MarkLogic Server

Node.js Application Developer’s
Guide

MarkLogic 9
May, 2017

Last Revised: 9.0-4, January 2018

Copyright © 2019 MarkLogic Corporation. All rights reserved.

MarkLogic Server Version MarkLogic 9—May, 2017

Page 2—Node.js Application Developer’s Guide

MarkLogic Server Table of Contents

Table of Contents

Node.js Application Developer’'s Guide

1.0

Introduction to the Node.,js Client APLcooooeeieiccieeceeee e 11
0 N 7= ({10 S = (= o [P 11
1.2 ReqUIred SOfWEIEcoeiiiieieeee e 16
1.3 Security REQUITEIMENESccceciieiieiiecieseesie ettt ere e e 17
1.3.1 BasiC Security REQUITEMENESccereirieriiiie e ie et 17

1.3.2 Controlling DOCUMENT ACCESSceueeuereeieieriesiestesiesieeeeeesee e e sre e 18

1.3.3 Evauating Requests Against a Different Databaseccccceeeevveiennenne 18

1.3.4 Evauating or Invoking Server-Side Codeccoovvererieninneenieneeseeins 18

1.4 Termsand DEfiNITIONSccccoivieieiiesiere e 19
15 Key Concepts and CONVENLIONScccceeiueieeiieeiieseesieeiee e esie e s e e e eee e 20
151 MarkLOgiC NAMESPACEccceevereerieeiinienie e siee e see e sae e sbe e ssee e sneens 20

152 Parameter Passing CONVENTIONSccccoereerierieneniesiesieseseeee e 20

1.5.3 DocCUMENt DESCIIPLONecveiuieiieiecteesteeee st et ee et ee e ne e e nne s 21

1.5.4 Supported Result Handling TEChNIQUESccceeveriiiiriieeenieee e 21

155 Promise Result Handling Pattern ... 22

1.5.6 Stream Result Handling Patterncccooveieiicve e 23

157 Streaming INto the Databaseccocceveeiiiiiiieieeeee e 24

1.5.8 Performing Point-in-Time OPErationsccocevererenererieeieeneeneseesieneens 25

159 Error HAaNAIiNGcccooeeiieieciece ettt 26

1.6 Creating aDatabase CHENtcccoooiiiiiiieiiee e 27
1.7 Authentication and COnNNECLiON SECUMLYcceevvereirererinireseeeeeeee e 28
1.7.1 Connecting to MarkLogiC With SSLc.ccoooiieiiie e 29

1.7.2 Using SAML AUhENtiCALIONcceveirieeiiiiesiee e 29

1.7.3 Using Certificate-Based AUthentiCationcccccevererineneneneneeeeen 30

1.7.3.1 Obtaining aClient Certificatecccooevveieiieerecie e, 30

1.7.3.2 Configuring YOUr APP SEIVEYcccoveererieneeieeee e 31

1.7.3.3 Examples: Database Client Configurationccccceceverennne 31

1.7.4 Using Kerberos AUthenticationccccocveceieeiesieeseece e 32

1.7.41 Configuring MarkLogic to Use Kerberosccccveeevenceeniennnn. 32

1.7.4.2 Configuring Your Client Host for Kerberoscccecveeveeeneee 33

1.7.4.3 Creating a Database Client That Uses Kerberosc........ 33

1.8 Using the ExampleSin ThiSGUIEcccceiiiiiiiiii i 33
Manipulating DOCUMENLScccueiiiieiie ettt 35
2.1 Introduction to Document OPErationsSc.cceeererieereeresieesee e e siee e seesseeeas 35
2.2 Loading Documents into the Databaseccccoeveeieeiieesese e 38
2. 2.1 OVEIVIBW ittt sttt ettt et bbb e b besseene e eneas 38

2.2.2 Input DOCUMENE DESCIIPLOIS ...cuveiveeieieieeiesiee et 39

MarkLogic 9—May, 2017 Node.js Application Devel oper’ s Guide—Page 3

MarkLogic Server Version MarkLogic 9—May, 2017 Table of Contents

3.0

2.2.3 CaAliNg CONVENLION ..ot 40

2.24 Example: Loading A Single DOCUMENcccoveveeieseeseeee e 41

2.25 Example: Loading Multiple DOCUMENLScccceverrieneeneniesee e 42

2.2.6 Inserting or Updating Metadata for One Documentcccccceveveniereenne. 44

2.2.7 Automatically Generating Document URISccccocvveeveecnseeneccie s 45

2.2.8 Transforming Content During INGEStiONccceveriereenenieneene e 45

2.3 Reading Documents from the Databasecccooerereeieenienierese s 46
2.3.1 Retrieving the Contents of a Document By URIccccooveeviieiecieinee, 47

2.3.2 Retrieving Metadata About a DOCUMENTcccceveriiinienieneeee e 438

2.3.3 Example: Retrieving Content and Metadataccooeeeeeeieeienencscneee, 50

2.3.4 Transforming Content During Retrievalccooveeeieeveececeece e 52

24 Removing Content from the Databasecccoeeieriinienese e 53
24.1 Removing DocumentS BY URI ... 53

2.4.2 Removing Sets of DOCUMENLSccceevveieeiieeieceere e 54

2.4.3 Removing All DOCUMENLScccoiiriiiieieniesee e e 55

25 Managing Collections of Objects and DOCUMENESccccceevveereniieneeneeie e 56
2.6 Performing aLightweight Document Checkccccovieiviieiicve e 58
2.7 Conditional Updates Using Optimistic LOCKINGcccoveeiiriinirienieseeeeseenieee 59
2.7.1 Understanding OptimiStiC LOCKINGcccooverierierienireninieieeeee e 59

2.7.2 Enable OptimistiC LOCKINGccooviieiiieieiiesie et 60

2.7.3 ObtaiN aVeErsion I ... e 61

2.7.4 Apply aConditional UPdatecceireiiiiiiieeieresesese e 62

2.8 Working with Binary DOCUMENLSccceeiieiieiieiieseeiie et ee e sie e 63
2.8.1 Typeof Binary DOCUMENEScccoeeiieriierienieeie e e 63

2.8.2 Streaming Binary CONENTccocoeieriieiiiierere s 64

2.8.3 Retrieving Binary Content with Range ReqUESEScccceeeeeeeiieeiienneene 64

2.9 Working with Temporal DOCUMENTScccoiiiiieriireeriesee e 65
210 Working With MEtadalalccooererieeeeeeee s 66
2.10.1 Metadata CateQONiEScceieeieieiecieesieeie et eee ettt sne e 66

2.10.2 Metadata FOIMALcccoiiieiieieee et st 67

2.10.3 Working with Document Propertiesccocvererenenenieeieeseseseesie e 69

2.10.4 Disabling Metadata Mergingcccoeevereeneeiesieeseeeeseesre e 70
2.10.4.1 When to Consider Disabling MetadataMergingccccceeueee. 70

2.10.4.2 How to Disable Metadata Mergingcccceeeeeeveenienencsenennens 71

Patching Document Content or Metadataccooceeeeeeniniienneeceesee e 73
3.1 Introduction to Content and Metadata PatChingc.ccocevererieeienencneseseneee 73
3.2 Example: Adding aJSON Propertycccccoeceeieiieesieeie e sieesieseessesaeseessesee s 75
3.3 PAChH REFEIENCE ..ot e e 76
T I R [0= o R 78

T I = o - USSR 79

3.3.3 rEPIACEINSEIT ... s 81

GG I (< 1110V PSPPSR 83

TG T T o o Y USSR 84

336 LIBrary oo e 85

TG I A o 1| =g o U= o S 85

Page 4—Node.js Application Developer’s Guide

MarkLogic Server Table of Contents

4.0

TG 1 T o/ | = ot (0] TS 85

TG H e T o= 11015] S 86

G I (O o] 1] 0 =S R 86

3311 QUAITEY oo 86

3.3.12 MEtadataV AlUESccoviriirieriirierieeee ettt 86

3.4 Defining the Context for a Patch Operationccoccovceevereineeneniee e 87
3.5 How Position Affectsthe INSertion POINEccoeovveeieneneere e 87
3.6 PaCh EXAMPIES ..ottt s 89
3.6.1 Preparing to Run the EXampPIesccccoiiiriinineeeeeeee e 89

3.6.2 EXAMPIE INSET ..o 90

3.6.3 EXample: REPIACEcoooueeeeece e e 93

3.6.4 Example: REPIGCEINSENTcooviiiiieeee e e 96

3.6.5 EXaMPIE REMOVEooviiiiiiieieeeeee et 99

3.6.6 Example: Patching Metadatacccevveieieeiiecce e 102

3.7 Creating a Patch Without aBuilder ... 105
3.8 Patching XML DOCUMENESecueruerierieieiesiesie sttt sre s 106
3.9 Constructing Replacement Data on MarkLogiC SErvercccoceeveeveveesieeneenn 107
3.9.1 Overview of Replacement Constructor FUNCLIONScccceeveeiieeiieenne. 108

3.9.2 Using aBuiltin Replacement CoNStruCtorccoovvieeieeieneneneneneniens 109

3.9.3 Passing Parametersto a Replacement Constructorccceeeevceevieennene 110

3.9.4 Using a Custom Replacement Constructorcccocveveeivieevieecieciveeenne, 110

3.9.5 Writing a Custom Replacement CONSIrUCTOrcccccvevevveereeiensieenienens 111

3.9.6 Installing or Updating a Custom Replace Librarycccoovevvviveieennnne 112

3.9.7 Uninstalling a Custom Replace Librarycccocevevienienienenin e 113

3.9.8 Example: Custom Replacement CONSIIUCLOrSccceevvveeereeienseeninnnnns 114

3.9.9 Additional OPErationscccecieeiereeieiieseeieseese e sre e e nreeeesres 119
Querying Documents and Metadatacccoceeeeeeeiiecceesie e 121
4.1 Query INterface OVEIVIEWccceciuieie ettt 121
4.2 Introduction to Search CONCEPLScovirieiieriee et 122
4.2.1 SEAICH OVEIVIEW ...oeeeieeeeecieeie ettt ste e sse e nneeneas 122

4.2.2 QUENY SEYIES ..ottt ettt et a e e ae e e nae s 123

4.2.3 TYPESOf QUENY oottt ettt nne s 124

424 INOUEXING ..eoiiieiitertesie ettt sttt s e e et et e e s e b sre b e 126

4.3 Understanding the queryBuilder Interfacecocoovveeveececicce e 126
4.4 Searching With SIrNG QUENESooeiiiiiieeieseee e 129
4.4.1 Introduction to StriNg QUENYccceoereririeriene e 129

4.4.2 Example: BasiC StHNG QUENYcocvveeeieeciece e 130

4.4.3 Using Constraintsin aString QUENYcccoceieerieneeneeriesee e 132

4.4.4 Example: Using Constraintsin a String QUENYcoceeceeeeereenenereneneens 133

4.45 Using aCustom Constraint Parserccccceveeveeieeseesesieeseeseeseesseenns 135

4.4.6 Example: Custom CONStraint Parsercoccoveereeeeseenieseesesseeseesieeeas 136
4.4.6.1 Implementing the Constraint Parserccccoceeviveveseesieneeene 136

4.4.6.2 Installing the Constraint Parserccccccevveveeiecieeseccee s 137

4.4.6.3 Using the Custom Constraint in a String QUErYccccceeueee. 137

4.4.7 Additional INfOrMationcccceveiiriiinesese e 139

MarkLogic 9—May, 2017 Node.js Application Developer’ s Guide—Page 5

MarkLogic Server Version MarkLogic 9—May, 2017 Table of Contents

45 Searching with Query By EXample ..o 139
451 Introductionto QBEccoeiiiieciie e 139

45.2 Creating a QBE with queryBuildercooeiiiiniinnneeeeeee e 140

45.3 Querying XML Content With QBEccccooiiinirinieieeeseesesesieee 142

454 Additional INfOrMationcccceieiiriiinesee e e 143

4.6 Searching with Structured QUENEScccoeieieiiieie e 144
4.6.1 BaSICUSAGEooeiiiieiiieieeiereeee ettt 144

4.6.2 Example: Using Structured QUENYccoveeeveeieeee e 144

4.6.3 Builder Methods Taxonomy Referenceccccevvvievenieneenesceseen, 146
4.6.3.1 Basic Content QUENESccceeeerueerieeeesieenieseesieeee e seeeeessee s 147

4.6.3.2 LOQgiCal COMPOSErSceeiveereeieiieeieeeesieesreeeesreenae e sreenre e 149

4.6.3.3 Location QUAITIErSccouveieeiiiciieie e 149

4.6.3.4 Document SEIECIONScceeviviiereee e 151

4.6.4 Query Parameter Helper FUNCLIONScccceveeiieciesecce e 151

4.6.5 Search RESUIt REFINEIScceiiiiiiieie e 153

4.7 Searching with Combined QUENYcccoeiririiriiiieriesiesie st 154
4.8 Searching Vaues Metadata Fieldsccoooeveeiiiiecice e 156
4.9 Querying Lexicons and Range INAEXEScccevvieereriiiieneeieseesie e 156
4.9.1 Querying ValuesinalLexicon or Range INdeXccccoovvivenenciencnnne 157

4.9.2 Finding Value Co-Occurrencesin LEXICONSccccveveeeeseeieeseenveenna. 159

4.9.3 Building an Index REFEreNCeccccovveeieriininece e 161

4.9.4 Refining the Results of aValues or Co-Occurrence QUerYcccee..... 162

495 Anayzing Lexicons and Range Indexes with Aggregate Functions 163
4951 Aggregate FUNCtion OVEIVIEWcccoeveieeiieneenieneeneeee e 163

4.9.5.2 Using Builtin Aggregate FUNCLIONScooeeereeienenenenenens 163

4953 Using User-Defined Aggregate FUNctionscccccceecieenee. 164

410 Generating SearCh FACELSccceiiriiiieieeie e 165
4.10.1 Defining aSIMPIE FACELc.coieieieeereee e 165

4.10.2 NaMINQ AFACELccocceieiieiee et 167

4.10.3 Including Facet OPLiONSccocereeiiriienieeiesee e 167

4.10.4 Defining BUCKEL RANGEScoiiieieieriesiesiesie st 168

4.10.5 Creating and Using Custom Constraint Facetsccccovveveeveseenveenen. 169

411 Refining QUENY RESUILSc..oiiiiieiee et 169
4.11.1 Available REfINEMENTScccceeiieieieseee e 169

4.11.2 Paginating QUENY RESUILSccceeiuieiieiiesece e 170

4.11.3 Returning MEtadatalcccereereriiiiiesie et 171

4.11.4 Excluding Document Descriptors or Vaues From Search Results 171

4.11.5 Generating Search SNIPPELSccceveeieeieeiece e 172

4.11.6 Transforming the Search RESUILScccoeeiiiiiiiniiiieee e, 173

4.11.7 Extracting a Portion of Each Matching Documentccooceviiinenene 174

4.12 Generating Search Term Completion SUGJESLIONSccevvveeevieececie e 177
4.12.1 Understanding the Suggestion Interfaceccoceveveevencevenicneneen, 177

4.12.2 Example: Generating Search Term Suggestionscccceeeveeveseenieenn. 180

4.13 Loading the EXample Datacccccceevieiieiieeie et 183
5.0 Usingthe Optic API for Relational Operationsccccceevveevceeieesineennnens 187

Page 6—Node.js Application Developer’s Guide

MarkLogic Server Table of Contents

6.0

7.0

51 Introduction to the OptiC INEITACESccoceieiirirereree e 187
5.2 INterfate SUMIMANYc.cooiiieieee ettt e e teeneesneene e 188
5.3 Preparing to Run the EXampPlesccooiiiiiiieeeeee e 188
54 Generating aPlan ... 189
55 INVOKING @PIAN ...ooieiececeee et 190
56 Configuring ROW Set FOrMELccoieeiiiiiiniee e 193
56.1 Configuration OPLIONSccccooeririririeeieieniesee et seens 193
5.6.2 Layout EXAMPIESccoceeirieieecie ettt 193
57 Sreaming ROW Dataccueeuiiieeiieriiniieie sttt st 197
5.7.1 Object MOde SIrEaMINGcccereririeeieiieriesie et 197
5.7.2 Chunked Mode Streamingcccceeeeieeieeieeseeieseeseesee e se e sreesse e 199
5.7.3 Sequence Mode SIreaMINGcccoceeiuereerieriieseesiesee e 199
5.8 Passing Parametersinto aPlan ... 201
5.9 Handling Complex Column ValUEScceveeiieiieiece e 201
5.10 Generating an EXeCUtioN Planccocooiiiiiiiiie e 202
511 Seria@iziNg @P1anc.oooiiieee e 203
Working With SeEmantic Datacceoeevieiiennin e 205
6.1 Overview of Common SemantiCS TasKsScccccvrieerireeriere e 205
G o= o [To T N] o] =S 206
6.3 Querying Semantic Triples With SPARQLcocoiiiiininiireeeesee e 208
6.4 Example: SPARQL QUENYooiiiiiiiiiiiesieee ettt 209
6.5 Managing GraphScccvceeiieiiceseee ettt ettt nr e e e 210
6.5.1 Creating or Replacing aGraph ..o 211
6.5.2 Adding Triplesto an EXisting Graphcccceceverininiinieieresese e 211
6.5.3 ReMOVING @ Graphcccocceeiieiece e s 212
6.5.4 Retrieving the Contents, Metadata, or Permissions of a Graph 213
6.5.5 Testing for Graph EXISIENCEccceiveiirireninereneeeeee e 214
6.5.6 Retrieving aList of Graphsccccevieiiiieiecce e 215
6.6 Using SPARQL Update to Manage Graphs and Graph Datacccceeeeennne 215
6.7 Applying Inferencing Rulesto a SPARQL Query or Updatec.ccccevvrvuernenne. 217
6.7.1 BasicInference RUIESEt USAgEccccveeevieeiiieiie e 217
6.7.2 Examples SPARQL Query With Inference Rulesetccoceveeiennenne 218
6.7.3 Example: SPARQL Update With Inference Rulesatscccccevevienene 218
6.7.4 Controlling the Default Database RUIESELcc.ocveeveciice e 218
Managing TranNSACtiONScccveieeiieeiie e eree e ere e esreenree s 221
7.1 TranSaClioN OVEIVIEWccceceeieieriesiesiesie st sie s seees e e sse st seesbesre e sse e sneeneens 221
7.2 Creating @ TranSACIONcoiirierieie et e e sbe e 222
7.3 Associating a Transaction with an Operationccccocvererienieienenene s 223
7.4 Committing @ TranNSACIONccceevieieeiierie ettt ere s 224
7.5 RollIiNg BaCk a TranSaCtioNccoceeiirienieeiie et e 224
7.6 Example: Using Promises With a Multi-Statement Transactionc.c....... 225
7.7 Checking TransaCtion SEALUSccccecveeeiieie e 225
7.8 Managing Transactions When Using aLoad Balancercccveevvnennenennne. 225

MarkLogic 9—May, 2017 Node.js Application Devel oper’ s Guide—Page 7

MarkLogic Server Version MarkLogic 9—May, 2017 Table of Contents

8.0 Extensions, Transformations, and Server-Side Code Execution 229
8.1 Waysto Extend and Customize the AP ... 229
8.2 Working with Resource Service EXtENSIONSccccoceevieriesieerieseese e esee e 230

8.21 What isaResource Service EXIENSION?ccccveviniriinieeieiene e 230

8.2.2 Creating a Resource Service EXIENSIONcccoceveereniiineenesiee e 231

8.2.3 Installing aResource Service EXtENSIONcccccvveeveeiieseeseeieeseesieseens 231

8.2.4 Using aResource Service EXENSIONcccccveiveveeviecieseese e 233

8.25 Example: Instaling and Using a Resource Service Extension 234

8.2.6 Retrieving the Implementation of a Resource Service Extension 237

8.2.7 Discovering Resource Service EXIENSIONScccceveevieccieseesieceeseenns 237

8.2.8 Deleting Resource Service EXIENSIONSccccoevererenieeienieniesie s 238

8.3 Working with Content Transformationscccocevveeerieeresreeseese e eee e 239
8.3.1 What isaContent Transformation?ccccceeerererienieenesesesesiesesennens 239

8.3.2 Creating aTransformMationccceeeiererinenineneseeee e 240

8.3.3 Installing aTransformMationccceeceereereerieeseeeeseese e 240

8.3.4 Using aTransformationcccoeeveeieeriesieeseesieseesreesie e e seesseesne e 241

8.3.5 Example: Read, Write, and Query Transformsccccceeeevveinveennnnnns 243
8.35.1 Install the Transformsccocovvveniniriinee e 243

8.3.5.2 Usethe Write Transformccocvceveninieenenenese e 244

8.3.5.3 UsetheRead Transformcccevvveeneeinsieennee e eee e 246

8.3.5.4 Usethe Query Transformccccccceveeereeiesieesneieeseese e 247

8.3.5.5 Read Transform Source Codeccevevereienennnesesenenenne 249

8.3.5.6 Write Transform Source Codeccovevvriennrnseeneseeneenn 250

8.3.5.7 Query Transform Source Codeccovveervreereeiieseereseennns 251

8.3.6 Discovering Installed Transformsccccccceveeveiieeve e 252

8.3.7 Deleting aTransformationcccceoeiererinenineneeeeeeeee e 252

8.4 Error Reporting in Extensions and Transformationsccccceveeveeveeneeseesenenn 253
8.4.1 Example: Reporting Errorsin JavaSCriptccoeceveeveiieeseeie e 253

8.4.2 Example: Reporting Errorsin XQUENYccoooeiirireeieeieeenese e 255

8.5 Evaluating Ad-Hoc Code and Server-Side Modulesccccceveeveneeneccinsenne 256
8.5.1 ReqUIrEd PriVIIEGESoceeeeeee ettt s 256

8.5.2 Evauating a Ad-HOC QUENYccoeieieieierierie et 257

8.5.3 Invoking aModule Installed on MarkLogiC Serverccoovvveviveiennnns 259

8.5.4 Interpreting the Results of Eval or INVOKEccccoeeevieieiieiecceceee 261

8.5.5 Specifying External Variable Values ... 262

8.6 Managing Assetsin the Modules Databasecccccvevereeriercieseese e 263
8.6.1 Overview of Asset Managementcccceeceveeieiieeseece e 263

8.6.2 Installing or Updating @an ASSELccccererirerenereeeeeeee e 265

8.6.3 Referencing an Asset from Server-Side Codecccevveeerveieveesennns 266

8.6.4 REMOVING AN ASSELocveeiicie ettt nre e 266

8.6.5 Retrieving an ASSEL LIStccceiiriririeieiese et 267

8.6.6 RErEVING AN ASSELcceeieeeeeeee et 267

9.0 Administering REST APl INSLANCEScccvvvieeiieiieeiie e 269
9.1 What ISAREST APl INSIANCETooueiiiiiiieiesiesie et 269

Page 8—Node.js Application Developer’s Guide

MarkLogic Server Table of Contents

9.2 Creating @n INSLANCEcc.oiiiiieeee e 270
9.3 Configuring INStanCe Propertiescccccveeieeieseeseeie e eee e 270
9.4 Retrieving Configuration INfOrmMationccoccevieieniininnene e 272
9.5 ReMOVING &N INSLANCEcceiuiriiiiiriinieeieeee ettt naeas 272
10.0 Technical SUPPOITooiuieiiieee e 273
IO O] oY/ 1 o | o | OSSR 275

MarkLogic 9—May, 2017 Node.js Application Devel oper’ s Guide—Page 9

MarkLogic Server Version MarkLogic 9—May, 2017 Table of Contents

Page 10—Node.js Application Developer’s Guide

MarkLogic Server Introduction to the Node.js Client API

1.0 Introduction to the Node.js Client API

The Node.js Client API enables you to create Node.js applications that can read, write, and query
documents and semantic datain a MarkL ogic database.

e Getting Started

* Required Software

e Security Requirements

¢ Terms and Definitions

e Key Concepts and Conventions

* Creating a Database Client

e Authentication and Connection Security

e Using the Examples in This Guide

The Node.js API isan open source project maintained on GitHub. To access the sources, report or
review issues, or contribute to the project, go to http:/github.com/marklogic/node-client-api.

1.1 Getting Started

This section demonstrates |oading documents into the database, querying the documents,
updating a portion of adocument, and reading documents from the database. The basic features
demonstrated here have many more capabilities. The end of this section contains pointers to
resources for exploring the Node.js Client APl in more detail.

Before you begin, make sure you have installed the software listed in “ Required Software” on
page 16. You should also have the node and npm commands on your path.

Note: If you are working on Microsoft Windows, you should use a DOS command shell
rather than a Cygwin shell. Cygwin is not a supported enviroment for node and npm.

The following procedure walks you through installing the Node.js Client API, loading some
simple JISON documents into the database, and then searching and modifying the documents.

1 If you have not already done so, download, install, and start MarkLogic Server from
http://developer.marklogic.com.

2. Create or select a project directory from which to exercise the examplesin thiswalk
through. The rest of the instructions assume you are in this directory.

3. Download and install the latest version of the Node.js Client API from the public npm
repository into your project directory. For example:

npm install marklogic

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 11

http://developer.marklogic.com
http://github.com/marklogic/node-client-api

MarkLogic Server Version MarkLogic 9—May, 2017 Introduction to the Node.js Client API

4. Configure your MarkLogic connection information: Copy the following code to afile
named my-connection.js. Modify the MarkL ogic Server connection information to match
your environment. You must change at least the user and password values. Select a
MarkLogic user that has at least the rest-reader and rest-writer roles or equivalent
privileges, for details, see * Security Requirements’ on page 17.

module.exports = {
connInfo: {
host: 'localhost',
port: 8000,
user: 'user',
password: 'password'

}
}i

Therest of the examplesin this guide assume this connection configuration module exists
with the path . /my-connection.js.

5. L oad the example documentsinto the database: Copy the following script to afile and run
it using the noae command. Several JSON documents are inserted into the database using

DatabaseClient.documents.write.

// Load documents into the database.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

// Document descriptors to pass to write().
const documents = [
{ uri: '/gs/aardvark.json',
content: {
name: 'aardvark',
kind: 'mammal'’,
desc: 'The aardvark is a medium-sized burrowing, nocturnal mammal.'

}
I
{ uri: '/gs/bluebird.json',
content: {
name: 'bluebird',
kind: 'bird',
desc: 'The bluebird is a medium-sized, mostly insectivorous bird.'
}
I

{ uri: '/gs/cobra.json',
content: {
name: 'cobra',
kind: 'mammal'’,

desc: 'The cobra is a venomous, hooded snake of the family Elapidae.'

1
1;

Page 12—Node.js Application Developer’s Guide

MarkLogic Server Introduction to the Node.js Client API

// Load the example documents into the database
db.documents.write (documents) .result (
function (response) {
console.log('Loaded the following documents:') ;
response.documents.forEach(function (document)
console.log ("' ' + document.uri) ;
3K
b
function (error)
console.log (JSON.stringify (error, null, 2));
}
) ;

Y ou should see output similar to the following:

Loaded the following documents:
/gs/aardvark. json
/gs/bluebird. json
/gs/cobra.json

6. Search the database: Copy the following script to afile and run it using the node
command. The script retrieves documents from the database that contain the JSON
property kind with the value 'mamma1 .

// Search for documents about mammals, using Query By Example.
// The query returns an array of document descriptors, one per
// matching document. The descriptor includes the URI and the

// contents of each document.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

const gb marklogic.queryBuilder;
db.documents.query (
gb.where (gb.byExample ({kind: 'mammal'}))
) .result (function (documents)
console.log('Matches for kind=mammal:')
documents.forEach(function (document)
console.log ('\nURI: ' + document.uri) ;
console.log('Name: ' + document.content.name) ;
1)

}, function (error) {

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 13

MarkLogic Server Version MarkLogic 9—May, 2017 Introduction to the Node.js Client API

console.log (JSON.stringify (error, null, 2));

s

Y ou should see output similar to the following. Notice that cobraisincorrectly labeled as
amammal. The next step will correct this error in the content.

Matches for kind=mammal:

URI: /gs/cobra.json
Name: cobra

URI: /gs/aardvark.json
Name: aardvark

7. Patch a document: Recall from the previous step that cobraisincorrectly labeled as a
mammal. This step changes the kind property for /gs/cobra.json from 'mamma1: to
'reptile'. Copy the following script to afile and run it using the node command.

// Use the patch feature to update just a portion of a document,
// rather than replacing the entire contents.

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db marklogic.createDatabaseClient (my.connInfo) ;
const pb = marklogic.patchBuilder;

db.documents.patch (
'/gs/cobra.json',
pb.replace('/kind', 'reptile')
) .result (function (response)
console.log('Patched ' + response.uri) ;
}, function(error)
console.log (JSON.stringify(error, null, 2));

1

Y ou should see output similar to the following:

Patched /gs/cobra.json

8. Confirm the change by re-running the search or retrieving the document by URI. To
retrieve /gs/cobra.json by URI, copy the following script to afile and run it using the
node COMmMand.

// Read documents from the database by URI.

const marklogic = require('marklogic') ;
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient (my.connInfo) ;

db.documents.read (

Page 14—Node.js Application Developer’'s Guide

MarkLogic Server Introduction to the Node.js Client API

'/gs/cobra.json’
) .result (function (documents)
documents.forEach(function (document)
console.log (JSON.stringify (document, null, 2) + '\n');
3K
}, function (error) {
console.log (JSON.stringify (error, null, 2));

3N,

Y ou should see output similar to the following:

{

"uyri": "/gs/cobra.json",
"category": "content",
"format": "json",
"contentType": "application/json",
"contentLength": "106",
"content":
"nmame": "cobra',
"kind": "reptile",
"desc": "The cobra is a venomous, hooded snake of the family Elapidae."
}
}

0. Optionally, delete the example documents: Copy the following script to afile and run it
using the node command. To confirm deletion of the documents, you can re-run the script
from Step 8.

// Remove the example documents from the database.
// This example removes all the documents in the directory
// /9s/. You can also remove documents by document URI.

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient (my.connInfo) ;
db.documents.removeAll (
{directory: '/gs/'}

) .result (function (response)
console.log(response) ;

13N,

Y ou should see output similar to the following:

{ exists: false, directory: '/gs/' }

Document removal is an idempotent operation. Running the script again produces the
same output.

To explore the API further, see the following resources:

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 15

MarkLogic Server Version MarkLogic 9—May, 2017 Introduction to the Node.js Client API

If You Want To Then See

Explore more examples The examples and tests that are distributed with the
API. Sources are available from
http://github.com/marklogic/node-client-api Of in your
node_modules/marklogic di rectory after you install

the API.
Learn about reading and writing “Manipulating Documents’ on page 35.
documents and metadata
L earn about searching documents and “Querying Documents and Metadata” on page 121.

guerying lexicons and indexes
The Search Developer’s Guide

Learn about extension points such as “Extensions, Transformations, and Server-Side
content transformations and resource Code Execution” on page 229
Sservice extensions

Explore the low level API The Node.js API Reference.
documentation.

You can also generate alocal copy of the AP
reference. For details, see the project page on
GitHub: http://github.com/marklogic/node-client-api

1.2 Required Software
To use the Node.js Client API, you must have the following software:

* MarkLogic 8 or later. Featuresin version 2.0.x of the Node.js Client API can only be used
with MarkLogic 9 or later.
* Nodejs, version 6.3.1 or later. Node.js is available from http:/nodejs.org.

* The Node.js Package Manager tool, npm. The latest version compatible with a supported
Node.js version is recommended.

» If you plan to use Kerberos for authentication, you must have the MIT Kerberos software.
For details, see “Using Kerberos Authentication” on page 32.

The examples in this guide assume you have the node and npm commands on your path.

Page 16—Node.js Application Developer’s Guide

http://github.com/marklogic/node-client-api
http://github.com/marklogic/node-client-api
http://nodejs.org
/jsdoc/index.html

MarkLogic Server Introduction to the Node.js Client API

1.3 Security Requirements

This describes the basic security model used by the Node.js Client API, and some common
situations in which you might need to change or extend it. The following topics are covered:

e Basic Security Requirements

e Controlling Document Access

e FEvaluating Requests Against a Different Database

¢ Evaluating or Invoking Server-Side Code

1.3.1 Basic Security Requirements

The user you specify when creating apatabaseciient Object must have appropriate URI
privileges for the content accessed by the operations performed, such as permission to read or
update documents in the target database.

The Node.js Client uses the MarkLogic REST Client API to communicate with MarkLogic
Server, so it uses the same security model. In addition to proper URI privileges, the user must
have one of the pre-defined roles listed below, or the equivalent privlieges. The capabilities of
each rolein the table is subsumed in the roles below it.

Role Description

rest-extension-user | Enablesaccessto resource service extension methods. Thisroleis
implicit in the other pre-defined REST API roles, but you may need to
explicitly include it when defining custom roles.

rest-reader Enables read operations, such as retrieving documents and metadata.
This role does not grant any other privileges, so the user might still
require additional privileges to read content.

rest-writer Enables write operations, such as creating documents, metadata, or
configuration information. This role does not grant any other
privileges, so the user might still require additional privileges to write
content.

rest-admin Enables administrative operations, such as creating an instance and
managing instance configuration. This role does not grant any other
privileges, so the user might still require additional privileges.

Some operations require additional privileges, such as using a database other than the default
database associated with the REST instance and using eval Or invoke Methods Of patabaseclient.
These requirements are detailed bel ow.

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 17

MarkLogic Server Version MarkLogic 9—May, 2017 Introduction to the Node.js Client API

1.3.2 Controlling Document Access

Documents you create using the Node.js Client API default roles have aread permission for the
rest-reader role and an update permission for the rest-writer role. By default, users with the
rest-reader role can read all documents created as rest-reader and users with the rest-writer
role can write all documents created as rest-writer. YOU can override this behavior using
document permissions and/or custom roles.

To restrict access to particular users, create custom roles rather than assigning usersto the default
rest-+ roles. For example, you can use a custom role to restrict users in one group from seeing
documents created by another.

For details, see Controlling Access to Documents and Other Artifacts in the REST Application
Developer’s Guide.

1.3.3 Evaluating Requests Against a Different Database

When you connect to a MarkL ogic Server instance by creating apatabaseclient, the REST
instance you connect to has a default content database associated with it. You can specify an
alternative database when you create the patabaseciient, but to perform operations against an
alternative database requi resthenttp://marklogic.com/xdmp/privileges/xdmp-eval-in privi I ege
or equivalent.

To enable your application to use a different database:

1. Create arole with the xamp: eva1-in execution privilege, in addition to appropriate mix of
rest-* roles. (You can aso add the privileges to an existing role.)

2. Assign therole from Step 1 to auser.
3. Create apatabaseclient With the user from Step 2.

One simple way to achieve thisisto inherit from one of the predefined rest-* roles and then
addin the eva1-in privileges.

For details about roles and privileges, see the Security Guide. To learn more about managing
REST API instances, see “Administering REST API Instances’ on page 269.

1.34 Evaluating or Invoking Server-Side Code

You can use the patabaseclient.eval and patabaseClient . invoke operations to evaluate
arbitrary code on MarkLogic Server. These operations require special privilegesinstead of (or in
addition tO) the normal REST API roleslike rest-reader and rest-writer.

For details, see “Required Privileges’ on page 256.

Page 18—Node.js Application Developer’s Guide

MarkLogic Server

Introduction to the Node.js Client API

1.4 Terms and Definitions
This guide uses the following terms and definitions:

Term

Definition

REST Client API

A MarkLogic API for devel oping applications that communicate with
MarkLogic using RESTful HTTP requests. The Node.js Client API is
built on top of the REST Client API.

REST API instance

A MarkLogic HTTP App Server specially configured to service
REST Client API requests. The Node.js Client API requires a REST
API instance. One is available on port 8000 as soon as you install
MarkLogic. For details, see “What |sa REST API Instance?’ on
page 269.

npm

The Node.js package manager. Use npm to download and install the
Node,js Client API and its dependencies.

builder

An interface in the Node.js Client API that exposes functions for
building potentially complex data structures such as queries
(marklogic.queryBuilder) and document patCheS

(marklogic .patchBuilder).

Promise

A PromiseisaJavaScript interface for interacting with the outcome of
an asynchronous event. For details, see “ Promise Result Handling
Pattern” on page 22.

MarkLogic module

The module that encapsulates the Node.js Client API. Include the
module in your application using require (). For details, see
“MarkLogic Namespace” on page 20.

document descriptor

An object that encapsulates document content and metadata as named
JavaScript object properties. For details, see “Document Descriptor”
on page 21.

database client

A special object that encapsulates your connection to MarkLogic
Server through a REST API instance. Almost all Node.js Client AP
operations take place through a database client object. For details, see
“Creating a Database Client” on page 27.

oit A source control management system. You will need agit client if you
want to checkout and use the Node.js Client API sources.
GitHub The open source project repository that hosts the Node.js Client API

project. For details, see http://github.com/.

MarkLogic 9—May, 2017

Node.js Application Developer’ s Guide—Page 19

http://github.com/

MarkLogic Server Version MarkLogic 9—May, 2017 Introduction to the Node.js Client API

1.5 Key Concepts and Conventions

¢ MarkLogic Namespace

e Parameter Passing Conventions

e Document Descriptor

e Supported Result Handling Techniques

e Promise Result Handling Pattern

e Stream Result Handling Pattern

e Streaming Into the Database

¢ Performing Point-in-Time Operations

e Error Handling

151 MarkLogic Namespace

The Node.js Client API library exports a namespace that provides a database client factory
method and access to builders such as querysuilder (Search), valuessuilder (Values queries), and
patchBuilder (partial document updates).

To include the MarkL ogic module in your code, use require () and bind the result to a variable.
For example, you can include it by the name “marklogic” if you have installed in the module
under your own Node.js project:

const ml = require('marklogic') ;

You can use any variable name, but the examplesin this guide assume m1.

1.5.2 Parameter Passing Conventions

Node.js Client API functions that require many input parameter values accept these values as
named properties of acall object. For example, you can specify a hostname, port, database name,
and several other connection properties when calling the createpatabaseciient () method. Do so
by encapsulating these values in a single object, such as the following:

ml.createDatabaseClient ({host: 'some-host', port: 8003, ...});

Where a parameter value can have one or more values, the value of the property can be either a
single value or an array of values. Some functions support either an array or alist. For example:

db.documents.write (docDescriptor)
db.documents.write ([docDescriptorl, docDescriptor2, ...1)
db.documents.write (docDescriptorl, docDescriptor2, ...)

Page 20—Node.js Application Developer’s Guide

MarkLogic Server Introduction to the Node.js Client API

Where a function has a parameter that is frequently used without other parameters, you can pass
the parameter directly as a convenient alternative to encapsulating itin acall object. For example,
DatabaseClient .documents . remove aCCEPLS either a call object that can have several properties, or
asingle URI string:

db.documents.remove (' /my/doc.json')
db.documents.remove ({uri: '/my/doc.json', txid: ...})

For details on a particular operation, see the Node.js API Reference.

1.5.3 Document Descriptor

A document descriptor is an object that encapsulates document content and metadata as named
JavaScript object properties. Node.js Client API document operations such as

DatabaseClient .documents.read aNd DatabaseClient.documents.write aCCEPt and return
document descriptors.

A document descriptor usually includes at least the database URI and properties representing
document content, document metadata, or both. For example, the following is a document
descriptor for adocument with URI /doc/example. json. Since the document isa JSON document,
its contents can be expressed as a JavaScript object.

{ uri : 'example.json', content : {some : 'data'} }

Not all properties are aways present. For example if you read just the contents of a document,
there will be no metadata-rel ated properties in the resulting document descriptor. Similarly, if you
insert just content and the co11ections Metadata property, the input descriptor will not include
permissions OI quality properti €s.

{ uri : 'example.json’,
content : {some : 'data'},
collections : ['my-collection']

}

The content property can be an object, string, suffer, Of ReadableStream.

See pocumentbescriptor iN the Node.js API Reference for a complete list of property names.

1.5.4 Supported Result Handling Techniques

Most functionsin the Node.js Client API support the following ways of processing results
returned by MarkLogic Server:

» Cadlback: Cal the resuit function, passing in a success and/or error callback function.
Use this pattern when you don’t need to synchronize results. For example:

db.documents.read(...).result (function(response) {...})

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 21

/jsdoc/index.html
/jsdoc/index.html

MarkLogic Server Version MarkLogic 9—May, 2017 Introduction to the Node.js Client API

Promise: Call the resu1t function and process the results through a Promise. Use Promises
to chain interactions together, such as writing documents to the database, followed by a
search. Y our success callback is not invoked until all the requested data has been returned
by MarkLogic Server. For example:

db.documents.read(...) .result () .then(function(response) {...})...

For details, see “Promise Result Handling Pattern” on page 22.

Object Mode Streaming: Call the stream function and process the results through a
rReadable Stream. Y our code gets control each time a document or other discrete part is
received in full. If you're reading a JSON document, it is converted to a JavaScript object
before invoking your callback. For example:

db.documents.read(...) .stream() .pipe(...)

For details, see “ Stream Result Handling Pattern” on page 23.

Chunked Mode Streaming: Call the stream function with a'chunked' argument and
process the results through a readabie Stream. Y our code gets control each time a
sufficient number of bytes are accumulated, and the input to your callback is a byte
stream.

db.documents.read(...) .stream('chunked') .pipe(...)

For details, see “ Stream Result Handling Pattern” on page 23.

When you use the classic callback or promise pattern, your code does not get control until all
resultsare returned by MarkL ogic. Thisissuitable for operationsthat do not return alarge amount
of data, such asaread operation that returns a small number of documents or awrite. Streaming is
better suited to handling large files or alarge number documents because it alows you to process
results incrementally.

155

Note: Errorsinthe user code of asuccess callback are handled in the next error callback.
Therefore, you should include a catch clause to handle such errors. For details, see
“Error Handling” on page 26.

Promise Result Handling Pattern

Node.js Client API functions return an object with a resuit () method that returns a Promise
object. A Promise is a JavaScript interface for interacting with the outcome of an asynchronous
event. A Promise has then, catch, and final1y methods. For details, see http://promisesaplus.com/.
Promises can be chained together to synchronize multiple operations.

The success callback you pass to the Promise then method is not invoked until your interaction
with MarkLogic completes and all results are received. The Promise pattern is well suited to
synchronizing operations.

Page 22—Node.js Application Developer’s Guide

http://promisesaplus.com/

MarkLogic Server Introduction to the Node.js Client API

For example, you can use a sequence such as the following to insert documentsinto the database,
guery them after the insertion completes, and then work with the query results.

db.documents.write(...) .result () .then(
function (response) {
// search the documents after insertion
return db.documents.query(...) .result();
}) .then(function (documents) {
// work with the documents matched by the query

1)

For amore complete example, see “Example: Using Promises With a Multi-Statement
Transaction” on page 225.

Note: Y ou should include a catch clause in your promise chain to handle errorsraised in
user code in your success callbacks. For details, see “Error Handling” on page 26.

The Node,js Client API also supports a stream pattern for processing results. A stream is better
suited to handling very large amounts of data than a Promise. For details, see “ Stream Result
Handling Pattern” on page 23.

1.5.6 Stream Result Handling Pattern

Node.js Client API functions return an object with astream method that returns areadanie stream
on the results from MarkL ogic. Streams enable you to process results incrementally. Consider
using streaming if you’ re reading alarge number of documents or if your documents are large.

Streams can provide better throughput at lower memory overhead than the Promises when you're
working with large amounts of data because result data can be processed asiit is received from
MarkLogic Server.

Two stream modes are supported:

» Object Mode: Y our code gets control each time a complete document or other discrete
part isreceived. A Document Descriptor iSthe unit of interaction. For a JSON document, the
content in the descriptor is converted into JavaScript object for ease of use. Object modeis
the default streaming mode.

» Chunked mode: Y our code gets control each time a certain number of bytesis received.
An opague byte stream is the unit of interaction. Enable chunked mode by passing the
value ' chunked' to the stream method.

Object mode is best when you need to handle each portion of the result as a document or object.
For example, if you persist a collection of domain objectsin the database as JSON documents and
then want to restore them as JavaScript objects in your application. Chunked mode is best for
handling large amounts of data opaquely, such as reading alarge binary file from the database and
saving it out to file.

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 23

MarkLogic Server Version MarkLogic 9—May, 2017 Introduction to the Node.js Client API

The following code snippet uses a stream in object mode to process multiple documents as they
are fetched from the database. Each time a complete document isreceived, the stream on ('data)
callback isinvoked with a document descriptor. When all documents are received, the on (end")
callback is called.

db.documents.read (uril, uri2, uriN) .stream/()

.on('data', function (document) {
// process one document
}).on('end', function()

//wrap it up
}).on('error', function(error) {
// handle errors

13N,

The following code snippet uses a stream in chunked mode to stream alarge binary file from the
database into afile using pipe.

const fs = require('fs');
const ostrm = fs.createWriteStream(outFilePath) ;

db.document .read (largeFileUri) .stream('chunked') .pipe (ostrm) ;

The Promise pattern is usually more convenient if you are not processing alarge amount of data.
For details, see “Promise Result Handling Pattern” on page 22.

1.5.7 Streaming Into the Database

Most Node.js methods that deal with potentially large input datasets support using a
ReadableStream 10 passin the data. For example , the content property of a document descriptor
pamd {0 DatabaseClient .documents.write Can be an object, astring, ABuffer, O AReadable
stream. If you' re ssmply streaming data from a source such as afile, thisinterfaceis all you need.

For example, the following call uses areadabie Stream to stream an image from afile into the
database:

db.documents.write ({
uri: '/my/image.png',
contentType: 'image/png',
content: fs.createReadStream(pathToImage)

3]

If you are assembling the stream on the fly, or otherwise need to have fine grained control, you
can use the createwritestream method of the documents and graphs interfaces. For exampl e, if
YOU USE DatabaseClient .documents.createlriteStream iNStead of
DatabaseClient.documents.write, YOU can control the callsto write SO you can assemble the
documents yourself, as shown below:

const ws = db.documents.createWriteStream ({
uri: '/my/data.json',
contentType: 'application/json',

Page 24—Node.js Application Developer’s Guide

MarkLogic Server Introduction to the Node.js Client API

// Resulting doc contains {"key":"value"}

ws.write ('"{key"', 'utfs');
ws.write(': "value"}', 'utf8');
ws.end() ;

You can use the writeable stream interface to load documents and semantic graphs. For details,
SEE documents.createWriteStream aNd graphs . createwritestream iN the Node.js API Reference.

1.5.8 Performing Point-in-Time Operations

If you need to perform read-only operations spanning multiple requests that must all return results
based on a consistent snapshot of the database, you can use the “ point-in-time query” feature of
the Node.js Client API. In this context, “query” means aread-only operation, such as a search or
document read.

Most read-only operations accept an optional Timestamp Object, created by calling
DatabaseClient .createTimestamp. |f NO explicit timestamp value is set on the object, then the
timestamp is set during execution of the read-only operation.

Alternatively, you can supply an explicit timestamp when creating a timestamp. This must be a
timestamp generated by MarkLogic, not an arbitrary value you create. To learn more about
point-in-time queries (reads) and timestamps, see Point-In-Time Queries in the Application
Developer’s Guide.

When you pass a timestamp Object whose timestamp is set to subsequent supporting operations,
these operations see the same snapshot of the database.

For example, suppose you are incrementally fetching search results in a context in which the
database is changing and consistency of resultsisimportant. If you pass aTimestamp Object on the
search, then the effective query timestamp is captured in the Timestamp Object and you can pass
the object in to subsequent searches.

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient (my.connInfo) ;
const gb = marklogic.queryBuilder;
let timestamp = db.createTimestamp () ;

// First search sets the timestamp value
db.documents.query (

gb.where (gb.parsedFrom('cat AND dog')) .slice(0,5),
timestamp
) .result () .then(function (results) {

console.log (JSON.stringify (results, null, 2));

3N,

// ...perform subsequent searches, re-using the same timestamp object

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 25

/jsdoc/index.html

MarkLogic Server Version MarkLogic 9—May, 2017 Introduction to the Node.js Client API

Another example use case is reading alarge number of documents from the database by URI (or
search query) in batches. If you need a consistent snapshot of the documents, use the
point-in-time feature.

You can use this feature across different kinds of operations. For example you might get the initial
timestamp from a search, and then use it to perform a SPARQL query at the same point-in-time.

This capability is supported on any operation that accepts a timestamp parameter, including the
following:

* Document read: patabaseClient.documents.read

* Document search: patabaseClient .documents. query

e Vaues Query: patabaseClient.values.read

e Semantic Search: patabaseClient.graphs.spargl

* Semantic Update: DatabaseClient.graphs.sparglUpdate

* Semantic Graph ACCESS. DatabaseClient.graphs.read and patabaseClient .graphs.list

« Rows Query: DatabaseClient.rows.query

For more details, see the Node.js Client API Reference.

159 Error Handling

When using the callback or promise pattern, errors in your success callback are handled in the
next error callback. If you want to trap such errors, you should include a catch clause at the end of
your promise chain (or after your result handler, in the case of the callback pattern). Simply
wrapping atry-catch block around your call(s) will not trap such errors.

For example, in the case of the classic callback pattern, if you made acall to
DatabaseClient .documents.write, YOU should end with a catch similar to the following. The
onError function executes if the onsuccess callback throws an exception.

db.documents.write(...)
.result (function onSuccess (response) {...})
.catch(function onError(err) {...});

Similarly if you' re chaining requeststogether using thePromise pattern, then you should terminate
the chain with asimilar handler:

db.documents.write(...) .result ()
.then (function onSuccessl (response) {...})
.then (function onSuccess2 (response) {...})
.catch(function onError(err) {...});

Page 26—Node.js Application Developer’s Guide

MarkLogic Server Introduction to the Node.js Client API

1.6 Creating a Database Client

All the interactions of your application with MarkLogic Server are through a
marklogic.DatabaseClient Object. Each database client manages a connection by one user to a
REST API instance and a particular database. Your application can create multiple database
clients for connecting to different REST API instances, connecting to different databases, or
connecting as different users.

Note: If you use multi-statement transactions and multiple databases, note that the
database context in which you perform an operation as part of a multi-statement
transaction must be the same as the database context in which the transaction was
created. The same restriction applies to commiting or rolling back a
multi-statement transaction.

To create a database client, call marklogic.createbatabaseciient With a parameter that describes
the connection details. For example, the following code creates a database client attached to the
REST API instance listening on the default host and port (1ocalhost:8000), using the default
database associated with the instance, and digest authentication. The connection authenticates as
user “me” with password “mypwd”.

const ml
const db

require ('marklogic!') ;
ml.createDatabaseClient ({user:'me', password: 'mypwd'});

The connection details must include a username and password if you are not using certificate
based authentication or Kerberos. You can include additional properties. The following table lists
key properties you can include in the connection object passed tO createbatabaseclient.

PIELEL DefaultValue Description
Name
host localhost A MarkLogic Server host with a configured
REST API instance.
port 8000 The port on which the REST API instance

listens.

database | the default database associated | The database against which document operations
with the REST instance and queries are performed. Specifying a
database other than the REST API instance
default requires the xdmp-eval-in privilege. For
details, see “ Evaluating Requests Against a
Different Database” on page 18.

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 27

MarkLogic Server Version MarkLogic 9—May, 2017 Introduction to the Node.js Client API

Property

DefaultValue Description
Name

authType | digest The authentication method to use in establishing
the connection. Allowed values: basic, digest,
digestbasic, application-level, OF
kerberos-ticket. ThiSmust match the
authentication method configured on the REST
API instance. For details, see the Security Guide.

ssl false Whether or not to establish an SSL connection.
For details, see Configuring SSL on App Servers in
the Security Guide. When set to true, you can
include additional SSL properties on the
connection object. These are passed through to

the agent. For alist of these properties, see
http://nodejs.org/api/https.html#https _https request
options_callback

agent max of 10 free sockets; total of | A connection pooling agent.
50 sockets kept alive for 60
seconds

For details, seemarklogic.createbatabaseclient INthe Node.js API Reference and “ Administering
REST API Instances’ on page 269.

1.7 Authentication and Connection Security

This section provides an overview of how to configure authentication and SSL when creating a
database client and establishing a connection to MarkLogic. This section covers the following
topics:

* Connecting to MarkLogic with SSL

* Using SAML Authentication

e Using Certificate-Based Authentication

* Using Kerberos Authentication

Page 28—Node.js Application Developer’s Guide

http://nodejs.org/api/https.html#https_https_request_options_callback
/jsdoc/index.html

MarkLogic Server Introduction to the Node.js Client API

1.71 Connecting to MarkLogic with SSL

You can combine an ss1 property with any of the authentication methods so that your database
client object uses a secure connection to MarkLogic. For example:

ml.createDatabaseClient ({
user: 'me',
password: 'mypassword',
authType: 'digest',
ssl: true

3]

Your App Server must be SSL-enabled. For details, see Configuring SSL on App Servers in the
Security Guide.

The Node.js Client API must be able to verify that MarkLogic is sending alegitimate certificate
when first establishing the connection. If the certificate is signed by an authority other than one of
the established authorities like VeriSign, then you must include a certificate from the certification
authority in your database client configuration. Use the ca property to specify a certificate
authority. For example:

ml.createDatabaseClient ({
authType: 'certificate"',
ssl: true
ca: fs.readFileSync('ca.crt!')

3]

For more details, see Procedures for Obtaining a Signed Certificate in the Security Guide.

1.7.2 Using SAML Authentication

Your client application is responsible for acquiring a SAML assertions token from the SAML
|dentity Provider (IDP). You can then use the SAML assertions received from a SAML IDP as
well asHTTP accessto a MarkL ogic cluster configured to verify SAML assertions from the IDP.

Your client application sends the SAML assertions to the MarkL ogic enode to invoke MarkLogic
operations that are authorized for the user until the SAML assertions expire.

ThemMarkLogic.createbatabaseclient function usesthe property values shown in the table below
to authenticate using SAML.

Property Name Purpose
authType Specify the samw as the authentication type.
token The SAML assertions token to make requeststo MarkLogic. Thisis
required if the authrype IS samr.

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 29

MarkLogic Server Version MarkLogic 9—May, 2017 Introduction to the Node.js Client API

For example, after obtaining an authorization token (base64 encoded) from an IDP, the
MarkLogic.createDatabaseclient function to create a client might look like the following.

const db = marklogic.createDatabaseClient ({
host: appserverHost,
port: appserverPort,
authType: 'SAML',
token: authorizationToken,
. other configuration such as SSL ...

I3F;

In addition, the database client object uses the setauthToken function that takes a SAML
assertions token. Requests made after the token is set use the new SAML assertions token.

Note: Unlike the Java API, the Node.js API doesn't support a reauthorizer or renewer
callback. In Node,js, callsrun to completion instead of blocking. Consequently,
your client application can change the SAML assertions token without affecting
requests that are about to be sent to the server.

1.7.3 Using Certificate-Based Authentication
When using certificate-based authentication, your client application obtains a certificate signed by

acertificate authority, along with the certificate’s private key. The certificate contains apublic key
and other information required to establish a connection.
See the following topics for details:

* Obtaining a Client Certificate

* Configuring Your App Server

e Examples: Database Client Configuration

Note: You can only use certificate-based authentication with the Node.js Client AP
when you connect to MarkLogic using SSL. For details, see “ Connecting to
MarkLogic with SSL” on page 29.

1.7.3.1 Obtaining a Client Certificate
You can use either aclient certificate signed by an established certificate authority or a

self-signed certificate. Choose one of the following options:
» Obtain aclient certificate from an established certificate authority such as Verisign.
» Create asdlf-signed certificate.

To obtain aclient certificate signed by an established certificate authority, create a certificate
signing request (CSR) using OpenSSL software or a similar tool, then send the CSR to the
certificate authority. For details, see http:/openssl.org and man page for the openss1 req command.

