
Copyright © 2019 MarkLogic Corporation. All rights reserved.

MarkLogic Server

Entity Services Developer’s Guide
2

MarkLogic 9
May, 2017

Last Revised: 9.0-9, April 2019

MarkLogic Server Version MarkLogic 9—May, 2017

Page 2—Entity Services Developer’s Guide

MarkLogic Server Table of Contents

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 3

Table of Contents

Entity Services Developer’s Guide

1.0 Introduction to Entity Services ..7
1.1 Terms and Definitions ..8
1.2 Why Use Entity Modeling? ..9
1.3 Entity Services Overview ...11

1.3.1 Modeling Vocabulary ...12
1.3.2 Persistence Convention ...13
1.3.3 Application Scaffolding ..14

1.4 Next Steps ...15
1.5 Exploring the Entity Services Open-Source Examples ..15

1.5.1 Downloading the Project as a ZIP File ...16
1.6 Security Considerations ..16

2.0 Getting Started With Entity Services ...19
2.1 Before You Begin ...19
2.2 Optional: Create a Content Database ..19
2.3 Getting Started Using XQuery ..20

2.3.1 Stage the Source Data ...21
2.3.2 Create a Model Descriptor ..22
2.3.3 Create a Model ..25
2.3.4 Create and Deploy an Instance Converter ..27

2.3.4.1 Generate the Default Converter Module27
2.3.4.2 Customize the Converter Module ...28
2.3.4.3 Deploy the Converter Module ...30

2.3.5 Create Entity Instances ...30
2.3.6 Query the Data ..35
2.3.7 Query the Model ...36

2.4 Getting Started Using JavaScript ..37
2.4.1 Stage the Source Data ...38
2.4.2 Create a Model Descriptor ..39
2.4.3 Create a Model ..41
2.4.4 Create and Deploy an Instance Converter ..43

2.4.4.1 Generate the Default Converter Module43
2.4.4.2 Customize the Converter Module ...45
2.4.4.3 Deploy the Converter Module ...46

2.4.5 Create Entity Instances ...47
2.4.6 Query the Data ..51
2.4.7 Query the Model ...54

2.5 Next Steps ...55

MarkLogic Server Version MarkLogic 9—May, 2017 Table of Contents

Page 4—Entity Services Developer’s Guide

3.0 Creating and Managing Models ...57
3.1 Introduction ...57
3.2 Writing a Model Descriptor ..59

3.2.1 Model Descriptor Basics ...60
3.2.2 Entity Type Definition Overview ...61
3.2.3 Defining an Entity Property with a SimpleType64
3.2.4 Defining an Entity Property with a Complex Type65
3.2.5 Defining an Entity Property with Array Type ..66
3.2.6 Defining an IRI Entity Property ..67
3.2.7 Identifying the Primary Key Entity Property ..67
3.2.8 Identifying Personally Identifiable Information (PII)69
3.2.9 Distinguishing Required and Optional Entity Properties70
3.2.10 Defining a Namespace URI for an Entity Type ..71
3.2.11 Identifying Entity Properties for Indexing ..75

3.2.11.1 Specifying Indexable Properties ..75
3.2.11.2 Interaction with Generated Artifacts ...76
3.2.11.3 Example: Identifying Indexable Entity Properties77
3.2.11.4 Supported Datatypes ...78

3.2.12 Controlling the Model IRI and Module Namespaces79
3.3 Defining Entity Relationships ...80

3.3.1 Defining a Local Entity Reference ...81
3.3.2 Defining an External Entity Reference ...82

3.4 Creating a Model from a Model Descriptor ..83
3.5 Working With an XML Model Descriptor ...84
3.6 Validating a Model Descriptor ...85
3.7 Extending a Model with Additional Facts ..87
3.8 Managing Model Changes ..88

3.8.1 Generating Instances From the New Model ...88
3.8.2 Replacing the Old Model with a New Version ...90
3.8.3 Making Multiple Model Versions Available ..90

3.8.3.1 Instance Data ...91
3.8.3.2 Entity Type Schema ..92
3.8.3.3 TDE Template ...93
3.8.3.4 Query Options ...93
3.8.3.5 Database Configuration ...93

3.9 Model Descriptor Syntax Reference ...94
3.9.1 model_info ..94

3.9.1.1 Syntax Summary ...94
3.9.1.2 Component Description ...95
3.9.1.3 Examples ...96

3.9.2 entity_type_definition ...96
3.9.2.1 Syntax Summary ...97
3.9.2.2 Component Description ...98
3.9.2.3 Examples ...100
3.9.2.4 See Also ...101

3.9.3 property_definition ...101

MarkLogic Server Table of Contents

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 5

3.9.3.1 Syntax Summary ...102
3.9.3.2 Component Description ...103
3.9.3.3 Examples ...104
3.9.3.4 See Also ...105

3.9.4 property_type ..105

4.0 Generating Code and Other Artifacts ...107
4.1 Code and Artifact Generation Overview ..107
4.2 Summary of Available Generators ...109
4.3 Creating an Instance Converter Module ...110

4.3.1 Purpose of a Converter Module ..110
4.3.2 Generating a Converter Module Template ...111
4.3.3 Understanding the Default Converter Implementation111

4.3.3.1 Module Namespace Declaration ...112
4.3.3.2 Generated Functions ..113

4.3.4 Customizing a Converter Module ...114
4.4 Creating a Model Version Translator Module ..116

4.4.1 Purpose of a Version Translator ...116
4.4.2 Generating a Version Translator Module Template116
4.4.3 Understanding the Default Version Translator Implementation117

4.4.3.1 Module Namespace Declaration ...117
4.4.3.2 Generated Functions ..118

4.4.4 Customizing a Version Translator Module ...119
4.5 Generating a TDE Template ...122

4.5.1 Generating a TDE Template ...123
4.5.2 Characteristics of a Generated Template ..124

4.5.2.1 Triples Sub-Template Characteristics124
4.5.2.2 Rows Sub-Template Characteristics125
4.5.2.3 Rows Template Array Property View Characteristics125

4.5.3 Customizing a TDE Template ..126
4.5.4 Deploying a TDE Template ..126
4.5.5 Example: TDE Template Generation and Deployment127

4.6 Generating an Entity Instance Schema ...129
4.6.1 Schema Generation Overview ..130
4.6.2 Schema Characteristics ...130
4.6.3 Schema Customization ...131
4.6.4 Example: Generating and Installing an Instance Schema131
4.6.5 Example: Validating an Instance Against a Schema133

4.7 Generating a PII Security Configuration Artifact ...134
4.8 Generating a Database Configuration Artifact ...137
4.9 Generating Query Options for Searching Instances ...141

4.9.1 Options Generation Overview ..141
4.9.2 Characteristics of the Generated Options ...142
4.9.3 Example: Generating Query Options ..144

4.10 Deploying Generated Code and Artifacts ...147

MarkLogic Server Version MarkLogic 9—May, 2017 Table of Contents

Page 6—Entity Services Developer’s Guide

5.0 Managing Entity Instances ...149
5.1 Entity Instance Concepts ..149

5.1.1 What is an Instance? ...149
5.1.2 What is an Envelope Document? ..150
5.1.3 Example: Entity Instance Representations ...152

5.1.3.1 XML Entity Instance Representations152
5.1.3.2 JSON Entity Instance Representations155

5.2 Creating an Entity Instance from a Data Source ...157
5.3 Generating Test Entity Instances ..160
5.4 Extracting an Entity Instance from an Envelope Document161
5.5 Extracting the Original Source from an Envelope Document164
5.6 Updating Entity Instance Data When Your Model Changes167

6.0 Querying a Model or Entity Instances ...169
6.1 Query Support Provided by Entity Services ...169
6.2 Search Basics for Models ...170
6.3 Search Basics for Instance Data ..171

6.3.1 Document Search ..171
6.3.2 Row Search ...172
6.3.3 Semantic Search ..172

6.4 Pre-Installing Query Options ..173
6.5 Example: Using SPARQL for Model Queries ..174
6.6 Example: Using cts:query or cts.query for Instance Queries175
6.7 Example: Using the Search API for Instance Queries ..176
6.8 Example: Using JSearch for Instance Queries ..179
6.9 Example: Using the Client APIs for Instance Queries180

6.9.1 Java Client API ...180
6.9.2 Node.js Client API ..182

6.9.2.1 Search Using Pre-Installed Options ..183
6.9.2.2 Search Without Pre-Installing Options184

6.9.3 REST Client API ..187
6.10 Example: Using SPARQL for Instance Queries ...189
6.11 Example: Using SQL for Instance Queries ...190
6.12 Example: Using the Optic API for Instance Queries ..191

6.12.0.1 Querying Triples Using the Optic API191
6.12.0.2 Querying Rows Using the Optic API192

6.13 Where to Find Additional Information ...193

7.0 Technical Support ..195

8.0 Copyright ...197

MarkLogic Server Introduction to Entity Services

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 7

1.0 Introduction to Entity Services
18

Business analysts often describe processes in terms of logical business entities, such as Customers
and Orders, and the relationships between them. MarkLogic Entity Services is a set of tools and
interfaces that make it easier to create applications that manipulate these business entities, even
when your raw data has a different structure.

You can use Entity Services to model your business entities and generate code and configuration
artifacts that facilitate creating, querying, and exporting entity instances.

This section contains the following topics:

• Terms and Definitions

• Why Use Entity Modeling?

• Entity Services Overview

• Next Steps

• Exploring the Entity Services Open-Source Examples

• Security Considerations

MarkLogic Server Version MarkLogic 9—May, 2017 Introduction to Entity Services

Page 8—Entity Services Developer’s Guide

1.1 Terms and Definitions
The material in this guide assumes the reader is familiar with the following terms and definitions:

Term Definition

model descriptor A definition of a set of entity types, their properties, and relationships.
You use a descriptor to create a model and model-based application code
and configuration artifacts. For more details, see “Creating and
Managing Models” on page 57.

model A model includes entity type definitions, entity property definitions,
relationships between entity types, and facts about the model (as
semantic triples). A model descriptor contributes the entity type and
entity property definitions, and relationships between entitites.
MarkLogic generates a default set of facts from the descriptor, and you
can add additional facts to the model. For details, see “Creating and
Managing Models” on page 57.

entity An abstraction of a logical business object that can be stored and
manipulated by applications. For example, a sales model might include
entities such as a customer, order, or inventory item.

entity type A definition of the characteristics of an entity instance, including its
properties and relationships to other entities.

entity instance A concrete instantiation of an entity type, as represented by a populated
data structure representing an individual entity, or a document containing
such a data structure.

entity property A concrete characteristic of an entity type. For example, a customer
entity type might have properties such as a name, address, and customer
id. Entity properties whose type is an entity type express an entity
relationship.

entity relationship A logical relationship between entity types. For example, an order entity
type might include relationships with a customer and inventory item
entities. In Entity Services, an entity relationship is expressed as an entity
property whose type is an entity type (rather than scalar or array type).
For details, see “Defining Entity Relationships” on page 80.

envelope document By Entity Services convention, a document that encapsulates an entity
instance, metadata, and, optionally, the raw source from which the entity
was generated. For details, see “Managing Entity Instances” on
page 149.

MarkLogic Server Introduction to Entity Services

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 9

1.2 Why Use Entity Modeling?
Enterprise applications must often work with data from multiple sources. The data shares
common conceptual objects, such as “customer” or “order”, but representation details can differ
significantly. The “meaning” of the data is spread across schemas, application code, ETL code,
and the minds of developers, DBAs, and data stewards.

Working directly with this heterogeneous data imposes cognitive load on developers and adds
complexity to applications. A model-based view of your data eliminates these problems because it
surfaces a consistent view of the “real world” objects and relationships in your data, independent
of the raw representation.

A model defines logical entity types, their properties, and the relationships between entities. For
example, say your model includes logical “customer” and “order” entities. A customer entity
includes a “name” property. An order entity includes an “order number” property. There are
relationships between customer and order entities: A customer is associated with each order, and a
customer has a list of a orders.

local reference In a model descriptor, a reference to an entity type that can be fully
resolved within that descriptor. For example, if a model defines Race and
Runner entity types, and a Race entity type has a property that is an array
of references to Runners, then those references are local references. For
details, see “Defining Entity Relationships” on page 80.

external reference In a model descriptor, a reference to an entity type that is not defined
within the same descriptor. For details, see “Defining Entity
Relationships” on page 80.

TDE template A Template Driven Extraction (TDE) template. Use Entity Services to
generate a template that enables querying your entity instance data as
rows or semantic triples. For details, see “Generating a TDE Template”
on page 122 and “Search Basics for Instance Data” on page 171.

harmonization The process of transforming data from disparate sources into a common,
model-based representation.

data hub An application that takes in raw data from disparate sources and
transforms the data into canonical business entities that can be used by
applications without regard to differences in the original source.

Term Definition

MarkLogic Server Version MarkLogic 9—May, 2017 Introduction to Entity Services

Page 10—Entity Services Developer’s Guide

You might capture this information in a modeling diagram such as the following:

Entity modeling fits well with MarkLogic. You can ingest your heterogeneous raw data and
immediately get value out of it, using MarkLogic’s application development, search, and indexing
features. These same features enable you to explore your data for purposes of data discovery. As
you explore your data, you uncover entities and relationships that can be modeled.

MarkLogic Server Introduction to Entity Services

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 11

Using the Entity Services API, you can capture your modeled entity types, properties, and
relationships in a model descriptor, and then use the descriptor to create a model. Given a model,
you can use Entity Services to generate a variety of artifacts on which to build your model-based
application. The diagram below outlines this process. For more details, see “Entity Services
Overview” on page 11.

You can build up a model iteratively. You do not need to finalize your model to begin getting
value from the model or your data. The model can grow and change as your data does, without
negatively impacting downstream data consumers: Model based code can easily accomodate a
new data source or a new data discovery, such as the need to expose a new entity type.

Modeling also enables you to expose different views of your data. For example, if you are
modeling patient data, you might have one model that exposes a billing view of the data and
another model that exposes a “quality of care” view of the data. Both models can sit on top of the
same raw data set and need not be defined simultaneously.

1.3 Entity Services Overview
Entity Services is an API and a set of conventions you can use to quickly stand up an application
based on entity modeling.

The Entity Services API provides the following services to facilitate application development
based on entity modeling:

• Modeling Vocabulary: The modeling vocabulary supported by Entity Services provides a
structured way to describe entities, their properties, and relationships between entities.

MarkLogic Server Version MarkLogic 9—May, 2017 Introduction to Entity Services

Page 12—Entity Services Developer’s Guide

• Persistence Convention: The entity persistence pattern promoted by Entity Services
defines a convention for representing harmonized entities, metadata, and raw data as
documents. Your applications can centralize on a single pattern for storing and
manipulating entities.

• Application Scaffolding: You can use Entity Services to generate code and configuration
artifacts from an entity model. This provides a well-defined framework on which to base
an application.

Entity Services promotes a convention for implementing model-based applications, but it does not
force this convention on you. For example, you can use the API to generate code for
encapsulating entity instances, metadata, and raw source in an envelope document with a
recommended structure. However, you are free to modify or replace this structure.

1.3.1 Modeling Vocabulary
Entity Services supports a modeling “vocabulary” in the form of a model descriptor. The
descriptor syntax is based on Swagger and JSON schema. A model descriptor not only identifies
entity types, their properties, and relationships, but also captures information such as data types
and metadata.

For example, recall the entity diagram from “Why Use Entity Modeling?” on page 9:

This diagram captures entity types and relationships, but does not include data type and other
details required by a developer. Entity Services uses a model descriptor to capture detailed entity
type definition and metadata in one place. This enables data stewards and developers to share a
common view of the model.

The model descriptor is the basis for creating a model, generating code templates, and generating
schemas and configuration artifacts. An Entity Services model descriptor can be expressed in
either XML or JSON.

MarkLogic Server Introduction to Entity Services

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 13

A JSON descriptor for the above diagram might look like the following. Metadata about the
model is captured in the “info” section, while the entity types, their properties, and relationships
are captured in the “definitions” section.

{ "info": {
 "title": 'OrderTracker',
 "version": '1.0.0',
 "baseUri": 'http://acme.com/sales/',
 "description": 'A model of customer order tracking'
 },
 "definitions": {
 "Customer": {
 "properties": {
 "name": { "datatype": 'string' },
 "orders": {
 "datatype": "array",
 "items": { "ref": "#/definitions/Order"}
 } } },
 "Order": {
 "properties": {
 "orderId": { "datatype": "string" },
 "customer": { "ref": "#/definitions/Customer"}
 } },
} }

You can express additional requirements, such as which properties are required and which
properties should be indexed for efficient search.

For more details, see “Creating and Managing Models” on page 57.

1.3.2 Persistence Convention
When you follow the Entity Services paradigm, you persist two kinds of modeling related
artifacts in the database: The model and entity instance envelope documents.

When you persist a model descriptor in MarkLogic as a document in the special Entity Services
collection, MarkLogic generates a model from the descriptor. This model is a graph of semantic
triples representing “facts” about the model. The initial set of facts are those that can be derived
from the model descriptor. You can then extend the model to include your own facts, in the form
of additional triples. For more details, see “Creating and Managing Models” on page 57.

MarkLogic Server Version MarkLogic 9—May, 2017 Introduction to Entity Services

Page 14—Entity Services Developer’s Guide

The following diagram depicts the key parts of an entity model:

By convention, an entity instance is persisted in MarkLogic as part of an envelope document that
encapsulates the instance, instance metadata, and the raw source data from which the instance is
derived. You manage envelope documents like any other document in MarkLogic. You can use
Entity Services to generate some configuration and other artifacts that facilitate searching
instance data stored in recommended envelope layout. For more details, see “Managing Entity
Instances” on page 149.

1.3.3 Application Scaffolding
Once you create a model, you can use it with Entity Services to generate code, schemas, and
configuration artifacts to help you create a model-based application. The generated code and
artifacts are designed to be customized and extended to meet the needs of your application. Entity
Services does not enforce any particular data layout or code pattern.

You can generate the following code modules using Entity Services. The input in all cases is a
model descriptor. You are expected to customize the generated code to meet the needs of your
application.

• Instance Converter Module: A code template for converting raw source data into entity
instances and encapsulating the instances into entity envelope documents. The code will
run as-is, but you will need to customize the code to meet the needs of your application.

• Version Translator Module: A code template for converting between different versions of
a model. For example, if you add a new entity type or a new entity property, you can use a
converter module to easily upgrade your entity instances to the new model.

Persisted
Descriptor

Auto-Derived Facts

User-Generated Facts

Entity Model

Generated by MarkLogic when
you persist the model descriptor.

Added by you after persisting
the model descriptor.

MarkLogic Server Introduction to Entity Services

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 15

You can generate the following additional artifacts using Entity Services. The input in all cases is
a model descriptor. You can extend or customize any or all of these artifacts, if needed, but they
all deliver value to your application as-is.

• Model Schema: An XML schema derived from the model. Useful for validating entity
instances. For example, when harmonizing source data with your model, you can use
schema validation to ensure your envelope documents contain correct entity instances.

• Template Driven Extraction Template: A TDE template that can be used to generate views
of your instance data as rows or triples. If you deploy the template, you can use interfaces
such as SQL, SPARQL, and the Optic API to query your instances.

• Query Options: A set of query options usable with the Search API and the REST, Java,
and Node.js Client APIs. For example the options define a constraint for each required
property of an entity type and limit search results to returning just the canonical instance
data from an envelope document.

• Database Configuration: A database configuration file compatible with ml-gradle that can
be used to create indexes and lexicons based on your entity type definitions. You can
easily extract the configuration to use with the REST Management API rather than
ml-gradle.

For more details, see “Generating Code and Other Artifacts” on page 107.

1.4 Next Steps
Use the following suggestions to continue learning about Entity Services:

• Walk through a simple example of creating a model, harmonizing data, creating envelope
documents, and searching entity instances. See “Getting Started With Entity Services” on
page 19.

• Learn about creating model descriptors. See “Creating and Managing Models” on
page 57.

• Learn about creating entity instances from a model. See “Managing Entity Instances” on
page 149.

• Learn more about the application code, schemas, and other configuration artifacts that you
can generate from a model using Entity Services. See “Generating Code and Other
Artifacts” on page 107.

• Explore several end to end examples built with Entity Services. See “Exploring the Entity
Services Open-Source Examples” on page 15.

1.5 Exploring the Entity Services Open-Source Examples
The Entity Services library is automatically installed when you install MarkLogic Server. The
library isno longer being maintained as an open source project on GitHub. The GitHub project
does contain several examples, which you recommend you download and review.

MarkLogic Server Version MarkLogic 9—May, 2017 Introduction to Entity Services

Page 16—Entity Services Developer’s Guide

The examples in this guide are simple ones based on data from the GitHub examples, but they are
independent of the GitHub examples. You might still wish to explore the GitHub examples
because they illustrate end-to-end integration of Entity Services with other MarkLogic tools and
interfaces.

The example directory of the project can be found at the following URL:

http://github.com/marklogic/entity-services/tree/master/entity-services-examples

Before you can deploy and run the examples, you must create a local copy of the project. You can
do this using the git tool (or other git client), or by downloading a zip file from GitHub. For
details, see one of the following topics:

Detailed instructions for deploying and running these examples are on GitHub.

1.5.1 Downloading the Project as a ZIP File
To obtain a local copy from a ZIP file, follow these steps:

1. Navigate to the following URL in your browser: http://github.com/marklogic/entity-services.
The entity-services project home page on GitHub is displayed.

2. Click the “Clone or download” dropdown. A dialog box appears.

3. Click “Download ZIP”. When prompted, choose a location in which to save the ZIP file
and click Save.

4. Unzip the download file to a folder of your choice. By default, this creates a folder named
entity-services-branch. For example, you will have a directory named
entity-services-master if you downloaded the “master” branch.

5. Change directory into entity-services-branch/entity-services-examples.

6. Follow the instructions on this page to configure, deploy, and run the examples:

http://github.com/marklogic/entity-services/blob/master/entity-services-examples/README.md

1.6 Security Considerations
No special security privileges or roles are needed to use the Entity Services API.

The entity envelope documents, code modules, schemas, and other artifacts you generate when
using the Entity Services API are generic and can be secured using the same mechanisms as other
documents and modules. For example, you should use document permissions to manage access to
your envelope documents and persisted model descriptor.

http://github.com/marklogic/entity-services
http://github.com/marklogic/entity-services/blob/master/entity-services-examples/README.md
http://github.com/marklogic/entity-services/tree/master/entity-services-examples

MarkLogic Server Introduction to Entity Services

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 17

Special privileges might be required to deploy some of the generated artifacts. For example, the
user who installs generated code modules must have permission to insert into modules database.
Similarly, the user who installs a TDE template created using Entity Services requires the
tde-admin role or equivalent privileges, as when installing any other template.

MarkLogic Server Version MarkLogic 9—May, 2017 Introduction to Entity Services

Page 18—Entity Services Developer’s Guide

MarkLogic Server Getting Started With Entity Services

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 19

2.0 Getting Started With Entity Services
56

This chapter walks through a very simple Entity Services example of creating a model, creating
entity instances from source data, and querying the model and instances. Choose either the
XQuery walkthrough or the Server-Side JavaScript walkthrough.

• Before You Begin

• Optional: Create a Content Database

• Getting Started Using XQuery

• Getting Started Using JavaScript

• Next Steps

2.1 Before You Begin
All the exercises in this section use the Query Console browser application to evaluate code on
MarkLogic Server. You can launch Query Console by navigating to port 8000 of a host running
MarkLogic.

For example, if MarkLogic is installed on localhost, launch Query Console by opening the
following location in your browser:

http://localhost:8000

To use Query Console, you must have the qconsole-user role or equivalent privileges. You can
learn more about Query Console in the Query Console User Guide.

Note: You do not require special security privileges to use the Entity Services API.
However, some exercises in this chapter involve deploying application code to
MarkLogic, so you should log into Query Console as a user with the admin role or
equivalent privileges.

Some exercises in this chapter save generated code and configuration artifacts to the local
filesystem on the host where MarkLogic is installed, and later read them back. You can choose
any directory, but the directory must be readable and writeable by MarkLogic and by you. The
examples use the variable ARTIFACT_DIR to represent this directory in the instructions.

2.2 Optional: Create a Content Database
You can use any database for the exercises in this chapter. However, if you would like to isolate
this work from the rest of your environment, you can use the procedure in this section to create a
new content database named “es-gs”, with one forest of the same name attached to it.

The following procedure uses the XQuery Admin API to create a database and a forest, and then
attach the forest to the database. You could also use the Admin Interface or the REST
Management API.

http://localhost:8000

MarkLogic Server Version MarkLogic 9—May, 2017 Getting Started With Entity Services

Page 20—Entity Services Developer’s Guide

1. Navigate to Query Console in your browser. For example, if MarkLogic is installed on
localhost, navigate to the following URL:

http://localhost:8000/qconsole

2. When prompted for login credentials, login as a user with admin privileges.

3. Add a new query to the workspace by clicking on the “+” button on the query editor.

4. Select XQuery in the Query Type dropdown.

5. Copy and paste the following code into the new query. This code creates a forest and a
database, and then attaches the forest to the database.

(: create a database:)
xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin"
 at "/MarkLogic/admin.xqy";
admin:save-configuration(
 admin:database-create(admin:get-configuration(),
 "es-gs", xdmp:database("Security"), xdmp:database("Schemas")));

(: create a forest :)
xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin"
 at "/MarkLogic/admin.xqy";
admin:save-configuration(
 admin:forest-create(admin:get-configuration(),
 "es-gs", xdmp:host(), ()));

(: attach the forest to the database :)
xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin"
 at "/MarkLogic/admin.xqy";
admin:save-configuration(
 admin:database-attach-forest(admin:get-configuration(),
 xdmp:database("es-gs"), xdmp:forest("es-gs")));

6. Click the Run button. A database named “es-gs” is created.

7. Optionally, confirm the existence of the new database by browsing to the Admin Interface.
For example, browse to http://localhost:8001 and observe “es-gs” in the list of databases.

2.3 Getting Started Using XQuery
This section uses XQuery and XML to introduce the Entity Services APIs. If you prefer to use
Server-Side JavaScript, see “Getting Started Using JavaScript” on page 37. You can also use
JSON with XQuery and XML with JavaScript, but these combinations are not illustrated here.

• Stage the Source Data

http://localhost:8001
http://localhost:8000/qconsole

MarkLogic Server Getting Started With Entity Services

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 21

• Create a Model Descriptor

• Create a Model

• Create and Deploy an Instance Converter

• Create Entity Instances

• Query the Data

• Query the Model

2.3.1 Stage the Source Data
This exercise ingests the raw source data from which we will create entity instances. One benefit
of Entity Services is that you do not have to model your data up front. You can load your data
as-is and use it in your application, and then incrementally model your entities.

You usually create entity instances from XML or JSON data. The raw data in this example is 2
XML documents and a JSON document. Each document contains information about a person,
such as first name and last name. Each person document also includes a unique persond identifier.

Use the following procedure to load the raw source documents into your content database. The
newly created documents are put into a collection named “raw” so we can easily reference them
later.

1. Navigate to Query Console in your browser. For example, if MarkLogic is installed on
localhost, navigate to the following URL:

http://localhost:8000/qconsole

2. Add a new query to the workspace by clicking on the “+” button on the query editor.

3. Select XQuery in the Query Type dropdown.

4. Select your content database from the Database dropdown.

5. Copy and paste the following code into the new query.

(: Stage raw source in the form of 2 XML and 1 JSON document :)
xquery version "1.0-ml";
import module namespace es = "http://marklogic.com/entity-services"
 at "/MarkLogic/entity-services/entity-services.xqy";

(: Synthesize source data in memory. Normally, this would come
 : from an external source. :)
let $source-data := (
 <person>
 <pid>1234</pid>
 <given>George</given>
 <family>Washington</family>

http://localhost:8000/qconsole

MarkLogic Server Version MarkLogic 9—May, 2017 Getting Started With Entity Services

Page 22—Entity Services Developer’s Guide

 </person>,
 xdmp:unquote('
 {"pid": 2345,
 "given": "Martha",
 "family": "Washington"}
 ')/node(),
 <person>
 <pid>3456</pid>
 <given>Alexander</given>
 <family>Hamilton</family>
 </person>
)
for $source in $source-data return
 let $uri-suffix :=
 typeswitch ($source)
 case element() return ".xml"
 case object-node() return ".json"
 default return ()
 return xdmp:document-insert(
 fn:concat('/es-gs/raw/', $source/pid, $uri-suffix),
 $source,
 <options xmlns="xdmp:document-insert">
 <collections>
 <collection>raw</collection>
 </collections>
 </options>
)

6. Click the Run button. Three documents are created in the database.

7. Optionally, click the Explore button and observe that the following documents were
created in the “raw” collection.

/es-gs/raw/1234.xml
/es-gs/raw/2345.json
/es-gs/raw/3456.xml

2.3.2 Create a Model Descriptor
You define the entity types, attributes, and relationships of your model in an XML or JSON model
descriptor. The model descriptor is the foundation for the model. Model descriptors are discussed
in detail in “Creating and Managing Models” on page 57.

The model descriptor in this example is based on the Person example from the Entity Services
examples on GitHub. For more details about the original example, see “Exploring the Entity
Services Open-Source Examples” on page 15.

MarkLogic Server Getting Started With Entity Services

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 23

This exercise saves an XML model descriptor as a file on the filesystem. Discussion of the
descriptor follows the procedure. For an equivalent JSON example, see “Create a Model
Descriptor” on page 39.

1. Choose a filesystem directory on your MarkLogic host to hold the model descriptor file.
The exercises in this chapter use ARTIFACT_DIR to represent this location.

