
Copyright © 2018 MarkLogic Corporation. All rights reserved.

MarkLogic Server

MarkLogic Connector for Hadoop
Developer’s Guide
1

MarkLogic 9
May, 2017

Last Revised: 9.0-1, May, 2017

MarkLogic Server Table of Contents

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 2

Table of Contents

MarkLogic Connector for Hadoop Developer’s Guide

1.0 Introduction to MarkLogic Connector for Hadoop ..6
1.1 Terms and Definitions ..6
1.2 Overview ...8

1.2.1 Job Building Tools Provided by the Connector ..9
1.2.2 Input and Output Selection Features ...9
1.2.3 MarkLogic Server Access via XDBC App Server10

1.3 MarkLogic-Specific Key and Value Types ..10
1.4 Deploying the Connector with a MarkLogic Server Cluster11

1.4.1 Relationship of MarkLogic Server to a Hadoop Cluster11
1.4.2 Jobs Use In-Forest Evaluation ..12
1.4.3 Using the Pre-Configured XDBC App Server on Port 800012
1.4.4 Cluster-wide XDBC Configuration Requirements13

1.5 Making a Secure Connection to MarkLogic Server with SSL13

2.0Getting Started with the MarkLogic Connector for Hadoop 15
2.1 Requirements ..15

2.1.1 Required Software ..15
2.1.2 Security Requirements for MapReduce Jobs ..16

2.2 Installing the MarkLogic Connector for Hadoop ...16
2.3 Configuring Your Environment to Use the Connector ...17
2.4 Running the HelloWorld Sample Application ..18

2.4.1 Selecting the App Server and Database ..18
2.4.2 Loading the Sample Data ..19

2.4.2.1 Loading Sample Data with mlcp ...19
2.4.2.2 Loading Sample Data Manually ..20

2.4.3 Configuring the Job ..21
2.4.4 Running the Job ..22

2.5 Making the Connector Available Across a Hadoop Cluster24
2.6 Accessing the Connector Source Code ...24
2.7 Organization of the Connector Distribution ...25

3.0 Apache Hadoop MapReduce Concepts ..26
3.1 MapReduce Overview ..26
3.2 Example: Calculating Word Occurrences ...28
3.3 Understanding the MapReduce Job Life Cycle ..29

3.3.1 Job Client ..29
3.3.2 Job Tracker ...30
3.3.3 Task Tracker ...30

MarkLogic Server Table of Contents

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 3

3.3.4 Map Task ..31
3.3.5 Reduce Task ..31

3.4 How Hadoop Partitions Map Input Data ..32
3.5 Configuring a MapReduce Job ...33

3.5.1 Configuration Basics ...33
3.5.2 Setting Properties in a Configuration File ..34
3.5.3 Setting Properties Using the Hadoop API ..34
3.5.4 Setting Properties on the Command Line ...35
3.5.5 Configuring a Map-Only Job ..35

3.6 Running a MapReduce Job ...35
3.7 Viewing Job Status and Logs ..35

4.0 Using MarkLogic Server for Input ...37
4.1 Basic Steps ..37

4.1.1 Identifying the Input MarkLogic Server Instance37
4.1.2 Specifying the Input Mode ...38
4.1.3 Specifying the Input Key and Value Types ..39
4.1.4 Defining the Map Function ...40

4.2 Basic Input Mode ..41
4.2.1 Creating Input Splits ...41
4.2.2 Using a Lexicon to Generate Key-Value Pairs ...42

4.2.2.1 Implement a Lexicon Function Wrapper Subclass43
4.2.2.2 Override Lexicon Function Parameter Wrapper Methods43
4.2.2.3 Choose an InputFormat ...45
4.2.2.4 Configure the Job ..46
4.2.2.5 De-duplication of Results Might Be Required47

4.2.3 Using XPath to Generate Key-Value Pairs ...47
4.2.4 Example: Counting Href Links ...49

4.3 Advanced Input Mode ..51
4.3.1 Creating Input Splits ...51

4.3.1.1 Overview ...51
4.3.1.2 Creating a Split Query with hadoop:get-splits52

4.3.2 Creating Input Key-Value Pairs ..54
4.3.3 Optimizing Your Input Query ...56
4.3.4 Example: Counting Hrefs Using Advanced Mode57

4.4 Using KeyValueInputFormat and ValueInputFormat ..59
4.4.1 Overview ...59
4.4.2 Job Configuration ...60
4.4.3 Supported Type Transformations ...60
4.4.4 Example: Using KeyValueInputFormat ...61

4.5 Configuring a Map-Only Job ..63
4.6 Direct Access Using ForestInputFormat ...63

4.6.1 When to Consider ForestInputFormat ..64
4.6.2 Limitations of Direct Access ..64
4.6.3 Controlling Input Document Selection ...65
4.6.4 Specifying the Input Forest Directories ..66

MarkLogic Server Table of Contents

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 4

4.6.5 Determining Input Document Type in Your Code67
4.6.6 Where to Find More Information ..68

4.7 Input Configuration Properties ...69
4.8 InputFormat Subclasses ..71
4.9 Lexicon Function Subclasses ..73

5.0 Using MarkLogic Server for Output ..75
5.1 Basic Steps ..75

5.1.1 Identifying the Output MarkLogic Server Instance75
5.1.2 Configuring the Output Key and Value Types ...76
5.1.3 Defining the Reduce Function ..77
5.1.4 Disabling Speculative Execution ..78
5.1.5 Example: Storing MapReduce Results as Nodes79

5.2 Creating a Custom Output Query with KeyValueOutputFormat82
5.2.1 Output Query Requirements ...82
5.2.2 Implementing an XQuery Output Query ..82
5.2.3 Implementing an JavaScript Output Query ..83
5.2.4 Job Configuration ...83
5.2.5 Supported Type Transformations ...85

5.3 Controlling Transaction Boundaries ...86
5.4 Streaming Content Into the Database ...87
5.5 Performance Considerations for ContentOutputFormat87

5.5.1 Time vs. Space: Configuring Batch and Transaction Size87
5.5.2 Time vs. Correctness: Using Direct Forest Updates88
5.5.3 Reducing Memory Consumption With Streaming89

5.6 Output Configuration Properties ...90
5.7 OutputFormat Subclasses ...94

6.0 Troubleshooting and Debugging ..97
6.1 Enabling Debug Level Logging ..97
6.2 Solutions to Common Problems ...97

6.2.1 Configuration File Not Found ...98
6.2.2 XDBC App Server Not Reachable ...98
6.2.3 Authorization Failure ..98

7.0 Using the Sample Applications ..99
7.1 Set Up for All Samples ...99

7.1.1 Install Required Software ...99
7.1.1.1 Multi-host Configuration Considerations100

7.1.2 Configure Your Environment ...100
7.1.3 Copy the Sample Configuration Files ...100
7.1.4 Modify the Sample Configuration Files ...101

7.2 Additional Sample Data Setup ..103
7.2.1 Creating the Database ...103
7.2.2 Creating the XDBC App Server ...104

MarkLogic Server Table of Contents

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 5

7.2.3 Loading the Data ...104
7.3 Interacting with HDFS ..105

7.3.1 Initializing HDFS ..105
7.3.2 Accessing Results Saved to HDFS ...106
7.3.3 Placing Content in HDFS to Use as Input ..107

7.4 Sample Applications ...107
7.4.1 HelloWorld ...109
7.4.2 LinkCountInDoc ...110
7.4.3 LinkCountInProperty ..111
7.4.4 LinkCountValue ..111
7.4.5 LinkCount ...112
7.4.6 LinkCountCooccurrences ...113
7.4.7 RevisionGrouper ...114
7.4.8 BinaryReader ..115
7.4.9 ContentReader ..116
7.4.10 ContentLoader ..116
7.4.11 ZipContentLoader ...118

8.0 Technical Support ..120

9.0 Copyright ...121
9.0 COPYRIGHT ..121

MarkLogic Server Introduction to MarkLogic Connector for Hadoop

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 6

1.0 Introduction to MarkLogic Connector for Hadoop
14

The MarkLogic Server Hadoop MapReduce Connector provides an interface for using a
MarkLogic Server instance as a MapReduce input source and/or a MapReduce output destination.

This chapter is an overview of the MarkLogic Connector for Hadoop, covering:

• Terms and Definitions

• Overview

• MarkLogic-Specific Key and Value Types

• Deploying the Connector with a MarkLogic Server Cluster

• Making a Secure Connection to MarkLogic Server with SSL

If you are not already familiar with Hadoop MapReduce, see “Apache Hadoop MapReduce
Concepts” on page 26.

For installation instructions and an example of configuring and running a job, see “Getting Started
with the MarkLogic Connector for Hadoop” on page 15.

1.1 Terms and Definitions
You should be familiar with the following terms and definitions before using the Hadoop
MapReduce Connector.

Term Definition

Hadoop MapReduce An Apache Software Foundation software framework for reliable,
scalable, distributed parallel processing of large data sets across
multiple hosts. The Hadoop core framework includes a shared file
system (HDFS), a set of common utilities to support distributed
processing, and an implementation of the MapReduce programming
model. See “Apache Hadoop MapReduce Concepts” on page 26.

job The top level unit of work for a MapReduce system. A job consists of
an input data set, a MapReduce program, and configuration properties.
Hadoop splits a job into map and reduce tasks which run across a
Hadoop cluster. A Job Tracker node in the Hadoop cluster manages
MapReduce job requests.

task An independent subcomponent of a job, performing either map or
reduce processing. A task processes a subset of data on a single node
of a Hadoop cluster.

MarkLogic Server Introduction to MarkLogic Connector for Hadoop

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 7

map task A task which contributes to the map step of a job. A map task
transforms the data in an input split into a set of output key-value pairs
which can be further processed by a reduce task. A map task has no
dependence on or awareness of other map tasks in the same job, so all
the map tasks can run in parallel.

reduce task A task which contributes to the reduce step of a job. A reduce task
takes the results of the map tasks as input, produces a set of final
result key-value pairs, and stores these results in a database or file
system. A reduce task has no dependence on or awareness of other
reduce tasks in the same job, so all the reduce tasks can run in parallel.

mapper Programatically, a subclass of org.apache.hadoop.mapreduce.Mapper.
The mapper transforms map input key-value pairs into map output
key-value pairs which can be consumed by reduce tasks. An input
pair can map to zero, one, or many output pairs.

reducer Programmatically, a subclass of
org.apache.hadoop.mapreduce.Reducer. The reducer aggregates map
output into final results during the reduce step of a job. The value
portion of an input key-value pair for reduce is a list of all values
sharing the same key. One input key-value pair can generate zero, one,
or many output pairs.

input source A database, file system, or other system that provides input to a job.
For example, a MarkLogic Server instance or HDFS can be used as an
input source.

input split The subset of the input data set assigned to a map task for processing.

Split generation is controlled by the InputFormat subclass and
configuration properties of a job. See “How Hadoop Partitions Map
Input Data” on page 32.

input split query When using MarkLogic Server as an input source, the query that
determines which content to include in each split. By default, the split
query is built in. In advanced input mode, the split query is part of the
job configuration.

input query When using MarkLogic Server as an input source, the query that
generates input key-value pairs from the fragments/records in the
input split.

Term Definition

MarkLogic Server Introduction to MarkLogic Connector for Hadoop

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 8

1.2 Overview
This section provides a high level overview of the features of the MarkLogic Connector for
Hadoop. If you are not already familiar with Hadoop MapReduce, you should first read “Apache
Hadoop MapReduce Concepts” on page 26.

Topics covered in this section:

• Job Building Tools Provided by the Connector

• Input and Output Selection Features

InputFormat The abstract superclass, org.apache.hadoop.mapreduce.InputFormat,
of classes through which input splits and input key-value pairs are
created for map tasks.

The Apache Hadoop MapReduce API includes InputFormat
subclasses for using HDFS as an input source. The MarkLogic
Connector for Hadoop API provides InputFormat subclasses for using
MarkLogic Server as an input source; see “InputFormat Subclasses”
on page 71.

OutputFormat The abstract superclass, org.apache.hadoop.mapreduce.OutputFormat,
of classes that store output key-value pairs during the reduce phase.

The Apache Hadoop MapReduce API includes OutputFormat
subclasses for using HDFS for output.The MarkLogic Connector for
Hadoop API provides OutputFormat subclasses for using a MarkLogic
Server database as an output destination; see “OutputFormat
Subclasses” on page 94.

HDFS The Hadoop Distributed File System, which can be used as an input
source or an output destination in jobs. HDFS is the default source and
destination for Hadoop MapReduce jobs.

shuffle The process of sorting all map output values with the same key into a
single (key, value-list) reduce input key-value pair. The shuffle
happens between map and reduce. Portions of the shuffle can be
performed by map tasks and portions by reduce tasks.

CDH Cloudera’s Distribution Including Apache Hadoop. One of the
Hadoop distributions supported by the MarkLogic Connector for
Hadoop.

HDP Hortonworks Data Platform. One of the Hadoop distributions
supported by the MarkLogic Connector for Hadoop.

Term Definition

MarkLogic Server Introduction to MarkLogic Connector for Hadoop

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 9

• MarkLogic Server Access via XDBC App Server

1.2.1 Job Building Tools Provided by the Connector
The MarkLogic Connector for Hadoop manages sessions with MarkLogic Server and builds and
executes queries for fetching data from and storing data in MarkLogic Server. You only need to
configure the job and provide map and reduce functions to perform the desired analysis.

The MarkLogic Connector for Hadoop API provides tools for building MapReduce jobs that use
MarkLogic Server, such as the following:

• InputFormat subclasses for retrieving data from MarkLogic Server and supplying it to the
map function as documents, nodes, and user-defined types. See “InputFormat Subclasses”
on page 71.

• OutputFormat subclasses for saving data to MarkLogic Server as documents, nodes and
properties. See “OutputFormat Subclasses” on page 94.

• Classes supporting key and value types specific to MarkLogic Server content, such as
nodes and documents. See “MarkLogic-Specific Key and Value Types” on page 10.

• Job configuration properties specific to MarkLogic Server, including properties for
selecting input content, controlling input splits, and specifying output destination and
document quality. See “Input Configuration Properties” on page 69 and “Output
Configuration Properties” on page 90.

1.2.2 Input and Output Selection Features
Using MarkLogic Server for input is independent of using it for output. For example, you can use
a MarkLogic Server database for input and save your results to HDFS, or you can use HDFS for
input and save your results in a MarkLogic Server database. You can also use MarkLogic Server
for both input and output.

The MarkLogic Connector for Hadoop supports two input modes, basic and advanced, through
the mapreduce.marklogic.input.mode configuration property. The default mode is basic. In basic
input mode, the connector handles all aspects of split creation, and your job configuration
specifies which content in a split is transformed into input key-value pairs.

In advanced input mode, you control both the split creation and the content selection by writing an
input split query and an input query. For details, see “Using MarkLogic Server for Input” on
page 37. Basic mode provides the best performance.

When using MarkLogic Server for input, input data can come from either database content
(documents) or from a lexicon.

MapReduce results can be stored in MarkLogic Server as documents, nodes, and properties. See
“Using MarkLogic Server for Output” on page 75.

MarkLogic Server Introduction to MarkLogic Connector for Hadoop

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 10

1.2.3 MarkLogic Server Access via XDBC App Server
The MarkLogic Connector for Hadoop interacts with MarkLogic Server through an XDBC App
Server. When using MarkLogic Server for both input and output, the input server instance and
output server instance can be different. The connector API includes configuration properties for
identifying the server instances and input and output database.

The configured MarkLogic Server instance acts as an initial point of contact for the job, but the
MarkLogic Connector for Hadoop spreads the query load across all nodes in the MarkLogic
Server cluster that host a forest of the target database. The job communicates directly with each
node, rather than bottlenecking on the single MarkLogic Server instance configured into the job.
For details, see “Deploying the Connector with a MarkLogic Server Cluster” on page 11.

The MarkLogic Connector for Hadoop creates and manages the XDBC sessions for your
application using XCC. Your application code need not manage App Server sessions.

1.3 MarkLogic-Specific Key and Value Types
A MapReduce job configuration specifies the input and output key and value types for map and
reduce. The MarkLogic Connector for Hadoop provides MarkLogic specific key and value
classes, as follows:

The MarkLogic Connector for Hadoop includes InputFormat and OutputFormat subclasses which
predefine key-value pairs using the types listed above, such as NodeInputFormat. See
“InputFormat Subclasses” on page 71 and “Using MarkLogic Server for Output” on page 75.

The MarkLogic Server specific types can be used in conjuction with non-connector types, such as
org.apache.hadoop.io.Text. For example, a job using NodeInputFormat always has map input
key-value pairs of type (NodePath, MarkLogicNode), but can produce output key-value pairs of
type (Text, IntWritable).

Class Description

DocumentURI A document URI. Use as a key type with DocumentInputFormat,
DocumentOutputFormat, and PropertyOutputFormat.

MarkLogicNode An XML node. Use as a value type with DocumentInputFormat,
NodeInputFormat, NodeOutputFormat, and PropertyOutputFormat.

NodePath A node URI. Use as a key type with NodeInputFormat and
NodeOutputFormat.

MarkLogic Server Introduction to MarkLogic Connector for Hadoop

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 11

For input data, you can also combine the MarkLogic Server specific types with certain Apache
Hadoop MapReduce types in the same key-value pair by using
com.marklogic.mapreduce.KeyValueInputFormat or com.marklogic.mapreduce.ValueInputFormat.
For details, see “Using KeyValueInputFormat and ValueInputFormat” on page 59.

The key and value types are usually configured programmatically through the
org.apache.hadoop.mapreduce.Job API. For an example, see “InputFormat Subclasses” on
page 71.

1.4 Deploying the Connector with a MarkLogic Server Cluster
This section covers the following topics:

• Relationship of MarkLogic Server to a Hadoop Cluster

• Jobs Use In-Forest Evaluation

• Using the Pre-Configured XDBC App Server on Port 8000

• Cluster-wide XDBC Configuration Requirements

For more information about clustering, see Clustering in MarkLogic Server in the Scalability,
Availability, and Failover Guide.

1.4.1 Relationship of MarkLogic Server to a Hadoop Cluster
Although it is possible to deploy Hadoop MapReduce, HDFS, and MarkLogic Server on a single
host for development purposes, production deployments usually involve a Hadoop cluster and a
MarkLogic Server cluster, as shown below:

In a typical MapReduce/HDFS production deployment, a MapReduce Task Tracker runs on each
data node host, though this is not required.

Job Tracker

Task Tracker Task Tracker

Data Node

Task Tracker

MarkLogic
Node

MarkLogic Cluster HDFS

Task Tracker

Data Node

Connector

Hadoop Cluster

MarkLogic
Node

MarkLogic Server Introduction to MarkLogic Connector for Hadoop

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 12

When using MarkLogic Server in a MapReduce job, whether or not to co-locate a Task Tracker
with each MarkLogic Server node is dependent on your workload. Co-location reduces network
traffic between the server and the MapReduce tasks, but places a heavier computational and
memory burden on the host.

1.4.2 Jobs Use In-Forest Evaluation
To optimize performance, the MarkLogic Connector for Hadoop interacts with MarkLogic Server
at the forest level. For example, if the reduce step of a job inserts a document into a MarkLogic
Server database, the insert is an in-forest insert.

When MarkLogic Server is deployed across a cluster, the forests of a database can be distributed
across multiple nodes. In this case, the in-forest evaluation of MapReduce related queries is also
distributed across the MarkLogic Server nodes hosting the forests of the target database.

Therefore, every MarkLogic Server host that has at least one forest in a database used by a
MapReduce job must be configured to act as both an e-node and a d-node. That is, each host must
be capable of providing both query evaluation and data services. A pure d-node (for example, a
host with a very small configured expanded tree cache) is not usable in a MapReduce job.

1.4.3 Using the Pre-Configured XDBC App Server on Port 8000
When you install MarkLogic Server, an App Server is pre-configured on port 8000 that is capable
of handling XDBC requests. You can use this App Server with the MarkLogic Connector for
Hadoop.

By default, the App Server on port 8000 is attached to the Documents database. To use this (or
any other App Server) with an alternative database, set one or both of the following connector
configuration properties, depending on whether your job uses MarkLogic for input, output, or
both:

• mapreduce.marklogic.input.databasename

• mapreduce.marklogic.output.databasename

For example, if your job uses MarkLogic for input, your job configuration setting will include
settings similar to the following:

<property>
 <name>mapreduce.marklogic.input.host</name>
 <value>my-marklogic-host</value>
</property>
<property>
 <name>mapreduce.marklogic.input.port</name>
 <value>8000</value>
</property>
<property>
 <name>mapreduce.marklogic.input.databasename</name>
 <value>my-input-database</value>
</property>

MarkLogic Server Introduction to MarkLogic Connector for Hadoop

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 13

1.4.4 Cluster-wide XDBC Configuration Requirements
Because the MarkLogic Connector for Hadoop uses an XDBC App Server and in-forest query
evaluation, your cluster might need special configuration to support MapReduce jobs if you use
an XDBC App Server other than the one pre-configured on port 8000.

If MarkLogic Server is used for input, each host that has at least one forest attached to the input
database must have an XDBC App Server configured for that database. Additionally, the XDBC
App Server must listen on the same port on each host.

The same requirement applies to using MarkLogic Server for output. The input App Server,
database and port can be the same or different from the output App Server, database and port.

Hosts within a group share the same App Server configuration, so you only need additional App
Servers if hosts with forests attached to the input or output database are in multiple groups.

When you use the MarkLogic Connector for Hadoop with a database that has forests on hosts in
more than one group, you must ensure MarkLogic in all groups is configured with an XDBC App
Server attached to the database, listening on the same port.

For example, the cluster shown below is properly configured to use Database A as a MapReduce
input source. Database A has 3 forests, located on 3 hosts in 2 different groups. Therefore, both
Group 1 and Group 2 must make Database A accessible on port 9001.

For details about the query evaluation, see “Jobs Use In-Forest Evaluation” on page 12. For
information on related MapReduce job configuration properties, see “Identifying the Input
MarkLogic Server Instance” on page 37 and “Identifying the Output MarkLogic Server Instance”
on page 75.

1.5 Making a Secure Connection to MarkLogic Server with SSL
The MarkLogic Connector for Hadoop supports making secure connections to the input and
output MarkLogic Server instances. To configure secure connections:

Host1

forest-A1

Host2

forest-A2

XDBC App Server on port 9001

Group 1 Group 2

Database A

Host3

forest-A3

XDBC App Server on port 9001

MarkLogic Server Introduction to MarkLogic Connector for Hadoop

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 14

1. Enable SSL in the App Server, as described in General Procedure for Setting up SSL for an
App Server in the Security Guide.

2. Create an implementation of the com.marklogic.mapreduce.SslConfigOptions interface in
your job. Use one of the techniques described in Accessing SSL-Enabled XDBC App Servers
in the XCC Developer’s Guide to provide a javax.net.ssl.SSLContext to the MarkLogic
Connector for Hadoop.

3. Specify the SslConfigOptions subclass name from the previous step in the configuration
property(s) mapreduce.marklogic.input.ssloptionsclass or
mapreduce.marklogic.output.ssloptionsclass. See the examples below.

4. Enable SSL use by setting the configuration property(s)
mapreduce.marklogic.input.usessl or mapreduce.marklogic.output.usessl to true.

You can set mapreduce.marklogic.input.ssloptionsclass and
mapreduce.marklogic.output.ssloptionsclass either in a configuration file or programmatically.
To set the property in a configuration file, set the value to your SslConfigOptions class name with
“.class” appended to it. For example:

<property>
 <name>mapreduce.marklogic.input.ssloptionsclass</name>
 <value>my.package.MySslOptions.class</value>
</property>

To set the property programatically, use the org.apache.hadoop.conf.Configuration API. For
example:

import org.apache.hadoop.conf.Configuration;
import com.marklogic.mapreduce.SslConfigOptions;

public class ContentReader {
 static class MySslOptions implements SslConfigOptions {...}

 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 ...

 conf.setClass("mapreduce.marklogic.input.ssloptionsclass",
 MySslOptions.class, SslConfigOptions.class);
 ...
 }
}

For a complete example of using SSL with the MarkLogic Connector for Hadoop, see
“ContentReader” on page 116. For a basic XCC application using SSL, see HelloSecureWorld in
the XCC Developer’s Guide.

MarkLogic Server Getting Started with the MarkLogic Connector for

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 15

2.0 Getting Started with the MarkLogic Connector for
Hadoop

25

This chapter provides procedures for installing and configuring Apache Hadoop MapReduce and
the MarkLogic Connector for Hadoop, and for running a simple MapReduce job that interacts
with MarkLogic Server. For more examples, see “Using the Sample Applications” on page 99.

This chapter includes the following sections:

• Requirements

• Installing the MarkLogic Connector for Hadoop

• Configuring Your Environment to Use the Connector

• Running the HelloWorld Sample Application

• Making the Connector Available Across a Hadoop Cluster

• Accessing the Connector Source Code

• Organization of the Connector Distribution

2.1 Requirements
This section covers the following topics:

• Required Software

• Security Requirements for MapReduce Jobs

2.1.1 Required Software
The MarkLogic Connector for Hadoop is a Java-only API and is only available on Linux. You can
use the connector with any of the Hadoop distributions listed below. Though the Hadoop
MapReduce Connector is only supported on the Hadoop distributions listed below, it may work
with other distributions, such as an equivalent version of Apache Hadoop.

The following software is required to use the MarkLogic Connector for Hadoop:

• Linux

• MarkLogic 7.0-1 or later

• MarkLogic XML Content Connector for Java (XCC/J) 7.0 or later

• An installation of one of the following Hadoop MapReduce distributions. You might be
able to use the Connector with other distributions based on Apache Hadoop v2.6.