Page 30—Node.js Application Developer’s Guide

http://openssl.org

MarkLogic Server Introduction to the Node.js Client API

To create a self-signed certificate, install your own certificate authority in MarkL ogic, and then
usethat certificate authority to self-sign your client certificate. For details, see Creating a Certificate
Authority in the Security Guide.

To obtain aclient certificate and the associated key by self-signing, use the

xdmp . x509CertificateGenerate Server-Side JavaScri pt function or the
xdmp:x509-certificate-generate XQuery function. Set the private-key parameter to null, and
set the credentialza option to correspond to your certificate authority. For example:

const x509Config = ...;
const cert = xdmp.x509CertificateGenerate (
x509Config, null, {credentialld: xdmp.credentialId('ca-cred')});

1.7.3.2 Configuring Your App Server

Your App Server must also be configured for certificate-based authentication and SSL. For more
details, see Configuring an App Server for External Authentication and Procedures for Enabling SSL on
App Servers in the Security Guide. When configuring the App Server for SSL, include the
following steps; for more details, see Enabling SSL for an App Server in the Security Guide.

1 Set “sdl require client certificate” to true.

2. Click Show under “SSL Client Certificate Authorities’, and then select the certificate
authorities that can be used to sign client certificates for the server

1.7.3.3 Examples: Database Client Configuration

For example, if you have acertificate in afile named “ client.crt” and a private key in afile named
“clientpriv.pem”, you can use them in your database client configuration as follows;:

ml.createDatabaseClient ({
authType: 'certificate',
cert: fs.readFileSync('client.crt'),
key: fs.readFileSync('clientpriv.pem'),
ssl: true

3]

For enhanced security, the client certificate and private key can aso be combined into asingle
PKCS12 file that can be protected with a passphrase. For details, see http://openssl.org and the man
page for the “ openss pkcsl2” command.

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 31

http://openssl.org

MarkLogic Server Version MarkLogic 9—May, 2017 Introduction to the Node.js Client API

For example, if you have a PKCS12 file named “ credentials.pfx”, then you can use the file and
your passphrase in your database client configuration as follows:

ml.createDatabaseClient ({
authType: 'certificate!',
pfx: fs.readFileSync('credentials.pfx'),
key: 'yourPassphrase',
ssl: true

3]

You can a'so use a certificate with basic or digest authentication to enhance the security of these
methods. For example, the following code uses a certificate with digest authentication:

ml.createDatabaseClient ({
user: 'me',
password: 'mypassword',
authType: 'digest',
cert: fs.readFileSync('client.crt'),
key: fs.readFileSync('clientpriv.pem'),
ssl: true

3]

1.7.4 Using Kerberos Authentication

Use the following steps to configure your MarkL ogic installation and client application
environment for Kerberos authentication:

e Configuring MarkLogic to Use Kerberos

* Configuring Your Client Host for Kerberos

* Creating a Database Client That Uses Kerberos

1.7.4.1 Configuring MarkLogic to Use Kerberos

Before you can use Kerberos authentication, you must configure MarkL ogic to use external
security. If your installation is not already configured for Kerberos, you must perform at least the
following steps:

1 Create a Kerberos external security configuration object. For details, see Creating an
External Authentication Configuration Object in the Security Guide.

2. Create aKerberos keytab file and install it in your MarkL ogic installation. For details, see
Creating a Kerberos keytab File in the Security Guide.

3. Create one or more users associated with an external name. For details, see Assigning an
External Name to a User in the Security Guide.

4, Configure your App Server to use “kerberos-ticket” authentication. For details, see
Configuring an App Server for External Authentication in the Security Guide.

Page 32—Node.js Application Developer’s Guide

MarkLogic Server Introduction to the Node.js Client API

For more details, see External Security in the Security Guide.

1.7.4.2 Configuring Your Client Host for Kerberos

On the client, the Node.js Client APl must be able to access a Ticket-Granting Ticket (TGT) from
the Kerberos Key Distribution Center. The API usesthe TGT to obtain a Kerberos service ticket.

Follow these stepsto make a TGT available to the client application:

1. Install MIT Kerberosin your client environment if it is not already installed. You can
download this software from http://www.kerberos.org/software/index.html.

2. If thisisanew installation of MIT Kerberos, configure your installation by editing the
krbs . conf file. On Linux, thisfileislocated in /etc/ by default. For details, see
https://web.mit.edu/kerberos/krb5-1.15/doc/admin/conf_files/krb5_conf.html.

3. Usekinit onyour client host to create and cache a TGT with the Kerberos Key
Distribution Center. The principal supplied to xinit must be one you associated with a
MarkL ogic user when performing the stepsin Configuring MarkLogic to Use Kerberos.

For more details, see the following topics:

e https://web.mit.edu/kerberos/krb5-1.15/doc/user/user_commands/kinit.html

e http://web.mit.edu/kerberos/krb5-current/doc/user/tkt_magmt.html#obtaining-tickets-with-kinit

1.7.4.3 Creating a Database Client That Uses Kerberos
In your client application, set the authrype property to 'kerberos when creating a database client.

For example, assuming you' re connecting to localhost on port 8000 and therefore don’t need to
explicitly specify host and port, then the following call creates a database client object that
connects to localhost:8000 using kerberos authentication:

ml.createDatabaseClient ({authType: 'kerberos'});

1.8 Using the Examples in This Guide

All requests to MarkLogic Server using the Node.js Client API go through apatabaseciient
object. Therefore, al the examples begin by creating such an object. Creating apatabaseclient
requires you to specify MarkLogic Server connection information such as host, port, user, and
password.

Most of the examplesin this guide abstract away the connection details by require’ing amodule
named my-connection. s that exports a connection object suitable for use with
marklogic.createDatabaseclient. ThiSencapsulation isonly done for convenience. You are not
required to do likewise in your application.

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 33

http://www.kerberos.org/software/index.html
http://web.mit.edu/kerberos/krb5-current/doc/user/tkt_mgmt.html#obtaining-tickets-with-kinit
https://web.mit.edu/kerberos/krb5-1.15/doc/admin/conf_files/krb5_conf.html
https://web.mit.edu/kerberos/krb5-1.15/doc/user/user_commands/kinit.html

MarkLogic Server Version MarkLogic 9—May, 2017 Introduction to the Node.js Client API

For example, the following statements appear near the top of each example in this guide:

const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

To use the examples you should first create a file named my-connection.js With the following
contents. This file should be co-located with any scripts you create by copying the examplesin
this guide.

module.exports = {
connInfo: {
host: 'localhost',
port: 8000,
user: your-ml-username,
password: your-ml-user-password

}
}i

Modify the connection details to match your environment. You must modify at least the user and
password properties. Most examples require a user with the rest-reader and/or rest-writer role
or equivalent, but some operations require additional privileges. For details, see “ Security
Requirements’” on page 17.

If you do not create my-connection.js, modlfy the callsto marklogic.createDatabaseClient in
the exampl es to provide connection details in another way.

Page 34—Node.js Application Developer’s Guide

MarkLogic Server Manipulating Documents

2.0 Manipulating Documents

This chapter discusses the following topics related to using the Node.js Client API to create, read,
update and del ete documents and metadata:

¢ Introduction to Document Operations

e Loading Documents into the Database

¢ Reading Documents from the Database

* Removing Content from the Database

e Managing Collections of Objects and Documents

e Performing a Lightweight Document Check

e Conditional Updates Using Optimistic Locking

e Working with Binary Documents

e Working with Temporal Documents

¢ Working with Metadata

2.1 Introduction to Document Operations

The Node.js Client API exposes functions for creating, reading, updating and deleting documents
and document metadata.

Most document manipulation functions are provided through the patabaseclient . documents
interface. For example, the following code snippet reads a document by creating a database client
object and invoking itS documents. read () method:

const ml = require('marklogic');
const db = ml.createDatabaseClient ({'user':'me', 'password': 'mypwd'});

db.documents.read (' /doc/example.json'). ...;

Thepatabaseciient interface includes read and write operations for binding JavaScript objectsto
Database documents, SUCh aSDpatabaseClient . read and DatabaseClient .createCollection.
Generally, these operations provide asimpler but less powerful capability than the equivalent
method of patabaseclient.documents. FOr example, you cannot specify atransaction id or read
document metadata USing patabaseClient . read.

Severa of the patabaseclient.documents interfaces accept or return document descriptors that

encapsulate data such as the URI and document content. For details, see “Input Document
Descriptors’” on page 39 and “Document Descriptor” on page 21.

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 35

MarkLogic Server Version MarkLogic 9—May, 2017 Manipulating Documents

When |loading data into the database, the patabaseclient.documents.write Method providesthe
most control and richest feature set. However, if you do not need that level control, one of the
other interfaces may be simpler to use. For example, if you just want to save JavaScript domain
objectsin the database, patabaseclient.createcollection enablesyou to do so without creating
document descriptors or constructing document URISs.

By default, each Node.js Client API call that interacts with the database represents a complete
transactional operation. For example, if you use asingle call to patabaseclient.Documents.write
to update multiple documents, then all the updates are applied as part of the same transaction, and
the transaction is committed when the operation completes on the server. You can use
multi-statement transactions to have multiple client-side operations span a single transaction. For
details, see “Managing Transactions’ on page 221.

The following table lists some common tasks related to writing to the databaes, along with the
method best suited for the completing the task. For a complete list of interfaces, see the Node.js
API Reference.

If you want to Then use

Save a collection of JavaScript objectsinthe | batabaseClient.createCollection

database as JSON documents. _ _ _
For details, see “Managing Collections of

Objects and Documents” on page 56.

Update a collection of JavaScript objects DatabaseClient.writeCollection
created using

DatabaseClient.createCollection.

For details, see “Managing Collections of
Objects and Documents” on page 56.

Insert or update a collection of documentsby | patabaseClient.writeCollection

URI.
For details, see “Managing Collections of

Objects and Documents” on page 56.

Insert or update document metadata, with or DatabaseClient.documents.write

without accompanying content. _ _ _
For details, see “Inserting or Updating

Metadata for One Document” on page 44.

Insert or update documents and/or metadatain | batabaseClient.documents.write

the context of a multi-statement transaction.) . .
For details, see “Loading Documents into the

Database” on page 38.

Page 36—Node.js Application Developer’s Guide

/jsdoc/index.html
/jsdoc/index.html

MarkLogic Server

Manipulating Documents

If you want to

Then use

Apply acontent transformation while loading
documents.

DatabaseClient.documents.write

For details, see L oading Documents into the
Database” on page 38 and “ Transforming
Content During Ingestion” on page 45.

Update a portion of a document or its
metadata, rather than replacing the entire
document.

DatabaseClient.documents.patch

For details, see “ Patching Document Content
or Metadata’ on page 73.

Thefollowing table lists some common tasks rel ated to reading datafrom the database, along with
the functions best suited for each task. For acomplete list of interfaces, see the Node.js API

Reference.

If you want to

Then use

Read the contents of one or more documents
by URI.

DatabaseClient.read

Restore a collection of JavaScript objects
previously saved in the in database using

DatabaseClient.createCollection.

DatabaseClient.documents.query

For details, see “Querying Documents and
Metadata’ on page 121 and “Managing
Collections of Objects and Documents’ on

page 56.

Read one or more documents and/or metadata
by URI.

DatabaseClient.documents.read

For details, see “ Reading Documents from the
Database’ on page 46.

Read the contents of one or more documents
and/or metadata by URI and apply aread
transformation.

DatabaseClient.documents.read

For details, see “ Reading Documentsfrom the
Database” on page 46 and “ Transforming
Content During Retrieval” on page 52.

Read one or more documents and/or metadata
by URI in the context of a multi-statement
transaction.

DatabaseClient.documents.read

For details, see “ Reading Documents from the
Database’ on page 46.

MarkLogic 9—May, 2017

Node.js Application Developer’ s Guide—Page 37

/jsdoc/index.html
/jsdoc/index.html

MarkLogic Server Version MarkLogic 9—May, 2017 Manipulating Documents

If you want to Then use

Read documents and/or metadatathat match a | patabaseclient.documents.query

query. : .
For details, see “ Querying Documents and

Metadata’ on page 121.

Query and analyze valuesin lexicons and DatabaseClient.values.read
range indexes. For details, see “Querying
Lexicons and Range Indexes’ on page 156.

Read a semantic graph from the database. For | patabaseclient.graphs.read
details, see Node.js API Reference.

2.2 Loading Documents into the Database

Usethe patabaseClient .documents.write Of DatabaseClient .documents.createWriteStream
methods to insert document content and metadata into the database. The stream interfaceis
primarily intended for writing large documents such as binaries.

* Qverview

¢ Input Document Descriptors

e Calling Convention

e Example: Loading A Single Document

e Example: Loading Multiple Documents

* |nserting or Updating Metadata for One Document

e Automatically Generating Document URIs

* Transforming Content During Ingestion

2.2.1 Overview

Use patabaseClient .documents.write t0 insert or update whole documents and/or metadata. To
update only a portion of adocument or its metadata, USe patabaseClient .documents.patch; for
details, see “ Patching Document Content or Metadata” on page 73.

The primary input to the write function is one or more document descriptors. Each descriptor
encapsulates a document URI with the content and/or metadata to be written. For details, see
“Input Document Descriptors’ on page 39.

For example, the following call writes a single document with the URI /doc/example. json:

const db = marklogic.createDatabaseClient(...);
db.documents.write (
{ uri: '/doc/example.json',

Page 38—Node.js Application Developer’s Guide

/jsdoc/index.html

MarkLogic Server Manipulating Documents

contentType: 'application/json',
content: { some: 'data' }

}
) ;

Write multiple documents by passing in multiple desriptors. For example, the following call
writes 2 documents:

db.documents.write (
{ uri: '/doc/examplel.json',
contentType: 'application/json',
content: { data: 'one' }

}l

{ uri: '/doc/example2.json’',
contentType: 'application/json',
content: { data: 'two' }

}
) ;

Descriptors can be passed as individual parameters, in an array, or in an encapsulating call object.
For details, see “Calling Convention” on page 40.

You can take action based on the success or failure of awrite operation by calling the resuit ()
function on the return value. For details, see “ Supported Result Handling Techniques’ on page 21.

For example, the following code snippet prints an error message to the console if the write fails:

db.documents.write (
{ uri: '/doc/example.json',
contentType: 'application/json',
content: { some: 'data' }

}

) .result (null, function(error) {
console.log(
P

2.2.2 Input Document Descriptors

Each document to be written is described by a document descriptor. The document descriptor
must include a URI and either content, metadata, or both content and metadata. For details, see
“Document Descriptor” on page 21.

For example, the following is a document descriptor for a document with URI
/doc/example.json. The document contents are expressed as a JavaScript object containing a
single property.

{ uri: '/doc/example.json', content: {'key': 'value'} }

The content property in adocument descriptor can be an object, astring, asuftfer, Or a

ReadableStream.

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 39

MarkLogic Server Version MarkLogic 9—May, 2017 Manipulating Documents

Metadata is expressed as properties of adocument descriptor when it applies to a specific
document. Metadata is expressed as properties of acall object when it applies to multiple
documents; for details, see “Inserting or Updating Metadata for One Document” on page 44.

For example, the following document descriptor includes collection and document quality
metadata for the document with URI /doc/example.qson:

{ uri: '/doc/example.json’,

content: {'key': 'value'},
collections: ['collectionl', 'collection2' 1,
quality: 2

2.2.3 Calling Convention

You must pass at |east one document descriptor to patabasecClient.documents.write. YOU Can
also include additional properties such as atransform name or atransaction id. The parameters
passed to documents.write Can take one of the following forms:

* Oneor more document descriptors: db.documents.write (descl, desc2,...).

* Anarray of one or more document descriptors: db . documents.write ([descl, desc2,
S0

* A call object that encapsulates a document descriptor array and additional optional
properti%: db.documents.write ({documents: [descl, desc2, ...], txid: ..., ...}).

The following calls are equivalent:

// passing document descriptors as parameters
db.documents.write (
{uri: '/doc/examplel.json', content: {...}},
{uri: '/doc/example2.json', content: {...}}

) ;

// passing document descriptors in an array
db.documents.write ([

{uri: '/doc/examplel.json', content: {...}},
{uri: '/doc/examplel.json', content: {...}}

1)

// passing document descriptors in a call object
db.documents.write ({
documents: [
{uri: '/doc/examplel.json', content: {...}},
{uri: '/doc/example2.json', content: {...}}
1,

additional optional properties

1

Page 40—Node.js Application Developer’s Guide

MarkLogic Server Manipulating Documents

The additional optional properties can include atransform specification, transaction id, or
temporal collection name; for details, see the Node.js API Reference. You can always specify such
properties as properties of a call object.

For example, the following call includes atransaction id (txid) as an additional property of the
call object:

// passing a transaction id as a call object property
db.documents.write ({

documents: [
{uri: '/doc/examplel.json', content: {...}},
{uri: '/doc/example2.json', content: {...}}

] I
txid: '1234567890'

3K

For convenience, if and only if there is a single document descriptor, the additional optional
properties can be passed as properties of the document descriptors, as an alternativeto using acall
object. For example, the following call includes a transaction id inside the single document
descriptor:

// passing a transaction id as a document descriptor property
db.documents.write (
{ uri: '/doc/examplel.json',
content: {...},
txid: '1234567890'

}
)i

224 Example: Loading A Single Document
This exampleinserts a single document into the database using patabaseclient . documents.write.

The document to load is identified by a document descriptor. The following document descriptor
describes a JSON document with the URI /doc/exampie.json. The document content is expressed
as a JavaScript object here, but it can also be astring, suffer, Of ReadableStream.

{ uri: '/doc/example.json',
contentType: 'application/json',
content: { some: 'data' }

3]

The code below creates a database client and callS patabaseclient . documents.write t0 l0ad the
document. The example checks for awrite failure by calling the resuit function and passing in an
error handler. In thisexample, no actionistaken if the write succeeds, so nu11 ispassed asthefirst
parameter to result ().

const marklogic = require('marklogic') ;
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 41

/jsdoc/index.html

MarkLogic Server Version MarkLogic 9—May, 2017 Manipulating Documents

db.documents.write (
{ uri: '/doc/example.json’',
contentType: 'application/json',
content: { some: 'data' }

3]
.result (null, function(error) {
console.log (JSON.stringify (error)) ;

3N,

For additiona exampl €S, SEE examples/before-load.js and examples/write-remove.js inthe
node-client-api Source directory.

To include metadata, add metadata properties to the document descriptor. For example, to add the
document to a collection, you can add a co11ections property to the descriptor:

db.documents.write (
{ uri: '/doc/example.json’',
contentType: 'application/json',
content: { some: 'data' },
collections: ['collectionl', 'collection2']

3]

You can include optional additional parameters such as atransaction id or awrite transform by
using acall object. For details, see “ Calling Convention” on page 40.

2.2.5 Example: Loading Multiple Documents

This example builds on “Example: Loading A Single Document” on page 41 to insert multiple
documents into the database usi NQg DatabaseClient.documents.write.

To insert or update multiple documents in a single request to MarkL ogic Server, pass multiple
document descriptors tO patabaseclient.documents.write.

The following code inserts 2 documents into the database with URIS /doc/examplel . json and

/doc/example2.json.

const marklogic = require('marklogic') ;
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

db.documents.write (

{ uri: '/doc/examplel.json',
contentType: 'application/json',
content: { data: 'one' }

I

{ uri: '/doc/example2.json',
contentType: 'application/json',
content: { data: 'two' }

}

) .result (null, function (error) {

Page 42—Node.js Application Developer’s Guide

MarkLogic Server Manipulating Documents

console.log (JSON.stringify (error)) ;

s

A multi-document write returns an object that contains a descriptor for each document written.
The descriptor includesthe URI, the MIME type the contents were interpreted as, and whether the
write updated content, metadata, or both.

For example, the return value of the above call is asfollows:

{ documents: [

{ uri: '/doc/examplel.json’',
mime-type: 'application/json',
category: ['metadata', 'content']

It
uri: '/doc/example2.json',
mime-type: 'application/json',
category: ['metadata', 'content']

}
1}

Note that the category property indicates both content and metadata were updated even though no
metadata was explicitly specified. Thisis because system default metadata values were implicitly
assigned to the documents.

To include metadata for a document when you load multiple documents, include
document-specific metadata in the descriptor for that document. To specify metadata that applies
to multiple documents include a metadata descriptor in the parameter list or documents property.

For example, to add the two documents to the collection “examples’, add a metadata descriptor
before the document descriptors, as shown below. The order of the descriptors matters as the set
of descriptorsis processed in the order it appears. A metadata descriptor only affects document
descriptors that appear after it in the parameter list Or documents array.

const marklogic = require('marklogic') ;
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

db.documents.write ({
documents: [
{ contentType: 'application/json',
collections: ['examples']
}

{ uri: '/doc/examplel.json',
contentType: 'application/json',
content: { data: 'one' }

I

{ uri: '/doc/example2.json',
contentType: 'application/json',
content: { data: 'two' }

}
]

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 43

MarkLogic Server Version MarkLogic 9—May, 2017 Manipulating Documents

}) .result (null, function(error) {
console.log (JSON.stringify (error)) ;
1)

2.2.6 Inserting or Updating Metadata for One Document

To insert or update metadata for a specific document, include one or more metadata propertiesin
the document descriptor passed to patabaseclient.documents.write. TOiNSert or update the same
metadata for multiple documents, you can include a metadata descriptor in a multi-document
write; for details, see “Working with Metadata” on page 66.

Note: When setting permissions, at least one update permission must be included.

Metadata is replaced on update, not merged. For example, if your document descriptor includes a
collections property, then calling patabaseclient.documents.write replacesall existing
collection associations for the document.

The following example inserts a document with URI /doc/example.json and addsit to the
collections “examples’ and “ metadata-examples’. If the document already exists and is part of
other collections, it is removed from those collections.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

db.documents.write (

{ uri: '/doc/example.json’',
collections: ['examples', 'metadata-examples'],
contentType: 'application/json',
content: { some: 'data' }

)

.result (null, function(error) {

console.log (JSON.stringify (error)) ;

I3F;

To insert or update just metadata for a document, omit the content property. For example, the
following code setsthe quality to 2 and the collectionsto “ some-collection”, without changing the
document contents:

const marklogic = require('marklogic') ;
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

db.documents.write (

{ uri: '/doc/example.json',
collections: ['some-collection'],
quality: 2,

3]
.result (null, function(error) ({
console.log (JSON.stringify (error)) ;

1

Page 44—Node.js Application Developer’s Guide

MarkLogic Server Manipulating Documents

2.2.7 Automatically Generating Document URIs

You can have document URIs automatically generated during insertion by replacing the uri
property in your document descriptor with an extension property, as described below.

Note: You can only use this feature to create new documents. To update an existing
document, you must know its URI.

To use this feature, construct a document descriptor with the following characteristics:

* Omit the uri property.

* Include an extension property that specifies the generated URI extension, such as“xml”
or “json”. Do not include a“dot” (.) prefix. That is, specify “json”, not “.json”.

* Optionaly, include aairectory property that specifies a database directory prefix for the
generated URI. The directory prefix must end in aforward slash (/).

The following example inserts a document into the database with a URI of the form

/my/directory/auto-generated. json.

const marklogic = require('marklogic') ;
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

db.documents.write (
{ extension: 'json',
directory: '/my/directory/',
content: { some: 'data' },
contentType: 'application/json'

}

) .result (
function (response) {
console.log('Loaded ' + response.documents[0] .uri) ;

}l
function (error)
console.log (JSON.stringify (error)) ;

}
) ;

Running the above script results in output similar to the following upon success:

Loaded /my/directory/16764526972136717799.json

2.2.8 Transforming Content During Ingestion

You can transform content during ingestion by applying a custom write transform. A transformis
server-side X Query, JavaScript, or XSLT that you install in the modul es database associated with
your REST API instance. You can install transfoms using the config. transforms functions. This
topic describes how to apply atransform during ingestion. For more details and examples, see
“Working with Content Transformations’ on page 239.

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 45

MarkLogic Server Version MarkLogic 9—May, 2017 Manipulating Documents

To apply atransform when creating or updating documents, call documents.write With acall
object that includes the transform property. The transform property encapsulates the transform
name and any parameters expected by the transform. The transform property has the following
form:

transform: [transformName, {paraml: value, param2: value, ...}]

For example, the following code snippet applies a transform installed under the name
my-transform and passesin values for 2 parameters:

db.documents.write ({

documents: [
{uri: '/doc/examplel.json', content: {...}},
{uri: '/doc/example2.json', content: {...}}

1,
transform: [
'my-transform!',
{ my-first-param: 'value',
my-second-param: 42

}
13N,

As aconvenience, you can embed the transform property in the document descriptor when
inserting or updating just one document. For example:

db.documents.write ({

uri: '/doc/examplel.json',
content: {...}},
transform: [

'my-transform!',
{ my-first-param: 'value',
my-second-param: 42

}
13N,

2.3 Reading Documents from the Database

UsSe patabaseClient .documents . read t0 read one or more documents and/or metadata from the
database. This section covers the following topics:

¢ Retrieving the Contents of a Document By URI

e Retrieving Metadata About a Document

e Example: Retrieving Content and Metadata

¢ Transforming Content During Retrieval

Page 46—Node.js Application Developer’s Guide

MarkLogic Server Manipulating Documents

231 Retrieving the Contents of a Document By URI

To retrieve the contents of a document from the database using its URI, use

DatabaseClient .documents.read Of DatabaseClient.read. YOU can also retrieve the contents and
metadata of documents that match a query; for details, see “ Querying Documents and M etadata”
on page 121.

DatabaseClient.read aNd DatabaseClient.Documents.read bDOth enable you to read documents by
URI, but they differ in power and complexity. If you need to read metadata, use a multi-statement
transaction, apply aread transformation, or access information such as the content-type, use
DatabaseClient .Documents.read. DatabaseClient.read acceptsonly alist of URIsasinput and
returns just the contents of the requested documents.

The two functions return different output. patabaseclient.Documents.read returns an array of
document descriptors, instead of just the content. patabaseclient.read returns an array
containing only the content of each document, in the same order as the input URI list. You can
process the output of both functions using a callback, Promise, or Stream; for details, see
“Supported Result Handling Techniques’ on page 21.

For example, the following code useS patabaseclient . Documents. read t0 read the document with
URI /doc/examplel.json and processes the output using the Promise returned by the resuit
method.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

db.documents.read('/doc/examplel.json')
.result (function (documents) {
documents. forEach (function (document)
console.log (JSON.stringify (document)) ;
3E;
}, function (error) {
console.log (JSON.stringify (error, null, 2));

I3F;

The complete descriptor returned by resu1t l0oks like the following. The returned array contains
a document descriptor item for each document returned. In this case, thereis only asingle
document.

"partType":"attachment",
"uri":"/doc/examplel.json",
"category":"content",
"format":"json",

"contentType" :"application/json",
"contentLength":"14™",
"content":{"data":"one"}

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 47

MarkLogic Server Version MarkLogic 9—May, 2017 Manipulating Documents

If you read the same document using patabaseclient .read, YOU get the output shown below.
Notice that it isjust the content, not a descriptor.

db.read('/doc/examplel.json') .result(...);
==>
{"data":"one"}

You can read multiple documents by passing in multiple URIs. The following example reads two
documents and uses the Stream pattern to process the results. The data handler receives a
document descriptor as inpuit.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

db.documents.read('/doc/examplel.json', '/doc/example2.json')
.stream() .on('data', function(document) {
console.log('Read ' + document.uri) ;

1)
on('end', function() {
console.log('finished') ;

1.

on('error', function (error) ({
console.log (JSON.stringify (error)) ;
done () ;

3K

You can request metadata by passing a call object parameter t0 pocuments . read and including a
categories property that specifies which document partsto return. For details, see “Retrieving
Metadata About a Document” on page 48.

When calling pocuments . read, you can use aread transform to apply server-side transformations
to the content before the response is constructed. For details, see “ Transforming Content During
Retrieval” on page 52.

To perform reads across multiple operations with a consistent view of the database state, pass a
Timestamp object to Documents.read. For more details, see “ Performing Point-in-Time
Operations’ on page 25.

2.3.2 Retrieving Metadata About a Document

To retrieve metadata when reading documents by URI, pass acall object to

DatabaseClient .documents.read that includes acategories property. You can retrieve all
metadata (category value 'metadata') Or asubset of metadata (category values 'collections',
'permissions', 'properties', 'metadatavValues', and 'quality'). To retrieve both content and
metadata, include the category value ' content '.

Page 48—Node.js Application Developer’s Guide

MarkLogic Server Manipulating Documents

Note: Thewnetadatavalues Mmetadata category represents simple key-value metadata,
sometimes called metadata fields. For more detail s, see Metadata Fields in the
Administrator’s Guide.

For example, the following code retrieves al metadata about the document /doc/example. json,
but not the contents.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

db.documents.read ({
uris: ['/doc/example.json'],
categories: ['metadata'l]
}) .result (
function (documents) {
for (const i in documents)
console.log('Read metadata for ' + documents[i] .uri);
b

function (error) {
console.log (JSON.stringify(error)) ;

}
) ;

The result is a document descriptor that includes all metadata properties for the requested
document, as shown below. For details on metadata categories and formats, see “Working with
Metadata’ on page 66.

[{

"partType" : "attachment",

"yri":"/doc/example.json",

"category":"metadata",

"format":"json",

"contentType":"application/json",

"contentLength":"168",

"collections": [],

"permissions": [
{"role-name":"rest-writer", "capabilities": ["update"]},
{"role-name":"rest-reader", "capabilities": ["read"]}

1,
"properties":{},
"quality":0

}]

The following example retrieves content and collections metadata about 2 JSON documents:

const marklogic = require('marklogic') ;
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

db.documents.read ({
uris: ['/doc/examplel.json', '/doc/example2.json'l],

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 49

MarkLogic Server Version MarkLogic 9—May, 2017 Manipulating Documents

categories: ['collections', 'content']
}) .stream() .
on('data', function (document) {

console.log('Collections for ' + document.uri + ':
+ JSON.stringify (document.collections)) ;

1.

on('end', function()
console.log('finished') ;

1.

on('error', function(error) {
console.log (JSON.stringify (error)) ;

s

The result is a document descriptor for each document that includes a coliections and a content
property:

"partType" : "attachment",

"uri" : "/doc/example2.json",

"category" : "content",

"format" : "json",

"contentType" : "application/json",
"contentLength" : "14",

"collections" : ["collectionl", "collection2"],
"content" : {"data":"two"}

2.3.3 Example: Retrieving Content and Metadata
The example demonstrates reading content and metadata for a document.

The script below first writes an example document to the database that isin the “ examples’
collection and has document quality 2. Then, the document and metadata are read back in asingle
operation by including both ' content ' and 'metadata’ inthe categories property of the read
document descriptor. You can also specify specific metadata properties, such as ' collections' or
'permissions' .

To run the example, copy the script below to afile and run it using the node command.

const marklogic = require('marklogic') ;
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient (my.connInfo) ;

// (1) Seed the database with an example document that has custom

metadata

db.documents.write ({
uri: '/read/example.json',
contentType: 'application/json',
collections: ['examples'],
metadataValues: {keyl: 'vall', key2: 2},
quality: 2,

Page 50—Node.js Application Developer’s Guide

MarkLogic Server Manipulating Documents

content: { some: 'data' }
}) .result () .then (function (response) {
// (2) Read back the content and metadata
return db.documents.read({
uris: [response.documents[0].uril,
categories: ['content', 'metadata']
}) .result();
}) .then (function (documents) {
// Emit the read results

console.log ('CONTENT: ' +

JSON.stringify (documents[0] .content)) ;
console.log('COLLECTIONS: ' +

JSON.stringify (documents[0] .collections)) ;
console.log('PERMISSIONS: ' +

JSON.stringify (documents[0] .permissions, null, 2));
console.log ('PROPERTIES: ' +

JSON.stringify (documents[0] .properties, null, 2));
console.log ('QUALITY: ' +

JSON.stringify (documents[0] .quality, null, 2));
console.log ("METADATAVALUES: " +

JSON.stringify (documents[0] .metadataValues, null, 2));

)

The script produces output similar to the following:

CONTENT: {"some": "data"}
COLLECTIONS: ["examples"]
PERMISSIONS: [
{
"role-name": "rest-writer",
"capabilities": [
"update"
1
b
{
"role-name": "rest-reader",
"capabilities": [
"read"

]

}
]
PROPERTIES: {}

QUALITY: 2
METADATAVALUES: {
"key2": 2,

"keyl": "vall™"

}

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 51

MarkLogic Server Version MarkLogic 9—May, 2017 Manipulating Documents

2.34 Transforming Content During Retrieval

You can apply custom server-side transforms to a document before returning the content to the
requestor. A transform is a JavaScript module, XQuery module, or XSLT stylesheet that you
install in your REST API instance usi ng the patabaseclient. config.transforms.write function.
For details, see “Working with Content Transformations” on page 239.

You can configure a default read transform that is automatically applied whenever a document is
retrieved. You can also specify a per-request transform by including a transform property in the
call object passed to most read operations. If there is both a default transform and a per-request
transform, the transforms are chained together, with the default transform running first. Thus, the
output of the default transform isthe input to the per-request transform, as shown in the following
diagram:

default : ; - est

intermediate per-requ
original content - » final output
g transform result transform P

To configure adefault transform, set the document - transform-out configuration parameter of the
REST API instance. Instance-wide configuration parameters are set using the
DatabaseClient.config.serverprops.write function. For details, see” Configuring Instance
Properties” on page 270.

To specify a per-request transform, use the call object form of aread operation such as
DatabaseClient.documents.read and include a transform property. The value of the transform
property is an array where the first item is the transform name and the optional additional items
specify the name and value of parameters expected by the transform. That is, the transform
property has the following form:

transform: [transformName, {paraml: value, param2: value, ...}]

The following example applies atransform installed under the name “example’ that expects a
single parameter named “reviewer”. For a complete example, see “ Example: Read, Write, and
Query Transforms” on page 243.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

db.documents.read ({
uris: ['/doc/example.json'],
transform: ['example', {reviewer: 'me'}]
}) .result (
function (documents) {
for (const i in documents)

console.log('Document ' + documents([i] .uri + ': ');
console.log (JSON.stringify (documents [i] .content)) ;

Page 52—Node.js Application Developer’s Guide

MarkLogic Server Manipulating Documents

)i

2.4 Removing Content from the Database
You can use the Node.js Client API to remove documents by URI, collection or directory.

¢ Removing Documents By URI

e Removing Sets of Documents

¢ Removing All Documents

24.1 Removing Documents By URI

To remove one or more documents by URI, Use patabaseclient . remove OF

DatabaseClient .documents . remove. BOth functions enable you to remove documents by URI, but
DatabaseClient . remove Offersasimpler, more limited, interface. You can also remove multiple
documents by collection or directory; for details, see “Removing Sets of Documents’ on page 54.

Removing a document al so removes the associated metadata. Removing a binary document with
extracted metadata stored in a separate XHTML document also del etes the properties document;
for details, see “Working with Binary Documents’ on page 63.

Thefollowi ng example removes the documents /doc/examplel.json and /docs/example2 . json.

const marklogic = require('marklogic') ;
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

db.documents.remove (' /doc/examplel.json', '/doc/example2.json') .result (
function (response) {
console.log (JSON.stringify (response)) ;

}
)i

The response contains the document URIs and a success indicator. For example, the above
program produces the following outpuit:

{ "uris":["/doc/examplel.json", "/doc/example2.json"],
"removed":true }

When you remove documents with patabaseclient . remove, the response only includes the URIs.
For example:

db.remove (' /doc/examplel.json')
==> ['/doc/examplel.json']

db.remove (' /doc/examplel.json', '/doc/example2.json')
==> ['/doc/examplel.json', '/doc/example2.json']

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 53

MarkLogic Server Version MarkLogic 9—May, 2017 Manipulating Documents

For additional examples, see the examples and testsin the node-client-api Sources available on
GitHub at http://github.com/marklogic/node-client-api.

Attempting to remove a document that does not exist produces the same output as successfully
removing a document that exists.

When removing multiple documents, you can specify the URIs asindividual parameters (if the
call has no other parameters), an array of URISs, or an object with auris property whose valueis
the URIs. When removing multiple documents, the whole batch failsif there is an error removing
any one of the documents.

You can supply additional parametersto patabaseclient.documents . remove, SUCh asatransaction
id and temporal collection information. For details, see the Node.js API Reference.

2.4.2 Removing Sets of Documents

YOuU can USe patabaseClient .documents . removeall tO remove all documentsin acollection or all
documents in a database directory.

To remove documents by collection, use the following form:

db.documents.removeAll ({collection: ..., other-properties...}

To remove documents by directory, use the following form:

db.documents.removeAll ({directory:..., other-properties...}

The optional other-properties Can include atransaction id. For details, see the Node.js API
Reference.

Removing all documentsin a collection or directory requiresthe rest-writer role or equivalent
privileges.

Note: When removing documents by directory, the directory name must include a
trailing slash (“/”).

The following example removes all documents in the collection “/countries’:

const marklogic = require('marklogic') ;
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

db.documents.removelAll ({collection: '/countries'}) .result (
function (response) {
console.log (JSON.stringify (response)) ;

}

~

7

==> {"exists":false,"collection":"/countries"}

Page 54—Node.js Application Developer’s Guide

http://github.com/marklogic/node-client-api
/jsdoc/index.html
/jsdoc/index.html
/jsdoc/index.html

MarkLogic Server Manipulating Documents

The following example removes all documentsin the directory “/doc/”:

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

db.documents.removeAll ({directory: '/doc/'}).result (
function (response) {
console.log (JSON.stringify (response)) ;

}

~

==> {"exists":false, "directory":"/doc/"}

You can also include a txia property in the call object passed to
DatabaseClient .documents . removeall {0 Specify atransaction in which to perform the deletion.
For example:

db.documents.removeAll ({directory: '/doc/', txid: '1234567890'})

For additional examples, see the examples and testsin the node-client-api Sources available on
GitHub at http:/github.com/marklogic/node-client-api.

2.4.3 Removing All Documents

To remove all documentsin the database, call patabaseclient .documents.removeall and include
an all property with value true in the call object. For example:

db.documents.removeaAll ({all: true})

Removing all documents in the database requires the rest-admin Or equivalent privileges.

There is no confirmation or other safety net when you clear the database in thisway. Creating a
backup is recommended.

The following example removes all documents in the database:

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

db.documents.removeAll ({all: true}) .result (
function (response) {
console.log (JSON.stringify (response)) ;

}

~

7

==> {"exists":false, "allDocuments":true}

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 55

http://github.com/marklogic/node-client-api

MarkLogic Server Version MarkLogic 9—May, 2017 Manipulating Documents

You can aso include atxia property in the call object passed to
DatabaseClient .documents . removeall 10 Specify atransaction in which to perform the deletion.
For example:

2.5

db.documents.removeAll ({all: true, txid: '1234567890'})

Managing Collections of Objects and Documents

You can easily manage a collection of JavaScript objects in the database using the following
operations. The objects must be serializable as JSON.

DatabaseClient.createCollection: Storeacollection of JavaScript objectsin the database
as JSON documents with auto-generated URIs. The objects must be serializable as JISON.

DatabaseClient .read: Read one or more JavaScript objects from the database by URI.
Unlike patabaseclient .documents . read, this method does not return document
descriptors. Rather, it returns just the document content. Documents are returned in the
same order astheinput URIs.

DatabaseClient.documents.query. Restore objects by finding all documentsin the
collection, or search your collection.

DatabaseClient.writeCollection: Update objects or other documents by URI and
collection name. Use this method rather than creatcoliection t0 update objectsin the
collection because createcol1ection always creates a new document for each object.

DatabaseClient .removeCollection: Remove objects or other documents by collection
name.

Calling createcollection iSadditive. That is, documents (objects) aready in the collection
remain in the collection if you call createcolilection multiple times on the same collection.
However, note that createcollection generates a new document for each object every timeyou
call it, so calling it twice on the same object creates a new object rather than overwriting the
previous one. To update objects/documents in the collection, use

DatabaseClient.writeCollection.

If you need more control over your documents, USe patabaseClient .documents.write. FOr
example, when you Use createcollection YOU CanNot exercise any control over the document
URIs, include metadata such as permissions or document properties, or specify atransaction id.

To learn more about searching documents with patabaseclient .documents. query, See“Querying
Documents and Metadata” on page 121.

The example script below does the following:

Create a collection from a set of objects.
Read all the objects back.

Find the just the objectswhere xing=rcat .

Page 56—Node.js Application Developer’s Guide

MarkLogic Server Manipulating Documents

* Remove the collection.

To try the example, copy the following script to afile and run it with the node command. The
database connection information is encapsulated in my-connection.js, asdescribed in “Using the
Examplesin This Guide” on page 33.

const marklogic = require('marklogic') ;
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

const gb marklogic.queryBuilder;
// The collection of objects to persist
const pets = [
{ name: 'fluffy', kind: 'cat' },
{ name: 'fido', kind: 'dog' },
{ name: 'flipper', kind: 'fish' },
{ name: 'flo', kind: 'rodent' }
1

const collName = 'pets';

// (1) Write the objects to the database
db.createCollection(collName, pets) .result ()
.then (function (uris)
console.log('Saved ' + uris.length + ' objects with URIs:');
console.log(uris) ;

// (2) Read back all objects in the collection
return db.documents.query (
gb.where (gb.collection(collName))
) .result () ;
}, function (error) {
console.log (JSON.stringify (error)) ;
}) .then(function (documents) {
console.log('\nFound ' + documents.length + ' documents:');
documents.forEach(function (document)
console.log(document.content) ;

)

// (3) Find the cats in the collection
return db.documents.query (
gb.where(gb.collection(collName), gb.value('kind', 'cat'))
) .result () ;
}) .then(function (documents) {
console.log('\nFound the following cats:');
documents.forEach(function (document)
console.log ("' ' + document.content.name) ;

13N,

// (4) Remove the collection from the database
db.removeCollection (collName) ;

s

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 57

MarkLogic Server Version MarkLogic 9—May, 2017 Manipulating Documents

Running the script produces output similar to the following:

Saved 4 objects with URIs:

['/717293155828968327.json’,
'/5648624202818659648.json’,
'/4552049485172923004.json’,
'/16796864305170577329.json']

Found 4 documents:

{ name: 'fido', kind: 'dog' }

{ name: 'flipper', kind: 'fish' }
{ name: 'flo', kind: 'rodent' }

{ name: 'fluffy', kind: 'cat' }

Found the following cats:
fluffy

2.6 Performing a Lightweight Document Check

USe patabaseClient .documents.probe Of DatabaseClient .probe tO test for the existence of a

document in the database or retrieve a document identifier without fetching the document (when
content versioning is enabled).

The following example probes for the existence of the document /doc/example. json:

const marklogic = require('marklogic') ;
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

db.documents.probe ('/doc/example.json') .result (
function (response) {
if (response.exists) ({

console.log(response.uri + ' exists');
} else {

console.log(response.uri + 'does not exist');

}
)i

The return value is a document descriptor that includes a boolean-valued exists property. If
content versioning is enabled on the REST instance, then the response also includes aversionia

property. For example, with content versioning enabled, the above example produces the
following output:

{

contentType: "application/json",
versionId: "14115045710437450",
format: "json",

uri: "/doc/example.json",
exists: true

Page 58—Node.js Application Developer’s Guide

MarkLogic Server Manipulating Documents

For more information about content versioning, see “ Conditional Updates Using Optimistic
Locking” on page 59.

2.7 Conditional Updates Using Optimistic Locking

An application using optimistic locking creates a document only when the document does not
exist and updates or deletes a document only when the document has not changed since this
application last changed it. However, optimistic locking does not actually involve placing alock
on document.

Optimistic locking is useful in environments where integrity isimportant, but contention israre
enough that it is useful to minimize server load by avoiding unnecessary multi-statement
transactions.

This section covers the following topics:

¢ Understanding Optimistic Locking

e Enable Optimistic Locking

e Obtain a Version Id

* Apply a Conditional Update

2.7.1 Understanding Optimistic Locking

Consider an application that reads a document, makes modifications, and then updates the
document in the database with the changes. The traditional approach to ensuring document
integrity isto perform the read, modification, and update in a multi-statement transaction. This
holds alock on the document from the point when the document is read until the update is
committed. However, this pessimistic locking blocks access to the document and incurs more
overhead on the App Server.

With optimistic locking, the application does not hold alock on a document between read and
update. Instead, the application saves the document state on read, and then checks for changes at
the time of update. The update failsif the document has changed between read and update. Thisis
aconditional update.

Optimistic locking is useful in environments where integrity isimportant, but contention israre
enough that it is useful to minimize server load by avoiding unnecessary multi-statement
transactions.

The Node.js Client API uses content versioning to implement optimistic locking. When content
versioning is enabled on your REST API instance, MarkL ogic Server associates an opague
version id with each document when it is created or updated. The version id changes each time
you update the document. The version id is returned when you read a document, and you can pass
it back in an update or delete operation to test for changes prior to commit.

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 59

MarkLogic Server Version MarkLogic 9—May, 2017 Manipulating Documents

Note: Enabling content versioning does not implement document versioning. MarkL ogic
Server does not keep multiple versions of adocument or track what changes occur.
The version id can only be used to detect that a change occurred.

Using optimistic locking in your application requires the following steps:

1. Enable Optimistic Locking in the REST API instance.
2. Obtain a Version Id for documents you wish to conditionally update.
3. Apply a Conditional Update by including the version in your update operations.

You enable optimistic locking by setting the update-po1icy REST API instance property; for
details. You send and receive version ids viathe versionid property in a document descriptor.

2.7.2 Enable Optimistic Locking

To enable Opti mistic locki ng, cal patabaseclient. config.serverprops.write and set the
update-policy PrOPErty 1O version-required Of version-optional. For example, the followi ng
code sets update-policy to version-optional:

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

db.config.serverprops.write ({'update-policy': 'version-optional'})
.result (function (response)
console.log (JSON.stringify (response)) ;

)

Set the property to version-required if you want every document update or delete operation to
use optimistic locking. Set the property to version-optional to alow selective use of optimistic
locking.

Page 60—Node.js Application Developer’s Guide

MarkLogic Server

Manipulating Documents

The table below describes how each setting for this property affects document operations.

Setting

Effect

merge-metadata

Thisisthe default setting. If you insert, update, or delete a document
that does not exist, the operation succeeds. If aversionid isprovided, it
isignored.

version-optional

If you insert, update or delete a document that does not exist, the oper-
ation succeeds. If aversion id is provided, the operation failsif the doc-
ument exists and the current version id does not match the supplied
version id.

version-required

If you update or delete a document without supplying aversion id and
the document does not exist, then the operation succeeds; if the docu-
ment exists, the operation fails. If aversion id is provided, the opera-
tion failsif the document exists and the current version id does not
match the version in the header.

overwrite-metadata

The behavior isthe same asmerge-metadata, except that metadatain
the request overwrites any pre-existing metadata, rather than being
merged into it. This setting disables optimistic locking.

2.7.3 Obtain a Version Id

When optimistic locking is enabled, aversion id isincluded in the response when you read
documents. You can only obtain aversion id if optimistic locking is enabled by setting
update-policy; for details, see“ Enable Optimistic Locking” on page 60.

You can obtain aversion id for use in conditional updates in the following ways:

e Call patabaseclient.documents.read. Theversionidisavailable thl’OUgh the version1d
property of the returned document descriptor(s).

e Call patabaseClient.documents .probe. NO documents are fetched, but theversionidis
available through the versionta property of the returned document descriptor(s).

You can mix and match these methods of obtaining aversion id.

The following example returns the version for multiple documents:

const marklogic = require('marklogic') ;
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

db.documents.read (' /doc/examplel.json', '/doc/example2.json').

MarkLogic 9—May, 2017

Node.js Application Developer’ s Guide—Page 61

MarkLogic Server Version MarkLogic 9—May, 2017 Manipulating Documents

.stream() .on('data', function (document) {
console.log('Read ' + document.uri +
' with version ' + document.versionId) ;
}).on('end', function()
console.log('finished') ;

I3F;

2.7.4 Apply a Conditional Update

To apply a conditional update, include aversiontd property in the document descriptor passed to
an update or delete operation. The version id isignored if optimistic locking is not enabled; for
details, see “Enable Optimistic Locking” on page 60.

When a document descriptor passed to an update or delete operation includes aversion id,
MarkLogic Server server checksfor aversion id match before committing the update or delete. If
the input version id does not match a document’s current version id, the operation fails. In a
multi-document update, the entire batch of updatesis rejected if the conditional update of any
document in the batch fails.

The following example performs a conditional update of two documents by including the
versionid property in each input document descriptor.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

db.documents.write ({
documents: [

{ uri: '/doc/examplel.json',
contentType: 'application/json',
content: { data: 1 },
versionId: 14115098125553360

{ uri: '/doc/example2.json',
contentType: 'application/json',
content: { data: 2 },
versionId: 14115098125553350

}

1
}) .result (
function (success) {

console.log('Loaded the following documents:') ;

for (const i in success.documents)
console.log(success.documents [i] .uri) ;

}

) ;

Similarly, the following example removes the document /doc/exampie. json ONnly if the current
version id of the document in the database matches the version id in the input document
descriptor:

Page 62—Node.js Application Developer’s Guide

MarkLogic Server Manipulating Documents

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

db.documents.remove ({

uris: ['/doc/example.json'],
versionId: 14115105931044000}).
result (

function (response)
console.log (JSON.stringify (response)) ;
1)

Note: You cannot use conditional delete when removing multiple documentsin asingle
operation.

If aconditional update or delete fails due to aversion id mismatch, MarkLogic Server responds
with an error similar to the following. (The object contents have been reformatted for readability.)

{message: "remove document: response with invalid 412
status (on /doc/examplel.json)",
statusCode:412,
body: {
error: {
status-code: "412",
status: "Precondition Failed",
message-code: "RESTAPI-CONTENTWRONGVERSION",
message: "RESTAPI-CONTENTWRONGVERSION: (err:FOER0000)
Content version mismatch: uri /doc/example.json
doesn't match if-match: 14115105931044000"

11}

2.8 Working with Binary Documents

This section provides a brief overview of how to use the Node.js API to manipulate binary
document datain MarkLogic Server. The following topics are covered:

e Type of Binary Documents

e Streaming Binary Content

* Retrieving Binary Content with Range Requests

2.8.1 Type of Binary Documents

This section provides a brief summary of binary document types. For details, see Working With
Binary Documents in the Application Developer’s Guide.

MarkL ogic Server can store binary documents in three representations:

e Small binary documents are stored entirely in the database.

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 63

MarkLogic Server Version MarkLogic 9—May, 2017 Manipulating Documents

» Large binary documents are stored on disk with a small reference fragment in the
database. The on-disk content is managed by MarkLogic Server.

» External binary documents are stored on disk with a small reference fragment in the
database. However, the on-disk content is not managed by MarkL ogic Server.

MarkL ogic automatically determines whether a binary document is a small or large binary
document when you insert or update the document, based on the document size and the database
configuration.

Though external binary documents cannot be created using the Node.js Client API, you can
retrieve them, just like any other document.

2.8.2 Streaming Binary Content

By using streaming techniques to access binary content, you can avoid loading potentially large
documents into memory on MarkLogic Server and in your client application.

You can stream binary and other datainto MarkL ogic using by using a stream as the input source.
For details, see” Streaming Into the Database” on page 24.

When you retrieve alarge or external binary document from a database, MarkL ogic Server
automatically streams the content out of the database under the following conditions:
* Your request isfor a single document, rather than being a bulk read.

* Thesize of the binary content returned is over the large binary size threshold. For details,
See Working With Binary Documents in the Application Developer’s Guide.

* Therequest isfor content only. That is, no metadata is requested.

* The MIME type of the content is determinable from the Accept header or the document
URI file extension.

* No content transformation is applied.

You can also use range requests to incrementally retrieve pieces of a binary document that meets
the above constraints. For details, see “Retrieving Binary Content with Range Requests’ on

page 64.

You can avoid loading the entire document into memory in your client application by using a
streaming result handler, such as the chunked stream pattern described in “ Stream Result
Handling Pattern” on page 23.

2.8.3 Retrieving Binary Content with Range Requests

When you just use db . documentss . read t0 retrieve a binary document, the goal isto eventually
retrieve the entire document, even if your application code processesit in chunks. By contrast,
using range requests to retrieve parts of a binary document enables retryable, random access to
parts of abinary document.

Page 64—Node.js Application Developer’s Guide

MarkLogic Server Manipulating Documents

To use range requests, your retrieval operation must meet the conditions described in “ Streaming
Binary Content” on page 64. Specify the range of bytesto retrieve by including a*“range’
property in the call object passed tO patabaseclient.documents. read.

The following example requests the first 500K of the binary document with URI

/binary/song.m4a.

db.documents.read ({
uris: '/binary/song.m4a’',
range: [0,511999]

)

The document descriptor returned by such acall is similar to the following. The contentrength
property indicates how many bytes were returned. This value will be smaller than the size of the
requested range if you request a range that extends past the end of the source document.

result: [{
content: {
type': 'Buffer',
data': [theData]
I
uri: '/binary/song.m4a’',
category: ['content'],

format: 'binary',
contentLength: '10',
contentType: 'audio/mp4'

}]

2.9 Working with Temporal Documents

Most document write operations enable you to work with tempora documents. Temporal-aware
document inserts and updates are enabled through the following parameters (or document
descriptor properties) on operations such as documents . create, documents.write,

documents.patch, and documents. remove:

* temporalCollection: The URI of thetemporal collection into which the new document
should be inserted, or the name of the temporal collection that contains the document
being updated.

* temporalbocument: The“logical” URI of the document in the temporal collection; the
temporal collection document URI. Thisis equivalent to the first parameter of the
temporal : statement -set -document -version-uri XQUEry function or of the
temporal . statementSetDocumentVersionUri Server-Side Javascri pt function.

* sourcebocument: Thetemporal collection document URI of the document being operated
on. Only applicable when updating existing documents. This parameter facilitates
working with documents with user-maintained version URIs.

* systemTime: The system start time for an update or insert.

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 65

MarkLogic Server Version MarkLogic 9—May, 2017 Manipulating Documents

During an update operation, if you do not specify a sourcebocument OF temporalDocument, then the
uri descriptor property indicates the source document. If you specify temporalbocument, but do
not speC|fy sourceDocument, then temporalbocument identifies the source document.

Theuri property always refers to the output document URI. When the MarkL ogic manages the
version URIs, the document URI and temporal document collection URI have the same value.
When the user manages version URIs, they can be different.

Use documents . protect t0 protect atemporal document from operations such as update, delete,
and wipe for a specified period of time. This method is equivaent to calling the

temporal : document -protect XQuery function or the temporal .documentProtect Server-Side
JavaScript function.

Use documents . advanceLsqt t0 advance LSQT on atemporal collection. This method is equivalen
to cali ng the temporal :advance-1lsqgt XQuery function or the temporal .advanceLsgt Server-Side
JavaScript function.

For more details, see the Temporal Developer’s Guide and the Node.js Client API JSDoc.

2.10 Working with Metadata

The Node.js Client API enables you to insert, update, retrieve, and query metadata. Metadata is
the properties, collections, permissions, and quality of a document. M etadata can be manipul ated
as either JSON or XML.

This section covers the following topics:

* Metadata Categories

* Metadata Format

¢ Working with Document Properties

¢ Disabling Metadata Merging

2.10.1 Metadata Categories

When working with documents and their metadata, metadata is usually expressed as properties of
adocument descriptor. For example, the following descriptor includes collections metadata for
the document /doc/example . son, Whether the descriptor isinput output:

{ uri: '/doc/example.json',
collections: ['collectionl', 'collection2']

Some operations support a categories property for indicating what parts of a document and its
metadata you want to read or write. For example, you can read just the collections and quality
associated with /doc/example. json by cali Ng DatabaseClient.documents.read similar to the
following:

Page 66—Node.js Application Developer’s Guide

/jsdoc/documents.html

MarkLogic Server Manipulating Documents

db.documents.read ({
uris: ['/doc/example.json'],
categories: ['collections', 'quality']

9]
The following categories are supported:

® collections

® permissions

® properties

® quality

® metadataValues
® metadata

d content

The metadatavalues category represents simple key-value metadata property, sometimes called
“metadata fields’. This category can contain both system-managed metadata, such as certain
properties of atempora document, and user-defined metadata. The value of a property in
metadatavalues ISaways stored asastring in MarkLogic. For more details, see Metadata Fields in
the Administrator’s Guide.