2. Create a text file named person-desc.xml in ARTIFACT_DIR with the following contents.

<es:model xmlns:es="http://marklogic.com/entity-services">
 <es:info>
 <es:title>Person</es:title>
 <es:version>1.0.0</es:version>
 <es:base-uri>http://example.org/example-person/</es:base-uri>
 <es:description>
 A model of a person, to demonstrate several extractions
 </es:description>
 </es:info>
 <es:definitions>
 <Person>
 <es:properties>
 <id><es:datatype>string</es:datatype></id>
 <firstName><es:datatype>string</es:datatype></firstName>
 <lastName><es:datatype>string</es:datatype></lastName>
 <fullName><es:datatype>string</es:datatype></fullName>
 <friends>
 <es:datatype>array</es:datatype>
 <es:items><es:ref>#/definitions/Person</es:ref></es:items>
 </friends>
 </es:properties>
 <es:primary-key>id</es:primary-key>
 <es:required>firstName</es:required>
 <es:required>lastName</es:required>
 <es:required>fullName</es:required>
 </Person>
 </es:definitions>
</es:model>

3. Set the permissions on ARTIFACT_DIR and the newly created file so that MarkLogic can
read the file.

You now have a file named ARTIFACT_DIR/person-desc.xml that contains the Person model
descriptor.

We stored the model on the filesystem because this most closely resembles a real development
cycle, in which an important project artificat like the model descriptor is under source control.

MarkLogic Server Version MarkLogic 9—May, 2017 Getting Started With Entity Services

Page 24—Entity Services Developer’s Guide

The descriptor defines a single entity type named Person. A Person entity instance contains
string-valued properties named id, firstName, lastName, fullName and a list-valued property
named friends.

<Person>
 <es:properties>
 <id><es:datatype>string</es:datatype></id>
 <firstName><es:datatype>string</es:datatype></firstName>
 <lastName><es:datatype>string</es:datatype></lastName>
 <fullName><es:datatype>string</es:datatype></fullName>
 <friends>
 <es:datatype>array</es:datatype>
 <es:items><es:ref>#/definitions/Person</es:ref></es:items>
 </friends>

 ...

The friends property is a list (array) of references to other Person entities. Since the reference to
Person appears in the same descriptor in which Person is defined, it is a “local reference”. Entity
Services knows the “shape” of the referenced entity type when generating code from a Person
model. You can also reference entity types defined elsewhere.

The firstName, lastName, and fullName properties must all be present in every Person entity
instance because these properties are explicitly flagged as required through the use of
<es:required/>:

<es:required>firstName</es:required>
<es:required>lastName</es:required>
<es:required>fullName</es:required>

The id property is implicitly required because it is identified as the primary key for a Person:

<es:primary-key>id</es:primary-key>

The primary key is a unique identifier for an entity instance. You are not required to define a
primary key, but the existence of a primary key facilitates other Entity Services features; for
details, see “Identifying the Primary Key Entity Property” on page 67.

Since the friends property is neither a primary key nor an explicitly required property, it is
optional. That is, you can create entities that do not include a friends property.

You can also flag properties with other characteristics, such as whether or not a property should
be indexed for efficient search. For more details, see “Writing a Model Descriptor” on page 59.

MarkLogic Server Getting Started With Entity Services

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 25

2.3.3 Create a Model
Inserting an XML or JSON model descriptor document into the special collection
http://marklogic.com/entity-services/models tells MarkLogic the document is part of an
Entity Services model. Membership in this collection causes MarkLogic to generate semantic
triples that define the model.

We “authored” a model descriptor in “Create a Model Descriptor” on page 22. The following
procedure covers the validation and persistence steps that create the model. An explanation of the
code follows the procedure.

1. Open Query Console in your browser if you do not already have it open.

2. Add a new query to the workspace by clicking on the “+” button on the query editor.

3. Select XQuery in the Query Type dropdown.

4. Select your content database from the Database dropdown.

5. Copy and paste the following code into the new query. This code creates a model from a
descriptor.

(: Create a model. :)
xquery version "1.0-ml";
import module namespace es = "http://marklogic.com/entity-services"
 at "/MarkLogic/entity-services/entity-services.xqy";

let $ARTIFACT_DIR := '/space/es/gs/'
let $desc := xdmp:document-get(
 fn:concat($ARTIFACT_DIR, 'person-desc.xml'))
let $validated-desc := es:model-validate($desc)
let $desc-as-json := xdmp:to-json($validated-desc)
return xdmp:document-insert(
 '/es-gs/models/person-1.0.0.json', $desc-as-json,
 <options xmlns="xdmp:document-insert">
 <collections>{
 <collection>http://marklogic.com/entity-services/models</collection>,
 for $coll in xdmp:default-collections()
 return <collection>{$coll}</collection>
 }</collections>
 </options>
)

6. Change the value of the ARTIFACT_DIR variable to the directory where you saved the model
descriptor in “Create a Model Descriptor” on page 22. Include the trailing directory
separator in the pathname.

MarkLogic Server Version MarkLogic 9—May, 2017 Getting Started With Entity Services

Page 26—Entity Services Developer’s Guide

7. Click the Run button. A model is created. The descriptor is persisted as a document with
the URI /es-gs/models/person-1.0.0.json.

If the query is unable to open the input model descriptor file, check the permissions on the
directory and file.

8. Optionally, click the Explore button at the top of the query editor to view the JSON
version of the descriptor.

The first step is to validate the descriptor. An invalid descriptor will produce an invalid model.
Validation introduces overhead, but an invalid descriptor will produce an invalid model, so
validation is recommended during development.

let $desc := xdmp:document-get(
 fn:concat($ARTIFACT_DIR, 'person-desc.xml'))
let $validated-desc := es:model-validate($desc)

The function es:model-validate returns a json:object representation of the descriptor. A
json:object is a special kind of map:map. This is the form expected by Entity Services API
functions that operate on the model, but it is not the proper form for creating a model. Instead, you
must persist an XML or JSON descriptor.

If you persist a descriptor as XML, then you must use es:model-validate or es:model-from-xml
to convert it to the map:map form if you extract it from the database to pass to an Entity Services
function. If you persist the descriptor as JSON, then subsequent conversion is not necessary.
Therefore, this example persists a JSON version of the original XML descriptor.

The function xdmp:to-json converts the json:object created by es:model-validate into a JSON
object-node that represents the JSON version of our XML descriptor. For example:

let $desc-as-json := xdmp:to-json($validated-desc)

Finally, we insert the descriptor into the database as part of the special Entity Services collection
to create the model. The following document insertion adds the Entity Services collection to any
default collections associated with the user performing the insertion.

xdmp:document-insert(
 '/es-gs/models/person-1.0.0.json', $model-as-json,
 <options xmlns="xdmp:document-insert">
 <collections>{
 <collection>http://marklogic.com/entity-services/models</collection>,
 for $coll in xdmp:default-collections()
 return <collection>{$coll}</collection>
 }</collections>
 </options>
)

MarkLogic Server Getting Started With Entity Services

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 27

2.3.4 Create and Deploy an Instance Converter
An instance converter is a library module containing code for transforming your raw source data
into entity instances that conform to your model. You can use the Entity Services API to generate
a baseline converter, and then customize it to meet the requirements of your application.

This section walks through deploying a converter module in the following steps:

• Generate the Default Converter Module

• Customize the Converter Module

• Deploy the Converter Module

2.3.4.1 Generate the Default Converter Module
This exercise creates an instance converter module template using the
es:instance-converter-generate function. An explanation of the code follows the procedure.

1. Open Query Console in your browser if you do not already have it open.

2. Add a new query to the workspace by clicking on the “+” button on the query editor.

3. Select XQuery in the Query Type dropdown.

4. Select your content database from the Database dropdown.

5. Copy and paste the following code into the new query. This code generates the instance
converter module and saves it to the filesystem.

(: Create an instance converter and save it to a file :)
xquery version "1.0-ml";
import module namespace es = "http://marklogic.com/entity-services"
 at "/MarkLogic/entity-services/entity-services.xqy";

let $desc := fn:doc('/es-gs/models/person-1.0.0.json')
let $ARTIFACT_DIR := '/space/es/gs/' (: MODIFY THIS VALUE :)
return xdmp:save(
 fn:concat($ARTIFACT_DIR, 'person-1.0.0-conv.xqy'),
 es:instance-converter-generate($desc)
)

6. Change the value of $ARTIFACT_DIR to a directory on your MarkLogic host where the
generated code can be saved. Include the trailing directory separator in the pathname.

The directory must be readable and writable by MarkLogic.

7. Click the Run button. The file ARTIFACT_DIR/person-1.0.0-conv.xqy is created.

MarkLogic Server Version MarkLogic 9—May, 2017 Getting Started With Entity Services

Page 28—Entity Services Developer’s Guide

8. Optionally, go to ARTIFACT_DIR and review the generated code. In the next section, we will
modify this code.

Though the generated code is runnable as-is, you will need to customize the code to match the
characteristics of your source data and the requirements of your application. The generated code
contains extensive comments to assist you with customization.

We could insert the converter module directly into the modules database to which it will
eventually be deployed. However, the converter is an important project artifact, so you would
normally save it to a file and place it under source control before proceeding with customizations.

The generated module defines the following externally visible functions, plus some private helper
functions. The namespace prefix defined for the module is derived from the model title.

• person:extract-instance-Person - Create a Person instance from raw source data. The
returned instance is a json:object (map:map). You are expected to customize this function
to harmonize your source data with your model.

• person:instance-to-envelope - Convert an entity instance into an XML or JSON
envelope document that encapsulates the instance and the original source. Most
applications will use this function as-is, but you might customize it if you include
additional data in the envelope.

• person:instance-to-canonical - Convert the map:map representation of an instance into its
canonical XML or JSON representation. You will not usually need to customize this
function or call it directly; it exists for use by the generated instance-to-envelope
function.

For more details, see “Creating an Instance Converter Module” on page 110.

2.3.4.2 Customize the Converter Module
The converter module generated by Entity Services implements a
modeltitle:extract-instance-T function for each entity type T defined in the descriptor. In our
example, the converter module implements a person:extract-instance-Person function.

The default implementation of an instance converter assumes the source data has the same
“shape” as a Person entity. However, our source data has pid, given, and family properties instead
of id, firstName, lastName, and fullName. You must modify person:extract-instance-Person to
do the following:

• Extract id from pid

• Extract firstName from given

• Extract lastName from family

• Synthesize fullName by concatenating given and family

MarkLogic Server Getting Started With Entity Services

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 29

Production applications can require many other types of customizations. For example, you might
need to normalize a date value, perform a more sophisticated type conversion, or extract the value
of an entity property from somewhere other than the source data.

Use the following procedure to customize the instance extraction code as described. A discussion
of the code follows the procedure.

1. Confirm you have read and write permissions on ARTIFACT_DIR/person-1.0.0-conv.xqy. If
not, set the permissions accordingly. The file must also be readable by MarkLogic.

2. Open ARTIFACT_DIR/person-1.0.0-conv.xqy in the text editor of your choice.

3. Locate the section of person:extract-instance-Person that prepares the value of the id,
firstName, lastName, and fullName properties. The code should look similar to the
following:

let $id := $source-node/id ! xs:string(.)
let $firstName := $source-node/firstName ! xs:string(.)
let $lastName := $source-node/lastName ! xs:string(.)
let $fullName := $source-node/fullName ! xs:string(.)

4. Replace these lines with the following code. The bold text highlights the changes.

let $id := $source-node/pid ! xs:string(.)
let $firstName := $source-node/given ! xs:string(.)
let $lastName := $source-node/family ! xs:string(.)
let $fullName := fn:concat($firstName, " ", $lastName) ! xs:string(.)

5. Save your changes.

Recall that the Person entity type has id, firstName, lastName, fullName, and friends properties.
The default implementation of person:extract-instance-Person assumes the source data
contains the same properties. For example, the default implementation includes the following
code:

let $id := $source-node/id ! xs:string(.)
let $firstName := $source-node/firstName ! xs:string(.)
let $lastName := $source-node/lastName ! xs:string(.)
let $fullName := $source-node/fullName ! xs:string(.)

Our customization changes the names of the source fields to match our source data, and derives
the fullName property from the given and family source values. The modified portions are shown
in bold, below.

let $id := $source-node/pid ! xs:string(.)
let $firstName := $source-node/given ! xs:string(.)
let $lastName := $source-node/family ! xs:string(.)
let $fullName := fn:concat($firstName, " ", $lastName) ! xs:string(.)

MarkLogic Server Version MarkLogic 9—May, 2017 Getting Started With Entity Services

Page 30—Entity Services Developer’s Guide

2.3.4.3 Deploy the Converter Module
Like any application code, the converter module must be deployed to MarkLogic before you can
use it. Best practice is to install it in the modules database of your App Server. Our example uses
the pre-defined App Server on port 8000, which is configured to use the Modules database.

The following procedure uses XQuery to install the customized converter module into the
Modules database. You could also use Server-Side JavaScript or the REST, Java, or Node.js
Client APIs for this task.

1. Open Query Console in your browser if you do not already have it open.

2. Add a new query to the workspace by clicking on the “+” button on the query editor.

3. Select XQuery in the Query Type dropdown.

4. Select the “Modules” database from the Database dropdown.

5. Copy and paste the following code into the new query. This code saves the instance
converter module to the database.

xquery version "1.0-ml";
let $ARTIFACT_DIR := '/space/es/gs/' (: MODIFY THIS VALUE :)
return xdmp:document-load(
 fn:concat($ARTIFACT_DIR, 'person-1.0.0-conv.xqy'),
 <options xmlns="xdmp:document-load">
 <uri>/es-gs/person-1.0.0-conv.xqy</uri>
 </options>
)

6. Modify the value of $ARTIFACT_DIR to the directory where you previously saved the
converter module. Include the trailing directory separator in the pathname.

7. Click the Run button. The converter module is inserted into the Modules database.

8. Optionally, click the Explore button to confirm the presence of the module in the database.

2.3.5 Create Entity Instances
An envelope document is the recommended way to persist and interact with entity instances in
MarkLogic. An envelope document encapsulates an entity instance with model metadata and the
original source. Storing the logical aspects of an entity (canonical instance representation,
metadata, source) in one physical document facilitates managing, searching, retrieving, indexing,
and securing your data.

An envelope document enables your application to query data as harmonized instances, but still
recover the raw source when needed. You can generate either XML or JSON envelope
documents.

MarkLogic Server Getting Started With Entity Services

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 31

You can use the person:instance-to-envelope function in the converter module to create entity
envelope documents. The input is an instance created by calling
person:extract-instance-Person. If you do not explicitly specify an envelope format of “xml” or
“json”, the function generates an XML envelope.

Use the following procedure to create XML envelope documents from the source documents
loaded in “Stage the Source Data” on page 21. Discussion of the code follows the procedure.

1. Open Query Console in your browser if you do not already have it open.

2. Add a new query to the workspace by clicking on the “+” button on the query editor.

3. Select XQuery in the Query Type dropdown.

4. Select your content database from the Database dropdown.

5. Copy and paste the following code into the new query. This code creates a Person entity
envelope XML document from each source document.

(: Create envelope documents from raw source documents :)
xquery version "1.0-ml";
import module namespace es = "http://marklogic.com/entity-services"
 at "/MarkLogic/entity-services/entity-services.xqy";
import module namespace person =
 "http://example.org/example-person/Person-1.0.0"
 at "/es-gs/person-1.0.0-conv.xqy";

for $source in fn:collection('raw') return
 let $instance := person:extract-instance-Person($source)
 let $uri :=
 fn:concat('/es-gs/env/', map:get($instance, 'id'), '.xml')
 return xdmp:document-insert(
 $uri,
 person:instance-to-envelope($instance, "xml"),
 <options xmlns="xdmp:document-insert">
 <collections>
 <collection>person-envelopes</collection>
 </collections>
 </options>
)

6. Click the Run button. The following envelope documents are created in your content
database:

/es-gs/env/1234.xml
/es-gs/env/2345.xml
/es-gs/env/3456.xml

7. Optionally, click the Explore button to confirm creation of the envelope documents.

MarkLogic Server Version MarkLogic 9—May, 2017 Getting Started With Entity Services

Page 32—Entity Services Developer’s Guide

An envelope document can be either XML or JSON. This exercise uses XML envelopes. An
XML envelope has the following form. The es:attachments portion of the envelope holds the raw
source data.

<es:envelope xmlns:es="http://marklogic.com/entity-services">
 <es:instance>
 <es:info>metadata from info section of descriptor</es:info>
 ...instance canonical XML..
 </es:instance>
 <es:attachments>
 source data
 </es:attachments>
</es:envelope>

The equivalent JSON envelope, generated by passing "json" as the second parameter of
person:instance-to-envelope, has the following form:

{ "envelope": {
 "instance": {
 "info": { ...metadata from info section of descriptor... },
 ...instance canonical JSON...
 },
 "attachments": [...source data...]
}}

Except when constructing path expressions, you do not usually have to be aware of the internal
structure of an envelope document because the Entity Services API includes functions for
extracting an instance or the attachments from an envelope document handle it for you. For
details, see “Extracting an Entity Instance from an Envelope Document” on page 161 and
“Extracting the Original Source from an Envelope Document” on page 164.

You create an envelope document for some entity type T and envelope format F using the
extract-instance-T and instance-to-envelope functions of the instance converter. For example:

(: creating an XML envelope :)
modeltitle:instance-to-envelope(
 modeltitle:extract-instance-T($source), "xml")

(: creating a JSON envelope :)
modeltitle:instance-to-envelope(
 modeltitle:extract-instance-T($source), "json")

For example, the sample code does the following to create a Person entity XML envelope:

let $instance := person:extract-instance-Person($source)
...
return xdmp:document-insert(
 $uri,
 person:instance-to-envelope($instance, "xml"),
 ...)

MarkLogic Server Getting Started With Entity Services

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 33

Inside person:instance-to-envelope, the person:instance-to-canonical function is called to
create the Person entity embedded inside es:envelope/es:instance.

The table below illustrates the progression from raw data to XML envelope document, through
use of the instance converter module functions.

Operation Result

ingest raw source <person>
 <pid>1234</pid>
 <given>George</given>
 <family>Washington</family>
</person>

extract-instance-Person($
source)

input: raw source
output: a map:map
(json:object), shown here
serialized as JSON

{"$attachments": "<?xml version=\"1.0\"
encoding=\"UTF-8\"?>\n<person>\n
<pid>1234</pid>\n <given>George</given>\n
<family>Washington</family>\n</person>",
 "$type": "Person",
 "id": "1234",
 "firstName": "George",
 "lastName": "Washington",
 "fullName": "George Washington"
}

MarkLogic Server Version MarkLogic 9—May, 2017 Getting Started With Entity Services

Page 34—Entity Services Developer’s Guide

The following is an equivalent JSON envelope, generated by calling
instance-to-envelope($instance, "json"):

{ "envelope": {
 "instance": {
 "info": {
 "title":"Person",
 "version":"1.0.0"
 },
 "Person": {
 "id":"2345",
 "firstName":"Martha",
 "lastName":"Washington",
 "fullName":"Martha Washington"}
 },
 "attachments":[

"<person><pid>2345</pid><given>Martha</given><family>Washington</family></pers
on>"
]
}}

instance-to-canonical($in
stance, "xml")

input: instance map:map
output: XML elem

<Person>
 <id>1234</id>
 <firstName>George</firstName>
 <lastName>Washington</lastName>
 <fullName>George Washington</fullName>
</Person>

instance-to-envelope($ins
tance, "xml")

input: instance map:map
output: XML envelope doc

<es:envelope
 xmlns:es="http://marklogic.com/entity-services">
 <es:instance>
 <es:info>
 <es:title>Person</es:title>
 <es:version>1.0.0</es:version>
 </es:info>
 <Person>
 <id>1234</id>
 <firstName>George</firstName>
 <lastName>Washington</lastName>
 <fullName>George Washington</fullName>
 </Person>
 </es:instance>
 <es:attachments>
 <person>
 <pid>1234</pid>
 <given>George</given>
 <family>Washington</family>
 </person>
 </es:attachments>
</es:envelope>

Operation Result

MarkLogic Server Getting Started With Entity Services

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 35

Note that the source data in the attachments is represented as a string if it does not match the
envelope data format. For example, in the above JSON envelope, the source attachment is a
string, rather than an XML node. This has implications for extracting the source from the
envelope as a node; see the example in “Query the Data” on page 51.

2.3.6 Query the Data
This section illustrates one way to search your entity instance data using the cts:search XQuery
function. You can also use other MarkLogic document search APIs, search your instances as row
data, or use semantic search. The Entity Services API includes tools to facilitate all these forms of
search. For details, see “Querying a Model or Entity Instances” on page 169.

The following example uses the XQuery cts:query API to find all Person entities with a lastName
property of Washington, and then emits the original source from which the entity was derived.

1. Open Query Console in your browser if you do not already have it open.

2. Add a new query to the workspace by clicking on the “+” button on the query editor.

3. Select XQuery in the Query Type dropdown.

4. Select your content database from the Database dropdown.

5. Copy and paste the following code into the new query. The code matches documents in the
person-envelopes collection where the lastName element has the value “washington”, and
then returns the original source data from the envelope.

xquery version "1.0-ml";
import module namespace es = "http://marklogic.com/entity-services"
 at "/MarkLogic/entity-services/entity-services.xqy";

(: match all envelopes containing an entity instances with
 : a lastName property value of 'washington' :)
let $matches := cts:search(
 fn:collection('person-envelopes'),
 cts:element-query(
 fn:QName('http://marklogic.com/entity-services', 'instance'),
 cts:element-value-query(xs:QName('lastName'), 'washington')
))
(: extract the original source, as a node :)
for $attachment in $matches/es:envelope/es:attachments/node()
return typeswitch ($attachment)
 case element() return $attachment
 case text() return xdmp:from-json-string($attachment)
 default return ()

MarkLogic Server Version MarkLogic 9—May, 2017 Getting Started With Entity Services

Page 36—Entity Services Developer’s Guide

6. Click the Run button. The query returns a JSON node and an XML node similar to the
following:

{ "pid":2345,
 "given":"Martha",
 "family":"Washington" }

<person xmlns:es="http://marklogic.com/entity-services">
 <pid>1234</pid>
 <given>George</given>
 <family>Washington</family>
</person>

The search matches two entity instances, one extracted from JSON source and one extracted from
XML source, so final query results are one JSON node and one XML node.

The search is limited to the envelope documents by specifying the person-envelopes collection. A
container query (cts:element-query) further constrains the search to occurrences within the
es:instance portion of an envelope document. Finally, a cts:element-value-query is used to
match envelopes where the lastName property value is “washington”.

cts:search(
 fn:collection('person-envelopes'),
 cts:element-query(
 fn:QName('http://marklogic.com/entity-services', 'instance'),
 cts:element-value-query(xs:QName('lastName'), 'washington')
))

The container query ensures the search will not find matches in any part of the envelope
document except the entity instance. You could similarly search just the es:attachments, but
remember that you cannot perform a structured search on JSON source in the attachments
because it is stored in the envelope document as a string.

Notice that the example code can return the original XML source data directly out of the envelope
document, but the original JSON document must be converted from a string to a JSON node using
xdmp:from-json-string, if you want to return it as a node.

2.3.7 Query the Model
When you created a model in “Create a Model” on page 25, MarkLogic automatically generated
some facts from the persisted descriptor, as semantic triples. These facts (and any additional facts
you add) define the model and enable semantic queries against the model.

For example, you can use a SPARQL query to discover what entity types are defined by a model,
what properties are required in an entity instance of a particular type, or the datatype of a
particular entity type property. For more details, see “Querying a Model or Entity Instances” on
page 169.

MarkLogic Server Getting Started With Entity Services

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 37

The following procedure uses a SPARQL query to generate a list of all the required properties of
an instance of the Person entity type:

1. Open Query Console in your browser if you do not already have it open.

2. Add a new query to the workspace by clicking on the “+” button on the query editor.

3. Select SPARQL Query in the Query Type dropdown.

4. Select your content database from the Database dropdown.

5. Copy and paste the following code into the new query. This code retrieves the names of all
required properties of a Person entity instance.

prefix es:<http://marklogic.com/entity-services#>
select ?ptitle
where {
 ?x a es:EntityType;
 es:title "Person";
 es:property ?property .
 ?property a es:RequiredProperty;
 es:title ?ptitle
}

6. Click the Run button. The query results are displayed as a table.

You should see results similar to the following:

ptitle
"lastName"
"fullName"
"firstName"

You can also use the SQL and Optic APIs to query your model and entities as rows if you install
an Entity Services generated TDE template based on your model. For more details and examples,
see “Querying a Model or Entity Instances” on page 169. To learn more about Semantics in
MarkLogic Server, see the Semantics Developer’s Guide.

2.4 Getting Started Using JavaScript
This section uses Server-Side JavaScript and JSON to introduce the Entity Services APIs. If you
prefer to use XQuery, see “Getting Started Using XQuery” on page 20. You can also use JSON
with XQuery and XML with JavaScript, but these combinations are not illustrated here.

• Stage the Source Data

• Create a Model Descriptor

• Create a Model

MarkLogic Server Version MarkLogic 9—May, 2017 Getting Started With Entity Services

Page 38—Entity Services Developer’s Guide

• Create and Deploy an Instance Converter

• Create Entity Instances

• Query the Data

• Query the Model

2.4.1 Stage the Source Data
This exercise ingests the raw source data from which we will create entity instances. One benefit
of Entity Services is that you do not have to model your data up front. You can load your data
as-is and use it in your application, and then incrementally model your entities.

You usually create entity instances from XML or JSON data. The raw data in this example is 2
XML documents and a JSON document. Each document contains information about a person,
such as first name and last name. Each person document also includes a unique persond identifier.

Use the following procedure to load the raw source documents into your content database. The
newly created documents are put into a collection named “raw” so we can easily reference them
later.

1. Navigate to Query Console in your browser. For example, if MarkLogic is installed on
localhost, navigate to the following URL:

http://localhost:8000/qconsole

2. Add a new query to the workspace by clicking on the “+” button on the query editor.

3. Select JavaScript in the Query Type dropdown.

4. Select your content database from the Database dropdown.

5. Copy and paste the following code into the new query.

'use strict';
declareUpdate();

// Synthesize source data in memory. This would normally come
// from an external source.
const sourceData = [
 fn.head(xdmp.unquote(
 '<person>' +
 '<pid>1234</pid>' +
 '<given>George</given>' +
 '<family>Washington</family>' +
 '</person>')),
 {pid: 2345,
 given: 'Martha',
 family: 'Washington'},

http://localhost:8000/qconsole

MarkLogic Server Getting Started With Entity Services

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 39

 fn.head(xdmp.unquote(
 '<person>' +
 '<pid>3456</pid>' +
 '<given>Alexander</given>' +
 '<family>Hamilton</family>' +
 '</person>'))
];

// Insert each source item into the db as an XML or JSON doc.
sourceData.forEach(function(source) {
 let uri = '/es-gs/raw/';
 if (source instanceof Document) {
 // XML doc created by xdmp.unquote
 uri += source.xpath('/node()/pid/data()') + '.xml';
 } else if (source instanceof Object) {
 uri += source.pid + '.json';
 }
 xdmp.documentInsert(uri, source, {collections: ['raw']});
});

6. Click the Run button. Three documents are created in the database.

7. Optionally, click the Explore button and observe that the following documents were
created in the “raw” collection.

/es-gs/raw/1234.xml
/es-gs/raw/2345.json
/es-gs/raw/3456.xml

The sourceData array, above, creates raw data in a very artifical way in order to have a
self-contained example. Your source data will normally come from an external source, such as
files on the file system, an HTTP request payload, or an mlcp job.

Part of this artificiality is the use of xdmp.unquote as quick way to create an XML node from a
literal. You would normally use NodeBuilder to create in-memory XML documents from
Server-Side JavaScript.

2.4.2 Create a Model Descriptor
You define the entity types, entity type properties, and relationships of your model in an XML or
JSON model descriptor. The model descriptor is the staring point for creating a model. Model
descriptors are discussed in detail in “Creating and Managing Models” on page 57.

The model descriptor in this example is based on the Person example from the Entity Services
examples on GitHub. For more details about the original example, see “Exploring the Entity
Services Open-Source Examples” on page 15.

MarkLogic Server Version MarkLogic 9—May, 2017 Getting Started With Entity Services

Page 40—Entity Services Developer’s Guide

This exercise saves a JSON model descriptor as a file on the filesystem. Discussion of the
descriptor follows the procedure.

1. Choose a filesystem directory on your MarkLogic host to hold the model descriptor file.
The exercises in this chapter use ARTIFACT_DIR to represent this location.

2. Create a text file named file person-desc.json in ARTIFACT_DIR with the following
contents.

{ "info": {
 "title": "Person",
 "version": "1.0.0",
 "baseUri": "http://example.org/example-person/",
 "description":
 "A model of a person, to demonstrate several extractions"
 },
 "definitions": {
 "Person": {
 "properties": {
 "id": {"datatype": "string"},
 "firstName": {"datatype": "string"},
 "lastName": {"datatype": "string"},
 "fullName": {"datatype": "string"},
 "friends": {
 "datatype": "array",
 "items": {"$ref": "#/definitions/Person"
 }
 }},
 "primaryKey": "id",
 "required": ["firstName", "lastName", "fullName"]
 }
 }
}

3. Set the permissions on ARTIFACT_DIR and the newly created file so that MarkLogic can
read the file.

You now have a file named ARTIFACT_DIR/person-desc.json that contains the Person model
descriptor. For an example of the equivalent XML descriptor, see “Create a Model Descriptor” on
page 39 in the XQuery walkthrough.

We stored the model on the filesystem because this most closely resembles a real development
cycle, in which an important project artificat like the model descriptor is under source control.

The descriptor defines a single entity type named Person. A Person entity instance contains
string-valued properties named id, firstName, lastName, fullName and list-valued property named
friends.

"Person": {
 "properties": {

MarkLogic Server Getting Started With Entity Services

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 41

 "id": {"datatype": "string"},
 "firstName": {"datatype": "string"},
 "lastName": {"datatype": "string"},
 "fullName": {"datatype": "string"},
 "friends": {
 "datatype": "array",
 "items": {"$ref": "#/definitions/Person"
 }
}}, ...

The friends property is a list (array) of references to other Person entities. Since the reference to
Person appears in the same descriptor in which Person is defined, it is a “local reference”. Entity
Services knows the “shape” of the referenced entity type when generating code from a Person
model. You can also reference entity types defined elsewhere.