• Cloudera’s Distribution Including Apache Hadoop (CDH) version 5.8

• Hortonworks Data Platform (HDP) version 2.6

MarkLogic Server Getting Started with the MarkLogic Connector for

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 16

• MapR version 5.1

• Oracle/Sun Java JDK 1.8 or later.

Note: Apache Hadoop only supports the Oracle/Sun JDK, though other JDK’s may
work. For details, see http://wiki.apache.org/hadoop/HadoopJavaVersions.

2.1.2 Security Requirements for MapReduce Jobs
The user with which a MapReduce job accesses MarkLogic Server must have appropriate
privileges for the content accessed by the job, such as permission to read or update documents in
the target database. Specify the user in the mapreduce.marklogic.input.username and
mapreduce.marklogic.output.username job configuration properties. See “Configuring a
MapReduce Job” on page 33.

In addition, the input and output user must use one of the pre-defined roles listed below:

The hadoop-internal role is for internal use only. Do not assign this role to any users. This role is
used to amp special privileges within the context of certain functions of the Hadoop MapReduce
Connector. Assigning this role to users gives them privileges on the system that you typically do
not want them to have.

For details about roles and privileges, see the Security Guide.

2.2 Installing the MarkLogic Connector for Hadoop
This section assumes you have already installed Hadoop, according to the instructions for your
distribution. Follow these instructions to install MarkLogic Connector for Hadoop in a single
node Hadoop configuration. For information about installation in a Hadoop Cluster, see “Making
the Connector Available Across a Hadoop Cluster” on page 24.

Role Description

hadoop-user-read Enables use of MarkLogic Server as an input source for a MapReduce
job. This role does not grant any other privileges, so the
mapreduce.marklogic.input.user might still require additional
privileges to read content from the target database.

hadoop-user-write Enables use of MarkLogic Server as an output destination for a
MapReduce job. This role does not grant any other privileges, so the
mapreduce.marklogic.output.user might still require additional
privileges to insert or update content in the target database.

hadoop-user-all Combines the privileges of hadoop-user-read and hadoop-user-write.

http://wiki.apache.org/hadoop/HadoopJavaVersions

MarkLogic Server Getting Started with the MarkLogic Connector for

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 17

These instructions assume you have the following environment variables set:

• HADOOP_CONF_DIR : The directory containing your Hadoop Configuration files. This
location is dependent on your Hadoop distribution. For example, CDH uses
/etc/hadoop/conf by default.

• JAVA_HOME : The root of your JRE installation.

Use the following procedure to install the MarkLogic Connector for Hadoop. You might need to
modify some of the example commands, depending on your version of MarkLogic, the connector,
or your Hadoop distribution.

1. Download the MarkLogic Connector for Hadoop from developer.marklogic.com.

2. Unpack the connector package to a location of your choice. For example, assuming
/space/marklogic contains the connector zip file and you install the MarkLogic Connector
for Hadoop in /space/marklogic/mapreduce:

$ cd /space/marklogic
$ mkdir mapreduce; cd mapreduce
$ unzip ../Connector-for-Hadoop2-2.1.zip

3. If XCC is not already installed, download XCC for Java from developer.marklogic.com and
unzip the package to a location of your choice. The installation location, such as
/space/marklogic/xcc, is referred to as $XCC_HOME in this guide.

$ cd /space/marklogic
$ mkdir xcc; cd xcc
$ unzip ../MarkXCC.Java-8.0.zip

Hadoop must be configured to find the MarkLogic Connector for Hadoop libraries before you can
use MarkLogic Server in a MapReduce job. See “Configuring Your Environment to Use the
Connector” on page 17.

2.3 Configuring Your Environment to Use the Connector
Before using the MarkLogic Connector for Hadoop with your Hadoop installation for the first
time, set the environment variables described in this section. Only HADOOP_CLASSPATH is required,
but the rest of this guide assumes you set the optional variables.

1. Optionally, set CONNECTOR_HOME in your shell environment to facilitate using the example
commands in this guide. The MarkLogic Connector for Hadoop installation directory is
referred to as $CONNECTOR_HOME in this guide. For example:

$ export CONNECTOR_HOME=/space/marklogic/mapreduce

2. Set HADOOP_CLASSPATH in your shell environment to include the MarkLogic Connector for
Hadoop and XCC JAR files. For example, if using MarkLogic 9, the required libraries are:

http://developer.marklogic.com
http://developer.marklogic.com

MarkLogic Server Getting Started with the MarkLogic Connector for

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 18

• $CONNECTOR_HOME/lib/commons-modeler-2.0.1.jar

• $CONNECTOR_HOME/lib/marklogic-mapreduce2-2.1.jar

• $XCC_HOME/lib/marklogic-xcc-8.0.jar

For example, on Linux, use the following command (all on one line, with no whitespace):

export HADOOP_CLASSPATH=${HADOOP_CLASSPATH}:
 $CONNECTOR_HOME/lib/commons-modeler-2.0.1.jar:
 $CONNECTOR_HOME/lib/marklogic-mapreduce2-2.1.jar:
 $XCC_HOME/lib/marklogic-xcc-8.0.jar

Note: The JAR file names can vary across MarkLogic Server releases.

3. Optionally, set a LIBJARS variable in your shell environment to the same JAR files you
specified in HADOOP_CLASSPATH, but separated by commas. This variable is used for the
value of the Hadoop -libjars option in the example commands. It tells Hadoop where to
find the MarkLogic JAR files.

For example, you can use the following command on Linux (all on one line, with no
whitespace):

export LIBJARS=
 $CONNECTOR_HOME/lib/commons-modeler-2.0.1.jar,
 $CONNECTOR_HOME/lib/marklogic-mapreduce2-2.1.jar,
 $XCC_HOME/lib/marklogic-xcc-8.0.jar

Hadoop MapReduce and the MarkLogic Connector for Hadoop are now ready for use.

2.4 Running the HelloWorld Sample Application
The section walks through configuring and running a simple HelloWorld sample job, assuming
MarkLogic Server and Apache Hadoop are installed on the same single node, as described in
“Installing the MarkLogic Connector for Hadoop” on page 16.

The following steps are covered:

• Selecting the App Server and Database

• Loading the Sample Data

• Configuring the Job

• Running the Job

2.4.1 Selecting the App Server and Database
The MarkLogic Connector for Hadoop requires a MarkLogic Server installation configured with
an XDBC App Server. When you install MarkLogic Server, a suitable XDBC App Server
attached to the Documents database comes pre-configured on port 8000.

MarkLogic Server Getting Started with the MarkLogic Connector for

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 19

The example commands in this guide assume you’re using this port 8000 App Server and
database, and therefore no additional setup is required.

However, you can choose to use a different database or App Server and database:

• To use the pre-configured App Server on port 8000 with a different database, set the
com.marklogic.output.databasename configuration property when you follow the steps in
“Configuring the Job” on page 21. (A similar property exists for overriding the default
database when using MarkLogic for output.)

• To create your own XDBC App Server on a different port, attached to a different database,
see the Administrator’s Guide, then configure your job appropriately when you get to
“Configuring the Job” on page 21.

2.4.2 Loading the Sample Data
This section covers loading the sample data in two ways: Using Query Console to load the data
using simple XQuery, or using the MarkLogic Content Pump (mlcp) command.

• Loading Sample Data with mlcp

• Loading Sample Data Manually

2.4.2.1 Loading Sample Data with mlcp
MarkLogic Content Pump (mlcp) is a command line tool transferring content into or out of
MarkLogic Server, or copying content between MarkLogic Server instances.

Before running this procedure, you should have mlcp installed and the mlcp bin/ directory on your
path; for details, see Installation and Configuration in the mlcp User Guide.

Follow these instructions to initialize the input database using MarkLogic Content Pump (mlcp).

1. Create a directory to use as your work area and cd into it. This directory can be located
anywhere. For example:

mkdir /space/examples/hello
cd /space/examples/hello

2. Create a data subdirectory to hold the sample data files. For example:

mkdir data

MarkLogic Server Getting Started with the MarkLogic Connector for

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 20

3. Create a text file called “hello.xml” in your data directory with the contents shown below:

<data><child>hello mom</child></data>

For example, run the following command:

cat > data/hello.xml
<data><child>hello mom</child></data>
^D

4. Create a text file called “world.xml” in your data directory with the contents shown below:

<data><child>world event</child></data>

For example, run the following command:

cat > data/world.xml
<data><child>world event</child></data>
^D

5. Use mlcp to load the input files into the database you created in “Selecting the App Server
and Database” on page 18. Use a username and password with update privileges for the
input database. Use the port number of the XDBC App Server you previously created. Use
the -output_uri_replace option to strip off the directory prefix from the database
document URI. For example:

$ mlcp.sh import -username user -password password -host localhost \
 -port 8000 -input_file_path /space/examples/hello/data \
 -output_uri_replace "/space/examples/hello/data/,''"

6. Optionally, use Query Console to confirmthe load: Open Query Console and click the
Explore button at the top of the query editor to examine the database contents. You should
see hello.xml and world.xml in the database.

You can also use mlcp to load files from HDFS by specifying an HDFS path for -input_file_path.
For example, if your files are in HDFS under /user/me/hello/data, then you could use the
following command:

$ mlcp.sh import -username user -password password -host localhost \
 -port 8000 -input_file_path hdfs:/user/me/hello/data \
 -output_uri_replace "/user/me/hello/data/,''"

2.4.2.2 Loading Sample Data Manually
Follow these instructions to initialize the input database with the sample documents using Query
Console. For details about Query Console, see the Query Console User Guide.

To load the database with the sample data:

MarkLogic Server Getting Started with the MarkLogic Connector for

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 21

1. Using your browser, launch Query Console on the MarkLogic Server instance to be used
as an input source. For example, if the input XDBC App Server is running on myhost, visit
this URL in the browser:

http://myhost:8000/qconsole

2. Create a new query in Query Console and replace the default contents with the following:

xquery version "1.0-ml";

let $hello := <data><child>hello mom</child></data>
let $world := <data><child>world event</child></data>

return(
 xdmp:document-insert("hello.xml", $hello),
 xdmp:document-insert("world.xml", $world)
)

3. In the Content Source dropdown, select the input XDBC App Server you configured for
input in “Selecting the App Server and Database” on page 18.

4. Select Text as the output format and click Run to execute the query.

5. Click the Explore button at the top of the query editor to examine the database contents.
You should see hello.xml and world.xml in the database.

2.4.3 Configuring the Job
Before running the HelloWorld sample job, set the connector configuration properties that identify
the MarkLogic Server user and instance for input and output.

Although the input and output MarkLogic Server instances and users can be different, this
example configures the job to use the same host, port, and database for both input and output.

Configuration also includes an input and an output user name and password. Choose (or create) a
MarkLogic user with sufficient privileges to access your XDBC App Server, and read and insert
documents in the attached database. If using a non-admin user, assign the user to the
hadoop-user-all role. For details, see “Security Requirements for MapReduce Jobs” on page 16.

To configure the job:

1. Copy the marklogic-hello-world.xml configuration file from $CONNECTOR_HOME/conf to
your work area. For example:

$ cp $CONNECTOR_HOME/conf/marklogic-hello-world.xml /space/examples/hello

2. Edit your local copy of marklogic-hello-world.xml to configure your input and output
host name, port, user name, and password. Set the following parameters to match your
environment:

MarkLogic Server Getting Started with the MarkLogic Connector for

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 22

mapreduce.marklogic.input.username
mapreduce.marklogic.input.password
mapreduce.marklogic.input.host
mapreduce.marklogic.input.port
mapreduce.marklogic.output.username
mapreduce.marklogic.output.password
mapreduce.marklogic.output.host
mapreduce.marklogic.output.port

The configured input user must have sufficient privileges to access the XDBC App Server
identified by the input host/port and to read documents from the input database.

The configured output user must have sufficient privileges to access the XDBC App
Server identified by the output host/port and to insert documents in the output database.

For example, if your MarkLogic installation is on localhost and you use the pre-configured App
Server on port 8000 with the username and password “my-user” and “my-password” for input,
then your input connection related property settings should be similar to the following after
editing:

<property>
 <name>mapreduce.marklogic.input.username</name>
 <value>my-user</value>
</property>
<property>
 <name>mapreduce.marklogic.input.password</name>
 <value>my-password</value>
</property>
<property>
 <name>mapreduce.marklogic.input.host</name>
 <value>localhost</value>
</property>
<property>
 <name>mapreduce.marklogic.input.port</name>
 <value>8000</value>
</property>

Your output connection related property settings should have similar values.

2.4.4 Running the Job
The HelloWorld sample reads the first word of text from the input documents, concatenates the
words into a string, and saves the result as HelloWorld.txt. Assuming the database contains only
the documents created in “Loading the Sample Data” on page 19, the output document contains
the phrase “hello world”. If your database contains additional documents, you get different
results.

To view the sample code, see $CONNECTOR_HOME/src/com/marklogic/mapreduce/examples.

Use the following procedure to run the example MapReduce job:

MarkLogic Server Getting Started with the MarkLogic Connector for

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 23

1. If you are not already in your work area, change to that directory. For example:

cd /space/examples/hello

2. Ensure the hadoop command is in your path.

3. Run the HelloWorld job using the following command. Modify the connector JAR file
name as needed for your installation.

hadoop jar \
 $CONNECTOR_HOME/lib/marklogic-mapreduce-examples-version.jar \
 com.marklogic.mapreduce.examples.HelloWorld -libjars $LIBJARS \
 -conf marklogic-hello-world.xml

The -conf command line option tells Hadoop where to get application-specific configuration
information. You can also add a configuration directory to HADOOP_CLASSPATH.

As the job runs, Hadoop reports the job progress to stdout. If the sample job does not run or does
not produce the expected results, see “Troubleshooting and Debugging” on page 97.

Near the end of the job output, you should see text similar to the following. Notice there are 2 map
input records (hello.xml and world.xml), 2 map output records (the first word from each input
record), and 1 reduce output record (HelloWorld.txt).

timestamp INFO mapreduce.Job: map 100% reduce 100%
timestamp INFO mapreduce.Job: Job jobId completed successfully
timestamp mapreduce.Job: Counters: 33
 File System Counters
 ...
 Map-Reduce Framework
 Map input records=2
 Map output records=2
 Map output bytes=20
 Map output materialized bytes=30
 Input split bytes=91
 Combine input records=0
 Combine output records=0
 Reduce input groups=1
 Reduce shuffle bytes=30
 Reduce input records=2
 Reduce output records=1

Use Query Console to explore the output database and examine the output document,
HelloWorld.txt. The document should contain the phrase “hello world”.

If you do not see the expected output, see the tips in “Troubleshooting and Debugging” on
page 97.

MarkLogic Server Getting Started with the MarkLogic Connector for

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 24

2.5 Making the Connector Available Across a Hadoop Cluster
When you submit a MapReduce job to run on an Apache Hadoop cluster, the job resources must
be accessible by the master Job Tracker node and all worker nodes. Job resources include the job
JAR file, configuration files, and all dependent libraries. When you use the MarkLogic Connector
for Hadoop in your job, this includes the connector and XCC JAR files.

You must always have the job resources available on the Hadoop node where you launch the job.
Depending on the method you use to make the job resource available across the cluster, dependent
JAR files, such as the MarkLogic Connector for Hadoop libraries must be on the
HADOOP_CLASSPATH on the node where you launch the job, as described in “Configuring
Your Environment to Use the Connector” on page 17.

Hadoop offers many options for making job resources available to the worker nodes, including:

• Using the -libjars Hadoop command line option and parsing the options in your main
class using org.apache.hadoop.util.GenericOptionsParser.

• Bundling dependent libraries and other resources into your job JAR file.

• Storing dependent libraries and other resources in HDFS or other shared file system and
using the Apache Hadoop DistributedCache to locate and load them.

• Installing required software on all nodes in the cluster.

The best solution depends upon the needs of your application and environment. See the Apache
Hadoop documentation for more details on making resources available across a Hadoop cluster.
This guide uses -libjars.

2.6 Accessing the Connector Source Code
The MarkLogic Connector for Hadoop is developed and maintained as an open source project on
GitHub. To access the sources or contribute to the project, navigate to the following URL in your
browser:

http://github.com/marklogic/marklogic-contentpump

The GitHub project includes both the connector and the mlcp command line tool.

http://github.com/marklogic/marklogic-contentpump

MarkLogic Server Getting Started with the MarkLogic Connector for

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 25

2.7 Organization of the Connector Distribution
The MarkLogic Connector for Hadoop distribution has the following layout:

Document or Directory Description

conf/ The XML config files for the sample applications. For
details, see “Using the Sample Applications” on
page 99.

docs/ The Javadoc for the connector in both expanded HTML
and compressed zip format.

lib/ The connector and connector examples JAR files,
marklogic-mapreduce2-version.jar and
marklogic-mapreduce-examples-version.jar. Note that
the JAR file names include the version number, so the
names in your installation might be slightly different.

src/ The source code for the sample applications.

sample-data/ The data used by several of the examples. For details,
see “Using the Sample Applications” on page 99.

MarkLogic Server Apache Hadoop MapReduce Concepts

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 26

3.0 Apache Hadoop MapReduce Concepts
36

This chapter provides a very brief introduction to Apache Hadoop MapReduce. If you are already
familiar with Apache Hadoop MapReduce, skip this chapter. For a complete discussion of the
MapReduce and the Hadoop framework, see the Hadoop documentation, available from the
Apache Software Foundation at http://hadoop.apache.org

This chapter covers the following topics:

• MapReduce Overview

• Example: Calculating Word Occurrences

• Understanding the MapReduce Job Life Cycle

• How Hadoop Partitions Map Input Data

• Configuring a MapReduce Job

• Running a MapReduce Job

• Viewing Job Status and Logs

3.1 MapReduce Overview
Apache Hadoop MapReduce is a framework for processing large data sets in parallel across a
Hadoop cluster. Data analysis uses a two step map and reduce process. The job configuration
supplies map and reduce analysis functions and the Hadoop framework provides the scheduling,
distribution, and parallelization services.

The top level unit of work in MapReduce is a job. A job usually has a map and a reduce phase,
though the reduce phase can be omitted. For example, consider a MapReduce job that counts the
number of times each word is used across a set of documents. The map phase counts the words in
each document, then the reduce phase aggregates the per-document data into word counts
spanning the entire collection.

During the map phase, the input data is divided into input splits for analysis by map tasks running
in parallel across the Hadoop cluster. By default, the MapReduce framework gets input data from
the Hadoop Distributed File System (HDFS). Using the MarkLogic Connector for Hadoop
enables the framework to get input data from a MarkLogic Server instance. For details, see “Map
Task” on page 31.

The reduce phase uses results from map tasks as input to a set of parallel reduce tasks. The reduce
tasks consolidate the data into final results. By default, the MapReduce framework stores results
in HDFS. Using the MarkLogic Connector for Hadoop enables the framework to store results in a
MarkLogic Server instance. For details, see “Reduce Task” on page 31.

Although the reduce phase depends on output from the map phase, map and reduce processing is
not necessarily sequential. That is, reduce tasks can begin as soon as any map task completes. It is
not necessary for all map tasks to complete before any reduce task can begin.

http://hadoop.apache.org

MarkLogic Server Apache Hadoop MapReduce Concepts

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 27

MapReduce operates on key-value pairs. Conceptually, a MapReduce job takes a set of input
key-value pairs and produces a set of output key-value pairs by passing the data through map and
reduce functions. The map tasks produce an intermediate set of key-value pairs that the reduce
tasks uses as input. The diagram below illustrates the progression from input key-value pairs to
output key-value pairs at a high level:

Though each set of key-value pairs is homogeneous, the key-value pairs in each step need not
have the same type. For example, the key-value pairs in the input set (KV1) can be (string,
string) pairs, with the map phase producing (string, integer) pairs as intermediate results
(KV2), and the reduce phase producing (integer, string) pairs for the final results (KV3). See
“Example: Calculating Word Occurrences” on page 28.

The keys in the map output pairs need not be unique. Between the map processing and the reduce
processing, a shuffle step sorts all map output values with the same key into a single reduce input
(key, value-list) pair, where the ”value” is a list of all values sharing the same key. Thus, the
input to a reduce task is actually a set of (key, value-list) pairs.

The key and value types at each stage determine the interfaces to your map and reduce functions.
Therefore, before coding a job, determine the data types needed at each stage in the map-reduce
process. For example:

1. Choose the reduce output key and value types that best represents the desired outcome.

2. Choose the map input key and value types best suited to represent the input data from
which to derive the final result.

3. Determine the transformation necessary to get from the map input to the reduce output,
and choose the intermediate map output/reduce input key value type to match.

Control MapReduce job characteristics through configuration properties. The job configuration
specifies:

• how to gather input

• the types of the input and output key-value pairs for each stage

• the map and reduce functions

• how and where to store the final results

For more information on job configuration, see “Configuring a MapReduce Job” on page 33. For
information on MarkLogic specific configuration properties, see “Input Configuration Properties”
on page 69 and “Output Configuration Properties” on page 90.

KV1 KV2 KV3map reduce

MarkLogic Server Apache Hadoop MapReduce Concepts

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 28

3.2 Example: Calculating Word Occurrences
This example demonstrates the basic MapReduce concept by calculating the number of
occurrence of each each word in a set of text files. For an in-depth discussion and source code for
an equivalent example, see the Hadoop MapReduce tutorial at:

http://hadoop.apache.org/mapreduce/docs/current/mapred_tutorial.html

Recall that MapReduce input data is divided into input splits, and the splits are further divided
into input key-value pairs. In this example, the input data set is the two documents, document1 and
document2. The InputFormat subclass divides the data set into one split per document, for a total
of 2 splits:

A (line number, text) key-value pair is generated for each line in an input document. The map
function discards the line number and produces a per-line (word, count) pair for each word in the
input line. The reduce phase produces (word, count) pairs representing aggregated word counts
across all the input documents.

Given the input data shown above, the map-reduce progression for the example job is:

The output from the map phase contains multiple key-value pairs with the same key: The “oats”
and “eat” keys appear twice. Recall that the MapReduce framework consolidates all values with
the same key before entering the reduce phase, so the input to reduce is actually (key, values)
pairs. Therefore, the full progression from map output, through reduce, to final results is:

document1

Mares eat oats and does eat oats

document2

split 1 split 2

(1, “Mares eat oats”)
(1, “and does eat oats”)

map

(“Mares”, 1)
(“eat”, 1)
(“oats”, 1)
(“and”, 1)
(“does”, 1)
(“eat”, 1)
(“oats”, 1)

reduce
(“Mares”, 1)
(“eat”, 2)
(“oats”, 2)
(“and”, 1)
(“does”, 1)

http://hadoop.apache.org/mapreduce/docs/current/mapred_tutorial.html

MarkLogic Server Apache Hadoop MapReduce Concepts

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 29

3.3 Understanding the MapReduce Job Life Cycle
This section briefly sketches the life cycle of a MapReduce job and the roles of the primary actors
in the life cycle. The full life cycle is much more complex. For details, refer to the documentation
for your Hadoop distribution or the Apache Hadoop MapReduce documentation.

Though other configurations are possible, a common Hadoop cluster configuration is a single
master node where the Job Tracker runs, and multiple worker nodes, each running a Task Tracker.
The Job Tracker node can also be a worker node.

When the user submits a MapReduce job to Hadoop:

1. The local Job Client prepares the job for submission and hands it off to the Job Tracker.

2. The Job Tracker schedules the job and distributes the map work among the Task Trackers
for parallel processing.

3. Each Task Tracker spawns a Map Task. The Job Tracker receives progress information from
the Task Trackers.

4. As map results become available, the Job Tracker distributes the reduce work among the
Task Trackers for parallel processing.

5. Each Task Tracker spawns a Reduce Task to perform the work. The Job Tracker receives
progress information from the Task Trackers.

All map tasks do not have to complete before reduce tasks begin running. Reduce tasks can begin
as soon as map tasks begin completing. Thus, the map and reduce steps often overlap.

3.3.1 Job Client
The Job Client prepares a job for execution.When you submit a MapReduce job to Hadoop, the
local JobClient:

1. Validates the job configuration.

2. Generates the input splits. See “How Hadoop Partitions Map Input Data” on page 32.

map

(“Mares”, 1)
(“eat”, 1)
(“oats”, 1)
(“and”, 1)
(“does”, 1)
(“eat”, 1)
(“oats”, 1)

reduce
(“Mares”, 1)
(“eat”, 2)
(“oats”, 2)
(“and”, 1)
(“does”, 1)

shuffle
(“Mares”, 1)
(“eat”, (1,1))
(“oats”, (1,1))
(“and”, 1)
(“does”, 1)

MarkLogic Server Apache Hadoop MapReduce Concepts

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 30

3. Copies the job resources (configuration, job JAR file, input splits) to a shared location,
such as an HDFS directory, where it is accessible to the Job Tracker and Task Trackers.

4. Submits the job to the Job Tracker.

3.3.2 Job Tracker
The Job Tracker is responsible for scheduling jobs, dividing a job into map and reduce tasks,
distributing map and reduce tasks among worker nodes, task failure recovery, and tracking the job
status. Job scheduling and failure recovery are not discussed here; see the documentation for your
Hadoop distribution or the Apache Hadoop MapReduce documentation.

When preparing to run a job, the Job Tracker:

1. Fetches input splits from the shared location where the Job Client placed the information.

2. Creates a map task for each split.

3. Assigns each map task to a Task Tracker (worker node).

The Job Tracker monitors the health of the Task Trackers and the progress of the job. As map
tasks complete and results become available, the Job Tracker:

1. Creates reduce tasks up to the maximum enableed by the job configuration.

2. Assigns each map result partition to a reduce task.

3. Assigns each reduce task to a Task Tracker.

A job is complete when all map and reduce tasks successfully complete, or, if there is no reduce
step, when all map tasks successfully complete.