The metadata category is shorthand for collections, permissions, properties, and quality. Some
operations, such as patabaseClient.documents.read, alSO sSUpport the content category asa
convenience for retrieving or updating content and metadata together.

2.10.2 Metadata Format

M etadata takes the following form in a document descriptor. You do not need to specify all
categories of metadata when including it in awrite or query operation. This structure appliesto
both input and output metadata.

{

"collections" : [string],
"permissions" : [
{
"role-name" : string,
"capabilities" : [string]
}
1.
"properties" :

property-name : property-value

1
"quality" : integer,
"metadataValues": { key: value, key: value, ... }

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 67

MarkLogic Server Version MarkLogic 9—May, 2017 Manipulating Documents

The following example is an output document descriptor from reading the metadata for the
document with URI /doc/example.json. The document isin two collections and has two

permissions, two document properties, and two metadatavalues Key-value pairs:

"partType": "attachment",
"uri": "/doc/example.json",
"category": "metadata",
"format": "json",
"contentType": "application/json",
"collections": ["collectionl", "collection2" 1],
"permissions": [
{
"role-name": "rest-writer",
"capabilities": ["update"]
I
{

"role-name": "rest-reader",
"capabilities": ["read"]
}
1,
"properties":
"propl": "this is my prop",
"prop2": "this is my other prop"
¥
"metadataValues": {
"keyl": "valuel",
"key2": 2

b

"quality": 0

}

The following example shows metadata as XML. All elements are in the namespace

http://marklogic.com/rest-api. You can have O or more <collection/>, <permission/> Or
property elements. There can be only one <qua1ity/> element. The element name and contents of

each property element depends on the property.

<metadata xmlns="http://marklogic.com/rest-api">
<collections>
<collections>collection-name</collection>
</collections>
<permissions>
<permission>
<role-name>name</role-name>
<capability>capability</capability>
</permission>
</permissions>
<properties>
<property-element/>
</properties>
<qualitys>integer</quality>
<metadata-values>

Page 68—Node.js Application Developer’s Guide

MarkLogic Server Manipulating Documents

<metadata-value key="keyl">valuel</metadata-value>
<metadata-value key="key2">2</metadata-value>
<metadata-values>
</metadata>

2.10.3 Working with Document Properties

Document properties are a kind of metadata. You can use document properties to add queryable
user-defined data to a document without changing the document contents. For details, see
Properties Documents and Directories in the Application Developer’s Guide.

In most cases, your application should work with document propertiesin a consistent format. That
is, if you insert or update properties as JSON, then you should retrieve and query them as JSON.
If you insert or update properties as XML, you should retrieve them as XML. If you mix and
match XML and JSON formats, you can encounter namespace inconsi stencies.

Document properties are always stored in the database as XML. A document property inserted as
JSON is converted internally into an XML element in the namespace
http://marklogic.com/xdmp/json/basic, with an XML local name that matches the JSON
property name. For example, adocument property expressed in JSON as { myproperty : 'value'
} has the following XML representation:

<rapi:metadata uri="/doc/example.json" ...>
<prop:properties xmlns:prop="http://marklogic.com/xdmp/property">
<myProperty type="string"
xmlns="http://marklogic.com/xdmp/json/basic">
value
</myProperty>
</prop:properties>
</rapi:metadata>

Aslong as you consistently use a JSON representation for document properties on input and
output, thisinternal representation is transparent to you. However, if you query or read document
properties using XML, you must be aware of the namespace and the internal representation.
Similarly, you can use XML to insert document properties in no namespace or in your own
namespace, but the namespace cannot be reflected in the JSON representation of the property.
Therefore, it is best to be consistent in how you work with properties.

Note: In order to support for passing properties as XML in a JSON string, users need to
specify the namespace such asin

{'$ml.xml":

'<prop:properties xmins:prop="http://marklogic.com/xdmp/property">
<myProps>Property 1</myProps></prop:properties>'
}

Failing to mention namespace in aproperty with XML format in aJJSON string can
trigger status 500: XDMP-DOCNONSBIND ETOF.

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 69

MarkLogic Server Version MarkLogic 9—May, 2017 Manipulating Documents

The one exception isin code that works with properties on the server, such as resource service
extensions and transformations. Such code always accesses document properties as XML.

If you configure an index based on a user-defined document property inserted using JSON, you
should use the http: //marklogic.com/xdmp/json/basic hamespace in your configuration.

Protected system properties such as 1ast-updated cannot be modified by your application. The
JSON representation of such properties wraps them in an object with the key $m1 . prop. For
example:

{ "properties": ({
"$ml.prop": {
"last-updated": "2013-11-06T10:01:11-08:00"

}
I

2.10.4 Disabling Metadata Merging

If you use the REST Client API to ingest alarge number of documents at one time and you find
the performance unacceptable, you might see a small performance improvement by disabling
metadata merging. This topic explains the tradeoff and how to disable metadata merging.

e When to Consider Disabling Metadata Merging

e How to Disable Metadata Merging

2.10.4.1 When to Consider Disabling Metadata Merging

The performance gain from disabling metadata merging is modest, so you are unlikely to see
significant performance improvement from it unless you ingest a large number of documents.
You might see a performance gain under one of the following circumstances:

* Ingesting alarge number of documents, one at atime.

» Updating alarge number of documentsthat share the same metadata or that use the default
metadata.

You cannot disable metadata merging in conjunction with update policieSversion-optional Of

version-required.

Metadata merging is disabled by default for multi-document write requests, as long as the request
includes content for a given document. For details, see Understanding When Metadata is Preserved
or Replaced in the REST Application Developer’s Guide.

To learn more about the impact of disabling metadata merging, see Understanding Metadata Merging
in the REST Application Developer’s Guide.

Page 70—Node.js Application Developer’s Guide

MarkLogic Server Manipulating Documents

2.10.4.2 How to Disable Metadata Merging

Metadata merging is controlled by the update-policy instance configuration property. The
default valueis merge-metadata.

To disable metadata merging, set update-policy t0 overwrite-metadata USING the procedure
described in “ Configuring Instance Properties’ on page 270. For example:

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

db.config.serverprops.write ({'update-policy': 'overwrite-metadata'})

.result (function (response)
console.log (JSON.stringify (response)) ;
1

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 71

MarkLogic Server Version MarkLogic 9—May, 2017 Manipulating Documents

Page 72—Node.js Application Developer’s Guide

MarkLogic Server Patching Document Content or Metadata

3.0 Patching Document Content or Metadata

This chapter covers the following topics related to updating selected portions of the content or
metadata of a document using the do . documents . patch function.

¢ Introduction to Content and Metadata Patching

e Example: Adding a JSON Property

e Patch Reference

¢ Defining the Context for a Patch Operation

¢ How Position Affects the Insertion Point

e Patch Examples

e Creating a Patch Without a Builder

e Patching XML Documents

e Constructing Replacement Data on MarkLogic Server

3.1 Introduction to Content and Metadata Patching

A partial update is an update you apply to a portion of a document or metadata, rather than
replacing an entire document or al of its metadata. For example, inserting a JSON property or
XML element, or changing the value of a JSON property. You can only apply partial content
updates to JSON and XML documents. You can apply partial metadata updates to any document

type.

A patch isa partia update descriptor, expressed in JSON or XML. A patch tells MarkLogic
Server what update to apply and where to apply it. Four operations are available in apatch: insert,
replace, replace-insert, and delete. (A replace-insert operation functions as areplace if thereis at
least one match for the target content; if there are no matches, then the operation functions as an
insert.)

Please note that statements of the following form { '¢ml.xm1': '<prop:properties } are
not allowed in metadata patching.

Use the partial update feature for the following operations:

* Add or delete a JISON property, property value, or array item in an existing document.
* Add, replace, or delete the value of an array item or JISON property.

* Add, replace, or delete a subset of the metadata of an existing document. For example,
modify a permission or insert adocument property.

» Dynamically generate replacement content or metadata on MarkL ogic Server using builtin
or custom, user-supplied functions. For details, see “ Constructing Replacement Data on
MarkLogic Server” on page 107.

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 73

MarkLogic Server Version MarkLogic 9—May, 2017 Patching Document Content or

You can apply multiple updates in a single patch, and you can update both content and metadata
in the same patch.

Patch operations can target JSON properties, XML elements and attributes, and data values such
as JSON array items and the datain an XML element or attribute. You identify the target of an
operation using X Path or JSONPath expressions. When inserting new content or metadata, the
insertion point isfurther defined by specifying the position; for details, see How Position Affects the

Insertion Point in the REST Application Developer’s Guide.

When applying a patch to document content, the patch format must match the document format:
An XML patch for an XML document, a JSON patch for a JSON document. You cannot patch the
content of other document types. You can patch metadata for all document types. A
metadata-only patch can bein either XML or JSON. A patch that modifies both content and
metadata must match the document content type.

The Node,js Client API provides the following interfaces for building and applying patches:

e marklogic.patchBuilder

e DatabaseClient.documents.patch

Apply apatch by calling patabaseclient .documents.patch With a URI and one or more patch
operations. Build patch operations using marklogic.patchBuilder.

The following example patches the JSON document /patch/example.json Dy inserting a property
named chiids inthe “last child” position under the property named thetop. For a complete
example, see “Example: Adding a JSON Property” on page 75.

const pb = marklogic.patchBuilder;
db.documents.patch('/patch/example.json’,
pb.insert ('/object-node ("theTop")', 'last-child',
{child3: 'INSERTED'})
) ;

For additional examples of building patch operations, see “Patch Examples’ on page 89.

If a patch contains multiple operations, they are applied independently to the target document.
That is, within the same patch, one operation does not affect the context path or select path results
or the content changes of another. Each operation in a patch is applied independently to every
matched node. If any operation in a patch fails with an error, the entire patch fails.

Content transformations are not directly supported in a partial update. However, you can
implement a custom replacement content generation function to achieve the same effect. For
details, see “ Constructing Replacement Data on MarkL ogic Server” on page 107.

Before patching JSON documents, you should familiarize yourself with the restrictions outlined
in Limitations of JSON Path Expressions in the REST Application Developer’s Guide.

Page 74—Node.js Application Developer’s Guide

MarkLogic Server Patching Document Content or Metadata

3.2 Example: Adding a JSON Property

The following example inserts a new property into a JSON document using the
DatabaseClient .documents.patch function and a patch builder. The example program does the
following:

1. Insert the example document into the database with the URI /patch/example.json.

2. Patch the example document by inserting a new property under thetop Named chi1ds in
the “last child” position. The parent node is identified using an X Path expression.

3. Read the patched document from the database and display it on the console.
The ab . document s . patch function accepts a document URI and one or more operations. In this

case, we pass only one operation: A property insertion constructed by calling the patch builder
insert method.

pb.insert ('/object-node ("theTop") ', // path to parent node
'last-child’', // insertion position
{child3: 'INSERTED'}) // content to insert

The promise pattern is used to chain together the write, patch, and read operations. For details, see
“Promise Result Handling Pattern” on page 22.

The example script is shown below. Theinitial write operation isincluded in the example only to
encapsul ate the example document and ensure consistent behavior across runs. Usually, the
document targeted by a patch would have been loaded into the database separately.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

// (1) Insert the base document into the database
db.documents.write ({

uri: '/patch/example.json’',
contentType: 'application/json',
content: {

theTop: {

childl: { grandchild: 'gc-value' },
child2: 'c2-value'
I
}) .result () .then (function (response) {
// (2) Patch the document
const pb = marklogic.patchBuilder;
return db.documents.patch(response.documents[0] .uri,
pb.insert ('/object-node ("theTop")', 'last-child',
{child3: 'INSERTED'})
) .result () ;
}) .then(function (response) {
// (3) Read the patched document
return db.documents.read(response.uri) .result () ;

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 75

MarkLogic Server Version MarkLogic 9—May, 2017 Patching Document Content or

}) .then(function (response) {
console.log(response [0] .content) ;

I3F;

The example program results in the following document transformation:

Before Patching After Patching

{"theTop" { {"theTop" {

"childl" : | "childl" : |

"grandchild" "gc-value" "grandchild" "gc-value"

} ’ } r

"child2a" "c2-value" "childan" "c2-value",
}} "child3™" "INSERTED"

b}

On SUCCESS, DatabaseClient .documents . patch Feturnsthe URI of the patched document. For
example, the result of the db.documents.patch call aboveis:

{ uri: '/patch/example.json' }

For more examples, see “Patch Examples’ on page 89.

3.3 Patch Reference

You can include one or more of the following operationsin acall to

DatabaseClient .documents.patch: INSert, replace, replace-insert, remove. These operations can
occur multipletimesin agiven patch call. Usethe markiogic.patchsuilder interfaceto construct
each operation. For example:

db.documents.patch (uri,
pb.insert (path, position, newContent)

)

The patch builder includes specia purposesinterfacesfor constructing patch operationsthat target
metadata: patchBuilder.collections, patchBuilder.permissions, patchBuilder.properties,
patchBuilder.quality, and patchBuilder.metadataValues. These interfaces enableyou to paIch
collections, permissions, quality, document properties, and values metadata without knowing the
internal representation of metadata. For an example of how to use these interfaces, see “ Example:
Patching Metadata’ on page 102.

In addition, you can include patch configuration directives, such aSpatchBuilder.library and
patchbuilder.pathLanguage. YOU can only include one 1ibrary directive, and it isonly needed if
you use custom functions to generate replacement content; for details, see “ Constructing
Replacement Data on MarkLogic Server” on page 107.

Page 76—Node.js Application Developer’s Guide

MarkLogic Server

Patching Document Content or Metadata

The table below summarizes the patch builder methods for constructing operations on content:

Builder Method Descriptions
insert Insert a new property or array item.
replace Replace an existing property or array item.

replacelnsert

Replace a JSON property or array item; if there are no existing matching
properties, perform an insertion instead.

remove Remove a JSON property or array item.

library |dentify a server-side XQuery library module that contains custom replace-
ment content generation functions that can be used in the app1y operation
that is part of areplace Of replaceInsert Operation.

apply Specify a server-side replacement content generation function. The patch

operation must include a1ibrary Operation, and the named function must
be in that module.

pathLanguage

Configure apatch to parse seilect and context €Xpressions as either X Path
(default) or JISONPath expressions.

The following table summarizes the patch builder interfaces for constructing operations on

metadata.
Builder Method Descriptions
collections Construct patch operations for modifying collections metadata.
permissions Construct patch operations for modifying permissions metadata.
properties Construct patch operations for modifying document properties metadata.
quality Construct patch operations for modifying quality metadata.
metadataValues Construct patch operations for modifying values metadata.

MarkLogic 9—May, 2017

Node.js Application Developer’ s Guide—Page 77

MarkLogic Server Version MarkLogic 9—May, 2017 Patching Document Content or

The following table summarizes the patch builder methods for constructing cofiguration
directives:

Builder Method Descriptions
library |dentify a server-side XQuery library module that contains custom replace-

ment content generation functions that can be used in the app1y operation
that is part of areplace Of replaceInsert Operation.

apply Specify a server-side replacement content generation function. The patch
operation must include a1ibrary operation, and the named function must
be in that module.

pathLanguage Configure apatch to parse select and context €Xpressions as either X Path
(default) or JISONPath expressions.

3.3.1 insert

Use patchbuild. insert tO Create an operation that inserts anew JSON property or array item.
Build an insert operation with a call of the following form:

marklogic.patchBuilder.insert (
context,
position,
content,
cardinality)

Page 78—Node.js Application Developer’'s Guide

MarkLogic Server Patching Document Content or Metadata

The following table summarizes the parameters of the patchsuilder.insert function.

Parameter | Req'd Description
context Y An XPath or JSONPath expression that selects an existing JSON

property or array element on which to operate. The expression can
select multiple items.

If no matches are found for the context expression, the operation is
silently ignored.

The path expression is restricted to the subset of XPath for which
cts:valid-document-patch-path (XQuery) or
cts.validDocumentpatchPath (JavaScript) returnstrue. For details, see
Path Expressions Usable in Patch Operations in the REST Application
Developer’s Guide.

position Y Where to insert the content, relative to the JSON property or value
selected by context. The pos-selector must be one of "veforer,
nafter", Of "last-child". FoOr details, see “How Position Affects the
Insertion Point” on page 87.

content Y The new content to be inserted, expressed as a JSSON object, array, or
atomic value.
cardinality | N The required occurrence of matchesto position. If the number of

matches does not meet the expectation, the operation fails and an error
isreturned. Allowed values.

e Zero or one matchesrequired: "> (question mark)

» Exactly one match required: . » (period)

e Zero or more matches required: "« (asterisk)

* One or more matches required: "+ (plus)

Default: "*" (The occurrence requirement is always met).

3.3.2 replace

UsepatchBuilder. replace tO Create an operation that replaces an existing JSON property value or
array item. If no matching JSON property or array item exists, the operation is silently ignored.
Build arep1ace oOperation with acall of the following form:

marklogic.patchBuilder.replace (
select,
content,

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 79

MarkLogic Server Version MarkLogic 9—May, 2017 Patching Document Content or

cardinality,
apply)

You can use apply to specify acontent generation builtin or custom function for generating
dynamic content. For details, see “ Constructing Replacement Data on MarkLogic Server” on
page 107.

The following table summarizes the parameters of the patchpuilder.replace function.

Parameter Req'd Description

select Y An XPath or JSONPath expression that selects the JSON property or
array element to replace. If no matches are found for the select
expression, the operation is silently ignored.

The path expression isrestricted to the subset of XPath for which
cts:valid-document-patch-path (XQuery) or
cts.validDocumentPatchPath (JavaScript) returns true. For details,
see Path Expressions Usable in Patch Operations in the REST
Application Developer’s Guide.

The selected item(s) cannot be the target of any other operationin the
patch. The ancestor of the selected item may not be modified by a
delete, replace, OI replace-insert operatl on in the same patCh.

content N The replacement value. If you omit this parameter, you must specify
a content generation function in the app1y parameter.

If select targets a property and content IS an object, the operation
replaces the entire target property. Otherwise, the operation replaces
just the value.

cardinality | N The required occurrence of matchesto seiect. If the number of
matches does not meet the expectation, the operation fails and an
error isreturned. Allowed values:

e Zero or one matchesrequired: > (question mark)

» Exactly one match required: . » (period)

e Zero or more matches required: »+» (asterisk)

* One or more matches required: "+ (plus)

Default: »«» (The occurrence requirement is always met).

Page 80—Node.js Application Developer’s Guide

MarkLogic Server Patching Document Content or Metadata

Parameter Req'd Description
apply N The local name of a replacement content generation function. If you
do not specify afunction, the operation must include a content
parameter.

If you name a custom function, the patch must include a
replace-1library Operation that describesthe X Query library module
containing the function implementation. To construct such an
operation, use the patchBuilder.library function.

For details, see “ Constructing Replacement Data on MarkL ogic
Server” on page 107.

3.3.3 replacelnsert

Use patchBuilder.replaceInsert {0 Create an operation that replaces a property value or array
item if it exists, or insert a property or array item if does not. Build a replace-insert Operation
with acall of the following form:

replacelInsert (
select,
context,
position,
content,
cardinality,

apply)

You can omit content if you use app1y to specify acontent generation builtin or custom function
for generating dynamic content. For details, see “ Constructing Replacement Data on MarkL ogic
Server” on page 107.

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 81

MarkLogic Server Version MarkLogic 9—May, 2017 Patching Document Content or

The following table summarizes the parts of a replace-insert Operation.

Parameter Reg'd Description
select Y An XPath or JSONPath expression that selects the JSON property or

array item to replace. If no matches are found for the select
EXPression, context and position are used to attempt an insert. If no
match isfound for context, the operation does nothing.

The path expression isrestricted to the subset of XPath for which
cts:valid-document-patch-path (XQuery) or
cts.validDocumentPatchpath (JavaScript) returnstrue.. For details,
see Path Expressions Usable in Patch Operations in the REST
Application Developer’s Guide.

The selected item(s) cannot be the target of any other operation in the
patch. The ancestor of the selected item may not be modified by a
delete, replace, OI replace-insert operation in the same paICh

content N The content with which to replace the selected value. If thereisno
content, YOU Must specify a content generation function using app1y.

If select targets a property and content iSan object, the operation
replaces the entire target property. Otherwise, the operation replaces
just the value.

context Y An XPath or JISONPath expression that selects an existing property or
array element on which to operate. The expression can select multiple
items.

If no matches are found for the either the se1ect Or context
expression, the operation is silently ignored.

The path expression is restricted to the subset of XPath for which
cts:valid-document-patch-path (XQuery) or
cts.validDocumentPatchPath (JavaScrlpt) returns true. For details,
See Path Expressions Usable in Patch Operations in the REST
Application Developer’s Guide.

The ancestor of the selected node may not be modified by adeiete,
replace, Of replace-insert operatl on in the same patch

Page 82—Node.js Application Developer’s Guide

MarkLogic Server Patching Document Content or Metadata

Parameter Req'd Description

position N If se1lect does not match anything, where to insert the content,
relative to the key-value pair or value selected by context. The
pos-selector must be one of "before", "after", OF "last-child". FOr
details, see “How Position Affects the Insertion Point” on page 87.

Default: 1ast-child.

cardinality N The required occurrence of matchesto position. If the number of
matches does not meet the expectation, the operation fails and an
error isreturned. Allowed values:

e Zero or one matchesrequired: "»" (question mark)

» Exactly one match required: "." (period)
e Zero or more matchesrequired: "«" (asterisk)

* One or more matches required: "+" (plus)

Default: * (The occurrence requirement is always met).

apply N The local name of areplacement content generation function. If you
do not specify afunction, the operation must include a content
parameter.

If you name a custom function, the patch must include a
replace-1library Operation that describes the XQuery library module
containing the function implementation. Create such an operation
using the patcheuilder.1ibrary function.

For details, see “ Constructing Replacement Data on MarkL ogic
Server” on page 107.

3.34 remove

Use patchBuilder.remove tO Create an operation that removes a JSON property or array element.
A call to the patchsuilder.remove function has the following form:

marklogic.patchBuilder.remove (
select,
cardinality)

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 83

MarkLogic Server Version MarkLogic 9—May, 2017 Patching Document Content or

The following table summarizes the parameters of patcheuilder. remove.

Component | Req'd Description
select Y An XPath or JSONPath expression that selects the JSON property or

array element to remove. If no matches are found for the select
expression, the operation is silently ignored.

The path expression is restricted to the subset of XPath for which
cts:valid-document-patch-path (XQuery) or
cts.validDocumentpPatchPath (JavaScript) returnstrue. For details,
see Path Expressions Usable in Patch Operations in the REST
Application Developer’s Guide..

The selected item(s) cannot be the target of any other operation in the
patch. The ancestor of the selected item may not be modified by a
delete, replace, O replace-insert operatl on in the same patch.

cardinality | N The required occurrence of matchesto seiect. If the number of
matches does not meet the expectation, the operation fails and an
error isreturned. Allowed values:

e Zero or one matches required: "»" (question mark)

» Exactly one match required: "." (period)

e Zero or more matches required: "«" (asterisk)

» One or more matches required: "+" (plus)

Default: »«» (The occurrence requirement is always met).

3.35 apply

Use patchBuilder.apply tO Create a configuration directive that specifies a server-side function
with which to generate replacement conent for @ replace Or replaceInsert Operation. The named
function must be in a server-side module identified by a 1ibrary directive included in the same
cal to db.documents. patch.

A call to the patchsuilder.apply function has the following form:
marklogic.patchBuilder.apply (functionName)

For details, see “Constructing Replacement Data on MarkLogic Server” on page 107.

Page 84—Node.js Application Developer’s Guide

MarkLogic Server Patching Document Content or Metadata

3.3.6 library

Use patchBuilder.library tO Create a configuration directive that identifies a server-side library
module containing one or more functions for generating replacement content. The module must
conform to the conventions described in “Writing a Custom Replacement Constructor” on

page 111. To make use of the functionsin your library, include the generated library directive in
your call to db.documents.patch, and include the output from patcheuilder.apply When calling
the replace O replaceInsert builder functions.

A call to the patchuilder.1ibrary function has the following form:

marklogic.patchBuilder.library (moduleName)

For details, see “Constructing Replacement Data on MarkLogic Server” on page 107.

3.3.7 pathLanguage

By default, all path expressionsin patches are expressed using X Path. JSONPath is also supported
for compatibility with previous releases, but it is deprecated. You do not need to use a
pathLanguage directive unless you use JSONPath.

Use patchBuilder.pathLanguage {0 Create a configuration directive that specifies the path
language in which you express context and select expressionsin your patch operations. A call to
the patchBuilder.pathLanguage function must have one of the following forms:

marklogic.patchBuilder.pathLanguage ('xpath')
marklogic.patchBuilder.pathLanguage ('jsonpath')

Include the resulting directive in your call t0 db. documents . patch.

You must use the same path language for all operations in apatabaseclient.documents.patch
call.

3.3.8 collections

Use the patchBuildercollections Methods to construct a patch operation for collections
metadata. Use patchBuiler.collections 0 access these methods. You can add or remove a
collection, using the following methods:

marklogic.patchBuilder.collections.add (collName)
marklogic.patchBuilder.collections.remove (collName)

For an example, see “ Example: Patching Metadata’ on page 102.

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 85

MarkLogic Server Version MarkLogic 9—May, 2017 Patching Document Content or

3.3.9 permissions

Use patchBuilderpermissions Methods to construct a patch operation for permissions metadata.
Use patchBuilder.permissions 10 access these methods. You can add or remove a permission or
replace the capabilities of arole using this interface.

marklogic.patchBuilder.permissions.add(role, capabilities)
marklogic.patchBuilder.permissions.remove (role)
marklogic.patchBuilder.permissions.replace(role, capabilities)

Where role is a string that contains the role name, and capabilitiesis either asingle string or an
array of strings with the following possible values: “read”, “insert”, “update’, “execute”.

Note that rep1ace replaces all the capabilities associated with arole. You cannot use it to
selectively replace asingle capability. Rather, you must operate on arole and the associated
capabilities as a single unit.

For an example, see “ Example: Patching Metadata’ on page 102.

3.3.10 properties

Use patchBuilderproperties Methods to construct a patch operation for document properties
metadata. Use patchBuilder.properties t0 access these methods. You can add or remove a
property, or replace the value of a property.

marklogic.patchBuilder.properties.add (name, value)
marklogic.patchBuilder.properties.remove (name)
marklogic.patchBuilder.properties.replace (name, value)

For an example, see “ Example: Patching Metadata’ on page 102.

3.3.11 quality

Use patchBuilderguality Methodsto construct a patch operation that sets the value of quality
metadata. USe patchBuilder.quality t0 access these methods.

marklogic.patchBuilder.quality.set (value)

For an example, see “ Example: Patching Metadata’ on page 102.

3.3.12 metadataValues

Use patchBuilderMetadatavalues Methodsto construct a patch operation on values metadata. Use
patchBuilder.metdatavalues t0 accessthese methods. You can add or remove a key-value pair, or
replace the value of an existing key.

Page 86—Node.js Application Developer’s Guide

MarkLogic Server Patching Document Content or Metadata

marklogic.patchBuilder.metadataValues.add (name, value)
marklogic.patchBuilder.metadataValues.remove (name)
marklogic.patchBuilder.metadataValues.replace (name, value)

For an example, see “Example: Patching Metadata’ on page 102.

3.4 Defining the Context for a Patch Operation

When you insert, replace, or delete content or metadata, the patch definition must include enough
context to tell MarkLogic Server what JSON or XML components to operate on. For example,
which json property or XML element to delete, where to insert a new property or element, or
which JSON property, XML element, or value to replace.

When you create a patch using a builder, you specify the context through the contextrath and
selectpath parameters of builder methods such as pocumentpatchBuilder. insertFragment () OF
DocumentPatchBuilder.replacevalue (). WWhen you create a patch from raw XML or JSON, you
specify the operation context through the context and seiect XML attributes or JSON property.

Use X Path expressions to define the operation context. For security and performance reasons,
your X Path expressions are restricted to the subset of XPath for which
cts:valid-document-patch-path (XQuery) Or cts.validDocumentPatchPath (.JavaScrlpt) returns
true. For detalls, see Patch Feature of the Client APIs in the XQuery and XSLT Reference Guide.

Insertion operations have an additional position parameter/property that defines where to insert
new content relative to the context, such as before or after the selected node. For more details,
see*How Position Affects the Insertion Point” on page 87.

3.5 How Position Affects the Insertion Point

The insert and replace-insert patch operationsinclude a position parameter that defines the
point of insertion when coupled with a context expression. This section describes the details of
how position affects the insertion point.

This topic focuses on patching JSON documents. For details on XML, see Specifying Position in
XML in the REST Application Developer’s Guide.

The position parameter to a PatchBuilder operation (or the position property of araw patch)
specifies where to insert new content relative to the item selected by the context XPath
expression. Position can be one of the following values:

* pefore. INSert before the item selected by context.

* after: Insert after the item selected by context.

* 1last-child: Insert into the value of the target property or array, in the position of last
child. The value selected by context must be an object or array node.

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 87

MarkLogic Server Version MarkLogic 9—May, 2017 Patching Document Content or

The same usage applies whether inserting on behalf of an insert Operation or a replace-insert
operation.

The following table shows example combinations of context and position and the resulting
insertion point for new content. The insertion point isindicated by .

Context Position Example Insertion Point
/theTop/node ("child1i") after {"theTop" . {
"childi" : ["vall", "val2" 1],
aproperty * %%
"child2a" : [
{"one": "valiv},
{rtwo": "val2"}
1
b}
/theTop/childl[1] before {"theTop" . {
"childl" : [*#** "vall", "val2"],
an array item nchilda" : [
{"one": "valin},
{"two": "val2"}
1
o}
/theTop/array-node ("childi") last-child {"theTop" . {
"childl" : ["vall", "val2" **%],
an array "child2a" : [
{"one": "vali"},
{rtwo": "val2"}
1
b

Page 88—Node.js Application Developer’s Guide

MarkLogic Server Patching Document Content or Metadata

Context Position Example Insertion Point
/node ("theTop") last-child | {"theTop" : {
. "childi" : ["vall", "val2"],
an object "child2" : [
{"one": "valiv},
{rtwo": "val2"}
]
* %%
bl
/theTop/childl last-child | Error because the selected valueis not an

object or array. For example, an error resultsif

avalue the target document has the following
contents:
{"theTop" : {
"childi" : "vall",
"child2" : [...]

I

For more information about X Path over JSON, see Traversing JSON Documents Using XPath in the
Application Developer’s Guide.

3.6 Patch Examples

This section contains examples of constructing and applying patches to metadata and JSON
documents. The following topics are covered:

* Preparing to Run the Examples

e Example: Insert

e Example: Replace

e Example: Replacelnsert

e Example: Remove

e Example: Patching Metadata

To patch XML documents, you must construct araw patch. For details, see “Patching XML
Documents’ on page 106 and “ Creating a Patch Without a Builder” on page 105.

3.6.1 Preparing to Run the Examples

The examples are self-contained, except for the database connection information. Each example
assumes your connection information is encapsulated in a module named my - connection. s that
is co-located with the example script.

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 89

MarkLogic Server Version MarkLogic 9—May, 2017 Patching Document Content or

This module is expected contain contents similar to the following:

module.exports = {
connInfo:
host: 'localhost',
port: 8000,
user: your-ml-username,
password: your-ml-user-password

}
Vi

For details, see “Using the Examplesin This Guide” on page 33.

3.6.2 Example: Insert

This example demonstrates the insert operation by making the following changes to the base
JSON document:

* Insert anew property of the unnamed root object (1nserTED1).

* Insert anew property in a sub-object, relative to a sibling property (1nserTeD2).
* Insert anew array item relative to an item with a specific value (1nserTeD3).

* Insert anew array item relative to a specific position in the array (1nserTED4).

* Insert anew item at the end of an array (1nserTEDS).

* Insert anew property inthe “last child” position (1nserTEDS).

The example first inserts the base document into the database, then builds and applies a patch.
Finally, the modified document is retrieved from the database and displayed on the console. The
example uses a Promise pattern to sequence these operations; for details, see * Promise Result
Handling Pattern” on page 22.

To run the example, copy the following code into afile, then supply it to the noae command. For
example: node insert.js.

const marklogic = require('marklogic') ;
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

// (1) Insert the base document into the database
db.documents.write ({
uri: '/patch/insert.json',
contentType: 'application/json',
content: {
theTop: {
childil: { grandchild: 'gcv' },
child2: ['c2vl', 'c2v2' 1,
child3: [{e3k1l: 'c3vl'}, {c3k2: 'c3v2'}]

I

}) .result () .then (function (response) {

Page 90—Node.js Application Developer’s Guide

MarkLogic Server Patching Document Content or Metadata

// (2) Patch the document
const pb = marklogic.patchBuilder;
return db.documents.patch(response.documents[0] .uri,
// insert a sibling of theTop
pb.insert ('/theTop', 'before',
{INSERTED1: ['ilvi', 'iiv2'l}),

// insert a property in childl's wvalue
pb.insert ('/theTop/childl/grandchild', 'before',
{INSERTED2: 'i2v'}),

// insert an array item in child2 by value
pb.insert ('/theTop/child2[. = "c2v1l"]', ‘'after’',
'"INSERTED3 '),

// insert an array item in child2 by position
pb.insert ('/theTop/child2[2]', 'after',
'"INSERTED4 ') ,

// insert an object in child3
pb.insert ('/theTop/array-node ("child3")', 'last-child',
{INSERTEDS : 'i5v'}),

// insert a new child of theTop
pb.insert ('/theTop', 'last-child',
{INSERTED6: 'iév'})
) .result () ;
}) .then(function (response) {
// (3) Emit the resulting document
return db.documents.read(response.uri) .result () ;
}) .then (function (documents) {
console.log (JSON.stringify (documents [0] .content)) ;

s

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 91

MarkLogic Server Version MarkLogic 9—May, 2017 Patching Document Content or

The following table shows how applying the patch changes the target document.

Before Update After Update

{"theTop": { { "INSERTED1": ["ilvl", "ilv2" 1,

"childi": {"grandchild": "gcv"}, "theTop": {

nchild2": ["c2vl", "c2va"], nchildln: {

"child3": ["INSERTED2": "i2v",
{"e3k1im: "c3viv}, "grandchild": "gcv"
{"e3k2": n"e3var} },

] "child2a": [

b} "ec2vin,

"INSERTED3",

"c2va",

"INSERTED4"

1,
"child3": [

{ "e3k1iv: ne3vir),

{ "c3k2m: "e3van)

{ "INSERTED5": "is5v" }

1,
"INSERTED6": "iev"

I

Note that when you insert something using 1ast-chii1d for the position, the insertion context
XPath expression must refer to the containing object or array. When you construct an X Path
expression such as /a/», the expression references avalue (or sequence of values), rather than the
container. To reference the container, use the node () and array-node () operators. Thisis why the
operation that creates INSERTEDS under childs USES array-node ("child3"), a shown below:

pb.insert ('/theTop/array-node ("child3")', 'last-child',
{INSERTED5 : 'i5v'})

If you change the insertion context expression to /theTop/chi1ds, you' re referencing the sequence
of valuesin the array, not the array object to which you want to add a child.

To insert aproperty if and only if it does not already exist, use a predicate in the context path
expression to test for existence. For example, the following patch will insert a property named
TARGET only if the object does not already contain such a property:

pb.insert ('/theTop [fn:empty (TARGET)] ', 'last-child',
{TARGET: 'INSERTED'})

This patch must use the 1ast-chi1a position because the context selects the node that will contain
the new property.

For more information about XPath over JISON, see Traversing JSON Documents Using XPath in the
Application Developer’s Guide.

Page 92—Node.js Application Developer’s Guide

MarkLogic Server Patching Document Content or Metadata

3.6.3 Example: Replace

This example demonstrates the replace operation by making the following changes to a JSON
document:

* Replace the value of a property with asimple value (chi1a1), object value (chi1az), or
array value (chi1ds).

* Replace the value of an array item by position or value (chi1adas).

* Replacethevalue of al itemsin an array with the same value (chiids).

* Replace the value of an object in an array by property name (chiids).

* Replace an array item that is an object by property name (chi1ds).

* Replace the value of an array item that is a nested array (child?7).

* Replace the value of anitemin anested array (child8).

The example first inserts the base document into the database, then builds and applies a patch.
Finally, the modified document is retrieved from the database and displayed on the console. The
example uses a Promise pattern to sequence these operations; for details, see “Promise Result
Handling Pattern” on page 22.

To run the example, copy the following code into afile, then supply it to the noae command. For
example: node replace.js.

const marklogic = require('marklogic') ;
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

// (1) Insert the base document into the database
db.documents.write ({

uri: '/patch/replace.json’',
contentType: 'application/json',
content: {

theTop: {

childl: 'cilv',
child2: { gc: 'gev' },

child3: ['e3vl', 'c3v2' 1,
child4: ['c4vl', 'c4v2'],
childs: ['e5vl', 'c5v2' 1,
childé: [{gcl: 'gciv'}, {gc2:'gc2v'}],
child7: ['avl', ['navl', 'mav2'], 'av2'l],
child8: ['avl', ['navl', 'mav2']l, 'av2']
o}
}) .result () .then (function (response) {

// (2) Patch the document

const pb = marklogic.patchBuilder;

return db.documents.patch(response.documents[0] .uri,
// replace the simple value of a property
pb.replace('/theTop/childl', 'REPLACED1'),

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 93

MarkLogic Server Version MarkLogic 9—May, 2017 Patching Document Content or

// replace a property value that is an object
pb.replace ('/theTop/child2', {REPLACE2: 'gc2'}),

// replace the value of a property that is an array
pb.replace('/theTop/array-node ("child3") ',
['REPLACED3a', 'REPLACED3b']),

// replace an array item by position
pb.replace('/theTop/child4[1]', 'REPLACED4a'),

// replace an array item by value
pb.replace('/theTop/child4[.="c4v2"]', 'REPLACED4b'),

// replace the value of all items in an array with the same value
pb.replace('/theTop/child5', 'REPLACEDS'),

// replace the value of a property in an array item
pb.replace('/theTop/childé/gcl', 'REPLACED6a'),

// replace an object-valued array item by property name
pb.replace ('/theTop/childeé [gc2] ', {REPLACED6b: '6bv'}),

// replace the value of an array item that is a nested array
pb.replace('/theTop/array-node ("child7") /node () [2] ',
['REPLACED7a', 'REPLACED7b']),

// replace the value of item in a nested array
pb.replace('/theTop/childs8[2]', 'REPLACEDS')
) .result () ;
}) .then(function (response) {
// (3) Emit the resulting document
return db.documents.read(response.uri) .result () ;
}) .then (function (documents) {
console.log (JSON.stringify (documents [0] .content, null, 2));

)

Page 94—Node.js Application Developer’s Guide

MarkLogic Server Patching Document Content or Metadata

The following table shows how applying the patch changes the target document.

Before Update After Update
{"theTop": ({ {"theTop" : {
"childl": "clv", "childl": "REPLACED1",
"child2": { "gc": "gcv" }, "child2": { "REPLACE2": "gc2" },
"child3": ["c3vl", "c3v2"], "child3": ["REPLACED3a", "REPLACED3b" 1,
"childa": ["c4vl", "c4v2" 1, "child4a": ["REPLACED4a", "REPLACED4b" 1,
"childs": ["c5vl", "c5v2"], "childs": ["REPLACED5", "REPLACEDS" 1],
"childé": ["childe": [
{rgc1im: nrgciv"}, { "gci": "REPLACED6a" },
{rgc2m:rgc2v"} { "REPLACED6b": "6bv" }
1, 1,
"child7": ["child7": [
"avi", "avi",
["navl", "nav2"], ["REPLACED7a", "REPLACED7b" 1,
"av2" "ava
1, 1,
"childs": ["childs": [
"avi", "avi",
["navl", "nav2"], ["REPLACED8", "nav2"],
"av2" "av2"
]]
bl }

Y ou should understand the difference between sel ecting a container and selecting its contents. For
example, consider the two replacement operations applied to chi1das. The XPath expression
/theTop/childé/gc1 addresses the value of property with name gc1. Therefore, the replacement
operation results in the following change:

pb.replace('/theTop/childé/gcl', 'REPLACED6a')
{"ge1lm : "geclv"} ==> {"gcl" : "REPLACED6a")}

By contrast the XPath expression /theTop/childe [gc2] Selects object nodes that contain a
property named gc2. Therefore, the replacement operation replaces the entire object with anew
value, resulting in the following change:

pb.replace ('/theTop/childé [gc2] ', {REPLACED6b: '6bv'})
{rgc2m" : "gec2v"} ==> {"REPLACEDé6b": "6bv"}

Similarly, consider the replacement operation on chiidas. The XPath expression
/theTop/array-node ("child3") Selectsthearray node named chiias, So the operation replacesthe
entire array with anew value. For example:

pb.replace('/theTop/array-node ("child3") ',
['REPLACED3a', 'REPLACED3b'])

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 95

MarkLogic Server Version MarkLogic 9—May, 2017 Patching Document Content or

"child3": ["c3vl", "c3v2"] ==> "child3": ["REPLACED3a", "REPLACED3b"]

By contrast, an XPath expression such as /theTop/childs Selectsthe valuesinthearray (1 csv1',
esv2'), SO areplacement operation with this select expression replaces each of the array values
with the same content. For example:

pb.replace('/theTop/child5', 'REPLACEDS')
"child5": ["c¢5v1l", "c¢5v2"] ==> "child5": ["REPLACEDS5", "REPLACEDS5"]

For more information on X Path over JSON, see Traversing JSON Documents Using XPath in the
Application Developer’s Guide.

3.6.4 Example: Replacelnsert

This example demonstrates the repiace-insert patch operation. The example performs the
following update operations:

* Replace or insert an array item by position (chi1d1).
* Replace or insert an array item by value (chiidz2).
* Replace or insert an object-valued array item by contained property name (chiids).

The example first inserts the base document into the database, then builds and applies a patch.
Finally, the modified document is retrieved from the database and displayed on the console. The
example uses a Promise pattern to sequence these operations; for details, see “ Promise Result
Handling Pattern” on page 22.

To run the example, copy the following code into afile, then supply it to the noae command. For
exanuﬂe:node replace-insert.js.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

// (1) Insert the base document into the database
db.documents.write ({

uri: '/patch/replace-insert.json’',

contentType: 'application/json',

content: {

theTop: {
childl: ['eclvl', 'clv2' 1,
child2: ['c2vl', 'c2v2' 1,
child3: [{ c3a: 'e3vl' }, { e3b: 'c3v2' } 1
b}
}) .result () .then (function (response)

// (2) Patch the document

const pb = marklogic.patchBuilder;

return db.documents.patch(response.documents[0] .uri,
// Replace the value of an array item by position, or
// insert a new one in the target position.

Page 96—Node.js Application Developer’s Guide

MarkLogic Server Patching Document Content or Metadata

pb.replaceInsert ('/theTop/childl[1]"',

' /theTop/array-node ("childl")', 'last-child',
'"REPLACED1'),
pb.replaceInsert ('/theTop/childl[3]', '/theTop/childl[2]',
'after',
'"INSERTED1') ,

// Replace an array item that has a specific value, or
// insert a new item with that value at the end of the array

pb.replaceInsert ('/theTop/child2[. = "c2v1i"]',
'/theTop/node ("child2")', 'last-child',
'"REPLACED2') ,

pb.replaceInsert ('/theTop/child2[. = "INSERTED2"]',
' /theTop/array-node ("child2")', 'last-child',
'"INSERTED2') ,

// Replace the value of an object that is an array item, or
// insert an equivalent object at the end of the array
pb.replaceInsert ('/theTop/child3 [c3a]’,
'/theTop/node ("child3")', 'last-child',
{ REPLACED3: 'c3rv'}),
pb.replaceInsert ('/theTop/child3 [INSERTED3] ',
'/theTop/node ("child3")', 'last-child',
{ INSERTED3: 'c3iv'})
) .result () ;
}) .then(function (response) {
// (3) Emit the resulting document
return db.documents.read(response.uri) .result () ;
}) .then (function (documents) {
console.log (JSON.stringify (documents [0] .content, null, 2));
}, function(error) { console.log(error); throw error; }

) ;

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 97

MarkLogic Server Version MarkLogic 9—May, 2017 Patching Document Content or

The following table shows how applying the patch changes the target document.

Before Update After Update
{"theTop": ({ { "theTop": ({
"childi": ["clvl", "clv2" 1, "childi": [
"child2": ["c2vl", "c2v2"], "REPLACED1",
"child3": [nelv2',
{ "c3a": "c3vi" }, "INSERTED1"
{ "e3b": m"e3var } 1,
] "childa": [
b} "REPLACED2",
"o2v2,
"INSERTED2"
1,
"child3": [
{ "REPLACED3": "c3rv" },
{ "e3b": m"c3van },
{ "INSERTED3": "c3iv" }
]
bl

Recall that the se1ect path identifies the content to replace. When working with an array item, an
absolute path is usually required. For example, consider the following patch operation:

pb.replaceInsert ('/theTop/childl[1]"',
' /theTop/array-node ("childi")', 'last-child',
'REPLACED1"')

The goal isto replace the value of thefirst item in the array value of /theTop/childi if it exists.
If the array is empty, insert the new value. That is, one of these two transformations takes place:

{"theTop": {"childi": ["clvl", "cilv2"], ... }

==> {"theTop": {"childl": ["REPLACED1", "clv2"], ... }
{"theTop": {"childi": [I, ... }

==> {"theTop": {"childl": ["REPLACED1"], ... }

The select EXPression, /theTop/childl [1], Must target an array item value, while the context
expression must target the containing array node by referencing /theTop/array-node ("childi").
You cannot make the select expression relative to the context expression in this case.

Note that while you can target an entire array item value with replace-insert, you cannot target
just the value of a property. For example, consider the following array in JSON:

"child3": [
{ "c3a": "c3vin },
{ "c3b": "c3var)

]

Page 98—Node.js Application Developer’s Guide

MarkLogic Server Patching Document Content or Metadata

YOou can Use replace-insert ON the entire object-valued item { "c3ar: nc3vir }, asisdonein
the example. However, you cannot construct an operation that targets just the value of the
property in the object ("c3v1n). The replacement of the property value is fundamentally different
from inserting anew object inthe array. A property (as opposed to the containing object) can only
be replaced by deleting it and then inserting a new value.

You cannot use areplaceInsert Operation to conditionally insert or replace a property because
the insertion content and the replacement content requirements differ. However, you can use
separate insert and replace operations within the same patch to achieve the same effect.

For example, the following patch inserts a new property named TARGET if it does not already
exists, and replacesits valueif it does aready exist:

db.documents.patch('/patch/replace-insert.json',

pb.insert ('/theTop[fn:empty (TARGET)] ', 'last-child',
{ TARGET: 'INSERTED' }),
pb.replace('/theTop/TARGET', 'REPLACED')

)

The following table illustrates the effect of applying the patch:

Before Update After Update

{"parent": { {"parent":

"child": "some value" "child": "some value",
}} "TARGET": "INSERTED"

b}

{"parent": { {"parent": {

"child": "some value", "child": "some value",

"TARGET": "INSERTED" "TARGET": "REPLACED"
b} b}

For more details on the JSON document model and traversing JSON documents with XPath, see
Working With JSON in the Application Developer’s Guide.

3.6.5 Example: Remove

This example demonstrates how to use the patch remove (ae1ete) operation to make the following
changesto a JSON document:

* Remove aproperty based on type.
* Remove an array item by position, value, or property name.

* Removeal itemsin an array.

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 99

MarkLogic Server Version MarkLogic 9—May, 2017 Patching Document Content or

To run the example, copy the following code into afile, then supply it to the noae command. For
example: node remove.js.

const marklogic = require('marklogic');
const my = require('../my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

// (1) Insert the base document into the database
db.documents.write ({

uri: '/patch/remove.json',
contentType: 'application/json',
content: {

props: {

anyType: [1, 2],
objOrLiteral: 'anything',
arrayVal: [3, 4]

b

arrayltems: {

byPos: ['DELETE', 'PRESERVE'],
byVal: ['DELETE', 'PRESERVE'],
byPropName: [{DELETE: 5}, {PRESERVE: 6}],
all: ['DELETEl', 'DELETE2']
}
}
}) .result () .then (function (response) {

// (2) Patch the document

const pb = marklogic.patchBuilder;

return db.documents.patch(response.documents[0] .uri,
// Remove a property with any value type
pb.remove (' /props/node ("anyType") '),

// Remove a property with atomic or object value type
pb.remove (' /props/objOrLiteral'),

// Remove a property with array value type
pb.remove (' /props/array-node ("arrayval") '),

// Remove all items in an array
pb.remove (' /arrayIltems/all'),

// Remove an array item by position
pb.remove (' /arrayItems/byPos[1]'),

// Remove an array item by value
pb.remove (' /arrayIltems/byVal[. = "DELETE"]'),

// Remove an object-valued array item by property name
pb.remove (' /arrayItems/byPropName ["DELETE"] ')
) .result () ;
}) .then (function (response) {
// (3) Read the patched document
return db.documents.read(response.uri) .result () ;
}) .then (function (documents) {

Page 100—Node.js Application Developer’s Guide

MarkLogic Server Patching Document Content or Metadata

console.log (JSON.stringify (documents [0] .content, null, 2));
}, function (error) {
console.log(error); throw error;

1) i
The following table shows how applying the patch changes the target document.

Before Update After Update
{ "props": { { "props": { },
"anyType": [1, 21, "arrayItems": {
"objOrLiteral": "anything", "byPos": ["PRESERVE"],
"arrayVal": [3, 4] "byVal": ["PRESERVE"],
}, "byPropName": [
"arrayltems": { { "PRESERVE": 6 }
"byPos": ["DELETE", "PRESERVE"], 1,
"byVal": ["DELETE", "PRESERVE"], "allv: []
"byPropName": [}
{"DELETE": 5}, }
{"PRESERVE": 6}
1,
"all": ["DELETE1", "DELETE2"]
}
}

Note that when removing properties, you must either use a named node step to identify the target
property or be aware of the value type. Consider these 3 operations from the example program:

pb.remove (' /props/node ("anyType") '),
pb.remove (' /props/objOrLiteral"'),
pb.remove (' /props/array-node ("arrayval") ')

The first operation uses atype agnostic X Path expression, /props/node ("anyType") . This
expression selects any nodes named anyType, regardless of the type of value. The second
operation uses the X Path expression /props/objorLiteral, Which selects the array item values,
rather than the containing array node. That is, this operation applied to the original document will
delete the contents of the array, not the arrayva1 property:

pb.remove (' /props/arrayval')
==> "arrayVal": []

Thethird form, /props/array-node ("arrayval"), deletesthe arrayval property, but it will
only work on properties with array type. Therefore, if you need to delete a property by name
without regard to its type, use an XPath expression of the form

/path/to/parent/node ("propName") .

For more details on the JSON document model and traversing JSON documents with XPath, see
Working With JSON in the Application Developer’s Guide.

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 101

MarkLogic Server Version MarkLogic 9—May, 2017 Patching Document Content or

3.6.6 Example: Patching Metadata
This example demonstrates patching document metadata. The examples performs the following

patch operations:
» Add adocument to acollection.
* Remove adocument from a collection.
* Modify apermission.
* Add ametadata property.
* Set the quality.
* Add anew values metdata key-value pair.
* Remove avalues metadata key-value pair.
* Replace the value of avalues metadata key-value pair.

This exampl e uses the metadata patching hel per interfaces on patchsuilder:
patchBuilderCollections, patchBuilderPermissions, patchBuilderProperties,
patchBuilderQuality, aNd patchBuilder.metadatavalues. YOU Can also patch metadata directly,
but using the helper interfaces frees you from understanding the layout details of how MarkLogic
stores metadata internaly.

To run the example, copy the following code into afile, then supply it to the noae command. For
example: node metadata.js. Notethat the parameter passed t0 db . docments.patch must include a
categories property that indicates the patch should be applied to metadata rather than content.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

// (1) Ensure the example document doesn't already exist
db.documents.remove (' /patch/metadata-example.json')
.result () .then(function() {

// (2) Insert the base document into the database
db.documents.write ({

uri: '/patch/metadata-example.json',
categories: ['content', 'metadata'l,
contentType: 'application/json',
content: { key: 'value' },
collections: ['initiall', 'initial2'],
permissions: [

'role-name': 'app-user',

capabilities: ['read']

1.

properties: {
myPropl: 'some-value',
myProp2: 'some-other-value'

b

Page 102—Node.js Application Developer’s Guide

MarkLogic Server

MarkLogic 9—May, 2017

metadataValues:
keyl: 'valuel',
key2: 2
}
}) .result () .then (function (response) {
// (3) Patch the document
const pb = marklogic.patchBuilder;
return db.documents.patch ({
uri: response.documents[0] .uri,
categories: ['metadata'],
operations: [
// Add a collection
pb.collections.add('INSERTED') ,

// Remove a collection
pb.collections.remove ('initiall'),

// Add a capability to a role
pb.permissions.replace (
{'role—name': 'app-user',
capabilities: ['read', 'update']}),

// Add a property
pb.properties.add ('myProp3', 'INSERTED'),

// Change the quality
pb.quality.set(2),

// Add new values metadata
pb.metadatavValues.add('key3', 'INSERTED'),

// Remove a values metadata key-value pair
pb.metadataValues.remove ('key2'),

// Replace the value of a values metadata key
pb.metadataValues.replace('keyl', 'REPLACED')
]
}) .result () ;
}) .then (function (response) {
// (4) Emit the resulting metadata
return db.documents.read ({
uris: [response.uri 1,
categories: ['metadata'l]
}) .result () ;
}) .then (function (documents) {

console.log('collections: ' +

JSON.stringify (documents[0] .collections,
console.log('permissions: ' +

JSON.stringify (documents[0] .permissions,
console.log('properties: ' +

JSON.stringify (documents[0] .properties,
console.log('quality: ' +

Patching Document Content or Metadata

null, 2));
null, 2));
null, 2));

JSON.stringify (documents[0] .quality, null, 2));

console.log('metadatavValues: ' +

Node.js Application Developer’ s Guide—Page 103

MarkLogic Server Version MarkLogic 9—May, 2017 Patching Document Content or

JSON.stringify (documents[0] .metadataValues, null, 2));
function (error) { console.log(error); throw error; });

Y
13N,

The output from the example script should be similar to the following:

collections: [
"initial2",
"INSERTED"

1

permissions: [

{

"role-name": "app-user",
"capabilities": [

"read" ,

"update"
]
"role-name": "rest-writer",
"capabilities": [

"update"
]
"role-name": "rest-reader",
"capabilities": [

n readll

]

}
]

properties: {

"myPropl": "some-value",
"myProp2": "some-other-value",
"myProp3": "INSERTED"

}

quality: 2

metadataValues:
"keyl": "REPLACED",
"key3": "INSERTED"

}

Note that the patch operation that adds the “update” capability to the app-user role replaces the
entire permission, rather than attempting to insert “update” as anew valuein the capabilities
array. You must operate on each permission as a unit. You cannot modify selected components,
such as role-name OF capabilities.

// Add a capability to a role
pb.permissions.replace (
{'role-name': 'app-user',
capabilities: ['read', 'update']})

Page 104—Node.js Application Developer’s Guide

MarkLogic Server Patching Document Content or Metadata

Also, notice that the rest-writer and rest-reader roles are assigned to the document, even
though they are never explicitly specified. All documents created using the Node.js, Java, or
REST Client APIs have these roles by default. For details, see “ Security Requirements’ on

page 17.