The firstName, lastName, and fullName properties must be present in every Person entity instance
because these properties are explicitly flagged as required through the required descriptor
property:

"required": ["firstName", "lastName", "fullName"]

The id property is implicitly required because it is identified as the primary key for a Person:

"primaryKey":"id"

The primary key is a unique identifier for an entity instance. You are not required to define a
primary key, but the existence of a primary key facilitates other Entity Services features; for
details, see “Identifying the Primary Key Entity Property” on page 67.

Since the friends property is neither a primary key nor an explicitly required property, it is
optional. That is, you can create Person entities that do not include a friends property.

You can also flag properties with other characteristics, such as whether or not a property should
be indexed for efficient search. For more details, see “Writing a Model Descriptor” on page 59.

2.4.3 Create a Model
Inserting an XML or JSON model descriptor document into the special collection
http://marklogic.com/entity-services/models tells MarkLogic the document is part of an
Entity Services model. Membership in this collection causes MarkLogic to generate semantic
triples that define the model.

We “authored” a model descriptor in “Create a Model Descriptor” on page 39. The following
procedure covers the validation and persistence steps that create the model. An explanation of the
code follows the procedure.

The following procedure creates a model using the Person model descriptor. An explanation of
the code follows the procedure.

MarkLogic Server Version MarkLogic 9—May, 2017 Getting Started With Entity Services

Page 42—Entity Services Developer’s Guide

1. Open Query Console in your browser if you do not already have it open.

2. Add a new query to the workspace by clicking on the “+” button on the query editor.

3. Select JavaScript in the Query Type dropdown.

4. Select your content database from the Database dropdown.

5. Copy and paste the following code into the new query. This code creates a model from a
descriptor.

'use strict';
declareUpdate();
const es = require('/MarkLogic/entity-services/entity-services.xqy');

// Retrieve descriptor from filesystem
const ARTIFACT_DIR = '/space/es/gs/'; // CHANGE THIS VALUE
const desc = fn.head(
 xdmp.documentGet(ARTIFACT_DIR + 'person-desc.json'));

// Create the model
xdmp.documentInsert(
 '/es-gs/models/person-1.0.0.json', es.modelValidate(desc),
 {collections: ['http://marklogic.com/entity-services/models']}
);

6. Change the value of the ARTIFACT_DIR variable to the directory where you saved the model
descriptor in “Create a Model Descriptor” on page 39. Include the trailing directory
separator in the pathname.

7. Click the Run button. A model is created. The descriptor portion is persisted as a
document with the URI /es-gs/models/person-1.0.0.json.

If the query is unable to open the model descriptor file, check the permissions on the
directory and file.

8. Optionally, click the Explore button at the top of the query editor to view the descriptor
document in the database.

The model is created by persisting the descriptor as part of the collection
http://marklogic.com/entity-services/models.

xdmp.documentInsert(
 '/es-gs/models/person-1.0.0.json', es.modelValidate(desc),
 {collections: ['http://marklogic.com/entity-services/models']}
);

MarkLogic Server Getting Started With Entity Services

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 43

The example also uses es.modelValidate to check the descriptor for errors before inserting it. An
invalid descriptor will generate an invalid model. If the descriptor is invalid, es.modelValidate
throws an exception. If you know your model descriptor is valid, you can skip validation.
Skipping validation is faster, but validation is recommended during development.

2.4.4 Create and Deploy an Instance Converter
An instance converter is an XQuery library module containing code for transforming your raw
source data into entity instances that conforms to your model. You can use the Entity Services
API to generate a baseline converter, and then customize it to meet the requirements of your
application.

This section walks through deploying a converter module in the following steps:

• Generate the Default Converter Module

• Customize the Converter Module

• Deploy the Converter Module

2.4.4.1 Generate the Default Converter Module
This exercise creates an instance converter module template using the
es.instanceConverterGenerate function. An explanation of the code follows the procedure.

1. Open Query Console in your browser if you do not already have it open.

2. Add a new query to the workspace by clicking on the “+” button on the query editor.

3. Select JavaScript in the Query Type dropdown.

4. Select your content database from the Database dropdown.

5. Copy and paste the following code into the new query. This code generates the instance
convert module and saves it to the filesystem.

'use strict';
const es = require('/MarkLogic/entity-services/entity-services.xqy');

const ARTIFACT_DIR = '/space/es/gs/'; // CHANGE THIS VALUE

const desc = cts.doc('/es-gs/models/person-1.0.0.json');
xdmp.save(
 ARTIFACT_DIR + 'person-1.0.0-conv.xqy',
 es.instanceConverterGenerate(desc)
);

MarkLogic Server Version MarkLogic 9—May, 2017 Getting Started With Entity Services

Page 44—Entity Services Developer’s Guide

6. Change the value of ARTIFACT_DIR to a directory on your MarkLogic host where the
generated code can be saved. Include the trailing directory separator in the pathname.

The directory must be readable and writable by MarkLogic.

7. Click the Run button. The file ARTIFACT_DIR/person-1.0.0-conv.xqy is created.

8. Optionally, go to ARTIFACT_DIR and review the generated code. In the next section, we will
modify this code.

We could have inserted the converter module directly into the modules database to which it will
eventually be deployed. However, the converter is an important project artifact, so you would
normally save it to a file and place it under source control. Also, most applications will require
converter customizations.

The generated code is runnable as-is, but you are expected to customize the code to match the
characteristics of your source data and the requirements of your application. The generated code
contains comments to assist you with customization. You will need to understand some XQuery
to customize the converter for a production application.

The generated module defines the following functions. The namespace prefix defined for the
module is derived from the model title.

• person:extract-instance-Person - Create a Person instance from raw source data. You
are expected to customize this function to harmonize your source data with your model.

• person:instance-to-envelope - Convert an entity instance into an XML or JSON
envelope document that encapsulates the instance and the original source. Most
applications will use this function as-is, but you might customize if you include additional
data in the envelope.

• person:instance-to-canonical - Convert the JSON object representation of an instance
into its canonical XML or JSON representation. You will not usually need to customize
this function or call it directly; it exists for use by the generated instance-to-envelope
function.

As with any XQuery module in MarkLogic, you can use the instance converter module from
Server-Side JavaScript, once you install the module. Bring the module into scope using a require
statement. For example, if the module is installed in the modules database with the URI
“/es-gs/person-1.0.0-conv.xqy”, then use a require statement such as the following:

const person = require('/es-gs/person-1.0.0-conv.xqy');

Invoke the functions using their JavaScript-style, camel-case names. For example, in the case of
the Person entity type, the module converter functions can be invoked from Server-Side
JavaScript using the following names, assuming the module is represented by a variable named
person, as shown in the above require statement.

MarkLogic Server Getting Started With Entity Services

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 45

person.extractInstancePerson
person.instanceToEnvelope
person.instanceToCanonical

For more details, see “Creating an Instance Converter Module” on page 110.

2.4.4.2 Customize the Converter Module
The converter module generated by Entity Services implements a
modeltitle:extract-instance-T function for each entity type T defined in the descriptor. In our
example, the converter module implements a person:extract-instance-Person function.

The default implementation of an instance converter assumes the source data has the same
“shape” as a Person entity. However, our source data has pid, given, and family properties instead
of id, firstName, lastName, and fullName. You must modify person:extract-instance-Person to
do the following:

• Extract id from pid

• Extract firstName from given

• Extract lastName from family

• Synthesize fullName by concatenating family and given

Production applications can require many other types of customizations. For example, you might
need to normalize a date value, perform a more sophisticated type conversion, or extract the value
of an entity property from somewhere other than the source data.

Use the following procedure to customize the instance extraction code. A discussion of the code
follows the procedure.

1. Confirm you have read and write permissions on ARTIFACT_DIR/person-1.0.0-conv.xqy. If
not, set the permissions accordingly. The file must also be readable by MarkLogic.

2. Open ARTIFACT_DIR/person-1.0.0-conv.xqy in the text editor of your choice.

3. Locate the section of person:extract-instance-Person that sets the value of the id,
firstName, lastName, and fullName properties. The code should look similar to the
following:

let $id := $source-node/id ! xs:string(.)
let $firstName := $source-node/firstName ! xs:string(.)
let $lastName := $source-node/lastName ! xs:string(.)
let $fullName := $source-node/fullName ! xs:string(.)

4. Replace these lines with the following code. The text in bold highlights the changes.

let $id := $source-node/pid ! xs:string(.)
let $firstName := $source-node/given ! xs:string(.)

MarkLogic Server Version MarkLogic 9—May, 2017 Getting Started With Entity Services

Page 46—Entity Services Developer’s Guide

let $lastName := $source-node/family ! xs:string(.)
let $fullName := fn:concat($firstName, " ", $lastName) ! xs:string(.)

5. Save your changes.

Recall that the Person entity type has id, firstName, lastName, fullName, and friends properties.
The default implementation of person:extract-instance-Person assumes the source data
contains the same properties. For example, the default implementation includes the following
code:

let $id := $source-node/id ! xs:string(.)
let $firstName := $source-node/firstName ! xs:string(.)
let $lastName := $source-node/lastName ! xs:string(.)
let $fullName := $source-node/fullName ! xs:string(.)

Each of the variable declarations assumes the value of a property in the new entity instance
($instance) is the value of a property with the same name in the source node. Since that
assumption does not match the example model, customization is required.

Our customization changes the names of the source fields to match our source data, and derives
the fullName property value from the given and family source values. The modified portions are
shown in bold, below.

let $id := $source-node/pid ! xs:string(.)
let $firstName := $source-node/given ! xs:string(.)
let $lastName := $source-node/family ! xs:string(.)
let $fullName := fn:concat($firstName, " ", $lastName) ! xs:string(.)

2.4.4.3 Deploy the Converter Module
Like any application code, the converter module must be deployed to MarkLogic before you can
use it. Best practice is to install it in the modules database of your App Server. Our example uses
the pre-defined App Server on port 8000, which is configured to use the Modules database.

The following procedure uses XQuery to install the customized converter module into the
Modules database. You could also use Server-Side JavaScript or the REST, Java, or Node.js
Client APIs for this task.

1. Open Query Console in your browser if you do not already have it open.

2. Add a new query to the workspace by clicking on the “+” button on the query editor.

3. Select JavaScript in the Query Type dropdown.

4. Select the “Modules” database from the Database dropdown.

MarkLogic Server Getting Started With Entity Services

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 47

5. Copy and paste the following code into the new query. This code saves the instance
converter module to the database.

// ** RUN AGAINST MODULES DB **
'use strict';
declareUpdate();

const ARTIFACT_DIR = '/space/es/gs/'; // CHANGE THIS VALUE

xdmp.documentLoad(
 ARTIFACT_DIR + 'person-1.0.0-conv.xqy',
 { uri: '/es-gs/person-1.0.0-conv.xqy' }
);

6. Modify the value of ARTIFACT_DIR to the directory where you previously saved the
converter module. Include the trailing directory separator in the pathname.

7. Click the Run button. The converter module is inserted into the Modules database.

8. Optionally, click the Explore button to confirm the presence of the module in the database.

2.4.5 Create Entity Instances
An envelope document is the recommended way to persist and interact with entity instances in
MarkLogic. An envelope document encapsulates an entity instance with model metadata and the
original source. Storing the logical aspects of an entity (canonical instance representation,
metadata, source) in one physical document facilitates managing, searching, retrieving, indexing,
and securing your data.

An envelope document enables your application to query data as harmonized instances, but still
recover the raw source when needed. You can generate either XML or JSON envelope
documents.

You can use the person.instanceToEnvelope function in the converter module to create entity
envelope documents. The input is an instance created by calling person.extractInstancePerson.
If you do not explicitly specify an envelope format of “xml” or “json”, the function generates an
XML envelope.

Use the following procedure to create envelope documents from the source documents loaded in
“Stage the Source Data” on page 38. Discussion of the code follows the procedure.

1. Open Query Console in your browser if you do not already have it open.

2. Add a new query to the workspace by clicking on the “+” button on the query editor.

3. Select JavaScript in the Query Type dropdown.

4. Select your content database from the Database dropdown.

MarkLogic Server Version MarkLogic 9—May, 2017 Getting Started With Entity Services

Page 48—Entity Services Developer’s Guide

5. Copy and paste the following code into the new query. This code creates a Person entity
envelope document from each source document.

'use strict';
declareUpdate();
const es = require('/MarkLogic/entity-services/entity-services.xqy');
const person = require('/es-gs/person-1.0.0-conv.xqy');

for (const source of fn.collection('raw')) {
 let instance = person.extractInstancePerson(source);
 let uri = '/es-gs/env/' + instance.id + '.xml';
 xdmp.documentInsert(
 uri, person.instanceToEnvelope(instance, "xml"),
 {collections: ['person-envelopes']}
);
}

6. Click the Run button. The following envelope documents are created in your content
database:

/es-gs/env/1234.xml
/es-gs/env/2345.xml
/es-gs/env/3456.xml

7. Optionally, click the Explore button to confirm creation of the envelope documents.

An envelope document can be either XML or JSON. This exercise uses XML envelopes. An
XML envelope has the following form. The es:attachments portion of the envelope holds the raw
source data.

<es:envelope xmlns:es="http://marklogic.com/entity-services">
 <es:instance>
 <es:info>metadata from info section of descriptor</es:info>
 ...instance canonical XML..
 </es:instance>
 <es:attachments>
 source data
 </es:attachments>
</es:envelope>

The equivalent JSON envelope, generated by passing "json" as the second parameter of
person.instanceToEnvelope, has the following form:

{ "envelope": {
 "instance": {
 "info": { ...metadata from info section of descriptor... },
 ...instance canonical JSON...
 },
 "attachments": [...source data...]
}}

MarkLogic Server Getting Started With Entity Services

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 49

Except when constructing path expressions, you do not usually have to be aware of the internal
structure of an envelope document because the Entity Services API includes functions for
extracting an instance or the attachments from an envelope document handle it for you. For
details, see “Managing Entity Instances” on page 149.

You create an envelope document for some entity type T using the extractInstanceT and
instanceToEnvelope functions of the instance converter. (These are the extract-instance-T and
instance-to-envelope functions in the XQuery module.) For example:

modeltitle.instanceToEnvelope(
 modeltitle.extractInstanceT($source))

For example, the sample code does the following to create a Person entity envelope:

let instance = person.extractInstancePerson(source);
...
xdmp.documentInsert(
 uri, person.instanceToEnvelope(instance, "xml"),
 ...)

Inside person.instanceToEnvelope, the person.instanceToCanonical function is called to create
the Person entity embedded inside es:envelope/es:instance.

The table below illustrates the progression from raw data to XML envelope document, through
use of the instance converter module functions.

Operation Result

ingest raw source {
 "pid": 2345,
 "given": "Martha",
 "family": "Washington"
}

extractInstancePerson(sou
rce)

input: raw source
output: a map:map
(json:object), shown here
serialized as JSON

{"$attachments": {\"pid\":2345,
\"given\":\"Martha\",
\"family\":\"Washington\"}",
 "$type": "Person",
 "id": "2345",
 "firstName": "Martha",
 "lastName": "Washington",
 "fullName": "Martha Washington"
}

MarkLogic Server Version MarkLogic 9—May, 2017 Getting Started With Entity Services

Page 50—Entity Services Developer’s Guide

The following is an equivalent JSON envelope, generated by calling
instanceToEnvelope(instance, "json"):

{ "envelope": {
 "instance": {
 "info": {
 "title":"Person",
 "version":"1.0.0"
 },
 "Person": {
 "id":"2345",
 "firstName":"Martha",
 "lastName":"Washington",
 "fullName":"Martha Washington"}
 },
 "attachments":[

"<person><pid>2345</pid><given>Martha</given><family>Washington</family></pers
on>"
]
}}

instanceToCanonical(insta
nce, "xml")

input: instance map:map
output: XML elem

<Person>
 <id>2345</id>
 <firstName>Martha</firstName>
 <lastName>Washington</lastName>
 <fullName>Martha Washington</fullName>
</Person>

instanceToEnvelope(instan
ce, "xml")

input: instance map:map
output: XML envelope doc

<es:envelope
 xmlns:es="http://marklogic.com/entity-services">
 <es:instance>
 <es:info>
 <es:title>Person</es:title>
 <es:version>1.0.0</es:version>
 </es:info>
 <Person>
 <id>2345</id>
 <firstName>Martha</firstName>
 <lastName>Washington</lastName>
 <fullName>Martha Washington</fullName>
 </Person>
 </es:instance>
 <es:attachments>{"pid":2345, "given":"Martha",
"family":"Washington"}</es:attachments>
</es:envelope>

Operation Result

MarkLogic Server Getting Started With Entity Services

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 51

Note that the source data in the attachments is as a string if it does not match the envelope data
format. For example, in the above JSON envelope, the source attachment is a string, rather than
an XML node. This has implications for extracting the source from the envelope as a node; see the
example in “Query the Data” on page 51.

2.4.6 Query the Data
This section illustrates one way to search your entity instance data, using the JSearch API. You
can also use other MarkLogic document search APIs, search your instances as row data, or use
semantic search. The Entity Services API includes tools to facilitate all these forms of search. For
details, see “Querying a Model or Entity Instances” on page 169.

The following example uses the JSearch API to find all Person entities with a lastName property
of Washington.

1. Open Query Console in your browser if you do not already have it open.

2. Add a new query to the workspace by clicking on the “+” button on the query editor.

3. Select JavaScript in the Query Type dropdown.

4. Select your content database from the Database dropdown.

5. Copy and paste the following code into the new query. The code matches documents in the
person-envelopes collection where the es:instance element includes a lastName element
with the value “washington”, and then returns the original source data from the envelope.

'use strict';
import jsearch from '/MarkLogic/jsearch.mjs';

// Find all occurences of lastName with the value 'washington'
contained
// in an es:instance element. Return just the documents in the results.
const people = jsearch.collections('person-envelopes');
const matches = people.documents()
 .where(cts.elementQuery(
 fn.QName('http://marklogic.com/entity-services', 'instance'),
 cts.elementValueQuery('lastName', 'washington')))
 .map(match => match.document)
 .result();

// Extract the raw source data from the search results,
// as XML or JSON nodes
const asNodes = [];
for (let match of matches.results) {
 let attachment = fn.head(match.xpath('//*:attachments/node()'));
 if (attachment instanceof Element) {
 // already an XML node
 asNodes.push(attachment);
 } else {

MarkLogic Server Version MarkLogic 9—May, 2017 Getting Started With Entity Services

Page 52—Entity Services Developer’s Guide

 // serialized JSON; deserialize to a JSON document node
 asNodes.push(fn.head(xdmp.unquote(attachment)));
 }
}
// Dump the results in Query Console. The conversion from array
// to Sequence is just used to finesse the way QC renders array
// items that are XML nodes. It is not functionally significant.
Sequence.from(asNodes);

6. Click the Run button. You should see results similar to the following:

{ "pid":2345,
 "given":"Martha",
 "family":"Washington" }

<person xmlns:es="http://marklogic.com/entity-services">
 <pid>1234</pid>
 <given>George</given>
 <family>Washington</family>
</person>

The search matches two envelope documents, one extracted from JSON source and one extracted
from XML source.

The search is first constrained to documents in the person-envelopes collection. Then a container
query (cts.elementQuery) further constrains matches to those contained in an es:instance
element. Finally, a value query (cts.elementValueQuery) is used to find elements named lastName
with the value ‘washington’.

const people = jsearch.collections('person-envelopes');
const matches = people.documents()
 .where(cts.elementQuery(
 fn.QName('http://marklogic.com/entity-services', 'instance'),
 cts.elementValueQuery('lastName', 'washington')))
 ...

The container query ensures the search will not find matches in any part of the envelope data
except the instance. You could similarly search just the attachments, though you cannot
effectively perform a structured search on raw JSON data this way because JSON source is stored
in the XML envelope document as a serialized string.

The map feature of JSearch is used to just return the matched documents, eliminating the search
metadata such as the URI, relevance score, and confidence. The mapper was used just to
streamline the output; a mapper is not required by Entity Services or the JSearch API.

people.documents()
 .where(...)
 .map(match => match.document)

MarkLogic Server Getting Started With Entity Services

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 53

The search produces the following output, which we saved to the matches variable for subsequent
processing.

{"results":[
 <es:envelope xmlns:es="http://marklogic.com/entity-services">
 <es:instance>
 <es:info>
 <es:title>Person</es:title>
 <es:version>1.0.0</es:version>
 </es:info>
 <Person>
 <id>2345</id>
 <firstName>Martha</firstName>
 <lastName>Washington</lastName>
 <fullName>Martha Washington</fullName>
 </Person>
 </es:instance>
 <es:attachments>{"pid":2345, "given":"Martha",
"family":"Washington"}</es:attachments>
 </es:envelope>
 <es:envelope xmlns:es="http://marklogic.com/entity-services">
 <es:instance>
 <es:info>
 <es:title>Person</es:title>
 <es:version>1.0.0</es:version>
 </es:info>
 <Person>
 <id>1234</id>
 <firstName>George</firstName>
 <lastName>Washington</lastName>
 <fullName>George Washington</fullName>
 </Person>
 </es:instance>
 <es:attachments>
 <person>
 <pid>1234</pid>
 <given>George</given>
 <family>Washington</family>
 </person>
 </es:attachments>
 </es:envelope>
],
 "estimate":2
}

Note that the example code can return the original XML source data directly out of the envelope
document because the attachments contain an XML element node. However, the original JSON
source data must be converted from a string to a JSON node using xdmp:from-json-string, if you
want to work with it as structured data. This conversion is the purpose of the following section of
code:

MarkLogic Server Version MarkLogic 9—May, 2017 Getting Started With Entity Services

Page 54—Entity Services Developer’s Guide

if (attachment instanceof Element) {
 // already an XML node
 asNodes.push(attachment);
} else {
 // serialized JSON; deserialize to a JSON document node
 asNodes.push(fn.head(xdmp.fromJsonString(attachment)));
}

(The accumulation of the attachments into the asNodes array and subsequent conversion of
asNodes into a Sequence is just done to finesse the way Query Console displays results.)

For more details and examples, see “Querying a Model or Entity Instances” on page 169.

2.4.7 Query the Model
When you created a model in “Create a Model” on page 41, MarkLogic automatically generated
semantic triples from the descriptor. These triples define the model. You can add more “facts”
about the model in the form of additional triples. You can use SPARQL or the Optic API to query
a model.

For example, you can use a SPARQL query to discover what entity types are defined by a model,
what properties are required in an entity instance of a particular type, or the datatype of a
particular entity type property. For more details, see “Querying a Model or Entity Instances” on
page 169.

The following procedure uses a SPARQL query to generate a list of all the required properties of
an instance of the Person entity type:

1. Open Query Console in your browser if you do not already have it open.

2. Add a new query to the workspace by clicking on the “+” button on the query editor.

3. Select SPARQL Query in the Query Type dropdown.

4. Select your content database from the Database dropdown.

5. Copy and paste the following code into the new query. This code retrieves the names of all
required properties of a Person entity instance.

prefix es:<http://marklogic.com/entity-services#>
select ?ptitle
where {
 ?x a es:EntityType;
 es:title "Person";
 es:property ?property .
 ?property a es:RequiredProperty;
 es:title ?ptitle
}

MarkLogic Server Getting Started With Entity Services

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 55

6. Click the Run button. The query results are displayed as a table.

You should see results similar to the following:

ptitle
"lastName"
"fullName"
"firstName"

You can also use the SQL and Optic APIs to query your model and entities as rows if you install
an Entity Services generated TDE template based on your model. For more details and examples,
see “Querying a Model or Entity Instances” on page 169. To learn more about Semantics in
MarkLogic Server, see the Semantics Developer’s Guide.

2.5 Next Steps
The following topics can help deepen your understanding of the Entity Services API.

• Explore the end to end Entity Services examples on GitHub. For details, see “Exploring
the Entity Services Open-Source Examples” on page 15.

• Learn more about defining model descriptors; see “Creating and Managing Models” on
page 57.

Model descriptors support several features not covered here, such as identifying a primary
key and flagging properties for indexing to facilitate fast searches.

• Learn about generating additional code and configuration artifacts from your model using
the Entity Services API; see “Generating Code and Other Artifacts” on page 107.

For example, you can use Entity Services to generate Search and Client API query options
and database configuration artifacts based on your model. You can also generate a
Template Driven Extraction (TDE) template that enables row and semantic search of
instances. For details, see “Generating a TDE Template” on page 122.

• Learn more about querying models and instance data; see “Querying a Model or Entity
Instances” on page 169.

• Explore the open source MarkLogic Data Hub project on GitHub
(http://github.com/marklogic/marklogic-data-hub). Version 2.0 and later use the Entity
Services API to create a Data Hub application that enables quick and easy entity modeling
and creation of entities from source data.

http://github.com/marklogic/marklogic-data-hub

MarkLogic Server Version MarkLogic 9—May, 2017 Getting Started With Entity Services

Page 56—Entity Services Developer’s Guide

MarkLogic Server Creating and Managing Models

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 57

3.0 Creating and Managing Models
106

This chapter covers entity model description management tasks. A model descriptor defines entity
types, their properties, and relationships between entities. The following topics are covered:

• Introduction

• Writing a Model Descriptor

• Defining Entity Relationships

• Creating a Model from a Model Descriptor

• Working With an XML Model Descriptor

• Validating a Model Descriptor

• Extending a Model with Additional Facts

• Managing Model Changes

• Model Descriptor Syntax Reference

3.1 Introduction
A fully constructed model consists of a set of “facts” about the modeled entity types, their
properties, and the relationships between them. The facts are represented in MarkLogic as
semantic triples.

The entity types, properties, and relationships are defined by an XML or JSON model descriptor.
When you persist the descriptor in the database in the prescribed way, MarkLogic automatically
creates the model by generating facts about the model, expressed as triples. You can also add your
own facts (triples) to the model.

MarkLogic Server Version MarkLogic 9—May, 2017 Creating and Managing Models

Page 58—Entity Services Developer’s Guide

The following diagram depicts the building blocks of an entity model in MarkLogic:

Building a model involves the following steps:

1. Define your entity types, entity type properties (attributes), and relationships in a model
descriptor. For details, see “Writing a Model Descriptor” on page 59.

2. Optionally, validate your descriptor. An invalid descriptor will produce an invalid model,
so it is a good idea to validate the descriptor during development. For details, see
“Validating a Model Descriptor” on page 85.

3. Create a model by persisting the descriptor as a document in the special Entity Services
collection. MarkLogic automatically generates facts about your entity types. For details,
see “Creating a Model from a Model Descriptor” on page 83.

4. Optionally, extend the model with additional facts. “Extending a Model with Additional
Facts” on page 87.

Persisted
Descriptor

Auto-Derived Facts

User-Generated Facts

Entity Model

Generated by MarkLogic when
you persist the model descriptor.

Added by you after persisting
the model descriptor.

MarkLogic Server Creating and Managing Models

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 59

The following diagram is a pictoral representation of this process.

Once you have a valid descriptor or model, you can use the Entity Services API to generate code
and other artifacts that provide a foundation for creating an application based on your model. You
can use the API to create the following:

• A framework for transforming data from heterogeneous sources into canonical entity
instances.

• A Template Driven Extraction (TDE) template for interfacing with your instance data as
rows or triples. The template facilitates querying your instances using SQL, SPARQL, or
the Optic API.

• A framework for converting instances from one version of your model to another as your
model evolves and changes.

• Index configuration and other database configuration properties that facilitate querying
your model, based on characteristics you define.

• Query options that facilitate full text search of your entity instances using the XQuery
Search API or the REST, Java, and Node.js Client APIs.

For more details, see “Generating Code and Other Artifacts” on page 107.

3.2 Writing a Model Descriptor
This section describes how to define a model descriptor containing entity type definitions and
model metadata. This section includes the following topics:

• Model Descriptor Basics

• Entity Type Definition Overview

• Defining an Entity Property with a SimpleType

• Defining an Entity Property with a Complex Type

• Defining an Entity Property with Array Type

• Defining an IRI Entity Property

2. validate
model

descriptor
validated
descriptor

3. persist

Building a Model
1. define

4. extend
model

other
facts

MarkLogic Server Version MarkLogic 9—May, 2017 Creating and Managing Models

Page 60—Entity Services Developer’s Guide

• Identifying the Primary Key Entity Property

• Identifying Personally Identifiable Information (PII)

• Distinguishing Required and Optional Entity Properties

• Defining a Namespace URI for an Entity Type

• Identifying Entity Properties for Indexing

• Controlling the Model IRI and Module Namespaces

3.2.1 Model Descriptor Basics
A model descriptor is an XML element or JSON object that defines one or more entity types,
model metadata, and relationships between entity types. You can generate code templates and
configuration artifacts from the descriptor in the form of either a JSON object-node or a
json:object (a special kind of map:map).

A model descriptor has two parts: The info section contains model metadata, such as a title and
version; the definitions section contains entity type definitions, including entity properties and
relationships, plus type-specific metadata.

A descriptor must define at least one enity type and can define multiple entity types. Each type
definition can include additional metadata to guide code and artifact generation. For details, see
“Entity Type Definition Overview” on page 61.

Note: The entity type property names in your model should be unique, even across entity
types to avoid name collisions in generated code and artifacts.

The “natural” representation for a model descriptor is JSON because it already matches the
internal representation of the model. When you use an XML model descriptor, you must call one
of the following functions to translate your descriptor into a form usable with Entity Services
functions that accept a model as input.

• XQuery: es:model-from-xml or es:model-validate

• Server-Side JavaScript: es.modelFromXml or es.modelValidate

For more details, see “Working With an XML Model Descriptor” on page 84.

You might find it useful to generate test entity instances during model development so you can see
a concrete example of the default entities produced by your model. For details, see “Generating
Test Entity Instances” on page 160.

MarkLogic Server Creating and Managing Models

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 61

The following is an example of the simplest possible model descriptor. The descriptor must
contain at least title and version metadata in the info section, and define at least one entity type
with at least one property in the definitions section. In this example, the model named
“Example” defines an entity type named “Person”. A Person entity has an id property.

3.2.2 Entity Type Definition Overview
An entity type definition usually includes one or more entity property definitions and can include
the type metadata such as a primary key specification. This section provides a brief overview of
defining an entity type. For syntax details, see “entity_type_definition” on page 96

All property definitions must include either a data type or a reference to another entity type. The
data type of a property can be string, array, iri, or one of several XSD types. Depending on the
data type, a property definition may require additional information. For details, see “Writing a
Model Descriptor” on page 59 and “property_definition” on page 101.

