MarkLogic Server

Java Application Developer’s Guide

MarkLogic 10
May, 2019

Last Revised: 10.0, May, 2019

Copyright © 2019 MarkLogic Corporation. All rights reserved.

MarkLogic Server Table of Contents

Table of Contents

Java Application Developer’s Guide

1.0 Introduction tothe JAVA AP ...t 12
1.1 JavaClient APl OVEIVIEWc.ooiiiiiiiiieie et s 12
1.2 JavaClient APl OF JAVAXCC?ooiiiieieee ettt 13
IR T €= 1 (] 10 S = (= o [P 14

1.3.1 RequIred SOftWEIEccccoiieiiiiesieeie et 14

1.3.2 MaketheLibraries Available to Your Applicationcccccevveverenenene 14

1321 ZIPFIIE et 14

1.3.2.2 MAVEN ..t 15

1.3.2.3 Gratle ..ot e 15

1.3.3 Choose @aREST API INSLANCEccviveiieieiiiesiesese e 15

1.3:4 CrEal@USENS ..ottt r e n e ae e n e ae e 16

1.35 EXplorethe EXaMPIES ... 16

1.4 Creating, Working With, And Releasing a Database Clientcccccccevveiieenee. 17
141 TheRoleof aDatabase Clientccccoooiiiiiiiiieneseeee e 17

1.4.2 Expected Database Client LIfelimecccooeierinenenenereeeeseseseee 17

1.4.3 Connection Management and Configurationccccceccevveeveicieveeiennns 17

1.4.4 Creating aDatabase ClHENtccoooeeiiiieiiniiseere e 18

1.45 Connecting Through aLoad BalanCercccocevenenineneneneseseeeee 19

146 ReleasingaDatabase Clientccccoveiiiieiecie e 19

1.5 Authentication and CONNECLION SECUMLYc.coeeveeierieriinierie e 20
15.1 Creating a SecurityContext ODJECEcccooiviniiirireee e 20

1.5.2 Using Kerberos AUthenticationccccccveceieevesieseece e 20

1521 Configuring MarkLogic to Use Kerberoscccveevenieenennnn. 21

1.5.2.2 Configuring Your Client Host for Kerberoscccccocevveinnnen. 21

1.5.2.3 Creating a Database Client that Uses Kerberoscccceeuneee.. 22

1.5.3 Connecting to MarkLogiC With SSLcccooiiieiinereeeseeree e 22

154 Using SAML AUhENTICATIONcoveiveriieiieieieiesese e 24

1.6 A Basic“HelloWorld” Method ... 26
17 DocUMENE MENAGENSeeeiiiieiiiie et ne e snee e 26
1.8 SIIEAMING ..oviieiitiiiiiieeieie ettt bt e e et b sre b e 27
1.9 Using Handlesfor Input and OULPULcceceeiiieiieieesece e 27
1.9.1 HaNAIE OVEIVIEW ...c..ooiiiiiiieieee ettt st ee s 27

1.9.2 Specifying Content FOMMELcccooeiirerenenieee e 29

1.9.3 Handle Type QUICK REFEIENCEcoovveieiieieceeeee e 29

194 Handle EXAMPIEooeiiiiiee et 30

1.10 Shortcut Methods as an Alternative to Creating Handlesccccccecvveevveiecnnene 31
1.10.1 Understanding Shortcut Methodscccoooeiieveiiesececeee e 31

1.10.2 When to Choose Strongly Typed Over ShOrtCutccccoeceevvreeneeinnenne 32

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 2

MarkLogic Server Table of Contents

1.10.3 Extending Shortcuts by Registering Handle Factories ... 33

1.11 Thread Safety Of the JAVAAPIcoooeeeee e 34
1.12 Downloading the Library Source Codec.ccoovreereniineeninne e 34
2.0 Single Document OPEralionSccciveeeireeiieeiiieesieesrreeseesreesreesreesressseenns 36
2.1 DOCUMENE CrEAIONooueieieieeiie ettt be e ee e sbe e neebesneenaeas 36
211 Writing an XML or JISON Document To The Databasecccccceveenee. 37

2.1.2 Creating a Text Document In the Databaseccccccevveveececeececcie e 38

2.1.3 Automatically Generating Document URIScccooviiineninnnneeienee 39

2.1.4 Format-Specific Write Capabilitiescccoviririienirieeeee e 40

2.2 DOCUMENT DEIBLIONocviiiiieiiieiieie et 40
2.3 Reading DocUmMENt CONLENTcceeiiriierierieeie et eas 41
24 Writing A Binary DOCUMENTcoeriririieieiesiesiese et 43
25 Reading Content From A Binary DOCUMENTcccceeieiicie e 43
2.6 Reading, Modifying, and Writing Metadatacccooceiiinnennene e 43
2.6.1 Document MEtaOalalcceveeriererieeiesieseese e see e 44

2.6.2 Reading Document Metadatacccceieeiieeieiiesecce e 44

2.6.3 CollectionsS Metadatalccceevuereerieriienieseee e 46

2.6.4 VaAUESMEAHAAcceeeeeeieiieie e 47

2.6.5 PropertiesSMetadatalccccceeiiiieiiiie e e 48

2.6.6 Quality MEtadatacooeeieriierieeie e e 48

2.6.7 PermisSiONS MEtadalalcccevereererieniesieeie e eee e 49

2.6.8 Manipulating Document Metadata In Y our Applicationcoc....... 49

2.6.9 WIriting Metadatacccoeeeiieriieeie et 50

2.7 Working with Temporal DOCUMENEScccoveririrenieieeeee e 50
2.8 Conversion of Document ENCOINGccvevveiiriieiieiee et 51
2.9 Partialy Updating Document Content and Metadataccccceeveeiieecieccieenen, 53
2.9.1 Introduction to Content and Metadata PatChingccocevvveienenicniene. 54

2.9.2 Basic Stepsfor Patching Documents and Metadatacccceevvveeeneee. 56

2.9.3 Construct a Patch From Raw XML 0Or JSONcccooivinneninneereeee e 58

2.9.4 Defining the Context for aPatch Operationccoceeeieierenenencrenne 60

2.9.5 Example: Replacing Parts of @ JSON Documentccceveeeeeeenveevevnnne 60

2.9.6 Example: Patching Metadataccoooeeeeieeiinieneee e 61

2.9.7 Managing XML Namespacesin aPatChcccoovvririiiineneniicnee 65
2.9.7.1 Defining Namespaces With aBuildercccooevveieivciecnnene, 66

2.9.7.2 Defining Namespacesin Raw XMLccooeiiriiiiineniinneee, 67

2.9.8 Construct Replacement Data on the SErvercoccvvcevveceneene e 67

3.0 Synchronous Multi-Document Operationsccccceeveerveeereeneeseeesesseeenns 70
31 Write MUItiple DOCUMENESccoiuiriiiiiriieieiesienie st 70
3.1.1 Overview of Multi-Document WIteccoceveriirieniinenieieeesee e 70

3.1.2 Example: Loading Multiple DOCUMENLScccererrieneenienieneeniee e 72

3.1.3 Understanding Metadata SCOPINGccereereeerrrreereeieeseesseseeseesseseesseenes 73

3.1.4 Understanding When Metadata is Preserved or Replaced 76

3.1.5 Example: Controlling Metadata Through Defaultsccccooeeeiiriinnne 77

MarkLogic 10—May, 2019 Java Application Developer’'s Guide—Page 3

MarkLogic Server Table of Contents

4.0

3.1.6 Example: Adding Documentsto aCollectioncccoceevvceenvnienennenne. 80

3.1.7 Example: Writing aMixed Document Setcccoceveeveneenecceseerieeen 81

3.2 Read Multiple Documents by URIcooiiiiiiiieeee s 83
3.3 Read Multiple Documents Matching @ QUENYccceoererirerieeieeesee e 84
3.3.1 Overview of Multi-Document Read by QUENYccceveeveecvcieneeee e 84

3.3.2 Example: Read Documents Matching a QUENYccccoveevieneenieenienenneeenes 85

3.3.3 Add Query Optionsto 8 Searchccooevererinineneeeeeeee e 87

3.34 Return Search RESUILSccooiiiiicee s 88

3.3.5 Read Documents Incrementallycccooereeiinienenieneeseee e 88

3.3.6 Extracting a Portion of Each Matching Documentccccocevevininienne. 89

34 Apply aRead Transformationcccceoeeieiieiieie e 90
35 Seecting aBalCh SIZEoc.ooiiiee s 91
Asynchronous Multi-Document Operationsccccceeveeecveeseesieeeseesineenn 92
41 Termsand DEfINITIONScccoooiiriiiieieee e et 93
4.2 DataMovement FEatUre OVEIVIEWccocereeeerieenieseeseeeesseeseesessseensesseessessees 9
4.3 Data Movement CONCEPLScccveiiiieeiiiie i e s srr e snee s 95
4.3.1 Summary of Key Classes and INterfacesccocovvevenenenneneneeie e 96

4.3.2 Basic DataMovement Job Life CyCle ... 96

G TR TN o o N Y/ o 1= <SS 98
4331 WIIEJIOD ..o 98

4.3.3.2 QUENY JOD oo 99

4.3.4 Object Lifetime CoNSIderationsccccoeeveeveeiesieeseeie e eee e 101

4.35 How Work isDistributed ACross a CIUSLEYccoceevevieieniiereereeeeens 101

4.4 Creating and Managing aWrite JODccceieeiiienenenerereeeseeee s 102
4.4.1 Creating aBatcher and Configuring aWrite Jobccccoeevevecieciene, 103

4.4.2 Attaching Listenersto aWrite JObccccoveeiiiieninie e 103

4.4.3 Starting aWrte JODcovoieiie e 104

4.4.4 Adding Documents and Metadatato aJobcccceeeeveiceiicceceecee, 104

445 Stopping aWITE JOD ..o 105

4.4.6 Write Job Performance Considerationscccocvevereereeieeseeneeseeseennens 107

44.6.1 BaCh SIZE ...oceiiiiiiicieee e 107

4.4.6.2 Thread COUNtccoooiiierieeereeree et e 108

4.4.6.3 Work Item INPULt RALEccooiieiieeereee e 108

4.4.6.4 LiStener DESIONccoveeeiiieieceeseete et 108

4.4.7 Example: Loading Documents From the Filesystemccccoecevenennee. 108

45 Creating and Managing a QUENY JODccccveiiiiiininisereeeee s 110
45.1 Creating and ConfiguringaQuery Jobccccevveveieecece e, 110

45.2 Attaching Listenersto aQuery Jobcocoveoiiniiiiii e 112

453 Starting @ QUENY JODooueiieiiieieieseie e 113

4.5.4 Stopping @ QUENY JODccoueeieiieiieie e e et 113

455 Using aConsistent SNAPSNOLcocueveeieriiriiereeee e 114

4551 WhentoUseaConsistent Snapshotcccceveevvneenecceeneenne 115

4552 How toUseaConsistent SNapshotcccceeeveevecceesieccieennene 115

4553 TheProblem Solved by a Consistent Snapshotccc....... 115

4.5.6 Performance Considerationsfor Query JobScccccvveeeverieneereseennns 117

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 4

MarkLogic Server Table of Contents

5.0

45.6.1 BaCh SIZE ...coeciceceeeceeeee e 117

45.6.2 Thread COUNLccceeeririeieiere st 118

4.5.6.3 LiStener DESIONcccviieiiiiieiieieeie et 118

4.6 Reading Documents from MarkLOGICccooveiueniiriinieniineneeeeee e 118
4.6.1 Using ExportListener to Read DOCUMENLSccccevveereeeeeseenieeeeneeenee 119

4.6.2 Using ExportToWriterListener to Read Documentsccccceeeveevennee 120

4.6.3 Example: Exporting Documents that Match aQuerycccceecvvvennennen. 122

4.7 Applying an In-Database Transformationccceeeveieereciecieese e 124
4.7.1 Applying an In-Database Transformation with QueryBatcher 124

4.7.2 Example: Applying an In-Database Transformationc.ccoeveenennene 127

4.8 Deleting Documents from aDatabaseccccevveeevieeiieveesece e 129
4.9 Applying aRead or Write Transformationc.ccoeeeeereenienieneesesie e siesens 130
V0 (O TN o o 0 i o) ISP 131
4.10.1 Checkingthe Statusof aJobcccocceeiiriiiieie e 131

4.10.2 Pausing and Restarting 8Jobcccccveeereriinienieesee e 132

4.10.3 Graceful Termination Of 8Jobcccccvveeiirieniere e 132

4.10.4 Terminating aJob Prematurelyccccoeoveeieeie e 133

4.10.5 Updating Forest Configuration for aJobccccoeveiiiiiniinieienen 133

4.10.6 Working with aLoad BalanCerccoevinininineneeeeceese e 134

4.10.7 Restrictingthe Hosts Used by @Jobccccceveeieiiiesicce e, 134

411 Falover HAaNAIINGooooiiiiiiieee ettt 135
4.11.1 Default Failover Handlerccoooeiiieieeie e 135

4.11.2 Failover When Connecting Through aLoad Balancerccccceu....... 136

4.11.3 Interaction with In-Database Transformccocevvveneniencenesce e 136

4.11.4 Failover Handling in Custom LiStENErSccceoevenerenereninieseeeeeenens 137
4.11.4.1 AIWAYSRELIY ..oooeeeeceeceee e 138

4.11.4.2 Conditionally REIYcooeiiiiiiieieeeee e 139

412 WOrKing With LISEENENSceovieiieriesiiiiesieeie et 140
4.12.1 Guidelinesfor Creating LIStENErSccvcvvevievecieceese e 140

4.12.2 Attaching Multiple Listenersto aJobc.cccoceierinnennenieneeneeieseee 141

4.12.3 Removing or Replacing aLiStenerccovvivininienieieesesese e 141

413 ARErNAiVe INLEITACESccoeeiee e 142
S (o T S 144
5.1 Overview of Search Usingthe JAVaAPIccccooeiiiieceece e 144
5.2 Using SearchHandle to Examine Query ReSUILSccoceviriininienieneeien 145
53 Search Using String Query DefiNItioNcccooeiiiirineninieeeieesee e 146
54 Search Documents Using Structured Query Definitionccccceveceeveccienneene 147
54.1 Waysto Create a Structured QUENYccooeereeiieneenieeiesee e 147

5.4.2 Basic Stepsto Define a Structured Query Definitioncccccevceeveennnne 147

5.4.3 Creating a Structured Query From Raw XML or JSONccccceeveenene 148

5.4.4 Structured Query EXamPpPlescocooiiieiininiere e 149
54.4.1 Example: Date Range Structured QUErYccccceevvreerieeiennnens 152

54.4.2 Example: Element Index Structured Querycccceeveevnenen. 152

5.4.4.3 Example: Document Property Structured Query 153

5.4.4.4 Example: Directory Structured QUENYcccooveveveereeeeniennn. 154

MarkLogic 10—May, 2019 Java Application Developer’'s Guide—Page 5

MarkLogic Server Table of Contents

6.0

54.45 Example: Document Structured QUENYcccevcvveeneeienseene. 154

54.4.6 Example: JISON Property Structured QUErYc.ccevveeervenen. 155

5.4.4.7 Example: Collection Structured QUEYccccoecvveeieneeniennn. 156

55 Prototype aQuery Using Query By EXample ... 156
551 What iSQBE ..o 157

5.5.2 Search Documents USINg @ QBEccccoooiiiieiineneeeeeee e 157

55.3 Vaidale @ QBEccccooiiieieeiceeieieee e 159

5.5.4 Convert aQBE toaCombined QUENYcccccevereeieeieeieeseese e 159

5.6 Apply Dynamic Query Optionsto Document Searchesccccceceeveeiiiecinene, 159
5.6.1 Searching Using Combined QUENYcccooiririrereniinieeesesesee e 160

5.6.2 Creating a Combined Query Using StructuredQueryBuilder 164

5.6.3 Interaction with Persistent Query Optionsccccoveereneeneeneeseeneninnns 164

5.6.4 Combined Query EXampPlesSccoceieiiiiiineneneree e 166
5.6.4.1 Example Structured and String QUENYcccccveeeevieecieceesieenen, 166

5.6.4.2 Example: ctsand String QUENYcccceveeieneenenieeseenieseesieenens 167

5.6.4.3 Shared Scaffolding for Combined Query Examples 168

5.6.5 Performance CONSIAErationscccoeveererereneneseseseseeseesee e seesseseens 170

5.7 Search On Tuples (Tuples Query / VAUES QUENY)ccceevvverreniinieie e 170
5.7.1 VaAlUES SEAICN ..ocuecieiiee ettt snenne s 171

5.7.2 TUPIES SEAICR ..ottt et et ne e 171

5.7.3 Adding aConstraiNing QUENYccccereerieriereesieseesieesie e siessesseeseesneens 172

5.8 Limiting A Search To Specific Collections And/Or A Directorycccceeveee. 173
5.9 Searching Values Metadata Fieldsccceveeieieece e 173
5.10 Transforming Search RESUILScocuiiiiiiiinice e 173
5.10.1 Writing a Search Result Transformccccoeveninenineeeseeeseseesieee 173

5.10.2 Using a Search Result Transformcccceeceveeiecieeseece e 174

511 s Generating Search Term Completion Suggestions 175
TN I ST S o 1= oSS 175

5.11.2 Example: Generating Search SUQQESLIONSccccceveerieeieesiesiesee e 176
5.11.2.1 Initidlizethe Databasecccoceevereeniniene e 176

5.11.2.2 Install QUEry OPLIONScccoveriirieiirinieieee e 178

5.11.2.3 Get Search SUQQESLIONSccccoveeeeiieieeeeseere e 180

5.11.3 Whereto Find More INformationccecceveeienieneeneseesee e see s 180

5.12 Extracting a Portion of Matching DOCUMENTScccooererereniniieiesese e 180
5.12.1 Overview of EXIraClionc.ccceiriiriniieiine e 181

5.12.2 Basic Stepsfor Search Match EXractioncocceveeevineneninncenenene 182

5.12.3 Example: Extracting a Portion of Each Matching Document 184
QUENY OPLIONSveeereeiieeieesiteesteesteeetee et e sseesre e ssaeebeesseeereesnseeseesneeenes 190
6.1 USING QUENY OPLIONS ...c.veiuiriieiieiieieite ettt se e sre e ens 190
6.2 Default QUENY OPLIONScceeiiiieciieie ettt r e re s 191
6.3 Using QueryOptionsManager To Delete, Write, and Read Options 192
6.4 Using Query Options With SEarchcccccveveveiiece e 193
6.5 Creating Persistent Query Options From Raw JSON or XMLccccccevevennee. 193
6.6 Validating Query Options With setQueryOptionValidation()cccccerererruenne 195

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 6

MarkLogic Server Table of Contents

7.0

8.0

9.0

Working With Semantic Datacccceeiieiieeiie e 196
7% R 11 oo [F o o o TSR 196
7.2 Overview of CoOmmON SEMANLIC TASKSccccervereerierierieniesieseseeee e 197
7.3 Creating and Managing Graphsccccceeveieeiecie et 198
7.3.1 GraphManager Interface SUMMArYcccccoveriineenienienie e 198

7.3.2 Creating a GraphManager ODJECtccceveeverieviere e 199

7.3.3 Specifyingthe Triple FOrmatccccoveveiieierie e 199

7.3.4 Creating or Overwriting a Graph ..o 200

7.3.5 Reading Triplesfrom aGraphccccveceveevenie e 202

7.3.6 Replacing Quad Datain Graphsccccoeeevieieieese e 202

7.3.7 Adding Triplesto an EXisting Graphcccceeevenineniinieeesese e 202

7.3.8 Adding Quadsinto an EXisting Graphccccecceveeveeieseesiesieeseeseeseens 203

7.3.9 Deeting @aGraphccccoveieiieieeie e e 203

7.4 Querying Semantic Triples With SPARQLccoiiriiiiinineeeeeeee e 204
7.4.1 Basic Stepsfor SPARQL Query Evaluationccceceveevveieeseenennens 204

7.4.2 Handling QUEry RESUILScoeeieiiee et 205
7421 SELECT RESUILS ...cceeeeiieiiece ettt 205

7.4.2.2 CONSTRUCT and DESCRIBE ReSUILScccooeevieiirnierieine 206

7.4.2.3 ASK RESUILS ...oocviiiiiiciecieee e 207

7.4.3 Defining Variable BiNdiNgScccooeiiinenineneneeeeeeeeee e 207

7.4.4 Limiting the Number of RESUILScccoevereeieeiecereee e 207

7.4.5 Inferencing SUPPOITcceeeieeieieerie et 208

7.4.5.1 Enabling or Disabling Automatic Inferencingc.cccceue.. 208

7.45.2 Associating a Rule Set with aQUENYc.cccvevveceeveeciecieceen, 208

7.5 Querying Tripleswith the OptiC APlooeeiieeceee e 208
7.6 Example: Loading, Managing, and Querying Triplesccccvveieneneneneniens 209
7.7 Using SPARQL Update to Manage Graphs and Graph Datacccecveveneee. 213
7.8 Managing PEMMISSIONScceeiuiiieiieeiesieesieeee st esre et sre e e reeae e e sreeneens 214
7.8.1 Default Graph Permissions and Required Privilegesccccovveienene 214

7.8.2 Setting Graph PErmMiSSIONSccceieeiieiesiere e e esie e e esee e e e sneens 215

7.8.3 Retrieving Graph PEMMISSIONScccoiveeeieeiieiieieesie e seesie e sreesne e 216

7.8.4 Managing Permissions on Unmanaged Triples ... 216

Optic Java API for Relational Operationsccceveeeieeseeeneeseessien s 218
S0 R @ V< V= T S 218
S €1 111 010 S =1 (= o P 218
8.3 JAVAPACKAGESoocveeeiceeece e e e 219
8.4 Structure of the JAVa OPLIC APlcooiiiieeee e 220
8.4.1 Vauesand EXPreSSIONSccccererreeiieesieeieeseessesessseessesseessesssssseessessenns 220

8.4.2 1teMS and SEOUENCESccceevueeeeiieeieceesteeee s steeeesreestesee e e sresneesreenens 221

8.4.3 Atomic Valuesand Nodesin ROWRECOIdcccccvveereneeneennsieennnnnns 221

8.5 EXAMPIES ..o e 221
POJO DataBinding INterfacecccevvieeieere e 226
9.1 DataBinding INterface OVEINVIEWcccccveeiieieieeee e 226

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 7

MarkLogic Server Table of Contents

9.2 Limitations of the Data Binding INterfaceccocvveveninininieeeeseresce 227
9.3 Annotating Y our Object DEfiNItIONccccceveeieieereee e 227
9.4 Saving POJOSIN the Databaseccoceieeriinienierie ettt 229
9.5 Retrieving POJOs from the Database By 1dcccoevininininicecsec e 230
9.6 Example: Saving and Restoring POJOSccovviereecieneesie e 231
9.7 Searching POJOS in the Databaseccocirieririe e 232
9.7.1 Basic Stepsfor Searching POJOSccooiiireniinirieneseeeeee e 233

9.7.2 Full Text Search with StriNg QUENYccvveueeiiiee e 234

9.7.3 Search Using Structured QUENYcccceieriereenenieseerie e 234

9.7.4 How Indexing Affects SEAIChES ... 236

9.7.5 Creating Indexes from ANNOLALIONSccceeeevierieeieece e 236

9.8 Example: Searching POJOSoocoiiiiiiiiiiesieee et s 240
9.8.1 Overview of the EXamMPIeccoveieiiiieeeeeeeeee e 240

0.8.2 SOUICE COURooveiiineeiieiesie ettt sttt st sttt 241
9.8.2.1 Person Class DEfiNitioncccceveveeneniinieneee e 241

9.8.2.2 Name Class DEfiNitioncccoceevvreenenirniene e 242

9.8.2.3 PeopleSearch Class Definitionccccceceveeveeieeveccieceeseene, 243

9.8.3 Exploring the Example QUENTEScevereirieiierie e 246

9.9 Retrieving POJOS INCrementallyccooeieiiiinenesereeeee e 249
9.10 Removing POJOs from the Databasecccccocvveevieieiieiece e 249
9.11 Testing Your POJO Class for Serializabilityccocveiiiiiiininieiieenece e 249
.12 TrouBIESNOOLINGcoueeieiiriete e 250
9.12.1 Error: XDMP-UNINDEXABLEPATHooiiiiiieeeee e 250

9.12.2 Error: XDMP-PATHRIDXNOTFOUNDcccooiiiiiieiiceneeeeeeeene, 250

9.12.3 Unexpected Search RESUILSccooiiiiiiiieeeeeeeee e 250

OO N 1= o 1o R RPSPRS 252
10.1 Alerting Pre-REQUISITESoueiiiiiiesiesieseeee et 252
10.2 AlErting CONCEPLS ..ovveivieieiiecie et cee st et te e e s e e e e reete e e sreeeesne e aeennenreas 252
10.3 Defining Alerting RUIESouiiie e 253
10.3.1 Defining aRule Using RUIEDEFINITIONccovveiiiniininieeeeeee e 253

10.3.2 DefiningaRulein RaW XMLccoooiiiiiiieie e 255

10.3.3 Defining aRulein RawW JSONcccoiiiemiinieneee e 256

10.4 Testing for Matchesto Alerting RUIES ..o 258
10.4.1 BaSIC SEEPS ..veveevieierieeiesiesie st st st ssesee e saesse st st sbesse s et e teseessestesnessens 258

10.4.2 Identifying Input Documents UsSiNg @ QUENYcccccereereriieneeniesienseeene 259

10.4.3 Identifying Input Documents USiNg URISccccovirieiinienincneene 259

10.4.4 Matching Against a Transient DOCUMENtcccceeverveeveenieseeseeiee e 260

10.4.5 Filtering Match RESUILScooviieiiieieneeeeee e e 260

10.4.6 Transforming Alert Match ReSUILScccceiiiiiininineeeeeeeee 260
10.4.6.1 Writing aMatch Result Transformcccoccevvvevvicievicceennn, 261

10.4.6.2 Using aMatch Result Transformccccevevnenincnnceienenne 261

11.0 Transactionsand OptimistiC LOCKINGccocveviieiiieiie e 264
111 Multi-Statement TranSACIONScoveeeereenierieseesiesee st eee e ste e seeseesseeeas 264

MarkLogic 10—May, 2019 Java Application Developer’'s Guide—Page 8

MarkLogic Server Table of Contents

12.0

13.0

14.0

11.1.1 Transactions and the JAVAAPIc.ooceiieieeeeeee e 264
11.1.2 TransaCtion INEITACEcccveiireriniriee e e 266
11.1.3 Starting A TranSaCtiONcoveeiereeiierie e 266
11.1.4 OperationsInside A TranSaCtioNcccceoeeieriieiieierene s 267
11.1.5 Rolling Back A TranSaCtioNc.ccccceeveereeieeieseeseseeseeseesee e eee e 267
11.1.6 Committing A TranSACIONccoeeeiierierieeie e 268
11.1.7 Cookbook: Multistatement TranSaCtioncccocvevereeerenreeseenessenseeens 268
11.1.8 Transaction Management When Using aLoad Balancer 268
11.2 OptimiStiC LOCKING ...oovviiiiiiieieiiesieeie ettt st nneas 269
11.2.1 Activating OptimistiC LOCKINGcovreeieiieiirieriesieseseseeee e 270
11.2.2 DOCUMENIDESCIIPLOIS ...evvevieiecie sttt 271
11.2.3 Using OptimistiC LOCKINGccoeieiiiiiniinieeee e 271
11.2.4 Cookbook: Version Control and Optimistic LOckingcccccocevereennene 272
0o o (1 oo PSRRI 274
12,1 SEATiNG LOGGING .eeeueeueeueeienieiesiesiesie st ee s s sse e see s sse e sse e s see s see s 274
12.2 Suspending and ReSUMING LOGJING ...ccveivieiiriieiieeieeseesieeeesreeste e 274
IZRC IS o o] o [gTo lf oo o1 0o USRS 275
124 LOg ENIrY FOIMEALcocoiiieieeieceeste e 275
125 Logging TO The SErver' SEIMOr LOQcccceeveeeeiieerie et 275
REST Server Configurationccceeveevcieeieesiieciee e sseesiee e esnes e ennee s 276
13.1 Creating a Server Configuration Manager Objectccccovvveveevvsceevecce e, 276
13.2 Reading and Writing Server Configuration Propertiesccooveeveeneneeneenn. 276
13.3 REST SEIVEr PrOPEIMIEScooviivireiiiirieeiisieeee ettt 277
13.4 Creating New Server-Related Manager ODJECEScceveeveieeivcce v, 277
135 NAIMESPACESceeiieieiiiiiieeiee ettt sttt sae e e be e s e e e be e saeeeseesseesreesaeeeneesanas 277
13.5.1 NamMeSPACES MANAGEYcocveererieeieriesieeie e n s 278
13.5.2 Getting Server Defined Namespacesccccveeeveeviecieeseese s 279
13.5.3 Adding And Updating A Namespace PrefiXxo.oovvvevenienenencinnene 279
13.5.4 ReAAING PrefiXESc.oooiiiiiiiieieeieeee e 280
13.5.5 DEEtiNg PrefiXESccooieee e 280
13.6 Logging Namespace OPEraliONsSccccueeererreereesieseeseeseeseesieeseesesssesnsesseeses 281
Content TransfOrMELioNSc.eivereerenie e e 282
141 INnStalling TranSfOrMScooeeiiiieieeee et et nee s 282
14.2 USING TTaANSTOMISoiiiiiiieieiesieie ettt st 283
14.2.1 Transforming a Document When Reading Itcccoovvveivciecicciecene 283
14.2.2 Transforming a Document When Writing Itccccoeeeienniniinennienene 285
14.2.3 Transforming Search RESUILSccceeeieieiirereereeee e 286
14.2.4 Transforming Alert Match RESUILSccccvvveieiieiece e 286
14.2.5 Overall Transform AdMINIiStrationcccceeceeeerienienieenene e 286
14.2.6 Reading TranSfOrmMScccieeiieieseerie e e e 286
I G W0 o o 1 o S 287
14.3 Writing TranSfOrMaLIONScooueiienieniesiese et 287

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 9

MarkLogic Server Table of Contents

15.0 Extending the JAVAAPI ... 288
15.1 Available EXENSION POINESccoiiiiiiiieiieieeee e 288
15.2 Introduction to Resource Service EXIENSIONSccccveverineeieeiene e 289
15.3 Creating a ReSOUrce EXIENSIONcoceiieiiieiieieesie ettt 290
15.4 Instaling RESOUICE EXIENSIONSc.ooeiiiiriiiienieeie et 290
155 Deleting Resource EXTENSIONScccevieeiueeieneeiesieseseeseesieseessessesseessesenssens 292
15.6 Listing RESOUIrCE EXIENSIONSccoviiiiiiieiicieste e see e see et ee e eneas 292
15.7 USiNg RESOUICE EXIENSIONScc.oiuiiiiriiniirieeiieeeie st 292
15.8 Managing Dependent Libraries and Other ASSELSccccvevvveevvece e, 295

15.8.1 Maintenance of Dependent Libraries and Other ASsetscccceeveeueee. 295

15.8.2 Installing or Updating ASSELSccceeeeierienieriesiesie st 295

15.8.3 REMOVING @N ASSEL ...ocviieiecieeieee ettt re e e 297

15.8.4 Retrieving an ASSEL LiStcccoveieiiciie e 297

15.8.5 RENEVING AN ASSEL ..o 298

15.9 Evaluating an Ad-Hoc Query or Server-Side Moduleccccoveceveeiencensenenee. 298
15.9.1 Security REQUITEIMENESceeiuieiecieeiie et 298

15.9.2 Basic Step for Ad-Hoc Query Evaluationccccceceveneeienenencnenn 299

15.9.3 Basic Stepsfor Module INVOCALTONc.cceevieeeeiieie e 300

15.9.4 Specifying External Variable Valuescccooevveveieececcececeee e 301

15.9.5 Interpreting the Results of Eval or INVOKEccccovieiiniieninineeee, 302

16.0 Creating Data Services Using the MarkL ogic Java Development Tools ... 306

16.1
16.2

16.3

Advantages Of DaLa SEIVICESccoeiereririeieierie st nee s 307
Where Data Service Fit Within the Enterprise Stackccccveevvevvvcenvccenen, 307
16.2.1 HOW ITWOTKS ..ottt 308
16.2.2 Prer@UISITESocueeuiiieeieiesiereeste ettt 309
16.2.3 Relation to the Java Client AP ... 309
Creating aProXy SEIVICEoceeceice ettt 309
16.3.1 Setting Up an App Server for the Proxy SErviceccvceeeveeeneecensnene 310
16.3.2 Creating the Proxy Service DIreCtOryccccevereevesieeseeieseeseeee e 311
16.3.3 Declaring the ProXy SEIVICEcccceeveeieieece et 311
16.3.4 Declaring the ENAPOINcccooiiiriiininieeeeee e 312
16.3.4.1 Structure of aParameter Definitioncccoovvneniininieniinnns 313
16.3.4.2 Structure of the Return Type Definitioncccccoeeevveieennn, 314
16.3.4.3 Example of an ENdpoint ProXyccccoceeeerieeieneneneneneneennes 314
16.3.4.4 Server Data Typesfor VaUESccccceveeveeivseeseeie e 315
16.3.4.5 Mapping Vauesto Alternative Java Classesccccceeeuenee. 315
16.3.4.6 Calling ENndpointSin @aSessionccceeeeeeenieneenienieniesiesienes 317
16.3.5 Providing the Module for an Endpoint ProXyccccecceveeevveceeseeneeseenn 318
16.3.6 Deploying aProXy SEIVICEccccceeveiieiiesece e 320
16.3.7 Generating the Proxy Service Classccceeeieienene s 321
16.3.8 Using aProxy ServiCe Classccccoueveiiereere e se e 322
16.3.8.1 Compiling aProxy Service Classcccveevineeneninseesennnns 322
16.3.8.2 Testing aProxy Service Classccoevenereneneneniseeeeeens 322
16.3.8.3 Documenting a Proxy Service Classccccevvvvevviienneesiennns 322

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 10

MarkLogic Server Table of Contents

16.3.8.4 Packaging aProxXy SErVICeccccceeererenereneneseseseseeeeneas 322

16.4 Publishing Y our Data Service for Usein Other Projectscccceecvvvevveceeninenee. 323

16.4.1 Modifying the Source project to Enable Publicationcccccceeuenne. 323

16.4.2 Using the Maven Bundle in Other Projectsccooveverieeienenenie s 324

17.0 TroublEShOOtINGcoccvviiiiiiiesie e 326
80 R =4 o I T (= 1 o o S 326

17.2 General Troubleshooting TEChNIQUESccveeeiieieciecece e 326

18.0 TechniCal SUPPOIToooieeiie e nee s 328
S T O O])Y/ 1 [0 o | RS TSPRSR 330

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 11

MarkLogic Server Introduction to the Java API

1.0

Introduction to the Java API

The Java Client API is an open source API for creating applications that use MarkL ogic Server
for document and search operations. This chapter includes the following sections:

1.1

Java Client API Overview

Java Client APl or Java XCC?

Getting Started

Creating, Working With, And Releasing a Database Client

Authentication and Connection Security

A Basic “Hello World” Method

Document Managers

Streaming

Using Handles for Input and Output

Shortcut Methods as an Alternative to Creating Handles

Thread Safety of the Java API

Downloading the Library Source Code

Java Client API Overview

The Java Client API provides the following capabilities:

Insert, update, or remove documents and document metadata, either individually or in
batches. For details, see “ Single Document Operations’ on page 36, “ Synchronous
Multi-Document Operations’ on page 70, or “ Asynchronous Multi-Document
Operations’ on page 92.

Query documents, lexicons, and semantic data. For details, see “ Searching” on page 144.

Extract data from MarkLogic as tables. For details, see “ Optic Java APl for Relational
Operations’ on page 218.

Persigt, retrieve, and query Java objectsin stored in MarkLogic. For details, see “POJO
Data Binding Interface” on page 226.

Configure persistent and dynamic query options. For details, see “ Query Options’ on
page 190.

Apply transformations to new content and search results. For details, see “Content
Transformations’ on page 282.

Extend the Java APl to expose custom capabilities you install on MarkLogic Server. For
details, see “ Extending the Java API” on page 288.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 12

MarkLogic Server Introduction to the Java API

When working with the Java API, you first create a manager for the type of document or
operation you want to perform on the database (for instance, a ssonpocumentManager t0 Write and
read JSON documents or a guerymanager t0 Search the database). To write or read the content for
a database operation, you use standard Java APIs such as tnputstream, DOM, SIAX, JAXB, and
Transformer as well as Open Source APIs such as JIDOM and Jackson.

The Java API provides a handle (akind of adapter) as a uniform interface for content
representation. Asaresult, you can use APIs as different as rnputstream and DOM to provide
content for one read () Or write () Method. In addition, you can extend the Java APl so you can
usethe existing read () Or write () methodswith new APIsthat provide useful representations for
your content.

This chapter covers anumber of basic architecture aspects of the Java API, including fundamental
structures such as database clients, managers, and handles used in almost every program you will
write with it. Before starting to code, you need to understand these structures and the concepts
behind them.

The MarkLogic Java Client API is built on top of the MarkLogic REST API. The REST AP, in
turn, is built using XQuery that is evaluated against an HTTP App Server. For this reason, you
need a REST API instance on MarkLogic Server to use the Java API. A suitable REST API
instance on port 8000 is pre-configured when you install MarkL ogic Server. You can also create
your own on another port. For details, see “Choose a REST API Instance” on page 15.

1.2 JavaClient APl or Java XCC?

The Java APl co-exists with the previously developed XCC API, asthey are intended for different
use cases.

You can use the Java Client API to quickly become productive in your existing Java environment,
using the Javainterfaces for search and document management. You can also use the Java Client
API extension capability to invoke X Query and Server-Side JavaScript code on MarkL ogic
Server. This enables you to take advantage of MarkLogic functionality not exposed directly
through the Java Client API.

XCC provides alower-level interface for running remote or ad hoc XQuery or Server-Side
JavaScript. While XCC provides significant flexibility, it also has a somewhat steeper learning
curve for developers. You can think of XCC as being to ODBC or JDBC: A low level API for
sending query language directly to the server. By contrast, the Java Client API is ahigher level
API for working with database constructsin Java.

In terms of performance, the Java API isvery similar to Java X CC for compatible queries. The
Java APl isavery thin wrapper over a REST API with negligible overhead.

For more information about X CC, see the XCC Developer’s Guide.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 13

MarkLogic Server Introduction to the Java API

1.3 Getting Started
To get started with the Java Client API, do the following:

* Required Software

¢ Make the Libraries Available to Your Application

* Choose a REST API Instance

* Create Users

e Explore the Examples

1.3.1 Required Software
For information about Java platform requirements, see the following page:

https://github.com/marklogic/java-client-api

The Java Client API aso requires access to a MarkL ogic Server installation configured with a
REST Client API instance. When you install MarkLogic 8 or later, a pre-configured REST AP
instance is available on port 8000. For more details, see Administering REST Client AP Instances in
the REST Application Developer’s Guide.

For information specific to rolling upgrades, see Java Client API in the Administrator’s Guide.

1.3.2 Make the Libraries Available to Your Application
You can make the Java Client AP libraries available to your project in one of the following ways:

e ZIP File
* Maven
e Gradle

For more details, see the following page:

http://developer.marklogic.com/products/java

The Java Client API is an open-source project, so you can also access the sources and build your
own library. For details, see “ Downloading the Library Source Code” on page 34.

1.3.2.1 ZIP File
You can download a ZIP file from the following URL :

http://developer.marklogic.com/products/java

Download the ZIP file and uncompress it to a directory of your choice. The jar files you need to
add to your class path are in the 1in/ subdirectory.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 14

https://github.com/marklogic/java-client-api
http://developer.marklogic.com/products/java
http://developer.marklogic.com/products/java

MarkLogic Server Introduction to the Java API

1.3.2.2 Maven

To use the Maven repository, add the following to dependency to your Maven project POM file.
(You may need to change the version datato match the release you' re using.)

<dependency>
<groupId>com.marklogic</groupIld>
<artifactIds>marklogic-client-api</artifactIds>
<version>4.0.3</version>

</dependency>

You must aso add the following to the repositories section of your pom. xm1.

<repository>
<id>jcenter</id>
<url>http://jcenter.bintray.com</urls>
</repository>

1.3.2.3 Gradle

If you use Gradle as your build tool, you must use Gradle version 1.7 or later. Add the following
to your build.gradle file. Modify the version number as needed.

compile group: 'com.marklogic',
name: 'marklogic-client-api',
version: '4.0.3"

Add the following to your build.gradle repositories section:

jcenter ()

1.3.3 Choose a REST API Instance

The Java APl implementation interacts with MarkL ogic Server using the MarkLogic REST Client
API. Therefore you must have access to aREST API instance in MarkL ogic Server before you
can run an application that uses the Java Client API.

A REST API instance includes a specially configured HTTP App Server capable of handling
REST Client API requests, a content database, and a modules database. MarkL ogic Server comes
with asuitable REST API instance attached to the Documents database, listening on port 8000.

The examples in this guide assume you' re using the pre-configured REST API instance on port
8000 of localhost. If you want to create and use a different REST instance, see, see Administering
REST Client API Instances in the REST Application Developer’s Guide.

Note: Each application must use a separate modul es database and REST API instance.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 15

MarkLogic Server Introduction to the Java API

1.34 Create Users

You might need to create MarkL ogic Server users with appropriate security roles, or give
additional privileges to existing users.

Any user who reads data will need at least the rest-reader role and any user that writes datawill
need at least the rest-writer role.

REST instance configuration operations, such as setting instance properties require the
rest-admin role. For details, see “REST Server Configuration” on page 276.

Some operations require additional privileges. For example, apatabaseclient that connectsto a
database other than the default database associated with the REST instance must have the
http://marklogic.com/xdmp/privileges/xdmp-eval-in privi | ege. Us ng the
serverEvaluationcall interface also requires special privileges; for details, see “ Evaluating an
Ad-Hoc Query or Server-Side Modul€” on page 298.

Note that MarkLogic Server Administration is not exposed in Java, So operations such as creating
indices, creating users, creating databases, etc. must be done viathe Admin Interface, REST
Management AP, or other MarkL ogic Server administration tool. The server configuration
component of the Java APl isrestricted to configuration operations on the REST instance.

For details, see Security Requirements in the REST Application Developer’s Guide.

1.3.5 Explore the Examples

The Java Client API distribution includes several examplesin the exampies/ directory. The
examples include the following packages:

* com.marklogic.client.example.cookbook. A collection of small exampl% of usi ng the
core features of the API, such as document operations and search. Most of the example
code in this guide is drawn from the Cookbook examples.

® com.marklogic.client.example.handle: Exampl% of usi ng handles based on open source
document models, such as JDOM or Jackson. Examples of handle extensions that read or
write database documentsin a new way.

* com.marklogic.client.example.extension. A collection of extension classes and
examples for manipulating documents in batches.

For instructions on building and running the examples, see the project wiki on GitHub:

http://github.com/marklogic/java-client-api/wiki/Running-the-Examples

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 16

http://github.com/marklogic/java-client-api/wiki/Running-the-Examples

MarkLogic Server Introduction to the Java API

1.4 Creating, Working With, And Releasing a Database Client

Your application must create at least one patavaseciient Object beforeit can interact with
MarkL ogic using the Java Client API. The following topics cover key things you should know
about the patabaseclient interface.

* The Role of a Database Client

e Expected Database Client Lifetime

* Connection Management and Configuration

e Creating a Database Client

* Connecting Through a Load Balancer

¢ Releasing a Database Client

1.4.1 The Role of a Database Client

A patabaseclient Object encapsulates the information needed to connect to MarkLogic, such as
the host and port of a REST API instance, the database to operate on, and the authentication
context. Internally, each patabaseciient Object is associated with a connection pool, as described
in “Connection Management and Configuration” on page 17.

Most tasks you perform using the Java Client API are handled by a manager object. For example,
YOU USe a queryManager t0 Search the database and a pocumentmanager t0 read, update, and delete
documents. You create manager objects using factory methods on patabaseciient, such as

newQueryManager and newDocumentManager.

1.4.2 Expected Database Client Lifetime

Best practice isto maintain asingle, shared reference to apatabaseciient 0bject for the lifetime
of your application’s interaction MarkL ogic, rather than frequently creating and destroying client
objects.

You need multiple patabaseciient Objectsif you need to connect to multiple databases or to
connect to MarkL ogic as multiple users. You must create a different patabaseciient instance for
each combination of (host, port, database, authentication context). Again, it is best to keep these
instances around throughout their potential useful lifetime, rather than repeatedly recreating them.

You can one patabaseclient Object across multiple threads. After initial configuration, a
DatabaseClient object isthread safe.

1.4.3 Connection Management and Configuration

Internally, the Java Client APl maintains an okuttpclient cOnnection pool that is shared by all
DatabaseClient objects. The connection pool efficiently re-uses connections whether you use a
single patabaseclient instance throughout the lifetime of your application or create and discard
DatabaseClient Objects on demand.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 17

MarkLogic Server Introduction to the Java API

Whenever apatabaseciient Object makes arequest to MarkLogic, an available connection is
drawn from the connection pool. New connections are created on demand, as needed.

A patabaseclient Object returnsits connection to the pool once it receives and processes the
HTTP request on whose behalf it claimed the connection. A connection in the pool persistsuntil it
isexplicitly released or times out due to idleness. The default maximum idle timeis 5 minutes.

No state information is maintained with a connection. All cookies are discarded unless a
multi-statement (multi-request) transaction isin use. The cookies associated with a
multi-statement transaction are cached on the transaction object rather than with the connection.

You can adjust the connection pool configuration by implementing okuttpclientconfigurator
and calling its configure method. However, such adjustments depend on Java Client API internals
and will be ignored if afuture version of the API uses adifferent HTTP client implementation.

1.4.4 Creating a Database Client

To create a database Client, use the com. marklogic.client.DatabaseClientFactory.newClient ()
method. For example, the following client connects to the default content database associated
with the REST instance on port 8000 of localhost using digest authentication.

DatabaseClient client =
DatabaseClientFactory.newClient (
"localhost", 8000,
new DatabaseClientFactory.DigestAuthContext ("myuser", "mypassword")) ;

You can also create clients that connect to a specific content database. For example, the following
client also connects to the REST instance on port 8000 of localhost, but all operations are
performed against the database “MyDatabase”:

DatabaseClient client =
DatabaseClientFactory.newClient (
"localhost", 8000, "MyDatabase",
new DatabaseClientFactory.DigestAuthContext ("myuser", "mypassword")) ;

Note: To use adatabase other than the default database associated with the REST
instance requires a user with the following privilege or the equivalent role:
http://marklogic.com/xdmp/privileges/xdmp-eval-in.

The nhost and port values must be those of a REST API instance. When you install MarkLogic, a

REST API instance associated with the Documents database is pre-configured for port 8000. You
can also create your own instance.

The authentication context object should match the configuration of the REST API instance. For
more details, see “ Authentication and Connection Security” on page 20.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 18

MarkLogic Server Introduction to the Java API

1.4.5 Connecting Through a Load Balancer

When your application connects to MarkL ogic through aload balancer, you should follow these
guidelines:

» Configure your patabaseclient Objectsto make acateway type connection. Thistellsthe
Java Client API that direct connections to hosts in your MarkLogic cluster are not
available.

» Configure your load balancer and MarkLogic cluster timeouts to be consistent with each
other. Unavailable hosts should be invalidated by the load balancer only after the
MarkL ogic host timeout. Cookies should expire only after the MarkL ogic session timeout.

For most Java Client API operations, the connection type is transparent. However, features such
as the Data Movement SDK need to know whether or not all traffic must go through a gateway
host.

The default connection type for apatabaseciient iSpirecT, meaning that the Java Client API can
make direct connections to hosts in your MarkLogic cluster if necessary.

To configure apatabaseclient fOr agateway connection, pass apatabaseClient .ConnectionType
value of caTeway asthe last parameter t0 patabaseclientFactory.newClient. FOr example:

DatabaseClient client =
DatabaseClientFactory.newClient (
"localhost", 8000, "MyDatabase",
new DatabaseClientFactory.DigestAuthContext ("myuser", "mypassword"),
DatabaseClient.ConnectionType.GATEWAY) ;

For additional, context-specific load balancer guidelines, see the following topics:

* Multi-statement transactions. “ Transaction Management When Using a Load Balancer”
on page 268.

» Asynchronous batch-oriented document operations: “Working with a Load Balancer” on
page 134.

1.4.6 Releasing a Database Client

When you no longer need a client and want to release connection resources, use the
DatabaseClient object’s release () Method.

client.release() ;

DatabaseClient objects efficiently manage connection resources and are expected to belong lived.
You do not need to release and re-create client objects just because your application might not
require a connection for an extended time. For more details, see “ Expected Database Client
Lifetime” on page 17 and “ Connection Management and Configuration” on page 17.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 19

MarkLogic Server Introduction to the Java API

1.5 Authentication and Connection Security

This section provides an overview of several methods for securing the communication between
your client application and MarkLogic. See the following topics for details:

e Creating a SecurityContext Object

* Using Kerberos Authentication

* Connecting to MarkLogic with SSL

* Using SAML Authentication

151 Creating a SecurityContext Object

One of the inputsS t0 patabaseClientFactory.newClient iSa@ securitycontext Object. This object
tellsthe APl what credentials to use to authenticate with MarkLogic. You can select from
authentication methods such as Kerberos, digest, and basic.

For example, the database client created by the following statement uses digest authentication.
The username and password are those of auser configured into MarkLogic.

import com.marklogic.client.DatabaseClientFactor.DigestAuthContext;

DatabaseClient client = DatabaseClientFactory.newClient (
"localhost", 8000, new DigestAuthContext (username, password)) ;

The authentication context object should match the configuration of the REST API instance.
K erberos based authentication is most secure. Basic authentication sends the password in
obfuscated, but not encrypted, mode. Digest authentication encrypts passwords sent over the
network.

You can connect to MarkLogic using SSL by attaching SSL configuration information to the
security context. For details, see “ Connecting to MarkL ogic with SSL” on page 22.

For more information about user authentication, see Authenticating Users in the Security Guide.

1.5.2 Using Kerberos Authentication

Use the following steps to configure your MarkL ogic installation and client application
environment for Kerberos authentication:

e Configuring MarkLogic to Use Kerberos

e Configuring Your Client Host for Kerberos

e Creating a Database Client that Uses Kerberos

Your client host must be running Linux in order to use Kerberos with the Java Client API.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 20

MarkLogic Server Introduction to the Java API

1.5.2.1 Configuring MarkLogic to Use Kerberos

Before you can use Kerberos authentication, you must configure MarkL ogic to use external
security. If your installation is not already configured for Kerberos, you must perform at |east the
following steps:

1 Create a Kerberos external security configuration object. For details, see Creating an
External Authentication Configuration Object in the Security Guide.

2. Create aKerberos keytab fileand install it in your MarkLogic installation. For details, see
Creating a Kerberos keytab File in the Security Guide.

3. Create one or more users associated with an external name. For details, see Assigning an
External Name to a User in the Security Guide.

4, Configure your App Server to use “kerberos-ticket” authentication. For details, see
Configuring an App Server for External Authentication in the Security Guide.

For more details, see External Security in the Security Guide.

1.5.2.2 Configuring Your Client Host for Kerberos

On the client, the Java Client API must be able to access a Ticket-Granting Ticket (TGT) from the
Kerberos Key Distribution Center. The API usesthe TGT to obtain a Kerberos service ticket.

Follow these stepsto make a TGT available to the client application:

1 Install MIT Kerberosin your client environment if it is not already installed. You can
download MIT Kerberos from http://www.kerberos.org/software/index.html.

2. If thisisanew installation of MIT Kerberos, configure your installation by editing the
krbs . conf file. For details, see
https://web.mit.edu/kerberos/krb5-1.15/doc/admin/conf_files/krb5_conf.html.

On Linux, Javaexpectsthisfileto belocated in /etc/ by default. Javauses the conf file to
determine your default realm and the KDC for that realm.

If your xrbs . cont file contains a setting for default ccache name, the value must be afile
reference of the form F1LE: /tup/krbsce %{uid}. Thisisrequired because the Java Client
API setsthe useTicketcache Opti on of krbsLoginModule 10 true. FOr more details, see the
javadoc for com. sun. security.auth.module.Krb5LoginModule.

3. Usekinit Or asimilar tool on your client host to create and cache a TGT with the
Kerberos Key Distribution Center. The principal supplied to xinit must be one you
associated with aMarkL ogic user when performing the stepsin “ Configuring MarkLogic
to Use Kerberos’ on page 21.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 21

http://www.kerberos.org/software/index.html
https://web.mit.edu/kerberos/krb5-1.15/doc/admin/conf_files/krb5_conf.html

MarkLogic Server Introduction to the Java API

For more details, see the following topics:

» Using Kerberos with Java:
http://docs.oracle.com/javase/8/docs/technotes/quides/security/jgss/tutorials/KerberosReq.html

¢ Kinit command: https://web.mit.edu/kerberos/krb5-1.15/doc/user/user_commands/kinit.html

* Obtaining aticket:
http://web.mit.edu/kerberos/krb5-current/doc/user/tkt_mgmt.html#obtaining-tickets-with-kinit

* Krb5LoginModule javadoc:
https://docs.oracle.com/javase/9/docs/api/com/sun/security/auth/module/Krb5L oginModule.html

1.5.2.3 Creating a Database Client that Uses Kerberos
In your client application, use xerberosauthcontext fOr your security context object. For example:

import com.marklogic.client.DatabaseClientFactory.KerberosAuthContext;

DatabaseClient client = DatabaseClientFactory.newClient (
"localhost", 8000, new KerberosAuthContext()) ;

You do not need to pass an expliCit externalName parameter tO kerberosauthcontext UNIESSYyoU
have multiple principals authenticated in your ticket cache and need to specify which one to use.

For aworking example, see the project on GitHub:

Note: The working example includes comments that provide suggestions for setting up a
Kerberos configuration in a production environment.

https://github.com/marklogic/java-client-api/blob/master/marklogic-client-api/src/main/java/com/
marklogic/client/example/cookbook/KerberosSSLClientCreator.java

1.5.3 Connecting to MarkLogic with SSL

You can use the security context to specify whether or not to use a secure SSL connection to
communicate with MarkLogic. The App Server you connect to must also be configured to accept
SSL connections. By default, the Java Client API does not use SSL.

For example, the database client created by the following statement uses digest authentication and
an SSL connection:

// create a trust manager
// (note: a real application should verify certificates. This
// naive trust manager which accepts all the certificates should be replaced
// by a valid trust manager or get a system default trust manager
// which would validate whether the remote authentication credentials
// should be trusted or not.)
TrustManager naiveTrustMgr[] = new X509TrustManager[] ({
new X509TrustManager ()
@Override
public void checkClientTrusted (X509Certificate[] chain, String authType)

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 22

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/KerberosReq.html
https://github.com/marklogic/java-client-api/blob/master/marklogic-client-api/src/main/java/com/marklogic/client/example/cookbook/KerberosSSLClientCreator.java
https://web.mit.edu/kerberos/krb5-1.15/doc/user/user_commands/kinit.html
http://web.mit.edu/kerberos/krb5-current/doc/user/tkt_mgmt.html#obtaining-tickets-with-kinit

MarkLogic Server Introduction to the Java API

{
}

@Override
public void checkServerTrusted (X509Certificate[] chain, String authType)

{

@Override
public X509Certificate[] getAcceptedIssuers() {
return new X509Certificate[0];

}
}
bi

// create an SSL context
SSLContext sslContext = SSLContext.getInstance("TLSv1.2");
/*

*

Here, we use a naive TrustManager which would accept any certificate

which the server produces. But in a real application, there should be a
TrustManager which is initialized with a Keystore which would determine
whether the remote authentication credentials should be trusted or not.

If we init the sslContext with null TrustManager, it would use the
<java-home>/lib/security/cacerts file for trusted root certificates, if
javax.net.ssl.trustStore system property is not set and
<java-home>/lib/security/jssecacerts is not present. See this link for
more information on TrustManagers -
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/
JSSERefGuide.html

If self signed certificates, signed by CAs created internally are used,
then the internal CA's root certificate should be added to the keystore.
See this link -
https://docs.oracle.com/cd/E19226-01/821-0027/geygn/index.html for adding
a root certificate in the keystore.

/

sslContext.init (null, naiveTrustMgr, null) ;

% ok ok X o 3k Xk X Xk X X X X X *

// create the client
// (note: a real application should use a COMMON, STRICT, or implemented
hostname verifier)

DatabaseClient client = DatabaseClientFactory.newClient (
props.host, props.port,
new DigestAuthContext (props.writerUser, props.writerPassword)
.withSSLContext (sslContext, (X509TrustManager) naiveTrustMgr [0])
.withSSLHostnameVerifier (SSLHostnameVerifier.ANY)) ;

The ssncontext Object represents a secure socket protocol implementation which acts as afactory
for secure socket factories. For more information about creating and working with ssrcontext
objects, see Accessing SSL-Enabled XDBC App Servers in the XCC Developer’s Guide.

For even more security, you can also include apatabaseclientFactory.SSLHostnameVerifier
object to check if a hostname is acceptable.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 23

MarkLogic Server Introduction to the Java API

For aworking example, see the project on GitHub:

Note: Theworking example includes comments that provide suggestions for configuring
SSL in a production environment.

https://github.com/marklogic/java-client-api/blob/master/marklogic-client-api/src/main/java/com/
marklogic/client/example/cookbook/SSLClientCreator.java

For more information about secure communication with MarkL ogic, see the Security Guide.

154 Using SAML Authentication

Your client application is responsible for acquiring a SAML assertions token from the SAML
Identity Provider (IDP). You can then use the SAML assertions token to make requests to the
MarkLogic App Server with the MarkLogic Client Java API. That division of responsibility
makes it possible for your application to adapt to awide variety of possible SAML scenarios and
IDPs.

After configuring the MarkLogic App Server to authenticate with the SAML IDP, specify a
SAMLAuthContext asthe SecurityContext when calllng DatabaseClientFactory 1O Create a new

DatabaseClient.

You can construct a samrauthcontext in any of three ways, depending on your approach to
authorization:

* If you plan to finish using the patabaseciient before the SAML assertions token expires,
you can call the samrauthcontext constructor with the SAML assertions token.

» If you need to extend the expiration of the SAML assertions token before you finish using
the patabaseclient, you can call the saMrauthcontext constructor with an
ExpiringsamMiauth Object and a callback that renews the SAML assertions token with the
SAML IDP.

The expiringsamiauth Object provides getters for the SAML assertions token and the
expiration timestamp. Y our client application can construct an expiringsamrauth Object
by Calllng the saMLAuthContext . newExpiringSAMLAuth factory method.

The renewer callback conforms to the savMLauthcontext . Renewercallback functional
interface by taking the initial expiringsamrauth Object asinput and returning an Instant
with the new expiration timestamp for the renewed SAML assertions token, asin the
following example:

class MyClass
Instant renewer (ExpiringSAMLAuth authorization) {
. call to IDP

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 24

https://github.com/marklogic/java-client-api/blob/master/marklogic-client-api/src/main/java/com/marklogic/client/example/cookbook/SSLClientCreator.java

MarkLogic Server Introduction to the Java API

If you need to get anew SAML assertions token before you finish using the
DatabaseClient, yOU can call the saMrauthcontext constructor with a callback that
authorizes with the SAML IDP by getting anew SAML assertions token.

The authorizer callback conforms to the saMLauthcontext . Authorizercallback functional
interface that takes an expiringsaviauth Object asinput and returns an expiringSaMLAuth
object with the new SAML assertions token and an expiration timestamp, as shown in the
following example:

class MyClass
ExpiringSAMLAuth authorizer (ExpiringSAMLAuth previous)
. call to IDP
}

}

Onthefirst cal, the expiringsamrauth parameter isnull because no existing authorization
exists. Your callback can construct an expiringsamiauth object by calling the
SAMLAuthContext .newExpiringSAMLAuth factory method.

Tradeoffs to consider when choosing whether to renew or reauthorize include the following:

The renewer callback executesin abackground thread, allowing continued requests to the
MarkL ogic appserver while renewing the SAML assertions token, improving utilization
and performance. Extending the life of the SAML assertions token, however, could
increase vulnerability in less secure environments.

The authorizer callback blocks requests to the MarkL ogic appserver while getting a new
SAML assertions token, reducing utilization and performance but maintaining the highest
level of security.

You can reduce the expiration time to allow for network latency and the | DP response generation.
Renewer and authorizer callbacks are called in advance of the stated expiration time to reduce the
possibility that the SAML assertions token expires as arequest is sent to the MarkL ogic
appserver.

If you need to maintain state between callsto arenewer or authorizer callback, you can implement
the expiringsaMnauth interface with your own classinstead of calling the
SAMLAuthContext . newExpiringsamiauth factory method to construct a default instance.

Apart from the specifics of acquiring the SAML assertions token, the use of apatabaseclient
remains the same:

Multiple threads can use the same patabaseclient Object.

DatabaseClient Objects can be created with different authorizations (including different
SAML assertions tokens).

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 25

MarkLogic Server Introduction to the Java API

1.6 A Basic “Hello World” Method

The following code is a basic method that creates a new document in the database. Digest
authentication is used in this example; for more details, see “ Authentication and Connection
Security” on page 20.

public static void run(String host, int port, String user, String
password, Authentication authType) {

// Create the database client
DatabaseClient client = DatabaseClientFactory.newClient (
host, port, new DigestAuthContext (username, password)) ;

// Make a document manager to work with text files.
TextDocumentManager docMgr = client.newTextDocumentManager () ;

// Define a URI value for a document.
String docId = "/example/text.txt";

// Create a handle to hold string content.
StringHandle handle = new StringHandle() ;

// Give the handle some content
handle.set ("A simple text document") ;

// Write the document to the database with URI from docId
// and content from handle
docMgr.write (docId, handle) ;

// release the client
client.release() ;

}

The above code is a dightly modified version of the run method from the
com.marklogic.client .example.cookbook.ClientCreator COOKDOOK example. It, along with a
number of other basic example applications for the Java API, islocated in
example/com/marklogic/client/example/cookbook di rectory found in the zi P file containi ng the
Java APl.

1.7 Document Managers

Different document formats are handled by different document manager objects, which serve as
an interface between documents and the database connection. The package
com.marklogic.client.document includes document managers for bi nary, XML, JSON, and text.
If you don’t know the document format, or need to work with documents of multiple formats, use
ageneric document manager. natabaseclient instances have factory methods to create a new
com.marklogic.client .document . DocumentManager Of any subtype.

BinaryDocumentManager binDocMgr = client.newBinaryDocumentManager () ;
XMLDocumentManager XMLdocMgr = client.newXMLDocumentManager () ;
JSONDocumentManager JSONDocMgr client.newJSONDocumentManager () ;
TextDocumentManager TextDocMgr = client.newTextDocumentManager () ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 26

MarkLogic Server Introduction to the Java API

GenericDocumentManager genericDocMgr =
client .newGenericDocumentManager () ;

Your application only needs to create one document manager for any given type of document, no
matter how many of that type of document it workswith. So, even if you expect to work with, say,
1,000,000,000 JSON documents, you only need to create one ssoNDocumentManager Object.

Document managers are thread safe once initially configured; no matter how many threads you
have, you only need one document manager per document type.

If you make a mistake and try to use the wrong type of document with a document manager, the
result depends on the combination of types. For example, asinarybocumentManager Will try to
interpret the document content as bi Nary. JsoNDocumentManager and XMLDocumentManager al'€ the
most particular, since if adocument is not in their format, it will not parse. Most of the time, you
will get an exception error, with FailedrequestException the default if the manager cannot
determine the document type.

1.8 Streaming

To stream, you supply an tnputstream OF reader fOr the data source, not only when reading from
the database but also when writing to the database. This approach allows for efficient write
operations that do not buffer the datain memory. You can also use an outputwriter t0 generate
data as the API iswriting the data to the database.

When reading from the database using a stream, be sure to close the stream explicitly if you do
not read all of the data. Otherwise, the resources that support reading continue to exist.

1.9 Using Handles for Input and Output

The Java Client API uses Handles to for I/O when interacting with MarkL ogic. See the following
topics for more details:

¢ Handle Overview

e Specifying Content Format

e Handle Type Quick Reference

e Handle Example

191 Handle Overview

Content handles are key to working with the Java Client API. Handles make use of the Adapter
design pattern to enable strongly typed reading and writing of a diverse and extensible set of
content formats. For example, you can create a com.marklogic.client.io.DOMHandle 1O read or
write XML DOM data.

// reading
XMLDocumentManager docMgr = client.newXMLDocumentManager () ;
Document doc = docMgr.read (docURI, new DOMHandle()) .get () ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 27

MarkLogic Server Introduction to the Java API

// writing
docMgr.write (docURI, new DOMHandle (someDocument)) ;

You can also create A com.marklogic.client.io.JacksonHandle tO read or write JSON data.

// reading
JSONDocumentManager JSONDocMgr = client.newJSONDocumentManager () ;
JsonNode node = JSONDocMgr.read (docURI, new JacksonHandle()) .get () ;

// writing
JSONDocMgr .write (docURI, new JacksonHandle (someJdsonNode)) ;

The Java Client API pre-defines many handle implementations. The following packages contain
handle classes:

* com.marklogic.client.io - Handles classesfor standard representations such as string,
File, and pom.

* com.marklogic.extra - Handle classesfor 3rd party formats such as DOM4J and GSON.
Using these handle classes requires 3rd party libraries that are not included in the Java
Client API distribution.

Some handles support both read and write operations. For example, you can use a rilenandie for
reading and writing files. Some handles have a special purpose. For example, you use
searchHandle fOr processing the results of a search operation. For a complete list of handles and
what they do, see the com.marklogic.client.io package in the Java Client APl Documentation.

Note: Handles are not thread safe. Whenever you create a new thread, you will have to
also create new handle objects to use while in that thread.

Some Java Client APl methods enable you to use I/O short cuts that do not require explicit
creation of ahandle. These shortcut methods always have an “As’ suffix, such as “readAs’. For
exampl e the XMLDocumentManager .read method shown above has an XMLDocumentManager .readAs
counterpart that implicitly creates the handle for you. For example:

// reading
Document doc = docMgr.readAs (docURI, Document.class) ;

// writing
docMgr.writeAs (docURI, someDocument) ;

Likewise, the JSONDocumentManger . read method shown above has an
JSONDocumentManager . readas counterpart that implicitly creates the handle for you.

// reading
JsonNode node = JSONDocMgr.readAs (docURI, JsonNode.class) ;

// writing
JSONDocMgr .writeAs (docURI, someJdsonNode) ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 28

MarkLogic Server Introduction to the Java API

These shortcut methods are not more efficient, but they can improve the readability of your code.
For more details, see “ Shortcut Methods as an Alternative to Creating Handles’ on page 31.

1.9.2 Specifying Content Format

Some handles can be used with multiple document formats. For example, an rnputstream Can
provide content in any format, SO tnputstreamandle can be used for any document format.
Where content format is not explicit in the handle type, use the handl€'s set Format method to
specify it. For example, the following call tells the Java Client API that the handle can be used
with JSON content:

new InputStreamHandle () .setFormat (Format.JSON) ;

You cannot set aformat for all handle types. For example, aDOMHandle can only be used for
reading and writing XML, so you cannot specify aformat.

1.9.3 Handle Type Quick Reference

Not al handles support all content types. In addition, though most handles can be used for either
reading or writing, some are more limited. This section provides a quick guide to the content
formats, operations, and data types supported by each handle class. Special purpose handle
classes, such as searchuandile, are not included.

Content Format
Handle Class Supported Java Type
XML | Text | JSON | Binary

BytesHandle RW RW RW RW byte]

DocumentMetadataHandle RW M arkLogiC proprietary XML
format; for details, see XML

Metadata Format in the REST
Application Developer’s

Guide.
DOMHandle RW org.w3c.dom.Document
FileHandle RW RW RW RW java.io.File
InputSourceHandle RW org.xml.sax.InputSource
InputStreamHandle RW RW RW RW java.io.InputStream
JacksonHandle RW com. fasterxml.jackson.data

bind.JsonNode

JacksonDatabindHandle RW your POJO class

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 29

MarkLogic Server Introduction to the Java API

Content Format
Handle Class Supported Java Type
XML | Text | JSON | Binary
JacksonParserHandle RW com. fasterxml.jackson.core
.JsonParser
JAXBHandle RwW your POJO class
OutputStreamHandle W W W W java.io.OutputStream
ReaderHandle RW RW RW java.io.Reader
SourceHandle RW javax.xml.transform.Source
StringHandle RW RW RW String
XMLEventReaderHandle RW javax.xml.stream.XMLEventR
eader
XMLStreamReaderHandle RW javax.xml.stream.XMLStream
Reader

1.9.4 Handle Example

The following code uses a pomuand1e to read an XML document from the server into an
in-memory DOM object:

XMLDocumentManager docMgr = client.newXMLDocumentManager () ;
DOMHandle handle = new DOMHandle () ;

docMgr .read (docURI, handle) ;

org.w3c.dom.Document document = handle.get () ;

The following code uses a gacksonsandie to read a JSON document from the server into an
in-memory JsonNode:

JSONDocumentManager JSONDocMgr = client.newJSONDocumentManager () ;
JacksonHandle handledson = new JacksonHandle() ;
JSONDocMgr .read (docURI, handleJdson) ;

com. fasterxml.jackson.databind.JsonNode node = handledson.get () ;

Thefollowing code uses apomuand1e to write an XML document to MarkL ogic. ASSUme document
is some previoudly initialized in-memory XML DOM document.

XMLDocumentManager docMgr = client.newXMLDocumentManager () ;
DOMHandle handle = new DOMHandle () ;

handle.set (document) ;

docMgr.write (docId, handle) ;

The following code uses a gacksonnandie to write a JSON document to MarkLogic. Assume node
is some previoudly initialized in-memory JsonNode document.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 30

MarkLogic Server Introduction to the Java API

JSONDocumentManager JSONDocMgr = client.newJSONDocumentManager () ;
JacksonHandle handledson = new JacksonHandle() ;
handledson.set (node) ;

JSONDocMgr .write (docId, handleJdson) ;

For additional examples, see the examplesin the following packages. The source is available on
GitHub. For details, see “ Downloading the Library Source Code” on page 34.