3.7 Creating a Patch Without a Builder

The examplesin this chapter use marklogic.PatchBuilder t0 construct a patch using JSON. You
can also construct araw patch without a builder and passit to db . documents.patch as either a
JavaScript object or astring.

You must use araw patch when patching content for XML documents. For details, see * Patching
XML Documents’ on page 106.

The syntax for raw XML and JSON patches is covered in detail in Partially Updating Document
Content or Metadata in the REST Application Developer’s Guide.

The following call to ab. documents.patch applies araw JSON patch that insert an array element:

db.documents.patch (response.documents [0] .uri,
{ patch: [{
insert: [{
context: '/theTop/child[2]',
position: 'after',
content: 'three'

P11
) ;

In araw patch, each type of update (insert, replace, replace-insert, remove) is an array of objects,
with each object describing one operation of that type. The output from acall to a patch builder
operation represents one such operation.

For example, the insert oOperation in the raw patch above is equivalent to the following patch
builder call:

pb.insert ('/theTop/child[2]"', 'after', 'three')

MarkLogic 9—May, 2017 Node.js Application Developer’ s Guide—Page 105

MarkLogic Server

Version MarkLogic 9—May, 2017

Patching Document Content or

The patch builder functions correspond to raw patch operations as follows:

b

PatchBuilder function Raw patch equivalent
insert ("insert": [...,
context, position, { "context": ...,
content, cardinality) "position": ...,
"content": ...,
"cardinality":
b
1
replace (select, content, cardinality) "replace": [...,
{ "select": ...,
"content": .
"cardinality":
b
1
replacelnsert ("replace-insert": [...,
select, context, { "select": ...,
position, content, "context": ...,
cardinality) "position": ...,
"content":
"cardinality":
b
1
remove (select, cardinality) "delete": [...,
{ "select": ...,
"cardinality":

3.8 Patching XML Documents

You must use araw XML patch when patching content for XML documents. The patch builder
only constructs JSON patch operations, and a JSON patch can only be applied to a JSON

document.

You can passaraw XML patch asastring to db . documents . patch. The syntax for raw XML
patches is covered in detail in XML Patch Reference in the REST Application Developer’s Guide.

The following example appliesaraw XML patch that inserts anew element as a child of another.
The patch is passed as a string in the second parameter of db.documents.patch.

const marklogic = require('marklogic');

const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

Page 106—Node.js Application Developer’s Guide

MarkLogic Server Patching Document Content or Metadata

// (1) Insert the base document into the database
db.documents.write ({
uri: '/patch/raw-patch2.xml',
contentType: 'application/xml',
content: '<parent><child>data</child></parent>"
}) .result () .then (function (response) {
// (2) Patch the document
return db.documents.patch(
response.documents [0] .uri,
'<rapi:patch xmlns:rapi="http://marklogic.com/rest-api">"' +
' <rapi:insert context="/parent" position="last-child">' +
' <new-child>INSERTED</new-child>"' +
' </rapi:insert>' +
'</rapi:patch>'
) .result () ;
}) .then(function (response) {
// (3) Emit the resulting document
return db.documents.read(response.uri) .result () ;
}) .then (function (documents) {
console.log(documents [0] .content) ;
}, function(error) { console.log(error); throw error; });

The following table shows the document transformation applied by the patch:

Before Update After Update
<parent> <parent>
<child>data</datas> <child>data</data>
</parent> <new-child>INSERTED</new-childs>
</parent>

For another Node.js example, see “ Example: Custom Replacement Constructors’ on page 114.
For more details, see “Partialy Updating Document Content or Metadata” on page 68 in the
REST Application Developer’s Guide.

3.9 Constructing Replacement Data on MarkLogic Server

You can use builtin or custom replacement constructor functions to generate the content for a
patch operation dynamically on MarkLogic Server. The builtin functions support simple
arithmetic and string manipulation. For example, you can use a builtin function to increment the
current value of numeric data or concatenate strings. For more complex operations, create and
install a custom function.

The following topics are covered:

e Qverview of Replacement Constructor Functions

MarkLogic 9—May, 2017 Node.js Application Developer’ s Guide—Page 107

MarkLogic Server Version MarkLogic 9—May, 2017 Patching Document Content or

e Using a Builtin Replacement Constructor

¢ Passing Parameters to a Replacement Constructor

e Using a Custom Replacement Constructor

* Writing a Custom Replacement Constructor

e |nstalling or Updating a Custom Replace Library

¢ Uninstalling a Custom Replace Library

e Example: Custom Replacement Constructors

* Additional Operations

3.9.1 Overview of Replacement Constructor Functions

A replacement constructor function is a server-side function that generates content for a patch
replace or replace-insert operation.

You can use replacement constructor functions when creating a patch operation using
PatchBuilder.replace and PatchBuilder.replacelnsert functions, or the replace and
replace-insert Operations of araw patch. The replacement constructor function call specification
takes the place of replacement content supplied by your application. The replacement constructor
function call is evaluated on MarkL ogic Server and usually generates new content relative to the
current value.

For example, you could use the builtin patchBuilder.multiplyBy Operation to increase the current
value of aproperty by 10%. The following replace operations says “ For every value selected by
the XPath expression /inventory/price, multiply the current value by 1.1”. Notice that the
multiplyBy resultis passed {0 PatchBuilder.replace instead of new content.

pb.replace('/inventory/price', pb.multiplyBy(1.1))

The builtin replacement constuctors are available as methods of patchsuilder. FOr details, see
“Using aBuiltin Replacement Constructor” on page 1009.

You can also use custom replacement constructors by calling patchBuilder.1library and
PatchBuilder.apply. USE PatchBuilder.library tO identify aserver side XQuery library module
that contains your replacement constructor functions, then use patchsuilder.apply tO Create a
patch operation that invokes a function in that module.

For example, the following code snippet creates a patch replace operation that doubl es the price of
every value selected by the XPath expression /inventory/price. The custom ap1 functionis
implemented by the XQuery library module installed in the modules database with URI

/ext /marklogic/patch/apply/my-1lib.xqy. T hedbl function does not expect any argument values,
so there is no additional content supplied to patchBuilder.apply.

Page 108—Node.js Application Developer’s Guide

MarkLogic Server Patching Document Content or Metadata

pb.library('my-1ib'),
pb.apply('dbl")
For details, see “Writing a Custom Replacement Constructor” on page 111.

For details on using replacement generator functions in araw patch, see Constructing Replacement
Data on the Server in the REST Application Developer’s Guide.

3.9.2 Using a Builtin Replacement Constructor

The Node.js Client API includes several builtin server-side functions you can use to dynamically
generate the content for areplace Or replaceInsert patch operation. For example, you can use a
builtin function to increment the current value of a data item.

The builtin arithmetic functions are equivalent to the XQuery +, -, *, and aiv operators, and accept
values castable to the same datatypes. That is, numeric, date, dateTime, duration, and Gregorian
(xs:gMonth, xs:gYearMonth, €tC.) values. The operand type combinations are as supported by
XQuery; for details, see http://www.w3.org/TR/xquery/#mapping. All other functions expect values
castable to string.

The patchBuilder interface includes methods corresponding to each builtin function. If you use a
raw patch rather than the patch builder, see Constructing Replacement Data on the Server in the
REST Application Developer’s Guide.

The table below lists the available builtin replacement constructor functions. In the table,
scurrent represents the current value of the target of the replace operation; sarg and gargn
represent argument values passed in by the patch. For details, see the Node.js API Reference. The
Apply Operation Name column lists the name of the equivalent operation for use with
patchBuilder.apply.

PatchBuilder Apply Operation Num
Function Name Args SEE

add ml.add 1 $current + Sarg

subtract ml.subtract 1 $current - Sarg
multiplyBy ml.multiply 1 $current * Sarg

divideBy ml.divide 1 $current div Sarg
concatBefore ml.concat-before 1 fn:concat ($arg, Scurrent)
concatAfter ml.concat-after 1 fn:concat ($Scurrent, S$arg)

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 109

http://www.w3.org/TR/xquery/#mapping
/jsdoc/index.html

MarkLogic Server Version MarkLogic 9—May, 2017 Patching Document Content or

PatchBuilder Apply Operation Num
: Effect
Function Name Args
concatBetween ml.concat-between 2 fn:concat ($Sargl, Scurrent, S$Sarg2)
substringBefore ml.substring-before 1 fn:substring-before ($Scurrent, S$Sarg)
substringAfter ml.substring-after 1 fn:substring-after (Scurrent, S$arg)
replaceRegex ml.replace-regex 20r 3 | fn:replace (Scurrent, S$Sargl,
Sarg2, S$Sarg3l)

3.9.3 Passing Parameters to a Replacement Constructor

When using a patch builder to construct a call to a builtin or custom replacement constructor,
simply pass the expected arguments to the patchsuiilder method.

For example, patchBuilder.concatBetween CONCatenates each selected value between two strings
supplied asinput. Therefore, the concatsetween method takes the two input string as arguments.
The following example concatenates the strings “fore” and “aft” on either side of the current
value of a selected dataitem.

pb.replace('/some/path/expr',
pb.concatBetween('fore', 'aft'))

In araw patch, you supply the input argument valuesin the content property of the operation. For
details, see Using a Replacement Constructor Function in the REST Application Developer’s Guide.

UsSepatchBuilder.apply and patchBuilder.datatype t0 explicitly specify the datatype of an input
argument value. You can choose among the types supported by the XML schema; for details, see
http://www.w3.0rg/TR/xmlschema-2/#built-in-datatypes. Omit the namespace prefix on the type name.

For example, the following call explicitly specifies xs:10ng as the datatype for the input value to
the raw patch operation equivalent of calling patcheBuilder.multiplysy. FOr alist of the builtin
function names usable with apply, see the table in “Using a Builtin Replacement Constructor” on
page 109.

pb.replace('/some/path/expr',
p-apply('ml.add', p.datatype('long'), '9223372036854775807"'))

3.94 Using a Custom Replacement Constructor

Before you can use a custom replacement constructor, the XQuery library modul e containing your
constructor implementation must be installed in the modules database of your REST API
instance. For details, see “Installing or Updating a Custom Replace Library” on page 112.

Page 110—Node.js Application Developer’s Guide

http://www.w3.org/TR/xmlschema-2/#built-in-datatypes

MarkLogic Server Patching Document Content or Metadata

To bring alibrary of custom replacement constructor functionsinto scope for a patch operation,
include the result of calling patchBuilder.library inyour patch. The 1ibrary Operation tellsthe
API how to locate your implementation on MarkLogic Server.

For example, the following 1ibrary call indicates that any custom replacement constructor
functions used by the patch are in the XQuery module with modules database URI
/ext/marklogic/patch/apply/my-replace-1lib.xqy.

pb.patch('/some/doc.json',
pb.library('my-replace-1lib.xqgy'),
-)

You can only use one such library per patch, but you use multiple functions from the same library.

Use patchBuilder.apply t0O construct a“call” to afunction in your library. For example, if
my-replae-1lib.xqy contains afunction called o1, you can use by including the result of the
following call in your patch:

pb.patch('/some/doc.json',
pb.library('my-replace-1lib.xqgy'),
pb.apply('dbl!')
/* additional patch operations */)

If the function expects input arguments, include them in the app1y call:
pb.apply('doSomething', 'arglval',6 'arg2Val')

You are responsible for passing in values of the type(s) expected by the named function. No type
checking is performed for you.

3.95 Writing a Custom Replacement Constructor

This section covers requirements for implementing a custom replacement constructor. For an
example implementation, see “ Example: Custom Replacement Constructors’ on page 114.

You can create your own functions to generate content for the repiace and replace-insert
operations using XQuery. A custom replacement generator function has the following X Query
interface:

declare function module-ns:func-name (
Scurrent as node()?,
$args as item()*

) as node () *

Thetarget node of the replace (or replace-insert) operationis provided in ¢current. If the function
isinvoked as an insert operation on behalf of areplace-insert, then scurrent isempty.

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 111

MarkLogic Server Version MarkLogic 9—May, 2017 Patching Document Content or

The argument list supplied by the operation is passed through sargs. You are responsible for
validating the argument values. If the arguments supplied by the patch operation is a JSON array
or asequence of XML <rapi :value/> elements, then $argsis the result of applying the tn:data
function to each value. If an explicit datatype is specified by the patch operation, the cast is
applied before invoking your function.

Your function should report errors using £n: error and restap1-srvexerr. FOr details, see “Error
Reporting in Extensions and Transformations’ on page 253.

To use a patch builder to construct references to your module, you must adhere to the following
namespace and installation URI convention:

* Your module must be in the namespace
http://marklogic.com/patch/apply/yourModuleName.

* Your module must be installed in the modul es database under a URI of the form
/ext /marklogic/patch/apply/yourModuleName. ThiS happens automatical |y if you install
your module usi Ng db.config.patch.replace.write.

For example, if your library module includes the following module namespace declaration:
module namespace my-1lib = "http://marklogic.com/patch/apply/my-1ib";
And isinstalled in the modules database with the following URI:
/ext /marklogic/patch/apply/my-1ib.xqy
Then the following patch successfully applies the function ab1 in my-1ib.xqy:

pb.patch('/some/doc.json',
pb.library('my-lib.xqy'),
pb.replace('/some/path/expr', pb.apply('dbl')),
L)

This shorthand convention does not apply to raw patches. A raw patch must explicitly specify the
complete namespace and module path in the repiace-1ibrary directive, even if you follow the
convention naming convention.

3.9.6 Installing or Updating a Custom Replace Library

To install or update custom replacement constructor functions, place your function(s) into an
XQuery library module and install the module and any dependent libraries in the modules
database associated with your REST API instance.

Use config.patch.replace.write t0install your module(s). Thisfunction ensuresyour moduleis
installed using the modul es database URI convention expected by patcheuilder. YOU must ensure
your modul e uses the required namespace convention; for details, see “Writing a Custom
Replacement Constructor” on page 111.

Page 112—Node.js Application Developer’s Guide

MarkLogic Server Patching Document Content or Metadata

For example, the following script installs a modul e into the modul es database with the URI
/ext /marklogic/patch/apply/my-1ib.xqy. The implementation isread from afile with pathname
./my-1ib.xqy. The moduleis executable by users with the app-user role.

const fs = require('fs');

const marklogic = require('marklogic');

const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient (my.connInfo) ;

db.config.patch.replace.write('my-lib.xqgy"',
[{'role-name': 'app-user', capabilities: ['execute'l}],
fs.createReadStream('./my-1lib.xqgy")

) .result (function (response)
console.log('Installed module ' + response.path);

}. function(error) {
console.log (JSON.stringify (error, null, 2));

3K

Note that only the module name portion of the URI ('my-1ib.xqy') iSpassed in. The remainder of
the expected URI is constructed for you.

If you do not specify any permissions when writing the implementation to the modul es database,
the module is only executable by users with the rest-admin role.

For an end-to-end example, see “ Example: Custom Replacement Constructors’ on page 114.

If your library module requires dependent libraries, you can install them using the ext1ibs
interface. The ext1ibs interface allows you to manage modules database assets at both the
directory and file level. For details, see “Managing Assets in the Modules Database” on page 263.

Calllng db.config.patch.replace.write is equivalent to Calllng db.config.extlibs.write and
setting the path parameter to a value that conformsto the patcheuilder cOnvention. For example,
the following call performs an installation equivalent to the above use of

db.config.patch.replace.write:

db.config.extlibs.write ({
path: '/marklogic/patch/apply/my-lib.xqy',
permissions: [
{'role-name': 'app-user', capabilities: ['execute']}
1,
contentType: 'application/xquery',
source: fs.createReadStream('./my-lib.xqy"')

3]

3.9.7 Uninstalling a Custom Replace Library

To remove amodule that contains custom replacement constructor functions, use
db.config.patch.replace.remove. FOr example, the following call removes the module
my-lib.xqy that was previously installed usi Ng db.config.patch.replace.write:

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 113

MarkLogic Server Version MarkLogic 9—May, 2017 Patching Document Content or

db.config.patch.replace.remove ('my-lib.xqy"') ;

3.9.8 Example: Custom Replacement Constructors

This example walks you through installing and using an XQuery library module that contains
custom replacement constructor functions.

The exampleinstalls an XQuery library module containing 2 custom replacement constructors,
named ab1 and min. The ab1 function creates a new node whose value is double that of the original
input; it accepts no additional arguments. Themin function creates a new node whose value in the
minimum of the current value and the values passed in as additional arguments.

For ssimplicity, this example skips most of the input data validation that a production
implementation should include. For example, the min function accepts JSON number nodes and
XML elements asinput, but it does not allow for boolean, text, or date input. Nor doeSmin
perform any validation on the additional input args.

After installing the replacement content generators, a patch is applied to double the value of
oranges (from 10 to 20) and select the lowest price for pears.

Use the following procedure to set up the files used by the example:

1. Copy the following XQuery module into afile named my-1ib.xqgy. Thisfile contains the
implementation of the custom replacement constructors.

xquery version "1.0-ml";
module namespace my-1lib = "http://marklogic.com/patch/apply/my-1ib";
(: Double the value of a node :)
declare function my-lib:dbl (
Scurrent as node () ?,
Sargs as item()*

) as node () *

if ($current/data() castable as xs:decimal)

then
let $new-value := xs:decimal (Scurrent) * 2
return
typeswitch (Scurrent)
case number-node () (: JSON :)
return number-node {$new-value}
case element () (: XML :)
return element {fn:node-name ($current)} {$new-value}
default return fn:error((), "RESTAPI-SRVEXERR",
("400", "Bad Request",
fn:concat ("Not an element or number node: ",
xdmp :path ($current))
))
else fn:error((), "RESTAPI-SRVEXERR",

Page 114—Node.js Application Developer’s Guide

MarkLogic Server Patching Document Content or Metadata

(m400", "Bad Request", fn:concat ("Non-decimal data: ", S$current)
))
}i

(: Find the minimum value in a sequence of value composed of :)
(: the current node and a set of input wvalues. :)
declare function my-lib:min(
Scurrent as node () ?,
Sargs as item() *
) as node () *

if (Scurrent/data() castable as xs:decimal)

then
let Snew-value := fn:min((Scurrent, Sargs))
return
typeswitch (Scurrent)
case element () (: XML :)
return element {fn:node-name ($current)} {$new-value}
case number-node () (: JSON :)
return number-node {$new-value}
default return fn:error((), "RESTAPI-SRVEXERR",
("400", "Bad Request",
fn:concat ("Not an element or number node: ",
xdmp :path ($current))
))
else fn:error((), "RESTAPI-SRVEXERR", ("400", "Bad Request",
fn:concat ("Non-decimal data: ", Scurrent)))
Vi
2. Copy the following script into afile named instal1-udf. js. Thisscript installs the above

XQuery module. For demonstration purposes, the module isinstalled such that the role
app-user has permission to execute the contained functions.

const fs = require('fs');

const marklogic = require('marklogic') ;

const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient (my.connInfo) ;

db.config.patch.replace.write('my-lib.xqy"',
[{'role-name': 'app-user',6 capabilities: ['execute']l} 1,
fs.createReadStream('./my-1lib.xqgy")
) .result (function (response)
console.log('Installed module ' + response.path);
}, function (error) {
console.log (JSON.stringify(error, null, 2));

1

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 115

MarkLogic Server Version MarkLogic 9—May, 2017 Patching Document Content or

3. Copy the following script into afile named uas . ys. This script inserts a base document
into the database and applies a patch that uses the a1 and min replacement content
constructors.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

// (1) Insert the base document into the database
db.documents.write ({
uri: '/patch/udfs.json',
contentType: 'application/json',
content: {
inventory: [
{name: 'orange', price: 10},
{name: 'apple', price: 15},
{name: 'pear', price: 20}
1}
}) .result () .then (function (response) {
// (2) Patch the document
const pb = marklogic.patchBuilder;
return db.documents.patch(response.documents[0] .uri,
pb.library('my-lib.xqy"),
pb.replace ('/inventory[name eq "orange"]/price', pb.apply('dbl')),
pb.replace ('/inventory[name eq "pear"]/price',
pb.apply('min', 18, 21))
) .result () ;
}) .then (function (response) {
// (3) Emit the resulting document
return db.documents.read(response.uri) .result () ;
}) .then (function (documents)
console.log (JSON.stringify (documents [0] .content, null, 2));
}, function(error) { console.log(error); throw error; });

Use the following procedure to run the example. This procedure installs the replacement content
constructor module, inserts a base document in the database, patches the document, and displays
the update document contents.

1 Install the replacement content constructor module:
node install-udf.js
2. Insert and patch a document, using the ab1 and min functions.

node udf.js

You should see output similar to the following:

{

"inventory": [

{

Page 116—Node.js Application Developer’s Guide

MarkLogic Server Patching Document Content or Metadata

"name": "orange",
"price": 20
"name": "apple",
"price": 15
"name": "pear",
"price": 18

}
]
}

The price of orangesis doubled, from 10 to 20 by the an1 function, due to the following patch
operation:

pb.replace('/inventory[name eq "orange"]/price', pb.apply('dbl'))

The value of pearsislowered from 20 to 18 by the min function, due to the following patch
operation:

pb.replace('/inventory[name eq "pear"]/price',
pb.apply('min', 18, 21))

The XPath expression used in each patch operation selects a number node (price) in the target
document and the replacement content constructor functions construct a new number node:

typeswitch ($Scurrent)

case element () (: XML :)
return element {fn:node-name (Scurrent)} {$new-value}
case number-node () (: JSON :)

return number-node {$new-value}

You cannot simply return the new value. You must return a compl ete replacement node. To learn
more about the JISON document model and JSON node constructors, see Working With JSON in the
Application Developer’s Guide.

The typeswitch on the node type of scurrent aso enables the example replacement constructors
to work with XML input. Run the following script to apply an equivalent to an XML document,
using the previously installed ab1 and min replacement content constructors. As described in
“Patching XML Documents’ on page 106, you must use araw patch rather than a builder when
working with XML documents.

const marklogic = require('marklogic') ;
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

// (1) Insert the base document into the database

db.documents.write ({
uri: '/patch/udf.xml',

MarkLogic 9—May, 2017 Node.js Application Developer’'s Guide—Page 117

MarkLogic Server Version MarkLogic 9—May, 2017 Patching Document Content or

contentType: 'application/xml',
content:
'<inventory>' +
'<item>' +
'<name>orange</name>' +
'<price>10</prices' +
'</item>"' +
'<item>' +
'<name>apple</name>"' +
'<price>15</prices' +
'</item>"' +
'<item>' +
'<name>pear</name>' +
'<price>20</prices>' +
'</item>"' +
'</inventorys>'

}) .result () .then (function (response) {
// (2) Patch the document
return db.documents.patch(
response.documents [0] .uri,
'<rapi:patch xmlns:rapi="http://marklogic.com/rest-api">"' +
'<rapi:replace-library ' +
'at="/ext/marklogic/patch/apply/my-lib.xgy" ' +
'ns="http://marklogic.com/patch/apply/my-1lib" />' +

'<rapi:replace ' +
'select="/inventory/item[name eq \'orange\']/price" ' +
'apply="dbl" />' +

'<rapi:replace ' +
'select="/inventory/item[name eq \'pear\']/price" ' +

'apply="min">"' +
'<rapi:value>18</rapi:value>' +
'<rapi:value>21l</rapi:value>' +

'</rapi:replace>' +
'</rapi:patch>'
) .result () ;
}) .then(function (response) {
// (3) Emit the resulting document
return db.documents.read(response.uri) .result () ;
}) .then (function (documents) {
console.log(documents [0] .content) ;
}, function(error) { console.log(error); throw error; });

Notice that in araw patch, you must explicitly specify the module path and module namespace in
the replace-library directive:

<rapi:replace-library at="/ext/marklogic/patch/apply/my-lib.xqgy"
ns="http://marklogic.com/patch/apply/my-1lib" />

When you use patchsuilder to construct a JSON patch, the call to patchBuilder.1ibrary fills
these detailsin for you, assuming you follow the installation path conventions described in
“Installing or Updating a Custom Replace Library” on page 112.

Page 118—Node.js Application Developer’s Guide

MarkLogic Server Patching Document Content or Metadata

3.9.9 Additional Operations

The db.config.patch.replace interface offers additional methods for managing library modules
containing replacement content constructor functions, including the following:

* db.config.patch.replace.read - Retrieve the implementation of areplace library. This
returns amodule installed us NQ db.config.patch.replace.write.

® db.config.patch.replace.list - Retrieve alist of all installed replace I|brary modules.
For details, see Node.js Client APl Reference.

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 119

MarkLogic Server Version MarkLogic 9—May, 2017 Patching Document Content or

Page 120—Node.js Application Developer’s Guide

MarkLogic Server

Querying Documents and Metadata

4.0 Querying Documents and Metadata

This chapter covers the following topics related to querying database content and metadata using

the Node.js Client API:

e Query Interface Overview

¢ Introduction to Search Concepts

e Understanding the queryBuilder Interface

e Searching with String Queries

e Searching with Query By Example

e Searching with Structured Queries

e Searching with Combined Query

e Searching Values Metadata Fields

* Querying Lexicons and Range Indexes

e Generating Search Facets

¢ Refining Query Results

* Generating Search Term Completion Suggestions

¢ Loading the Example Data

4.1 Query Interface Overview

The Node.js Client API includes interfaces that enable you to search documents and query
lexicons using a variety of query types. The following interfaces support query operations:

Method

Description

marklogic.queryBuilder

Construct astring query, QBE, or structured query to
USe With patabasecClient .documents.query. FOr
details, see Understanding the queryBuilder Interface.

DatabaseClient.documents.query

Search for documents that match a string query,
structured query, combined query, or Query By
Example (QBE), returning a search results summary,
matching documents, or both. For details, see
“Searching with Query By Example” on page 139,
“Searching with String Queries” on page 129, or
“Searching with Structured Queries’ on page 144.

MarkLogic 9—May, 2017

Node.js Application Developer’ s Guide—Page 121

MarkLogic Server Version MarkLogic 9—May, 2017 Querying Documents and Metadata

Method Description

DatabaseClient.queryCollection Search for the persisted JavaScript objectsin a
collection, and return the matching objects.

DatabaseClient.valuesBuilder Construct avalues query to use with
DatabaseClient.values.read. FOr details, see
“Querying Lexicons and Range Indexes’ on
page 156.

DatabaseClient.values.read Query the values or tuples (co-occurrences) in
lexicons or range indexes. For details, see “ Querying
Lexicons and Range Indexes’ on page 156.

DatabaseClient.documents.suggest | Match stringsin alexicon to provide search term
completion suggestions. For details, see “ Generating
Search Term Completion Suggestions” on page 177.

DatabaseClient.config.query Manage query related customizations stored in the
modules database, including search result
transforms, snippeters, and string query parsers.

4.2 Introduction to Search Concepts

This section provides a brief introduction to search concepts and the capabilities exposed by the
Node.js Client API. Search concepts are covered in detail in the Search Developer’s Guide.

You can query aMarkLogic Server database in two ways: by searching documents contents and
metadata, or by querying value and word lexicons created from your content. This topic deals
with searching content and metadata. For lexicons, see “Querying Lexicons and Range Indexes’
on page 156.

This section covers the following topics:

e Search Overview

* Query Styles
e Types of Query
¢ Indexing

4.2.1 Search Overview
Performing a search consists of the following basic phases:

1. Build up a set of criteriathat defines your desired result set

Page 122—Node.js Application Developer’s Guide

MarkLogic Server Querying Documents and Metadata

2. Refine the result set by defining attributes such as the number of results to return or the
sort order.

3. Search the database or alexicon.

The Node.js Client API includes the markiogic.queryBuilder interface that abstract away many
of the structural details of defining and refining your query. For details, see “ Understanding the
gueryBuilder Interface” on page 126. Use patabaseClient . documents . query t0 €xecute your
guery operation.

MarkLogic Server supports many different kinds of search criteria, such as matching phrases,
specific values, ranges of values, and geospatial regions. These and other query types are explored
in “Types of Query” on page 124. You can express your search criteriausing one of several query
styles; for details, see “ Query Styles” on page 123.

Query result refinements include whether or not to return entire documents, content snippets,
facet information, and/or aggregate results. You can aso define your own snippeting algorithm or
custom search result tranform. For details, see “Refining Query Results’ on page 169.

To perform iterative searches over the database at a fixed point in time, pass a Timestamp
parameter in your query call. For details, see “Performing Point-in-Time Operations’ on page 25.

You can also analyze lexicons created from your documents using marklogic.valuesBuilder and
DatabaseClient.values.read. FOr details, see “Querying Lexicons and Range Indexes’ on
page 156.

4.2.2 Query Styles

When you search document content and metadata using the Node.js Client API, you can express
your search criteria using the following query styles. The syntax of each styleis different, and the
expressive power varies.

Query Style Description

Query By Example | Search documents by modeling the structure of the documents you want
(QBE) to match. For details, see “ Searching with Query By Example” on
page 139 and queryBuilder.byExample.

String Query Search documents and metadata using a Google-style query string such
asauser entersin a search box. For example, aquery of the form “ cat
AND dog” matches all documents containing the phrases “cat” and
“dog”. For details, see " Searching with String Queries’ on page 129 and

queryBuilder.parsedFrom.

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 123

MarkLogic Server Version MarkLogic 9—May, 2017 Querying Documents and Metadata

Query Style Description

Structured Query Search documents and metadata by building up complex queries from a
rich set of sub-query types. For details, see “ Searching with Structured
Queries’ on page 144.

Combined Query Search documents and metadata using a query object that enables you to
combine the other query styles plus query options. Combined query isan
advanced feature for users who prefer to build queries manually. For
details see “ Searching with Combined Query” on page 154.

All the query styles support arich set of search features, but generally, QBE is more expressive
than string query, structured query is more expressive than QBE, and combined query is more
expressive than any of the otherssinceit isasuperset. String query and QBE are designed for ease
of use and cover awide range of search needs. However, they do not provide the same level of
control over the search as structured query and combined query do.

The following diagram illustrates this tradeoff, at a high level.

Complexity
|
String Query Query By Example Structured Query Combined Query
|
Expressive Power

You can combine a string query and structured query criteriain asingle query operation. QBE
cannot be combined with the other two query styles.

For more details, see Overview of Search Features in MarkLogic Server in the Search Developer’s
Guide.

4.2.3 Types of Query

A gquery encapsulates your search criteria. No matter what query style you use (string, QBE, or
structured), your criteriafall into one or more of the query types described in this section.

The following query types are basic search building blocks that describe the content you want to
match.

* Range: Match values that satisfy arelational expression. You can express conditions such
as“lessthan 5" or “not equal to true”. A range query must be backed by arange index.

* Vaue: Match an entire literal value, such as a string or number, in a specific JSON
property or XML element. By default, value queries use exact match semantics. For
example, asearch for “mark” will not match “Mark Twain”.

Page 124—Node.js Application Developer’s Guide

MarkLogic Server Querying Documents and Metadata

* Word: Match aword or phrase in a specific JSON property or XML element or attribute.
In contrast to avalue query, aword query will match a subset of atext value and does not
not use exact match semantics by default. For example, a search for “mark” will match
“Mark Twain”, in the specified context.

* Term: Match aword or phrase anywhere it appears. In contrast to a value query, aterm
query will match a subset of atext value and does not use exact match semantics by
default. For example, a search for “mark” will match “Mark Twain”.

Additional query types enable you to build up complex queries by combining the basic content
queries with each other and with criteria that add additional constraints. The additional query
types fal into the following categories.

» Logical Composers: Express logical relationships between criteria. Y ou can build up
compound logical expressionssuch as“x AND (y OR 2)”.

» Document Selectors: Select documents based on collection, directory, or URI. For
example, you can express criteria such as “x only when it occurs in documentsin
collectiony”.

» Location Qualifiers: Further limit results based on where the match appears. For example,
“x only when contained in JSON property Z’, or “x only when it occurs within n words of
y’, or “xonly when it occursin a document property”.

With no additional configuration, string queries support term queries and logical composers. For
example, the query string “cat AND dog” isimplicitly two term queries, joined by an “and”
logical composer.

However, you can easily extend the expressive power of a string query using parse bindings to
enable additional query types. For example, if you use arange query binding to tie the identifier
“cost” to a specific indexed JSON property, you enable string queries of the form “cost GT 10”.
For details, see “ Searching with String Queries’ on page 129.

In a QBE, content matches are value queries by default. For example, a QBE search criteria of the
form { 'my-key': 'desired-value'} isimplicitly avalue query for the JSON property 'my-key'
whose value is exactly 'desired-value'. However, the QBE syntax includes special property
names that enable you to construct other types of query. For example, use sword to create aword
guery instead of avalue query: { 'my-key': {'$word': 'desired-value'}}. FOr details, see
“Searching with Query By Example” on page 139.

For structured query, the querysuilder interface includes builders corresponding to all the query
types. You can use these builders in combination with each other. Every querysuilder method
that return a queryBuilder.query Creates aquery or sub-query that fallsinto one of the above
guery categories. For details, see “ Searching with Structured Queries’ on page 144.

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 125

MarkLogic Server Version MarkLogic 9—May, 2017 Querying Documents and Metadata

4.2.4 Indexing

Range queries must be backed by an index. Even queries that do not strictly require a backing
index can benefit from indexing by enabling unfiltered searches; for details, see Fast Pagination
and Unfiltered Searches in the Query Performance and Tuning Guide.

You can create range indexes using the Admin Interface, the XQuery Admin API, and the REST
Management API. You can also use the Configuration Manager or REST Packaging API to copy
index configurations from one database or host to another. For details, see the following
references:

e Range Indexes and Lexicons in the Administrator’s Guide

» Using the Configuration Manager in the Administrator’s Guide

* PUT:/manage/v2/databases/{id|name}/properties inthe MarkLogiC REST API Reference

Use the element range index interfaces to create indexes on JSON properties. For purposes of
index configuration, a JSON property is equivalent to an XML element in no namespace.

You can use the binding feature of the Node.js Client API to bind an index reference to aname
that can be used in string queries. For details, see “Using Constraintsin a String Query” on

page 132 and “ Generating Search Term Compl etion Suggestions’ on page 177. Values queries on
lexicons and indexes also rely on index references. For details, see “Building an Index Reference”
on page 161.

4.3 Understanding the queryBuilder Interface
Performing a search using the markiogic.queryBuilder interface consists of the following phases:

1 Build up a set of search criteria, creating a query that defines your desired result set.

2. Refine the result set by defining attributes such as the number of resultsto return or the
sort order.

3. Search the database.
The following diagram illustrates using the Node.js Client API to define and execute a search
usi Ng queryBuilder and patabaseClient.documents.query. N the di agram, “qt)” represents a

queryBuilder Object, and “db” represents apatabaseciient Object. The functionsinitalics are
optional.

Page 126—Node.js Application Developer’s Guide

MarkLogic Server Querying Documents and Metadata

Define Criteria Refine Result Set Search

gb.parsedFrom
gb.where gb.calculate

gb.byExample — ———pm gb.orderBy =——p db.documents.query

: gb.slice
other builders

The following procedure expresses these steps in more detail:

1 Define your search criteriausing string query (qb . parsedrrom), QBE (gb . byExample), OF
structured query (other builders, such as gb.word, gb. range, and gb.or). FOr example:

gb.parsedFrom("dog")

Y ou can pass a string and one or more structured builders together, in which case they are
AND’ d together. Y ou cannot combine a QBE with the other query types.

2. Encapsulate your criteriain aquery by passing them to queryBuilder.where. This
produces a queryBuilder.Builtouery ODject suitable for passing to
DatabaseClient.documents.query, with or without further result set refinement.

gb.where (gb.parsedFrom("dog"))

3. Optionally, apply further result set refinements to your query. Any or al of the following
steps can be skipped, depending on the results you want.

a UsequeryBuilder.slice t0 Select asubset of documents from the result set and/or specify
aserver-side transformation to apply to the selected results. The default diceisthefirst 10
documents, with no transformations.

b. UsequeryBuilder.ordersy t0 Specify asort key and/or sorting direction.

C. UsequeryBuilder.calculate 1O request one or more aggregate calculations on the result

Set.

4. Optionally, use queryBuilder.withoptions t0 add further refinementsto your search, such
as specifying low level search options or atransaction id, or requesting query debugging
information.

5. Perform the search by passing your final sui1touery oObject to the

DatabaseClient.documents.query function. For exampl €:

db.documents.query (gb.where (gb.parsedFrom("dog")))

MarkLogic 9—May, 2017 Node.js Application Developer’ s Guide—Page 127

MarkLogic Server Version MarkLogic 9—May, 2017 Querying Documents and Metadata

The following table contains examples of using querysuilder t0 construct an equivalent query in
each of the available query styles. The queries match documents containing both the phrases “cat”
and “dog”. Notice that only the query building portion of the search varies based on the chosen
query style.

Query Style Code Snippet

gﬂng db.documents.query (
gb.where (
gb.parsedFrom('cat AND dog')
) .orderBy (gb.sort ('descending')
.slice(0,5)
)

QBE db.documents . query (
gb.where (
gb.byExample ({
$and: [{$word: 'cat'}, {$word: 'dog"'}]
}3)

) .orderBy (gb.sort ('descending')
.slice(0,5)
)

structured db.documents.query (
gb.where (
gb.and(gb.term('cat'), gb.term('dog'))

) .orderBy (gb.sort ('descending')
.slice(0,5)
)

combined string and db.documents.query (

structured gb.where (
gb.term('cat'),

gb.parsedFrom('dog')
) .orderBy (gb.sort ('descending')
.slice(0,5)

For details, see one of the following topics:

* “Searching with String Queries’ on page 129
» “Searching with Query By Example” on page 139
» “Searching with Structured Queries’ on page 144

Page 128—Node.js Application Developer’s Guide

MarkLogic Server Querying Documents and Metadata

4.4 Searching with String Queries

A string query isasimple, but powerful text string, usually corresponding to query text entered
into your application by users viaa search box. This section includes the following topics:

e Introduction to String Query

e Example: Basic String Query

e Using Constraints in a String Query

e Example: Using Constraints in a String Query

e Using a Custom Constraint Parser

e Example: Custom Constraint Parser

¢ Additional Information

44.1 Introduction to String Query

The MarkLogic Server Search API default search grammar allows you to quickly construct
simple searches such as “cat”, “cat AND dog”, or “cat NEAR dog”. Such a string query often
represents query text entered into a search box by a user.

The default grammar supports operators such as AND, OR, NOT, and NEAR, plus grouping. For
grammar details, see Searching Using String Queries in the Search Developer’s Guide.

The Node.js client supports string queries through the queryBuilder.parsedrrom method. For
example, to construct a query that matches documents containing the phrases “cat” and “dog”, use
the following queryBuilder call:

gb.parsedFrom('cat AND dog')

For details, see “Example: Basic String Query” on page 130 and the Node.js API Reference.

By default, DatabaseClient.documents.query returns an array of document descriptors, one per
matched document, including the document contents. You can further refine the search in various
ways, such as controlling which and how many documents, returning snippets and/or facets, and
returning aresult summary instead of entire documents. For details, see “Refining Query Results”
on page 169.

The string grammar also supports the application of search constraints to query terms. For
example, you can include aterm of the form constraintName:value Of constraintName
relationalop value tOlimit matchesto cases where the value satisfies the constraint.
constraintName 1S the name of a constraint you configure into your query.

For example, if you define aword constraint named “location” over a JSON property of the same

name, then the string query “location:0s0” only matches the term “oslo” when it occursin the
value of the 10cation property.

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 129

/jsdoc/index.html

MarkLogic Server Version MarkLogic 9—May, 2017 Querying Documents and Metadata

Similarly, if you define arange constraint over a number-valued property, bound to the name
“votes’, then you can include relational expressions over the value of the property such as “votes
GT5".

The Node.js client supports constraints in string queries through parse bindings that bind a
constraint definition to the name usable in aquery. Usethe queryBuilder.parseBindings function
to define such bindings. For example:

gb.parsedFrom (theQueryString, gb.parseBindings (binding definitions...))

For details, see “Using Constraintsin a String Query” on page 132 and “Using a Custom
Constraint Parser” on page 135.

4.4.2 Example: Basic String Query

The following exampl e script assumes the database is seeded with data “ L oading the Example
Data’ on page 183. The script searches for all documents containing the phrase “o0s0”.

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient (my.connInfo) ;
const gb = marklogic.queryBuilder;

db.documents.query (
gb.where (gb.parsedFrom('oslo!'))
) .result (function(results) {
console.log (JSON.stringify (results, null, 2));

3N,

The search returns an array of document descriptors, one descriptor per matching document. Each
descriptor includes the document contents.

For example, if thefile string-search.js contains the above script, then the following command
produces the results bel ow. The search matches two documents, corresponding to contributors
located in Oslo, Norway.

$ node string-search.js
[
{

"uri": "/contributors/contribl.json",
"category": "content",
"format": "json",
"contentType": "application/json",
"contentLength": "230",
"content":
"Contributor": (
"userName": "souserl0002@email.com",
"reputation": 446,
"displayName": "Lars Fosdal",
"originalId": "10002",

Page 130—Node.js Application Developer’s Guide

MarkLogic Server Querying Documents and Metadata

"location": "Oslo, Norway",
"aboutMe": "Software Developer since 1987, mainly using
Delphi.",
"id": "soul0002"
}
}
I
{
"uri": "/contributors/contrib2.json",
"category": "content",
"format": "json",
"contentType": "application/json",
"contentLength": "202",
"content":
"Contributor":
"userName": "souserl000634@email.com",
"reputation": 272,
"displayName": "petrumo",
"originalId": "1000634™",
"location": "Oslo, Norway",
"aboutMe": "Developer at AspiroTVv",
"id": "soul000634"
}
}
}

]

To return a search summary instead of the document contents, USe queryBuilder.withoptions tO
Set categories tO 'none'. FOr exampl €

db.documents.query (
gb.where (gb.parsedFrom('oslo')) .withOptions ({categories: 'none'})

)

Now, the result is a search summary that includes a count of the number of matches (2), and
snippets of the matching text in each document:

[{

"snippet-format": "snippet",

"total": 2,

"start": 1,

"page-length": 10,

"results": [...snippets here...],

"gtext": "oslo",

"metrics": {
"query-resolution-time": "PT0.005347S",
"facet-resolution-time": "PT0.000067S",
"snippet-resolution-time": "PT0.001523S",
"total-time": "PT0.007753S"

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 131

MarkLogic Server Version MarkLogic 9—May, 2017 Querying Documents and Metadata

You can aso refine your results in other ways. For details, see “ Refining Query Results’ on
page 169.

4.4.3 Using Constraints in a String Query

The string query interfaces enable you to create parse bindings that define how to interpret parts
of the query. You can define a binding between aname and a search constraint so that when a
guery term is prefixed by the bound name, the associated constraint is applied to search for that
term. You can create parse bindings on word, value, range, collection, and scope constraints.

For example, you can define a binding between the name “rep” and a constraint that limits the
search to matching valuesin a JSON property named “reputation”. Then, if a string query
includes aterm of the form rep: vaiue, the constraint is applied to the search for the value. Thus,
the following term mean “find all occurrences of the reputation property where the value is 120”:

rep:120

For details, see Using Relational Operators on Constraints in the Search Developer’s Guide.

Note: Range constraints, such as the contraint on reputation used here, must be backed
by a corresponding range index. For details, see “Indexing” on page 126.

Follow these steps to create and apply parse bindings. For a complete example, see “Example:
Using Constraints in a String Query” on page 133.

1 Create a binding name specification by calling queryBuilder.bind OF
queryBuilder.bindDefault. FOr example, the following call creates a bind name
specification for the name “rep”:

gb.bind('rep')

2. Create a binding between the name (or default) and a constraint by calling one of the
queryBuilder bi nding builder methods (collection, range, scope, value, O word) and
passing in the binding name specification. For example, the following call creates a
binding between the name 'rep’ and a value constraint on the JSON property name
'reputation’.

gb.value ('reputation', gb.bind('rep'))

3. BUI’]d|€yOUf bi ndingsinto A queryBuilder.ParseBindings Obj ect us ng
queryBuilder.parseBindings. FOr exampl (S

gb.parseBindings (
gb.value ('reputation', gb.bind('rep')), ...more bindings..

)

4, Pass the parse bindings as the second parameter of queryBuilder.parsedrrom t0 apply
them to a specific query. For example:

Page 132—Node.js Application Developer’s Guide

MarkLogic Server Querying Documents and Metadata

gb.parsedFrom('rep:120",
gb.parseBindings (
gb.value ('reputation', gb.bind('rep')), ...more bindings..
)
)

You can aso create a binding that defines the behavior when the query string is empty, using
queryBuilder.bindEmptyas. YOU can €lect to return all results or none. The default is none. Note
that because a query without a slice specifier returns matching documents, setting the empty
guery binding to a11-results Can cause an empty query to retrieve all documentsin the database.

The following example returns all search results because the query text is an empty string and
empty query binding specifies aii-results. Calling queryBuilder.slice ensuresthe query will
return at most 5 documents.

db.documents.query (gb.where (
gb.parsedFrom('"',
gb.parseBindings (
gb.bindEmptyAs('all-results')

))
)) .slice(0,5)

4.4.4 Example: Using Constraints in a String Query

This exampl e defines some custom parse binding rules and applies them to a string query based
search. The exampleillustrates the capability described in “Using Constraints in a String Query”
on page 132.

The example uses data derived from the marklogic-samplestack application. The seed data
includes “contributor” JSON documents of the following form:

{ "com.marklogic.samplestack.domain.Contributor": (

"userName": string,

"reputation": number,

"displayName": string,

"originalId": string,

"location": string,

"aboutMe": string,

"id": string

I

The example script applies the following parse bindings to the search:
* Theterm“rep” correspondsto the value of the reputation JSON property. It isbound to a

range constraint, so it can be used with relational expressions such as“rep > 100”. This
constraint is expressed by the following binding definition:

gb.range ('reputation', gb.datatype('int'), gb.bind('rep'))

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 133

MarkLogic Server Version MarkLogic 9—May, 2017 Querying Documents and Metadata

» Baretermsthat are not covered by another constraint are constrained to match aword
guery on the aboutme JSON property. This constraint is expressed by the following
binding definition:

gb.word ('aboutMe', gb.bindDefault())

The database configuration includes an element range index on the reputation JSON property
with scalar type “int”. Thisindex is required to support the range constraint on reputation.

This combination of bindings and configuration causes the following query text to match
documents where “marklogic” occurs in the “aboutMe” property. The term “marklogic” is abare
term because it is not qualified by a constraint name.

"marklogic"

The following query text matches documents where the value of the “reputation” property is
greater than 50:

marklogic AND rep GT 50

You can use these clauses together to match all documents in which the aboutme property contains
“marklogic” and the reputation property is greater than 50:

marklogic AND rep GT 50

Without the bindings, the above query matches documents that contain the phrase “marklogic”
anywhere, and the sub-expression “rep GT 50" is meaningless because it compares the word
113 rw” to [13 50” .

The following script creates the binding and applies them to the search text shown above.

const marklogic = require('marklogic') ;
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

const gb marklogic.queryBuilder;

db.documents.query (gb.where (
gb.parsedFrom('marklogic AND rep GT 50',
gb.parseBindings (
gb.word ('aboutMe', gb.bindDefault()),
gb.range ('reputation', gb.datatype('int'), gb.bind('rep'))
))
)) .result (function (documents) {
console.log (JSON.stringify (documents [0] .content, null, 2));
}, function (error) {
console.log (JSON.stringify(error, null, 2));

1

Page 134—Node.js Application Developer’s Guide

MarkLogic Server Querying Documents and Metadata

When run against the mark1ogic-samplestack Seed data, the query matches a single contributor
and produces output similar to the following:

4.4.5

{

"Contributor": (

"userName": "souserlé601813@email.com",

"reputation": 91,

"displayName": "grechaw",

"originalId": "1601813",

"location": "Occidental, CA",

"aboutMe": "XML (XQuery, Java, XML database) software engineer at
MarkLogic. Hardcore accordion player.",

"id": "soul601813"

}
}

Using a Custom Constraint Parser

Support for binding word, value, range, collection, and scope constraint parsing is built into the
API. If these constraint types do not meet the needs of your application, you can create a binding
to acustom constraint parser. Implement the parser as described in Creating a Custom Constraint in
the Search Developer’s Guide.

To apply a custom constraint parser to a string query with the Node.js Client, follow these steps:

1.

Create an XQuery module that implements your custom constraint parser. Use the parser
interface for structured queries. For details, see Implementing a Structured Query parse
Function in the Search Developer’s Guide. You must following the naming conventions
described below.

Install your parser XQuery library module in the modul es database associated with your
REST API instance usi NQ DatabaseClient.config.query.custom.write. For details, see
“Example: Custom Constraint Parser” on page 136.

Use queryBuilder.parseFunction tO create aparse binding between a constraint name and
your custom parser.

The Node.js Client API imposes the following naming conventions on your custom constraint
implementation:

Y our parse function must be named parse.

Y our start and finish facet functions, if present, must be called start-facet and
finish-facet, respectively.

Y our module namespace must behttp://marklogic.com/query/custom/yourModul eName,
where yourModulename IS aname of your choosing.

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 135

MarkLogic Server Version MarkLogic 9—May, 2017 Querying Documents and Metadata

4.4.6 Example: Custom Constraint Parser

This example demonstrates implementing, installing, and using a custom constraint parser with
the Node.js Client API. For details, see “Using a Custom Constraint Parser” on page 135.

This example is based on the mark1ogic-samplestack Seed data. The dataincludes contributor
documents, installed in the database directory /contributors/, and question documents, installed
in the database di rectory /questions/.

The example constraint enables constraining a search to either the contributor or question
category by including aterm of the form cat:c Or cat:g in your query text. The name “cat” is
bound to the custom contraint using the queryBuilder parse bindings. The constraint parser
definesthe values“c” and “q” as corresponding to contributor and question data, respectively.
The example walks through the following steps:

¢ |Implementing the Constraint Parser

¢ Installing the Constraint Parser

e Using the Custom Constraint in a String Query

4.4.6.1 Implementing the Constraint Parser

The following XQuery module implements the constraint parser. No facet handling functions are
provided. The parser generates a directory-query based on the caller-supplied category name.
The module maintains a mapping between the category names that can appear in query text and
the corresponding database directory in the categories variable.

xquery version "1.0-ml";

module namespace my = "http://marklogic.com/query/custom/ss-cat";
import module namespace search =
"http://marklogic.com/appservices/search"
at "/MarkLogic/appservices/search/search.xqy";

(: The category name to directory name mapping:)
declare variable Smy:categories :=

map :new ((
map:entry("c", "/contributors/"),
map:entry("qgq", "/questions/")

))

(: parser implementation :)
declare function my:parse (
Squery-elem as element (),
Soptions as element (search:options)
) as schema-element (cts:query)
{
let sSquery :=
<root>{

Page 136—Node.js Application Developer’s Guide

MarkLogic Server Querying Documents and Metadata

let $cat := S$query-elem/search:text/text ()
let S$dir
if (map:contains($my:categories, $cat))
then map:get ($my:categories, Scat) [1]
else "/
return cts:directory-query($dir, "infinity")
}</roots/*
return
(: add gtextconst attribute so that search:unparse will work -
required for some search library functions :)
element { fn:node-name ($query) }
{ attribute gtextconst
fn:concat (
Squery-elem/search:constraint-name, ":",
$query-elem/search:text/text ()) },
Squery/@*,
$query/node () }

}i

4.4.6.2 Installing the Constraint Parser

The following script installs the constraint parser module in the modules database, assuming the
implementation is saved to afile named ss-cat . xqy. Installation is performed by calling
DatabaseClient.config.query.custom.write. | N€ module name pa$ed asthefirst parameter
must have the same basename as the module name in your modul e namespace declaration

(ss —cat).

const fs = require('fs');
const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient (my.connInfo) ;

db.config.query.custom.write (
'ss-cat.xqy',
[{'role-name': 'app-user',6 capabilities: ['execute']} 1,
fs.createReadStream('./ss-cat.xqgy"')
) .result (function (response)
console.log('Installed module ' + response.path) ;
}, function (error) {
console.log (JSON.stringify (error, null, 2));

13N,

If you save the script to afile named instal1-parser.js, then running the script should produce
results similar to the following:

$ node install-parser.sj
Installed module /marklogic/query/custom/ss-cat.xqy

4.4.6.3 Using the Custom Constraint in a String Query

To use this constraint, include a parse binding created by queryBuilder.parseFunction inyour
guery. The first parameter must match the module name used when installing the implementation.

MarkLogic 9—May, 2017 Node.js Application Developer’ s Guide—Page 137

MarkLogic Server Version MarkLogic 9—May, 2017 Querying Documents and Metadata

For example, the following call binds the name “cat” to the custom constraint parser installed
above, enable queriesto include terms of the form “cat:c” or “cat:q”.

gb.parseFunction('ss-cat.xqy', gb.bind('cat'))

Note that the module name (ss-cat . xqy) IS the same as the module name passed as the first
parameter 1O config.query.custom.write.

The following script uses the custom constraint to search for occurrences of “marklogic” in
documents in the contributors category (“cat:c”) by specifying query text of the form “marklogic
AND cat:c’.

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db
const gb

marklogic.createDatabaseClient (my.connInfo) ;
marklogic.queryBuilder;

db.documents.query(gb.where (
gb.parsedFrom('marklogic AND cat:c',
gb.parseBindings (
gb.parseFunction('ss-cat.xqgy', gb.bind('cat'))
))
)) .result (function (documents) {
for (const i in documents)
console.log (JSON.stringify (documents [i] .content, null, 2));
}, function(error)
console.log (JSON.stringify (error, null, 2));

3K

If you save the script to afile named ss-cat.js and run it, the search returns two contributor
documents:

S node ss-cat.js

{

"Contributor": (
"userName": "souserl24865l@email.com",
"reputation": 1,
"displayName": "Nullable",
"originalId": "1248651",
"location": "Ogden, UT",
"aboutMe": "...My current work includes work with MarkLogic

Application Server (Using XML, Xquery, and Xpath), WPF/C#,
and Android Development (Using Java)...",
"id": "soul248651"

"Contributor": (
"userName": "souserl601813@email.com",
"reputation": 91,
"displayName": "grechaw",

Page 138—Node.js Application Developer’s Guide

MarkLogic Server Querying Documents and Metadata

"originalId": "1601813",

"location": "Occidental, CA",

"aboutMe": "XML (XQuery, Java, XML database) software engineer
at MarkLogic. Hardcore accordion player.",

"id": "soul601813"

}
}

If you remove the “cat:c” term so that the query text isjust “marklogic’, the search returns an
additional question document.

For more details and exampl es, see Creating a Custom Constraint in the Search Developer’s Guide.

4.4.7 Additional Information
For additional information on creating and using custom constraints, see the following resources:

» Thefollowing functions in the Node.js API Reference:

® queryBuilder.parsedFrom

e queryBuilder.parseBindings

e queryBuilder.parseFunction

e queryBuilder.binding

» any of the query buildersthat accept a queryBuilder.Bindingparam argument, such

aS queryBuilder.collection, queryBuilder.range, queryBuilder.scope,

queryBuilder.value,an(iqueryBuilder.word

* Searching Using String Queries in the Search Developer’s Guide

* Creating a Custom Constraint in the Search Developer’s Guide

* Constraint Options in the Search Developer’s Guide

4.5 Searching with Query By Example

This section covers the following topics related to searching JSON documents using Query By
Example (QBE).

* |ntroduction to QBE

e Creating a OBE with queryBuilder

e Querying XML Content With QBE

¢ Additional Information

45.1 Introduction to QBE

A Query By Example enables rapid prototyping of queries for “documents that look like this’
using search criteriathat resemble the structure of documents in your database.