The data type of an entity property can be any of the following:

• Any of the XSD types listed in “property_type” on page 105.

Format Descriptor Example

JSON { "info": {
 "title": "Example",
 "version": "1.0.0"
 },
 "definitions": {
 "Person": {
 "properties": {
 "id": { "datatype": "int" }
 }
}}}

XML <es:model xmlns:es="http://marklogic.com/entity-services">
 <es:info>
 <es:title>Example</es:title>
 <es:version>1.0.0</es:version>
 </es:info>
 <es:definitions>
 <Person>
 <es:properties>
 <id>
 <es:datatype>int</es:datatype>
 </id>
 </es:properties>
 </Person>
 </es:definitions>
</es:model>

MarkLogic Server Version MarkLogic 9—May, 2017 Creating and Managing Models

Page 62—Entity Services Developer’s Guide

• A reference to another entity type.

• An IRI.

• A homogeneous array of items of any of these types.

Depending on the type, the property definition can include additional information. For example
when the datatype is “string”, you can specify a collation. For syntax details, see
“property_definition” on page 101.

An entity type definition can include the following type-specific metadata that is used when
generating code and configuration artifacts:

• The name of an entity property to use as a primary key. Designation of a primary key
affects semantic and row searches of instance data. For details, see “Identifying the
Primary Key Entity Property” on page 67.

• Which entity properties must be present in every entity of this type. For details, see
“Distinguishing Required and Optional Entity Properties” on page 70.

• Which entity properties should be backed by an index or lexicon. This affects database
configuration and query option generation. For details, see “Identifying Entity Properties
for Indexing” on page 75.

• A description of the entity type. This is purely informational and does not affect code or
artifact generation.

Property names should be unique across all the entity types in a model. Duplicate property names
can lead to name collisions in generated code and artifacts, causing some code and configuration
to be generated commented out.

MarkLogic Server Creating and Managing Models

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 63

For example, the following model descriptor defines a Person entity with two required entity
properties (“id” and “name”) and two optional entity properties (“address” and “rating”). The “id”
property is the primary key. In addition, the descriptor specifies that a path range index
configuration and query options should be generated for the “rating” property.

Language Example

JSON { "info": { "title": "Example", "version": "1.0.0" },
 "definitions": {
 "Person": {
 "description": "Example person entity type",
 "properties": {
 "id": { "datatype": "int" },
 "name": { "datatype": "string" },
 "address": { "datatype": "string" },
 "rating": { "datatype": "float" }
 },
 "required": ["id", "name"],
 "primaryKey": "id",
 "pathRangeIndex": ["rating"]
 }
 }
}

XML <es:model xmlns:es="http://marklogic.com/entity-services">
 <es:info>
 <es:title>Example</es:title>
 <es:version>1.0.0</es:version>
 </es:info>
 <es:definitions>
 <Person>
 <es:description>Example person entity type</es:description>
 <es:properties>
 <id><es:datatype>int</es:datatype></id>
 <name><es:datatype>string</es:datatype></name>
 <address><es:datatype>string</es:datatype></address>
 <rating><es:datatype>float</es:datatype></rating>
 </es:properties>
 <es:required>id</es:required>
 <es:required>name</es:required>
 <es:primary-key>id</es:primary-key>
 <es:path-range-index>rating</es:path-range-index>
 </Person>
 </es:definitions>
</es:model>

MarkLogic Server Version MarkLogic 9—May, 2017 Creating and Managing Models

Page 64—Entity Services Developer’s Guide

3.2.3 Defining an Entity Property with a SimpleType
To define an entity type property with a simple type such as string, integer, or date, specify the
type name as the value of the datatype JSON property or XML element. For a complete list of
supported type names, see “property_type” on page 105.

Note: Not all the supported data types are usable as range index or word lexicon types. If
you specify an entity property with an incompatible type in the range index or
word lexicon specification of an entity type definition, then the resulting model
will not validate.

For example, the following entity type definition contains entity properties with four different
simple types.

If the type name is “string”, then you can optionally include a collation URI to be used when
generating index, lexicon, and query option configuration artifacts from the model. If you omit
the collation for a string-typed entity property, the collation defaults to
“http://marklogic.com/collation/en”.

Format Example

JSON { "info": { "title": "Example", "version": "1.0.0"},
 "definitions": {
 "Person": {
 "properties": {
 "id": { "datatype": "positiveInteger" },
 "name": { "datatype": "string" },
 "birthdate": { "datatype": "date" },
 "rating": { "datatype": "float" }
 }
}}}

XML <es:model xmlns:es="http://marklogic.com/entity-services">
 <es:info>
 <es:title>Example</es:title>
 <es:version>1.0.0</es:version>
 </es:info>
 <es:definitions>
 <Person>
 <es:properties>
 <id><es:datatype>positiveInteger</es:datatype></id>
 <name><es:datatype>string</es:datatype></name>
 <birthdate><es:datatype>date</es:datatype></birthdate>
 <rating><es:datatype>float</es:datatype></rating>
 </es:properties>
 </Person>
 </es:definitions>
</es:model>

MarkLogic Server Creating and Managing Models

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 65

The following example demonstrates including a collation in an entity property definition.

3.2.4 Defining an Entity Property with a Complex Type
To specify an entity property whose type is complex, such as an object type, define the complex
type as an entity type and use an entity type reference in the property definition.

For example, suppose a Person entity type contains a “name” property, and that “name” should
have entity properties “first”, “middle”, and “last”. You could model a name as an entity type and
then reference it in the definition of Person similar to the following:

JSON: "name": { "$ref": "#/definitions/Name" }

XML: <name><es:ref>#/definitions/Name</es:ref></name>

You can reference entity types defined in the same model (a local reference) or externally. For
more details and examples, see “Defining Entity Relationships” on page 80.

Format Example

JSON { "info": { "title": "Example", "version": "1.0.0"},
 "definitions": {
 "Person": {
 "properties": {
 "name": {
 "datatype": "string",
 "collation": "http://marklogic.com/collation/"
 }
 }
}}}

XML <es:model xmlns:es="http://marklogic.com/entity-services">
 <es:info>
 <es:title>Example</es:title>
 <es:version>1.0.0</es:version>
 </es:info>
 <es:definitions>
 <Person>
 <es:properties>
 <name>
 <es:datatype>string</es:datatype>
 <es:collation>http://marklogic.com/collation/</es:collation>
 </name>
 </es:properties>
 </Person>
 </es:definitions>
</es:model>

MarkLogic Server Version MarkLogic 9—May, 2017 Creating and Managing Models

Page 66—Entity Services Developer’s Guide

3.2.5 Defining an Entity Property with Array Type
To specify an entity property whose type is a list of values, specify “array” in the datatype JSON
property or XML element of the property definition, and then include an items type definition that
specifies the data type of the list items. For a list of supported item type names, see
“property_type” on page 105.

Note: You cannot use an entity property with array type as a primary key or for
generating database configuration artifacts such as range index or word lexicon
configuration.

For example, the following entity type definition defines an entity property named “orders”
whose value is an array of values of type “integer”.

For more details, see “property_definition” on page 101.

Format Example

JSON { "info": { "title": "Example", "version": "1.0.0"},
 "definitions": {
 "Person": {
 "properties": {
 "orders": {
 "datatype": "array",
 "items": {
 "datatype": "integer"
 }
 }
 }
}}}

XML <es:model xmlns:es="http://marklogic.com/entity-services">
 <es:info>
 <es:title>Example</es:title>
 <es:version>1.0.0</es:version>
 </es:info>
 <es:definitions>
 <Person>
 <es:properties>
 <orders>
 <es:datatype>array</es:datatype>
 <es:items>
 <es:datatype>integer</es:datatype>
 </es:items>
 </orders>
 </es:properties>
 </Person>
 </es:definitions>
</es:model>

MarkLogic Server Creating and Managing Models

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 67

3.2.6 Defining an IRI Entity Property
To model the type of an entity property as an IRI (Internationalized Resource Identifier), specify
“iri” in the datatype JSON property or XML element of the property definition. IRI-typed entity
properties can be useful for working with entities using SPARQL.

The value of a property with IRI type must be a string that represents a sem:iri value. The value
is opaque to the Entity Services API.

For example, the following entity type definition contains an entity property “name” with IRI data
type.

For more details about creating Semantic applications in MarkLogic, see the Semantics
Developer’s Guide.

3.2.7 Identifying the Primary Key Entity Property
An entity type definition can designate one entity property as a primary key that uniquely
identifies each instance of that type.

The primary key is used in the following ways:

• Primary and foreign key for SQL views of your instance data. If you generate a TDE
template from the model, the primary key property is the primary key for a row view of

Format Example

JSON { "info": { "title": "Example", "version": "1.0.0"},
 "definitions": {
 "Person": {
 "properties": {
 "name": { "datatype": "iri" }
 }
}}}

XML <es:model xmlns:es="http://marklogic.com/entity-services">
 <es:info>
 <es:title>Example</es:title>
 <es:version>1.0.0</es:version>
 </es:info>
 <es:definitions>
 <Person>
 <es:properties>
 <name><es:datatype>iri</es:datatype></name>
 </es:properties>
 </Person>
 </es:definitions>
</es:model>

MarkLogic Server Version MarkLogic 9—May, 2017 Creating and Managing Models

Page 68—Entity Services Developer’s Guide

instance data. It is also used as a foreign key for some supporting views. For details, see
“Generating a TDE Template” on page 122.

• Unique identifier for auto-generated instance facts (triples). If you generate a TDE
template from the model, the template enables generation of triples about each instance of
an entity type that defines a primary key. For details, see “Generating a TDE Template”
on page 122.

• Value constraint on the primary key. If you generate query options from the model, the
options pre-define a value constraint on the primary key. For details, see “Generating
Query Options for Searching Instances” on page 141.

An entity type definition can contain at most one primary key. If you generate a schema from the
model, the primary key entity property has its cardinality set to exactly 1; for details, see
“Generating an Entity Instance Schema” on page 129.

To specify a primary key, include a primaryKey JSON property or primary-key XML element in
the entity type definition. The value must be the name of an entity property defined in this type
definition. The primary key entity property cannot have array type.

For example, the following definition of a Person entity defines the “id” entity property as a
primary key:

Format Example

JSON { "info": { "title": "Example", "version": "1.0.0"},
 "definitions": {
 "Person": {
 "properties": {
 "id": { "datatype": "positiveInteger" },
 "name": { "datatype": "string" }
 },
 "primaryKey": "id"
}}}

MarkLogic Server Creating and Managing Models

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 69

3.2.8 Identifying Personally Identifiable Information (PII)
Security policies often require strict access controls for Personally Identifiable Information (PII),
such as a telephone number, address, or social security number. Entity Services enables you to tag
entity properties as containing PII, and subsequently generate special security configuration to
control access to PII data in your entity instances. For more details, see “Generating a PII Security
Configuration Artifact” on page 134.

The following example entity type definition flags the “name” and “address” entity properties as
PII.

XML <es:model xmlns:es="http://marklogic.com/entity-services">
 <es:info>
 <es:title>Example</es:title>
 <es:version>1.0.0</es:version>
 </es:info>
 <es:definitions>
 <Person>
 <es:properties>
 <id><es:datatype>positiveInteger</es:datatype></id>
 <name><es:datatype>string</es:datatype></name>
 </es:properties>
 </Person>
 </es:definitions>
 <es:primary-key>id</es:primary-key>
</es:model>

Format Example

JSON { "info": { "title": "Example", "version": "1.0.0"},
 "definitions": {
 "Person": {
 "description": "Example person entity type",
 "properties": {
 "id": { "datatype": "int" },
 "name": { "datatype": "string" },
 "address": { "datatype": "string" }
 },
 "pii" : ["name", "address"],
 "required": ["id", "name"]
 }
 }
}

Format Example

MarkLogic Server Version MarkLogic 9—May, 2017 Creating and Managing Models

Page 70—Entity Services Developer’s Guide

3.2.9 Distinguishing Required and Optional Entity Properties
By default, all entity properties defined in an entity type are optional. You can identify required
properties by including their names in the required section of your entity type definition. The
entity properties named in the required section must be defined in the containing entity type.

An entity property specified as a primary key is implicitly required, so you should not also include
it in the explicit list of required properties.

When you validate an instance against the schema generated for an instance type, validation fails
if the instance does not include at least one occurrence of a required entity property. Similarly,
when you generate a TDE template for an instance type, required entity properties are not
considered nullable.

XML <es:model xmlns:es="http://marklogic.com/entity-services">
 <es:info>
 <es:title>Example</es:title>
 <es:version>1.0.0</es:version>
 </es:info>
 <es:definitions>
 <Person>
 <es:description>Example person entity type</es:description>
 <es:properties>
 <id><es:datatype>int</es:datatype></id>
 <name><es:datatype>string</es:datatype></name>
 <address><es:datatype>string</es:datatype></address>
 </es:properties>
 <es:pii>name</es:pii>
 <es:pii>address</es:pii>
 <es:required>id</es:required>
 <es:required>name</es:required>
 </Person>
 </es:definitions>
</es:model>

Format Example

MarkLogic Server Creating and Managing Models

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 71

The following example entity type definition defines 3 entity properties: “id”, “name”, and
“address”. The “id” and “name” properties are required. The “address” entity property is optional.

3.2.10 Defining a Namespace URI for an Entity Type
By default, the elements of an XML entity instance are in no namespace. If you include a
namespace URI and prefix in your model, then your entity instances names will be qualified by
the namespace, as long as you use an XML representation for your envelope documents.

Use of entity type namespaces is optional. If you choose to use a namespace, you must specify
both a namespace URI and a prefix in your entity type definition.

Format Example

JSON { "info": { "title": "Example", "version": "1.0.0"},
 "definitions": {
 "Person": {
 "description": "Example person entity type",
 "properties": {
 "id": { "datatype": "int" },
 "name": { "datatype": "string" },
 "address": { "datatype": "string" }
 },
 "required": ["id", "name"]
 }
 }
}

XML <es:model xmlns:es="http://marklogic.com/entity-services">
 <es:info>
 <es:title>Example</es:title>
 <es:version>1.0.0</es:version>
 </es:info>
 <es:definitions>
 <Person>
 <es:description>Example person entity type</es:description>
 <es:properties>
 <id><es:datatype>int</es:datatype></id>
 <name><es:datatype>string</es:datatype></name>
 <address><es:datatype>string</es:datatype></address>
 </es:properties>
 <es:required>id</es:required>
 <es:required>name</es:required>
 </Person>
 </es:definitions>
</es:model>

MarkLogic Server Version MarkLogic 9—May, 2017 Creating and Managing Models

Page 72—Entity Services Developer’s Guide

In an XML model descriptor, use the following format to define a namespace URI and prefix:

<es:namespace>namespaceURI</es:namespace>
<es:namespace-prefix>prefix</es:namespace-prefix>

In a JSON model descriptor, use the following format to define a namespace URI and prefix:

"namespace": "namespaceURI",
"namespacePrefix": "prefix"

The following restrictions apply to defining namespace prefix binding. Any model that violates
these restrictions will fail validation.

• No namespace prefix can begin with “xml”, in any case combination. See
https://www.w3.org/TR/REC-xml-names/.

• The following namespace prefixes are reserved and must not be used: xsi, xs, xsd, es, json.
In general, you should not use namespace prefixes pre-defined by MarkLogic, such
“xdmp”.

• The namespace XML element or JSON property value must be a valid absolute URI.

• Entity type namespace prefixes must be unique across the model. You cannot define
multiple entity types with the same namespace prefix.

If you define a namespace for an entity type, the Entity Services API uses it when creating XML
envelope documents, extracting instances from XML envelopes, and generating model artifacts
such as schemas, query options, and TDE templates.

Note: The namespace is discarded when generating JSON envelope documents or
extracting an instance from an envelope document as JSON. This means that
generated code, query options, and TDE templates based on the model will include
XPath expressions that will not match your JSON envelopes or instances without
modification.

For example, the following model descriptor specifies that Person entities should be in the
namespace “http://example.org/es/gs” and bind that namespace URI to the prefix “esgs”:

<es:model xmlns:es="http://marklogic.com/entity-services">
 <es:info>
 <es:title>Person</es:title>
 <es:version>1.1.0</es:version>
 <es:base-uri>http://example.org/example-person/</es:base-uri>
 </es:info>
 <es:definitions>
 <Person>
 <es:properties>
 <id><es:datatype>string</es:datatype></id>
 <firstName><es:datatype>string</es:datatype></firstName>
 <lastName><es:datatype>string</es:datatype></lastName>
 <fullName><es:datatype>string</es:datatype></fullName>

https://www.w3.org/TR/REC-xml-names/

MarkLogic Server Creating and Managing Models

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 73

 <friends>
 <es:datatype>array</es:datatype>
 <es:items><es:ref>#/definitions/Person</es:ref></es:items>
 </friends>
 </es:properties>
 <es:namespace>http://example.org/es/gs</es:namespace>
 <es:namespace-prefix>esgs</es:namespace-prefix>
 <es:primary-key>id</es:primary-key>
 <es:required>firstName</es:required>
 <es:required>lastName</es:required>
 <es:required>fullName</es:required>
 </Person>
 </es:definitions>
</es:model>

MarkLogic Server Version MarkLogic 9—May, 2017 Creating and Managing Models

Page 74—Entity Services Developer’s Guide

The following table illustrates how the envelope documents change, based on whether or not the
model defines an entity type namespace.

If you call es:instance-xml-from-document or es.instanceXmlFromDocument on an XML envelope
document for an entity type that uses namespaces, the returned instance includes the namespace.

For example, the following instance is extracted from the envelope document shown in the table
above. Notice that it uses the “esgs” namespace.

<esgs:Person xmlns:es="http://marklogic.com/entity-services"
 xmlns:esgs="http://example.org/es/gs">
 <esgs:id>1234</esgs:id>

Use Case Example Envelope

No namespace in Person
entity type definition

<es:envelope
 xmlns:es="http://marklogic.com/entity-services">
 <es:instance>
 <es:info>
 ...
 </es:info>
 <Person>
 <id>1234</id>
 <firstName>George</firstName>
 <lastName>Washington</lastName>
 <fullName>George Washington</fullName>
 </Person>
 </es:instance>
 <es:attachments>
 ...
 </es:attachments>
</es:envelope>

Person entity type definition
defines namespace URI
"http://example.org/es/gs"
with prefix "esgs"

<es:envelope
 xmlns:es="http://marklogic.com/entity-services">
 <es:instance>
 <es:info>
 ...
 </es:info>
 <esgs:Person
 xmlns:esgs="http://example.org/es/gs">
 <esgs:id>1234</esgs:id>
 <esgs:firstName>George</esgs:firstName>
 <esgs:lastName>Washington</esgs:lastName>
 <esgs:fullName>George Washington</esgs:fullName>
 </esgs:Person>
 </es:instance>
 <es:attachments>
 ...
 </es:attachments>
</es:envelope>

MarkLogic Server Creating and Managing Models

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 75

 <esgs:firstName>George</esgs:firstName>
 <esgs:lastName>Washington</esgs:lastName>
 <esgs:fullName>George Washington</esgs:fullName>
</esgs:Person>

The namespace is not preserved when you use JSON envelopes or when you generate a JSON
instance from an XML or JSON envelope.

3.2.11 Identifying Entity Properties for Indexing
Searchable entity properties should usually be backed by an index or lexicon.

A model descriptor can contain optional range index and word lexicon sections that indicate
which entity properties should have an associated range index or word lexicon and search
constraint definition. This specification affects generated artifacts such as query options and
database configuration.

For more details, see the following topics:

• Specifying Indexable Properties

• Interaction with Generated Artifacts

• Example: Identifying Indexable Entity Properties

• Supported Datatypes

3.2.11.1 Specifying Indexable Properties
A range index enables range queries over an entity property, such as “match all inventory item
instances with a price property greater than 5”. Range indexes and word lexicons also enable
search application features such as faceting and search term suggestions.

The Entity Services modeling language enables you to specify entity type properties that should
be backed by an element range index, path range index, or word lexicon. (The element range
index specification is applicable to both XML elements and JSON properties.)

To indicate that a property should be backed by a range index, include the following components
in your model descriptor:

• JSON: pathRangeIndex or elementRangeIndex

• XML: es:path-range-index or es:element-range-index

In JSON, the value of pathRangeIndex and elementRangeIndex is an array of entity property
names. In XML, define multiple path-range-index or element-range-index elements to tag
multiple properties. For example:

JSON: "pathRangeIndex": ["price", "rating"]

MarkLogic Server Version MarkLogic 9—May, 2017 Creating and Managing Models

Page 76—Entity Services Developer’s Guide

XML: <es:path-range-index>price</es:path-range-index>
 <es:path-range-index>rating</es:path-range-index>

Note that an element range index is applicable to both XML elements and JSON properties, so
your choice of index type is not limited by the representation of your entity instances. For details,
see Creating Indexes and Lexicons Over JSON Documents in the Application Developer’s Guide.

To specify properties to be backed by a word lexicon, include a wordLexicon JSON property or
word-lexicon XML element in your model descriptor. In JSON, the value of wordLexicon is an
array of property names. In XML, define multiple word-lexicon elements to tag multiple
properties. The syntax is analogous to the range index example, above.

The properties named in a range index or word lexicon specification must be defined in the
containing entity type definition and must conform to certain data type restrictions. For data type
details, see “Supported Datatypes” on page 78.

For a complete example, see “Example: Identifying Indexable Entity Properties” on page 77.

3.2.11.2 Interaction with Generated Artifacts
Specifying the name of an entity property in the range index section has the following
implications:

• The database properties generated by the es:database-properties-generate XQuery
function or the es.databasePropertiesGenerate JavaScript function will include path
range index configuration for the named entity property.

• The query options generated by the es:search-options-generate XQuery function or the
es.searchOptionsGenerate JavaScript function will include a path range constraint
definition for the named entity property.

Specifying the name of an entity property in the word lexicon section has the following
implications:

• The database properties generated by the es:database-properties-generate XQuery
function or the es.databasePropertiesGenerate JavaScript function will include word
lexicon configuration for the named entity property.

• The query options generated by the es:search-options-generate XQuery function or the
es.searchOptionsGenerate JavaScript function will include a word constraint definition
for the named entity property.

Note: If your model specifies a namespace binding for an entity type and you use JSON
envelopes, the namespace is discarded in the JSON representation, but the
generated index configuration still assumes a namespace, so the index
configuration will not match your JSON data. You should usually use XML
envelopes when you include a namespace specifier in your model.

MarkLogic Server Creating and Managing Models

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 77

For more details, see “Generating a Database Configuration Artifact” on page 137 and
“Generating Query Options for Searching Instances” on page 141.

3.2.11.3 Example: Identifying Indexable Entity Properties
The following example descriptors specify a path range index on the “rating” entity property and
a word lexicon on the “bio” entity property of a “Person” entity type.

If you generate database properties from the resulting model (using
es:database-properties-generate or es.databasePropertiesGenerate), then the generated
database configuration properties include the following details:

Format Model Descriptor Example

JSON { "info": { "title": "Example", "version": "1.0.0"},
 "definitions": {
 "Person": {
 "description": "Example person entity type",
 "properties": {
 "id": { "datatype": "int" },
 "name": { "datatype": "string" },
 "rating": { "datatype": "float" },
 "bio": { "datatype": "string" }
 },
 "pathRangeIndex": ["rating"],
 "wordLexicon": ["bio"]
 }
 }
}

XML <es:model xmlns:es="http://marklogic.com/entity-services">
 <es:info>
 <es:title>Example</es:title>
 <es:version>1.0.0</es:version>
 </es:info>
 <es:definitions>
 <Person>
 <es:description>Example person entity type</es:description>
 <es:properties>
 <id><es:datatype>int</es:datatype></id>
 <name><es:datatype>string</es:datatype></name>
 <rating><es:datatype>float</es:datatype></rating>
 <bio><es:datatype>string</es:datatype></bio>
 </es:properties>
 <es:path-range-index>rating</es:path-range-index>
 <es:word-lexicon>bio</es:word-lexicon>
 </Person>
 </es:definitions>
</es:model>

MarkLogic Server Version MarkLogic 9—May, 2017 Creating and Managing Models

Page 78—Entity Services Developer’s Guide

{ "database-name":"%%DATABASE%%",
 ...,
 "element-word-lexicon":[{
 "collation":"http://marklogic.com/collation/en",
 "localname":"bio",
 "namespace-uri":""
 }],
 "range-path-index":[{
 "collation":"http://marklogic.com/collation/en",
 "invalid-values":"reject",
 "path-expression":"//es:instance/Person/rating",
 "range-value-positions":false,
 "scalar-type":"float"
 }],
 ...
}

If you generate query options from the resulting model (using es:search-options-generate or
es.searchOptionsGenerate), then the generated options include the following constraint
definitions:

<search:options
 xmlns:search="http://marklogic.com/appservices/search">
 ...
 <search:constraint name="rating">
 <search:range type="xs:float" facet="true">
 <search:path-index xmlns:es=...>
 //es:instance/Person/rating
 </search:path-index>
 </search:range>
 </search:constraint>
 <search:constraint name="bio">
 <search:word>
 <search:element ns="" name="bio"/>
 </search:word>
 </search:constraint>
 ...
</search:options>

For details on generating database properties and query options, see “Generating Code and Other
Artifacts” on page 107. For details on using the generated artifacts, see “Deploying Generated
Code and Artifacts” on page 147 and “Querying a Model or Entity Instances” on page 169.

3.2.11.4 Supported Datatypes
Any property named in a range index specification must have a data type that can be used to
define a range index or can be mapped to an indexable super type. You can define a property with
any of the data types listed in “property_type” on page 105, but only scalar types can be used to
define a range index. For example, you cannot specify a property that has type hexBinary, an array
type, or a reference to another entity type.

MarkLogic Server Creating and Managing Models

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 79

For a list of type usable to define range indexes, see Understanding Range Indexes in the
Administrator’s Guide.

Any entity property specified in the word lexicon section of a model descriptor must have string
type, or a type which normalizes to string, such as anyURI or iri.

Some datatypes are normalized to a supported index type for purposes of index configuration. For
example, the positiveInteger, negativeInteger, and integer datatypes normalize to the XSD
decimal type. The following mapping is used for purposes of index configuration:

• byte, short become int

• unsignedByte, unsignedShort become unsignedInt

• all *integer types become decimal

• iri, anyURI, boolean become string

3.2.12 Controlling the Model IRI and Module Namespaces
The info section of a model descriptor can include an optional base-uri XML element or baseUri
JSON property. If a base URI is defined, it is used for the following purposes:

• When you use Entity Services to generate code modules such as an instance converter, the
module namespace uses the base URI as the beginning of the module namespace URI.

• When you generate a model from the descriptor, the base URI is used as the beginning of
the model IRI when generating facts about the model as RDF triples.

If you do not include a base URI definition in your descriptor, Entity Services uses
“http://example.org/”.

For example, the following descriptor defines a base URI of “http://my/org/”.

Format Model Descriptor Example

JSON { "info": {
 "title": "Example",
 "version": "1.0.0"
 "baseUri": "http://my/org/"
 },
 "definitions": {
 "Person": { ... }
 }
}

MarkLogic Server Version MarkLogic 9—May, 2017 Creating and Managing Models

Page 80—Entity Services Developer’s Guide

If you generate an instance converter module from this descriptor, then the module namespace is
created by appending the module title (Example) and version (1.0.0) to the base URI
(“http://my/org/”), as follows:

module namespace example = "http://my/org/Example-1.0.0";

If you did not define a base URI, then the module namespace URI would be
“http://example.org/Example-1.0.0”. For more details on the generated module namespace, see
“Module Namespace Declaration” on page 112.

Similarly, when you create a model from the above example descriptor, the base URI is used as an
IRI prefix for the generated model and instance triples. For example, the Person entity type
defined by the example has the following IRI:

http://my/org/Example-1.0.0/Person

If you do not define a base URI, then the above IRI would be
http://example.org/Example-1.0.0/Person.

The base URI is always combined with other model metadata, such as the model title and version.

3.3 Defining Entity Relationships
You can model relationships between entity types by referencing an entity type in place of a
datatype in the definition of an entity property. This is the $ref JSON property or es:ref XML
element of the property definition.

References can either be local (identifying a type defined in the same descriptor) or external
(identifying a type that cannot be locally resolved by the Entity Services API).

• Defining a Local Entity Reference

• Defining an External Entity Reference

XML <es:model xmlns:es="http://marklogic.com/entity-services">
 <es:info>
 <es:title>Example</es:title>
 <es:version>1.0.0</es:version>
 <es:base-uri>http://my/org/</es:base-uri>
 </es:info>
 <es:definitions>
 <Person>...</Person>
 </es:definitions>
</es:model>

Format Model Descriptor Example

MarkLogic Server Creating and Managing Models

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 81

3.3.1 Defining a Local Entity Reference
A local entity reference refers to an entity type defined in the current model. A local reference is
defined by a relative URI of the following form:

#/definitions/entityTypeName

A local entity reference is resolvable during code generation, such as when you call the
es:instance-converter-generate XQuery function or the es.instanceConverterGenerate
JavaScript function. This resolvability enables the Entity Services code generation tools to, for
example, embed the properties of a local reference inside an instance of the referencing type.

For example, the following model descriptor defines two entity types, “Person” and “Name”. The
“Person” entity type definition includes a “name” entity property that is a reference to the “Name”
entity type. The type of the “name” property is a local reference.

Format Example

JSON { "info": { "title": "Example", "version": "1.0.0"},
 "definitions": {
 "Name": {
 "description": "The name of a person.",
 "properties": {
 "first": { "datatype": "string" },
 "middle": { "datatype": "string" },
 "last": { "datatype": "string" }
 },
 "required": ["first", "last"]
 },
 "Person": {
 "description": "Example person entity type",
 "properties": {
 "id": { "datatype": "int" },
 "name": { "$ref": "#/definitions/Name" },
 }
}}}

MarkLogic Server Version MarkLogic 9—May, 2017 Creating and Managing Models

Page 82—Entity Services Developer’s Guide

If you generate an instance converter from this model, the default code template assumes that a
Person entity instance has a Name entity instance embedded within it. For example, a Person
entity instance generated by es:instance-json-from-document or es.instanceJsonFromDocument
might look like the following:

{ "Person": {
 "id": 1234,
 "name": {
 "first": "John",
 "middle": "NMI",
 "last": "Smith"
 }
} }

You could also choose to have the Name persisted separately and reference it from a Person entity
via a primary key, URI, or other identifier. That is a choice you make when customizing your
instance converter. For more details, see “Creating an Instance Converter Module” on page 110.