® com.marklogic.client.example.cookbook

® com.marklogic.client.example.handle

1.10 Shortcut Methods as an Alternative to Creating Handles
Shortcut methods enable you to pass supported data types directly into or out of an operation

without explicitly creating a handle to reference the data. These convenience methods can make
your code more readable.
For more details, see the following topics:

e Understanding Shortcut Methods

* When to Choose Strongly Typed Over Shortcut

e Extending Shortcuts by Reaqistering Handle Factories

1.10.1 Understanding Shortcut Methods

Many Java Client API classes and interfacesinclude “ shortcut” methods of the form operationas,
such as readas Or writeas. These methods enable you to bypass the equivalent, more strongly
typed methods that require you to passin ahandle. Using shortcut methodsinstead of handles can
make your code more readable.

For exampl e the XMLDocumentManager and JsoNDocument Manager interfaces includes both reaa
and readas methods such as the following:

// strongly typed, handle based
read (String docId, T contentHanlde)

// shortcut equivalent
readAs (String docId, Class<T> as)

This means you can read a document from the database using a call of either of the following
forms:

// strongly typed, returns the populated DOMHandle object
DOMHandle handle = docMgr.read (docURI, new DOMHandle()) ;

// shortcut, returns a DOM Document
Document doc = docMgr.readAs (docURI, Document.class);

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 31

MarkLogic Server Introduction to the Java API

// strongly typed, returns the populated JacksonHandle object
JacksonHandle handledSON = JSONDocMgr.read (docURI, new
JacksonHandle ()) ;

// shortcut, returns a JsonNode
JsonNode node = JSONDocMgr.readAs (docURI, JsonNode.class) ;

Simi IarIy, YOU Can USe XMLDocumentManager Of JSONDocumentManager O write a document to the
database using either of the following calls:

// strongly typed
docMgr.write (docURI, new DOMHandle (theDocument)) ;

// shortcut
docMgr .writeAs (docURI, theDocument) ;

// strongly typed
JSONDocMgr .write (docURI, new JacksonHandle (thedJsonNode)) ;

// shortcut
JSONDocMgr .writeAs (docURI, thedsonNode)) ;

Shortcut methods are not limited to document read and write operations. For example, you can
use either QueryManager .newRawCombinedQueryDefinition OF
QueryManager .newRawCombinedQueryDefinitionAs {O Create 8 RawCombinedQueryDefinition.

1.10.2 When to Choose Strongly Typed Over Shortcut

Shortcut methods are the best choice in most cases because they improve the readability and
maintainability of your code. However, you should keep the following points in mind:

* A shortcut method is not more efficient than the equivalent strongly typed method.
Internally, anandie is still created to manage the data.

» Using a shortcut method introduces a small risk because you' re side-stepping the strong
typing provided by a handle. For example, an exception isthrown if there is no handle
type corresponding to class type you provide to the shortcut method.

The typing exposure is limited since the Java Client API pre-defines Handle classes for a broad
range of types. You can register your own class-to-handle pairings to extend the supported
classes. For details, see “Extending Shortcuts by Registering Handle Factories’ on page 33.

Consider the strongly typed call form in the following cases:

* You want compile-time checking of input and output types.
* Youwant adlight increase in efficiency over alarge number of requests.

* You need to control the MIME type or format of a handle.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 32

MarkLogic Server Introduction to the Java API

1.10.3 Extending Shortcuts by Registering Handle Factories

Though you do not have to create a handle when using a shortcut method, the shortcut
implementation still creates a nandie to manage the data.

For example, when you issue a shortcut call such as the following, the implementation creates a
poMHandle tO receive the document read from the database.

docMgr .readAs (docURI, Document.class) ;

Similarly, the following implementation creates a sacksontand1e t0 receive the document read
from the database.

JSONDocMgr . readAs (docURI, JsonNode.class) ;

Thismeans that a shortcut method must be able to create a handle capable of handling the targeted
classtype. This capability is provided by aregistry for handle factories. The shortcut method can
guery the registry for a handle factory that can process a particular class type. For details, see
DatabaseClientFactory.HandleFactoryRegistry in the Java Client APl Documentation.

The Java Client APl automatically registers factories for the following handle classes. For details
on the data types supported by each handle type, see the handle class documentation in the Java
Client API Documentation.

BytesHandle InputStreamHandle SourceHandle
DOMHandle JacksonHandle StringHandle
FileHandle JacksonParserHandle XMLEventReaderHandle
InputSourceHandle ReaderHandle XMLStreamReaderHandle

If you create your own handle class, you can register a handle factory for it so that you can use
shortcut methods on the classes supported by your handle class.

Note: Handlefactory registration must be completed before you create apatabaseciient.

You can use the same mechansim with a saxeuandie factory to enable shortcut methods on
POJOs. For example, if you have a POJO class named product, then you can add it to the registry
asfollows:

DatabaseClientFactory.getHandleRegistry () .register (
JAXBHandle.newFactory (Product.class) ;

You can also Use gacksonbatabindHandle factory to enable shortcut methods on POJOs.

DatabaseClientFactory.getHandleRegistry () .register (
JacksonDatabindHandle.newFactory (Product.class) ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 33

MarkLogic Server Introduction to the Java API

Then you can subsequently write product POJOs to MarkLogic and read them back as follows:

XMLDocumentManager docMgr = client.newXMLDocumentManager () ;
Product product = // ...create a Product

docMgr .writeAs (docURI, Product.class) ;

VA
product = docMgr.readAs (docURI, Product.class);

Likewise with a JSONDocumentManager.

JSONDocumentManager JSONDocMgr = client.newJSONDocumentManager () ;
Product product = // ...create a Product

JSONDocMgr .writeAs (docURI, Product.class);

/]
product = JSONDocMgr.readAs (docURI, Product.class) ;

Note that the Java Client API also includes a POJO data binding capability as an aternative to
managing your own POJOs with JAXB. Using this feature eliminates the need for the above
registration. For more details, see “POJO Data Binding Interface” on page 226.

1.11 Thread Safety of the Java API
You should be aware of the following API characteristics with respect to thread safety:

* Dpatabaseclient iSthread safe after initialization.

* The various manager classes are thread safe after initial configuration. Examples:

DocumentManager, QueryManager, ResourceManager.
 Handles are not thread safe. Exampl €S. SstringHandle, FileHandle, SearchHandle.
e Builders are not thread safe. Exampl €S. DocumentPatchBuilder, StructuredQueryBuilder.

For example, you can create a pocumentManager for manipulating XML documents and share it
across multiple threads. Similarly, you can create a guerymanager, Set the page length, and then
share it between multiple threads.

Handles can be used across multiple requests within the same thread, but cannot be used across
threads, so whenever you create a new thread, you must create new Handle objects to use in that
thread.

1.12 Downloading the Library Source Code

The Java API is an open source project. Though you do not need the source code to use the
library, the source is available from GitHub at the following URL :

https://github.com/marklogic/java-client-api

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 34

https://github.com/marklogic/java-client-api

MarkLogic Server Introduction to the Java API

Assuming you have a Git client and the git command is on your path, you can download alocal
copy of the latest source using the following command:

git clone https://github.com/marklogic/java-client-api.git

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 35

MarkLogic Server Single Document Operations

2.0 Single Document Operations

This chapter describes how to create, delete, update, and read a single document content and/or its
metadata using the Java Client API. The Java Client API also enables you to work with multiple
documentsin asingle request, as described in “ Synchronous Multi-Document Operations’ on
page 70 and “ Asynchronous Multi-Document Operations’ on page 92.

When working with documents, it isimportant to keep in mind the difference between a
document on your client and a document in the database. In particular, any changes you maketo a
document’s content and metadata on the client do not persist between sessions. Only if you write
the document out to the database do your changes persist.

This chapter includes the following sections:

e Document Creation

e Document Deletion

¢ Reading Document Content

e Writing A Binary Document

e Reading Content From A Binary Document

¢ Reading. Modifying, and Writing Metadata

e Working with Temporal Documents

e Conversion of Document Encoding

e Partially Updating Document Content and Metadata

2.1 Document Creation

Document creation is not done viaa document creation method. When you first write content via
aManager object to adocument in the database as identified by its URI, MarkLogic Server
creates a document in the database with that URI and content.

Note: Tocal write (), an application must authenticate as a user with at least one of the
rest-writer Of rest-admin Fol€s (or as auser with the admin role).

This section describes the following about document creation operations:

e Writing an XML or JSON Document To The Database

e Creating a Text Document In the Database

e Automatically Generating Document URIs

¢ Format-Specific Write Capabilities

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 36

MarkLogic Server Single Document Operations

2.1.1 Writing an XML or JSON Document To The Database

Note that no changes you make to adocument or its metadata persist until you write the document
out to the database. Within your application, you are only manipulating it within system memory,
and those changes will vanish when the application ends. The database content is constant until
and unless awrite or delete operation changesiit.

The basic steps needed to write a document are:

1 If you have not already done so, connect to the database, storing the connectionin a
com.marklogic.client.DatabaseClient Object. For example, if using digest
authentication:

DatabaseClient client = DatabaseClientFactory.newClient (
host, port, new DigestAuthContext (username, password)) ;

2. If you have not already done so, use the patabaseciient Object to create a
com.marklogic.client.document .DocumentManager ODj€Ct Of the appropriate subclass for
the document content you want to access (XML, text, JSON, binary, generic).

a Inthis example code, an xMLDocumentManager.
XMLDocumentManager XMLDocMgr = client.newXMLDocumentManager () ;
b. Inthisexample code, an ssoNDocumentManager.
JSONDocumentManager JSONDocMgr = client.newJSONDocumentManager () ;
3. Get the document’s content. For example, by using an rnputstream.

FileInputStream docStream = new FileInputStream(
"data"+File.separator+filename) ;

4, Create a handle associated with the input stream to receive the document’s content. How
you get content determines which handle you use. Use the handl€'s set () method to
associate it with the desired stream.

InputStreamHandle handle = new InputStreamHandle (docStream) ;

5. Write the document’s content by calling awrite () method on the bocunentManager, with
arguments of the document’s URI and the handle.

a Cdli Ng awrite() method on the xMLDocumentManager:
XMLDocMgr.write (docId, handle) ;
b. Cali Ng awrite() method on the ssonpocumentManager:

JSONDocMgr .write (docId, handle) ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 37

MarkLogic Server Single Document Operations

6.

2.1.2

When finished with the database, release the connection resources by calling the
DatabaseClient Obj ect'Srelease () mMethod.

client.release() ;

Creating a Text Document In the Database

This procedure outlines a very basic creation operation for a ssmple text document is as follows:

1.

Create a com.marklogic.client .Databaseclient fOr the database. For example, if us ng
digest authentication:

DatabaseClient client = DatabaseClientFactory.newClient (
host, port, new DigestAuthContext (username, password)) ;

Create a com.marklogic.client .document . DocumentManager ODj€Ct Of the appropriate
format for your document; text, binary, JSON, XML, or generic if you are not sure.

TextDocumentManager TextDocMgr = client.newTextDocumentManager () ;

For convenience's sake, set a variable to your new document’s URI. Thisis not required;
the raw string could be used wherever doc1a is used.

String docId = "/example/text.txt";

Asdiscussed previoudly in “Using Handles for Input and Output” on page 27, within
MarkL ogic Java applications you use handle objects to contain a document’s content and
metadata. Since thisis atext document, we will use a
com.marklogic.client.io.StringHandle tO contain the text content. After creation, set the
handle's value to the document’s initial content.

StringHandle handle = new StringHandle() ;
handle.set ("A simple text document") ;

Write the document content out to the database. This creates the document in the database
if itisnot already there (if it is already there, it updates the content to whatever isin the
handle argument). The identifier for the document is the value of the aocta argument.

TextDocMgr.write (docId, handle) ;

When finished with the database, release the connection resources by calling the
DatabaseClient Obj ect'Srelease () mMethod.

client.release() ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 38

MarkLogic Server Single Document Operations

2.1.3

Automatically Generating Document URIs

MarkLogic Server can automatically generate database URIs for documents inserted using the
Java API. You can only use this feature to create new documents. To update an existing
document, you must know the URI.

To insert adocument with a generated URI, use a
com.marklogic.client.document.DocumentUriTemplate with DocumentManager.create (), @S

described by the following procedure.

1.

If you have not already done so, connect to the database, storing the connectionin a
com.marklogic.client.Databaseclient Object. For example, if using digest
authentication:

DatabaseClient client = DatabaseClientFactory.newClient (
host, port, new DigestAuthContext (username, password)) ;

If you have not already done so, use the patabaseciient Object to create a
com.marklogic.client.document .DocumentManager Obj ect of the appropriate subclass for
the document content you want to access (XML, text, JSSON, binary, generic).

In this example code, an xMLDocumentManager.
XMLDocumentManager XMLDocMgr = client.newXMLDocumentManager () ;
Inthis example code, an JSONDocumentManager.

JSONDocumentManager JSONDocMgr = client.newJSONDocumentManager () ;

Create a bocumenturiTemplate USING the document manager. Specify the extension suffix
for the URIs created with this template. Do not include a"." separator.

The following example creates a template that generates URIs ending with » . xm1.

DocumentUriTemplate templateXML =
XMLDocMgr .newDocumentUriTemplate ("xml") ;

The following example creates a template that generates URIs ending with . json-.

DocumentUriTemplate templateJSON =
JSONDocMgr .newDocumentUriTemplate ("json") ;

Optionally, specify additional URI template attributes, such as a database directory prefix
and document format. The following example specifies a directory prefix of "/my/docs/".

templateXML.setDirectory ("/my/docs/") ;

// Or
templateJSON.setDirectory ("/my/docs/") ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 39

MarkLogic Server Single Document Operations

5. Get the document’s content. For example, by using an tnputstream.

FileInputStream docStream =
new FileInputStream("data" + File.separator + filename) ;

6. Create a handle associated with the input stream to receive the document’s content. How
you get content determines which handle you use. Use the handle€'s set () method to
associate it with the desired stream.

InputStreamHandle handle = new InputStreamHandle (docStream) ;

7. Insert the document into the database by calling a create () method on the
DocumentManager, Passing in a URI template and the handle. Use the returned
DocumentDescriptor tO Obtain the generated URI.

DocumentDescriptor descXML = XMLDocMgr.create (templateXML, handle) ;

// Or
DocumentDescriptor descdSON = JSONDocMgr.create (templatedJSON, handle) ;

8. When finished with the database, rel ease the connection resources by calling the
DatabaseClient ODjeCt’S release () method.

client.release() ;

2.1.4 Format-Specific Write Capabilities

When inserting or updating a binary document, you can request metadata extraction using
BinaryDocumentManager . setMetadataExtraction. FOr an example, see “Writing A Binary
Document” on page 43.

When inserting or updating an XML document, you can request XML repair using

XMLDocumentManager . setDocumentRepair.

See the Java Client APl Documentation for details.

2.2 Document Deletion

To delete one or more documents, call bocumentManager .delete and passin the URI(S) of the
documents.

Note: To delete documents, an application must authenticate as auser with at least one of
the rest-writer Of rest-admin roles (or as a user with the admin role).

The following example shows how to delete an XML document from the database.

1 Create a com.marklogic.client .Databaseclient fOr connecting to the database.For
example, if using digest authentication:

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 40

MarkLogic Server Single Document Operations

DatabaseClient client = DatabaseClientFactory.newClient (
host, port, new DigestAuthContext (username, password)) ;

2. If you have not already done so, use the patabaseciient Object to create a
com.marklogic.client.document .DocumentManager Obj ect of the appropriate subclass for
the document format (XML, text, JSON, or binary).

a. Inthis example code, an xMLDocumentManager.

XMLDocumentManager XMLDocMgr = client.newXMLDocumentManager () ;

b. Inthis example code, an JSONDocumentManager.

JSONDocumentManager JSONDocMgr = client.newJSONDocumentManager () ;

3. Delete the document(s). For example, the following statement deletes 2 documents:
XMLDocMgr.delete (" /example/docl.xml", "/example/doc2.json");
// Or
JSONDocMgr.delete (" /example/docl.xml", "/example/doc2.json") ;

4, When finished with the database, release the connection resources by calling the
DatabaseClient object’s release () Method.

client.release() ;

2.3 Reading Document Content
Reading requires a handle to access document content.

Note that no changes you make to adocument or its metadata persist until you write the document
out to the database. Within your application, you are only manipulating it on the client, and those
changes will vanish when the application ends. The database content is persistent until and unless
awrite or delete operation changes it.

If you read content with a stream, you must close the stream when done. If you do not close the
stream, HTTP clients do not know that you are finished and there are fewer connections available
in the connection pool.

The basic steps to read a document from the database are:

1. Create a com.marklogic.client .Databaseclient fOr connecti ng to the database.For
example, if using digest authentication:

DatabaseClient client = DatabaseClientFactory.newClient (
host, port, new DigestAuthContext (username, password)) ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 41

MarkLogic Server Single Document Operations

2. If you have not already done so, use the patabaseciient Object to create a
com.marklogic.client.document .DocumentManager Obj ect of the appropriate subclass for
the document format (XML, text, JSON, or binary).

a. Inthisexample code, an xvMLDocumentManager.
XMLDocumentManager XMLDocMgr = client.newXMLDocumentManager () ;
b. Inthis example code, an JSONDocumentManager.

JSONDocumentManager JSONDocMgr = client.newJSONDocumentManager () ;

3. Create a handle to receive the document’s content. For information on handles and the
wide variety of handle types, see “Using Handles for Input and Output” on page 27.

a. This example USES @ com.marklogic.client.io.DOMHandle Obj ect.
DOMHandle handleXML = new DOMHandle () ;
b. Thisexample usesacom.marklogic.client.io.JacksonHandle ODjeCt.

JacksonHandle handleJSON = new JacksonHandle () ;

4, Read the document’s content by calling areada () method on the pocumentManager, With
arguments of the document’s URI and the handle. Here, assume doc1d contains the
document’s URI.

XMLDocMgr.read (docId, handleXML) ;

// Or(
JSONDocMgr . read (docId, handleJSON) ;

5. Access the content by calling aget () method on the handle.
a. For example, poMuandle.get returns a W3C pocument Object.
Document document = handleXML.get () ;
b. For exampl €, JacksonHandle.get ELUINS @ JsonNode Obj ect.

JsonNode node = handledSON.get () ;

6. When finished with the database, rel ease the connection resources by calling the
DatabaseClient object’s release () Method.

client.release() ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 42

MarkLogic Server Single Document Operations

2.4 Writing A Binary Document

To insert or update a binary document, use a handle containing your binary content with
com.marklogic.client.document .BinaryDocumentManager. YOU Can USe any handle that
|mpI ementS BinaryWriteHandle, such AdSBytesHandle OF FileHandle.

No metadata extraction is performed by default. You can request metadata extraction and specify
how it is saved by calllng BinaryDocumentManager.setMetadataExtraction ().

The following example reads a JPEG image from a file named my . png and insertsit into the
database as a binary document with URI /images/my.png. During insertion, metadata is extracted
from the binary content and saved as document properties.

String docId = "/example/my.png";
String mimetype = "image/png";

BinaryDocumentManager docMgr = client.newBinaryDocumentManager () ;
docMgr.setMetadataExtraction (MetadataExtraction.PROPERTIES) ;

docMgr.write (
docId,

new FileHandle () .with(new File ("my.png")) .withMimetype (mimetype)
) ;

2.5 Reading Content From A Binary Document
There are several ways to read content from a binary document.

To stream binary content, use InputStream as follows:

InputStream byteStream =
docMgr.read (docID, new InputStreamHandle()) .get() ;

To buffer the bi nary content, USe com.marklogic.client.io.BytesHandle object as follows:

byte[] buf = docMgr.read(docID, new BytesHandle()) .get () ;

Or you can read only part of the content:

BytesHandle handle = new BytesHandle() ;
buf = docMgr.read(docId, handle, 9, 10) .get();

2.6 Reading, Modifying, and Writing Metadata

Reading and writing document metadata from and to the database are very similar operations to
reading and writing document content. Each requires calling methods on
com.marklogic.client.document .DocumentManager. The handle for metadata can be a
DocumentMetadataHandle t0 Modify metadatain a POJO, or it can be raw XML or JSON.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 43

MarkLogic Server Single Document Operations

You can perform operations on the metadata associated with documents such as collections,
permissions, properties, and quality. This section describes those metadata operations and
includes the following parts:

e Document Metadata

* Reading Document Metadata

* Collections Metadata

* Values Metadata

* Properties Metadata

* Quality Metadata

* Permissions Metadata

* Manipulating Document Metadata In Your Application

e Writing Metadata

2.6.1 Document Metadata

The enum pocumentManager . Metadata enuMerates the metadata categories (including arr). The
following are the metadata types covered by this enumeration:

* courecTIONs: Document collections, a non-hierarchical way of organizing documentsin
the database. For details, see “ Collections Metadata’ on page 46.

» wueTapaTAvALUES. Key-value metadata, sometimes called “ metadatafields’. For details, see
“Vaues Metadata’ on page 47.

* prrMISsIONS. Document permissions. For details, see “Permissions Metadata’ on page 49.

* propERTIES. DOCUMeENt properties. Property-value pairs associated with the document. For
details, see " Properties Metadata” on page 48.

* guarity: Document search quality. Helps determine which documents are of the best
quality. For details, see “Quality Metadata” on page 48.

These metadata types are described in detail later in this chapter.

2.6.2 Reading Document Metadata
The basic steps needed to read a document’s metadata are:

1 If you have not already done so, create a com.marklogic.client.DatabaseClient fOr
connecting to the database. For example, if using digest authentication:

DatabaseClient client = DatabaseClientFactory.newClient (
host, port, new DigestAuthContext (username, password)) ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 44

MarkLogic Server Single Document Operations

2. If you have not already done so, use the patabaseciient Object to create a
com.marklogic.client.document .DocumentManager Obj ect of the appropriate subclass for
the document format (XML, text, JSON, or binary).

a. Inthisexample code, an xvMLDocumentManager.
XMLDocumentManager XMLDocMgr = client.newXMLDocumentManager () ;
b. Inthis example code, an JSONDocumentManager.

JSONDocumentManager JSONDocMgr = client.newJSONDocumentManager () ;

3. Create @ com.marklogic.client.io.DocumentMetadataHandle Obj ect, which will receive
the document’s metadata. Alternately, you can create raw XML or JSON.

DocumentMetadataHandle metadataHandle = new DocumentMetadataHandle () ;

4, If you also want to get the document’s content, create a handle to receive it. Note that you
need separate handles for a document’s content and metadata.

a Thlsexample USES @ com.marklogic.client.io.DOMHandle object.

DOMHandle handleXML = new DOMHandle () ;

b. Thisexample usesacom.marklogic.client.io.JacksonHandle ODjeCt.

JacksonHandle handleJSON = new JacksonHandle () ;

5. Read the document’s metadata by calling a readmetadata () method on the
DocumentManager, With an argument of the metadata handle. Note that you can also call
read () With an additional argument of a content handle so that it will read the metadata
into the metadata handle and the content into the content handle in a single operation. To
call read (), an application must authenticate as rest-reader, rest-writer, Of rest-admin.
Below, doc1d isavariable containing a document URI.

a Cdli ng methods on a xMLpocumentManager:

//read only the metadata into a handle
XMLDocMgr .readMetadata (docId, metadataHandle) ;

//read metadata and content
XMLDocMgr.read (docId, metadataHandle, handleXML) ;

b. Calling methods on a ssonpocumentManager

//read only the metadata into a handle
JSONDocMgr . readMetadata (docId, metadataHandle) ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 45

MarkLogic Server Single Document Operations

//read metadata and content
JSONDocMgr .read (docId, metadataHandle, handleJSON) ;

6. Access the metadata by calling get () methods on the metadata handle. Later sectionsin
this chapter show how to access the other types of metadata.

DocumentCollections collections = metadataHandle.getCollections() ;
Document document = handleXML.get () ;
JsonNode node = handleJSON.get () ;

7. When finished with the database, release the connection resources by calling the
DatabaseClient Obj ect'Srelease () method.

client.release() ;

By default, pocumentmanager reads and writes all categories of metadata. To read or write a subset
of the metadata Categories, Configure DocumentManager by calllng setMetadataCategories (). FOr
example, to retrieve just collection metadata, make the following call before calling

DocumentManager.read Of DocumentManager . readMetadata.

docMgr.setMetadataCategories (DocumentManager .Metadata.COLLECTIONS) ;

2.6.3 Collections Metadata

Collections are away to organize documents in a database. A collection defines a set of
documentsin the database. You can set documentsto be in any number of collections either at the
time the document is created or by updating a document. Searches against collections are both
efficient and convenient. For more details on collections, see Collections in the Search Developer’s
Guide.

The Java API alows you to read and manipul ate collections metadata using the
com.marklogic.client.io.DocumentMetadataHandle .DocumentCollections. COllections are

named by specifying aURI. A collection URI serves as an identifier, and it can be any valid URI.

The code in this section assumes a pocumentManager Object of an appropriate type for the
document, docmgr, and a string containing a document URI, doc1d, have been created.

To get all collections for adocument and put them in an array, do the following:

//Get the set of collections the document belongs to and put in array.
DocumentCollections collections = metadataHandle.getCollections() ;

To check if acollection URI exists in a document’s set of collections, do the following:
collections.contains ("/collection name/collection name2") ;
To add a document to one or more collections, do the following:

collections.addAll ("/shakespeare/sonnets", "/shakespeare/plays");

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 46

MarkLogic Server Single Document Operations

To remove a document from a collection, do the following:

collections.remove ("/shakespeare/sonnets") ;

To remove a document from all its collections, do the following:

collections.clear () ;

2.6.4 Values Metadata

The veTapaTavarLues metadata category represents simple key-value metadata for a document.
Both the key and the value are strings. You can define your own key-value pairs. MarkL ogic also
adds key-value pairsto thistype of metadata to documentsin certain situations, such as when you
work with temporal documents.

MarkL ogic stores values metadata separately from its associated document. To search values
metadata, define a metadatafield and use afield query. For more details, see Metadata Fields in the
Administrator’s Guide.

To access metadata values you' ve read from the database, use
DocumentMetadataHandle.getMetadatavalues. FOr example, if you read the metadata from a
document using a call sequence similar to the following:

DocumentMetadataHandle metadataHandle = new DocumentMetadataHandle () ;
docMgr.setMetadataCategories (METADATAVALUES) ;
docMgr.readMetadata (docId, metadataHandle) ;

Then you can access the returned values metadata as follows:

DocumentMetadataValue mvMap = metadataHandle.getMetadataValues () ;
String someValue = mvMap.get ("someKey") ;

DocumentMetadatavalue 1S an extension of java.util.Map, SO YOU Can use the Map methods to
explore the returned metadata.

To add a new key-value pair or change the value of an existing pair, in adocument’s metadata,
USE DocumentMetadataValue.put Of DocumentMetadataHandle.withMetadatavalue. FOr example,

the following adds a key-value pair with key “myKey” and value “myValue’:

mvMap .put ("myKey", "myValue") ;
//ox
metadataHandle.withMetadataValue ("myKey", "myValue") ;

Once you initialize your map or handle with values metadata, write the new metadata to the
database as described in “Writing Metadata’ on page 50.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 47

MarkLogic Server Single Document Operations

2.6.5 Properties Metadata
Manipulate properties metadata using the

com.marklogic.client.io.DocumentMetadataHandle.DocumentProperties class.

The code in this section assumes a pocumentManager ObjeCt, docMgr, and a string containing a
document’s URI, doc1d, have been created.

To get all of adocument’s properties metadata, do the following:
DocumentProperties properties = metadataHandle.getProperties() ;
Document Properties ODJECtS represent a document’s properties as a map.
To check if adocument’s properties contain a specific property name, do the following:
exists = properties.containsKey ("name") ;
To get a specific property’s value do the following:

value = metadataHandle.getProperties ("name") ;

To add anew property or change the value of an existing property in a document’s metadata,
build up the new set of properties using pocumentProperties.put O
DocumentMetadataHandle.withProperty, and then write the new metadata to the database as
described in “Writing Metadata’ on page 50. For example, the following adds a property named
“name” with the value “value’.

metadataHandle.getProperties () .put ("name", "value");

2.6.6 Quality Metadata

The code in this section assumes a com. marklogic.client.io.DocumentManager Obj ect, docMgr,
and a string containing a document’s URI, doc14, have been created.

The quality metadata affects the ranking of documents for use in searches by creating a multiplier
for calculating the score for that document, and the default value for quality in the Java APl is o.

To get a document’s search quality metadata value do the following:
int gquality = metadataHandle.getQuality () ;

To set adocument’s search quality value do the following:

metadataHandle.setQuality (3) ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 48

MarkLogic Server Single Document Operations

2.6.7 Permissions Metadata

Permissions on documents control who can access a document for the capabilities of read, update,
insert, and execute. To perform one of these operations on a document, a user must have arole
corresponding to the permission for each capability needed. For details on permissions and on the
security model in MarkLogic Server, see the Security Guide.

The code in this section assumes a bocumentManager Object, docmMgr, and a string containing a
document’s URI, doc14, have been created. Manipulate document properties using the class

com.marklogic.client.io.DocumentMetadataHandle.DocumentPermissions.
MarkLogic Server defines permissions using roles and capabilities.

The allowed values for capabilities are those in the enum

com.marklogic.client.io.DocumentMetadataHandle.Capability:

* ExECUTE - Permission to execute the document.

» 1NsERT - Permission to create but not modify or delete the document.

* RrEAD - Permission to read the document but not modify it..

» uppaATE - Permission to create, modify, or delete the document, but not to read it.

Roles are assigned to users viathe Admin Interface or through other administrative tools, and
cannot be assigned viathe Java Client API. You can, however, control permissions on documents
as part of their metadata.

To get permissions metadata for a document, do the following:

DocumentPermissions permissions = metadataHandle.getPermissions ()

metadataHandle.getPermissions () .add("app-user",
Capability.UPDATE, Capability.READ) ;

2.6.8 Manipulating Document Metadata In Your Application

A DocumentMetadataHandle represents metadata as a POJO. A pocumentMetadataHandle has
several methods for manipulating a document’s metadata. That may not be how you want to work
with the metadata, however. If you would prefer to work with it as XML, then read it with an
XML handle. If you would prefer to work with it as JSON, read it with aJSON handle. A
StringHandle Can use either XML or JSON, defaulting to XML.

To specify the format for reading content, uUse withrFormat () OF setFormat (), asin the following
example:

StringHandle metadataHandle =
new StringHandle () .withFormat (Format.JSON) ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 49

MarkLogic Server Single Document Operations

2.6.9 Writing Metadata

When you are finished modifying metadata categories, you must write it to the database to persist
it. Note that the above operations all only change the document’s metadata stored on the client,
and do not change the metadata for document in the database. To write the metadata changes to
the database, as well as the document content, do the following:

InputStreamHandle handle = new InputStreamHandle (docStream) ;
docMgr.write (docId, metadataHandle, handle) ;

2.7 Working with Temporal Documents

Most document write operations on JSON and XML documents enable you to work with
temporal documents. Temporal-aware document inserts and updates are made available through
the com. marklogic.client.document .TemporalDocumentManager interface. JSONDocumentManager
and XMLDocumentManager |mpI ement TemporalDocumentManager.

The TemporalpocumentManager interface exposes methods for creating, updating, patching, and
deleting documents that accept temporal related parameters such as the following:

* temporalCollection: The URI of thetemporal collection into which the new document
should be inserted, or the name of the temporal collection that contains the document
being updated.

* temporalDocumentURI: The“logical” URI of the document in the temporal collection; the
temporal collection document URI. Thisis equivalent to the first parameter of the
temporal : statement -set -document -version-uri XQUEry function or of the
temporal . statementSetDocumentVersionUri Server-Side Javascri pt function.

* sourceDocumentURI: Thetemporal collection document URI of the document being
operated on. Only applicable when updating existing documents. This parameter
facilitates working with documents with user-maintained version URIs.

* systemTime: The system start time for an update or insert.

During an update operation, if you do not specify sourcebocumentURI OF temporalDocumentURT
parameters, then the uri parameter indicates the source document. If you specify
temporalDocumentURI, Ut O Not speC|fy sourceDocumentURT, then the temporalbocumenturt
identifies the source document.

Theuri parameter aways refers to the output document URI. When the MarkL ogic manages the
version URIs, the document URI and temporal document collection URI have the same value.
When the user manages version URIs, they can be different.

The TemporalDocumentManager.protect Mmethod enablesyou to protect atemporal document from
operations such as update, delete, and wipe for a specified period of time. This method is
equivalent to calling the temporal : document -protect XQuery function or the

temporal . document Protect Server-Side JavaScript function.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 50

MarkLogic Server Single Document Operations

USe TemporalDocumentManager . advanceLsqgt tO advance LSQT on atemporal collection. This
method is equivalent to calling the temporal : advance-1sqt XQuery function or the
temporal .advanceLsqgt Server-Side JavaScri pt function.

For more details, see the Temporal Developer’s Guide and the JavaDoc in the Java Client API
Documentation.

2.8 Conversion of Document Encoding
The Java APl handles encoding conversions for you, but you have to:

* know the encoding
» usethe appropriate handle

If you specify the encoding and it turns out to be the wrong encoding, then the conversion will
likely not turn out as you expect.

MarkLogic Server storestext, XML, and JSON as UTF-8. In Java, charactersin memory and
reading streams are UTF-16. The Java API converts charactersto and from UTF-8 automatically.

When writing documents to the server, you need to know if they are already UTF-8 encoded. If a
document is not UTF-8, you must specify its encoding or you are likely to end up with data that
has incorrect characters due to the incorrect encoding. If you specify anon-UTF-8 encoding, the
Java APl will automatically convert the encoding to UTF-8 when writing to MarkL ogic.

When writing characters to or reading characters from afile, Java defaults to the platform’s
standard encoding. For example, there is different platform encoding on Linux than Windows.

XML supports multiple encodings as defined by the header (called an XML declaration):
<?xml version="1.0" encoding ="utf-8">

The XML declaration declares afile's encoding. XML parsing tools, including handles, can
determine encoding from this and do the conversion for you.

When writing character data to the database, you need to pick an appropriate handle type,
depending on your intent and circumstances.

Depending on your application, you may need to be aware that MarkL ogic Server normalizes text
to precomposed Unicode characters for efficiency. Unicode abstract characters can either be
precomposed (one character) or decomposed (two characters). If you write a decomposed
Unicode document to MarkLogic Server and then read it back, you will get back precomposed
Unicode. Usually, you do not need to care if characters are precomposed or decomposed. This

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 51

MarkLogic Server

Single Document Operations

Unicode issue only affects some characters, and many APIs abstract away the difference. For
instance, the Java collator treats the precomposed and decomposed forms of a character as the
same character. If your application needs to compensate for this difference, you can use

java.text.Normalizer, for details, see:

http://docs.oracle.com/javase/6/docs/api/java/text/Normalizer.html

The following table describes possible cases for reading character data with recommended

handles to use in each case.

Read Condition

Recommended Handlg(s)

If reading binary data:

Use BytesHandle, FileHandle, O
InputStreamHandle.

If reading character data from the database:

BytesHandle, FileHandle, InputStreamHandle,
and the XML handles are encoded as UTF-8.
StringHandle and rReaderHandle CONvert to
UTF-16.

The following table describes possible cases for writing character data with recommended

handles to use in each case.

Write Condition

Recommended Handlg(s)

If the datayou are writing is a Java string:

Use stringHandle; it converts on write from
UTF-16 to UTF-8.

If writing binary data:

Use BytesHandle, FileHandle, Of
InputStreamHandle.

If the data you are writing is encoded as
UTF-8 and you do not need to modify the
data:

Use BytesHandle, FileHandle, O
InputStreamHandle.

If itis XML that declares an encoding other
than UTF-8 in the XML declaration and you
do not need to modify the data:

UsSe rnputSourceHandle,
XMLEventReaderHandle, OF
XMLStreamReaderHandle, these convert to
UTF-8.

MarkLogic 10—May, 2019

Java Application Developer’ s Guide—Page 52

http://docs.oracle.com/javase/6/docs/api/java/text/Normalizer.html

MarkLogic Server

Single Document Operations

Write Condition

Recommended Handlg(s)

If the character datato writeis XML that
declares the encoding in a prolog and you
need to modify the data:

Use poMHandle, SourceHandle, OF Create a
handle class on an open source DOM. For
examples of the latter, see gpovaandie,
XOMHandle, Of DoM4JHandle 1N the package
com.marklogic.client.extra. All these
classes convert to UTF-8.

If the character data to write has a known
encoding other than UTF-8 and you don't need
to modify the data:

Use readerHandle and specify the encoding
when creating the reader (as usua in Java);
these convert to UTF-8.

If the character datato writeis XML with a
known but undeclared encoding and you need
to modify the data:

Use poMHandle With @ bocumentBuilder
parsing an rnputsource With a specified
encoding asin:

DOMHandle handle =

handle. set (

handle.getFactory () .newDocumentBuild

er ()

parse (newInputSource (. ..reader
specifying charset ...)));

new DOMHandle () ;

or Use sourcetandle With astreamReader ON A
reader With a specified encoding asin:

SourceHandle handle =
SourceHandle () ;
handle.set (new StreamSource (...
reader specifying charset
D))

new

If the character datato write is JSON and you
need to modify the data:

Consider using a JSON library such as
Jackson or GSON. See
com.marklogic.client.extra.JacksonHandle

for an example.

If the character data to write is text other than
JSON or XML and you need to modify the
data:

Consider using a streamTokenizer With a
Reader, Of Pattern With AdsString

2.9

Partially Updating Document Content and Metadata

The interface com.marklogic.client .document . Document PatchBuilder enablesyou to update a
portion of an existing document or its metadata. This section covers the following topics:

e |ntroduction to Content and Metadata Patching

MarkLogic 10—May, 2019

Java Application Developer’s Guide—Page 53

MarkLogic Server Single Document Operations

e Basic Steps for Patching Documents and Metadata

* Construct a Patch From Raw XML or JSON

¢ Defining the Context for a Patch Operation

e Example: Replacing Parts of a JSON Document

e Example: Patching Metadata

* Managing XML Namespaces in a Patch

* Construct Replacement Data on the Server

29.1 Introduction to Content and Metadata Patching

A partial update is an update you apply to a portion of a document or metadata, rather than
replacing an entire document or all of the metadata. For example, inserting an XML element or
attribute or changing the value associated with a JSON property. You can only apply partial
content updatesto XML and JSON documents. You can apply partial metadata updates to any
document type.

Use a partial update to do the following operations:

* Add, replace, or delete an XML element, XML attribute, or JSON object or array item of
an existing document.

* Add, replace, or delete a subset of the metadata of an existing document. For example,
modify a permission or insert a property.

» Dynamically generate replacement content or metadata on MarkL ogic Server using builtin
or user-defined functions. For details, see “ Construct Replacement Data on the Server” on

page 67.

You can apply multiple updates in a single patch, and you can update both content and metadata
in the same patch.

A patch isapartia update descriptor, expressed in XML or JSON, that tells MarkLogic Server
where to apply an update and what update to apply. Four operations are available in a patch:
insert, replace, replace-insert, and delete. (A replace-insert operation functions as areplace, as
long as at least one match exists for the target content; if there are no matches, then the operation
functions as an insert.)

Patch operations can target XML elements and attributes, JSON property values and array items,
and data values. You identify the target of an operation using XPath and JSONPath expressions.
When inserting new content or metadata, the insertion point is further defined by specifying the
position; for details, see How Position Affects the Insertion Point in the REST Application Developer’s
Guide.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 54

MarkLogic Server Single Document Operations

Note: You can only use asubset of XPath to define path expressionsin patch operations.
For details, see Patch Feature of the Client APIs in the XQuery and XSLT Reference
Guide.

When applying a patch to document content, the patch format must match the document format:
An XML patch for an XML document, a JSON patch for a JSON document. You cannot patch the
content of other document types. You can patch metadata for all document types. A
metadata-only patch can be in either XML or JSON. A patch that modifies both content and
metadata must match the document content type.

You can construct a patch from raw JSON or XML, or using one of the following builder
interfaces:

e com.marklogic.client.document.DocumentPatchBuilder

e com.marklogic.client.document.DocumentMetadataPatchBuilder

The patch builder interface contains value and fragment oriented methods, such as replacevalue
and replaceFragment. YOU Can use the »va1ue methods when the new valueis an atomic value,
such asastring, number, or boolean. Use the *rFragment methods when the new valueis acomplex
structure, such as an XML element or JSON object or array.

Apply apatch by passing ahandle to it to the patch () method of a bocumentmanager. The
following exampl e sketches construction of a patch using abuilder, and then applying the patch to
an XML document. The patch insertsa <chiida/> element as the last child element of the node
addressed by the XPath expression /data.

DocumentPatchBuilder xmlPatchBldr = XMLDocMgr.newPatchBuilder () ;
DocumentPatchHandle xmlPatch =
xmlPatchBldr. insertFragment (
"/data",
Position.LAST CHILD,
"«child>the last one</child>")
.build () ;
XMLDocMgr.patch (docId, xmlPatch) ;

The following example sketches construction of a patch using a builder, and then applying the
patch to a JSON document. The patch inserts averore €lement as the element before the node
adressed by the path expression /data.

DocumentPatchBuilder jsonPatchBldr = JSONDocMgr.newPatchBuilder () ;
DocumentPatchHandle jsonPatch =
jsonPatchBldr.insertFragment (

"/data" ,

Position.BEFORE,

"{\"before\":\"element before data attribute\"}")

.build() ;

JSONDocMgr .patch (docId, jsonPatch);

For detailed instructions, see “Basic Steps for Patching Documents and Metadata” on page 56.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 55

MarkLogic Server Single Document Operations

If a patch contains multiple operations, they are applied independently to the target document.
That is, within the same patch, one operation does not affect the context path or select path results
or the content changes of another. Each operation in a patch is applied independently to every
matched node. If any operation in a patch fails with an error, the entire patch fails.

Content transformations are not directly supported in a partial update. However, you can
implement a custom replacement content generation function to achieve the same effect. For
details, see “ Construct Replacement Data on the Server” on page 67.

2.9.2 Basic Steps for Patching Documents and Metadata

This section describes how to create a patch builder, useit to construct a patch descriptor, and then
apply the patch. To construct a patch without using a builder, see “ Construct a Patch From Raw
XML or JSON” on page 58.

For JSON and XML documents, you can use a

com.marklogic.client.document .DocumentPatchBuilder tO patch content only, content pl us
metadata, or metadata only. For all document types, you can use a

com.marklogic.client.document .DocumentMetadataPatchBuilder tO paICh metadata onIy. A
DocumentPatchBuilder IS aSO @ DocumentMetadataPatchBuilder. USE A DocumentManager subclass
such as JSONDocumentManager O GenericDocumentManager {O Create a patch builder.

When you combine content and metadata updates in the same patch, the patch format (XML or
JSON) must match the content type of the patched documents.

Follow this procedure to use a builder to create and apply a patch to the contents of an XML or
JSON document, or to the metadata of any type of document.

1 If you have not already done so, connect to the database, storing the connectionin a
com.marklogic.client.DatabaseClient Object. For example, if using digest
authentication:

DatabaseClient client = DatabaseClientFactory.newClient (
host, port, new DigestAuthContext (username, password)) ;

2. If you have not already done so, use the patabaseciient Object to create a
com.marklogic.client.document . DocumentManager ODj€Ct Of the appropriate subclass for
the document content you want to access (XML, JSON, binary, or text).

a. Inthisexample code, an xvMLDocumentManager.
XMLDocumentManager XMLDocMgr = client.newXMLDocumentManager () ;
b. Inthisexample code, an ssonpocumentManager.

JSONDocumentManager JSONDocMgr = client.newdJSONDocumentManager () ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 56

MarkLogic Server Single Document Operations

Note: You can only apply content patchesto XML and JSON documents.
3. Create a document patch builder or metadata patch builder using the document manager.

a. For example:

DocumentPatchBuilder builderXML = XMLDocMgr.newPatchBuilder () ;
b. Or:

DocumentPatchBuilder builderJSON = JSONDocMgr.newPatchBuilder () ;

4, Call the patch builder methods to define insert, replace, replace-insert, and delete
operations for the patch.

a. Thefollowing example adds an element insertion operation:

builderXML. insertFragment ("/data", Position.LAST CHILD,
"«child>the last one</childs>") ;

b. The following example adds an element insertion operation:

builderJSON. insertFragment ("/data", Position.BEFORE,
"{\"before\":\"element before data attribute\"}");

For more details on identifying the target content for an operation, see “Defining the
Context for a Patch Operation” on page 60.

5. Create a handle associated with the patch using pocumentpatchBuilder.build ().

a. For example:

DocumentPatchHandle handleXML = builderXML.build() ;
b. Or:

DocumentPatchHandle handledJSON = builderJSON.build() ;

Note: Onceyou cal build(), the patch contents are fixed. Subsequent calls to define
additional operation, such as calling insertrragment again, will have no effect.

6. Apply the patch by calling apatch () method on the pocumentmanager, With arguments of
the document’s URI and the handle.

a. For example:

XMLDocMgr.patch (docId, handleXML) ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 57

MarkLogic Server Single Document Operations

b. Or:

JSONDocMgr .patch (docId, handleJSON) ;

7. When finished with the database, release the connection resources by calling the
DatabaseClient object’s release () method. For example:

client.release() ;

293 Construct a Patch From Raw XML or JSON

This section describes how to create and apply a patch that you construct directly using XML or
JSON. To construct a patch using a Java builder, see “Basic Steps for Patching Documents and
Metadata’ on page 56.

When you construct a patch that modifies both content and metadata, the patch format must match
the content type of the target XML or JSON document. When you construct a patch that only
modifies metadata, the patch format can use either XML or JSON, and the patch can be applied to
the metadata of any type of document (XML, JSON, text, or binary).

For examples of raw patches, see XML Examples of Partial Updates Or JSON Examples of Partial
Update in the REST Application Developer’s Guide:

Follow this procedure to create and apply araw XML or JSON patch to the contents of an XML
or JSON document, or to the metadata of any type of document.

1 Create aJSON or XML representation of the patch operations, using the tools or library of
your choice. For syntax, see XML Patch Reference and JSON Patch Reference and in the
REST Application Developer’s Guide.

a. Thefollowing example uses a string representation of a patch that inserts an element in
an XML document:

String xmlPatch =
"<rapi:patch xmlns:rapi='http://marklogic.com/rest-api'>" +
"<rapi:insert context='/data' position='last-child'>" +
"«<child>the last one</child>" +
"</rapi:insert>" +
"</rapi:patch>";

b. Thefollowing example uses astring representation of a patch that inserts an elementin a
JSON document:

String jsonPatch = "{ \"patch\": " +
"[{ \"insert\": { " +
"\"context\": \"/parent/childi\", " +
"\"position\": \"before\", " +

"\"content\": { \"INSERT1\": \"INSERTED1\" }

P31 b

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 58

MarkLogic Server Single Document Operations

2. If you have not already done so, connect to the database, storing the connectionin a
com.marklogic.client.DatabaseClient object. For example, if us ng dlgest
authentication:

DatabaseClient client = DatabaseClientFactory.newClient (
host, port, new DigestAuthContext (username, password)) ;

3. If you have not already done so, use the patabaseciient Object to create a
com.marklogic.client .document . DocumentManager ODj€Ct Of the appropriate subclass for
the document content you want to access (XML, JSON, binary, or text).

a. Inthisexample code, an xMLDocumentManager.
XMLDocumentManager XMLDocMgr = client.newXMLDocumentManager () ;
b. Inthis example code, an JsoNDocumentManager.
JSONDocumentManager JSONDocMgr = client.newJSONDocumentManager () ;

Note: You can only apply content patchesto XML and JSON documents.

4, Create a handle that implements pocument patchuandle and associate your patch with the
handle. Set the handle content type appropriately. For example:

// For an XML patch
DocumentPatchHandle handle =
new StringHandle (xmlPatch) .withFormat (Format .XML) ;

// For a JSON patch

DocumentPatchHandle handle =
new StringHandle (jsonPatch) .withFormat (Format .JSON) ;

5. Apply the patch by calling apatch () method on the pocumentmanager, With arguments of
the document’s URI and the handle.

XMLDocMgr.patch (docId, handle) ;
// Or
JSONDocMgr .patch (docId, handle) ;

6. When finished with the database, release the connection resources by calling the
DatabaseClient Obj ect'Srelease () mMethod.

client.release() ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 59

MarkLogic Server Single Document Operations

294 Defining the Context for a Patch Operation

When you insert, replace, or delete content or metadata, the patch definition must include enough
context to tell MarkLogic Server what XML or JSON components to operate on. For example,
which XML element or JSON property to modify, where to insert a new element or object, or
which element, object, or value to replace.

When you create a patch using a builder, you specify the context through the contextPath and
selectPath parameters of builder methods such as pocumentpatchBuilder. insertFragment () OF
DocumentPatchBuilder.replacevValue (). When you create a patch from raw XML or JSON, you
specify the operation context through the context and select XML attributes or JSON properties.

For XML documents, you specify the context using an XPath (XML) expression.The XPath you
can useislimited to a subset of XPath. For details, see Patch Feature of the Client APIs in the
XQuery and XSLT Reference Guide.

For JSON documents, use JSONPath (JSON). The JSONPath you can use has the same limitation
asthose that apply to XPath. For details, see Introduction to JSONPath and Patch Feature of the Client
APIs in the XQuery and XSLT Reference Guide.

2.9.5 Example: Replacing Parts of a JSON Document

This example uses patch operations to perform the document transformation shown in the table
below. The patch replaces one JSON property with another, replaces the simple value of a
property, and replaces the array value of a property.

Before Update After Update
{ "parent": { { "parent": {
"child1i": "childi":
"grandchild": "value" "REPLACE1": "REPLACED1"
b b
"child2": "simple", "child2": "REPLACED2",
"child3": ["avl", "av2"] "child3": [
bl "REPLACED3a",
"REPLACED3b"
1
bl

The raw patch that applies these changes is shown below.

{ "patch": [
{ "replace": {
"select": "/parent/childl",
"content": { "REPLACE1": "REPLACED1" }
b}
{ "replace": {

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 60

MarkLogic Server Single Document Operations

"select": "/parent/child2",
"content": "REPLACED2"
Iy
{ "replace": {
"select": "/parent/array-node('child3')",
"content": ["REPLACED3a", "REPLACED3b"]

b}
1}

The following code demonstrates how to use the PatchBuilder interface to create the equivalent
raw patch. A Jackson objectMapper IS USed to construct the complex replacement values (the
object value of chiid1 and the array value of chiids).

JSONDocumentManager jdm = client.newJSONDocumentManager () ;
DocumentPatchBuilder pb = jdm.newPatchBuilder() ;
pb.pathLanguage (DocumentPatchBuilder.PathLanguage .XPATH) ;
ObjectMapper mapper = new ObjectMapper () ;

pb.replaceFragment (" /parent/child1l",
mapper.createObjectNode () .put ("REPLACE1", "REPLACED1")) ;

pb.replacevValue ("child2", "REPLACED2") ;

pb.replaceFragment ("/parent/array-node ('child3')",
mapper.createArrayNode () .add ("REPLACED3a") .add ("REPLACED3b")) ;

jdm.patch (URI, pb.build());

For additional (raw) patch examples, see XML Examples of Partial Updates and JSON Examples of
Partial Update in the REST Application Developer’s Guide. These examples can assist you with
constructing appropriate X Path expressions and replacement context in Java.

2.9.6 Example: Patching Metadata

This example demonstrates using a patch builder to modify metadata such as collections,
permissions, quality, document properties, and key-value metadata.

Assume a document exists in the database with the following metadata. The document isin one
collection, has no document properties or key-value metadata, has default permissions, and has
quality 2.

<rapi:metadata uri="/java/doc.json"
xsi:schemalocation="http://marklogic.com/rest-api restapi.xsd"
xmlns:rapi="http://marklogic.com/rest-api"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" >
<rapi:collections>
<rapi:collection>original</rapi:collection>
</rapi:collections>
<rapi:permissions>
<rapi:permissions>
<rapi:role-name>rest-writer</rapi:role-name>
<rapi:capability>update</rapi:capability>
</rapi:permission>
<rapi:permissions>

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 61

MarkLogic Server Single Document Operations

<rapi:role-name>rest-reader</rapi:role-name>
<rapi:capability>read</rapi:capability>
</rapi:permission>

</rapi:permissions>

<prop:properties xmlns:prop="http://marklogic.com/xdmp/property"/>

<rapi:quality>2</rapi:qualitys>

<rapi:metadata-values/>

</rapi:metadata>

The example modifies the metadata to do the following:

» Add the document to another collection.
* Set the quality to 3.

* Add some key-value metadata.

* Addanew roleto the permissions

The following code builds and applies the patch using a cenericbocumentManager and

DocumentMetadataPatchBuilder.

public static void metadataExample() {
GenericDocumentManager gdm = client.newDocumentManager () ;
DocumentMetadataPatchBuilder pb = gdm.newPatchBuilder (Format.XML) ;

pb.addCollection ("new") ;

pb.setQuality(3) ;

pb.addMetadataValue ("newkey", "newvalue") ;

pb.addPermission ("newrole",
DocumentMetadataHandle.Capability.READ,
DocumentMetadataHandle.Capability.UPDATE) ;

gdm.patch (URI, pb.build());

}

After applying the patch, the document has the following metadata. The portion modified by the
patch are shown in bold.

<rapi:metadata uri="/java/doc.json"
xsi:schemalocation="http://marklogic.com/rest-api restapi.xsd"
xmlns:rapi="http://marklogic.com/rest-api"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" >
<rapi:collections>
<rapi:collection>original</rapi:collection>
<rapi:collection>new</rapi:collection>
</rapi:collections>
<rapi:permissions>
<rapi:permissions>
<rapi:role-name>rest-writer</rapi:role-name>
<rapi:capability>update</rapi:capability>
</rapi:permission>
<rapi:permission>

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 62

MarkLogic Server Single Document Operations

<rapi:role-name>newrole</rapi:role-name>
<rapi:capability>update</rapi:capability>
<rapi:capability>read</rapi:capability>
</rapi:permission>
<rapi:permission>
<rapi:role-name>rest-reader</rapi:role-name>
<rapi:capability>read</rapi:capability>
</rapi:permission>
</rapi:permissions>
<prop:properties xmlns:prop="http://marklogic.com/xdmp/property"/>
<rapi:quality>3</rapi:quality>
<rapi:metadata-values>
<rapi:metadata-value key="newkey">newvalue</rapi:metadata-value>
</rapi:metadata-values>
</rapi:metadata>

Assume a document exists in the database with the following metadata. The document isin one
collection, has default permissions, and has quality O.

"collections": [
"squares"
1,
"permissions": [
{
"role-name": "rest-writer",
"capabilities": [

"update"

1,
"properties":
"myprop": "this is my prop",
"myotherprop": "this is my other prop"
I

"quality": 0

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 63

MarkLogic Server Single Document Operations

}

The example modifies the metadata to do the following:

* Add the document to another collection.
* Set the quality to 3.

* Add some key-value metadata.

* Addanew roleto the permissions

The following code builds and applies the patch using a cenericbocumentManager and

DocumentMetadataPatchBuilder.

public static void metadataExample() {

GenericDocumentManager gdm = client.newDocumentManager () ;

DocumentMetadataPatchBuilder pb = gdm.newPatchBuilder (Format .JSON) ;

pb.addCollection ("new") ;

pb.setQuality(3) ;

pb.addMetadataValue ("newkey", "newvalue") ;

pb.addPermission ("newrole",
DocumentMetadataHandle.Capability.READ,
DocumentMetadataHandle.Capability.UPDATE) ;

gdm.patch (URI, pb.build());

}

After applying the patch, the document has the following metadata. The portion modified by the
patch are shown in bold.

{

"collections": [
"shapes",
"new"
1,
"permissions": [
{
"role-name": "rest-writer",
"capabilities": [

"update"

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 64

MarkLogic Server Single Document Operations

b o
"role-name": "new-role",
"capabilities": [
"update",

n read n

1,
"properties":
"myprop": "this is my prop",
"myotherprop": "this is my other prop"
I
"quality": 3,
"metadatavValues": {

"newkey": "newvalue"

}

You could also use a document type specific document manager to apply the patch. For example,
you could use a gsoNDocumentManager {0 Create a bocumentpatchBuilder as shown below. The
patch builder operations (pb.addcollection, €tC.) do Not change as a consequence.

JSONDocumentManager jdm = client.newJSONDocumentManager () ;
DocumentPatchBuilder pb = jdm.newPatchBuilder () ;
pb.pathLanguage (DocumentPatchBuilder.PathLanguage .XPATH) ;
// Construct and apply patch as previously shown

2.9.7 Managing XML Namespaces in a Patch
Namespaces potentially impact two parts of a patch operation:

* The XPath expression(s) that define the context for an operation, such as which nodes to
replace or where to insert new content.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 65

MarkLogic Server Single Document Operations

* New or replacement content.

Your patch must include definitions of any namespaces used in these contexts. The way you do so
varies, depending on whether or not you use a builder to construct your patch. This section covers
the following topics:

¢ Defining Namespaces With a Builder

e Defining Namespaces in Raw XML

2.9.7.1 Defining Namespaces With a Builder

When you construct a patch with pocumentpatcheuilder, define any namespaces used in XPath
context or select expr ons by cali Ng DocumentPatchBuilder.setNamespaces (). Such
namespace definitions are patch-wide. That is, they apply to all operationsin the patch.

Namespaces used in insertion or replacement content can either be patch-wide, as with XPath
expressions, or defined inline on content elements.

The patch generated by the builder pre-defines the following namespace aliases for you:

e xmlns:rapi="http://marklogic.com/rest-api"

e xmlns:prop="http://marklogic.com/xdmp/property"

e xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
e xmlns:xi="http://www.w3.0rg/2001/XMLSchema"

The following example defines three namespace aliases (x, t, and n) and uses them in defining the
insertion context and the content to be inserted.

import com.marklogic.client.util.EditableNamespaceContext;

// construct a list of namespace definitions
EditableNamespaceContext namespaces = new EditableNamespaceContext () ;

namespaces.put ("r", "http://root.org") ;
namespaces.put ("t", "http://target.org");
namespaces.put ("n", "http://new.org");

// add the namespace definitions to the patch
DocumentPatchBuilder builder = docMgr.newPatchBuilder () ;
builder.setNamespaces (namespaces) ;

// use the namespace aliases when definition operations
String newElem = "<n:new>";
builder.insertFragment (

"/r:root/t:target", Position.LAST CHILD, newElem);

You can aso define the content namespace element » inline, as shown in the following example:

String newElem = "<n:new xmlns:n=\"http://new.org\">";

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 66

MarkLogic Server Single Document Operations

2.9.7.2 Defining Namespaces in Raw XML

When you construct a patch directly in XML, define any namespaces used in XPath context or
select expressions on the root <patch/> element. Namespace definitions are patch-wide and apply
to both XPath expressions and insertion or replacement content.

The <patch /> element must be defined in the Namespace http: //marklogic.com/rest-api. Itis
recommended that you use a namespace alias for this namespace so that el ement and attribute
references in your patch that are not namespace qualified do not end up in the

http://marklogic.com/rest-api namespace.

The following example defines four namespace aliases, one for the patch (rapi) and three
content-specific aliases (r, n, and t). The content-specific aliases are used in defining the insertion
context and the content to be inserted.

<rapi:patch xmlns:rapi="http://marklogic.com/rest-api"
xmlns:r="http://root.org" xmlns:t="http://target.org"
xmlns n="http://new.org">
<rapi:insert context="/r:root/t:target" position="last-child"s>
<n:new />
</rapi:insert>
</rapi:patch>

For more details, see Managing XML Namespaces in a Patch in the REST Application Developer’s
Guide.

2.9.8 Construct Replacement Data on the Server

This section describes using builtin or user-defined X Query or Server-Side JavaScript
replacement functions to generate the content for a partial update replace or replace-insert
operation dynamically on MarkLogic Server.

The builtin functions support simple arithmetic and string manipulation. For example, you can
use a builtin function to increment the current value of numeric data or concatenate strings. For
more complex operations, create and install a user-defined function.

To create a user-defined replacement function, see Writing an XQuery User-Defined Replacement
Constructor Or Writing a JavaScript User-Defined Replacement Constructor in the REST Application
Developer’s Guide. Install your implementation into the modul es database associated with your
REST Server; for details, see “Managing Dependent Libraries and Other Assets’ on page 295.

To apply abuiltin or user-defined server-side function to a patch operation when you create a
patch with apatch builder, use abocumentMetadatapatchBuilder.CallBuilder, Obtained by calllng
DocumentMetadataPatchBuilder.call (). The builtin functions are exposed as methods of
calipuilder. Thefollowing example adds areplace operation to a patch that multiplies the current
datavaluein chila elements by 3.

DocumentPatchBuilder builder = docMgr.newPatchBuilder () ;
builder.replacelApply("child", builder.call() .multiply(3));

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 67

MarkLogic Server Single Document Operations

To apply the same operation to araw XML or JSON patch, use the app1y XML attribute or JISON
property of the operation. The following raw patches are equivalent to the patch produced by the
above builder example. For details, see Constructing Replacement Data on the Server in the REST
Application Developer’s Guide.

XML JSON

<rapi:patch {"patch": [

xmlns:rapi="http://marklogic.com/rest-api"> {"replace": {

<rapi:replace "select": "child",

select="child" "apply": "ml.multiply",

apply="ml.multiply">3</rapi:replace> "content": 3
</rapi:patchs> b}

1}

To apply a user-defined replacement function using a patch builder, first associate the module
containing the function with the patch by calling pocumentpatchBuilder.1library (), and then
apply the function to an operation using one of the ca11suilder.applyLibrary* methods. The
following example applies the function my- func in the module namespace nttp: //my/ns,
implemented in the XQuery library module installed in the modul es database at
/my.domain/my-1ib.xqy.

DocumentPatchBuilder builder = docMgr.newPatchBuilder() ;

builder.library ("http://my/ns", "/my.domain/my-lib.xqy");
builder.replacelpply("child", builder.call() .applyLibrary ("my-func") ;

When you construct araw XML or JSON patch, associate the containing library module with the
patch using the repiace-1ibrary patch component, then apply the function to a replace or
replace-insert Operation using the apply XML attribute or JSON property. The following
examples are equivalent to the above builder code. For more details, see Using a Replacement
Constructor Function in the REST Application Developer’s Guide.

XML JSON
<rapi:patch {"patch": [
xmlns:rapi="http://marklogic.com/rest-api"> {"replace-library": {
<rapi:replace-library "at": "/my.domain/my-lib.xqy",
at="/my.domain/my-1lib.xqy" "ng": "http://my/ns"
ns="http://my/ns" /> P},
<rapi:replace select="child" apply="my-func"/> {"replace": {
</rapi:patch> "select": "child",
"apply": "my-func"
b}
1}

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 68

MarkLogic Server Single Document Operations

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 69

MarkLogic Server Synchronous Multi-Document Operations

3.0 Synchronous Multi-Document Operations

This chapter describes how to read and write multiple documentsin asingle request to MarkL ogic
Server using the Java Client API. You can operate on both document content and metadata. The
interfaces described here are synchronous, meaning your application will block during the
operation.

If you only need to work with one document at atime, you can use the simpler single document
interfaces. For details, see “ Single Document Operations’ on page 36. If you have a potentially
long running multi-document task, consider using the asynchronous interfaces described in

“ Asynchronous Multi-Document Operations’ on page 92.

This chapter includes the following sections:

e Write Multiple Documents

¢ Read Multiple Documents by URI

¢ Read Multiple Documents Matching a Query

e Apply a Read Transformation

e Selecting a Batch Size

3.1 Write Multiple Documents

This section describes how to create or update content and/or metadata for multiple documentsin
asingle request to MarkLogic Server. This section includes the following topics:

¢ Qverview of Multi-Document Write

e Example: Loading Multiple Documents

¢ Understanding Metadata Scoping

e Understanding When Metadata is Preserved or Replaced

e Example: Controlling Metadata Through Defaults

e Example: Adding Documents to a Collection

e Example: Writing a Mixed Document Set

3.11 Overview of Multi-Document Write

You can perform a multi-document write by building up apocumentwriteset that describes the
document content and metadata to write, and then passing it t0 a pocumentManager t0 execute the
write operation.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 70

MarkLogic Server Synchronous Multi-Document Operations

For example, the following code snippet writes content for an XML document with URI docl.xml
and both content and metadata for a JSON document with URI doc2.json. For a complete
example, see “Example: Loading Multiple Documents’ on page 72.

import com.marklogic.client.document.DocumentManager;
import com.marklogic.client.document.DocumentWriteSet;

DocumentWriteSet batch = docMgr.newWriteSet () ;

batch.add ("docl.xml", doclContentHandle) ;
batch.add ("doc2.json", doc2MetadataHandle, doc2ContentHandle) ;

docMgr .write (batch) ;

A pocumenturiteset represents a batch of document content and/or metadata to be written to the
database in asingle transaction. If any insertion or update in awrite set fails, the entire batch fails.
You should size each batch according to the guidelines described in “ Selecting a Batch Size” on
page 91.

A pocumenturiteset hasthe following key features:

* Document content can be either heterogeneous or homogeneous, depending on the type of
DocumentManager YOU USe. For example, you can create or update any combination of
XML, JSON, Text, and Binary documents in asingle operation if you use

GenericDocumentManager.

» For each document, a batch can include just content, just metadata, or both. If you include
only metadata for a document, then the document must already exist.

* You can create or update documents with the system default metadata, batch default
metadata, or document-specific metadata. Y ou can mix these metadata sources in the
same operation. For details, see “Understanding M etadata Scoping” on page 73.

Thewrite operation is carried out by apocumentmanager. If @l documentsin the write set are of the
same type, then using a pocumentManager Of the corresponding type has the following advantages.

* The database document typeisimplicitly set by the bocumentManager. FOr example, an
XMLDocumentManager SetS the document type to XML for you and a JsoNDocumentManager
sets the document type to JSON for you.

* You can use the pocumentmManager t0 Set batch-wide, type specific options. For example,
YOU Can USe BinaryDocumentManager . setMetadataExtraction () to direct MarkLogiC
Server to extract metadata from each binary document and store it in the document
properties.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 71

MarkLogic Server Synchronous Multi-Document Operations

If you create a heterogeneous write set that includes documents of more than one type, then you
MUSt USe a GenericbocumentManager tO perform the write. In this case, you must explicitly set the
type of each document and you cannot use any type specific options, such as XML repair or
Binary metadata extraction. For details, see “ Example: Writing a Mixed Document Set” on

page 81.

When you use bulk write, pre-existing document properties are preserved, but other categories of
metadata are completely replaced. If you want to preserve pre-existing metadata, use asingle
document write. For details, see “Understanding When Metadata is Preserved or Replaced” on

page 76.

You can apply a server-side write transformation to each document in a multi-document write.
First, install your transform on MarkLogic Server, as described in “Installing Transforms’ on
page 282. Then, include a reference to the transform in your write call, similar to the following:

ServerTransform transform = new ServerTransform(TRANSFORM NAME) ;
docMgr.write (batch, transform);

3.1.2 Example: Loading Multiple Documents

This example provides a quick introduction to multi-document write. It creates two JSON
documentsin onetransaction. The first document uses the system default metadata and the second
document uses document-specific metadata.

Three items are added to the bocumentwriteset for this operation: JISON content for a document
with URI doc1 . json, metadata for a document with URI docz2 . json, and content for a JSON
document with URI doc2. json. The core of the exampleis the following lines that build up a
DocumentWriteSet and send it to MarkL ogicServer for committing to the database:

// Create and populate the batch of docs to write
JSONDocumentManager jdm = client.newJSONDocumentManager () ;
DocumentWriteSet batch = jdm.newWriteSet () ;
batch.add("docl.json", docl);

batch.add ("doc2.json", doc2Metadata, doc2);

// Perform the write operation
jdm.write (batch) ;

The full example function is shown below. This example uses stringrandie for the content, but
you can use other handle types, such as sacksonHandle Of FileHandle.

package examples;

import com.marklogic.client.io.*;

import com.marklogic.client.document.JSONDocumentManager;

import com.marklogic.client.document.DocumentWriteSet;

import com.marklogic.client.DatabaseClientFactory;

import com.marklogic.client.DatabaseClientFactory.DigestAuthContext;
import com.marklogic.client.DatabaseClient;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 72

MarkLogic Server Synchronous Multi-Document Operations

public class Example implements ConnInfo
// replace with your MarkLogic Server connection information
static String HOST = "localhost";
static int PORT = 8000;
static String USER = "username";
static String PASSWORD = "password";
static DatabaseClient client = DatabaseClientFactory.newClient (
HOST, PORT, new DigestAuthContext (USER, PASSWORD)) ;

/// Basic example of writing 2 JSON documents.
public static void examplel() {
// Create some example content and metadata
StringHandle docl = new StringHandle (
"{\"animal\": \"dog\"}") .withFormat (Format .JSON) ;
StringHandle doc2 = new StringHandle (
"{\"animal\": \"cat\"}").withFormat (Format.JSON) ;
DocumentMetadataHandle doc2Metadata =
new DocumentMetadataHandle () ;
doc2Metadata.setQuality (2) ;

// Create and populate the batch of docs to write
JSONDocumentManager jdm = client.newJSONDocumentManager () ;
DocumentWriteSet batch = jdm.newWriteSet () ;
batch.add("docl.json", docl) ;

batch.add("doc2.json", doc2Metadata, doc2);

// Perform the write operation
jdm.write (batch) ;

}

public static void main(String[] args) {
examplel () ;
}

3.1.3 Understanding Metadata Scoping

This topic describes how metadata is selected for documents created or updated with a
multi-document write.

Note: For performance reasons, pre-existing metadata other than propertiesis completely

replaced during a bulk write operation, either with values supplied in the
DocumentWriteset OF With System defaults.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 73

MarkLogic Server Synchronous Multi-Document Operations

Metadata in a bulk write can be drawn from 3 possible sources, as shown in the table below. The
table lists the metadata sources from highest to lowest precedence, so a source supercedes those
below it if both are present.