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 139

/jsdoc/index.html

MarkLogic Server Version MarkLogic 9—May, 2017 Querying Documents and Metadata

For example, if your documentsinclude an author property, then the following raw QBE matches
documents with an author value of “Mark Twain”.

{ squery: { author: "Mark Twain" } }

Use queryBuilder.byExample t0 cOnstruct a QBE with the Node.js Client API. When working
with JSON content, this interfaces accepts individual search criteria modeled on the content ({
author: "Mark Twain" }) Or anentire squery Object asinput. For example:

db.documents.query(gb.where (
gb.byExample({author: 'Mark Twain'}))
)

When searching XML, you can passin aserialized XML QBE. For details, see “ Querying XML
Content With QBE” on page 142.

The subset of the MarkLogic Server Search API exposed by QBE includes value queries, range
gueries, and word queries. QBE also supports logical and relational operators on values, such as
AND, OR, NOT, greater than, less than, and equality tests.

You can only use QBE and the Node.js API to query document content. Metadata search is not
supported. Also, you cannot search on fields. To query metadata or search over fields, use the
other queryBuilder builder functions, such AdS queryBuilder.collection, queryBuilder.property,
Or queryBuilder.field. Use afield query to search on the metadataVal ues metadata category.

This guide provides only a brief introduction to QBE. For details, see Searching Using Query By
Example in Search Developer’s Guide.

45.2 Creating a QBE with queryBuilder

To create aQBE, call queryBuilder.byExample and passin one or more search criteria parameters.
When working with XML documents, you can also passin afully formed QBE; for details, see
“Querying XML Content With QBE” on page 142.

For example, the documents created by “ L oading the Example Data’” on page 183 include a
location property. Running the following script against this data enables you to search for all
contributors from Oslo, Norway.

const marklogic = require('marklogic') ;
const my = require('./my-connection.js');
const db marklogic.createDatabaseClient (my.connInfo) ;

const gb marklogic.queryBuilder;
db.documents.query (
gb.where (gb.byExample({location: 'Oslo, Norway'}))
) .result (function(results) {
console.log (JSON.stringify (results, null, 2));

13N,

Page 140—Node.js Application Developer’s Guide

MarkLogic Server

Querying Documents and Metadata

The search criteria passed to gb . byExample Match only those documents that contain @ 1ocation
property with avalue of ‘Oslo, Norway’. A QBE criteria of the form{propertyname: value} isa
value query, so the value must exactly match '‘Oslo, Norway'.

You can construct other query types that model your documents, including word queries and

range queries. For example, you can relax the above constraint to be tolerant of variations on the
location Value by using aword query. You can also add a criteria that only matches contributors
with areputation Value greater than 400. The following table describes the QBE criteriayou can

use to realize this search:

QBE Ciriteria

Description

location: {$word : 'oslo'}

Match the phrase “o0s0” when it appears in the value of
location. $word iSareserved property name that signifiesa
word query. The use of word query means the match is case
insensitive, and the value may or may not include other
words. For details, see Word Query in the Search
Developer’s Guide.

reputation: {$gt : 400}

Match documents where the value of reputation is greater
than 400. sgt isareserved property name that signifies the
“greater than” comparison operator. For details, see Range
Query in the Search Developer’s Guide.

sfiltered: true

Perform afiltered search. QBE uses unfiltered search by
default for best performance. However, range queries, such
as {sgt : 400} require either filtered search or a backing
range index, so we must enable filtered search. For details,
see How Indexing Affects Your Query in the Search
Developer’s Guide.

The following script combines these criteriainto a single QBE:

const marklogic
const my
const db
const gb

= require('marklogic') ;

require ('./my-connection.js');
marklogic.createDatabaseClient (my.connInfo) ;
marklogic.queryBuilder;

db.documents.query (gb.where (

gb .byExample (

location: {$word :
reputation: {$gt :

sfiltered:

0

{

true

‘oslo'},
400},

) .result (function(results) {
console.log (JSON.stringify (results, null, 2));

MarkLogic 9—May, 2017

Node.js Application Developer’ s Guide—Page 141

MarkLogic Server Version MarkLogic 9—May, 2017 Querying Documents and Metadata

}, function (error) {
console.log (JSON.stringify (error, null, 2));

I3F;

You can pass criteriainto byexample asindividual objects or an array of objects. For example, the
following calls are equivalent to the byexamp1e call above:

// criteria as individual objects

gb.byExample (
{location: {$word : 'oslo'}},
{reputation: {$gt : 400}},
{$filtered: true}

)

// criteria as an array of objects

gb.byExample ([
{location: {$word : 'oslo'}},
{reputation: {$gt : 400}},
{$filtered: true}

1)

The inputs to queryBuilder.byExample iN these examples correspond to search criteriain the
squery portion of araw QBE; for details, see Constructing a QBE with the Node.js QueryBuilder in the
Search Developer’s Guide.

You can also pass the raw squery portion of a QBE t0 queryBuilder.byExample by supplying an
object that has a squery property. For example:

// raw QBE Squery
gb .byExample (

{ $query: {
location: {$word : 'oslo'},
reputation: {$gt : 400},
Sfiltered: true

H
)

45.3 Querying XML Content With QBE

Pass JavaScript query criteriato querybuilder.byExample, as described in “Creating a QBE with
queryBuilder” on page 140, implicitly creates JSON QBE, which only matches JSON content. By
default, a QBE only matches documents with the same content type as the QBE. That is, a QBE
expressed in JISON matches JSON documents, and a QBE expressed in XML matches XML
documents. You can still search XML content by either using aserialized XML QBE or by setting
the sformat QBE property to ‘xml’.

Page 142—Node.js Application Developer’s Guide

MarkLogic Server Querying Documents and Metadata

To use a QBE to search XML content, use one of the following techniques:

» Passaserialized XML QBE asinput to queryBuilder.byExample. If your query relieson
XML namespaces, you must use this technique. For example:

gb .byExample (
'<g:gbe xmlns:g="http://marklogic.com/appservices/querybyexample">"+
'<qg:query>"' +
'<my:contributor xmlns:my="http://marklogic.com/example">"' +
'<my:location><qg:words>oslo</g:word></my:locations>"' +
'</my:contributor>' +
'<my:contributor xmlns:my="http://marklogic.com/example">"' +
'<my:reputation><qg:9t>400</qg:gt></my:reputation>' +
'</my:contributor>' +
'<g:filtered>true</qg:filtereds>' +
'</g:query>"' +
'</g:gbe>"
)

» PassaJavaScript object to querysuilder.byExample that represents afully formed QBE
that includes a sformat property with the value 'xml'. Y ou can only use this technique
when working with XML content that is in no namespace. For example:

gb.byExample ({
Squery: {
location: {$word : 'oslo'},
reputation: {$gt : 400},
Sfiltered: true

b

Sformat: 'xml'

1)

In both cases, the data passed in t0 queryBuilder.byExample Must be afully formed QBE (albeit a
serialized one, in the XML case), not just the query criteria as when searching JSON documents.
For syntax, see Searching Using Query By Example in the Search Developer’s Guide.

Aswith any search that matches XML, the XML content returned by the search is serialized and
returned as a string.

454 Additional Information
For additional information on constructing and using QBE, see the following resources:

* queryBuilder.byExample INthe Node.js AP| Reference

* Searching Using Query By Example in the Search Developer’s Guide

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 143

/jsdoc/index.html

MarkLogic Server Version MarkLogic 9—May, 2017 Querying Documents and Metadata

4.6 Searching with Structured Queries

The querysuilder functionsthat return a querysuilder.ouery construct sub-queries of a
structured query. A structured query is an Abstract Syntax Tree representation of a search
expression. Use a structured query when the expressiveness of string query or QBE is not
sufficient, or when you need to intercept a query and augment or modify it. For details, see
Structured Query Overview in the Search Developer’s Guide.

¢ Basic Usage

e Example: Using Structured Query

e Builder Methods Taxonomy Reference

* Query Parameter Helper Functions

e Search Result Refiners

4.6.1 Basic Usage

When you pass one or more querysuilder.query Objects to afunction that creates a
queryBuilder.BuiltQuery, SUCh @S queryBuilder.where, the querles are used to build a structured
query. A structured query isan Abstract Syntax Tree representation of a search expression. Use a
structured query when the expressiveness of string query or QBE is not sufficient, or when you
need to intercept a query and augment or modify it. For details, see Structured Query Overview in
the Search Developer’s Guide.

Structured queries are composed of one or more search criteria that you create using the builder
methods of queryBuilder. FOr ataxonomy of builders and examples of each, see“Builder
Methods Taxonomy Reference” on page 146.

For example, the following code snippet sends your query to MarkLogic Server as a structured
guery. The query matches documents in the database directory “/contributors/” that also contain
the term “marklogic”.

db.documents.query (
gb.where (
gb.and(gb.directory (" /contributors/",
gb.term("marklogic"))
))

Use the querysuilder result refinement methods to tailor your results, just as you do when
searching with a string query or QBE. For details, see “ Search Result Refiners’ on page 153.

4.6.2 Example: Using Structured Query
The following example relies on the sample data from “Loading the Example Data” on page 183.

This example demonstrates some of the ways you can use the structured query builders to create
complex queries.

Page 144—Node.js Application Developer’s Guide

MarkLogic Server Querying Documents and Metadata

Thefollowing example finds documentsin the /contributors/ database directory that contain the
term “marklogic”. By default, the query returns the matching documents.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

const gb

marklogic.queryBuilder;

db.documents.query (
gb.where (
gb.and (
gb.directory('/contributors/"'),
gb.term('marklogic!')

)
) .result (function(results) {
console.log (JSON.stringify (results, null, 2));

3N,

The query returns an array of document descriptors, one for each matching document. The sample
data contains 2 documents that match, /contributors/contrib3.json and
/contributors/contrib4.json, SO YOU should see OUtpUt similar to the followi ng. The content
property of the document descriptor contains the contents of the matching document.

"uri": "/contributors/contrib3.json",
"category": "content",
"format": "json",
"contentType": "application/json",
"contentLength": "323",
"content":
"Contributor":
"userName": "souserl248651l@email.com",
"reputation": 1,
"displayName": "Nullable",
"originalId": "1248651",
"location": "Ogden, UT",
"aboutMe": "...My current work includes work with MarkLogic

Application Server (Using XML, Xquery, and Xpath), WPF/C#,
and Android Development (Using Java)...",
"id": "soul248651"

"uyri": "/contributors/contrib4.json",
"category": "content",

"format": "json",

"contentType": "application/json",
"contentLength": "273",

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 145

MarkLogic Server Version MarkLogic 9—May, 2017 Querying Documents and Metadata

"content":
"Contributor":

"userName": "souserlé601813@email.com",

"reputation": 91,

"displayName": "grechaw",

"originalId": "1601813",

"location": "Occidental, CA",

"aboutMe": "XML (XQuery, Java, XML database) software
engineer at MarkLogic. Hardcore accordion player.",

"id": "soul601813"

}
}

}
]

You can optionally remove the call t0 queryBuilder.and because queryBuilder.where implicitly
ANDstogether the queries passed to it. For example, you can rewrite the original query asfollows
and get the same resullts:

db.documents.query (
gb .where (
gb.directory('/contributors/"'),
gb.term('marklogic')

)

You can also combine a string query with one or more structured query builder results. For
example, you could further limit the results to documents that also contain “java’ by adding
gb.parsedFrom('java') tOthequery list passed to gb.where. The string query isimplicitly AND’d
with the other query terms. If you change the query to the following, the result set contains only

/contributors/contrib3. json.

db.documents.query (
gb .where (
gb.directory('/contributors/"'),
gb.term('marklogic'),
gb.parsedFrom('java')

)

The queryBuilder interface includes hel per functions that make it easy to construct more complex
guery components, such asindex references. For details, see “ Query Parameter Helper Functions”
on page 151.

Aswith the other query types, you can refine your result set using queryBuilder.slice and
queryBuilder.withOptions. FOr details, see “Refining Query Results’ on page 169.

4.6.3 Builder Methods Taxonomy Reference

Structured query explicitly exposes all the query types described in “ Types of Query” on page 124
through builder methods. This section is a quick reference for locating the builders you need,
based on this categorization.

Page 146—Node.js Application Developer’s Guide

MarkLogic Server Querying Documents and Metadata

e Basic Content Queries

* Logical Composers

* | ocation Qualifiers

* Document Selectors

You can use most query types in combination with each other, asindicated by the parameters
accepted by the builder functions. For details, see the querysuilder interface in the Node.js API
Reference.

The querysuilder interface enables you to build complex structured queries without knowing the
underlying structural details of the query. Cross-references into the structured query Syntax
Reference in the Search Developer’s Guide are included here if you require further details about
the components of a specific query type.

4.6.3.1 Basic Content Queries

Basic content queries express search criteria about your content, such as “JSON property A
contains value B” or “any document containing the phrase ‘dog’”. These queries function as
“leaves’ in the structure of a complex, compound query because they never contain sub-queries.

The following table lists the Node.js builder methods that create basic content queries. A link to
the corresponding raw JSON structured query typeis provided in case you heed more detail about
aparticular aspect of aquery. You do not need to construct the raw query; the Node.js API does
thisfor you.

queryBuilder
Function

Structured Query

Example Sub-Query

term gb.term('marklogic') term-query

word gb.word ('aboutMe', 'marklogic') word-query

value gb.value('tags', 'java') value-query

range gb.range ('reputation', '>=', 100) range-query

geospatial gb.geospatial (geo-elem-query
gb.geoElement ('gElemPoint '), geo-elem-pair-query
gb.latlon (50, 44) geo-attr-pair-query

) geo-json-property-query

geo-json-property-pair-query

geo-path-query

MarkLogic 9—May, 2017 Node.js Application Developer’ s Guide—Page 147

/jsdoc/index.html
/jsdoc/index.html

MarkLogic Server

Version MarkLogic 9—May, 2017

Querying Documents and Metadata

queryBuilder
Function

Example

Structured Query
Sub-Query

geospatialRegion

g.geospatialRegion (
g.geoPath('/envelope/region'),
'intersects',
g.circle(5, g.point (10,20))

)

geo-region-path-query

geoElement

gb.geospatial (
gb.geoElement ('gElemPoint'),
gb.latlon (50, 44)

)

geo-elem-query

geoElementPair

gb.geospatial (
gb.geoElementPair (
'gElemPair’',
'latitude',
'longitude'),
gb.latlon (50, 44)
)

geo-elem-pair-query

geoAttrPair

gb.geospatial (
gb.geoAttributePair (
'gAttrPair',
'latitude’',
'longitude'),
gb.circle (100,

240, 144)

)

geo-attr-pair-query

geoProperty

g.geospatial (
g.geoProperty ('gElemPoint'),
g.point (34, 88)

)

geo-json-property-query

geoPropertyPair

gb.geospatial (
gb.geoPropertyPair (
'gElemPair',
'latitude’',
'longitude'),
gb.latlon(12, 5)
)

geo-json-property-pair-query

geoPath

g.geospatial (
g.geoPath ('parent/child'),
g.latlon(1l2, 5)

geo-path-query

Page 148—Node.js Application Developer’s Guide

MarkLogic Server Querying Documents and Metadata

4.6.3.2 Logical Composers

Logical composers are queries that join one or more sub-queries into alogical expression. For
example, “documents which match both queryl1 and query2” or “documents which match either
queryl or query2 or query3’.

The following table lists the Node.js builder methods for logical composers. A link to the
corresponding raw JSON structured query type is provided in case you need more detail about a
particular aspect of aquery. You do not need to construct the raw query; the Node.js API doesthis
for you.

queryBuilder Example Structured Query
Function Sub-Query
and gb.and (and-query
gb.word('text', 'marklogic'),
gb.value('tags', 'java')
)
andNot gb . andNot (and-not-query
gb.word ('text', 'marklogic'),
gb.value('tags', 'java')
)
boost gb .boost (boost-query
gb.word ('text', 'marklogic'),
gb.word('title', 'json')
)
not gb.not (gb.term('marklogic')) not-query
notIn gb.notIn (not-in-query
gb.word('text', 'json'),
gb.word('text', 'json documents')
)
or gb.or (or-quer
gb.value('tags', 'marklogic'),
gb.value('tags', 'nosqgl')
)

4.6.3.3 Location Qualifiers

Location qualifiers are queries that limit results based on where sub-query matches occur, such as
only in content, only in metadata, or only when contained a specified JSON property or XML
element. For example, “matches for this sub-query that occur in metadata’ or “matches for this
sub-query that are contained in JISON Property P”.

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 149

MarkLogic Server

Version MarkLogic 9—May, 2017

Querying Documents and Metadata

The following table lists the Node.js builder methods that create location qualifiers. A link to the
corresponding raw JSON structured query type is provided in case you need more detail about a
particular aspect of aquery. You do not need to construct the raw query; the Node.js API doesthis

for you.

)

: Structured Quer
queryBuilder FUNCtiON Example Q y
Sub-Query
documentFragment gb.documentFragment (document-fragment-query
gb.term('marklogic')
)
locksFragment gb.locksFragment (locks-fragment-query
gb.term('marklogic')
)
near gb.near (near-quer
gb.term('marklogic'),
gb.term('xquery'), 5

propertiesFragment

gb.propertiesFragment (
gb.term('marklogic')
)

properties-fragment-query

scope

gb . scope (
'aboutMe',
gb.term('marklogic')

)

container-query

Page 150—Node.js Application Developer’s Guide

MarkLogic Server Querying Documents and Metadata

4.6.3.4 Document Selectors

Document selectors are queries that match a group of documents by database attributes such as
collection membership, directory, or URI, rather than by contents. For example, “all documentsin
collections A and B” or “all documentsin directory D”.

Thefollowing table lists the Node.js builder methods that create document selectors. A link to the
corresponding raw JSON structured query type is provided in case you need more detail about a
particular aspect of aquery. You do not need to construct the raw query; the Node.js API doesthis
for you.

queryBuileer Example Structured Query
Function Sub-Query
collection gb.and (collection-query
gb.collection('marklogicians'),
gb.term('java')
)
directory gb.and (directory-query
gb.directory('/contributors/'"),
gb.term('java')
)
document gb.and (document-query
gb.document (
' /contributors/contribl.json',
' /contributors/contrib3.json'),
gb.term('norway')
)

4.6.4 Query Parameter Helper Functions

The querysuilder interface includes helper functions for building sub-query parameters that are
structurally non-trivial.

For example, a container query (queryBuilder.scope) requires adescriptor that idenfities the
container (or scope), such as a JSON property or an XML element. The helper functions
queryBuilder.property and queryBuilder.element enableyou to define the container descri ptor
required by the scope function.

The following code snippet constructs a container query that matches the term “marklogic” when
it occursin a JSON property named “aboutMe’. The helper function queryBuilder.property
builds the JSON property name specification.

db.documents.query (
gb.where (
gb.scope (gb.property ('aboutMe'), gb.term('marklogic'))

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 151

MarkLogic Server Version MarkLogic 9—May, 2017 Querying Documents and Metadata
)
)

Key helper functions provided by querysuiider are listed below. For details, see the Node.js API
Reference and the Search Developer’s Guide.

Helper Function Purpose

anchor Defines anumeric or dateTime range for the bucket helper function. For
details, see Constrained Searches and Faceted Navigation in the Search
Developer’s Guide.

attribute Identifiesan XML element attribute for use with query builders such as
range, word, value, and geospatial query builders.

bucket Defines a numeric or dateTime range bucket for use with the facet
builder. For details, see Constrained Searches and Faceted Navigation in
the Search Developer’s Guide.

datatype Specifies an index type (int, string, etc.) that can be used with the range

query builder to disambiguate an index reference. You should only need
thisif you have multiple indexes of differen types over the same docu-
ment component.

element Identifiesan XML element for use with query builders such as scope,
range, word, value, and geospatia query builders.

facet Defines a search facet for use with caiculate result builder. For details,
See Constrained Searches and Faceted Navigation in the Search Devel-
oper’s Guide.

facetOptions Specifies additional options for use with the facet builder. For details,

See Facet Options in the Search Developer’s Guide.

field | dentifies adocument or metadatavalues field for use with the range,
word, and value query builders. For details, see Fields Database Settings
in the Administrator’s Guide.

fragmentScope Restrict the scope of a range, scope, value, Of word query to document
content or document properties.

pathIndex Identifies a path range index for query builders such as range 0Or geo-
path. The database configuration must include a corresponding path
range index. For details, see Understanding Path Range Indexes in the
Administrator’s Guide. The path expression is limited to a subset of
XPath; for details, see Path Field and Path-Based Range Index Configura-
tion in the XQuery and XS T Reference Guide.

Page 152—Node.js Application Developer’s Guide

/jsdoc/index.html
/jsdoc/index.html

MarkLogic Server Querying Documents and Metadata

Helper Function Purpose

property Identifies a JSON property name for query builders such as range,

scope, value, word, geoProperty, and geobPropertyPair.

gname Identifiesan XML element QName (local name and namespace URI)
for query builders such as range, scope, value, word, geoElement, and

geoElementPair, geoAttributePair. Alsoused in Constructing an attri-
bute identifier.

rangeOptions Additional search options available with the range query builder. For
details, see the Node.js API Reference and Range Options in the Search
Developer’s Guide.

score Specifies arange query relevance scoring algorithm for use with the
orderBy results builder. For details, see Including a Range or Geospatial
Query in Scoring in the Search Developer’s Guide.

sort Specifies the equivalent of a sort-order query option that defines the
search result sorting critieria and order for use with the ordersy results
builder. For details, see sort-order in the Search Developer’s Guide.

termOptions Specifies the equivalent of aterm-option query option for use with the
word and value query builders. For details, see Term Options in the
Search Developer’s Guide.

weight Specifies amodified weight to assign to a query. Usable with query

builders such as wora and value. For details, see Using Weights to Influ-
ence Scores in the Search Developer’s Guide.

46.5 Search Result Refiners

The querysuilder interface includes several functions that enable you to refine the results of a
search. For example, you can specify how many results to return, how to sort the results, and
whether or not to include search facets.

These refinement functions usually return a querysuilder.Builtguery Object, in contrast to query
builders, which usually return a querysuilder.query Object.

You can chain result modifier calls together. For example:

db.documents.query (gb.where (someQuery) .slice(0,5) .orderBy (...))

For details, see “Refining Query Results” on page 169.

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 153

/jsdoc/index.html

MarkLogic Server

Version MarkLogic 9—May, 2017 Querying Documents and Metadata

The table below summarizes the result modifier functions supported by querysuiider. For details,
see Node.js API Reference.

Helper Function

Purpose

anchor

Defines anumeric or dateTime range for the bucket helper function. For
details, see “ Generating Search Facets” on page 165 and Constrained
Searches and Faceted Navigation in the Search Developer’s Guide.

bucket

Defines a numeric or dateTime range bucket for use with the facet
builder. For details, see “Generating Search Facets’ on page 165 and
Constrained Searches and Faceted Navigation in the Search Developer’s

Guide.

facet

Defines a search facet for use with caiculate result builder. For details,
see “ Generating Search Facets’ on page 165 and Constrained Searches
and Faceted Navigation in the Search Developer’s Guide.

facetOptions

Specifies additional options for use with the racet builder. For details,
see “ Generating Search Facets’ on page 165 and Facet Options in the
Search Developer’s Guide.

calculate

Builds a search facet specification. For details, see “ Generating Search
Facets’ on page 165.

orderBy

Specifies sort order and sequencing. For example, you can specify a
JSON property, XML element, XML element attribute on which to sort.
For details, see sort-order in the Search Developer’s Guide.

slice

Defines the slice of documents that should be returned from within the
result set and any server-side transformation that should be applied to
the results. For details, see “ Refining Query Results’” on page 169.

withOptions

Miscellanious options that can be used to refine and tune you query. For
example, use withoptions t0 specify the categories of datato retrieve
from the matching documents, such as content or metadata, request
guery metrics, or specify atransaction id.

4.7 Searching with Combined Query

A combined query is aquery object that can contain a combination of different query types plus
guery options. Most searches can be accomplished without using acombined query. For example,
you can combine a string query and a structured query by simply passing the results of
queryBuilder.parsedFrom and A queryBuilder.Query {0 queryBuilder.where.

Page 154—Node.js Application Developer’s Guide

/jsdoc/index.html

MarkLogic Server Querying Documents and Metadata

Thisfeature is best suited for advanced users who are already familiar with the Search API and
who have one of the following requirements:

* Your application must use query options previously persisted on MarkL ogic Server.

* Yourequirevery fine-grained control over query options at query time. (Most query
options are already exposed in other parts of the Node.js API, such asthe queryBuilder
methods. Y ou should use those interfaces when possible, rather than relying on combined

query.)
In the Node,js Client API, CombinedQueryDefinition encapsulates a combined query. The API
provides no builder for CombinedQueryDefinition. A CombinedQueryDefinition has the followi ng
form, where the search property contains the combined query, and the remaining properties can
optionally be used to customize the results.

{ search: {
query: { structuredQuery },
gtext: stringQuery,
options: { queryOptions }
I
categories: [resultCategories],
optionsName: persistedOptionsName,
pageStart: number,
pagelLength: number,
view: results

}

The combined query portion can contain any combination of a structured query, a string query,
and Search API query options. If you specify options inside the combined query that conflict with
options implied by the settings in the combinedouerypefinition Wrapper, the wrapper option
settings override the ones inside the combined query. For example, if search.options includes
'page-length':5 and search.pageLength is set to 10, then the page Iength will be 10.

The following table describes the properties of a combined query:

Property Name Description

query Optional. A structured query conforming to the syntax described in Searching
Using Structured Queries in the Search Developer’s Guide.

gtext Optional. A string query conforming to the Search API string query syntax.
For details, see “ Searching with String Queries’ on page 129 and Searching
Using String Queries in the Search Developer’s Guide.

options Optional. One or more Search API query options. For details, see Appendix:
Query Options Reference in the Search Developer’s Guide.

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 155

/jsdoc/documents.html#toc14

MarkLogic Server Version MarkLogic 9—May, 2017 Querying Documents and Metadata

Usethe categories, pageStart, pageLength, and view properties to customize your search results,
as described in “ Refining Query Results’ on page 1609.

Use the optionsname property to name a set of previously persisted query options to apply to the
search. If the combinedouerybefinition cONtains both optionsin the combined query and a
persistent query options name, then the two sets of options are merged together. Where equivalent
options occur in both, the settings in the combined query takes precedence.

Note: You cannot use the Node.js Client API to persist query options. Instead, use the
REST or Java Client APIsto do so. For details, see Configuring Query Options in the
REST Application Developer’s Guide or Query Options in the Java Application
Developer’s Guide.

The following example uses a combinedouerybefinition to find documents containing “java’ and
“marklogic” that are in the database directory “/contributors’. The combined query sets the
return-query Option to true to include the final query structure in the results. The categories
property is set to “none”’ so that the search result summary is returned instead of the matching
documents; the summary will contain the final query. Results are returned 3 at atime, due to the
pageLength Setting.

db.documents.query ({
search:

gtext: 'java',

query: {
'directory-query' : { uri: '/contributors/' },
'term-query': { text: ['marklogic'] }

options: {
'return-query': true

}
b
categories: ['none'],
pageLength: 3

3]

4.8 Searching Values Metadata Fields

Values metadata, sometimes called key-value metadata, can only be searched if you define a
metadata field on the keys you want to search. Once you define afield on a metadata key, use the
normal field search capabilities to include a metadata field in your search. For example, you can
USE queryBuilder.field and queryBuilder.word tO create aword query on a metadata field.

For more details, see Metadata Fields in the Administrator’s Guide.
4.9 Querying Lexicons and Range Indexes

The Node.js Client API enables you to search and analyze lexicons and range indexes in the
following ways:

Page 156—Node.js Application Developer’s Guide

MarkLogic Server Querying Documents and Metadata

* Query the valuesin asingle lexicon or range index.
* Find co-occurrences of values in multiple range indexes.

* Analyzerangeindex or lexicon values or value co-occurrences using builtin or
user-defined aggregate functions. For details, see“ Analyzing Lexicons and Range Indexes
with Aggregate Functions’ on page 163.

This section covers the following related topics:

* Querying Values in a Lexicon or Range Index

* Finding Value Co-Occurrences in Lexicons

e Building an Index Reference

* Refining the Results of a Values or Co-Occurrence Query

* Analyzing Lexicons and Range Indexes with Aggregate Functions

For related search concepts, see Browsing With Lexicons in the Search Developer’s Guide and Text
Indexes in the Administrator’s Guide.

49.1 Querying Values in a Lexicon or Range Index

Use the marklogic.valueBuilder interface to build queries against lexicons and range indexes,
then use patabaseclient.values.read tO apply your query.

For example, if the database is configured to include a range index on the “reputation” JSON
property or XML element, then the following query returns all the values in range index:

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient (my.connInfo) ;
const vb = marklogic.valuesBuilder;

db.values.read (

vb.fromIndexes ('reputation')
) .result (function (result) {

console.log (JSON.stringify (result, null, 2));
}, function (error) {

console.log (JSON.stringify (error, null, 2));

I3F;

If you save the script to afile and run against the data from “ L oading the Example Data” on
page 183, you should see results similar to the following. The query returns a
values-response.tuple item for each distinct value.

{ "values-response": ({
"nmame": "structuredef",
"types": {

"type": ["xs:int"]

MarkLogic 9—May, 2017 Node.js Application Developer’ s Guide—Page 157

MarkLogic Server Version MarkLogic 9—May, 2017 Querying Documents and Metadata

}l
"tuple": [
{
"frequency": 1,
"distinct-value": ["1"]
}l
{
"frequency": 1,
"distinct-value": ["91"]
}I
{
"frequency": 1,
"distinct-value": ["272"]
}I
{
"frequency": 1,
"distinct-value": ["446"]
}
]I
"metrics": {
"values-resolution-time": "PT0.000146S",
"total-time": "PT0.0008228"
}

}
}

You can usevalues.slice tO retrieve asubset of the values. For example, if you modify the above
script to so that the query looks like the following, then the query returns 2 values, beginning with
the 3rd value:

db.values.read (
vb.fromIndexes ('reputation')
.slice(2,4)

~

==>
{ "values-response": ({
"mame": "structuredef",
"types": |
"type": ["xs:int"]
s
"tuple": [
{
"frequency": 1,
"distinct-value": ["272"]
1
{
"frequency": 1,
"distinct-value": ["446"]
}
1,
"metrics":
"values-resolution-time": "PT0.000174S",

Page 158—Node.js Application Developer’s Guide

MarkLogic Server Querying Documents and Metadata

"total-time": "PT0.000867S"

4.9.2 Finding Value Co-Occurrences in Lexicons

A co-occurrenceisaset of index or lexicon values occurring in the same document fragment. The
Node.js Client API supports queries for n-way co-occurrences. That is, tuples of values from
multiple lexicons or indexes, occurring in the same fragment.

To find values co-occurrences across multiple range indexes or lexicons, use the
marklogic.valueBuilder iNnterface to construct a query, then apply it using
DatabaseClient.values.read. When avalues query includes multiple index references, the results
are co-occurrence tuples.

For example, the following script find co-occurrences of valuesin the “tags’ and “id” JSON
properties or XML elements, assuming the database configuration includes an element range
index for “tags’ and another for “id”. (Recall that range indexes on JSON properties use the
element range index interfaces; for details, see “Indexing” on page 126.)

const marklogic = require('marklogic') ;
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient (my.connInfo) ;
const vb marklogic.valuesBuilder;

db.values.read (

vb.fromIndexes ('tags', 'id")
) .result (function (result) {

console.log (JSON.stringify (result, null, 2));
}, function (error) {

console.log (JSON.stringify (error, null, 2));

13N,

If you save the script to afile and runit, you should see results similar to the following. The query
returns avalues-response. tuple item for each co-occurrence. The property
values-response . types Can guide you in interpreting the data types of the valuesin each tuple.

{

"values-response": {
"name": "structuredef",
"types": |

n t-y-pe n . [

"xs:string",
"xs:string"
]
I
"tuple": [

{

"frequency": 1,

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 159

Version MarkLogic 9—May, 2017

MarkLogic Server
"distinct-value": [
"dbobject",
"sog7684223"
1
b
{
"frequency": 1,
"distinct-value": [
"dbobject",
"sou69803"
1
b,

1,

"metrics": {
"values-resolution-time":
"total-time": "PT0.0012518"

}

}
}

Querying Documents and Metadata

"PT0.000472S",

You can use values.slice tO retrieve asubset of the values. For example, if you modify the script
to so that the query looks like the following, then the query returns two tuples, beginning with the

3rd value:

db.values.read (

vb.fromIndexes ('tags', 'id') .slice(2,4)

~

Il
A\

—~ |l

"values-response": {
"nmame": "structuredef",
"types": |

n type n : [

"xs:string",
"xs:string"

]

Y
"tuple": [
{
"frequency": 1,
"distinct-value":
lljavall ,
"soQg22431350"
]
Y
{
"frequency": 1,
"distinct-value":
lljavall ,
"soq7684223"
]
}

[

Page 160—Node.js Application Developer’s Guide

MarkLogic Server Querying Documents and Metadata

] I

"metrics": {
"values-resolution-time": "PT0.00024S",
"total-time": "PT0.001018S"

}
}
}

4.9.3 Building an Index Reference

Use valuesBuilder. fromIndexes tO create index referencesfor usein your values and
co-occurrence queries. For example, a query such as the following includes a reference by name
to an index on a JSON property or XML element named “reputation”:

db.values.read (vb.fromIndexes ('reputation'))

You can use an index reference builder method to disambiguate the index reference, use another
type of index, or specify acollation. The following interpretation is applied to the inputs to

valuesBuilder.fromIndexes

* A simple name identifies arange index on a JSON property. For example,
vb. fromIndexes ('reputation') identifies arange index for the JSON property

reputation.

* Anindex reference identifies arange index. For example,
vb . fromIndexes (vb.field('questionId')) identifiesafield range index.

* If you do not explicitly specify the data type of the range index, the API will attempt to
look it up server-side during index resolution. Use valuesBuilder.datatype t0O explicitly
specify the data type.

For example, al of the following index references identify a JSON property range index for the
property named reputation.

vb.fromIndexes ('reputation')
vb.fromIndexes (vb.range ('reputation'))
vb.fromIndexes (vb.range (vb.property ('reputation')))

vb.fromIndexes (vb.range (
vb.property ('reputation'), vb.datatype('int')))

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 161

MarkLogic Server Version MarkLogic 9—May, 2017 Querying Documents and Metadata

The following table summarizes the index definition builder methods exposed by valuesBuilder:

Lexicon or Index Type valuesBuilder builder method
uri vb.uri
collection vb.collection (With Nno arguments)
range name
vb.range
field vb.field
geospatia vb.geoAttributePair
vb.geocElement
vb.geoElementPair
vb.geoPath
vb.geoProperty
vb.geoPropertyPair

The URI and collection lexicons must be enabled on the database in order to use them. For details,
see Text Indexes in the Administrator’s Guide. Use valuesBuilder.uri and
valuesBuilder.collection (With no arguments) to identify these lexicons. For example:

db.values.read (
vb.fromIndexes (
vb.uri(), // the URI lexicon
vb.collection()) // the collection lexicon

494 Refining the Results of a Values or Co-Occurrence Query
You can refine the results of your queries in the following ways:

* UsevaluesBuilder.slice t0 Select asubset of the results and/or specify aresult transform.

* UsevaluesBuilder.BuiltQuery.withoptions tO Specify values query options or constrain
results to particular forests. For alist of options, see the API documentation for
cts.values (JavaScript) or cts:values (XQuery).

e UsevaluesBuilder.BuiltQuery.where tO limit resultsto those that match another query.
You can use these refinements singly or in any combination.
For example, the following query returns values from the range index on the JSON property
reputation. The where clause selects only those values in documentsin the collection

“mylnterestingCollection”. The s1ice clause selects two results, beginning with the third value.
The withoptions clause specifies the results be returned in descending order.

Page 162—Node.js Application Developer’s Guide

MarkLogic Server Querying Documents and Metadata

db.values.read (
vb.fromIndexes ('reputation') .
where (vb.collection ('myInterestingCollection')) .
slice(2,4).
withOptions ({values: ['descending']})

4.9.5 Analyzing Lexicons and Range Indexes with Aggregate Functions

You can compute aggregate values over range indexes and lexicons using builtin or user-defined
aggregate functions with valuesBuilder.BuiltQuery.aggregates. This section covers the following
topics:

e Agaregate Function Overview

e Using Builtin Aggregate Functions

* Using User-Defined Aggregate Functions

4.9.5.1 Aggregate Function Overview

An aggregate function performs an operation over values or value co-occurrencesin lexicons and
range indexes. For example, you can use an aggregate function to compute the sum of valuesin a
range index.

Use valuesBuilder.BuiltQuery.aggregates {0 @oply one or more builtin or user-defined
aggregate functions to your values or co-occurrences query. You can combine builtin and
user-defined aggregates in the same query.

MarkLogic Server provides builtin aggregate functions for several common analytical functions;
for alist of functions, see the Node.js API Reference. For a more detailed description of each
builtin, see Using Builtin Aggregate Functions in the Search Developer’s Guide.

You can also implement aggregate user-defined functions (UDFs) in C++ and deploy them as
native plugins. Aggregate UDFs must be installed before you can use them. For details, see
Implementing an Aggregate User-Defined Function in the Application Developer’s Guide. You must
install the native plugin that implements your UDF according to the instructions in Using Native
Plugins in the Application Developer’s Guide.

Note: You cannot use the Node.js Client API to apply aggregate UDFs that require
additional parameters.

4.9.5.2 Using Builtin Aggregate Functions

To use a builtin aggregate function, pass the name of the function to
valuesBuilder.BuiltQuery.aggregates. FOr alist of Supported builtin aggregatefunction Nnames,
see the Node.js API Reference.

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 163

/jsdoc/index.html
/jsdoc/index.html

MarkLogic Server Version MarkLogic 9—May, 2017 Querying Documents and Metadata

For example, the following script uses builtin aggregates to cal culate the minimum, maximum,
and standard deviation of the values in the range index over the JSON property named
reputation. Use adlice clause of theform siice (0, 0) to return just the computed aggregates,
rather than the aggregates plus values.

const marklogic = require('marklogic') ;
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient (my.connInfo) ;
const vb = marklogic.valuesBuilder;

db.values.read (
vb.fromIndexes ('reputation')
.aggregates('min', 'max', 'stddev')
.slice(0,0)
) .result (function (result) {
console.log (JSON.stringify (result, null, 2));
}, function (error) {
console.log (JSON.stringify (error, null, 2));

13N,

Running the script produces output similar to the following:

{ "values-response": {
"name": "structuredef",
"aggregate-result": [
{ "name": "min", " value": "1" },
{ "name": "max", " value": "446" },
{ "name": "stddev", " value": "197.616632228498" }
1,
"metrics": {
"aggregate-resolution-time": "PTO0.000571S",
"total-time": "PT0.001279S"
}
b}

4.9.5.3 Using User-Defined Aggregate Functions

An aggregate UDF isidentified by the function name and a relative path to the plugin that
implements the aggregate, as described in Using Agaregate User-Defined Functions in the Search
Developer’s Guide. You must install your UDF plugin on MarkL ogic Server before you can useit
in aquery. For details on creating and installing aggregate UDFs, see Aggregate User-Defined
Functions in the Application Developer’s Guide.

Onceyou install your plugin, use valuesBuilder.udf tO create areference to your UDF, and pass
the referenceto valuesBuilder.builtQuery.aggregates. FOr example, the following script uses a
native UDF called “count” provided by a plugin installed in the Extensions database under
“native/sampleplugin’:

const marklogic = require('marklogic');
const my = require('./my-connection.js');

Page 164—Node.js Application Developer’s Guide

MarkLogic Server Querying Documents and Metadata

const db = marklogic.createDatabaseClient (my.connInfo) ;
const vb = marklogic.valuesBuilder;

//console.log (vb.fromIndexes (vb.range (vb.pathIndex ('/id')))) ;
db.values.read (
vb.fromIndexes ('reputation')
.aggregates (vb.udf ('native/sampleplugin', 'count')
.slice(0,0)
) .result (function (result) {
console.log (JSON.stringify (result, null, 2));
}, function (error) {
console.log (JSON.stringify (error, null, 2));

I3F;

4.10 Generating Search Facets
You can use the Node.js Client API to include facets in your query results, as described in

Constrained Searches and Faceted Navigation in the Search Developer’s Guide. You define facets

USiNg queryBuilder. facet and include them in your search using queryBuilder.calculate. YOU
can construct facets on JSON properties, XML elements and attributes, fields and paths. A facet
must be backed by arange index.

This section includes the following topics:

Defining a Simple Facet

Naming a Facet

Including Facet Options

Defining Bucket Ranges

Creating and Using Custom Constraint Facets

For more details, see Constrained Searches and Faceted Navigation in the Search Devel oper’s Guide.

4.10.1

Defining a Simple Facet

The following example facets on the reputation JSON property of documentsin the database
directory “/contributors/”. The resultsinclude only the facets, rather than the facets plus matching
documents, because of the withoptions clause; for details, see “ Excluding Document Descriptors
or Values From Search Results’ on page 171.

const db
const gb = marklogic.queryBuilder;

const marklogic = require('marklogic');
const my = require('./my-connection.js');

marklogic.createDatabaseClient (my.connInfo) ;

db.documents.query (

gb.where (gb.directory ('/contributors/"'))
.calculate(gb.facet ('reputation'))

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 165

MarkLogic Server Version MarkLogic 9—May, 2017 Querying Documents and Metadata

.withOptions ({categories: 'none'})
) .result (function(results) {
console.log (JSON.stringify (results, null, 2));
}, function (error) {
console.log (JSON.stringify (error, null, 2));

s

If the database includes arange index on “reputation”, and you run the script against the example
data from “Loading the Example Data” on page 183, you should see results similar to the
following:

{ "snippet-format": "empty-snippet",

"total": 4,

"start": 1,

"page-length": 0,

"results": [],

"facets": {

"reputation": {

"type": "xs:int",
"facetValues": [

{ "name": "1",
"count": 1,
"value": 1 },

{ "name": n"91",
"count": 1,
"value": 91 },

{ "name": "272",
"count": 1,
"value": 272 },

{ "name": "446",
"count": 1,

"value": 446 }
]

}
}
}

By default, the facet uses the same name as entity from which the facet is derived, such asan
XML element or JSON property, but you can provide a custom name. For details, see “Naming a
Facet” on page 167.

The facets property of the resultsincludes a set of value buckets for the “reputation” facet, one
bucket for each distinct value of reputation. Each bucket includes a name (auto-generated from
the value by default), the number of matches with that value, and the actual value.

"facets":
"reputation": <-- name of the facet
"type": "xs:int",
"facetValues": [
{ "name": n"1", <-- bucket name
"count": 1, <-- number of matches with this wvalue
"value": 1 } <-- value associated with this bucket

Page 166—Node.js Application Developer’s Guide

MarkLogic Server Querying Documents and Metadata

4.10.2 Naming a Facet

By default, the name of afacet is derived from the indexed element or property name on which
the facet is based. For example, the following facet on the “reputation” property generates a facet
with the property name “reputation”:

gb.facet ('reputation')
==> "facets": { "reputation": {...} }

You can override this behavior by passing your own name in as the first argument to
queryBuilder. facet. FOr example, the following facet on the “reputation” property generates a
facet with the property name “rep”:

gb.facet('rep', 'reputation')
==> "facets": { "rep": {... } }

4.10.3 Including Facet Options

YOu can USe queryBuilder. facetOptions t0 include optionsin your facet definition that affect
attributes such as sort order and the maximum number of values to return. For details, see Facet
Options in the Search Devel oper’s Guide and the detailed APl documentation for the query that
corresponds to your facet index type, such as cts.values (JavaScript) or cts:values (XQuery).

For example, the following facet definition requests buckets be ordered by descending values and
limits the number of buckets to two. Thus, instead of returning buckets ordered [1, 91, 272, 446],
the results are ordered [446, 272, 91, 1] and truncated to the first 2 buckets:

gb.facet ('rep', 'reputation', gb.facetOptions('limit=2"', 'descending')))
==>
"facets":
"reputation":
"type": "xs:int",
"facetValues": [

{ "name": "446",
"count": 1,
"value": 446 },

{ "name": "272",
"count": 1,

"value": 272 }

4.10.4 Defining Bucket Ranges

By default, afacet is bucketed by distinct values. However, you can define your own buckets on
numeric and date values using querysuilder.bucket. A bucket can take on arange of values. The
upper and lower bounds of the range of values in a bucket are the bucket anchors. You can
include both anchor values, or omit the upper or lower anchor.

MarkLogic 9—May, 2017 Node.js Application Developer’ s Guide—Page 167

MarkLogic Server Version MarkLogic 9—May, 2017 Querying Documents and Metadata

Buckets over dateTime values can use symbolic anchors such as “now” and “start-of-day”. The
real values are computed when the query is evaluated. Such definitions describe computed
buckets. For alist of the supported values, see computed-bucket in the Search Developer’s Guide.

For example, you can divide the reputation values into buckets of “less than 507, “50 to 100", and
“greater than 100" using afacet definition such as the following:

gb.facet ('reputation',
gb.bucket ('less than 50', '<', 50),
gb.bucket ('50 to 100', 50, '<', 101),
gb.bucket ('greater than 100', 101, '<'))

==>
"facets": {

"reputation":
"type": "bucketed",

"facetValues": [

{ "name": "less than 50",
"count": 1,
"value": "less than 50"

b

{ "name": "50 to 100",
"count": 1,
"value": "50 to 100"

b

{ "name": "greater than 100",
"count": 2,
"value": "greater than 100"

}
]

}
}

In the above example, '<' is a constant that serves as a boundary between the upper and lower
anchor values. It isnot arelational operator, per se. The separator enables the API to handle
buckets with no lower bound, with no upper bound, and with both an upper and a lower bound.

For more examples of defining buckets, see Buckets Example in the Search Developer’s Guide and
Computed Buckets Example in the Search Developer’s Guide.

4.10.5 Creating and Using Custom Constraint Facets

When you define a custom constraint, you can also define facet generators for your constraint, as
described in Creating a Custom Constraint in the Search Developer’s Guide. Use the following
procedure to use a custom constraint facet generator.

1 Implement an XQuery module that includes start-facet and finish-facet functions. For
details, see Creating a Custom Constraint in the Search Devel oper’s Guide.

Page 168—Node.js Application Developer’s Guide

MarkLogic Server Querying Documents and Metadata

2. Install your custom constraint module in the modul es database associated with your REST
APl instance usi ng the patabaseclient. config.query.custom interface, aS described in
“Installing the Constraint Parser” on page 137.

3. Use queryBilder.calculateFunction tO Create areference to your facet generator when
building your facet definitions.

For example, if your custom constraint module isinstalled as ss-cat . xqy, as shown in “Installing
the Constraint Parser” on page 137:

db.config.query.write('ss-cat.xqy', ...)

Then you can use your facet generator in your facet definitions as follows:

gb.facet ('categories', gb.calculateFunction('ss-cat.xqy'))

4.11 Refining Query Results

This section covers the following features of the Node.js Client API that enable you to customize
your search results usi Ng queryBuilder.slice OF valuesBuilder.BuiltQuery.slice.

¢ Available Refinements

* Paginating Query Results

e Returning Metadata

e Excluding Document Descriptors or Values From Search Results

* Generating Search Snippets

* Transforming the Search Results

e Extracting a Portion of Each Matching Document

411.1 Available Refinements

By default, when you perform a search using patabaseclient .documents.query, YOU receive one
“page” of matching document descriptors ordered by relevance ranking. Each descriptor includes
the content of the matching document.

Some query options always cause a search result summary to be returned, in addition to the
matching document descriptors. For example, when you enable options such as 'dgebug ',
'metrics', OF 'queryplan', the additional data requested by the option is returned as part of the
search result summary.

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 169

MarkLogic Server Version MarkLogic 9—May, 2017 Querying Documents and Metadata

The Node.js Client API provides severa result refinement querysui1der methods that enable you
to customize your results, including the following:

» Change the size and/or starting document for the “page” using queryBuilder.slice. FOr
details, see “Paginating Query Results” on page 170

» Change the order of results using queryBuilder.ordersy. FOr details, see the Node.js
Client API Reference.

* Reguest metadata in addition to or instead of content using queryBuilder.withOptions.
For details, see “Returning Metadata” on page 171.

* Exclude the document descriptors from the response using queryBuilder.withOptions.
Thisisuseful when you just want to fetch snippets, facets, metrics, or other data about the
matches. For details, see “ Excluding Document Descriptors or Vaues From Search
Results’ on page 171

* Request search match snippetsin addition to or instead of matching documents using
queryBuilder.snippet with queryBuilder.slice. YOU Can customize your Sni ppets For
details, see “ Generating Search Snippets’ on page 172

* Request search facets in addition to or instead of matching documents, using
queryBuilder.calculate. Y OU can customize your facet buckets. For details, see
“Generating Search Facets’ on page 165.

* Apply aread transform to the matched documents or search results summary. For details,
see “ Transforming the Search Results” on page 173.

The dlice specifies the range of matching documents to include in the result set. If you do not
explicitly call queryBuilder.siice, adefault diceis still defined. The other refinement methods
(calculate, orderBy, snippet, withoptions) have no effect if the slice is empty, whether the dlice
isempty because there are no matches for your query or because you defined an empty page range
such asslice(0,0).

You can use these features in combination. For example, you can request snippets and facets
together, without or without document descriptors.

4.11.2 Paginating Query Results

Use queryBuilder.slice and valuesBuilder.BuiltQuery.slice tO fetch dice (batch) of results. A
dlice of resultsis defined by a zero-based starting position and an end position (the value in the
end position is not included in the slice), similar to using array . prototype.slice.

For example, the following queries return five results, beginning with the first one:

gb.where (gb.parsedFrom('oslo')) .slice(0,5)

vb.fromIndexes ('reputation') .slice(0,5)

Page 170—Node.js Application Developer’s Guide

MarkLogic Server Querying Documents and Metadata

To return the next 5 results, you would use queries such as the following

gb.where (gb.parsedFrom('oslo')) .slice(5,10)
vb.fromIndexes ('reputation') .slice(5,10)

The default maximum number of resultsis 10.

Setting the starting and end positions to zero selects no matches (or values), but returns an
abbreviated result summary that includes, for example, estimated total number of matchesfor a
search or computed aggregates for a values query.

4.11.3 Returning Metadata

By default, a query returns document descriptors for each matching documents, and the
descriptors include the document content.To return metadata instead of contents, set the
categories Property of queryBuilder.withOptions 1O 'metadata'. FOr example:

db.documents.query (
gb.where (gb.parsedFrom('oslo!'))
.withOptions ({categories: 'metadata'})

)

To return both metadata and documents, set categoriesto both 'content’ and 'metadata'. FOr
example:

db.documents.query (
gb.where (gb.parsedFrom('oslo!'))
.withOptions ({categories: ['content', 'metadata'l]})

4.11.4 Excluding Document Descriptors or Values From Search Results

By default, a query returns document descriptors for each matching documents, and the
descriptors include the document content. If you want to retrieve snippets, facets, or other search
result data without the matching documents, set the categories property of
queryBuilder.withOptions tO 'none'.

For example, the following query normally returns the contents of two document descriptors:

db.documents.query (
gb.where (gb.parsedFrom('oslo!'))
)

If you add the following withoptions Clause, you receive a search result summary that include
search snippets, instead of receiving document descriptors:

db.documents.query (
gb.where (gb.parsedFrom('oslo!'))

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 171

MarkLogic Server Version MarkLogic 9—May, 2017 Querying Documents and Metadata

.withOptions ({categories: 'none'})

)

The contents of the search result summary depend on the other refinements you apply to your
guery, but will never include the document descriptors.

4.11.5 Generating Search Snippets

A search results page typically shows portions of matching documents with the search matches
highlighted, perhaps with some text showing the context of the search matches. These search
result pieces are known as snippets.

Snippets are not included in your query results by default. To request snippets, include a snippet
clause in your slice definition using querysuilder.snippet. FOr example, the following query
returns snippetsin the default format:

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

const gb = marklogic.queryBuilder;

db.documents.query (
gb.where (
gb.byExample ({aboutMe: {$word: 'marklogic'}})
) .slice(gb.snippet())
) .result (function(results) {
console.log (JSON.stringify (results, null, 2));
}, function(error) ({
console.log (JSON.stringify (error, null, 2));

K
You can include a snippet clause in adlice that has a start and end position, as well. For example:
slice (0, 5, gb.snippet())

To retrieve snippets without the matching documents, add awithoptions ({categories: 'none'})
clause. For exaample:

...slice(gb.snippet()) .withOptions ({categories: 'none'})

You can use one of several builtin snippet generators or your own custom snippet generator by
providing a name to queryBuilder.snippet. FOr example, the following slice definition requests
snippets generated by the builtin metadata-snippet generator:

slice (0, 5, gb.snippet ('metadata’)

Page 172—Node.js Application Developer’s Guide

MarkLogic Server Querying Documents and Metadata

Some of the builtin snippeters accept additional options, which you can specify in the second
parameter t0 queryBuilder.snippet. FOr example, the following snippet definition limits the size
of the snippeted text 25 characters:

gb.snippet ('my-snippeter.xqgy', {'max-snippet-chars': 25})

For details on the supported options, see the Node.js API Reference and Specifying transform-results
Options in the Search Developer’s Guide.

Use the following procedure to use a custom snippeter:
1. Implement your snippet generator in XQuery. Your snippet function must conform to the

interface specified in Specifying Your Own Code in transform-results in the Search
Developer’s Guide.

2. Install your snippeting module in the modules database of your REST API instance using

DatabaseClient.config.query.snippet.write.

3. Use the name of your custom snippeting module as the snippeter name provided to
queryBuilder.snippet. FOr exampl €

slice(0, 5, gb.snippet ('my-snippeter.xqy'))
You cannot pass Opti ons or parameters to a custom sni ppeter.

For more information on snippet generation, see Modifying Your Snippet Results in the Search
Developer’s Guide.

4.11.6 Transforming the Search Results

You can make arbitrary changes to the response from a search or values query by applying a
transformation function. Your transform is applied to each document returned by the query, as
well asto the search or values response summary, if any.

Transforms must be installed on MarkL ogic Server before you can use them. Use
DatabaseClient.config.transforms tOinstall and manage transforms.

To use atransform in aquery, create a transform descriptor with queryBuilder.transform Of
valuesBuilder.transform. YOU Must specify the name of a previoudly installed transform
function. You can a so include implementation-specific parameters. For details and examples, see
“Working with Content Transformations’ on page 239.

For example, the following query applies the transform named “js-query-transform” to the search
results. Since no documents are returned (withoptions), the query only returns a search results
summary and the transform is only applied to the summary. If the query returned documents, the
transform would be applied to each matched document as well.

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 173

/jsdoc/index.html

MarkLogic Server Version MarkLogic 9—May, 2017 Querying Documents and Metadata

db.documents.query (
gb.where (
gb.byExample ({writeTimestamp: {'S$exists': {}}})
) .slice(gb.transform('js-query-transform'))
.withOptions ({categories: 'none'})

)

You can apply atransform to a values query in the same fashion. For example:

db.values.read (
vb.fromIndexes ('reputation')
.slice (0, 5, vb.transform('js-query-transform'))

For details, see “Working with Content Transformations’ on page 239.

4.11.7 Extracting a Portion of Each Matching Document

Use queryBuilder.extract tO return asubset of the content in each matching document instead of
the complete document. You can return selected properties, selected properties plus their
ancestors, or everything except the selected properties. By default, only the selected properties are
included.

Selected properties are specified using X Path expressions. You can only use a subset of X Path for
these path expressions. For details, see The extract-document-data Query Option in the XQuery and
XS T Reference Guide.