3.3.2 Defining an External Entity Reference
An external entity reference refers to an entity type defined outside the model. The referenced
type is identified by an IRI. The referenced type should be defined elsewhere in MarkLogic.
Resolution of the reference is handled by MarkLogic’s SPARQL engine.

XML <es:model xmlns:es="http://marklogic.com/entity-services">
 <es:info>
 <es:title>Example</es:title>
 <es:version>1.0.0</es:version>
 </es:info>
 <es:definitions>
 <Name>
 <es:description>The name of a person.</es:description>
 <es:properties>
 <first><es:datatype>string</es:datatype></first>
 <middle><es:datatype>string</es:datatype></middle>
 <last><es:datatype>string</es:datatype></last>
 </es:properties>
 <es:required>first</es:required>
 <es:required>last</es:required>
 </Name>
 <Person>
 <es:description>Example person entity type</es:description>
 <es:properties>
 <id><es:datatype>int</es:datatype></id>
 <name><es:ref>#/definitions/Name</es:ref></name>
 </es:properties>
 </Person>
 </es:definitions>
</es:model>

Format Example

MarkLogic Server Creating and Managing Models

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 83

No validation is performed on the value of an external reference. When you use the Entity
Services APIs to generate code and other artifacts, the reference is treated as an opaque string.

For example, the following model descriptor defines a “Person” entity type that contains a
“name” property that is an external reference to a type identified by “http://example.org/Name”.
This could be an entity type defined by a different Entity Services model.

You would customize your Person instance converter code to fill in the value of the name
property with an appropriate reference or embedded value. Since the “shape” of the external
entity type is not defined by the model, the Entity Services code generation tools cannot assume
an embedded object as they can for local references. To learn more about instance generation, see
“Creating an Instance Converter Module” on page 110.

3.4 Creating a Model from a Model Descriptor
Create a model from a JSON or XML descriptor by inserting the descriptor document into the
database as part of the special Entity Services collection
http://marklogic.com/entity-services/models.

Format Example

JSON { "info": { "title": "Example", "version": "1.0.0"},
 "definitions": {
 "Person": {
 "description": "Example person entity type",
 "properties": {
 "id": { "datatype": "int" },
 "name": { "$ref": "http://example.org/Name" },
 }
}}}

XML <es:model xmlns:es="http://marklogic.com/entity-services">
 <es:info>
 <es:title>Example</es:title>
 <es:version>1.0.0</es:version>
 </es:info>
 <es:definitions>
 <Person>
 <es:description>Example person entity type</es:description>
 <es:properties>
 <id><es:datatype>int</es:datatype></id>
 <name><es:ref>http://example.org/Name</es:ref></name>
 </es:properties>
 </Person>
 </es:definitions>
</es:model>

MarkLogic Server Version MarkLogic 9—May, 2017 Creating and Managing Models

Page 84—Entity Services Developer’s Guide

During insertion, MarkLogic generates a model from the descriptor. The model includes the entity
type definitions, properties, and relationships defined by your descriptor, plus facts about the
model that MarkLogic automatically infers from the descriptor. These facts are expressed as
Semantic triples; for details, see “Search Basics for Models” on page 170. You can also add your
own facts; for details, see “Extending a Model with Additional Facts” on page 87.

For example, the following code snippet creates a model from a descriptor. For a more complete
example see “Getting Started With Entity Services” on page 19.

Note that if you create a model with an XML descriptor, then you will have to convert the
persisted document to its in-memory JSON representation before you can use it with any Entity
Services functions that expect a model as input. For details, see “Working With an XML Model
Descriptor” on page 84.

3.5 Working With an XML Model Descriptor
The “natural” representation of a model descriptor in the Entity Services API is a JSON object
node. In XQuery, the in-memory JSON representation of a model descriptor is as a json:object (a
special kind of map:map). The equivalent representation in Server-Side JavaScript is a JSON
object node or JavaScript object. (MarkLogic implictly converts JavaScript objects to JSON
objects when you pass them as parameters.)

Language Example

XQuery xquery version "1.0-ml";
import module namespace es = "http://marklogic.com/entity-services"
 at "/MarkLogic/entity-services/entity-services.xqy";

let $desc := ... (: your model descriptor :)
return xdmp:document-insert(
 '/es-gs/models/person-1.0.0.json', $desc,
 <options xmlns="xdmp:document-insert">
 <collections>{
 <collection>http://marklogic.com/entity-services/models</collection>,
 for $coll in xdmp:default-collections()
 return <collection>{$coll}</collection>
 }</collections>
 </options>
)

JavaScript 'use strict';
declareUpdate();
const es = require('/MarkLogic/entity-services/entity-services.xqy');

const desc = ...; // your model descriptor
xdmp.documentInsert(
 '/es-gs/models/person-1.0.0.json', desc,
 {collections: ['http://marklogic.com/entity-services/models']}
);

MarkLogic Server Creating and Managing Models

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 85

If you create a model by persisting an XML descriptor, you must convert the persisted descriptor
into its JSON representation before you can pass it to most Entity Services functions. You can
create a JSON object from an XML descriptor using the following functions:

• XQuery:es:model-validate or es:model-from-xml

• Server-Side JavaScript: es.modelValidate or es.modelFromXml

To learn more about descriptor validation, see “Validating a Model Descriptor” on page 85.

The following example code snippet generates an instance converter module from an XML
descriptor by first converting the descriptor to JSON. Assume /es-gs/models/person-1.0.0.xml
is previously persisted descriptor used to create a model.

If you persist your XML descriptor as JSON instead of XML, then you only need to do the
conversion once, at model creation time. This is the technique used in “Create a Model” on
page 25.

In XQuery, you can manipulate the JSON representation of the descriptor as a map:map; for details,
see “Building a JSON Object from a Map” on page 371.

3.6 Validating a Model Descriptor
To validate a model descriptor, use the es:model-validate XQuery function or the
es.modelValidate Server-Side JavaScript function.

If the input descriptor is valid, this function returns a valid JSON descriptor that can be persisted
in the database or used as input to any Entity Services interfaces that accepts a model as input. If
the input descriptor is invalid, this function throws an ES-MODEL-INVALID exception and reports the
validation failures in the error details.

Language Example

XQuery xquery version "1.0-ml";
import module namespace es = "http://marklogic.com/entity-services"
 at "/MarkLogic/entity-services/entity-services.xqy";

let $desc := fn:doc('/es-gs/models/person-1.0.0.xml')
return es:instance-converter-generate(
 es:model-from-xml($desc))

JavaScript 'use strict';
const es = require('/MarkLogic/entity-services/entity-services.xqy');

const desc = cts.doc('/es-gs/models/person-1.0.0.xml');
es.instanceConverterGenerate(es.modelFromXml(desc));

MarkLogic Server Version MarkLogic 9—May, 2017 Creating and Managing Models

Page 86—Entity Services Developer’s Guide

Since an invalid model descriptor produces an invalid model, you should use model validation
during development. Model validation does introduce added overhead, however, so you might
choose to skip it when going between a descriptor and a model in production situations.

The following example validates a simple model descriptor containing a “Person” entity type
definition. The model descriptor is valid, so no exception is raised, and the returned model is
identical to the JSON model descriptor used in the JavaScript example.

Language Example

XQuery xquery version "1.0-ml";
import module namespace es =
"http://marklogic.com/entity-services"
 at "/MarkLogic/entity-services/entity-services.xqy";
es:model-validate(
<es:model xmlns:es="http://marklogic.com/entity-services">
 <es:info>
 <es:title>Example</es:title>
 <es:version>1.0.0</es:version>
 </es:info>
 <es:definitions>
 <Person>
 <es:properties>
 <id><es:datatype>int</es:datatype></id>
 <name><es:datatype>string</es:datatype></name>
 </es:properties>
 <es:required>id</es:required>
 <es:required>name</es:required>
 </Person>
 </es:definitions>
</es:model>
)

JavaScript var es = require('/MarkLogic/entity-services/entity-services');
es.modelValidate(
 { "info": { "title": "Example", "version": "1.0.0" },
 "definitions": {
 "Person": {
 "properties": {
 "id": { "datatype": "int" },
 "name": { "datatype": "string" },
 },
 "required": ["id", "name"]
 } } }
);

MarkLogic Server Creating and Managing Models

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 87

If we introduce an error by specifying that an undefined entity property named “UNDEF” is a
required property, then validation raises an error similar to the following:

ES-MODEL-INVALID (err:FOER0000): "Required" property UNDEF doesn't
exist.

3.7 Extending a Model with Additional Facts
You can extend your model with information and relationships that cannot be expressed in or
derived from the model descriptor by storing additional semantic triples related to your model in
MarkLogic.

You can use the model, entity type, and property IRIs generated by Entity Services to express
these new facts. Entity Services uses the following patterns for constructing IRIs when generating
RDF triple data about a model:

• model IRI: baseUri/modelTitle-modelVersion

• entity type IRI: modelIri/typeName

• entity property IRI: entityTypeIri/propertyName

For example, suppose you have the following model descriptor:

{ "info": {
 "title": "People",
 "version": "1.0.0",
 "baseUri": "http://marklogic.com/example/"
 },
 "definitions": {
 "Person": {
 "properties": {
 "id": { "datatype": "int" },
 "name": { "datatype": "string" },
 }
} } }

Then the following IRIs are generated and used by Entity Services:

• People model IRI: http://marklogic.com/example/People-1.0.0

• Person entity type IRI: http://marklogic.com/example/People-1.0.0/Person

• Person property “name” IRI: http://marklogic.com/example/People-1.0.0/Person/name

You can use any of MarkLogic’s Semantic capabilities to add, manage, and query triples you add
to your model, including embedding triples in your entity instance envelope documents and
customizing the TDE template you can generate with Entity Services. You can also use the model
IRI as named graph IRI for integrating separate triples-based modeling with an Entity Services
model.

For more information about using Semantics with MarkLogic, see Semantics Developer’s Guide.

MarkLogic Server Version MarkLogic 9—May, 2017 Creating and Managing Models

Page 88—Entity Services Developer’s Guide

3.8 Managing Model Changes
Some kinds of changes do not affect the structure and content of your instances. For example, if
you decide to index a property that was not previously indexed or change a property from
required to optional, your instances will not change.

However, changes such as the following typically impact the content in your instances,
application code, and generated artifacts:

• add or remove a property

• change the data type of a property

• make an optional property required

• add or remove an entity type

Entity Services can help you update your application as your model evolves.

When integrating model changes, you must decide if all consumers of your instance data will
move to the new model at the same time, or if you need to support both old and new models
during some transition period. You must also choose how to generate instances based on your
new model version.

See the following topics for more details:

• Generating Instances From the New Model

• Replacing the Old Model with a New Version

• Making Multiple Model Versions Available

For an end to end example of updating a model version, see example-versions in the Entity
Services examples on GitHub. For more details, see “Exploring the Entity Services Open-Source
Examples” on page 15.

3.8.1 Generating Instances From the New Model
You can upgrade your instance data using one of the following strategies:

• Re-extract instances from original source using an instance converter generated from the
new model.

• Convert old version instances into new using a version translator.

MarkLogic Server Creating and Managing Models

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 89

What you do with the instance data based on the new model depends on your version transition
strategy. For details, see “Replacing the Old Model with a New Version” on page 90 and “Making
Multiple Model Versions Available” on page 90.

You should use a version translator if re-extraction is not practical. A version translator is also
useful for creating in-memory instances of a different version to return to downstream consumers.
For example, if you’ve advanced your content to v2 of your model, you could use a v2-to-v1
translator to synthesize v1 instances for v1 clients.

Both the instance converter and the version translator can be generated using the Entity Services
API.

To re-extract instances from original source, generate, customize, and install an instance
converter based on the new model, as described in “Creating an Instance Converter Module” on
page 110. Send your raw source data through the converter, just as you did with the previous
model version.

To use a version translator to generate new version instances from old ones, generate, customize,
and install a version translator module from the old and new models as described in “Creating a
Model Version Translator Module” on page 116. Then, use the translator to convert instance data
from the old model to the new one.

The following diagram illustrates using a version translator to generate an envelope document
containing an instance based on a new model version. You can also pass just an instance (rather
than an envelope document) to the translator.

MarkLogic Server Version MarkLogic 9—May, 2017 Creating and Managing Models

Page 90—Entity Services Developer’s Guide

3.8.2 Replacing the Old Model with a New Version
If all consumers will immediately move to the new model then you can do the following to update
your model-based artifacts:

• TDE template, query options, schema artifacts:

• Generate a version based on the new model.

• Apply your customizations, including merging in appropriate customizations from
the old model.

• Redeploy the artifacts.

• Database configuration: If the new model adds or removes range indexes and word
lexicons, you will need to generate a new configuration artifact, apply your
customizations, and update your database configuration.

• Instance converter:

• Generate a converter based on the new model.

• Apply your customizations, including merging in appropriate customizations from
the old model.

• Redeploy the module.

• Instance data:

• Generate instance data based on the new model, as described in “Generating
Instances From the New Model” on page 88.

• Replace the envelope documents based on the old model with the new envelope
documents.

Note that you might still be able to serve old version instances to clients by using a
down-converting version translator to convert new instances to old ones during extraction. You
can generate such a translator using Entity Services; for details, see “Creating a Model Version
Translator Module” on page 116.

3.8.3 Making Multiple Model Versions Available
When maintaining multiple model versions, the procedures are similar to those described in
“Replacing the Old Model with a New Version” on page 90, but you must consider how to
manage multiple versions of your code and configuration artifacts, such as the following:

• Instance Data

• Entity Type Schema

• TDE Template

• Query Options

• Database Configuration

MarkLogic Server Creating and Managing Models

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 91

3.8.3.1 Instance Data
You must choose an approach to storing your updated instance data in the database. You might
use one of the following approaches to managing versions:

• Each envelope document contains either an old OR a new version of an instance.

• Each envelope document contains both an old AND a new version of an instance.

In the first approach, the database contains envelope documents for instances based on both
model versions, as shown in the following diagram:

In this case, putting the envelope documents in different collections based on version will make
them easier to manage and search. You can also use the value of
es:instance/es:info/es:version to distinguish between versions.

MarkLogic Server Version MarkLogic 9—May, 2017 Creating and Managing Models

Page 92—Entity Services Developer’s Guide

In the second approach, the database still contains only one set of envelope documents, but each
envelope contains multiple instances, as shown in the following diagram:

You can use the value of es:instance/es:info/es:version to distinguish between versions
during search and entity extraction. Your instance converter must be customized to store multiple
instances in a single envelope.

3.8.3.2 Entity Type Schema
This topic refers to maintaining more than one version of the schemas generated by the
es:schema-generate XQuery function or the es.schemaGenerate Server-Side JavaScript function.

It is usually best to avoid multiple schemas for the same type name. Schema validation is based on
type name, so if you do not explicitly specify which schema to use for validation you won’t know
which schema is applied.

During explicit validation in XQuery, you can import a schema into your evaluation context. For
example, if you have v1.0.0 and v2.0.0 schemas installed for a model that defines a Person entity
type, then you could force validation against the v2.0.0 model by doing the following:

xquery version "1.0-ml";
import module namespace es = "http://marklogic.com/entity-services"
 at "/MarkLogic/entity-services/entity-services.xqy";
import schema default element namespace ""
 at "/es-gs/person-2.0.0.xsd";

xdmp:validate(
 es:instance-xml-from-document(

MarkLogic Server Creating and Managing Models

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 93

 fn:doc('/es-gs/envelopes/1234.xml')),
 'type', xs:QName('PersonType'))

For XML instance representations, you can add @schemaLocation to control which schema is
applied. For more details, see Referencing Your Schema in the Application Developer’s Guide.

3.8.3.3 TDE Template
The triples generated from a TDE template generated by Entity Services use a subject IRI that
includes the model version. Therefore, there is no collision between the facts generated from each
template version.

However, both templates will use the same row schema-name for the same entity types, which will
cause row searches to return the union of matched by both templates. To avoid this, you should
give each entity type row schema a unique name.

3.8.3.4 Query Options
You can merge old and new version query options together, or keep them separate and use the
version appropriate for entity instance versions you’re searching.

If you choose to keep multiple versions of canonical instances in a single envelope document, you
should probably modify your query options to include version related constraints or additional
queries.

For example, you might want to add a version constraint based on
es:envelope/es:instance/es:info/es:version.

3.8.3.5 Database Configuration
The database configuration is single-state. You can configure the union of range indexes and
word lexicons defined by the two models.

You should usually not remove a range index or word lexicon required by the older model if you
wish to continue supporting searches on that version. Also, if you define a range index or word
lexicon for a property that exists in both model versions, you might see different search results
against the old version entities because queries against the shared property can now be resolved
out of the index.

MarkLogic Server Version MarkLogic 9—May, 2017 Creating and Managing Models

Page 94—Entity Services Developer’s Guide

3.9 Model Descriptor Syntax Reference
This section provides a detailed description of the layout of a model descriptor, including syntax,
component descriptions, and examples. A model descriptor has the following top level structure,
where the info section contains model metadata, and the definitions section contains your entity
type definitions. A model descriptor must define at least one entity type.

To explore the component parts of a model descriptor in more detail, see the following topics:

• model_info

• entity_type_definition

• property_definition

3.9.1 model_info
The “info” section of a model descriptor contains model metadata, such as a description or
version.

• Syntax Summary

• Component Description

• Examples

3.9.1.1 Syntax Summary
The “info” section of a model descriptor has the following structure:

JSON XML

{
 "info": model_info,
 "definitions": {
 entity_type_definition,
 ...
 }
}

<es:model xmlns:es="http://marklogic.com/entity-services">
 <es:info>model_info</es:info>
 <es:definitions>
 entity_type_definition
 ...
 <es:definitions>
</es:model>

JSON XML

{
 "title": string,
 "version": string,
 "baseUri": string,
 "description": string
}

<es:info xmlns:es="http://marklogic.com/entity-services">
 <es:title>model title</es:title>
 <es:version>model version</es:version>
 <es:base-uri>absolute uri</es:base-uri>
 <es:description>model desc</es:description>
</es:info>

MarkLogic Server Creating and Managing Models

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 95

3.9.1.2 Component Description
The “info” section of a model descriptor can contain the following XML elements or JSON
properties. Title and version are the only required items.

Property Name Description

title Required. The title of this model descriptor. The title string must be a valid
XQuery namespace prefix.

If you plan to generate a TDE template from the model, you should avoid
using hyphens (“-”) in the title. Hyphens will be converted to underscores
(“_”) in the TDE schema, view, and column names, in order to avoid
invalid SQL names.

The title is used as the module namespace prefix when generating code
from the model. If the first character of the title is upper case, it will be
converted to lower space when used as namespace prefix.

version Required. The version of this model descriptor. Best practice is to use the
“semver” format, such as “1.0.0”; for details, see http://semver.org/. The
version number of the model is considered the version number of all the
entity types defined within the model.

baseUri (JSON)
base-uri (XML)

Optional. A valid absolute URI, usable to resolve RDF values in the
descriptor. If this entity property is not present, http://example.org/ is
used as the default URI. For details, see “Controlling the Model IRI and
Module Namespaces” on page 79.

description Optional. A description of this set of entity type definitions. This is purely
information metadata.

http://semver.org/

MarkLogic Server Version MarkLogic 9—May, 2017 Creating and Managing Models

Page 96—Entity Services Developer’s Guide

3.9.1.3 Examples
The following example contains an info section that uses all available properties. Only the title
and version properties are required.

3.9.2 entity_type_definition
An entity type definition is a child of the “definitions” section of a model descriptor. A model
descriptor must include at least one entity type definition, and may contain multiple entity type
definitions.

• Syntax Summary

• Component Description

• Examples

• See Also

Format Example Model Descriptor

JSON { "info": {
 "title": "Example",
 "description": "ES Examples",
 "version": "1.0.0",
 "baseUri": "http://es-ex/examples",
 },
 "definitions": {
 "Person": {
 "properties": {
 "id": { "datatype": "int" },
 "name": { "datatype": "string" }
} } } }

XML <es:model xmlns:es="http://marklogic.com/entity-services">
 <es:info>
 <es:title>Example</es:title>
 <es:description>ES Examples</es:description>
 <es:version>1.0.0</es:version>
 <es:base-uri>http://es-ex/examples</es:base-uri>
 </es:info>
 <es:definitions>
 <Person>
 <es:properties>
 <id><es:datatype>int</es:datatype></id>
 <name><es:datatype>string</es:datatype></name>
 </es:properties>
 </Person>
 </es:definitions>
</es:model>

MarkLogic Server Creating and Managing Models

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 97

3.9.2.1 Syntax Summary
An entity type definition has the following structure, where entityTypeName (in JSON) and
entity-type-name (in XML) represent the user-defined entity type name, such as Person or Order.
By convention, entity type names begin with a capital letter (“Person”, not “person”).

If you plan to generate a TDE template from the model, you should avoid using hyphens (“-”) in
the entity type and entity property names. Hyphens will be converted to underscores (“_”) in the
TDE schema, view, and column names, in order to avoid invalid SQL names.

JSON XML

entityTypeName : {
 "properties": {
 propertyName: property_definition,
 ...
 },
 "required": [string],
 "primaryKey": string,
 "namespace": string,
 "namespacePrefix": string,
 "pii": [string],
 "pathRangeIndex": [string],
 "elementRangeIndex": [string],
 "rangeIndex": [string],
 "wordLexicon": [string]
 "description": string

}

<entity-type-name
 xmlns:es="http://marklogic.com/entity-services">
 <es:properties>
 <property-name>
 property_definition
 </property-name>
 ...
 </es:properties>
 <es:required>property name</es:required>
 <es:primary-key>
 property name
 </es:primary-key>
 <es:namespace>namespace URI</es:namespace>
 <es:namespace-prefix>
 namespace prefix
 </es:namespace-prefix>
 <es:pii>property name</es:pii>
 <es:path-range-index>
 property name
 </es:path-range-index>
 <es:element-range-index>
 property name
 </es:element-range-index>
 <es:range-index>
 property name
 </es:range-index>
 <es:word-lexicon>
 property name
 </es:word-lexicon>
 <es:description>type desc</es:description>
</entity-type-name>

MarkLogic Server Version MarkLogic 9—May, 2017 Creating and Managing Models

Page 98—Entity Services Developer’s Guide

3.9.2.2 Component Description
An entity type definition can contain the following XML elements or JSON properties.

Property Name Description

properties Optional. Zero or more entity property definitions. Each child
JSON property or XML element name is the name of a
property of the entity type. In XML, the element name must
not be namespace qualified. For more details, see “Writing a
Model Descriptor” on page 59.

description Optional. A description of this entity type.

required Optional. Specify the names of entity properties that must be
in every instance of this entity type. In XML, include multiple
required elements to specify multiple required property
names. Each named entity property must match the name of
an entity property defined in the properties section of this
entity type definition. Any entity properties not tagged as
required are treated as optional. For more details, see
“Distinguishing Required and Optional Entity Properties” on
page 70.

primaryKey (JSON)
primary-key (XML)

Optional. The name of an entity property to use as a primary
key when generating artifacts such as an extraction template.
The value must match the name of an entity property defined
in the properties section of this entity type definition. There
can be at most one primary key in an entity type definition.
The primary key property is implicitly also a required
property. For more details, see “Identifying the Primary Key
Entity Property” on page 67.

namespace Optional. A namespace URI with which to qualify canonical
XML entity instances of this type. If you include a namespace
URI, you must also define a namespace prefix using the
namespace-prefix XML element or namespacePrefix JSON
property. The namespace is also used in generated database
configuration and query options artifacts. For details and
restrictions, see “Defining a Namespace URI for an Entity
Type” on page 71.

MarkLogic Server Creating and Managing Models

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 99

namespacePrefix (JSON)
namespace-prefix (XML)

Optional. A namespace prefix to bind to the XML namespace
defined by the namespace XML element or JSON property.
You must define a prefix if you define a namespace. For
details and restrictions, see “Defining a Namespace URI for
an Entity Type” on page 71.

pii Optional. The name(s) of entity properties that can contain
Personally Identifiable Information (PII). You can generate
an Element Level Security (ELS) configuration to more
tightly restrict acess to PII properties than access to other
instance properties. For details, see “Identifying Personally
Identifiable Information (PII)” on page 69. In XML, include
multiple pii elements to specify multiple properties.

pathRangeIndex (JSON)
path-range-index (XML)

Optional. The name(s) of entity properties that should be
backed by a path range index. This affects the database
configuration and query options you can generate from a
model. Each named property must match the name of an
entity property defined in the properties section of this entity
type definition. In XML, include multiple path-range-index
elements to specify multiple properties. For more details, see
“Identifying Entity Properties for Indexing” on page 75.

elementRangeIndex (JSON)
element-range-index (XML)

Optional. The name(s) of entity properties that should be
backed by an element range index. This affects the database
configuration and query options you can generate from a
model. Each named property must match the name of an
entity property defined in the properties section of this entity
type definition. In XML, include multiple
element-range-index elements to specify multiple properties.
For more details, see “Identifying Entity Properties for
Indexing” on page 75.

rangeIndex (JSON)
range-index (XML)

Optional. Deprecated. Equivalent to the pathRangeIndex
property in a JSON descriptor, or the path-range-index
element in an XML descriptor.

wordLexicon (JSON)
word-lexicon (XML)

Optional. The name(s) of entity properties that should be
backed by a word lexicon. This affects the database
configuration and query options you can generate from a
model. Each named property must match the name of an
entity property defined in the properties section of this entity
type definition. In XML, include multiple word-lexicon
elements to specify multiple properties. For details, see
“Identifying Entity Properties for Indexing” on page 75.

Property Name Description

MarkLogic Server Version MarkLogic 9—May, 2017 Creating and Managing Models

Page 100—Entity Services Developer’s Guide

3.9.2.3 Examples
The following example defines a Person entity type that contains entity properties named “id”,
“name”, “bio”, and “rating”. The “id” and “name” properties are required. The “id” entity
property is a primary key. A path range index is required for “id” and “rating”, and a word lexicon
is required for “bio”. The “name” property is tagged as PII.

Format Example Model Descriptor

JSON { "info": {
 "title": "Example",
 "description": "ES Examples",
 "version": "1.0.0"
 },
 "definitions": {
 "Person": {
 "properties": {
 "id": { "datatype": "int" },
 "name": { "datatype": "string" },
 "bio": { "datatype": "string" },
 "rating": { "datatype": "float" }
 },
 "required": ["id", "name"],
 "primaryKey": "id",
 "pii": ["name"],
 "pathRangeIndex": ["id", "rating"],
 "wordLexicon": ["bio"],
 "namespace": "http://example.org/es/gs",
 "namespacePrefix": "es"
}}}

MarkLogic Server Creating and Managing Models

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 101

3.9.2.4 See Also
For more details about using this component, see the following topics:

• “Writing a Model Descriptor” on page 59

3.9.3 property_definition
An entity property definition is a child of the entity_type_definition section of a model descriptor.
Each entity type must include at least one entity property definition.

• Syntax Summary

• Component Description

• Examples

• See Also

XML <es:model xmlns:es="http://marklogic.com/entity-services">
 <es:info>
 <es:title>Example</es:title>
 <es:description>ES Examples</es:description>
 <es:version>1.0.0</es:version>
 </es:info>
 <es:definitions>
 <Person>
 <es:properties>
 <id><es:datatype>int</es:datatype></id>
 <name><es:datatype>string</es:datatype></name>
 <bio><es:datatype>string</es:datatype></bio>
 <rating><es:datatype>float</es:datatype></rating>
 </es:properties>
 <es:required>id</es:required>
 <es:required>name</es:required>
 <es:primary-key>id</es:primary-key>
 <es:pii>name</es:pii>
 <es:path-range-index>id</es:path-range-index>
 <es:path-range-index>rating</es:path-range-index>
 <es:word-lexicon>bio</es:word-lexicon>
 <es:namespace>http://example.org/es/gs</es:namespace>
 <es:namespace-prefix>esgs</es:namespace-prefix>
 </Person>
 </es:definitions>
</es:model>

Format Example Model Descriptor

MarkLogic Server Version MarkLogic 9—May, 2017 Creating and Managing Models

Page 102—Entity Services Developer’s Guide

3.9.3.1 Syntax Summary
An entity property definition can have one of the following forms. Entity property definition are
used in the properties child of an entity_type_definition.

JSON XML

{
 "datatype" : "string",
 "collation": string,
 "description": string
}

{
 "datatype" : "array",
 "items": property_definition ,
 "description": string
}

{
 "datatype" : property_type,
 "description": string
}

{
 "$ref": string,
 "description": string
}

<!-- string-valued entity property -->
<es:datatype>string</es:datatype>
<es:collation>
 collationUri
</es:collation>
<es:description>desc</es:description>

<!-- array/list-valued property -->
<es:datatype>array</es:datatype>
<es:items>property_definition</es:items>

<!-- prop of any other type -->
<es:datatype>property_type</es:datatype>
<es:description>desc</es:description>

<!-- ref to another entity type -->
<es:ref>type path ref</es:ref>
<es:description>desc</es:description>

MarkLogic Server Creating and Managing Models

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 103

3.9.3.2 Component Description
This portion of a model descriptor can contain the following XML elements or JSON properties.
An entity property definition must include either a datatype or ref JSON property or XML
element, but not both.

Property Name Description

datatype Required if $ref (JSON) or es:ref (XML) is not present. The data
type of values in this entity property. The value must be one of the
types listed in “property_type” on page 105. The datatype can affect
what other JSON properties or XML elements can be included in this
definition, such as a datatype of string enabling the inclusion of a
collation URI in the property definition.