3.3.3 Task Tracker
A Task Tracker manages the tasks of one worker node and reports status to the Job Tracker. Often,
the Task Tracker runs on the associated worker node, but it is not required to be on the same host.

When the Job Tracker assigns a map or reduce task to a Task Tracker, the Task Tracker:

1. Fetches job resources locally.

2. Spawns a child JVM on the worker node to execute the map or reduce task.

3. Reports status to the Job Tracker.

The task spawned by the Task Tracker runs the job’s map or reduce functions.

MarkLogic Server Apache Hadoop MapReduce Concepts

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 31

3.3.4 Map Task
The Hadoop MapReduce framework creates a map task to process each input split. The map task:

1. Uses the InputFormat to fetch the input data locally and create input key-value pairs.

2. Applies the job-supplied map function to each key-value pair.

3. Performs local sorting and aggregation of the results.

4. If the job includes a Combiner, runs the Combiner for further aggregation.

5. Stores the results locally, in memory and on the local file system.

6. Communicates progress and status to the Task Tracker.

Map task results undergo a local sort by key to prepare the data for consumption by reduce tasks.
If a Combiner is configured for the job, it also runs in the map task. A Combiner consolidates the
data in an application-specific way, reducing the amount of data that must be transferred to reduce
tasks. For example, a Combiner might compute a local maximum value for a key and discard the
rest of the values. The details of how map tasks manage, sort, and shuffle results are not covered
here. See the documentation for your Hadoop distribution or the Apache Hadoop MapReduce
documentation.

When a map task notifies the Task Tracker of completion, the Task Tracker notifies the Job
Tracker. The Job Tracker then makes the results available to reduce tasks.

3.3.5 Reduce Task
The reduce phase aggregates the results from the map phase into final results. Usually, the final
result set is smaller than the input set, but this is application dependent. The reduction is carried
out by parallel reduce tasks. The reduce input keys and values need not have the same type as the
output keys and values.

Note: The reduce phase is optional. You may configure a job to stop after the map phase
completes. For details, see “Configuring a Map-Only Job” on page 35.

Reduce is carried out in three phases, copy, sort, and merge. A reduce task:

1. Fetches job resources locally.

2. Enters the copy phase to fetch local copies of all the assigned map results from the map
worker nodes.

3. When the copy phase completes, executes the sort phase to merge the copied results into a
single sorted set of (key, value-list) pairs.

MarkLogic Server Apache Hadoop MapReduce Concepts

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 32

4. When the sort phase completes, executes the reduce phase, invoking the job-supplied
reduce function on each (key, value-list) pair.

5. Saves the final results to the output destination, such as HDFS.

The input to a reduce function is key-value pairs where the value is a list of values sharing the
same key. For example, if one map task produces a key-value pair (“eat”, 2) and another map
task produces the pair (“eat”, 1), then these pairs are consolidated into (“eat”, (2, 1)) for
input to the reduce function. If the purpose of the reduce phase is to compute a sum of all the
values for each key, then the final output key-value pair for this input is (“eat”, 3). For a more
complete example, see “Example: Calculating Word Occurrences” on page 28.

Output from the reduce phase is saved to the destination configured for the job, such as HDFS or
MarkLogic Server. Reduce tasks use an OutputFormat subclass to record results. The Hadoop API
provides OutputFormat subclasses for using HDFS as the output destination. The MarkLogic
Connector for Hadoop provides OutputFormat subclasses for using a MarkLogic Server database
as the destination. For a list of available subclasses, see “OutputFormat Subclasses” on page 94.
The connector also provides classes for defining key and value types; see “MarkLogic-Specific
Key and Value Types” on page 10.

3.4 How Hadoop Partitions Map Input Data
When you submit a job, the MapReduce framework divides the input data set into chunks called
splits using the org.apache.hadoop.mapreduce.InputFormat subclass supplied in the job
configuration. Splits are created by the local Job Client and included in the job information made
available to the Job Tracker.

The JobTracker creates a map task for each split. Each map task uses a RecordReader provided by
the InputFormat subclass to transform the split into input key-value pairs. The diagram below
shows how the input data is broken down for analysis during the map phase:

The Hadoop API provides InputFormat subclasses for using HDFS as an input source. The
MarkLogic Connector for Hadoop provides InputFormat subclasses for using MarkLogic Server
as an input source. For a list of available MarkLogic-specific subclasses, see “InputFormat
Subclasses” on page 71.

splitnsplit1

KV1 KVnKV2

input data set

KV1 KVn

Input splits are generated using the
InputFormat class. Each split is

Input key-value pairs are generated
from each split, using a

assigned to a map task.

RecordReader provided by the
InputFormat class.

MarkLogic Server Apache Hadoop MapReduce Concepts

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 33

3.5 Configuring a MapReduce Job
This section covers the following topics:

• Configuration Basics

• Setting Properties in a Configuration File

• Setting Properties Using the Hadoop API

• Setting Properties on the Command Line

• Configuring a Map-Only Job

3.5.1 Configuration Basics
Hadoop configuration is controlled by multiple layers of configuration files and property settings.
You may set configuration properties in configuration files, programmatically, and on the
command line. For details, see the documentation for your Hadoop distribution, or the Apache
Hadoop MapReduce documentation at http://hadoop.apache.org.

Configuration properties can include the following:

• Hadoop MapReduce properties

• Application-specific properties, such as the properties defined by the MarkLogic
Connector for Hadoop API in com.marklogic.mapreduce.MarkLogicConstants

• Job-specific properties. For example, the mapreduce.linkcount.baseuri property used by
the LinkCountInDoc sample application

A MapReduce application must configure at least the following:

• Mapper: Define a subclass of org.apache.hadoop.mapreduce.Mapper, usually overriding at
least the Map.map() method.

• InputFormat: Select a subclass of org.apache.hadoop.mapreduce.InputFormat and pass it
to org.apache.hadoop.mapreduce.Job.setInputFormatClass.

If the job includes a reduce step, then the application must also configure the following:

• Reducer: Define a subclass of org.apache.hadoop.mapreduce.Reducer, usually overriding
at least the Reducer.reduce() method.

• OutputFormat: Select a subclass of org.apache.hadoop.mapreduce.OutputFormat and pass
it to org.apache.hadoop.mapreduce.Job.setOutputFormatClass.

• Output key and value types for the map and reduce phases. Set the key and value types
appropriate for your InputFormat and OutputFormat subclasses using the Job API
functions, such as org.apache.hadoop.mapreduce.Job.setMapOutputKeyClass.

http://hadoop.apache.org

MarkLogic Server Apache Hadoop MapReduce Concepts

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 34

For details about configuring MapReduce jobs, see the documentation for your Hadoop
distribution. For details about connector-specific configuration options, see “Using MarkLogic
Server for Input” on page 37 and “Using MarkLogic Server for Output” on page 75.

3.5.2 Setting Properties in a Configuration File
Configuration files are best suited for static configuration properties. By default, Apache Hadoop
looks for configuration files in $HADOOP_CONF_DIR. You may override this location on the hadoop
command line. Consult the documentation for your Hadoop distribution for the proper location, or
see the Apache Hadoop Commands Guide at http://hadoop.apache.org.

Job configuration files are XML files with the following layout:

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/xsl” href=”configuration.xsl?>
<configuration>
 <property>
 <name>the.property.name</name>
 <value>the.property.value</value>
 </property>
 <property>...</property>
</configuration>

3.5.3 Setting Properties Using the Hadoop API
You can use the Apache Hadoop API to set properties that cannot be set in a configuration file or
that have dynamically calculated values. For example, you can set the InputFormat class by
calling org.apache.hadoop.mapreduce.Job.setInputFormatClass.

Set properties prior to submitting the job. That is, prior to calling
org.apache.mapreduce.Job.submit or org.apache.mapreduce.Job.waitForCompletion.

To set an arbitrary property programmatically, use the org.apache.hadoop.conf.Configuration
API. This API includes methods for setting property values to string, boolean, numeric, and class
types. Set the properties prior to starting the job. For example, to set the MarkLogic Connector for
Hadoop marklogic.mapreduce.input.documentselector property, at runtime, you can do the
following:

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.mapreduce.Job;
import com.marklogic.mapreduce.MarkLogicConstants;
...
public class myJob { ...
 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 String[] otherArgs =
 new GenericOptionsParser(conf, args).getRemainingArgs();
 Job job = new Job(conf);

 // Build up the document selectory dynamically...

http://hadoop.apache.org

MarkLogic Server Apache Hadoop MapReduce Concepts

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 35

 String mySelector = ...;

 conf = job.getConfiguration();
 conf.set(MarkLogicConstants.DOCUMENT_SELECTOR, mySelector);
 ...
 System.exit(job.waitForCompletion(true) ? 0 : 1);
 }
}

3.5.4 Setting Properties on the Command Line
You can set properties on the hadoop command line using the -D command line option. For
example:

$ hadoop -Dproperty_name=value jar myJob.jar myClass

3.5.5 Configuring a Map-Only Job
Some jobs can complete all their work during the map phase. For example, the ContentLoader
sample application, which loads documents from HDFS into MarkLogic Server, performs
document loading in the map tasks and then stops without using reduce tasks. See
“ContentLoader” on page 116.

To stop a job after the map completes, set the number of reduce tasks to zero by setting the
property mapred.reduce.tasks to 0 in your job configuration file, or by calling
org.apache.hadoop.Configuration.setNumReduceTasks(0) in your application.

3.6 Running a MapReduce Job
Use the hadoop jar command to execute a job. For example:

$ hadoop jar /path/myJob.jar my.package.Class options

For specific examples, see “Using the Sample Applications” on page 99. For details about the
hadoop command line, consult the documentation for your Hadoop distribution or see the Apache
Hadoop MapReduce Command Guide at http://hadoop.apache.org.

3.7 Viewing Job Status and Logs
A running job reports progress and errors to stdout and stderr. If Hadoop is configured for
standalone mode, this output is all that is available. If Hadoop is configured in pseudo-distributed
or fully distributed mode, logs are recorded in the Hadoop logs directory by default. The location
of the logs directory is dependent on your Hadoop distribution. You can also view job status and
results using the Job Tracker and NameNode web consoles.

This section assumes your Hadoop distribution uses the same logging mechanism as Apache
Hadoop. Consult the documentation for your distribution for details.

http://hadoop.apache.org

MarkLogic Server Apache Hadoop MapReduce Concepts

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 36

Use the Job Tracker web console to view job status. By default, the Job Tracker console is
available on port 50030. For example:

http://localhost:50030

Use the NameNode web console to browse HDFS, including job results, and to look at job related
logs. By default, the NameNode console is available on port 50070. For example:

http://localhost:50070

To examine logs for a job:

1. Navigate to the NameNode console on port 50070.

2. Click the Namenode Logs link at the top of the page. A listing of the logs directory
appears.

3. To check for errors, click on a Job Tracker log file, such as
hadoop-your_username-jobtracker-your_hostname.log. The contents of the log file
appears.

4. Click on your browser Back button to return to the log directory listing.

5. To view output output from your job, click on userlogs at the bottom of the logs directory
listing. A user log listing appears.

6. Locate the run corresponding to your job by looking at the timestamps. A log directory is
created for each map task and each reduce task.

Map tasks have _m_ in the log directory name. Reduce tasks have _r_ in the log directory
name. For example, attempt_201111020908_0001_m_000001_0/ represents a map task.

7. Click on the map or reduce task whose output you want to examine. A directory listing of
the stdout, stderr, and syslog for the select task.

8. Click on the name of a log to see what the task output to that destination. For example,
click stderr to view text written to stderr by the task.

MarkLogic Server Using MarkLogic Server for Input

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 37

4.0 Using MarkLogic Server for Input
74

When using MarkLogic Server as an input source, the input key-value pairs passed to the map
function of a map task are constructed by transforming database fragments or lexicon data in the
input split into key-value pairs using the configured InputFormat subclass and input properties.
This section covers the following topics:

• Basic Steps

• Basic Input Mode

• Advanced Input Mode

• Using KeyValueInputFormat and ValueInputFormat

• Configuring a Map-Only Job

• Direct Access Using ForestInputFormat

• Input Configuration Properties

• InputFormat Subclasses

4.1 Basic Steps
To configure the map phase of a MapReduce job to use MarkLogic Server for input, perform the
following steps:

• Identifying the Input MarkLogic Server Instance

• Specifying the Input Mode

• Specifying the Input Key and Value Types

• Defining the Map Function

4.1.1 Identifying the Input MarkLogic Server Instance
The MarkLogic Server input instance is identified by setting job configuration properties. For
general information on setting configuration properties, see “Configuring a MapReduce Job” on
page 33.

MarkLogic Server Using MarkLogic Server for Input

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 38

Set the following properties to identify the input MarkLogic Server instance:

If you want to use a database other than the one attached to your XDBC App Server, set the
following additional property to the name of your database:

mapreduce.marklogic.input.databasename

When you use MarkLogic Server in a cluster, all MarkLogic Server hosts containing a forest in
the input database must be accessible through an XDBC server on the same port. The host
identified in the configuration properties may be any qualifying host in the cluster. For details, see
“Deploying the Connector with a MarkLogic Server Cluster” on page 11.

You can configure a job to connect to the App Server through SSL by setting the
mapreduce.marklogic.input.usessl property. For details, see “Making a Secure Connection to
MarkLogic Server with SSL” on page 13. For an example, see “ContentReader” on page 116.

For more information on the properties, see “Input Configuration Properties” on page 69.

4.1.2 Specifying the Input Mode
The MarkLogic Connector for Hadoop input mode determines how much responsibility your job
has for creating input splits and input key-value pairs. The MarkLogic Connector for Hadoop
supports basic and advanced input modes. Basic mode is the default. Set the input mode using the
mapreduce.marklogic.input.mode configuration property.

Property Description

mapreduce.marklogic.input.host Hostname or IP address of the server hosting
your input XDBC App Server. The host must
be resolvable by the nodes in your Hadoop
cluster, so you should usually not use “local-
host”.

mapreduce.marklogic.input.port The port configured for the target XDBC App
Server on the input host.

mapreduce.marklogic.input.username Username privileged to read from the data-
base attached to your XDBC App Server.

mapreduce.marklogic.input.password Cleartext password for the input.username
user.

MarkLogic Server Using MarkLogic Server for Input

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 39

When MarkLogic Server is the input source, each map task runs an input query against the task
input split to select the fragments or records from which to create map input key-value pairs. An
input split query divides the input content into input splits by forest, and an input query selects
content within the split. For a general discussion of input splits in MapReduce, see “How Hadoop
Partitions Map Input Data” on page 32.

In basic mode, the MarkLogic Connector for Hadoop uses a built-in input split query and builds
the input query based on data selection properties defined by your job. This enables the connector
to optimize the interaction between the Hadoop MapReduce framework and MarkLogic Server. If
your input selection needs can be met by the basic mode query construction properties, you
should use basic mode as it offers the best performance. For details, see “Basic Input Mode” on
page 41.

Basic mode supports selecting input data from documents or a lexicon. You can only use one of
these methods in a job. If configuration properties are set for both methods, the connector uses a
lexicon for input. If none of the input selection properties are set, the connector uses the default
document selectors.

In advanced mode, your application provides the input split query and input query. Using
advanced mode gives you complete control over map input key-value pair creation, but adds
complexity. For details, see “Advanced Input Mode” on page 51.

4.1.3 Specifying the Input Key and Value Types
As discussed in “How Hadoop Partitions Map Input Data” on page 32, the
org.apache.hadoop.mapreduce.InputFormat subclass configured for the job determines the types
of the input keys and values and how the content selected by the input query is transformed into
key-value pairs.

To specify the InputFormat subclass programmatically, use the org.apache.hadoop.mapreduce.Job
API. The following example configures the job to use NodeInputFormat, which creates (NodePath,
MarkLogicNode) input key-value pairs:

import com.marklogic.mapreduce.NodeInputFormat;
import org.apache.hadoop.mapreduce.Job;
...
public class LinkCountInDoc {
 ...
 public static void main(String[] args) throws Exception {
 Job job = new Job(conf);
 job.setInputFormatClass(NodeInputFormat.class);
 ...
 }
}

The MarkLogic Connector for Hadoop API includes several InputFormat subclasses for
MarkLogic Server data types, such as (document URI, node) key-value pairs. For details, see
“InputFormat Subclasses” on page 71.

MarkLogic Server Using MarkLogic Server for Input

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 40

You can also use Hadoop MapReduce key-value types through the KeyValueInputFormat and
ValueInputFormat subclasses. These classes define type conversions between MarkLogic Server
types and standard Hadoop MapReduce types; see “Using KeyValueInputFormat and
ValueInputFormat” on page 59.

4.1.4 Defining the Map Function
A MapReduce application must include a subclass of org.apache.hadoop.mapreduce.Mapper and
implement a Mapper.map() method. The map method transforms the map input key-value pairs into
output key-value pairs that can be used as input for the reduce step.

The application-specific Mapper subclass and the signature of the Mapper.map method must match
the configured map phase input and output key-value pair types. For example, if the map phase
uses NodeInputFormat for input and produces (Text, IntWritable) output key-value pairs, then
the Mapper subclass should be similar to the following because NodeInputFormat creates
(NodePath, MarkLogicNode) input key-value pairs:

import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.IntWritable;
import com.marklogic.mapreduce.MarkLogicNode;
import com.marklogic.mapreduce.NodePath;

public class LinkCountInDoc {
 ...
 public static class RefMapper
 extends Mapper<NodePath, MarkLogicNode, Text, IntWritable> {
 public void map(NodePath key, MarkLogicNode value, Context context)
 {
 ...derive output key(s) and value(s)...
 context.write(output_key, output_value)
 }
 }

The Mapper.map() method constructs result key-value pairs corresponding to the expected output
type, and then writes pairs to the org.apache.hadoop.mapreduce.Context parameter for
subsequent handling by the MapReduce framework. In the example above, the map output
key-value pairs must be (Text, IntWritable) pairs.

Configure the Mapper into the job using the org.apache.hadoop.mapreduce.Job API. For
example:

public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 ...
 Job job = new Job(conf);
 job.setMapperClass(RefMapper.class);
 ...
}

MarkLogic Server Using MarkLogic Server for Input

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 41

For a list of InputFormat subclasses provided by the MarkLogic Connector for Hadoop API and
the associated key and value types, see “InputFormat Subclasses” on page 71.

For more details, see “Example: Counting Href Links” on page 49 and the sample code provided
in the connector package.

4.2 Basic Input Mode
The MarkLogic Connector for Hadoop supports basic and advanced input modes through the
mapreduce.marklogic.input.mode configuration property. The default mode, basic, offers the best
performance. In basic input mode, the connector handles all aspects of split creation. The job
configuration properties control which fragments in a split to transform into input key-value pairs.

This section covers the following topics:

• Creating Input Splits

• Using a Lexicon to Generate Key-Value Pairs

• Using XPath to Generate Key-Value Pairs

• Example: Counting Href Links

For details on advanced input mode, see “Advanced Input Mode” on page 51.

4.2.1 Creating Input Splits
Basic mode does not give you control over split creation, other than setting the maximum split
size using the mapreduce.marklogic.input.maxsplitsize property. Basic mode does give the job
control over the content passed to the map function, as described in “Specifying the Input Mode”
on page 38.

When using document fragments for input data, the connector divides the fragments in the
database into input splits by forest, such that each split contains at most the number of fragments
specified by mapreduce.marklogic.input.maxsplitsize.

Multiple splits might be required to cover a single forest. A split never spans more than one forest.
When the maxium split size is smaller than the total number of fragments in the forest, the
MarkLogic Connector for Hadoop can adjust the split size downwards so that the size is balanced
across a given forest.

MarkLogic Server Using MarkLogic Server for Input

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 42

For example, consider a database containing 2 forests, forest1 and forest2. Forest1 contains 15
documents. Forest2 contains 18 documents. If input.maxsplitsize is 10, then the connector
creates 2 splits from each forest, with each split covering roughly half the documents in each
forest:

A similar distribution of data occurs when using a lexicon for input. Splits are constructed by
querying the lexicon in each forest and assigning at most input.maxsplitsize entries to each split.

Use advanced mode if you require control over split creation. See “Advanced Input Mode” on
page 51.

4.2.2 Using a Lexicon to Generate Key-Value Pairs
This section describes how to use a MarkLogic Server lexicon to create map input key-value
pairs. Using a lexicon precludes using an XPath document selector for input. For general
information about lexicons, see Browsing With Lexicons in the Search Developer’s Guide.

To use a lexicon function:

1. Implement a Lexicon Function Wrapper Subclass corresponding to the XQuery lexicon
function you wish to use.

2. Override Lexicon Function Parameter Wrapper Methods to specify the parameter values for the
lexicon function call.

3. Choose an InputFormat subclass.

4. Configure the Job to use the lexicon by setting the configuration property
mapreduce.marklogic.input.lexiconfunctionclass.

5. Additional De-duplication of Results Might Be Required if your application requires
uniqueness in the map output values.

forest1

forest2

fn:collection()[1 to 8]

fn:collection()[9 to 15]

fn:collection()[1 to 9]

fn:collection()[10 to 18]

map task

map task

map task

map task

database splits

MarkLogic Server Using MarkLogic Server for Input

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 43

4.2.2.1 Implement a Lexicon Function Wrapper Subclass
The MarkLogic Connector for Hadoop API package com.marklogic.mapreduce.functions
includes a lexicon function abstract class corresponding to each supported XQuery or JavaScript
API lexicon function. Range and geospatial lexicons are not supported at this time. For a mapping
between lexicon wrapper classes and the lexicon functions, see “Lexicon Function Subclasses” on
page 73.

The subclass you create encapsulates a call to a lexicon function. The lexicon function is implicit
in the parent class, and the function call parameters are implemented by the methods. For
example, to use cts:element-attribute-value-co-occurrences, implement a subclass of
com.marklogic.mapreduce.functions.ElemAttrValueCooccurrences:

import com.marklogic.mapreduce.functions.ElemAttrValueCooccurrences;

public class LinkCountCooccurrences {
 static class HrefTitleMap extends ElemAttrValueCooccurrences {...}
}

In your subclass, override the inherited methods for the required parameters and for the optional
parameters to be included in the call, as described in “Override Lexicon Function Parameter
Wrapper Methods” on page 43.

4.2.2.2 Override Lexicon Function Parameter Wrapper Methods
Each lexicon function wrapper class includes methods for defining the supported function
parameter values, as strings. The connector uses this information to construct a call to the
wrapped lexicon function in the input query.

The parameter related methods vary by the function interface. For details on a particular wrapper
class, see the MarkLogic Connector for Hadoop javadoc.

You may not specify values corresponding to the $quality-weight or $forest-ids parameters of
any lexicon function. Quality weight is not used in a MapReduce context, and the connector
manages forest constraints for you in basic mode.

Note: If you include options settings in the lexicon call, do not set the skip or truncate
options. The MarkLogic Connector for Hadoop reserves the skip and truncate
lexicon function options for internal use.

Note: The frequency-order option supported by some lexicon calls is not honored in
MapReduce results.

For example, the XQuery lexicon function cts:element-values is exposed through the
com.marklogic.mapreduce.function.ElementValues class. The prototype for cts:element-values
is:

MarkLogic Server Using MarkLogic Server for Input

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 44

cts:element-values(
 $element-names as xs:QName*,
 [$start as xs:anyAtomicType?],
 [$options as xs:string*],
 [$query as cts:query?],
 [$quality-weight as xs:double?],
 [$forest-ids as xs:unsignedLong*]
)

The com.marklogic.mapreduce.function.ElementValues wrapper class includes abstract methods
corresponding to the $element-names, $start, $options, and $query parameters:

package com.marklogic.mapreduce.functions;

public abstract class LexiconFunction {

 public String getLexiconQuery() {...}
 public String[] getUserDefinedOptions() {...}
}

public abstract class ValuesOrWordsFunction extends LexiconFunction {
 public String getStart() {...}
}

public abstract class ElementValues extends ValuesOrWordsFunction {
 public abstract String[] getElementNames();
}

The parameter method overrides must return the string representation of an XQuery expression
that evaluates to the expected parameter type. For example, if your job needs to make a lexicon
function call equivalent to the following, then it must override the methods related to the
$element-names and $options parameters to cts:element-values:

cts:element-values(xs:QName("wp:a"), (), "ascending")

The default start value from the inherited ValuesOrWordsFunction.getStart method already
matches the desired parameter value. Override ElementValue.getElementNames and
LeixconFunction.getUserDefinedOptions to specify the other parameter values. The resulting
subclass is:

import com.marklogic.mapreduce.functions.ElementValues;
...
public class myLexiconFunction extends ElementValues {
 public String[] getElementNames() {
 String[] elementNames = {"xs:QName(\"wp:a\")"};
 return elementNames;
 }

 public String[] getUserDefinedOptions() {
 String[] options = {"ascending"};
 return options;

MarkLogic Server Using MarkLogic Server for Input

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 45

 }
}

Note: If you override ValuesOrWordsFunction.getStart to specify a start value of type
xs:string, you must include escaped double-quotes in the returned string. For
example, to specify a start value of "aardvark", the getStart override must return
"\"aardvark\"".

For a complete example, see com.marklogic.mapreduce.examples.LinkCountCooccurrences,
included with the MarkLogic Connector for Hadoop.

4.2.2.3 Choose an InputFormat
Lexicon functions return data from a lexicon, rather than document content, so the document
oriented InputFormat classes such as DocumentInputFormat and NodeInputFormat are not
applicable with lexicon input. Instead, use com.marklogic.mapreduce.ValueInputFormat or
com.marklogic.mapreduce.KeyValueInputFormat.

Note: KeyValueInputFormat is only usable with co-occurrences lexicon functions.
ValueInputFormat may be used with any lexicon function.