The following example performs the same search as the first query in * Creating a QBE with
gueryBuilder” on page 140, but refines the results using queryBuilder.slice and
queryBuilder.extract 10 return just the displayname and 1ocation properties from the matching
documents. The search matches two documents when run against the documents created by
“Loading the Example Data’ on page 183.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

const gb marklogic.queryBuilder;
db.documents.query (
gb.where (gb.byExample ({location: 'Oslo, Norway'}))
.slice(gb.extract({'abc': 'http://marklogic.com/test/abc'}
selected:’include’,
paths: ['/Contributor/displayName', '/Contributor/location'])
namespaces:{'abc': 'http://marklogic.com/test/abc'}
)
) .result (function (matches) {
matches.forEach (function (match) {
console.log(match.content) ;
1)
3K

Page 174—Node.js Application Developer’s Guide

MarkLogic Server Querying Documents and Metadata

When you use queryBuilder.extract in the manner above, each matching
document produces a document descriptor containing content of the
following form:

{ context: original-document-context,
extracted: [obj-from-pathl, obj-from-path2, ...] }

For example, the above query produces the following outpuit:

{ context: 'fn:doc("/contributors/contribl.json")"',
extracted: [

{ displayName: 'Lars Fosdal' },
{ location: 'Oslo, Norway' }]

{ context: 'fn:doc("/contributors/contrib2.json") "',
extracted: [

{ displayName: 'petrumo' },
{ location: 'Oslo, Norway' }]

}

You can produce a sparse representation of the original matching document instead by passing a
selected VAlUE 1O queryBuilder.extract. YOU Can created a sparse document that includes the
selected property(s) plus ancestors, or the whole document exclusive of the selected property(s).

For example, the following query returns the same properties but includes their ancestors:

db.documents.query (
gb.where (gb.byExample ({location: 'Oslo, Norway'}))
.slice (gb.extract ({
paths: ['/Contributor/displayName', '/Contributor/location'],
selected: 'include-with-ancestors'

M)
)

The output from this query is the following a sparse version of the original documents:

{ contributor: ({
displayName: 'Lars Fosdal',
location: 'Oslo, Norway' } }
{ Contributor: (
displayName: 'petrumo',
location: 'Oslo, Norway' } }

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 175

MarkLogic Server

Version MarkLogic 9—May, 2017

The following table shows the effect of each supported value of the selected parameter of
queryBuilder.extract ON the returned content.

selected Value Output
include context: 'fn:doc("/contributors/contribl.json")',
(default) extracted: [

{ displayName: 'Lars Fosdal' },

{ location: 'Oslo, Norway' }] }
context: 'fn:doc("/contributors/contrib2.json")',
extracted: [

{ displayName: 'petrumo' },

{ location: 'Oslo, Norway' }] }

include-with-ancestors

Contributor:
{ displayName: 'Lars Fosdal',
location: 'Oslo, Norway' } }
Contributor:
{ displayName: 'petrumo',
location: 'Oslo, Norway' } }

exclude Contributor:
{ userName: 'souser10002@email.com',
reputation: 446,
originalId: '10002',
aboutMe: 'Software Developer since 1987, ...',
id: 'soul0002' } }
Contributor:
{ userName: 'souser1000634@email.com’,
reputation: 272,
originalId: '1000634"',
aboutMe: 'Developer at AspiroTV',
id: 'soul000634' } }
all Contributor:
{ userName: 'souserl0002@email.com',

reputation: 446,
displayName: 'Lars Fosdal',
originalId: '10002',
location: 'Oslo, Norway',

aboutMe: 'Software Developer since 1987...°',
id: 'soul0002' } }
Contributor:
{ userName: 'souserl000634@email.com’',

reputation: 272,

displayName: 'petrumo',
originalId: '1000634"',

location: 'Oslo, Norway',
aboutMe: 'Developer at AspiroTV',
id: 'soul000634' } }

Page 176—Node.js Application Developer’s Guide

Querying Documents and Metadata

MarkLogic Server Querying Documents and Metadata

If an extract path does not match any content in a matched document, then the corresponding
property isomitted. If no extract paths match, a descriptor for the document is still returned, but it
contains an extracted-none Property instead of an extracted property or a sparse document. For
example:

{ context: 'fn:doc("/contributors/contribl.json")"',
extracted-none: null

}

4.12 Generating Search Term Completion Suggestions

This section describes how to generate search term completion suggestions using the Node.js
Client API. The following topics are covered:

e Understanding the Suggestion Interface

e Example: Generating Search Term Suggestions

4.12.1 Understanding the Suggestion Interface

Search applications often offer suggestions for search terms as the user types into the search box.
The suggestions are based on terms that are in the database, and are typically used to make the
user interface more interactive and to quickly suggest search terms that are appropriate to the
application.

Suggestions are drawn from the range indexes and lexicons you specify in your request. For
performance reasons, arange or collection index isrecommended over aword lexicon; for details,
see the Usage Notes for search: suggest. Suggestions can be further filtered by additional search
criteria.

Use patabaseClient.documents.suggest 0 generate search term completion suggestions using
the Node,js Client API. The smplest suggestion request takes the following form:

db.documents.suggest (partialText, qualifyingQuery)

Where partial Text is the query text for which you want to generate suggestions, and
qualifyingQuery is any additional search criteria, including index and lexicon bindings. Though
the qualifying query can be arbitrarily complex, typically at least a portion of it will eventually be
“filled in” by the completed phrase.

For example, the following call requests suggestions for the partial phrase“doc”. Because thefirst
parameter to gb.parsedrrom IS an empty string, there are no additional search criteria.

db.documents.suggest ('doc',
gb.where (gqb.parsedFrom('"',
gb.parseBindings (
gb.value ('prefix', gb.bind('prefix')),
gb.range ('name', gb.bindDefault()))

MarkLogic 9—May, 2017 Node.js Application Developer’'s Guide—Page 177

MarkLogic Server Version MarkLogic 9—May, 2017 Querying Documents and Metadata

))
)

The parse bindings in the qualifying query include a binding for unqualified terms
(gb.bindpefault ()) to arange query on the JSON property named “name” (gb.range ('name',
...)). The database must include a matching range index.

Thus, if the database contains documents of the following form, then suggestions for “doc” are
drawn only from the values of “name” and never from the values of “prefix” or “alias’:

{ "prefix": "xdmp",
"name": "documentLoad",
"alias": "document-load" }

When the user completes the search term, possibly from the suggestions, the empty string can be
replaced by the complete phrase in the document query. Thusif the user completes the term as
“documentL oad”, the same query can be used as follows to retrieve matching documents:

db.documents.query (
gb.where (gb.parsedFrom('documentLoad',
gb.parseBindings (
gb.value ('prefix', gb.bind('prefix')),
gb.range ('name', gb.bindDefault()))
))
)

The qualifying query can include other search criteria. The following example adds the query
“prefix:xdmp”. The bindings associated the “prefix” term with a value query on the JSON
property named “prefix”. The “prefix:xdmp” term could be a portion of search box text
previously entered by the user.

db.documents.suggest ('doc',
gb.where (gb.parsedFrom('prefix:xdmp',
gb.parseBindings (
gb.value ('prefix', gb.bind('prefix')),
gb.range ('name', gb.bindDefault()))
))
)

In this case, suggestions are drawn from the “name” property as before, but they are limited to
values that occur in documents that satisfy the “ prefix:xdmp” query. That is, suggestions are
drawn from values in documents that meet both these criteria:

* Contain aJSON property named “name”’ whose value begins with “doc”, AND

» Contain aJSON property named “prefix” with the exact value “xdmp”

The term to be completed can also use explicit bindings. For example, the following call requests
suggestions for “aka:doc”, where “aka’ is bound to a range index on the JSON property “aias’.
Suggestions are only drawn from values of this property.

Page 178—Node.js Application Developer’s Guide

MarkLogic Server Querying Documents and Metadata

db.documents.suggest ('aka:doc',
gb.where (gb.parsedFrom('",
gb.parseBindings (
gb.range('alias', gb.bind('aka')),
gb.value ('prefix', gb.bind('prefix')),
gb.range ('name', gb.bindDefault()))
))
)

The suggestions returned in this case include the prefix. For example, one suggestion might be
“aka:document-load” .

The qualifying query can include both string query and structured query components, but usually
will include at |east one more index or lexicon bindings with which to constrain the suggestions.
For example, the following code adds a directory query that limits suggestions to documents in
the database directory /suggest/.

db.documents.suggest ('doc',
gb.where (gb.parsedFrom('",
gb.parseBindings (
gb.value ('prefix', gb.bind('prefix')),
gb.range ('name', gb.bindDefault()))
), gb.directory('/suggest/', true))
)

You can override bindings on a per suggest basis without modifying your qualifying query by
including an additional suggestBinding parameter.

In cases where you' re using a previously constructed qualifying query, but you want to add
bindings that limit the scope of suggestions for other reasons (such as performance), you can add
override bindi ngs usi Ng queryBuilder. suggestBindings.

For example, the following code overrides the binding for bare terms in the qualifying query with
abinding to arange index on the JSON property alias. Thus, if adocument includes a name
property with value “documentLoad” and an alias property with value “document-load”, then the
suggestions would include “ documentL oad” without the suggestsindings Specification, but
“document-load” with the override.

db.documents.suggest ('doc"',
gb.where (gb.parsedFrom('",
gb.parseBindings (
gb.value ('prefix', gb.bind('prefix')),
gb.range ('name', gb.bindDefault()))

)) .,
gb.suggestBindings (gb.range('alias', gb.bindDefault()))

)

Overrides are per binding. In the example above, only the default binding for bare termsis
overridden. The binding for “prefix” continues to take effect as long as the suggestBindings do
not include a binding for “prefix”.

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 179

MarkLogic Server Version MarkLogic 9—May, 2017 Querying Documents and Metadata

4.12.2 Example: Generating Search Term Suggestions

The examplein this section illustrates the use cases described in “Understanding the Suggestion
Interface” on page 177.

The script first loads the example documents into the database, and then generates suggestions
from the them. To run the example, you must add the following range indexes. You can create
them using the Admin Interface or the Admin API. For details, see Range Indexes and Lexicons in
the Administrator’s Guide.

* Anelement range index of type “string” with local name “name”.

* Anelement range index of type “string” with local name “alias’.
The example covers the following use cases, which are discussed in more detail in
“Understanding the Suggestion Interface” on page 177.

» Case 1: Suggestions for “doc” drawn from the name property

» Case 2: Suggestions for “doc” drawn from name where prefix is*“xdmp”

» Case 3: Suggestions for “doc” drawn from name Where prefix is“xdmp” and the
suggestion is from a document in the /suggest/ directory.

» Case4: Suggestions for “aka:doc” where the “aka’ prefix causes suggestions to be drawn
from the a1ias property.

» Case5: Suggestions for “doc” drawn from the a1ias property by virtue of a suggest
binding override.

The table below summarizes the property values in the example documents for quick reference.

URI name prefix dias
/suggest/load.json documentLoad xdmp document-load
/suggest/insert.json documentInsert xdmp document-insert
/suggest/query.json documentQuery cts document -query
/suggest/search. json search cts search
/elsewhere/delete.json documentDelete xdmp document-delete

Running the example produces results similar to the following:

1: Suggestions for naked term "doc":
["documentDelete", "documentInsert", "documentLoad", "documentQuery"]

2: Suggestions filtered by prefix:xdmp:

Page 180—Node.js Application Developer’s Guide

MarkLogic Server Querying Documents and Metadata

["documentDelete", "documentInsert", "documentLoad"]

3: Suggestions filtered by prefix:xdmp and dir /suggest/:
["documentInsert", "documentLoad"]

4: Suggestions for "aka:doc":
[
"aka:document-delete",
"aka:document-insert",
"aka:document-load",
"aka:document-query"

5: Suggestions with overriding bindings:
["document-delete", "document-insert", "document-load"]

To run the example, copy the following script into afile, modify the database connection
information as needed, and execute the script with the node command. The script assumes the
connection information is contained in afile named my-connection.js, as described in “Using the
Examplesin This Guide” on page 33.

const marklogic = require('marklogic') ;
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

const gb marklogic.queryBuilder;

// NOTE: This example requires a database configuration
// that includes two element range index:

// - type string, local name name

// - type string, local name alias

// Initialize the database with the sample documents
db.documents.write ([

{ uri: '/suggest/load.json',
contentType: 'application/json',
content: {

prefix: 'xdmp',
name: 'documentLoad',
alias: 'document-load'

} }I

{ uri: '/suggest/insert.json',
contentType: 'application/json',
content: {

prefix: 'xdmp',
name: 'documentInsert',
alias: 'document-insert'

} }I

{ uri: '/suggest/query.json',
contentType: 'application/json',
content: {

prefix: 'cts',
name: 'documentQuery',
alias: 'document-query'

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 181

MarkLogic Server Version MarkLogic 9—May, 2017 Querying Documents and Metadata

b b

{ uri: '/suggest/search.json',
contentType: 'application/json',
content: {

prefix: 'cts',
name: 'search',
alias: 'search'

Iy

{ uri: '/elsewhere/delete.json’,
contentType: 'application/json',
content: {

prefix: 'xdmp',
name: 'documentDelete',
alias: 'document-delete'
Iy
1) .result () .then(function (response) {

// (1) Get suggestions for a naked term

return db.documents.suggest ('doc',

gb.where (gb.parsedFrom('"',
gb.parseBindings (
gb.range('name', gb.bindDefault()))

))
) .result (null, function (error) {
console.log (JSON.stringify (error, null, 2));
1) i
}) .then(function (response) {
console.log('l: Suggestions for naked term "doc":');

console.log (JSON.stringify (response)) ;

// (2) Get suggestions for a qualified term
return db.documents.suggest ('doc',
gb.where(gb.parsedFrom('prefix:xdmp',
gb.parseBindings (
gb.value('prefix', gb.bind('prefix')),
gb.range('name', gb.bindDefault()))
))
) .result (null, function (error) {
console.log (JSON.stringify (error, null, 2));
P

}) .then(function (response) {
console.log('\n2: Suggestions filtered by prefix:xdmp:') ;

console.log (JSON.stringify (response)) ;

// (3) Suggestions limited by directory
return db.documents.suggest ('doc',
gb.where(gb.parsedFrom('prefix:xdmp',
gb.parseBindings (
gb.value('prefix', gb.bind('prefix')),
gb.range('name', gb.bindDefault()))
)
gb.directory('/suggest/', true))
) .result (null, function (error) {
console.log (JSON.stringify (error, null, 2));

13N,

Page 182—Node.js Application Developer’s Guide

MarkLogic Server Querying Documents and Metadata

}) .then(function (response) {

console.log('\n3: Suggestions filtered by prefix:xdmp and dir
/suggest/: ") ;

console.log (JSON.stringify (response)) ;

// (4) Get suggestions for a term with a binding
return db.documents.suggest ('aka:doc',
gb.where(gb.parsedFrom(''"',
gb.parseBindings (
gb.range('alias', gb.bind('aka')),
gb.range('name', gb.bindDefault()))
))
) .result (null, function (error) {
console.log (JSON.stringify (error, null, 2));
P
}) .then(function (response) {
console.log('\n4: Suggestions for "aka:doc":');
console.log (JSON.stringify (response, null, 2));

// (5) Get suggestions using a binding override
return db.documents.suggest ('doc',
gb.where(gb.parsedFrom('prefix:xdmp',
gb.parseBindings (
gb.value('prefix', gb.bind('prefix')),
gb.range('name', gb.bindDefault()))
)),
gb.suggestBindings (
gb.range('alias', gb.bindDefault()))
) .result (null, function (error) {
console.log (JSON.stringify (error, null, 2));
P
}) .then(function (response) {
console.log('\n5: Suggestions with overriding bindings:') ;
console.log (JSON.stringify (response)) ;
}, function (error) {
console.log (JSON.stringify (error, null, 2));

s

4.13 Loading the Example Data

Several of the examplesin this chapter rely on data derived from the MarkL ogic Samplestack
seed data. Samplestack is an open-source implementation of the MarkL ogic Reference
Application architecture; for details, see the Reference Application Architecture Guide.

To load the data, copy the following script to afile and run it. The script uses the connection data
described in“Using the Examplesin This Guide” on page 33.

Some of the examples require range indexes.

const marklogic = require('marklogic');
const my = require('./my-connection.js');

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 183

MarkLogic Server Version MarkLogic 9—May, 2017 Querying Documents and Metadata

const documents = [
{ uri: '/contributors/contribl.json', content:
{"Contributor":
"userName" : "souser10002@email .com", "reputation":446,
"displayName":"Lars Fosdal", "originalId":"10002",
"location":"Oslo, Norway",
"aboutMe" :"Software Developer since 1987, mainly using Delphi.",
"id":"soul0002"}}},
{ uri: '/contributors/contrib2.json', content:
{"Contributor":
"userName" : "souser1000634@email .com", "reputation":272,
"displayName": "petrumo", "originalId":"1000634",

"location":"Oslo, Norway",
"aboutMe" : "Developer at AspiroTV",
"id":"soul000634"}}},

{ uri: '/contributors/contrib3.json', content:
{"Contributor":
"userName" : "souserl248651l@email .com", "reputation":1,
"displayName":"Nullable", "originalId":"1248651",
"location":"Ogden, UT",
"aboutMe":".. .My current work includes work with MarkLogic

Application Server (Using XML, Xquery, and Xpath), WPF/C#, and Android
Development (Using Java)...",
"id":"soul248651"}}},

{ uri: '/contributors/contrib4.json', content:
{"Contributor":
"userName" : "souserl601813@email .com", "reputation":91,
"displayName": "grechaw", "originalId":"1601813",

"location":"Occidental, CA",
"aboutMe" : "XML (XQuery, Java, XML database) software engineer at
MarkLogic. Hardcore accordion player.",
"id":"soul601813"}}},
{ uri: '/test/query/extraDir/doc6.xml',
collections: ['http://marklogic.com/test/abc'l],
contentType:'application.xml’,
content:
<container xmlns:abc="http://marklogic.com/test/abc">
<target>match</target>
<abc:elem>word</abc:elem>
</containers’},

{ uri: '/questions/gl.json', content:
{ "tags": ["java", "sgl", "json", "nosgl", "marklogic"],
"owner": {
"userName": "souserl238625@email.com",
"displayName": "Raevik",
"id": "soul238625"
I
"id": "soq22431350",
"accepted": false,
"text": "I have a MarkLogic DB instance populated with JSON

documents that interest me. I have executed a basic search and have a

SearchHandle that will give me the URIs that matched. Am I required to

now parse through the flattened JSON string looking for my key?",
"creationDate": "2014-03-16T00:06:06.497",

Page 184—Node.js Application Developer’s Guide

MarkLogic Server Querying Documents and Metadata

"title": "MarkLogic basic questions on equivalent of SELECT with
Java API"
b
{ uri: '/questions/g2.json', content:
{ "tags": ["java", "dbobject", "mongodb"],
"owner": {
"userName": "souser69803@email.com",
"displayName": "Ankur",
"id": "sou69803"
I
"id": "soQg7684223",
"accepted": true,
"text": "MongoDB seems to return BSON/JSON objects. I thought that

surely you'd be able to retrieve values as Strings, ints etc. which can
then be saved as POJO. I have a DBObject (instantiated as a
BasicDBObject) as a result of iterating over a list ... (cur.next()).
Is the only way (other than using some sort of persistence framework)
to get the data into a POJO to use a JSON serlialiser/deserialiser?",
"creationDate": "2011-10-07T07:27:18.097",
"title": "Convert DBObject to a POJO using MongoDB Java Driver"

{ uri: '/questions/g3.json', content:
{ "tags": ["json", "marklogic"],
"owner": {
"userName": "souserl238625@email.com",
"displayName": "Raevik",
"id": "soul238625"
I
"id": "sog22412345",
"accepted": false,
"text": "Does marklogic manage JSON documents?",
"creationDate": "2014-02-10T00:13:03.282",
"title": "JSON document management in MarkLogic"
b
1

const db = marklogic.createDatabaseClient (my.connInfo) ;

db.documents.write (documents)
.result (null, function(error) {
console.log (JSON.stringify (error)) ;

13N,

The corresponing query to extract document * /test/query/extraDir/doc6.xml’ looks as
follows:

db.documents.query (
g.where (
g.word('target', 'match')

slice(0, 1, g.extract ({

selected: 'include',
paths:'//abc:elem',

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 185

MarkLogic Server Version MarkLogic 9—May, 2017 Querying Documents and Metadata

namespaces: {'abc': 'http://marklogic.com/test/abc'}

)

)

.result (function (response)
response.length.should.equal (1) ;
var document = response[0];
document . should.have.property('content') ;
var content = document.content;
var assert = require('assert');

assert (content.includes ('<abc:elem
xmlns:abc="http://marklogic.com/test/abc">word</abc:elem>"')) ;
done () ;

3]

Page 186—Node.js Application Developer’s Guide

MarkLogic Server Using the Optic API for Relational Operations

5.0 Using the Optic API for Relational Operations

This chapter covers the following topics related to performing relational operations on indexed
values and documents using the Optic capabilities of the Node.js Client API:

¢ |ntroduction to the Optic Interfaces

¢ |Interface Summary

* Preparing to Run the Examples

* Generating a Plan

* Invoking a Plan

e Configuring Row Set Format

e Streaming Row Data

e Passing Parameters into a Plan

e Handling Complex Column Values

e Generating an Execution Plan

e Serializing a Plan

5.1 Introduction to the Optic Interfaces

The Optic API enables you to perform relational operations on indexes and documents. For
example, you can extract datain row format, perform joins, and perform relational queries on
XML and JSON documents. You can also extract arow view of data from other sources, such as
lexicons and semantic triples.

The Optic capabilities of the Node.js Client API closely mirror the server-side Optic API
described in Optic API for Multi-Model Data Access in the Application Developer’s Guide. Refer to
that guide for conceptual details.

The usage model for an optic query in Node.jsis asfollows:

1. Build an Optic execution plan on the client using the p1ansuiider interface. For details,
see “ Generating a Plan” on page 189.

2. Execute the plan on MarkLogic, resulting in generation of arow set. For details, see
“Invoking a Plan” on page 190.

3. Process the results returned by MarkLogic on the client. For details on result formats, see
“Configuring Row Set Format” on page 193.

Execution of aplan can yield arow that satisfies any of several common use cases.

» A traditional flat list of atomic values with names and XML Schema atomic datatypes.

MarkLogic 9—May, 2017 Node.js Application Developer’ s Guide—Page 187

MarkLogic Server Version MarkLogic 9—May, 2017 Using the Optic API for Relational

* A dynamic JSON or XML document with substructure and leaf atomic values or mixed
text.

* An envelope with out-of-band metadata properties and relations for alist of documents.
In addition to executing a query plan, you can aso perform the following Optic related
operations:
» Generate an execution plan explanation that reflects the logical flow of the plan asa
sequence of atomic operations.

» Export aserializable version of the plan for later use.

5.2 Interface Summary
The following are the key Optic interfaces in the Node.js Client API:

Interface or Method Description

marklogic.planBuilder Use aplansuilder t0 construct an Optic plan to be evaluated using
rows . query. FOr details, see “ Generating a Plan” on page 189.

DatabaseClient.rows An object that exposes methods for eval uating Optic plans, such as
query,queryAsStream,EWKjexplain.

rows.query Execute an Optic plan and return the results specified by the plan,
in the form of arow set. For details, see “Invoking aPlan” on
page 190 and “ Streaming Row Data” on page 197.

rows.queryAsStream

rows.explain Generate an Optic APl execution plan that expresses the logical
dataflow of aplan a sequence of atomic operations. For details, see
“Generating an Execution Plan” on page 202.

planBuilder.export Generate a JavaScript object representation of the Abstract Syntax
Tree for aplan, which can be serialized for later use. For details,
see “ Serializing aPlan” on page 203.

5.3 Preparing to Run the Examples

The examplesin this chapter use the data, templates, and a plan from SQL on MarkLogic Server
Quick Start in the SQL Data Modeling Guide. If you want to run the examples, you should use the
SQL quick start to set up your environment. See the following topics in the SQL Data Modeling
Guide:

e Setup MarkLogic Server

e | oadthe Data

e Create Template Views

Page 188—Node.js Application Developer’s Guide

MarkLogic Server Using the Optic API for Relational Operations

If you set up a database named “SQLdata”, as directed in the Quick Start, then add a database
property to your patabaseclient CONNection information. For example, if your my-connection.js
module should be similar to the following when running the Optic examples:

module.exports =
connInfo: {
host: 'localhost',
port: 8000,
user: your-ml-username,
password: your-ml-user-password,
database: 'SQLdata’

}
}i

For more details on configuring a patabaseciient for running the examples, see “Using the
Examplesin This Guide” on page 33.

5.4 Generating a Plan

Use marklogic.planBuilder t0O construct an Optic query plan. Usually, you then use the plan to
extract row datafrom MarkLogic. You can also generate a plan explanation or serialize a built
plan.

An Optic plan defines a pipeline of relational operations to be applied to arow set.

1 Select a data source using one of the data accessor methods, p1ansuilder. from*. FOr
example, planBuilder.fromLiterals, planBuilder.fromView, planBuilder.fromTriples,

Or planBuilder. fromLexicons.

2. Refine your plan using modifier and composer operations, such as select, joinInner,
where, and orderBy.

3. Optionally, specify a mapper or reducer to be applied to each row. See
planBuilder.PreparePlan.map Of planBuilder.PreparePlan.reduce. The mapper or
reducer function runs on MarkLogic.

For example, the following code snippet builds a plan to list the employee ID, first name, and last
name of all employees, in order of employee 1D, using the configuration and data from the SQL on
MarkLogic Server Quick Start chapter in the SQL Data Modeling Guide.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;
const pb = marklogic.planBuilder;
pb.fromvView('main', 'employees')
.select (['EmployeeID', 'FirstName', 'LastName'])

.orderBy ('EmployeeID')

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 189

MarkLogic Server Version MarkLogic 9—May, 2017 Using the Optic API for Relational

The plan is not executed until you process it with rows . query Of rows.queryasstrean. FOr details,
see “Invoking aPlan” on page 190.

For details on the logical structure of aplan and the available operators, see Objects in an Optic
Pipeline in the Application Developer’s Guide. The Node.jS p1ansuilder interface exposes
methods with the same names and purpose as the Server-Side JavaScript Optic API.

The p1ansuilder interface includes namespaces that expose proxies for many server-side
operations. For example, you can “call” cts query constructors or a server-side function in the £n,
xdmp, Of map NAMespaces. The placeholder in the plan trand ates into an equivalent invocation of a
server-side function during plan execution.

For example, the following code constructs a plan that includes cts query constructor proxy calls:

const marklogic = require('marklogic') ;
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient (my.connInfo) ;
const pb = marklogic.planBuilder;

db.rows.query (
pb.fromvView('main', 'employees')
.where (pb.cts.andQuery ([
pb.cts.wordQuery ('Senior'),
pb.cts.wordQuery ('Researcher')]))
.select (['FirstName', 'LastName', 'Position']l),
{columnTypes: 'header'}
) .then(function (rows)
console.log (JSON.stringify (rows, null, 2));
}) .catch(
function (error)
console.log (JSON.stringify (error, null, 2));

13N,

For more information on the proxy functions, see the planBuilder API Reference and the
following topics in the Application Devel oper’s Guide:

e Expression Functions For Processing Column Values

¢ Functions Equivalent to Boolean, Numeric, and String Operators

* Node Constructor Functions

For details on the behavior of a particular server-side function, see the MarkLogic Server-Sde
JavaScript Function Reference.

5.5 Invoking a Plan

Use rows . query O rows . queryAsstrean 10 €xecute a plan and generate arow set. You can also
pass in an options object to control the output format, specify parameter bindings, or pin the query
to a specific point-in-time.

Page 190—Node.js Application Developer’s Guide

MarkLogic Server Using the Optic API for Relational Operations

Note: Unlike most other Node.js Client API operations, query and queryasstream d0 Not
support aresuit method. Instead, the plan is sent to MarkLogic for evaluation
when you invoke the then Or on methods. See the examples below.

To perform a query at a specific point in time, pass a rimestamp Object as the value of the
timestamp Property of the options parameter. For more details, see “ Performing Point-in-Time
Operations’ on page 25.

For example, the following code constructs a plan, executes it on MarkLogic, and then processes
theresulting row set. The plan and results are based on the configuration and datafrom the SQL on
MarkLogic Server Quick Start chapter in the SQL Data Modeling Guide.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

const pb

marklogic.planBuilder;

db.rows.query (
pb.fromvView('main', 'employees')
.select (['EmployeeID', 'FirstName', 'LastName'])
.orderBy ('EmployeeID')
) .then(function (rows)
console.log (JSON.stringify (rows, null, 2));
}) .catch(function (error) {
console.log (JSON.stringify (error, null, 2));

s

The following example is the equivalent code using queryasstream to Stream the results as
JavaScript objects instead of returning them all at once. Several stream modes are available; for
details, see “ Streaming Row Data” on page 197.

const marklogic = require('marklogic') ;
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

const pb marklogic.planBuilder;

db.rows.queryAsStream (

pb.fromview('main', 'employees')
.select (['EmployeelID', 'FirstName', 'LastName'])
.orderBy ('EmployeeID"'),
'object!'
) .on('data', function(rows)
console.log (JSON.stringify(rows, null, 2));
}).on ('end', function()

console.log('done!') ;

1

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 191

MarkLogic Server Version MarkLogic 9—May, 2017 Using the Optic API for Relational

The plan returns results similar to the following. You can use the options parameter of the query
and queryasstream Methods to customize the output format; for details, see “ Configuring Row Set
Format” on page 193.

{ "columns": [

{ "name": "main.employees.EmployeeID" },

{ "name": "main.employees.FirstName" },

{ "name": "main.employees.LastName" }

1,
"rows": [

{ "main.employees.EmployeeID":
"type": "xs:integer",
"value": 1

b

"main.employees.FirstName": {
"type": "xs:string",
"value": "John"

b

"main.employees.LastName":
"type": "xs:string",
"value": "Widget™"

}

I

{ "main.employees.EmployeeID":
"type": "xs:integer",
"value": 2

b

"main.employees.FirstName":
"type": "xs:string",
"value": "Jane"

b

"main.employees.LastName":
"type": "xs:string",
"value": "Lead"

}

I

{ "main.employees.EmployeeID":
"type": "xs:integer",
"value": 3

b

"main.employees.FirstName":
"type": "xs:string",
"value": "Steve"

b

"main.employees.LastName":
"type": "xs:string",
"value": "Manager"

}

I
1
}

Page 192—Node.js Application Developer’s Guide

MarkLogic Server Using the Optic API for Relational Operations

5.6 Configuring Row Set Format

When you invoke a query plan as described in “Invoking a Plan” on page 190, the result isarow
set. You can use the options parameter of rows . query and rows . queryasstream t0 configuring the
layout of the row set.

This section covers the following topics related to how configuration options affect the layout of a
row set.

* Configuration Options

e | ayout Examples

5.6.1 Configuration Options

You can fetch row datain the form of JSON objects, JSON arrays, XML elements, or CSV
(comma separated values).

For JSON and XML, you can also control whether column type information is a part of each row
or isonly part of the column header data. You should include type information with row unless
you know each of your columns contain values of the same type.

Use the following options to configure the row set format and layout:

* format: SpeC|fy the overal format as json, xm1, Of csv. Default: json.

* structure: When the format is JSON, specify whether each row should be represented as
an object or an array. Default: object.

* columnTypes: Specify whether to embed column value type information in each row or
only in the column header. Only meaningful when format iS json Of xm1. Default: rows.

* complexvalues: Specify whether to return column values with non-atomic typeinline or by
reference. Only meani ngful with rows.queryAsStream. Default: inline.

The option settings can yield different layouts when returning arow set as a single document with
query VErsus an object stream with queryasstream. The rest of this section explores how various
option settings interact for query and queryasstrean.

5.6.2 Layout Examples

This section illustrates how various configuration option settings affect the data passed to your
handler when you use rows . query and the promise handling pattern. When you use this pattern,
your response handler receives the entire row set at once. For more details on promises, see
“Promise Result Handling Pattern” on page 22.

You can also stream arow set using queryAsStream. The output is similar, but your handler
receives datain chunks. For details, see “ Streaming Row Data’ on page 197.

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 193

MarkLogic Server

Version MarkLogic 9—May, 2017

Using the Optic API for Relational

When you fetch rows as a JSON array, the first item in the array is the column header data. When
you fetch rows as CSV, the first record is the column header data.

The following table summarizes the output produced by various option combinations when
fetching rows using rows . query. Each example displays the column header data (where

appropriate) and one row.

Options Example Output
(default) { columns: [
{name: 'main.employees.Employee'},
{format: 'json' {name: 'main.employees.FirstName'},
structure: 'object', {name: 'main.employees.LastName'}
columnTypes: 'rows'} 1,
rows: [

{ 'main.employees.EmployeeID': ({

type: 'xs:integer', value: 1},
'main.employees.FirstName':

type: 'xs:string', value: 'John'},
'main.employees.LastName' : {

type: 'xs:string', value: 'Widget'}

{format:'json',

[

structure: 'object', { name: 'main.employees.EmployeelD',
columnTypes: 'header'} type: 'xs:integer' },
{ name: 'main.employees.FirstName',
type: 'xs:string' },
{ name: 'main.employees.LastName',
type: 'xs:string' }
1,
rows: [
{ 'main.employees.EmployeeID': 1,
'main.employees.FirstName': 'John',
'main.employees.LastName': 'Widget'

Page 194—Node.js Application Developer’s Guide

MarkLogic Server

Using the Optic API for Relational Operations

Options Example Output
{format:'json', [
structure: 'array', [{ name: 'main.employees.EmployeeID' },
columnTypes: 'rows'} { name: 'main.employees.FirstName' },
{ name: 'main.employees.LastName' }
1,
[{ type: 'xs:integer', value: 1 },
{ type: 'xs:string', value: 'John' },
{ type: 'xs:string', value: 'Widget' }
1,
[...1,
]
{format:'json"', [
structure: 'array', [{ name: 'main.employees.EmployeeID',
columnTypes: 'header'} type: 'xs:integer' },
{ name: 'main.employees.FirstName',
type: 'xs:string' },
{ name: 'main.employees.LastName',
type: 'xs:string' }
1,
[1, 'John', 'Widget'],

[...1,

{format: 'csv' A block of text, containing one line per row:

structure: 'object'}
main.employees.EmployeelID, main.employees.FirstName, main.empl
oyees.LastName
1,John,Widget

{format: 'csv' A block of text, containing one line per row:

structure: 'array'}

["main.employees.EmployeeID",
"main.employees.LastName"]
[1, "John", "Widget"]

MarkLogic 9—May, 2017

Node.js Application Developer’ s Guide—Page 195

"main.employees.FirstName",

MarkLogic Server

Version MarkLogic 9—May, 2017 Using the Optic API for Relational

Options

Example Output

{format:'xml"',
columnValues:

"rows'}

Serialized XML of the following form:

<t:table xmlns:t="http://marklogic.com/table">
<t:columns>
<t:column name="main.employees.EmployeeID"/>
<t:column name="main.employees.FirstName"/>
<t:column name="main.employees.LastName"/>
</t:columns>
<t:rows>
<t:row>
<t:cell name="main.employees.EmployeeID"

type="xs:integer">1</t:cell>

<t:cell name="main.employees.FirstName"

type="xs:string">John</t:cell>

<t:cell name="main.employees.LastName"

</t:

type="xs:string">Widget</t:cell>
rows

</t :rows>
</t:table

{format:'xml',
columnValues:
"header'}

Serialized XML of the following form:

<t:table xmlns:t="http://marklogic.com/table">
<t:columns>
<t:column name="main.employees.EmployeeID"

type="xs:integer"/>

<t:column name="main.employees.FirstName"

type="xs:string"/>

<t:column name="main.employees.LastName"

type="xs:string"/>

</t:columns>
<t:rows>

<t:row>
<t:cell name="main.employees.EmployeeID">1</t:cell>
<t:cell name="main.employees.FirstName">John</t:cell>
<t:cell name="main.employees.LastName">Widget</t:cell>
</t :rows>

<t:row>

</t:rows>

</t:tabl

e>

Page 196—Node.js Application Developer’s Guide

MarkLogic Server Using the Optic API for Relational Operations

5.7 Streaming Row Data

YOu can USe rows . queryAsstream t0 Stream arow set from MarkLogic. Depending on the
streaming mode, datais returned to your handler in chunks of bytes, JavaScript objects, or JSON
text sequence records.

e Object Mode Streaming

¢ Chunked Mode Streaming

* Seqguence Mode Streaming

Row setsformatted as XML or CSV can only be streamed in chunked mode. Rows sets formatted
as JSON can be streamed in any mode.

5.7.1 Object Mode Streaming

When you fetch arow set with queryasstream in Object mode, each invocation of your on ('datar)
handler receives either a JavaScript object or an array, depending on the value of structure option.
Column header datais passed on the first invocation.

Note: Y ou can only use object mode when streaming row dataas JSON. To stream XML
or CSV row set data, use chunked mode. For details, see “Chunked Mode
Streaming” on page 199.

The default streaming mode is chunked. To stream results in object mode, set the streamType
parameter of queryAsStream {O 'object !

db.rows.queryAsStream(plan, 'object', options)

MarkLogic 9—May, 2017 Node.js Application Developer’ s Guide—Page 197

MarkLogic Server Version MarkLogic 9—May, 2017 Using the Optic API for Relational

Thefollowing table illustrates the output produced by various option combinations when fetching
roWs using rows . queryasstream With the stream in object mode. Each example includes the
column header object or array passed in on the first invocation of your data handler, followed by
an example data row.

Options Example Output
{format:'json', { columns: [
structure: 'object', { name: 'main.employees.EmployeeID' },
columnTypes: 'rows'} { name: 'main.employees.FirstName' },

{ name: 'main.employees.LastName' }

1}

{ 'main.employees.EmployeeID': ({
type: 'xs:integer', value: 1 },
'main.employees.FirstName': {
type: 'xs:string', value: "John' },
'main.employees.LastName': {
type: 'xs:string', value: 'Widget' }

{format:'json', { columns: [
structure: 'object', { name: 'main.employees.EmployeelD',
columnTypes: 'header' } type: 'xs:integer'

name: 'main.employees.FirstName',
type: 'xs:string'
name: 'main.employees.LastName',
type: 'xs:string'

1}

{ 'main.employees.EmployeeID': 1,
'main.employees.FirstName': 'John',
'main.employees.LastName': 'Widget'

}

Page 198—Node.js Application Developer’s Guide

MarkLogic Server Using the Optic API for Relational Operations

Options Example Output

{format:'json', [{ name: 'main.employees.EmployeeID' },
structure: 'array', { name: 'main.employees.FirstName' },
columnTypes: 'rows'} { name: 'main.employees.LastName' }]
[{ type: 'xs:integer',
value: 1 },
{ type: 'xs:string',
value: 'John' },
{ type: 'xs:string',
value: 'Widget' }]

{format:'json', [{ name: 'main.employees.EmployeeID',
structure: 'array', type: 'xs:integer'
columnTypes: 'header' } b A

name: 'main.employees.FirstName',
type: 'xs:string'
name: 'main.employees.LastName',
type: 'xs:string'

b

[1, 'John', 'Widget']

5.7.2 Chunked Mode Streaming

When you fetch arow set with queryasstream in chunked mode, your handler receives control
when some number of bytes are read.

Each chunk provided to your handler is a buffer of bytes, formatted as serialized JSON, XML, or
CSV, depending on your option settings. The aggregate byte stream is formatted similar to the
layouts shown in “Layout Examples’ on page 193.

The default stream mode is chunked. You can also set it explicitly. For example:

db.rows.queryAsStream(plan, 'chunked', options)

5.7.3 Sequence Mode Streaming

When you fetch arow set with queryasstream in Sequence mode, your handler receives control
when arecord in JSON text sequence format is available. Each record contains the byte
representation of either a JSON object or JSON array, depending on your option settings.

Note: You can only use sequence mode when streaming row data as JSON. To stream
XML or CSV row set data, use chunked mode. For details, see “Chunked Mode
Streaming” on page 199

Each record begins with arecord separator (OX1E) in the first byte and ends with an ASCII line
feed character (OxX0A), as described in https://tools.ietf.org/html/rfc7464.

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 199

MarkLogic Server Version MarkLogic 9—May, 2017 Using the Optic API for Relational

The default stream mode is chunked. To activate sequence mode, set the streamType parameter of

queryAsStream {O 'sequence':

db.rows.queryAsStream(plan, 'sequence', options)

Each record is formatted like the examples “ Layout Examples’ on page 193 when the format
option issetto json' and the structure option is set to either ‘object' Of 'array'.

For example, the following code produces records formatted as JSON objects, with column data
in the header (first) record. For illustrative purposes, each record is converted to a string and
stripped of the record separators before displaying it on the console.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const fs = require('fs');

const db = marklogic.createDatabaseClient (my.connInfo) ;
const plan = fs.readFileSync('./plan.json', 'utf8');
const options = {

format: 'json',

structure: 'object',

columnTypes: 'header'

}i

db.rows.queryAsStream(plan, 'sequence', options)
.on('data', function(record) {
const asString = record.toString() ;
console.log(asString.substring(l,asString.length-2));
}).on ('end', function() {
console.log('done') ;

3K

This example returns output similar to the following, where each record contains an object that
represents one row. The first record contains the column header data.

{"columns": [{"name":"main.employees.EmployeeID", "type":"xs:integer"}, {
"name": "main.employees.FirstName", "type":"xs:string"}, {"name":"main.em
ployees.LastName", "type":"xs:string"}] }
{"main.employees.EmployeeID":1, "main.employees.FirstName":"John", "main
.employees.LastName": "Widget"}

If you set the structure option to array, then each record contains an array that represents one row.
The first record contains the column header data.

[{"name":"main.employees.EmployeeID", "type":"xs:integer"}, {"name": "mai
n.employees.FirstName","type":"xs:string"},{"name"
:"main.employees.LastName", "type":"xs:string"}]

[1,"John", "Widget"]

Page 200—Node.js Application Developer’s Guide

MarkLogic Server Using the Optic API for Relational Operations

5.8 Passing Parameters into a Plan

If your plan uses placeholder parameters, use the bindings Option to specify values for the
placeholders when you invoke the plan.

The bindings option value is a JavaScript object where the property names correspond to
parameters, and the values are either a parameter value or an object that specifies atype or
language key and avaue. That is, each property must take one of forms shown below:

{bindings : {
paramNamel : valuel,
paramName2 : {value: value2, type: typeNameString},
paramName3 : {value: value3, lang: languageCode}

1

The type name can be any derivation of xs:atomicType Other than xs : oname. FOr example, you can
use type namessuch as 'string', 'integer', and 'decimal'. If you do not specify atype, the
value isinterpreted as a string. Use a language code to bind language-tagged strings.

For example, if you defined a placeholder variable named “start” in your plan definition, then you
could specify avalue for “start” in thenindings Option in any of the following ways:

{bindings: {
start: 'apple'

}

{bindings: {
start: {value: 'apple', type: 'string')}

}

{bindings: {
start: {value: 'apple', lang: 'en'}

}

5.9 Handling Complex Column Values

If your row set includes column values with non-atomic type, such as XML elements, JSON
arrays, JSON objects, binary content, or text nodes, they are serialized inline by default. For
example, the following row contains a column named “complex” whose value is a serialized
XML element:

{ nign. {
"type":"xs:integer",
"value":1

|
"complex": {
"type":"element",
"value":"<root><A>Detail 12015-12-01l</root>"

I8

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 201

MarkLogic Server Version MarkLogic 9—May, 2017 Using the Optic API for Relational

You can use the complexvalues Option Of rows.queryasstrean t0 Specify whether such complex
values should be included inline (as shown above) or by reference. You cannot configure the
handling of complex values when executing a plan using rows . query.

For example, the following option setting specifies complex values should be returned by
reference.

{complexValues: 'reference'}

For example, suppose your row set includes a column named “node” whose value is an XML
element. The default behavior (inline) yields a serialized string of the following form for the node
value:

"node": {
"type": "element",
"value": "<alphas<as>true</alpha>"

}

If you set the complexValues option to “reference”, then the same column value is rendered as
follows:

"node": {
"contentType": "application/xml",
"format": "xml",
"content": "<?xml version=\"1.0\"

encoding=\"UTF-8\"?>\n<beta>false</beta>"

}

The node value is actually returned as a reference to a complex value by MarkL ogic, but the
reference is resolved and expanded for you in the results returned from the Node.js Client API.

The details of the format depend on the output formatting options you choose and the type of
complex value. For example, if the complex value isabinary document, then it would be returned
as a base64 encoded value inline, but as a Node.js surrer When fetched by reference.

5.10 Generating an Execution Plan

Use rows . explain t0 generate an execution plan that expressesthe logical flow of an Optic plan as
a sequence of atomic operations. For more details, see Optic Execution Plan in the Application
Developer’s Guide.

For example, the following code generates an execution plan based on the data from SQL on
MarkLogic Server Quick Start in the SQL Data Modeling Guide.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

const pb

marklogic.planBuilder;

Page 202—Node.js Application Developer’s Guide

MarkLogic Server Using the Optic API for Relational Operations

db.rows.explain (

pb.fromvView('main', 'employees')
.select (['EmployeeID', 'FirstName', 'LastName'])
.orderBy ('EmployeeID')
.limit (3)

) .then(function (rows)
console.log (JSON.stringify (rows, null, 2));
}) .catch(
function (error)
console.log (JSON.stringify (error, null, 2));
1)

5.11 Serializing a Plan

Use the export method of a plan object to generate a serializable version of a plan that can be
saved to persistent storage for later use. The export method produces a JavaScript object
representation of a plan, which can be serialized to JSON using, for example, sson. stringfy.

For example, the following code generates a JSON serialization of aplan and logsit to the
console:

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient (my.connInfo) ;
const pb marklogic.planBuilder;

console.log(JSON.stringify(

pb.fromvView('main', 'employees')
.select (['EmployeeID', 'FirstName', 'LastName'])
.orderBy ('EmployeeID")
limit (3)
.export (),
null,2));

To subsequently use a serialized plan, convert it back into a JavaScript object and pass the object
{0 rows . query Of rows.queryAsStream. FOr exampl €

const marklogic = require('marklogic') ;
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

const pb marklogic.planBuilder;

// Read serialized plan from a file or other storage, then...
const serializedPlan = ...;

const thePlan = JSON.parse(serializedPlan) ;
db.rows.query (thePlan)
.then(function(rows) {
console.log (JSON.stringify(rows, null, 2));

MarkLogic 9—May, 2017 Node.js Application Developer’ s Guide—Page 203

MarkLogic Server Version MarkLogic 9—May, 2017 Using the Optic API for Relational

}) .catch(
function (error) {
console.log (JSON.stringify (error, null, 2));

13N,

Page 204—Node.js Application Developer’s Guide

MarkLogic Server

Working With Semantic Data

6.0 Working With Semantic Data

This chapter discusses the following topics related to using the Node.js Client API to load
semantic triples, manage semantics graphs, and query semantic data:

e Qverview of Common Semantics Tasks

* Loading Triples

e Querying Semantic Triples With SPARQL

e Example: SPAROL Query

¢ Managing Graphs

e Using SPARQL Update to Manage Graphs and Graph Data

* Applying Inferencing Rules to a SPARQL Query or Update

This chapter only covers details specific to using the Node.js Client API for semantic operations.
For more details, see the Semantics Developer’s Guide.

6.1 Overview of Common Semantics Tasks

The following table lists some common tasks related to Semantics, along with the method best
suited for the completing the task. For a complete list of interfaces, see the Node.js API Reference.

If you want to

Then use

Load semantic triplesinto a named graph or
the default graph without using SPARQL
Update.

DatabaseClient.graphs.write

For details, see“Loading Triples’ on
page 206.

Manage graphs or graph data with SPARQL
Update.

DatabaseClient.graphs.sparlUpdate

For details, see “Using SPARQL Update to
Manage Graphs and Graph Data” on
page 215.

Read a semantic graph from the database.

DatabaseClient.graphs.read

For details, see “Retrieving the Contents,
Metadata, or Permissions of a Graph” on
page 213.

Query semantic data with SPARQL

DatabaseClient.graphs.sparqgl

For details, see “Querying Semantic Triples
With SPARQL” on page 208

MarkLogic 9—May, 2017

Node.js Application Developer’ s Guide—Page 205

/jsdoc/graphs.html#write
/jsdoc/graphs.html#sparqlUpdate
/jsdoc/graphs.html#read
/jsdoc/graphs.html#sparql
/jsdoc/index.html

MarkLogic Server Version MarkLogic 9—May, 2017 Working With Semantic Data

To read a graph or perform a semantic query at fixed point in time, pass a Timestamp object asa
parameter to your call. For more details, see “Performing Point-in-Time Operations’ on page 25.

6.2 Loading Triples

ThiStOpiC COVEersusi NQg DatabaseClient .graphs.write Of DatabaseClient.graphs.writeStream {0
load semantic triples into the database in several formats. For alist of supported formats, see
Supported RDF Triple Formats in Semantics Developer’s Guide. You can also insert triples with a
SPARQL Update request; for details, see “Using SPARQL Update to Manage Graphs and Graph
Data’ on page 215.

Note: The collection lexicon must be enabled on your database when using the semantics
REST services or use the GRAPH '?g' construct in a SPARQL query.

Use patabasecClient .graphs.write t0 Upload ablock of triplesto MarkLogic Server in asingle
request. Use patabaseClient .graphs.writestream tO inCrementally stream alarge number of
triples to MarkL ogic Server; for details, see * Streaming Into the Database” on page 24. The input
semantic data can be expressed as a string, object, or readable Stream.

A call to DatabaseClient.graphs.write O DatabaseClient.graphs.writeStream always includes
at least aMIME type parameter indicating the format of the input triples. If you also include a
graph URI, thetriples are loaded into that graph. If you do not include agraph URI, thetriplesare
loaded into the default graph. That is, you can use one of these two forms, depending on the
destination graph:

// load into the default graph
db.graphs.write (mimeType, triples)

// load into a named graph
db.graphs.write (graphURI, mimeType, triples)

Optionally, you can pass a boolean repair flag. If present and set to true, MarkL ogic Server
attemptsto repair invalid input triples during ingestion. For example:

db.graphs.write (graphURI, true, mimeType, triples)

You can aso call the write functions with acall object instead of with positional parameters. The
call object has the following properties:

db.graphs.write ({

uri: graphURI, // optional, omit for default graph
contentType: mimeType, // required
data: triples, // required
repair: boolean // optional

P

The OUtpUt from acall to patabaseclient. graphs.write Of DatabaseClient.graphs.writeStream
isan object that indicates whether the triples were loaded into the default graph or a named graph.
If the destination is a named graph, the graph nameis returned in the graph property. For example:

Page 206—Node.js Application Developer’s Guide

/jsdoc/graphs.html#write
/jsdoc/graphs.html#writeStream

MarkLogic Server Working With Semantic Data
// result of loading into default graph
{ defaultGraph: true, graph: null }

// result of loading into a named graph
{ defaultGraph: false, graph: 'example-graph-uri' }

The following example useS patabaseclient .graphs.write t0 l0ad a set of triplesin RDF/JSON
format into the default graph.

const fs = require('fs');
const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;
const triples = {
'http://dbpedia.org/resource/Joyce Carol Oates' : ({
'http://dbpedia.org/property/influences' : [{
'type' : 'uri',
'value' : 'http://dbpedia.org/resource/Ernest Hemingway'
Y1
'http://dbpedia.org/ontology/influencedBy' : [{
'type' : 'uri',
'value' : 'http://dbpedia.org/resource/Ernest Hemingway'
bl
b
'http://dbpedia.org/resource/Death in the Afternoon' : ({
'http://dbpedia.org/ontology/author' : [{
'type' : 'uri',
'value' : 'http://dbpedia.org/resource/Ernest Hemingway'
}1o.
'http://dbpedia.org/property/author' : [{
'type' : 'uri',
'value' : 'http://dbpedia.org/resource/Ernest Hemingway'

1l
}
}i

db.graphs.write('application/rdf+json', triples).result (
function (response) {
if (response.defaultGraph) {
console.log('Loaded into default graph');
} else {
console.log('Loaded into graph ' + response.graph) ;
}i

b

function(error) { console.log(JSON.stringify (error)); }

MarkLogic 9—May, 2017 Node.js Application Developer’ s Guide—Page 207

MarkLogic Server Version MarkLogic 9—May, 2017 Working With Semantic Data

The following example useS patabaseClient .graphs.writestream 0 l0ad a set of triplesin
N-Quads format into a named graph (examp1e-graph). The triples are streamed from thefile
“input.ng” using areadable Stream and piped into thewritable Stream returned by
DatabaseClient.graphs.createWriteStream. The transaction is not committed until the al the
data from the input stream is transmitted.

const fs = require('fs');
const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient (my.connInfo) ;
// Load into a named graph using a write stream
const writer =
db.graphs.createWriteStream('example-graph', 'application/n-quads') ;
writer.result (
function (response) {
if (response.defaultGraph) {
console.log('Loaded triples into default graph');
} else {
console.log('Loaded triples into graph ' + response.graph) ;
}i
I
function(error) { console.log(JSON.stringify(error)); }
) ;

fs.createReadStream('input.nq') .pipe (writer) ;

To read a semantic graph, Use patabaseClient .graphs.read; fOr details, see “ Retrieving the
Contents, Metadata, or Permissions of a Graph” on page 213. To query semantic data, use
DatabaseClient.graphs.sparql, for details, see” Querylng Semantic Tl'lp|eSW|th SPARQL” on
page 208. For additional operations, see the Node.js API Reference.

6.3 Querying Semantic Triples With SPARQL

Usethepatabaseclient.graphs.spargl method to evaluate SPARQL queriesagainst triplesin the
database. For more details on using SPARQL queries with MarkL ogic, see the Semantics
Developer’s Guide.

Note: The collection lexicon must be enabled on your database when using the semantics
REST services or use the GRAPH '?g' construct in a SPARQL query.

You can evaluate aSPARQL query by cali NQg DatabaseClient.graphs.sparqgl. The query is not
sent to MarkLogic for evaluation until you call resuit (). You can invoke the sparq1 method in
the following ways:

// (1) db.graphs.sparqgl (responseContentType, query)
db.graphs.sparqgl (
'application/spargl-results+json',
'"SELECT ?s ?p WHERE {?s ?p Paris }')

// (2) db.graphs.sparql (responseContentType, defaultGraphUris, query)

Page 208—Node.js Application Developer’s Guide

/jsdoc/graphs.html#sparql
/jsdoc/graphs.html#sparql
/jsdoc/index.html

MarkLogic Server Working With Semantic Data

db.graphs.sparqgl (
'application/spargl-results+json',
'http://def/graphl', 'http://def/graph2',
'"SELECT ?s ?p WHERE {?s ?p Paris }')

// (3) db.graphs.spargl (callObject)
db.graphs.sparqgl ({

contentType: 'application/sparqgl-results+json',
query: 'SELECT ?s ?p WHERE {?s ?p Paris }°',
start: O,

length: 15

3]

You must include at least a SPARQL query string and a response content type (MIME type) in
your call. For acomplete list of the accepted response MIME types, see SPARQL Query Types and
Output Formats in the Semantics Developer’s Guide.

Passing in a call object enables you to configure attributes of your query such as named graph
URIs, an additional document query, result subset controls, and inference rulesets. For acomplete
list of the configuration properties, see graphs . sparql in the Node.js Client APl Reference.

Advanced users can supply a combinedguerybefinition asthe docQuery parameter of
db.graphs.spargl. A combined query enables advanced users finer control over the optional
document constraint query you can include in your query. For details, see * Searching with
Combined Query” on page 154.