$ref (JSON
ref (XML)

Required if datatype is not present. A reference to another entity type,
in the form of either a relative path to an entity type defined in this
model descriptor or an absolute IRI. The value must end in a simple
type name so that it can be treated as a type name during code
generation. For details, see “Defining Entity Relationships” on
page 80 and “Defining an Entity Property with a Complex Type” on
page 65.

collation Optional. Only usable when the value of datatype is string. The
collation to use when generating index/lexicon configuration and
query options. If you do not specify a collation, then it defaults to
http://marklogic.com/collation/en.

items Required when the value of datatype is array. The type definition for
the array items. The value is itself an entity_type_definition. For details,
see “Defining an Entity Property with Array Type” on page 66.

description Optional. A description of this entity type.

MarkLogic Server Version MarkLogic 9—May, 2017 Creating and Managing Models

Page 104—Entity Services Developer’s Guide

3.9.3.3 Examples
The following example defines a Person entity type with 3 entity properties: An “id” of type “int”,
a “name” with type string whose definition includes a collation, and a “friend” entity property
with array type. Each item value in the “friend” array is a reference to a Person entity.

Format Example Model Descriptor

JSON { "info": {
 "title": "Example",
 "description": "ES Examples",
 "version": "1.0.0"
 },
 "definitions": {
 "Person": {
 "properties": {
 "id": { "datatype": "int" },
 "name": {
 "datatype": "string",
 "collation": "http://marklogic.com/collation/"
 },
 "friend": {
 "datatype" : "array",
 "items": { "$ref" : "#/definitions/Person" }
 }
}}}}

XML <es:model xmlns:es="http://marklogic.com/entity-services">
 <es:info>
 <es:title>Example</es:title>
 <es:description>ES Examples</es:description>
 <es:version>1.0.0</es:version>
 </es:info>
 <es:definitions>
 <Person>
 <es:properties>
 <id><es:datatype>int</es:datatype></id>
 <name>
 <es:datatype>string</es:datatype>
 <es:collation>http://marklogic.com/collation/</es:collation>
 </name>
 <friend>
 <es:datatype>array</es:datatype>
 <es:items>
 <es:ref>#/definitions/Person</es:ref>
 </es:items>
 </friend>
 </es:properties>
 </Person>
 </es:definitions>
</es:model>

MarkLogic Server Creating and Managing Models

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 105

3.9.3.4 See Also
For more details, see the following topics:

• “Writing a Model Descriptor” on page 59

3.9.4 property_type
This section defines the type names that can be specified in the datatype JSON property or XML
element of an entity property definition. With the exception of “iri” and “array”, these types
correspond to XML Schema Definition Language (XSD) of the same name; for details, see
https://www.w3.org/TR/xmlschema11-2/#built-in-datatypes.

Note: Not all these datatypes are usable as range index or word lexicon types. If you
specify an entity property with an incompatible type in the range index or word
lexicon specification of an entity type definition, then the resulting model will not
validate.

An array-typed entity property contains an item type definition that also uses this type list. For
details, see “property_definition” on page 101 and “Defining an Entity Property with Array Type”
on page 66.

Some types are folded into a compatible super-type when defining range indexes. For example,
entity properties of type “iri” are indexed as “string”, and entity properties of type “byte” or
“short” are indexed as “int”. Some data type cannot be used for index or word lexicon
configuration.

For more details, see the following topics:

iri duration negativeInteger

array float nonNegativeInteger

anyURI gDay nonPositiveInteger

base64Binary gMonth short

boolean gMonthDay string

byte gYear time

date gYearMonth unsignedByte

dateTime hexBinary unsignedInt

dayTimeDuration int unsignedLong

decimal integer unsignedShort

double long yearMonthDuration

https://www.w3.org/TR/xmlschema11-2/#built-in-datatypes

MarkLogic Server Version MarkLogic 9—May, 2017 Creating and Managing Models

Page 106—Entity Services Developer’s Guide

• “property_definition” on page 101

• “Writing a Model Descriptor” on page 59

• “Identifying Entity Properties for Indexing” on page 75

• “Supported Datatypes” on page 78 (about type restrictions on indexing)

MarkLogic Server Generating Code and Other Artifacts

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 107

4.0 Generating Code and Other Artifacts
148

The Entity Services API includes tools for generating code templates and configuration artifacts
that enable you to quickly bring up a model-based application.

For example, you can generate code for creating instances and instance envelope documents from
raw source and converting instances between different versions of your model. You can also
generate an instance schema, TDE template, query options, and database configuration based on a
model.

This chapter covers the following topics:

• Code and Artifact Generation Overview

• Summary of Available Generators

• Creating an Instance Converter Module

• Creating a Model Version Translator Module

• Generating a TDE Template

• Generating an Entity Instance Schema

• Generating a Database Configuration Artifact

• Generating a PII Security Configuration Artifact

• Generating Query Options for Searching Instances

• Deploying Generated Code and Artifacts

4.1 Code and Artifact Generation Overview
The following steps outline the basic procedure for generating code and configuration artifacts
using the Entity Services API. The specifics are described in detail in the rest of this chapter.

1. Author a model descriptor and create a model, as described in “Creating and Managing
Models” on page 57.

2. Pass the model (in the form of a json:object or JSON object-node) to one of the
es:*-generate XQuery functions or es.*Generate JavaScript functions to generate a code
module or configuration artifact.

3. Customize the generated code or artifact to meet the needs of your application. All
generated code and artifacs are usable as-is, but you will want to customize some of them.

4. Deploy the (customized) code or artifact, as needed. Code modules must be deployed to
the modules database. Artifacts such as the TDE template must be deployed to the
schemas database. Artifacts such as query options do not require deployment.

MarkLogic Server Version MarkLogic 9—May, 2017 Generating Code and Other Artifacts

Page 108—Entity Services Developer’s Guide

The following diagram illustrates this process. The relevant part of the model is the portion
represented by the model descriptor.

The following diagram illustrates the high level flow for creating, deploying and using an instance
converter module. The instance converter module is discussed in more detail in “Creating an
Instance Converter Module” on page 110.

MarkLogic Server Generating Code and Other Artifacts

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 109

4.2 Summary of Available Generators
The following table summarizes the code and artifact generation functions provided by Entity
Services. Both the XQuery (es:*) and Server-Side JavaScript (es.*) name of each function is
included. For more details, see the MarkLogic XQuery and XSLT Function Reference or
MarkLogic Server-Side JavaScript Function Reference.

Function Description

es:instance-converter-generate

es.instanceConverterGenerate

Generate an XQuery library module containing
functions useful for data conversion, such as converting
raw source data into entity instances or an instance into
its canonical representation. You can use this module
from either XQuery or Server-Side JavaScript. For more
details, see “Creating an Instance Converter Module” on
page 110.

es:version-translator-generate

es.versionTranslatorGenerate

Generate an XQuery library module containing
functions useful for converting entity instances from one
version to another. You can use this module from either
XQuery or Server-Side JavaScript. For more details, see
“Creating a Model Version Translator Module” on
page 116.

es:schema-generate

es.schemaGenerate

Generate an XSD schema for a model. The resulting
schema is suitable for validating canonical entity
instances. For details, see “Generating an Entity Instance
Schema” on page 129.

es:extraction-template-generate

es.extractionTemplateGenerate

Generate a TDE template that facilitates searching entity
instances as row or semantic data. For more deails, see
“Generating a TDE Template” on page 122.

es:database-properties-generate

es.databasePropertiesGenerate

Generate a JSON database properties configuration
object, suitable for use with the REST Management API
or ml-gradle. This artifact includes range index and
word lexicon configuration based on the model
descriptor. For details, see “Generating a Database
Configuration Artifact” on page 137.

MarkLogic Server Version MarkLogic 9—May, 2017 Generating Code and Other Artifacts

Page 110—Entity Services Developer’s Guide

4.3 Creating an Instance Converter Module
An instance converter helps you create entity instance documents from raw source data. Generate
a default instance converter using Entity Services, then customize the code for your application.

• Purpose of a Converter Module

• Generating a Converter Module Template

• Understanding the Default Converter Implementation

• Customizing a Converter Module

4.3.1 Purpose of a Converter Module
An instance converter is a key part of a model-driven application. The instance converter provides
functions that facilitate the following tasks:

• Creating an entity instance from raw source data.

• Creating an entity envelope document that encapsulates an instance, metadata, and raw
source data.

• Extracting a canonical instance or its attachments (such as the raw source) from an
envelope document.

For more details on envelope documents, see “What is an Envelope Document?” on page 150.

You usually use the instance converter to create entity instance envelope documents and to extract
canonical instances for use by downstream entity consumers.

You are expected to customize the generated converter module to meet the needs of your
application.

es:search-options-generate

es.searchOptionsGenerate

Generates a set of query options helpful for searching
entity instances with the XQuery Search API or the
REST, Java, or Node.js Client APIs. For more details,
see “Generating Query Options for Searching Instances”
on page 141.

es:pii-generate

es.piiGenerate

Generate an Element Level Security configuration
artifact that enables stricter control of entity properties
that contain Personally Identifiable Information (PII).
For more details, see “Generating a PII Security
Configuration Artifact” on page 134.

Function Description

MarkLogic Server Generating Code and Other Artifacts

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 111

4.3.2 Generating a Converter Module Template
Generate an instance converter from the JSON object-node or json:object representation of a
model descriptor by calling the XQuery function es:instance-converter-generate or the
JavaScript function es.instanceConverterGenerate. The result is an XQuery library module
containing both model-specific and entity type specific code.

The input to the generator is a JSON descriptor. If you have an XML descriptor, you must first
convert it to the expected format; for details, see “Working With an XML Model Descriptor” on
page 84. The output of the generator function is an XQuery library module.

You can use the generated code as-is, but most applications will require customization of the
converter implementation. For details, see “Customizing a Converter Module” on page 114.

The following example code generates a converter module from a previously persisted descriptor,
and then saves the generated code as a file on the filesystem.

You could also insert the converter directly into the modules database, but the converter is an
important project artifact that should be placed under source control. You will want to track
changes to it as your application evolves.

4.3.3 Understanding the Default Converter Implementation
This section explores the default code generated for an instance converter module. The following
topics are covered:

• Module Namespace Declaration

Language Example

XQuery xquery version "1.0-ml";
import module namespace es =
 "http://marklogic.com/entity-services"
 at "/MarkLogic/entity-services/entity-services.xqy";

let $desc := fn:doc('/es-gs/models/person-1.0.0.json')
return xdmp:save(
 '/space/es/gs/person-1.0.0-conv.xqy',
 es:instance-converter-generate($desc)
)

JavaScript 'use strict';
const es = require('/MarkLogic/entity-services/entity-services.xqy');

const desc = cts.doc('/es-gs/models/person-1.0.0.json');
xdmp.save(
 '/space/es/gs/person-1.0.0-conv.xqy',
 es.instanceConverterGenerate(desc)
);

MarkLogic Server Version MarkLogic 9—May, 2017 Generating Code and Other Artifacts

Page 112—Entity Services Developer’s Guide

• Generated Functions

4.3.3.1 Module Namespace Declaration
The generated module begins with a module namespace declaration of the following form,
derived from the info section of the model.

module namespace normalizedTitle = "baseUri/title-version";

For example, if your descriptor contains the following metadata:

"info": {
 "title": "Example",
 "version": "1.0.0",
 "baseUri": "http://marklogic.com/examples/"
}

Then the converter module will contain the following module namespace declaration. Notice that
the leading upper case letter in the title value (“Example”) is converted to lower case when used
as a namespace prefix.

module namespace example =
 "http://marklogic.com/examples/Example-1.0.0";

If the model info section does not include a baseUri setting, then the namespace declaration uses
the base URI “http://example.org/”.

If the baseUri does not end in a forward slash (“/”), then the module namespace URI is relative.
For example, if baseUri in the previous example is set to “http://marklogic.com/example”, then
the module namespace declaration is as follows:

module namespace example =
 "http://marklogic.com/examples#Example-1.0.0";

To learn more about the base URI, see “Controlling the Model IRI and Module Namespaces” on
page 79.

MarkLogic Server Generating Code and Other Artifacts

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 113

4.3.3.2 Generated Functions
The converter module implements the following public functions, plus some private utility
functions for internal use by these functions.

Each extract-instance-T function is a starting place for synthesizing an entity instance from raw
source data. These functions are where you will apply most of your customizations to the
generated code.

The input to an extract-instance-T function is a node containing the source data. The output is
an entity instance represented as a json:object. By default, the instance encapsulates a
canonicalized entity with the original source document. This is default envelope document
repesentation.

In pseudo code, the generated implementation is as follows:

declare function ns:extract-instance-T(
 $source-node as node()
) as map:map
{
 normalize the input source reference
 initialize variables for the values of each entity property
 initialize an empty instance of type T
 attach the source data to the instance
 assign values to the instance properties
};

Function Description

ns:extract-instance-T Transform raw source data into an in-memory entity
instance. One such function is generated for each entity
type T defined by the model descriptor. This function
produces a T instance as a json:object (a special type of
map:map).

ns:instance-to-envelope Create an entity envelope document from an entity
instance. You will not usually need to customize this
function. The input to this function is an entity instance
of the form produced by ns:extract-instance-T.

ns:instance-to-canonical Create the canonical XML or JSON representation of an
entity instance from the json:object representation.
You will not usually call this function directly or
customize it. Rather, the ns:instance-to-envelope
function uses it internally.

MarkLogic Server Version MarkLogic 9—May, 2017 Generating Code and Other Artifacts

Page 114—Entity Services Developer’s Guide

The portion of the function that sets up the entity property values is where you will apply most or
all of your customizations. The default implementation assumes a one-to-one mapping between
source and entity instance property values.

For example, suppose the model contains a “Person” entity type, with entity properties
“firstName”, “lastName”, and “fullName”. Then the default extract-instance-Person
implementation contains code similar to the following. The section following the “begin
customizations here” comment is where you make most or all of your customizations.

declare function example:extract-instance-Name(
 $source-node as node()
) as map:map
{
 let $source-node := es:init-source($source, 'Person')
 (: begin customizations here :)
 let $id := $source-node/id ! xs:string(.)
 let $firstName := $source-node/firstName ! xs:string(.)
 let $lastName := $source-node/lastName ! xs:string(.)
 let $fullName := $source-node/fullName ! xs:string(.)
 (: end customizations :)

 let $instance := es:init-instance($source-node, 'Person')
 (: Comment or remove the following line to suppress attachments :)
 =>es:add-attachments($source)

 return
 if (empty($source-node/*))
 then $instance
 else $instance
 => map:with('id', $id)
 => map:with('firstName', $firstName)
 => map:with('lastName', $lastName)
 => map:with('fullName', $fullName)
};

If the source XML elements or JSON objects have different names or require a more complex
transformation than a simple type cast, customize the implementation. For more details, see
“Customizing a Converter Module” on page 114.

Comments in the generated code describe the default implementation in more detail and provide
suggestions for common customizations.

4.3.4 Customizing a Converter Module
Most customization involves changing the portion of each ns:extract-instance-T function that
sets the values of the instance properties.

MarkLogic Server Generating Code and Other Artifacts

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 115

The default implementation of this portion of an extract function assumes that some property P in
the entity instance gets its value from a node of the same name in the source data, and that a
simple typecast is sufficient to convert the source value to the instance property type defined by
the model.

For example, if an entity type named Person defines a string-valued property named firstName,
then the generated code in firstName in example:extract-instance-Person related to intializing
this property looks like the following:

let $firstName := $source-node/firstName ! xs:string(.)
...
let $instance := es:init-instance($source-node, 'Person')
....
if (empty($source-node/*))
then $instance
else $instance
 ...
 => map:with('firstName', $firstName)
 ...

You might need to modify the code to perform a more complex transformation of the value, or
extract the value from a different location in the source node. For example, if your source data
uses the property name “given” to hold this information, then you would modify the generated
code as follows:

let $firstName := $source-node/given ! xs:string(.)

The following list describes other common customization use cases:

• Synthesize a property value from other data. For example, aggregate an instance property
from other values in your source data, or extract a value from other sources, based on
information in the source node.

• Normalize data formats. For example, data such as dates, telephone numbers, and social
security numbers often occur in multiple formats in raw data. You can normalize such data
to a single format in your instances for easy search and comparison.

• Assign a default value for missing data. If you know that a required property in your entity
instance is not always present in your source data, you can modify the code to ensure the
entity instance contains a reasonable default value.

Once you finish customizing the code, you must deploy the module to your App Server before
you can use the code. For details, see “Deploying Generated Code and Artifacts” on page 147.

For a more complete example, see “Getting Started With Entity Services” on page 19 or the Entity
Services examples on GitHub. For details on locating the GitHub examples, see “Exploring the
Entity Services Open-Source Examples” on page 15.

MarkLogic Server Version MarkLogic 9—May, 2017 Generating Code and Other Artifacts

Page 116—Entity Services Developer’s Guide

4.4 Creating a Model Version Translator Module
You can use the Entity Services API to generate a template for transitioning entity instance data
from one version of your model to another. This section covers the following topics:

• Purpose of a Version Translator

• Generating a Version Translator Module Template

• Understanding the Default Version Translator Implementation

For an end-to-end example of handling model version changes, see the Entity Services examples
on GitHub. For more details, see “Exploring the Entity Services Open-Source Examples” on
page 15.

4.4.1 Purpose of a Version Translator
A version translator is an XQuery library module that helps you convert instance data conforming
to one model version into another.

The version translator only addresses instance conversion. Model changes can also require
changes to other artifacts, such as the TDE template, schema, query options, instance converter,
and database configuration. For more details, see “Managing Model Changes” on page 88.

Though you can run the generated translator code as-is, it is meant to serve as a starting point for
your customizations. Depending on the ways in which your source and target models differ, you
might be required to modify the code.

4.4.2 Generating a Version Translator Module Template
Generate a version translator using the XQuery function es:version-translator-generate or the
JavaScript function es.versionTranslatorGenerate. The output is an XQuery library module that
you can customize and install in your modules database.

The inputs to the generator are source and target model descriptors, as JSON. If you have an XML
descriptor, you must first convert it to the expected format; for details, see “Working With an
XML Model Descriptor” on page 84.

You can use the generated code as-is, but most applications will require customization of the
converter implementation. For details, see “Customizing a Version Translator Module” on
page 119.

You must install the translator module in your modules database before you can use it. For details,
see “Deploying Generated Code and Artifacts” on page 147.

MarkLogic Server Generating Code and Other Artifacts

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 117

The following example code generates a translator module from previously persisted descriptors,
and then saves the generated code as a file on the filesystem. The resulting module is designed to
convert instances of version 1.0.0 to instances of version 2.0.0.

You could also insert the translator directly into the modules database, but the translator is an
important project artifact that should be placed under source control. You will want to track
changes to it as your application evolves.

4.4.3 Understanding the Default Version Translator Implementation
This section explores the default code generated for a version translator module. This information
can help guide your customizations. This section covers the following topics:

• Module Namespace Declaration

• Generated Functions

• Customizing a Version Translator Module

4.4.3.1 Module Namespace Declaration
The generated module begins with a module namespace declaration of the following form,
derived from the info section of the two models.

module namespace title2-from-title1 =
 "baseUri2/title2-version2-from-title1-version1";

Language Example

XQuery xquery version "1.0-ml";
import module namespace es =
 "http://marklogic.com/entity-services"
 at "/MarkLogic/entity-services/entity-services.xqy";

let $v1 := fn:doc('/es-gs/models/person-1.0.0.json')
let $v2 := fn:doc('/es-gs/models/person-2.0.0.json')
return xdmp:save(
 '/space/es/gs/models/person-1.0.0-to-2.0.0.xqy',
 es:version-translator-generate($v1,$v2)
)

JavaScript 'use strict';
const es = require('/MarkLogic/entity-services/entity-services.xqy');

const v1 = cts.doc('/es-gs/models/person-1.0.0.json');
const v2 = cts.doc('/es-gs/models/person-2.0.0.json');
xdmp.save(
 '/space/es/gs/models/person-1.0.0-to-2.0.0.xqy',
 es.versionTranslatorGenerate($v1,$v2)
);

MarkLogic Server Version MarkLogic 9—May, 2017 Generating Code and Other Artifacts

Page 118—Entity Services Developer’s Guide

Where title1 and version1 come from the info section of the source model, title2 and version2
come from the info section of the target model, and baseUri2 comes from the info section of the
target model. (The base URI from the source model is unused.) The titles are normalized to all
lower case.

For example, suppose the source and target models contain the following info sections, reflecting
a change from version 1.0.0 to version 2.0.0 of a model with the title “Person”. The model title is
unchanged between versions.

Then the version translator module will contain the following module namespace declaration.

module namespace person-from-person
 = "http://example.org/example-person/Person-2.0.0-from-Person-1.0.0";

If the info section of the target model does not include a baseUri setting, then the namespace
declaration uses the base URI “http://example.org/”.

If the target baseUri does not end in a forward slash (“/”), then the module namespace URI is
relative. For example, if baseUri in the previous example has no trailing slash, then the module
namespace declaration is as follows:

module namespace person-from-person
 = "http://example.org/example-person#Person-2.0.0-from-Person-1.0.0";

4.4.3.2 Generated Functions
The version translator module contains a translation function named ns:convert-instance-T for
each entity type T defined in the target model. The module can contain additional functions, but
these for internal use by the translator module. The convert-instance-T functions are the “public”
face of the converter.

Model Info Section

Source "info": {
 "title": "Person",
 "version": "1.0.0",
 "baseUri": "http://example.org/example-person/"
}

Target "info": {
 "title": "Person",
 "version": "2.0.0",
 "baseUri": "http://example.org/example-person/"
}

MarkLogic Server Generating Code and Other Artifacts

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 119

For example, if the target model defines a Name entity type and a Person entity type and the title of
the both the source and target model is Person, then the generated translation module will contain
the following functions:

• person-from-person:convert-instance-Name

• person-from-person:convert-instance-Person

The input to a convert-instance-T function should be an entity instance or envelope document
conforming to the source model version of type T. The output is an in-memory instance
conforming to the target model version of type T, similar to the output from the
extract-instance-T function of an instance converter module.

For each entity type property that is unchanged between the two versions, the default
convert-instance-T code simply copies the value from source instance to target instance. Actual
differences, such as a property that only exists in the target model, require customization of the
translator. For details, see “Customizing a Version Translator Module” on page 119.

For an example, see example-version in the Entity Services examples on GitHub. To download a
copy of the examples, see “Exploring the Entity Services Open-Source Examples” on page 15.

4.4.4 Customizing a Version Translator Module
This section describes some common model changes, how they are handled by the default
translation code, and when customizations are likely to be required.

Most of your translator customizations go in the block of variable declarations near the beginning
of the conversion function. For example, the block of code shown in bold, below. These
declarations set up the values to be assigned to the properties of the new instance, later in the
conversion function. The variable names and default initial values are model-dependent.

declare function person-from-person:convert-instance-Person(
 $source as node()
) as map:map
{
 let $source-node := es:init-translation-source($source, 'Person')

 let $id := $source-node/id ! xs:string(.)
 let $firstName := $source-node/firstName ! xs:string(.)
 let $lastName := $source-node/lastName ! xs:string(.)
 let $fullName := $source-node/fullName ! xs:string(.)

 return...

MarkLogic Server Version MarkLogic 9—May, 2017 Generating Code and Other Artifacts

Page 120—Entity Services Developer’s Guide

The table below provides a brief overview of some common entity type definition changes and
what customizations they might require. The context for the code snippets is the property value
initialization block shown in the previous example. All the code snippets assume a required
property; if the property under consideration is optional, then the call to map:with would be
replaced by a call to es:optional.

Use Case Notes on the Generated Code

Unchanged
Property

The default code copies the value of the source instance to the target
instance. For array valued properties, the es:extract-array utility function
performs the copy.

For example, if both source and target contain a property named “thing”, the
default translator function includes a line similar to one of the following:

(: atomic type (string, in this case) :)
let $thing := $source-node/thing ! xs:string(.)

(: array type (item type string, in this case) :)
let $thing := ex:extract-array($source-node/thing, xs:string#))

(: reference to a locally resolvable "Name" entity of type :)
let $extract-reference-Name := es:init-instance(?, 'Name')
let $thing := $soure-node/thing/* ! $extract-reference-Name(.)

Property Type
Change From
One Atomic
Type to
Another

The default code assumes a simple type cast to the target type is sufficient.
Customization is required if the types are not meaninfully convertible this
way.

For example, if a property named “rating” has string type in the source but
float type in the target, then the generated code includes the following:

let $rating := $source-node/rating ! xs:float(.)

Property Type
Change from
Atomic to
Array Type

The default code constructs an array containing a single item that is the
value from the source property. This is done by es:extract-array.
Customization is required if the source and target value types differ and are
not meaninfully convertible by a simple type cast.

For example, if the “rating” property is a simple string value in the source,
but an array of float values in the target, then the generated code contains the
following:

let $rating :=
 es:extract-array($source-node/rating, xs:float#1))

MarkLogic Server Generating Code and Other Artifacts

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 121

Property Type
Change From
Array to
Atomic Type

The default code populates the target instance with the value from the first
item in the source array. A simple type cast is used to convert the value;
customization is required if the source and target value types differ and are
not meaninfully convertible this way.

For example, if the “rating” property is an array of float values in the source
and a single string value in the target, then you see:

(: Warning: potential data loss, truncated array. :)
let $rating := xs:string(fn:head($source-node/rating))

Property Type
Change From
Atomic to
Local
Reference Type

The default code creates a reference from the source value. Since the source
value is not an entity, customization is required to construct a meaningful
reference.

For example, if a property named “name” is a string in the source but a
locally resolvable reference to a Name entity type in the target, then following
is the default translation code:

let $name := $source-node/name ! es:init-instance(?, 'Name')(.)

Property in
Target Only

The default code copies the value from the source instance to the target
instance. However, the source instance probably doesn’t contain this
property, so customization is usually required. You might modify the code to
assign a meaningful default value or extract the new value from the raw
source in the attachments of the source envelope.

For example, if only the target contains a float typed property named
“rating”, then the generated code includes the following:

(: The following property was missing from the source type.
 The XPath will not up-convert without intervention. :)
let $rating := $source-node/rating ! xs:float(.)

You could modify the code to give the “rating” property a default value of 0:

let $rating := 0 ! xs:float(.)

Alternatively, if an XML source envelope contains the desired value in its
attachments, you could extract it as follows:

let $rating := $source-node/rating ! xs:float(.)=>
map:with('rating', xs:float(
 $source//es:attachments/Person/rating/fn:data()))

Use Case Notes on the Generated Code

MarkLogic Server Version MarkLogic 9—May, 2017 Generating Code and Other Artifacts

Page 122—Entity Services Developer’s Guide

4.5 Generating a TDE Template
You can generate a Template Driven Extraction (TDE) template from your model using Entity
Services. Once installed, the template enables the following capabilities for your model-based
application:

• Query your entity instances as row data using SQL or the Optic API.

Property in
Source Only

The default code contains only a commented out line you can use as a basic
template for extraction, if appropriate. If this property has no analog in the
target model, you can remove or ignore the commented out code.

For example, if only the source contains a property named “address”, then
the generated code includes the following:

(: The following properties are in the source, but not the target
=> map:with('NO TARGET',
 xs:string($source-node/Person/address))
:)

Rename a
Property

This appears as if the property in the source model was removed and a new
property was added to the target model. Treat it like the “Property in Target
Only” case, above, but use the original property as the source value.

For example, if the source model contains a property named “firstName”
that you change to “first”, then the default code contains the following:

let $first := $source-node/first ! xs:string(.)

Modify it to pull the value from the “firstName” property of the source:

let $first := $source-node/firstName ! xs:string(.)

Entity Type
Added to
Target Model

A conversion function is generated that copies properties from the input
source node to the output instance as if there are no differences. The code is
equivalent to what es:instance-converter-generate produces. You should
usually customize this function. For example, you could modify it to extract
the new entity type property values from the raw source attachment of a
source envelope. You could also use raw source as input to this function,
rather than an envelope document.

Entity Type
Removed from
Source Model

A commented out conversion function is generated that copies properties
from the input source node to the output instance as if there are no
differences. You must uncomment and customize this function if you plan to
store the values from instances of the defunct entity type somewhere in
instances based on the target model.

Use Case Notes on the Generated Code

MarkLogic Server Generating Code and Other Artifacts

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 123

• Query facts about and infer connections between your entity instances using SPARQL or
the Optic API.

Note: You can only take advantage of these capabilities for entity types that define a
primary key. Without a primary key, there is no way to uniquely identify entity
instances. For details on defining a primary key, see “Identifying the Primary Key
Entity Property” on page 67.

This section contains the following topics:

• Generating a TDE Template

• Characteristics of a Generated Template

• Deploying a TDE Template

• Example: TDE Template Generation and Deployment

To learn more about TDE, see Template Driven Extraction (TDE) in the Application Developer’s
Guide.

4.5.1 Generating a TDE Template
Use the es:extraction-template-generate XQuery function or the
es.extractionTemplateGenerate JavaScript function to create a TDE template. The input to the
template generation function is a JSON or json:object representation of a model descriptor. You
can use the template as-is, or customize it for your application. You must install the template
before your application can benefit from it. For details, see “Deploying a TDE Template” on
page 126.

Note: Any hyphens (“-”) in the model title, entity type names, or entity property names
are converted to underscores (“_”) when used in the generated template, in order to
avoid invalid SQL names.

For example, the following code snippet generates a template from a model previously persisted
in the database. For a more complete example, see “Example: TDE Template Generation and
Deployment” on page 127.

The template is an important project artifact that you should put under source contol.

Language Example

XQuery es:extraction-template-generate(
 fn:doc('/es-gs/models/person-1.0.0.json'))

JavaScript es.extractionTemplateGenerate(
 cts.doc('/es-gs/models/person-1.0.0.json'));

MarkLogic Server Version MarkLogic 9—May, 2017 Generating Code and Other Artifacts

Page 124—Entity Services Developer’s Guide

If you customize the template, you should validate it. You can use the tde:validate XQuery
function or the tde.validate JavaScript function for standalone validation, or combine validation
with insertion, as described in “Deploying a TDE Template” on page 126.

4.5.2 Characteristics of a Generated Template
A TDE template generated by the Entity Services API is intended to apply to entity envelope
documents with the structure produced by an instance converter module. If you use a different
structure, you will have to customize the template. For more details, see “What is an Envelope
Document?” on page 150.