Metadata Type Description

document-specific metadata | Metadata that appliesto a single document. Specify
document-specific metadata by including a
DocumentMetadataHandle along with the content handle when
you call pocumentwriteset.add ().

default metadata Batch-specific metadata that can apply to multiple documents
IN @ pocumentwriteset. SPeCify default metadata by calling

DocumentWriteSet.addDefaultMetadata ().

system default metadata Default metadata configured into MarkLogic server. This
metadata applies when neither document-specific nor set
default metadata is present.

The metadata associated with a document is determined when you add the document to a
DocumentWriteSet. ThiSmeans that when you add default metadata, it only applies to documents
subsequently added to the batch, not to documents already in the batch. Default metadata applies
from the point it is added to the batch until a subsequent call to
DocumentWriteSet.addDefaultMetadata (). Passmg null tO addDefaultMetadata () CAUSES
subsequent documents to revert to using system default metadata rather than batch default
metadata.

The following code snippet illustrates the metadata interactions:

DatabaseClient client = ...;
JSONDocumentManager jdm = client.newJSONDocumentManager () ;
DocumentWriteSet batch = jdm.newWriteSet () ;

// using system default metadata
batch.add("docl.json", docl); // use system default metadata

// using batch default metadata
batch.addDefaultMetadata (defaultMetadatal) ;

batch.add ("doc2.json", doc2) ; // use batch default metadata
batch.add("doc3.json", docSpecificMetadata, doc3);
batch.add ("doc4.json", doc4) ; // use batch default metadata

// replace batch default metadata with new metadata
batch.addDefaultMetadata (defaultMetadata?2) ;
batch.add ("doc5.json", docs) ; // use batch default metadata

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 74

MarkLogic Server Synchronous Multi-Document Operations

// revert to system default metadata
batch.addDefaultMetadata (null) ;
batch.add ("doc6.json", docé) ; // use system default metadata

// Execute the write operation
jdm.write (batch) ;

For a complete example, see “ Example: Controlling Metadata Through Defaults’ on page 77.
The following rules determine what metadata applies during document creation.

» Document-specific metadata always takes precedence over other metadata sources.
Document-specific metadata is not merged with default metadata.

o System default metadata is used when there is no batch default metadata and no
documents-specific metadata for a given document.

» Eachtimeyou add default metadata to a batch, the new default completely replaces any
old default.

* When setting metadata for a document, any missing metadata category is either set to the
system default metadata val ue or left unchanged, depending upon whether or not the batch
includes a content update for the document. For details, see “ Understanding When
Metadata is Preserved or Replaced” on page 76.

For performance reasons, no merging of document-specific or batch default metadata occurs. For
example, if adocument-specific metadata part contains only a collections setting, it inherits
quality, permissions and properties from the system default metadata, not from any preceding
batch default metadata.

The following examplesillustrate application of these rules. In these examples, C,, represents a
content part for the Nth document, M, represents document-specific metadata for the Nth
document, M g, represents the Nth occurrence of batch default metadata, and Mg s is the system

default metadata. The batch build stream represents the order in which content and metadatais
added to the batch.

The following input creates 3 documents. Documents 1 and Document 3 use system default
metadata. Document 2 uses document-specific metadata.

Document 1 Document 2 Document 3
Created Mgys M» Mgys
D
ocuments Cl C2 Cl
Batch build '
11 grearnu Cl M 2 CZ C3
1st add() » |ast add()

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 75

MarkLogic Server Synchronous Multi-Document Operations

The following input creates four documents, using a combination of batch default metadata and
document-specific metadata. Document 1, Document 3, and Document 4 use batch default
metadata. Document 2 uses document-specific metadata. Document 1 and Document 3 use the
first block of batch default metadata, M 4. After Document 3 is added to the batch, M 4, replaces

M 41 8s the default metadata, so Document 4 uses the metadata in M g,.

Document 1 Document 2
Mgt1 M,
Cy G
Batch build
Mgty Mgto
C3 C4
Document 3 Document 4
3.1.4 Understanding When Metadata is Preserved or Replaced

Thistopic discusses when a multi-document write preserves or replaces pre-existing metadata.
You can skip this section if your multi-document write operations only create new documents or
you do not need to preserve pre-existing metadata such as permissions, document quality,
collections, and properties.

When there is no batch default metadata and no document-specific metadata, all metadata
categories other than properties are set to the system default values. Properties are unchanged.

In al other cases, either batch default metadata or document-specific metadata is used when
creating a document, as described in “Understanding Metadata Scoping” on page 73.

When you update both content and metadata for a document in the same multi-document write
operation, the following rules apply, whether applying batch default metadata or
document-specific metadata:

» The metadatain scope is determined as described in “Understanding M etadata Scoping”
on page 73.

* Any metadata category that has a value in the in-scope metadata completely replaces that
category.

* Any metadata category other than properties that is missing or empty in the in-scope
metadata is completely replaced by the system default value.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 76

MarkLogic Server Synchronous Multi-Document Operations

» If thein-scope metadata does not include properties, then existing properties are
preserved.

» If thein-scope metadata does not include collections, then collections are reset to the
default. Thereis no system default for collections, so this resultsin a document being
removed from al collections if no default collections are specified for the user role
performing the update.

When your write set includes metadata for a document, but no content, you update only the
metadata for a document. In this case, the following rules apply:

* Any metadata category that has a value in the document-specific metadata completely
replaces that category.

* Any metadata category that is missing or empty in the document-specific metadatais
preserved.

The table below shows how pre-existing metadata changes if a multi-document write updates just
the content, just the collections metadata (via document-specific metadata), or both content and
collections metadata (via batch default metadata or document-specific metadata).

'g:tt:;g? Update Content Only | Update Metadata Only Upditﬁt(;gggnt &
collections | reset modified to new value | modified to new value
quality reset preserved reset
permissions | reset preserved reset
properties preserved preserved preserved

Theresults are similar if the metadata update modifies other metadata categories.

3.1.5 Example: Controlling Metadata Through Defaults

This example uses document quality to illustrate how default metadata aff ects the documents you
create. The document quality setting used in this example result in creation of the following
documents:

* sys-default.json With document quality O, from the system default metadata

* batch-default.json With document quallty 2, from Mdfl

* doc-specific.json With document quality 1, from M3

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 77

MarkLogic Server Synchronous Multi-Document Operations

The following graphic illustrates the construction of the batch and the documents created from it.
In the picture, M, represents metadata, C,, represents content. Note that the metadata is not
literally embedded in the created documents; content and metadata are merely grouped here for
illustrative purposes.

sys-default.json batch-default.json doc-specific.json
Created hﬂs@ “Aﬁl IV|3
Documents
C1 CZ C3
Batch build
1st add() > |ast add()

The following code snippet is the core of the example, building up a batch of document updates
and inserting them into the database:

// Create and build up the batch
JSONDocumentManager jdm = client.newJSONDocumentManager () ;
DocumentWriteSet batch = jdm.newWriteSet () ;

batch.add("sys-default.json", contentl) ;

batch.addDefault (defaultMetadata) ;

batch.add ("batch-default.json", content2);
batch.add("doc-specific.json", docSpecificMetadata, content3);

// Create the documents
jdm.write (batch) ;

The full example function is shown below. This example uses stringnandie for the content, but
you can use other handle types, such as gacksontandle OF FileHandle.

package examples;

import
import
import
import
import

com
com

com

.marklogic.
.marklogic.
com.

marklogic.

.marklogic.
com.

marklogic.

client.
client.
client.
client.
client.

io.*;

document . JSONDocumentManager;
document .DocumentWriteSet;
DatabaseClientFactory;

DatabaseClient;

public class Example ({
// replace with your MarkLogic Server connection information
static String HOST = "localhost";
static int PORT = 8000;
static String USER = '"user';
static String PASSWORD = "password";
static DatabaseClient client = DatabaseClientFactory.newClient (
HOST, PORT, new DigestAuthContext (USER, PASSWORD)) ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 78

MarkLogic Server Synchronous Multi-Document Operations

static void example2 ()

// Synthesize input content

StringHandle contentl = new StringHandle (
"{\"number\": 1}").withFormat (Format .JSON) ;

StringHandle content2 = new StringHandle (
"{\"number\": 2}") .withFormat (Format .JSON) ;

StringHandle content3 = new StringHandle (
"{\"number\": 3}").withFormat (Format .JSON) ;

// Synthesize input metadata
DocumentMetadataHandle defaultMetadata =

new DocumentMetadataHandle () .withQuality (1) ;
DocumentMetadataHandle docSpecificMetadata =

new DocumentMetadataHandle () .withQuality(2) ;

// Create and build up the batch
JSONDocumentManager jdm = client.newJSONDocumentManager () ;
DocumentWriteSet batch = jdm.newWriteSet () ;

batch.add ("sys-default.json", contentl);

batch.addDefault (defaultMetadata) ;

batch.add ("batch-default.json", content2) ;

batch.add ("doc-specific.json", docSpecificMetadata, content3);

// Create the documents
jdm.write (batch) ;

// Verify results
System.out .println(
"sys-default.json quality: Expected=0, Actual=" +
jdm.readMetadata ("sys-default.json",
new DocumentMetadataHandle ()) .getQuality ()
)
System.out.println ("batch-default.json quality: Expected=" +

defaultMetadata.getQuality () + ", Actual=" +
jdm.readMetadata ("batch-default.json",
new DocumentMetadataHandle ()) .getQuality ()

) i

System.out .println ("doc-specific.json quality: Expected=" +

docSpecificMetadata.getQuality () + ", Actual=" +
jdm.readMetadata ("batch-default.json",
new DocumentMetadataHandle ()) .getQuality ()

)i
}

public static void main(String[] args) {
example2 () ;

}
}

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 79

MarkLogic Server Synchronous Multi-Document Operations

3.1.6 Example: Adding Documents to a Collection

This example demonstrates using batch default metadata to add al documents to the same
collection during a multi-document write. For general information about working with metadata,
see “Reading, Modifying, and Writing Metadata’ on page 43.

Since the metadata in this example request only includes settings for collections metadata, other
metadata categories such as permissions and quality use the system default settings. You can add
individual documentsto a different collection using document-specific metadata or by including
additional batch default metadata that uses a different collection; see “ Example: Controlling
Metadata Through Defaults’ on page 77.

The code snippet below inserts 2 JSON documents into the database with a collection named
“April 2014”.

// Synthesize input metadata
DocumentMetadataHandle defaultMetadata =
new DocumentMetadataHandle () .withCollections ("April 2014") ;

// Create and build up the batch
JSONDocumentManager jdm = client.newJSONDocumentManager () ;
DocumentWriteSet batch = jdm.newWriteSet () ;

batch.addDefault (defaultMetadata) ;
batch.add("coll-docl.json", contentl);
batch.add("coll-doc2.json", content2);
jdm.write (batch) ;

The full exampleis shown below. This example uses stringrandie for the content, but you can
use other handle types, such as sacksonHandle, XMLHandle, OF FileHandle.

package examples;

import com.marklogic.client.io.*;

import com.marklogic.client.query.MatchDocumentSummary;
import com.marklogic.client.query.QueryManager;

import com.marklogic.client.query.StructuredQueryBuilder;
import com.marklogic.client.document.JSONDocumentManager;
import com.marklogic.client.document.DocumentWriteSet;
import com.marklogic.client.DatabaseClientFactory;

import com.marklogic.client.DatabaseClient;

public class Example {
// replace with your MarkLogic Server connection information
static String HOST = "localhost";
static int PORT = 8000;
static String USER = "username";
static String PASSWORD = "password";
static DatabaseClient client = DatabaseClientFactory.newClient (
HOST, PORT, new DigestAuthContext (USER, PASSWORD)) ;

/// Inserting all documents in a batch into the same collection

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 80

MarkLogic Server

Synchronous Multi-Document Operations

public static void example3 () {

}

// Synthesize input content
StringHandle contentl = new StringHandle (
"{\"number\": 1}").withFormat (Format .JSON) ;
StringHandle content2 = new StringHandle (
"{\"number\": 2}") .withFormat (Format .JSON) ;
// Synthesize input metadata
DocumentMetadataHandle defaultMetadata =
new DocumentMetadataHandle () .withCollections ("April 2014") ;

// Create and build up the batch
JSONDocumentManager jdm = client.newJSONDocumentManager () ;
DocumentWriteSet batch = jdm.newWriteSet () ;

batch.addDefault (defaultMetadata) ;
batch.add("coll-docl.json", contentl) ;
batch.add("coll-doc2.json", content2);
jdm.write (batch) ;

// Verify results by finding all documents in the collection
QueryManager gm = client.newQueryManager () ;
StructuredQueryBuilder builder = gm.newStructuredQueryBuilder() ;

SearchHandle results = gm.search(
builder.collection("April 2014"), new SearchHandle()) ;

for (MatchDocumentSummary summary : results.getMatchResults()) {
System.out .println (summary.getUri()) ;

}

public static void main(String[] args) {

}
}

example3 () ;

3.1.7 Example: Writing a Mixed Document Set

This example Uses cenericbocumentManager t0 Create a batch that contains documents with a
mixture of document typesin a single operation. The batch contains a JSON document, an XML
document, and a binary document. The following code snippet demonstrates construction of a
mixed document batch:

GenericDocumentManager gdm = client.newDocumentManager () ;
DocumentWriteSet batch = gdm.newWriteSet () ;

batch.
batch.
batch.

add ("docl.json", jsonContent) ;

add ("doc2.xml", xmlContent) ;

add ("doc3.jpg", binaryContent) ;
(

gdm.write (batch) ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 81

MarkLogic Server Synchronous Multi-Document Operations

When you use GenericbocumentManager, YOU must either use handles that imply a specific
document or content type, or explicitly set it. In this example, the JSON and XML contents are
provided using a stringnandle, and the document type is specified using withrormat () . The
binary content is read from afile on the local filesystem, using riledandle.withMimeType () tO
explicitly specify the aMIME type of image/jpeg, Which implies a binary document.

Note: Document type specific options such as XML repair and binary document
metadata extract cannot be performed using cenericbocumentManager. Y OU Must
use a document type specific document manager and a homogeneous batch to use
these features.

The full example, including setting of the document/MIME types, is shown below. To run this
examplein your environment, you need abinary fileto subsitutefor /some/jpeg/file.jpg. If your
fileis not a JPEG image, change the MIME type in the call t0 FileHandle.withMimeType ().

package examples;
import java.io.File;

import com.marklogic.client.io.*;

import com.marklogic.client.document.GenericDocumentManager;
import com.marklogic.client.document.DocumentWriteSet;
import com.marklogic.client.DatabaseClientFactory;

import com.marklogic.client.DatabaseClient;

public class standalone
// replace with your MarkLogic Server connection information
static String HOST = "localhost";
static int PORT = 8000;
static String USER = "user";
static String PASSWORD = "password";
static DatabaseClient client = DatabaseClientFactory.newClient (
HOST, PORT, new DigestAuthContext (USER, PASSWORD)) ;

/// Inserting documents with different document types
static void example4 ()
// Synthesize input content
StringHandle jsonContent = new StringHandle (
"{\"key\": \"value\"}").withFormat (Format.JSON) ;
StringHandle xmlContent = new StringHandle (
"«data>some xml content</datas>").withFormat (Format.XML) ;
String filename = new String("/some/jpeg/file.jpg") ;
FileHandle binaryContent =
new FileHandle () .with (new
File(filename)) .withMimetype ("image/jpeg") ;

// Create and build up the batch

GenericDocumentManager gdm = client.newDocumentManager () ;
DocumentWriteSet batch = gdm.newWriteSet () ;
batch.add("docl.json", jsonContent) ;

batch.add ("doc2.xml", xmlContent) ;

batch.add ("doc3.jpg", binaryContent) ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 82

MarkLogic Server Synchronous Multi-Document Operations

gdm.write (batch) ;

// Verify results

System.out.println("docl.json exists as: " +
gdm.exists ("docl.json") .getFormat () .toString()) ;

System.out.println("doc2.xml exists as: " +
gdm.exists ("doc2.xml") .getFormat () .toString()) ;

System.out.println("doc3.jpg exists as: "
+ gdm.exists ("doc3.jpg") .getFormat () .toString()) ;

}

public static void main(String[] args) {
example4 () ;
}

}

3.2 Read Multiple Documents by URI

You can retrieve multiple documents by URI in asingle request by passing multiple URIsto
DocumentManager . read () . FOr example, the following code snippet reads 3 documents from the
database:

DocumentPage documents =

docMgr.read ("docl.json", "doc2.json", "doc3.json");
while (documents.hasNext ())

DocumentRecord document = documents.next () ;

// do something with the contents

}

The multi-document read operation returns a pocumentrecord for each matched URI. Use the
DocumentRecord 10 access content and/or metadata about each document. By default, only content
is available. To retrieve metadata, use DocumentManager . setMetadataCategories (). FOr exampl (S}
the following code snippet retrieves both content and document quality for three documents:

DatabaseClient client = DatabaseClientFactory.newClient(...);
JSONDocumentManager jdm = client.newJSONDocumentManager () ;

jdm.setMetadataCategories (Metadata.QUALITY) ;

DocumentPage documents =
jdm.read ("docl.json", "doc2.json", "doc3.json");
while (documents.hasNext ()) {
DocumentRecord document = documents.next () ;
DocumentMetadataHandle metadata =
document .getMetadata (new DocumentMetadataHandle()) ;
System.out .println(
document .getUri() + ": " + metadata.getQuality());
// do something with the content

}

For more information about metadata categories, see “Reading, Modifying, and Writing
Metadata’ on page 43.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 83

MarkLogic Server Synchronous Multi-Document Operations

Multi-document read al so supports server side transformations and transaction controls. For more
details on these features, see “ Apply a Read Transformation” on page 90 and “Multi-Statement
Transactions’ on page 264.

Note: Applying atransform creates an additional in-memory copy of each document on
the server, rather than streaming each document directly out of the database, so
memory consumption is higher.

3.3 Read Multiple Documents Matching a Query

UsSe com.marklogic.client.document . DocumentManager.search () {0 retrieve all documents that
match a query. This section covers the following topics:

e OQverview of Multi-Document Read by Query

e Example: Read Documents Matching a Query

¢ Add Query Options to a Search

¢ Return Search Results

e Read Documents Incrementally

e Extracting a Portion of Each Matching Document

3.3.1 Overview of Multi-Document Read by Query
To retrieve al documents from the database that match a query, use pocumentManager . search ().

The search methods of DocumentManager differ from QueryManager.search () methods in that
DocumentManager Search returns document contents while guerymanager Search returns search
results and facets. Though you can retrieve search results along with contents using
DocumentManager . search (), and you can retrieve document contents using

QueryManager .search (), the interfaces are optimized for different use cases.

You can pass a string, structured, or combined query or a QBE t0 pocumentManager.write (). FOr
example, the following code snippet reads all documents that contain the phrase “bird”:

JSONDocumentManager jdm = client.newJSONDocumentManager () ;

QueryManager gm = client.newQueryManager () ;

StringQueryDefinition query =
gm.newStringDefinition () .withCriteria ("bird") ;

DocumentPage documents = jdm.search(query, 1);
while (documents.hasNext ()) {
DocumentRecord document = documents.next () ;
// do something with the contents

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 84

MarkLogic Server Synchronous Multi-Document Operations

Documents are returned as a pocument Page that you can use to iterate over returned content and
metadata. You might have to call pocumentManager.search () multiple timesto retrieve all
matching documents. The number of documents per pocument page IS controlled by
DocumentManager . setPageLength () . FOr details, see “ Read Documents Incrementally” on page 88.

To return search results along with matching documents, include a searchuandie in your cal to
DocumentManager . search () . FOr details, see “ Return Search Results’ on page 88. For example:

docMgr.search(query, 1, new SearchHandle()) ;

You can apply server-side content transformations to matching documents by configuring a
ServerTransform ON the QueryDefinition. FOr details, see “App|y aRead Transformation” on

page 90.

3.3.2 Example: Read Documents Matching a Query

This example demonstrates using a query to retrieve documents from the database using
DocumentManager . search (). Though you can use any query type, this example focuses on Query
By Example.You should be familiar with QBE basics. For details, see “Prototype a Query Using
Query By Example” on page 156.

The following QBE matches documents with an XML element or JSON property named “kind”
that has a of value “bird”:

Format Query

XML <g:gbe xmlns:g="http://marklogic.com/appservices/querybyexample" >
<g:query>
<kinds>bird</kind>
</q:query>
</q:gbe>

JSON { "$query":
{ "kind": "bird" }

}

The following example code uses the above query to retrieve matching documents. Only
document content is returned because no metadata categories are set on the bocumentManager.

The number of documents matching the input query is available using

DocumentPage .getTotalResults (). ThiSnumber isequivalent to etotal ON a search response and
isonly an estimate. The document URI, document type, and contents are available on each
DocumentRecord IN the DocumentPage.

package examples;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 85

MarkLogic Server

import
import
import
import
import
import
import
import
import

public
//

Synchronous Multi-Document Operations

com.marklogic.client.DatabaseClient;
com.marklogic.client.DatabaseClientFactory;
com.marklogic.client.document .DocumentPage;
com.marklogic.client.document .DocumentRecord;
com.marklogic.client.document .JSONDocumentManager;
com.marklogic.client.io.Format;
com.marklogic.client.io.StringHandle;
com.marklogic.client.query.QueryManager;
com.marklogic.client.query.RawQueryByExampleDefinition;

class QueryExample {
replace with your MarkLogic Server connection information

static String HOST = "localhost";

static int PORT = 8000;

static String USER = "user";

static String PASSWORD = "password";

static DatabaseClient client = DatabaseClientFactory.newClient (

HOST, PORT, new DigestAuthContext (USER, PASSWORD)) ;

public static void gbeExample () {

}

JSONDocumentManager jdm = client.newJSONDocumentManager () ;
QueryManager gm = client.newQueryManager () ;

// Build query

String queryAsString = "{ \"$query\": { \"kind\": \"bird\" }}";

StringHandle handle = new StringHandle() ;

handle.withFormat (Format .JSON) . set (queryAsString) ;

RawQueryByExampleDefinition query =
gm.newRawQueryByExampleDefinition (handle) ;

// Perform the multi-document read and process results
DocumentPage documents = jdm.search(query, 1);
System.out.println ("Total matching documents: "
+ documents.getTotalSize()) ;
for (DocumentRecord document: documents)
System.out .println (document.getUri()) ;
// Do something with the content using document.getContent ()

public static void main(String[] args) {

}

gbeExample () ;
client.release() ;

To perform the equivalent operation using an XML QBE, use an xmipocumentManager. Note that
the format of a QBE (XML or JSON) can affect the kinds of documents that match the query. For
details, see Scoping a Search by Document Type in the Search Developer’s Guide.

To use astring, structured, or combined query instead of a QBE, change the guerypefinition. The
search operation and results processing are unaffected by the type of query. For more details on
guery construction, see “ Searching” on page 144.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 86

MarkLogic Server Synchronous Multi-Document Operations

For example, to use a string query to find all documents containing the phrase “bird”, replace the
query building section of the above example with the following:

StringQueryDefinition query =
gm.newStringDefinition() .withCriteria ("bird") ;

To return metadata in addition to content, set one or more metadata categories on the
DocumentManager prior to the search. Use DocumentPage .getMetadata () 10 aCCESS it. For exampl e,
the following changes to the above example returns the quality of each document, along with the
contents.

jdm.setMetadataCategories (Metadata.QUALITY) ;
DocumentPage documents = jdm.search(query, 1);
System.out.println("Total matching documents: "

+ documents.getTotalSize()) ;
for (DocumentRecord document: documents)

System.out.println (document.getUri() + "quality: " +

document.getMetadata (
new DocumentMetadataHandle()) .getQuality());
// Do something with the content using document.getContent ()

}

Use gueryDefinition.setOptionsName () tO include persistent query optionsin your search; for
details, see “ Add Query Options to a Search” on page 87. For example, to apply persistent query
options previoudly installed under the name “myQOptions’, pass the options name during query
creation:

RawQueryByExampleDefinition query =
gm.newRawQueryByExampleDefinition (handle, "myOptions") ;

3.3.3 Add Query Options to a Search

You can customize your multi-document read using query optionsin the same way you use them
with QueryManager.search ().

* Pre-install persistent query options and configure them by name into your

QueryDefinition.

» Embed dynamic query options into a combined query or QBE. Note that QBE supports
only alimited set of query options.

For example, if you previously installed persistent query options under the name “myOptions’,
then you can use them in a multi-document read as follows:

JSONDocumentManager jdm = client.newJSONDocumentManager () ;
QueryManager gm = client.newQueryManager () ;
StringQueryDefinition query =
gm.newStringDefinition ("myOptions") .withCriteria ("bird") ;

DocumentPage documents = jdm.search(query, 1);

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 87

MarkLogic Server Synchronous Multi-Document Operations

For details, see “Query Options’ on page 190 and “ Apply Dynamic Query Options to Document
Searches’ on page 159.

3.34 Return Search Results

When you use gueryManager . search () to find matching documents, you receive a search response
that can contain snippets, facets, and other match details. Thisinformation is not returned by
default with pocumentManager. search (), but you can request it by including a SearchHandlein
your call. When you include a SearchHandle, you receive both a search response and the
matching documents.

For example, the following code snippet requests search results in addition the content of
matching documents.

SearchHandle results = new SearchHandle () .withFormat (Format .XML) ;
DocumentPage documents = jdm.search(query, 1, results);
for (MatchDocumentSummary match : results.getMatchResults()) ({
// process snippets, facets, and other result info
}

3.35 Read Documents Incrementally

When you read documents using pocumentManager.search (), the page size defined on the
DocumentManager determines how many documents are returned. You can use thisfeature, plusthe
start parameter of bocumentManager.search () t0 incrementally read matching documents. The
defualt page size is 10 documents. Incrementally reading batches of documents limits resource
consumption on both the client and server.

For example, the following function sets the page size and reads al matching documentsin
batches of no more than 5 documents.

public static void pagingExample ()
JSONDocumentManager jdm = client.newJSONDocumentManager () ;
QueryManager gm = client.newQueryManager () ;
StringQueryDefinition query =
gm.newStringDefinition() .withCriteria ("bird") ;

// Retrieve 5 documents per read
jdm.setPageLength (5) ;

// Fetch and process documents incrementally

int start = 1;

DocumentPage documents = null;

while (start == 1 || documents.hasNextPage()) {
// Read and process one batch of matching documents
documents = jdm.search(query, start);
for (DocumentRecord document : documents) {

// process the content

}

// advance starting position to the next page of results

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 88

MarkLogic Server Synchronous Multi-Document Operations

start += documents.getPageSize() ;

3.3.6 Extracting a Portion of Each Matching Document

This section illustrates how to use the extract-document-data query option with the Java Client
API to return selected portions of each matching document instead of the whole document. For

details about the option components, See Extracting a Portion of Matching Documents in the Search
Developer’s Guide.

The following exampl e code snippet uses acombined query to specify that the search should only
return the portions of matching documents that match the path /parent /body/target.

String rawQuery =
"<gsearch xmlns=\"http://marklogic.com/appservices/search\">" +
" <gtext>content</gtext>" +
" <options xmlns=\"http://marklogic.com/appservices/search\">" +
" <extract-document-data selected=\"include\">" +
" <extract-path>/parent/body/target</extract-path>" +
" </extract-document-data>" +
" <return-results>false</return-results>" +
" </options>" +
"</search>";
StringHandle gh = new StringHandle (rawQuery) .withFormat (Format .XML) ;

GenericDocumentManager gdm = client.newDocumentManager () ;
QueryManager gm = client.newQueryManager () ;
RawCombinedQueryDefinition query =
gm.newRawCombinedQueryDefinition (gh) ;

DocumentPage documents = gdm.search(query, 1);
System.out.println("Total matching documents: " +
documents.getTotalSize()) ;
for (DocumentRecord document: documents)

System.out.println (document.getUri()) ;

// Do something with the content using document.getContent ()

}

You can also use a JSSON raw query to search the portions of matching documents that match the
paﬂ1/parent/body/target.

portions of matching documents that match the path /parent/body/target.

String rawQuery =
"{\"options\": {" +

"\"extract-document-data\": {" +

"\"selected\": \"include\"," +

"\"extract-path\": \"/parent/body/target\" } },
\"gtext\" : \"content\" }";

StringHandle gh = new StringHandle (rawQuery) .withFormat (Format.JSON) ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 89

MarkLogic Server Synchronous Multi-Document Operations

GenericDocumentManager gdm = client.newDocumentManager () ;
QueryManager gm = client.newQueryManager () ;
RawCombinedQueryDefinition query =
gm.newRawCombinedQueryDefinition (gh) ;

DocumentPage documents = gdm.search(query, 1);
System.out.println("Total matching documents: " +
documents.getTotalSize()) ;
for (DocumentRecord document: documents)
System.out .println (document.getUri()) ;
// Do something with the content using document.getContent ()

If one of the matching documents looked like the following:

{"parent": {
"a": ||foo||l
"body": { "target":"content" },
npn. nbarn} }

Then the search returns the following sparse projection for this document. There will be oneitem
in the “extracted” array (or one “extracted” element in XML) for each projection in agiven
context.

{ "context":"fn:doc (\"/extract/doc2.json\")",
"extracted": [{"target":"content"}]

}

If you set the se1ectea attributeto “all”, “include-with-ancestors’, or “exclude’, then the
resulting document just contains the extracted content. For example, if you set selected to
“include-with-ancestors’ in the previous example, then the projected document conains the
following. Notice that there are no “context” or “extracted” wrappers.

{"parent":{"body":{"target":"contentl"}}}

You can also USe extract-document-data t0 @mbed sparse projections in the search result
summary returned by gueryManager.search. FOr details, see “ Extracting a Portion of Matching
Documents’ on page 180.

3.4 Apply a Read Transformation

When you perform a multi-document read using pocumentManager . read () Of
DocumentManager . search (), YOU can apply a server-side document read transformation by
Configuri Ng @ serverTransform into YOUI DocumentManager.

The transform function is called on the returned documents, but not on metadata. If you include
search results when reading documents with bocumentManager . search (), the transform function is
called on both the returned documents and the search response, so the transform must be prepared
to handle multiple kinds of input.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 90

MarkLogic Server Synchronous Multi-Document Operations

For more details, see “ Content Transformations” on page 282.

The following example code demonstrates applying a read transform when reading documents
that match a query.

ServerTransform transform = new ServerTransform(TRANSFORM NAME) ;

docMgr.setReadTransform(transform) ;
docMgr.search (query, start);

Note: Applying atransform creates an additional in-memory copy of each document,
rather than streaming each document directly out of the database, so memory
consumption is higher.

3.5 Selecting a Batch Size

The best batch size for reading and writing multiple documents in a single request depends on the
nature of your data. A batch size of 100 is agood starting place for most document collections.
Experiment with different batch sizes of data characteristic to your application until you find one
that fits within the limits of your MarkLogic Server installation and acceptable request timeouts.

If you need to ingest or retrieve avery large number of documents, you can also consider

MarkL ogic Content Pump (mlcp), acommand line tool for loading and retrieving documents
from aMarkLogic database. For details, see Loading Content Using MarkLogic Content Pump in the
Loading Content Into MarkLogic Server Guide.

For additional tuning tips, see the Query Performance and Tuning Guide.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 91

MarkLogic Server

Asynchronous Multi-Document Operations

4.0 Asynchronous Multi-Document Operations

The Data Movement Software Development Kit (SDK) is a package in the Java Client API
intended for manipulating large numbers of documents and/or metadata through an asynchronous
interface that efficiently distributes workload across a MarkLogic cluster. This framework is best
suited for long running operations and/or those that manipulate large numbers of documents.

You can use the Data Movement SDK *“out-of-the-box” to insert, extract, delete, and transform
documentsin MarkLogic. You can also easily extend the framework to perform other operations.

The Java Client API aso includes simpler interfaces for single-document operations and
synchronous multi-document operations. For details, see “ Alternative Interfaces’ on page 142.

This chapter includes the following topics:

Terms and Definitions

Data Movement Feature Overview

Data Movement Concepts

Creating and Managing a Write Job

Creating and Managing a Query Job

Reading Documents from MarkLogic

Applying an In-Database Transformation

Deleting Documents from a Database

Applying a Read or Write Transformation

Job Control

Failover Handling

Working With Listeners

Alternative Interfaces

MarkLogic 10—May, 2019

Java Application Developer’ s Guide—Page 92

MarkLogic Server

Asynchronous Multi-Document Operations

4.1 Terms and Definitions
You should be familiar with the following terms and definitions when working with the Data

Movement SDK.
Term Definition

job An operation or large amount of work to be performed using the Data
Movement SDK, such as loading documents into or reading
documents from MarkLogic. For details, see “Basic Data Movement
Job Life Cycle” on page 96.

batch A small unit of work for aData Movement job. For details, see“Basic
Data Movement Job Life Cycle” on page 96.

batcher An object that encapsul ates the characteristics of ajob and coordinates
the work. The batcher isthe job contraller. It splitsthe work requested
by ajob into batches, coordinates distribution of work, and notifies
listeners of events. For details, see “Basic Data Movement Job Life
Cycle’ on page 96.

listener

A callback object that is notified whenever an “interesting” job event
occurs. You register listeners through a batcher. For details, see
“Working With Listeners’ on page 140.

write job

A job whose purpose is writing documents and optional metadata to
MarkLogic. Write jobs are driven by awritepatcher. For details, see
“Job Types’ on page 98 and “ Creating and Managing a Write Job” on
page 102.

query job

A job whose purpose is gathering a set of URIs for documentsin the
database, and dispatching batches of URIsto listeners for action. The
listeners determine the outcome. For example, you can use aquery job
to read or delete documents from MarkL ogic. For details, see “Job
Types’ on page 98 and “ Creating and Managing a Query Job” on
page 110.

job ticket

Anidentifier for ajob that can be used to retrieve status and other
information about a job.

job report

A job status report. For details, see “ Checking the Status of a Job” on
page 131.

read transformation

A content, metadata, or search response transformation that is applied
on MarkLogic server when you read a document from the database.
For details, see “Applying a Read or Write Transformation” on

page 130.

MarkLogic 10—May, 2019

Java Application Developer’s Guide—Page 93

MarkLogic Server

Asynchronous Multi-Document Operations

Term

Definition

write transformation

A content or metadata transformation that is applied on MarkL ogic
server when you insert a document into the database. The
transformation is applied before committing the content. For details,
see “ Applying a Read or Write Transformation” on page 130.

in-database
transformation

A content or metadata transformation that is applied on MarkL ogic
server to content already in the database. The content is not fetched
from MarkL ogic to the client or sent from the client to MarkL ogic.
For details, see “ Applying an In-Database Transformation” on
page 124.

consistent snapshot

A consistent snapshot is a conceptual snapshot of the state of the
database at a specific point in time. Consistent snapshots are useful for
securing an unchanging view of the database for along-running that
accesses documents in the database. For details, see “Using a
Consistent Snapshot” on page 114.

4.2 Data Movement Feature Overview

The Data Movement SDK is designed to efficiently operate on large amounts of data. The
operations are carried out asynchronously to facilitate spreading the workload across a cluster and
to enable your application to continue other processing during along-running job.

You can use the Data Movement SDK to perform the following operations out-of-the-box. You
can easily customize the framework to perform other operations.

* Writedatainto MarkLogic.
* Read datafrom MarkLogic.
» Delete datafrom MarkLogic.

» Apply in-database transformations without fetching data to the client.

The Data Movement SDK provides the following additional benefits.

* A programmatic interface that enables easy integration into existing ETL and data flow

tool chains.

» Asynchronous operation. Y our application does not block while importing, exporting,
deleting, or transforming data. Y ou can incrementally change the workload. For example,
asyou receive data from an ETL stream, you can add the new input to a running import

job.

e Control over workload characteristics, such as thread count and batch size.

MarkLogic 10—May, 2019

Java Application Developer’s Guide—Page 94

MarkLogic Server Asynchronous Multi-Document Operations

Data format flexibility. When importing documents, you can use any input source
supported by Java, such as afile or a stream. The same applies to output when exporting
documents.

Data consistency. Y ou can ensure that along running export, delete, or transform job
operates on the database state in effect when the job started.

High performance and efficient use of client and server resources. Y ou can tune client and
server resource consumption through configuration. The APl automatically distributes the
server-side workload across your MarkL ogic cluster.

Since the Data Movement SDK is part of the Java Client API, your data movement application
can leverage the full power of the Java Client API to support high volume operations. For
example, you can do the following:

Use the full suite of search features in the Java Client API to select documents for export,
deletion, or in-database transformation. For example, select documents using a string or
structured query.

Operate on documents and document metadata.

Apply server-side XQuery or JavaScript transformations when importing or exporting
documents. Y ou can use the same transformation code and deployment for both data
movement and lighter weight document operations.

If you prefer acommand line interface, consider using the micp command linetool. Be aware that
the Data Movement SDK offers some features unavailable to micp, and vice versa. For detalils,
see “ Alternative Interfaces’ on page 142.

4.3

Data Movement Concepts

This section discusses the basic concepts behind the Data Movement SDK.

Summary of Key Classes and Interfaces

Basic Data Movement Job Life Cycle

Job Types

Object Lifetime Considerations

How Work is Distributed Across a Cluster

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 95

MarkLogic Server Asynchronous Multi-Document Operations

43.1 Summary of Key Classes and Interfaces

The following table summarizes the classes and interfaces that drive work in Data M ovement
SDK. Thisis not acomplete list of available classes and interfaces. For details, see the
com.marklogic.client .datamovement package in the Java Client APl Documentation.

Class Description

DataMovementManager | Theprimary job control interface. You use apataMovementManager
object to create, start, and stop jobs.

Batcher A batcher encapsul ates the characteristics of ajob (threads, batch
size, listeners) and controls the workflow. The subinterfaces of
Batcher determine the workflow, such asread or write.

WriteBatcher A Batcher for jobs that write documents to MarkL ogic.

QueryBatcher A Batcher for jobsthat read documentsin MarkL ogic. Documents
are selected by query or by URI. The action taken on read depends
on the Batchristener’s configured for the job. For example, you
might fetch the documents back to the client, delete them, or apply
an in-place transformation.

BatchListener The interface through which you respond to interesting job state
changes. For example, you might log a message whenever a batch
of documentsis successfully written to the database. The events to
which you can attach alistener depend on the type of satcher. The
DataMovement SDK includes severa implementations, and you
can define your own.

BatchFailureListener | Thelistener interface for responding to job failure events. The
DataMovement SDK includes severa implementations, and you
can define your own.

4.3.2 Basic Data Movement Job Life Cycle

Data Movement is based on an asynchronous “job” model of interaction with MarkLogic. You
create ajob (represented by asatcher Object), configure its characteristics, and then start the job.
Your application does not block while the job runs. Rather, you interact with the job
asynchronously via one or more event listeners (represented by asatchnistener).

Once you configure and start ajob, the underlying APl manages distribution of the workload for

you, both across the resources available to your client application and across your MarkLogic
cluster.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 96

MarkLogic Server Asynchronous Multi-Document Operations

Thefollowing diagram illustrates key operations and components common to all Data M ovement
jobs. Details vary depending on the type of job; for details on specific job types, see “ Job Types’
on page 98.

Basic Job Life-Cycle

MarkLogic
Cluster
DataMovement-Based Java Application
create, configure, start job threads | ML Host
vlv Work
work
Batcher : > ML Host
» response
| response
notifications [
| ML Host
______ Listener-specific
> action
Listeners

The following procedure describes the high level flow in more detail. The details vary, depending
on the job type; see “Job Types’ on page 98.

1

Create a pataMovementManager 10 Manage jobs. This object isintended to be long-lived,
and can manage multiple jobs. The pataMovementManager IS NOt represented in the above
diagram, but it is the agent through which you create, start, and stop jobs.

Create a batcher. The batcher acts as the job controller. The type of batcher you create
determines the basic job flow (write or query); for details, see “Job Types’ on page 98.

Configure job characteristics such as batch size and thread count.

Attach one or more listenersto interesting job events. The available events depend on the
type of job.

Start the job. The job runs asynchronously, so thisis anon-blocking operation.
Depending on the type of job, your application might periodically interact with the batcher

to update the state of the running job. For example, periodically add documents to the
work queue of awrite job.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 97

MarkLogic Server Asynchronous Multi-Document Operations

7. The batcher interacts with MarkL ogic on behalf of each batch of work using one of the
configured job threads.

8. Whenever an important job life cycle event occurs, the batcher notifiesal listenersfor that
event. For example, awrite job notifies batch success listeners whenever a batch of
documents is successfully written to MarkLogic.

0. Stop the job when you no longer need it. A job can run indefinitely. Graceful shutdown of
ajob includes waiting for in-progress batches to complete. For more details, see “Job
Control” on page 131.

4.3.3 Job Types

The Data Movement SDK supports the following job types. The job type determines the detailed
workflow and the kind of operation ajob can perform.

e Write Job
¢ Query Job

4.3.3.1 Write Job

A writejob sends batches of documentsto MarkL ogic for insertion into adatabase. You can insert
both content and metadata.

Your code submits documents to the batcher (job controller), and the batcher submits a batch of
documents to MarkL ogic whenever afull batch of documents is queued by your application. The
number of documentsin a batch is a configuration parameter of the job.

Batches are processed in multiple client application threads and distributed across the cluster. The
batcher notifies listeners of the success or failure of each batch.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 98

MarkLogic Server Asynchronous Multi-Document Operations

The following diagram gives an overview of the key components and actions of awrite job:

Write Job
input source MarkLogic
¢ Cluster
WriteBatcher add(._) job threads
| ML Host
document __...-----""""'.'.'r
batches
documents
WriteBatcher » | ML Host
notifications
notifications [—
3| ML Host

Listener-specific
action

Listeners

DataMovement-Based Java Application
For more details, see “ Creating and Managing a Write Job” on page 102.

4.3.3.2 Query Job

A query job creates batches of URIs and dispatches each batch to listeners. The batcher gets URIs
either by identifying documents that match a query or from alist of URISs you provide as an

Iterator.

When the job is driven by a query, the batches of URIs are obtained by evaluating the query on
MarkL ogic and fetching the URIs of subsets of the matching documents. This enablesthejob to
handle large query result sets efficiently.

The action applied to a URI batch is dependent on the listener. For example, alistener might read
the documents specified by batch from the database and then save them to the filesystem.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 99

MarkLogic Server Asynchronous Multi-Document Operations

The following diagram gives an overview of the key components and actions of atypical query
job.

Query Job

newueryBatcher(query)

job threads | Ly{ML Host
l query

QueryBatcher »| ML Host

———————
URI

I
URI batches

Listener-specific
action

MarkLogic

Listeners Cluster

DataMovement-Based Java Application

The Data Movement SDK pre-defines query job listeners that support the following actions:

* Read documents from MarkLogiC (ExportListener anNd ExportToWriterListener).
» Delete documents from MarkLogicC (peleteListener).

* Apply an in-database transformation to documentsin MarkL ogic
(ApplyTransformListener).

» Savethe URIs of matched documentsto afile or other output sink

(UrisToWriterListener).

You can also create custom listeners to accomplish these and other operations. The pre-defined
listeners are meant to serve as guides for creating your own listeners. For more details, see
“Working With Listeners’ on page 140.

You can also create query jobs that operate on a pre-defined set of URIs, rather than querying
MarkLogic to find URIs. In this case, the satcher does not interact with MarkL ogic to collect
URIs, but your listeners can still interact with MarkL ogic to act on the URIs.

For more details, see “Creating and Managing a Query Job” on page 110.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 100

MarkLogic Server Asynchronous Multi-Document Operations

4.3.4 Object Lifetime Considerations

A pataMovementManager ODject is usually along-lived object. For example, create one when your
data movement application starts up, and keep it until your application exits. A
DataMovementManager Object is the agent through which you create, start, and stop jobs. It also
manages the MarkL ogic connection resources used by jobs (in the form of patabaseciient
objects).

A Batcher Can be released after you stop the job. Jobs cannot be restarted, so asatcher cannot be
re-used once the job is stopped.

When YOU pPasS acloseable handleto writeBatcher.add Of WriteBatcher. addAs, the batcher takes
responsibility for closing the handle. All c1oseable content and metadata handles held by the
batcher will be closed as soon as possible after a batch iswritten.

4.3.5 How Work is Distributed Across a Cluster

This section describes how a Data Movement job distributes its workload across a MarkLogic
cluster. You do not need to understand this to use the Data Movement SDK, but you might find it
useful in understanding the impact of host failures and cluster topology changes.

When YyOU Create apataMovementManager Obj ect usi NQ DatabaseClient .newDataMovementManager,
the patamovementManager IS implicitly associated with the connection held by the creating client.
This connection is used to discover which hosts in your MarkLogic cluster contain available
forests for the target database.

When you create a batcher using the patavovementmanager, the batcher’s default configuration

includes this forest host data. The batcher distributes its work among these hosts, helping to
ensure no single host becomes a chokepoint or gets overloaded.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 101

MarkLogic Server Asynchronous Multi-Document Operations

The following diagram illustrates this discovery process and propagation of forest configuration
to abatcher. Assume the job targets the database named “mydb” in cluster that contains three
hosts (Host 1, Host 2, and Host 3). Only Host 1 and Host 2 contains forests from “mydb”.

Distribution of Work in a Cluster

DatabaseClient

host: Host 1
port: 8000
database: mydb

MarkLogic
Cluster

1. newDataMovementManager

¢ 2. fetch forest config for mydb

DataMovement » > Host 1

Manager Host 1. Host 2

‘Hosﬂ I ‘HGS’[E I
client client
Batcher > Host 2

Host 1 4 work

client I mydb
(=

3. newXBatcher Host 2 4 work
client Host 3

When aforest host becomes unavailable, the batcher attempts to recover by removing the failed
host from its host list and redirecting work elsewhere. If the batcher runs out of viable hosts, the
job stops.

If you change the forest topology of the database operated on by a job, the batcher will not be
aware of this change unless you update the batcher forest configuration information. For details,
see “Updating Forest Configuration for a Job” on page 133.

4.4 Creating and Managing a Write Job

A write job inserts documents into a database. The following topics describe creating and
managing awrite job. The flow of awritejob isalsoillustrated in “Job Types’ on page 98.

e Creating a Batcher and Configuring a Write Job

e Attaching Listeners to a Write Job

e Starting a Write Job

¢ Adding Documents and Metadata to a Job

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 102

MarkLogic Server Asynchronous Multi-Document Operations

e Stopping a Write Job

* Write Job Performance Considerations

e Example: Exporting Documents that Match a Query

44.1 Creating a Batcher and Configuring a Write Job

You can use awriteratcher Object to load documentsinto MarkLogic. You can include both
content and metadata. Use the batcher to configure runtime characteristics of the job, such asthe
batch size, and register listeners for batch success and failure events.

The following code snippet configures batch size and thread count. For additional configuration
options see “ Attaching Listenersto a Write Job” on page 103 and the Java Client API
Documentation..

// Assume "dmm" is a previously created DataMovementManager object.
WriteBatcher batcher = dmm.newWriteBatcher() ;
batcher.withBatchSize (1000)

.withThreadCount (10)

/* ... additional configuration ... */

7

The order in which you configure job characteristics and attach listenersis not significant, other
than that listeners for the same event are invoked in the order in which they’ re attached.

For an end-to-end example, see “ Example: Loading Documents From the Filesystem” on
page 108.

4.4.2 Attaching Listeners to a Write Job

Whenever awriteratcher accumulates a batch of documents, it dispatches the batch to
MarkLogic for writing. The success or failure of committing the batch to the database is reported
back to the batcher, which in turn notifies appropriate listeners.

You can attach listeners to awritesatcher for the following events:

e Batch success: A batch success event occurs whenever all the documentsin abatch are
successfully committed to MarkLogic. Use writeBatcher.onBatchsuccess t0 attach a
listener to this event.

« Batchfailure: A batch failure event occurs whenever at least one document in a batch
cannot be committed to MarkLogic. UsewriteBatcher.onBatchrailure t0 attach alistener
to this event.

You are not required to attach alistener, but doing so gives your application access to information
that may not be included in the default logging and error handling, as well as more control over
your job. Tracking success and failure details can also assist in error recovery.

Listeners for the same event are invoked in the order in which they are attached to the batcher.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 103

MarkLogic Server Asynchronous Multi-Document Operations

The following code snippet illustrates attaching a success and afailure listener, both in the form
of alambdafunction.

// Assume "dmm" is a previously created DataMovementManager object.

WriteBatcher batcher = dmm.newWriteBatcher() ;

batcher.onBatchSuccess (batch-> {/* take some action */})
.onBatchFailure ((batch, throwable) -> {/* take some action */})
// ...additional configuration...

dmm. startJob (batcher) ;

To learn more about listeners, see “Working With Listeners” on page 140.

For an end-to-end example, see “Example: Loading Documents From the Filesystem” on
page 108.

4.4.3 Starting a Write Job
Start ajob usi NQ DataMovementManager . startJob. FOr exampl €

// Assume "dmm" is a previously created DataMovementManager object.
WriteBatcher batcher = dmm.newWriteBatcher() ;
// ... configure the job and attach listeners ...

JobTicket ticket = dmm.startJob (batcher) ;

You receive agobTicket that can be used to check status or stop the job. You can aso retrieve the
ticket later from the batcher.

You should not change the configuration of ajob after you start it, with the possible (rare)
exception of updating the forest configuration if your cluster topology changes; for details, see
“Updating Forest Configuration for aJob” on page 133. The job will run until you stop it or afatal
error occurs. For more details, see “ Job Control” on page 131.

For an end-to-end example, see “Example: Loading Documents From the Filesystem” on
page 108.

4.4.4 Adding Documents and Metadata to a Job

While the job is running, add documents to the job using writeBatcher.add Or
writeBatcher.addas. YOU can add document content or a combination of content and metadata.

A writeBatcher Object isthread safe, so you can add data to the job from multiple threads.

Whenever your application adds enough documents to the batcher to compose a full batch, the
batcher dispatches the batch to one of its job threads for uploading to MarkLogic. Each batch of
documents is committed as a single transaction, so if any document in a batch cannot be
committed, the whole batch fails. The success or failure of the batch is reported to appropriate
attached listeners.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 104

MarkLogic Server Asynchronous Multi-Document Operations

The batcher will alwayswait for afull batch by default. If your input rate is very slow, you can
periodically flush partial batches using writeBatcher. flushasync.

The following code snippet adds files from a directory (signified by the pata p1r variable) to a
job. For an end-to-end example, see “Example: Loading Documents From the Filesystem” on
page 108.

try {
Files.walk (Paths.get (DATA DIR))

.filter (Files::isRegularFile)

.forEach(p -> {
String uri = "/dmsdk/" + p.getFileName () .toString() ;
FileHandle handle =

new FileHandle () .with(p.toFile()) ;

batcher.add (uri, handle) ;

K
} catch (IOException e) ({
e.printStackTrace () ;
}

The batcher takes responsibility for closing any cioseabie content or metadata handles you pass
in. Such handles are closed by the batcher as soon as possible after the resource is written to
MarkLogic.

Note: If you have aresource that needs to be closed after writing, but is not closed by the
handle, you should override the c10se method of your handle and dispose of your
resource there.

4.4.5 Stopping a Write Job

Graceful shutdown of awrite job should include draining the document queue before shutting
down the job. You usually want to ensure that all documents that have been added to the job are
fully processed (either committed to the database or rejected due to an error).

You can achieve graceful shutdown with the following steps:
1. Stop any activity adding work to the job. That is, stop calling writeBatcher.add Of
writeBatcher.addas. ASlong asyou keep adding work to the job, the batcher will keep

dispatching work to job threads whenever a batch accumul ates.

2. Call writeBatcher.flushandwait. The batcher dispatches any partial batch in its work
gueue, and then waits for in-progress batches to compl ete.

3. Call pataMovementManager . stopJob. TheJOb ismarked as Stopped. Queued (bUt not yet

Started) tasks are cancelled. Subsequent callstowriteBatcher.add, WriteBatcher.addAs,
WriteBatcher.flushAndWait, 8Nd writeBatcher.flushasync Will throw an exception.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 105

MarkLogic Server Asynchronous Multi-Document Operations

If you are concerned that the JVM might exit before all work completes, you can call
WriteBatcher.awaitCompletion after you cal stopJdob.

The following code snippet demonstrates a graceful shutdown.

DataMovementManager dmm = ...;
WriteBatcher batcher = ...;

// ... disable any input sources ...

batcher.flushAndWait () ;
dmm. stopdob (ticket) ;

Thefollowing walkthrough explores the interactions between flush and stop in more detail to help
you understand the tradeoff if you to shut ajob down prematurely by just calling stopgob.

Suppose you have awrite job with a batch size of 100, and the job isin the following state:
» Completed: Batches 1-3. That is, 300 documents have been written to MarkL ogic and the
listeners for these batches have completed their work.

* In-Progress. Batch 4 is being written to MarkL ogic, but has not yet completed.

» In-Progress. Batch 5 has been written to MarkL ogic, but the listeners have not completed
their work.

* Not Started: 75 documents are sitting in the batcher’ swork queue, waiting for afull batch
to accumulate.

Now, consider the following possible shutdown scenarios:

1. StOp calling WriteBatcher.add and WriterBatcher.addAs, then call
WriteBatcher.flushAndWait, followed by DataMovementManager . stopJob.

* Thefiushandwait cal createsabatch from the 75 documentsin queue, then blocks
until this batch and batches 4 and 5 complete.

* No new batches will be started, and no batches will be in progress when you call
stopJdob because no new work is flowing into the job when you call flush.

2. You call writeBatcher. flushAndwWait, followed by DataMovementManager . stopJob.
* Thefiushandwait cal createsabatch from the 75 documentsin queue, then blocks
until this batch and batches 4 and 5 complete.

* Any batches that start between calling f1ushandawait and stopgob Will complete,
assuming the VM does not exit.

* Any partial batch that accumulates between the calls is discarded.

Calling f1ushasync instead of f1ushandwait has the same outcome, if the VM does not
exit before in-progress batches complete.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 106

MarkLogic Server Asynchronous Multi-Document Operations

3. You call DataMovementManager . stopJob.

* The 75 documentsin the queue are discarded.
» Batches4 and 5 will complete, assuming the VM does not exit.

* Any subsequent attempt to call writepatcher.add Of WriteBatcher.addas throws
an exception, so no additional batches are started or documents |ost.

Only sequence #1 ensures that no submitted documents are lost.

4.4.6 Write Job Performance Considerations
You should consider the following factors when configuring and tuning a write job:

e Batch Size
e Thread Count

e Work Item Input Rate

e Listener Design

4.4.6.1 Batch Size

The batch size configuration parameter of awritesatcher iSthe number of itemsthat are sent to
MarkLogic at once. The “ideal” batch size depends on many factors, including the size of the
input documents and network latency. A batch size in the range 100-1000 works for most
applications.

The following list calls out some factors you should consider when choosing a batch size:

» Allitemsin abatch are sent to MarkLogic in asingle request and committed asasingle
transaction.

» If your job updates existing documents, locks must be acquired on those documents and
held for the lifetime of the transaction. A large batch size can thus potentially increase
lock contention and affect overall application performance.

» Selecting abatch size is a speed vs. memory tradeoff. Each request to MarkLogic
introduces overhead, but all the itemsin a batch must stay in memory until the batchis
processed, so alarger batch size consumes more memory.

» Since the batcher will not send any queued items until a full batch accumulates, you
should also consider the input rate of your application. A large batch size and a slow input
rate can cause itemsto be in a pending state for along time. Y ou can avoid this by
perlodlcally Calllng WriteBatcher. flushAsync Of WriteBatcher.flushAndWait.

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 107

MarkLogic Server Asynchronous Multi-Document Operations

446.2 Thread Count

The thread count configuration parameter of awritesatcher iSthe number of threadsin the client
JVM that will be dedicated to writing batches to MarkLogic. The threads operate in parallel, each
servicing one batch at atime.

Ideally, you should choose athread count that will keep most of the job threads busy and keep
MarkL ogic busy without overwhelming your cluster. You should usually configure at least as
many client threads as hosts containing forests in the target database. The default is one thread per
forest host.

4.4.6.3 Work Item Input Rate

Write job performance can be affected by the input rate. That is, by the rate at which you add
documents to the batcher.

If you queue documents much faster than the batcher’s job threads can process batches, you can
overwhelm the batcher. When this happens, the batcher adopts a strategy that uses submitting
threads instead of the busy job threads. This effectively throttles submitting threads and prevents
the task queue from using too much memory, while still enabling the job to progress.

To tune performance, you can adjust the number of threads adding work to the batcher or the rate
at which items are added.

4.4.6.4 Listener Design

When a batch succeeds or fails, the job thread that submitted the batch invokes all the appropriate
listeners. If you register alistener that takes along time to complete, it Slows down the
notification of other listeners for the same event, and slows down the rate at which the job can
complete batches.

A listener can also low down ajob if it calls synchronized resources since lock contention can
occur.

4.4.7 Example: Loading Documents From the Filesystem

The following example creates and configures awritesatcher jOb, and then feeds the job files all
the filesin adirectory on the filesystem.

Though this example simply pulls input from the filesystem, it could come from any source

supported by Java. For example, the application could asynchronously receive datafrom an ETL
pipeline, a message queue, or periodically pull from afile system drop box.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 108

MarkLogic Server

Asynchronous Multi-Document Operations

The example attaches listeners to the batch success and batch failure events. The success listener
logs the number of documents written so far, and the failure listener simply rethrows the failure
exception. A production application would have more sophisticated listeners.

package examples;

java.io.IOException;
java.nio.file.Files;
java.nio.file.Paths;

import
import
import

import
import
import
import
import
import

com

com.
.marklogic.client.datamovement .WriteBatcher;

com

com.
.marklogic.client.DatabaseClient;

com

com.

.marklogic.client.io.*;

marklogic.client.datamovement .DataMovementManager;
marklogic.client.DatabaseClientFactory;

marklogic.client.DatabaseClientFactory.DigestAuthContext;

public class DMExamples {
// replace with your MarkLogic Server connection information
static String HOST = "localhost";
static int PORT = 8000;
static String USER = "username";
static String PASSWORD = "password";
private static DatabaseClient client =

DatabaseClientFactory.newClient (
HOST, PORT, new DigestAuthContext (USER, PASSWORD)) ;

private static String DATA DIR = "/your/input/dir/";

// Loading files into the database asynchronously

public static void importDocs () {

MarkLogic 10—May, 2019

// create and configure the job
DataMovementManager dmm = client.newDataMovementManager () ;
WriteBatcher batcher = dmm.newWriteBatcher () ;
batcher.withBatchSize (5)
.withThreadCount (3)
.onBatchSuccess (batch->
System.out.println(
batch.getTimestamp () .getTime () +
" documents written: " +
batch.getJobWritesSoFar()) ;
P
.onBatchFailure ((batch, throwable) -> {
throwable.printStackTrace () ;

1)

// start the job and feed input to the batcher
dmm. startJob (batcher) ;
try {
Files.walk (Paths.get (DATA DIR))
.filter(Files::isRegularFile)
.forEach(p -> {
String uri = "/dmsdk/" + p.getFileName () .toString() ;
FileHandle handle =

Java Application Developer’s Guide—Page 109

MarkLogic Server Asynchronous Multi-Document Operations

new FileHandle () .with(p.toFile()) ;
batcher.add (uri, handle) ;

13K
} catch (IOException e) {
e.printStackTrace () ;
}

// Start any partial batches waiting for more input, then wait
// for all batches to complete. This call will block.
batcher.flushAndWait () ;

dmm. stopJdob (batcher) ;

}

public static void main(String[] args) {
importDocs () ;
}

45 Creating and Managing a Query Job

A query job takes either aquery or alist of URIs asinput, and distributes batches of URIsto
listeners for action. The flow of aquery job isoutlined in “Job Types’ on page 98.

The outcome of aquery job is dependent on the actions taken by the listeners. This section covers
the following topics common to all query jobs, regardless of the end goal.

* Creating and Configuring a Query Job

e Attaching Listeners to a Query Job

e Starting a Query Job

e Stopping a Query Job

e Using a Consistent Snapshot

e Performance Considerations for Query Jobs

To learn more about specific query job use cases, see the following topics:

* Reading Documents from MarklLogic

e Applying an In-Database Transformation

e Deleting Documents from a Database

45.1 Creating and Configuring a Query Job

To run aquery job, use agueryBatcher Object created with
DataMovementManager .newQueryBatcher. A QueryBatcher distributes batches of URIsto listeners
registerd for the “URIsready” event.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 110

MarkLogic Server Asynchronous Multi-Document Operations

The set of URIsthat aquery job operates on can come from the following sources:

* A string query, structured query, or combined query. The job retrieves batches of URIs of
matching documents from MarkL ogic.

e A raw or unstructured query. Because it requires no transformation on the server, araw
query isfaster than a structured query.

* Anapplication-defined list of URIs (intheform of an rterator). Thejob splitsthese URIs
into batches.

The following code snippet constructs a ouerysatcher based on astructured query. The query isa
directory query on the path “ /amsdk/”.

// Assume "client" is a previously created DatabaseClient object.
QueryManager gm = client.newQueryManager () ;
StructuredQueryBuilder sgb = gm.newStructuredQueryBuilder() ;
StructuredQueryDefinition query = sgb.directory(true, "/dmsdk/");

// Create the batcher
DataMovementManager dmm = client.newDataMovementManager () ;
QueryBatcher batcher = dmm.newQueryBatcher (query) ;

The following code snippet takes araw query (querydefrawcts).

QueryBatcher queryBatcher2 =
dmManager .newQueryBatcher (querydefRawCts) ;

Note: Theraw CTS query isthe representation of a query that executes most quickly.
Although the Java API supports other kinds of raw queries, including araw query
that is equivalent to a structured query, raw queries are not asfast asaraw CTS

query.
The following code snippet constructs a gueryeatcher based on alist of URIs.

// Assume "client" is a previously created DatabaseClient object.
DataMovementManager dmm = client.newDataMovementManager () ;
String uris[] =

{"/dmsdk/docl.xml", "/dmsdk/doc3.xml", "/dmsdk/doc5.xml"};
QueryBatcher batcher =

dmm.newQueryBatcher (Arrays.asList (uris) .iterator());

You can configure runtime characteristics of the job, such as the batch size, thread count and
whether or not to use a consistent snapshot of the documents in the database.

Note: Whether or not to use a consistent snapshot is an important consideration for query
jobs. For details, see “Using a Consistent Snapshot” on page 114.

The following code snippet sets the batch size and thread count, and imposes a consistent
snapshot requirement for a previously created batcher.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 111

MarkLogic Server Asynchronous Multi-Document Operations

batcher.withBatchSize (100)
.withThreadCount (10)
.withConsistenSnapshot ()

/* ... additional configuration ... */

For more complete examples, see the following topics:

» “Example: Exporting Documents that Match a Query” on page 122
» “Example: Applying an In-Database Transformation” on page 127
» “Deleting Documents from a Database” on page 129

The order in which you configure job characteristics and attach listenersis not significant, other
than that listeners for the same event are invoked in the order in which they’ re attached.

You should also attach at least one listener; for details, see “ Attaching Listeners to a Query Job”
on page 112.

45.2 Attaching Listeners to a Query Job

Whenever a gueryBatcher accumulates a batch of URIs, it dispatches the URIs to the listeners
attached usi NQg QueryBatcher.onUrisReady. If you do not attach at |east one onUrisReady Iistener,
the job will not do anything meaningful.

You can attach listeners to aguerysatcher for the following events:

* URIsready: This event occurs whenever the batcher accumulates a batch of URIsto be
processed. UsSe QueryBatcher.onUrisReady 1O attach A QueryBatchListener tO this event.

* Query failure: This event can occur when you use a query to derive thelist of URIsfor a
job, and the query fails for some reason. Use gueryBatcher.onQueryFailure tO atach a
QueryFailureListener to this event.

You should attach at least one success listener and one failure listener to perform
application-specific monitoring and business logic. A listener has access to information that may
not be captured by the default logging from the Java Client API.

The action taken when a batch of URIsis availableis up to the onurisready listeners. Data
Movement SDK comes with listeners that support the following operations.

* Read documentsfrom M arkLoglc (ExportListener, ExportToWriterListener). For details,
see Reading Documents from MarkL ogic” on page 118.

* Apply an in-database transformation to documentsin MarkL ogic
(applyTransformListener). FOr details, see” Applying an In-Database Transformation” on
page 124.

* Delete documentsin MarkLogic (peleteListener). For details, see “ Deleting Documents
from a Database” on page 129.

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 112

MarkLogic Server Asynchronous Multi-Document Operations

* Log or otherwise track progress of aquery job (progressListener).

You can also create your own listeners. The listeners that come with Data Movement SDK are
meant to serve as a starting point for your customizations.

The following code snippet illustrates attaching listeners to a query job. Thisjob printsthe URIs
in each batch to stdout.

ssume mm" is a previously create atabaseMovementManager objec

// A "dmm" i i 1 ted Datab M tM bject
an query" 1is a previously create ructuredQueryDefinition.

// ar "o i 1 ted St t do Definiti

DataMovementManager dmm = client.newDataMovementManager () ;
QueryBatcher batcher = dmm.newQueryBatcher (query) ;

batcher.onUrisReady (batch -> {
for (String uri : batch.getItems()) {
System.out.println (uri) ;
}

P
.onQueryFailure(exception -> exception.printStackTrace());
// ...additional configuration...

dmm.startJob (batcher) ;

The order in which you configure job characteristics and attach listenersis not significant, other
than that listeners for the same event are invoked in the order in which they’ re attached.

To learn more about listeners, see “Working With Listeners’ on page 140.

45.3 Starting a Query Job
Start ajob using pataMovementManager . startJob. FOr example:

// Assume "client" is a previously created DatabaseClient object
DataMovementManager dmm = client.newDataMovementManager () ;
QueryBatcher batcher = dmm.newQueryBatcher (someQuery) ;

// ... configure the job and attach listeners ...

JobTicket ticket = dmm.startJob (batcher);

You recelve agobTicket that can be used to check status or stop the job. You can also retrieve the
ticket later from the batcher.

You should not change the configuration of ajob after you start it. The job will run until you stop
it or afatal error occurs. For more details, see “Job Control” on page 131.

45.4 Stopping a Query Job

A query job will go on dispatching batches of URIsto its listeners until all batches have been
dispatched or you call pataMmovementManager . stopaob. FOIlow these stepsto ensure the listeners
complete processing all URI batches before shutdown:

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 113

MarkLogic Server Asynchronous Multi-Document Operations

1. Call gueryBatcher.awaitcompletion. Thiscall blocks until all URIs are processed. You
can set atime limit on how long to block, but the job will go on processing batches after
the timeout expires.

2. Call pataMovementManager . stopJob. TheJOb will not start any additional batches.
In-progress batcheswill run to completion unlessthe JVM exits. Resources are released as
the in-progress work compl etes.

For example, suppose you have aquery job that will ultimately fetch 10 batches of URIs from
MarkLogic, and the job isin the following state:

* Completed: Batches 1-3. That is, the URIs were dispatched to listeners and the listeners
completed their work.
* In-Progress. Batch 4 is awaiting query results from MarkLogic.

* In-Progress: Batch 5 has been dispatched to the listeners, but the listeners have not
completed their work.

* Not Started: Batches 6-10 not yet assigned to any job threads.
If you call awaitcompletion, the call will block until batches 4-10 are completed.

If you instead call stopgob, batches4 and 5 will complete (unlessthe VM exits), but batches 6-10
will not be processed, even if they could have been started while waiting on batches 4 and 5.

The following code gracefully shuts down a query job after it completes al work:

DataMovementManager dmm = ...;
QueryBatcher batcher = ...;

batcher.awaitCompletion() ;
dmm. stopdob (ticket) ;

The following code shuts down a job without necessarily completing all work. Work in progress
when you call stopJob completes, but no additional work is done. The call t0 awaitcompletion iS
optional, but can be useful to prevent the application from exiting before work is completed.

DataMovementManager dmm = ...;
QueryBatcher batcher = ...;

dmm. stopJdob (ticket) ;
batcher.awaitCompletion() ;

455 Using a Consistent Snapshot

“Consistent snapshot” is a configuration option for aquery job that causes the query driving the
job to be evaluated against the state of the database at the point in time when the job begins.

* When to Use a Consistent Snapshot

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 114

MarkLogic Server Asynchronous Multi-Document Operations

* How to Use a Consistent Snapshot

e The Problem Solved by a Consistent Snapshot

45.5.1 When to Use a Consistent Snapshot
You must use a consistent snapshot if your job meets the following criteria:

* Thejobisdriven by aquery (rather than an application-defined list of URIS), and

» Thejob (or other activity) modifies the database in way that can cause successive
evaluations of the query to return different results.

Failing to use a consistent snapshot under these circumstances can cause inconsi stent and
unpredictable job results. For details, see “ The Problem Solved by a Consistent Snapshot” on
page 115.

For example, you should always use a consistent snapshot when using peleteListener OF
ApplyTransformListener With @ query-driven JOb

You might also want to use a consistent snapshot when reading documents from the database if
you need to capture a deterministic set of documents and there is a possibility of the database
contents changing while your job runs.

45.5.2 How to Use a Consistent Snapshot

To enable the use of aconsistent snapshot, call gueryBatcher.withconsistentsnapshot and ensure
your database configuration supports point-in-time queries.

The following code snippet configures a query job to use a consistent snapshot:

QueryBatcher batcher = dmm.newQueryBatcher (someQuery) ;
batcher.withConsistentSnapshot () ;

This causes the job to evaluate the query as a point-in-time query. You might have to change your
database configuration to enable point-in-time queries by setting a merge timestamp. For details,
See Enabling Point-In-Time Queries in the Admin Interface in the Application Developer’s Guide.

You might also want to use a consistent snapshot in your listeners. For example, exportListener
and ExportToWriterListener have AwithConsistentSnapshot method you Ccan use to ensure the
listeners capture exactly the same set of documents as were matched by the query.

45.5.3 The Problem Solved by a Consistent Snapshot

When you drive aquery job using aquery (rather than astatic list of URIS), the batcher fetchesthe
URIs for matching documents incrementally, rather than fetching them all at once and holding
them in memory.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 115

MarkLogic Server Asynchronous Multi-Document Operations

The batches are fetched using the same pagination model that the search interfaces use to fetch
results incrementally, specifying the desired page by a starting position in the results plus a page
length. The examples below illustrate the problems that can occur if the query results are
changing asthejob runs.