6.4 Example: SPARQL Query

Thefollowing example evaluates a SPARQL query expressed as astring literal against the default
graph.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

const query = [
'"PREFIX foaf: <http://xmlns.com/foaf/0.1/>' ,
'"PREFIX ppl: <http://people.org/>"' ,
'SELECT ?personNamel' ,
'"WHERE {' ,
! ?personUril foaf:name ?personNamel ;' ,
! foaf:knows ppl:person3 .' ,
! ?personUril foaf:name ?personNamel .' ,
1 }I
i
db.graphs.sparql ('application/spargl-results+json', query.join('\n'")
) .result (function (result) {
console.log (JSON.stringify (result, null, 2));
}, function (error) {

MarkLogic 9—May, 2017 Node.js Application Developer’ s Guide—Page 209

/jsdoc/graphs.html#sparql

MarkLogic Server Version MarkLogic 9—May, 2017 Working With Semantic Data

console.log (JSON.stringify (error, null, 2));

s

Running the script produces output similar to the following, given triples that indicate Person 1
and Person 2 know Person 3.

{ "head": {
"vars": ["personNamel"]
}l

"results": {
"bindings": [
{
"personNamel": {
"type": "literal",
"wvalue": "Person 1",
"datatype": "http://www.w3.org/2001/XMLSchemaf#fstring"

}
I
{

"personNamel": {
"type": "literal",
"wvalue": "Person 2",
"datatype": "http://www.w3.org/2001/XMLSchemaf#fstring"

b}

For more examples, see test-basic/graphs.js INthenode-client-api project source directory.

6.5 Managing Graphs
This section covers the following graph management operations:

e Creating or Replacing a Graph

¢ Adding Triples to an Existing Graph

e Removing a Graph

* Retrieving the Contents, Metadata, or Permissions of a Graph

e Testing for Graph Existence

e Retrieving a List of Graphs

You can also use SPARQL Update to perform similar operations; for details, see “Using SPARQL
Update to Manage Graphs and Graph Data’ on page 215.

Note: Many graph management operations only apply to managed triples.

Page 210—Node.js Application Developer’s Guide

MarkLogic Server Working With Semantic Data

6.5.1 Creating or Replacing a Graph

YOu Can USe patabaseClient.graphs.write tO Create or replace a graph without using SPARQL
Update. For details and examples, see “Loading Triples” on page 206. You can also use
DatabaseClient .graphs.sparqglUpdate O Create or modlfy agraph; for details, see“Usi ng
SPARQL Update to Manage Graphs and Graph Data” on page 215.

If agraph does not exist when you writeto it, the graph is created. If the graph aready exists
when you write to it, the unmanaged triples in the graph are replaced with the new triples; thisis
equivalent to removing and recreating the graph.

Any unmanaged triples in the graph are unaffected by this operation.

For more details, see the Node.js Client APl Reference.

6.5.2 Adding Triples to an Existing Graph

Use patabaseClient .graphs.merge t0 add triplesto an existing graph without replacing the
current contents. For other update operations or finer control, use the

DatabaseClient .graphs.sparglUpdate {0 Interact with agraph usi ng SPARQL Update; for more
details, see “Using SPARQL Update to Manage Graphs and Graph Data” on page 215. To replace
the contents of agraph, use patabaseciient .graphs.write; fOr details, see “ Creating or Replacing
aGraph” on page 211.

You can invoke graphs . merge USiNg the following forms:

// Add triples to a named graph
db.graphs.merge (graphUri, contentType, tripleData)

// Add triples to the default graph
db.graphs.merge (null, contentType, tripleData)

// Add triples to a named graph or the default graph using a call object
db.graphs.merge ({uri: ..., contentType: ..., data: ..., ...})

Use the call object pattern to specify operation parameters such as permissions and a transaction
id; for details, see the Node.js Client API Reference. When you use the call object pattern, you can
omit the uri property or set it to null to merge triples into the default graph.

The following example uses the call object pattern to insert two new triplesinto the graph named
“MyGraph”, repairing the data as needed. In this example, the triples are passed asa string in
Turtle format. You can use other triple formats. You can also supply triple data as a stream,
buffer, or object instead of a string.

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient (my.connInfo) ;

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 211

/jsdoc/graphs.html#merge

MarkLogic Server Version MarkLogic 9—May, 2017 Working With Semantic Data

const triples = [
'@prefix pl: <http://example.org/marklogic/predicate/> .',
'@prefix p0: <http://example.org/marklogic/people/> .',
'p0:Julie Smith pl:livesIn \"Sterling\" .',
'p0:Jim_Smith pl:livesIn \"Bath\" .
1
db.graphs.merge ({
uri: 'MyGraph',
contentType: 'text/turtle',
data: triples.join('\n'),
repair: true
}) .result (
function (response) {
console.log (JSON.stringify (response)) ;

b

function(error) { console.log(JSON.stringify (error)); }
) ;
If the operation is successful, the script produces output similar to the following:

{"defaultGraph":false, "graph": "MyGraph", "graphType" : "named" }

For more details, see the Node.js Client APl Reference.

6.5.3 Removing a Graph

Use patabaseClient .graphs. remove t0 remove the triplesin a named graph or the default graph.
This operation only affects managed triples. If the graph includes unmanaged triples, the
embedded triples are unaffected and the graph will continue to exist after this operation.

You can also use a SPARQL Update request to remove a graph; for details, see “Using SPARQL
Update to Manage Graphs and Graph Data”’ on page 215.

If you call remove With Nno parameters, it removes the default graph. If you call remove with a
graph URI, it removes that named graph.

The following example removes al triplesin the graph with URI example-graph:

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

db.graphs.remove ('example-graph') .result (
function (response) { console.log(JSON.stringify (response)); }

) ;

// expected output:
// {"defaultGraph":false, "graph":"example-graph"}

Page 212—Node.js Application Developer’s Guide

/jsdoc/graphs.html#remove

MarkLogic Server Working With Semantic Data

To remove the default graph, omit the graph URI from your call. The following example removes
all triplesin the default graph. The value of the graph property in the responseisnui1 becausethis
isthe default graph. For a named graph, the grapn property contains the graph URI.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

db.graphs.remove () .result (
function (response) { console.log(JSON.stringify (response)); }

) ;

// expected output:
// {"defaultGraph":true, "graph":null}

For more details, see the Node.js Client API Reference.

6.5.4 Retrieving the Contents, Metadata, or Permissions of a Graph

UsepatabaseClient.graphs.read tO retrieve al the triplesin agraph, the graph metadata, or
graph permissions. You can use this method on the default graph or a named graph.

You can invoke graphs . read in the following forms:

// (1) Retrieve all triples in the default graph
db.graphs.read (responseContentType)

// (2) Retrieve all triples in a named graph
db.graphs.read (uri, responseContentType)

// (3) Retrieve triples, metadata, or permissions using a call object
db.graphs.read ({contentType: ..., ...})

When you use the call object pattern, the call object must include at least a contentType property.
To operate on anamed graph, you must also include auri property. If you omit the uri property
or set it to nu11, the operation applies to the default graph.

You can retrieve triples in several RDF formats; for alist of supported formats, see the API
reference for graphs.read.

The following example reads al triples from the graph named “MyGraph”. The triples are
returned in Turtle format.

const marklogic = require('marklogic') ;
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient (my.connInfo) ;

db.graphs.read ('MyGraph', 'text/turtle!')
.result (

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 213

/jsdoc/graphs.html#read

MarkLogic Server Version MarkLogic 9—May, 2017 Working With Semantic Data

function (response) {
for (const line of response.split('\n')) {
console.log(line) ;

}
}l
function(error) { console.log(JSON.stringify (error)); }
) ;

The call object pattern is required when retrieving graph metadata or permissions; a call object
can also be used to retrieve triples. Use the category property of the call object to specify what to
retrieve (content, metadata, or permissions).

The following example retrieves metadata about the graph named “MyGraph”:

db.graphs.read({
uri: 'MyGraph',
contentType: 'application/json',
category: 'metadata'

13N,

For more details, see the Node.js Client API Reference.

6.5.5 Testing for Graph Existence

Use patabaseclient .graphs.probe tO test for the existence of a graph. The following example
tests for the existence of a graph with the URI *http://marklogic.com/example/graph”.

db.graphs.probe ('http://marklogic.com/example/graph')
.result (
function (response) {
console.log (JSON.stringify (response)) ;
}I
function(error) { console.log(JSON.stringify(error)); }
) ;

If the graph exists, the call produces output similar to the following:

{ "contentType": null,
"contentLength": null,
"versionId": null,
"location": null,
"systemTime": null,
"exists": true,
"defaultGraph": false,
"graph": "http://marklogic.com/example/graph",
"graphType": "named"

Page 214—Node.js Application Developer’s Guide

/jsdoc/graphs.html#probe

MarkLogic Server Working With Semantic Data

If the graph does not exist, the graph produces output similar to the following:

{ "exists": false,
"defaultGraph": false,
"graph": "NoMyGraph",
"graphType": "named"

}
Probe for the existence of the default graph by omitting the graph URI.

6.5.6 Retrieving a List of Graphs

Use patabaseClient .graphs.list tO retrieve alist of graphs stored in MarkLogic. You must
specify an expected content MIME type for the response. You can retrieve the list as text/plain
Ol text/html.

The following exampleretrieves alist of available graph URI, one URI per line.

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient (my.connInfo) ;

db.graphs.list('text/uri-list')
.result (
function (response) {
for (const uri of response.split('\n')) {
console.log (uri) ;

}
b

function(error) { console.log(JSON.stringify (error)); }

) ;

If the database includes the default graph and a graph with the URI “MyGraph”, then the raw
response from the above operation is a string of the following form. Each URI is separated by a
newline ('\n').

"MyGraph\nhttp://marklogic.com/semantics#graphs\n"

For more details, see the Node.js Client API Reference.

6.6 Using SPARQL Update to Manage Graphs and Graph Data

You can use a SPARQL Update request to manage graphs and graph data from Node.js by calling
DatabaseClient.graphs.sparqlUpdate. YOU Can onIy use thisinterface to work with managed
triples. You can also manage graphs and graph data without using SPARQL Update; for details,
see “Managing Graphs’ on page 210 and “Loading Triples’ on page 206.

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 215

/jsdoc/graphs.html#list
/jsdoc/graphs.html#sparlUpdate

MarkLogic Server Version MarkLogic 9—May, 2017 Working With Semantic Data

You can call graphs.sparglUpdate in the followi ng ways.

// (1) pass only the SPARQL Update as a string or ReadableStream
db.graphs.sparglUpdate (updateOperation)

// (2) pass a call config object that includes the SPARQL Update
db.graphs.sparglUpdate ({data: updateOperation, ...})

The call object pattern enables you to control operations details, such as permissions, inferencing
rulesets, transaction control, and variable bindings. When you use a call object, the data property
holds your SPARQL Update request string or stream.

The following example creates a graph, passing in only a SPARQL Update request.

const marklogic = require('marklogic') ;
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient (my.connInfo) ;

db.graphs.sparglUpdate (
'CREATE GRAPH <http://marklogic.com/semantics/tutorial/update> ;'
) .result (
function (response) {
console.log('Graph created.') ;
console.log (JSON.stringify (response)) ;
I

function(error) { console.log(JSON.stringify (error)); }

)
Running this script produces the following outpuit:

Graph created.
{"defaultGraph":false, "graph":null, "graphType":"inline"}

The following example uses a call object to create a graph and insert triples. The call object
defines permissions on the graph, and defines variable bindings used in the SPARQL Update
request.

const graphURI = 'http://marklogic.com/sparglupd/example’;
db.graphs.sparglUpdate ({
data:

'CREATE GRAPH <' + graphURI + 's> ;
'INSERT {GRAPH <' + graphURI + '>
'WHERE {GRAPH <' + graphURI + '>
"{?s ?p ?0. filter (?p = ?b2)
bindings:
bl: 'bindvall',
b2: {value: 'bindval2', type: 'string'}
b
permissions: [
{ 'role-name': 'app-user', capabilities: ['read']},

Page 216—Node.js Application Developer’s Guide

MarkLogic Server Working With Semantic Data

{ 'role-name': 'admin', capabilities: ['read', 'update'l]},
]
H

For acomplete list of configuration properties usable in the call object, see graphs. sparqlupdate
in the Node.js Client API Reference.

For more details on using SPARQL Update with MarkL ogic, see SPARQL Update in the Semantics
Developer’s Guide.

6.7 Applying Inferencing Rules to a SPARQL Query or Update

You can specify one or more inferencing rulesets to apply to a SPARQL query or SPARQL
Update request. Inference rules enable you to “discover” new facts about your data at query or
update time.

SPARQL inference is discussed in detail in Inference in the Semantics Developer’s Guide. This
section only covers usage details specific to the Node.js Client API.

The following topics are covered:

¢ Basic Inference Ruleset Usage

e Example: SPAROQL Query With Inference Ruleset

e Example: SPAROL Update With Inference Rulesets

e Controlling the Default Database Ruleset

6.7.1 Basic Inference Ruleset Usage

To include one or more inference rulesets when using graphs . sparql Of graphs. sparglUpdate,
pass a call configuration object that includes a rulesets property.

For example, to specify one or more rulesets with graphs . sparg1, construct an input call object
that includes at least the following properties.

db.graphs.spargl ({'content-type': ..., query: ..., rulesets: ...})

To specify one or more rulesets with graphs . sparglupdate, construct an input call object that
includes at |east the following properties:

db.graphs.sparglUpdate ({data: ..., rulesets: ...})

The value of the rulesets property can be asingle string or an array of strings. Each string in
rulesets Must be either the name of abuilt-in ruleset file or the URI of a custom ruleset installed
in the Schemas database.

For more details on built-in rulesets, see Rulesets in the Semantics Devel oper’s Guide.

MarkLogic 9—May, 2017 Node.js Application Developer’ s Guide—Page 217

/jsdoc/graphs.html#sparqlUpdate

MarkLogic Server Version MarkLogic 9—May, 2017 Working With Semantic Data

For details on creating custom rulesets, see Creating a New Ruleset in the Semantics Developer’s
Guide. You can install custom rulesets in the Schemas database using standard document
operations, such aspatabaseclient.documents.write.

To learn more about semantic inferencing with MarkL ogic, see Inference in the Semantics
Developer’s Guide.

6.7.2 Example: SPARQL Query With Inference Ruleset

Thefollowing example applies the built-in subpropertyos . rules ruleset to aquery. Thisruleset is
automatically installed in the markrocrc 1nsTaLL DIR/config directory when you install
MarkLogic.

db.graphs.sparqgl ({
contentType: 'application/spargl-results+json',
query: 'SELECT ?s ?p WHERE {?s ?p Paris }',
rulesets: 'subPropertyOf.rules'

3]

6.7.3 Example: SPARQL Update With Inference Rulesets

The following example applies the built-in sameas . rules ruleset and a custom ruleset installed in
the Schemas database with the URI /my/rules/custom.rules t0 @ SPARQL Update request:

const update = [
PREFIX exp: <http://example.org/marklogic/peoples>
PREFIX pre: <http://example.org/marklogic/predicates>
INSERT DATA
GRAPH <MyGraph>{
exp:John Smith pre:livesIn "London"
exp:Jane Smith pre:livesIn "London"
exp:Jack Smith pre:livesIn "Glasgow"

)
1;

db.graphs.sparglUpdate ({

data: update.join('\n'),

rulesets: ['sameAs.rules', '/my/rules/custom.rules']
3]

6.7.4 Controlling the Default Database Ruleset

Every database has an implicit, default inferencing ruleset. You can customize the default ruleset
for adatabase, as described in Using the Admin Ul to Specify a Default Ruleset for a Database in the
Semantics Devel oper’s Guide.

The database default ruleset is normally applied to all SPARQL query and update operations.
However, you can control whether or not to include the default ruleset for the database in a query
or update operation by using the defaultrulesets property of the input call object.

Page 218—Node.js Application Developer’s Guide

MarkLogic Server Working With Semantic Data

Set defaultrulesets t0 “exclude’ to exclude the database default ruleset from inferencing. Set
defaultrulesets t0 “include’ to include the database default ruleset. If you do not explicitly set
defaultRulesets, the database default ruleset isincluded in the operation.

The following example excludes the default ruleset from a query operation:

db.graphs.spargl ({

contentType: 'application/spargl-results+json',
query: 'SELECT ?s ?p WHERE {?s ?p Paris }°',
rulesets: 'subPropertyOf.rules',

defaultRuleSets: 'exclude'

3]

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 219

MarkLogic Server Version MarkLogic 9—May, 2017 Working With Semantic Data

Page 220—Node.js Application Developer’s Guide

MarkLogic Server Managing Transactions

7.0 Managing Transactions

This chapter covers the following topics related to transaction management using the Node.js
Client API.

e Transaction Overview

e Creating a Transaction

e Associating a Transaction with an Operation

e Committing a Transaction

¢ Rolling Back a Transaction

e Example: Using Promises With a Multi-Statement Transaction

e Checking Transaction Status

e Managing Transactions When Using a Load Balancer

7.1 Transaction Overview

This section gives a brief introduction to the MarkL ogic Server transaction model asit appliesto
the Node.js Client API. For afull discussion of the MarkL ogic transaction model, see
Understanding Transactions in MarkLogic Server in the Application Developer’s Guide..

By default, each operation on the database is equivalent to a single statement transaction. That is,
the operation is evaluated as single transaction. For example, when you update one or more
documents in the database using patabaseclient.documents.write, the server-side handler
effectively creates a new transaction, updates the document(s), commits the transaction, and then
sends back aresponse. The updated documents are visible in the database and available to other
operations once the write operation compl etes successfully. If an error occursin during the update
of one of the documents, the entire operation fails.

The Node.js Client API also enables your application to take direct control of transaction
boundaries so that multiple operations can be evaluated in the same transaction context. Thisis
equivalent to the multi-statement transactions described in Multi-Statement Transaction Concept
Summary in the Application Developer’s Guide.

Using multi-statement transactions, you can execute several operations and commit them asa
single transaction, ensuring either all or none of the related updates appear in the database. The
document manipulation and search capabilities of the Node.js Client API support multi-statement
transactions through the patabaseciient . transactions interface, plusthe ability to passa
transaction object to most operations.

To use multi-statement transactions:

1. Create a multi-statement transaction usi Ng DatabaseClient.transactions.open. This
operation returns a transaction object. See “ Creating a Transaction” on page 222.

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 221

MarkLogic Server Version MarkLogic 9—May, 2017 Managing Transactions

2. Perform one or more operations in the context of the transaction by including the
transaction object for the txia parameter. See “ Associating a Transaction with an
Operation” on page 223.

3. Commit the transaction usi NQ DatabaseClient.transactions.commit, OF rollback the
transaction using patabaseClient . transactions.rollback. See“Committing a
Transaction” on page 224 and “Rolling Back a Transaction” on page 224.

If your application interacts with MarkL ogic Server through aload balancer, you might need to
include a Hostld cookie in your requests to preserve session affinity. For details, see “Managing
Transactions When Using a Load Balancer” on page 225.

When you explicitly create a transaction, you must explicitly commit it or roll it back. Failure to
do so leaves the transaction open until the request or transaction timeout expires. Open
transactions can hold locks and consume system resources, so it isimportant to close transactions
when they are complete.

If the request or transaction timeout expires before a transaction is committed, the transaction is
automatically rolled back and all updates are discarded. Configure the request timeout of the App
Server using the Admin Ul. Configure the timeout of asingle transaction by setting the timerimit
request parameter during transaction creation.

7.2 Creating a Transaction
Use patabaseClient . transactions.open tO Create a multi-statement transaction. For example:

const txObj = null;
db.transactions.open() .result ()

.then (function (response) {
tx0Obj = response

1)

Thiscall returns atransaction object that encapsul ates state needed to preserve host affinity across
the transaction, even in the presence of aload balancer.

Multi-statement transactions must be explicitly committed or rolled back. Failure to commit or
rollback the transaction before the request timeout expires causes an automatic rollback. You can
assign a shorter time limit to a transaction by supplying atime limit (in seconds) t0 open: For
example, the following sets the time limit to t1imit and returns a stateful transaction object:

db.transactions.open ({timeLimit: tlimit})

You should not depend on the time limit rolling back your transaction. The limit isonly afailsafe.
Instead, you should explicitly rollback your transaction when appropriate.

Page 222—Node.js Application Developer’s Guide

MarkLogic Server Managing Transactions

You can aso provide a symbolic name when you create a transaction. You must still use the
transaction object (or id) in all operations that accept a transaction parameter, but the name can be
used with patabaseClient.transactions.read and will show up in the Admin Interface and other
transaction status displays.

For example, the following call provides both atime limit and a name, using an input call object
with appropriate property names:

db.transactions.open ({
timeLimit: 45,
transactionName: 'mySpecialTxn'

13N,

7.3 Associating a Transaction with an Operation

Once you create atransaction Using patabaseClient . transactions.open, YyOU Can pass the
resulting transaction object (or id) to various operations to perform the operation in the context of
a specific transaction.

For example, to update a document in the context of a specific multi-statement transaction,
include atransaction id in the patabaseclient . documents.write Cal:

const txnObj = null;
db.transactions.open (true) .result ()
.then (function (response) {

txnObj = response;
return db.documents.write ({
uri: '/my/documents.json',

content: {some: 'content'},
contentType: 'application/json”,
txid: txnObj

}) .result;

Updates associated with a multi-statement transaction are visible to subsequent operations using
the same transaction, but they are not visible outside the transaction until the transaction is
committed.

You can have multiple transactions open at the same time, and/or other users can be using the
same database concurrently. To prevent conflicts, whenever an update occurs in atransaction, the
document is locked until the transaction either commits or rolls back. Therefore, you should
commit or roll back your transactions as soon as possible to avoid resource contention.

Note: The database context in which you perform an operation must be the same as the

database context in which the transaction was created. Consistency is assured if
you're only using asingle patabaseciient configuration.

MarkLogic 9—May, 2017 Node.js Application Developer’ s Guide—Page 223

MarkLogic Server Version MarkLogic 9—May, 2017 Managing Transactions

You can intermix operations that are not part of a transaction with operations that are. Any
operation without a txia parameter or call object property is not part of a multi-statement
transaction. However, you usually group operations in the same transaction together so you can
commit or roll back the transaction in atimely fashion.

7.4 Committing a Transaction

UsSe patabaseClient . transactions.commit 10 cOmmit a multi-statement transaction. Supply the
transaction object (or id) from patabaseclient.transactions.open iNYOUr commit call. For
example:

db.transactions.commit (transactionObj) ;

Once atransaction is committed, it cannot be rolled back, and the transaction object (or id) can no
longer be used. To perform another transaction, obtain a new transaction by calling open.

Note: The database context in which you commit or roll back a transaction must be the
same as the database context in which the transaction was created. Consistency is
assured if you're only using asingle patabaseciient configuration.

7.5 Rolling Back a Transaction
In case of an error or exception, you can roll back an open transaction using

DatabaseClient.transactions.rollback.

db.transactions.rollback (transactionObj) ;

Calling ro11vack cancels the remainder of the transactions and reverts the database to its state
prior to the transaction start. It is better to explicitly roll back atransaction than wait for atimeout.

You must have the rest-writer OF rest-admin role or equivaent privilegesto roll back a
transaction.

Note: The database context in which you commit or roll back a transaction must be the
same as the database context in which the transaction was created. Consistency is
assured if you're only using asingle patabaseciient configuration.

When working with multi-statement transactions, you should ensure your transaction isrolled
back expliciting in the event of an error by including a catch clause that calls ro11back. For
example:

const txnObj = null;
db.transactions.open (true) .result () .
then (function (response) {
txnObj = response;
return db.documents.read({uris: o0ldUri, txid: txnObj}) .result();

1.

then(...).

Page 224—Node.js Application Developer’s Guide

MarkLogic Server Managing Transactions

catch(function() {
db.transactions.rollback (txnObj) ;

R

7.6 Example: Using Promises With a Multi-Statement Transaction

The following function demonstrates how you can use the Promise pattern to synchronize
operations within a multi-statement transaction. To learn more about Promises, see “ Promise
Result Handling Pattern” on page 22.

This function “moves’ a document by reading the contents from the initial URI, inserting the
contents into the database with the new URI, and then removing the original document. The
function initially creates a transaction, then executes the read, write, and remove operationsin the
context of that transaction. When these operations complete, the transaction is committed. If an
error occurs, the transaction is rolled back.

function transactionalMove (0ldUri, newUri)
const txnObj = null;
db.transactions.open (true) .result () .

then (function (response) {
txnObj = response;
return db.documents.read ({uris: o0ldUri, txid: txnObj}).result();
b .

then (function (documents) {
documents [0] .uri = newUri;
return db.documents.write (

{documents: documents, txid: txnObj}).result();

1.

then (function (response) {
return db.documents.remove ({uri: o0ldUri, txid: txnObj}).result();
1.

then (function (response) {
return db.transactions.commit (txnObj) .result () ;
1.

catch (function (error) {
console.log ('ERROR: ' + JSON.stringify(error)) ;
db.transactions.rollback (txnObj) ;

)

7.7 Checking Transaction Status
UsSe patabaseClient . transactions.read t0 query the status of atransaction. For example:

db.transactions.read (transactionObj)

7.8 Managing Transactions When Using a Load Balancer

This section applies only to client applications that use multi-statement transactions and interact
with aMarkLogic Server cluster through aload balancer.

MarkLogic 9—May, 2017 Node.js Application Developer’ s Guide—Page 225

MarkLogic Server Version MarkLogic 9—May, 2017 Managing Transactions

When you use aload balancer, it is possible for requests from your application to MarkLogic
Server to be routed to different hosts, even within the same session. This has no effect on most
interactions with MarkLogic Server, but operations that are part of the same multi-statement
transaction need to be routed to the same host within your MarkLogic cluster. This consistent
routing through aload balancer is called session affinity.

Most load balancers provide a mechanism that supports session affinity. This usually takes the
form of a session cookie that originates on the load balancer. The client acquires the cookie from
the load balancer, and passesit on any requests that belong to the session. The exact steps required
to configure aload balancer to generate session cookies depends on the load balancer. Consult
your load balancer documentation for details.

To the load balancer, a session corresponds to a browser session, as defined in RFC 2109
(nttps://www.ietf.org/rfc/rfc2109.txt). However, in the context of a Node.js Client API application
using multi-statement transactions, a session corresponds to a single multi-statement transaction.

Note: To properly preserve session affinity, you must call
DatabaseClient .transactions.open IN @away that returns atransaction object,
rather than asimple string transaction id. That is, you must ensure the withstate
parameter (or call object property) is not explicitly set to false. The
transactions.open function returns an object by default.

The Node.js Client API leverages a session cookie to preserve host affinity across operationsin a
multi-statement transaction in the following way. This process is transparent to your application;
the information is provided to illustrate the expected |oad balancer behavior.

1 When you create a transaction using patabaseClient.transactions.open, the Node,js
Client API receives atransaction id from MarkLogic and, if the load balancer is properly
configured, a session cookie from the load balancer. Thisinformation is cached in the
returned Transaction Obj ect.

2. Each time you perform a Node.js APl operation that includes a Transaction Object, the
Node.js Client APl attaches the transaction id and the session cookie to the request(s) it
sends to MarkL ogic. The session cookie causes the load balancer to route the request to
the same host in your MarkL ogic cluster that created the transaction.

3. When MarkL ogic receives arequest, it discards the session cookie (if present), but uses
the transaction id to ensure the operation is part of the requested transaction. When
MarkL ogic responds, the load balancer again adds a session cookie, which the Node.js
Client API caches on the Transaction Object.

4, When you commit or roll back atransaction, any cookies returned by the load balancer are
discarded since the transaction is no longer valid. This effectively ends the session from
the load balancer’s perspective because the Node.js Client API will no longer pass the
session cookie around.

Page 226—Node.js Application Developer’s Guide

https://www.ietf.org/rfc/rfc2109.txt

MarkLogic Server Managing Transactions

Any Node,js Client API operation that does not include a transaction 0bject will not include a
session cookie (or transaction id) in the request to MarkL ogic, so the load balancer isfreeto route
the request to any host in your MarkL ogic cluster.

MarkLogic 9—May, 2017 Node.js Application Developer’ s Guide—Page 227

MarkLogic Server Version MarkLogic 9—May, 2017 Managing Transactions

Page 228—Node.js Application Developer’s Guide

MarkLogic Server Extensions, Transformations, and Server-Side Code

8.0

Extensions, Transformations, and Server-Side Code
Execution

This chapter discusses the following topics related to creating and using extensions and
transformations, as well as executing arbitrary blocks of code and library modules on MarkL ogic
Server using the Node.js Client API:

8.1

Ways to Extend and Customize the API

Working with Resource Service Extensions

Working with Content Transformations

Error Reporting in Extensions and Transformations

Evaluating Ad-Hoc Code and Server-Side Modules

Managing Assets in the Modules Database

Ways to Extend and Customize the API

You can extend and customize the behavior of the Node.js Client API through specific extension
points or by initiating execution of arbitrary server-side code from your application.

Content transformations: A user-defined transform function can be applied when
documents are written to the database or read from the database; for details, see “Working
with Content Transformations’ on page 239. Y ou can aso define custom replacement
content generators for the patch feature; for details, see “ Constructing Replacement Data
on MarkLogic Server” on page 107.

Search result transformations. A user-defined transform function can be applied to the
search result summary or matching documents when querying documents and values. For
details, see “Working with Content Transformations” on page 239.

Resource service extensions: Define your own REST endpoints, accessible from Node.js
using the patabaseciient. resources interface. Resource service extensions are covered in
detail in this chapter. To get started, see “Working with Content Transformations’ on
page 239.

Ad-hoc query execution: Send an arbitrary block of XQuery or JavaScript code to
MarkLogic Server for evaluation. For details, see “ Evaluating Ad-Hoc Code and
Server-Side Modules’ on page 256.

Server-side module eval uation: Evaluate user-defined X Query or JavaScript modul es after
installing them on MarkL ogic Server. For details, see “ Evaluating Ad-Hoc Code and
Server-Side Modules’ on page 256

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 229

MarkLogic Server Version MarkLogic 9—May, 2017 Extensions, Transformations, and

In addition to these features, the API includes other hooks for server-side user-defined code, such
as custom constraint parsers, facet and snippet generators, and document patch content
generators. All such code, along with resource service extensions and transforms, must be
installed in the modul es database associated with your REST API instance before you can use
them. The Node.js API includes interfaces for installing these special-purpose assets, aswell as
any dependent libraries and other assets, through the patabaseciient.config interfaces. For
details, see “ Overview of Asset Management” on page 263.

8.2 Working with Resource Service Extensions

This section coversthe concept of aresource service extension and how to create, install, use, and
mange them. The following topics are covered:

* What is a Resource Service Extension?

e Creating a Resource Service Extension

¢ |Installing a Resource Service Extension

e Using a Resource Service Extension

e Example: Installing and Using a Resource Service Extension

* Retrieving the Implementation of a Resource Service Extension

* Discovering Resource Service Extensions

e Deleting Resource Service Extensions

8.2.1 What is a Resource Service Extension?

Resource service extensions extend the Node.js Client API by creating a RESTful interface to
XQuery and server-side JavaScript modules. The server-side extension implements functions to
handle GET, PUT, POST, and DELETE HTTP requests received on the extension by the REST
Client API. The Node.js Client API enables you to invoke these methods via the
DatabaseClient .resources interface. You can wrap your own Node.js interface around the
DatabaseClient.resources OPerationsto expose the service in a domain-specific way.

For example, you can create adictionary program resource extension that 10oks up words, checks
spelling, and makes suggestions for unknown words on MarkLogic Server. The individual
operations an application programmer may call, for example, 1ocokupwords (), spellcheck (), and
so on, are the domain-specific services that expose the resource extension.

The following are the basic steps to create and use a resource extension using the Node.js Client
API:

1. Create an XQuery or JavaScript module that implements the services for the resource.

2. Install the resource service extension implementation in the modul es database associated
with the REST API instance usi Ng DatabaseClient.config.resources.write.

Page 230—Node.js Application Developer’s Guide

MarkLogic Server Extensions, Transformations, and Server-Side Code

3. Access the resource extension methods using patabaseclient . resources Operations such

AdSDatabaseClient.resources.get.

The patabaseclient.config.resources interface also supports dynamic discovery of installed
extensions. When you install an extension, you can specify metadata, including method parameter
name and type information to make it easier to use dynamically discovered extensions. The
metadata is purely informational .

If your extension depends on other modules or assets, you can install them in the modules
database using patabaseclient .extlibs interface. For details, see “Managing Assetsin the
Modules Database” on page 263.

For a complete example, see “Example: Installing and Using a Resource Service Extension” on
page 234.

8.2.2 Creating a Resource Service Extension

You can implement a resource service Extension using server-side JavaScript or XQuery. The
interface is shared across multiple MarkL ogic client APIs, so you can use the same extensions
with the Java Client API, Node.js Client API, and the REST Client API.

You can install an extension with one client APl and use it with all them. For example, you can
use aresource service extension installed using the REST Client API with an application
implemented using the Node.js Client API and the Java Client API.

For the interface definition, authoring guidelines, and example implementations, see Extending the
REST API in the REST Application Developer’s Guide.

8.2.3 Installing a Resource Service Extension

Before you can use aresource extension, you must install the implementation on MarkL ogic
Server. You must have the rest-adamin role or equivalent privilegesto install aresource service
extension.

Use the following procedure to install your extension implementation:

1 If your resource extension depends on additional library modules, install these dependent
libraries on MarkLogic Server. For details, see “Managing Assets in the Modules
Database’ on page 263.

2. Optionally, define metadata for your extension that describes attributes such as provider,
description, and version.

3. Call patabaseclient.config.resources.write t0install your extension into the modules
database of the REST API instance associated with your patabaseciient Object. Your call
must provide a name for the extension, the implementation language (XQuery or
JavaScript), and the implementation source code. You may include optional metadata.

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 231

MarkLogic Server Version MarkLogic 9—May, 2017 Extensions, Transformations, and

Note: For an XQuery extension, the extension must be installed under the same name as
the name in the extension modul e namespace declaration. For example, an XQuery
extension with the following module namespace must be installed as “example”.

xquery version "1.0-ml";
module namespace yourNSPrefix =
"http://marklogic.com/rest-api/resource/example";

For example, the following code installs a JavaScript extension under the name “js-example”,
without metadata. The extension implementation is streamed from the file js-example.sjs.

const fs = require('fs');

const marklogic = require('marklogic');

const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient (my.connInfo) ;

db.config.resources.write (
'js-example', 'javascript',
fs.createReadStream('./js-example.sjs')
) .result (function (response) {
console.log('Installed extension: ' + response.name) ;
}, function(error) ({
console.log (JSON.stringify (error, null, 2));

3K

The following code installs the same extension with afull set of metadata. You need not provide
all metadata properties. You must include name, format, and source.

const fs = require('fs');

const marklogic = require('marklogic');

const my require ('./my-connection.js');

const db = marklogic.createDatabaseClient (my.connInfo) ;

db.config.resources.write ({
name: 'Jjs-example',
format: 'javascript',
source: fs.createReadStream('./js-example.sjs'),
// everything below this is optional metadata
title: 'Example JavaScript Extension',
description: 'An example of implementing resource extensions in SJS',
provider: 'MarkLogic',
version: 1.0
}) .result (function (response) {
console.log('Installed extension: ' + response.name) ;
}, function (error) {
console.log (JSON.stringify(error, null, 2));

1

For a complete example, see “Example: Installing and Using a Resource Service Extension” on
page 234.

Page 232—Node.js Application Developer’s Guide

MarkLogic Server Extensions, Transformations, and Server-Side Code

8.2.4 Using a Resource Service Extension

To invoke the HT TP methods of a resource service extension, use the patabaseclient . resources
interface. The interface has a function corresponding to each HTTP verb: get, put, post, and
remove (DELETE). For example, you can invoke the get method of your extension with no
parameters as follows:

db.resources.get ('js-example')

You can also pass in an object that encapsul ates parameters expected by the implementation, and
atransaction id.

The result of the invocation depends on the method. For example, the GET extension interface
enables you return one or more documents, so the result of calling resources.get iSan object
whose stream function can be used to incrementally process the documents in the response.

The following example invokes the get function of the resource service extension from Example:
JavaScript Resource Service Extension in the REST Application Developer’s Guide. Three
parameters are passed to the implementation, named “a’, “b”, and “c”. The GET implementation
of this extension simply echos back the supplied parameters as a JSON document, one document
per parameter.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

db.resources.get ({
name: 'js-example',
params: { a: 1, b: 2, c: 'three'}
}) .result (function (response) {
console.log(response) ;
}, function (error) {
console.log (JSON.stringify (error, null, 2));

I3F;

If the call is successful, the output is similar to the following. The value of the content property in
each array item is a document returned by the extensions GET method implementation.

[{ contentType: 'application/json',

format: 'json',

contentLength: '29',

content: { name: 'c', value: 'three' } },
{ contentType: 'application/json',

format: 'json',

contentLength: '25',

content: { name: 'b', value: '2' } },
{ contentType: 'application/json',

format: 'json',

contentLength: '25',

content: { name: 'a', value: '1' } }]

MarkLogic 9—May, 2017 Node.js Application Developer’ s Guide—Page 233

MarkLogic Server Version MarkLogic 9—May, 2017 Extensions, Transformations, and

For details, see “Example: Installing and Using a Resource Service Extension” on page 234.

8.2.5 Example: Installing and Using a Resource Service Extension

This example demonstrates how to install and exercise the GET and PUT methods of the
JavaScript extension from Example: JavaScript Resource Service Extension in the REST Application
Developer’s Guide. The extension is usable with any of the MarkL ogic client APIs (Node.js, Java,
REST).

Use the following procedure to install the extension and exercise the GET method. The GET
method of this extension accepts one or more caller-defined parameters and returns a JSON
document of the following form for each parameter passed in: { "name": param-name, "value":

param-value }.

1. Copy the extension implementation to afile named js-example.sjs. For the
implementation, see JavaScript Extension Implementation in the REST Application
Developer’s Guide.

2. Install the extension under the name “js-example” by running the following script. You
must have the rest-admin role or equivalent privileges to install an extension. For details,
see “Installing a Resource Service Extension” on page 231.

const fs = require('fs');
const marklogic = require('marklogic') ;
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient (my.connInfo) ;

db.config.resources.write ({
name: 'js-example',
format: 'javascript',
source: fs.createReadStream('./js-example.sjs'),
// everything below this is optional metadata
title: 'Example JavaScript Extension',
description: 'An example of implementing resource extensions in SJS',
provider: 'MarkLogic',
version: 1.0
}) .result (function (response) {
console.log('Installed extension: ' + response.name) ;
}, function (error) {
console.log (JSON.stringify (error, null, 2));

s

3. Optionally, retrieve metadata about the extension using the following script. For details,
see “ Discovering Resource Service Extensions’ on page 237.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

db.config.resources.read('js-example') .result (

Page 234—Node.js Application Developer’s Guide

MarkLogic Server

function (response)

Extensions, Transformations, and Server-Side Code

console.log(response) ;

b

function (error)

console.log (JSON.stringify (error,

3N,

null, 2));

4, Exercise the GET method of the extension by running the following script. For details, see
“Using a Resource Service Extension” on page 233.

const marklogic =
const my =
const db =

db.resources.get ({
name: 'js-example',
params: { a: 1, b:

2, C:

require ('marklogic!') ;
require ('./my-connection.js');
marklogic.createDatabaseClient (my.connInfo) ;

"three'}

}) .result (function (response) {
console.log(response) ;

}, function (error) {

console.log (JSON.stringify (error,

I3F;

null, 2));

The GET method generates a JSON document of the form { name: pName, value:
pvalue} for each parameter passed in. Thus, the invocation above should generate three
documents. The expected output from invoking the GET method is similar to the

following:

[{ contentType:

'application/json',

format: 'json',
contentLength: '29',
content: { name: 'c', value: 'three' } },
{ contentType: 'application/json',
format: 'json',
contentLength: '25',
content: { name: 'b', value: '2' } },
{ contentType: 'application/json',
format: 'json',
contentLength: '25',
content: { name: 'a', value: '1' } }]
5. Exercise the PUT method of the extension by running the following script.

const marklogic =
const my =
const db =

db.resources.put ({

name: 'Jjs-example',
params:

basename: ['one',
documents: [

MarkLogic 9—May, 2017

require ('marklogic!') ;
require ('./my-connection.js');
marklogic.createDatabaseClient (my.connInfo) ;

"two'l },

Node.js Application Developer’ s Guide—Page 235

MarkLogic Server Version MarkLogic 9—May, 2017 Extensions, Transformations, and

{ contentType: 'application/json',
content: {keyl:'valuel'} },
{ contentType: 'application/json',
content: {key2:'value2'} },
]
}) .result (function (response) {
console.log (JSON.stringify (response, null, 2));
}, function (error) {
console.log (JSON.stringify (error, null, 2));

13N,

The PUT method of this extensions accepts JSON and XML documents asinput. For each
input JISON document, awritten property is added to the document beforeit isinserted
into the database. XML documents are inserted into the database unchanged. The
document URIs are derived from a*basename” parameter supplied by the caller. The
following is the expected output from invoking PUT method.

{ "written": [
"/extensions/one.json",
"/extensions/two.json"

1}

If you examine the two documents created by the PUT exercise, you can see that awritten
property has been added. For example, /extensions/one.json has contents similar to the following
(the timestamp value will vary):

{

"keyl": "valuel",
"written": "08:35:54-08:00"

}

To report errors from your implementation to the client, you must use the convention described in
“Error Reporting in Extensions and Transformations’” on page 253. For example, if you do not
pass a“basename” parameter value for each input document, the extension reports an error in the
following way:

if (docs.count > basenames.length) {
returnErrToClient (400, 'Bad Request',
'Insufficient number of uri basenames. Expected ' +
docs.count + ' got ' + basenames.length + '.');
// unreachable - control does not return from fn.error

}

The error reaches the client application in the following form:

{

"message": "js-example: response with invalid 400 status",
"statusCode": 400,
"body": |

"errorResponse": {

"statusCode": 400,

Page 236—Node.js Application Developer’s Guide

MarkLogic Server Extensions, Transformations, and Server-Side Code

"status": "Bad Request",
"messageCode": "RESTAPI-SRVEXERR",
"message": "Insufficient number of uri basenames. Expected 2 got 1."

}
}
}

8.2.6 Retrieving the Implementation of a Resource Service Extension

Use patabaseClient.config. resources.read tO retrieve the implementation of aresource service
extension. You must have the rest-admin role or equivalent privileges to use this interface.

For example, the following call retrieves the implementation of the resource service extension
installed as “js-example”:

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

db.config.resources.read('js-example') .result (
function (response) {
console.log(response) ;

}l
function (error) {
console.log (JSON.stringify (error, null, 2));

3N,

8.2.7 Discovering Resource Service Extensions

YOu can USe patabaseClient.config.resources.list 1O retrieve the name, interface, and other
metadata about installed resource extensions. You must have the rest-reader role or equivalent
privileges to use thisinterface.

The amount of information available about a given extension depends on the amount of metadata
provided during installation of the extension. The name and methods are always available. Details
such as provider, version, and method parameter information are optional.

By default, this request rebuilds the extension metadata each time it is called to ensure the
metadata is up to date.

The following example retrieves data about the installed extensions:

const marklogic = require('marklogic') ;
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

db.config.resources.list () .result (
function (response) {
console.log('Installed extensions: ');
console.log (JSON.stringify (response, null, 2));
}, function (error) {

MarkLogic 9—May, 2017 Node.js Application Developer’ s Guide—Page 237

MarkLogic Server Version MarkLogic 9—May, 2017 Extensions, Transformations, and

console.log (JSON.stringify (error, null, 2));

s

If you installed a single extension named “js-example” with metadata, as shown in “Installing a
Resource Service Extension” on page 231, then the output of the above script is similar to the
following.

{ "resources": ({
"resource": [{
"name": "js-example",
"source-format": "javascript",
"provider-name": "MarkLogic",
"title": "Example JavaScript Extension",
"version": "1",
"description": "An example of implementing resource extensions in SJS",
"methods": {
"method": [
{ "method-name": "get" },
{ "method-name": "post" },
{ "method-name": "put" },
{ "method-name": "delete" }
]
b
"resource-source": "/vl/resources/js-example"

8.2.8 Deleting Resource Service Extensions

UseDpatabaseClient.config.resources.remove tO FEMOVE aresource service extension. You must
supply the same name that you used in installing the extension. To remove an extension, you must
have the rest -adamin role or the equivalent privileges.

Deleting an extension is an idempotent operations. That is, you will receive the same response
whether the named extension exists or not.

The following code snippet removes the resource service extension named “js-example’.

const marklogic = require('marklogic') ;
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

db.config.resources.remove ('js-example') .result (
function (response) {
console.log('Removed extension: ', response.name) ;

.
function (error)
console.log (JSON.stringify(error, null, 2));

3K

Page 238—Node.js Application Developer’s Guide

MarkLogic Server Extensions, Transformations, and Server-Side Code

8.3 Working with Content Transformations

This section explains the concept of content transformations and describes how to create, install,
apply, and manage transforms. The following topics are covered:

e What is a Content Transformation?

* Creating a Transformation

¢ Installing a Transformation

* Using a Transformation

e Example: Read, Write, and Query Transforms

¢ Discovering Installed Transforms

¢ Deleting a Transformation

8.3.1 What is a Content Transformation?

The Node.js Client API enables you to create custom content transformations and apply them
during operations such as document ingestion and retrieval. For example, you can create awrite
transform that adds or modifies a JSON property or XML element for each document asit is
inserted into the database. The API has hooks for applying the following kinds of transform:

» Write transform: Applied before inserting documents into the database.

* Read transform: Applied when reading documents from the database. Y ou can configure
both default and per-request read transforms.

e Searchresult transform: Applied to the search result summary when you make queriesthat
include a summary instead of just returning matching documents and metadata.

You implement a transform as a server-side JavaScript function, XQuery function, or XSLT
stylesheet that accepts a document as input and produces documents as output. Your transform
must conform to the interface and guidelines described Writing Transformations in the REST
Application Developer’s Guide. Your transforms can accept transform-specific parameters.

Transforms must be installed in the modul es database associated with the REST API instance
before you can use them. Use the patabaseclient.config.transforms interface to install and
manage your transforms using Node.js. For details, see “Installing a Transformation” on
page 240.

You apply atransform by passing its name to supporting operations, such as

DatabaseClient.documents.write, DatabaseClient.documents.read and
DatabaseClient .documents.query. FOr details, see “Using a Transformation” on page 241.

MarkLogic 9—May, 2017 Node.js Application Developer’ s Guide—Page 239

MarkLogic Server Version MarkLogic 9—May, 2017 Extensions, Transformations, and

8.3.2 Creating a Transformation

You can implement atransform function using server-side JavaScript or XQuery. The interfaceis
shared across multiple MarkL ogic client APIs, so you can use the same transforms with the Java
Client API, Node.js Client API, and the REST Client API.

Your transform module must include an export named transform. FOr example:

function insertTimestamp (context, params, content)

{...

exports.transform = insertTimestamp;

You can install atransform with one client APl and use it with all of them. For example, you can
use transform installed using the Node.js Client API with an application implemented using the
Node.js Client API or the Java Client API.

For the interface definition, authoring guidelines, and example implementations, see Writing
Transformations in the REST Application Developer’s Guide. To return errors from your transform
to the client, use the conventions described in * Error Reporting in Extensions and
Transformations’ on page 253.

For a complete Node.js and JavaScript example, see “ Example: Read, Write, and Query
Transforms’ on page 243.

8.3.3 Installing a Transformation

USe patabaseClient.config.transforms.write tO iNstall atransform in the modules database
associated with your REST API instance. Using this interface ensures your transform isinstalled
according to the conventions expected by the API, enabling you to subsequently apply and
manage the transform with the Node.js Client API.

You must have the rest-admin role or equivalent privilegesto install atransform.

You can include optional metadata about your transform during installation. The metadatais
purely informational. You can retrieve it USing patabaseclient.config.transforms.list.

The following script installs atransform under the name “js-transform”. The transform
implementation is read from afile name “transform.gjs’. Only name, format, and source are
required. Everything elseis optional metadata.

const fs = require('fs');

const marklogic = require('marklogic') ;

const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient (my.connInfo) ;

db.config.transforms.write ({
name: 'js-transform',
format: 'javascript',
source: fs.createReadStream('./transform.sjs'),

Page 240—Node.js Application Developer’s Guide

MarkLogic Server Extensions, Transformations, and Server-Side Code

// everything below this is optional metadata
title: 'Example JavaScript Transform',
description: 'An example of an SJS read/write transform',
provider: 'MarkLogic',
version: 1.0
}) .result (function (response) {
console.log('Installed transform: ' + response.name) ;
}, function (error) {
console.log (JSON.stringify (error, null, 2));

1)
For a complete example, see “ Example: Read, Write, and Query Transforms’ on page 243.

You can retrieve alist of installed transforms and their metadata using
DatabaseClient.transforms.list. FOr details, see “Discoveri ng Installed Transforms” on

page 252.

For a complete example, see “ Example: Read, Write, and Query Transforms’ on page 243.

8.34 Using a Transformation
You can specify atransform on document read, write, and query operations such as the following:

e DatabaseClient.documents.read

* DatabaseClient.documents.write aNd DatabaseClient.documents.createWriteStream
® DatabaseClient.documents.query, usi Ng queryBuilder.slice
4 DatabaseClient.values.read,UQTK]valuesBuilder.slice

In al cases, you supply the name of atransform previously installed using
DatabaseClient.config.transforms.write OF the equivaJ ent operation through one of the other
client APIs.

For a complete example, see “ Example: Read, Write, and Query Transforms’ on page 243.

You can only specify one transform per operation. The transform appliesto al inputs (write) or
OUtpUtS (read OF query).

To Spe(:|fy atransform to documents.read OF documents.write, &ld @ transform property to your
call object with one of the following forms. The first two forms are equivalent. Use the third form
to pass parameters expected by the transform.

transform: transformName
transform: [transformName]

transform: [transformName, {paramName: paramValue, ...}]

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 241

MarkLogic Server Version MarkLogic 9—May, 2017 Extensions, Transformations, and

For read and write, include the transform property as an immediate child of the input call object.
For example, if you pass a single document descriptor t0 documents.write, you can include the
transform in the descriptor:

db.documents.write ({
uri: '/doc/example.json',
contentType: 'application/json',
content: { some: 'data' },
transform: ['js-write-transform']

)

By contragt, if you use the multi-document form of input t0 documents.write, include the
transform descriptor in the top level object, not inside each document descriptor. For example:

db.documents.write ({
documents: [

{ uri: '/transforms/examplel.json',
contentType: 'application/json',
content: { some: 'data' },

b

{ uri: '/transforms/example2.json',
contentType: 'application/json',
content: { some: 'more data' },

}
1,

transform: ['js-write-transform']

9]

To apply atransform to the results from patabaseclient . documents. query OF
DatabaseClient.values.read, USE @transform bUilder to create a descriptor, and then attach the
descriptor to the query through the s1ice clause. For example, the following call applies a
transform to a content query:

db.documents.query (

gb.where (
gb.byExample ({writeTimestamp: {'S$exists': {}}})
) .slice(gb.transform('js-query-transform', {a: 1, b: 'two'}))

)
The following call applies the same transform (without extra parameters) to a values query:

db.values.read(
vb.fromIndexes ('reputation')
.slice (3,5, vb.transform('js-query-transform'))

Page 242—Node.js Application Developer’s Guide

MarkLogic Server Extensions, Transformations, and Server-Side Code

8.3.5 Example: Read, Write, and Query Transforms

This example demonstrates installing and using transforms for read, write, and query operations.
The exampleis designed for you to exercise al three types of transform in sequence, as follows:

1. Install the Transforms

2. Use the Write Transform

3. Use the Read Transform

4. Use the Query Transform

The source code for each transform is provided in the following sections:

* Read Transform Source Code

e Write Transform Source Code

* Query Transform Source Code

8.3.5.1 Install the Transforms

Follow this procedure to install the example read, write, and query transforms. For details, see
“Installing a Transformation” on page 240.

1. Create afile named read-transform.sjs from the codein “Read Transform Source Code”
on page 249.
2. Create afile named write-transform.sjs from the codein “Write Transform Source

Code” on page 250.

3. Create afile named query-transform.sjs from the code in “Query Transform Source
Code” on page 251.

4, Copy the following codeto afile named install-transform.js. Thisscript installs all
three transforms.

const fs = require('fs');

const marklogic = require('marklogic') ;

const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient (my.connInfo) ;

// Descriptors for 3 transforms: Read, write, and query.
const transforms = [
{
name: 'js-read-transform',
format: 'javascript',
source: fs.createReadStream('./read-transform.sjs'),
// everything below this is optional metadata

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 243

MarkLogic Server Version MarkLogic 9—May, 2017 Extensions, Transformations, and

title: 'Example JavaScript Read Transform',
description: 'An example of an SJS read transform',
provider: 'MarkLogic',
version: 1.0
I
{ name: 'Jjs-write-transform',
format: 'javascript',
source: fs.createReadStream('./write-transform.sjs')
I
{

name: 'js-query-transform',
format: 'javascript',
source: fs.createReadStream('./query-transform.sjs')

}
1;

// Install the transforms
transforms.forEach(function installTransform(transform) ({
db.config.transforms.write (transform) .result (
function (response) {
console.log('Installed transform: ' + response.name) ;

}l
function (error)
console.log (JSON.stringify (error, null, 2));

I3F;

If installation is successful, you should see results similar to the following:

$ node install-transform.js

Installed transform: js-write-transform
Installed transform: js-query-transform
Installed transform: js-read-transform

8.3.5.2 Use the Write Transform

The following script writes documents to the database using a write transform. This script
demonstrates the usage guidelines from “Using a Transformation” on page 241.

You should already have installed the transform using the instructionsin “Install the Transforms”
on page 243.

The example transform adds a writerimestamp t0 the input documents; for details see “Write
Transform Source Code” on page 250.

const marklogic = require('marklogic') ;
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient (my.connInfo) ;

db.documents.write ({

Page 244—Node.js Application Developer’s Guide

MarkLogic Server Extensions, Transformations, and Server-Side Code

documents: [
{ uri: '/transforms/examplel.json',
contentType: 'application/json',

content: { some: 'data' },

{ uri: '/transforms/example2.json',
contentType: 'application/json',
content: { some: 'more data' },

}
1,
transform: ['js-write-transform']
}) .result (function (response) {
response.documents. forEach (function (document) {
console.log(document.uri) ;

1
}, function (error) {
console.log (JSON.stringify (error)) ;

I3F;

If you run the above script, you should see output similar to the following:

$ node write.js
/transforms/examplel.json
/transforms/example2.json

If you use Query Console to inspect the documents in the database, you can see that a
writeTimestamp Property has been added to the content of each one. For example,
/transform/examplel.json Should have contents similar to the following:

{

"some": "data",
"writeTimestamp": "2015-01-02T10:33:39.330483-08:00"

}

A transform applies to every document in awrite operation. You cannot specify different
transforms for each document. As a convenience, if you're only inserting a single document, you
can include the transform in the single document descriptor rather than having to build up a
documents array. For exampl (2

db.documents.write ({
uri: '/transforms/example3.json',
contentType: 'application/json',
content: { some: 'even more data' },
transform: ['js-write-transform']

1.

You can pass parameters to a transform. For an example, see “Use the Read Transform” on
page 246.

MarkLogic 9—May, 2017 Node.js Application Developer’ s Guide—Page 245

MarkLogic Server Version MarkLogic 9—May, 2017 Extensions, Transformations, and

8.3.5.3 Use the Read Transform

This section demonstrates applying aread transform, following the usage guidelines from “Using
a Transformation” on page 241.

Before running this script, you should have installed the example transforms and run the write
transform example. For details, see “Install the Transforms” on page 243 and “Use the Write
Transform” on page 244.

