheHits The number of successful link cache lookups. The link
cache is a transient cache that exists only for the duration
of one query. It holds pointers to expanded trees, and is
used to accelerate the frequent dereferencing of link
nodes.

linkCacheMisses The number of unsuccessful link cache lookups. Each
unsuccessful link cache lookup was followed by a search
for the link target tree.

list-size The aggregate size in bytes read from disk by
unsuccessful list cache lookups. Each unsuccessful list
cache lookup is followed by a disk access to load the
search term list into the cache.

Parameter Description
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 63

MarkLogic Server Endpoints and Request Monitoring
listCacheHits The number of successful list cache lookups. The list
cache holds search termlists used to accelerate path
expressions and text searches.

listCacheMisses The number of unsuccessful list cache lookups. Each
unsuccessful list cache lookup was followed by a disk
access to load the search termlist into the cache.

lock-time The aggregate time forests spend waiting for
transactional read and write locks, represented as a
double-precision value in seconds. This time can exceed
the run-time.

read-locks The number of read locks.

regexpCacheHits The number of successful regular expression cache
lookups. The regular expression cache is a transient
cache that exists only for the duration of one query. It
holds compiled regular expressions, and is used to
accelerate the frequent use of regular expressions during
the evaluation of a query.

regexpCacheMisses The number of unsuccessful regular expression cache
lookups. Each unsuccessful regular expression cache
lookup was followed by a compilation of a regular
expression from source text.

requests The number of requests.

run-time The aggregate time spent evaluating or running a module
or a program, represented as a double-precision value in
seconds.

valueCacheHits The number of successful value cache lookups. The
value cache is a transient cache that exists only for the
duration of one query. It holds typed values, and is used
to accelerate the frequent conversion of nodes to typed
values.

valueCacheMisses The number of unsuccessful value cache lookups. Each
unsuccessful value cache lookup was followed by a
conversion of an XML node to a typed value.

write-locks The number of write locks.

Parameter Description
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 64

MarkLogic Server Endpoints and Request Monitoring
8.4.2 Constraints on Meters

To control the number of meters that are logged, you can put the following constraints on meters:

The declaration format of a constraint is:

meter_name : {"operator":value, "operator":value, ...}

For example:

"constraints": {
"tripleCacheHits" : { "ge":1 }

}

In this example, tripleCacheHits is logged only if the the value of tripleCacheHits is >= 1.

Meters with zero or empty values are not normally logged. This is done to minimize the size of
the Request Log file. To log a zero or empty value, use the following code:

"constraints": {
"meter_name" : { "ge":0 }

}

The default constraint value on any meter is:

“gt”:0

8.4.3 Enabling Request Monitoring

You can call any server-side JavaScript (*.sjs) or XQuery (*.xqy) functions in files that reside in
the modules directory as declared on the HTTP server via the Admin interface, and you can
create other *.api files in the same directory or, if using the file system, in the same subdirectory
as the JavaScript or XQuery file being called. For more information on configuring HTTP servers
and the modules directory, see the “HTTP Servers” chapter in the Administrator’s Guide.

The following example is called countdocs.api. The function getCount is defined in a file called
countdocs.sjs that resides in the same directory. The general object under the monitoring section
of the file has enable and custom set to true; this enables request logging.

Operator Description

lt Less than

gt Greater than

le Less than or equal to

ge Greater than or equal to
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 65

MarkLogic Server Endpoints and Request Monitoring
{
 "functionName":"getCount",
 "params":[
 {
 "name":"collection",
 "datatype":"string",
 "multiple":false,
 "nullable":false
 },
 {
 "name":"method",
 "datatype":"int",
 "multiple":false,
 "nullable":false
 }

],
 "return":{
 "datatype":"string",
 "nullable":false,
 "multiple":false
 },

 "monitoring":{
 "general": {
 "enabled": true,
 "constraints": {
 "tripleCacheHits" : { "ge":1 }
 }
 },
 "custom": true ,
 "documents": 10,
 "fragments" : 0,
 "hosts" : 4
 }
}

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 66

MarkLogic Server Endpoints and Request Monitoring
8.4.4 The Default Declaration File

You can configure request monitoring globally for all requests on an App Server by adding a
default.api file where the modules root is configured for the App Server (either to the modules
database or to the file system). The default.api file only contains a monitoring section.

The following is a sample default.api file:

When you make a request to an endpoint and do not specify an App Server Endpoint Declaration
file, the default.api file in the module database or file directory is used if it exists. If a module
has a *.api file associated with it, the monitoring settings in the *.api file for that module are
used instead of those in the default.api file.

8.4.5 Request Logs

The logs for MarkLogic Server containing information about the requests you have chosen to log
are stored in the Logs directory under the MarkLogic Server data directory (typically
c:\Program Files\MarkLogic\Data\Logs on Windows, /var/opt/MarkLogic/Logs on UNIX-based
systems) in the file port_no_RequestLog.txt. Each RequestLog.txt file will contain the meters
from multiple monitored endpoints that:

• are configured on an App Server with some monitoring switched on.

• have calls to xdmp:request-log-put in their module.