When using ValueInputFormat with a lexicon function, choose an input value type that either
matches the type returned by the lexicon function or can be converted from the lexicon return type
to the input value type. For details on KeyValueFormat and ValueInputFormat and the supported
type conversions, see “Using KeyValueInputFormat and ValueInputFormat” on page 59.

For example, cts:element-values returns xs:anyAtomicType*. If the element range index queried
by your ElementValues subclass is an index with scalar type int, then you might configure the job
to use IntWritable as the map input value type.

The co-occurrences lexicon function classes generate key-value pairs corresponding to the
cts:value elements in each cts:co-occurrence returned by the underlying lexicon function. The
key is the first cts:value in each cts:co-occurrence, and the value is the second. For example, if
cts:element-values returns the following XML:

<cts:co-occurrence xmlns:cts="http://marklogic.com/cts"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <cts:value xsi:type="xs:string">MARCELLUS</cts:value>
 <cts:value xsi:type="xs:string">BERNARDO</cts:value>
 </cts:co-occurrence>
 <cts:co-occurrence xmlns:cts="http://marklogic.com/cts"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <cts:value xsi:type="xs:string">ROSENCRANTZ</cts:value>
 <cts:value xsi:type="xs:string">GUILDENSTERN</cts:value>
 </cts:co-occurrence>
 <cts:co-occurrence xmlns:cts="http://marklogic.com/cts"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

MarkLogic Server Using MarkLogic Server for Input

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 46

 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <cts:value xsi:type="xs:string">HORATIO</cts:value>
 <cts:value xsi:type="xs:string">MARCELLUS</cts:value>
 </cts:co-occurrence>

Then the generated map input key-value pairs are:

(“MARCELLUS”, “BERNARDO”)
(“ROSENCRANTZ”, “GUILDENSTERN”)
(“HORATIO”, “MARCELLUS”)

As with ValueInputFormat, choose key and value types corresponding to the lexicon type or
convertible from the lexicon type. For a complete example, see
com.marklogic.mapreduce.examples.LinkCountCooccurrences.

4.2.2.4 Configure the Job
Set the mapreduce.marklogic.input.lexiconfunctionclass job configuration property to specify
which lexicon call to use. This property setting takes precedence over
mapreduce.marklogic.input.documentselector and
mapreduce.marklogic.input.subdocumentexpr.

You can set mapreduce.marklogic.input.lexiconfunctionclass either in a configuration file or
programmatically. To set the property in a configuration file, set the value to your lexicon subclass
name with “.class” appended to it. For example:

<property>
 <name>mapreduce.marklogic.input.lexiconfunctionclass</name>
 <value>my.package.LexiconFunction.class</value>
</property>

To set the property programatically, use the org.apache.hadoop.conf.Configuration API. For
example:

import org.apache.hadoop.conf.Configuration;
import com.marklogic.mapreduce.functions.ElemAttrValueCooccurrences;

public class LinkCountCooccurrences {
 static class HrefTitleMap extends ElemAttrValueCooccurrences {...}

 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 ...

 conf.setClass(MarkLogicConstants.INPUT_LEXICON_FUNCTION_CLASS,
 HrefTitleMap.class, ElemAttrValueCooccurrences.class);
 ...
 }
}

MarkLogic Server Using MarkLogic Server for Input

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 47

4.2.2.5 De-duplication of Results Might Be Required
Your job might need to de-duplicate map results if the analysis performed by your job depends
upon unique values in the map output key-value pairs. Only a URI lexicon is guaranteed to have
unique values across all forests.

MarkLogic Server maintains lexicon data per forest. Each forest includes a lexicon for the
fragments in that forest. Normally, when you directly call an XQuery lexicon function,
MarkLogic Server gathers results from each forest level lexicon and de-duplicates them. As
discussed in “Creating Input Splits” on page 41, the MarkLogic Connector for Hadoop runs input
queries directly against each forest. The in-forest evaluation circumvents the de-duplication of
results from lexicon functions.

For example, consider a database with 2 forests, each containing one document. If the database is
configured with an element word lexicon for the <data> element, then the table below reflects the
contents of the word lexicon in each forest:

Calling cts:words (the lexicon function underlying com.marklogic.mapreduce.functions.Words)
against the database returns (“goodbye”, “hello”, “world”). Therefore, if you use the
corresponding lexicon function class in a MapReduce job, you might expect 3 map output
key-value pairs from this input data.

However, the in-forest evaluation of cts:words used by the MarkLogic Connector for Hadoop
results in the two word lists (“hello”, “world”) and (“goodbye”, “world), generating 4 map
output key-value pairs.If the purpose of the job is to count the number of unique words in the
content, simply counting the number of reduce input key-value pairs results in an incorrect answer
of 4.

If you require this kind of uniqueness, you must de-duplicate the results in your application. For
example, your Reducer might use a hash map to detect and discard duplicate values.

4.2.3 Using XPath to Generate Key-Value Pairs
This section describes how to use XPath components to generate map input key-value pairs from
document fragments. Using an XPath document selector precludes using a lexicon for input.

forest document content words in per-forest lexicon

sample-1 <data>
 hello world
</data>

hello
world

sample-2 <data>
 goodbye world
</data>

goodbye
world

MarkLogic Server Using MarkLogic Server for Input

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 48

Use the following configuration properties to select the input fragments in a split based on an
XPath expression:

• mapreduce.marklogic.input.documentselector

• mapreduce.marklogic.input.subdocumentexpr

The MarkLogic Connector for Hadoop constructs an input query that includes a path expression
equivalent to concatenating the document selector and sub-document expression. For example, if
the document selector is fn:collection() and the sub-document expression is /*:data, then the
constructed input query uses an input XPath expression equivalent to fn:collection/*:data.

The document selectory determines which documents within a forest are included in each split.
The sub-document expression determines which fragments of the selected documents contribute
input key-value pairs. The MarkLogic Connector for Hadoop API uses separate document
selector and sub-document expression components to maximize internal input query optimization.

Note: The document selector must be a partially searchable XPath expression. For
details, see Fully Searchable Paths and cts:search Operations in the Query
Performance and Tuning Guide.

The default document selector is fn:collection(), which selects all documents in the split. The
default sub-document expression returns all nodes selected by the document selector. If you do
not specify either property, all documents nodes in the split are used.

The table below shows the results from several example document selector and subdocument
expression combinations.

If your document selector or subdocument expression uses namespace qualifiers, define the
namespaces using the mapreduce.marklogic.input.namespaces configuration property. The
property value is a comma-separated list of alias-URI pairs. The following example defines a
“wp” namespace and then uses it in the subdocument expression:

document selector subdocument
expression result

none none All document nodes in the split.

fn:collection("wikipedia") none All document nodes in the split that
are in the “wikipedia” colleciton.

fn:collection("wikipedia") //wp:nominee All wp:nominee elements in documents
in the split that are in the “wikipedia”
collection.

MarkLogic Server Using MarkLogic Server for Input

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 49

<property>
 <name>mapreduce.marklogic.input.namespace</name>
 <value>wp, http://www.marklogic.com/wikipedia</value>
</property>
<property>
 <name>mapreduce.marklogic.input.subdocumentexpr</name>
 <value>wp:nominee</value>
</property>

For details, see “Example: Counting Href Links” on page 49 and the sample code included in the
connector package.

4.2.4 Example: Counting Href Links
Consider the LinkCountInDoc example, described in “LinkCountInDoc” on page 110. This
example counts hyperlinks within the input collection. The map function for this sample expects
(node URI, node) input pairs and produces (href title, href count) output pairs.

Suppose the database contains an input document in the “wikipedia” collection, with the URI
/oscars/drama.xml and the following content (ellided for brevity):

<wp:nominee>...
 <wp:film>...
 <wp:p>...
 <wp:a href="http://en.wikipedia.org/wiki/Drama_film"
 title="Drama film">
 This is a dramatic film
 </wp:a>
 </wp:p>
 </wp:film>
</wp:nominee>

Notice the content includes embedded hrefs with titles. The following job configuration property
settings extract hrefs with titles that reference other Wikipedia articles:

<property>
 <name>mapreduce.marklogic.input.namespace</name>
 <value>wp, http://www.marklogic.com/wikipedia</value>
</property>
<property>
 <name>mapreduce.marklogic.input.documentselector</name>
 <value>fn:collection("wikipedia")</value>
</property>
<property>
 <name>mapreduce.marklogic.input.subdocumentexpr</name>
 <value>//wp:a[@href and @title and fn:starts-with(@href,
"http://en.wikipedia.org")]/@title</value>
</property>

MarkLogic Server Using MarkLogic Server for Input

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 50

Using the above document selector and subdocument expression, the connector constructs an
input query that first selects documents in the split that are in the “wikipedia” collection. Then,
from those documents, all title attribute nodes in wp:a elements that contain hrefs to Wikipedia
articles. Here is a breakdown of the path expression properties that drive the input query;

documentselector: fn:collection("wikipedia")
subdocumentexpr:
 //wp:a[(: all anchors :)
 @href and (: with href attributes :)
 @title and (: and title attributes :)
 fn:starts-with(@href, "http://en.wikipedia.org")]
 (: referring to Wikipedia articles :)
 /@title (: return the title attribute node :)

The configured InputFormat subclass controls transformation of the fragments selected by the
input query into input key-value pairs. For example, the input query for the sample document
shown above finds a matching node with these characteristics:

document URI: /oscars/drama.xml

node path: /wp:nominee/wp:film/wp:abstract/html:p[1]/html:a[1]/@title

node: attribute node for title="Drama film" from this anchor element:
 <wp:a href="http://en.wikipedia.org/wiki/Drama_film"
 title="Drama film">
 drama film
 </wp:a>

If you configure the job to use NodeInputFormat, the input key-value pairs are (NodePath,
MarkLogicNode) pairs. That is, the key is the node URI and the value is the node. The sample data
shown above results in this input pair:

key: /wp:nominee/wp:film/wp:p[1]/wp:a[1]/@title
value: attribute node for title="Drama film"

If you configure the job to use DocumentInputFormat instead, the input key-value pairs have type
(DocumentURI, DatabaseDocument). The sample data results in the following input pair, differing
from the previous case only in the key:

key: /oscars/drama.xml
value: attribute node for title="Drama film"

For a list of InputFormat subclasses provided by the connector, include the types of keys and
values generated by each, see “InputFormat Subclasses” on page 71.

MarkLogic Server Using MarkLogic Server for Input

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 51

4.3 Advanced Input Mode
The connector supports basic and advanced input modes through the
mapreduce.marklogic.input.mode configuration property. Advanced mode gives your application
complete control over input split creation and fragment selection, at the cost of added complexity.
In advanced mode, you must supply an input split query and an input query which the connector
uses to map phase input.

This section covers the following topics:

• Creating Input Splits

• Creating Input Key-Value Pairs

• Optimizing Your Input Query

• Example: Counting Hrefs Using Advanced Mode

For details on basic mode, see “Basic Input Mode” on page 41. For a general discussion of input
splits and key-value pair creation, see “How Hadoop Partitions Map Input Data” on page 32.

4.3.1 Creating Input Splits
This section covers the following topics:

• Overview

• Creating a Split Query with hadoop:get-splits

4.3.1.1 Overview
In advanced mode, your application controls input split creation by supplying an input split query
in the mapreduce.marklogic.input.splitquery configuration property. Your input split query
must generate (forest-id, record-count, host-name) tuples.

You can express your split query using either XQuery or Server-Side JavaScript. Use the property
mapreduce.marklogic.input.queryLanguage to signify the query language; XQuery is the default.
In XQuery, build a split query using the XQuery library function hadoop:get-splits, in
combination with your own XPath and cts:query. In JavaScript, build a split query using the
JavaScript function hadoop.getSplits with your own XPath and cts:query.

The split query returns a host name and forest id because the MarkLogic Connector for Hadoop
interacts with MarkLogic Server at the forest level. When a split is assigned to a map task, the
connector running in the task submits the input query directly against the forest identified in the
split tuple. The host-name and forest-id in the split tuple identify the target forest.

The record-count in the split tuple only needs to be an rough estimate of the number of input
key-value pairs in the split. The estimate need not be accurate. What constitutes a record is
job-dependent. For example, a record can be a document fragment, a node, or a value from a
lexicon.

MarkLogic Server Using MarkLogic Server for Input

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 52

For example, basic input mode uses a simple estimate of the total number of documents in each
forest. When the input query runs against a split, it can generate more or fewer input key-value
pairs than estimated. The more accurate the record count estimate is, the more accurately Hadoop
balances workload across tasks.

An input split never spans multiple forests, but the content in a single forest may span multiple
splits. The maximum number of records in a split is determined by the
com.marklogic.mapreduce.maxsplitsize configuration property. The connector, rather than your
split query, handles bounding splits by this maximum.

For example, if the split query returns a count of 1000 fragments for a forest and the max split size
is 600, the connector generates two splits for that forest, one for the first 500 fragments and the
other for the next 500 fragments. The connector adjusts the actual split size downward as needed
to generate splits of similar size, so you do not get one split of 600 fragments and another of 400
fragments. This rebalancing keeps the workload even across tasks.

4.3.1.2 Creating a Split Query with hadoop:get-splits
Use the XQuery library function hadoop:get-splits or the Server-Side JavaScript function
hadoop.getSplits to create split tuples using a searchable expression and cts:query. The
parameters to hadoop:get-splits and hadoop.getSplits determine the documents under
consideration in each forest, equivalent to the $expression and $query parameters of cts:search.
The function returns an estimate rather than a true count to improve performance.

MarkLogic Server Using MarkLogic Server for Input

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 53

The following split query example returns one tuple per forest, where the count is an estimate of
the total number of documents in the forest.

You can write an input split query without hadoop:get-splits (or hadoop.getSplits), but your
job may require additional privileges if you do so. The example below is equivalent to the
previous example, but it does not use hadoop:get-splits. Unlike the previous example, however,
admin privileges are required to execute this sample query.

<property>
 <name>mapreduce.marklogic.input.splitquery</name>
 <value><![CDATA[
 declare namespace wp="http://marklogic.com/wikipedia";
 import module namespace admin = "http://marklogic.com/xdmp/admin"
 at "/MarkLogic/admin.xqy";
 let $conf := admin:get-configuration()
 for $forest in xdmp:database-forests(xdmp:database())
 let $host_id := admin:forest-get-host($conf, $forest)
 let $host_name := admin:host-get-name($conf, $host_id)
 let $cnt :=
 xdmp:estimate(
 cts:search(fn:doc(), cts:and-query(()), (), 0.0, $forest))
 return if ($cnt > 0) then ($forest, $cnt, $host_name)

Query
Language Example

XQuery <property>
 <name>mapreduce.marklogic.input.splitquery</name>
 <value><![CDATA[
 declare namespace
 wp="http://www.mediawiki.org/xml/export-0.4/";
 import module namespace hadoop =
 "http://marklogic.com/xdmp/hadoop" at
 "/MarkLogic/hadoop.xqy";
 hadoop:get-splits('', 'fn:doc()', 'cts:and-query(())')
]]></value>
</property>

JavaScript <property>
 <name>mapreduce.marklogic.input.querylanguage</name>
 <value>Javascript</value>
</property>
<property>
 <name>mapreduce.marklogic.input.splitquery</name>
 <value><![CDATA[
 var hadoop = require("/MarkLogic/hadoop.xqy");
 hadoop.getSplits("", "fn:doc()", "cts:and-query(())")
]]></value>
</property>

MarkLogic Server Using MarkLogic Server for Input

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 54

 else()
]]></value>
</property>

If you create a Server-Side JavaScript split query that does not use hadoop.getSplits, your script
must return a Sequence in which the entries are tuples of the form (forest-id, record-count,
host-name). That is, the Sequence contains values in the sequence:

forest1, count1, host1, forest2, count2, host2,...

You can create a Sequence from a JavaScript array using xdmp.arrayValues or Sequence.from.

When you create a split query that does not use hadoop:get-splits or hadoop.getSplits, do not
return results for forests whose count is less than or equal to zero. This is why the previous
example tests $cnt before returning the split data:

if ($cnt > 0) then ($forest, $cnt, $host_name)
else()

4.3.2 Creating Input Key-Value Pairs
As described in “Understanding the MapReduce Job Life Cycle” on page 29, map input key-value
pairs are generated by each map task from the input split assigned to the task. In most cases, the
MarkLogic Server content in the split is selected by the input query in the
mapreduce.marklogic.input.query configuration property. ForestInputFormat selects documents
differently; for details, see “Direct Access Using ForestInputFormat” on page 63.

The input query must return a sequence, but the nature of the items in the sequence is dependent
on the configured InputFormat subclass. For example, if the job uses NodeInputFormat, the input
key-value pairs are (NodePath, MarkLogicNode) pairs. Therefore, an input query for
NodeInputFormat must return a sequence of nodes. The MarkLogic Connector for Hadoop then
converts each node into a (NodePath, MarkLogicNode) pair for passage to the map function.

The table below summarizes the input query results expected by each InputFormat subclass
provided by the MarkLogic Connector for Hadoop. For more information about the classes, see
“InputFormat Subclasses” on page 71.

MarkLogic Server Using MarkLogic Server for Input

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 55

KeyValueInputFormat and ValueInputFormat enable you to configure arbitrary key and/or value
types, within certain constraints. For details, see “Using KeyValueInputFormat and
ValueInputFormat” on page 59. When using these types, your input query must return keys and/or
values compatible with the type conversions defined in “Supported Type Transformations” on
page 60.

The following example uses ValueInputFormat with org.apache.hadoop.mapreduce.Text as the
value type. (The key type with ValueInputFormat is always
org.apache.hadoop.mapreduce.LongWritable. and is supplied automatically by the MarkLogic
Connector for Hadoop.) The input query returns an attribute node, and the implicit type
conversion built into ValueInputFormat converts the result into the attribute text for passage to the
map function.

<property>
 <name>mapreduce.marklogic.input.query</name>
 <value><![CDATA[
 declare namespace wp="http://marklogic.com/wikipedia";
 for $t in fn:collection()/wp:nominee//wp:a[@title and @href]/@title
 return $t
]]></value>
</property>

InputFormat subclass Input query result

DocumentInputFormat document-node()*

NodeInputFormat node()*

KeyValueInputFormat A sequence of alternating keys and values,
(key1, value1, ..., keyN, valueN). The
key and value types depend on the job config-
uration. See “Using KeyValueInputFormat
and ValueInputFormat” on page 59.

ValueInputFormat A sequence of values, (value1,...,valueN).
The value type depends on the job configura-
tion. See “Using KeyValueInputFormat and
ValueInputFormat” on page 59.

ForestInputFormat Not applicable. For details, see “Direct
Access Using ForestInputFormat” on page 63.

MarkLogic Server Using MarkLogic Server for Input

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 56

4.3.3 Optimizing Your Input Query
In basic mode, the MarkLogic Connector for Hadoop optimizes the input query built from the
configuration properties. In advanced input mode, you must optimize the input query yourself.
Use the configuration property mapreduce.marklogic.input.bindsplitrange to optimize your
input query by limiting the work your query does per split.

Usually, each input split covers a set of records (or fragments) in a specific forest; see the
illustration in “Creating Input Splits” on page 41. The input split might cover only a subset of the
content in a forest, but the input query runs against the entire forest. Constraining the content
manipulated by the input query to just those under consideration for the split can significantly
improve job performance.

For example, imagine an input query built around the following XPath expression:

fn:collection()//wp:a[@title]

In the worst case, evaluating the above expression examines every document in the forest for each
split. If the forest contains 100 documents, covered by 4 splits of 25 fragments each, then the job
might examine 4 * 100 documents to cover the content in the forest, and then discard all but 25 of
the results in each split:

fn:collection()//wp:a[@title][1 to 25]
fn:collection()//wp:a[@title][26 to 50]
fn:collection()//wp:a[@title][51 to 75]
fn:collection()//wp:a[@title][76 to 100]

The range on each expression above, such as [1 to 25], is the split range. Constraining the set of
documents by the split range earlier can be more efficient:

fn:collection()[1 to 25]//wp:a[@title]
...

In practice MarkLogic Server might internally optimize such a simple XPath expression, but a
more complex FLOWR expression can require hand tuning.

The exact optimization is query dependent, but the split start and end values are made available to
your input query through external variables if you set the configuration property
mapreduce.marklogic.input.bindsplitrange to true.

To use this feature, set the property to true and do the following in your input query:

1. Declare the pre-defined namespace http://marklogic.com/hadoop. The split start and end
variables are in this namespace. For example:

declare namespace mlmr=”http://marklogic.com/hadoop”;

MarkLogic Server Using MarkLogic Server for Input

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 57

2. Declare splitstart and splitend as external variables in the namespace declared in Step
1. You must use only these names. For example:

declare variable $mlmr:splitstart as xs:integer external;
declare variable $mlmr:splitend as xs:integer external;

3. Use the variables to constrain your query.

For example, the following input query returns the first 1K bytes of each document in a collection
of binary documents. Notice the query uses splitstart and splitend to construct a sub-binary
node for just the documents relevant to each split:

xquery version "1.0-ml";
declare namespace mlmr="http://marklogic.com/hadoop"; (: 1 :)

declare variable $mlmr:splitstart as xs:integer external; (: 2 :)
declare variable $mlmr:splitend as xs:integer external;

for $doc in fn:doc()[$mlmr:splitstart to $mlmr:splitend] (: 3 :)
return xdmp:subbinary($doc/binary(), 0, 1000)

For a complete example, see “BinaryReader” on page 115.

4.3.4 Example: Counting Hrefs Using Advanced Mode
This example counts hyperlinks with titles using advanced input mode. The full code is available
in the LinkCount example included in the MarkLogic Connector for Hadoop package. See
“LinkCount” on page 112.

Suppose the input data has the following structure:

<wp:page>
 <title>The Topic</title>
 ...
 <text>
 <p>...

 Drama film

 </p>
 </text>
</wp:page>

Notice the content includes embedded hrefs with titles. The input split query shown below
estimates the number of documents in each forest by calling xdmp:estimate and returns
(forest-id, count, host-name) tuples. The query is wrapped in a CDATA section so the contents
are not interpreted by the Hadoop MapReduce configuration parser.

<property>
 <name>mapreduce.marklogic.input.splitquery</name>

MarkLogic Server Using MarkLogic Server for Input

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 58

 <value><![CDATA[
 declare namespace wp="http://www.mediawiki.org/xml/export-0.4/";
 import module namespace admin =
 "http://marklogic.com/xdmp/admin" at "/MarkLogic/admin.xqy";
 let $conf := admin:get-configuration()
 for $forest in xdmp:database-forests(xdmp:database())
 let $host_id := admin:forest-get-host($conf, $forest)
 let $host_name := admin:host-get-name($conf, $host_id)
 let $cnt :=
 xdmp:estimate(
 cts:search(fn:doc(), cts:and-query(()), (), 0.0, $forest))
 return ($forest, $cnt, $host_name)
]]></value>
</property>

The split query generates at least one split per forest. More than one split can be generated per
forest, depending on the number of documents in the forest and the value of the configuration
property mapreduce.marklogic.input.maxsplitsize. For details, see “Creating Input Splits” on
page 51.

The example input query selects qualifying hrefs from each document in the split. A qualifying
href in this example is one that has a title and refers to another Wikipedia topic, rather than to an
image or an external file. The input query below uses an XPath expression to find qualifying hrefs
and extract the text from the title attribute:

<property>
 <name>mapreduce.marklogic.input.query</name>
 <value><![CDATA[
 xquery version "1.0-ml";
 declare namespace wp="http://www.mediawiki.org/xml/export-0.4/";
 //wp:a[@title and @href and not
 (fn:starts-with(@href, "#")
 or fn:starts-with(@href, "http://")
 or fn:starts-with(@href, "File:")
 or fn:starts-with(@href, "Image:"))]/@title
]]></value>
</property>

The LinkCount sample uses the above split query and input query with ValueInputFormat
configured to generate (LongWritable, Text) map input pairs, where the key is a unique (but
uninteresting) number and the value is the text from the title attribute of qualifying hrefs. For
example one input to the map function might be:

(42, “Drama film”)

For more information about ValueInputFormat, see “Using KeyValueInputFormat and
ValueInputFormat” on page 59.

MarkLogic Server Using MarkLogic Server for Input

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 59

The map function of LinkCount discards the input key and generates a (Text, IntWritable)
key-value pair where the key is the text from the title attribute (the value on the input pair), and
the value is always one, to indicate a single reference to the topic:

public static class RefMapper
extends Mapper<LongWritable, Text, Text, IntWritable> {
 private final static IntWritable one = new IntWritable(1);
 private Text refURI = new Text();

 public void map(LongWritable key, Text value, Context context)
 throws IOException, InterruptedException
 {
 refURI.set(value);
 context.write(refURI, one);
 }
 ...

For example, if RefMapper.map receives (42, “Drama film”) as input, then it produces the output
pair (“Drama film”, 1).

4.4 Using KeyValueInputFormat and ValueInputFormat
The KeyValueInputFormat and ValueInputFormat classes enable you to create input key-value
pairs with types other than the connector specific types MarkLogicNode, NodePath, and
DocumentURI.

This section covers the following topics about using KeyValueInputFormat and ValueInputFormat.

• Overview

• Job Configuration

• Supported Type Transformations

• Example: Using KeyValueInputFormat

4.4.1 Overview
Use KeyValueInputFormat or ValueInputFormat to specify your own key-value type combinations,
or when extracting input data from a MarkLogic Server lexicon. The connector performs a
“best-effort” type conversioin between the key and/or value types from the input query or lexicon
function and the target type. For details, see “Supported Type Transformations” on page 60.

Use KeyValueInputFormat type when your application depends upon both the key and value type.
Use ValueInputFormat when only the value is interesting. In ValueInputFormat the key is simply a
unique number with no significance.

MarkLogic Server Using MarkLogic Server for Input

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 60

Most lexicon functions require use of ValueInputFormat. You may use KeyValueInputFormat only
with lexicon co-occurence functions. For details, see “Using a Lexicon to Generate Key-Value
Pairs” on page 42.