Suppose theinitial query for ajob matches documents with the following URI s, and that the batch
(page) sizeis 3. When the job fetches the first page, it gets the URIsfor doc1, doc2, docs.

docl doc2 doc3 doc4 doc5 docé doc7 doc8 doc9 doclO

While that batch of URIsis being processed, a change in the database causes doc3 to no longer
match the query. Thus, the query results now look like the following:

docl doc2 doc4 doc5 doc6 doc7 doc8 doc9 doclO

When the job requests the next page of matches, beginning at position 4, it gets back the URIsfor
docs, docs, and doc7. Notice that docs has been skipped because it is now in the first page of
results, which has already been processed from the perspective of the job.

A similar problem can occur if the database changesin away that adds a new document to the
guery results. Imagine that, after the job processes thefirst batch of URIS, anew doca matchesthe
guery and is part of the first page, asfollows:

docl doc2 docA doc3 doc4 doc5 docée doc7 doc8 doc9 doclO

When the job fetches page 2, the batch includes aoc3 again, which has already been processed. If
the job is applying an in-database transformation, this double processing could have an
undesirable effect.

If you use a consistent snapshot of the database state at the beginning of a query job, then the
guery always matches the same documents.

You might also want to use a consistent snapshot in your query job listeners, depending on the
operation.

Consider aquery job that uses exportListener t0 read documents from the database. Say the
batcher isrunning at a consistent snapshot, but the listener is not. Some time after the start of the
job, one of the documents matching the query is deleted. The deleted document URI will still be
included in a batch because of the consistent snapshot. However, the listener will get an error
trying to read the nonexistent document.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 116

MarkLogic Server Asynchronous Multi-Document Operations

Thefollowing diagram illustratesthis case. Thejob starts at sometime T. The document is del eted
at time T+ 1. At T+2, the job produces a batch that includes the URI for the deleted document and
passes it to the listener. If the listener is not pinned to a point-in-time, then it will find the deleted
document does not exist, which might result in an error.

T T+1 T+2
——————— B e sl
job doc process
start deleted doc

If you cal ExportListener.withConsistentSnapshot aswel as
QueryBatcher.withConsistentSnapshot, then both the query evaluation and the URI processi ng
will be carried out against a fixed snapshot of the database.

ExportToWriterListener aSO haSawithconsistentsnapshot Method.

4.5.6 Performance Considerations for Query Jobs
You should consider the following factors when configuring and tuning a query job:

e Batch Size

e Thread Count

e Listener Design

45.6.1 Batch Size

For aquery-driven job, the batch size configuration parameter of aguerysatcher iSthe number of
URIsthat are fetched from MarkLogic at once. For a URI iterator driven job, batch size isthe
number of URIs the batcher picks off thelist a once. In both cases, the batch size determines the
number of items sent to the listeners for processing.

The“ideal” batch size depends on many factors, including the size of the input documents and
network latency. A batch size in the range 100-1000 works for most applications.

The following list calls out some factors you should consider when choosing a batch size:

» Selecting abatch size is a speed vs. memory tradeoff. Each request to MarkLogic
introduces overhead, but all the itemsin a batch must stay in memory until the batch is
processed, so alarger batch size consumes more memory.

» Consider how batch size interacts with the implementation of your listener. For example,
ExportListener fetches all the documentsin abatch from MarkL ogic in asingle request, so
alarge batch size causes the listener to hold many documentsin memory. For more
details, see “Listener Design” on page 118.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 117

MarkLogic Server Asynchronous Multi-Document Operations

45.6.2 Thread Count

The thread count configuration parameter of aguerygatcher iSsthe number of threads in the client
JVM that will be dedicated to processing URI batches. The threads operate in parallel, each
servicing one batch at atime.

Ideally, you should choose a thread count that will keep most of the job threads busy. If your
listener interacts with MarkLogic, you should ideally also keep MarkLogic busy without
overwhelming the cluster. For ajob that interacts with MarkL ogic, you should usually have more
client threads than hosts containing forests in the target database.

4.5.6.3 Listener Design

The performance of aquery job is heavily depending on the processing performed by the
QueryBatcher.onUrisReady listeners.

When a batch of URIsisready for processing, the batcher invokes each onurisready listener, in
the order in which they were register. If you register alistener that takes along time to complete,
it delays the execution of other listeners for the same event, and slows down the rate at which the
job can compl ete batches.

A listener can also slow down ajob if it calls synchronized resources since lock contention can
occur.

If one of your listenersistoo slow, you can design it to do its processing in a separate thread,
allowing control to return to the job and other listeners to execute.

Listener performance can be affected by batch size. For example, an app1yTransformListener
performs all the transformations for a batch of URIs as a single transaction. An open transaction
holds locks on fragments with pending updates, potentially increasing lock contention and
affecting overall application performance. If you run into lock contention, you might be able to
addressit by using asmaller batch size.

4.6 Reading Documents from MarkLogic

To read documents and/or metadata from MarkL ogic using the Data Movement SDK, use a
QueryBatcher and attach an ExportListener, ExportToWriterListener, OF equival ent custom
QueryBatchListener tO onUrisrReady. AN export listener also has attached listeners. These listeners
take action when the export listener has a document available for processing.

This section onIy details how to use ExportListener and ExportToWriterListener O read
documents from MarkL ogic with a query job. However, you can create your own listener for
reading documents.

For more details, see the following topics:

e Using ExportListener to Read Documents

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 118

MarkLogic Server Asynchronous Multi-Document Operations

e Using ExportToWriterListener to Read Documents

e Example: Exporting Documents that Match a Query

This section assumes you are familiar with query job basics. If not, review “ Creating and
Managing a Query Job” on page 110.

4.6.1 Using ExportListener to Read Documents

When an exportListener receives abatch of URISfrom agueryBatcher, it reads these documents
from MarkL ogic, and then dispatches each document to its own listener(s). Attach per-document
listeners using ExportListener.onDocumentReady. FOr eéxample, you might register a document
listener that writes a document to the filesystem.

The following diagram illustrates the flow between QueryBatcher, ExportListener, and document
listeners.

ExportListener Interaction

QueryBatcher
ML Host
1. URI batch
2. URIs
>
ExportListener | ML Host
i 3. Documents
= Doriument T s
‘ ‘ Listener-specific i
- action MarkLogic
onDocumentReady Cluster
Listeners

Java Application

You can configure aspects of the exportListener document read operation such as the following.
For acomplete list, refer to the Java Client APl Documentation.

» Fetch metadata such as collections or properties, as well as document content. See
ExportListener.withMetadataCategory.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 119

MarkLogic Server Asynchronous Multi-Document Operations

» Useaconsistent snapshot to fetch documents as they were when the query job started. See
ExportListener.withConsistenSnapshot and “US nga Consistent Snapshot” on page 114.

» Apply aserver-side read transform to each document before returning it to the client
appllcatlon See ExportListener.withTransform.

The exportListener USeS the interfaces described in “ Synchronous Multi-Document Operations’
on page 70 to fetch the documents, so the listener blocks during the fetch. Each fetched document
(and its metadata) is made available to the listeners as a bocumentrecord. Thisisthe same
interface used by the synchronous interfaces, such as the multi-document read shown in “Read
Multiple Documents by URI” on page 83.

The following code snippet attaches a document listener in the form of alambda function to an
ExportListener. The document listener smply writes the return document to aknown place in the
filesystem (paTa p1r), with afilename corresponding to the last path step in the URI.

// ...construct a query...
QueryBatcher batcher = dmm.newQueryBatcher (query) ;

batcher.onUrisReady (
new ExportListener ()
.onDocumentReady (doc-> {
String uriParts[] = doc.getUri().split("/");

try {
Files.write(

Paths.get (DATA DIR, "output",
uriParts [uriParts.length - 1]),
doc.getContent (new StringHandle()) .toBuffer());
} catch (Exception e) {
e.printStackTrace () ;
}

1))

// ...additional configuration...

For amore complete example, see “Example: Exporting Documents that Match a Query” on
page 122.

4.6.2 Using ExportToWriterListener to Read Documents

When you create an exportTowriterListener, YOU Must sSUpply awriter that will receive the
documents read from MarkL ogic. When an exportTonriterListener receives abatch of URIs
from agueryBatcher, it reads these documents from MarkL ogic, and then callSwriter.write ON
each document.

If sending the contents of each document to the writer as-is does not meet the needs of your

application, you can register an output listener to prepare custom input for the writer. Use
ExportToWriterListener.onGenerateOutput 1O register such alistener.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 120

MarkLogic Server Asynchronous Multi-Document Operations
The following diagram illustrates the flow when you register an oncenerateoutput listener.

ExportToWriterListener Interaction

QueryBatcher
ML Host
1. URI batch
2. URIs
ExportToWriter P T s
Listener =
3. Documents
4. Dociment VL Host
H L 5. String]
R MarkLogic
onGenerateQutput Cluster
Listeners

Java Application

If you do not register an oncenerateoutput listener, then the flow in the above diagram skips Step
4. That is, the exportTonriterListener Sends content of each document directly to thewriter;

metadata is ignored.

You can configure aspects of the exportTonriterListener document read operation such asthe
following. For acomplete ligt, refer to the Java Client API Documentation.

» Fetch metadata such as collections or properties, as well as document content. See
ExportToWriterListener.withMetadataCategory. Y OU should register an
onGenerateoutputListener If you fetch metadata because the default flow with no listener

ignores metadata.

» Useaconsistent snapshot, fetching documents as they were when the query job started.
See ExportToWriterListener.withConsistensnapshot and “Using a Consistent Snapshot”
on page 114.

» Apply aserver-side read transform to each document before returning it to the client
appllcatlon See ExportToWriterListener.withTransform and “App'yl nga Read or Write
Transformation” on page 130.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 121

MarkLogic Server Asynchronous Multi-Document Operations

* Prepend astring to the output sent to thewriter for each document. This prefix isincluded
whether or not control flow goes through an oncenerateoutputListener. See

ExportToWriterListener.withRecordPrefix.

* Append astring to the output sent to the writer for each document. This suffix isincluded

whether or not control flow goes through an oncenerateoutputListener. See
ExportToWriterListener.withRecordSuffix.

The exportTonriterListener USES the interfaces described in “ Synchronous Multi-Document
Operations” on page 70 to fetch the documents, so the listener blocks during the fetch. Each
fetched document (and its metadata) is made available to the oncenerateoutput listenersasa
DocumentRecord. ThiSisthe sameinterface used by the synchronous interfaces, such as the
multi-document read shown in “Read Multiple Documents by URI” on page 83.

The following example creates an exportTowriterListener that isconfigured to fetch documents
and collection metadata. The ongenerateoutput listener generates a comma-separated string
containing the document URI, first collection name, and the document content.
ExportToWriterListener.withRecordSuffix is used to emit a newline after each document is
processed. The end result is athree-column CSV file.

FileWriter writer = new FileWriter (outputFile)) ;
ExportToWriterListener listener = new ExportToWriterListener (writer)
.withRecordSuffix ("\n")
.withMetadataCategory (DocumentManager .Metadata.COLLECTIONS)

.onGenerateOutput (
record -> {
try{

String uri = record.getUri () ;
String collection =
record.getMetadata (new DocumentMetadataHandle ())
.getCollections () .iterator () .next () ;
String contents = record.getContentAs (String.class) ;
return uri + "," + collection + "," + contents;
} catch (Exception e) {
e.printStackTrace () ;
}

}
)i

For the complete example, see ExportToWriterListenerTest IiN
com.marklogic.client.test.datamovement. | hetest sourceis available on GitHub. For more
details, see “ Downloading the Library Source Code” on page 34.

4.6.3 Example: Exporting Documents that Match a Query

The following function uses gueryBatcher and exportListener t0 read documents from
MarkL ogic and save them to the filesystem. The job uses a structured query to select the
documents to be exported. Further explanation follows the code sample.

// Assume "client" is a previously created DatabaseClient object.
private static String EX DIR = "/your/directory/here";

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 122

MarkLogic Server Asynchronous Multi-Document Operations

private static DataMovementManager dmm =
client .newDataMovementManager () ;

//

public static void exportByQuery () {
// Construct a directory query with which to drive the job.
QueryManager gm = client.newQueryManager () ;
StructuredQueryBuilder sgb = gm.newStructuredQueryBuilder() ;
StructuredQueryDefinition query = sgb.directory(true, "/dmsdk/");

// Create and configure the batcher
QueryBatcher batcher = dmm.newQueryBatcher (query) ;
batcher.onUrisReady (
new ExportListener ()
.onDocumentReady (doc-> {
String uriParts[] = doc.getUri().split("/");
try {
Files.write(
Paths.get(EX_DIR, "output",
uriParts [uriParts.length - 1]),
doc.getContent (
new StringHandle()) .toBuffer()) ;
} catch (Exception e) {
e.printStackTrace () ;
}
1))

.onQueryFailure(exception -> exception.printStackTrace()) ;
dmm.startJob (batcher) ;

// Wait for the job to complete, and then stop it.
batcher.awaitCompletion() ;
dmm. stopJdob (batcher) ;

}

The query driving the job is a simple directory query that matches all documentsin the directory
“/dmsdk/”, such as the documents inserted in “ Example: Loading Documents From the
Filesystem” on page 108:

QueryManager gm = client.newQueryManager () ;

StructuredQueryBuilder sgb = gm.newStructuredQueryBuilder() ;

StructuredQueryDefinition query = sgb.directory(true, "/dmsdk/");

You can use any string, structured, or combined query. For details on query construction, see
“Searching” on page 144.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 123

MarkLogic Server Asynchronous Multi-Document Operations

The ExportListener.onDocument sReady listener attached by the examplewrit% each document to
the filesystem, using the last path step in the URI asthe file name. That is, if the document URI is
/dmsdk/doc1.xml, then afile named doc1.xm1 IS written to the output directory. The output
directory isex_pir/output/, Where x_pir isavariable holding the path of your choice.

new ExportListener ()
.onDocumentReady (doc-> {
String uriParts[] = doc.getUri().split("/");

try {
Files.write(Paths.get (EX DIR, "output",

uriParts [uriParts.length - 1]),
doc.getContent (new StringHandle()) .toBuffer()) ;
} catch (Exception e) {
e.printStackTrace() ;
}

)
The ExportListener.onQueryFailure liStener ISJ ust alambda function that emits a stack trace.

You would use a more sophisticated listener in a production application.

4.7 Applying an In-Database Transformation

You can use the Data Movement SDK to orchestrate in-place transformations of documents
already in the database by usi Ng an ApplyTransformListener With a gueryBatcher. ThiS Section
includes the following topics:

e Applying an In-Database Transformation with QueryBatcher

e Example: Applying an In-Database Transformation

4.7.1 Applying an In-Database Transformation with QueryBatcher

An in-database transformation is driven by a client-side query job, but carried out entirely inside
MarkL ogic, without fetching any documents to the client. Use aguerysatcher With an
ApplyTransformListener attached to the batcher’s onUrisReady event. You could also create a
custom transform listener.

This section assumes you are familiar with query job basics. If not, review “ Creating and
Managing a Query Job” on page 110.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 124

MarkLogic Server Asynchronous Multi-Document Operations

The following diagram illustrates the default flow of query job that performs an in-database
transformation.

ApplyTransformListener Interaction

QueryBatcher
| Content DB
1. UR&:atch ||]
Apply Transform 2. URIs ¥
Listener p-| 3. apply transform
4. Notifications transform
Modules DB
Listener-specific .
-==P actioﬂ MarkLogic
Cluster
Listeners

Java Application

By default, the output of the transform replaces the original document in MarkL ogic.You can
configure the listener to run the transform without updating the source document by calling
ApplyTransformListener.withApplyResult. FOr exampl €, you could use this approach if your
“transform” computes an aggregate over the documents matching a query and stores the result
elsewherein the database.

The transform to be applied by the job must be installed on MarkL ogic before you can useit. Data
Movement SDK uses the same transform framework as the single document operations and
synchronous multi-document operations. For details on authoring and installing a transform, see
“Content Transformations’ on page 282.

You identify the transform by supplying a serverTransform Object when you create the
ApplyTransformListener fOr thejob.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 125

MarkLogic Server Asynchronous Multi-Document Operations

The following example applies a previously installed transformation to a set of URISsusing a
guery job. The contents of the three target documents are replaced by the documents created by
the transform function.

private static DataMovementManager dmm =
client.newDataMovementManager () ;
/]
public static void inPlaceTransform(String txName)
ServerTransform txform = new ServerTransform (txName) ;
String uris[] =
{"/dmsdk/docl.xml", "/dmsdk/doc3.xml", "/dmsdk/doc5.xml"};
QueryBatcher batcher =
dmm.newQueryBatcher (Arrays.asList (uris) .iterator()) ;
batcher.withConsistentSnapshot ()
.onUrisReady (
new ApplyTransformListener () .withTransform(txform))
.onQueryFailure (exception -> exception.printStackTrace());
dmm. startJob (batcher) ;
batcher.awaitCompletion() ;
dmm. stopJdob (batcher) ;

}

For amore complete example, see “Example: Applying an In-Database Transformation” on
page 127.

All the transformed documents associated with a batch of URIs are committed asa single
transaction, so if the transformation of any document fails, the whole batch fails. The absence of a
targeted document in the database is not treated as an error and does not cause the batch to fail.
Such documents are simply skipped.

Note: If you use aquery to select the documents to be transformed, then you should use
QueryBatcher.withConsistentSnapshot with ApplyTransformListener. FOr detai |S,
see “Using a Consistent Snapshot” on page 114.

You can attach listeners to an applyTransformListener tO receive notifications about batch
success, batch failure, and skipped document events. These listeners use the gueryBatchListener
interface. Use the following methods to attach listeners:

® ApplyTransformListener.onSuccess: Reglster alistener that is called whenever all the
documents corresponding to a batch of URIs have been successfully transformed or
skipped. The URIs of the batch of transformed documents are accessible through the
registered listener’s get1tems method.

® ApplyTransformListener.onSkipped. Reglster alistener that is called whenever one or
more documents corresponding to a batch of URIswere not found in the database. The
URIs of the missing documents are accessible through get rtems method of the batch
passed to the listener.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 126

MarkLogic Server Asynchronous Multi-Document Operations

® ApplyTransformListener.onBatchFailure: Reglster alistener that is called whenever an
entire batch of transformationsis rejected due to an error transforming at least one
document.

4.7.2 Example: Applying an In-Database Transformation

The examplein this section applies an in-database X Query transformation using gueryBatcher
and ApplyTransformlListener.

The following XQuery module implements atrivia transform that inserts a <now/> XML child
element into the input document if the root element is <aata/>. (This matches the document
structure created by “Example: Loading Documents From the Filesystem” on page 108.) The
element value is the current xs : dateTime When the transform is applied. For more details, see
“Writing Transformations’ on page 287.

xquery version "1.0-ml";
module namespace dmex =
"http://marklogic.com/rest-api/transform/dm-in-place™";

(: Add an element named "now" that contains the current dateTime. :)
declare function dmex:transform(

Scontext as map:map,

Sparams as map:map,

Scontent as document-node ())
as document-node () {

if (fn:empty(Scontent/data)) then Scontent

else document

let S$root := Scontent/*
return
element {fn:name ($root)} ({
element now { fn:current-dateTime() },
Sroot/@*,
Sroot /node ()

}
}
}i

The following server-side Javascript module implements atrivial transform that adds a property
named writeTimestamp COrresponding to the current dateTime to the document stored in the
database. If the input document is not JSON, the content is unchanged.

function insertTimestamp (context, params, content)

{

if (context.inputType.search('json') >= 0) {
const result = content.toObject () ;
result.writeTimestamp = fn.currentDateTime () ;

return result;

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 127

MarkLogic Server Asynchronous Multi-Document Operations

} else {

/* Pass thru for non-JSON documents */

return content;

exports.transform = insertTimestamp;

If you any of the above codesto afile (namefile.xqy OF namefile.sjs), you caninstall it on
MarkL ogic with code similar to the following. This function expects the transform name (which
is subsequently used to identify the transform during operations), and the name of thefile
containing the code asinput. It readsthefile from zx prr/ext/txrilename and installsit under the

specified name.

// Assume "client" is a previously created DatabaseClient object.
// The example also assumes the following context:
private static String EX DIR = "/your/data/dir/here/";
private static DataMovementManager dmm =
client .newDataMovementManager () ;

// Helper function for installing transformations.
public static void installTransform(String txName, String txFilename) {
FileHandle txImpl = new FileHandle () .with(
Paths.get (EX DIR, "ext", txFilename) .toFile());
TransformExtensionsManager txmgr =
client .newServerConfigManager ()
.newTransformExtensionsManager () ;
txmgr.writeXQueryTransform (txName, txImpl) ;
// Or, if you use a servser-side JavaScript module
txmgr.writedJavascriptTransform (txName, txImpl) ;

}
For more details, see “Installing Transforms’ on page 282.

Assuming the transformation is installed, the following function creates a query job to apply it to
a set of documents specified by a URI list. You could aso apply it to documents matching a

query.

public static void inPlaceTransform(String txName)
ServerTransform txform = new ServerTransform(txName) ;
String uris[] = {
"/dmsdk/docl.xml", "/dmsdk/doc3.xml", "/dmsdk/doc5.xml"};

QueryBatcher batcher =
dmm.newQueryBatcher (Arrays.asList (uris) .iterator()) ;

batcher.onUrisReady (
new ApplyTransformListener () .withTransform(txform))

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 128

MarkLogic Server Asynchronous Multi-Document Operations

.onQueryFailure(exception -> exception.printStackTrace());
dmm.startJob (batcher) ;
batcher.awaitCompletion() ;
dmm. stopJdob (batcher) ;

}

The example accepts the transform name as input and constructs a servertransform Object from
thisname. The serverTransform IS requi red to configure the ApplyTransformListener. FOr more
details, see “Using Transforms’ on page 283.

ServerTransform txform = new ServerTransform(txName) ;
new ApplyTransformListener () .withTransform(txform)

Whenever abatch of URIsis ready for processing, the applyTransformuistener appliesthe
transform to all the documents in the batch.

If the job was driven by a query rather than alist of URIs, you would include acall to
QueryBatcher.withConsistentSnapshot IN thejob configuration. You should use a consistent
snapshot when running query driven jobs that modify the database. For details, see “Using a
Consistent Snapshot” on page 114.

4.8 Deleting Documents from a Database

You can use the Data Movement SDK to delete documents stored in MarkLogic by using a
DeleteListener With @gueryBatcher. This section assumesyou are familiar with query job basics.
If not, review “Creating and Managing a Query Job” on page 110.

Aswith any query job, the target URIs are fetched to the client so that the delete operation can be
distributed across the cluster. No documents are fetched to the client. You can select the
documents to be deleted by specifying a query or supplying alist of URIs.

Note: A job that deletes documents alters the state of the database in away that affects
guery results. If you use a query to select the documents for deletion, you should
enable merge timestamps on the database and use a consistent snapshot. For more
details, see “Using a Consistent Snapshot” on page 114.

All the deletions associated with a batch of URIs are committed as a single transaction, so if the
deletion of any document fails, the whole batch fails. Note that the absence of atargeted
document in the database is not treated as an error and does not cause the batch to fail.

The following example deletes all documents where the “data” element has a value of 5:

// Assume "client" is a previously created DatabaseClient object and
// "dmm" is a previously created DataMovementManager.
public static void deleteDocs () {
QueryManager gm = client.newQueryManager () ;
StructuredQueryBuilder sgb = gm.newStructuredQueryBuilder() ;
StructuredQueryDefinition query = sgb.value(sgb.element ("data"),5);

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 129

MarkLogic Server Asynchronous Multi-Document Operations

QueryBatcher batcher = dmm.newQueryBatcher (query) ;
batcher.withConsistentSnapshot ()

.onUrisReady (new DeletelListener())

.onQueryFailure(exception -> exception.printStackTrace()) ;
dmm.startJob (batcher) ;

batcher.awaitCompletion() ;
dmm. stopJdob (batcher) ;

4.9 Applying a Read or Write Transformation

You can apply a server-side transformation to documents when you insert them into MarkL ogic
with awrite job. Similarly, you can apply a server-side transformation to documents when you
read them from MarkLogic using a query job.

Applying aread or write transformation uses the same framework as an in-database
transformation (and other Java Client APl document operations), but the flow is different. A write
transform is applied to content received from the client; this content may not already be present in
the database. A read transform is applied to content just before it is returned to the client, leaving
the document in the database unchanged.

You must install atransformation in MarkLogic before you can useit in ajob. Other Java Client
API document operations use the same transformation framework, including single document
operations and synchronous multi-document operations. Authoring and installation of
transformations are discussed in “Content Transformations’ on page 282.

Configure awrite transformation us Ng writeBatcher.withTransform. Supply AServerTransform
object that represents a previously installed transformation. When creating the serverTransform,
you must use the name under which the transform is installed on MarkLogic.

The following code snippet configures awritesatcher With awrite transform.

DataMovementManager dmm = ...;

WriteBatcher batcher = dmm.newWriteBatcher() ;
batcher.withBatchSize (5)
.withThreadCount (3)
.withTransform(new ServerTransform(txName))
// ...additional configuration

7

For aquery job, the listener determines whether or not to support a transform because the action
performed by the job is determined by the listener. For example, exportListener and
ExportTolriterListener DOth have awithTransform method through which you can specify a
server-side read transform. However, atransform makes no sense in the context of a
DeleteListener, SO it has no such method.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 130

MarkLogic Server Asynchronous Multi-Document Operations

The following code snippet configures an ExportListener with aread transform.

DataMovementManager dmm = ...;

QueryBatcher batcher = dmm.newQueryBatcher (query) ;
batcher.onUrisReady (
new ExportListener ()
.withTransform(new ServerTransform(txName))
.onDocumentReady (...))
.onQueryFailure(...);

4.10 Job Control

* Checking the Status of a Job

¢ Pausing and Restarting a Job

e Graceful Termination of a Job

* Terminating a Job Prematurely

e Updating Forest Configuration for a Job

¢ Working with a Load Balancer

e Restricting the Hosts Used by a Job

4.10.1 Checking the Status of a Job

When you start ajob, you recelve agobricket. YOU can use the sobTicket to retrieve the type and
id of ajob, and to get ajob report (Using pataMovementManager . getJobReport). The job report
provides statistics such as the number of successfully processed batches. The meaning of the
statistics depends on the type of job; refer to the javadoc for sobreport for details.

The following code snippet retrieves ajob report from the ticket for awrite job:

DataMovementManager dmm = ...;

WriterBatcher batcher = dmm.newWriteBatcher () ;
/...

JobTicket ticket = dmm.startJob (batcher) ;
/...

JobReport report = dmm.getJobReport (ticket) ;

You can aso retrieve batch-level information about a job within alistener. For example, a
WriteBatcher.onBatchSuccessListener Can call WriteBatch.getJobWritesSoFar.

A gobreport gathersits statistics by querying listeners that are automatically attached to query

and write job batchers. For example, awritedobreportListener iSautomatically attached to the
onBatchSuccess aNd onBatchFailure @VENtS When you create awriteBatcher.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 131

MarkLogic Server Asynchronous Multi-Document Operations

You can use the implementation of these listeners as a starting point for your own reporting, and
even replace the default reporting listeners with your own. For more information on replacing
listeners, see “Working With Listeners’ on page 140.

4.10.2 Pausing and Restarting a Job

The Data Movement SDK does not support restarting jobs. Once you call
DataMovementManager . stopJob, YOU cannot perform additional work with the job.

You can effectively mimic pausing and restarting awrite job by controlling the flow of work into
the job. For example, the following steps “ pause”’ and “restart” awrite job:

1. StOp any activity that callSwriteBatcher.add OF WriteBatcher.addAs.

2. Call writeBatcher.flushAndwait Of WriteBatcher.flushAsync. ThiSensure any partia
batch is processed and in-progress batches get completed.

3. When you’ re ready to resume work, start calling writepatcher.add and
WriteBatcher.addAs agal n.

After Step 2, above, thejob is effectively paused since it has finished all available work and new
work is not arriving.

A query job always runs until all URIs are processed unless you shut it down prematurely.
However, you can effectively pause a query job by blocking the listener(s). For example, you
could create alistener that conditionally blocks on an object by calling object .wait. For atimed
pause, pass atimeout period to wait. YOU Can USe object .notifyall to reactivate al listeners and
resume processing.

4.10.3 Graceful Termination of a Job

Graceful termination means shutting down ajob in away that leavesit in adeterministic state. For
example, if you were to abruptly terminate a write job, some queued documents might not be
written to the database.

Graceful termination usually means draining the work queue of ajob before calling
DataMovementManager . stopJob. | hese steps differ between write jobs and query jobs. For details
on shutting down each type of job, see the following topics:

» “Stopping a Write Job” on page 105

e “Stopping aQuery Job” on page 113

A JOb cannot be restarted after calli NQg DataMovementManager . stopJob.

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 132

MarkLogic Server Asynchronous Multi-Document Operations

4.10.4 Terminating a Job Prematurely

If you need to stop ajob without waiting for work to be completed, you can call
DataMovementManager . stopJob Without first calling methods that drain the work queue like
WriteBatcher.flushAndWait OF QueryBatcher.awaitCompletion.

If you do not follow the graceful shutdown procedure, you cannot guarantee that queued work
will be started or in-progress work will be completed after calling stopaob. Any work that started
prior to calling stopaob Will be alowed to complete as long as the VM does not exit.

For example, if documents have been added to awrite job, but afull batch has not yet
accumulated, the partial batch will not be processed.

For details on shutting down each type of job, see the following topics:

e “Stopping a Write Job” on page 105
» “Stopping a Query Job” on page 113

A JOb cannot be restarted after calli NQ DataMovementManager . stopJob.

4.10.5 Updating Forest Configuration for a Job

This section describes how to update a batcher’s understanding of which hostsin acluster include
forests for the database on which the job operates. You are unlikely to need to do this unless you
have a very long running job and change your cluster topol ogy.

As mentioned in “How Work is Distributed Across a Cluster” on page 101, when you create a
batcher, the patamMovementManager initializes the batcher with information about which hostsin
your MarkL ogic cluster contain forests in the database targeted by the job. The batcher uses this
forest configuration information to determine how to distribute work across the cluster.

If you change the database forest locations in such away that thislist of forest hosts becomes
inaccurate, the batcher will not be aware of the change. For example, if you add aforest to a host
that previously contained no forests for the database, the batcher will not direct work to the new
host.

To refresh abatcher’s forest model, pass the output of

DataMovementManager .readForestConfiguration tO Batcher.withForestConfig. When you cal
DataMovementManager.readForestConfig(),thEDataMovementManager‘queﬂESthECﬂUQEonrthe
current forest configuration and returns the new configuration. For example:

DataMovementManager dmm = ...;
WriteBatcher batcher = ...;
dmm.startJob (batcher) ;

// some time later...
batcher.withForestConfig (dmm.readForestConfig()) ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 133

MarkLogic Server Asynchronous Multi-Document Operations

4.10.6 Working with a Load Balancer

By default, ajob tries to connect directly to multiple hosts in your cluster in order to efficiently
distribute work. However, if thereis aload balancer sitting between your client application and
your MarkL ogic cluster, these direct connections may not be possible.

In such a case, you must configure your patabaseclient Objectsto specify acareway connection,
instead of the default prrecT connection. For example:

DatabaseClient client =
DatabaseClientFactory.newClient (
"localhost", 8000, "MyDatabase",
new DatabaseClientFactory.DigestAuthContext ("myuser", "mypassword"),
DatabaseClient.ConnectionType.GATEWAY) ;

You cannot Use aFilteredForestConfiguration With acaTeway connection since all traffic will be
routed through the gateway.

You should configure your load balancer timeout periods to be consistent with your MarkL ogic
cluster timeouts. For more details, see “ Connecting Through a Load Balancer” on page 19.

For details on failover handling, see “Failover When Connecting Through a Load Balancer” on
page 136.

4.10.7 Restricting the Hosts Used by a Job

By default, ajob tries to connect to al hostsin your cluster that contain forests in the database.
This optimizes the performance of your job. However, if you need to restrict host list for areason
other than connecting through a load balancer, you can use rilteredrorestConfiguration tO
configure that list.

Note: If you connect to MarkLogic through aload balancer, see “Working with aLoad
Balancer” on page 134, instead of using FilteredForestConfiguration.

You can configure awhite list (hosts allowed) or a black list (host disallowed). The Java Client
API uses the same mechanism internally to manage failover.

The following example restricts ajob to connecting to MarkL ogic through only the hosts
“good-host-1" and “ good-host-2":

// Assume "dmm" is a previously created DataMovementManager object.
batcher.withForestConfig(
new FilteredForestConfiguration (
dmm.readForestConfig()
) .withWhiteList ("good-host-1", "good-host-2")
)

Note that limiting ajob to connect to arestricted host list can negatively impact the performance
of your job.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 134

MarkLogic Server Asynchronous Multi-Document Operations

4.11 Failover Handling

Failover occurs when aforest or ahost in a cluster becomes unavailable due to events such asa
forest restart or a host becoming unreachable. The unavailable host might become available again
or be replaced by afailover host that is configured for the database as described in High Availability
of Data Nodes With Failover in the Scalability, Availability, and Failover Guide. The Data
Movement SDK attempts to recover from such events with no data loss.

This section covers the following topics:

e Default Failover Handler

¢ Failover When Connecting Through a Load Balancer

¢ |Interaction with In-Database Transform

¢ Failover Handling in Custom Listeners

411.1 Default Failover Handler

The Data Movement SDK provides a default error handling listener, sostavailabilityListener,
for managing failover events. Whenever you create a gueryBatcher OF wWriteBatcher ODjeCt, @
HostAvailabilityListener is attached to it. You can also use HostAvailabilityListener aSan
example for creating your own failover handler.

Note: This discussion applies when you connect directly to MarkLogic. If you connect
through aload balancer, see “Failover When Connecting Through a Load
Balancer” on page 136.

When the HostavailabilityListener detects an unavailable host, the Data Movement SDK
responds as follows:

1 Check to see if the configured minimum number of hosts remain in the forest
configuration (minus the failed host). If not, stop the job with an error. If so, proceed with
the recovery procedure.

2. To avoid repeated occurrences of the same error, remove the failed host from the forest
configuration on which the job operates. The failed host is considered “suspended” for a
configurable time period and will not be used by the job while in this state.

3. Schedule an asynchronous task to re-acquire the forest configuration from MarkLogic
when the suspension time period expires. This enables the failed host to come back into
rotation or be replaced by afailover host.

4, Retry the failed batch with one of the hosts remaining in the forest configuration modified
in Step 2.

UsSeHostAvailabilityListener.withSuspendTimeForHostUnavailable tO CONfi gurethe Suspens on
time period. The default suspension period is 10 minutes.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 135

MarkLogic Server Asynchronous Multi-Document Operations

UsSeHostavailabilityListener.withMinHosts tO configure the minimum number of host required
to enable retrying afailed batch.

UsSeHostavailabilityListener.withHostUnavailableExceptions tO configure the exceptions that
trigger the retry flow. By default, zostavailabilityListener actson the following exceptions
classes: SocketException, SSLException, UnknownHostException.

For example, the following code configures the default mostavailability listener attached to a
batcher with a suspension period of 5 minutes and atwo host minimum:

HostAvailabilityListener.getInstance (batcher)
.withSuspendTimeForHostUnavailable (Duration.ofMinutes (5))
.withMinHosts (2) ;

If the behavior of sostavailabilityListener dOesnot meet the needs of your application, you can
useit as abasis for developing your own failover handler. To review the implementation on
GitHub or download alocal copy of the source code, see“ Downloading the Library Source Code”
on page 34.

4.11.2 Failover When Connecting Through a Load Balancer

When you connect to MarkL ogic through aload balancer, you must configure your
DatabaseClient objects to use acaTeway connection, as described in “Working with a Load
Balancer” on page 134.

When you use acateway connection, all traffic goes through the load balancer host, so it is not
possible for the job to modify its host list if a host in your MarkLogic cluster becomes
unavailable, as described in “Default Failover Handler” on page 135.

Instead, ostavailabilityListener retries against the load balancer for some time. When the
MarkL ogic cluster successfully recovers from the host failure, batches submitted through the load
balancer start succeeding again.

If the MarkL ogic cluster is not able to recover within the timeout period, then the job fails. If the
load balancer host becomes unavailable, your job is cancelled.

4.11.3 Interaction with In-Database Transform

When you attach an ApplyTransformListener t0 @QueryBatcher, the retry mechanism described in
“Default Failover Handler” on page 135 applies only to the process of fetching batches of URIs
from MarkL ogic by default because the Java Client API cannot assumeit is safe to retry the
intended in-database transformation or deletion.

If afailover event occurs while fetching abatch of URIS, nostavailabilityListener retriesthe
failed URI fetch, just as it does when handling failovers for reading and writing documents. If a
failover event occurs after a batch of URIsis dispatched to an attached onurisready listener such
aS an applyTransformListener, the batch will fail by default if afailover event occurs.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 136

MarkLogic Server Asynchronous Multi-Document Operations

To handle this more complex situation, the Java Client API supports the following types of
listener for failover handling:

* HostAvailabilityListener: If afailover event occurs while fetching a batch of URIs,
HostAvailabilityListener retriesthe failed URI fetch, just asit does when handling
failovers for reading and writing documents.

* NoresponseListener: Handles the case where no response is received from MarkL ogic.
The default noresponseListener handles the case where no response is received while
fetching URIs. Thislistener isregister by default for all listeners created by the Java Client
API.

* BatchFailureListener<QueryBatch> fOl HostAvailabilityListener: IMmplementsthe retry
logic when a qualifying exception is raised while fetching URIs. Such aretry listener is
associated with al listeners created by the Java Client API, including

ApplyTransformListener.

® BatchFailurelListener<QueryBatch> for NoResponseListener: Implements the retry |OgiC
when no response is received from MarkL ogic during the transform operation. The Java
Client API addsthislistener to listenersfor idempotent operations, such as DeleteListener.
It is not added to ApplyTransformListener by default

If you know that your transform isidempotent and can safely be repeated, then you can enable
failover handling for the no response case by attaching aretry listener to the noresponseListener.
For example:

ApplyTransformListener txformListener = new ApplyTransformListener ()
.withTransform(txform) ;
QueryBatcher batcher = ...;

NoResponseListener noResponselListener =
NoResponseListener.getInstance (batcher) ;
if (noResponseListener != null) {
BatchFailureListener<QueryBatch> retrylListener =
noResponselistener.intializeRetryListener (txformListener) ;
if (retryListener != null) {
txformListener.onFailure (retryListener) ;

}
}

If your in-database transform is not idempotent, but you want to retry in some no-response cases,
you implement your own BatchFailureListener. For details, see “ Conditionally Retry” on
page 139.

4.11.4 Failover Handling in Custom Listeners

This section describes how to implement failover handling in a custom listener. Your listener can
respond to failover eventsin the following ways:

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 137

MarkLogic Server Asynchronous Multi-Document Operations

* Never retry. Allow the batch to fail. Y ou do not need to write any special code to address
this case. Thisisthe default behavior of ApplyTransformListener.

* Always Retry. If the operation performed by the listener is idempotent, such as document
write or delete, then you can always safely retry. peletenistener implementsthis
approach.

* Conditionally Retry. Y ou must implement a CUStOm BatchFailureListener fOr thiscase.

4.11.4.1 Always Retry

If you create a custom queryBatchListener that should alwaysretry on aqualifying error, override
the initializeListener Method to do the following:

1. Obtain the HostAvailabilityListener from the batcher.

HostAvailabilityListener hostAvailabilitylListener =
HostAvailabilityListener.getInstance (queryBatcher) ;

2. Obtain aretryListener by Calllng HostAvailabilityListener.intializeRetryListener.

BatchFailurelListener<QueryBatch> retrylListener =
hostAvailabilityListener.initializeRetryListener (this) ;

3. Reglster the RetryListener @ @N onFailureListener Of your custom listener.
if (retryListener != null) onFailure(retryListener);
4. Obtain A NoResponseListener from the batcher.

NoResponseListener noResponselListener =
NoResponseListener.getInstance (queryBatcher) ;

5. Obtain ARetryListener by CaIIing NoResponselListener.initializeRetryListener.

BatchFailurelListener<QueryBatch> noResponseRetrylListener =
noResponselistener.initializeRetryListener (this) ;

6. Register the retryListener @ an onrailure listener of your custom listener.

if (noResponseRetrylListener != null)
onFailure (noResponseRetryListener) ;

TheretryListener fOr the noresponseListener iSrequired to handle cases where a host becomes
unavailable without returning any response from MarkL ogic, rather than raising an error.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 138

MarkLogic Server Asynchronous Multi-Document Operations

The following code puts these steps together into an implementation of initializeListener fOr a
custom query batch listener:

public class myListener : extends Object implements QueryBatchListener

{
//

@Override
public void initializeListener (QueryBatcher queryBatcher) {
HostAvailabilityListener hostAvailabilitylListener =
HostAvailabilityListener.getInstance (queryBatcher) ;
if (hostAvailabilityListener != null) {
BatchFailurelListener<QueryBatch> retrylListener =
hostAvailabilityListener.initializeRetryListener (this) ;
if (retrylistener != null) onFailure(retryListener) ;

}

NoResponseListener noResponselListener =
NoResponselListener.getInstance (queryBatcher) ;
if (noResponselListener != null) {
BatchFailurelListener<QueryBatch> noResponseRetryListener =
noResponselListener.initializeRetryListener (this) ;
if (noResponseRetryListener != null)
onFailure (noResponseRetryListener) ;

}i

See the implementation Of com.marklogic.client.datamovement.DeleteListener fOr acomplete
example. To review the implementation on GitHub or download alocal copy of the source code,
see “Downloading the Library Source Code” on page 34.

4.11.4.2 Conditionally Retry
If you only want to retry your operation under certain circumstances, do the following:

* Create aclassthat implements satchFailureListener<QueryBatchs. Implement your retry
|OgiC in the processFailure Method.

e Attach an instance of your satchrailureListener @ aNn onFailure listener of your custom
listener.

To initiate aretry from your batch failure listener, invoke guerysatcher.retry. Thisenables a
retry if an error occurs when fetching URIs. For example:

public void processFailure (QueryBatch batch, Throwable throwable)
//
batch.getBatcher () .retry(batch) ;
//

}

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 139

MarkLogic Server Asynchronous Multi-Document Operations

To create a custom avai |ab|||ty Iistener, override QueryBatchListener.intializeListener. The
default implementation of this method does nothing. Your implementation should be similar to
the following:

@Override
public void initializelListener (QueryBatcher queryBatcher) {
HostAvailabilityListener hostAvailabilityListener =
HostAvailabilitylistener.getInstance (queryBatcher) ;
if (hostAvailabilityListener != null) {
BatchFailureListener<QueryBatch> retryListener =
hostAvailabilityListener.initializeRetryListener (this) ;
if (retryListener != null) onFailure (retryListener) ;

}
}

The batcher callsthe initializeListener method on each attached QueryBatchListener.

The retry listener should call QueryBatchListener.retryListener in itSprocessFailure method to
re-attempt the failed operation. That is, to retry in cases where a batch of URIs is successfully
retrieved from MarkLogic, but afailure occurs during the in-database operation. For an example,
seethe impI ementation of HostavailabilityListener.RetryListener.processFailure.

4.12 Working With Listeners

A listener is a callback through which your application responds to interesting job state changes,
such aswhen awrite job successfully inserts a batch of documents, or aquery job prepares abatch
of URIsfor processing.

This section covers the following listener-rel ated topics:

* Guidelines for Creating Listeners

e Attaching Multiple Listeners to a Job

* Removing or Replacing a Listener

4.12.1 Guidelines for Creating Listeners

Data Movement SDK pre-defines several listener classes that are fully functional, but also meant
to serve as a starting place for you to implement your own listeners.

For example, Data Movement SDK includes an exportTonriterListener Classfor reading
documents from the database and sending the contents as a string to awriter. YOu might create a
custom listener that also emits metadata, or one that generates zip file entries instead of strings.

When creating your own listeners, keep the following points in mind:

» All listener code must be thread safe because listeners are executed asynchronously across
all job threads. For example, you should not have multiple listeners updating a shared

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 140

MarkLogic Server Asynchronous Multi-Document Operations

collection unless the collection is thread safe (col1ections. synchronizedMap<Ts,

Collections.synchronizedList<T>, ConcurrentHashMap, ConcurrentLinkedQueue, etc.).

* Inquery jobsdriven by aquery (rather than afixed set of URIS), each gueryBatchListener
has access to the host and forest that contain the documents identified by a URI batch.
Y our job will be more efficient if you use the same host for your per batch operations. See
QueryBatch.getClient and QueryBatch.getForest.

The thread safety requirement also appliesto “listener listeners’. For example, if you attach
document ready event listenersto an exportListener (ExportListener.onDocumentReady) that
code must also be thread safe.

4.12.2 Attaching Multiple Listeners to a Job

You can attach listeners to multiple events, and you can attach multiple listenersto asingle event.
When there are multiple listenersfor an event, they areinvoked serially, in the order in which they
were attached to the job. An event is not complete until al listeners complete their processing.

For example, when you create awriteBatcher, the pataMovementManager automatically attaches a
writeJdobReportListener 10 the batch success event. When you attach your own batch success or
failure event listeners using writepatcher.onBatchsuccess, it doesn’'t replace the
WriteJobReportListener. Rather, the batch success event now has multiple listeners.

You can probe the listeners attached to a job using methods such as

WriteBatcher.getBatchSuccessListeners and QueryBatcher.getQueryFailurelListeners.

4.12.3 Removing or Replacing a Listener

You can add alistener to abatcher using the appropriate onzvent method, such as
WriteBatcher.onBatchsSuccess. YOU should not attach alistener to arunning job.

To remove or replace alistener, you must retrieve the list of listeners attached to an event, modify
the list, and set the listener list on the batcher to the value of the new list.

Note that the Data Movement SDK attaches a default set of listenersto writesatcher and
QueryBatcher iN support of job reporting, error recovery, and job management. If you replace or
remove the entire set of listeners attached to an event, you will lose these automatically attached
listeners.

ThewriteBatcher aNd queryBatcher interfacesinclude setters and getters for their respective
event listener lists. For example, the guerysatcher interface includes geturisreadyListeners and

getQueryFailurelListeners methods.

The listener classes provided by Data Movement SDK, such as exportristener, do NOt expose
any kind of listener id. You can only distinguish them on the listener list by probing the type.

The following code snippet demonstrates removing a custom batch success listener from a

WriteBatcher.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 141

MarkLogic Server Asynchronous Multi-Document Operations

WriteBatchListener oldListeners|[] =
batcher.getBatchSuccessListeners() ;
ArrayList<WriteBatchListener> newListeners =
new ArrayList<WriteBatchListeners () ;
for (WriteBatchListener listener : oldListeners) {
if (! (listener instanceof MyWriteBatchListener)) {
newlListeners.add (listener) ;
}

}

batcher.setBatchSuccessListeners (
Stream.of (batcher.getBatchSuccessListeners())

.filter(listener -> ! (listener instanceof MyWriteBatchListener))
.toArray (WriteFailureListener [] : :new)

) ;

4.13 Alternative Interfaces

If your application is not working with large workloads or does not require an asynchronous
interface, consider using the interfaces described in the following sections:

» “Single Document Operations’ on page 36. Synchronous document operations on one
document at atime. You can create, read, update and del ete documents.

* “Synchronous Multi-Document Operations’ on page 70. Synchronous document
operations on multiple documents. You can create, read, update, and del ete documents.
You might find this interface simpler if you do not require asynchrony or the level of
control provided by the Data Movement SDK.

If you want to move datainto, out of, or between MarkL ogic clusters using the command line,
consider the micp tool. Thistool provides many of the capabilities and performance
characteristics of the Data Movement interfaces. For details, see the micp User Guide.

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 142

MarkLogic Server Asynchronous Multi-Document Operations

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 143

MarkLogic Server Searching

5.0 Searching

This chapter describes how to submit searches using the Java API, and includes the following
sections:

e OQverview of Search Using the Java API

¢ Using SearchHandle to Examine Query Results

e Search Using String Query Definition

e Search Documents Using Structured Query Definition

e Prototype a Query Using Query By Example

e Apply Dynamic Query Options to Document Searches

e Search On Tuples (Tuples Query / Values Query)

e Limiting A Search To Specific Collections And/Or A Directory

e Searching Values Metadata Fields

¢ Transforming Search Results

¢ Generating Search Term Completion Suggestions

e Extracting a Portion of Matching Documents

5.1 Overview of Search Using the Java API
The MarkLogic Java API provides the following fundamental ways of querying the database:

» Searches on documents, which return search results, snippets, and facets.

» Vaueor Tuple (co-occurrences) searches, which return data from range indexes and the
results of aggregate functions (including user-defined aggregate functions) from range
indexes.

In addition to typical document searches, you can search Java POJOs that have been stored in the
database. For details, see “POJO Data Binding Interface” on page 226.

When you search documents you can express search criteria using one of the following kinds of
query:

» String query: Use a Google-style query string to search documents and metadata. For
details, see “ Search Using String Query Definition” on page 146.

* Query By Example: Search documents by constructing a query that directly models the
structure of the documents you want to match. For details, see “ Prototype a Query Using
Query By Example” on page 156.

e Structured query: A ssimple and easy way to construct queries as a Java, XML, or JSON
structure, allowing you to manipulate complex queries (such as geospatial polygons) in

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 144

MarkLogic Server Searching

the Java client. For details, see * Search Documents Using Structured Query Definition”
on page 147

» Combined query: Combine a string or structured query with dynamic query options. For
details, see “ Apply Dynamic Query Options to Document Searches’ on page 159.

When you query aggregate range indexes, you express your search criteria using a values query.

All search methods can also use persistent query options. Persistent query options are stored on
the REST Server and referenced by name in future queries. Once created and persisted, you can
apply query options to multiple searches, or even set to be the default options for all searches.
Note that in XQuery, query option configurations are called options nodes.

Some search methods support dynamic query options that you specify at search time. A combined
guery allows you to bundle a string and/or structured query with dynamic query options to further
customize a search on a per search basis. You can also specify persistent query options with a
combined query search. The search automatically merges the persistent (or default) query options
and the dynamic query options together. For details, see “ Apply Dynamic Query Options to
Document Searches’ on page 159.

Query options can be very simple or very complex. If you accept the defaults, for example, there
IS no need to specify explicit query options. Y ou can also make them as complex asis needed.

For details on how to create and work with query option configurations, see “ Query Options’ on
page 190. For details on individual query options and their values, see Appendix: Query Options
Reference in the Search Developer’ s Guide. For more information on search concepts, see the
Search Developer’s Guide.

In the examples in this chapter, assume apatabaseciient Caled c1ient has aready been defined.

5.2 Using SearchHandle to Examine Query Results

Usually, you will use a searchaand1e Object to contain your query results. The exact nature of
results varies, depending on both the handle's configuration and what query options and values
were used for the search operation.

You can specify snippetsto return in various ways. By default, they return as Java objects. But for
custom or raw snippets, they are returned as DOM documents by using the forcepom flag.

There are several ways to access different parts of the search result or control search results from
d SearchHandle.

* ThegetMatchresults () method returns an array of Matchbocumentsummary Objects of the
matched documents, from which you can further extract for each result its match
locations, path, metadata, an array of snippets, fitness, confidence measure, and URI. For
details, see the MatchDocument Summary €Ntry in Java APl JavaDoc.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 145

MarkLogic Server Searching

getMetrics () retUrNS asearchMetrics Object containing various timing metrics about the
search.

getFacetNames (), getFacetResult (name), getFacetResults () Feturn, respectively, alist of
returned facet names, the specified named facet result, and an array of facet resultsfor this
search.

getTotalResults () returns an estimate of the number of results from the search.

setForceDOM (boolean) Setstheforce DOM flag, which if true causes snippets to always
be returned as DOM documents.

See the Java APl JavaDoc for SearchHandle for the full interface.

Thefollowing isatypical programming technique for accessing search results using a search

handle:

5.3

// iterate over MatchDOcumentSummary array locations, getting
// the snippet text for each location (you would then do something
// with the snippet text)

MatchDocumentSummary [] summaries = results.getMatchResults() ;
for (MatchDocumentSummary summary : summaries) {
MatchLocation[] locations = summary.getMatchLocations() ;

for (MatchLocation location : locations) {
location.getAllSnippetText () ;
// do something with the snippet text

}

Search Using String Query Definition

The MarkLogic Server Search APl lets you do searches on string arguments, including the usual
search operators such as AND and OR. For example, you could search on “Batman”, “Batman
AND Robin”, “Batman OR Robin”, etc. For details, see Search Grammar in the Search
Developer’s Guide.

1.

Instantiate a gueryManager. The manager deals with interaction between the client and the
database.

QueryManager queryMgr = client.newQueryManager () ;

|nstantiateaStringQueryDefinition ObJeCt Use StringQueryDefinition.setCriteria() to
specify your search string.

StringQueryDefinition gd = queryMgr.newStringDefinition() ;
gd.setCriteria("Batman AND Robin") ;

Run a search with the stringguerypefinition Object asan argument, returning a
searchHandle Object or an XML or JSON handle to get the search resultsin either of those
formats:

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 146

http://docs.marklogic.com/javadoc/client/com/marklogic/client/io/SearchHandle.html

MarkLogic Server Searching

SearchHandle results = queryMgr.search(gd, new SearchHandle()) ;
DOMHandle results = queryMgr.search(gd, new DOMHandle()) ;
JacksonHandle results = queryMgr.search(gd, new JacksonHandle()) ;

4, Process and/or display the results using the handle.

5.4 Search Documents Using Structured Query Definition

Structured queries let you construct and modify complex queriesin Java, XML, or JSON. For
details, see Searching Using Structured Queries in the Search Developer’s Guide. This section
includes the following parts:

¢ \Ways to Create a Structured Query

e Basic Steps to Define a Structured Query Definition

* Creating a Structured Query From Raw XML or JSON

e Structured Query Examples

54.1 Ways to Create a Structured Query

You can create a structured query in XML, in JSON, or using the structuredQueryBuilder OF
PojoQueryBuilder interfacesin the Java API.

To specify astructured query directly in XML or JSON, use rawstructuredQueryDefinition; fOr
details, see “ Creating a Structured Query From Raw XML or JISON” on page 148. If you
construct a structured query directly, it is up to you to make sure the query is constructed
correctly. Incorrectly constructed queries can result in syntax errors, aquery that does not do what
you expect, or other exceptions. For syntax details, see Searching Using Structured Queries in the
Search Developer’s Guide.

The structuredoueryBuilder interface in the Java APl enables you build out a structured query
one piece at atimein Java. The rojooueryBuilder interfaceis similar, but you useit specifically
for searching persistent POJOs; for details see “ Searching POJOs in the Database” on page 232.

5.4.2 Basic Steps to Define a Structured Query Definition

The following are the basic steps needed to define a structured query definition in the Java API.
This procedure creates a structured query definition using structuredqueryBuilder. YOU Can also
create one directly in XML/JSON; for details, see “ Creating a Structured Query From Raw XML
or JSON” on page 148.

1. Instantiate a oueryManager. The manager deals with interaction between the client and the
database.

QueryManager queryMgr = client.newQueryManager () ;

2. Instantiate a st ructuredoueryBuilder, Optionally passing in the name of persistent query
options to use with your search.

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 147

MarkLogic Server Searching

StructuredQueryBuilder gb = new StructuredQueryBuilder (OPTIONS_ NAME) ;

3. Use the query builder to create a structuredouerypefinition Object with the desired
search criteria.

StructuredQueryDefinition querydef =
gb.and (gb.term("neighborhood"),
gb.valueConstraint ("industry", "Real Estate"));

4, Run a search with the stringguerybefinition Object asan argument, returning aresult
handle:

SearchHandle results = queryMgr.search(querydef, new SearchHandle()) ;

5.4.3 Creating a Structured Query From Raw XML or JSON

To create a structured query from araw XML or JSON representation, use any handle class that
|mpI ements com.marklogic.client.io.marker.StructureWriteHandle.

The Java APl includes structurewritenandle implementations that support creating astructurein
XML or JSON from astring (StringHandle), afile (FileHandle), astream (InputStreamHandle),
and popular abstractions (poviandle, boM4JHandle, JDOMHandle). FOr a complete list of
implementations, see the Java APl JavaDoc.

Follow this procedure to create a structured query using a handle:

1. Instantiate a gueryManager. The manager deals with interaction between the client and the
database.

QueryManager queryMgr = client.newQueryManager () ;

2. Create a JSON or XML representation of the query, using atext editor or other tool or
library. Use the syntax detailed in Searching Using Structured Queries in the Search
Developer’s Guide. The following example uses string for the raw representation:

String rawXMLQuery =
"<search:query "+
"xmlns:search="http://marklogic.com/appservices/search'>"+
"<search:term-query>"+
"<search:text>neighborhoods</search:text>"+
"</search:term-query>"+
"<search:value-constraint-query>"+
"<search:constraint-name>industry</search:constraint-name>"+
"<search:text>Real Estate</search:text>"+
"</search:value-constraint-query>"+
"</search:query>";

String rawJSONQuery =

" { \ " query\ n. { "oy
" \"term-query\": {" +

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 148

MarkLogic Server Searching

" \"text\": \"neighborhoods\"" +

n }III +

" \"value-constraint-query\": {" +

" \"constraint-name\": \"industry\"," +
" \"text\": \"Real Estate\"" +

II}II;

3. Create a handle on your raw query using a class that that implements
structureWriteHandle. Set the handle content format appropriately. For example:

// For an XML query
StringHandle rawHandle =
new StringHandle (rawXMLQuery) .withFormat (Format .XML) ;

// For a JSON query
StringHandle rawHandle =
new StringHandle (rawJSONQuery) .withFormat (Format .JSON) ;

4, Create arawstructuredQuerydefinition from the handle. Optionally, include the name of
persistent query options. For example:

// Use the default persistent query options
RawStructuredQueryDefinition querydef =
queryMgr .newRawStructuredQueryDefinition (rawHandle) ;

// Use the persistent options previously saved as "myoptions"
RawStructuredQueryDefinition querydef =
queryMgr .newRawStructuredQueryDefinition (rawHandle, "myoptions") ;

5. Perform a search using the rawstructuredguerybefinition and aresults handle.

SearchHandle resultsHandle =
queryMgr.search (querydef, new SearchHandle()) ;

5.4.4 Structured Query Examples

This section shows some structured query examples, showing the XML for a structured query and
the corresponding Java code using structuredgueryBuilder. YOU Can put each of these examples
in context by inserting the st ructuredouerybefinition linein the following code:

QueryManager queryMgr = dbClient.newQueryManager () ;
StructuredQueryBuilder sb =
queryMgr .newStructuredQueryBuilder ("myopt") ;

// put code from examples here
StructuredQueryDefinition criteria =
example of building query definition

// end code from examples

StringHandle searchHandle =

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 149

MarkLogic Server Searching

queryMgr .search (
criteria, new StringHandle()) .get () ;

Additionally, these examples use query options from the following code:

String xmlOptions =
"<search:options " +
"xmlns:search="'http://marklogic.com/appservices/search'>" +
"<gsearch:constraint name='date'>" +
"<search:range type='xs:date'>" +
"<search:element name='date'
ns='http://purl.org/dc/elements/1.1/'/>" +
"</search:range>" +
"</search:constraint>" +
"<search:constraint name='popularity's>" +
"<search:range type='xs:int'>" +
"<search:element name='popularity' ns='"'/>" +
"</search:range>" +
"</search:constraint>" +
"<gsearch:constraint name='title'>" +
"<search:word>" +
"<search:element name='title' ns='"'/>" +
"</search:word>" +
"</search:constraint>" +
"<search:return-results>true</search:return-results>" +
"<search:transform-results apply='raw' />" +
"</search:options>";

//JSON equivalant
String jsonOptions =
"{\"options\":{" +

" \"constraint\": [" +

] { noy

" \"name\": \"date\"," +

" \"range\": {" +

" \"type\":\"xs:date\", " +
" \"element\": {" +

" \"name\": \"date\"," +
" \"ns\":

\"http://purl.org/dc/elements/1.1/\"" +
n } noy

" \"name\": \"popularity\"," +

" \"range\": {" +

" \"type\":\"xs:int\", " +

" \"element\": {" +

" \"name\": \"popularity\"," +
" "ms\": \"\"" +

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 150

MarkLogic Server Searching

n { L.

" "name\": \"title\"," +

" \"word\": {" +

" \"element\": {" +

" \"name\": \"title\"," +
" \"ns\": \"\"" +

n] , n +

" \"return-results\": \"true\"," +
" \"transform-results\": {" +

n \ n apply\ L n raw\ LR L.

QueryOptionsManager optionsMgr =
dbClient .newServerConfigManager () .newQueryOptionsManager () ;
optionsMgr.writeOptions ("myopt",
new StringHandle (xmlOptions) .withFormat (Format .XML)) ;
// Or, with JsonOptions:
new StringHandle (jsonOptions) .withFormat (Format.JSON)) ;

This section contains the following examples:

e Example: Date Range Structured Query

e Example: Element Index Structured Query

e Example: Document Property Structured Query

e Example: Directory Structured Query

e Example: Document Structured Query

e Example: JSON Property Structured Query

e Example: Collection Structured Query

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 151

MarkLogic Server Searching

5.4.4.1 Example: Date Range Structured Query

For the boilerplate code environment in which this example runs, see the code snippet in
“Structured Query Examples’ on page 149.

The following example defines a query that searches for the "2005-01-01" valuein the date range
index.

StructuredQueryDefinition criteria =
sb.containerQuery("date", Operator.EQ, "2005-01-01");

/* XML equivalent
<search:query xmlns:search=
"http://marklogic.com/appservices/search">
<search:range-constraint-querys
<search:constraint-names>date</search:constraint-name>
<search:value>2005-01-01</search:value>
</search:range-constraint-query>
</search:query>

*/
/* JSON equivalent
{"query":{
"range-constraint-query": {
"constraint-name": "date",
"value": "2005-01-01"
}
}
}
*/

5.4.4.2 Example: Element Index Structured Query

For the boilerplate code environment in which this example runs, see the code snippet in
“Structured Query Examples’ on page 149.

Thefollowing example defines aquery that searchesfor the "sush» value within an e ement range
index ontitle.

StructuredQueryDefinition criteria =
sb.wordConstraint ("title", "Bush");

/* XML equivalent
<search:query xmlns:search=
"http://marklogic.com/appservices/search">
<search:word-constraint-querys
<search:constraint-namestitle</search:constraint-name>
<search:text>Bush</search:text>
</search:word-constraint-query>
</search:query>

*/

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 152

MarkLogic Server Searching

/* JSON equivalent

{"query":{
"word-constraint-query": {
"constraint-name": "title",
"text": "Bush"
*/

5.4.4.3 Example: Document Property Structured Query

For the boilerplate code environment in which this example runs, see the code snippet in
“Structured Query Examples’ on page 149.

The following example defines a query that searches for the "he110" term in the value of any
property.

StructuredQueryDefinition criteria =
sb.properties (sb.term("hello")) ;

/* XML equivalent
<search:query xmlns:search=
"http://marklogic.com/appservices/search">
<search:properties-fragment-query>
<search:term-query>
<search:text>hello</search:text>
</search:term-query>
</search:properties-fragment-query>
</search:query>

*/

/* JSON equivalent
{"query":{
"property-fragment-query": {
"term-query": {,
"text": "hello"

}
}

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 153

MarkLogic Server Searching

5.4.4.4 Example: Directory Structured Query

For the boilerplate code environment in which this example runs, see the code snippet in
“Structured Query Examples’ on page 149.

The following example defines a query that searches for documentsin the
"http://testdoc/doc6/" di rectory.

StructuredQueryDefinition criteria =
sb.directory (true, "http://testdoc/docé6/");

/* XML equivalent
<search:query xmlns:search=
"http://marklogic.com/appservices/search">
<search:directory-querys
<search:uris>
<search:text>http://testdoc/docé/</search:text>
</search:uri>
</search:directory-query>
</search:query>

*/
/* JSON equivalent
{"query":{
"directory-query": {
"urit: {,
"text": "http://testdoc/doc6/"
}
}
}
}
*/

5.4.45 Example: Document Structured Query

For the boilerplate code environment in which this example runs, see the code snippet in
“Structured Query Examples’ on page 149.

The following example defines a query that searches for the "http://testdoc/docs /" document.

StructuredQueryDefinition criteria =
sb.document ("http://testdoc/doc2") ;

/* XML equivalent
<search:query xmlns:search=
"http://marklogic.com/appservices/search">
<search:document -querys>
<search:uris>
<search:text>http://testdoc/doc2</search: text>
</search:uri>
</search:document -query>
</search:query>

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 154

MarkLogic Server Searching

*/
/* JSON equivalent
{"query":{
"document -query": {
"urit: {,
"text": "http://testdoc/doc2/"

}
}

}
*/

5.4.4.6 Example: JSON Property Structured Query

For the boilerplate code environment in which this example runs, see the code snippet in
“Structured Query Examples’ on page 149.

The following example defines a query that searches for documents containing a JSON property
named .

StructuredQueryDefinition criteria =
sb.containerQuery (sb.jsonProperty ("myProp"), sb.term("thevalue")) ;

/* XML equivalent
<search:query xmlns:search=
"http://marklogic.com/appservices/search">
<search:container-query>
<search:json-property>myProp</search:json-propertys>
<search:term-query>
<search:text>theValue</search:text>
</search:term-query>
</search:container-query>
</search:query>

*/
/* JSON equivalent
{"query":{
"container-query": {
"json-property" : "myProp",
"term-query": {,
"text": "the-value"
}
}
}
}
*/

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 155

MarkLogic Server Searching

5.4.4.7 Example: Collection Structured Query

For the boilerplate code environment in which this example runs, see the code snippet in
“Structured Query Examples’ on page 149.

The following example defines a query that searches documents belonging to the
"http://test.com/set3/set3-1" collection.

StructuredQueryDefinition criteria =
sb.collection("http://test.com/set3/set3-1");

/* XML equivalent
<search:query xmlns:search=
"http://marklogic.com/appservices/search">
<search:collection-querys
<search:uris>
<search:text>http://test.com/set3/set3-1</search:text>
</search:uri>
</search:collection-query>
</search:query>
*/
/* JSON equivalent
{"query":{
"collection-query": {
"uriv: {,
"text": "http://test.com/set3/set3-1"

}
}

}
*/

5.5 Prototype a Query Using Query By Example

This section describes how to use the Java APl to perform a search using a Query By Example
(QBE). A QBE enables rapid prototyping of queries for “documents that look like this” using
search criteriathat resemble the structure of documentsin your database. If you are not familiar
with QBE, see Searching Using Query By Example in Search Developer’s Guide.

This section covers the following topics:

* Whatis QBE

e Search Documents Using a QBE

* Validate a QBE

e Convert a QBE to a Combined Query

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 156

MarkLogic Server Searching

551 Whatis QBE

A Query By Example (QBE) enables rapid prototyping of queries for “documents that look like
this’ using search criteriathat resemble the structure of documentsin your database. If you are not
familiar with QBE, see Searching Using Query By Example in Search Developer’s Guide.

If your documents include an author XML element or JSON property, you can use the following
example QBE to find documents with an author value of “Mark Twain”.

Format Example
XML <g:gbe xmlns:g="http://marklogic.com/appservices/querybyexample">
<q:query>
<authorsMark Twain</author>
</q:query>
</q:gbe>
JSON {
"Squery": { "author": "Mark Twain" }
}

You can only use QBE to search XML and JSON documents. M etadata search is not supported.
You can search by element, element attribute, and JSON property; fields are not supported. For
details, see Searching Using Query By Example in Search Developer’s Guide

A QBE is represented by com.marklogic.client.query.RawQueryByExampleDefinition in the Java
API. Operations on a QBE are performed through a gueryManager.

The Java API supports the following operations on a QBE:

e Search XML and JSON documents.
» Validate the correctness of a QBE.

» Convert aQBE to acombined query for improved performance and full expressiveness.

55.2 Search Documents Using a QBE

To create a QBE from araw XML or JSON representation, use any handle class that implements
com.marklogic.client.io.marker.StructureWriteHandle {O Create a

RawQueryByExampleDefinition.

The Java APl includes structurenritenandie implementations that support creating a structurein
XML or JSON from astring (StringHandle), afile (FileHandle), astream (InputStreamHandle),
and popular abstractions (poviandle, boM4JHandle, JDOMHandle). FOr a complete list of
implementations, see the Java APl JavaDoc.

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 157

MarkLogic Server Searching

Follow this procedure to create a QBE and use it in a search:

1.

Instantiate a gueryManager. The manager deals with interaction between the client and the
database.

QueryManager queryMgr = client.newQueryManager () ;

Create a JSON or XML representation of the query, using a text editor or other tool or
library. Use the syntax detailed in Searching Using Query By Example in the Search
Developer’s Guide. The following example uses string for the raw representation:

String rawXMLQuery =
"<g:gbe xmlns:g='http://marklogic.com/appservices/querybyexample'>"+
"<g:query>" +
"<author>Mark Twain</author>" +
"</q:query>" +
"</q:gbe>";

//Oxr
String rawdJSONQuery =
II{II +
"\"Squery\": { \"author\": \"Mark Twain\" }" +

II}II;

Create a handle using a class that implements structurewritenandile, Set the handle
content format, and associate your query with the handle. For example:

// For an query expressed as XML
StringHandle rawHandle =
new StringHandle (rawXMLQuery) .withFormat (Format .XML) ;

// For a query expressed as JSON
StringHandle rawHandle =
new StringHandle (rawJSONQuery) .withFormat (Format .JSON) ;

Create a rawqueryByExampleDefinition from the handle. Optionally, include the name of
persistent query options. For example:

// Use the default persistent query options
RawQueryByExampleDefinition querydef =
queryMgr .newRawQueryByExampleDefinition (rawHandle) ;

// Use the persistent options previously saved as "myoptions"
p Y p Y yop

RawQueryByExampleDefinition querydef =
queryMgr .newRawQueryByExampleDefinition (rawHandle, "myoptions") ;

Perform a search using the RawQueryByExampleDefinition and aresults handle.

SearchHandle resultsHandle =
queryMgr.search (querydef, new SearchHandle()) ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 158

MarkLogic Server Searching

55.3 Validate a QBE

When you perform a search, MarkL ogic Server does not verify the correctnesss of your QBE. If
your QBE is syntactically or semantically incorrect, you might get errors or surprising results. To
avoid such issues, you can validate your QBE.