The generated template has the following characteristics:

• The default root context for the template matches instance data in both XML and JSON
envelopes, assuming the envelopes conform to the Entity Services envelope convention.
The generated template includes comments on how to change the context path for better
performance if you only use a single envelope format (only XML or only JSON).

• A triples sub-template is defined for each entity type in the model that defines a primary
key. This enables Semantic queries and inferencing on entity instances. For details, see
“Triples Sub-Template Characteristics” on page 124.

• A rows sub-template is defined for each entity type in the model that defines at least one
required property. This enables querying instances as rows using SQL or the Optic API.
For details, see “Rows Sub-Template Characteristics” on page 125 and “Rows Template
Array Property View Characteristics” on page 125.

• If you define a namespace prefix for an entity type as described in “Defining a Namespace
URI for an Entity Type” on page 71, the prefix is used in XPath expressions in the
template. Namespace prefixes are not used for references to entity types external to the
model because such prefixes are unknown to the template generator.

4.5.2.1 Triples Sub-Template Characteristics
The triples sub-template for an entity type T has the following characteristics.

• A triples sub-template is only generated for entity types that define a primary key.

• The context for the sub-template is ./T. That is, //es:instance/T in an envelope
document. For example, //es:instance/Person if the model defines a Person entity type.

• A subject identifier variable named subject-iri is defined. The value of this variable is an
IRI created by concatenating the entity type name with an instance’s primary key value.
This IRI identifies a particular instance of the entity type.

• A triples specification that will cause the following facts (triples) to be generated about
each instance of type T:

MarkLogic Server Generating Code and Other Artifacts

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 125

• “This entity has type T”, where the entity is identified by its primary key, and the
type is identified by the subject-iri of the entity type. In RDF terms, the triple
expresses “<subject-iri> a <entity-type-iri>”.

• “This entity is defined by this model”, where the entity is identified by its primary
key, and the model is identified by the persisted descriptor URI. In RDF terms, the
triple expresses “<subject-iri> rdfs:isDefinedBy <descriptor-document-uri>”.
This triple defines how to join instance/class membership to the instance
document.

4.5.2.2 Rows Sub-Template Characteristics
The rows sub-template for an entity type T has the following characteristics.

• A rows sub-template is only generated for entity types that define at least one required
property. (A primary key property is implicitly a required property.)

• The context for the sub-template is ./T. That is, //es:instance/T in an envelope
document.

• The schema name for the sub-template is the same as model title.

• For each entity property that does not have array type, a column with same name as the
property is defined. (A property with array type is supported with a related view, so it is
not present in the main view.)

• For each entity property with array type, a separate view named T_propertyName is
defined. For example, Person_friends, if the Person entity type has an array typed
property named friends. The characteristics of this view are described below.

• An entity property with iri as its data type is indexed as IRI.

• Any entity property that is not required is marked as nullable.

4.5.2.3 Rows Template Array Property View Characteristics
The T_propertyName view generated in the rows sub-template for an entity property with array
type has the following characteristics:

• If the array item type is a scalar type, the view has two colums:

• The left column has the same name and type as the primary key of the enclosing
entity type (T).

• The right column contains the scalar values in the array, each in its own row.

• If the array item type is a local reference and the referenced type defines a primary key,
then view has two columns:

• The left column has the same name and type as the primary key of the enclosing
entity type (T).

MarkLogic Server Version MarkLogic 9—May, 2017 Generating Code and Other Artifacts

Page 126—Entity Services Developer’s Guide

• The right column has the name arrayPropName_primaryKey and contains the
primary key of the referenced type.

• If the array item type is a local reference and the referenced type does not define a primary
key, then:

• The leftmost column of the view has the same name and type as the primary key of
the enclosing entity type (T).

• There is a column for each property of the referenced type.

• If the array item type is an external reference, then the view has two columns:

• The left column of the view has the same name and type as the primary key of the
enclosing entity type (T).

• The right column has the same name as the array property and type string. You
usually need to customize this column definition.

4.5.3 Customizing a TDE Template
The following entity type characteristics result in a TDE template that requires customization:

• If no primary key is defined for an entity type that contains an array-typed property, you
will like need to customize the template to define an appropriate type and value for the left
column in the array view. This view is discussed in more detail in “Rows Template Array
Property View Characteristics” on page 125.

• The template generator cannot determine the data type of an external entity type reference,
so it defaults to string. You must manually set the type in the template.

• If you choose to embed entity instances inside one another, then the context element of
the embedded type must be changed to reflect its position in instance documents.

You can make other customizations required by your application. For example, you might want to
generate additional facts about your instances, or remove some columns from a row sub-template.

The generated template should work for both XML and JSON envelope documents in most cases,
but some entity type structures might require customization of XPath expressions in the template
in order to accomodate both formats.

For more details on the structure and content of TDE templates, see Template Driven Extraction

(TDE) in the Application Developer’s Guide.

4.5.4 Deploying a TDE Template
You must install your TDE template in the schemas database associated with your content
database. The template must be in the special collection http://marklogic.com/xdmp/tde for
MarkLogic to recognize it as template document.

MarkLogic Server Generating Code and Other Artifacts

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 127

Choose one of the following template installation methods:

• Use the tde:template-insert XQuery function or the tde.templateInsert JavaScript
function. This method combines validation and installation in one step, and automatically
inserts the template into the required collection.

• Use any general-purpose document insertion interface, such as xdmp:document-insert
(XQuery) or xdmp.documentInsert (JavaScript). You must explicitly insert the template
document into the special collection http://marklogic.com/xdmp/tde. No validation is
performed.

For more details, see Validating and Inserting a Template in the Application Developer’s Guide.

Once your template is installed, MarkLogic will update the row index and generate triples related
to your instances whenever you ingest instances or reindexing occurs.

4.5.5 Example: TDE Template Generation and Deployment
The following example generates a TDE template from the model used in “Getting Started With
Entity Services” on page 19, and then installs the template in the schemas database.

The following code generates a template from a previously persisted model, and then saves the
template to a file on the filesystem as $ARTIFACT_DIR/person-templ.xml.

Language Example

XQuery xquery version "1.0-ml";
import module namespace es =
 "http://marklogic.com/entity-services"
 at "/MarkLogic/entity-services/entity-services.xqy";

let $ARTIFACT_DIR := '/space/es/gs/'
return xdmp:save(
 fn:concat($ARTIFACT_DIR, 'person-templ.xml'),
 es:extraction-template-generate(
 fn:doc('/es-gs/models/person-1.0.0.json')))

JavaScript 'use strict';
const es = require('/MarkLogic/entity-services/entity-services');

const ARTIFACT_DIR = '/space/es/gs/';
xdmp.save(
 ARTIFACT_DIR + 'person-templ.xml',
 es.extractionTemplateGenerate(
 cts.doc('/es-gs/models/person-1.0.0.json'))
);

MarkLogic Server Version MarkLogic 9—May, 2017 Generating Code and Other Artifacts

Page 128—Entity Services Developer’s Guide

You are not required to save the template to the filesystem. However, the template is an important
project artifact that you should place under source control. Saving the template to the filesystem
makes it easier to do so.

If you apply the code above to the model from “Getting Started With Entity Services” on page 19,
the resulting template defines two sub-templates. The first sub-template defines how to extract
semantic triples from Person entity instances. The second sub-template defines how to extract a
row-oriented projection of Person entity instances.

<template xmlns="http://marklogic.com/xdmp/tde">
...
 <templates>
 <template xmlns:tde="http://marklogic.com/xdmp/tde">
 <context>./Person</context>
 <vars>
 <var>
 <name>subject-iri</name>
 <val>sem:iri(...)</val>
 </var>
 ...
 </vars>
 <triples>...</triples>
 </template>
 <template xmlns:tde="http://marklogic.com/xdmp/tde">
 <context>./Person</context>
 <rows>...</rows>
 ...
 </template>
 </templates>
</template>

If the model includes additional entity types, then the template contains additional, similar
sub-templates for these types.

The following code validates and installs a template using the convenience function provided by
the TDE library module. Evaluate this code in the context of your content database.

MarkLogic Server Generating Code and Other Artifacts

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 129

If the query runs sucessfully, the document /es-gs/templates/person-1.0.0.xml is created in the
schemas database. If you explore the schemas database in Query Console, you should see that the
template is in the special collection http://marklogic.com/xdmp/tde.

4.6 Generating an Entity Instance Schema
Entity Services can generate an XSD schema that you can use to validate canonical (XML) entity
instances. Instance validation can be especially useful if you have a client or middle tier
application submitting instances.

This section contains the following topics:

• Schema Generation Overview

• Schema Characteristics

• Schema Customization

• Example: Generating and Installing an Instance Schema

• Example: Validating an Instance Against a Schema

Language Example

XQuery xquery version "1.0-ml";
import module namespace tde = "http://marklogic.com/xdmp/tde"
 at "/MarkLogic/tde.xqy";

let $ARTIFACT_DIR := '/space/es/gs/'
return tde:template-insert(
 '/es-gs/templates/person-1.0.0.xml',
 xdmp:document-get(
 fn:concat($ARTIFACT_DIR, 'person-templ.xml'))
)

JavaScript 'use strict';
const tde = require('/MarkLogic/tde');

const ARTIFACT_DIR = '/space/es/gs/';
tde.templateInsert(
 '/es-gs/templates/person-1.0.0.xml',
 fn.head(xdmp.documentGet(ARTIFACT_DIR + 'person-templ.xml'))
);

MarkLogic Server Version MarkLogic 9—May, 2017 Generating Code and Other Artifacts

Page 130—Entity Services Developer’s Guide

4.6.1 Schema Generation Overview
To generate a schema, apply the es:schema-generate XQuery function or the es.schemaGenerate
JavaScript function to the object-node or json:object representation of a model descriptor, as
shown in the following table. For a more complete example, see “Example: Generating and
Installing an Instance Schema” on page 131.

The schema is an important project artifact, so you should place it under source control.

Before you can use the generated schema(s) for instance validation, you must deploy the schema
to the schemas database associated with your content database. You can use any of the usual
document insertion APIs for this operation.

Note: If your model defines multiple entity types and the entity type definitions do not all
use the same namespace, a schema is generated for each unique namespace. Install
all of the generated schemas in the schemas database.

Use the xdmp:validate XQuery function or the xdmp.validate JavaScript function to validate
instances against your schema. For an example, see “Example: Validating an Instance Against a
Schema” on page 133.

Note that you can only validate entity instances expressed as XML. You can extract the XML
representation of an instance from an envelope document using the
es:instance-xml-from-document XQuery function or the es.instanceXmlFromDocument JavaScript
function.

4.6.2 Schema Characteristics
The Entity Services API applies the following rules when generating a schema from a model:

• A scalar property type is translated into a simple, type-enforced xs:element.

• The schema includes an xs:complexType for each entity type defined by the model. This
type contains a sequence of elements representing the entity type properties.

• For each external entity type reference, a type is generated that can hold a value for a
reference of that type by using the string after the last slash (‘/’) in the external reference
URI.

• For each local entity type reference, an es:complexType is generated.

Language Example

XQuery es:schema-generate(fn:doc('/es-gs/models/person-1.0.0.json'))

JavaScript es.schemaGenerate(cts.doc('/es-gs/models/People-1.0.0.json'));

MarkLogic Server Generating Code and Other Artifacts

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 131

• Array typed entity properties are handled using minOccurs and maxOccurs on the property’s
xs:element.

• Any entity property that is not a primary key or required is set to minOccurs=”0”.

• A required property has cardinality 1.

• The automated schema generation cannot resolve multiple properties with same name, but
different data type. If this occurs, an xs:element is generated for one property, and then
the xs:element definitions for the other properties will be commented out. You must
customize the schema (or modify your model) to resolve this conflict.

• A separate schema is generated for each namespace declared in the model. For more
details on using namespaces in entity type definitions, see “Defining a Namespace URI for
an Entity Type” on page 71.

4.6.3 Schema Customization
The following list describes some situations in which schema customization might be needed.

• If your model contains multiple entity type properties with the same name, only one of
them will be reflected in the schema. The other(s) will be commented out. Change the
schema (or your model) to resolve this conflict.

• Depending on how entity references are used in the model, parts of the schema might be
superfluous and can be removed.

• You might have to choose between validating entity references or validating embedded
entity instances, depending on the choices you make with respect to normalization and
entity document structure.

4.6.4 Example: Generating and Installing an Instance Schema
The following example generates a schema from a previously persisted model, and then inserts it
into the schemas database.

Since the model is in the content database and the schema must be inserted into the schemas
database, xdmp:eval is used to switch database contexts for the schema insertion. If you generated
the schema and saved it to the filesystem first, then you would only have to work with the
schemas database, so the eval would be unnecessary.

MarkLogic Server Version MarkLogic 9—May, 2017 Generating Code and Other Artifacts

Page 132—Entity Services Developer’s Guide

The following code inserts a schema with the URI /es-gs/person-1.0.0.xsd into the schemas
database associated with the content database that holds the source model. Assume the model was
previously persisted as a document with URI /es-gs/models/person-1.0.0.json.

Language Example

XQuery xquery version "1.0-ml";
import module namespace es =
"http://marklogic.com/entity-services"
 at "/MarkLogic/entity-services/entity-services.xqy";

(: The query that inserts the schema into the schemas db :)
let $query :=
 'xquery version "1.0-ml";
 declare variable $schema as element(xs:schema) external;
 declare variable $uri as xs:string external;
 xdmp:document-insert($uri, $schema)'

(: Generate the schema :)
let $schema :=
 es:schema-generate(fn:doc('/es-gs/models/person-1.0.0.json'))

(: Insert the schema into the Schemas db :)
return xdmp:eval($query,
 (xs:QName("schema"), $schema,
 xs:QName("uri"), '/es-gs/person-1.0.0.xsd'),
 <options xmlns="xdmp:eval">
 <database>{xdmp:schema-database()}</database>
 </options>
)

JavaScript 'use strict';
const es = require('/MarkLogic/entity-services/entity-services')

// The query that inserts the schema into the schemas db
const query = 'declareUpdate(); xdmp.documentInsert(uri,
schema);'
// Generate the schema
const schema = fn.head(
 es.schemaGenerate(cts.doc('/es-gs/models/person-1.0.0.json')));
xdmp.eval(
 query,
 {schema: schema, uri: '/es-gs/person-1.0.0.xsd'}, // vars
 {database: xdmp.schemaDatabase()} // options
);

MarkLogic Server Generating Code and Other Artifacts

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 133

4.6.5 Example: Validating an Instance Against a Schema
The following example validates an instance against a schema generated using the
es:schema-generate XQuery function or the es.schemaGenerate Server-Side JavaScript function.
It is assumed that the schema is already installed in the schema database associated with the
content database, as shown in “Example: Generating and Installing an Instance Schema” on
page 131.

The following code validates an entity instance within a previously persisted envelope document.
Assume this instance was created using the instance converter module for its entity type, and
therefore is valid. Thus, the validation succeeds. The query returns an empty
xdmp:validation-errors element in XQuery and an empty object in JavaScript.

Language Example

XQuery xquery version "1.0-ml";
import module namespace es =
 "http://marklogic.com/entity-services"
 at "/MarkLogic/entity-services/entity-services.xqy";

xdmp:validate(
 es:instance-xml-from-document(
 fn:doc('/es-gs/envelopes/1234.xml')),
 'type', xs:QName('PersonType'))

JavaScript 'use strict';
const es = require('/MarkLogic/entity-services/entity-services')

xdmp.validate(
 es.instanceXmlFromDocument(
 cts.doc('/es-gs/envelopes/1234.xml')),
 'type', 'PersonType')

MarkLogic Server Version MarkLogic 9—May, 2017 Generating Code and Other Artifacts

Page 134—Entity Services Developer’s Guide

The following example validates an in-memory instance against the schema. The schema is based
on the model from “Getting Started With Entity Services” on page 19. The instance was
intentionally created without a required property (“id”) so that it will fail validation.

4.7 Generating a PII Security Configuration Artifact
You identify PII entity properties using the pii property of an entity model, as described in
“Identifying Personally Identifiable Information (PII)” on page 69. Then, use the
es:pii-generate XQuery function or the es.piiGenerate JavaScript function to generate a
security configuration artifact that enables stricter access control for PII entity instance properties.

The generated configuration contains an Element Level Security (ELS) protected path definition
for each PII property, and an ELS query roleset configuration. The protected path configuration
limits read access to users with the “pii-reader” security role. The query roleset prevents users
without the “pii-reader” role from seeing the protected content in response to a query or XPath
expression. The “pii-reader” role is pre-defined by MarkLogic.

To learn more about Element Level Security, protected paths, and query rolesets, see Element Level

Security in the Security Guide.

Language Example

XQuery xquery version "1.0-ml";
import module namespace es =
"http://marklogic.com/entity-services"
 at "/MarkLogic/entity-services/entity-services.xqy";

let $invalid-entity :=
 <Person>
 <firstName>George</firstName>
 <lastName>Washington</lastName>
 <fullName>George Washington</fullName>
 </Person>
return
xdmp:validate($invalid-entity, 'type', xs:QName('PersonType'))

JavaScript 'use strict';
const invalidEntity = fn.head(xdmp.unquote(
 '<Person>'+
 '<firstName>George</firstName>' +
 '<lastName>Washington</lastName>' +
 '<fullName>George Washington</fullName>' +
'</Person>'));
xdmp.validate(invalidEntity, 'type', 'PersonType');

MarkLogic Server Generating Code and Other Artifacts

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 135

For example, the following model descriptors specify that the name and bio properties can contain
PII:

Format Example Model Descriptor

JSON { "info": {
 "title": "People",
 "description": "People Example",
 "version": "4.0.0"
 },
 "definitions": {
 "Person": {
 "properties": {
 "id": { "datatype": "int" },
 "name": { "datatype": "string" },
 "bio": { "datatype": "string" },
 "rating": { "datatype": "float" }
 },
 "required": ["name"],
 "primaryKey": "id",
 "pii": ["name", "bio"]
}}}

XML <es:model xmlns:es="http://marklogic.com/entity-services">
 <es:info>
 <es:title>People</es:title>
 <es:description>People Example</es:description>
 <es:version>4.0.0</es:version>
 </es:info>
 <es:definitions>
 <Person>
 <es:properties>
 <id><es:datatype>int</es:datatype></id>
 <name><es:datatype>string</es:datatype></name>
 <bio><es:datatype>string</es:datatype></bio>
 <rating><es:datatype>float</es:datatype></rating>
 </es:properties>
 <es:required>name</es:required>
 <es:primary-key>id</es:primary-key>
 <es:pii>name</es:pii>
 <es:pii>bio</es:pii>
 </Person>
 </es:definitions>
</es:model>

MarkLogic Server Version MarkLogic 9—May, 2017 Generating Code and Other Artifacts

Page 136—Entity Services Developer’s Guide

Assuming the above model descriptor is persisted in the database as
/es-ex/models/people-4.0.0.json, then the following code generates a database configuration
artifact from the model:

The generated security configuration artifact should look similar to the following. If you deploy
this configuration, then only users with the “pii-reader” security role can read the “name” and
“bio” properties of a Person instance. The “pii-reader” role is pre-defined by MarkLogic.

{ "name": "People-4.0.0",
 "desc": "A policy that secures name,bio of type Person",
 "config": {
 "protected-path": [
 {
 "path-expression": "/envelope//instance//Person/name",
 "path-namespace": [],
 "permission": {
 "role-name": "pii-reader",
 "capability": "read"
 }
 },
 {
 "path-expression": "/envelope//instance//Person/bio",
 "path-namespace": [],
 "permission": {
 "role-name": "pii-reader",
 "capability": "read"
 }
 }
],
 "query-roleset": {
 "role-name": [
 "pii-reader"
]
} } }

Language Example

XQuery xquery version "1.0-ml";
import module namespace es =
 "http://marklogic.com/entity-services"
 at "/MarkLogic/entity-services/entity-services.xqy";

es:pii-generate(
 fn:doc('/es-ex/models/people-4.0.0.json'))

JavaScript 'use strict';
const es = require('/MarkLogic/entity-services/entity-services');

es.piiGenerate(
 cts.doc('/es-ex/models/people-4.0.0.json'))

MarkLogic Server Generating Code and Other Artifacts

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 137

Note that the configuration only includes protected paths for PII properties in the entity instance.
Envelope documents also contain the original source document as an attachment by default. Any
PII in the source attachment is not protected by the generated configuration. You might want to
define additional protected paths or modify the extract-instance-T function of your instance
converter module to exclude the source attachment.

Deploy the artifact using the Configuration Management API. For example, if the file
pii-config.json contains the configuration generated by the previous example, then the
following command adds the protected paths and query roleset to MarkLogic’s security
configuration:

curl --anyauth --user user:password -X PUT -i \
 -d @./pii-config.json -H "Content-type: application/json" \
 http://localhost:8002/manage/v3

You can add additional configuration settings to the generated artifact, or merge the generated
settings into configuration settings created and maintained elsewhere. For example, you could
configure additional protected paths to control access to the source data for the “name” and “bio”
properties in the source attachment of your instance envelope documents.

4.8 Generating a Database Configuration Artifact
Use the es:database-properties-generate XQuery function or the
es.databasePropertiesGenerate JavaScript function to create a database configuration artifact
from the JSON object-node or json:object representation of a model descriptor. This artifact is
helpful for configuring your content database. You are not required to use this artifact; it is a
convenience feature.

The generated configuration information always has at least the following items, and may contain
additional property definitions, depending on the model:

• Enable the triple index and the collection lexicon, both of which are required for querying
a model as described in “Search Basics for Models” on page 170.

• Define the “es” namespace prefix globally so that it can be used in path queries.

If an entity type definition specifies entity properties for range index and word lexicon
configuration, then the database configuration artifact includes corresponding index and/or
lexicon configuration information.

MarkLogic Server Version MarkLogic 9—May, 2017 Generating Code and Other Artifacts

Page 138—Entity Services Developer’s Guide

For example, the following model descriptors specify a path range index for the id and rating
properties and a word lexicon for the bio property of the Person entity type:

Format Example Model Descriptor

JSON { "info": {
 "title": "People",
 "description": "People Example",
 "version": "3.0.0"
 },
 "definitions": {
 "Person": {
 "properties": {
 "id": { "datatype": "int" },
 "name": { "datatype": "string" },
 "bio": { "datatype": "string" },
 "rating": { "datatype": "float" }
 },
 "required": ["name"],
 "primaryKey": "id",
 "pathRangeIndex": ["id", "rating"],
 "wordLexicon": ["bio"]
}}}

XML <es:model xmlns:es="http://marklogic.com/entity-services">
 <es:info>
 <es:title>People</es:title>
 <es:description>People Example</es:description>
 <es:version>3.0.0</es:version>
 </es:info>
 <es:definitions>
 <Person>
 <es:properties>
 <id><es:datatype>int</es:datatype></id>
 <name><es:datatype>string</es:datatype></name>
 <bio><es:datatype>string</es:datatype></bio>
 <rating><es:datatype>float</es:datatype></rating>
 </es:properties>
 <es:required>name</es:required>
 <es:primary-key>id</es:primary-key>
 <es:path-range-index>id</es:path-range-index>
 <es:path-range-index>rating</es:path-range-index>
 <es:word-lexicon>bio</es:word-lexicon>
 </Person>
 </es:definitions>
</es:model>

MarkLogic Server Generating Code and Other Artifacts

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 139

Assuming the above model descriptor is persisted in the database as
/es-ex/models/people-3.0.0.json, then the following code generates a database configuration
artifact from the model:

The generated configuration artifact should look similar to the following. Notice that range index
information is included for id and rating and word lexicon information is included for bio.

{
 "database-name": "%%DATABASE%%",
 "schema-database": "%%SCHEMAS_DATABASE%%",
 "path-namespace": [
 {
 "prefix": "es",
 "namespace-uri": "http://marklogic.com/entity-services"
 }
],
 "element-word-lexicon": [
 {
 "collation": "http://marklogic.com/collation/en",
 "localname": "bio",
 "namespace-uri": ""
 }
],
 "range-path-index": [
 {
 "collation": "http://marklogic.com/collation/en",
 "invalid-values": "reject",
 "path-expression": "//es:instance/Person/id",
 "range-value-positions": false,
 "scalar-type": "int"
 },
 {
 "collation": "http://marklogic.com/collation/en",
 "invalid-values": "reject",
 "path-expression": "//es:instance/Person/rating",

Language Example

XQuery xquery version "1.0-ml";
import module namespace es =
 "http://marklogic.com/entity-services"
 at "/MarkLogic/entity-services/entity-services.xqy";

es:database-properties-generate(
 fn:doc('/es-ex/models/people-3.0.0.json'))

JavaScript 'use strict';
const es = require('/MarkLogic/entity-services/entity-services');

es.databasePropertiesGenerate(
 cts.doc('/es-ex/models/people-3.0.0.json'))

MarkLogic Server Version MarkLogic 9—May, 2017 Generating Code and Other Artifacts

Page 140—Entity Services Developer’s Guide

 "range-value-positions": false,
 "scalar-type": "float"
 }
],
 "triple-index": true,
 "collection-lexicon": true
}

Note that the generated range index configuration disables range value positions and rejects
invalid values by default. You might choose to change one or both of these settings, depending on
your application.

You can add additional configuration settings to the generated artifact, or merge the generated
settings into configuration settings created and maintained elsewhere.

You can use the generated configuration properties with your choice of configuration interface.
For example, you can use the artifact with the REST Management API (after minor modification),
or you can extract the configuration information to use with the XQuery Admin API.

To use the generated database configuration artifact with the REST Management API method
PUT:/manage/v2/databases/{id|name}/properties, make the following modifications:

• Replace %%DATABASE%% with the name of your content database.

• Replace %%SCHEMAS_DATABASE%% with the name of the schemas database associated with
your content database.

• If you have configured other range indexes or word lexicons into your database, merge
your existing index or lexicon configuration with the generated configuration so that no
settings are lost.

For example, you can use a curl command similar to the following to change the properties of the
database named “es-ex”. Assume the file db-props.json contains the previously shown config
artifact above, with the database-name and schema-database property values modified to “es-ex”
and “Schemas”, respectively.

curl --anyauth --user user:password -X PUT -i \
 -d @./db-props.json -H "Content-type: application/json" \
 http://localhost:8002/manage/v2/databases/es-ex/properties

If you then examine the configuration for the “es-ex” database using the Admin Interface or the
REST Management API method GET:/manage/v2/databases/{id|name}/properties, you should
see the expected range indexes and word lexicon have been created.

For more information about database configuration, see the following:

• PUT:/manage/v2/databases/{id|name}/properties

• Range Indexes and Lexicons in the Administrator’s Guide

MarkLogic Server Generating Code and Other Artifacts

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 141

• Using the Management API in the Monitoring MarkLogic Guide

4.9 Generating Query Options for Searching Instances
This section describes how to use the Entity Services API to generate a set of query options you
can use to search entity instances using the XQuery Search API or the REST, Java, and Node.js
Client APIs. This section covers the following topics:

• Options Generation Overview

• Characteristics of the Generated Options

• Example: Generating Query Options

For more details and examples, see “Querying a Model or Entity Instances” on page 169.

4.9.1 Options Generation Overview
Generate model-based query options using the es:search-options-generate XQuery function or
the es.searchOptionsGenerate JavaScript function. Pass in the JSON object-node or json:object
representation of a model descriptor.

For example, if the document /es-gs/models/person-1.0.0.json is a previously persisted
descriptor, then you can generate query options from the model with one of the following calls.

For a more complete example, see “Example: Generating Query Options” on page 144.

You can use the generated options in the following ways:

• Pass them as the second parameter of the search:search or search:resolve XQuery
functions, or the search.search or search.resolve JavaScript functions.

• Embed them in a combined query used with the REST, Java, or Node.js APIs.

• Install them in the database and use them as persistent query options with the REST, Java,
or Node.js APIs.

• Use them as a jumping off point for creating constraint bindings for use with the
cts:parse XQuery function or the cts.parse JavaScript function. Then use the resulting
cts:query object with cts:search or the JSearch API.

Language Example

XQuery es:search-options-generate(
 fn:doc('/es-gs/models/person-1.0.0.json'))

JavaScript es.searchOptionsGenerate(
 cts.doc('/es-gs/models/person-1.0.0.json'));

MarkLogic Server Version MarkLogic 9—May, 2017 Generating Code and Other Artifacts

Page 142—Entity Services Developer’s Guide

For an example and discussion of the options, see “Example: Using the Search API for Instance
Queries” on page 176.

4.9.2 Characteristics of the Generated Options
The generated options include the following:

• A value constraint named “entity-type” for constraining searches to entities of a particular
type. For example:

<search:constraint name="entity-type">
 <search:value>
 <search:element ns="http://marklogic.com/entity-services" name="title"/>
 </search:value>
</search:constraint>

• A URI value constraint named “uris”. For example:

<search:values name="uris">
 <search:uri/>
</search:values>

• An extract-document-data option for returning just the canonical entity instance(s) from
matched documents. For example, the following option extracts just the Person entity
instance from matched documents:

<search:extract-document-data selected="include">
 <search:extract-path xmlns:es="...">
 //es:instance/(Person)
 </search:extract-path>
</search:extract-document-data>

• An additional-query option that constrains results to documents containing es:instance
elements. For example:

<search:additional-query>
 <cts:element-query xmlns:cts="http://marklogic.com/cts">
 <cts:element xmlns:es="...">es:instance</cts:element>
 <cts:true-query/>
 </cts:element-query>
</search:additional-query>

• Options that disable faceting and snippeting (in favor of just extracting the instances). For
example:

<search:return-facets>false</search:return-facets>
<search:transform-results apply="empty-snippet"/>

• An option that enables unfiltered search. For example:

<search:search-option>unfiltered</search:search-option>

MarkLogic Server Generating Code and Other Artifacts

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 143

• If the model defines a primary key, a value constraint on the primary key property. For
example:

<search:constraint name="id">
 <search:value>
 <search:element ns="" name="id"/>
 </search:value>
</search:constraint>

• For each property named in the pathRangeIndex or rangeIndex property of an entity type
definition, a path range index constraint with the same name as the entity property. For
example:

<search:constraint name="rating">
 <search:range type="xs:float" facet="true">
 <search:element ns="" name="rating" />
 </search:range>
</search:constraint>

• For each property named in the elementRangeIndex property of an entity type definition,
an element range index constraint with the same name as the entity property. For example:

<search:constraint name="rating">
 <search:range type="xs:float" facet="true">
 <search:path-index xmlns:es="...">
 //es:instance/Person/rating
 </search:path-index>
 </search:range>
</search:constraint>

• For each property named in the wordLexicon property of an entity type definition, a word
constraint with the same name as the entity property. For example:

<search:constraint name="bio">
 <search:word>
 <search:element ns="" name="bio"/>
 </search:word>
</search:constraint>

• If an entity type includes more than one property in the range index specification, a tuples
option with the same name as the entity type for finding co-occurrences of the indexed
properties. For example:

<search:tuples name="Item">
 <search:range type="xs:int" facet="true">
 <search:path-index xmlns:es="...">
 //es:instance/Item/price
 </search:path-index>
 </search:range>
 <search:range type="xs:float" facet="true">
 <search:path-index xmlns:es="...">
 //es:instance/Item/rating

MarkLogic Server Version MarkLogic 9—May, 2017 Generating Code and Other Artifacts

Page 144—Entity Services Developer’s Guide

 </search:path-index>
 </search:range>
</search:tuples>

The generated options include extensive comments to assist you with customization. The options
are usable as-is, but optimal search configuration is highly application dependent, so it is likely
that you will extend or modify the generated options.