For an example, see “Example: Using KeyValueInputFormat” on page 61.

4.4.2 Job Configuration
When using KeyValueInputFormat, specify the map phase input key and value type by setting the
configuration properties mapreduce.marklogic.input.keyclass and
mapreduce.marklogic.input.valueclass. For example, to set the properties in the configuration
file:

<property>
 <name>mapreduce.marklogic.input.keyclass</name>
 <value>org.apache.hadoop.io.Text.class</value>
</property>
<property>
 <name>mapreduce.marklogic.input.valueclass</name>
 <value>com.marklogic.mapreduce.NodePath.class</value>
</property>

You can also use the org.apache.hadoop.mapreduce.Job API to set the property in code:

import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
...
public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 ...
 conf.setClass("mapreduce.marklogic.input.valueClass",
 Text.class, Writable.class);

When using ValueInputFormat, specify the map phase value type by setting the configuration
property mapreduce.marklogic.input.valueclass. The key type is built in and is always
org.apache.hadoop.io.LongWritable.

4.4.3 Supported Type Transformations
The set of supported type transformations are listed in the table below. The list applies to both the
key and value types when using KeyValueInputFormat, and to the value type when using
ValueInputFormat.

MarkLogic Server Using MarkLogic Server for Input

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 61

If the query result type and target type do not correspond to one of the supported conversions, or
the target type is Text but the result type does not have a String representation,
java.lang.UnsupportedOperationException is raised.

4.4.4 Example: Using KeyValueInputFormat
Consider a job which uses KeyValueInputFormat to count the number of occurences of each href
in the input document set and saves the results to HDFS. This is similar to the LinkCount sample
included with the connector; see com.marklogic.mapreduce.examples.LinkCount.java and the
conf/marklogic-advanced.xml configuration file.

This example uses advanced input mode with an input query that generates (xs:string,
xs:integer) pairs containing the href title and a count from cts:frequency. The input query is
shown below:

declare namespace wp="http://www.mediawiki.org/xml/export-0.4/";
declare variable $M := cts:element-attribute-value-co-occurrences(
 xs:QName("wp:a"),
 xs:QName("href"),
 xs:QName("wp:a"),
 xs:QName("title"),
 ("proximity=0", "map",
 "collation=http://marklogic.com/collation/codepoint"),
 cts:directory-query("/space/wikipedia/enwiki/", "infinity")) ;
for $k in map:keys($M)[
 not(starts-with(., "#") or starts-with(., "http://") or
 starts-with(., "File:") or starts-with(., "Image:"))]

If the target key type or value type is Then the query result type must be

org.apache.hadoop.io.Text Any XQuery type with a String representa-
tion. See com.marklog.xcc.types.Xdm-
Value.asString().

org.apache.hadoop.io.IntWritable
org.apache.hadoop.io.VIntWritable
org.apache.hadoop.io.LongWritable
org.apache.hadoop.io.VLongWritable

xs:integer

org.apache.hadoop.io.BooleanWritable xs:boolean

org.apache.hadoop.io.FloatWritable xs:float

org.apache.hadoop.io.DoubleWritable xs:double

org.apache.hadoop.io.BytesWritable xs:hexBinary
xs:base64Binary

com.marklogic.mapreduce.MarkLogicNode node()

MarkLogic Server Using MarkLogic Server for Input

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 62

let $v := map:get($M, $k)
where $v != ""
return
 for $each in $v
 return ($each, cts:frequency($each))

KeyValueInputFormat generates (Text, IntWritable) map phase input key-value pairs from the
above query. The key is the title from the href anchor and the value is the count. The following
input configuration properties define the key and value types for KeyValueInputFormat:

<property>
 <name>mapreduce.marklogic.input.keyclass</name>
 <value>org.apache.hadoop.io.Text</value>
</property>
<property>
 <name>mapreduce.marklogic.input.valueclass</name>
 <value>org.apache.hadoop.io.IntWritable</value>
</property>

The job programmatically sets the InputFormat class to KeyValueFormat, and the Mapper.map
method expects the corresponding input types, as shown below. KeyValueInputFormat handles
converting the input query results for each pair from (xs:string, xs:integer) into (Text,
IntWritable).

import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import com.marklogic.mapreduce.KeyValueInputFormat;

public class LinkCount {
 public static class RefMapper
 extends Mapper<Text, IntWritable, Text, IntWritable> {
 public void map(Text key, IntWritable value, Context context)
{...}
 ...

 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 ...
 Job job = new Job(conf);
 job.setInputFormatClass(KeyValueInputFormat.class);
 ...
 }

}

The same type conversions apply when using ValueInputFormat, but you do not need to configure
mapreduce.marklogic.input.keyclass because the key class is always LongWritable. The
LinkCount sample code uses ValueInputFormat and relies on the default key and value types to
achieve the same effect as shown above.

MarkLogic Server Using MarkLogic Server for Input

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 63

4.5 Configuring a Map-Only Job
Some jobs do not require a reduce step. For example, a job which ingests documents in HDFS
into MarkLogic Server may complete the ingestion during the map step. For an example of a
map-only job, see “ContentLoader” on page 116.

To stop a job after the map completes, set the number of reduce tasks to zero. You may set the
number of reduce tasks in a configuration file or programmatically. For example, to set the
number of reduce tasks to 0 in a configuration, include the following setting:

<property>
 <name>mapred.reduce.tasks</name>
 <value>0</value>
</property>

To set the number of reduce tasks to 0 programmatically, use the Hadoop API function
org.apache.hadoop.Configuration.setNumReduceTasks.

If your map-only job uses MarkLogic Server for output, you must disable the Hadoop
MapReduce speculative execution feature. For details, see “Disabling Speculative Execution” on
page 78.

4.6 Direct Access Using ForestInputFormat
Direct Access enables you to bypass MarkLogic Server and extract documents from a database by
reading them directly from the on-disk representation of a forest. Use ForestInputFormat for
Direct Access in a MapReduce job.

This advanced feature circumvents MarkLogic Server document management and is intended
primarily for accessing offline and read-only forests as part of a tiered storage strategy. Most
applications should use the other MarkLogicInputFormat implementations, such as
DocumentInputFormat or NodeInputFormat.

This section covers the following Direct Access topics:

• When to Consider ForestInputFormat

• Limitations of Direct Access

• Controlling Input Document Selection

• Specifying the Input Forest Directories

• Determining Input Document Type in Your Code

• Where to Find More Information

MarkLogic Server Using MarkLogic Server for Input

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 64

4.6.1 When to Consider ForestInputFormat
A forest is the internal representation of a collection of documents in a MarkLogic database; for
details, see Understanding Forests in the Administrator’s Guide. A database can contain many
forests, and forests can have various states, including detached and readonly.

Direct Access enables you to extract documents directly from a detached or read-only forest
without going through MarkLogic Server. Direct Access and ForestInputFormat are primarily
intended for accessing archived data that is part of a tiered storage deployment; for details, see
Tiered Storage in the Administrator’s Guide. You should only use Direct Access on a forest that is
offline or read-only; for details, see “Limitations of Direct Access” on page 64.

For example, if you have data that ages out over time such that you need to retain it, but you do
not need to have it available for real time queries through MarkLogic Server, you can archive the
data by taking the containing forests offline. Such data is still accessible using Direct Access.

You can store archived forests on HDFS or another filesystem, and access the documents stored in
them from your MapReduce job, even if you do not have an active MarkLogic instance available.
For example, ForestInputFormat can be used to support large scale batch data analytics without
requiring all the data to be active in MarkLogic Server.

Since Direct Access bypasses the active data management performed by MarkLogic Server, you
should not use it on forests receiving document updates. For details, see “Limitations of Direct
Access” on page 64.

4.6.2 Limitations of Direct Access
You should only use ForestInputFormat on forests that meet one of the following criteria:

• The forest is offline and not in an error state. A forest is offline if the availability is set to
offline, or the forest or the database to which it is attached is disabled. For details, see
Taking Forests and Partitions Online and Offline in the Administrator’s Guide.

• The forest is online, but the updates-allowed state of the forest is read-only. For details,
see Setting the Updates-allowed State on Partitions in the Administrator’s Guide.

The following additional limitations apply to using Direct Access:

• Accessing documents with Direct Access bypasses security roles and privileges. The
content is protected only by the filesystem permissions on the forest data.

• Direct Access cannot take advantage of indexing or caching when accessing documents.
Every document in each participating forest is read, even when you use filtering criteria.
Filtering can only be applied after reading a document off disk.

• Direct Access skips property fragments.

• Direct Access skips documents partitioned into multiple fragments. For details, see
Fragments in the Administrator’s Guide.

MarkLogic Server Using MarkLogic Server for Input

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 65

ForestInputFormat skips any forest (or a stand within a forest) that is receiving updates or is in an
error state, as well as property fragments and fragmented documents. Processing continues even
when some documents are skipped.

Your forest data must be reachable from the hosts in your Hadoop cluster. If your job accesses the
contents of large or external binary documents retrieved with ForestInputFormat, the following
additional reachability requirements apply:

• If your job accesses the contents of a large binary, the large data directory must be
reachable using the same path as when the forest was online.

• If your job accesses the contents of an external binary, the directory containing the
external content should be reachable using the same path that xdmp:external-binary-path
returns when the containing forest is online.

If your job does not access the contents of any large or external binary documents, then the large
data directory and/or external binary directory need not be reachable.

For example, consider a forest configured to use hdfs://my/large/data as a large data directory
when it was live. If your map function is called with a LargeBinaryDocument from this forest, you
can safely call LargeBinaryDocument.getContentSize even if the large data directory is not
reachable. However, you can only successfully call
LargeBinaryDocument.getContentAsMarkLogicNode if hdfs://my/large/data is reachable.

Similarly, consider a forest that contains an external binary document inserted into the database
with /my/external-images/huge.jpg as the path to the external data. If your map function is
called with a LargeBinaryDocument corresponding to this binary, you can safely call
LargeBinaryDocument.getPath even if /my/external-images is not reachable. However, you can
only successfully call LargeBinaryDocument.getContentAsByteArray if
/my/external-images/huge.jpg is reachable.

To learn more about how MarkLogic Server stores content, see “Where to Find More
Information” on page 68.

4.6.3 Controlling Input Document Selection
You cannot specify an input query or document selector with ForestInputFormat. Use the
following configuration properties to filter the input documents instead.

Note: Even with filtering, all documents in the forest(s) are accessed because indexing
does not apply. Filtering only limits which documents are passed to your map or
reduce function.

MarkLogic Server Using MarkLogic Server for Input

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 66

For more details, see “Input Configuration Properties” on page 69.

You can specify multiple directories, collections or document types by using a comma separated
list of values. You can specify combinations of directory, collection, and document type filters.
The following example configuration settings select XML and text documents in the database
directory /documents/ that are in either the invoices or receipts collections..

<property>
 <name>mapreduce.marklogic.input.filter.directory</name>
 <value>/documents/</value>
</property>
<property>
 <name>mapreduce.marklogic.input.filter.collection</name>
 <value>invoices,receipts</value>
</property>
<property>
 <name>mapreduce.marklogic.input.filter.type</name>
 <value>XML,TEXT</value>
</property>

4.6.4 Specifying the Input Forest Directories
When you use ForestInputFormat, your job configuration must include the filesystem or HDFS
directories containing the input forest data. ForestInputFormat is a subclass of the Apache
Hadoop FileInputFormat class, so you can configure the forest directories using
FileInputFormat.setInputPaths.

For example, the following code assumes the forest input directories are passed in as a command
line argument on the hadoop command line that executes the job:

Filter Description

directory Include only documents in specific database directories. To
specify a directory filter, use the configuration property
mapreduce.marklogic.input.filter.directory.

collection Include only documents in specific collections. To specify a
collection filter, use the configuration property
mapreduce.marklogic.input.filter.collection.

document type Include only documents of the specified types. You can select one
or more of XML, TEXT, and BINARY. To specify a document
type filter, use the configuration property
mapreduce.marklogic.input.filter.type.

MarkLogic Server Using MarkLogic Server for Input

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 67

public void main(final String[] args) throws Exception {
 ...
 Job job = new Job(super.getConf());
 job.setJarByClass(MapTreeReduceTree.class);

 // Map related configuration
 job.setInputFormatClass(ForestInputFormat.class);
 job.setMapperClass(MyMapper.class);
 job.setMapOutputKeyClass(DocumentURI.class);
 job.setMapOutputValueClass(DOMDocument.class);
 FileInputFormat.setInputPaths(job, new Path(args[0]));
 ...
}

The directory(s) passed to setInputPaths should be the directory that contains the entire forest. For
example, the default location of a forest named my-forest on Linux is
/var/opt/MarkLogic/Forests/my-forest, and that is the path you would pass to use my-forest as
an input source for your job. Similarly, if you configure your data directory to be
hdfs://MarkLogic, then the path to the forest might be hdfs://MarkLogic/Forests/my-forest.

4.6.5 Determining Input Document Type in Your Code
When you use ForestInputFormat, your map or reduce function receives (DocumentURI,
ForestDocument) input key-value pairs. ForestDocument is an abstract class. The concrete
document object type depends on the content type of the data in the document. Use
MarkLogicDocument.getContentType to determine the appropriate concrete type.

The following table shows the correspondence between the
com.marklogic.mapreduce.ContentType returned by MarkLogicDocument.getContentType and the
concrete type of the document in a key-value pair. Binary documents are further specialized into
RegularBinaryDocument and LargBinaryDocument; for details, see Working With Binary Documents in
the Application Developer’s Guide.

DOMDocument is a read-only representation of a document as it is stored in the database. Accessors
allow you to convert the content into other forms for further manipulation. For example, you can
convert the contents to String, MarkLogicNode, or org.w3c.dom.Document. For details, see the
JavaDoc for com.marklogic.mapreduce.DOMDocument.

Content Type ForestDocument Subclass

XML
TEXT

com.marklogic.mapreduce.DOMDocument

BINARY com.marklogic.mapreduce.BinaryDocument
 com.marklogic.mapreduce.RegularBinaryDocument
 com.marklogic.mapreduce.LargeBinaryDocument

MarkLogic Server Using MarkLogic Server for Input

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 68

The following example demonstrates coercing a ForestDocument into an appropriate concrete type
based on the content type.

public static class MyMapper
extends Mapper<DocumentURI, ForestDocument, DocumentURI, DOMDocument> {
 public static final Log LOG = LogFactory.getLog(MyMapper.class);

 public void map(
 DocumentURI key, ForestDocument value, Context context)
 throws IOException, InterruptedException {
 if (value != null &&
 value.getContentType() != ContentType.BINARY) {
 DOMDocument domdoc = (DOMDocument)value;
 // work with the document...
 } else if (value != null) {
 if (value instanceof LargeBinaryDocument) {
 LargeBinaryDocument lbd = (LargeBinaryDocument)value;
 // work with the document...
 } else if (value instanceof RegularBinaryDocument) {
 RegularBinaryDocument rbd =
 (RegularBinaryDocument)value;
 // work with the document...
 }
 }
 }
}

4.6.6 Where to Find More Information
Refer to the following topics to learn more about how MarkLogic Server stores and manages
documents:

• Understanding Forests in the Administrator’s Guide.

• Understanding and Controlling Database Merges in the Administrator’s Guide.

• Tiered Storage in the Administrator’s Guide.

• Disk Storage Considerations in the Query Performance and Tuning Guide.

• Getting Started with Distributed Deployments in the Scalability, Availability, and Failover
Guide.

MarkLogic Server Using MarkLogic Server for Input

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 69

4.7 Input Configuration Properties
The table below summarizes connector configuration properties for using MarkLogic Server as an
input source. Some properties can only be used with basic input mode and others can only be used
with advanced input mode. For more information, see
com.marklogic.mapreduce.MarkLogicConstants in the MarkLogic Hadoop MapReduce Connector
API.

Property Description

mapreduce.marklogic.input.username Username privileged to read from the data-
base attached to your XDBC App Server.

mapreduce.marklogic.input.password Cleartext password for the input.username
user.

mapreduce.marklogic.input.host Hostname of the server hosting your input
XDBC App Server.

mapreduce.marklogic.input.port The port configured for your XDBC App
Server on the input host.

mapreduce.marklogic.input.usesll Whether or not to use an SSL connection to
the server. Set to true or false.

mapreduce.marklogic.input.ssloptionsclass The name of a class implementing SslCon-
figOptions, used to configure the SSL connec-
tion when input.usessl is true.

mapreduce.marklogic.input.documentselec-
tor

An XQuery path expression step specifying a
sequence of document nodes to use for input.
Basic mode only. Not usable with
ForestInputFormat. Default:
fn:collection(). See “Basic Input Mode” on
page 41.

mapreduce.marklogic.input.subdocumentexpr An XQuery path expression used with
input.documentselector to select
sub-document items to use in input key-value
pairs. Basic mode only. Not usable with
ForestInputFormat. See “Basic Input Mode”
on page 41.

MarkLogic Server Using MarkLogic Server for Input

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 70

mapreduce.marklogic.input.namespace A comma-separated list of namespace
name-URI pairs to use when evaluating the
path expression constructed from
input.documentselector and
input.subdocumentexpr. Basic mode only. See
“Basic Input Mode” on page 41.

mapreduce.marklogic.input.lexiconfunc-
tionclass

The class type of a lexicon function subclass.
Use with KeyValueInputFormat and
ValueInputFormat. Only usable in basic input
mode. See “Using a Lexicon to Generate
Key-Value Pairs” on page 42.

mapreduce.marklogic.input.splitquery In advanced input mode, the query used to
generate input splits. See “Creating Input
Splits” on page 51.

mapreduce.marklogic.input.query In advanced input mode, the query used to
select input fragments from MarkLogic
Server. See “Creating Input Key-Value Pairs”
on page 54.

mapreduce.marklogic.input.queryLanguage The implementation language of
mapreduce.marklogic.input.query. Allowed
values: xquery, javascript. Default: xquery.

mapreduce.marklogic.input.bindsplitrange Indicates whether or not your input query
requires access to the external split range vari-
ables, splitstart and splitend. Only usable
in advanced input mode. Default: false. See
“Optimizing Your Input Query” on page 56.

mapreduce.marklogic.input.maxsplitsize The maximum number of records (fragments)
per input split. Default: 50,000.

mapreduce.marklogic.input.keyclass The class type of the map phase input keys.
Use with KeyValueInputFormat. See “Using
KeyValueInputFormat and ValueInputFor-
mat” on page 59.

mapreduce.marklogic.input.valueclass The class type of the map phase input values.
Use with KeyValueInputFormat and
ValueInputFormat. See “Using
KeyValueInputFormat and
ValueInputFormat” on page 59.

Property Description

MarkLogic Server Using MarkLogic Server for Input

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 71

4.8 InputFormat Subclasses
The MarkLogic Connector for Hadoop API provides subclasses of InputFormat for defining your
map phase input splits and key-value pairs when using MarkLogic Server as an input source.
Specify the InputFormat subclass appropriate for your job using the
org.apache.hadoop.mapreduce.job.setInputFormatClass function. For example:

import com.marklogic.mapreduce.NodeInputFormat;
import org.apache.hadoop.mapreduce.Job;
...
public class LinkCountInDoc {
 ...
 public static void main(String[] args) throws Exception {
 Job job = new Job(conf);
 job.setInputFormatClass(NodeInputFormat.class);
 ...
 }

}

mapreduce.marklogic.input.recordtofrag-
mentratio

Defines the ratio of the number of retrieved
input records to fragments. Used only for
MapReduce’s progress reporting. Default: 1.0.

mapreduce.marklogic.input.indented Whether or not to indent (prettyprint) XML
extracted from MarkLogic Server. Set to true,
false, or serverdefault. Default: false.

mapreduce.marklogic.input.filter.collec-
tion

A comma-separated list of collection names,
specifying which document collections to use
for input with ForestInputFormat. Optional.
Default: Do not filter input by collection.

mapreduce.marklogic.input.filter.direc-
tory

A comma-separated list of database directory
paths. Only documents in these directories are
included in the input document set with
ForestInputFormat. Optional. Default: Do not
filter input by database directory.

mapreduce.marklogic.input.filter.type Filter input by content type when using
ForestInputFormat. Allowed values: XML,
TEXT, BINARY. You can specify more than
one value. Optional. Default: Include all
content types.

Property Description

MarkLogic Server Using MarkLogic Server for Input

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 72

The following table summarizes the InputFormat subclasses provided by the connector and the
key and value types produced by each class. All classes referenced below are in the package
com.marklogic.mapreduce. For more details, see the MarkLogic Hadoop MapReduce Connector
API.

Class Key Type Value Type Description

MarkLogicInputFormat any any Abstract superclass for all
connector specific InputFor-
mat types. Generates input
splits and key-value pairs
from MarkLogic Server.

DocumentInputFormat DocumentURI DatabaseDocument Generates key-value pairs
using each node selected by
the input query as a value
and the URI of the document
containing the node as a key.

NodeInputFormat NodePath MarkLogicNode Generates key-value pairs
using each node selected by
the input query as a value
and the node path of the node
as a key.

ForestInputFormat DocumentURI ForestDocument Generates key-value pairs
using each document
selected by the input filters
as a value and the URI of the
document as a key. For
details, see “Direct Access
Using ForestInputFormat”
on page 63.

MarkLogic Server Using MarkLogic Server for Input

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 73

4.9 Lexicon Function Subclasses
The following table shows the correspondence between MarkLogic Server lexicon built-in
functions and MarkLogic Connector for Hadoop lexicon function wrapper classes. Locate the
lexicon function you wish to use and include a subclass of the corresponding wrapper class in
your job. For details, see “Using a Lexicon to Generate Key-Value Pairs” on page 42.

KeyValueInputFormat any any Uses input from MarkLogic
Server to generate input
key-value pairs with user
defined types. Use mapre-
duce.marklogic.input.key-

class and
mapreduce.mark-

logic.input.valueclass to
specify the key and value
types. See “Using KeyVal-
ueInputFormat and ValueIn-
putFormat” on page 59.

ValueInputFormat Int any Generates input key-value
pairs where only the value is
of interest. The key is simply
a count of the number of
items seen when the pair is
generated. Use mapre-
duce.marklogic.input.val-

ueclass to specify the value
type. See “Using KeyVal-
ueInputFormat and ValueIn-
putFormat” on page 59.

Lexicon Wrapper Superclass XQuery Lexicon Function

ElemAttrValueCooccurrences cts:element-attribute-value-co-occurrences

ElemValueCooccurrences cts:element-value-co-occurrences

FieldValueCooccurrences cts:field-value-co-occurrences

ValueCooccurrences cts:value-co-occurrences

CollectionMatch cts:collection-match

ElementAttributeValueMatch cts:element-attribute-value-match

Class Key Type Value Type Description

MarkLogic Server Using MarkLogic Server for Input

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 74

ElementAttributeWordMatch cts:element-attribute-word-match

ElementValueMatch cts:element-value-match

ElementWordMatch cts:element-word-match

FieldValueMatch cts:field-value-match

FieldWordMatch cts:field-word-match

UriMatch cts:uri-match

ValueMatch cts:value-match

WordMatch cts:word-match

Collections cts:collections

ElementAttributeValues cts:element-attribute-values

ElementAttributeWords cts:element-attribute-words

ElementValues cts:element-values

ElementWords cts:element-words

FieldValues cts:field-values

FieldWords cts:field-words

Uris cts:uris

Values cts:values

Words cts:words

Lexicon Wrapper Superclass XQuery Lexicon Function

MarkLogic Server Using MarkLogic Server for Output

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 75

5.0 Using MarkLogic Server for Output
96

This chapter covers the following topics related to storing MapReduce job results in a MarkLogic
Server instance:

• Basic Steps

• Creating a Custom Output Query with KeyValueOutputFormat

• Controlling Transaction Boundaries

• Streaming Content Into the Database

• Performance Considerations for ContentOutputFormat

• Output Configuration Properties

• OutputFormat Subclasses

5.1 Basic Steps
The MarkLogic Connector for Hadoop API supports storing MapReduce results in MarkLogic
Server as documents, nodes, and properties. When using MarkLogic Server to store the results of
the reduce phase, configuring the reduce step of a MapReduce job includes at least the major
tasks:

• Identifying the Output MarkLogic Server Instance

• Configuring the Output Key and Value Types

• Defining the Reduce Function

• Disabling Speculative Execution

• Example: Storing MapReduce Results as Nodes

5.1.1 Identifying the Output MarkLogic Server Instance
The MarkLogic Server output instance is identified by setting configuration properties. For
general information on setting configuration properties, see “Configuring a MapReduce Job” on
page 33.

MarkLogic Server Using MarkLogic Server for Output

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 76

Specify the following properties to identify the output MarkLogic Server instance:

If you want to use a database other than the one attached to your XDBC App Server, set the
following additional property to the name of your database:

mapreduce.marklogic.output.databasename

When you use MarkLogic Server in a cluster, all MarkLogic Server hosts containing a forest in
the output database must be accessible through an XDBC server on the same port. The host
identified in the configuration properties may be any qualifying host in the cluster. For details, see
“Deploying the Connector with a MarkLogic Server Cluster” on page 11.

Note: The target database must be configured for manual directory creation by setting
the directory creation database configuration setting to “manual”. See Database
Settings in the Administrator’s Guide.

You can configure a job to connect to the App Server through SSL by setting the
mapreduce.marklogic.output.usessl property. For details, see “Making a Secure Connection to
MarkLogic Server with SSL” on page 13. For an example, see “ContentReader” on page 116.

For more information on the properties, see “Output Configuration Properties” on page 90.

5.1.2 Configuring the Output Key and Value Types
As discussed in “Reduce Task” on page 31, the org.apache.hadoop.mapreduce.OutputFormat
subclass configured for the job determines the types of the output keys and values, and how
results are stored. Use the org.apache.hadoop.mapreduce.Job API to configure the OutputFormat
and the output key and value types for a job.