To validate a QBE, construct a query as described in “ Search Documents Using a QBE” on
page 157, and then pass itto QueryManager.validate () instead of QueryManager.search (). The
validation report isreturned in @ structurereadsandle. FOr example:

StringHandle validationReport =
queryMgr.validate (gbeDefn, new StringHandle()) ;

The report can bein XML or JSON format, depending on the format of the input query and the
format you set on the handle. By default, validation returns a JSON report for aJSON input query
and an XML report for an XML input query. You can override this behavior using the
withFormat () Method of your response handle.

554 Convert a QBE to a Combined Query
Generating a combined query from a QBE has the following potential benefits:

* Improve search performance.

» Accessawider array of search features.

» Debug your QBE by examining the lower level Search API constructsit generates.
A combined query combines a structured query and query optionsinto asingle XML or JSON
guery. For details, see “Apply Dynamic Query Options to Document Searches’ on page 159.

To generate acombined query from a QBE, construct a query as described in * Search Documents
Using aQBE” on page 157, and then pass it t0 queryManager . convert () instead of
QueryManager.search(). The results are returned in a structureReadHandle. FOr exampl (S

StringHandle combinedQueryHandle =
queryMgr.convert (gbeDefn, new StringHandle()) ;

The resulting handle can be used to construct a Rawcombinedouerybefinition; fOr details, see
“Searching Using Combined Query” on page 160.

For more details on the query component of a combined query, see Searching Using Structured
Queries in Search Developer’s Guide.

5.6 Apply Dynamic Query Options to Document Searches

You can use acombined query to specify query options at query time, without first persisting
them as named options. A combined query isan XML or JSON wrapper around a string query
and/or a structured, cts, or QBE query, plus query options.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 159

MarkLogic Server Searching

Note: The Java Client API does not support using a QBE in a combined query at this
time. Use a standalone QBE and persistent query options instead.

This section covers the following topics:

e Searching Using Combined Query

e Creating a Combined Query Using StructuredQueryBuilder

e |nteraction with Persistent Query Options

e Combined Query Examples

e Performance Considerations

5.6.1 Searching Using Combined Query

Combined queries are useful for rapid prototyping during development and for applications that
need to modify query options on a per query basis. The rRawcombinedQuerybefinition Class
represents a combined query in the Java API.

You can only create a combined query from raw XML or JSON; there is no builder class. A
combined query can contain the following components, all optional:

* A string query

» A seridlized structured query or cts query

* Query options

If you include both a string query and a structured query or cts query, the two queriesare AND’d
together.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 160

MarkLogic Server Searching

For example, the following raw combined query uses a string query and a structured query to
match all documents where the TITLE element contains the word “henry” and the term “fourth”.
The options embedded in the query suppress the generation of snippets and extract just the
[PLAY /TITLE element from the matched documents.

Format Example

XML <search:search xmlns:search="http://marklogic.com/appservices/search">
<search:query>
<search:word-query>
<search:element name="TITLE"/>
<search:text>henry</text>
</search:word-query>
</search:query>
<search:gtext>fourth</search:gtext>
<search:options>
<search:extract-document-datas>
<search:extract-path>/PLAY/TITLE</search:extract-path>
</search:extract-document-datas
<search:transform-results apply="empty-snippet"/>
</search:options>
</search:search>

JSON {"search" : ({

"query" : {
"word-query":
"element": { "name": "TITLE" },
"text": ["henry"]
"gtext": "fourth",
"options": {
"extract-document-data": ({
"extract-path": "/PLAY/TITLE"
"transform-results":

"apply": "empty-snippet"
}

}
I

For syntax details, see Syntax and Semantics in the REST Application Developer’s Guide.

Since there is no builder for rawcombinedouerypefinition, YOU Must construct the contents “ by
hand”, associate a handle with the contents, and then attach the handle to a
RawCombinedQueryDefinition Obj ect. For exampl (S

RawCombinedQueryDefinition xmlCombo =
gm.newRawCombinedQueryDefinition (new StringHandle () .with(
// your raw XML combined query here

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 161

MarkLogic Server Searching

) .withFormat (Format .XML)) ;
// your raw JSON combined query here
) .withFormat (Format .JSON)) ;

For more complete examples, see “Combined Query Examples’ on page 166.

Use any handle class that implements com.marklogic.client.io.marker.StructureWriteHandle.
The Java APl includes structurewritenandle implementations that support creating astructurein
XML or JSON from input sources such as astring (stringtandie), afile (Filenandie), a stream
(tnputstreamiandle), and popular abstractions (poviandle, DoM4JHandle, JDOMHandle). FOr @
complete list of implementations, see the Java Client APl Documentation.

Though there is no builder for combined queries, you can use structuredgueryBuilder tO Create
the structured query portion of a combined query; for details, see “Creating a Combined Query
Using StructuredQueryBuilder” on page 164.

The following procedure provides more detailed instructions for binding a handle on the raw
representation rawcombinedQuerybefinition Object usable for searching.

1. Instantiate a gueryManager. The manager deals with interaction between the client and the
database. For example:

QueryManager queryMgr = client.newQueryManager () ;

2. Create a JSON or XML representation of the query, using atext editor or other tool or
library. For syntax details, see Syntax and Semantics in the REST Application Developer’s
Guide. Thefollowing example uses string for the raw representation of acombined query
that contains a structured query:

String rawXMLQuery =
"<search:search "+
"xmlns:search="'http://marklogic.com/appservices/search'>"+
"<search:query>"+
"<search:term-query>"+
"<search:text>neighborhoods</search:text>"+
"</search:term-query>"+
"<search:value-constraint-querys"+
"<search:constraint-name>industry</search:constraint-name>"+
"<search:text>Real Estate</search:text>"+
"</search:value-constraint-query>"+
"</search:query>"+
"<search:options>"+
"<search:constraint name='industry's"+
"<search:value>"+
"<search:element name='industry' ns='"'/>"+
"</search:value>"+
"</search:constraint>"+
"</search:options>"+
"</search:search>";

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 162

MarkLogic Server Searching

//0r
String rawdJSONQuery =
"{\"search\":{" +
" \"query\": {" +
" \"term-query\": {" +
" \"text\": \"neighborhoods\"" +
n }1 LI
" \"value-constraint-query\": {" +
" \"constraint-name\": \"industry\"," +
" \"text\": \"Real Estate\"" +
n }II +
n }1 L.
" \"options\": {" +
" \"constraint\": {" +
" "name\": \"industry\"," +
" \"value\": {" +
" \"element\": {" +

" \"name\": \"industry\"," +
" mas\m: o \"\"n o4
n } LI
n } LI
n } L.
n } L.
n } L.
n } ",
3. Create a handle on your raw query, using a class that implements structurenritetandle.

For example:

// Query as XML
StringHandle rawHandle =
new StringHandle () .withFormat (Format .XML) .with (rawXMLQuery) ;

// Query as JSON
StringHandle rawHandle =
new StringHandle () .withFormat (Format.JSON) .with (rawJSONQuery) ;

4, Create a rawcombinedoueryDefinition from the handle. Optionaly, include the name of
persistent query options. For example:

// Use the default persistent query options
RawCombinedQueryDefinition querydef =
queryMgr .newRawCombinedQueryDefinition (rawHandle) ;

// Use persistent options previously saved as "myoptions"
RawCombinedQueryDefinition querydef =

queryMgr .newRawCombinedQueryDefinition (rawHandle, "myoptions") ;

5. Perform a search using the rRawcombinedguerybefinition and aresults handle.

SearchHandle resultsHandle =
queryMgr.search (querydef, new SearchHandle()) ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 163

MarkLogic Server Searching

For a complete example of searching with a combined query, see

com.marklogic.client.example.cookbook.RawCombinedSearch inthe example/ di rectory of your
Java API installation.

5.6.2 Creating a Combined Query Using StructuredQueryBuilder

When building a rawcombinedouery that contains a structured query, you can use
structuredQueryBuilder tO Ccreate the structured query portion of a combined query. This
technique always produces an XML combined query.

Create a structuredueryDefinition US Ng structuredQueryBuilder, jUSt asyou would when
searching with a standalone structured query. Then, extract the serialized structured query using
StructuredQueryDefinition.serialize, and embed it in your combined query. For example:

QueryManager gm = client.newQueryManager () ;

StructuredQueryBuilder gb = gm.newStructuredQueryBuilder () ;
StructuredQueryDefinition structuredQuery =
gb.word(gb.element ("TITLE"), "henry"):;
String combog =
"<search xmlns=\"http://marklogic.com/appservices/search\">" +
structuredQuery.serialize() +
"</search>";
RawCombinedQueryDefinition query =
gm.newRawCombinedQueryDefinition (
new StringHandle (comboqg) .withFormat (Format.XML)) ;

You can also include a string query and/or query optionsin your combined query. For amore
complete example, see “Combined Query Examples’ on page 166.

5.6.3 Interaction with Persistent Query Options

Dynamic query options supplied in acombined query are merged with persistent and default
optionsthat are in effect for the search. If the same non-constraint option is specified in both the
combined query and persistent options, the setting in the combined query takes precedence.

Constraints are overridden by name. That is, if the dynamic and persistent options contain a
<constraint/> element with the same name attribute, the definition in the dynamic query options
isthe one that applies to the query. Two constraints with different name are both merged into the
final options.

For example, suppose the following query options are installed under the name my -options:

<options xmlns="http://marklogic.com/appservices/search">
<fragment-scope>properties</fragment-scope>
<return-metrics>false</return-metricss>
<constraint name="same">
<collection prefix="http://server.com/persistent/"/>
</constraint>
<constraint name="not-same">

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 164

MarkLogic Server Searching

<element-query name="title" ns="http://my/namespace" />
</constraint>
</options>

Further, suppose you use the following raw XML combined query to define dynamic query
options:

<search xmlns="http://marklogic.com/appservices/search">
<options>
<return-metricss>true</return-metricss>
<debug>true</debug>
<constraint name="same">
<collection prefix="http://server.com/dynamic/"/>
</constraint>
<constraint name="different"s
<element-query name="scene" ns="http://my/namespace" />
</constraint>
</options>
</search>

You can create arawqueryDefinition that encapsulates the combined query and the persistent
options:

StringHandle rawQueryHandle =
new StringHandle(...) .withFormat (Format .XML) ;
RawCombinedQueryDefinition querydef =
queryMgr .newRawCombinedQueryDefinition (
rawQueryHandle, "my-options") ;

The query is evaluated with the following merged options. The persistent options contribute the
fragment -scope Option and the constraint named not - same. The dynamic options in the combined
guery contribute the return-metrics and debug options and the constraints named same and
different. The return-metrics Setting and the constraint named same from my-options are
discarded.

<options xmlns="http://marklogic.com/appservices/search">
<fragment-scope>properties</fragment-scope>
<return-metricss>true</return-metricss>
<debug>true</debug>
<constraint name="same">
<collection prefix="http://server.com/dynamic/"/>
</constraint>
<constraint name="different"s
<element-query name="scene" ns="http://my/namespace" />
</constraint>
<constraint name="not-same">
<element-query name="title" ns="http://my/namespace" />
</constraint>
</options>

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 165

MarkLogic Server Searching

5.6.4 Combined Query Examples

The examplesin this section demonstrate constructing different types of combined queries using
the Java Client API. The example queries are constructed as in-memory strings to keep the
example self-contained, but you could just as easily read them from afile or other external source.

Unless otherwise noted, the examples all use equivalent queries and query options. The query isa
word query on the term “henry” whereit appearsin a TITLE element, AND’d with a string query
for the term “henry”.

The examples a so share the scaffolding in “ Shared Scaffolding for Combined Query Examples’
on page 168, which defines the query options and drives the search. However, the primary point
of the examplesis the query construction.

See the following topics for example code:

e Example: Structured and String Query

e Example: cts and String Query

¢ Shared Scaffolding for Combined Query Examples

5.6.4.1 Example: Structured and String Query

The following two functions perform a search using a combined query that contains a string
guery, astructured query, and query options.

The first function expresses the query in XML, using StructuredQueryBuilder to create the
structured query portion of the combined query. The second function expresses the query in
JSON. Both functions use the options and search driver from “ Shared Scaffolding for Combined
Query Examples’ on page 168.

// Use a combined query containing a structured query, string query,
// and query options. A StructuredQueryBuilder is used to create the
// structured query portion. The combined query is expressed as XML.
//
public static void withXmlStructuredQuery () {

StructuredQueryBuilder gb = new StructuredQueryBuilder() ;

StructuredQueryDefinition builtSQ =

gb.word(gb.element ("TITLE"), "henry");

System.out.println("** Searching with an XML structured query...");
doSearch (new StringHandle () .with(
"<search xmlns=\"http://marklogic.com/appservices/search\">" +
"<gtext>fourth</qgtext>" +
builtSQ.serialize () +
XML _OPTIONS +
"<«/search>") .withFormat (Format .XML)) ;

}

// Use a combined query containing a structured query, string query,

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 166

MarkLogic Server Searching

// and query options. The combined query is expressed as JSON.
public static void withJdsonStructuredQuery () {
System.out.println("** Searching with a JSON structured query...");
doSearch (new StringHandle () .with (
"{\"search\" : {" +
"\"query\": (" +
"\"word-query\": {" +
"\"element\": { \"name\": \"TITLE\"}," +
"\"text\": [\"henry\" 1" +
" } L.
" } , "+
"\"gtext\": \"fourth\"," +
JSON_OPTIONS +
"} }m) .withFormat (Format.JSON)) ;

5.6.4.2 Example: cts and String Query

The following two functions perform a search using a combined query that contains a string
guery, acts query, and query options.

Thefirst function expresses the query in XML. The second function expresses the query in JSON.
Both functions use the options and search driver from “ Shared Scaffolding for Combined Query
Examples’ on page 168.

// Use a combined query containing a cts query, string query,
// and query options. The combined query is expressed as XML.
public static void withXmlCtsQuery () {
System.out.println("** Searching with an XML cts query...");
doSearch (new StringHandle () .with(
"<search xmlns=\"http://marklogic.com/appservices/search\">" +
"<cts:element-word-query xmlns:cts=\"http://marklogic.com/cts\">" +
"<cts:element>TITLE</cts:element>" +
"<cts:text xml:lang=\"en\">henry</cts:text>" +
"</cts:element-word-querys>" +
"<gtext>fourth</gtext>" +
XML_OPTIONS +
"<«/search>") .withFormat (Format .XML)) ;

}

// Use a combined query containing a cts query, string query,
// and query options. The combined query is expressed as JSON.
public static void withJsonCtsQuery () {

System.out.println("** Searching with a JSON cts query...");

doSearch (new StringHandle () .with (

"{\"search\" . {u +
"\"ctsquery\": {n +
"\"elementWordQuery\": {" +

"\"element\" : [\"TITLE\"]," +
"\"text\" . [\nhenry\ n] , LI
"\"options\" : [\"lang=en\"]" +

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 167

MarkLogic Server Searching

"\"gtext\": \"fourth\"," &
JSON OPTIONS +
"} }m) .withFormat (Format.JSON)) ;

5.6.4.3 Shared Scaffolding for Combined Query Examples

The examplesin “Combined Query Examples’ on page 166 share the scaffolding in this section
for connecting to MarkL ogic, defining query options, performing a search, and displaying the
search results.

The query options are designed to strip down the search results into something easy for the
example code to process while still emitting smple but meaningful output. Thisis done by
suppressing snippeting and using the extract -document -data Option to return just the TITLE
element from the matches.

The aosearch method performs the search, independent of the structure of the combined query,
and prints out the matched titles. The shown result processing is highly dependent on the query
options and structured of the example documents.

package examples;

import javax.xml.xpath.XPathExpression;
import javax.xml.xpath.XPathFactory;

import org.w3c.dom.Document ;

import com.marklogic.client.DatabaseClient;

import com.marklogic.client.DatabaseClientFactory;

import com.marklogic.client.io.Format;

import com.marklogic.client.io.SearchHandle;

import com.marklogic.client.io.StringHandle;

import com.marklogic.client.io.marker.StructureWriteHandle;
import com.marklogic.client.query.ExtractedItem;

import com.marklogic.client.query.ExtractedResult;

import com.marklogic.client.query.MatchDocumentSummary;
import com.marklogic.client.query.QueryManager;

import com.marklogic.client.query.RawCombinedQueryDefinition;
import com.marklogic.client.query.StructuredQueryBuilder;
import com.marklogic.client.query.StructuredQueryDefinition;

import javax.xml.xpath.XPathExpressionException;

public class CombinedQuery
// replace with your MarkLogic Server connection information
static String HOST = "localhost";
static int PORT = 8000;
static String DATABASE = "bill";
static String USER = "username";
static String PASSWORD = "password";
private static DatabaseClient client =
DatabaseClientFactory.newClient (

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 168

MarkLogic Server Searching

HOST, PORT, DATABASE,
new DatabaseClientFactory.DigestAuthContext (USER, PASSWORD)) ;

// Define query options to be included in our raw combined query.
static String XML OPTIONS =
"<options xmlns=\"http://marklogic.com/appservices/search\">" +
"<extract-document-data>" +
"<extract-path>/PLAY/TITLE</extract-path>" +
"« /extract-document-data>" +
"<transform-results apply=\"empty-snippet\"/>" +
"<search-option>filtered</search-option>" +
"</options>";
static String JSON_OPTIONS =
"\"options\": {" +
"\"extract-document-data\": {" +
"\"extract-path\": \"/PLAY/TITLE\"" +
II},II +
"\"transform-results\": {" +
"\"apply\": \"empty-snippet\"" +
II}II +

II}II;

// Perform a search using a combined query. The input handle is
// assumed to contain an XML or JSON combined query.

//

// The combined query must contain either the XML OPTIONS or

// JSON_OPTIONS defined above. The options produce a

// search:response in which each search:match has this form:

//

// <search:result index="n" uri="..." path="..." score="..."
// confidence="....4450079" fitness="0.5848901" href="..."
// mimetype="..." format="xml">

// <search:snippet/>

// <search:extracted kind="element">

// <TITLE>a title</TITLE>

// </search:extracted>

// </search:result>

//

// XML DOM is used to extract the title text from the extrace elems
//

public static void doSearch (StructureWriteHandle queryHandle) ({
// Create a raw combined query
QueryManager gm = client.newQueryManager () ;
RawCombinedQueryDefinition query =
gm.newRawCombinedQueryDefinition (queryHandle) ;

// Perform the search
SearchHandle results = gm.search(query, new SearchHandle()) ;

// Process the results, printint out the title of each match
try {
XPathExpression xpath = XPathFactory.newInstance ()
.newXPath () .compile ("//TITLE") ;
for (MatchDocumentSummary match : results.getMatchResults()) {

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 169

MarkLogic Server Searching

ExtractedResult extracted
if (l!extracted.isEmpty())

= match.getExtracted() ;
{
for (ExtractedItem item : extracted) {
(
(

System.out .println
xpath.evaluate (item.getAs (Document.class))) ;

}
}

} catch (XPathExpressionException e) {
e.printStackTrace () ;
}

}

// with*Query methods go here

public static void main(String[] args) {
// call with*Query methods of interest to you
}

5.6.5 Performance Considerations

Using persistent query options usually performs better than using dynamic query options. In most
cases, the performance difference between the two methods is slight.

When MarkL ogic Server processes a combined query, the per request query options must be
parsed and merged with named and default options on every search. When you only use persistent
named or default query options, you reduce this overhead.

If your application does not require dynamic per-request query options, you should use a
QueryOptionsManager {0 persist your options under a name and associate the options with asimple

StringQueryDefinition OI StructuredQueryDefinition.

5.7 Search On Tuples (Tuples Query / Values Query)

You can return values and tuples (co-occurrences) through the Java API. Value and tuple searches
require the appropriate range indexes are configured on your MarkL ogic Server database. For
background on values and co-occurrences, see Browsing With Lexicons in the Search Developer’s
Guide.

This section includes the following parts:

* Values Search

* Tuples Search

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 170

MarkLogic Server Searching

57.1 Values Search
The following returns values through the Java API:

The following are the basic steps to search on values:

1. Instantiate a oueryManager. The manager deals with interaction between the client and the
database.

QueryManager queryMgr = client.newQueryManager () ;

2. Create avaluespefinition Object using the query manager. In the following example, the
parameters define a named values constraint (myvalue) defined in previously persisted
guery options (valueoptions):

// build a search definition
ValuesDefinition vdef =
queryMgr.newValuesDefinition ("myvalue", "valuesoptions");

3. Configure additional values or tuples search properties, as needed. For example, call
setAggregate () 10 Set the name of the aggregate function to be applied as part of the query.

vdef .setAggregate ("correlation", "covariance");

4, Run a search with the vaiuespefinition Object as an argument, returning a valuestandle
object. Note that the tuples search method is called vaiues (), NOt search ().

ValuesHandle results = queryMgr.values (vdef, new ValuesHandle()) ;

You can retrieve results one page at atime by defining a page length and starting position with the
QueryManager interface. For example, the following code snippet retrieves a“page’ of 5 values
beginning with the 10th value.

queryMgr . setPageLength (5) ;
ValuesHandle result = queryMgr.values (vdef, new ValuesHandle(), 10);

For more information on values search concepts, see Returning Lexicon Values With search:values
and Browsing With Lexicons in the Search Developer’s Guide.

5.7.2 Tuples Search
The following returns tuples (co-occurrences) through the Java API:

1. Instantiate a gueryManager. The manager deals with interaction between the client and the
database.

QueryManager queryMgr = client.newQueryManager () ;

MarkLogic 10—May, 2019 Java Application Developer’'s Guide—Page 171

MarkLogic Server Searching

2. Create avaluespefinition Object using the query manager. In the following example, the
parameters define a named tuples constraint (co) defined in previously persisted query
OpﬁOﬂS(tupleoptionsy

// build a search definition
ValuesDefinition vdef =
queryMgr .newValuesDefinition("co", "tupleoptions");

3. Run a search with the vaiuespefinition Object as an argument, returning a TuplesHandle
object. Note that the tuples search method is caled tupies (), NOt search ().

TuplesHandle results = queryMgr.tuples(vdef, new TuplesHandle()) ;

You can retrieve results one page at atime by defining a page length and starting position with the
QueryManager INnterface. For example, the following code snippet retrieves a*“page” of 5 tuples
beginning with the 10th one.

queryMgr .setPageLength (5) ;
TuplesHandle result = queryMgr.tuples(vdef, new TuplesHandle(), 10);

For more information on tuples search concepts, see Returning Lexicon Values With search:values
and Browsing With Lexicons in the Search Developer’s Guide.

5.7.3 Adding a Constraining Query

You can constrain the results of a values or tuples query to only return values in documents
matching the constraining query. The constraining query can be a string, structured, combined, or
cts query.

To add a constraining query to avalues or tuples query, construct the query definition as usual and
then attach it to the values or tuples query using the vailuesbefinition.setQueryDefintion
method.

The following example adds a constraining cts: query t0 avalues query, assuming a set of query
options are installed under the name “valopts’ that defines avaiues option named “title”. Only
values in documents matching the cts: element -word-query Will be returned.

QueryManager gm = client.newQueryManager () ;

// Create a cts:query with which to constrain the values query result
String serializedQuery =
"<cts:element-word-query xmlns:cts=\"http://marklogic.com/cts\">" +
"<«cts:element>TITLE</cts:element>" +
"<cts:text xml:lang=\"en\">fourth</cts:text>" +
"</cts:element-word-query>";
RawCtsQueryDefinition ctsquery =
gm.newRawCtsQueryDefinition (
new StringHandle (serializedQuery) .withFormat (Format .XML)) ;

// Create a values query and evaluate it

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 172

MarkLogic Server Searching

ValuesDefinition vdef = gm.newValuesDefinition("title", "valopts");
vdef .setQueryDefinition (ctsquery) ;
ValuesHandle results = gm.values (vdef, new ValuesHandle()) ;

5.8 Limiting A Search To Specific Collections And/Or A Directory

All query definition interfaces have setcollections () and setpirectory () methods. By calling
setDirectory (directory URI string) ONYyour query definition, you limit your search to that
di rectory. By C&”Iﬂg setCollections (list of collection name strings) ONYOUr query
definition, you limit your search to those collections. You can call both and limit your search to
collections and a single directory.

5.9 Searching Values Metadata Fields

Values metadata, sometimes called key-value metadata, can only be searched if you define a
metadata field on the keys you want to search. Once you define afield on a metadata key, use the
normal field search capabilities to include a metadata field in your search. For example, you can
US€dcts:field-word-query OF astructured query word-query ON a metadatafield, or define a
constraint on the field and use the constraint in a string query.

For more details, see Metadata Fields in the Administrator’s Guide. For some examples, see
Example: Structured Search on Key-Value Metadata Fields Or Searching Key-Value Metadata Fields in

the Search Developer’s Guide.

5.10 Transforming Search Results

You can make arbitrary changes to the results of a search or values query by applying a
server-side transformation function to the results. This section covers the following topics:

e Writing a Search Result Transform

e Using a Search Result Transform

5.10.1 Writing a Search Result Transform

Search response transforms use the same interface and framework as content transformations
applied during document ingestion, described in Writing Transformations in the REST Application
Developer’s Guide.

Your transform function receives the XML or JSON search response prepared by MarkL ogic
Server in the content parameter. For example, if the response is XML, then the content passed to
your transform is a document node with a <search: response/> root element. Any customizations
made by the transform-results query option or result decorators are applied before calling your
transform function.

You can probe the document type to test whether the input to your transform receives JSON or

XML input. For example, in server-side JavaScript, you can test the documentFormat property of
a document node:

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 173

MarkLogic Server Searching

function myTransform(context, params, content) {

if (content.documentFormat == "JSON") {
// handle as JSON or a JavaScript object
} else {

// handle as XML

}

In XQuery and XSLT, you can test the node kind of the root of the document, which will be
element fOr XML and object for JISON.

declare function dumper:transform(
Scontext as map:map,
Sparams as map:map,
Scontent as document-node ()

) as document-node ()

if (xdmp:node-kind(Scontent/node() eq "element")
then(: process as XML :)
else (: process as JSON :)

Aswith read and write transforms, the content object isimmutable in JavaScript, so you must call
toObject to create a mutable copy:

var output = content.toObject () ;
...modify output...
return output;

The type of document you return must be consistent with the cutput - type (outputType) context
value. If you do not return the same type of document as was passed to you, set the new output
type on the context parameter.

5.10.2 Using a Search Result Transform
To use a server transform function:

1 Create atransform function according to the interface described in Writing Transformations
in the REST Application Developer’s Guide.

2. Install your transform function on the REST API instance following the instructionsin
“Installing Transforms” on page 282.

3. Specify the transform function in your guerypefinition by calling
setResponseTransform (). FOr exampl €

QueryManager queryMgr = dbClient.newQueryManager () ;
StringQueryDefinition query = queryMgr.newStringDefinition() ;
query.setCriteria("cat AND dog") ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 174

MarkLogic Server Searching

query.setResponseTransform(new ServerTransform("example")) ;

You are responsible for specifying a handle type capable of interpreting the results produced by
your transform function. The searchurand1e implementation provided by the Java API only
understands the search results structure that MarkL ogic Server produces by default.

5.11 Generating Search Term Completion Suggestions

UsSe com.marklogic.client.query.QueryManager . suggest () 1O generate search term Completion
suggestions that match awildcard terminated string. For example, if the user enters the text “ doc”
into a search box, you can use suggest () With “doc” as string criteriato retrieve alist of terms
matching “doc*”, and then display them to user. This service is analogous to calling the XQuery
function search:suggest O the REST APl method ceT /version/suggest.

The following topics are covered:

¢ Basic Steps

e Example: Generating Search Suggestions

e Where to Find More Information

5.11.1 Basic Steps
Use the following procedure to retrieve search term completion suggestions:

1 Configure at |least one database index on the XML element, XML attribute, or JSON
property values you want to include in the search for suggestions. For performance
reasons, arange or collection index is recommended over aword lexicon; for details, see

search:suggest.

2. Create and install persistent query options that use your index as a suggestion source by
includi ng it in the definition of Addefault-suggestion-source OI suggestion-source
option. FOr details, see Search Term Completion Using search:suggest in the Search
Developer’s Guide and “ Creating Persistent Query Options From Raw JSON or XML” on
page 193.

3. Instantiate a oueryManager. The manager deals with interaction between the client and the
database.

QueryManager queryMgr = client.newQueryManager () ;
4, Use the query manager to obtain a suggestpefinition Object.

SuggestDefinition sd = queryMgr.newSuggestDefinition() ;

5. Configure the definition with the string for which to retrieve suggestions. For example, the
following call configures the operation to return matches to the wildcard string "doc*":

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 175

MarkLogic Server Searching

sd.setStringCriteria("doc") ;

6. Optionally, associate persistent query options with the suggest definition. You can skip
this step if your default query options include one or more suggestion-source Of
default-suggestion-source Options. Otherwise, specify the name of previoudly installed
query Opti onsthat include suggestion-source and/or default- suggestion-source Setti ngs.

sd.setOptions ("opt-suggest") ;

7. Optionally, configure additional properties, such as the maximum number of suggestions
to return or additional string queries with which to filter the results. For example:

sd.setLimit (5) ;
sd.setQueryStrings ("prefix:xdmp") ;

8. Retrieve the suggestions using your suggest definition and query manager:

String[] results = queryMgr.suggest (sd) ;

5.11.2 Example: Generating Search Suggestions

This example walks you through configuring your database and REST instance to try retrieving
search suggestions. The Documents database is assumed in this example, but you can use any
database. This example has the following parts:

1. Initialize the Database
2. Install Query Options
3. Get Search Suggestions

5.11.2.1 Initialize the Database

Run the following query in Query Console to load the sample datainto your database, or use a
DocumentManager 0 insert equivalent documentsinto the database. The example will retrieve
suggestions for the <name /> element, with and without a constraint based on the <prefix/>
element.

xdmp : document -insert (" /suggest/load.xml",
<function>
<prefix>xdmp</prefix>
<names>document -load</name>
</function>
) ;
xdmp : document -insert ("/suggest/insert.xml",
<function>
<prefix>xdmp</prefix>
<names>document-insert</names>
</function>

) ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 176

MarkLogic Server

xdmp : document -insert ("/suggest/query.xml",
<functions>
<prefix>cts</prefix>
<name>document -query</name>
</function>
) ;
xdmp : document -insert ("/suggest/search.xml",
<functions>
<prefix>cts</prefix>
<name>search</name>
</function>

) ;
The equivalent in Javascript:

declareUpdate () ;
xdmp . document Insert (" /suggest/load.json",
{function:
{prefix: "xdmp",
name: "document-load"}

3K

xdmp . documentInsert (" /suggest/insert.json",
{function:
{prefix: "xdmp",
name: "document-insert"}

3K

xdmp . document Insert (" /suggest/query.json",
{function:
{prefix: "cts",
name: "document-query"}

3K

xdmp . documentInsert (" /suggest/load.search",
{function:
{prefix: "cts",
name: "document-search"}

3K

Searching

To create the range index used by the example, run the following query in Query Console, or use
the Admin Interface to create an equivalent index on the nane element. The following query

assumes you are using the Documents database; modify as needed.

xquery version "1.0-ml";

import module namespace admin = "http://marklogic.com/xdmp/admin"

at "/MarkLogic/admin.xqy";
admin:save-configuration (
admin:database-add-range-element-index (
admin:get-configuration(),
xdmp : database ("Documents") ,
admin:database-range-element-index (

"string", "http://marklogic.com/example",

MarkLogic 10—May, 2019 Java Application Developer’'s Guide—Page 177

MarkLogic Server Searching

"name", "http://marklogic.com/collation/", fn:false())
)
) ;

The equivalent in Javascript:

declareUpdate () ;
const admin = require ("/MarkLogic/admin.xqgy") ;
admin.saveConfiguration (
admin.databaseAddRangeElement Index (admin.getConfiguration(),
xdmp .database ("Documents") ,
admin.databaseRangeElementIndex ("string"
"http://marklogic.com/example",
"name",
"http://marklogic.com/collation/",
fn.false()))

5.11.2.2 Install Query Options

The example relies on the following query options. These options use the <name/> €lement as the
default suggestion source. The value constraint named “prefix” isincluded only to illustrate how
to use additional query to filter suggestions. It is not required to get suggestions.

<options xmlns="http://marklogic.com/appservices/search">
<default-suggestion-source>
<range type="xs:string" facet="true">
<element ns="http://marklogic.com/example" name="name"/>
</range>
</default-suggestion-source>
<constraint name="prefix">
<value>
<element ns="http://marklogic.com/example" name="prefix"/>
</values>
</constraint>
</options>

The equivaent in JSON:

{"options":{

"default-suggestion-source":
"range": {
"facet": "true",
"element":
"ns": "http://marklogic.com/example",
"name": "name"
}
}
b
"constraint":
"name": "prefix",
"value":
"element":

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 178

MarkLogic Server Searching

"ns": "http://marklogic.com/example",
"name": "prefix"

}

Install the Opti ons under the name » opt-suggest" usi Ng QueryOptionsManager, aS described in
“Creating Persistent Query Options From Raw JSON or XML” on page 193. For example, to
configure the options using a string literal, do the following:

String options =
"<options xmlns=\"http://marklogic.com/appservices/search\">" +
"<default-suggestion-source>" +
"<range type="xs:string" facet="true">" +
"<element ns="http://marklogic.com/example" name="name"/>" +
"</range>" +
"</default-suggestion-source>" +
"<constraint name="prefix">" +
"<values>
"<element ns="http://marklogic.com/example" name="prefix"/>" +
"<«/value>" +
"</constraint>" +
"</options>";

// Or the JSON equivalent:

String optionsdson =
"{\"options\":{" +
" \"default-suggestion-source\": {" +
" \"range\": {" +
" \"facet\": \"true\"," +
" \"element\": {" +
" \"ns\": \"http://marklogic.com/example\"," +
n nname\n: nname\nn +

" \"constraint\": {" +
n \uname\n: \"prefix\"," +
] \"value\": {n +
" \"element\": {" +
" \"ns\": \"http://marklogic.com/example\"," +
n nname\n: \"prefix\"" +
] }n +
" }u +

u}u;

StringHandle handle =
new StringHandle (optionsg) .withFormat (Format .XML) ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 179

MarkLogic Server Searching

QueryManager queryMgr = client.newQueryManager () ;

QueryOptionsManager optMgr =
client .newServerConfigManager () .newQueryOptionsManager () ;
optMgr.writeOptions ("opt-suggest", handle) ;

5.11.2.3 Get Search Suggestions
To retrieve search suggestions, Use queryManager . suggest () . FOr example:

QueryManager queryMgr = client.newQueryManager () ;
SuggestDefinition sd = queryMgr.newSuggestDefinition() ;
sd.setStringCriteria("doc") ;

String[] results = queryMgr.suggest (sd) ;

The results contain the following suggestions derived from the sample input documents:

document-insert
document -1load
document -query

Recall that the query options include a value constraint on the prefix element. You can use this
constraint with the string query prefix:xdmp asfilter so that the operation returns only suggestions
occuring in adocuments with aprefix value of xdmp. For example:

sd.setStringCriteria("doc") ;
sd.setQueryStrings ("prefix:xdmp") ;
String[] results = queryMgr.suggest (sd) ;

Now, the results contain only document - insert and document-1o0ad. The function named
document -query 1S e€xcluded because the prefix value for this document is not xdmp.

5.11.3 Where to Find More Information

For more details on using search suggestions, including performance recommendations and
additional examples, see the following:

® search:suggest (XQuery functi on)

* Search Term Completion Using search:suggest in Search Developer’s Guide.

5.12 Extracting a Portion of Matching Documents

This section describes how to use the extract -document -data query option with

QueryManager . search t0 extract a subset of each matching document and return it in your search
results.

This section covers the following related topics:

e Qverview of Extraction

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 180

MarkLogic Server Searching

e Basic Steps for Search Match Extraction

e Example: Extracting a Portion of Each Matching Document

You can also use this option with a multi-document read (pocumentManager . search) tO retrieve the
extracted subset instead of the complete document; for details, see * Extracting a Portion of Each
Matching Document” on page 89.

5.12.1 Overview of Extraction

By default, ouerymanager. search returns a search result summary. When you perform a search
that includes the extract -document -data query option, you can embed selected portions of each
matching document in the search results and access them through returned Handle.

The projected contents are specified through absolute X Path expressionsin
extract-document-data aNd & selected atribute that specifies how to treat the selected content.

The extract-document -data Option has the following general form. For details, see
extract-document-data in the Search Developer’s Guide and Extracting a Portion of Matching
Documents in the Search Developer’s Guide.

<extract-document-data selected="howMuchToInclude">
<extract-paths>/path/to/content</extract-path>
</extract-document-datas>

The equivalent in JSON:

{"extract-document-data": {
"selected": "howMuchToInclude",
"extract-path": "/path/to/content"

}

The path expression in extract-path islimited to the subset of X Path described in The
extract-document-data Query Option in the XQuery and XSLT Reference Guide.

Usethe selected attribute to control what to include in each result. This attribute can take on the
following values: “al”, “include’, “include-with-ancestors’, and “exclude”. For details, see
Search Developer’s Guide.

The document projections created With extract-document-data are accessible in the following
way. For a complete example, see “ Example: Extracting a Portion of Each Matching Document”
on page 184.

QueryManager gm = client.newQueryManager () ;
SearchHandle results = gm.search(query, new SearchHandle()) ;
MatchDocument Summary matches[] = results.getMatchResults() ;
for (MatchDocumentSummary match : matches)

ExtractedResult extracts = match.getExtracted() ;

for (ExtractedItem extract: extracts) {

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 181

MarkLogic Server Searching

// do something with each projection

}

The extractedrtem interface includes get and getas methods for manipulating the extracted
content through either ahandle (ExtractedItem.get) or an Obj ect (ExtractedItem.getAs). For
example, the following statement uses getas t0 access the extracted content asastring:

String content = extract.getAs(String.class);

YOU Can USe ExtractedResult.getFormat With Extractedrtem.get t0 detect the type of data
returned and access the content with a type-specific handle. For example:

for (MatchDocumentSummary match : matches)
ExtractedResult extracts = match.getExtracted() ;
for (ExtractedItem extract: extracts) {
if (match.getFormat () == Format.JSON) {
JacksonHandle handle = extract.get (new JacksonHandle()) ;
// use the handle contents
} else if (match.getFormat() == Format.XML)
DOMHandle handle = extract.get (new DOMHandle()) ;
// use the handle contents

}

The search returns an extractedztem for each match to a path in a given document when you set
select t0 “include”. For example, if your extract-document-data Option includes multiple
extraction paths, you can get an extractedrten foOr each path. Similarly, if a single document
contains more than one match for a single path, you get an Extractedltem for each match.

By contrast, when you set se1ect to “al”, “include-with-ancestors’, or “exclude’, you get asingle
ExtractedItem PEF document that contains a match.

5.12.2 Basic Steps for Search Match Extraction

Use the following technique to perform a search that includes extracted datain the search results.
For a complete example of applying this pattern, see “Example: Extracting a Portion of Each
Matching Document” on page 184.

1. Instantiate a gueryManager. The manager deals with interaction between the client and the
database.

QueryManager queryMgr = client.newQueryManager () ;

2. Define query options that include the extract -document -data option. Make the option
available to your search by embedding it in the options of a combined query or installing it

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 182

MarkLogic Server Searching

as part of anamed persistent query options set. The following example usesthe optionina
String that can be used to construct a rawcombinedguery:

String rawQuery =
"<search xmlns=\"http://marklogic.com/appservices/search\">" +
" <querys<directory-querys<uris>/extract/</uris></directory-querys></query>" +
" <options xmlns=\"http://marklogic.com/appservices/search\">" +
n <extract-document-data selected=\"include\">" +
" <extract-path>/parent/body/target</extract-path>" +
n </extract-document-data>" +
" </options>" +
"</search>";

//The equivalent in JSON:
String rawQuerydson =
"{\"search\":{" +
" \"query\": {" +
" \"directory-query\": {" +
" \"uri\": \"/extract/\"" +

" \"options\": {" +

" \"extract-document-data\": {" +

" \"selected\": \"include\"," +

" \"extract-path\": \"/parent/body/target\"" +

II}II;

For details, see “Prototype a Query Using Query By Example” on page 156 or “Using
QueryOptionsManager To Delete, Write, and Read Options’ on page 192.

3. Create aquery using any of the techniques discussed in this chapter. For example, the
following snippet creates a RawCombinedQuery from the string shown in Step 2.

StringHandle gh = new StringHandle (rawQuery) .withFormat (Format .XML) ;
//Or with rawQueryJson

StringHandle gh = new

StringHandle (rawQueryJson) .withFormat (Format .JSON) ;

QueryManager gm = client.newQueryManager () ;
RawCombinedQueryDefinition query =
gm.newRawCombinedQueryDefinition (gh) ;

4, Perform a search using your query and options that include extract-document-data.

SearchHandle results = gm.search(query, new SearchHandle()) ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 183

MarkLogic Server Searching

5. Use the search handle to access the extracted content through the match results. For
example:
MatchDocument Summary matches[] = results.getMatchResults() ;

for (MatchDocumentSummary match : matches)
ExtractedResult extracts = match.getExtracted() ;
for (ExtractedItem extract: extracts) {
// do something with each projection
}

}

If you do not use a searchuandie to capture your search results, you must access the extracted
content from the raw search results. For details on the layout, see Extracting a Portion of Matching
Documents in the Search Developer’s Guide.

5.12.3 Example: Extracting a Portion of Each Matching Document

This example demonstrates the use of the extract -document-data query option to embed a
selected subset of data from matched documents in the search results. For an example of using
extract-document-data as part of a multi-document read, see “Extracting a Portion of Each
Matching Document” on page 89.

The example documents are inserted into the “/extract/” directory in the database to make them
easy to manage in the example. The example data includes one XML document and one JSSON
document, structured such that a single XPath expression can be used to demonstrate using
extract-document -data ON both types of document.

The example documents have the following contents, with the bold portion being the content
extracted usi ng the XPath expressi ON /parent /body/target.

JSON:

{"parent": {
Ilall: IIfOOII’
"body": |
"target": "contentl"
1

Ilbll: llbarll

b}

XML:

<parent>
<a>foo
<body>
<target>content2</target>
</body>
<bsbar
</parent>

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 184

MarkLogic Server

Searching

The example uses arawcombinedouery that contains adirectory-query Structured query and query
options that include the extract-document-data Option. The example creates the combined query
from astring literal, but you can aso use structuredoueryBuilder tO Create the query portion of
the combined query. For details, see “Creating a Combined Query Using
StructuredQueryBuilder” on page 164.

The following example program inserts some documents into the database, performs a search that
usesthe extract -document -data query option, and then del etes the documents. Before running the
example, modify the values of nosT, porT, user, and passworp t0 match your environment.

package com.marklogic.examples;

import org.w3c.dom.Document ;

import
import
import
import
import
import
import
import
import
import
import
import

com

com

public

com.

com.
com.
com.
com.
com.
com.
com.
com.
com.

.marklogic.
marklogic.
.marklogic.
marklogic.
marklogic.
marklogic.

marklogic

marklogic.
marklogic.
marklogic.
marklogic.
marklogic.

client.
client.
client.
client.
client.
client.
.client.
client.
client.
client.
client.
client.

dOCument.DOCumentWriteset;

document . GenericDocumentManager ;
io.*;
query.
query.
query.
query.

DeleteQueryDefinition;
ExtractedItem;

ExtractedResult;
MatchDocumentSummary;
query.QueryManager;
query.RawCombinedQueryDefinition;
DatabaseClientFactory;

DatabaseClient;
DatabaseClientFactory.DigestAuthContext;

class ExtractExample {

// replace with your MarkLogic Server connection information
static String HOST = "localhost";

static
static
static
static

int PORT

8000;

String USER = "username";

String PASSWORD =
DatabaseClient client =
PORT,
new DigestAuthContext (USER,

HOST,

"password";
DatabaseClientFactory.newClient (

PASSWORD)) ;

static String DIR = "/extract/";

// Insert some example documents in the database.
public static void setup() {

StringHandle jsonContent =

StringHandle xmlContent =

new StringHandle (

"{\"parent\": {u +
u\ua\u: \"fOO\"," +
"\"bOdY\": {u +
"\"target\": \"contentI\"" +
u},u +
u\ub\u: \ubar\un +

"}}") .withFormat (Format.JSON) ;

"<parent>"

+

"<a>foo" +

MarkLogic 10—May, 2019

new StringHandle (

Java Application Developer’ s Guide—Page 185

MarkLogic Server

}

Searching

"<body><target>content2</target></body>" +
"bar" +
"</parent>") .withFormat (Format .XML) ;
GenericDocumentManager gdm = client.newDocumentManager () ;

DocumentWriteSet batch = gdm.newWriteSet () ;
batch.add (DIR + "docl.json", jsonContent) ;
batch.add (DIR + "doc2.xml", xmlContent) ;
gdm.write (batch) ;

// Perform a search with RawCombinedQueryDefinition that extracts
// just the "target" element or property of docs in DIR.
public static void example() {

String rawQuery =
"<gsearch xmlns=\"http://marklogic.com/appservices/search\">" +
" <query>" +
" <directory-query><uri>" + DIR + "</uris></directory-query>" +
" </query>" +
" <options>" +
" <extract-document-data selected=\"include\">" +
" <extract-path>/parent/body/target</extract-path>" +
" </extract-document-datas>" +
" </options>" +
"< /search>";
//The equivalent in JSON:
String rawQueryJson =
"{\"search\":{" +
" \"query\": {" +
" \"directory-query\": {" +
" "uri\": \"/extract/\"" +
n } L.
n } L
" \"options\": {" +
" \"extract-document-data\": {" +
" \"selected\": \"include\"," +
" \"extract-path\": \"/parent/body/target\"" +

II}II;

StringHandle gh =
new StringHandle (rawQuery) .withFormat (Format .XML) ;

// Or with rawQueryJson

new StringHandle (rawQueryJson) .withFormat (Format .JSON) ;
QueryManager gm = client.newQueryManager () ;
RawCombinedQueryDefinition query =

gm.newRawCombinedQueryDefinition (gh) ;

SearchHandle results = gm.search(query, new SearchHandle()) ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 186

MarkLogic Server Searching

System.out .println(

"Total matches: " + results.getTotalResults());
MatchDocumentSummary matches[] = results.getMatchResults() ;
for (MatchDocumentSummary match : matches) ({

System.out.println ("Extracted from uri: " + match.getUri()) ;

ExtractedResult extracts = match.getExtracted() ;
for (ExtractedItem extract: extracts) {
System.out.println (" extracted content: " +
extract.getAs (String.class)) ;

}

// Delete the documents inserted by setup.

public static void teardown () {
QueryManager gm = client.newQueryManager () ;
DeleteQueryDefinition byDir = gm.newDeleteDefinition() ;
byDir.setDirectory (DIR) ;
gm.delete (byDir) ;

}

public static void main(String[] args) {
setup () ;
example () ;
teardown () ;

}

When you run the example, you should see output similar to the following:

Total matches: 2
Extracted from uri: /extract/docl.json

extracted content: {"target":"contentl"}
Extracted from uri: /extract/doc2.xml
extracted content: <target xmlns="">content2</target>

If you add a second extract path, such as “//b”, then you get multiple extracted items for each
matched document:

Extracted items from uri: /extract/docl.json
extracted content: {"target":"contentl"}
extracted content: {"b":"bar"}
Extracted items from uri: /extract/doc2.xml
extracted content: <target xmlns="">content2</target>
extracted content: <b xmlns=""s>bar

By varying the value of the se1ectead attribute of extract-document-data, you further control how
much of the matching content is returned in each extractedrtem. FOr example, if you modify the
original exampleto set the value of selected to “include-with-ancestors’, then the output is similar
to the following:

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 187

MarkLogic Server Searching

Extracted items from uri: /extract/docl.json
extracted content: {"parent":{"body":{"target":"contentl"}}}
Extracted items from uri: /extract/doc2.xml
extracted content:
<parent xmlns=""><body><target>content2</target></body></parent>

For more examples of how selected affects the results, see Extracting a Portion of Matching
Documents in the Search Developer’s Guide.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 188

MarkLogic Server Searching

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 189

MarkLogic Server Query Options

6.0 Query Options

This chapter describes how to use, write, read, and delete query options. In the MarkLogic
XQuery Search API, aquery options object is called an options node.

This chapter contains the following sections:

* Using Query Options

¢ Default Query Options

e Using QueryOptionsManager To Delete, Write, and Read Options

e Using Query Options With Search

* Creating Persistent Query Options From Raw JSON or XML

¢ Validating Query Options With setQueryOptionValidation()

For details on each of the query options, see Appendix: Query Options Reference in the Search
Developer’s Guide. While there are alarge number of options, in order to configure your searches
properly and build persistent query options, you will need to familiarize yourself with them.

6.1 Using Query Options

Query options let you specify a set of options for search and apply them repeatedly to multiple
searches. The individual options can specify the following:

» Define constraints that do not require indexes, such as word, value and element
constraints.

» Define constraints that do require indexes, such as collection, field-value, and other range
constraints.

» Control search characteristics such as case sensitivity and ordering.
» Extend the search grammar.
» Customize query results including pagination, snippeting, and filtering.

Query options can be persistent or dynamic. Persistent query options are stored on the REST
Server and referenced by name in future queries. Dynamic query options are options created on a
per-request basis. Choosing between the two is atrade off between flexibility and performance:
Dynamic query options are the more flexible, but persistent query options usually provide better
performance. You can use both persistent and dynamic query optionsin the same query. Dynamic
guery options are only available for operations that accept aRawCombinedQuerybDefinition. FOr
details, see “ Apply Dynamic Query Options to Document Searches’ on page 159.

Use agqueryoptionsManager Object to manage persistent query options and store them on the

REST Server. To seeindividual option values, use the appropriate get () command on a handle
class that implements QueryoptionsReadHandle.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 190

MarkLogic Server Query Options

The persistent query options are the static part of the search, and are generally used for many
different queries. For example, you might create persistent query options that define arange
constraint on adate range index so that you can facet the results by date.

Additionally, many queries have a component that is constructed dynamically by your Java code.
For example, you might change the result page, the query criteria (terms, facet values, and so on),
or other dynamic parts of the query. The static and dynamic parts of the query are merged together
during a search.

For details on specific query options, see Appendix: Query Options Reference in the Search
Developer’s Guide. While there are alarge number of options, in order to configure your searches
properly, you will need to familiarize yourself with them.

For additional examples, see Query Options Examples in the Search Developer’s Guide.

6.2 Default Query Options

The MarkLogic Java APl comes with predefined persistent query options called default. It acts
just like any other options and isused if options are not specified elsewhere. You can read it into a
handle, change values, and write it back out, where it will still be used as the default query
options. While changing its values should not be done casually, this can be very useful if your site
needs different default behaviors.

The default options are selected for optimal performance; searches run unfiltered, and document
quality is not taken into consideration during scoring. If you install different default options,
consider including the following options unless your application requires filtering or the use of
document quality.

<options xmlns="http://marklogic.com/appservices/search">
<search-option>unfiltered</search-option>
<quality-weight>0</quality-weight>

</optionss>

The equivaent in JSON:

{"options":{
"search-option": "unfiltered",
"quality-weight": "Q"

}

If you delete default, the server will fall back to its own defaults.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 191

MarkLogic Server Query Options

6.3 Using QueryOptionsManager To Delete, Write, and Read Options

Interactions with the database are done via amanager object, in this case QueryoptionsManager.
Use com.marklogic.client.admin.QueryOptionsManager t0 manage persistent query options
that are stored on the REST server. Since query options are associated with the REST server
configuration, to create a QueryoptionsManager you call
ServerConfigManager.newQueryOptionsManager ().

Aswith all operations on serverconfigManager, an application must authenticate as
rest -admin. Note that any application that authenticates as rest -reader and rest-writer can
use query options, but to write or delete them from the server requires rest -admin.

// create a manager for writing, reading, and deleting query options
QueryOptionsManager goManager=
client .newServerConfigManager () .newQueryOptionsManager () ;

The simplest queryoptions operation is deleting a stored one:

goManager .deleteOptions ("myqueryoptions") ;

To read query options from the database, use a handle object of a class that implements
QueryOptionsReadHandle. TO Write query options to the database, use a handle object of a class
that implements QueryoptionsWriteHandle. The API includes several handle classes that
implement these interfaces, including stringtandle, BytesHandle, DOMHandle, and
JacksonHandle. Theseinterfaces allow you to work with query options as raw strings, XML, and
JSON.

The following example reads in the options configuration called myqueryoptions from the
server, then writesit out again.

// read a query option configuration from the database
// goHandle now contains the query option
// "mygqueryoptions"
DOMHandle goHandle =
goManager .readOptions ("myqueryoptions", new DOMHandle ()) ;

//0r the equivalent with a JacksonHandle
JacksonHandle goHandle =
goManager .readOptions ("myqueryoptions", new JacksonHandle()) ;

// write the query option to the database
goManager .writeOptions ("myqueryoptions", goHandle) ;

You can get alist of all named Queryoptions from the server viathe gueryoptionsListHandle
object:

QueryManager queryMgr = dbclient.newQueryManager () ;

QueryOptionsListHandle golHandle =
queryMgr.optionsList (new QueryOptionsListHandle()) ;

Set<String> results = golHandle.getValuesMap () .keySet () ;

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 192

MarkLogic Server Query Options

6.4 Using Query Options With Search
You can customize a query with query optionsin the following ways:

» Create persistent query options, save them to the REST server with an associated hame,
and then reference them by name when you construct a query. To use the default query
options, omit an options name when you construct the query. The following example
creates a string query that uses the options stored as “myoptions’:

// Create a string query that uses persistent query options
QueryManager gMgr = new QueryManager () ;
StringQueryDefinition gDef = gMgr.newStringDefinition ("myoptions") ;

gMgr .search (gDef, resultsHandle) ;

» Embed dynamic query options in a combined query definition.

You can use both persistent and dynamic query options in the same search by including a query
options name when constructing a combined query (RawCombinedQueryDefinition).

Persistent query options must be stored on the REST server before you can use them in a search.
For details, see “Using QueryOptionsManager To Delete, Write, and Read Options” on page 192.

To construct persistent query options, use a handle class that implements
QueryOptionsWriteHandle, such as StringHandle O DOMHandle. Us ng ahandle, you can
create query options directly in XML or JSON; for details, see “ Creating Persistent Query
Options From Raw JSON or XML” on page 193.

To construct dynamic query options, use a handle that implements st ructurewriteHandle, SUch
as stringHandle Of DOMHandle tO create a combined query that includes an options component,
then associate the handle with aRawCombinedQuerybefinition. For details, see Apply
Dynamic Query Options to Document. Searches’ on page 159.

6.5 Creating Persistent Query Options From Raw JSON or XML

To create persistent query options from araw XML or JSON representation, use any handle class
that implements com.marklogic.client.io.marker.QueryOptionsWriteHandle. Follow this
procedure to create persistent query options using a handle:

1 Create aJSON or XML representation of the query options, using the tools of your choice.
The following example uses a String representation:

String xmlOptions =
"<search:options "+

"xmlns:search="'http://marklogic.com/appservices/search'>"+

"<search:constraint name='industry'>"+
"<search:value>"+

"<search:element name='industry' ns=''/>"+

"</search:value>"+

"</search:constraint>"+

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 193

MarkLogic Server Query Options

"</search:options>";

String jsonOptions =
"{\"search\":{" +
" \"constraint\": {" +
" \"name\": \"industry\"," +
" \"value\": {" +
" \"element\": {" +
" \"name\": \"industry\"," +
" \"ns\": \"\"" +
n } LI
n } L.

2. Create a handle that implements QueryoptionsWriteHandle and associate your options
with the handle. Set the content format type appropriately. For example:

// For XML options
StringHandle writeHandle =
new StringHandle (xmlOptions) .withFormat (Format .XML) ;

// For JSON options

StringHandle writeHandle =
new StringHandle (jsonOptions) .withFormat (Format .JSON) ;

3. Save the options to the REST server using QueryOpt ionsManager .writeOptions. FOr
example:

optionsMgr.writeOptions (optionsName, writeHandle) ;

For acomplete example, see com.marklogic.client.example.cookbook.QueryOptions inthe
following directory of the Java API distribution:

example/com/marklogic/client/example/cookbook

The Java API includes gueryoptionsWriteHandle implementations that support constructing
guery options as XML or JSON using several aternativesto string. These aternativesinclude
reading from afile (FileHandle) Or stream (InputStreamHandle), and popular abstractions,
such as DOM, DOM4J, and JDOM. For details, see the Java APl JavaDoc.

You can use any handle that implements gueryopt ionsReadHandle to fetch previously persisted
query options from the REST server. The following example fetches the JSON representation of
guery optionsinto a string object:

StringHandle jsonStringHandle = new StringHandle () ;
jsonStringHandle.setFormat (Format .JSON) ;

goManager .readOptions ("jsonoptions", jsonStringHandle) ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 194

MarkLogic Server Query Options

6.6 Validating Query Options With setQueryOptionValidation()

Query options can be complex. By default, the server validates query options before writing them
out to a database. This takes a small amount of time, but because the query options are usually
created once and then persisted, it does not really make a difference.

If you do try to write out an invalid query options and validation is enabled (which is the default),
you get a4o00 error from the server and a FailedrRequestException thrown.

If you want to turn validation off, you can do so by calling the following right after you create
YOour ServerConfigurationManager Object:

ServerConfigurationManager.setQueryOptionValidation (false)

Note that if validation is disabled and you have query options that turn out to be invalid, your
searches will still run, but any invalid options will be ignored. For example, if you define an
invalid constraint and then try to use it in a search, the search will run, but the constraint will not
be used. The search results will contain awarning in cases where a constraint is not used. You can
access those warni ngs ViaSearchHandle.getWarnings ().

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 195

MarkLogic Server Working With Semantic Data

7.0 Working With Semantic Data

This chapter discusses the following topics related to using the Java Client API to load semantic
triples, manage semantics graphs, and query semantic data. The following topics are covered:

e Introduction

e Qverview of Common Semantic Tasks

e Creating and Managing Graphs

* Querying Semantic Triples With SPARQL

e Querying Triples with the Optic API

e Example: Loading. Managing., and Querying Triples

e Using SPARQL Update to Manage Graphs and Graph Data

* Managing Permissions

7.1 Introduction

This chapter focuses on details specific to using the Java Client API for semantic operations. For
more details and general concepts, see the Semantics Devel oper’s Guide.

The graph management capabilities of the Java Client API enable you to manipulate managed
triples stored in MarkLogic. For example, you can create, modify, or delete a graph using a
GraphManager. For details, see “ Creating and Managing Graphs’ on page 198.

You can insert unmanaged triples into MarkL ogic using standard document operations. Use the
DocumentManager INterfacesto insert XML or JSON documents with triples embedded in them.
Unmanaged triples are indexed and searchable, just like managed triples, but you use typical
XML and JSON document permissions and interfaces to control them. Unmanaged triples enable
you to store semantic data alongside the content to which it applies. “Example: Loading,
Managing, and Querying Triples’ on page 209 illustrates the use of an unmanaged triple.

Triples can also be made available for queries through the use of MarkL ogic features such as the
following. See the listed topics for details.

* Inferencing: Inference in the Semantics Developer’ s Guide.

* TDE templates: Using a Template to Identify Triples in a Document in the Semantics
Developer’s Guide.

* Entity Services modeling: Extending a Model with Additional Facts and Generating a TDE
Template in the Entity Services Developer’s Guide.

You can use the Java Client API to query all types of semantic data using the searor.QueryManager
interface. You can evaluate both SPARQL and SPARQL Update queries. For more details, see
“Querying Semantic Triples With SPARQL” on page 204 and “Using SPARQL Update to
Manage Graphs and Graph Data” on page 213.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 196

MarkLogic Server

Working With Semantic Data

7.2 Overview of Common Semantic Tasks
You can use the SPARQL, semantic query, and semantic graph interfaces of MarkLogic

The following table lists some common tasks related to Semantics, along with the interfaces best
suited for completing the task using the Java Client API. For acomplete list of interfaces, see
Java Client API Documentation. All of the following interfaces are in the package

com.marklogic.client.semantics.

Load semantic triplesinto a named graph or
the default graph without using SPARQL
Update.

GraphManager.write or GraphManager.writeAs

For details, see “Creating or Overwriting a
Graph” on page 200.

Manage graphs or graph data with SPARQL
Update.

SPARQLQueryManager.executeUpdate

For details, see “Using SPARQL Update to
Manage Graphs and Graph Data’ on page 213.

Read a semantic graph from the database.

GraphManager.read OF GraphManager.readAs

For details, see “Reading Triplesfrom a
Graph” on page 202.

Query semantic data with SPARQL

SPARQLQueryManager .executeAsk
SPARQLQueryManager .executeConstruct
SPARQLQueryManager .executeDescribe

SPARQLQueryManager .executeSelect

For details, see “Querying Semantic Triples
With SPARQL” on page 204.

Manage graph permissions.

GraphManager.writePermissions
GraphManager.mergePermissions

GraphManager.deletePermissions

For details, see “Managing Permissions’ on
page 214.

MarkLogic 10—May, 2019

Java Application Developer’s Guide—Page 197

MarkLogic Server Working With Semantic Data

7.3 Creating and Managing Graphs

Use the craphManager interface to perform graph management tasks such as creating, reading,
updating, and deleting graphs. This section contains the following topics related to graph
management tasks:

* GraphManager Interface Summary

e Creating a GraphManager Object

e Specifying the Triple Format

e Creating or Overwriting a Graph

e Reading Triples from a Graph

* Replacing Quad Data in Graphs

¢ Adding Triples to an Existing Graph

* Adding Quads into an Existing Graph

¢ Deleting a Graph

7.3.1 GraphManager Interface Summary

The following table summarizes key craphmanager methods. For a complete list of methods, see
the Java Client API Documentation.

write Create or overwrite agraph. If the graph already exists, the effect is the

writehs same as removing the graph and then recreating it from the input data.
For details, see “Creating or Overwriting a Graph” on page 200.

read Retrieve triples from a specific graph. For details, see “Reading Triples

readhs from a Graph” on page 202.

replaceGraphs Remove triples from all graphs, and then insert the quads in the input

replaceGraphsAs data set. Unmanaged triples are not affected. The effect is the same as
first Calllng GraphManager .deleteGraphs, and then inserti ng the quads.
For details, see “Replacing Quad Datain Graphs’ on page 202.

merge Add triples to a named graph or the default graph. If the graph does not

mergeAs exidt, it is created. For more details, see “ Adding Triplesto an Existing
Graph” on page 202.

mergeGraphs Add quadsto the graphs specified in the input quad data. Any graphs that

mergeGraphsis do not aready exist are created. “Adding Triples to an Existing Graph”
on page 202

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 198

MarkLogic Server Working With Semantic Data

delete Delete a specific graph. “ Deleting a Graph” on page 203.

deleteGraphs Delete al graphs. Unmanaged triples are not affected. For details, see
“Deleting a Graph” on page 203.

writePermissions | Manage graph permissions. You can also set graph permissions during
mergePermissions | wyrite and merge operations. For details, see “Managing Permissions’ on
deletePermissions page 214

7.3.2 Creating a GraphManager Object

Operations on graphs, such as loading triples and reading a graph, require a
com.marklogic.client.semantics.GraphManager Obj ect. To create acraphManager, USE

DatabaseClient .newGraphManager.

For example, the following code snippet creates apatabaseciient, and then usesit to create a
GraphManager.

import com.marklogic.client.DatabaseClientFactory;

import com.marklogic.client.DatabaseClient;

import com.marklogic.client.DatabaseClient.DigestAuthContext;
import com.marklogic.client.semantics.GraphManager;

DatabaseClient client = DatabaseClientFactory.newClient (
"localhost", 8000, "myDatabase",
new DigestAuthContext ("username", "password")) ;
GraphManager gmgr = client.newGraphManager () ;

You do not have to create a new patabaseclient Object tO create a GraphManager. YOU Can re-use
any client object previously created by your application that represents the desired connection to
MarkLogic.

7.3.3 Specifying the Triple Format

When reading and writing triples, you must specify the triples format MIME type. You can
specify the format in the following ways:

* UsethewithmimeType method on your triples zandie to set the format on a per source
basis. For example, the following codeinitializesariienandie for reading triplesin Turtle
format:

import com.marklogic.client.io.FileHandle;
FileHandle fileHandle =

new FileHandle (new File ("example.ttl"))
.withMimetype (RDFMimeTypes.TURTLE) ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 199

MarkLogic Server Working With Semantic Data

* UsecraphManager.setDefaultMimeType 10 Set aformat to be used across all operations
performed through a given craphmanager. For example, the following code sets the default
MIME typeto Turtle:

import com.marklogic.client.io.FileHandle;

GraphManager graphMgr = ...;
graphMgr.setDefaultMimeType (RDFMimeTypes . TURTLE) ;

Setting adefault MIME type frees you from setting the MIME type on every triples handle and
enables use of the GraphManager. *As methods, such as GraphManager.writeAs and
GraphManager.readas. FOr exampl (S

graphMgr.setDefaultMimeType (RDFMimeTypes . TURTLE) ;

graphMgr.writeAs (
someGraphURI, new FileHandle (new File ("example.ttl")));

Set the MIME type to one of the values exposed by the rorMineTypes Class, such as
RDFMimeTypes . RDFJSON Of RDFMimeTypes . TURTLE. FOI more details about triples formats accepted
by MarkL ogic, see Supported RDF Triple Formats in Semantics Developer’s Guide.

To learn more about Handles, see “Using Handles for Input and Output” on page 27.

7.3.4 Creating or Overwriting a Graph

Use GraphManager.write aNd GraphManager .writeas tO Create or overwrite agraph. If agraph
already exists with the specified URI, the effect is the same as removing the existing graph and
then recreating it f rom the input triple data.

Note that if you use craphManager.write t0 l0ad quads, any graph URI in aquad isignored in
favor of the graph URI parameter passed into write.

For example, the following code loads triples from afile into a graph. For the complete example,
see “ Example: Loading, Managing, and Querying Triples’ on page 209.

public static void loadGraph(String filename, String graphURI, String
format)
System.out.println("Creating graph " + graphURI) ;
FileHandle tripleHandle =
new FileHandle (new File(filename)) .withMimetype (format) ;
graphMgr.write (graphURI, tripleHandle) ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 200

MarkLogic Server Working With Semantic Data

Use the following procedure to load semantic triplesinto agraph in MarkLogic.

1. If you have not a ready done so, create a com.marklogic.client . semantics.GraphManager.
as described in “ Creating a GraphManager Object” on page 199. For example:

GraphManager graphMgr = client.newGraphManager () ;

2. Create aunandie associated with the input triples. The nandie type depends on the source
for your content, such as afile or in-memory data. For example, the following Handle can
be used to read triplesin Turtle format from afile:

FileHandle tripleHandle =
new FileHandle (new File ("example.ttl")) ;

3. If no default triples format is set on your craphmanager, Specify the triples format for the
Handle, USING the withMimetype Method. For more details, see “ Querying Semantic Triples
With SPARQL” on page 204. For example:

tripleHandle.withMimeType (RDFMimeTypes.TURTLE) ;

4, Write the triples to MarkLogic using GraphManager.write . FOr example:

a. Toload triplesinto anamed graph, specify the graph URI asthe graph URI parameter. For
example:

graphMgr.write (someGraphURI, tripleHandle) ;

b. To load triplesinto the default graph, specify craphManager.pErFauLT GrAPH 8Sthe graph
URI parameter. For example:

graphMgr .write (GraphManager .DEFAULT GRAPH, tripleHandle) ;

5. If your application no longer needs to connect to MarkL ogic, release the connection
resources by calling the patabaseciient Object’Srelease () method.

client.release() ;

As an aternative to craphManager.write, if you already have triplesin an in-memory object, you
Can Use craphManager . writeas t0 short circuit explicit creation of a handle. For example:

graphManager.setDefaultMimeType (RDFMimeTypes .RDFJSON) ;

Object graphData = ...;
graphMgr.writeAs (someGraphURI, graphData) ;

For more details on this technique, see “ Shortcut Methods as an Alternative to Creating Handles”
on page 31.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 201

MarkLogic Server Working With Semantic Data

7.3.5 Reading Triples from a Graph

Use GraphManager.read Of GraphManager . readas {0 read the contents of agraph in MarkLogic.
You must specify the serialization format from the triples, either on the read Handle or the
GraphManager; for details, see “ Specifying the Triple Format” on page 199.

The following exampl e retrieves the contents of the default graph, in Turtle format and makes the
results available to the application through a stringtandie:

StringHandle triples = graphMgr.read (

GraphManager .DEFAULT GRAPH,

new StringHandle () .withMimetype (RDFMimeTypes.TURTLE)) ;
//...work with the triples as one big string

For a complete example, see “ Example: Loading, Managing, and Querying Triples’ on page 2009.

7.3.6 Replacing Quad Data in Graphs

Use GraphManager . replaceGraphs and GraphManager .replaceGraphsas tO remove al quadsfrom
all graphs and then insert quad datainto the graphs specified in the new quads. Unmanaged triples
are not affected by this operation. The end result isthe same as first calling craphManager.delete
(or ae1etens) and then inserting the quads.

The quad data can be in either NQuad or TriG format. Set the MIME type appropriate, as
described in “ Specifying the Triple Format” on page 199.

The following example adds a single triple in Turtle format to the default graph. Thistripleis
passed via a stringHandle.

StringHandle quadHandle = new StringHandle ()
.with (someQuadData)
.withMimetype (RDFMimeTypes .NQUAD) ;
graphMgr.replaceGraphs (quadHandle) ;

The following example performs a similar operation, Using replaceas:

graphMgr.setDefaultMimeType (RDFMimeTypes .NQUAD) ;

File graphData = new File(filename) ;
graphMgr.replaceGraphsAs (graphData) ;

7.3.7 Adding Triples to an Existing Graph

Use GraphManager.merge Of GraphManager .mergeas {0 merge triples into an existing graph. You
must specify the serialization format from the triples, either on the read Handle or the
GraphManager; for details, see “ Specifying the Triple Format” on page 199.

For quad data, use mergeGraphs OF mergeGraphsas. FOr details, see* Adding Quadsinto an Existing
Graph” on page 203.

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 202

MarkLogic Server Working With Semantic Data

The following example adds asingle triple in Turtle format to the default graph. Thistripleis
passed viaastringHandle.