The script reads back the documents inserted in “ Use the Write Transform” on page 244. A read
transform is applied to each document. The transform adds a readrimestamp property to the
returned documents. The transform also supports adding properties to the output by accepting
property name-value pairs as input parameters. The example adds two extra properties to the
output documents, extra1 and extra2 by specifying the following parametersin the transform
descriptor:

transform: ['js-read-transform', {extral: 1, extra2: 'two'}]

Copy the following script to afile and run it with the noae command to exercise the example read
transform. To review the transform implementation, see “Read Transform Source Code” on
page 249.

const marklogic = require('marklogic');
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient (my.connInfo) ;

db.documents.read ({

uris: ['/transforms/examplel.json', '/transforms/example2.json'],
transform: ['js-read-transform', {extral: 1, extra2: 'two'}]
}) .stream() .on('data', function(document) {
console.log("URI: " + document.uri);
console.log (JSON.stringify (document.content, null, 2) + '\n');
}).on('end', function()

console.log('Finished') ;

3]

If you run the script, you should see output similar to the following.

URI: /transforms/examplel.json

{

"some": "data",

"writeTimestamp": "2015-01-02T10:33:39.330483-08:00",
"readTimestamp": "2015-01-02T10:44:18.538343-08:00",
"extra2": "two",

"extral": "1"

}

URI: /transforms/example2.json

{

"some": "more data",

Page 246—Node.js Application Developer’s Guide

MarkLogic Server Extensions, Transformations, and Server-Side Code

"writeTimestamp": "2015-01-02T10:33:39.355913-08:00",
"readTimestamp": "2015-01-02T10:44:18.5632-08:00",
"extra2": "two",

"extral": "1"

}

The readrimestamp, extrai, and extra2 properties are added by the read transform. These
properties are only part of the read output. The documents in the database are unchanaged. The
writeTimestamp Property was added to the document by the write transform during ingestion; for
details see “Use the Write Transform” on page 244.

8.3.5.4 Use the Query Transform

The following script applies atransform to a query operation following the usage guidelines from
“Using a Transformation” on page 241.

Before running this script, you should have installed the example transforms and run the write
transform example. For details, see “Install the Transforms” on page 243 and “Use the Write
Transform” on page 244.

The script below uses a QBE to read back all the documents with awriteTimestamp JSON
property. This property was previously added to some documents by the write transform in “Use
the Write Transform” on page 244.

The script makes two queries, one that returns matching documents and one that just returns a
search result summary. When retrieving documents, the transform behaves exactly like the read
transform in “Read Transform Source Code” on page 249. That is, it adds a readTimestamp
property to each document and, optionally, properties corresponding to each input parameter.
When retrieving a search result summary as JSON, a queryTimestamp property is added to the
summary.

Copy the following script to afile and run it using the node command in order to demonstrate
applying atransform at query time. To review the transform implementation, see “ Query
Transform Source Code” on page 251.

const marklogic = require('marklogic') ;
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient (my.connInfo) ;
const gb = marklogic.queryBuilder;

// Retrieve just search result summary by setting slice to 0
db.documents.query (
gb.where (
gb.byExample ({writeTimestamp: {'S$exists': {}}})
) .slice(gb.transform('js-query-transform'))
.withOptions ({categories: 'none'})
) .result (function (response)
console.log (JSON.stringify (response, null, 2));

MarkLogic 9—May, 2017 Node.js Application Developer’ s Guide—Page 247

MarkLogic Server Version MarkLogic 9—May, 2017 Extensions, Transformations, and

}, function (error) {
console.log (JSON.stringify (error, null, 2));

I3F;

// Retrieve matching documents instead of summary
db.documents.query (
gb.where (
gb.byExample ({writeTimestamp: {'S$Sexists': {}}}
) .slice (gb.transform('js-query-transform', {a: 1, b:

) .stream() .on('data', function (document) {
console.log("URI: " + document.uri);
console.log (JSON.stringify (document.content, null, 2)
}).on('end', function()
console.log('Finished') ;

3N,

If you run the script, you should see output similar to the following. The bolded properties were

added by the transform.

$ node query.js
URI: /transforms/examplel.json

{ "some": "data",
"writeTimestamp": "2015-01-02T10:33:39.330483-08:00",
"readTimestamp": "2015-01-02T11:09:58.410351-08:00",
"b": "two",
"am: n1n
}
URI: /transforms/example2.json
{
"some": "more data'",
"writeTimestamp": "2015-01-02T10:33:39.355913-08:00",
"readTimestamp": "2015-01-02T11:09:58.431676-08:00",
"b": "two",
ta": "1M
}
Finished
[
{
"snippet-format": "snippet",
"total": 2,
"start": 1,
"page-length": 0,
"results": [],
"metrics": {
"query-resolution-time": "PT0.001552S8",
"facet-resolution-time": "PT0.000141S",
"snippet-resolution-time": "PTOS",
"total-time": "PT0.1655838"
b
"queryTimestamp": "2015-01-02T11:10:00.208708-08:00"

Page 248—Node.js Application Developer’s Guide

MarkLogic Server Extensions, Transformations, and Server-Side Code

}
]

Note that the transform specification is part of the s1ice result refinement clause and that a
builder (gb. transform) IS used to construct the transform specification. For example:

slice(gb.transform('js-query-transform', {a: 1, b: 'two'}))

The syntax for atransform specification is not the same in a query context as for documents. read
and documents .write, SO it is best to use the builder.

On query operations, your transform is invoked for all output, whether it is a matched document

or aresult summary. When you query using the Node.js Client AP, the search result summary is
always JSON, so you can only distinguish it from matched documents by probing the properties.
For example, the query transform does the following to identify the search summary:

if (result.hasOwnProperty ('snippet-format')) {
// search result summary
result.queryTimestamp = fn.currentDateTime () ;

}

If your transform is invoked on behalf of another client API, such asthe Java Client API, the
results summary can be in XML, and the query can retrieve both documents and a search
summary.

8.3.5.5 Read Transform Source Code

The following server-side JavaScript module is meant to be used as a transform on read
operations such as patabaseclient.documents.read. Thistransform adds properties to the output
document when you read JSON documents; see the comments in the code for details.

Copy the following code to afile named read-transform.sjs. YOU can use adifferent filename,
but the installation script €l sewhere in this section assumes this name.

// Example Read Transform

//

// If the input is a JSON document:

// - Add a readTimestamp to the result document.

// - For each parameter passed in by the client, add a
// property of the form: propName: propValue.

// Other document types are unchanged.

function readTimestamp (context, params, content)

{

//if (context.inputType.search('json') >= 0) {

if (context.inputType.search('json') >= 0) {
const result = content.toObject () ;
result.readTimestamp = fn.currentDateTime () ;

// Add a property for each caller-supplied request param

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 249

MarkLogic Server

for (const pname in params)

Version MarkLogic 9—May, 2017

Extensions, Transformations, and

{

if (params.hasOwnProperty (pname))
result [pname] = params [pname] ;

}
}

return result;
} else {

// Pass thru for non-JSON documents

return content;

}
}i

exports.transform = readTimestamp;

8.3.5.6 Write Transform Source Code

The following server-side JavaScript module is meant to be used as a transform on write
operations such aSpatabaseClient .documents.write. Thistransform adds propertiesto any JSON
documents you ingest; see the commentsin the code for details.

Copy the following code to afile named write-transform.sjs. You can use a different filename,
but the installation script elsewhere in this section assumes this name.

// Example Write Transform

//

// If the input is a JSON document:
// - Add a writeTimestamp to the document.
// - For each parameter passed in by the client, add a property

// of the form "propName:

propValue" to the document.

// Non-JSON documents are returned unmodified.

function writeTimestamp (context,

{

params, content)

if (context.inputType.search('json') >= 0) {
const result = content.toObject () ;

result.writeTimestamp =

fn.currentDateTime () ;

// Add a property for each caller-supplied request param

for (const pname in params)

{

if (params.hasOwnProperty (pname))
result [pname] = params [pname] ;

}
}

return result;
} else {

// Pass thru for non-JSON documents

return content;

}
Vi

exports.transform = writeTimestamp;

Page 250—Node.js Application Developer’s Guide

MarkLogic Server Extensions, Transformations, and Server-Side Code

8.3.5.7 Query Transform Source Code

The following server-side JavaScript module is meant to be used as a transform on query
operations such as patabaseclient.documents.query. YOU can aso use the read transformin
“Read Transform Source Code” on page 249 for this purpose. However, in a query context, your
transform is applied to both the matching documents and the generated search summary. For
demonstration purposes, this transform distinguishes between the two cases.

This transform adds properties to JSON output, but it distinguishes between the search result
summary and matched documents. The transform assumes that JSON input that contains a
snippet-format Property isasearch summary, and any other JSON input is a document matching
the query.

Copy the following code to afile named query-transform.sjs. YOu can use a different filename,
but the installation script elsewhere in this section assumes this name.

// When applied to a query operation, a transform is invoked on
// both the search result summary and the matching documents (when
// used as a multi-document read).

//
// The transform does the following:
// - For a JSON search result summary (determined by the presence

// of a search-snippet property), add a queryTimestamp property.
// - For a JSON document, add a readTimestamp property.

// - For all other input, pass it through unchanged.

function queryTimestamp (context, params, content)

{

if (context.inputType.search('json') >= 0) {
const result = content.toObject () ;
if (result.hasOwnProperty ('snippet-format')) ({
// search result summary
result.queryTimestamp = fn.currentDateTime () ;
} else {

// JSON document. Add readTimestamp property plus a property
// for each param passed in by the client.

result.readTimestamp = fn.currentDateTime () ;
for (const pname in params) {
if (params.hasOwnProperty (pname)) {
result [pname] = params [pname] ;

}
}
}

return result;

} else {
// Pass thru for non-JSON documents or XML search summary
return content;

}
Vi

exports.transform = gqueryTimestamp;

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 251

MarkLogic Server Version MarkLogic 9—May, 2017 Extensions, Transformations, and

8.3.6 Discovering Installed Transforms

You can retrieve the names and metadata for installed transforms using
DatabaseClient.transforms.list. YOU MUSt havethe read-reader roleor equival ent privileg%to
retrieve the list of installed transforms.

The following example retrieves the list of installed transforms and displays the response on the
console.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

db.config.transforms.list () .result (
function (response) {
console.log('Installed transforms: ') ;
console.log (JSON.stringify (response, null, 2));
}, function(error) ({
console.log (JSON.stringify (error, null, 2));

3K

If you have installed the transform from “Installing a Transformation” on page 240, then running
the above script produces output similar to the following:

{ "transforms": ({
"transform": [{

"name": "js-transform",
"source-format": "javascript",
"title": "Example JavaScript Transform",
"version": "1",
"provider-name": "MarkLogic",
"description": "An example of an SJS read/write transform",
"transform-parameters": "",
"transform-source": "/vl/config/transforms/js-transform"

}l
I

For additional exampl €S, SEE test-basic/documents-transform.js iNthe Node.js Client AP
GitHub project.

8.3.7 Deleting a Transformation

USe patabaseClient.transforms.remove t0 UNiNstall atransform on MarkLogic Server. The
uninstall operation isidempotent. That is, the results are the same whether or not the named
transform isinstalled.

You must have the rest-admin role or equivalent privilegesto uninstall atransform.

The following script uninstalls a transform named “js-transform”.

Page 252—Node.js Application Developer’s Guide

MarkLogic Server Extensions, Transformations, and Server-Side Code

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

db.config.transforms.remove('js-transform') .result (
function (response) {
console.log('Removed transform: ', response.name) ;

}l
function (error)
console.log (JSON.stringify (error, null, 2));

I3F;

8.4 Error Reporting in Extensions and Transformations

Extensions and transforms use the same mechanism to report errors to the calling application:
Use fn.error (JavaScript) or fn:error (XQuery) to raise restar1 -srvexerr and provide
additional information in the data parameter. You can control the response status code, status
message, and provide an additional error reporting response payload.

If you raise an error in any other way, it is returned to the client application as a 500 Internal
Server Error.

See the following topics for examples:

e Example: Reporting Errors in JavaScript

e Example: Reporting Errors in XQuery

8.4.1 Example: Reporting Errors in JavaScript

To return an error to the client application from a JavaScript extension or transform, uUse fn.error
to report arestarI-srveEXERR €TOr and provide additional information in the aata parameter of
fn.error. YOU can control the response status code and status message, and provide an additional
error reporting response payload. For example, you can return an error to the client in the
following way:

fn.error (null, 'RESTAPI-SRVEXERR',

Sequence.from([400, 'Bad Request',
'Insufficient number of uri basenames.']l)) ;
// unreachable - control does not return from fn.error

The 3rd parameter to £n.error should be a sequence of theform (status-code,
' status-message', 'payload-format', 'response—payload'L'ThEEiS,VVhEYIUQIKan.errortO
ralSe RESTAPI - SRVEXERR, the data parameter to £n.error iS Sequence containing the following
items, all optional:

* HTTP status code. Default: 400.

e HTTP status message. Default: Bad Request.

MarkLogic 9—May, 2017 Node.js Application Developer’ s Guide—Page 253

MarkLogic Server Version MarkLogic 9—May, 2017 Extensions, Transformations, and

* Response payload. It isbest to restrict thisto text as the payload may bein JSON or XML,
depending on the REST API instance configuration.

Note: Best practiceisto use restap1-srvexerr. If you report any other error or raise any
other exception, it is reported to the calling application as a 500 Server Internal
Error.

YOu Can USe xdmp . arrayvalues OF Sequence . from t0 cONstruct a sequence from a JavaScript array.

Control does not return from £n.error. You should perform any necessary cleanup or other tasks
prior to caling it.

You can use a utility function similar to the following to abstract most of the details away from
your extension implementation:

function returnErrToClient (statusCode, statusMsg, body)

{

fn.error (null, 'RESTAPI-SRVEXERR',
Sequence.from([statusCode, statusMsg, bodyl)) ;
// unreachable

Vi
The following is an example of using this function:

returnErrToClient (400, 'Bad Request',
'Insufficient number of uri basenames.') ;

If errors from an extension invocation are trapped as follows using the Node.js API:

db.resources.put ({

}) .result (function (response) {

console.log (JSON.stringify (response, null, 2));
}, function (error) {

console.log (JSON.stringify(error, null, 2));

1

Then the output is similar to the following:

{

"message": "js-example: response with invalid 400 status",
"statusCode": 400,
"body": |
"errorResponse": {

"statusCode": 400,

"status": "Bad Request",

"messageCode": "RESTAPI-SRVEXERR",

"message": "Insufficient number of uri basenames."

Page 254—Node.js Application Developer’s Guide

MarkLogic Server Extensions, Transformations, and Server-Side Code

}
}

For aworking example, see “Example: Installing and Using a Resource Service Extension” on
page 234.

8.4.2 Example: Reporting Errors in XQuery

Use fn:error tO report a rResTar1-srvEXERR €T0r, and provide additional information in the saata
parameter of £n:error. YOU Ccan control the response status code, status message, and provide an
additional error reporting response payload. For example, you can return an error to the client in
the following way:

fn:error ((), "RESTAPI-SRVEXERR",
(415, "Unsupported Input Type",
"Only application/xml is supported"))

The 3rd parameter to £n:error should be a sequence of theform (»status-code,
"status-message", "response-payload"). That is, when usi Ng fn:error tO raise
RESTAPT - SRVEXERR, {he $data parameter to £n: error iSasequence with the following members, all
optional:

* HTTP status code. Default: 400.
* HTTP status message. Default: Bad Request.

* Response payload. It best to limit thisto text as the payload can be either JSON or XML,
depending on the REST API instance configuration.

Note: Best practiceisto use restapr1-srvexerr. |f you report any other error or raise any
other exception, it is reported to the calling application as a 500 Server Internal
Error.

For example, this resource extension function raises restar1 -srvexerr if the input content typeis
not as expected:

declare function example:put (
Scontext as map:map,
Sparams as map:map,
Sinput as document-node ()
) as document-node ()
{
(: get 'input-types' to use in content negotiation :)
let S$input-types := map:get ($context, "input-types")
let S$negotiate :=
if ($input-types = "application/xml")
then () (: process, insert/update :)
else fn:error((),"RESTAPI-SRVEXERR",
("415", "Raven", "nevermore"))
return document { "Done"} (: may return a document node :)

Vi

MarkLogic 9—May, 2017 Node.js Application Developer’ s Guide—Page 255

MarkLogic Server Version MarkLogic 9—May, 2017 Extensions, Transformations, and

If aPUT request is made to the extension with an unexpected content type, the tn:error call
causes the request to fail with a status 415 and to include the additional error description in the
response body:

HTTP/1.1 415 Raven

Content-type: application/xml

Server: MarkLogic

Set-Cookie: SessionID=714070bdf4076536; path=/
Content-Length: 62

Connection: close

<?xml version="1.0" encoding="UTF-8"?>
<word>nevermore</words>

8.5 Evaluating Ad-Hoc Code and Server-Side Modules

YOUu Can USe DatabaseClient .eval Of DatabaseClient.xqueryEval tO evaluate ad-hoc blocks of
XQuery or server-side JavaScript code on MarkLogic Server. The code blocks originate in your
client application. You can use patabasecClient . invoke t0 evaluate previously installed X Query
or server-side JavaScript modules on MarkLogic Server.

This section covers the following topics related to using eval and invoke:

* Required Privileges

e Evaluating a Ad-Hoc Query

¢ |nvoking a Module Installed on MarkLogic Server

e Interpreting the Results of Eval or Invoke

¢ Specifying External Variable Values

8.5.1 Required Privileges

LJQTKJDatabaseClient.eval,DatabaseClient.xqueryEval,anCiDatabaseClient.invokeFGQLHFES
additional privileges, beyond those required for normal read/write/query operations using the
Node.js Client API.

TO USe DatabaseClient.eval Of DatabaseClient.xqueryEval, YOU MUSt have at least the followi ng
privileges or their equivalent:

e http://marklogic.com/xdmp/privileges/xdmp-eval
e http://marklogic.com/xdmp/privileges/xdmp-eval-in
e http://marklogic.com/xdmp/privileges/xdbc-eval
e http://marklogic.com/xdmp/privileges/xdbc-eval-in

TO USe patabaseClient . invoke, YOU Must have at least the following privileges or their
equivalent:

e http://marklogic.com/xdmp/privileges/xdmp-invoke

Page 256—Node.js Application Developer’s Guide

MarkLogic Server Extensions, Transformations, and Server-Side Code

e http://marklogic.com/xdmp/privileges/xdmp-invoke-in
e http://marklogic.com/xdmp/privileges/xdbc-invoke
e http://marklogic.com/xdmp/privileges/xdbc-invoke-in

The privileges listed above merely make it possible to eval/invoke server-side code. The
operations performed by that code may require additional privileges.

8.5.2 Evaluating a Ad-Hoc Query

Usepatabaseclient.eval tO evaluate an ad-hoc block of JavaScript on MarkLogic Server. You
must use the MarkL ogic server-side JavaScript dialect described in the JavaScript Reference
Guide. To evaluate an ad-hoc block of XQuery, use patabaseclient.xqueryEval. The calling and
response conventions are the same for both eval and xqueryeval. These operations are equivalent
to using the xamp . eva1 (JavaScript) or xamp: eval (XQuery) builtin function. The codeis evaluated
in the context of the database associated with the patabaseciient object.

Using eval Of xqueryEval requires extra security privileges; for details, see “Required Privileges’
on page 256.

You can call eva1l and xqueryEval using one of the following forms. The code isthe only required
parameter/property.

db.eval (codeAsString, externalVarsObj)
db.eval({source: codeAsString, variables: externalVarsObj, txid:...})

db.xqueryEval (codeAsString, externalVarsObj)
db.xqueryEval ({

source: codeAsString,

variables: externalVarsObj,

tXid:...})

External variables enable you to pass variable values to MarkL ogic Server, where they’re
substituted into your ad-hoc code. For details, see “ Specifying External Variable Values’ on
page 262.

For example, suppose you want to evaluate the following JavaScript code, where worda1 and wordz
are external variable values supplied by your application:

wordl + " " + word2

Then the following call evaluates the code on MarkLogic Server. The values for word1 and wordz
are passed to MarkL ogic Server through the second parameter.

db.eval('wordl + " " + word2', {wordl: 'hello', word2: 'world'})

The response from calling eval is an array containing an item for each value returned by the code
block. Each item contains the returned value, plus type information to help you interpret the
value. For details, see “Interpreting the Results of Eval or Invoke” on page 261.

MarkLogic 9—May, 2017 Node.js Application Developer’ s Guide—Page 257

MarkLogic Server Version MarkLogic 9—May, 2017 Extensions, Transformations, and

For example, the above call returns the following response.

[{

"format": "text",
"datatype": "string",
"value": "hello world"

1

You can return documents, objects, and arrays as well as atomic values. To return multiple items,
you must return either a sequence (JavaScript only) or a sequence. You can construct a sequence
from an array-like or generator, and many builtin functions return multiple values return a
sequence. TO CONstruct a sequence in server-side JavaScript, apply xdmp.arrayvalues OF
Sequence . from t0 @ JavaScript array.

For example, to extend the previous example to return the combined lenght of the two input
values as well as the concatenated string, accumulate the results in an array and then apply
Sequence . from tO the array.

Sequence. from([wordl.length + word2.length, wordl + " " + word2])

The following script evaluates the above code. The response contains 2 array items: One for the
length and one for concatenated string.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

db.eval (
'Sequence. from([wordl.length + word2.length, wordl + " " + word2])',
{wordl: 'hello', word2: 'world'}
) .result (function (response)
console.log (JSON.stringify (response, null, 2));
}, function (error) {
console.log (JSON.stringify (error, null, 2));

s

Running the script produces the following output:

"format": "text",
"datatype": "integer",
"value": 10

b

{
"format": "text",
"datatype": "string",
"value": "hello world"

Page 258—Node.js Application Developer’s Guide

MarkLogic Server Extensions, Transformations, and Server-Side Code

The following script useS patabaseclient . xqueryEval t0 evaluates ablock XQuery that performs
the same operations as the previous JavaScript eval. The output is exactly as before. Note that in
XQuery you must explicitly declare the external variablesin your ad-hoc code.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

db.xgqueryEval (

'xquery version "1.0-ml";' +

'declare variable $wordl as xs:string external;' +
'declare variable $word2 as xs:string external;' +
'(fn:string-length($Swordl) + fn:string-length($Sword2),' +
' concat (Swordl, " ", Sword2))',

{wordl: 'hello', word2: 'world'}
) .result (function (response)
console.log (JSON.stringify (response, null, 2));
}, function(error) ({
console.log (JSON.stringify (error, null, 2));
I3F;

For more examples, see test-basic/server-exec.js inthe Node.js Client APl source project on
GitHub.

8.5.3 Invoking a Module Installed on MarkLogic Server

YOu Can USe patabaseClient . invoke 0 @n XQuery or server-side JavaScript module installed on
MarkLogic Server. Thisis equivaent to calling the builtin server function xdmp . invoke
(JavaScript) or xamp : invoke (XQuery). Using invoke requires extra security privileges; for details,
see “Required Privileges’ on page 256.

The module you invoke must already be installed on MarkLogic Server. You can install your
module in the modules database associated with your REST API instance using
DatabaseClient.config.extlibs.write OF @n equivalent operation. For details, see “Managing
Assets in the Modules Database” on page 263.

Note: InStaIIing amodule usi Ng DatabaseClient.config.extlibs.write addsa /ext/.
prefix to the path. Omit the prefix when using the config.ext1ibs interface, but
include it in your module path when calling invoxke.

When installing the module, you must include the module path, content type, and source code.
For aJavaScript module, set the content typeto application/vnd.marklogic-javascript and set
the file extension in your module path to .sjs. For an XQuery module, set the content type to
application/xquery and set the file extension in your module path to .xqy. See the example
below.

You can use external variables to pass arbitrary valuesto your module at runtime. For details, see
“Specifying External Variable Values’ on page 262.

MarkLogic 9—May, 2017 Node.js Application Developer’ s Guide—Page 259

MarkLogic Server Version MarkLogic 9—May, 2017 Extensions, Transformations, and

The response to invoke is an array containing one item for each value returned by the invoked
module. For details, see “Interpreting the Results of Eval or Invoke” on page 261.

The following example installs a JavaScript module on MarkL ogic Server and then uses
DatabaseClient .invoke tO evaluate it.

const marklogic = require('marklogic');
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

// (1) Install the module in the modules database
// Note: You do not need to install on every invocation.
// It is included here to make the example self-contained.
db.config.extlibs.write ({

path: '/invoke/example.sjs',

contentType: 'application/vnd.marklogic-javascript',

source: 'Sequence.from([wordl, word2, wordl + " " + word2])'
}) .result () .then (function (response) {

console.log('Installed module: ' + response.path);

// (2) Invoke the module
return db.invoke ({
path: '/ext/' + response.path,
variables: {wordl: 'hello', word2: 'world'}
}) .result (function (response) {
console.log (JSON.stringify (response, null, 2));
}, function (error) {
console.log (JSON.stringify (error, null, 2));
P
}, function (error) {
console.log (JSON.stringify (error, null, 2));
1)

If you save the script to afile and run it, you should see results similar to the following:

"format": "text",
"datatype": "string",
"value": "hello"

b

{
"format": "text",
"datatype": "string",
"value": "world"

b

{
"format": "text",
"datatype": "string",
"value": "hello world"

Page 260—Node.js Application Developer’s Guide

MarkLogic Server Extensions, Transformations, and Server-Side Code

To install an equivalent XQuery module, use a call similar to the following:

db.config.extlibs.write ({

path: '/invoke/example.xqy',

contentType: 'application/xquery',

source:
'xquery version "1.0-ml";' +
'declare variable $wordl as xs:string external;' +
'declare variable $word2 as xs:string external;' +
' (Swordl, S$word2, fn:concat(Swordl, " ", Sword2))'

3]

8.5.4 Interpreting the Results of Eval or Invoke

When you evaluate or invoke server-side code using patabaseClient .eval,
DatabaseClient.xqueryEval, Of DatabaseClient.invoke, the response is always an array
containing an item for each value returned by the server.

Each item contains information that helps your application interpret the value. Each item has the
following form, where format and vaiue are always present, but datatype iSnot.

{

format: 'text' | 'json' | 'xml' | 'binary'
datatype: string
value:

}

The datatype property can be a node type, an XSD datatype, or any other server type, such as
cts:query. The reported type may be more general than the actual type. Types derived from
anyAtomicType include anyURI, boolean, dateTime, double, and string. FOr details, see
http://www.w3.0rg/TR/xpath-functions/#datatypes.

The table below summarizes how the representation of the data in the value property is
determined.

format datatype value Repreﬁentati on
json node () A parsed JavaScript object or array
text any atomic type | A JavaScript boolean, number, or null value, if datatype

permits conversion from string; otherwise, a string value. For
exampl (S if datatype is integer, then value is anumber.

xml node () string

binary aBuffer Object

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 261

http://www.w3.org/TR/xpath-functions/#datatypes

MarkLogic Server Version MarkLogic 9—May, 2017 Extensions, Transformations, and

For example, an atomic value (anyatomicTrype, atype derived from anyatomicType, OF an
equivalent JavaScript type) has adatatype property that can specify an explicit type such as

integer, string, O date.

If your code or module returns JSON (or a Javascript object or array), then value is a parsed
JavaScript object or array. For example:

db.eval ('const result = {number: 42, phrase: "hello"}; result;')

>
{ format: 'json',
datatype: 'node() ',
value: { number: 42, phrase: 'hello' }

bl

8.5.5 Specifying External Variable Values

You can pass values to an ad-hoc query (or invoked module) at runtime using external variables.
Specify external variablesto your eval and invoke calls using a JavaScript object of the following
form. The values must be JavaScript primitives.

{ varNamel: varValuel, varName2: varValue2, ... }

For example, the following object supplies values for two externa variables, named word1 and

word2.

{ wordl: 'hello', word2: 'world' }

If you're evaluating or invoking X Query code, you must declare the variables explicitly in the
ad-hoc query or module. For example, the folloiwng prolog declares two external variableswhose
values can be supplied by the above parameter object:

xquery version "1.0-ml";
declare variable S$wordl as xs:string external;
declare variable S$word2 as xs:string external;

If you' re evaluating or invoking XQuery code that depends on variables in a namespace, use
Clark notation on the variable name. That is, specify the name using notation of the form

{namespaceURI}name

For example, the following script uses a namspace qualified external variable, smy:who. The
external variable input parameter uses the fully qualified variable in Clark notation:
{"{http://example.com}who': 'world"'}.

const marklogic = require('marklogic') ;
const my = require('./my-connection.js');
const db = marklogic.createDatabaseClient (my.connInfo) ;

Page 262—Node.js Application Developer’s Guide

MarkLogic Server Extensions, Transformations, and Server-Side Code

db.xqueryEval (

'xquery version "1.0-ml";' +

'declare namespace my = "http://example.com";' +
'declare variable $my:who as xs:string external;' +
'fn:concat ("hello ", Smy:who)',
{'{http://example.com}who' : 'world'}

) .result (function (response)

console.log (JSON.stringify (response, null, 2));
}, function (error) {

console.log (JSON.stringify (error, null, 2));

3N,

8.6 Managing Assets in the Modules Database
Use the DatabaseClient.config.extlibs interface to install and manage server-side assets required

by your application, such as XQuery and JavaScript modules usable with patabaseclient.eval
and dependent libraries used by resource service extensions and tranforms.
This section covers the following topics:

* Qverview of Asset Management

¢ |nstalling or Updating an Asset

¢ Referencing an Asset from Server-Side Code

* Removing an Asset

* Retrieving an Asset List

e Retrieving an Asset

8.6.1 Overview of Asset Management

Your Node.js Client API application can use severa kinds of user-defined code that is stored in
the modul es database associated with your REST API instance, including transforms, resource
service extension implementations, constraint binding parsers, custom snippet generators, and
patch content generators.

Most of these asset classes have specialized management interfaces, such as
DatabaseClient.config.resources aNd DatabaseClient.config.query.snippet. Theseinterfaces
abstract away the details of where and how the APl manages the assets. You generally should not
manage such assets through another, more general interface. Assets which do not have a
specialized interface can be managed using the patabaseclient.config.extlibs interface.

MarkLogic 9—May, 2017 Node.js Application Developer’ s Guide—Page 263

MarkLogic Server Version MarkLogic 9—May, 2017 Extensions, Transformations, and

The table below summarizes the asset management interfaces available through the Node.js
Client API.

Interface Used to Manage

DatabaseClient.config.extlibs XQuery and JavaScri pt modules that can be
invoked usi NQ DatabaseClient . invoke. FOr
details, see “Invoking aModule Installed on
MarkLogic Server” on page 259.

Dependent libraries and other assets needed
by your resource service extensions,
transforms. For details, see “Working with
Resource Service Extensions’ on page 230.

DatabaseClient.config.patch.replace Replacement content generators for
DatabaseClient.documents.patch. For details,
see “ Constructing Replacement Data on
MarkLogic Server” on page 107.

DatabaseClient.config.query.custom Custom query binding and facet generators.
For details, see “Using a Custom Constraint
Parser” on page 135 and “ Generating Search
Facets’ on page 165.

DatabaseClient.config.query.snippet Custom snippet generators. For details, see
“Generating Search Snippets’ on page 172.

DatabaseClient.config.resources Resource service extensions. For details, see
“Working with Resource Service Extensions”
on page 230.

DatabaseClient.config.transforms Read, write and query transforms. For details,
see “Working with Content Transformations”
on page 239.

All the asset management interfaces offer the same basic set of methods, customized to suit a
given asset classet:

* write! Install an asset in the modules database.

* read: Retrieve an asset from the modules database.

* 1ist: Retrievealist of all assets of agiven class from the modules database, such as all
resource service extensions or al facet generators.

Page 264—Node.js Application Developer’s Guide

MarkLogic Server Extensions, Transformations, and Server-Side Code

e remove. Remove an asset from the modul es database.

You should not mix and match interfaces among asset classes. For example, you should not install
asni ppeter usi Ng DatabaseClient.config.query.snippet.write and then delete it usi ng
DatabaseClient.config.extlibs.remove. YOU CaN Manage assets thl’OUgh the equival ent
interfaces of the other client APIs, such as the Java Client APl and the REST Client API.

When you install or update an asset in the modul es database, the asset is replicated across your
cluster automatically. There can be a delay of up to one minute between update and availability.

MarkLogic Server does not automatically remove dependent assets when you delete the related
extension or transform.

Since dependent assets are installed in the modul es database, they are removed when you remove
the REST API instance if you include the modules database in the instance teardown. For details,
see Removing an Instance in the REST Application Developer’s Guide.

8.6.2 Installing or Updating an Asset

This section describes how to install or update an asset that is not covered by a specialized asset
management interface, such as a dependent library or amodule to be invoked using
DatabaseClient.invoke. FOr Other asset classes, usethe write method of the specialized interface.
For alist of the specialized interfaces, see “ Overview of Asset Management” on page 263.

USeDatabaseClient.config.extlibs.write tO install or update an asset in the modul es database
associated with your REST API instance. You must provide a module path, content type, and the
asset contents. You can insert assets into the modules database as JSON, XML, text, or binary
documents. MarkL ogic Server determines the document format. The document typeis
determined by the content type or the module path URI file extension and the server MIME type

mappings.

The module path you provideis prepended with /ext/ during installation. You can omit the prefix
when manipulating the asset using the ext1ibs interface, but you should include when you
reference the module elsewhere, such asin aresource service extension require Statement that
uses an absolute path or when invoking a module with using patabaseclient . invoke.

The following example installs a module whose contents are read in from afile. The moduleis
installed in the modul es database with the URI /ext/extlibs/example.sjs.

const fs = require('fs');
const marklogic = require('marklogic');
const db = marklogic.createDatabaseClient (my.connInfo) ;

db.config.extlibs.write ({
path: '/extlibs/example.sjs',
contentType: 'application/vnd.marklogic-javascript',

MarkLogic 9—May, 2017 Node.js Application Developer’ s Guide—Page 265

MarkLogic Server Version MarkLogic 9—May, 2017 Extensions, Transformations, and

source: fs.createReadStream('./example.sjs')

1.

For additional examples, see “Invoking aModule Installed on MarkLogic Server” on page 259 or
test-basic/extlibs.js inthe marklogic/node-client-api project on GitHub.

8.6.3 Referencing an Asset from Server-Side Code

To use adependent library installed with patabaseclient .extlibs.write from an extension,
transform, or invoked module, use the same URI under which you installed the dependent library,
including the /ext/ prefix.

For example, if a dependent asset isinstalled with using db. config.extlibs.write ({path:
' /my/domain/lib/myasset', ...}), then its URI in the modules database is

/ext /my/domain/myasset.
A JavaScript extension, transform, or invoked module using this asset can refer to it as follows:

const myDep = require('/ext/my/domain/lib/myasset') ;

An XQuery extension, transform, or invoked module using this library can include an import of
the following form:

import module namespace dep="mylib" at "/ext/my/domain/lib/myasset";

8.6.4 Removing an Asset

UseDatabaseClient.config.extlibs.remove 1O delete an asset from the modul es database if it
wasinstalled using patabaseclient.config.extlibs.write. FOr assetswith specialized interfaces,
such as extensions and tranforms, use the remove method of the specialized interface, such as

DatabaseClient.config.resources.remove.

Removing an asset is an idempotent operation. That is, it returns the same response whether the
asset exists or not.

To remove all the assetsin a given directory, supply the containing directory name instead of a
specific asset path.

For example, if an asset isinstalled as follows:
db.config.extlibs.write ({
path: '/invoke/example.sjs',

contentType: 'application/vnd.marklogic-javascript',
source:

)

Then you can remove that single asset with acall ssimilar to the following:

db.config.extlibs.remove ('/invoke/example.sjs') ;

Page 266—Node.js Application Developer’s Guide

MarkLogic Server Extensions, Transformations, and Server-Side Code

To remove all the assets installed under /ext/invoke/ instead, use a call similar to the following:

db.config.extlibs.remove ('/invoke/") ;

8.6.5 Retrieving an Asset List

UsSe patabaseClient.config.extlibs.list tOretrieve alist of assetsinstalled using
DatabaseClient.config.extlibs.write. FOr assetswith specialized interfaces, such as extensions
and tranforms, use the 1ist method of the specialized interface, such as

DatabaseClient.config.transforms.list.

The response has the following format:

{ "assets": [
{ "asset": "/ext/invoke/example.sjs" },
{ "asset": "/ext/util/dep.sjs" },

{ "asset": assetModulePath },

1}

8.6.6 Retrieving an Asset

USeDatabaseClient.config.extlibs.read tO retrieve an asset installed usi ng
DatabaseClient.config.extlibs.write. FOr assetswith specialized interfaces, such as extensions
and tranforms, use the read method of the specialized interface, such as

DatabaseClient.config.transforms.read.
Retrieve the asset using the same module path you used to install it. For example:

db.config.extlibs.read('/invoke/example.sjs"')

MarkLogic 9—May, 2017 Node.js Application Developer’ s Guide—Page 267

MarkLogic Server Version MarkLogic 9—May, 2017 Extensions, Transformations, and

Page 268—Node.js Application Developer’s Guide

MarkLogic Server Administering REST API Instances

9.0 Administering REST API Instances

The Node.js Client API requiresa REST Client API instance on MarkLogic Server in order to
communicate with the server and access the database. This chapter describes how to create and
manage an instance.

The following topics are covered:

e What s a REST API Instance?

e Creating an Instance

e Configuring Instance Properties

e Retrieving Configuration Information

¢ Removing an Instance

9.1 What Is a REST API Instance?

The Node.js Client API implementation communicates with MarkL ogic Server using the REST
Client API described in REST Application Developer’s Guide. Therefore, requests to MarkLogic
Server through the Node.js Client API require the presence of a REST API instance. A REST AP
instance consists of an HTTP App Server specially configured to handle REST Client AP
requests, a default content database, and a modul es database.

Note: Each REST API instance can host asingle application. If you have multiple REST
API applications, you must create an instance for each one, and each one must
have its own modul es database.

When you install MarkLogic Server, a pre-configured REST API instance is available on port
8000. Thisinstance is available as soon as you install MarkLogic Server. No further setup is
required. This instance uses the Documents database as the default content database and the
M odul es database as the modul es database.

Theinstance on port 8000 is convenient for getting started, but you will usually create a dedicated
instance for production purposes. This chapter covers creating and managing your own instance.

When YOU USE marklogic.createDatabaseClient tO Create apatabaseClient Obj ect, you're
creating a connection to a REST API instance. When you create the patabaseciient, you can
specify a content database other than the default content database associated with the instance.
Using an alternative database requires extra security privileges. For details, see “ Evaluating
Requests Against a Different Database” on page 18.

The default content database associated with a REST API instance can be created for you when
the instance is created, or you can create it separately before making the instance. You can
associate any content database with an instance. Administer your content database as usual, using
the Admin Interface, XQuery or JavaScript Admin API, or REST Management API.

MarkLogic 9—May, 2017 Node.js Application Developer’ s Guide—Page 269

MarkLogic Server Version MarkLogic 9—May, 2017 Administering REST API Instances

The REST instance modul es database can be created for you during instance creation, or you can
create it separately before making the instance. If you choose to pre-create the modul es database,
it must not be shared across instances. Specia code is inserted into the modules database during
instance creation. The modul es database a so holds any persistent query options, extensions,
content transformations, custom parsers, and other assets installed using the
DatabaseClient.config interfaces.

Aside from the instance properties described in this chapter, you cannot pre-configure the App
Server associated with an instance. However, once the instance is created, you can further
customize properties such as request timeouts using the Admin Interface, XQuery or JavaScript
Admin API, or REST Management API.

9.2 Creating an Instance

When you install MarkLogic Server, a pre-configured REST API instance is available on port
8000. However, you can create your own instance using the REST Client API.

To create anew REST instance, send a POST request to the /rest-apis Service on port 8002 with
aURL of the form:

http://host:8002/version/rest-apis

You can use either the keyword LATEST or the current version for version. The POST body
should contain 2 JSON or XML instance configuration. The configuration must include at least a
name, but can also include a port number, content and modul es database name, and other instance
properties.

For example, the following command uses the cURL command line tool to create an instance
named “RESTstop” using the defaults for port, databases, and properties.

curl --anyauth --user user:password -X POST -1 \
-d '{"rest-api": {"name":"RESTstop" }}' \
-H "Content-type: application/json" \
http://localhost:8002/LATEST/rest-apis

For details and exampl es, see Creating an Instance in the REST Application Developer’s Guide. For
an example of creating an instance using Node,js libraries, see etc/test-setup.js inthe Node,js
Client API source code project on GitHub.

9.3 Configuring Instance Properties

Several instance properties can be examined and modified after you create an instance. For
example, you can use the document - transform-out property to specify a default read transform.

Use patabaseClient .config.serverprops interface to read and write instance properties. You
must have the rest-admin role or equivalent privileges to use this interface. For a description of
the available properties, see Instance Configuration Properties in the REST Application Developer’s
Guide.

Page 270—Node.js Application Developer’s Guide

MarkLogic Server Administering REST API Instances

To retrieve the current configuration, use the reaa method. The response is an object that contains
all the properties. For example:

db.config.serverprops.read()

To set properties, use the write method and pass in an object that contains an object property for
each instance property you want to change. The object returned by read is suitable as input to

write.

db.config.serverprops.write (props)

For example, the following script reads the current instance properties, uses the result to toggle
the value of the debug property, then setsit back to its original value using a property descriptor
that only contains the gebug Setting.

const marklogic = require('marklogic') ;
const my = require('./my-connection.js');

const db = marklogic.createDatabaseClient (my.connInfo) ;

db.config.serverprops.read() .result ()
.then (function (props) {
console.log("Current instance properties:");
console.log (props) ;
// flip the debug property setting
props.debug = !props.debug;
return db.config.serverprops.write (props) .result () ;
}) .then (function (response) {
console.log ("Props updated: " + response) ;
// demonstrate the setting changed
return db.config.serverprops.read() .result () ;
}) .then (function (props)

console.log("Debug setting is now: " + props.debug) ;
// flip the setting back using sparse properties
const newProps = {};

newProps.debug = !props.debug;

return db.config.serverprops.write (newProps) .result () ;
}) .then (function (response) {

return db.config.serverprops.read() .result () ;
}) .then (function (props)

console.log("Debug setting is now: " + props.debug) ;

)

If you run the script, you should see output similar to the following. Your instance property values
may differ.

{ 'content-versions': 'none’',
'validate-options': true,
'document -transform-out': '"',
debug: false,

'document -transform-all': true,

MarkLogic 9—May, 2017 Node.js Application Developer’s Guide—Page 271

MarkLogic Server Version MarkLogic 9—May, 2017 Administering REST API Instances

'update-policy': 'merge-metadata',
'validate-queries': false }

Props updated: true

Debug setting is now: true

Debug setting is now: false

9.4 Retrieving Configuration Information

You can use a GET request on the /rest-apis Service on port 8002 to retrieve configuration
information about all REST API instances on ahost, or about a specific instance that you identify
by instance name or content database.

For details, see Retrieving Configuration Information in the REST Application Developer’s Guide.

9.5 Removing an Instance

To remove an instance of the REST Client API, send aDELETE request tothe /rest-apis Service
on port 8002. You can choose wehther or not to leave the content database intact.

Warning You usually should not apply this procedure to the pre-configured REST API
instance on port 8000. Doing so can disable other services on that port, including
XDBC, Query Console, and the REST Management API.

For details and examples, see Removing an Instance in the REST Application Developer’s Guide.

Page 272—Node.js Application Developer’s Guide

MarkLogic Server Technical Support

10.0 Technical Support

MarkL ogic provides technical support according to the terms detailed in your Software License
Agreement or End User License Agreement.

We invite you to visit our support website at http://help.marklogic.com to access information on
known and fixed issues, knowledge base articles, and more. For licensed customers with an active
maintenance contract, see the Support Handbook for instructions on registering support contacts
and on working with the MarkL ogic Technical Support team.

Complete product documentation, the latest product release downloads, and other useful
information is available for al developers at http:/developer.marklogic.com. For technical
guestions, we encourage you to ask your question on Stack Overflow.

MarkLogic 9

http://help.marklogic.com/
https://stackoverflow.com/questions/tagged/marklogic
http://developer.marklogic.com
http://www.marklogic.com/files/Mark_Logic_Support_Handbook.pdf

MarkLogic Server Version MarkLogic 9—May, 2017 Technical Support

Page 274—Glossary, Copyright, and Support

MarkLogic Server Copyright

11.0 Copyright

MarkLogic Server 9.0 and supporting products.
Last updated: August 5, 2020

Copyright © 2020 MarkL ogic Corporation.

MarkLogic and the MarkL ogic logo are trademarks or registered trademarks of MarkLogic
Corporation in the United States and other countries.

MarkL ogic technology is protected by one or more U.S. Patent Nos. 7,127,469, 7,171,404,
7,756,858, 7,962,474, 8,935,267, 8,892,599, 9,092,507, 10,108,742, 10,114,975, 10,311,088,
10,325,106, 10,339,337, 10,394,889, and 10,503,780.

MarkL ogic software incorporates certain third-party software under license. Third-party

attributions, copyright notices, and other disclosures required under license are available in the
respective notice document for your version of the MarkL ogic software.

MarkLogic 9

MarkLogic Server Version MarkLogic 9—May, 2017 Copyright

Page 276—Glossary, Copyright, and Support

	Node.js Application Developer’s Guide
	Table of Contents
	1.0 Introduction to the Node.js Client API
	1.1 Getting Started
	1.2 Required Software
	1.3 Security Requirements
	1.3.1 Basic Security Requirements
	1.3.2 Controlling Document Access
	1.3.3 Evaluating Requests Against a Different Database
	1.3.4 Evaluating or Invoking Server-Side Code

	1.4 Terms and Definitions
	1.5 Key Concepts and Conventions
	1.5.1 MarkLogic Namespace
	1.5.2 Parameter Passing Conventions
	1.5.3 Document Descriptor
	1.5.4 Supported Result Handling Techniques
	1.5.5 Promise Result Handling Pattern
	1.5.6 Stream Result Handling Pattern
	1.5.7 Streaming Into the Database
	1.5.8 Performing Point-in-Time Operations
	1.5.9 Error Handling

	1.6 Creating a Database Client
	1.7 Authentication and Connection Security
	1.7.1 Connecting to MarkLogic with SSL
	1.7.2 Using SAML Authentication
	1.7.3 Using Certificate-Based Authentication
	1.7.4 Using Kerberos Authentication

	1.8 Using the Examples in This Guide

	2.0 Manipulating Documents
	2.1 Introduction to Document Operations
	2.2 Loading Documents into the Database
	2.2.1 Overview
	2.2.2 Input Document Descriptors
	2.2.3 Calling Convention
	2.2.4 Example: Loading A Single Document
	2.2.5 Example: Loading Multiple Documents
	2.2.6 Inserting or Updating Metadata for One Document
	2.2.7 Automatically Generating Document URIs
	2.2.8 Transforming Content During Ingestion

	2.3 Reading Documents from the Database
	2.3.1 Retrieving the Contents of a Document By URI
	2.3.2 Retrieving Metadata About a Document
	2.3.3 Example: Retrieving Content and Metadata
	2.3.4 Transforming Content During Retrieval

	2.4 Removing Content from the Database
	2.4.1 Removing Documents By URI
	2.4.2 Removing Sets of Documents
	2.4.3 Removing All Documents

	2.5 Managing Collections of Objects and Documents
	2.6 Performing a Lightweight Document Check
	2.7 Conditional Updates Using Optimistic Locking
	2.7.1 Understanding Optimistic Locking
	2.7.2 Enable Optimistic Locking
	2.7.3 Obtain a Version Id
	2.7.4 Apply a Conditional Update

	2.8 Working with Binary Documents
	2.8.1 Type of Binary Documents
	2.8.2 Streaming Binary Content
	2.8.3 Retrieving Binary Content with Range Requests

	2.9 Working with Temporal Documents
	2.10 Working with Metadata
	2.10.1 Metadata Categories
	2.10.2 Metadata Format
	2.10.3 Working with Document Properties
	2.10.4 Disabling Metadata Merging

	3.0 Patching Document Content or Metadata
	3.1 Introduction to Content and Metadata Patching
	3.2 Example: Adding a JSON Property
	3.3 Patch Reference
	3.3.1 insert
	3.3.2 replace
	3.3.3 replaceInsert
	3.3.4 remove
	3.3.5 apply
	3.3.6 library
	3.3.7 pathLanguage
	3.3.8 collections
	3.3.9 permissions
	3.3.10 properties
	3.3.11 quality
	3.3.12 metadataValues

	3.4 Defining the Context for a Patch Operation
	3.5 How Position Affects the Insertion Point
	3.6 Patch Examples
	3.6.1 Preparing to Run the Examples
	3.6.2 Example: Insert
	3.6.3 Example: Replace
	3.6.4 Example: ReplaceInsert
	3.6.5 Example: Remove
	3.6.6 Example: Patching Metadata

	3.7 Creating a Patch Without a Builder
	3.8 Patching XML Documents
	3.9 Constructing Replacement Data on MarkLogic Server
	3.9.1 Overview of Replacement Constructor Functions
	3.9.2 Using a Builtin Replacement Constructor
	3.9.3 Passing Parameters to a Replacement Constructor
	3.9.4 Using a Custom Replacement Constructor
	3.9.5 Writing a Custom Replacement Constructor
	3.9.6 Installing or Updating a Custom Replace Library
	3.9.7 Uninstalling a Custom Replace Library
	3.9.8 Example: Custom Replacement Constructors
	3.9.9 Additional Operations

	4.0 Querying Documents and Metadata
	4.1 Query Interface Overview
	4.2 Introduction to Search Concepts
	4.2.1 Search Overview
	4.2.2 Query Styles
	4.2.3 Types of Query
	4.2.4 Indexing

	4.3 Understanding the queryBuilder Interface
	4.4 Searching with String Queries
	4.4.1 Introduction to String Query
	4.4.2 Example: Basic String Query
	4.4.3 Using Constraints in a String Query
	4.4.4 Example: Using Constraints in a String Query
	4.4.5 Using a Custom Constraint Parser
	4.4.6 Example: Custom Constraint Parser
	4.4.7 Additional Information

	4.5 Searching with Query By Example
	4.5.1 Introduction to QBE
	4.5.2 Creating a QBE with queryBuilder
	4.5.3 Querying XML Content With QBE
	4.5.4 Additional Information

	4.6 Searching with Structured Queries
	4.6.1 Basic Usage
	4.6.2 Example: Using Structured Query
	4.6.3 Builder Methods Taxonomy Reference
	4.6.4 Query Parameter Helper Functions
	4.6.5 Search Result Refiners

	4.7 Searching with Combined Query
	4.8 Searching Values Metadata Fields
	4.9 Querying Lexicons and Range Indexes
	4.9.1 Querying Values in a Lexicon or Range Index
	4.9.2 Finding Value Co-Occurrences in Lexicons
	4.9.3 Building an Index Reference
	4.9.4 Refining the Results of a Values or Co-Occurrence Query
	4.9.5 Analyzing Lexicons and Range Indexes with Aggregate Functions

	4.10 Generating Search Facets
	4.10.1 Defining a Simple Facet
	4.10.2 Naming a Facet
	4.10.3 Including Facet Options
	4.10.4 Defining Bucket Ranges
	4.10.5 Creating and Using Custom Constraint Facets

	4.11 Refining Query Results
	4.11.1 Available Refinements
	4.11.2 Paginating Query Results
	4.11.3 Returning Metadata
	4.11.4 Excluding Document Descriptors or Values From Search Results
	4.11.5 Generating Search Snippets
	4.11.6 Transforming the Search Results
	4.11.7 Extracting a Portion of Each Matching Document

	4.12 Generating Search Term Completion Suggestions
	4.12.1 Understanding the Suggestion Interface
	4.12.2 Example: Generating Search Term Suggestions

	4.13 Loading the Example Data

	5.0 Using the Optic API for Relational Operations
	5.1 Introduction to the Optic Interfaces
	5.2 Interface Summary
	5.3 Preparing to Run the Examples
	5.4 Generating a Plan
	5.5 Invoking a Plan
	5.6 Configuring Row Set Format
	5.6.1 Configuration Options
	5.6.2 Layout Examples

	5.7 Streaming Row Data
	5.7.1 Object Mode Streaming
	5.7.2 Chunked Mode Streaming
	5.7.3 Sequence Mode Streaming

	5.8 Passing Parameters into a Plan
	5.9 Handling Complex Column Values
	5.10 Generating an Execution Plan
	5.11 Serializing a Plan

	6.0 Working With Semantic Data
	6.1 Overview of Common Semantics Tasks
	6.2 Loading Triples
	6.3 Querying Semantic Triples With SPARQL
	6.4 Example: SPARQL Query
	6.5 Managing Graphs
	6.5.1 Creating or Replacing a Graph
	6.5.2 Adding Triples to an Existing Graph
	6.5.3 Removing a Graph
	6.5.4 Retrieving the Contents, Metadata, or Permissions of a Graph
	6.5.5 Testing for Graph Existence
	6.5.6 Retrieving a List of Graphs

	6.6 Using SPARQL Update to Manage Graphs and Graph Data
	6.7 Applying Inferencing Rules to a SPARQL Query or Update
	6.7.1 Basic Inference Ruleset Usage
	6.7.2 Example: SPARQL Query With Inference Ruleset
	6.7.3 Example: SPARQL Update With Inference Rulesets
	6.7.4 Controlling the Default Database Ruleset

	7.0 Managing Transactions
	7.1 Transaction Overview
	7.2 Creating a Transaction
	7.3 Associating a Transaction with an Operation
	7.4 Committing a Transaction
	7.5 Rolling Back a Transaction
	7.6 Example: Using Promises With a Multi-Statement Transaction
	7.7 Checking Transaction Status
	7.8 Managing Transactions When Using a Load Balancer

	8.0 Extensions, Transformations, and Server-Side Code Execution
	8.1 Ways to Extend and Customize the API
	8.2 Working with Resource Service Extensions
	8.2.1 What is a Resource Service Extension?
	8.2.2 Creating a Resource Service Extension
	8.2.3 Installing a Resource Service Extension
	8.2.4 Using a Resource Service Extension
	8.2.5 Example: Installing and Using a Resource Service Extension
	8.2.6 Retrieving the Implementation of a Resource Service Extension
	8.2.7 Discovering Resource Service Extensions
	8.2.8 Deleting Resource Service Extensions

	8.3 Working with Content Transformations
	8.3.1 What is a Content Transformation?
	8.3.2 Creating a Transformation
	8.3.3 Installing a Transformation
	8.3.4 Using a Transformation
	8.3.5 Example: Read, Write, and Query Transforms
	8.3.6 Discovering Installed Transforms
	8.3.7 Deleting a Transformation

	8.4 Error Reporting in Extensions and Transformations
	8.4.1 Example: Reporting Errors in JavaScript
	8.4.2 Example: Reporting Errors in XQuery

	8.5 Evaluating Ad-Hoc Code and Server-Side Modules
	8.5.1 Required Privileges
	8.5.2 Evaluating a Ad-Hoc Query
	8.5.3 Invoking a Module Installed on MarkLogic Server
	8.5.4 Interpreting the Results of Eval or Invoke
	8.5.5 Specifying External Variable Values

	8.6 Managing Assets in the Modules Database
	8.6.1 Overview of Asset Management
	8.6.2 Installing or Updating an Asset
	8.6.3 Referencing an Asset from Server-Side Code
	8.6.4 Removing an Asset
	8.6.5 Retrieving an Asset List
	8.6.6 Retrieving an Asset

	9.0 Administering REST API Instances
	9.1 What Is a REST API Instance?
	9.2 Creating an Instance
	9.3 Configuring Instance Properties
	9.4 Retrieving Configuration Information
	9.5 Removing an Instance

	10.0 Technical Support
	11.0 Copyright