Property Description

mapreduce.marklogic.output.host Hostname or IP address of the server hosting
your output XDBC App Server. The host must
be resolvable by the nodes in your Hadoop
cluster, so you should usually not use “local-
host”.

mapreduce.marklogic.output.port The port configured for the target XDBC App
Server on the input host.

mapreduce.marklogic.output.username Username privileged to update the database
attached to the XDBC App Server.

mapreduce.marklogic.output.password Cleartext password for the output.username
user.

MarkLogic Server Using MarkLogic Server for Output

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 77

The Hadoop MapReduce framework includes OutputFormat subclasses for saving results to files
in HDFS. The MarkLogic Connector for Hadoop API includes OutputFormat subclasses for
storing results as documents, nodes, or properties in a MarkLogic Server database. The output key
and value types you configure must match the OutputFormat subclass. For example,
PropertyOutputFormat expects (DocumentURI, MarkLogicNode) key-value pairs, so configure the
job with DocumentURI as the key type and MarkLogicNode as the value type.

For a summary of the OutputFormat subclasses provided by the MarkLogic Connector for
Hadoop, including the expected key and value types, see “OutputFormat Subclasses” on page 94.

The example below configures a job to use NodeOutputFormat, which expects (NodePath,
MarkLogicNode) key-value pairs.

import com.marklogic.mapreduce.NodeOutputFormat;
import com.marklogic.mapreduce.NodePath;
import com.marklogic.mapreduce.MarkLogicNode;
import org.apache.hadoop.mapreduce.Job;
...
public class LinkCountInDoc {
 ...

 public static class IntSumReducer
 extends Reducer<Text, IntWritable, NodePath, MarkLogicNode> {...}
 public static void main(String[] args) throws Exception {
 Job job = new Job(conf);
 job.setOutputFormatClass(NodeOutputFormat.class);
 job.setOutputKeyClass(NodePath.class);
 job.setOutputValueClass(MarkLogicNode.class);
 job.setReducerClass(IntSumReducer.class);
 ...
 }
}

5.1.3 Defining the Reduce Function
To create a reducer, define a subclass of org.apache.hadoop.mapreduce.Reducer and override at
least the Reducer.reduce method. Your reduce method should generate key-value pairs of the
expected type and write them to the method’s Context parameter. The MapReduce framework
subsequently stores the results written to the Context parameter in the file system or database
using the configured OutputFormat subclass.

The output key and value types produced by the reduce method must match the output key and
value types expected by the OutputFormat subclass. For example, if the job is configured to use
NodeOutputFormat then the reduce method must generate (NodePath, MarkLogicNode) key-value
pairs. The following example uses (Text,IntWritable) reduce input pairs and produces
(NodePath, MarkLogicNode) output pairs using NodeOutputFormat:

import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.IntWritable;

MarkLogic Server Using MarkLogic Server for Output

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 78

import com.marklogic.mapreduce.MarkLogicNode;
import com.marklogic.mapreduce.NodePath;

public class LinkCountInDoc {
 ...
 public static class IntSumReducer
 extends Reducer<Text, IntWritable, NodePath, MarkLogicNode> {

 public void reduce(Text key, Iterable<IntWritable> values,
 Context context) throws IOException, InterruptedException {
 ...
 context.write(output_node_path, output_node);
 }
 ...
 }
}

Notice that the reduce method receives a key and a list of all values produced by the map phase
with the same key, as discussed in “MapReduce Overview” on page 26.

For a complete list of the OutputFormat subclasses provided by the connector and how they use
the output keys and values to create database content, see “OutputFormat Subclasses” on page 94.

5.1.4 Disabling Speculative Execution
Disable Hadoop MapReduce speculative execution when using MarkLogic Server for output.

Hadoop MapReduce uses speculative execution to prevent jobs from stalling on slow tasks or
worker nodes. For example, if most of the tasks for a job complete, but a few tasks are still
running, Hadoop can schedule speculative redundant tasks on free worker nodes. If the original
task completes before the redundant task, Hadoop cancels the redundant task . If the redundant
task completes first, Hadoop cancels the original task.

Speculative execution is not safe when using MarkLogic Server for output because the cancelled
tasks do not clean up their state. Uncommitted changes might be left dangling and eventually lead
to XDMP-FORESTTIM errors.

Disable speculative execution by setting mapred.map.tasks.speculative.execution and/or
mapred.reduce.tasks.speculative.execution to false in your job configuration file or using the
org.apache.conf.Configuration API.

The nature of your job determines which property(s) to set. Set
mapred.map.tasks.speculative.execution to false when using MarkLogic Server for output
during map. Set mapred.reduce.tasks.speculative.execution to false when using MarkLogic
Server for output during reduce. Set both properties when using MarkLogic Server for both map
and reduce output.

The following examples shows how to set these properties to false:

MarkLogic Server Using MarkLogic Server for Output

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 79

<property>
 <name>mapred.map.tasks.speculative.execution</name>
 <value>false</value>
</property>

<property>
 <name>mapred.reduce.tasks.speculative.execution</name>
 <value>false</value>
</property>

5.1.5 Example: Storing MapReduce Results as Nodes
This example demonstrates storing the results of a MapReduce job as child elements of
documents in the database. The code samples shown here are small slices of the full code. For the
complete code, see the LinkCountInDoc example in the com.marklogic.mapreduce.examples
package.

The map step in this example creates a key-value pair for each href to a document in the
collection. The reduce step sums up the number of references to each document and stores the
total as a new <ref-count> element on the referenced document.

The output from the map phase is (Text, IntWritable) pairs, where the text is the title attribute
text of an href and the integer is always 1, indicating one reference to the title. The sample content
is such that the title in an href matches the leaf name of the containing document URI.

For example, if the sample data includes a document with the URI
“/space/wikipedia/enwiki/Drama film” and three occurrences of the following href:

 drama film

Then the map output includes three key-value pairs of the form:

(“Drama film”, 1)

This results in an input key-value pair for reduce of the form:

(“Drama film”, (1, 1, 1))

The reduce phase computes the reference count (3, in this case) and attaches the count as a child
node of the referenced document:

<wp:page>
 ...
 <ref-count>3</ref-count>
</wp:page>

MarkLogic Server Using MarkLogic Server for Output

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 80

To produce this result, the job uses NodeOutputFormat as the OutputFormat subclass.
NodeOutputFormat expects the reducer to produce (NodePath, MarkLogicNode) output pairs.
NodeOutputFormat uses the config property com.marklogic.mapreduce.output.node.optype to
determine where to insert the node relative to the path. In this example, nodeopttype is set to
INSERT_CHILD, so the ref-count node is inserted as a child of the node in the node path:

<property>
 <name>mapreduce.marklogic.output.node.optype</name>
 <value>INSERT_CHILD</value>
</property>

To avoid the overhead of creating a new MarkLogicNode for every invocation of the reduce
method, the sample overrides Reducer.setup to create a skeleton node which has its value
replaced by the real reference count in reduce. The following code snippet demonstrates the
initialization of the result and element variables used in reduce. For the full code, see the sample
code for com.marklogic.mapreduce.examples.LinkCountInDoc.

import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import com.marklogic.mapreduce.MarkLogicNode;
import com.marklogic.mapreduce.NodeInputFormat;
import com.marklogic.mapreduce.NodeOutputFormat;
import com.marklogic.mapreduce.NodePath;
import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import org.w3c.dom.Element;

public static class IntSumReducer
extends Reducer<Text, IntWritable, NodePath, MarkLogicNode> {
 private final static String TEMPLATE = "<ref-count>0</ref-count>";

 private Element element;
 private MarkLogicNode result;

 protected void setup(Context context)
 throws IOException, InterruptedException {
 try {
 DocumentBuilder docBuilder =
DocumentBuilderFactory.newInstance().newDocumentBuilder();
 InputStream sbis = new StringBufferInputStream(TEMPLATE);
 element = docBuilder.parse(sbis).getDocumentElement();
 result = new MarkLogicNode(element);
 }
 ...
 }
}

The following code snippet shows how the reducer sums up the input values, sets up the
ref-count node, and builds the document node path from a known base URI and the href title
passed in as key:

MarkLogic Server Using MarkLogic Server for Output

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 81

public static class IntSumReducer
extends Reducer<Text, IntWritable, NodePath, MarkLogicNode> {

 private final static String ROOT_ELEMENT_NAME = "//wp:page";
 private final static String BASE_URI_PARAM_NAME =
 "/space/wikipedia/enwiki/";
 private NodePath nodePath = new NodePath();

public void reduce(Text key, Iterable<IntWritable> values,
 Context context
) throws IOException, InterruptedException {
 ...

 // Compute reference count and store it in result node
 int sum = 0;
 for (IntWritable val : values) {
 sum += val.get();
 }
 element.setTextContent(Integer.toString(sum));

 // Build node path to referenced document
 StringBuilder buf = new StringBuilder();
 buf.append(BASE_URI).append(key);
 nodePath.setDocumentUri(buf.toString());
 nodePath.setRelativePath(ROOT_ELEMENT_NAME);

 // Store the final results for insertion into the database
 context.write(nodePath, result);
}

The above code, with an input pair of (“Drama film”, (1,1,1)) produces the following (node
path, node) output pair:

(
 /space/wikipedia/enwiki/Drama film//wp:page,
 <ref-count>3</ref-count>
)

Since the mapreduce.marklogic.output.node.optype property is INSERT_CHILD, the new
<ref-count> node is inserted as a child of the wp:page element addressed by the node path.

With very little code modification, the sample can store the reference count as a property of the
referenced document instead of as a child node. To do so, use PropertyOutputFormat, construct
the document URI instead of node path, and set the config property
com.marklogic.mapreduce.output.propertypopttype. For an example, see
“LinkCountInProperty” on page 111.

MarkLogic Server Using MarkLogic Server for Output

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 82

5.2 Creating a Custom Output Query with KeyValueOutputFormat
Use KeyValueOutputFormat to create a custom output query that can manipulate arbitrary key and
value data types and perform operations beyond updating documents, nodes, and properties. The
topics covered by this section are:

• Output Query Requirements

• Implementing an XQuery Output Query

• Implementing an JavaScript Output Query

• Job Configuration

• Supported Type Transformations

5.2.1 Output Query Requirements
A custom output query is a fully formed XQuery or Server-Side JavaScript module, specified as
the value of the configuration property mapreduce.marklogic.output.query. The MarkLogic
Connector for Hadoop invokes the query for each output key-value pair produced by the map or
reduce function configured to use KeyValueOutputFormat. Your query may perform any
operations. Output returned by the query is discarded.

The key and value types are determined by the configuration properties
mapreduce.marklogic.output.keytype and mapreduce.marklogic.output.valuetype. The key and
value XQuery types are constrained to those XML schema types with a meaningful
org.apache.hadoop.io.Writable type transformation, such as between xs:string and
org.apache.hadoop.io.Text or between element() and com.marklogic.mapreduce.MarkLogicNode.
For details, see “Supported Type Transformations” on page 85.

Configure your job to use KeyValueOutputFormat and key and value Java types corresponding to
the XQuery types expected by your output query. For details, see “Job Configuration” on page 83.

5.2.2 Implementing an XQuery Output Query
The output key-value pair is available to your output query through external variables with the
names “key” and “value”, in the namespace “http://marklogic.com/hadoop”.

The prolog of your output query must include:

1. A namespace declaration for the namespace containing the key and value variables
(“http://marklogic.com/hadoop”). You may use any namespace prefix.

2. An external variable declaration for key in the namespace from Step 1. Choose one of the
types listed in “Supported Type Transformations” on page 85.

3. An external variable declaration for value in the namespace from Step 1. Choose one of
the types listed in “Supported Type Transformations” on page 85.

MarkLogic Server Using MarkLogic Server for Output

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 83

For example, the following output query prolog assumes a key type of xs:string and a value type
of element():

<property>
 <name>mapreduce.marklogic.output.query</name>
 <value><![CDATA[
 xquery version ‘1.0-ml’;
 declare namespace mlmr = "http://marklogic.com/hadoop";
 declare variable $mlmr:key as xs:string external;
 declare variable $mlmr:value as element() external;
 (: use the key and value... :)
]]></value>
</property>

5.2.3 Implementing an JavaScript Output Query
When you use a JavaScript output query, you must also set the property
mapreduce.marklogic.output.queryLanguage to javascript as the default query language is
XQuery.

In a JavaScript output query, the key and value values are available to your query in global
variables named “key” and “value”, respectively. For example:

<property>
 <name>mapreduce.marklogic.output.query</name>
 <value><![CDATA[
 var key;
 var value;
 (: use the key and value... :)
]]></value>
</property>

5.2.4 Job Configuration
Configure the following job properties to use a custom output query:

• Set mapreduce.marklogic.output.query to your output query. This must be a fully formed
XQuery or Server-Side JavaScript module, suitable for evaluation with xdmp:eval (or
xdmp.eval). For details, see “Implementing an XQuery Output Query” on page 82 or
“Implementing an JavaScript Output Query” on page 83.

• Set mapreduce.marklogic.output.queryLanguage to javascript if your output query is
implemented in Server-Side JavaScript.

• Set mapreduce.marklogic.output.keytype to the type of the key. The default type is
xs:string.

• Set mapreduce.marklogic.output.valuetype to the type of the value. The default type is
xs:string.

• Set the map or reduce output format to KeyValueOutputFormat.

MarkLogic Server Using MarkLogic Server for Output

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 84

• Set the map or reduce output key Java type to an org.apache.hadoop.io.Writable subclass
that is convertible to the XQuery type in mapreduce.marklogic.output.keytype.

• Set the map or reduce output value Java type to an org.apache.hadoop.io.Writable that is
subclass convertible to the XQuery type mapreduce.marklogic.output.valuetype.

For details on the available key and value types and supported conversions between the XQuery
types and the Hadoop Java classes, see “Supported Type Transformations” on page 85.

The configuration properties may be set either in a configuration file or using the
org.apache.hadoop.mapreduce.Job API. The following example configures the MarkLogic
Connector for Hadoop output query, XQuery key type, and XQuery value type in a configuration
file:

<property>
 <name>mapreduce.marklogic.output.keytype</name>
 <value>xs:string</value>
</property>
<property>
 <name>mapreduce.marklogic.output.valuetype</name>
 <value>element()</value>
</property>
<property>
 <name>mapreduce.marklogic.output.query</name>
 <value><![CDATA[
 xquery version ‘1.0-ml’;
 declare namespace mlmr = "http://marklogic.com/hadoop";
 declare variable $mlmr:key as xs:string external;
 declare variable $mlmr:value as element() external;
 (: use the key and value... :)
]]></value>
</property>

The following example configures the job output format class, key class, and value class
corresponding to the custom output query settings above:

import org.apache.hadoop.Job;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.Text;
import com.marklogic.mapreduce.MarkLogicNode;

class myClass {
 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 Job job = new Job(conf);
 job.setOutputFormatClass(KeyValueOutputFormat);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(MarkLogicNode.class);
 ...
 }
}

MarkLogic Server Using MarkLogic Server for Output

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 85

For a complete example, see “RevisionGrouper” on page 114 and the sample code for
com.marklogic.mapreduce.examples.RevisionGrouper.

5.2.5 Supported Type Transformations
When you use KeyValueOutputFormat, the MarkLogic Connector for Hadoop converts the key and
value produced by the job map or reduce function from an org.apache.hadoop.io.Writable object
to values of the configured XQuery types. The table below summarizes the supported type
conversions.

When using org.apache.hadoop.io.Text with any XQuery type other than xs:string, the string
value format must correspond to the serialized representation of the XQuery type. For example, if
the XQuery type is cts:box, then the Text string representation must be a serialized cts:box value,
such as “[-122, 78, 30, 45]”. Similarly, if the XQuery type is xs:duration, then the Text string
representation must be a serialized xs:duration, such as “-P92M”.

If the key or value XQuery type is Then the Java type must be

xs:string org.apache.hadoop.io.Text

xs:boolean org.apache.hadoop.io.BooleanWritable
org.apache.hadoop.io.Text

xs:integer org.apache.hadoop.io.IntWritable
org.apache.hadoop.io.VIntWritable
org.apache.hadoop.io.LongWritable
org.apache.hadoop.io.VLongWritable
org.apache.hadoop.io.Text

xs:decimal org.apache.hadoop.io.IntWritable
org.apache.hadoop.io.VIntWritable
org.apache.hadoop.io.LongWritable
org.apache.hadoop.io.VLongWritable
org.apache.hadoop.io.FloatWritable
org.apache.hadoop.io.DoubleWritable
org.apache.hadoop.io.Text

xs:float
xs:double

org.apache.hadoop.io.IntWritable
org.apache.hadoop.io.VIntWritable
org.apache.hadoop.io.LongWritable
org.apache.hadoop.io.VLongWritable
org.apache.hadoop.io.FloatWritable
org.apache.hadoop.io.DoubleWritable
org.apache.hadoop.io.Text

xs:duration
xs:dayTimeDuration
xs:yearMonthDuration
xs:dateTime
xs:time
xs:date

org.apache.hadoop.io.Text

MarkLogic Server Using MarkLogic Server for Output

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 86

5.3 Controlling Transaction Boundaries
When you use one of the OutputFormat subclasses provided by the MarkLogic Connector for
Hadoop, such as ContentOutputFormat, the MarkLogic Connector for Hadoop manages the output
MarkLogic Server XDBC session and the requests for storing results in the database.

Each output key-value pair represents an update to the database. Multiple updates are grouped
into a single transaction. For all OutputFormat subclasses except ContentOutputFormat:

• Each output key-value pair generates an update request to MarkLogic Server.

• Every 1000 requests constitutes a transaction.

Use the mapreduce.marklogic.output.transactionsize configuration property to adjust the
number of requests per transaction. For example, if you set the transaction size to 5, then the
connector commits a transaction for every 5 requests. For OutputFormat classes other than
ContentOutputFormat, this means the connector bundles every 5 updates into a transaction.

<property>
 <name>mapreduce.marklogic.output.transactionsize</name>
 <value>5</value>
</property>

For ContentOutputFormat, the interactions between the number of updates, requests, and
transactions is more complicated. For details, see “Time vs. Space: Configuring Batch and
Transaction Size” on page 87.

xs:hexBinary org.apache.hadoop.io.BytesWritable

org.apache.hadoop.io.Text

xs:base64Binary org.apache.hadoop.io.Text

xs:gDay
xs:gMonth
xs:gYear
xs:gYearMonth

org.apache.hadoop.io.Text

cts:box
cts:circle
cts:point
cts:polygon

org.apache.hadoop.io.Text

node()
element()
binary()

com.marklogic.mapreduce.MarkLogicNode
org.apache.hadoop.io.Text

If the key or value XQuery type is Then the Java type must be

MarkLogic Server Using MarkLogic Server for Output

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 87

5.4 Streaming Content Into the Database
When you use ContentOutputFormat, you can stream text, XML, and binary documents to
MarkLogic Server.

Using streaming can significantly decrease the memory requirements on the task nodes initiating
document insertion, but it can also significantly decrease overall throughput and changes the
behavior of your job in the face of errors; for details, see “Reducing Memory Consumption With
Streaming” on page 89.

To use the stream feature, configure your job as you normally would to insert content into the
databae, but also do the following:

• Set the map or reduce output format to ContentOutputFormat.

job.setOutputFormatClass(ContentOutputFormat.class);

• Set the map or reduce output key Java type to com.marklogic.mapreduce.DocumentURI.

job.setOutputKeyClass(DocumentURI.class);

• Set the map or reduce output value Java type to com.marklogic.mapreduce.StreamLocator.

job.setOutputValueClass(StreamLocator.class);

• In your map or reduce function, set the value in each key-value pair to a StreamLocator
object associated with the content you want to stream.

context.write(yourDocURI,
 new StreamLocator(yourPath, CompressionCodec.NONE);

5.5 Performance Considerations for ContentOutputFormat
When using ContentOutputFormat, be aware of the following performance tradeoffs discussed in
this section:

• Time vs. Space: Configuring Batch and Transaction Size

• Time vs. Correctness: Using Direct Forest Updates

• Reducing Memory Consumption With Streaming

5.5.1 Time vs. Space: Configuring Batch and Transaction Size
When using ContentOutputFormat, you can tune the insertion throughput and memory
requirements of your job by configuring the batch size and transaction size of the job:

• mapreduce.marklogic.output.batchsize controls the number of output records (updates)
per request to the server.

MarkLogic Server Using MarkLogic Server for Output

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 88

• mapreduce.marklogic.output.transactionsize controls the number of requests to the
server per transaction.

Selecting a batch size is a speed vs. memory tradeoff. Each request to the server introduces
overhead because extra work must be done. However, unless you use streaming, all the updates in
a batch stay in memory until a request is sent, so larger batches consume more more memory.

Transactions introduce overhead on MarkLogic Server, so performing multiple updates per
transaction can improve insertion throughput. However, an open transaction holds locks on
fragments with pending updates, potentially increasing lock contention and affecting overall
application performance.

The default batch size is 100. If you do not explicitly set the transaction size, it varies with batch
size, adjusting to keep the maxiumum number of updates per transaction at 2000.

Consider the following example of inserting 10000 documents. Assume batch size is controlled
by setting mapreduce.marklogic.output.batchsize and transaction size not explicitly set. The last
row represents the default behavior for ContentOutputFormat.

If you explicitly set mapreduce.marklogic.output.transactionsize, then transaction size does not
vary based on batch size. Given the example above of inserting 10000 documents, if you
explicitly set batch size to 100 and transaction size to 50, then the job requires 2 transactions and
each transaction performs 5000 updates.

Batch size is not configurable for other output formats, such as NodeOutputFormat,
PropertyOutputFormat, and KeyValueFormat. For these classes, batch size is always 1 and the
default transaction size is 1000. See “Controlling Transaction Boundaries” on page 86.

5.5.2 Time vs. Correctness: Using Direct Forest Updates
ContentOutputFormat performs best when the updating tasks interact directly with the forests in
which content is inserted. However, direct forest updates can create duplicate document URIs
under the following circumstances:

• Content with the same URI already exists in the database, and

batch size total requests txn size total txns updates/txn

1 10000 2000 5 2000

10 1000 200 5 2000

100 100 20 5 2000

MarkLogic Server Using MarkLogic Server for Output

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 89

• The content was inserted using forest placement or the number of forests changed after
initial document creation.

Forest placement occurs when you use the $forest-ids parameter of xdmp:document-insert to
instruct MarkLogic Server to insert a document in a specific forest or to choose from a specific set
of forests. See Specifying a Forest in Which to Load a Document in the Loading Content Into
MarkLogic Server Guide.

To prevent duplicate URIs, the MarkLogic Connector for Hadoop defaults to a slower protocol
for ContentOutputFormat when it detects the potential for updates to existing content. In this case,
MarkLogic Server manages the forest selection, rather than the MarkLogic Connector for
Hadoop. This behavior guarantees unique URIs at the cost of performance.

You may override this behavior and use direct forest updates by doing the following:

• Set mapreduce.marklogic.output.content.directory. This guarantees all inserts will be
new documents. If the output directory already exists, it will either be removed or cause an
error, depending on the value of mapreduce.marklogic.output.content.cleandir.

• Set mapreduce.marklogic.output.content.fastload to true. When fastload is true, the
MarkLogic Connector for Hadoop always optimizes for performance, even if duplicate
URIs are possible.

You can safely set mapreduce.marklogic.output.content.fastload to true if the number of
forests in the database will not change while the job runs, and at least one of the following is true:

• Your job only creates new documents. That is, you are certain that the URIs are not in use
by any document or property fragments already in the database.

• The URIs output with ContentOutputFormat may already be in use, but both these
conditions are true:

• The in-use URIs were not originally inserted using forest placement.

• The number of forests in the database has not changed since initial insertion.

• You set mapreduce.marklogic.output.content.directory.

5.5.3 Reducing Memory Consumption With Streaming
The streaming protocol allows you to insert a large document into the database without holding
the entire document in memory. Streaming uploads documents to MarkLogic Server in 128k
chunks.

Streaming content into the database usually requires less memory on the task node, but ingestion
can be slower because it introduces additional network overhead. Streaming also does not take
advantage of the connector’s builtin retry mechanism. If an error occurs that is normally retryable,
the job will fail.

Note: Streaming is only available with ContentOutputFormat.

MarkLogic Server Using MarkLogic Server for Output

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 90

To enable streaming, set the property mapreduce.marklogic.output.content.streaming to true
and use a StreamLocator. For details, see “Streaming Content Into the Database” on page 87.

5.6 Output Configuration Properties
The table below summarizes connector configuration properties for using MarkLogic Server as an
output destination. For details, see com.marklogic.mapreduce.MarkLogicConstants in the
MarkLogic Hadoop MapReduce Connector API.

Property Description

mapreduce.marklogic.output.username Username for a user privileged to
write to the database attached to
your XDBC App Server.

mapreduce.marklogic.output.password Cleartext password for the
output.username user.

mapreduce.marklogic.output.host Hostname of the server hosting
your output XDBC App Server.

mapreduce.marklogic.output.port The port configured for the XDBC
App Server on the output host.

mapreduce.marklogic.output.usessl Whether or not to use an SSL
connection to the server. Default:
false.

mapreduce.marklogic.output.ssloptionsclass The name of a class implementing
com.marklogic.mapreduce.SslConf

igOptions. Used to configure the
SSL connection when
output.usessl is true.

mapreduce.marklogic.output.node.namespace A comma-separated list of
namespace name-URI pairs to use
when evaluating element names in
the node path with
NodeOutputFormat.