StringHandle stringHandle = new StringHandle ()
.with("<http://example.org/subject2> " +
"<http://example.org/predicate2> " +
"<http://example.org/object2> .")
.withMimetype (RDFMimeTypes.TURTLE) ;
graphMgr .merge ("myExample/graphUri", stringHandle) ;

The following example performs a similar operation, using mergeas:

graphMgr.setDefaultMimeType (RDFMimeTypes.TURTLE) ;

Object graphData = ...;
graphMgr.mergeAs (someGraphURI, graphData) ;

7.3.8 Adding Quads into an Existing Graph

Use GraphManager .mergeGraphs and GraphManager .mergeGraphsAs {0 add quads to an existi ng
graph. If aquad specifies the URI of an existing graph, the quad datais merged into that graph. If
no such graph exists, the graph is created.

The quad data can be in either NQuad or TriG format. Set the MIME type appropriate, as
described in “ Specifying the Triple Format” on page 199.

The following example adds asingle triple in Turtle format to the default graph. Thistripleis
pa%d viaastringHandle.

StringHandle quadHandle = new StringHandle ()
.with (someQuadData)
.withMimetype (RDFMimeTypes .NQUAD) ;
graphMgr .mergeGraphs (quadHandle) ;

The following example performs a similar operation, using mergeas:

graphMgr.setDefaultMimeType (RDFMimeTypes .NQUAD) ;

File graphData = new File(filename) ;
graphMgr .mergeGraphsAs (graphData) ;

7.3.9 Deleting a Graph

Use GraphManager.del ete to remove a single graph. Use GraphM anager.del eteGraphs to delete
all graphs.

The following example removes a single graph with the specified URI:

graphMgr.delete (someGraphURI) ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 203

MarkLogic Server Working With Semantic Data

The following example removes al graphs:

graphMgr.deleteGraphs (someGraphURI) ;

For a complete example, see “ Example: Loading, Managing, and Querying Triples’ on page 209.

7.4 Querying Semantic Triples With SPARQL

To query semantic data using SPARQL, create a sparoLouerybefinition, and then evaluate it
using one of the sparoLQueryManager . execute* Methods. You can configure many aspects of your
guery, such as variable bindings, the graphs to which to apply the query, the query optimization
level.

¢ Basic Steps for SPAROL Query Evaluation

e Handling Query Results

e Defining Variable Bindings

e Limiting the Number of Results

e |Inferencing Support

7.4.1 Basic Steps for SPARQL Query Evaluation
Evaluating a SPARQL query consists of the following basic steps:

1. Create aquery manager usi Ng DatabaseClient .newSPARQLQueryManager. For exampl €

DatabaseClient client = ...;
SPARQLQueryManager sgmgr = client.newSPARQLManager () ;

2. Create aquery usi NQ sPARQLQueryManager .newSPARQLQueryDefinition and confi gure the
guery as needed. For example:

SPARQLQueryDefinition query = sgmgr.newSPARQLQueryDefinition (
"SELECT * WHERE { ?s ?p 20 } LIMIT 10")
.withBinding("o", "http://example.org/objectl") ;

3. Evaluate the query and receive results by calling one of the execute* methods of
SPARQLQueryManager. FOr eéxample, use executeselect for a SELECT query:

JacksonHandle results = new JacksonHandle () ;
results.setMimetype (SPARQLMimeTypes.SPARQL JSON)) ;
results = sgmgr.executeSelect (query, results);

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 204

MarkLogic Server Working With Semantic Data

The format of the results you receive depends on the type of query you evaluate and how you
configure your results Handle and/or the SPARQL QueryManager. For details, see “Handling
Query Results’ on page 205.

For example, the following evaluates a SPARQL SELECT query and returns the results as JSON.
For a complete example, see “Example: Loading, Managing, and Querying Triples’ on page 2009.

SPARQLQueryManager gm = client.newSPARQLQueryManager () ;
SPARQLQueryDefinition query = gm.newQueryDefinition (

"SELECT ?person " +

"WHERE { ?person <http://example.org/marklogic/predicate/livesIn>
\"London\" }"
) ;

JsonNode results = gm.executeSelect (query, new JacksonHandle()) .get () ;
// ... Process results

7.4.2 Handling Query Results

The layout and available format of the results from a SPARQL query depend on the type of query.
For details, see the following topics:

e SELECT Results

* CONSTRUCT and DESCRIBE Results

e ASK Results

7.4.2.1 SELECT Results

A SPARQL SELECT query returns a SPARQL result set, serialized as JSON, XML, or plain text
comma-separated values (CSV). You must set the MIME type on your results ReadHandle as
appropriate for the results format you want to use. The supported MIME types for a SELECT
query are defined by com.marklogic.client.semantics.SPARQIMimeTypes.

For exampl €, JacksonHandle |mpI ements spARQLResul tsReadHandle aNd JsoNReadHandle, SO you
should set the handle MIME type to spargiMimeTypes . sparor,_gson When receiving SELECT
query results through a sacksontand1e:

JacksonHandle handle = new JacksonHandle() ;
handle.setMimeType (SPARQLMimeTypes.SPARQL JSON) ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 205

MarkLogic Server Working With Semantic Data

The following table summarizes the supported Handle and MIME type combinations:

JSONReadHandle | SPARQLMimeTypes.SPARQL JSON | SPARQL results, seriaized as JSON.
For details on this format, see
https://www.w3.0rg/TR/spargl1l-results-jso
nl.

XMLReadHandle | SPARQLMimeTypes.SPARQL XML SPARQL results, serialized as XML.
For details on this format, see
https://www.w3.0rg/TR/2013/REC-rdf-spar
al-XMLres-20130321/.

Other Handle SPARQLMimeTypes.SPARQL CSV SPARQL results, serialized as CSV,
types with line per query solution. For details

on thisformat, see
https://www.w3.0rg/TR/2013/REC-spargl1l
-results-csv-tsv-20130321/.

For examples of the raw XML, JSON, and CSV results, see the examplesin Response Output
Formats in the Semantics Devel oper’s Guide.

7.4.2.2 CONSTRUCT and DESCRIBE Results

CONSTRUCT and DESCRIBE queries return triples. You can request the resultsin any of the
tri plesformats defined by com.marklogic.client.semantics.RDFMimeTypes, EXCEPL TRIG. For
best performance, use the N-triples format (roFMimeTypes . NTRIPLES).

When using a gsonreadrandle, Set the handle MIME type to roFMimeTypes.RDF_Json. This
produces results in RDF/JSON format.

When using an xMLreadHandle, Set the handle MIME type to roFMimeTypes.RDF_xML. This
produces results in RDF/ XML format.

Any TriplesReadHandle implementation that handle plain text can use any of the
RDFMimeTypes, such as NTr1pLE, NQUADS, OF TURTLE.

For RDF/XML. use an xMLreadHandle With the MIME type set t0 RoFMimeTypes . RDF_XML.

To set the handle MIME type, use the setmimeType method. For example:

JacksonHandle handle = new JacksonHandle () ;
handle.setMimeType (RDFMimeTypes.RDFJSON) ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 206

https://www.w3.org/TR/sparql11-results-json/
https://www.w3.org/TR/sparql11-results-json/
https://www.w3.org/TR/2013/REC-rdf-sparql-XMLres-20130321/
https://www.w3.org/TR/2013/REC-rdf-sparql-XMLres-20130321/
https://www.w3.org/TR/2013/REC-sparql11-results-csv-tsv-20130321/
https://www.w3.org/TR/2013/REC-sparql11-results-csv-tsv-20130321/

MarkLogic Server Working With Semantic Data

7.4.2.3 ASK Results
An ASK query always returns a simple boolean value. For details, see gueryManager . executeask.

7.4.3 Defining Variable Bindings

If your query depends on runtime variable definitions, you can define variable bindings one at a
time using the fluent sparoL.QueryDefinition.withBinding definition, or build up aset of bindings
using searoLBindings and then attach them to the query using
SPARQLQueryDefinition.setBindings.

The following example incrementally attaches bindings to a query definition using withBindings:

// incrementally attach bindings to a query

SPARQLQueryDefinition query = ...;

query.withBinding ("o", "http://example.org/objectl")
.withBinding(...);

The following example builds up a setting of bindings and then attaches them all to the query at
once, using setBindings:

// build up a set of bindings and attach them to a query
SPARQLBindings bindings = new SPARQLBindings() ;
bindings.bind("o", "http://example.org/objectl") ;
bindings.bind(...);

query.setBindings (bindings) ;

Both sparoLQueryDefinition.withBinding and sParQLBindings enable you to specify alanguage
tag or RDF type for the bound value.

For more details, see SPARQLBIndings in the Java Client APl Documentation.

7.4.4 Limiting the Number of Results

When you evaluate a SPARQL serecT query, by default, all results are returned. You can limit the
number of resultsreturned in a“page’ using sparQLQueryManager . setPageLength OF @ SPARQL
rimIT clause. You can retrieve successive pages of results by repeatedly calling executeselect
with adifferent page start position. For example:

// Change the max page length
sgmgr . setPageLength (NRESULTS) ;

// Fetch at most the first N results
long start = 1;
JacksonHandle results = sparglMgr.executeSelect (query, handle, start);

// Fetch the next N results

start += N;
JacksonHandle results = sparglMgr.executeSelect (query, handle, start);

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 207

/javadoc/client/com/marklogic/client/semantics/SPARQLBindings.html

MarkLogic Server Working With Semantic Data

7.4.5 Inferencing Support

Inferencing enables discovery of new “facts’ based on a combination of data and rulesfor
understanding that data. The Java Client API includes the following features that facilitate
inferencing:

* Enabling or Disabling Automatic Inferencing

e Associating a Rule Set with a Query

7.4.5.1 Enabling or Disabling Automatic Inferencing

When automatic inferencing is enabled, MarkLogic can apply a default inferencing ruleset at
guery time. Default ruleset management is a function of the REST Management API. However,
you can enable or disable the use of adefault ruleset at query time using
SPARQLQueryDefinition.withIncludeDefaultRulesets. Use of the default ruleset is enabled by
default.

For more details, see Rulesets in the Semantics Developer’s Guide.

7.4.5.2 Associating a Rule Set with a Query
You can explicitly apply aruleset at query time rather than implicitly using the default ruleset.

The Java Client APl includesthe com.marklogic.client.semantics.SPARQLRuleset classwith a
set of built-in rulesets and a factory method to enable you to use custom rulesets. To associate a
ruleset with a query, use spargLQueryDefinition.withRuleset OF
SPARQLQueryDefinition.setRulesets.

For more details, see Rulesets in the Semantics Developer’s Guide.

7.5 Querying Triples with the Optic API

The Optic features of the Java Client API enable you to query semantic data without using
SPARQL. The Optic features of the Java Client API are covered in detail in “Optic Java APl for
Relational Operations” on page 218.

To perform a semantic query using the Optic API, construct a query plan using
com.marklogic.client.expression.PlanBuilder, and then evaluate it us ng
com.marklogic.client.row.RowManager. FOr example, the following function creates a query plan
that finds “ persons who live in London”, based on the data from “Example: Loading, Managing,
and Querying Triples” on page 209.

public static void opticQuery () {
RowManager rowMgr = client.newRowManager () ;
PlanBuilder p = rowMgr.newPlanBuilder () ;
PlanPrefixer predPrefixer =
p.prefixer ("http://example.org/marklogic/predicate/") ;
Plan plan =

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 208

MarkLogic Server

Working With Semantic Data

p.-fromTriples (
p.-pattern(p.col ("person"),
predPrefixer.iri("livesIn"),
p-xs.string("London"))) ;

RowSet<RowRecord> results = rowMgr.resultRows (plan) ;

System.out .println ("OPTIC: Persons who live in London:") ;
for (RowRecord row: results) {
System.out.println(" " + row.getString("person")) ;

}
}

When the above function runs as part of the end to end example, it produces output of the
following form:

7.6

OPTIC: Persons who live in London:
http://example.org/marklogic/person/Jane Smith
http://example.org/marklogic/person/John Smith
http://example.org/marklogic/person/Mother Goose

Example: Loading, Managing, and Querying Triples
The following example program demonstrates how to perform the following tasks:

Load triplesinto a graph. These triples become “managed” triples. Use the operations
discussed in “ Creating and Managing Graphs” on page 198 for graph management.

L oad adocument containing atriple. This becomes an unmanaged triple. It isindexed and
can be queried, but it is not managed through the graph operations.

Execute a semantic query using either SPARQL or the Optic API.

Removed a graph, thereby removing all the managed triples in the graph.

This example creates a graph from the following input data. Copy and paste this datato afile, and
then modify the variable triplerilename in the example code to point to thisfile.

<http://example.
<http://example.

"London"*"*<http

org/marklogic/person/John Smiths>
org/marklogic/predicate/livesIn>

://www.w3.0rg/2001/XMLSchema#string>
<http://example.
<http://example.
"London""*"*<http:
<http://example.
<http://example.

org/marklogic/person/Jane Smith>
org/marklogic/predicate/livesIn>
//www.w3.0rg/2001/XMLSchema#string>
org/marklogic/person/Jack Smith>
org/marklogic/predicate/livesIn>

"Glasgow"*“<http://www.w3.0rg/2001/XMLSchema#fstring>

MarkLogic 10—May, 2019

Java Application Developer’ s Guide—Page 209

MarkLogic Server

Working With Semantic Data

The example data contains triple data that define relationships of the form “Person X livesin Y”.
The query run by the example finds al persons who live in London. The program runs the query
severa times:

After loading triplesinto the default graph. This query matches John Smith and Jack

Smith.

After loading a document containing an unmanaged triple that asserts Mother Goose lives
in London. This query matches John Smith, Jack Smith, and Mother Goose.

After removing the default graph. Only the unmanaged triple remains, so the query
matches only Mother Goose.

After removing the document containing the unmanaged triple. No matches are found.

The example code demonstrates how to use a SPARQL query and an Optic query to fetch the
same information. For more details, see “Querying Semantic Triples With SPARQL” on page 204
and “Querying Triples with the Optic API” on page 208.

Before running the following program, modify the definition of the ci1ient and triplerilename
variables to match your environment.

package examples;

import java.io.File;

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

public class Graphs {

com

com
com
com

com.

com

com.
com.

com

com.
com.

com

com.
com.

com

com.

com

.fasterxml
com.marklogic.
.marklogic.
.marklogic.
.marklogic.
marklogic.
.marklogic.
marklogic.
marklogic.
.marklogic.
marklogic.
marklogic.
.marklogic.
marklogic.
marklogic.
.marklogic.
marklogic.
.marklogic.

client

client.
client.

client

client.
client.

client

client.
client.

client

client.
client.

client

client.
client.

.jackson.databind.JsonNode;
client.
client.

DatabaseClient;
DatabaseClientFactory;
.document .JSONDocumentManager;
expression.PlanBuilder;
expression.PlanBuilder.Plan;
.1o0.FileHandle;

io.Format;

io.JacksonHandle;
.1o.StringHandle;
row.RowManager;
row.RowRecord;

.row.RowSet;
semantics.GraphManager;
semantics.RDFMimeTypes;
.semantics.SPARQLQueryDefinition;
semantics.SPARQLQueryManager;
type.PlanPrefixer;

static DatabaseClient client = DatabaseClientFactory.newClient (
"localhost™",
new DatabaseClientFactory.DigestAuthContext (

"username",

8000,

"Documents",

"password")) ;

static private GraphManager graphMgr = client.newGraphManager () ;
static private String graphURI = GraphManager.DEFAULT GRAPH;

MarkLogic 10—May, 2019

Java Application Developer’s Guide—Page 210

MarkLogic Server Working With Semantic Data

static private String tripleFilename = "/path/to/your/file.ttl";
static private String unmanagedTripleDocURI = "mothergoose.json";

// Load managed triples from a file into a graph in MarkLogic
public static void loadGraph(String filename, String graphURI, String
format) {
System.out.println("Creating graph " + graphURI) ;
FileHandle tripleHandle =
new FileHandle (new File(filename)) .withMimetype (format) ;
graphMgr.write (graphURI, tripleHandle) ;

}

// Insert a document that includes an unmanaged triple.
public static void addUnmanagedTriple () {
System.out.println("Inserting doc containing an unmanaged triple...");
StringHandle contentHandle = new StringHandle (
"{ \"name\": \"Mother Goose\"," +
"\"triple\" : {" +
"\"subject\"
\"http://example.org/marklogic/person/Mother Goose\"," +
"\"predicate\"
\"http://example.org/marklogic/predicate/livesIn\"," +
"\"object\" : {" +
"\"value\" : \"London\"," +
"\"datatype\"
\"http://www.w3.0rg/2001/XMLSchema#string\"" +
"} } }") .withFormat (Format .JSON) ;
JSONDocumentManager jdm = client.newdJSONDocumentManager () ;
jdm.write (unmanagedTripleDocURI, contentHandle) ;

}

public static void deleteUnmanagedTriple()
System.out.println ("Removing doc containing unmanaged triple...");
JSONDocumentManager jdm = client.newdJSONDocumentManager () ;
jdm.delete (unmanagedTripleDocURI) ;

}

public static void readGraph(String graphURI, String format) ({
System.out.println ("Reading graph " + graphURI) ;
StringHandle triples =
graphMgr.read (graphURI, new StringHandle () .withMimetype (format)) ;
System.out.println(triples) ;

}

// Delete a graph. Unmmanaged triples are unaffected.

public static void deleteGraph (String graphURI) {
System.out.println ("Deleting graph " + graphURI) ;
graphMgr.delete (graphURI) ;

}

// Evaluate a SPARQL query.

public static void sparglQuery () {
SPARQLQueryManager gm = client.newSPARQLQueryManager () ;
SPARQLQueryDefinition query = gm.newQueryDefinition

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 211

MarkLogic Server Working With Semantic Data

"SELECT ?person " +
"WHERE { ?person
<http://example.org/marklogic/predicate/livesIn> \"London\" }"
)

JsonNode results =

gm.executeSelect (query, new JacksonHandle()) .get () ;
JsonNode matches = results.path("results") .path("bindings") ;
System.out .println ("SPARQL: Persons who live in London:") ;
for (int i = 0; i < matches.size(); i++) {

String subject =
matches.get (i) .path("person") .path("value") .asText () ;
System.out.println(" " + subject);

}

public static void opticQuery () {
RowManager rowMgr = client.newRowManager () ;
PlanBuilder pb = rowMgr.newPlanBuilder () ;
PlanPrefixer predPrefixer =
pb.prefixer ("http://example.org/marklogic/predicate/") ;
Plan plan = pb.fromTriples (
pb.pattern (
pb.col ("person"),
predPrefixer.iri("livesIn"),
pb.xs.string("London"))) ;

RowSet<RowRecord> results = rowMgr.resultRows (plan) ;
System.out .println ("OPTIC: Persons who live in London:") ;
for (RowRecord row: results) {

System.out.println(" " + row.getString("person")) ;

}

public static void main(String[] args) {
loadGraph (tripleFilename, graphURI, RDFMimeTypes.TURTLE) ;
readGraph (graphURI, RDFMimeTypes.TURTLE) ;

// Query the graph for persons who live in London.
// Should find 2 matches.
sparglQuery () ;

// Add a document containing an unmanaged triple. Query again.
// Should find 3 matches.

addUnmanagedTriple () ;

sparqglQuery () ;

// Perform the same query using the Optic API
opticQuery () ;

// Delete the created graph. Unmanaged triple remains.
// Query should find 1 match.

deleteGraph (graphURI) ;

sparqglQuery () ;

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 212

MarkLogic Server Working With Semantic Data

// Remove the document containing the unmanaged triple.
// Query should find no matches.
deleteUnmanagedTriple () ;

sparglQuery () ;

client.release() ;

}

When you run the example, you should see output similar to the following. Whitespace has been
added to the output to more easily distinguish between the operations.

7.7

Creating graph com.marklogic.client.semantics.GraphManager.DEFAULT GRAPH
@prefix pl: <http://example.org/marklogic/predicate/>
@prefix p0: <http://example.org/marklogic/person/> .

pO:Jane Smith pl:livesIn "London"
pO0:Jack_Smith pl:livesIn "Glasgow"
pO0:John_Smith pl:livesIn "London"

SPARQL: Persons who live in London:
http://example.org/marklogic/person/Jane Smith
http://example.org/marklogic/person/John Smith
http://example.org/marklogic/person/Mother Goose

Inserting a document containing an unmanaged triple...

SPARQL: Persons who live in London:
http://example.org/marklogic/person/Jane Smith
http://example.org/marklogic/person/John Smith
http://example.org/marklogic/person/Mother Goose

OPTIC: Persons who live in London:
http://example.org/marklogic/person/Jane Smith
http://example.org/marklogic/person/John Smith
http://example.org/marklogic/person/Mother Goose

Deleting graph com.marklogic.client.semantics.GraphManager.DEFAULT GRAPH
SPARQL: Persons who live in London:
http://example.org/marklogic/person/Mother Goose

Removing document containing unmanaged triple...
SPARQL: Persons who live in London:

Using SPARQL Update to Manage Graphs and Graph Data

You can use SPARQL Update to insert, update, or delete triples and graphs, as an alternative to
the graph management interface described in “ Creating and Managing Graphs’ on page 198. You
cannot use SPARQL Update to operate on unmanaged triples.

To learn about SPARQL Update, see SPARQL Update in the Semantics Developer’s Guide.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 213

MarkLogic Server Working With Semantic Data

To use SPARQL Update with the Java Client API, follow the same procedure as for SPARQL
guery, but initialize your spargrouerybefinition With update rather than query code, and use

SPARQLQueryManager .executeUpdate 10 evaluate the update. For details, see “Basic StepS for
SPARQL Query Evaluation” on page 204.

For example, the following code adds a single triple to the default graph. You can add this
function to the example framework in “Example: Loading, Managing, and Querying Triples’ on
page 209 to experiment with SPARQL Update.

public static void sparqglUpdate () {
SPARQLQueryManager gm = client.newSPARQLQueryManager () ;
SPARQLQueryDefinition query = gm.newQueryDefinition(
"PREFIX exp: <http://example.org/marklogic/people/>" +
"PREFIX pre: <http://example.org/marklogic/predicate/>" +
"INSERT DATA {" +
" exp:Humpty Dumpty pre:livesIn \"London\" ." +
" } "
)
System.out.println("Inserting a triple using SPARQL Update") ;
gm.executeUpdate (query) ;

}
A successful SPARQL Update returns no results.

You can bind variables to values using the procedure described in “ Defining Variable Bindings’
on page 207.

7.8 Managing Permissions

Permissions on semantic data are managed at either the graph or document level, depending on
whether the triples are managed or unmanaged. Querying and reading semantic data requires read
permissions on either the containing graph (managed triples) or document (unmanaged triples).
This section covers the following topics related to controlling permissions on semantic data:

e Default Graph Permissions and Required Privileges

* Setting Graph Permissions

* Retrieving Graph Permissions

¢ Managing Permissions on Unmanaged Triples

7.8.1 Default Graph Permissions and Required Privileges

All graphs created and managed using the Java, REST, or Node.js Client APIs grant “read”
capability to the rest-reader role and “update” capability to the rest-writer role. These default
permissions are a\ways assigned to a graph, even if you do not explicitly specify them.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 214

MarkLogic Server Working With Semantic Data

If you explicitly specify other permissions when creating a graph, the default permissions are still
set, in addition to the permissions you specify.

You can use custom roles to limit access to selected users on a graph by graph basis. Your custom
roles must include equivalent rest-reader and rest-writer privileges. Otherwise, users with
these roles cannot use the Java Client APl to manage or query semantic data. For details, see
Controlling Access to Documents and Other Artifacts in the REST Application Developer’s Guide.

For more information on the MarkL ogic security model, see the Security Guide.

7.8.2 Setting Graph Permissions

When you create a graph with the Java Client API, MarkLogic assigns a set of default
permissions, even if you do not specify any explicit permissions; for details, see “ Default Graph
Permissions and Required Privileges’ on page 214. You can modify permissions on agraph asa
standal one operation or as part of another operation, such as when creating or merging graphs.

Graph permissions are encapsulated in a craphrermissions Object. To create a set of graph
penTﬂgﬁonS,USEGraphManager.newGraphPermissimm;OrGraphManager.permission.

To modify permissions standalone, use the following craphManager methods:

® GraphManager.writePermissions
® GraphManager.mergePermissions
® GraphManager.deletePermissions

To modify permissions as part of another operation, such as craphManager.write Of
GraphManager.merge, include AGraphPermissions Obj ectin your cal.

The following example sets the permissions on the graph with URI “ myExample/graphUri”. The
code grants the role “ example_manager” read and update permissions on the graph.

graphMgr.writePermissions ("myExample/graphUri",
graphMgr .permission ("example manager", Capability.READ)
.permission ("example manager", Capability.UPDATE)) ;

The following exampl e sets the graph permissions as part of a graph merge operation:

graphMgr .merge (
"myExample/graphUri", someTriplesHandle,
graphManager.permission ("rolel", Capability.READ)
.permission("role2", Capability.READ, Capability.UPDATE)) ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 215

MarkLogic Server Working With Semantic Data

7.8.3 Retrieving Graph Permissions

To retrieve permissions metadata for a named graph or the default graph, use
GraphManager.getPermissions. EXp| orethe resulting GraphPermissions Obj ect us Ng Map
operations. The Map keys are role names, such as “rest-reader”, and the values are the
capabilities.

For example, the following code fetches the permissions on the default graph and prints the
capabilities associated with the “rest-reader” role:

GraphPermissions permissions =
graphMgr.getPermissions (GraphManager .DEFAULT GRAPH) ;
System.out.println (permissions.get ("rest-reader") ;

7.8.4 Managing Permissions on Unmanaged Triples

Unmanaged triples are stored in documents, alongside other content, rather than being inserted
into the triple store. You control access to unmanaged triples through the permissions on the
documents that contain them.

For example, a SPARQL query will only return a matching unmanaged tripleif the user running
the query has read permissions on the document that contains the triple.

Permissions are considered document metadata. Set permissions using the pocumentManager
interface and avetadatanandie. FOr example, set permissions using
DocumentMetadataHandle.setPermissions, and then including the metadata handlein acall to
DocumentManager .write. FOr more details, see “Reading, Modifying, and Writing Metadata’ on

page 43.

For more information document permissions, see Protecting Documents in the Security Guide.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 216

MarkLogic Server Working With Semantic Data

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 217

MarkLogic Server Optic Java API for Relational Operations

8.0 Optic Java API for Relational Operations

The MarkLogic Optic API isimplemented in JavaScript, XQuery, REST, and Java. A genera
overview and the JavaScript and X Query implementations of the Optic API is described in Optic
API for Multi-Model Data Access in the Application Developer’s Guide. This chapter describes the
Java Client implementation of the Optic API, which isvery similar in structure to the JavaScript
version of the Optic API.

This chapter has the following main sections:

* Overview

e Getting Started

e Java Packages
e Structure of the Java Optic API

e Examples

8.1 Overview

The Optic Java Client API provides classes to support building a plan on the client, executing the
plan on the server, and processing the response on the client.

On the server, the Optic API can yield arow that satisfies any of several common use cases:

» A traditional flat list of atomic values with names and XML Schema atomic datatypes.

e A dynamic JSON or XML document with substructure and leaf atomic values or mixed
text.

* An envelope with out-of-band metadata properties and relations for alist of documents.
The second use case can take advantage of document joins or constructor expressions. The third
use case can take advantage of document joins.

On the client, the Optic Java Client API can consume a set of rows in one of the following ways:

* Asasingle CSV, JSON, or XML payload with all of the rowsin the set.

» By iterating over each row with a Java map key-value interface, a pre-defined Plain Old
Java Object (POJO) tree structure, or aJSON or XML document structure.

A structured value in aformat alien to the response format is encoded as a string. In particular,
when getting a CSV payload, a JSON or XML column value is encoded as a string. Similarly,
when getting a JSON payload or row, an XML value is encoded as a string (and vice versa).

8.2 Getting Started
The Optic Java Client communicates with a REST App Server on MarkLogic.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 218

MarkLogic Server Optic Java API for Relational Operations

1 Download the MarkL ogic Java Client API to your client system and configure, as
described in “ Getting Started” on page 14.

2. You can use the preconfigured REST App Server at port 8000, as described in “ Choose a
REST API Instance” on page 15, however it is generally better that you create your own
REST App Server. You can use the posT: /vi/rest-apis Call to quickly and conveniently
create aREST App Server. For example, to create a REST App Server, named optic, On a
server named MLserver, yOUu can sSimply enter:

curl -X POST --anyauth -u admin:admin -H
"Content-Type:application/json" \
—d'{
"rest-api": {"name": "Optic"}
oA
http://MLserver:8002/vl/rest-apis

The optic App Server will be assigned an unused port number and all of the required
forests and databases will be created for it. The optic database created for you will usethe
default schemas database. However, you should create a unique schemas database and
assign it to the optic database.

To run the examples described in this chapter, do the following:

1 Follow the stepsin Load the Data in the SQL Data Modeling Guide to load the sample
documents into the database. Use the database associated with your REST API instance
(optic) rather than the one used in the procedure.

2. Follow the stopsin Create Template Views in the SQL Data Modeling Guide to create views
and insert the template view documents into the schema database assigned to the optic
database.

8.3 Java Packages
The following packages implement the Optic featuresin the Java API:

Package Description

com.marklogic.client.expression | Provides classesfor building Optic plan pipelines and
expressions for execution on the REST server.

com.marklogic.client.row Provides classes for sending plan requests to and
processing row responses from the REST server.

com.marklogic.client.type Providesinterfaces that specify the type of an expression
or value passed to a r1ansuilder method or returned
from arowrecord method.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 219

MarkLogic Server Optic Java API for Relational Operations

See the MarkL ogic Java API JavaDoc reference for details.

8.4 Structure of the Java Optic API

The Java Optic API issimilar to the server-side JavaScript and X Query implementations of the
Optic API described in Optic API for Multi-Model Data Access in the Application Developer’s Guide.
This chapter describes the Java Client implementation of the Optic API, which issimilar in
structure.

The Optic API for Multi-Model Data Access chapter in the Application Developer’s Guide contains
the following main topics of interest to Java Optic developers:

¢ Objects in an Optic Pipeline

¢ Data Access Functions

e Kinds of Optic Queries

e Expression Functions For Processing Column Values

e Functions Equivalent to Boolean, Numeric, and String Operators

* Node Constructor Functions

e Best Practices and Performance Considerations

* Optic Execution Plan

e Parameterizing a Plan

e Exporting and Importing a Serialized Optic Query

8.4.1 Values and Expressions

The *Val interfaces represent client-side values typed with server data types. For example, the
PlanBuilder.xs.decimal Method constructs a client value with an xs . decima1 datatype.

The *Expr interfaces represent server expressions typed with server data types. For example, the
PlanBuilder.fn.formatNumber Method constructs a server expression to format the result of a
numeric expression as a string expression.

Server expressions executed to produce the boolean expression for awhere Operation or the
expression assigned to acolumn by the p1ansuilder.as function can take columns as arguments.
The function call calculates the result of the expression for each row using the values of the
columnsin the row. For example, if the first argument t0 p1anBuilder. fn. formatNumber iSa
column, the formatted string will be produced for each row with the value of the column. The
column must have avalue in each row with the data type required in the expression.

The API provides some overloads for typical literal arguments of expression functions as a
convenience.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 220

/javadoc/client/index.html

MarkLogic Server Optic Java API for Relational Operations

The com.marklogic.client.type package hasthe marker interfaces for the server data types.

8.4.2 Items and Sequences

Some functions can take multiple values or expressions for a parameter. Such parameters have a
sequence datatype. A sequence data type can take either asingle item of the datatype or a
sequence of the datatype. The API provides constructor functions that take a varargs of items of
the appropriate data type and return the sequence.

For instance, r1anBuilder.pattern takes a sequence for the subject, predicate, and object
parameters.

Thecall can passe|ther ONE planTriplePosition INStANCe (an XsAnyAtomicTypeVal, PlanColumn, OF
planParamExpr ODject) asthe subject or use p1anBuilder. subject t0 construct a sequence of such
objects to pass as the subject.

8.4.3 Atomic Values and Nodes in RowRecord

RowRecord Provides the getxinda metadata method for discovering the columnking of acolumnin
the current row (ATOMIC_VALUE, CONTENT, or NULL).

For an ATOMIC_VALUE column, the getpatatype metadata method reports the atomic data
type.

You can call aget* getter to cast the value to the appropriate primitive or to a*Val type.

For aCONTENT col umn, the getContentFormat and getContentMimetype metadata methods
report the format and mime type. The caller can pass the appropriate handle to the getcontent
getter to read the JSON, XML, binary, or text content (consistent with the Java APl elsewhere).

8.5 Examples

The following two examples are based on documents and templ ate views described in the Creating
Template Views chapter in the SQL Data Modeling Guide.

List all of the employeesin order of 1D number.

package Optic;

import com.marklogic.client.DatabaseClient;

import com.marklogic.client.DatabaseClientFactory;

import com.marklogic.client.io.StringHandle;

import com.marklogic.client.expression.PlanBuilder;

import com.marklogic.client.expression.PlanBuilder.ModifyPlan;
import com.marklogic.client.row.RowManager;

public class optic4 {

public static void main(String[] args) {
DatabaseClient db = DatabaseClientFactory.newClient (

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 221

MarkLogic Server Optic Java API for Relational Operations

"localhost", 8000,
new DatabaseClientFactory.DigestAuthContext ("admin", "admin")

)i

RowManager rowMgr = db.newRowManager () ;
PlanBuilder p = rowMgr.newPlanBuilder () ;

ModifyPlan plan = p.fromView("main", "employees")
.select ("EmployeeID", "FirstName", "LastName")
.orderBy ("EmployeeID")

.offsetLimit (0, 25);

System.out .println(
rowMgr .resultDoc (plan,
new StringHandle () .withMimetype ("text/csv")) .get ()
)

return;

}

Return the ID and full name for the employee with an Employeel D of 3.
package Optic;

import com.marklogic.client.DatabaseClient;

import com.marklogic.client.DatabaseClientFactory;

import com.marklogic.client.io.StringHandle;

import com.marklogic.client.expression.PlanBuilder;

import com.marklogic.client.expression.PlanBuilder.ModifyPlan;
import com.marklogic.client.row.RowManager;

import com.marklogic.client.type.XsIntVal;

public class optic {

public static void main(String[] args) {
DatabaseClient db = DatabaseClientFactory.newClient (
"MLserver", 8000,
new DatabaseClientFactory.DigestAuthContext ("admin", "admin")

)i

RowManager rowMgr = db.newRowManager () ;
PlanBuilder p = rowMgr.newPlanBuilder () ;
XsIntVal EmployeeID = p.xs.intVal(3);

ModifyPlan plan = p.fromView("main", "employees")
.where (p.eq(p.col ("EmployeeID"), EmployeelID))
.select ("EmployeeID", "FirstName", "LastName")

.orderBy ("EmployeeID") ;
System.out.println(

rowMgr .resultDoc (plan,
new StringHandle () .withMimetype ("text/csv")) .get ()

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 222

MarkLogic Server

}

Optic Java API for Relational Operations

) i

return;

}

The following example returns alist of the people who were born in Brooklyn in the form of a
table with two columns, person and name. Thisis executed against the example dataset described

in Loading Triples

in the Semantics Developer’s Guide. This example is the Java equivalent of the

last JavaScript example described in fromView Examples in the Optic API for Multi-Model Data Access
chapter in the Application Developer’s Guide.

packag

import
import
import
import
import
import
import

public

e Optic;

com.marklogic.client.DatabaseClient;
com.marklogic.client.DatabaseClientFactory;
com.marklogic.client.DatabaseClientFactory.DigestAuthContext;
com.marklogic.client.io.StringHandle;
com.marklogic.client.expression.PlanBuilder;
com.marklogic.client.row.RowManager;
com.marklogic.client.type.PlanColumn;

class optic2 {

public static void main(String[] args) {

DatabaseClient db = DatabaseClientFactory.newClient (
"localhost", 8000,
new DigestAuthContext ("admin", "admin")

) ;

RowManager rowMgr = db.newRowManager () ;

PlanBuilder p = rowMgr.newPlanBuilder () ;

PlanBuilder.Prefixer foaf =

p.prefixer ("http://xmlns.com/foaf/0.1") ;
PlanBuilder.Prefixer onto =

p.prefixer ("http://dbpedia.org/ontology") ;
PlanBuilder.Prefixer resource =

p.prefixer ("http://dbpedia.org/resource") ;

PlanColumn person = p.col ("person") ;

PlanBuilder.QualifiedPlan plan = p.fromTriples(
p-pattern(person, onto.iri ("birthPlace"),
resource.iri ("Brooklyn")),
p-pattern(person, foaf.iri("name"), p.col("name"))

)i

System.out .println(

rowMgr .resultDoc (plan,

new StringHandle () .withMimetype ("text/csv")) .get ()
) ;

return;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 223

MarkLogic Server Optic Java API for Relational Operations

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 224

MarkLogic Server Optic Java API for Relational Operations

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 225

MarkLogic Server POJO Data Binding Interface

9.0 POJO Data Binding Interface

You can use the Java Client APl to persist POJOs (Plain Old Java Objects) as documentsin a
MarkL ogic database. Thisfeature enables you to apply the rich MarkL ogic Server search and data
management features to the Java objects that represent your application domain model without
explicitly converting your data to documents.

This chapter includes the following topics:

* Data Binding Interface Overview

e |Limitations of the Data Binding Interface

e Annotating Your Object Definition

e Saving POJOs in the Database

* Retrieving POJOs from the Database By Id

e Example: Saving and Restoring POJOs

e Searching POJOs in the Database

e Example: Searching POJOs

e Retrieving POJOs Incrementally

¢ Removing POJOs from the Database

* Testing Your POJO Class for Serializability

* Troubleshooting

9.1 DataBinding Interface Overview

The data binding feature of the Java Client API enables your data to flow seamlessly between
application-level Java objects and JSON documents stored in a MarkL ogic server. With the
addition of minimal annotations to your class definitions, you can store POJOs in the database,
search them with the full power of MarkLogic Server, and recreate POJOs from the stored
objects.

The Java Client API data binding interface uses the data binding capabilities of Jackson to convert
between Java objects and JSON. You can leverage Jackson annotations to fine tune the
representation of your objects in the database, but generally you should not need to. Not all
Jackson annotations are compatible with the Java Client API data binding capability. For details,
see “Limitations of the Data Binding Interface” on page 227.

The data binding capabilities of the Java Client API are primarily exposed through the

com.marklogic.client.pojo.PojoRepository interface. To get started with data bi nding, follow
these basic steps:

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 226

MarkLogic Server POJO Data Binding Interface

» For each Java class you want to bind to a database representation, add source code
annotations to your class definition that call out the Java property to be used as the object
id.

* Usearojorepository t0 Save your objectsin the database. Y ou can create, read, update,
and delete persisted objects.

» Search your object data using a string (stringguerybefinition) OF Structured query
(Pojoouerypefinition). YOU can use search to identify and retrieve a subset of the stored
POJOs.

The object id annotation is required. Additional annotations are available to support more
advanced features, such asidentifying properties on which to create database indexes and latitude
and longitude identifiers for geospatial search. For details, see “ Annotating Your Object
Definition” on page 227.

9.2 Limitations of the Data Binding Interface
You should be aware of the following restrictions and limitations of the data binding feature:

» The DataBind interface is intended for use in situations where the in-database
representation of objectsis not as important as using a POJO-first Java API.

If you have strict requirements for how your objects must be structured in the database,
USEJacksonDatabindHandleVV“FIJSONDocumentManager‘anClStructuredQueryBuilder
instead of the Data Binding interface.

* Youcanonly persist and restore objects of consistent type.

That is, if you persist objects of type T, you must restore them and search them astype T.
For example, you cannot persist an object astype T and then restore it asa some type T'
that extends T, or vice versa.

* You cannot use the data binding interface with classes that contain inner classes.

* Theobject property you chose as the object id must not contain values that do not form
valid database URIs when serialized. Y ou should choose object properties that have
atomic type, such as 1nteger, string, Of Float, rather than a complex object type such as

Calendar.

* Though the Java Client API uses Jackson to convert between POJOs and JSON, not all
Jackson features are compatible with the Java Client API data binding capability. For
example, you can add Jackson annotations to your POJOs that result in objects not being
persisted or restored properly.

9.3 Annotating Your Object Definition

The data binding interface in the Java Client API is driven by simple annotations in your class
definitions. Annotations are of the form eannotationname. YOU can attach an annotation to a
public class field or a public getter or setter method.

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 227

MarkLogic Server POJO Data Binding Interface

Every bound class requires at |east an era annotation to define the object property that holds the
object id. A bound POJO class must contain exactly one era annotation. Each object must have a
uniqueid.

Additional, optional annotations support powerful search features such as range and geospatial
gueries.

For example, the following annotation says the object id should be derived from the getter
MyClass.getMyId. |f you rely on setters and getters for object identity, your setters and getters
should follow the Java Bean convention.

import com.marklogic.client.pojo.annotation.Id;
public class MyClass {
Long myId;

@Id
public Long getMyId() {
return myId;

}
}

Alternatively, you can associated @Id with a member. The following annotation specifies that the
my1d member holds the object id for all instances of myciass:

import com.marklogic.client.pojo.annotation.Id;
public class MyClass {

@Id

public Long myId;

}

Annotations can be associated with amember, a getter or a setter because an annotation decorates
alogical property of your POJO class.

The following table summarizes the supported annotations. For a complete list, see
com.marklogic.pojo.annotation iN the JavaDoc.

Annotation Description

@Id The object identifier. Thevalueinthee1a property or the
value returned by the era method is used to generate a
unique database URI for each persistent object of the
class. Each object must have a unique id. Each POJO
class may have only one era.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 228

MarkLogic Server POJO Data Binding Interface

Annotation Description

@PathIndexProperty I dentifies a property for which a path range index is

required. Any property on which you perform range
queries must be indexed. For details, see“ Creating
Indexes from Annotations’ on page 236.

@GeospatialLatitude | dentifies the property that contains the geospatial

latitude coordinate value, in support of a geospatial
element pair index. For details, see “Creating Indexes
from Annotations’ on page 236.

@GeospatialLongitude | dentifies the property that contains the geospatial

longitude coordinate value, in support of a geospatial
element pair index. For details, see “Creating Indexes
from Annotations’ on page 236.

@GeoSpatialPathIndexProperty | ldentifiesaproperty for which ageospatia point path

range index is required. Any property on which you
perform geospatial point queries must be indexed. For
details, see “ Creating Indexes from Annotations’ on
page 236.

9.4 Saving POJOs in the Database

Use pojorepository.write t0 insert or update POJOs in a MarkLogic database. Your POJO class
definition must include at least an era annotation and each object must have aunique id.

The class whose objects you want to persist must be serializable by Jackson. For details, see
“Testing Your POJO Class for Serializability” on page 249.

Use the following procedure to persist POJOs in the database:

1.

Ensure the class you want to work with includes at least an eza annotation, as described in
“Annotating Your Object Definition” on page 227.

If you have not already done so, create a com.marklogic.client .DatabaseClient Object.
For example, if using digest authentication:

DatabaseClient client = DatabaseClientFactory.newClient (
host, port, new DigestAuthContext (username, password)) ;

Create arojorepository 0bject associated with the class you want to bind. For example, if
you want to bind the class named myciass and the eza annotation in myciass identifiesa
field or method return type of type Long, create arepository as follows:

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 229

MarkLogic Server POJO Data Binding Interface
PojoRepository myClassRepo =
client .newPojoRepository (MyClass.class, Long.class) ;

3. Call rojorepository.write t0 Save objects to the database. For example:

MyClass obj = new MyClass() ;
myClass.setId(42) ;

myClassRepo.write (obj) ;
4, When you are finished with the database, release the connection.
client.release() ;

For aworking example, see “Example: Saving and Restoring POJOS’ on page 231.

To load POJOs from the database into your application, Use pojorepository.read OF
PojoRepository.search. FOr details, see * Retrieving POJOs from the Database By Id” on
page 230 and “ Searching POJOs in the Database” on page 232

9.5 Retrieving POJOs from the Database By Id

Use pojorepository. read t0 l0ad POJOs from the database into your application. You should
only USE PojoRepository.read ON Obj ects created us NQg PojoRepository.write.

Use the following procedure to load POJOs from the database by object id:

1 Ensure the class you want to work with includes at least an e1a annotation , asdescribed in
“Annotating Your Object Definition” on page 227.

2. If you have not already done so, create a com.marklogic.client .DatabaseClient object.
For example, if using digest authentication:

DatabaseClient client = DatabaseClientFactory.newClient (
host, port, new DigestAuthContext (username, password)) ;

3. Create a rojorepository Object associated with the class you want to work with. For
example, if you want to restore objects of the class named myc1ass and the ez annotation
inmMyciass identifies afield or method return type of type rong, Create arepository as
follows:

PojoRepository myClassRepo =
client.newPojoRepository (MyClass.class, Long.class);

4, Call pojorepository.read to restore one or more objects from the database. For example:

MyClass obj = myClassRepo.read(42) ;

PojoPage<MyClass> objs = myClassRepo.read(new Long[] {1,3,5});

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 230

MarkLogic Server POJO Data Binding Interface

5. When you are finished with the database, rel ease the connection.

client.release() ;

For aworking example, see “ Example: Saving and Restoring POJOS’ on page 231.

To restore POJOs from the database using criteria other than object id, see “ Searching POJOsin
the Database” on page 232.

9.6 Example: Saving and Restoring POJOs

The following example saves several objects of type vyrype to the database, recreates them as
POJOs by reading them by id from the database, and then prints out the contents of the restored
objects.

The objects are written to the database by calling rojorepository.write and read back using
PojoRepository.read. INthisexample, the objects are read back by id. You can retrieve objects by
searching for avariety of object features. For details, see “ Searching POJOs in the Database” on
page 232.

package examples;

import com.marklogic.client.DatabaseClient;

import com.marklogic.client.DatabaseClientFactory;

import com.marklogic.client.DatabaseClientFactory.DigestAuthContext;
import com.marklogic.client.pojo.PojoPage;

import com.marklogic.client.pojo.PojoRepository;

import com.marklogic.client.pojo.annotation.Id;

public class PojoExample {
private static DatabaseClient client =
DatabaseClientFactory.newClient (
"localhost", 8000, new DigestAuthContext (user, password)) ;

// The POJO class

static public class MyClass {
Integer myId;
String otherData;

public MyClass() { myId = 0; otherData = ""; }
public MyClass (Integer id) { myId = id; otherData = ""; }
public MyClass (Integer id, String data) {

myId = id; otherData = data;

}

@Id
public int getMyId() { return myId; }
public void setMyId(int id) { myId = id; }

public String getOtherData() { return otherData; }

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 231

MarkLogic Server POJO Data Binding Interface

public void setOtherData(String data) { otherData = data; }

public String toString() {
return "myId=" + getMyId() + " " +
"otherData=\"" + getOtherData() + "\"";
}

}

static void tryPojos()
PojoRepository<MyClass, Integer> repo =
client .newPojoRepository (MyClass.class, Integer.class);
Integer ids[] = {1, 2, 3};
String datal] = {"a", "b", "c"};

// Save objects in the database
for (int i = 0; i < ids.length; i++) {
repo.write (new MyClass (ids[i], datalil));

}

// Restore objects from the database by id
PojoPage<MyClass> outputObjs = repo.read(ids) ;
while (outputObjs.hasNext()) {
MyClass obj = outputObjs.next () ;
System.out .println (obj.toString()) ;

}
}

public static void main(String[] args) {
tryPojos () ;
client.release() ;

}

9.7 Searching POJOs in the Database

YOu can USe pojoRepository.search t0 search POJOs in the database that match a query. A rich
set of query capabilitiesis available, including full text search using a simple string query
grammar and more finely controllable search using structured query.

This section covers concept and procedural information on searching POJOs. For a complete
example, see “Example: Searching POJOS’ on page 240.

This section covers the following topics:

¢ Basic Steps for Searching POJOs

e Full Text Search with String Query

e Search Using Structured Query

* How Indexing Affects Searches

e Creating Indexes from Annotations

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 232

MarkLogic Server POJO Data Binding Interface

9.7.1 Basic Steps for Searching POJOs

This section describes the basic process for searching POJOs. The variations are in how you
express your search criteria.

Note: You should only use pojorepository.search ON Objects created using
PojoRepository.write. USing it to search JSON documents created in a different
way can lead to errors.

1 Ensure the class you want to work with includes at |east an e1a annotation, as described in
“Annotating Your Object Definition” on page 227.

2. If you have not already done so, create a com.marklogic.client .Databaseclient ODjeCt.
For example, if using digest authentication:

DatabaseClient client = DatabaseClientFactory.newClient (
host, port, new DigestAuthContext (username, password)) ;

3. Create a rojorepository Object associated with the class you want to work with. For
example, if you want to restore objects of the class named vyc1ass and the eza annotation
inmyciass identifies afield or method return type of type rong, Create arepository as
follows:

PojoRepository<MyClass, Long> myClassRepo =
client .newPojoRepository (MyClass.class, Long.class) ;

4. Optionally, set the [imit on the number of matching objects to return. The default is 10
objects.

myClassRepo.setPagelLength (5) ;

5. Create a stringQueryDefinition OF StructuredQueryDefinition that represents the
objects you want to find.

a. For astring query, create a stringQuerybefinition USING & QueryManager Object. For
details, see “Full Text Search with String Query” on page 234. For example, the following
guery performs afull text search for the phrase “dog”:

QueryManager gm = client.newQueryManager () ;
StringQueryDefinition query =
gn.newStringDefinition() .withCriteria ("dog") ;

b. For astructured query, Use rojorepository.getQueryBuilder tO Create aquery builder, and
then use the query builder to create your query. For details, see “ Search Using Structured
Query” on page 234. For example, the following query matches objects whose
“otherData” property valueis“dog”:

StructuredQueryDefinition query =
myClassRepo.getQueryBuilder () .value ("otherData", "dog") ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 233

MarkLogic Server POJO Data Binding Interface

6. Call PojoRepository.search tO find matching Obj ectsin the database. Set the start
parameter to 1 to retrieve results beginning with the first match, or set it to higher value to
return subsequent pages of results, as described in “Retrieving POJOs Incrementally” on
page 249.

PojoPage<MyClass> matchingObjs =
while (matchingObjs.hasNext()) {
MyClass ojb = matchingObjs.next () ;

repo.search (query, 1) ;

}

7. When you are finished with the database, release the connection.

client.release() ;

Matching objects are returned as a rojorage, Which represents a limited number of results. You
may not receive al resultsin asingle page if you read alarge number objects. You can fetch the
matching objects in batches, as described in “ Retrieving POJOs Incrementally” on page 249. You
can confi gure the page sizeus Ng PojoRepository.setPageLength.

9.7.2 Full Text Search with String Query

A string query is a plain text search string composed of terms, phrases, and operators that can be
easily composed by end users typing into an application search box. For example, ‘cat AND dog'
isastring query for finding documents that contain both the term 'cat’ and the term 'dog'. For
details, see The Default String Query Grammar in the Search Developer’s Guide.

Using a string query to search POJOs performs afull text search. That is, matches can occur
anywhere in an object.

For example, if the sample data contains an object whose “title” property is“Leaves of Grass’ and
another object whose “author” property is“Munro Leaf”, then the following search matches both
objects. (The search term “leaf” matches “leaves’ because string search uses stemming by
default.)

QueryManager gm = client.newQueryManager () ;

StringQueryDefinition query =
gm.newStringDefinition() .withCriteria("leaf") ;

PojoPage<Book> matches = repo.search(query, 1);

For a complete example, see “ Searching POJOs in the Database” on page 232.

9.7.3 Search Using Structured Query

A structured query is an Abstract Syntax Tree representation of a search expression. You can use
structured query to build up a complex query from arich set of sub-query types. For example,
structured query enables you to search specific object properties.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 234

MarkLogic Server POJO Data Binding Interface

Use rojogueryBuilder tO Create structured queries over your persisted POJOs. Though you can
create structured queries in other ways, using a rojogueryBuilder enablesyou to create queries
without knowing the details of how your objects are persisted in the database or the syntax of a
structured query. Also, pojooueryBuilder €XpPosesonly those structured query capabilitiesthat are
applicable to POJOs.

To create a pojoQueryBuilder, USE PojoRepository.getQueryBuilder {0 Create a builder. For
example:

PojoQueryBuilder<Person> gb = repo.getQueryBuilder() ;

Use the methods of pojogueryBuilder to create complex, compound queries on your objects,
equival ent to structured query constructs such as and-query, value-query, word-query,
range-query, container-query, and geospatial queries. For details, see Structured Query Concepts
in the Search Developer’s Guide.

To match data in objects nested inside your top level POJO class, use
PopoueryBuilder.containerQuery(OrPopoueryBuilder.containerQueryBuilder)tO(JDﬂﬂTdrla
guery or sub-query to a particular sub-object.

For example, suppose your objects have the following structure:

public class Person ({
public Name name;
}

public class Name ({

public String firstName;
public String lastName;

}

The following search matches the term “john” in rerson Objects only when it appears somewhere
in the name Object. It matches occurrencesin either £irstName Or lastName.

PojoQueryBuilder gb = repo.getQueryBuilder () ;
PojoPage<Person> matches = repo.search/
gb.containerQuery ("name", gb.term("john")), 1);

The following query further constrains matches to occurrences in the 1astyame property of name.

gb.containerQuery ("name",
gb.containerQuery ("lastName", gb.term("john")))

For a complete example, see “ Searching POJOs in the Database” on page 232.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 235

MarkLogic Server POJO Data Binding Interface

9.7.4 How Indexing Affects Searches

You can search POJOs with many query types without defining any indexes. This enables you to
get started quickly. However, indexes are required for range queries (pojoQueryBuilder. range)
and can significantly improve search performance by enabling unfiltered search, as described
below.

A filtered search uses available indexes, if any, but then checks whether or not each candidate
meets the query requirements. This makes afiltered search accurate, but much slower than an
unfiltered search. An unfiltered search relies solely on indexesto identify matches, which is much
faster, but can result in false positives. For details, see Fast Pagination and Unfiltered Searches in
Query Performance and Tuning Guide.

By default, a POJO search is an unfiltered search. To force use of afiltered search, wrap your
guery inacall to pojogQueryBuilder. filteredguery. FOr example:

repo.search (builder.filteredQuery (builder.word ("john")))

Unless your database is small or your query produces only asmall set of pre-filtering results, you
should define an index over any object property used in aword, value, or range query. If your
search includes arange query, you must either have an index configured on each object property
used in the range query, or you must wrap your query in acall to pojorepository. filteredQuery
to force afiltered search.

The POJO interfaces of the Java API include the ability to annotate object properties that should
be indexed, and then generate an index configuration from the annotation. For details, see
“Creating Indexes from Annotations’ on page 236.

9.7.5 Creating Indexes from Annotations

Asdescribed in “How Indexing Affects Searches’ on page 236, you should usually create indexes
on object properties used in range queries. Though no automatic index creation is provided, the
POJO interface can simplify index creation for you by generating index configuration information
from annotations.

Use the following procedure to create an index on an object property.
1 Attach an erathindexproperty annotation to each object property you want to index. You
can attach the annotation to a member, setter, or getter. Set scalarTypeto avalue

compatible with the type of your object property. For example:

import com.marklogic.client.pojo.annotation.PathIndexProperty;

public class Person

@PathIndexProperty (scalarType=PathIndexProperty.ScalarType.INT)
public int getAge() {
return age;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 236

MarkLogic Server POJO Data Binding Interface

}

2. Run the com. marklogic.client.pojo.util.GenerateIndexConfig tool to generate an index
configuration for your application. For example, if you run the following command
against the example code in “Example: Searching POJOS” on page 240:

$ java com.marklogic.client.pojo.util.GenerateIndexConfig \
-classes "examples.Person examples.Name"

-file personIndexes.json

Then the following index configuration is saved to the file personindexes. json.

{

"range-path-index" : [{
"path-expression" : "examples.Person/age",
"scalar-type" : "int",
"collation" : "',
"range-value-positions" : "false",
"invalid-values" : "ignore"

}] i
"geospatial-path-index" : [],
"geospatial-element-pair-index" : []

}

3. Use the generated index configuration to add the required indexes to the database in which
you store your POJOs. See below for details.

You can use the output from cenerateIndexconfig to add the required indexes to your databasein
several ways, including the Admin Interface, the XQuery Admin API, and the Management
REST API.

The output from cenerateIndexconfig IS Suitable for immediate use with the REST Management
APl method rurt: /manage/v2/databases/{id|name}/properties. However, be aware that this
interface overwrites all indexes in your database with the configuration in the request.

To use the output Of cenerateindexconfig tO Ccreate indexes with the REST Management API, run
acommand similar to the following. This example assumes you are using the Documents
database for your POJO store and that the file personlndexes.json was generated by

GenerateIndexConfig.

Warning The following command will replace all indexes in the database with the indexes
IN personIndexes. json. DO NOt use this procedure if your database configuration
includes other indexes that should be preserved.

$ curl --anyauth --user user:password -X PUT -i
-H "Content-type: application/json" -d @./personIndexes.json \
http://localhost:8002/manage/LATEST/databases/Documents/properties

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 237

MarkLogic Server POJO Data Binding Interface

To create the required indexes with the REST Management APl while preserving existing indexes
follow this procedure:

1.

USE GET: /manage/v2/databases/{id|name} /properties 1O retrieve the current database
properties. For example, the following command saves the properties of the Documents
database to the file a11properties.qson:

$ curl --anyauth --user user:password -X GET \
-H "Accept: application/json" -o allProperties.json
http://localhost:8002/manage/LATEST/databases/Documents/properties

L ocate the indexes of the same types as those generated by Generatel ndexConfig in the
output from Step.

If there are no indexes of the same type as those generated by Generatel ndexConfig, you
can safely apply the generated configuration directly.

If there are existing indexes of the same type as those generated by
GeneratedindexConfig, extract the existing indexes of that type from the output of Step 1
and combine this configuration information with the output from Generatel ndexConfig.
See the exampl e bel ow.

USe puT: /manage/v2/databases/{id|name}/properties 1O install the merged index
configuration. For example:

$ curl --anyauth --user user:password -X PUT -i
-H "Content-type: application/json" -d @./comboIndex.json \
http://localhost:8002/manage/LATEST/databases/Documents/properties

For example, suppose cenerateIndexconfig generates the following output, which includes one
path range index on person.age and No geospatial indexes.

{

"range-path-index" : [{
"path-expression" : "examples.Person/age",
"scalar-type" : "int",
"collation" : "',
"range-value-positions" : "false",
"invalid-values" : "ignore"

}] i

"geospatial-path-index" : [],
"geospatial-region-path-indexes" : [],
"geospatial-element-pair-index" : []

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 238

MarkLogic Server

POJO Data Binding Interface

Further suppose retrieving the current database properties reveals an existing range-path-index

setting such as the following:

$ curl --anyauth --user user:password -X GET \

-H "Accept: application/json"

-0 allProperties.json

http://localhost:8002/manage/LATEST/databases/Documents/properties

==> Properties saved to allProperties.json include the following:

{

}

"database-name": "Documents",
"forest": [
"Documents"
1,
"security-database": "Security",

"range-path-index": [

{
"scalar-type": "string",
"collation": "http://marklogic.com/collation/",
"path-expression": "/some/other/data",
"range-value-positions": false,
"invalid-values": "reject"

}

Then combining the existing index configuration with the generated POJO index configuration
results in the followi ng i nput t0 PUT: /manage/v2/databases/{id|name}/properties. (YOU can
omit the generated geospatial-path-index, geospatial-region-path-index, and
geospatial-element-pair-index CONfigurationsin this case because they are empty.)

{ "range-path-index" : [

MarkLogic 10—May, 2019

{

"path-expression" : "examples.Person/age",

"scalar-type" : "int",

"collation"™ : "",

"range-value-positions" : "false",

"invalid-values" : "ignore"

I

{
"scalar-type": "string",
"collation": "http://marklogic.com/collation/",
"path-expression": "/some/other/data",
"range-value-positions": false,
"invalid-values": "reject"

Java Application Developer’ s Guide—Page 239

MarkLogic Server POJO Data Binding Interface

As shown above, it is not necessary to merge the generated index configuration into the entire
properties file and reapply al the property settings. However, you can safely do so if you know
that none of the other properties have changed since you retrieved the properties.

For more information on the REST Management API, see the Monitoring MarkLogic Guide and
the Scripting Administrative Tasks Guide.

9.8 Example: Searching POJOs

The examplein this section demonstrates using string and structured queries to search POJOs, as
well as pagination of search results. The following topics are covered:

e Qverview of the Example

e Source Code

e Exploring the Example Queries

9.8.1 Overview of the Example

The example uses person Objects as POJOs. Each rerson contains data such as name, age, gender,
unigue id, and birthplace. The name is represented by aname Object that contains the first and last
name. Ageisan integer value. Gender is an enumeration. The remaining properties are strings.
Thus, the data available for a person has the following conceptual structure:

name:
firstName: John
lastName: Doe

gender: MALE

age: 27

id: 123-45-6789

birthplace: Hometown, NY

The ia object property is used as the unique POJO identifier.

The exampleis driven by the pecplesearch €lass. Running peoplesearch.main |0ads person
objectsinto the database, performs several searches using string and structured queries, and then
removes the objects from the database.

The following methods are the operations of pecplesearch.

* dbrnit: Load rerson Objectsinto the database

* dbTeardown: Remove al rerson Objects from the database

* stringouery: Perform astring query and print the first page of results
* doguery: Perform a structured query and print the first page of results

The PeopleSearch class uses the hel per methods stringguery and doguery t0 abstract the invariant
mechanics of the search from the query construction.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 240

MarkLogic Server POJO Data Binding Interface

The stringguery and doouery helper methods simply encapsulate the invariant parts of
performing a search and displaying the resultsin order to make it easier to focus on query
construction.

9.8.2 Source Code

This section contains the full source code for the example. Copy this codeto filesin order run the
example.

* Person Class Definition

* Name Class Definition

* PeopleSearch Class Definition

9.8.2.1 Person Class Definition

Person is the top level POJO class used by the example. person.get1d isannotated as the object
id. Additional annotations call out the need for an index on the age property so it can be used in
range queries.

Copy the following code into afile with the relative pathname examples/Person.java.

package examples;

import com.fasterxml.jackson.annotation.JsonIgnore;
import com.marklogic.client.pojo.annotation.Id;
import com.marklogic.client.pojo.annotation.PathIndexProperty;

public class Person f{
public Person() {}
public Person(String first, String last, Gender gender,
int age, String id, String birthplace) {
this.name = new Name (first, last);
this.age = age;
this.id = id;
this.gender = gender;
this.birthplace = birthplace;

}

public Name getName () {
return name;

public void setName (Name name)

this.name = name;

@PathIndexProperty (scalarType=PathIndexProperty.ScalarType.INT)
public int getAge() {

return age;
}

public void setAge (int age) {

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 241

MarkLogic Server

this.age = age;

}

@Id

public String getSSN() {
return id;

}

public void setSSN(String ssn) {
this.id = ssn;

}

public Gender getGender () {
return gender;

}

POJO Data Binding Interface

public void setGender (Gender gender) {
this.gender = gender;

}

@JsonIgnore
public String getFullName () {
return this.name.getFullName () ;

}

public String getBirthplace () {
return birthplace;

}

public void setBirthplace(String birthplace) ({

this.birthplace = birthplace;

}

enum Gender {MALE, FEMALE}

private
private
private
private
private

Name name;

Gender gender;

int age;

String id;

String birthplace;

9.8.2.2 Name Class Definition

The Name class exists to demonstrate searching sub-objects of your top level POJO class. Each
Person object contains a Name.

Copy the following code into afile with the relative pathname exampies/Name . java.

package examples;

import com.fasterxml.jackson.annotation.JsonIgnore;
import com.marklogic.client.pojo.annotation.PathIndexProperty;

public class Name ({
public Name () { }

MarkLogic 10—May, 2019

Java Application Developer’s Guide—Page 242

MarkLogic Server POJO Data Binding Interface

public Name (String first, String last) {
this.firstName = first;
this.lastName = last;

}

@PathIndexProperty (scalarType=PathIndexProperty.ScalarType.STRING)
public String getFirstName() {

return firstName;
}

public void setFirstName (String firstName)
this.firstName = firstName;

@PathIndexProperty (scalarType=PathIndexProperty.ScalarType.STRING)
public String getLastName () {

return lastName;
}

public void setLastName (String lastName)
this.lastName = lastName;

@JsonIgnore
public String getFullName () {
return this.firstName + " " + this.lastName;

private String firstName;
private String lastName;

9.8.2.3 PeopleSearch Class Definition

pecplesearch ISthe classthat drives the examples. The main method |oads person POJOs into the
database, performs some searches, and then removes the POJOs from the database.

Copy the following code into afile with the relative path examples/peoplesearch.java. Modify
the call t0 patabaseclientFactory.newclient t0 USE your connection information. You will need
to change at |east the username and password parameter values.

package examples;

import com.marklogic.client.DatabaseClient;

import com.marklogic.client.DatabaseClientFactory;

import com.marklogic.client.DatabaseClientFactory.DigestAuthContext;
import com.marklogic.client.pojo.PojoPage;

import com.marklogic.client.pojo.PojoQueryBuilder;

import com.marklogic.client.pojo.PojoQueryBuilder.Operator;

import com.marklogic.client.pojo.PojoQueryDefinition;

import com.marklogic.client.pojo.PojoRepository;

import com.marklogic.client.query.QueryManager;

import com.marklogic.client.query.StringQueryDefinition;

import examples.Person.Gender;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 243

MarkLogic Server POJO Data Binding Interface

public class PeopleSearch {
private static DatabaseClient client = DatabaseClientFactory.newClient (
"localhost", 8000, new DigestAuthContext (USER, PASSWORD)) ;
private static PojoRepository<Person, String> repo =
client.newPojoRepository (Person.class, String.class);

// The pojos to be stored in the database for searching

private static Person peoplel]l = {
new Person("John", "Doe", Gender.MALE, 27, "123-45-6789", "Albany, NY"),
new Person ("John", "Smith",
Gender .MALE, 41, "234-56-7891", "Las Vegas, NV"),
new Person("Mary", "John",
Gender.FEMALE, 19, "345-67-8912", "Norfolk, VA"),
new Person ("Jane", "Doe",
Gender.FEMALE, 72, "456-78-9123", "St. John, FL"),
new Person("Sally", "St. John", Gender.MALE, 34,
"567-89-1234", "Reno, NV"),
new Person ("Kate", "Peters",
Gender .FEMALE, 17, "678-91-2345", "Denver, CO")

}i

// Save the example pojos to the database
static void dbInit()
// Save objects to the database
for (int i = 0; i < people.length; i++) {
repo.write (people[il) ;
}
}

// Remove the pojos from the database

static void dbTeardown () {
repo.deleteAll () ;

}

// Print one page of results
static void printResults (PojoPage<Person> matchingObjs) {
if (matchingObjs.hasContent ()) {
while (matchingObjs.hasNext()) {
Person person = matchingObjs.next () ;
System.out.println(" " + person.getFullName() + " from "
+ person.getBirthplace());
}
} else {
System.out.println(" No matches");

}

System.out.println() ;

}

// Perform a structured query and print the first page of results
public void doQuery (PojoQueryDefinition query) {
printResults (repo.search(query, 1)) ;

}

// Perform a full text search and print first page of results
public void stringQuery(String gtext) {
QueryManager gm = client.newQueryManager () ;
StringQueryDefinition query = gm.newStringDefinition() .withCriteria (gtext) ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 244

MarkLogic Server POJO Data Binding Interface

printResults (repo.search(query, 1)) ;

}

// Fetch all matches, one page at a time

public void fetchAll (PojoQueryDefinition query) {
PojoPage<Person> matches;
int start = 1;

do {
matches = repo.search(query, start);
System.out.println("Results " + start +

" thru " + (start + matches.size() - 1));
printResults (matches) ;
start += matches.size();
} while (matches.hasNextPage()) ;

}

public static void main(String[] args) {
PeopleSearch ps = new PeopleSearch() ;

// load the POJOs
dbInit () ;

// Perform a string query
System.out.println("Full text search for 'john'");
ps.stringQuery ("john") ;

System.out.println (
"Full text search for 'john' only where there is no 'NV'");

ps.stringQuery ("john AND -NV");

// Perform structured queries
PojoQueryBuilder<Person> gb = repo.getQueryBuilder() ;

System.out.println("'john' appears anywhere in the person record");
ps.doQuery (gb.term("john")) ;

System.out.println("name contains 'john'");
ps.doQuery (gb.containerQuery ("name", gb.term("john")));

System.out.println("last name exactly matches 'John'");
ps.doQuery (gb.value ("lastName", "John")) ;

System.out.println("last name contains the term 'john'");
ps.doQuery (gb.word ("lastName", "john")) ;

System.out.println("First name or last name contains 'john'");

ps.doQuery (
gb.containerQuery ("name",
gb.or (gb.value ("firstName", "John"),
gb.value ("lastName", "John"))));

System.out.println("'john' occurs in lastName property of name") ;
ps.doQuery (
gb.containerQuery ("name",
gb.containerQuery ("lastName", gb.term("john"))));

System.out.println("find all females");
ps.doQuery (gb.value ("gender", "FEMALE"));

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 245

MarkLogic Server POJO Data Binding Interface

// This query requires the existence of a range index on age
System.out.println("all persons older than 30");
ps.doQuery (gb.range ("age", Operator.GT, 30));

// Demonstrate retrieving successive pages of results.

// Page length is set artificially low to force multiple pages of results.
repo.setPagelLength (2) ;

System.out.println("Retrieve multiple pages of results");

ps.fetchAll (gb.range ("age", Operator.GT, 30));

// comment this line out to leave the objects in the database between runs
dbTeardown () ;
client.release () ;

9.8.3 Exploring the Example Queries

This section provides an overview of the queries performed by the peop1esearch example. The
searches are driven by the helper functions stringsearch and doguery. These are Simply wrappers
around rojorepository.search t0 abstract the invariant parts of each search, such as displaying
the results. For example, the following call to doguery:

ps.doQuery (gb.value ("gender", "FEMALE")) ;

Isequivalent to the following code, fully unrolled. Additional callsto doguery in the example vary
only by the query that is passed {0 PojoRrRepository.search.