The collected data is logged in JSON format at the rate of one line per request information. Even
if monitoring is completely switched off on an endpoint, calls to
xdmp:request-log-put(key,value) during a request will result in data being logged for all the
(key,value) pairs that have been stored during the request.

{
"monitoring":{
 "general": {
 "enabled": true,
 "constraints": {
 "tripleCacheHits" : { "ge":0 }
 }
 },
 "custom": true,
 "documents": 10,
 "fragments" : 10,
 "hosts" : 5 }
}

MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 67

MarkLogic Server Endpoints and Request Monitoring
The following is an example of a request log where different meters are logged for two endpoints:

{"time":"2018-08-10T17:45:29-07:00", "url":"/funcfoo.sjs",
"user":"user1", "customKey1":"value1", "elapsedTime":"PT0.017017S",
"listCacheHits":1, "expandedTreeCacheHits":1,
"fsProgramCacheMisses":1, "fsMainModuleSequenceCacheMisses":1}

{"time":"2018-08-10T17:45:44-07:00", "url":"/funcfoo.sjs",
"user":"user2", "customKey1":"value1", "elapsedTime":"PT0.013671S",
"listCacheHits":1, "expandedTreeCacheHits":1,
"fsProgramCacheHits":1}

{"time":"2018-08-10T17:46:06-07:00", "url":"/funcbaz.sjs",
"user":"user1", "customKey2":"value2", "elapsedTime":"PT0.010562S",
"listCacheHits":1, "expandedTreeCacheHits":1,
"fsProgramCacheHits":1}

{"time":"2018-08-10T17:46:09-07:00", "url":"/funcfoo.sjs",
"user":"user1", "customKey1":"value1", "elapsedTime":"PT0.007012S",
"listCacheHits":1, "expandedTreeCacheHits":1,
"fsProgramCacheHits":1}

{"time":"2018-08-10T17:46:21-07:00", "url":"/funcfoo.sjs",
"user":"user3", "customKey3":"value3", "elapsedTime":"PT0.009766S",
"listCacheHits":1, "expandedTreeCacheHits":1,
"fsProgramCacheHits":1}

{"time":"2018-08-10T17:46:54-07:00", "url":"/funcbaz.sjs",
"user":"user2", "customKey1":"value1", "elapsedTime":"PT0.01306S",
"listCacheHits":1, "expandedTreeCacheHits":1,
"fsProgramCacheHits":1}

{"time":"2018-08-10T17:47:00-07:00", "url":"/funcbaz.sjs",
"user":"user1", "customKey4":"value4", "elapsedTime":"PT0.013853S",
"listCacheHits":1, "expandedTreeCacheHits":1,
"fsProgramCacheHits":1}
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 68

MarkLogic Server Endpoints and Request Monitoring
8.5 Request Cancelling

This section describes the procedure to setup and enable request cancelling for an endpoint, a
main module, or globally on an App Server or XDBC Server. Request cancelling is disabled by
default for all meters. You can enable request cancelling by adding a limits section to the
monitoring section in the endpoint declaration, as in the following example:

The following limits are available:

You can update the limits configuration while the server is running without having to restart the
server.

8.6 Request Monitoring APIs

The Request Monitoring APIs are XQuery and JavaScript functions enable you to log additional
information in request logs. The following are the request monitoring functions available:

• xdmp:request-log-put

• xdmp:request-log-get

• xdmp:request-log-delete

• xdmp:set-request-limit

• xdmp.requestLogPut

• xdmp.requestLogGet

• xdmp.requestLogDelete

• xdmp:request-status

{
 "monitoring": {
 "limits" : {
 "lockCount" : 100,
 "readSize" : 1000000
 }
 }
}

Meter Unit Description

elapsedTime seconds Equivalent to calling xdmp:set-request-time-limit()

readSize bytes Combined size read from disk (listSize + compressedTreeSize)

lockCount count Combined count for the number of times a read or a write lock was
acquired (readLocks + writeLocks)
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 69

MarkLogic Server Endpoints and Request Monitoring
Whatever is logged with xdmp:request-log-put displays in the log files unless the custom flag is
set to false. When the custom flag is set to false, all custom logging is muted.

For more details about syntax and usage of these functions, see the AppServer functions in the
MarkLogic XQuery and XSLT Function Reference and the MarkLogic JavaScript Reference
Guide.
MarkLogic 9—May, 2017 Query Performance and Tuning Guide—Page 70

MarkLogic Server Technical Support

MarkLogic 9

9.0 Technical Support
71

MarkLogic provides technical support according to the terms detailed in your Software License
Agreement or End User License Agreement.

We invite you to visit our support website at http://help.marklogic.com to access information on
known and fixed issues, knowledge base articles, and more. For licensed customers with an active
maintenance contract, see the Support Handbook for instructions on registering support contacts
and on working with the MarkLogic Technical Support team.