MarkLogic Server Using MarkLogic Server for Output

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 91

mapreduce.marklogic.output.batchsize The number of output key-value
pairs (updates) to send to
MarkLogic Server in a single
request. Only honored by
ContentOutputFormat. Default: 100.
Other output formats have an
implicit, unconfigurable batch size
of 1.

mapreduce.marklogic.output.content.cleandir Whether or not to remove the
database directory specified by
output.content.directory before
storing the reduce phase results. If
false, an error occurs if the
directory already exists when the
job runs. Default: false.

mapreduce.marklogic.output.content.collection A comma separated list of
collections to which output
documents are added when using
ContentOutputFormat.

mapreduce.marklogic.output.content.directory The database directory in which to
create output documents when
using ContentOutputFormat. If
content.cleandir is false (the
default), then the directory must not
already exist. If content.cleandir
is true and the directory already
exists, it is deleted as part of job
submission.

mapreduce.marklogic.output.content.encoding The encoding to use when reading
content into the database. Content
is translated from this encoding to
UTF-8. For details, see Character
Encoding in the Search Developer’s
Guide. Default: UTF-8.

Property Description

MarkLogic Server Using MarkLogic Server for Output

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 92

mapreduce.marklogic.output.content.fastload Whether or not to force optimal
performance when using
ContentOutputFormat. Setting this
property to true can result in
duplicate URIs. Default: false. See
“Performance Considerations for
ContentOutputFormat” on page 87.

mapreduce.marklogic.output.content.language For XML content, the language to
specify in the xml:lang attribute on
the roote element node if the
attribute does not already exist. If
not set, no xml:lang is added to the
root node, and the language
configured for the database is
assumed.

mapreduce.marklogic.output.content.namespace For XML content, specifies a
namespace URI to use if there is no
namespace at root node of the
document. Default: No namespace.

mapreduce.marklogic.output.content.permission A comma separated list of
role-capability pairs to associate
with output documents when using
ContentOutputFormat.

mapreduce.marklogic.output.content.quality The document quality to use when
creating output documents with
ContentOutputFormat. Default: 0.

mapreduce.marklogic.output.content.repairleve
l

The level of repair to perform on
XML content inserted into the
database. Set to either none or full.
Default: Behavior depends on the
default XQuery version configured
for the App Server; none for
XQuery 1.0 or 1.0-ml, full for
XQuery 0.9-ml.

mapreduce.marklogic.output.content.streaming Whether or not to use streaming to
insert content. Default: false.

Property Description

MarkLogic Server Using MarkLogic Server for Output

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 93

mapreduce.marklogic.output.content.type When using ContentOutputFormat,
specifies the content type of output
documents. Set to one of XML, TEXT,
BINARY, MIXED, or UNKNOWN. Default:
XML.

UNKNOWN uses the value type of the
first value seen in each split to
determine the content type.

MIXED uses the Document URI
suffix and MarkLogic Server
MIME type mappings to determine
the content type for each document.

mapreduce.marklogic.output.content.tolerateer
rors

When this option is true and batch
size is greater than 1, if an error
occurs for one or more documents
being inserted into the database,
only the erroneous documents are
skipped; all other documents are
inserted. When this option is false
or batch size is great than 1, errors
during insertion can cause all the
inserts in the current batch to be
rolled back. Default: false.

mapreduce.marklogic.output.keytype The XQuery type of the output key
available to the query defined by
mapreduce.marklogic.output.quer

y. Default: xs:string.

mapreduce.marklogic.output.node.optype When using NodeOutputFormat, the
node operation to perform. Set to
one of: REPLACE, INSERT_BEFORE,
INSERT_AFTER, INSERT_CHILD.

mapreduce.marklogic.output.property.optype When using PropertyOutputFormat,
the property operation to perform.
Set to one of SET_PROPERTY or
ADD_PROPERTY.

Property Description

MarkLogic Server Using MarkLogic Server for Output

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 94

5.7 OutputFormat Subclasses
The MarkLogic Connector for Hadoop API provides subclasses of OutputFormat for defining
your reduce output key-value pairs and storing the results in a MarkLogic Server database.
Specify the OutputFormat subclass appropriate for your job using the
org.apache.hadoop.mapreduce.job.setOutputFormatClass function. For example:

import com.marklogic.mapreduce.NodeInputFormat;
import org.apache.hadoop.mapreduce.Job;
...
public class LinkCountInDoc {
 ...
 public static void main(String[] args) throws Exception {
 Job job = new Job(conf);

mapreduce.marklogic.output.property.alwayscre
ate

When using PropertyOutputFormat,
whether or not to create a property
even if no document exists with the
output document URI. Default:
false.

mapreduce.marklogic.output.query A custom output query to be used
by KeyValueOutputFormat. See
“Creating a Custom Output Query
with KeyValueOutputFormat” on
page 82.

mapreduce.marklogic.output.queryLanguage The implementation language of
mapreduce.marklogic.output.query.
Allowed values: xquery,
javascript. Default: xquery.

mapreduce.marklogic.output.transactionsize The number of requests to
MarkLogic Server per transaction.
Default: For ContentOutputFormat,
this varies with
mapreduce.marklogic.output.batc

hsize to maintain 2000
updates/transaction; for other
output formats,1000.

mapreduce.marklogic.output.valuetype The XQuery type of the output
value available to the query defined
by
mapreduce.marklogic.output.quer

y. Default: xs:string.

Property Description

MarkLogic Server Using MarkLogic Server for Output

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 95

 job.setOutputFormatClass(NodeOutputFormat.class);
 ...
 }
}

The following table summarizes the OutputFormat subclasses provided by the MarkLogic
Connector for Hadoop and the key and value types produced by each class. All classes referenced
below are in the package com.marklogic.mapreduce. All referenced properties are covered in
“Output Configuration Properties” on page 90. For more details on these classes and properties,
see the MarkLogic Hadoop MapReduce Connector API.

Class Key Type Value Type Description

MarkLogicOutputFormat any any Superclass for all
connector-specific OutputFormat
classes. Stores output in a
MarkLogic Server database.

ContentOutputFormat DocumentURI any (text, XML,
JSON, binary)

Stores output in a MarkLogic
Server database, using the key as
the document URI and the value as
the content. The content type is
determined by the
mapreduce.marklogic.output.cont

ent.type config property. Related
configuration properties:

• content.type

• content.directory

• content.collection

• content.permission

• content.quality

If
mapreduce.marklogic.output.cont

ent.type is UKNOWN, the value type
must be an instance of Text,
MarkLogicNode, BytesWritable, or
MarkLogicDocument.

MarkLogic Server Using MarkLogic Server for Output

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 96

NodeOutputFormat NodePath MarkLogicNode Stores output in a MarkLogic
Server database, using the key as
the node path and the value as the
node to insert. The
mapreduce.marklogic.output.node

opttype config property controls
where the node is inserted relative
to the node path in the key.

PropertyOutputFormat DocumentURI MarkLogicNode Stores output in a MarkLogic
Server database by inserting the
value node as a property of the
document in the key URI. The
mapreduce.marklogic.output.prop

erty.optype config property
controls how the property is set.

KeyValueOutputFormat any any Run the query defined by
mapreduce.marklogic.output.quer

y with each output key-value pair.
The result is determined by the
output query. The key and value
types are determined by
mapreduce.marklogic.output.keyt

ype and
mapreduce.marklogic.output.valu

etype. See “Creating a Custom
Output Query with
KeyValueOutputFormat” on
page 82.

Class Key Type Value Type Description

MarkLogic Server Troubleshooting and Debugging

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 97

6.0 Troubleshooting and Debugging
98

This chapter covers the following topics related to troubleshooting and debugging MapReduce
jobs that use the MarkLogic Connector for Hadoop:

• Enabling Debug Level Logging

• Solutions to Common Problems

6.1 Enabling Debug Level Logging
Enable debug logging for more insight into the job processing. For example, with debug logging
enabled, the MarkLogic Connector for Hadoop logs detailed information about input splits,
including the split query. To enable debug logging:

1. Edit $HADOOP_CONF_DIR/log4j.properties.

2. Add the following line to enable debug logging:

log4j.logger.com.marklogic.mapreduce=DEBUG

3. Re-run the job and look for DEBUG messages in the console output or log files.

In standalone mode, job output goes to stdout and stderr. In pseudo-distributed or fully distributed
mode, job output goes to stdout, stderr, and Hadoop log files. For information on locating log
files, see “Viewing Job Status and Logs” on page 35.

6.2 Solutions to Common Problems
This section presents symptoms and possible solutions for the following common problems:

• Configuration File Not Found

• XDBC App Server Not Reachable

• Authorization Failure

For details, consult the documentation for your Hadoop distribution or the Apache Hadoop
documentation at http://hadoop.apache.org.

http://hadoop.apache.org

MarkLogic Server Troubleshooting and Debugging

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 98

6.2.1 Configuration File Not Found

6.2.2 XDBC App Server Not Reachable

6.2.3 Authorization Failure

Symptom: Job exits with IllegalArgumentException related to one of the connector
configuration properties.

Cause: Hadoop failed to find or open the sample configuration file.

Solution: Confirm that job configuration file is present in $HADOOP_CONF_DIR and is
readable by the user under which Hadoop runs.

Example: Exception in thread "main" java.lang.IllegalArgumentException:
mapreduce.marklogic.output.hosts is not specified

Symptom: Job exits with an error related to the default provider, or exits with a connection
refused error.

Cause: The XDBC App Server is not reachable. Either the host or port for the input or
output XDBC App Server is incorrect.

Solution: Correct your configuration settings in the job configuration file in
$HADOOP_CONF_DIR.

Example: Exception in thread "main" java.lang.IllegalArgumentException: Default
provider - Not a usable net address

Exception in thread "main" java.io.IOException:
com.marklogic.xcc.exceptions.ServerConnectionException: Connection
refused

Symptom: Job exits with an authorization failure.

Cause: The user name or password for the input or output user is incorrect.

Solution: Correct your configuration settings in the job configuration file in
$HADOOP_CONF_DIR.

Example: Exception in thread "main" java.io.IOException:
com.marklogic.xcc.exceptions.RequestPermissionException:
Authorization failed for user 'fred'

MarkLogic Server Using the Sample Applications

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 99

7.0 Using the Sample Applications
119

This chapter covers the following topics related to using the sample applications:

• Set Up for All Samples

• Additional Sample Data Setup

• Interacting with HDFS

• Sample Applications

7.1 Set Up for All Samples
The following topics apply to preparing to run all the sample applications:

1. Install Required Software

2. Configure Your Environment

3. Copy the Sample Configuration Files

4. Modify the Sample Configuration Files

The LinkCount samples, such as LinkCountInDoc and LinkCountValue, require additional
preparation. See “Additional Sample Data Setup” on page 103.

For details about the individual samples, see “Sample Applications” on page 107.

7.1.1 Install Required Software
Install and configure MarkLogic Server, Hadoop MapReduce, and the MarkLogic Connector for
Hadoop. For instructions, see “Getting Started with the MarkLogic Connector for Hadoop” on
page 15.

The samples require at least one MarkLogic Server database and XDBC App Server. The
examples in this chapter assume you’re using the XDBC App Server on port 8000.

The LinkCount family of samples require a specific database configuration and data set; see
“Additional Sample Data Setup” on page 103. The other samples can be run against any XDBC
App Server and database.

MarkLogic Server Using the Sample Applications

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 100

7.1.1.1 Multi-host Configuration Considerations
“Getting Started with the MarkLogic Connector for Hadoop” on page 15 describes setting up a
single-host configuration, where MarkLogic Server, Hadoop MapReduce, and the MarkLogic
Connector for Hadoop are installed on the same host, and Hadoop MapReduce is configured for
standalone operation. A multi-host configuration, with Hadoop MapReduce configured for
pseudo-distributed or fully-distributed operation, more accurately represents a production
deployment.

If you choose to use a multi-host, distributed configuration be aware of the following:

• The MarkLogic Server host configured for the job must be reachable by hostname from
the Hadoop MapReduce worker nodes.

• The MarkLogic Connector for Hadoop must be installed on the Hadoop MapReduce host
on which you run the sample jobs.

• Normally, you can use different MarkLogic Server instances for input and output, but the
LinkCount samples expect the same database for both input and output.

Some of the samples use HDFS for input or output. If Hadoop is configured for pseudo- or
fully-distributed operation, HDFS must be initialized before running the samples.

To check whether or not HDFS is initialized, run the following command. It should run without
error. For example:

$ hdfs dfs -ls /
drwxr-xr-x - marklogic\me mygroup 0 2011-07-19 10:48 /tmp
drwxr-xr-x - marklogic\me mygroup 0 2011-07-19 10:51 /user

If the command fails, HDFS might not be initialized. See “Initializing HDFS” on page 105.

7.1.2 Configure Your Environment
Before you begin, you should have the hadoop and java commands on your path. You should also
set the environment variables covered in “Configuring Your Environment to Use the Connector”
on page 17.

7.1.3 Copy the Sample Configuration Files
The sample applications include MapReduce configuration files containing MarkLogic Connector
for Hadoop settings. To run the examples, you will have to modify these files. Therefore, you
should copy the configuration files to a local directory of your choosing.

For example, to copy the configuration files to /space/examples/conf, use the following
command:

cp $CONNECTOR_HOME/conf/*.xml /space/examples/conf

MarkLogic Server Using the Sample Applications

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 101

Place the directory containing your copy of the configuration files on HADOOP_CLASSPATH so that
each sample job can find its configuration file. For example:

export HADOOP_CLASSPATH=${HADOOP_CLASSPATH}:/space/examples/conf

7.1.4 Modify the Sample Configuration Files
For each sample you plan to run, modify the MarkLogic Connector for Hadoop sample
configuration file in your Hadoop configuration directory to match your MarkLogic Server
configuration.

The configuration file associated with each sample is listed below.

The configuration properties requiring modification vary from sample to sample. For example, a
sample which uses MarkLogic Server for input and HDFS for output will not include
mapreduce.marklogic.output.* properties.

Sample Configuration File

HelloWorld marklogic-hello-world.xml

LinkCountInDoc marklogic-nodein-nodeout.xml

LinkCountInProperty marklogic-textin-propout.xml

LinkCountValue marklogic-textin-textout.xml

LinkCountCooccurrences marklogic-lexicon.xml

LinkCount marklogic-advanced.xml

RevisionGrouper marklogic-nodein-qryout.xml

BinaryReader marklogic-subbinary.xml

ContentReader marklogic-docin-textout.xml

ContentLoader marklogic-textin-docout.xml

ZipContentLoader marklogic-textin-docout.xml

MarkLogic Server Using the Sample Applications

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 102

If the sample uses MarkLogic Server for input, modify at least the following config properties.
For details, see “Identifying the Input MarkLogic Server Instance” on page 37.

If the sample uses MarkLogic Server for output, modify at least the following config properties.
For details, see “Identifying the Output MarkLogic Server Instance” on page 75.

Some samples might require additional customization. For details on a specific sample, see
“Sample Applications” on page 107.

Property Value

mapreduce.marklogic.input.username A MarkLogic user with privileges to read
the input database.

mapreduce.marklogic.input.password The password for the input user.

mapreduce.marklogic.input.host localhost, or the host where your input
MarkLogic instance is installed.

mapreduce.marklogic.input.port 8000, or another port on which an XDBC
App Server is listening

mapreduce.marklogic.input.databasename hadoop-samples

You will need to add this property to the
configuration file.

Property Value

mapreduce.marklogic.output.username A MarkLogic user with privileges to write
to the output database.

mapreduce.marklogic.output.password The password for the output user.

mapreduce.marklogic.output.host localhost, or the host where your output
MarkLogic instance is installed.

mapreduce.marklogic.output.port 8000, or another port on which an XDBC
App Server is listening

mapreduce.marklogic.output.databasename hadoop-samples

You will need to add this property to the
configuration file.

MarkLogic Server Using the Sample Applications

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 103

7.2 Additional Sample Data Setup
The following samples require a special database configuration and input data set. If you do not
plan to run these samples, you can skip this section.

• The LinkCount* samples (LinkCountInDoc, LinkCountValue, etc.)

• RevisionGrouper

This section walks you through creating the MarkLogic Server environment required by these
samples.

• Creating the Database

• Creating the XDBC App Server

• Loading the Data

7.2.1 Creating the Database
Use the following information to create a database named “hadoop-samples” with 2 forests and 2
attribute range indexes. You can use a different database name. Use the defaults for any
configuration parameters not mentioned below.

For detailed instructions, see Creating and Configuring Forests and Databases and Defining Attribute
Range Indexes in the Administrator’s Guide.

Configuration Parameter Setting

database name hadoop-samples

forest names hadoop-samples-1, hadoop-samples-2

attribute range
index 1

scalar type string

parent namespace uri http://www.mediawiki.org/xml/export-0.4/

parent localname a

localname href

collation Unicode Codepoint

range value positions true

MarkLogic Server Using the Sample Applications

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 104

7.2.2 Creating the XDBC App Server
You can skip this step if you use the pre-configured XDBC App Server on port 8000.

Use the following information to create an XDBC App Server and attach it to the
“hadoop-samples” database created in the previous section. You can use a different name and
port.

For detailed instructions, see Creating and Configuring App Servers in the Administrator’s Guide.

7.2.3 Loading the Data
Load the data from $CONNECTOR_HOME/sample-data into the hadoop-samples database with a URI
prefix of enwiki/. The instructions in this section use MarkLogic Content Pump (mlcp) to load the
data, but you can choose a different method.

1. If you do not already have an installation of mlcp, download and install it. For details, see
Installation and Configuration in the mlcp User Guide.

2. Put the mlcp.sh command on your path. For example:

export PATH=${PATH}:MLCP_INSTALL_DIR/bin

attribute range
index 2

scalar type string

parent namespace uri http://www.mediawiki.org/xml/export-0.4/

parent localname a

localname title

collation Unicode Codepoint

range value positions true

Configuration Parameter Setting

xdbc server name hadoop-samples-xdbc

root (any)

port 9002

database hadoop-samples

Configuration Parameter Setting

MarkLogic Server Using the Sample Applications

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 105

3. Run the following command to load the sample data. Substitute the values of the
-username, -password, -host, and -port options to match your environment.

mlcp.sh import -host localhost -port 8000 -database hadoop-samples \
 -username user -password password -mode local \
 -input_file_path $CONNECTOR_HOME/sample-data/ -document_type xml \
 -output_uri_replace "$CONNECTOR_HOME/sample-data,'enwiki'"

4. Optionally, use Query Console to explore the hadoop-samples database and observe the
database contains 93 documents, all with an “enwiki/” prefix.

7.3 Interacting with HDFS
Some of the samples use HDFS for input or output. This section briefly summarizes how to copy
data into or retrieve data from HDFS when using Hadoop in pseudo-distributed or fully-distribute
configurations.

If you use Hadoop MapReduce standalone, you can skip this section. Standalone Hadoop is the
configuration created in “Getting Started with the MarkLogic Connector for Hadoop” on page 15.
In a standalone configuration, HDFS uses the local file system directly. You do not need to
initialize HDFS, and you can use normal Unix commands to work with the input and output files.
You may still use HDFS commands to examine the file system.

This section covers following topics related to pseudo- and fully-distributed HDFS operation:

• Initializing HDFS

• Accessing Results Saved to HDFS

• Placing Content in HDFS to Use as Input

Use the following command see all available HDFS commands, or consult the documentation for
your Hadoop distribution.

$ hdfs dfs -help

7.3.1 Initializing HDFS
If you use Hadoop MapReduce in pseudo-distributed or fully-distributed mode, HDFS must be
formatted before you can run the samples. If your HDFS installation is not already initialized,
consult the documentation for your Hadoop distribution for instructions.

For example, with Apache Hadoop, you can run the following command to initialize HDFS:

$ hdfs namenode -format

Near the end of the output, you should see a message that HDFS has been successfully formatted.
For example:

MarkLogic Server Using the Sample Applications

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 106

...
**/
11/10/03 09:35:14 INFO namenode.FSNamesystem:...
11/10/03 09:35:14 INFO namenode.FSNamesystem: supergroup=supergroup
11/10/03 09:35:14 INFO namenode.FSNamesystem: isPermissionEnabled=true
11/10/03 09:35:14 INFO common.Storage: Image file of size 98 saved ...
11/10/03 09:35:14 INFO common.Storage: Storage directory
/tmp/hadoop-sample/dfs/name has been successfully formatted.
11/10/03 09:35:14 INFO namenode.NameNode: SHUTDOWN_MSG:
/**
SHUTDOWN_MSG: Shutting down NameNode at sample.marklogic.com...
**/

If formatting succeeds, you can successfully use the ls command to examine HDFS. For
example:

$ hdfs dfs -ls /

7.3.2 Accessing Results Saved to HDFS
Some of the sample applications store results to HDFS. You can browse HDFS and examine
results from the command line or through your web browser.

In pseudo-distributed or fully distributed configurations, HDFS output pathnames given on the
command line of an example are relative to /user/your_username in HDFS by default. For
example if you run the LinkCountValue example, which saves results to HDFS, and specify the
output directory as linkcountvalue, then the results are in HDFS under
/user/your_username/linkcountvalue.

To access HDFS through your web browser, use the HDFS NameNode administration page. By
default, this interface is available on port 50070 on the NameNode host; consult the
documentation for your Hadoop distribution. Assuming localhost is the NameNode, browse to
this URL and click on the “Browse the file system link” near the top of the page to browse HDFS:

http://localhost:50070

To browse HDFS from the command line, use a command similar to the following:

$ hdfs dfs -ls /user/your_username

For example if you run the LinkCountValue example and specify the output directory as
linkcountvalue, you would see results similar to the following, after running the example:

$ hdfs dfs -ls /user/me/linkcountvalue
drwxr-xr-x - me mygroup ... /user/me/linkcountvalue/_logs
-rw-r--r-- 1 me mygroup ... /user/me/linkcountvalue/part-r-00000

The results are in the part-r-XXXXX file. To see the last few lines of the results, use a command
similar to the following:

MarkLogic Server Using the Sample Applications

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 107

$ hdfs dfs -tail /user/me/linkcountvalue/part-r-00000

To copy the result from HDFS to your system’s file system, use a command similar to the
following:

$ hdfs dfs -get /user/me/linkcountvalue/part-r-00000 \
 /my/destination/linkcountvalue.txt

7.3.3 Placing Content in HDFS to Use as Input
Some of the samples use HDFS for input. These samples require you to copy the input data to
HDFS before running the sample. Place the input files under /user/your_username in HDFS using
a command such as the following:

$ hdfs dfs -put ./mycontent.zip /user/me/zipcontentloader

Relative pathnames are relative to /user/your_username, so to check the file copied into HDFS
above, use a command similar to the following:

$ hdfs dfs -ls /user/me/zipcontentloader
-rw-r--r-- 1 me mygroup ... /user/me/zipcontentloader/mycontent.zip

When you copy files into HDFS, there must not be a pre-existing file of the same name.

7.4 Sample Applications
This section contains detailed instructions for running each of the samples summarized in the
table below.

The MarkLogic Connector for Hadoop distribution includes the following resources related to the
sampoles:

• Source code, in $CONNECTOR_HOME/src.

• Compiled code, in $CONNECTOR_HOME/lib/marklogic-mapreduce-examples-version.jar.

• Javadoc. See the package com.marklogic.mapreduce.examples in the Javadoc under
$CONNECTOR_HOME/docs.

MarkLogic Server Using the Sample Applications

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 108

The sample applications are:

Sample Input Output Description

HelloWorld MarkLogic
Server

MarkLogic
Server

Reads the first word from text in input
XML documents, concatentates the words,
then stores the results as a new text docu-
ment in MarkLogic Server.

LinkCountInDoc MarkLogic
Server

MarkLogic
Server

Counts href link title attributes in docu-
ments in MarkLogic Server, then stores
the count as a child node of the referenced
document.

LinkCountInProperty MarkLogic
Server

MarkLogic
Server

Counts href link title attributes in docu-
ments in MarkLogic Server, then stores
the count as a property of the referenced
document.

LinkCountValue MarkLogic
Server

HDFS Counts href link titles attributes in docu-
ments in MarkLogic Server, then stores
the counts in HDFS text files.

LinkCountCooccur-
rences

MarkLogic
Server

HDFS Counts href link title attributes in docu-
ments in MarkLogic Server using a lexi-
con function, then stores the counts in
HDFS text files.

LinkCount MarkLogic
Server

HDFS Equivalent to LinkCountValue, but demon-
strates using advanced input mode to pro-
vide your own input split and input
queries.

MarkLogic Server Using the Sample Applications

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 109

7.4.1 HelloWorld
This example extracts the first word from all the XML documents in a MarkLogic Server
database containing text nodes, sorts the words, concatenates them into a single string, and saves
the result as a text document in MarkLogic Server. The example uses basic input mode with the
default document selector and subexpression expression. The example uses MarkLogic Server for
both input and output.

For detailed instructions on configuring and running this sample, see “Running the HelloWorld
Sample Application” on page 18.

Though you can use the sample with any input documents, it is intended to be used with a small
data set. It is not optimized for efficient resource use across large data sets. Only XML documents
with text nodes contribute to the final results.

This example uses the following configuration file. You should have a copy of this config file in
your working directory, modified as described in “Modify the Sample Configuration Files” on
page 101.

marklogic-hello-world.xml

Use the following command to run the example job, with suitable substitution for
$CONNECTOR_HOME and the connector version:

RevisionGrouper MarkLogic
Server

MarkLogic
Server

Demonstrates the use of a custom output
query, using KeyValueOutputFormat.

BinaryReader MarkLogic
Server

HDFS Demonstrates using advanced input mode
with an input query optimized using the
split range.

ContentReader MarkLogic
Server

HDFS Reads documents in a MarkLogic Server
database, using an SSL-enabled connec-
tion, then writes the contents to HDFS text
files.

ContentLoader HDFS MarkLogic
Server

Reads text files in HDFS, then stores the
contents as documents in a MarkLogic
Server database.