PojoPage<Person> matchingObjs =
repo.search(gb.value ("gender", "FEMALE"),1));
if (matchingObjs.hasContent ()) {
while (matchingObjs.hasNext())
Person person = matchingObjs.next () ;
System.out.println(" " + person.getFullName() + " from " +
person.getBirthplace()) ;
}

} else {
System.out.println(" No matches");

}

System.out.println() ;

The example begins with some simple string queries. The table below describes the interesting
features of these queries.

Query Text Description
"Jjohn" Match the term "john" wherever it appearsin the rerson Objects. The
match is not case-sensitive and will match portions of values, such as
“St. John”.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 246

MarkLogic Server POJO Data Binding Interface
Query Text Description
"john AND -NV" Match rerson Objects that contain the phrase "john™ and do not contain

"NV". The“-" operator isaNOT operator in string queries. Since the
search term “NV” is capitalized, that term is matched in a case-sensitive
manner. By contrast, the term “-nv” is a case-insensitive match that
would match “nv”, “NV”, “nV”, and “nV".

The default treatment of case sensitivity in string queriesisthat phrasesthat are all lower-case are
matched case-insensitive. Upper case or mixed case phrases are handled in a case-sensitive
manner. You can control this behavior through the tern query option; for details, see term in the

Search Developer’s Guide.

The remaining queries in the example are structured queries. The table below describes the key

characteristics of these queries.

Query

Description

gb.term("john")

Match the phrase "john" anywhere in the person
objects. The match is not case-sensitive and will match
portions of values, such as“St. John”.

gb.containerQuery (
"name" ,
gb.term("john"))

Match the phrase "john" only in the value of the name
object property. Matches can be at any level within
name.

gb.value ("lastName", "John")

Match objects whose 1astname Object property has the
exact value "John". Values such as "john" or "St.
John” do not match.

gb.word ("lastName", "john")

Match objects whose 1astname Object property value
includes the phrase "john". The match is not
case-sensitive and will match portions of values, such
as“St. John”.

The search does not recurse through sub-objects. For
example, Since person.name IS an object,

gb.word ("name", "john") finds no matches because it
will not look into the values of 1astname and firstName
object properties.

The 1astname Object property can appear at any level.
That is, it is not restricted to occurrences within name.

MarkLogic 10—May, 2019

Java Application Developer’s Guide—Page 247

MarkLogic Server

POJO Data Binding Interface

Query

Description

gb.containerQuery (
"name",
gb.or (
gb.value ("firstName", "John") ,
gb.value ("lastName", "John")))

Match objects Whose 1astName OF firstName ObjeCt
property is exactly "John". You can combine
arbitrarily complex queries together.

gb.containerQuery (
"name",
gb.containerQuery (
"lastName",
gb.term("john")))

Match objects whose name property contains a
lastName property that includes the phrase "john" at
any level.

gb.value ("gender", "FEMALE")

Match objects whose gender property is exactly the
value"FEMALE". The match must be exact.

gb.range ("age", Operator.GT, 30)

Match objects whose age property value isgreater than
30. The database configuration must include a path
range index on age of type int. If amatching index is
not found, a xpmp- PATHRIDXNOTFOUND E€/TOr Ooccurs. For
details, see “How Indexing Affects Searches’ on

page 236.

The final query in the example demonstrates pagination of query results, using the
pecplesearch.fetchall helper function. The query result page length isfirst set to 2 to force
pagination to occur on our small results. After thiscall, each call to pojorepository.search Of
PojoRepository.readAll will return at most 2 results.

repo.setPagelLength(2) ;

The fetcnal1 helper function below repeatedly call pojorepository.search (@nd prints out the
results) until there are no more pending matches. Each call to search includes the starting position
of the first match to return. This parameter starts out as 1, to retrieve the first match, and is
incremented each time by the number of matches on the fetched page (pojorage.size). Theloop
terminates when there are no more results (pojoprage . hasNextpage returns false).

public void fetchAll (PojoQueryDefinition query) {
PojoPage<Person> matches;

int start = 1;

do {
matches = repo.search(query, start);
System.out.println("Results " + start +

" thru " +
printResults (matches) ;

(start + matches.size() - 1));

start += matches.size();
} while (matches.hasNextPage()) ;

}

MarkLogic 10—May, 2019

Java Application Developer’s Guide—Page 248

MarkLogic Server POJO Data Binding Interface

9.9 Retrieving POJOs Incrementally

By default, when you retrieve POJOs us Ng PojoRepository.read O PojoRepository.search, the
number of results returned islimited to one “page’. Paging results enables you to retrieve large
result sets without consuming undue resources or bandwidth.

The number of results per page is configurable on pojorepository. The default page length is 10,
meaning at most 10 objects are returned. You can change the page length using
PojoRepository.setPageLength. When you're reading POJOs by id, you can aso retrieve an
unconstrained number of results by calling rojorepository.readall.

All PojoRepository methods for retrieving POJOs include a“ start” parameter you can use to
specify the 1-based index of the first object to return from the result set. Use this parameter in
conjunction with the page length to iteratively retrieve all results.

For example, the following function fetches successive groups of Person objects matching a
guery. For arunnable example, see “Example: Searching POJOS’ on page 240.

public void fetchAll (PojoQueryDefinition query) {
PojoPage<Person> matches;
int start = 1;

do {
matches = repo.search(query, start);
// ...do something with the matching objects...

start += matches.size();
} while (matches.hasNextPage()) ;

}

Both PojoRepository.search and PojoRepository.read return results in a PojoPage. Use the same
basic strategy whether fetching objects by id or by query.

A POJ OPage can container fewer than pojorepository.getPageLength Obj ects, but will never
contain more.

9.10 Removing POJOs from the Database
You can delete POJOs from the database in two ways:

* Byid, using rojorepository.delete. Y OU Can Specify one or more object ids.
i By POJO class, usi Ng PojoRepository.deleteAll.

Since a PojoRepository is bound to a specific POJO class, calling pojorepository.deleteall
removes all POJOs of the bound type from the database.

9.11 Testing Your POJO Class for Serializability

You can only use the data binding interfaces with Java POJO classes that can be serialized and
deserialized by Jackson. You can use atest such as the following to check whether or not your
POJO classis serializable.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 249

MarkLogic Server POJO Data Binding Interface

try {
String value = objectMapper.writeValueAsString(

new MyClass (42, "hello")) ;
MyClass newobj = objectMapper.readValue (value, MyClass.class) ;
// class is serializable if no exception is raised by objectMapper
} catch (Exception e) {
e.printStackTrace () ;

9.12 Troubleshooting

This section contains topics for troubleshooting errors and surprising behaviors you might
encounter while working with the POJO interfaces. The following topics are covered:

e Error: XDMP-UNINDEXABLEPATH

e Error: XDMP-PATHRIDXNOTFOUND

e Unexpected Search Results

9.12.1 Error: XDMP-UNINDEXABLEPATH
If you see an error similar to the following:

search failed: Internal Server Error. Server Message:
XDMP-UNINDEXABLEPATH: examples.PojoSearch$Person/id

Then you are probably using an object property of a nested class as the target of your @Id
annotation. You cannot use the POJO interfaces with nested classes.

Nested class names serialize with a“$” in their name, such as examples.PojoSearch$Person,
above. Path expressions with such symbols in them cannot be indexed.

9.12.2 Error: XDMP-PATHRIDXNOTFOUND
If you see an error similar to the following:

search failed: Bad Request. Server Message: XDMP-PATHRIDXNOTFOUND :
cts:search(...)

Then you need to configure a supporting index in the database in which you store your POJOs.
For details, see “How Indexing Affects Searches’ on page 236 and “ Creating Indexes from
Annotations’ on page 236.

9.12.3 Unexpected Search Results

If your POJO search does not return the results you expect, you can dump out the serialization of
the query produced by PojoQueryBuilder to see if the resulting structured query is what you
expect. For example:

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 250

MarkLogic Server POJO Data Binding Interface

System.out .println (gb.range ("age", Operator.GT, 30) .serialize());
==>
<query xmlns="http://marklogic.com/appservices/search"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:search="http://marklogic.com/appservices/search"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" >
<range-query type="xs:int">
<path-index>examples.Person/age</path-index>
<value>30</value>
<range-operator>GT</range-operator>
</range-query>
</query>

If your query looks as you expect, the surprising results might be the result of using unfiltered
search. Search on POJOs are unfiltered by default, which makes the search faster, but can produce
false positives. For details, see “How Indexing Affects Searches’ on page 236.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 251

MarkLogic Server Alerting

10.0 Alerting

The MarkLogic Java API enables you to create applications that include client-side alerting
capabl lities through the com.marklogic.client.alerting pa(:kage You can use the
RuleDefinition and RuleManager interfaces to create and maintain alerting rules and to test
documents for matchesto rules.

This chapter covers the following topics:

e Alerting Pre-Requisites

e Alerting Concepts

¢ Defining Alerting Rules

* Testing for Matches to Alerting Rules

10.1 Alerting Pre-Requisites

You should enable “fast reverse searches’ on the content database associated with your REST
API instance. Enable fast reverse searches using the Admin Interface, as described in Indexes for
Reverse Queries in Search Developer’s Guide, or using the XQuery function

admin:database-set-fast-reverse-searches.

Creating or delete alerting rules requires the rest-writer role, or equivalent privileges. All other
alerting operations require the rest-reader role, or equivalent privileges.

10.2 Alerting Concepts

An alerting application is one that takes action whenever content matches a pre-defined set of
criteria. For example, send an email notification to a user whenever adocument about influenzais
added to the database. In this case, the criteria might be “the abstract contains the word
influenza’, and the action is “send an email”.

MarkLogic Server supports server-side alerting through the XQuery API and Content Processing
Framework (CPF), and client-side alerting through the REST and Java APIs.

A server-side alerting application usually uses a“push’ model. You register alerting rules and
XQuery action functions with MarkLogic Server. Whenever content matches the rules,
MarkLogic Server evaluates the action functions. For details, see Creating Alerting Applications in
Search Developer’s Guide.

By contrast, a client-side aerting application uses a“pull” alerting model. You register altering
rules with MarkLogic Server, as in the push model. However, your application must poll
MarkLogic Server for matches to the configured rules, and the application initiates actionsin
response to matches. Thisisthe model used by the REST Client API.

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 252

MarkLogic Server Alerting

Analerting ruleisaquery used in areverse query to determine whether or not a search using that
guery would match a given document. A normal search query asks “What documents match these
search criteria?’ A reverse query asks “What criteria match this document?’ In the influenza
example above, you might define arule that isaword query for “influenza’, with an element
constraint of <abstract/>. Alerting rules are stored in the content database associated with your
REST API instance.

MarkLogic Server provides fast, scalable rule matching by storing queriesin alerting rulesin the
database and indexing them in the reverse query index. You must explicitly enable “fast reverse
searches’ on your content database to take advantage of the reverse quer index. For details, see
Indexes for Reverse Queries in Search Developer’s Guide.

Use the procedures described in this chapter to create and maintain search rules and to test
documents for matchesto the rulesinstalled in your REST API instance. Determining what
actions to take in response to a match and initiating those actions is | ft to the application.

10.3 Defining Alerting Rules

An aerting rule is defined by a name, a query, and optional metadata. The core of aruleisthe
combined query that describes the search criteriato use in future match operations. A combined
guery encapsulates a string and/or structured query plus query options; for syntax details and
examples, see Specifying Dynamic Query Options with Combined Query in REST Application
Developer’s Guide.

Choose one of the following methods to define arule:

¢ Defining a Rule Using RuleDefinition

¢ Defining a Rule in Raw XML

e Defining a Rule in Raw JSON

Note that although you can define arulein JSON, it will be returned as XML when you read it
back from the database.

10.3.1 Defining a Rule Using RuleDefinition
Follow this procedure to define arule using com.marklogic.client.alerting.RuleDefinition:

1 If you have not already done so, connect to the database, storing the connectionin a
com.marklogic.client.Databaseclient Object. For example, if using digest
authentication:

DatabaseClient client = DatabaseClientFactory.newClient (
host, port, new DigestAuthContext (username, password)) ;

2. If you have not already done so, create Adcom.marklogic.client.alerting.RuleManager.

RuleManager ruleMgr = client.newRuleManager () ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 253

MarkLogic Server Alerting

3. Create a com.marklogic.client.admin.RuleDefinition Obj ect and populate it with your
rule name and data. Optionally, you can include a description and metadata.

RuleDefinition rule = new RuleDefinition (RULE NAME, RULE DESC) ;

String combinedQuery = ...; // see complete example, below
StringHandle gHandle = new StringHandle (combinedQuery) ;
rule.importQueryDefinition (gHandle) ;

RuleMetadata metadata = rule.getMetadata() ;
metadata.put (new QName ("author"), "me");

4, Save the rule to the database by calling ruleManager.writerule ().
ruleMgr.writeRule (rule) ;

The following example code snippet puts al the steps together. The example rule matches
documents containing the term “xdmp”.

// create a manager for configuring rules
RuleManager ruleMgr = client.newRuleManager () ;
RuleDefinition rule = new RuleDefinition (RULE NAME, RULE DESC) ;

// Configure metadata
RuleMetadata metadata = rule.getMetadata() ;
metadata.put (new QName ("author"), "me");

// Configure the match query
String combinedQuery =
"<search:search "+
"xmlns:search="'http://marklogic.com/appservices/search'>"+
"<search:gtext>xdmp</search:gtext>"+
"<search:options>"+
"<search:term>"+
"<search:term-option>case-sensitive</search:term-option>"+
"</search:term>"+
"</search:options>"+
"« /search:searchs>";

//Or the JSON equivalent
String combinedQueryJson =
"{\"search\":{" +
" \"gtext\": \"xdmp\"," +
" \"options\": {" +
" \"term\": {" +
" \"term-option\": \"case-sensitive\"" +

II}II;

StringHandle gHandle =
new StringHandle (combinedQuery) .withFormat (Format .XML) ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 254

MarkLogic Server Alerting

10.3.2

//JSON equvalent
new StringHandle (combinedQueryJson) .withFormat (Format.JSON) ;
rule.importQueryDefinition (gqHandle) ;

// Write the rule to the database
ruleMgr.writeRule (rule) ;

Defining a Rule in Raw XML

Follow this procedure to define arule directly in XML. When creating the rule, use the template
in Defining an Alerting Rule in REST Application Developer’s Guide.

1.

If you have not already done so, connect to the database, storing the connectionin a
com.marklogic.client.DatabaseClient object. For example, if us ng dlgeSt
authentication:

DatabaseClient client = DatabaseClientFactory.newClient (
host, port, new DigestAuthContext (username, password)) ;

If you have not already done SO, creale @ com.marklogic.client.alerting.RuleManager.

RuleManager ruleMgr = client.newRuleManager () ;

Create an XML representation of the rule, using atext editor or other tool or
library.cription and metadata. The following example uses string for the raw
representation.

String rawRule =
"<rapi:rule xmlns:rapi='http://marklogic.com/rest-api'>"+
"<rapi:name>"+RULE_NAME+"</rapi:name>"+
"<rapi:description>An example rule.</rapi:description>"+
"<search:search "+
"xmlns:search="http://marklogic.com/appservices/search'>"+
"<search:gtext>xdmp</search:gtext>"+
"<search:options>"+
"<search:term>"+
"<gearch:term-option>case-sensitive</search:term-option>"+
"</search:term>"+
"</search:options>"+
"</search:search>"+
"<rapi:rule-metadata>"+
"<authors>me</author>"+
"</rapi:rule-metadata>"+
"</rapi:rule>";

Create a handle on your raw query, using a class that implementS rulewriteHandle. FOr
example:

StringHandle handle =
new StringHandle (rawRule) .withFormat (Format .XML) ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 255

MarkLogic Server Alerting

5. Save the rule to the database by calling rulevanager.writerule ().

ruleMgr.writeRule (RULE_NAME, handle) ;

The following example code snippet puts all the steps together. The example rule matches
documents containing the term “xdmp”.

// create a manager for configuring rules
RuleManager ruleMgr = client.newRuleManager () ;

// Define the rule in raw XML
String rawRule =
"<rapi:rule xmlns:rapi='http://marklogic.com/rest-api'>"+
"<rapi:name>"+RULE_NAME+"</rapi:name>"+
"<rapi:description>An example rule.</rapi:description>"+
"<search:search "+
"xmlns:search="'http://marklogic.com/appservices/search'>"+
"<search:gtext>xdmp</search:qgtext>"+
"<search:options>"+
"<search:term>"+
"<search:term-option>case-sensitive</search:term-option>"+
"</search:term>"+
"</search:options>"+
"</search:search>"+
"<rapi:rule-metadatas>"+
"<author>me</author>"+
"</rapi:rule-metadata>"+
"</rapi:rule>";

// create a handle for writing the rule
StringHandle handle =
new StringHandle (rawRule) .withFormat (Format.XML) ;

// write the rule to the database
ruleMgr.writeRule (RULE_NAME, handle) ;

10.3.3 Defining a Rule in Raw JSON

Follow this procedure to define arule directly in XML. When creating the rule, use the template
in Defining an Alerting Rule in REST Application Developer’s Guide.

1 If you have not already done so, connect to the database, storing the connectionin a
com.marklogic.client.Databaseclient ODject. For example, if using digest
authentication:

DatabaseClient client = DatabaseClientFactory.newClient (
host, port, new DigestAuthContext (username, password)) ;

2. If you have not already done SO, creaté a com.marklogic.client.alerting.RuleManager.

RuleManager ruleMgr = client.newRuleManager () ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 256

MarkLogic Server Alerting

3. Create a JSON representation of the rule, using atext editor or other tool or
library.cription and metadata. The following example uses string for the raw
representation.

String rawRule =
n{ \nrule\n: {||+

"\"name\" : \""+RULE NAME3+"\", "+
"\"search\" : {"+
"\"gtext\" : \"xdmp\", "+
"\"options\" : {"+
"\"term\" : { \"term-option\" : \"case-sensitive\" }"+

||}||+
n}’u+
"\"description\": \"A JSON example rule.\", "+
"\"rule-metadata\" : { \"author\" : \"me\" }"+

"

4, Create a handle using a class that implements rulewritenandle and associate your raw
rule with the handle. For example:

StringHandle handle =
new StringHandle (rawRule) .withFormat (Format .JSON) ;

5. Save the rule to the database by calling rulevanager.writerule ().

ruleMgr.writeRule (RULE_NAME, handle) ;

The following example code snippet puts al the steps together. The example rule matches
documents containing the term “xdmp”.

// create a manager for configuring rules
RuleManager ruleMgr = client.newRuleManager () ;

// Define the rule in raw JSON
String rawRule =
Il{ \Ilrule\II: {|I+

"\"name\" : \""+RULE NAME3+"\", "+
"\"search\" : {"+
M\ ngtext\" : \"xdmp\", "+
"\"options\" : {"+
"\"term\" : { \"term-option\" : \"case-sensitive\" }"+
Il}ll+
Il},ll+
"\"description\": \"A JSON example rule.\", "+
"\"rule-metadata\" : { \"author\" : \"me\" }"+
)0

// Create a handle for writing the rule
StringHandle gHandle =
new StringHandle (rawRule) .withFormat (Format .JSON) ;

// Write the rule to the database
ruleMgr.writeRule (RULE NAME3, gHandle) ;

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 257

MarkLogic Server Alerting

10.4 Testing for Matches to Alerting Rules

Onceyou install alerting rulesin your REST APl instance, Use ruleManager.match () {0 determine
which rules match one or more input documents. You can select the input documents using a
database query or database URIs, or by passing atransient document.

This section covers the following topics:

¢ |dentifying Input Documents Using a Query

e |dentifying Input Documents Using URIs

e Matching Against a Transient Document

¢ Filtering Match Results

¢ Transforming Alert Match Results

10.4.1 Basic Steps

Follow this procedure to test one or more documents to see if they match installed alerting rules.
|dentify the input documents using a query or URIS, or by passing in atransient input document.

1 If you have not already done so, connect to the database, storing the connectionin a
com.marklogic.client.DatabaseClient Object. For example, if using digest
authentication:

DatabaseClient client = DatabaseClientFactory.newClient (
host, port, new DigestAuthContext (username, password)) ;

2. If you have not already done so, createé a com.marklogic.client.alerting.RuleManager.

RuleManager ruleMgr = client.newRuleManager () ;

3. Find the rules that match your input documents by calling ruleManager.match (). The
result isalist of RuleDefinition objects. The following example uses a query to identify
the input documents.

StringQueryDefinition querydef = ...;
RuleDefinitionList matchedRules =

ruleMgr.match (querydef, new RuleDefinitionList()) ;

Thematch () method returns the definition of any rules matching your input documents.
You can further customize rule matching by limiting the match results to a subset of the installed
rules or applying a server-side transformation to the match results. For details, see the JavaDoc for

RuleManager.

For a Compl ete exampl €, Se€ com.marklogic.client.example.cookbook.RawClientAlert.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 258

MarkLogic Server Alerting

10.4.2 Identifying Input Documents Using a Query

You can use a string query, structured query, or combined query to select the documentsin the
database that you want to test for rule matches. These instructions assume you are familiar with
constructing queries using the Java API; for details, see “ Searching” on page 144.

Use the following procedure to select input documents using a query:

1 Construct a string, structured, or combined query definition as described in “ Searching”
on page 144. The following example uses stringguerybefinition.

QueryManager queryMgr = client.newQueryManager () ;

String criteria = "document";

StringQueryDefinition querydef = queryMgr.newStringDefinition() ;
querydef .setCriteria(criteria) ;

2. If you constructed araw XML or JISON query definition, create a handle using a class that
implements structurewritenandle. FOr example, if you created an XML query using
String, Créaleé a stringHandle:

StringHandle rawHandle =

new StringHandle (rawXMLQuery) .withFormat (Format .XML) ;
//0r

new StringHandle (rawdSONQuery) .withFormat (Format.JSON) ;

3. Call ruleManager.match(), pass ng in either aguerybefinition OF StructurelriteHandle
to the document selection query.

RuleDefinitionList matchedRules =
ruleMgr.match (querydef, new RuleDefinitionList()) ;

For a Compl ete exampl €, SE€ com.marklogic.client.example.cookbook.RawClientAlert.
You can limit the rules under consideration by passing an array of rule names to

RuleManager.match (). YOU can limit the input documents to a subset of the input query results by
specifying start and page length. For details, see the JavaDoc for ruleManager.

10.4.3 Identifying Input Documents Using URIs

You can select the documents you want to test for rule matches by specifying alist of document
URIStO RuleManager.match (). Each URI must identify a document, not a database directory.

Use the following procedure to select input documents using URIs:

1 Construct a String array of document URIs.
String[] docIds = { "/example/docl.xml", "/suggest/doc2.xml" };

2. Call ruleManager.match(), pass ng inthelist of URIs.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 259

MarkLogic Server Alerting

RuleDefinitionList matchedRules =
ruleMgr.match (docIds, new RuleDefinitionList()) ;

You can limit the rules under consideration by passing an array of rule names to
RuleManager.match (). FOr details, see the JavaDoc for RuleManager.

10.4.4 Matching Against a Transient Document

You can test for rule matches against a document that is not in the database by passing the
transient document to RuleManager.match ().

1 Create a handle using a class that implements structurewritenandie. The following
example uses a string as the source document.

String doc

//0r
String doc = "{\"prefix\": \"xdmp\"}"

"<prefix>xdmp</prefix>";

StringHandle handle = new StringHandle (doc) .withFormat (Format .XML) ;

//0x
StringHandle handle

new StringHandle (doc) .withFormat (Format .JSON) ;

2. Call ruleManager.match (), PasSiNg iN & structurewriteHandle tO the document.

RuleDefinitionList matchedRules =
ruleMgr.match (handle, new RuleDefinitionList()) ;

You can limit the rules under consideration by passing an array of rule namesto
RuleManager.match(). For details, see the JavaDoc for RuleManager.

10.4.5 Filtering Match Results

By default, the result of an alert match includes all matching rules. You can limit the result to a
subset of matching rules by passing alist of candiate rule names to ruleManager.match (). FOr
example, the result of the following match includes at most the definitions of the rules named
“one” and “two”, even if more rules match the input query definition:

RuleManager ruleMgr = client.newRuleManager () ;
StringQueryDefinition querydef = ...;
String [] candidateRules = new String[] {"one", "two"};
RuleDefinitionList matchedRules =
ruleMgr.match (querydef, OL, QueryManager.DEFAULT PAGE LENGTH,
candidateRules, new RuleDefinitionList()) ;

10.4.6 Transforming Alert Match Results

You can make arbitrary changes to the results from a match request by applying a server-side
XQuery transformation function to the results. This section covers the following topics:

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 260

MarkLogic Server Alerting

e Writing a Match Result Transform

* Using a Match Result Transform

10.4.6.1 Writing a Match Result Transform

Alert match transforms use the same interface and framework as content transformations applied
during document ingestion, described in Writing Transformations in the REST Application
Developer’s Guide.

Your transform function receives the raw XML match result data prepared by MarkLogic Server
as input, such as a document with a <rapi :rules/> root element. For example:

<rapi:rules xmlns:rapi="http://marklogic.com/rest-api">
<rapi:rule>
<rapi:names>one</rapi:name>
<rapi:description>Rule 1l</rapi:descriptions>
<search:search
xmlns:search="http://marklogic.com/appservices/search">
<search:gtext>xdmp</search:gtext>
</search:search>
</rapi:rule>
</rapi/rules>

If your function produces XML output and the client application requested JSON outpult,
MarkLogic Server will transform your output to JSON only if one of the following conditions are
met.

* Your function produces an XML document that conformsto the “normal” output from the
search operation. For example, a document with a <rapi : rules/> root element whose
contents are changed in away that preserves the normal structure.

* Your function produces an XML document with aroot element in the namespace
http://marklogic.com/xdmp/json/basic that can be transformed by

json:transform-to-json.

Under al other circumstances, the output returned by your transform function is what is returned
to the client application.

10.4.6.2 Using a Match Result Transform
To use a server transform function:

1. Create atransform function according to the interface described in Writing Transformations
in the REST Application Developer’s Guide.

2. Install your transform function on the REST API instance following the instructionsin
“Installing Transforms’ on page 282.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 261

MarkLogic Server Alerting

3. In your application, create a servertransform Object to represent the installed transform,
and passit as a parameter on your call to ruleManager.match (). FOr example:

RuleManager ruleMgr = client.newRuleManager () ;
StringQueryDefinition querydef = ...;
RuleDefinitionList matchedRules =
ruleMgr.match (querydef, 0L, QueryManager.DEFAULT PAGE LENGTH,
new String[] {}, new RuleDefinitionList (),
new ServerTransform("your-transform-name")) ;

You are responsible for specifying a handle type capable of interpreting the results produced by
your transform function. The rulebefinitionList implementation provided by the Java APl only
understands the match results structure that MarkL ogic Server produces by default.

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 262

MarkLogic Server Alerting

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 263

MarkLogic Server Transactions and Optimistic Locking

11.0 Transactions and Optimistic Locking

This chapter covers two different ways for locking documents during MarkLogic Server
operations, multi-statement transactions and optimistic locking.

This chapter includes the following sections:

¢ Multi-Statement Transactions

* Optimistic Locking

11.1 Multi-Statement Transactions

The following sections cover how to put multiple MarkL ogic Server operationsin asingle
multi-statement transaction. Specifically, you open atransaction, perform multiple operationsin
it, and then either rollback or commit the transaction. This section includes the following parts:

¢ Transactions and the Java API

* Transaction Interface

e Starting A Transaction

* QOperations Inside A Transaction

* Rolling Back A Transaction

e Committing A Transaction

* Cookbook: Multistatement Transaction

* Transaction Management When Using a Load Balancer

For detailed information about transactionsin MarkL ogic Server, see Understanding Transactions in
MarkLogic Server in the Application Developer’s Guide.

11.1.1 Transactions and the Java API

By default, most Java Client API interactions with MarkL ogic happen in a single transaction. For
example, if you use pocumentManager . write t0 insert a document into the database, the insertion
happens as a single transaction that is automatically committed by MarkL ogic before a response
is sent back to the Java client application.

Note: Requests without multi-statement transactions commit automatically and
atomically and can be load balanced

You can use a multi-statement transaction to perform multiple interactions with MarkLogic
Server in the context of asingle transaction. A multi-statement transaction must be explicitly
created and committed or rolled back. For example, you could use a multi-statement transaction
to make several callsto DocumentManager.write, and then commit all the writes at once. None of
the writes would be visible outside the transaction context unless or until you commit the
transaction.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 264

MarkLogic Server Transactions and Optimistic Locking

Note: If at all possible, developers should avoid using multi-statement transactions,
because 1 atomic network request is more efficient than 3 network requests to
open, work, and commit, and because atomic requests can be retried, whereas
multi-statement transactions cannot be retried. If you have a use case that requires
multi-statement transactions (e.g., where multiple separate requests that mutate the
database must complete together or not at all), consider using optimistic locking as
alighter-weight but safe alternative for reading before writing.

Database updates performed in a multi-statement transactions either all succeed or all roll back,
depending on whether the transaction is committed or rolled back.

For example, suppose you open a transaction, create a document, and then try to perform a
metadata operation on a different document that fails. If, in response to the failure, you roll back
the transaction, then neither the document creation nor the metadata update is successful. If you
commit the transaction instead, then the document creation succeeds.

Rollbacks do not take place automatically on operation failure. Your application must check for
operation success or failure and explicitly rollback the transaction if that is the desired outcome.
Failure can be detected by tests of your devising or by trapping and handling a related exception.

Transactions have an associated time limit. If atransaction is not committed before the time limit
expires, it isautomatically rolled back. The timelimit isonly afailsafe. You should not design
your code with the expectation that a timeout will handle needed rollbacks. L eaving transactions
open unnecessarily ties up server-side resources and holds locks on documents. The default time
limit is the session time limit configured for your App Server. You can also specify a per
transaction time limit when you create a multi-statement transaction; for details, see “ Starting A
Transaction” on page 266.

A multi-statement transaction must honor host affinity within your MarkLogic cluster. For
example, all requests within the context of a transaction should be serviced by the same host. If
you use multi-statement transactions in an environment where a load balancer sits between your
client application and MarkL ogic, then you might need to configure your load balancer to
preserve session affinity. For more details, see “ Transaction Management When Using a Load
Balancer” on page 268.

Note that a document operation performed in the default single statement transaction context
locks the document until that operation succeeds or fails. If MarkLogic detects a deadlock, then
the transaction is automatically restarted until either it completes or an exception is thrown (for
example, by reaching atimelimit for the update transaction). This happens automatically, and you
normally do not need to worry about it.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 265

MarkLogic Server Transactions and Optimistic Locking

11.1.2 Transaction Interface

Use the com.marklogic.client.Transaction interface to manage atransaction. The following are
the key operations for managing multi-statement transactions in the Java Client API:

o Start amulti-statement transaction. For more details, see “ Starting A Transaction” on
page 266.

DatabaseClient.openTransaction ()

» Commit a multi-statement transaction when it successfully finishes. For more details, see
“Committing A Transaction” on page 268.

Transaction.commit ()

* Rollback amulti-statement transaction, resetting any actions that previously took placein
that transaction. For example, delete any created documents, restore any del eted
documents, revert updates, etc. For more details, see “Rolling Back A Transaction” on
page 267.

Transaction.rollback ()

You perform operations inside a given multi-statement transaction by passing the transaction
object returned by patabaseclient.openTransaction iNtO the operation. For details, see
“Operations Inside A Transaction” on page 267

Usethe Transaction.readstatus method to check whether or not atransaction is still open. That
is, whether or not it has been committed or rolled back.

11.1.3 Starting A Transaction

To create a multi-statement transaction and obtain a transaction Object, call the
openTransaction () method on apatabaseclient object. To cdll openTransaction (), dl
application must authenticate as rest-writer Of rest-admin. FOr example:

Transaction transaction = client.openTransaction() ;

You can aso include a transaction name and time limit arguments. The timerimit valueisthe
number of seconds the transaction hasto finish and commit beforeit is automatically rolled back.
As previously noted, you should not depend on the time limit rolling back your transaction; it is
only meant as afailsafe to end the transaction if all else fails.

Transaction transactionl = client.openTransaction (“MyTrans”, 10);

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 266

MarkLogic Server Transactions and Optimistic Locking

11.1.4 Operations Inside A Transaction

To perform an operation within the context of amulti-statement transaction, passthe transaction
object returned by patabaseclient.openTransaction iNtO the operation. For example, pass a
Transaction Obj ect into DocumentManager.read, DocumentManager .write, O QueryManager. search.

For example:

// read a document inside a transaction
docMgr.read (myDocIdl, handle, myTransaction) ;

// write a document inside a transaction
docMgr.write (myDocIdl, handle, myTransaction) ;

// delete a document inside a transaction
docMgr.delete (myDocId2, myTransaction) ;

You can have more than one transaction open at once. Other users can also be running
transactions on or sending requests to the same database. To prevent conflicts, whenever the
server does something to a document whilein atransaction, the database |ocks the document until
that transaction either commits or rolls back. Because of this, you should commit or roll back your
transactions as soon as possible to avoid slowing down your and possibly others” applications.

You can intermix commands which are not part of a transaction with transaction commands. Any
command without a Transaction Object argument is not part of a multi-statement transaction.
However, you usually group all operations for a given transaction together without interruption so
you can commit or roll it back asfast as possible.

Note: The database context in which you perform an operation in a multi-statement
transaction must be the same as the database context in which the transaction was
created. The database is set when you create a patabaseclient, SO CONSIStency is
assured as long as you do not attempt to use a Transaction object created by one
DatabaseClient With an operation performed through apatabaseciient With a
different configuration.

11.1.5 Rolling Back A Transaction
In case of an error or exception, call atransaction’s ro11back () method:

transaction.rollback ()

The ro11pack () method cancels the remainder of the transaction, and reverts the database to its
state prior to the transaction start. Proactively rolling back atransaction puts less load on
MarkL ogic than waiting for the transaction to time out.

To roll back atransaction, your application must authenticate as rest-writer Of rest-admin.

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 267

MarkLogic Server Transactions and Optimistic Locking

11.1.6 Committing A Transaction

Once your application successfully completes all operations associated with a multi-statement
transaction, commit the transaction so that the actions are reflected in the database. Commit a
transaction by calling Transaction.commit:

transaction.commit () ;

To commit a multi-statement transaction, your application must authenticate as rest-writer Of

rest-admin.

Once atransaction has been committed, it cannot be rolled back and the Transaction Object isno
longer available for use. To perform another transaction, you must create a Nnew transaction
object.

11.1.7 Cookbook: Multistatement Transaction

See com.marklogic.client.example.cookbook.MultiStatementTransaction for afull example of
how to use multi-statement transactions. The Cookbook examples arein the Java APl distribution
in the following directory:

example/com/marklogic/client/example/cookbook

11.1.8 Transaction Management When Using a Load Balancer

This section applies only to client applications that use multi-statement transactions and interact
with aMarkLogic Server cluster through aload balancer. For additional general-purpose load
balancer guidelines, see “ Connecting Through a Load Balancer” on page 19.

When you use aload balancer, it is possible for requests from your application to MarkLogic
Server to be routed to different hosts, even within the same session. This has no effect on most
interactions with MarkLogic Server, but operations that are part of the same multi-statement
transaction need to be routed to the same host within your MarkLogic cluster. This consistent
routing through aload balancer is called session affinity.

Most load balancers provide a mechanism that supports session affinity. This usually takes the
form of a session cookie that originates on the load balancer. The client acquires the cookie from
the load balancer, and passesit on any requests that belong to the session. The exact steps required
to configure aload balancer to generate session cookies depends on the load balancer. Consult
your load balancer documentation for details.

To the load balancer, a session corresponds to a browser session, as defined in RFC 2109
(nttps://www.ietf.org/rfc/rfc2109.txt). However, in the context of a Java Client API application using
multi-statement transactions, a session corresponds to a single multi-statement transaction.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 268

https://www.ietf.org/rfc/rfc2109.txt

MarkLogic Server Transactions and Optimistic Locking

The Java Client API leverages a session cookie to preserve host affinity across operationsin a
multi-statement transaction in the following way. This process is transparent to your application;
the information is provided to illustrate the expected |oad balancer behavior.

1. When you create atransaction usi NQg DatabaseClient.openTransaction, the Java Client
API receives atransaction id from MarkLogic and, if the load balancer is properly
configured, a session cookie from the load balancer. Thisinformation is cached in the
Transaction Obj ect.

2. Each time you perform aJava Client APl operation that includes a transaction Object, the
Java Client APl attaches the transaction id and the session cookie to the request(s) it sends
to MarkL ogic. The session cookie causes the load balancer to route the request to the same
host in your MarkLogic cluster that created the transaction.

3. When MarkL ogic recelves arequest, it ignores the session cookie (if present), but usesthe
transaction id to ensure the operation is part of the requested transaction. When
MarkL ogic responds, the load balancer again adds a session cookie, which the Java Client
API caches on the Transaction Obj ect.

4, When you commit or roll back atransaction, any cookies returned by the load balancer are
discarded since the transaction is no longer valid. This effectively ends the session from
the load balancer’s perspective because the Java Client API will no longer pass the session
cookie around.

Any Java Client API operation that does not include a transaction Object will not include a
session cookie (or transaction id) in the request to MarkL ogic, so the load balancer isfreeto route
the request to any host in your MarkL ogic cluster.

11.2 Optimistic Locking

An application under optimistic locking creates a document only when the document does not
exist and updates or deletes a document only when the document has not changed since this
application last changed it. However, optimistic locking does not actually involve placing alock
on an object.

Optimistic locking is useful in environments where integrity isimportant, but contention israre
enough that it is useful to minimize server load by avoiding unnecessary multi-statement
transactions.

This section includes the following sub-sections:

e Activating Optimistic L ocking

e DocumentDescriptors

¢ Using Optimistic Locking

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 269

MarkLogic Server Transactions and Optimistic Locking

11.2.1 Activating Optimistic Locking

Optimistic locking relies on an opagque numeric identifier that is associated with the state of the
document’s content at a point of time. By default, the REST Server to which the Java APl
connects does not keep track of thisidentifier, but you can enable it for use by setting a property,
and make it optional or required.

To expand, there is a number associated with every document. Whenever a document’s content
changes, the value of its number changes. By comparing the stored value of that number at a point
in time with the current value, the REST Server can determine if a document’s content has
changed since the time the stored value was stored.

Note: While this numeric identifier lets you compare state, and uses a numeric value to
do so, thisis not document versioning. The numeric identifier only indicates that a
document has been changed, nothing more. It does not store multiple versions of
the document, nor does it keep track of what the changes are to a document, only
that it has been changed at some point. Y ou cannot use this for change-tracking or
archiving previous versions of a document.

Since this App Server configuration parameter applies either to al documents or none, it is
implemented in the REST Server. Thismeansit is part of the overall server configuration, and
must be turned on and off viaa serverconfigurationManager Obj ect and thus requires rest-admin
privileges. For more about server configuration management, see “REST Server Configuration”
on page 276.

To activate optimistic locking, do the following:

// if not already done, create a database client
DatabaseClient client = DatabaseClientFactory.newClient(...);

// create server configuration manager
ServerConfigurationManager configMgr =
client.newServerConfigManager () ;

// read the server configuration from the database
configMgr.readConfiguration() ;

// require content versions for updates and deletes

// use UpdatePolicy.VERSION OPTIONAL to allow but not

// require identifier use. Use UpdatePolicy.MERGE METADATA
// (the default) to deactive identifier use
configMgr.setUpdatePolicy (UpdatePolicy.VERSION REQUIRED) ;

// write the server configuration to the database
configMgr.writeConfiguration/() ;

// release the client
client.release() ;

Allowed values for UpdatePolicy dl'e in the Enum ServerConfigurationManager.UpdatePolicy.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 270

MarkLogic Server Transactions and Optimistic Locking

11.2.2 DocumentDescriptors

To work with adocument’s change identifier, you must create a pocumentbescriptor for the
document. A pocumentpescriptor describes exactly one document and is created via use of an
appropriately typed method for the document. For more information on document managers, see
“Document Managers’ on page 26.

// create a descriptor for versions of the document
DocumentDescriptor desc = docMgr.newDescriptor (docId) ;

You can also get adocument’s bocumentpescriptor Dy checking to seeif the document exists.
This code returns the specified document’s bocumentpesciptor Of, if the document does not exist,

null.

DocumentDescriptor desc = docMgr.exists (docId) ;

11.2.3 Using Optimistic Locking

Each read (), write (), and delete () method for DocumentManager has both aversion that uses a
URI string parameter to identify the document to be read, written, or deleted, and an identical
version that uses apocumentpescriptor Object instead. The descriptor isonly populated with state
when you read a document or when you check for a document’s existence. When you write, the
state changes, but is not reflected in the descriptor.

When updateprolicy IS Set tO vERSTON REQUIRED, YOU MUSt USe the bocumentbescriptor VErSIONS
of thewrite () (when modifying a document) and de1ete () methods. If the change identifier has
not changed, the write or del ete operation succeeds. If someone el se has changed the document so
that a new version has been created, the operation fails by throwing an exception.

Note: Thereisno general notification when UpdatePolicy changesto
VERSION_REQUIRED. If the policy changesto required and an application uses
the URI string version of read (), €tc., such requests will now fail and throw
exceptions.

If you are creating a document under verszon rEQUIRED, YOU €ither must not supply a descriptor,
or if you do passin adescriptor it must not have state. A descriptor is statelessif it is created
through a pocumentManager and has not yet been populated with state by aread() Or exists ()
method. If the document does not exist, the operation succeeds. If the document exists, the
operation fails and throws an exception.

When updatepolicy iS Set tO versToN opTIONAL, If YOU dO not supply an identifier value viathe
descriptor and use the doc1d versions of write () and delete (), the operation always succeeds. If
you do supply an identifier value by using the pocumentpescriptor VErsions of write () and
delete (), the same rules apply as above when the update policy iS vErstoN REQUIRED.

The identifier value always changes on the server when a document’s content changes there.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 271

MarkLogic Server Transactions and Optimistic Locking

The “optimistic” part of optimistic locking comes from this not being an actual lock, but rather a
means of checking if another application has changed a document since you last accessed it. If
another application does try to modify the document, the Server does not even try to stop it from
doing so. It just changes the document’s identifier value.

So, the next time your application accesses the document, it compares the number it stored for
that document with its current number. If they are different, your application knows the document
has been changed since it last accessed the document. It could have been changed once, twice, a
hundred times; it does not matter. All that mattersisthat it has been changed. If the numbers are
the same, the document has not been changed since you last accessed it.

11.2.4 Cookbook: Version Control and Optimistic Locking

See com.marklogic.client.example.OptimisticLocking in the Cookbook for afull example of
how to use and optimistic locking. The Cookbook examples arein the Java APl distribution in the
following directory:

example/com/marklogic/client/example/cookbook

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 272

MarkLogic Server Transactions and Optimistic Locking

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 273

MarkLogic Server Logging

12.0 Logging

RequestLogger Objects are supplied to individual manager objects, most commonly document and
guery managers. You can choose to log content sent to the server aswell as any requests. It is
located in com.marklogic.client.util.

This chapter includes the following sections:

e Starting Logging

¢ Suspending and Resuming Logging

e Stopping Logging

* Log Entry Format

e Logqaing To The Server's Error Log

12.1 Starting Logging

Fi rst, you must obtain A RequestLogger Obj ect ViaDatabaseClient’SnewLogger () method, which
takes an argument of an output stream to send the log messages to. This output stream can be
shared with other loggers outside of the MarkLogic Server Java APl. You are responsible for
flushing the output stream.

out = new ByteArrayOutputStream() ;
RequestLogger logger = client.newLogger (out) ;

To start logging, call the startrogging () method on a manager object with an argument of a
RequestLogger Obj ect. For exampl (S

MyDocumentManager . startLogging (logger)

Thereis only one logger for any given object. However, you can share a requestLogger 0Object
among multiple manager objects, just by specifying the same requestLogger Object in multiple
startLogging () method calls.

12.2 Suspending and Resuming Logging

By using rRequestLogger’S setEnabled () Method, you can pause and resume logging on any
logger object. For example, to suspend logging:

logger.setEnabled (false)
To reenable logging:

logger.setEnabled (true)

To check if logging is enabled or not:

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 274

MarkLogic Server Logging

logger.isEnabled(); //returns a boolean

When you change alogger’s enable status, it applies to all manager objects for which that
RequestLogger Object was used as an argument to startLogging ().

12.3 Stopping Logging
To stop logging on a manager, call the stoprogging () method. If called on a manager not

currently logging, nothing happens, not even an error or exception. The requestLogger 0Object
associated with the manager is not destroyed by this method and you can reuse and restart it.

MyDocumentManager . stopLogging ()

12.4 Log Entry Format

Two types of things can be logged once logging is turned on and enabled. Requests to the server
are always logged. These include search requests, configuration requests, and all database
requests. By default, only requests are logged.

YOU Can USe RequestLogger'SsetContentMax () Method to control how much content islogged. By
giving it the constant a1, content Value, all content islogged. To revert to no content being
logged, use the constant no_conTenT. If YyOu use a numeric value, such as 1000, the first that many
content bytes are logged. Note that if the request is for a deletion, no content islogged.

FileHandle IS an exception to the ability to log content. Only the name of the file islogged.

You can also retrieve arequest logger’s underlying print stream by calling getprintstream() On
the requestLogger Object. Once you access the log's print stream, writing to it adds your own
messages to the log.

12.5 Logging To The Server’s Error Log

You can also use ServerConfigurationManager.setServerRequestLogging ()0 turn Iogglng
requests to the server’s error log on or off, based on the boolean argument you provide. Thislog's
location is platform dependent. For details about log filesin MarkLogic Server, see Log Files in
the Administrator’s Guide.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 275

MarkLogic Server REST Server Configuration

13.0 REST Server Configuration

REST Server configuration is done through a serverconfigurationManager Object located in
package com.marklogic.client.admin. REST Server configuration deals with the underlying
REST instance running in MarkLogic. You can configure REST Server properties, namespace
bindings, query options, and transform and resource extensions.

Note that you can only configure aspects of the underlying REST instance with the Java API.
MarkLogic Server administration is not exposed in Java, so things such as creating indexes,
creating users, creating databases, and assigning roles to users must be done viathe MarkLogic
Admin Interface or other means (for example, the Admin APl or REST Management API). For
more information about administering MarkLogic Server, see the Administrator’s Guide.

This chapter includes the following sections:

* Creating a Server Configuration Manager Object

¢ Reading and Writing Server Configuration Properties

e REST Server Properties

e Creating New Server-Related Manager Objects

* Namespaces

* | ogaing Namespace Operations

13.1 Creating a Server Configuration Manager Object

Us NQ @ com.marklogic.client.DatabaseClient object, cal newServerConfigManager ()

DatabaseClient client = DatabaseClientFactory.newClient(...);
// create a manager for server configuration

ServerConfigurationManager configMgr =
client .newServerConfigManager () ;

Your application only needs one active serverconfigurationManager a any time.

13.2 Reading and Writing Server Configuration Properties

USe com.marklogic.client.admin.ServerConfigurationManager tO manage Sserver configurati on
properties. To read the current server configuration values into the serverconfigurationManager
object, do:

configMgr.readConfiguration() ;

If your application changes these values, they will not persist unless written out to the server. To
write the REST Server Configuration values to the server, do:

configMgr.writeConfiguration() ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 276

MarkLogic Server REST Server Configuration

13.3 REST Server Properties

com.marklogic.client.admin.ServerConfigurationManager Obj ects have get and set methods for
the following server properties:

® ContentVersionRequests: DeprecaIed. Use updatepolicy instead.

* DefaultDocumentReadTransform: Name of the default transform applied to documents as
they are read from the server. For information about document transforms, see “ Content
Transformations’ on page 282.

* QueryOptionsvalidation: Boolean specifying whether the server validates query options
before storing them in configurations. For information about query options, see “ Query
Options’ on page 190.

* serverRequestLogging. Boolean specifying whether the REST Server logs requests to the
MarkLogic Server error log (ErrorLog.txt). FOr performance reasons, you should only
enabl e this when debugging your application. For information about logging, see
“Logging” on page 274.

® UpdatePolicy. Vaue from the servercont igurationManager.UpdatePolicy €MUM
specifying whether the system tries to detect if adocument is*“fresh” or not via use of an
opagque numeric identifier and whether to merge or overwrite metadata on update. For
more information, see “ Optimistic Locking” on page 269.

13.4 Creating New Server-Related Manager Objects

Most manager objects described so far handle access to the database and its content, and
accordingly are created viaamethod on apatabaseciient Object. The following managers handle
listing, reading, writing, and deleting REST Server data and settings, rather than those of the
database. Therefore, these managers are created by factory methods on a
ServerConfigurationManager instead of apatabaseClient.

The servercont igurationManager associated managers are:
* NamespaceManager: Namespace bindings. For details about namespaces, see “ Namespaces”

on page 277.

* QueryOptionsManager: QuUery options. For details, about query options, see “ Query
Options’ on page 190.

* ResourceExtensionsManager. ResouUrce service extensions. For details about resource
service extensions, see “ Extending the Java API” on page 288.

* TransformExtensionManager: Iransform extensions. For details, about transform
extensions, see “Content Transformations’ on page 282.

13.5 Namespaces

Namespaces are similar to Java packages in that they differentiate between potentially ambiguous
XML elements. With the Java API, you can define namespace bindings on the REST Server.

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 277

MarkLogic Server REST Server Configuration

In XML and XQuery, element and attribute nodes are always in a namespace, eveniif it isthe
empty namespace (sometimes called no namespace) which has the name of the empty string ("").
Each non-empty namespace has an associated URI, which is essentially a unique string that
identifies the namespace. That string can be bound to a namespace prefix, which is a shorthand
string used as an alias for the namespace in path expressions, element QNames, and variable
declarations. Namespace operations in the Java Client API are used to define namespace prefixes
on the REST Server so the client and server can share identical namespace bindings on XML
elements and attributes for use in queries.

Note that a namespace URI can be bound to multiple prefixes, but a prefix can only be bound to
one URI.

If you need to use a namespace prefix in a context in which you cannot declare it, use the REST
Management API to define the binding in the App Server. For details, see

PUT: /manage/v2/servers/ [id-or-name] /properties.

For more information about namespaces, see Understanding XML Namespaces in XQuery in the
XQuery and XSL.T Reference Guide, which provides a detailed description of XML namespaces
and their use.

This section includes the following parts:

* Namespaces Manager

e Getting Server Defined Namespaces

* Adding And Updating A Namespace Prefix

e Reading Prefixes

e Deleting Prefixes

13.5.1 Namespaces Manager

Note: The NamespacesManager interface is deprecated. Use the REST Management AP
instead. For details, see purt: /manage/v2/servers/ [id-or-name] /properties OF

GET: /manage/v2/servers/ [id-or-name] /properties.

The com.marklogic.admin.NamespacesManager Class provides editi ng for namespaces defined on
the REST Server. To USe NamespacesManager, the appl ication must authenticate as rest -admin.
Since namespaces are based on the REST Server, a New NamespacesManager IS defined via

com.marklogic.client.admin.ServerConfigManager.

NamespacesManager nsManager =
client.newServerConfigManager () .newNamespacesManager () ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 278

MarkLogic Server REST Server Configuration

13.5.2 Getting Server Defined Namespaces

Note: The nNamespacesManager interface is deprecated. Use the REST Management AP
instead. For details, SEE PUT: /manage/v2/servers/ [1d-or-name] /properties OF

GET: /manage/v2/servers/ [id-or-name] /properties.

USe com.marklogic.client.admin.NamespacesManager tO get al of the namespaces defined on the
REST Server. For example:

nsManager.readAll () ;

Thisreturns a javax.xml.namespace .NamespaceContext interface that includes all of the REST
Server defined namespaces. You can run the following on the Namespacecontext Object.

nsContext .getNamespaceURI (prefix-string) ;
nsContext.getPrefix (URI-string) ;
nsContext.getPrefixes (URI-string) ;

getNamespaceURI () returnsthe URI associated with the given prefix. getprefix () returns one of
the prefixes associated with the given URI. getprefixes () returnsan iterator of all the prefixes
associated with the given URI.

In addition, by casting the NamespaceContext 10 EditableNamespaceContext, yOu can iterate over
the compl ete set of prefixes and URIs:

EditableNamespaceContext c¢ =(EditableNamespaceContext)nsMgr.readAll () ;
for (Entry e:c.entrySet())

prefix = e.getKey () ;

nsURI = e.getValue() ;

13.5.3 Adding And Updating A Namespace Prefix

Note: The NamespacesManager interface is deprecated. Use the REST Management AP
instead. For detai |S, SEE PUT: /manage/v2/servers/ [id-or-name] /properties OF

GET:/manage/v2/servers/ [id-or-name] /properties.

Use com.marklogic.client.admin.NamespacesManager {0 add anew namespace prefix. For
example:

nsManager.addPrefix ("ml", "http://marklogic.com/exercises") ;

The first argument is the prefix, and the second argument is the URI being associated with the
prefix.

To update the value of an existing prefix, do the following:

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 279

MarkLogic Server REST Server Configuration

nsManager.updatePrefix ("ml", "http://marklogic.com/new exercises") ;

Where the first argument is the prefix, and the second argument is the new URI bound to it.

13.5.4 Reading Prefixes

Note: The NamespacesManager interface is deprecated. Use the REST Management AP
instead. For details, SEE PUT: /manage/v2/servers/ [1d-or-name] /properties OF

GET:/manage/v2/servers/ [id-or-name] /properties.

USe com.marklogic.client.admin.NamespacesManager {0 read, or get, the associated URI val ue, of
asingle prefix. For example:

nsManager.readPrefix ("ml") ;

It returns the prefix’s associated URI as a string.

In order to read, or get, all of the prefixes associated with a Namespace Manager, do the
following:

NamespaceContext context = nsManager.readAll () ;

NamespaceContext ISastandard javax.xm1 Interface for storing a set of namespace declarations on
the client. With a namespacecontext Obj ect, you can:

» Get the prefix for any URI for which a prefix-URI binding has been created in this
Namespaceserver. I he below would return its prefix, say, "mi.

context.getPrefix ("http://marklogic.com/new exercises") ;

» Get the URI for any prefix for which a prefix-URI binding has been created in this
NamespaceServer. The below returns the URI "http://marklogic.com/new_exercises"

context.getNamespaceURI ("ml") ;

» Get all of the prefixesfor any URI for which prefix-URI bindings have been created in
this namespaceserver. The below returns all the associated prefixesin an Iterator.

context.getPrefixes (“*http://marklogic.com/new exercises) ;
13.5.5 Deleting Prefixes
Note: The NamespacesManager interface is deprecated. Use the REST Management AP
instead. For details, SEE PUT: /manage/v2/servers/ [1d-or-name] /properties OF

GET: /manage/v2/servers/ [id-or-name] /properties.

To delete asingle prefix from the namespaces manager, do:

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 280

MarkLogic Server REST Server Configuration

nsManager.deletePrefix ("ml") ;
To delete all of the prefixeﬁ defined under anamespaceManager, dO:

nsManager.deleteAll () ;

13.6 Logging Namespace Operations

Aswith all manager objects, you can start and stop logging operations on aNamespacesManager
viathe startLogging () and stopLogging () methods. For details on how to usethe |Ogg| ng facil ity,
see“Logging” on page 274.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 281

MarkLogic Server Content Transformations

14.0 Content Transformations

The MarkLogic Java API allows you to create custom content transformations and apply them
during operations such as document ingestion and retrieval. You can also apply transformationsto
search results. Transforms can be implemented using server-side JavaScript, XQuery, and XSLT.
A transform can accept transform-specific parameters.

You can specify default transformations as well as operation-specific transformations. For
exampl e, Setti ng the pefaultDocumentReadTransform property Of serverconfigurationManager tO
the name of a content transformation automatically applies the transformation to every document
asit isread from the database. By default, there is no default read transform. Setting up default
transforms requires rest-aamin privileges.

This chapter contains the following sections:

¢ Installing Transforms

¢ Using Transforms

e Writing Transformations

14.1 Installing Transforms
To install atransform on your server, do the following steps:

1 If you have not already done so, create apatabaseciient fOr connecting to the database.
For example, if using digest authentication:

DatabaseClient client = DatabaseClientFactory.newClient (
host, port, new DigestAuthContext (username, password)) ;

2. Create amanager for transform extensions. Since transforms are installed on the REST
APl instance, use a serverconf igManager 1O Ccreate the manager.

TransformExtensionsManager transMgr =
client.newServerConfigManager () .newTransformExtensionsManager () ;

3. Optionally, specify the metadata for the transform, using an extensionMetadata Object.

ExtensionMetadata metadata = new ExtensionMetadata () ;

metadata.setTitle ("XML-TO-HTML XSLT Transform") ;

metadata.setDescription("This plugin transforms an XML document with a
known vocabulary to HTML") ;

metadata.setProvider ("MarkLogic") ;

metadata.setVersion("0.1") ;

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 282

MarkLogic Server Content Transformations

4, Create a handle to the transform implementation. For example, the following code creates
a handle that streams the implementation from afile.

FileInputStream transStream = new FileInputStream(
"scripts"+File.separator+TRANSFORM NAME+".xsl") ;
InputStreamHandle handle = new InputStreamHandle (transStream) ;

5. Install the transform and its metadata on MarkLogic Server.
transMgr.writeXSLTransform (TRANSFORM NAME, handle, metadata) ;

6. Release the client if you no longer need the database connection.

client.release() ;

14.2 Using Transforms
Onceyou install atransform, you can apply it under the following circumstances:

* inserting a document into the database
» reading adocument from the database
* retrieving search results

» tedting for aerting rule matches

This section describes how to use transforms and includes the following topics:

¢ Transforming a Document When Reading It

¢ Transforming a Document When Writing It

¢ Transforming Search Results

e Transforming Alert Match Results

e Qverall Transform Administration

¢ Reading Transforms

* Logain

14.2.1 Transforming a Document When Reading It

A read transform receives the document from the database as input and produces the document to
be returned to the client application as output. Specify aread transform by including a
serverTransform ODj€Ct in your call t0 pocumentManager . read.

Use the following procedure to transform a document when reading it:

1. If you have not already done so, create apatabaseciient fOr connecting to the database.
For example, if using digest authentication:

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 283

MarkLogic Server Content Transformations

DatabaseClient client = DatabaseClientFactory.newClient (
host, port, new DigestAuthContext (username, password)) ;

2. Create an appropriate Document Manager for the to be transformed document.

a. Inthiscase, we use a xMLDocumentManager.
XMLDocumentManager XMLDocMgr = client.newXMLDocumentManager () ;
b. Inthis Case, We USe gsoNDocumentManager .

JSONDocumentManager JSONDocMgr = client.newJSONDocumentManager () ;

3. Create an appropriate read handle for the document’s content.

a Thlsexample USES A com.marklogic.client.io.DOMHandle object.

DOMHandle handleXML = new DOMHandle () ;

b. Thisexample usesacom.marklogic.client.io.JacksonHandle ODjeCt.

JacksonHandle handleJSON = new JacksonHandle () ;

4, Optionally, specify the expected MIME type for the content. Thisis only needed if the
transform supports content negotiation and changes the content from one MIME type to
another.

handleXML.setMimetype ("text/xml") ;

//OR
handleJSON.setMimetype ("text/json") ;

5. Create atransform descriptor by creating a serverrransform Object. Specify the transform
name and any parameter values expected by the transform.

ServerTransform transform = new ServerTransform(TRANSFORM NAME) ;
transform.put ("some-param", "value");

6. Read the document from the database, supplying the serverTransform Object. The read
handle will contain the transformed content.

XMLDocMgr.read (theDocURI, handleXML, transform);

//OR
JSONDocMgr . read (theDocURI, handleJSON, transform) ;

7. Release the database client if you no longer need the database connection.

client.release() ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 284

MarkLogic Server Content Transformations

14.2.2

Transforming a Document When Writing It

A write transform receives the document from the client application as input, and should produce
the document to be written to the database as output. Specify awrite transform by including a
serverTransform ODj€Ct in your call t0 pocumentManager.write.

Use the following procedure to transform a document when writing it:

1.

If you have not already done so, create apatabaseclient fOr connecting to the database.
For example, if using digest authentication:

DatabaseClient client = DatabaseClientFactory.newClient (
host, port, new DigestAuthContext (username, password)) ;

Create an appropriate Document Manager for the document. In this case, we use a

TextDocumentManager.

TextDocumentManager writeMgr = client.newTextDocumentManager () ;

Create a handle to input data. For example, the following code streams the content from
the file system.

FileInputStream docStream = new FileInputStream("/path/to/my.txt");
InputStreamHandle writeHandle = new InputStreamHandle (docStream) ;

Optionally, specify the MIME type for the content. Thisis only needed if the transform
supports content negotiation and changes the content from one MIME type to another.

writeHandle.setMimetype ("text/xml") ;

Create atransform descriptor by creating a ServerTransform object. Specify the transform
name and any parameter values expected by the transform.

ServerTransform transform = new ServerTransform(TRANSFORM NAME) ;
transform.put ("drop-font-tags", "yes");

Write the content to the database. The transform is applied to the content on MarkL ogic
Server before inserting the document into the database.

String theDocURI = "/examples/mydoc.xml";
writeMgr.write (docId, writeHandle, transform) ;

Release the database client if you no longer need the database connection.

client.release() ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 285

MarkLogic Server Content Transformations

14.2.3 Transforming Search Results

When you apply atransform to search results, the transform receives the search response data
prepared by MarkL ogic Server asinput, and should produce the output to be returned to the client
application. For example, if the responseisin XML, theinput is a document with a
<search:response/> OOt element.

For details, see “ Transforming Search Results’ on page 173.

14.2.4 Transforming Alert Match Results

When you apply atransform to the results of an alerting match, the transform receives the match
results prepared by MarkLogic Server as input, and should produce the output to be returned to
the client application. For example, if the responseisin XML, the input is a document with a
<rapi:rules> root element.

For details, see “Transforming Alert Match Results” on page 260.

14.2.5 Overall Transform Administration
You can list all currently installed transform extensions by doing the following:

String result = transMgr.listTransforms (

new StringHandle () .withFormat (Format.XML)) .get () ;
// format can be JSON as well

new StringHandle () .withFormat (Format.JSON)) .get () ;

By default, calling 1istTransforms () rebuildsthe transform metadata to ensure the metadatais up
to date. If you find this refresh makes discovery take too long, you can disable the refresh by
setting the refresh parameter to false:

String result = transMgr.listTransforms (
new StringHandle () .withFormat (Format.XML), false).get();
//0r

new StringHandle () .withFormat (Format.JSON), false).get();

Disabling the refresh can result in this request returning inaccurate information, but it does not
affect the “freshness’ or availability of the implementation of any transforms.

To delete atransform, effectively uninstalling it from the server do the following:

transMgr.deleteTransform (TRANSFORM NAME) ;

14.2.6 Reading Transforms
To read the source code of an XQuery implemented transform into your application, do:

StringHandle textHandle = transMgr.readXQueryTransform (TRANSFORM NAME,
new StringHandle()); // can be any text handle

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 286

MarkLogic Server Content Transformations

To read the source code of an XSLT implemented transform into your application, do:

XMLReadHandle xHandle = transMgr.readXSLTransform(TRANSFORM NAME,
new XMLReadhandle()) ;

To read the source code of an Javascript implemented transform into your application, do:

JSONReadHandle jHandle =
transMgr.readJavascriptTransform (TRANSFORM NAME,
new JSONReadHandle()) ;

14.2.7 Logging

Since it is a manager, you can define arequestrogger Object and start and stop logging client
requests to the rransformextensionsManager. FOr more information, see “Logging” on page 274

RequestLogger logger = client.newlLogger (stream) ;
transformsMgr.startLogging (logger) ;
transformsMgr.stoplLogging () ;

14.3 Writing Transformations

You can write transforms using server-side JavaScript, XQuery, or XSLT. The transform interface
is shared across multiple MarkLogic client APIs, so you can use the same transforms with the
Java Client API, Node.js Client API, and the REST Client API. For the interface definition,
authoring guidelines, and example implementations, see Writing Transformations in the REST
Application Developer’s Guide.

Warning Resource service extensions, transforms, row mappers and reducers, and other
hooks cannot be implemented as JavaScript MJS modules.

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 287

MarkLogic Server Extending the Java API

15.0 Extending the Java API

You can extend the Java API in avariety of ways, including resource service extensions and
evaluation of ad-hoc queries and server-side modules. This chapter covers the following topics:

15.1

Available Extension Points

Introduction to Resource Service Extensions

Creating a Resource Extension

Installing Resource Extensions

Deleting Resource Extensions

Listing Resource Extensions

Using Resource Extensions

Managing Dependent Libraries and Other Assets

Evaluating an Ad-Hoc Query or Server-Side Module

Available Extension Points

The Java API offers several ways to extend and customize the capabilities using user-defined
codethat is either pre-installed on MarkLogic Server or supplied at request time. The following
extension points are available:

Content transformations: A user-defined transform function can be applied when
documents are written to the database or read from the database; for details, see * Content
Transformations’ on page 282. Y ou can also define custom replacement content
generators for the patch feature; for details, see “ Construct Replacement Data on the
Server” on page 67.

Search result customization: Customization opportunities include constraint parsers for
string queries, search result snippet generation, and search result customization. For
details, see“ Searching” on page 144 and the Search Developer’s Guide.

Resource service extensions. Define your own REST endpoints, accessible from Java
using the resourceExtensionsManager interface. Resource service extensions are covered
in detail in this chapter. To get started, see “Introduction to Resource Service Extensions”
on page 289.

Ad-hoc query execution: Send an arbitrary block of XQuery or JavaScript code to
MarkL ogic Server for evaluation. For details, see “ Evaluating an Ad-Hoc Query or
Server-Side Module” on page 298.

Server-side module evaluation: Evaluate user-defined X Query or JavaScript modul es after
installing them on MarkL ogic Server. For details, see “Evaluating an Ad-Hoc Query or
Server-Side Module” on page 298.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 288

MarkLogic Server Extending the Java API

15.2

Introduction to Resource Service Extensions

Resource service extensions extend the MarkL ogic Java APl by making X Query and server-side
JavaScript modules available for use from Java. A resource extension implements services for a
server-side resource. For example, you can create a dictionary program resource extension that
looks up words, checks spelling, and makes suggestions for not found words. The individual
operations an application programmer may call, for example, 1ookupwords (), spellcheck (), and
so on, are the services that make up the resource extension.

The following are the basic steps to create and use a resource extension using the Java API:

1.

2.

Create an XQuery or JavaScript module that implements the services for the resource.

Install the resource service extension implementation in the modul es database associated
with the REST API instance using

com.marklogic.client.admin.ResourceExtensionsManager.

Make your resource extension available to Java applications by creating awrapper class
that isasubclass of com. marklogic.client.extensions.ResourceManager. | nsidethiscl ass,
access the resource extension methods using a
com.marklogic.client.extensions.ResourceServices ODject obtained through the
ResourceManager.getServices () method.

Use the methods of your resourcemanager subclass to access the services provided by the
extension from the rest of your application.

The key classes for resource extensions in the Java API are:

ResourceExtensionsManager, which manages creati on, modificati on, and deletion of
resource service service extension implementations on the REST Server. Y ou must
connect to MarkLogic as a user with the rest-admin role to create and work with

ResourceExtensionsManager.

ResourceManager, the base class for classes that you write to provide client interfaces to
resource Sservices.

ResourceServices, Which supports calling the services for aresource. The resource
services extension implementation must already be installed on the server viathe
ResourceExtensionsManager before resourceservices Can acCcess it.

These objects are created via a serverconfigManager, SINCE resOUrce services are associated with
the server, not the database.

For a complete example of implementing and using a resource service extension, see

com.marklogic.client.example.cookbook.ResourceExtension inthe example/ di rectory of your
Java API installation.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 289

MarkLogic Server Extending the Java API

15.3 Creating a Resource Extension

You can implement aresource service Extension using server-side JavaScript or XQuery. The
interface is shared across multiple MarkLogic client APIs, so you can use the same extensions
with the Java Client API, Node.js Client API, and the REST Client API. For the interface
definition, authoring guidelines, and example implementations, see Extending the REST API in the
REST Application Developer’s Guide.

Warning Resource service extensions, transforms, row mappers and reducers, and other
hooks cannot be implemented as JavaScript MJS modules.

15.4 Installing Resource Extensions

Before you can use a resource extension, you must install the implementation on MarkL ogic
Server asfollows:

1 If your resource extension depends on additional library modules, install these dependent
librarieson MarkLogic Server. For details, see “Managing Dependent Libraries and Other
Assets’ on page 295.

1 If you have not already done so, create apatabaseclient fOr connecting to the database.
For example, if using digest authentication:

DatabaseClient client = DatabaseClientFactory.newClient (
host, port, new DigestAuthContext (username, password)) ;

2. If you have not already done so, create a resourceExtensionsManager USING

ServerConfigManager.

ResourceExtensionsManager resourceMgr =
client.newServerConfigManager () .newResourceExtensionsManager () ;

3. Create @ com.marklogic.client.admin.ExtensionMetadata Obj ect to hold the
implementation language of your extension.

ExtensionMetadata metadata = new ExtensionMetadata () ;
metadata.setScriptLanguage (ExtensionMetadata.JAVASCRIPT) ;

4. Optionally, populate the ExtensionM etadataObject with your resource extension's
metadata. You can set title, description, provider name, version, and expected parameters.
For example:

metadata.setTitle("Spelling Dictionary Resource Services");
metadata.setDescription("This plugin supports spelling dictionaries") ;
metadata.setProvider ("MarkLogic") ;

metadata.setVersion("0.1") ;

5. Optionally, define one or more objects containing method interface metadata using
com.marklogic.client.admin.ResourceExtensionsManager.MethodParameters. The

following example creates metadatafor a GET method expecting one string parameter:

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 290

MarkLogic Server Extending the Java API

MethodParameters getParams = new MethodParameters (MethodType.GET) ;
getParams.add ("my-uri", "xs:string?");

6. Create ahandle (such as an input stream and a handle associated with it) to the extension’s
source code. For example:

FileInputStream myStream = new FileInputStream("sourcefile.sjs");
InputStreamHandle handle = new InputStreamHandle (myStream) ;
handle.set (myStream) ;

7. Install the extension by calling the ResourceExtensionManager.writeServices () method,
supplying the extension name, the handle to the implementation, and any metadata
objects. For example:

resourceMgr.writeServices (DictionaryManager .NAME, handle, metadata,getParams) ;

8. Release the client if you no longer need the database connection.

client.release () ;

The following code sample demonstrates the above steps. For a complete example, see

com.marklogic.client.example.cookbook.ResourceExtension inthe example/ di rectory of your
Java API distribution.