Complete product documentation, the latest product release downloads, and other useful
information is available for all developers at http://developer.marklogic.com. For technical
questions, we encourage you to ask your question on Stack Overflow.

http://help.marklogic.com/
https://stackoverflow.com/questions/tagged/marklogic
http://developer.marklogic.com
http://www.marklogic.com/files/Mark_Logic_Support_Handbook.pdf

MarkLogic Server Copyright

MarkLogic 9

10.0 Copyright
999

MarkLogic Server 9.0 and supporting products.
Last updated: April 28, 2018

COPYRIGHT
Copyright © 2018 MarkLogic Corporation. All rights reserved.
This technology is protected by U.S. Patent No. 7,127,469B2, U.S. Patent No. 7,171,404B2, U.S.
Patent No. 7,756,858 B2, and U.S. Patent No 7,962,474 B2, US 8,892,599, and US 8,935,267.

The MarkLogic software is protected by United States and international copyright laws, and
incorporates certain third party libraries and components which are subject to the attributions,
terms, conditions and disclaimers set forth below.

For all copyright notices, including third-party copyright notices, see the Combined Product
Notices for your version of MarkLogic.

	Query Performance and Tuning Guide
	Table of Contents
	1.0 Tuning Query Performance in MarkLogic Server
	1.1 Overview of Query Performance
	1.2 General Techniques to Tune Performance
	1.2.1 Search Built-In APIs
	1.2.2 Lexicons For Unique Word or Value Lookups
	1.2.3 Range Queries for Constraining Searches to a Range of Values
	1.2.4 Positions Indexes Can Help Speed Phrase Searches
	1.2.5 Use Query Meters and Query Trace to Characterize Performance
	1.2.6 Profiler API
	1.2.7 Monitoring API and Status Screens
	1.2.8 Index Options, Range Indexes, Fields

	1.3 Understanding MarkLogic Server Caches
	1.4 Rules of Thumb for Sizing

	2.0 Fast Pagination and Unfiltered Searches
	2.1 Understanding the Search Process
	2.2 Understanding Unfiltered Searches
	2.3 Using Unfiltered Searches for Fast Pagination
	2.4 Example: Determining the Number of False-Positive Matches

	3.0 Tuning Queries with query-meters and query-trace
	3.1 Indexes, XPath Expressions, and Query Performance
	3.2 Understanding query-meters Output
	3.2.1 Output From xdmp:query-meters
	3.2.2 Understanding the Cache Statistics

	3.3 Understanding query-trace Output
	3.3.1 What query-trace Logs
	3.3.2 Interpreting the Log Messages
	3.3.3 Fully Searchable Paths and cts:search Operations

	3.4 Using xdmp:plan to View the Evaluation Plan
	3.5 Examples
	3.5.1 Sample xdmp:query-meters Output
	3.5.2 Sample xdmp:query-trace Output
	3.5.3 Logging Both query-meters and query-trace Output

	4.0 Sorting Searches Using Range Indexes
	4.1 Using a cts:order Specification in a cts:search
	4.1.1 Creating a cts:order Specification
	4.1.2 Using the cts:order Specification in a Search

	4.2 Optimizing Order By Expressions With Range Indexes
	4.2.1 Speed Up Order By Performance
	4.2.2 Rules for Order By Optimization
	4.2.3 Creating Range Indexes
	4.2.4 Example Order By Queries

	5.0 Profiling Requests to Evaluate Performance
	5.1 Enabling Profiling on an App Server
	5.2 Understanding XQuery Profiling
	5.2.1 Definitions and Terminology for the XQuery Profiling
	5.2.2 XQuery Profiling Overview
	5.2.3 XQuery Profiling API

	5.3 Understanding Server-Side JavaScript Profiling
	5.4 Profiling Examples
	5.4.1 Simple Enable and Disable XQuery Example
	5.4.2 Returning a Part of the XQuery Profile Report
	5.4.3 JavaScript Profile Example

	6.0 Disk Storage Considerations
	6.1 Disk Storage and MarkLogic Server
	6.2 Fast Data Directory on Forests
	6.3 Large Data Directory on Forests
	6.4 HDFS, MapR-FS, and S3 Storage on Forests
	6.4.1 HDFS Storage
	6.4.2 MapR-FS Storage
	6.4.3 S3 Storage

	6.5 Windows Shared Disk Registry Settings and Permissions

	7.0 Monitoring MarkLogic Server Performance
	7.1 Ways to Monitor Performance and Activity
	7.1.1 Monitoring History Dashboard
	7.1.2 Server Logs
	7.1.3 Status Screens in the Admin Interface
	7.1.4 Create Your Own Server Reports

	7.2 Server Monitoring APIs

	8.0 Endpoints and Request Monitoring
	8.1 Monitoring Requests
	8.2 App Server Request Monitoring
	8.3 XDBC Server Request Monitoring
	8.3.1 XDBC Invoke Requests
	8.3.2 XDBC Eval Requests

	8.4 Creating Endpoint Declarations
	8.4.1 The Endpoint Declaration File
	8.4.2 Constraints on Meters
	8.4.3 Enabling Request Monitoring
	8.4.4 The Default Declaration File
	8.4.5 Request Logs

	8.5 Request Cancelling
	8.6 Request Monitoring APIs

	9.0 Technical Support
	10.0 Copyright
	COPYRIGHT