ZipContentLoader HDFS MarkLogic
Server

Reads text files from zip files in HDFS,
then stores the contents as documents in a
MarkLogic Server database.

Sample Input Output Description

MarkLogic Server Using the Sample Applications

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 110

hadoop jar \
 $CONNECTOR_HOME/lib/marklogic-mapreduce-examples-version.jar \
 com.marklogic.mapreduce.examples.HelloWorld
 -libjars $LIBJARS marklogic-hello-world.xml

To view the results, use Query Console to explore the output database. The sample creates
HelloWorld.txt. If you use the input data from “Configuring the Job” on page 21, HelloWorld.txt
should contain the phrase “hello world”.

7.4.2 LinkCountInDoc
This example calculates reference counts for each document in a set of Wikipedia-based
documents, and then stores the reference count for each document as a new <ref-count> child
node of the document. The example uses MarkLogic Server for input and output.

Note: Before running the sample, follow the instructions in “Additional Sample Data
Setup” on page 103.

This example uses the following configuration file. You should have a copy of this config file in
your working directory, modified as described in “Modify the Sample Configuration Files” on
page 101.

marklogic-nodein-nodeout.xml

Use the following command to run the example job, with a suitable substitution for
$CONNECTOR_HOME and the connector version:

hadoop jar \
 $CONNECTOR_HOME/lib/marklogic-mapreduce-examples-version.jar \
 com.marklogic.mapreduce.examples.LinkCountInDoc \
 -libjars $LIBJARS marklogic-nodein-nodeout.xml

The intra-collection reference counts are stored as new <ref-count> elements under the root of
each document. Run the following XQuery in Query Console against the hadoop-samples
database to see a list of documents ref-count elements:

xquery version "1.0-ml";

for $ref in //ref-count
return fn:concat(xdmp:node-uri($ref)," ",$ref/text())

You should see results similar to the following:

enwiki/Ayn Rand 1
enwiki/List of characters in Atlas Shrugged 4
enwiki/Academy Award for Best Art Direction 1
enwiki/Academy Award 2
enwiki/Aristotle 5

MarkLogic Server Using the Sample Applications

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 111

7.4.3 LinkCountInProperty
This example calculates reference counts for each document in a set of Wikipedia-base
documents, and then stores the reference count for each document as a property of the document.
The examples uses MarkLogic Server for input and output.

Note: Before running the sample, follow the instructions in “Additional Sample Data
Setup” on page 103.

This example uses the following configuration file. You should have a copy of this config file in
your working directory, modified as described in “Modify the Sample Configuration Files” on
page 101.

marklogic-textin-propout.xml

Use the following command to run the example job, with a suitable substitution for
$CONNECTOR_HOME and the connector version:

hadoop jar \
 $CONNECTOR_HOME/lib/marklogic-mapreduce-examples-version.jar \
 com.marklogic.mapreduce.examples.LinkCountInProperty \
 -libjars $LIBJARS marklogic-textin-propout.xml

The intra-collection reference counts are stored as new <ref-count> property elements of each
document. Run the following query in Query Console against your XDBC App Server to see a list
of documents with at least 20 references:

xquery version "1.0-ml";

for $ref in xdmp:document-properties()//ref-count
return fn:concat(xdmp:node-uri($ref)," ",$ref/text())

You should see results similar to the following:

enwiki/Ayn Rand 1
enwiki/List of characters in Atlas Shrugged 4
enwiki/Academy Award for Best Art Direction 1
enwiki/Academy Award 2
enwiki/Aristotle 5

7.4.4 LinkCountValue
This example calculates reference counts for each document in a set of Wikipedia-base
documents, and then stores the reference counts in HDFS. The examples uses MarkLogic Server
for input and HDFS for output.

Note: Before running the sample, follow the instructions in “Additional Sample Data
Setup” on page 103.

MarkLogic Server Using the Sample Applications

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 112

This example uses the following configuration file. You should have a copy of this config file in
your working directory, modified as described in “Modify the Sample Configuration Files” on
page 101.

marklogic-textin-textout.xml

Use the following command to run the example job, with suitable substitutions for
$CONNECTOR_HOME, the HDFS_OUTPUT_DIR, and the connector version:. The HDFS_OUTPUT_DIR must
not already exist.

hadoop jar \
 $CONNECTOR_HOME/lib/marklogic-mapreduce-examples-version.jar \
 com.marklogic.mapreduce.examples.LinkCountValue \
 -libjars $LIBJARS marklogic-textin-textout.xml HDFS_OUTPUT_DIR

To view the results, examine the results in HDFS_OUTPUT_DIR, as described in “Interacting with
HDFS” on page 105. For example, if you use /home/you/lcv for HDFS_OUTPUT_DIR:

$ hdfs dfs -ls /home/you/lcv
... part-r-00000
$ hdfs dfs -cat /home/you/lcv/part-r-00000 | grep “^Aristotle”
Aristotle 5

Each topic title is followed by a reference count. The raw output differs from the results for the
LinkCountInDoc and LinkCountInProperty examples because LinkCountValue generates counts for
all references, rather than only for documents in the database.

7.4.5 LinkCount
This example calculates reference counts for each document in a set of Wikipedia-base
documents, and then stores the reference counts in HDFS. The examples uses MarkLogic Server
for input and HDFS for output. This example is the same as the LinkCountValue example, but it
uses advanced input mode instead of basic input mode.

Note: Before running the sample, follow the instructions in “Additional Sample Data
Setup” on page 103.

This example uses the following configuration file. You should have a copy of this config file in
your working directory, modified as described in “Modify the Sample Configuration Files” on
page 101.

marklogic-advanced.xml

Use the following command to run the example job, with suitable substitutions for
$CONNECTOR_HOME, the HDFS_OUTPUT_DIR, and the connector version:

hadoop jar \
 $CONNECTOR_HOME/lib/marklogic-mapreduce-examples-version.jar \

MarkLogic Server Using the Sample Applications

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 113

 com.marklogic.mapreduce.examples.LinkCount \
 -libjars $LIBJARS marklogic-advanced.xml HDFS_OUTPUT_DIR

To view the results, examine the results in HDFS_OUTPUT_DIR, as described in “Interacting with
HDFS” on page 105. For example, if you use /home/you/lc for HDFS_OUTPUT_DIR:

$ hdfs dfs -ls /home/you/lc
... part-r-00000
$ hdfs dfs -cat /home/you/lcv/part-r-00000 | grep “^Aristotle”
Aristotle 5

Each topic title is followed by a reference count. The raw output differs from the results for the
LinkCountInDoc and LinkCountInProperty examples because LinkCount generates counts for all
references, rather than only for documents in the database.

For details on advanced input mode, see “Advanced Input Mode” on page 51.

7.4.6 LinkCountCooccurrences
This example calculates reference counts for each document in a set of Wikipedia-base
documents by using an element attribute lexicon, and then stores the reference counts in HDFS.
The examples uses MarkLogic Server for input and HDFS for output.

The sample uses com.marklogic.mapreduce.functions.ElemAttrValueCooccurrences (a wrapper
around cts:element-attribute-value-co-occurrences) to find all href attributes which occur
along with title attributes in side anchor tags. The attribute range indexes created in “Additional
Sample Data Setup” on page 103 support this operation. The map input key-value pairs are (Text,
Text) pairs where the key is the href and the value is the title.

Note: Before running the sample, follow the instructions in “Additional Sample Data
Setup” on page 103.

This example uses the following configuration file. You should have a copy of this config file in
your working directory, modified as described in “Modify the Sample Configuration Files” on
page 101.

marklogic-lexicon.xml

Use the following command to run the example job, with suitable substitutions for
$CONNECTOR_HOME, HDFS_OUTPUT_DIR, and the connector version:

hadoop jar \
 $CONNECTOR_HOME/lib/marklogic-mapreduce-examples-version.jar \
 com.marklogic.mapreduce.examples.LinkCountCooccurrences \
 -libjars $LIBJARS marklogic-lexicon.xml HDFS_OUTPUT_DIR

To view the results, examine the results in HDFS_OUTPUT_DIR, as described in “Interacting with
HDFS” on page 105. For example, if you use /home/you/lc for HDFS_OUTPUT_DIR:

MarkLogic Server Using the Sample Applications

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 114

$ hdfs dfs -ls /home/you/lcco
... part-r-00000
$ hdfs dfs -cat /home/you/lcco/part-r-00000 | grep “^Aristotle”
Aristotle 5

Each topic title is followed by a reference count. The raw output differs from the results for the
LinkCountInDoc and LinkCountInProperty examples because LinkCountCooccurrences generates
counts for all references, rather than only for documents in the database.

7.4.7 RevisionGrouper
This sample application demonstrates using KeyValueOutputFormat and a custom output query.
The sample places each document in a collection of Wikipedia articles into a collection, based on
the year the article was last revised. The sample uses MarkLogic Server for input and output. The
job has no reduce phase.

Note: Before running the sample, follow the instructions in “Additional Sample Data
Setup” on page 103

The map function input key-value pairs that are the revision timestamp nodes matching the XPath
expression fn:collection()//wp:revision/wp:timestamp, using the expression in
mapreduce.marklogic.input.subdocumentexpr. These nodes are of the form:

<timestamp>2007-09-28T08:07:26Z</timestamp>

The map function picks the year (2007) off the timestamp and generates output key-value pairs
where the key is the document URI as a string and the value is the year as a string. Each pair is
then passed to the output query defined in mapreduce.marklogic.output.query, which adds the
document named in the key to a collection named after the year.

This example uses the following configuration file. You should have a copy of this config file in
your working directory, modified as described in “Modify the Sample Configuration Files” on
page 101.

marklogic-nodein-qryout.xml

Use the following command to run the example job, with a suitable substitution for
$CONNECTOR_HOME and the connector version:

hadoop jar \
 $CONNECTOR_HOME/lib/marklogic-mapreduce-examples-version.jar \
 com.marklogic.mapreduce.examples.RevisionGrouper \
 -libjars $LIBJARS marklogic-nodein-qryout.xml

To view the results, use Query Console to explore the hadoop-samples database. You should see
the documents are now in collections based on the year in which they were revised. Alternatively,
run a query similar to the following to see a list of documents in the collection for the year 2009:

MarkLogic Server Using the Sample Applications

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 115

xquery version "1.0-ml";
for $d in fn:collection("2009")
return xdmp:node-uri($d)

7.4.8 BinaryReader
This sample application demonstrates using the mapreduce.marklogic.output.bindsplitrange
configuration property with advanced input mode. The sample extracts the first 1K bytes from
each (binary) document in a database and saves the result in HDFS. The sample uses MarkLogic
Server for input and HDFS for output. The sample has no reduce phase.

The input query defined in marlogic-subbinary.xml uses the splitstart and splitend external
variables provided by the MarkLogic Connector for Hadoop to optimize input query performance.
For details on this feature, see “Optimizing Your Input Query” on page 56.

The sample requires a database containing one or more binary documents, and an XDBC App
Server. Since the sample assumes all documents in the database are binary documents, you should
not use the database and content set up in “Additional Sample Data Setup” on page 103.

Follow these steps to set up the BinaryReader sample application:

1. Create a MarkLogic Server database to hold the input data.

2. Create an XDBC App Server and attach it to the database created in Step 1. You may use
any root.

3. Edit the configuration file marklogic-subbinary.xml to configure the job to use the App
Server created in Step 2. For details, see “Modify the Sample Configuration Files” on
page 101.

4. Run the sample using the following command, substituting an appropriate value for
HDFS_OUTPUT_DIR and the connector version:

hadoop jar \
 $CONNECTOR_HOME/lib/marklogic-mapreduce-examples-version.jar \
 com.marklogic.mapreduce.examples.BinaryReader \
 -libjars $LIBJARS marklogic-subbinary.xml HDFS_OUTPUT_DIR

If using standalone Hadoop, view the results in HDFS_OUTPUT_DIR. If using pseudo-distributed or
fully-distributed Hadoop, view the results using the Hadoop hdfs command. For example:

$ hdfs dfs -ls HDFS_OUTPUT_DIR

MarkLogic Server Using the Sample Applications

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 116

7.4.9 ContentReader
This sample application writes documents in a MarkLogic Server database to the HDFS file
system, using an SSL-enabled connection to MarkLogic Server. The input database is the
database associated with your XDBC App Server. This sample uses MarkLogic Server for input
and HDFS for output.

Note: This sample copies the entire contents of the database to HDFS. Choose a target
database accordingly, or modify the sample’s configuration file to limit the
selected documents.

This example uses the following configuration file. You should have a copy of this config file in
your working directory, modified as described in “Modify the Sample Configuration Files” on
page 101.

marklogic-docin-textout.xml

Before running the sample, configure your XDBC App Server and Java environment to use SSL.
For details, see “Making a Secure Connection to MarkLogic Server with SSL” on page 13. You
might need to import the MarkLogic Server self-signed certificate into your JRE default keystore
using the Java keytool utility. See the Java documentation for details on adding certificates to the
default keystore.

Run the sample as follows, substituting appropriate paths for $CONNECTOR_HOME, HDFS_OUTPUT_DIR.
and the connector version.The output directory must not already exist.

hadoop jar \
 $CONNECTOR_HOME/lib/marklogic-mapreduce-examples-version.jar \
 com.marklogic.mapreduce.examples.ContentReader \
 -libjars $LIBJARS marklogic-docin-textout.xml HDFS_OUTPUT_DIR

If using standalone Hadoop, view the results in ~/HDFS_OUTPUT_DIR. If using pseudo-distributed or
fully-distributed Hadoop, view the results using the Hadoop hdfs command. For example:

$ hdfs dfs -ls HDFS_OUTPUT_DIR
$ hdfs dfs -tail HDFS_OUTPUT_DIR/part-m-00000

7.4.10 ContentLoader
This sample application loads files in an HDFS directory into a MarkLogic Server database as
documents. The destination database is the database associated with your XDBC App Server. The
sample uses HDFS for input and MarkLogic Server for output. This sample is a map-only job.
That is, there is no reduce step.

This example uses the following configuration file. You should have a copy of this config file in
your working directory, modified as described in “Modify the Sample Configuration Files” on
page 101.

marklogic-textin-docout.xml

MarkLogic Server Using the Sample Applications

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 117

Follow these steps to run the ContentLoader sample application:

1. Select the text, XML, or binary files to be loaded into the database.

2. If using Hadoop standalone, create an input directory in your home directory to hold the
input files. For example:

$ mkdir ~/input_dir

3. If using Hadoop pseudo- or fully-distributed, create an input directory in HDFS to hold the
input files. For example:

$ hdfs dfs -mkdir input_dir

4. Copy the input files into the input directory created in Step 2 or Step 3. For example:

$ cp your_input_files ~/input_dir # standalone
$ hdfs dfs -put your_input_files input_dir # distributed

5. If your input content is not XML, edit marklogic-textin-docout.xml to set the output
content type. For example, to load binary files, add:

<property>
 <name>mapreduce.marklogic.output.content.type</name>
 <value>binary</value>
</property>

6. Run the sample application, substituting appropriate paths for $CONNECTOR_HOME,
input_dir, and the connector version:

hadoop jar \
 $CONNECTOR_HOME/lib/marklogic-mapreduce-examples-version.jar \
 com.marklogic.mapreduce.examples.ContentLoader \
 -libjars $LIBJARS marklogic-textin-docout.xml input_dir

7. Using Query Console, explore the database associated with your XDBC App Server and
observe that the input files appear as documents in the database.

The document URIs in the database correspond to the HDFS path. For example, if one of the
input documents is located in HDFS on samples.marklogic.com as /user/guest/data/file1.xml,
then the document URI in the database is:

hdfs://samples.marklogic.com/user/guest/data/file1.xml

If you receive an error similar to the following, then you must change the directory creation
database configuration setting to “manual”.

java.lang.IllegalStateException: Manual directory creation mode is
required.

MarkLogic Server Using the Sample Applications

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 118

7.4.11 ZipContentLoader
This sample application loads the contents of zip files in an HDFS directory into a MarkLogic
Server database as documents. The destination database is the database associated with your
XDBC App Server. The sample uses HDFS for input and MarkLogic Server for output. This
sample is a map-only job. That is, there is no reduce step.

This example uses the following configuration file. You should have a copy of this config file in
your working directory, modified as described in “Modify the Sample Configuration Files” on
page 101.

marklogic-textin-docout.xml

Follow these steps to run the ZipContentLoader sample application:

1. Create one or more zip files containing text, XML, or binary files.

2. If using Hadoop standalone, create an input directory in your home directory to hold the
zip input files. For example:

$ mkdir ~/zip_input_dir

3. If using Hadoop pseudo- or fully-distributed, create an input directory in HDFS to hold the
input files. For example:

$ hdfs dfs -mkdir zip_input_dir

4. Copy the input zip files into the input directory created in Step 2 or Step 3. For example:

$ cp your_input_files ~/zip_input_dir # standalone
$ hdfs dfs -put your_data.zip zip_input_dir # distributed

5. If your zip file content is not XML, set the output content type in
marklogic-textin-docout.xml. For example, to load binary files, add:

<property>
 <name>mapreduce.marklogic.output.content.type</name>
 <value>binary</value>
</property>

6. Run the sample application, substituting appropriate paths for $CONNECTOR_HOME,
zip_input_dir, and the connector version:

hadoop jar \
 $CONNECTOR_HOME/lib/marklogic-mapreduce-examples-version.jar \
 com.marklogic.mapreduce.examples.ZipContentLoader \
 -libjars $LIBJARS marklogic-textin-docout.xml zip_input_dir

MarkLogic Server Using the Sample Applications

MarkLogic 9—May, 2017 MarkLogic Connector for Hadoop Developer’s Guide—Page 119

7. Using Query Console, explore the database associated with your XDBC App Server and
observe that the zip file contents appear as documents in the database.

The document URIs in the database correspond to the paths within the zip file. For example, if the
zip file contents are rooted at a folder named “enwiki”, and that folder contains a file named
“Wisconsin”, then the resulting document URI is:

enwiki/Wisconsin

If you receive an error similar to the following, use the Admin Interface to change the directory
creation database configuration setting to “manual”:

java.lang.IllegalStateException: Manual directory creation mode is
required.

MarkLogic Server Technical Support

MarkLogic 9

8.0 Technical Support
120

MarkLogic provides technical support according to the terms detailed in your Software License
Agreement or End User License Agreement.

We invite you to visit our support website at http://help.marklogic.com to access information on
known and fixed issues, knowledge base articles, and more. For licensed customers with an active
maintenance contract, see the Support Handbook for instructions on registering support contacts
and on working with the MarkLogic Technical Support team.

Complete product documentation, the latest product release downloads, and other useful
information is available for all developers at http://developer.marklogic.com. For technical
questions, we encourage you to ask your question on Stack Overflow.

http://help.marklogic.com/
https://stackoverflow.com/questions/tagged/marklogic
http://developer.marklogic.com
http://www.marklogic.com/files/Mark_Logic_Support_Handbook.pdf

MarkLogic Server Copyright

MarkLogic 9

9.0 Copyright
999

MarkLogic Server 9.0 and supporting products.
Last updated: April 28, 2018

COPYRIGHT
Copyright © 2018 MarkLogic Corporation. All rights reserved.
This technology is protected by U.S. Patent No. 7,127,469B2, U.S. Patent No. 7,171,404B2, U.S.
Patent No. 7,756,858 B2, and U.S. Patent No 7,962,474 B2, US 8,892,599, and US 8,935,267.

The MarkLogic software is protected by United States and international copyright laws, and
incorporates certain third party libraries and components which are subject to the attributions,
terms, conditions and disclaimers set forth below.

For all copyright notices, including third-party copyright notices, see the Combined Product
Notices for your version of MarkLogic.

	MarkLogic Connector for Hadoop Developer’s Guide
	Table of Contents
	1.0 Introduction to MarkLogic Connector for Hadoop
	1.1 Terms and Definitions
	1.2 Overview
	1.2.1 Job Building Tools Provided by the Connector
	1.2.2 Input and Output Selection Features
	1.2.3 MarkLogic Server Access via XDBC App Server

	1.3 MarkLogic-Specific Key and Value Types
	1.4 Deploying the Connector with a MarkLogic Server Cluster
	1.4.1 Relationship of MarkLogic Server to a Hadoop Cluster
	1.4.2 Jobs Use In-Forest Evaluation
	1.4.3 Using the Pre-Configured XDBC App Server on Port 8000
	1.4.4 Cluster-wide XDBC Configuration Requirements

	1.5 Making a Secure Connection to MarkLogic Server with SSL

	2.0 Getting Started with the MarkLogic Connector for Hadoop
	2.1 Requirements
	2.1.1 Required Software
	2.1.2 Security Requirements for MapReduce Jobs

	2.2 Installing the MarkLogic Connector for Hadoop
	2.3 Configuring Your Environment to Use the Connector
	2.4 Running the HelloWorld Sample Application
	2.4.1 Selecting the App Server and Database
	2.4.2 Loading the Sample Data
	2.4.3 Configuring the Job
	2.4.4 Running the Job

	2.5 Making the Connector Available Across a Hadoop Cluster
	2.6 Accessing the Connector Source Code
	2.7 Organization of the Connector Distribution

	3.0 Apache Hadoop MapReduce Concepts
	3.1 MapReduce Overview
	3.2 Example: Calculating Word Occurrences
	3.3 Understanding the MapReduce Job Life Cycle
	3.3.1 Job Client
	3.3.2 Job Tracker
	3.3.3 Task Tracker
	3.3.4 Map Task
	3.3.5 Reduce Task

	3.4 How Hadoop Partitions Map Input Data
	3.5 Configuring a MapReduce Job
	3.5.1 Configuration Basics
	3.5.2 Setting Properties in a Configuration File
	3.5.3 Setting Properties Using the Hadoop API
	3.5.4 Setting Properties on the Command Line
	3.5.5 Configuring a Map-Only Job

	3.6 Running a MapReduce Job
	3.7 Viewing Job Status and Logs

	4.0 Using MarkLogic Server for Input
	4.1 Basic Steps
	4.1.1 Identifying the Input MarkLogic Server Instance
	4.1.2 Specifying the Input Mode
	4.1.3 Specifying the Input Key and Value Types
	4.1.4 Defining the Map Function

	4.2 Basic Input Mode
	4.2.1 Creating Input Splits
	4.2.2 Using a Lexicon to Generate Key-Value Pairs
	4.2.3 Using XPath to Generate Key-Value Pairs
	4.2.4 Example: Counting Href Links

	4.3 Advanced Input Mode
	4.3.1 Creating Input Splits
	4.3.2 Creating Input Key-Value Pairs
	4.3.3 Optimizing Your Input Query
	4.3.4 Example: Counting Hrefs Using Advanced Mode

	4.4 Using KeyValueInputFormat and ValueInputFormat
	4.4.1 Overview
	4.4.2 Job Configuration
	4.4.3 Supported Type Transformations
	4.4.4 Example: Using KeyValueInputFormat

	4.5 Configuring a Map-Only Job
	4.6 Direct Access Using ForestInputFormat
	4.6.1 When to Consider ForestInputFormat
	4.6.2 Limitations of Direct Access
	4.6.3 Controlling Input Document Selection
	4.6.4 Specifying the Input Forest Directories
	4.6.5 Determining Input Document Type in Your Code
	4.6.6 Where to Find More Information

	4.7 Input Configuration Properties
	4.8 InputFormat Subclasses
	4.9 Lexicon Function Subclasses

	5.0 Using MarkLogic Server for Output
	5.1 Basic Steps
	5.1.1 Identifying the Output MarkLogic Server Instance
	5.1.2 Configuring the Output Key and Value Types
	5.1.3 Defining the Reduce Function
	5.1.4 Disabling Speculative Execution
	5.1.5 Example: Storing MapReduce Results as Nodes

	5.2 Creating a Custom Output Query with KeyValueOutputFormat
	5.2.1 Output Query Requirements
	5.2.2 Implementing an XQuery Output Query
	5.2.3 Implementing an JavaScript Output Query
	5.2.4 Job Configuration
	5.2.5 Supported Type Transformations

	5.3 Controlling Transaction Boundaries
	5.4 Streaming Content Into the Database
	5.5 Performance Considerations for ContentOutputFormat
	5.5.1 Time vs. Space: Configuring Batch and Transaction Size
	5.5.2 Time vs. Correctness: Using Direct Forest Updates
	5.5.3 Reducing Memory Consumption With Streaming

	5.6 Output Configuration Properties
	5.7 OutputFormat Subclasses

	6.0 Troubleshooting and Debugging
	6.1 Enabling Debug Level Logging
	6.2 Solutions to Common Problems
	6.2.1 Configuration File Not Found
	6.2.2 XDBC App Server Not Reachable
	6.2.3 Authorization Failure

	7.0 Using the Sample Applications
	7.1 Set Up for All Samples
	7.1.1 Install Required Software
	7.1.2 Configure Your Environment
	7.1.3 Copy the Sample Configuration Files
	7.1.4 Modify the Sample Configuration Files

	7.2 Additional Sample Data Setup
	7.2.1 Creating the Database
	7.2.2 Creating the XDBC App Server
	7.2.3 Loading the Data

	7.3 Interacting with HDFS
	7.3.1 Initializing HDFS
	7.3.2 Accessing Results Saved to HDFS
	7.3.3 Placing Content in HDFS to Use as Input

	7.4 Sample Applications
	7.4.1 HelloWorld
	7.4.2 LinkCountInDoc
	7.4.3 LinkCountInProperty
	7.4.4 LinkCountValue
	7.4.5 LinkCount
	7.4.6 LinkCountCooccurrences
	7.4.7 RevisionGrouper
	7.4.8 BinaryReader
	7.4.9 ContentReader
	7.4.10 ContentLoader
	7.4.11 ZipContentLoader

	8.0 Technical Support
	9.0 Copyright
	COPYRIGHT