// create a manager for resource extensions
ResourceExtensionsManager resourceMgr =
client.newServerConfigManager () .newResourceExtensionsManager () ;

// specify metadata about the resource extension

ExtensionMetadata metadata = new ExtensionMetadatal() ;
metadata.setScriptLanguage (ExtensionMetadata.XQUERY) ;
metadata.setTitle("Spelling Dictionary Resource Services");
metadata.setDescription("This plugin supports spelling dictionaries") ;
metadata.setProvider ("MarkLogic") ;

metadata.setVersion("0.1") ;

// specify metadata about method interfaces
MethodParameters getParams = new MethodParameters (MethodType.GET) ;
getParams.add ("my-uri", "xs:string?");

// acquire the resource extension source code
InputStream sourceStream = new FileInputStream("dictionary.xqy") ;

// create a handle on the extension source code
InputStreamHandle handle = new InputStreamHandle () ;
handle.set (sourceStream) ;

// write the resource extension to the database

resourceMgr.writeServices (DictionaryManager .NAME, handle,
metadata, getParams) ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 291

MarkLogic Server Extending the Java API

15.5 Deleting Resource Extensions

To delete aresource extension, call the geleteservices () method of
com.marklogic.client.admin.ResourceExtensionManager. FOI example, assumi ng you have
already obtained a resourceExtensionsManager 0Object, do the following:

resourceMgr.deleteServices (resourceName) ;

15.6 Listing Resource Extensions

To list all the installed extensions, use a handle as in the following example, which gets the
extensionslist in XML or JSON format:

String result = resourceMgr.listServices(

new StringHandle () .withFormat (Format.XML)) .get () ;
//0r
String result = resourceMgr.listServices

new StringHandle () .withFormat (Format.JSON)) .get () ;

By default, calling 1istservices () rebuildsthe extension metadata to ensure the metadatais up to
date. If you find this refresh makes discovery take too long, you can disable the refresh by setting
the refresh parameter to false:

String result = resourceMgr.listServices(

new StringHandle () .withFormat (Format.XML), false).get();
//0r
String result = resourceMgr.listServices

new StringHandle () .withFormat (Format.JSON), false).get();

Disabling the refresh can result in this request returning inaccurate information, but it does not
affect the “freshness’ or availability of the implementation of any extensions.

15.7 Using Resource Extensions

After you install the extension as described in “Installing Resource Extensions’ on page 290,
create awrapper class that exposes the functionality of the extension to your application. The
wrapper class should be asubclass Of com.marklogic.client.extensions.ResourceManager. INthe
implementation of your wrapper class, use com.marklogic.client.extensions.ResourceServices
to invoke the GET, PUT, POST and/or DELETE methods of the resource extension.

Use these guidelines in implementing your wrapper subclass:

1 Before using any services, initialize your resourcemManager SUbclass by passing it to
com.marklogic.client.DatabaseClient.init (). FOr example:

public class DictionaryManager extends ResourceManager {
static final public String NAME = "dictionary";

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 292

MarkLogic Server

Extending the Java API

public DictionaryManager (DatabaseClient client) {

super () ;

// Initialize the Resource Manager via the Database Client
client.init (NAME, this);

}

2. To pass parameters to a resource extension method, create a
com.marklogic.client.util.RequestParameters Obj ect and add parameters to it. Each
parameter isrepresented by a parameter name and value. Use the parameter names defined
by the resource extension. For example:

//Build up the set of parameters for the service call
RequestParameters params = new RequestParameters();

"dictionary");
params.add("uris", uris);

params.add("service",

3. Obtain a com. marklogic.com.extensions.ResourceServices Obj ect through the inherited
protected method getservices (). For example:

public class DictionaryManager extends ResourceManager {

public Document [] checkDictionaries(String. . . uris) {

// get the initialized service object from the base class
= getServices();

ResourceServices services

}

4. Usetheget (), put (), post (), and delete () Methods Of rResourceservices to invoke
methods of the resource extension on the server. For example:

ResourceServices services = getServices() ;

ServiceResultIterator
ServiceResultIterator
ServiceResultIterator
ServiceResultIterator

resultItr
resultItr
resultItr
resultItr

services
services
services
services

.get (params, mimetypes);
.post (params, mimetypes);
.put (params, mimetypes);
.delete(params, mimetypes) ;

The results from calling a resource extension method are returned as either a
com.marklogic.client.extensions.ResourceServices.ServiceResultIterator OF ahandleonthe
appropriate content type. Use a serviceresultIterator When amethod can return multiple items;
use a handle when it returns only one. Resources associated with the results are not released until
the associated handleis discarded or the iterator is closed or discarded.

MarkLogic 10—May, 2019

Java Application Developer’s Guide—Page 293

MarkLogic Server Extending the Java API

The following code combines all the guidelines together in a sample application that exposes
dictionary operations. For the complete example, see the Cookbook example

com.marklogic.client.example.cookbook.ResourceExtension inthe example/ di rectory of your
Java API distribution.

public class DictionaryManager extends ResourceManager {
static final public String NAME = "dictionary";
private XMLDocumentManager docMgr;

public DictionaryManager (DatabaseClient client) {
super () ;

// Initialize the Resource Manager via the Database Client
client.init (NAME, this);

// Our first Java implementation of a specific service from
// the extension
public Document [] checkDictionaries(String. . . uris) {
//Build up the set of parameters for the service call
RequestParameters params = new RequestParameters() ;
// Add the dictionary service parameter
params.add("service", "dictionary"):;
params.add("uris", uris);

String[] mimetypes = new Stringluris.length];

for (int i=0; i < uris.length; i++) {
mimetypes[i] = "application/xml";

}

// get the initialized service object from the base class
ResourceServices services = getServices();
// call the service implementation on the REST Server,
// returning a ResourceServices object
ServiceResultIterator resultltr =

services.get (params, mimetypes);

//iterate over results, get content

// release resources
resultItr.close();

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 294

MarkLogic Server Extending the Java API

15.8 Managing Dependent Libraries and Other Assets

This section covers installation and maintenance of XQuery libraries and other server-side assets
used by your application. This includes dependent libraries needed by resource extensions and
transformations, and replacement content generation functions usable for partially updates to
documents and metadata.

The following topics are covered:

* Maintenance of Dependent Libraries and Other Assets

e |Installing or Updating Assets

* Removing an Asset

* Retrieving an Asset List

e Retrieving an Asset

You can also manage assets using the MarkLogic REST API. For details, see Managing Dependent
Libraries and Other Assets in the REST Application Developer’s Guide.

15.8.1 Maintenance of Dependent Libraries and Other Assets

When you install or update a dependent library module or other asset as described in this section,
the asset is replicated across your cluster automatically. There can be adelay of up to one minute
between updating and availability.

MarkLogic Server does not automatically remove dependent assets when you delete the related
extension or transform.

Since dependent assets are installed in the modul es database, they are removed when you remove
the REST API instanceif you include the modules database in the instance teardown.

If you installed assetsin aREST API instance using MarkL ogic 6, they cannot be managed using
the /ext service unless you re-install them using /ext. Reinstalling the assets may require
additional changes because the asset URIswill change. If you choose not to migrate such assets,
continue to maintain them according to the documentation for MarkL ogic 6.

15.8.2 Installing or Updating Assets

Follow this procedure to install or update a library module or other asset in the modul es database
associated with your REST Server. If the REST Server is part of acluster, the asset is
automatically propagated throughout the cluster.

Note: The modules database path under which you install an asset must begin with
/ext/.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 295

MarkLogic Server Extending the Java API

1 If you have not already done so, connect to the database, storing the connectionin a
com.marklogic.client.DatabaseClient object. For example, if us ng dlgest
authentication:

DatabaseClient client = DatabaseClientFactory.newClient (
host, port, new DigestAuthContext (username, password)) ;

1 If you have not already done so, create a
com.marklogic.client.admin.ExtensionLibrariesManager. NOte that the method for
doi ng so is associated with a serverconfigManager.

ExtensionlLibrariesManager libMgr =
client.newServerConfigManager () .newExtensionLibrariesManager () ;

2. Associate a handle with the asset.

a. Thefollowing example associates a FileHandle with the text file containing an X Query
module.

FileHandle handle =
new FileHandle (new File ("module.xqgy")) .withFormat (Format .TEXT)) ;

b. The following example associates a FileHandle with the text file containing an Javascript
module.

FileHandle handle =
new FileHandle (new File("module.sjs")) .withFormat (Format.TEXT)) ;

3. Install the module in the modules database by calling

ExtensionLibrariesManager.write (). FOr exampl €

libMgr.write ("/ext/my/path/to/my/module.xqy", handle) ;

//0r
libMgr.write ("/ext/my/path/to/my/module.sjs", handle) ;

You can also specify asset-specific permissions by passing an extensionLibrarybescriptor
instead of asimple path string t0 extensionLibrariesManager.write (). Thefollowing example
uses an descriptor:

ExtensionLibraryDescriptor desc = new ExtensionLibraryDescriptor () ;
desc.setPath("/ext/my/path/to/my/module.xqgy") ;

//0r

desc.setPath("/ext/my/path/to/my/module.sjs") ;

desc.addPermission ("my-role", "my-capability");

libMgr.write (desc, handle) ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 296

MarkLogic Server Extending the Java API

To use adependent library installed with /ext in your extension or transform module, use the
same URI under which you installed the dependent library. For example, if adependent library is
installed with the URI /ext /my/domain/my-1ib.xqy, then the extension module using thislibrary
should include an import of the form:

import module namespace dep="mylib" at "/ext/my/domain/my-lib.xgy";
In Javascript:

const dep = require ("/ext/my/domain/my-lib.sjs");

15.8.3 Removing an Asset
To remove an asset from the modul es database associated with the REST Server, call

com.marklogic.client.admin.ExtensionLibrariesManager.delete (). For example:

DatabaseClient client = DatabaseClientFactory.newClient(...);
ExtensionlLibrariesManager libMgr =
client .newServerConfigManager () .newExtensionLibrariesManager () ;

libMgr.delete (" /ext/my/path/to/my/module.xqy") ;

//Or
libMgr.delete (" /ext/my/path/to/my/module.sjs") ;

You can also call dgelete () With A ExtensionLibraryDescriptor.

If the path passed to ge1ete (), Whether by string Or descriptor, is a database directory path, all
assets in the directory are deleted. If the path isa single asset, just that asset is deleted.

15.8.4 Retrieving an Asset List

You canretrieve alist of all the assetsinstalled in the modul es database associated with the REST
Server by Calling com.marklogic.client. admin.ExtensionsLibraryManager.1ist(). If you call
list () With no parameters, you get alist Of ExtensionLibrarybescriptor Objectsfor all assets. If
you call 1ist () with apath, you get asimilar list of descriptors for all assetsinstalled in that
database directory.

The following code snippet retrieves descriptors for al installed assets and prints the path of each
one to stdouit.

DatabaseClient client = DatabaseClientFactory.newClient(...);
ExtensionlLibrariesManager libMgr =
client.newServerConfigManager () .newExtensionLibrariesManager () ;

ExtensionLibraryDescriptor[] descriptors = libMgr.list() ;

for (ExtensionLibraryDescriptor descriptor : descriptors) {
System.out.println (descriptor.getPath()) ;
}

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 297

MarkLogic Server Extending the Java API

15.8.5 Retrieving an Asset

To retrieve the contents of an asset installed in the modul es database associated with a REST
Server, cal com.marklogic.client.admin.LibrariesExtensionManager.read (). YOU MuUSt first
create a handle to receive the contents.

The following code snippet reads the contents of an XQuery library module into a string:

DatabaseClient client = DatabaseClientFactory.newClient(...);
ExtensionLibrariesManager libMgr =
client .newServerConfigManager () .newExtensionLibrariesManager () ;

StringHandle handle =
libMgr.read ("/ext/my/path/to/my/module.xqgy", new StringHandle()) ;

The following code snippet reads the contents of an Javascript library module into a string:

DatabaseClient client = DatabaseClientFactory.newClient(...);
ExtensionlLibrariesManager libMgr =
client.newServerConfigManager () .newExtensionLibrariesManager () ;

StringHandle handle =
libMgr.read ("/ext/my/path/to/my/module.sjs", new StringHandle()) ;

15.9 Evaluating an Ad-Hoc Query or Server-Side Module

The com.marklogic.client.eval.ServerEvaluationCall enablesyou to send blocks of JavaScrlpt
and XQuery to MarkLogic Server for evaluation or to invoke an XQuery or JavaScript module
installed in the modules database. Thisis equivalent to calling the builtin server functions

xdmp : eval OF xdmp: invoke (XQUErY), OF xdmp.eval OF xdmp. invoke (JavaScript).

This section covers the following related topics:

* Security Requirements

e Basic Step for Ad-Hoc Query Evaluation

e Basic Steps for Module Invocation

e Specifying External Variable Values

* Interpreting the Results of Eval or Invoke

15.9.1 Security Requirements

Evaluating an ad-hoc query on MarkL ogic Server requires the following privileges or the
equivalent:

e http://marklogic.com/xdmp/privileges/xdmp-eval
e http://marklogic.com/xdmp/privileges/xdmp-eval-in

e http://marklogic.com/xdmp/privileges/xdbc-eval

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 298

MarkLogic Server Extending the Java API

e http://marklogic.com/xdmp/privileges/xdbc-eval-in

Invoking a module on MarkL ogic Server requires the following privileges or the equivalent:

e http://marklogic.com/xdmp/privileges/xdmp-invoke
e http://marklogic.com/xdmp/privileges/xdmp-invoke-in
e http://marklogic.com/xdmp/privileges/xdbc-invoke

e http://marklogic.com/xdmp/privileges/xdbc-invoke-in

15.9.2 Basic Step for Ad-Hoc Query Evaluation

Follow this procedure to evaluate an Ad-Hoc XQuery or JavaScript query on MarkL ogic Server.
You must use a user that has the privileges listed in “ Security Requirements’ on page 298.

1. If you have not already done so, create apatabaseciient fOr connecting to the database.
For example, if using digest authentication:

DatabaseClient client = DatabaseClientFactory.newClient (
host, port, new DigestAuthContext (username, password)) ;

1 Create aserverEvaluationCall Obj ect.

ServerEvaluationCall theCall = client.newServerEval() ;

2. Associate your ad-hoc query with the call object. You can specify the query using a
String OF A TextWriteHandle.

a. For aJavaScript query, passin the query text using serverEvaluationCall.javascript:

String query = "wordl \" \" + word2";
theCall.javascript (query) ;

b. For an XQuery query, passin the query text using serverevaluationCall.xquery.

String query =
"xquery version '1.0-ml';" +
"declare variable S$wordl as xs:string external;" +
"declare variable $word2 as xs:string external;" +
"fn:concat (Swordl, ' ', Sword2)";

theCall.xquery (query) ;

3. If the query expects input variable values, supply them using
ServerEvaluationCall.addvariable. FOr details, see* SpeC|fy| ng External Variable
Values’ on page 301.

theCall.addvVariable ("wordl", "hello");
theCall.addvVariable ("word2", "world") ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 299

MarkLogic Server Extending the Java API

4, Send the query to MarkL ogic Server for evaluation by calling serverEvaluationcall.eval
Or serverEvaluationCall.evalas. FOr details, see “Interpreting the Results of Eval or
Invoke” on page 302.

String response = theCall.evalAs(String.class);
5. Release the client if you no longer need the database connection.

client.release() ;
The following code puts these steps together into a single block.

DatabaseClient client = DatabaseClientFactory.newClient (

host, port, new DigestAuthContext (username, password)) ;
ServerEvaluationCall theCall = client.newServerEval() ;
String query = "wordl \" \" + word2";

String result = theCall.javascript (query)
.addvVariable ("wordl", "hello")
.addvariable ("word2", "world")
.evalAs (String.class) ;

15.9.3 Basic Steps for Module Invocation

Note: A JavaScript MJS module can be invoked through the /vi/invoke endpoint. This
is the preferred method.

Note: A data service endpoint can be implemented as a JavaScript MJS module. Thisis
the preferred method.

You can invoke an arbitrary JavaScript or XQuery module installed in the modul es database
associated with the REST API instance by setting amodul e path on a ServerEvaluationCall object
and then Calllng ServerEvaluationCall.eval Of ServerEvaluationCall.evalas. The module path
isresolved using the rules described in “ Rules for Resolving Import, Invoke, and Spawn Paths’
on page 87 in the Application Developer’s Guide.

You can install your moduleisus Ng com.marklogic.client.admin.ExtensionLibrariesManager.
For details, see “Installing or Updating Assets’ on page 295. If you install your module using the
ExtensionLibrariesManager interface, your module path will always being with “/ext/”.

Follow this procedure to invoke an XQuery or JavaScript module pre-installed on MarkLogic
Server. You must use a user that has the privileges listed in “ Security Requirements’ on page 298.

1 If you have not already done so, create apatabaseclient fOr connecting to the database.
For example, if using digest authentication:

DatabaseClient client = DatabaseClientFactory.newClient (
host, port, new DigestAuthContext (username, password)) ;

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 300

MarkLogic Server Extending the Java API

2. Create aserverEvaluationcall Object.
ServerEvaluationCall invoker = client.newServerEval() ;
3. Associate your module with the call object by setting the modul e path.

invoker.modulePath (" /my/module/path.sjs") ;

4, If the query expects input variable values, supply them using
ServerEvaluationCall.addvariable. FOr details, see* Specifying External Variable
Values’ on page 301.

invoker.addVariable ("wordl", "hello");
invoker.addVariable ("word2", "world");
5. Invoke the module on MarkLogic Server by calling servergvaluationcall.eval OF

ServerEvaluationCall.evalas. FOr details, see“Interpreting the Results of Eval or
Invoke” on page 302.

String response = invoker.evalAs(String.class) ;

6. Release the client if you no longer need the database connection.

client.release() ;
The following code puts these steps together into a single block.

DatabaseClient client = DatabaseClientFactory.newClient (
host, port, new DigestAuthContext (username, password)) ;
ServerEvaluationCall invoker = client.newServerEval() ;

String result = invoker.modulePath("/ext/invoke/example.sjs")
.addVariable ("wordl", "hello")
.addVariable ("word2", "world")
.evalAs (String.class) ;

15.9.4 Specifying External Variable Values

You can pass values to an ad-hoc query or invoked module at runtime using external variables.
SpeC|fy the variable values usi Ng serverEvaluationCall.addVariable. OF

ServerEvaluationCall.addVariableAs.

Use addvariable for S|mple vaue types, such as String, Number, and Boolean and values with a
SUitab|eAbstractWriteHandle, such as pomHand1e for XML and gacksonzandle for JSON. For
example:

ServerEvaluationCall theCall = client.newServerEval () ;

theCall.addvariable ("aString", "hello")

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 301

MarkLogic Server Extending the Java API

.addVariable ("aBool", true)
.addVariable ("aNumber", 3.14) ;

Use addvariableas for other complex value types such as objects. For example, the following
code uses a Jackson object mapper to set an external variable value to a JSON object that can be
used as a JavaScript object by the server-side code:

theCall.addvariableAs ("anObj",
new ObjectMapper () .createObjectNode () .put ("key", "value"))

If you' re evaluating or invoking XQuery code, you must declare the variables explicitly in your
ad-hoc query or module. For example, the following X Query prolog declares two external
string-valued variables whose values can be supplied at runtime.

xquery version "1.0-ml";
declare variable Swordl as xs:string external;
declare variable Sword2 as xs:string external;

If your XQuery external variables are in a namespace, USe serverEvaluationCall.addNamespac€
to associate a prefix with the namespace, and then use the namespace prefix in the variable name
passed t0 serverEvaluationcall.addvariable. FOr example, given the following ad-hoc query:

xquery version "1.0-ml";

declare namespace my = "http://example.com";
declare variable S$Smy:who as xs:string external;
fn:concat ("hello", " ", S$my:who)

Set the variable values as follows:

theCall.addNamespace ("my", "http://example.com")
.addvVariable ("my:who", "me")

15.9.5 Interpreting the Results of Eval or Invoke
You can request resultsin the following ways:

» If you know the ad-hoc query or invoked module returns asingle value of asimple known
type, uUse serverEvaluationCall.evalas. FOr example, if you know an ad-hoc query
returns asingle String value, you can evaluate it as follows:

String result = theCall.evalAs(String.class) ;

e Passan abstractReadHandle 10 ServerEvaluationCall.eval tO Process as ngle result
through a handle. For example:

DOMHandle result = theCall.eval (new DOMHandle()) ;
//0r

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 302

MarkLogic Server Extending the Java API

JacksonHandle result = theCall.eval (new JacksonHandle()) ;

» If the query or invoked module can return multiple values or you do not know the return
type, Use serverEvaluationcall.eval With NO parametersto return an
EvalResultIterator. FOr example:

EvalResultIterator result = theCall.eval();

When you use an evalresultiterator, €aCh valueisencapsulated in a
com.marklogic.client.eval.EvalResult that provides type information and accessors for the
value. TheEvalresult.format Method provides abstract type information, such as text, binary,
json, or xml. The evalresult.getType Method provides more detailed type information, when
available, such as string, integer, decimal, or date. Detailed type information is not always
available.

The table below maps common server-side value types to the values you can expect to their
corresponding com.marklogic.client.io.Format (ffOM EvalResult.format) 8N EvalResult . Type
GFOHWEvalResult.getType)

Value Type Format Type
document -node [object-node ()] | Format .JSON Type .JSON
object-node () Format .JSON Type .JSON
document -node [array-node ()] Format .JSON Type .JSON
array-node () Format .JSON Type .JSON
map : map Format .JSON Type .IJSON
json:array Format .JSON Type .JSON
document -node [element ()] Format . XML Type .XML
element () Format . XML Type . XML
document -node [binary ()] Format .BINARY Type .BINARY
binary () Format .BINARY Type .BINARY
document-node [text ()] Format .TEXT Format .TEXT
text () Format .TEXT Format .TEXT

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 303

MarkLogic Server Extending the Java API
Value Type Format Type

any atomic value Format . TEXT corresponding type, such as
Format . BOOLEAN Of
Format . INTEGER.

JavaScript string Format . TEXT Format .STRING

JavaScript number Format . TEXT Format .DECIMAL, & derived
typesuch as rorMAT . INTEGER,
Or Format .sTrRING (fOr
infinity)

JavaScript boolean Format . TEXT Format .BOOLEAN

MarkLogic 10—May, 2019

Java Application Developer’s Guide—Page 304

MarkLogic Server Extending the Java API

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 305

MarkLogic Server Creating Data Services Using the MarkLogic Java

16.0 Creating Data Services Using the MarkLogic Java
Development Tools

Data Servicesis aconvenient way to integrate MarkLogic into an existing enterprise
environment. A data serviceisafixed interface over the datamanaged in MarkL ogic expressed in
terms of the consuming application. Data services can run queries ("Find eigible insurance plans
for an applicant™), updates ("Flag this claim as fraudulent™), or both ("Adjust the rates of plans
that haven't made claimsin the last year"). A MarkLogic cluster can support dozens or even
hundreds of different data services operating over the data and metadata managed in a data hub.

¢ Advantages of Data Services

e Where Data Service Fit Within the Enterprise Stack

e How it Works

* Prerequisites
¢ Relation to the Java Client API

e Creating a Proxy Service

e Setting Up an App Server for the Proxy Service

e Creating the Proxy Service Directory

e Declaring the Proxy Service

e Declaring the Endpoint

¢ Providing the Module for an Endpoint Proxy

e Deploying a Proxy Service

* Generating the Proxy Service Class

e Using a Proxy Service Class

e Publishing Your Data Service for Use in Other Projects

A data serviceis different from a generic query interface, like JDBC or ODBC, which typically
operates at the physical layer of the database. Architecturally, a data serviceis more like aremote
procedure call or astored procedure. The data service allows the service devel oper to obscure the
physical layout of the data and constrain or enhance queries and updates with business |ogic.

MarkL ogic provides arich scripting environment as part of the DBMS. The devel oper
implements data services using either JavaScript or XQuery. MarkL ogic supports JavaScript and
XQuery runtimes. MarkL ogic optimizes this code to run close to the data, minimizing data
transfer and leveraging cluster-wide indexes and caches.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 306

MarkLogic Server Creating Data Services Using the MarkLogic Java

16.1 Advantages of Data Services

» Avoid unnecessary round-trips by encapsulating the data logic, ensuring that service
implementations run close to the data.

* Reduce custom plumbing code by handling network and data marshalling transparently.

* Reducethe potential for API drift as requirements and implementations change by
enforcing strongly typed interfaces.

The Java Client API supports physical operations on the database. In particular, the Java Client
API provides DocumentManager (and its derivations) and QueryManager to write, read, or query
for documents and their metadata at the Uris identifying the documents in the database. Where a
transaction must span multiple requests, the client uses a physical Transaction object.

Proxy services complement these physical operations with logical operations. The Java
middle-tier invokes endpoints, passing and receiving values. The endpoint is entirely responsible
for the implementation of the operation against the database - including the reading and writing of
values. Where an operation must interleave middle-tier and e-node tasks, the client uses alogical
session represented by a SessionState object (as described later).

The Java Client API and proxy services connect with the database in the same way. Both use the
DatabaseClientFactory class to instantiate a DatabaseClient object for use in requests.

A REST server used for the Java Client API can coexist with proxy services, provided the user
abides by the following conditions:

1. Do not try to use proxy services on port 8000.
2. You must avoid filename collisions by using a different directory than the one used by the
REST API.

One way to avoid such collisions would be to establish a convention such as using a"/ds"
directory for all data services.

Note: The middle-tier client cannot specify the database explicitly when creating a
DatabaseClient but, instead, must use the default database associated with the App Server.

16.2 Where Data Service Fit Within the Enterprise Stack

The diagram below illustrates how MarkL ogic Data Services fits within the enterprise
development stack.

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 307

MarkLogic Server Creating Data Services Using the MarkLogic Java

Business Application

dWs |
- - AP| Gateway
(Web) Service €D Business Se;rvice (Java) .
Data Sen;ice (Java) i %5,3) e
1 — Data Service
Data Service (JavaScript) LI gl MarkLogic Expert
" MarkLogic

Enterprise middle-tier business logic generally integrates many services: data services from a
MarkLogic cluster as well as services from other providers. This service orchestration and
business logic happen at alayer above the data infrastructure, outside of a particular service
provider. The flexibility to mix and match services and to decouple providers and consumersis
one of the benefits of a service-oriented architecture:

16.2.1 How it Works
You declare afunction signature for each endpoint that implements a data service.

From a set of such declarations, the development tools generate a Java proxy service class that
encapsul ates the execution of the endpoints including the marshalling and transport of the request
and response data. The middle-tier business logic can then call the methods of the generated class.

A MarkL ogic data service consists of three main components:
* Endpoint Declaration: Thisisa JSON document used to specify the name of the service as

well as the names and data types of the inputs and outputs.

« Endpoint Proxy: Code that exposes the service definition in Java, automatically invoking
the services remotely against a MarkLogic cluster for the caller.

* Endpoint Module: Thisisthe implementation of a data servicein MarkLogic asa
JavaScript or XQuery module.

By declaring the datatier functions needed by the middle-tier business logic, the endpoint
declaration establishes adivision of responsibility between the Java middle-tier developer and the
data service developer. The endpoint declaration acts as a contract for collaboration between the
two roles.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 308

MarkLogic Server Creating Data Services Using the MarkLogic Java

It isthe responsibility of the end point service devel oper to limit accessto the Data Services assets
by adding the necessary security asserts (using xdmp.security Assert or xdmp:security-assert
functions) to test for privileges.

16.2.2 Prerequisites
To create a proxy service, you need a Java JDK environment with Gradle and the following

MarkL ogic software components:
* Current version of MarkLogic Server
» Current version of MarkLogic Client Java API
» Current version of ml-gradle

The MarkL ogic Java devel opment tools are available as a Gradle plugin.

This document assumes that you are familiar with Java and Gradle.

If you are unfamiliar with Gradle, the ml-gradle project lists some resources for getting started:
Installing and learning Gradle

Typically, you create one Gradle project directory for al of the work on proxy servicesfor one
content database.

16.2.3 Relation to the Java Client API

The MarkLogic Java Client API includes development tooling and runtime proxies so that a Java
application can access custom data servicesin aMarkL ogic cluster. The Java application calls
strongly typed services running in the databases as if they were "out of the box™ Java methods.
The API handles the underlying network protocol and data marshalling.

16.3 Creating a Proxy Service

From the proxy service source files, you generate Java methods that call endpoint modules
deployed to the modul es database:

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 309

http://developer.marklogic.com/products
https://github.com/marklogic/java-client-api/
https://github.com/marklogic-community/ml-gradle
https://github.com/marklogic-community/ml-gradle/wiki/Getting-started#installing-and-learning-gradle
https://github.com/marklogic-community/ml-gradle/wiki/Getting-started#installing-and-learning-gradle
https://github.com/marklogic-community/ml-gradle/wiki/Getting-started#installing-and-learning-gradle

MarkLogic Server Creating Data Services Using the MarkLogic Java

/priceDynamically
service.json
LookupPricingFactors.api
LookupPricingFactors.sjs

generate ... *.api / *.sjs ... deploy
DynamicPricerF‘ » /priceDynamically/
| Java class call LookupPricingFactors.sjs

endpoint
The devel opment process consists of the following steps:
1 Set up aMarkLogic App Server

2. Create a proxy service directory within the Gradle project directory

3. Create afile to declare the service
4, Create files to declare one or more endpoint proxies for the service
5. Implement the module for each endpoint proxy

6. Deploy the proxy service directory to the modul es database of the App Server

7. Generate the Java Class from the proxy service declaration.

16.3.1 Setting Up an App Server for the Proxy Service
Typically, you set up asingle App Server for all of the proxy services for a content database.

The App Server configuration must have the following characteristics:

¢ Must have a modules database.
e Must have aroot of /.

You cannot use the following App Servers, created by default when you install MarkL ogic:

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 310

MarkLogic Server Creating Data Services Using the MarkLogic Java

* TheREST/HTTP/XDBC App Server on port 8000
e The Admin APl App Server on port 8001
* The REST Management APl App Server on port 8002
As noted above, you are also able to use a REST server (that is, an App Server created for the
Client REST AP).
Note: Data services can reside on REST and non-REST App Servers.

To make creation and configuration of the App Server and its modul es database, you should
manage a repeatable operation in aversion control system. You can aso put resourcesin the
Gradle project directory and use ml-gradle to operate on those resources.

See Getting started for a step-by-step guide to this Gradle procedure.

As an easy expedient when learning about MarkL ogic, you can instead configure the App Server
and modul es database manually. As along-term practice, however, we recommend a repeatable
approach using Gradle.

16.3.2 Creating the Proxy Service Directory
For each proxy service, you create a separate subdirectory under the Gradle project directory.

Each proxy service directory holds all of the resources required to support the proxy service,
including:

» The service declaration

» Theendpoint proxy declarations

* Themodule called by each endpoint proxy

» Any server-side libraries to support the endpoint modules

For easier deployment to the modul es database using ml-gradle, you should create the proxy
service directory under the src/main/ml-modules/root project subdirectory. If you are
working under aMarkL ogic ReST server application, you should use the following proxy service
di rectory: src/main/ml-modules/root/ds.

For instance, a project might choose to provide the priceDynamically service in the following
proxy service directory:

src/main/ml-modules/root/inventory/priceDynamically
16.3.3 Declaring the Proxy Service

The proxy service directory must contain exactly one service declaration file. The service
declaration file must have the name service.json

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 311

https://github.com/marklogic-community/ml-gradle/wiki/Getting-started

MarkLogic Server Creating Data Services Using the MarkLogic Java

The service declaration consists of a JSON object with the following properties:

Table 1. Service Declaration File Properties

Property Declares

endpointDirectory The directory path for the installed endpoint modules within the
modules database.

$avaClass The full name of the generated service class including the package
gualification.

desc Optional; plain text documentation for the service (emitted as Java
Doc by the generated class).

comment Optional; can contain an object, array, or value with developer com-

ments about the declaration.

The following example declares the /inventory/priceDynamically/ directory as the address of the
endpoints in the modul es database and declares
com.some.business. inventory.DynamicPricer aS the generated Java class:

"endpointDirectory" : "/inventory/priceDynamically/",
"SjavaClass" : "com.some.business.inventory.DynamicPricer"

}

Conventionally, the value of the endpointDirectory property should be the same as the path of the
proxy service directory under the specia ml-gradle src/main/ml-modules/root directory (so, the
service directory for this service.json file would conventionally be
src/main/ml-modules/root/inventory/priceDynamically).

The endpoint directory value should include the leading / and should resemble a Linux path.

After declaring the service, you populate it with endpoint proxy declarations

16.3.4 Declaring the Endpoint

The name, parameters, and return value for each endpoint is declared in afile with the .api
extension in the service directory. The file contains a JSON data structure with the following
properties:

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 312

MarkLogic Server

Creating Data Services Using the MarkLogic Java

Table 2: Endpoint Properties

Property

Declares

functionName

The name used to call the endpoint, which must match the name
(without the .api extension) of the declaration file.

desc

Optional; plain text documentation for the endpoint (emitted as
JavaDoc).

params

Optional; an array specifying the parameters of the endpoint; omit-
ted for endpoints with no parameters. Parameter objects have name,
desc, datatype, nullable, and multiple properties.

return

Optional; an object specifying the endpoint return value; omitted for
endpoints with no return value. The child object has desc, datatype,
nullable, and multiple properties.

errorDetail

Optional; specifies avaue from the following enumeration to con-
trol whether error responses include stack traces:

* log: (the default) to log the stack trace on the server but not
return the stack trace to the middle-tier.

» return: to include the stack trace in the exception on the
middle-tier aswell aslog it on the server.

The endpoint declaration is used both to generate a method in a Java class to call on the
middle-tier and to unmarshal the request and marshal the response when the App Server executes

the endpoint module.

Note: The .api filefor proxy endpoint must be loaded into the modul es database with
the endpoint module.

The following sections provide more detail about the params and return declarations

16.3.4.1 Structure of a Parameter Definition
A parameter definition in the params property is an array with the following properties:

MarkLogic 10—May, 2019

Java Application Developer’s Guide—Page 313

MarkLogic Server Creating Data Services Using the MarkLogic Java

Table 3;: Parameter Definitions

Property Declares
name The name of the parameter
desc Optional; a description of the parameter to include in JavaDoc.
datatype The datatype of the parameter (see Server Data Types for Values).
nullable Optional; whether the parameter can be null (defaulting to false).
multiple Optional; whether the parameter can have more than one value
(defaulting to false).

16.3.4.2 Structure of the Return Type Definition
The return property of an endpoint declaration is an object with the following properties:

Table 4: Return Type Definitions

Property Declares
desc Optional; a description of the return to include in JavaDoc.
datatype The datatype of the return (see Server Data Types for Values).
nullable Optional; whether the return can be null (defaulting to false).
multiple Optional; whether the return can have more than one value
(defaulting to false).

16.3.4.3 Example of an Endpoint Proxy

The following example declares that the lookupPricingFactors endpoint has two required
parameters as well as arequired return value:

{

"functionName" : "lookupPricingFactors",
"params" : [{

"name" : "productCode",

"datatype" : "string"

b A

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 314

MarkLogic Server Creating Data Services Using the MarkLogic Java

"name" : "customerId",
"datatype" : "unsignedLong"
}o1
"return" : {
"datatype" : "jsonDocument"

b}

16.3.4.4 Server Data Types for Values
You can specify atomic or node server data types for parameters and return values:

Table5: Server Data Types

Category Data Types

atomics boolean, date, dateTime, day TimeDuration, decimal, double,
float, int, long, string, time, unsignedint, unsignedL ong

nodes array, object, binaryDocument, jsonDocument, textDocument,
xmlDocument

The data types with direct equivalentsin the Java language atomics are represented with those
Javaclassesby default. These datatypesinclude boolean, double, float, int, long, string,
unsignedInt, and unsignedLong. For instance, a Java Integer represents an int. Likewise, the
unsigned methods of the Java Integer and Long classes can manipulate the unsignedint and
unsignedLong types.

By default, a Java String represents the other atomic types (including date, dateTime, and
dayTimeDuration, decimal and time).

Other server atomic datatypes can be passed as a string and cast using the appropriate constructor
on the server.

A binaryDocument value is represented as an InputStream by default. All other node data types
are represented as a Reader by default.

The array and object datatypes differ from the jsonDocument datatype in not having a document
node at the root, which can provide a more natural and efficient JSON value for manipulating in
SIS (Server-Side JavaScript).

16.3.4.5 Mapping Values to Alternative Java Classes

Instead of the default Java representation, an alternative Java class may represent some server
data types. For example, a String can represent a date by default, but you can choose to use
java.time.LlocalDate instead.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 315

MarkLogic Server Creating Data Services Using the MarkLogic Java

To specify an aternative Java class, supply the fully qualified class namein the $javaclass
property of a parameter or return type. You must till specify the server datatype in the datatype

property.

The following table lists server data types with their available alternative representations:

Table6:
Server Data Type Mappable Java Classes
date javatime.LocalDate
dateTime javautil.Date, java.time.LocalDateTime, java.time.OffsetDateTime

dayTimeDuration javatime.Duration

decimal java.math.BigDecimal
time javatime.Loca Time, java.time.OffsetTime
array javaio.lnputStream,

javaio.Reader,

javalang.String,
com.fasterxml.jackson.databind.node.ArrayNode,
com.fasterxml.jackson.core.JsonParser

object javaio.lnputStream,

java.io.Reader,

javalang.String,
com.fasterxml.jackson.databind.node.ObjectNode,
com.fasterxml.jackson.core.JsonParser

binaryDocument javaio.lnputStream
jsonDocument javaio.lnputStream,
java.io.Reader,

java.lang.String,
com.fasterxml.jackson.databind.JsonNode,
com.fasterxml.jackson.core.JsonParser

textDocument java.io.lnputStream,
java.io.Reader,
java.lang.String

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 316

MarkLogic Server Creating Data Services Using the MarkLogic Java

Table6:

Server Data Type Mappabl e Java Classes

xmlDocument java.io.lnputStream,

java.io.Reader,

javalang.String,
org.w3c.dom.Document,
org.xml.sax.InputSource,
javax.xml.transform.Source,
javax.xml.stream.X ML EventReader,
javax.xml.stream.X M L StreamReader

Thefollowing exampl e represents the occurred date parameter as a Java L ocal Date and represents
the returned JSON document as a Jackson JsonNode.

{

"functionName" : "produceReport",
"params": [{
"nmame":"id", "datatype":"int"
boo {
"name" :"occurred", "datatype":"date",
"SjavaClass":"java.time.LocalDate"
}o1
"return" : {
"datatype" :"jsonDocument",
"$javaClass":"com.fasterxml.jackson.databind.JsonNode" }

16.3.4.6 Calling Endpoints in a Session

Ordinarily, the database server does not keep any state associated with a call to an endpoint (with
the obvious but important exception of documents persisted in the database). When the
middle-tier sends all of the input needed for a data tier operation, the operation can be completed
in asingle request. This approach typically maximizes performance and minimizes load.

Some operations, however, use sessions that coordinate multiple requests. Examples of such
operations include:

Interleaving middle-tier and data tier operations (such as multi-statement transactionsin
which the middle-tier logic must be inserted between the initial database change and a
subsequent database change)

Implementing Host affinity with an e-node when working with aload balancer to exploit
guery caches on the e-node.

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 317

MarkLogic Server Creating Data Services Using the MarkLogic Java

You can handle these edge cases by calling the endpointsin a session. If an endpoint needs to
participate in a session, its declaration must include exactly one parameter with the session data
type. The session parameter may be nullable but not multiple (and may never be areturn value).

// A simple example of the use of "session" in an .api declaration:

{

"functionName" : "SessionChecks",
"params" : [{

"name" : "api session",

"datatype" : "session",

"desc" : "Holds the session object"

b

If at least one endpoint has a session parameter, the generated class provides anewsessionState()
factory that returns a SessionState object. The expected pattern of use:

» Construct a new session object when needed.
» Pass the same session object on each call that should execute in the same session.

Where endpoint modules need to participate in the same session, you must declare a session
parameter for each of the corresponding endpoint proxies and document the expectations for
coordination in the middle-tier consumer code. For instance, if one session endpoint starts a
multi-statement transaction, another continues work in the same multi-statement transaction, and
athird commits the transaction, the documentation should explain that each call would use the
same session, as well as the sequence in which to make the calls.

The proxy service does not end the session explicitly. Instead, the session eventually times out (as
controlled by the configuration of the App Server). The middle-tier code isresponsible for calling
an endpoint module to commit a multi-statement transaction before the session expires.

16.3.5 Providing the Module for an Endpoint Proxy

Note: A JavaScript MJS module can be invoked through the /vi1/invoke endpoint. This
is the preferred method.

Note: A data service endpoint can be implemented as a JavaScript MJS module. Thisis
the preferred method.

You implement the data operations for an endpoint proxy in an XQuery or Server-Side JavaScript
endpoint module. The proxy service directory of your project must contain exactly one endpoint
module for each endpoint declaration in your service.

An endpoint module must have the same base name as the endpoint declaration. In addition, it

must have either an .xqy (XQuery) or .sjs (JavaScript) extension, depending on the
implementation language.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 318

MarkLogic Server Creating Data Services Using the MarkLogic Java

The App Server handles marshalling and unmarshalling for the endpoint. That is, the endpoint
does not interact directly with the transport layer (which, internally, is currently HTTP).

The endpoint module must define an external variable for each parameter in the endpoint
declaration. In an SJS endpoint, use avar statement at the top of the module with no initialization
of the variable. In an XQuery endpoint, use an externa variable with the server data type
corresponding to the parameter data type.

The endpoint module must also return a value with the appropriate data type.

For the 1lookupPricingFactors endpoint whose declaration appears earlier, the SIS endpoint
module would resemble the following fragment:

'use strict';
var productCode; // an xs.string value
var customerId; // an xs.unsignedLong value
. /* the code that produces a JSON document as output */

The equivaent XQuery endpoint module would resemble the following fragment:

xquery version "1.0-ml";
declare variable $productCode as xs:string external;
declare variable S$customerId as xs:unsignedLong external;
declare option xdmp:mapping "false";
(: the code that produces a JSON document as output :)

As aconvenience, you can usethe initializeModule Gradle task to create the skeleton for an
endpoint module from an endpoint declaration. You specify the path (relative to the project
directory) for the endpoint declaration with the endpointDeclarationFile property and the
module extension (which can be either sjs or xqy) with the moduleExtension property.

Your Gradle build script should apply the com.marklogic.ml-development-tools plugin. You can
execute the Gradle task using any of the following techniques:

* By setting the propertiesin the gradle.properties file and specifying the initializeModule
task on the gradle command line

* By specifying the properties with the -P option as well asthe initializeModule task on the
gradle command line

* By supplying abuild script with a custom task of the
com.marklogic.client.tools.gradle.ModuleInitTask type

For the command-line approach, the Gradle build script would resemble the following example:

plugins
id 'com.marklogic.ml-development-tools' version '4.1.1'
}

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 319

MarkLogic Server Creating Data Services Using the MarkLogic Java

On Linux, the command-line for initializing the lookupPricingFactors.§s SIS endpoint module
from the lookupPricingFactors.api endpoint declaration might resemble the following example:

gradle \
-PendpointDeclarationFile=src/main/ml-modules/root/inventory/priceDyna
mically/lookupPricingFactors.api \

-PmoduleExtension=sjs \

initializeModule

Once each . api endpoint declaration file has an equivalent endpoint module to implement the
endpoint, you can load the proxy service directory into the modules database and generate the
proxy service Java class. (The Java code generation checks the endpoint module in the service
directory to determine how to invoke the endpoint.)

16.3.6 Deploying a Proxy Service

You must load the resources from the proxy service directory into the module database of the App
Server. Deploy your resources to the same database directory as the value of the
endpointDirectory property of the service declaration file (service. json).

To load a directory into the modul es database, you can use either of the mlLoadModules or
mlReloadModules tasks provided by ml-gradle. You supply the properties required for deployment
including the following:

* mlHost - required

* mlIAppServicesUsername - required if not admin and mlPassword not set

* mlAppServicesPassword - required if not admin and mlUsername not set

* ml|AppServicesPort - required if not 8000

* mIModulesDatabaseName - required

* mIModulePermissions - required

* mINoRestServer - required to be true, so that mliDeploy will not create aREST API server
by default.

* mlReplaceTokensinModules - typically false

If you did not create the proxy service directory under the src/main/ml-modules/root project
subdirectory, you must specify the parent directory for the root directory with the miModulePaths

property.
You can supply properties using a gradle.properties file or atask.

After you have configured the properties, the command to load the modules would resembl e the
following example (or the equivalent with mIReloadM odul es):

gradle mlLoadModules

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 320

MarkLogic Server Creating Data Services Using the MarkLogic Java

For more information, see How modules are |oaded.

16.3.7 Generating the Proxy Service Class

A proxy service classis a Javainterface for calling the endpoint modules for your service on the
MarkLogic e-node. You generate the proxy service class from the resources in the proxy service
directory.

The proxy service class has the name specified by the $javaclass property of the service
declaration file (service. json). The class has one method for each endpoint declaration with an
associated endpoint module in the proxy service directory.

To generate the class, you use the generateEndpointProxies Gradle task. You specify the path
(relative to the project directory) of the service declaration file (service.json) with the
serviceDeclarationFile property. You can also specify the output directory with the
javaBaseDirectory property or omit the property to use the default (which isthe src/main/java
subdirectory of the project directory).

Your Gradle build script should apply the com.marklogic.ml-development-tools plugin. You can
execute the task using any of the following techniques:

* By setting the propertiesin the gradle.properties file and specifying the
generateEndpointProxies task on the gradle command line

» By specifying the properties with the -P option as well asthe generateEndpointProxies
task on the gradle command line

* By supplying abuild script with custom task of the
com.marklogic.client.tools.gradle.EndpointProxiesGenTask type

* By supplying abuild script with the endpointProxiesConfig extension configuration and
specifying the generateEndpointProxies task on the gradle command line

For the custom task approach, the Gradle build script for generating a class with a method for
each endpoint in the priceDynamically service might resemble the following example:

plugins
id 'com.marklogic.ml-development-tools' version '4.1.1'
}

task generateDynamicPricer (type:
com.marklogic.client.tools.gradle.EndpointProxiesGenTask) {

serviceDeclarationFile =
'src/main/ml-modules/root/inventory/priceDynamically/service.json’

}

The command-line to execute the custom task would resemble the following example:

gradle generateDynamicPricer

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 321

https://github.com/marklogic-community/ml-gradle/wiki/How-modules-are-loaded

MarkLogic Server Creating Data Services Using the MarkLogic Java

You only need to regenerate the proxy service class when the list of endpoints or the name,
parameters, or return value for an endpoint changes. You do not need the regenerate the proxy
service class after changing the module that implements the endpoint.

16.3.8 Using a Proxy Service Class

In general, you can work with your generated proxy service Java class in the same way as with
manually written Java source files.

The generated class has an on() static method that isafactory for constructing the class. Theon()
method requires abatabaseClient for the App Server. You construct the database client by using
the batabaseClientFactory class of the Java API.

Note: You cannot specify the database explicitly when creating the DatabaseClient but, instead,
must use the default database associated with the App Server.

16.3.8.1 Compiling a Proxy Service Class

After generating the proxy service class, you compileit in the usua way. In particular, by
generating the proxy service classin the conventional directory for Gradle (whichis
src/main/java) and declaring a dependency on the MarkLogic Java API in the build script, you
can use Gradle to compile the generated class without other configuration.

16.3.8.2 Testing a Proxy Service Class

After deploying your proxy service to the MarkL ogic modules database, you can test your proxy
service Java class in the same manner as any other Java class.

To write functional tests that confirm the endpoint modules work correctly, you can use any
general-purpose test framework (for instance, JUnit). The test framework should:

e Cadl theon() static factory method to construct an instance.

» Cal the appropriate method to invoke the endpoint module.

» Inspect the returned value to confirm the operation of the endpoint module.

Because the generated proxy service classis available as a Java interface, you can replace the
implementation with a mock implementation of the interface for testing a middle-tier consumer.

16.3.8.3 Documenting a Proxy Service Class

The generated class has JavaDoc comments based on the desc properties from the service
declaration and endpoint declarations. You can generate JavaDoc for the middle-tier consumer of
the proxy service classin the usua way.

16.3.8.4 Packaging a Proxy Service
Finally, you can create ajar file with the compiled executable proxy service class in the usual way.

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 322

MarkLogic Server Creating Data Services Using the MarkLogic Java

16.4 Publishing Your Data Service for Use in Other Projects

Users of Data Services need to know how to publish a Data Service for usein another project, and
devel opers that require the end-points provided by a Data Service need to have away to access
them in their own projects.

This section shows you how to use the ml-gradle tool to enable publication of your Data Services.

* Modifying the Source project to Enable Publication

e Using the Maven Bundle in Other Projects

16.4.1 Modifying the Source project to Enable Publication

The procedureisto modify the build.gradlefile for the source project to publish the Data Services
implementation to a Maven repository, asin:

plugins

id 'maven-publish'

}

configurations

myDataServiceBundle
}
task myDataServiceJar (type: Jar) {
baseName = 'myDataService'
description = "..."
from("src/test/ml-modules/root/ds/myDataService") {
into ("myDataService/ml-modules/root/ds/myDataService")
}

destinationDir file("build/libs")

}

publishing

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 323

MarkLogic Server Creating Data Services Using the MarkLogic Java

publications {

MainMyDataService (MavenPublication) {
artifactId "myDataService™"

artifact myDataServiceJar

16.4.2 Using the Maven Bundle in Other Projects

After the bundle for the Data Service endpoint implementation has been published to aMaven
repository, other projects can use the bundle by configuring build.gradle to use the miBundle task
provided by the ml-gradle tool:

plugins {

id "com.marklogic.ml-gradle" version "..."

}

dependencies

mlBundle group: '...', name: 'myDataService', version: '...'

}

For more information, see the Bundles section of our ml-gradle documentation:

Following the standard approach for Gradle and Maven repositories, the client interface can be
published and consumed as a Java jar.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 324

https://github.com/marklogic-community/ml-gradle/wiki/Bundles

MarkLogic Server Creating Data Services Using the MarkLogic Java

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 325

MarkLogic Server Troubleshooting

17.0 Troubleshooting

This chapter describes how to troubleshoot errors while programming in the Java API, and
contains the following sections:

e Error Detection

e General Troubleshooting Techniques

17.1 Error Detection

Asyou would expect, the Java API client indicates errors by throwing exceptions. It does not
return errors or otherwise indicate problems by any other means. The exceptions are located in
com.marklogic.client and are:

® FailedRequestException. Indicates a problem at the REST API level.

* ForbiddenUserException. Indicates credentials used to connect to a REST instance are not
sufficient for the requested task. Equivalent to a 203 HTTP status code.

* MarkLogicBindingException: INdicatesa problem bindi ng avalue.
* MarkLogicInternalException: Indicates adefect in the API. Call MarkLoglc Support.

* MarkLogicIOException. RuntimeException Ihrown when acode block internally throws

java.lang.IOException.
* MarkLogicServerException: The MarkLogic REST Server threw an exception.
* ResourceNotFoundException: Thrown when the server responds with an HTTP 404 status.

* UnauthorizedUserException: Thrown when auser attempts an operation to which they do
not have the rightsfor.

17.2 General Troubleshooting Techniques
The following are some general guidelines for troubleshooting your program.

* To troubleshoot unexpected search results, pass the query option for debug, which returns
errors in the query options, and the return-gtext option, which returns the pre-parsed
guery text for the search.

* Remember that documents with no read permission are hidden.
» To troubleshoot exceptions, pay close attention to any messages returned from the server.

» Set the MarkL ogic Server error 1og to aebug and view the server log
(<marklogic -dir>/Logs/ErrorLog. txt) for more details.

* To monitor the HTTP requests against the REST Server, look at the access logs under the
<marklogic-dirs/Logs directory for your REST App Server (for example,
1234 AccessLog.txt fOr the server running on port 1234).

» Configure managers with arequest logger to confirm requests are correct.

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 326

MarkLogic Server Troubleshooting

» Totroubleshoot extensions, first execute the XQuery code in an XQuery environment.
Then look at the requests and server log.

» Check the query options builder output to make sure it is what you expect, either with
QueryOptionsHandle.toString (), Which outputs the XML representation of the query
options, or by checking the stored options against what is expected. Errors reported by
MarkLogic Server refer to the structure of this document.

* When you have a mismatch between query options and existing indexes, you can look at
the /v1l/config/indexes?format=html endp0| nt on your REST Server.

» If youwant acloser look at the requests against the REST Server, use a network sniffer to
watch the HTTP trafic against the REST Server. Y ou can also try to execute an equivalent
request for the REST API using cURL or some other HTTP client.

MarkLogic 10—May, 2019 Java Application Developer’ s Guide—Page 327

MarkLogic Server Technical Support

18.0 Technical Support

MarkL ogic provides technical support according to the terms detailed in your Software License
Agreement or End User License Agreement.

We invite you to visit our support website at http://help.marklogic.com to access information on
known and fixed issues, knowledge base articles, and more. For licensed customers with an active
maintenance contract, see the Support Handbook for instructions on registering support contacts
and on working with the MarkL ogic Technical Support team.

Complete product documentation, the latest product release downloads, and other useful
information is available for al developers at http:/developer.marklogic.com. For technical
guestions, we encourage you to ask your question on Stack Overflow.

MarkLogic 11

http://help.marklogic.com/
https://stackoverflow.com/questions/tagged/marklogic
http://developer.marklogic.com
http://www.marklogic.com/files/Mark_Logic_Support_Handbook.pdf

MarkLogic Server Technical Support

MarkLogic 11 —December, 2022 Installation Guide for All Platforms—Page 329

MarkLogic Server Copyright

19.0 Copyright

MarkLogic Server 10.0 and supporting products.
Last updated: February, 2022

Copyright © 2022 MarkL ogic Corporation. All rights reserved.
Thistechnology is protected by U.S. Patent No. 7,127,469B2, U.S. Patent No. 7,171,404B2, U.S.
Patent No. 7,756,858 B2, and U.S. Patent No 7,962,474 B2, US 8,892,599, and US 8,935,267.

The MarkL ogic software is protected by United States and international copyright laws, and
incorporates certain third party libraries and components which are subject to the attributions,
terms, conditions and disclaimers set forth below.

For all copyright notices, including third-party copyright notices, see the Combined Product
Notices for your version of MarkLogic.

MarkLogic 11

MarkLogic Server Copyright

MarkLogic 11 —December, 2022 Installation Guide for All Platforms—Page 331

	Java Application Developer’s Guide
	Table of Contents
	1.0 Introduction to the Java API
	1.1 Java Client API Overview
	1.2 Java Client API or Java XCC?
	1.3 Getting Started
	1.3.1 Required Software
	1.3.2 Make the Libraries Available to Your Application
	1.3.3 Choose a REST API Instance
	1.3.4 Create Users
	1.3.5 Explore the Examples

	1.4 Creating, Working With, And Releasing a Database Client
	1.4.1 The Role of a Database Client
	1.4.2 Expected Database Client Lifetime
	1.4.3 Connection Management and Configuration
	1.4.4 Creating a Database Client
	1.4.5 Connecting Through a Load Balancer
	1.4.6 Releasing a Database Client

	1.5 Authentication and Connection Security
	1.5.1 Creating a SecurityContext Object
	1.5.2 Using Kerberos Authentication
	1.5.3 Connecting to MarkLogic with SSL
	1.5.4 Using SAML Authentication

	1.6 A Basic “Hello World” Method
	1.7 Document Managers
	1.8 Streaming
	1.9 Using Handles for Input and Output
	1.9.1 Handle Overview
	1.9.2 Specifying Content Format
	1.9.3 Handle Type Quick Reference
	1.9.4 Handle Example

	1.10 Shortcut Methods as an Alternative to Creating Handles
	1.10.1 Understanding Shortcut Methods
	1.10.2 When to Choose Strongly Typed Over Shortcut
	1.10.3 Extending Shortcuts by Registering Handle Factories

	1.11 Thread Safety of the Java API
	1.12 Downloading the Library Source Code

	2.0 Single Document Operations
	2.1 Document Creation
	2.1.1 Writing an XML or JSON Document To The Database
	2.1.2 Creating a Text Document In the Database
	2.1.3 Automatically Generating Document URIs
	2.1.4 Format-Specific Write Capabilities

	2.2 Document Deletion
	2.3 Reading Document Content
	2.4 Writing A Binary Document
	2.5 Reading Content From A Binary Document
	2.6 Reading, Modifying, and Writing Metadata
	2.6.1 Document Metadata
	2.6.2 Reading Document Metadata
	2.6.3 Collections Metadata
	2.6.4 Values Metadata
	2.6.5 Properties Metadata
	2.6.6 Quality Metadata
	2.6.7 Permissions Metadata
	2.6.8 Manipulating Document Metadata In Your Application
	2.6.9 Writing Metadata

	2.7 Working with Temporal Documents
	2.8 Conversion of Document Encoding
	2.9 Partially Updating Document Content and Metadata
	2.9.1 Introduction to Content and Metadata Patching
	2.9.2 Basic Steps for Patching Documents and Metadata
	2.9.3 Construct a Patch From Raw XML or JSON
	2.9.4 Defining the Context for a Patch Operation
	2.9.5 Example: Replacing Parts of a JSON Document
	2.9.6 Example: Patching Metadata
	2.9.7 Managing XML Namespaces in a Patch
	2.9.8 Construct Replacement Data on the Server

	3.0 Synchronous Multi-Document Operations
	3.1 Write Multiple Documents
	3.1.1 Overview of Multi-Document Write
	3.1.2 Example: Loading Multiple Documents
	3.1.3 Understanding Metadata Scoping
	3.1.4 Understanding When Metadata is Preserved or Replaced
	3.1.5 Example: Controlling Metadata Through Defaults
	3.1.6 Example: Adding Documents to a Collection
	3.1.7 Example: Writing a Mixed Document Set

	3.2 Read Multiple Documents by URI
	3.3 Read Multiple Documents Matching a Query
	3.3.1 Overview of Multi-Document Read by Query
	3.3.2 Example: Read Documents Matching a Query
	3.3.3 Add Query Options to a Search
	3.3.4 Return Search Results
	3.3.5 Read Documents Incrementally
	3.3.6 Extracting a Portion of Each Matching Document

	3.4 Apply a Read Transformation
	3.5 Selecting a Batch Size

	4.0 Asynchronous Multi-Document Operations
	4.1 Terms and Definitions
	4.2 Data Movement Feature Overview
	4.3 Data Movement Concepts
	4.3.1 Summary of Key Classes and Interfaces
	4.3.2 Basic Data Movement Job Life Cycle
	4.3.3 Job Types
	4.3.4 Object Lifetime Considerations
	4.3.5 How Work is Distributed Across a Cluster

	4.4 Creating and Managing a Write Job
	4.4.1 Creating a Batcher and Configuring a Write Job
	4.4.2 Attaching Listeners to a Write Job
	4.4.3 Starting a Write Job
	4.4.4 Adding Documents and Metadata to a Job
	4.4.5 Stopping a Write Job
	4.4.6 Write Job Performance Considerations
	4.4.7 Example: Loading Documents From the Filesystem

	4.5 Creating and Managing a Query Job
	4.5.1 Creating and Configuring a Query Job
	4.5.2 Attaching Listeners to a Query Job
	4.5.3 Starting a Query Job
	4.5.4 Stopping a Query Job
	4.5.5 Using a Consistent Snapshot
	4.5.6 Performance Considerations for Query Jobs

	4.6 Reading Documents from MarkLogic
	4.6.1 Using ExportListener to Read Documents
	4.6.2 Using ExportToWriterListener to Read Documents
	4.6.3 Example: Exporting Documents that Match a Query

	4.7 Applying an In-Database Transformation
	4.7.1 Applying an In-Database Transformation with QueryBatcher
	4.7.2 Example: Applying an In-Database Transformation

	4.8 Deleting Documents from a Database
	4.9 Applying a Read or Write Transformation
	4.10 Job Control
	4.10.1 Checking the Status of a Job
	4.10.2 Pausing and Restarting a Job
	4.10.3 Graceful Termination of a Job
	4.10.4 Terminating a Job Prematurely
	4.10.5 Updating Forest Configuration for a Job
	4.10.6 Working with a Load Balancer
	4.10.7 Restricting the Hosts Used by a Job

	4.11 Failover Handling
	4.11.1 Default Failover Handler
	4.11.2 Failover When Connecting Through a Load Balancer
	4.11.3 Interaction with In-Database Transform
	4.11.4 Failover Handling in Custom Listeners

	4.12 Working With Listeners
	4.12.1 Guidelines for Creating Listeners
	4.12.2 Attaching Multiple Listeners to a Job
	4.12.3 Removing or Replacing a Listener

	4.13 Alternative Interfaces

	5.0 Searching
	5.1 Overview of Search Using the Java API
	5.2 Using SearchHandle to Examine Query Results
	5.3 Search Using String Query Definition
	5.4 Search Documents Using Structured Query Definition
	5.4.1 Ways to Create a Structured Query
	5.4.2 Basic Steps to Define a Structured Query Definition
	5.4.3 Creating a Structured Query From Raw XML or JSON
	5.4.4 Structured Query Examples

	5.5 Prototype a Query Using Query By Example
	5.5.1 What is QBE
	5.5.2 Search Documents Using a QBE
	5.5.3 Validate a QBE
	5.5.4 Convert a QBE to a Combined Query

	5.6 Apply Dynamic Query Options to Document Searches
	5.6.1 Searching Using Combined Query
	5.6.2 Creating a Combined Query Using StructuredQueryBuilder
	5.6.3 Interaction with Persistent Query Options
	5.6.4 Combined Query Examples
	5.6.5 Performance Considerations

	5.7 Search On Tuples (Tuples Query / Values Query)
	5.7.1 Values Search
	5.7.2 Tuples Search
	5.7.3 Adding a Constraining Query

	5.8 Limiting A Search To Specific Collections And/Or A Directory
	5.9 Searching Values Metadata Fields
	5.10 Transforming Search Results
	5.10.1 Writing a Search Result Transform
	5.10.2 Using a Search Result Transform

	5.11 Generating Search Term Completion Suggestions
	5.11.1 Basic Steps
	5.11.2 Example: Generating Search Suggestions
	5.11.3 Where to Find More Information

	5.12 Extracting a Portion of Matching Documents
	5.12.1 Overview of Extraction
	5.12.2 Basic Steps for Search Match Extraction
	5.12.3 Example: Extracting a Portion of Each Matching Document

	6.0 Query Options
	6.1 Using Query Options
	6.2 Default Query Options
	6.3 Using QueryOptionsManager To Delete, Write, and Read Options
	6.4 Using Query Options With Search
	6.5 Creating Persistent Query Options From Raw JSON or XML
	6.6 Validating Query Options With setQueryOptionValidation()

	7.0 Working With Semantic Data
	7.1 Introduction
	7.2 Overview of Common Semantic Tasks
	7.3 Creating and Managing Graphs
	7.3.1 GraphManager Interface Summary
	7.3.2 Creating a GraphManager Object
	7.3.3 Specifying the Triple Format
	7.3.4 Creating or Overwriting a Graph
	7.3.5 Reading Triples from a Graph
	7.3.6 Replacing Quad Data in Graphs
	7.3.7 Adding Triples to an Existing Graph
	7.3.8 Adding Quads into an Existing Graph
	7.3.9 Deleting a Graph

	7.4 Querying Semantic Triples With SPARQL
	7.4.1 Basic Steps for SPARQL Query Evaluation
	7.4.2 Handling Query Results
	7.4.3 Defining Variable Bindings
	7.4.4 Limiting the Number of Results
	7.4.5 Inferencing Support

	7.5 Querying Triples with the Optic API
	7.6 Example: Loading, Managing, and Querying Triples
	7.7 Using SPARQL Update to Manage Graphs and Graph Data
	7.8 Managing Permissions
	7.8.1 Default Graph Permissions and Required Privileges
	7.8.2 Setting Graph Permissions
	7.8.3 Retrieving Graph Permissions
	7.8.4 Managing Permissions on Unmanaged Triples

	8.0 Optic Java API for Relational Operations
	8.1 Overview
	8.2 Getting Started
	8.3 Java Packages
	8.4 Structure of the Java Optic API
	8.4.1 Values and Expressions
	8.4.2 Items and Sequences
	8.4.3 Atomic Values and Nodes in RowRecord

	8.5 Examples

	9.0 POJO Data Binding Interface
	9.1 Data Binding Interface Overview
	9.2 Limitations of the Data Binding Interface
	9.3 Annotating Your Object Definition
	9.4 Saving POJOs in the Database
	9.5 Retrieving POJOs from the Database By Id
	9.6 Example: Saving and Restoring POJOs
	9.7 Searching POJOs in the Database
	9.7.1 Basic Steps for Searching POJOs
	9.7.2 Full Text Search with String Query
	9.7.3 Search Using Structured Query
	9.7.4 How Indexing Affects Searches
	9.7.5 Creating Indexes from Annotations

	9.8 Example: Searching POJOs
	9.8.1 Overview of the Example
	9.8.2 Source Code
	9.8.3 Exploring the Example Queries

	9.9 Retrieving POJOs Incrementally
	9.10 Removing POJOs from the Database
	9.11 Testing Your POJO Class for Serializability
	9.12 Troubleshooting
	9.12.1 Error: XDMP-UNINDEXABLEPATH
	9.12.2 Error: XDMP-PATHRIDXNOTFOUND
	9.12.3 Unexpected Search Results

	10.0 Alerting
	10.1 Alerting Pre-Requisites
	10.2 Alerting Concepts
	10.3 Defining Alerting Rules
	10.3.1 Defining a Rule Using RuleDefinition
	10.3.2 Defining a Rule in Raw XML
	10.3.3 Defining a Rule in Raw JSON

	10.4 Testing for Matches to Alerting Rules
	10.4.1 Basic Steps
	10.4.2 Identifying Input Documents Using a Query
	10.4.3 Identifying Input Documents Using URIs
	10.4.4 Matching Against a Transient Document
	10.4.5 Filtering Match Results
	10.4.6 Transforming Alert Match Results

	11.0 Transactions and Optimistic Locking
	11.1 Multi-Statement Transactions
	11.1.1 Transactions and the Java API
	11.1.2 Transaction Interface
	11.1.3 Starting A Transaction
	11.1.4 Operations Inside A Transaction
	11.1.5 Rolling Back A Transaction
	11.1.6 Committing A Transaction
	11.1.7 Cookbook: Multistatement Transaction
	11.1.8 Transaction Management When Using a Load Balancer

	11.2 Optimistic Locking
	11.2.1 Activating Optimistic Locking
	11.2.2 DocumentDescriptors
	11.2.3 Using Optimistic Locking
	11.2.4 Cookbook: Version Control and Optimistic Locking

	12.0 Logging
	12.1 Starting Logging
	12.2 Suspending and Resuming Logging
	12.3 Stopping Logging
	12.4 Log Entry Format
	12.5 Logging To The Server’s Error Log

	13.0 REST Server Configuration
	13.1 Creating a Server Configuration Manager Object
	13.2 Reading and Writing Server Configuration Properties
	13.3 REST Server Properties
	13.4 Creating New Server-Related Manager Objects
	13.5 Namespaces
	13.5.1 Namespaces Manager
	13.5.2 Getting Server Defined Namespaces
	13.5.3 Adding And Updating A Namespace Prefix
	13.5.4 Reading Prefixes
	13.5.5 Deleting Prefixes

	13.6 Logging Namespace Operations

	14.0 Content Transformations
	14.1 Installing Transforms
	14.2 Using Transforms
	14.2.1 Transforming a Document When Reading It
	14.2.2 Transforming a Document When Writing It
	14.2.3 Transforming Search Results
	14.2.4 Transforming Alert Match Results
	14.2.5 Overall Transform Administration
	14.2.6 Reading Transforms
	14.2.7 Logging

	14.3 Writing Transformations

	15.0 Extending the Java API
	15.1 Available Extension Points
	15.2 Introduction to Resource Service Extensions
	15.3 Creating a Resource Extension
	15.4 Installing Resource Extensions
	15.5 Deleting Resource Extensions
	15.6 Listing Resource Extensions
	15.7 Using Resource Extensions
	15.8 Managing Dependent Libraries and Other Assets
	15.8.1 Maintenance of Dependent Libraries and Other Assets
	15.8.2 Installing or Updating Assets
	15.8.3 Removing an Asset
	15.8.4 Retrieving an Asset List
	15.8.5 Retrieving an Asset

	15.9 Evaluating an Ad-Hoc Query or Server-Side Module
	15.9.1 Security Requirements
	15.9.2 Basic Step for Ad-Hoc Query Evaluation
	15.9.3 Basic Steps for Module Invocation
	15.9.4 Specifying External Variable Values
	15.9.5 Interpreting the Results of Eval or Invoke

	16.0 Creating Data Services Using the MarkLogic Java Development Tools
	16.1 Advantages of Data Services
	16.2 Where Data Service Fit Within the Enterprise Stack
	16.2.1 How it Works
	16.2.2 Prerequisites
	16.2.3 Relation to the Java Client API

	16.3 Creating a Proxy Service
	16.3.1 Setting Up an App Server for the Proxy Service
	16.3.2 Creating the Proxy Service Directory
	16.3.3 Declaring the Proxy Service
	16.3.4 Declaring the Endpoint
	16.3.5 Providing the Module for an Endpoint Proxy
	16.3.6 Deploying a Proxy Service
	16.3.7 Generating the Proxy Service Class
	16.3.8 Using a Proxy Service Class

	16.4 Publishing Your Data Service for Use in Other Projects
	16.4.1 Modifying the Source project to Enable Publication
	16.4.2 Using the Maven Bundle in Other Projects

	17.0 Troubleshooting
	17.1 Error Detection
	17.2 General Troubleshooting Techniques

	18.0 Technical Support
	19.0 Copyright