If the primary key property is also listed in the range index specification, then both a value
constraint and a range constraint would be generated with the same name. Since this is not
allowed, one of these constraints will be commented out. You can change the name and
uncomment it. For an example of this conflict, see “Example: Generating Query Options” on
page 144.

4.9.3 Example: Generating Query Options
The following example generates a set of query options from a model and saves the results to a
file on the filesystem so you can place it under source control or make modifications.

This example assumes the following descriptor has been inserted into the database with the URI
/es-ex/models/people-1.0.0.json.

{ "info": {
 "title": "People",
 "description": "People Example",
 "version": "1.0.0"
 },
 "definitions": {
 "Person": {
 "properties": {
 "id": { "datatype": "int" },
 "name": { "datatype": "string" },
 "bio": { "datatype": "string" },
 "rating": { "datatype": "float" }
 },
 "required": ["name"],
 "primaryKey": "id",
 "pathRangeIndex": ["id", "rating"],
 "wordLexicon": ["bio"]
}}}

MarkLogic Server Generating Code and Other Artifacts

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 145

The following code generates a set of query options from the above model. The options are saved
to the file ARTIFACT_DIR/people-options.xml.

The resulting options should be similar to the following.

<search:options
 xmlns:search="http://marklogic.com/appservices/search">
 <search:constraint name="entity-type">
 <search:value>
 <search:element ns="http://marklogic.com/entity-services"
name="title"/>
 </search:value>
 </search:constraint>
 <search:constraint name="id">
 <search:value>
 <search:element ns="" name="id"/>
 </search:value>
 </search:constraint>
 <!--This item is a duplicate and is commented out so as to create
 a valid artifact.
 <search:constraint name="id"
 xmlns:search="http://marklogic.com/appservices/search">
 <search:range type="xs:int" facet="true">
 <search:path-index
 xmlns:es="http://marklogic.com/entity-services">
 //es:instance/Person/id
 </search:path-index>
 </search:range>

Language Example

XQuery xquery version "1.0-ml";
import module namespace es =
 "http://marklogic.com/entity-services"
 at "/MarkLogic/entity-services/entity-services.xqy";

let $ARTIFACT_DIR := '/space/es/ex/' (: CHANGE THIS VALUE :)
return xdmp:save(
 fn:concat($ARTIFACT_DIR, 'people-options.xml'),
 es:search-options-generate(
 fn:doc('/es-ex/models/people-1.0.0.json')))

JavaScript 'use strict';
const es = require('/MarkLogic/entity-services/entity-services');

const ARTIFACT_DIR = '/space/es/ex/'; // CHANGE THIS VALUE
xdmp.save(
 ARTIFACT_DIR + 'people-options.xml',
 es.searchOptionsGenerate(
 cts.doc('/es-ex/models/people-1.0.0.json'))
);

MarkLogic Server Version MarkLogic 9—May, 2017 Generating Code and Other Artifacts

Page 146—Entity Services Developer’s Guide

</search:constraint>
-->
 <search:constraint name="rating">
 <search:range type="xs:float" facet="true">
 <search:path-index
 xmlns:es="http://marklogic.com/entity-services">
 //es:instance/Person/rating
 </search:path-index>
 </search:range>
 </search:constraint>
 <search:constraint name="bio">
 <search:word>
 <search:element ns="" name="bio"/>
 </search:word>
 </search:constraint>
 <search:tuples name="Person">
 <search:range type="xs:int" facet="true">
 <search:path-index
 xmlns:es="http://marklogic.com/entity-services">
 //es:instance/Person/id
 </search:path-index>
 </search:range>
 <search:range type="xs:float" facet="true">
 <search:path-index
 xmlns:es="http://marklogic.com/entity-services">
 //es:instance/Person/rating
 </search:path-index>
 </search:range>
 </search:tuples>
 <!--Uncomment to return no results for a blank search, rather
 than the default of all results
 <search:term xmlns:search="http://marklogic.com/appservices/search">
 <search:empty apply="no-results"/>
 </search:term>
-->
 <search:values name="uris">
 <search:uri/>
 </search:values>
 <!--Change to 'filtered' to exclude false-positives in certain
 searches-->
 <search:search-option>unfiltered</search:search-option>
 <!--Modify document extraction to change results returned-->
 <search:extract-document-data selected="include">
 <search:extract-path
 xmlns:es="http://marklogic.com/entity-services">
 //es:instance/(Person)
 </search:extract-path>
 </search:extract-document-data>
 <!--Change or remove this additional-query to broaden search
 beyond entity instance documents-->
 <search:additional-query>
 <cts:element-query xmlns:cts="http://marklogic.com/cts">
 <cts:element xmlns:es="http://marklogic.com/entity-services">
 es:instance

MarkLogic Server Generating Code and Other Artifacts

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 147

 </cts:element>
 <cts:true-query/>
 </cts:element-query>
 </search:additional-query>
 <!--To return facets, change this option to 'true' and edit
constraints-->
 <search:return-facets>false</search:return-facets>
 <!--To return snippets, comment out or remove this option-->
 <search:transform-results apply="empty-snippet"/>
</search:options>

Notice that two constraints are generated for the id property. A value constraint is generated
because id is the primary key for a Person entity. A path range constraint is generated because id
is listed in the pathRangeIndex property of the Person entity type definition. Since it is not possible
for two constraints to have the same name in a set of options, the second constraint is commented
out:

<search:constraint name="id">
 <search:value>
 <search:element ns="" name="id"/>
 </search:value>
 </search:constraint>
 <!--This item is a duplicate and is commented out so as to create
 a valid artifact.
 <search:constraint name="id"
 xmlns:search="http://marklogic.com/appservices/search">
 <search:range type="xs:int" facet="true">
 <search:path-index
 xmlns:es="http://marklogic.com/entity-services">
 //es:instance/Person/id
 </search:path-index>
 </search:range>
</search:constraint>

If you do not need both constraint types on id, you can remove one of them. Alternatively, you can
change the name of at least one of these constraints and uncomment the path range constraint.

For an example of using the generated options, see “Example: Using the Search API for Instance
Queries” on page 176.

4.10 Deploying Generated Code and Artifacts
Library modules and some configuration artifacts that you generate using the Entity Services API
must be installed before you can use them.

• Code modules: Insert into the modules database associated with your App Server.

For example, if you’re using the pre-configured App Server on port 8000, insert your
instance converter module into the Modules database. For more details, see Importing

XQuery Modules, XSLT Stylesheets, and Resolving Paths in the Application Developer’s
Guide.

MarkLogic Server Version MarkLogic 9—May, 2017 Generating Code and Other Artifacts

Page 148—Entity Services Developer’s Guide

• Schemas: Insert into the schemas database associated with your content database.

For example if your content database is the pre-configured Documents database, deploy
schemas to the Schemas database.

• TDE templates: Insert into the schemas database associated with your content database.

For example if your content database is the pre-configured Documents database, deploy
templates to the Schemas database. For details, see “Deploying a TDE Template” on
page 126.

• Database configuration: This artifact does not require installation. Rather, you use it as
input during configuration operations, as described in “Generating a Database
Configuration Artifact” on page 137.

• Query Options: Installation on MarkLogic is optional. If you choose to use these as
persistent options with the Java, Node.js, or REST Client APIs, see “Pre-Installing Query
Options” on page 173. Otherwise, no installation is required.

Unless otherwise noted, you can install a module or configuration artifact using any document
insertion interfaces, including the following MarkLogic APIs:

• The xdmp:document-insert XQuery function or the xdmp.documentInsert Server-Side
JavaScript function.

• The Java, Node.js, and REST Client APIs. The Client APIs include interfaces specifically
for managing documents in the modules database associated with a REST API instance, as
well as normal document operations that can be performed against any database.

For an example of deploying a module using simple document insert, see “Create and Deploy an
Instance Converter” on page 27 (XQuery) or “Create and Deploy an Instance Converter” on
page 43 (JavaScript).

In addition, open source application deployment tools such as ml-gradle and roxy (both available
on GitHub) support module deployment tasks. The Entity Services examples on GitHub use
ml-gradle for this purpose; for more details, see “Exploring the Entity Services Open-Source
Examples” on page 15.

MarkLogic Server Managing Entity Instances

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 149

5.0 Managing Entity Instances
168

This chapter describes how to create, retrieve, update, and delete entity instances derived from a
model created with MarkLogic Entity Services. The chapter covers the following topics:

• Entity Instance Concepts

• Creating an Entity Instance from a Data Source

• Generating Test Entity Instances

• Extracting an Entity Instance from an Envelope Document

• Extracting the Original Source from an Envelope Document

• Updating Entity Instance Data When Your Model Changes

5.1 Entity Instance Concepts
This section introduces entity instance concepts helpful in creating, persisting, querying, and
extracting entity instance data. The following topics are included:

• What is an Instance?

• What is an Envelope Document?

• Example: Entity Instance Representations

5.1.1 What is an Instance?
An entity instance is a concrete instantiation of an entity type defined in a model.

For example, suppose you have a JSON model descriptor that defines a Person entity type with
the following properties. This is based on the model in “Getting Started With Entity Services” on
page 19.

"Person": {
 "properties": {
 "id": {"datatype": "string"},
 "firstName": {"datatype": "string"},
 "lastName": {"datatype": "string"},
 "fullName": {"datatype": "string"},
 "friends": {
 "datatype": "array",
 "items": {"$ref": "#/definitions/Person"
 }
 }},
 ...
}

MarkLogic Server Version MarkLogic 9—May, 2017 Managing Entity Instances

Page 150—Entity Services Developer’s Guide

Then the canonical representation of a Person instance would have the following form, depending
on whether you choose to work with XML or JSON.

By convention, an instance is stored as child XML elements or JSON properties of an envelope
document. You can extract an instance from an envelope as XML or JSON, regardless of the
envelope format. For details, see “What is an Envelope Document?” on page 150 and “Extracting
an Entity Instance from an Envelope Document” on page 161.

An instance can have multiple repesentations, depending on the context:

• While you are synthesizing an instance from raw source or converting one between model
versions, you work with an in-memory representation of the instance as a map:map
containing not only the entity type property values, but additional information such as type
and source. This representation is designed to be easy to modify during instance
construction.

• By Entity Services convention, instances are persisted in envelope documents. An XML
envelope document includes an es:instance XML element with a child element that is the
canonical XML representation of the instance. A JSON envelope document contains an
"instance" property that contains the canonical JSON representation of the instance. The
canonical representation is the one on which queries are based. For details, see “What is
an Envelope Document?” on page 150.

• You can extract an instance from an envelope document as XML, JSON, or a map:map.
You might use one or more of these representations to pass instances to downstream
applications. For details, see “Extracting an Entity Instance from an Envelope Document”
on page 161.

For more details, see “Example: Entity Instance Representations” on page 152.

5.1.2 What is an Envelope Document?
If you follow the Entity Services conventions, your entity instances are persisted in MarkLogic as
part of an envelope document. An envelope document encapsulates instance data with related
metadata that might be useful to your application. You can use either XML or JSON envelopes.

XML Canonical Form JSON Canonical Form

<Person>
 <id>1234</id>
 <firstName>George</firstName>
 <lastName>Washington</lastName>
 <fullName>George Washington</fullName>
</Person>

{"Person": {
 "id":"2345",
 "firstName":"Martha",
 "lastName":"Washington",
 "fullName":"Martha Washington"
}}

MarkLogic Server Managing Entity Instances

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 151

An envelope document for some entity type T is created using the instance-to-envelope function
in T’s instance converter module. For more details, see “Creating an Entity Instance from a Data
Source” on page 157 and “Creating an Instance Converter Module” on page 110.

An envelope document has the following form by default.

The instance section contains the canonical representation of the instance, plus metadata such as
the model title and version from which entity type is derived. The attachments section contains
the source data, by convention; you can add additional attachments.

The envelope format does not have to match the format of your raw source data. You can generate
JSON envelopes for instances based on XML source and vice versa. However, if the source and
envelope formats differ, the raw source is stored in the attachments section of the envelope as a
string.

You can customize an envelope document to include other information, but you should generally
not modify the instance portion. The instance data should accurately reflect the entity type
definition in your model. If you need to normalize or derive property values, do so in the
extract-instance-T function of your instance converter.

Format Envelope Template

XML <es:envelope xmlns:es="http://marklogic.com/entity-services">
 <es:instance>
 <es:info>
 <es:title>model title</es:title>
 <es:version>model version</es:version>
 </es:info>
 <T>
 ...T’s entity properties as elements...
 </T>
 </es:instance>
 <es:attachments>...source data...</es:attachments>
</es:envelope>

JSON {"envelope": {
 "instance": {
 "info": {
 "title": "model title",
 "version": "model version"
 },
 "T": {
 ...T’s entity properties as JSON properties...
 }
 },
 "attachments": [...source data...]
}}

MarkLogic Server Version MarkLogic 9—May, 2017 Managing Entity Instances

Page 152—Entity Services Developer’s Guide

If you customize the envelope by adding data to the attachments element, then you can use the
es:instance-get-attachments XQuery function or the es.instanceGetAttachments JavaScript
function to retrieve the data. If you put it elsewhere in the envelope, then you are solely
responsible for retrieving it from the envelope.

The Entity Services API includes functions for retrieving the instance data and attachments from
an envelope. For details, see “Extracting an Entity Instance from an Envelope Document” on
page 161 and “Extracting the Original Source from an Envelope Document” on page 164.

5.1.3 Example: Entity Instance Representations
This example illustrates the various instance representations discussed in “What is an Instance?”
on page 149.

• XML Entity Instance Representations

• JSON Entity Instance Representations

5.1.3.1 XML Entity Instance Representations
This example uses the Person entity type from the model defined in “Getting Started With Entity
Services” on page 19.

Representation Example

1 Raw Source <person>
 <pid>1234</pid>
 <given>George</given>
 <family>Washington</family>
</person>

2 In-memory instance, as
returned by
extract-instance-Person

Shown here as JSON for
readability, but really a
json:object (map:map) with
keys $attachments, $type, id,
etc.

{"$attachments": "<?xml version=\"1.0\"
encoding=\"UTF-8\"?>\n<person>\n
<pid>1234</pid>\n <given>George</given>\n
<family>Washington</last>\n</family>",
 "$type": "Person",
 "id": "1234",
 "firstName": "George",
 "lastName": "Washington",
 "fullName": "George Washington"
}

MarkLogic Server Managing Entity Instances

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 153

3 Canonical XML instance
generated by
instance-to-canonical

Used to construct the instance
within an envelope document.

<Person>
 <id>1234</id>
 <firstName>George</firstName>
 <lastName>Washington</lastName>
 <fullName>George Washington</fullName>
</Person>

4 Envelope document, as
generated by
instance-to-envelope

<es:envelope
 xmlns:es="http://marklogic.com/entity-services">
 <es:instance>
 <es:info>
 <es:title>Person</es:title>
 <es:version>1.0.0</es:version>
 </es:info>
 <Person>
 <id>1234</id>
 <firstName>George</firstName>
 <lastName>Washington</lastName>
 <fullName>George Washington</fullName>
 </Person>
 </es:instance>
 <es:attachments>
 <person>
 <pid>1234</pid>
 <first>George</first>
 <last>Washington</last>
 </person>
 </es:attachments>
</es:envelope>

5 json:object (map:map)
representation extracted from
envelope document by
es:instance-from-document or
es.instanceFromDocument

Shown here as JSON for
readability, this is really a
map:map in XQuery. In
JavaScript, this function
returns a JavaScript object. The
value is mutable.

{ "id": "1234",
 "firstName": "George",
 "lastName": "Washington",
 "fullName": "George Washington",
 "$type": "Person"
}

Representation Example

MarkLogic Server Version MarkLogic 9—May, 2017 Managing Entity Instances

Page 154—Entity Services Developer’s Guide

The representations you see on lines 2, 3, and 4 were created by an instance converter module. For
details, see “Creating an Instance Converter Module” on page 110. The representation on line 2 is
a transient, mutable in-memory representation designed for ease of use in instance converter code.
If you pass an envelope document to the convert-instance-T function of a version translator
module, it returns a similar representation; for details, see “Creating a Model Version Translator
Module” on page 116.

The envelope document representation on line 4 is the recommended way to store entity instances
in MarkLogic. You can customize the contents of your envelope, but should usually leave the
es:instance portion as-is. This is the layout produced by the instance-to-envelope function of
an instance converter.

The representations on lines 5, 6, and 7 are instances extracted from an envelope document using
the Entity Services API. The map:map representation on line 5 differs from the other extracted
entities in that it is mutable and carries explicit type information in the $type property. This
representation differs from the one on line 2 in that it contains only the instance entity type
properties. There is no $attachments. For more details, see “Extracting an Entity Instance from an
Envelope Document” on page 161.

6 XML representation extracted
from envelope document by
es:instance-xml-from-documen

t or
es.instanceXmlFromDocument

The value is immutable.

<Person>
 <id>1234</id>
 <firstName>George</firstName>
 <lastName>Washington</lastName>
 <fullName>George Washington</fullName>
</Person>

7 JSON representation extracted
from envelope document by
es:instance-json-from-docume

nt or
es.instanceJsonFromDocument

This function returns a JSON
object node. The value is
immutable.

{ "Person": {
 "id": "1234",
 "firstName": "George",
 "lastName": "Washington",
 "fullName": "George Washington"
} }

Representation Example

MarkLogic Server Managing Entity Instances

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 155

5.1.3.2 JSON Entity Instance Representations
This example uses the Person entity type from the model defined in “Getting Started With Entity
Services” on page 19.

Representation Example

1 Raw Source { "pid": 2345,
 "given": "Martha",
 "family": "Washington"
}

2 In-memory instance, as
returned by
extract-instance-Person

Shown here as JSON for
readability, but really a
json:object (map:map) with
keys $attachments, $type, id,
etc.

{ "$type": "Person",
 "$attachments": {
 "pid": 2345,
 "given": "Martha",
 "family": "Washington"
 },
 "id": 2345,
 "firstName": "Martha",
 "lastName": "Washington",
 "fullName": "Martha Washington"
}

3 Canonical JSON instance
generated by
instance-to-canonical

Used to construct the instance
within an envelope document.

{"Person": {
 "id":"2345",
 "firstName": "Martha",
 "lastName": "Washington",
 "fullName": "Martha Washington"
}}

4 JSON Envelope document, as
generated by
instance-to-envelope

{"envelope": {
 "instance": {
 "info": {
 "title": "Person",
 "version": "1.0.0"
 },
 "Person": {
 "id": "2345",
 "firstName": "Martha",
 "lastName": "Washington",
 "fullName": "Martha Washington"
 }
 },
 "attachments": [{
 "pid": 2345,
 "given": "Martha",
 "family": "Washington"
 }]
} }

MarkLogic Server Version MarkLogic 9—May, 2017 Managing Entity Instances

Page 156—Entity Services Developer’s Guide

The representations you see on lines 2, 3, and 4 were created by an instance converter module. For
details, see “Creating an Instance Converter Module” on page 110. The representation on line 2 is
a transient, mutable in-memory representation designed for ease of use in instance converter code.
If you pass an envelope document to the convert-instance-T function of a version translator
module, it returns a similar representation; for details, see “Creating a Model Version Translator
Module” on page 116.

The envelope document representation on line 4 is the recommended way to store entity instances
in MarkLogic. You can customize the contents of your envelope, but should usually leave the
instance portion as-is. This is the layout produced by the instance-to-envelope function of an
instance converter.

5 json:object (map:map)
representation extracted from
envelope document by
es:instance-from-document or
es.instanceFromDocument

Shown here as JSON for
readability, this is really a
map:map in XQuery. In
JavaScript, this function
returns a JavaScript object. The
value is mutable.

{ "$type": "Person",
 "id":"2345",
 "firstName":"Martha",
 "lastName":"Washington",
 "fullName":"Martha Washington"
}

6 XML representation extracted
from envelope document by
es:instance-xml-from-documen

t or
es.instanceXmlFromDocument

The value is immutable.

<Person>
 <id>2345</id>
 <firstName>Martha</firstName>
 <lastName>Washington</lastName>
 <fullName>Martha Washington</fullName>
</Person>

7 JSON representation extracted
from envelope document by
es:instance-json-from-docume

nt or
es.instanceJsonFromDocument

This function returns a JSON
object node. The value is
immutable.

{ "Person": {
 "id":"2345",
 "firstName":"Martha",
 "lastName":"Washington",
 "fullName":"Martha Washington"
}}

Representation Example

MarkLogic Server Managing Entity Instances

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 157

The representations on lines 5, 6, and 7 are instances extracted from an envelope document using
the Entity Services API. The map:map representation on line 5 differs from the other extracted
entities in that it is mutable and carries explicit type information in the $type property. This
representation differs from the one on line 2 in that it contains only the instance entity type
properties. There is no $attachments property. For more details, see “Extracting an Entity
Instance from an Envelope Document” on page 161.

5.2 Creating an Entity Instance from a Data Source
The Entity Services API does not dictate how you create an entity instance from source data, but
the recommended process is as follows:

• Generate, customize, and install an instance converter module, as described in “Creating
an Instance Converter Module” on page 110.

• Use the extract-instance-T and instance-to-envelope functions of the instance
converter module to create instance envelope documents for some entity type T from
source data.

• Insert your envelope documents in the database.

By convention, instances are stored as child elements of an XML or JSON envelope document.
You can extract an instance from an envelope document in several formats. For details, see
“Extracting an Entity Instance from an Envelope Document” on page 161.

MarkLogic Server Version MarkLogic 9—May, 2017 Managing Entity Instances

Page 158—Entity Services Developer’s Guide

The following code illustrates one way to create envelope documents from raw source. In this
example, the source data comes from documents in MarkLogic that are in a collection named
“raw”, and instances are generated for an entity type named Person. The generated envelope
documents are in XML format; you could also choose JSON. This example uses the converter and
data from “Getting Started With Entity Services” on page 19.

Language Example

XQuery (: Create envelope documents from raw source documents :)
xquery version "1.0-ml";
import module namespace es =
"http://marklogic.com/entity-services"
 at "/MarkLogic/entity-services/entity-services.xqy";
import module namespace person =
 "http://example.org/example-person/Person-1.0.0"
 at "/es-gs/person-1.0.0-conv.xqy";

for $source in fn:collection('raw') return
 let $instance := person:extract-instance-Person($source)
 let $uri :=
 fn:concat('/es-gs/env/', map:get($instance, 'id'), '.xml')
 return xdmp:document-insert(
 $uri,
 person:instance-to-envelope($instance, "xml"),
 <options xmlns="xdmp:document-insert">
 <collections>
 <collection>person-envelopes</collection>
 </collections>
 </options>
)

JavaScript 'use strict';
declareUpdate();
const es = require('/MarkLogic/entity-services/entity-services.xqy');
const person = require('/es-gs/person-1.0.0-conv.xqy');

for (const source of fn.collection('raw')) {
 let instance = person.extractInstancePerson(source);
 let uri = '/es-gs/env/' + instance.id + '.xml';
 xdmp.documentInsert(
 uri, person.instanceToEnvelope(instance, 'xml'),
 {collections: ['person-envelopes']}
);
}

MarkLogic Server Managing Entity Instances

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 159

The resulting envelope documents have the following form by default. The instance data is
accessible in an envelope document via the XPath expression //es:instance (or //*:instance).
The original source from which the instance was derived is accessible via the XPath expression
//es:attachments (or //*:attachments).

<es:envelope xmlns:es="http://marklogic.com/entity-services">
 <es:instance>
 <es:info>
 <es:title>Person</es:title>
 <es:version>1.0.0</es:version>
 </es:info>
 <Person>
 <id>1234</id>
 <firstName>George</firstName>
 <lastName>Washington</lastName>
 <fullName>George Washington</fullName>
 </Person>
 </es:instance>
 <es:attachments>
 <person>
 <pid>1234</pid>
 <given>George</given>
 <family>Washington</family>
 </person>
 </es:attachments>
</es:envelope>

If you generate JSON envelopes rather than XML envelopes, you get envelopes of the following
form by default. The instance data is accessible in an envelope document via the XPath
expression //instance (or //*:instance). The original source from which the instance was
dervied is accessible via the XPath expression //attachements (or //*:attachments).

{ "envelope": {
 "instance": {
 "info": {
 "title": "Person",
 "version": "1.0.0"
 },
 "Person": {
 "id": "1234",
 "firstName": "George",
 "lastName": "Washington",
 "fullName": "George Washington"
 }
 },
 "attachments": [
 "<person><pid>1234<\/pid><given>George<\/given><family>Washington<\/famil
y><\/person>"
]
} }

MarkLogic Server Version MarkLogic 9—May, 2017 Managing Entity Instances

Page 160—Entity Services Developer’s Guide

Note: If your model specifies a namespace binding for an entity type and you use JSON
envelopes, the namespace is discarded in the JSON representation, but the code
and configuration artifacts still assumes a namespace, so it will not work properly
with JSON envelope documents. You should use XML envelope documents for
entity types that define a namespace binding.

For an end-to-end example of creating envelope documents using this model, see “Getting Started
With Entity Services” on page 19.

5.3 Generating Test Entity Instances
You can generate test instances from a model using the es:model-get-test-instances XQuery
function or es.modelGetTestInstances Server-Side JavaScript function. You can use test
instances for tasks such as experimenting with model refinement and testing code that
manipulates instances.

The test instances are based purely on the model and do not reflect data normalization or
customization you add to your instance converter. The test instances can help you identify
properties for which converter customization is required.

The es:model-get-test-instances and es.modelGetTestInstances functions return a sequence of
instances, one for each entity type defined in the input model.

If an entity type property definition contains a local reference, the referenced entity type is
assumed to be embedded in the referencing entity. If an entity type property definition contains an
external reference, no meaningful test value can be generated.

For example, assume the following model defining two entity types, Name and Person. A Person
contains a local reference to a Name.

{ "info": {
 "title": "Example",
 "version": "1.0.0",
 "description": "ES Examples"
 },
 "definitions": {
 "Name": {
 "properties": {
 "first": { "datatype": "string" },
 "last": { "datatype": "string" }
 }
 },
 "Person": {
 "properties": {
 "id": { "datatype": "int" },
 "name": { "$ref": "#/definitions/Name" },
 }
} } }

MarkLogic Server Managing Entity Instances

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 161

If you generate test instances from this model, the name property of the Person test instance
contains a Name instance value:

<Person>
 <id>123</id>
 <name>
 <Name>
 <first>some string</first>
 <last>some string</last>
 </Name>
 </name>
</Person>

If the name property of a Person entity was an external reference to such as
“http://example.com/SomeType” instead, then no meaningful test value can be generated. The
Person test instance would look like the following:

<Person>
 <id>123</id>
 <name><SomeType>externally-referenced-instance</SomeType></name>
</Person>

To generate instances from real source data, use an instance converter. For more details, see
“Creating an Instance Converter Module” on page 110 and “Creating an Entity Instance from a
Data Source” on page 157.

5.4 Extracting an Entity Instance from an Envelope Document
Though Entity Services encourages storing your instances in MarkLogic in the form of envelope
documents, downstream consumers of your data, such as client applications, will probably expect
to receive the canonical instance data, not the entire envelope.

The Entity Services API includes the following XQuery functions for extracting an instance from
an envelope document. The corresponding JavaScript functions follow.

XQuery Function Extracted Instance Format

es:instance-from-document map:map (json:object, mutable)

es:instance-json-from-document object-node() (immutable)

es:instance-xml-from-document element() (immutable)

MarkLogic Server Version MarkLogic 9—May, 2017 Managing Entity Instances

Page 162—Entity Services Developer’s Guide

The Entity Services API includes the following Server-Side JavaScript functions for extracting an
instance from an envelope document.

For example, suppose you have the following envelope document in the database with the URI
/es-gs/env/1234.xml:

<es:envelope xmlns:es="http://marklogic.com/entity-services">
 <es:instance>
 <es:info>
 <es:title>Person</es:title>
 <es:version>1.0.0</es:version>
 </es:info>
 <Person>
 <id>1234</id>
 <firstName>George</firstName>
 <lastName>Washington</lastName>
 <fullName>George Washington</fullName>
 </Person>
 </es:instance>
 <es:attachments>
 <person>
 <pid>1234</pid>
 <given>George</given>
 <family>Washington</family>
 </person>
 </es:attachments>
</es:envelope>

JavaScript Function Extracted Instance Format

es.instanceFromDocument JavaScript object (mutable)

es.instanceJsonFromDocument object-node() (immuntable)

es.instanceXmlFromDocument element() (immuntable)

MarkLogic Server Managing Entity Instances

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 163

Then, the following code snippet extracts an instance from the envelope document as a
json:object in XQuery or a JavaScript object in JavaScript.

The result is a sequence containing one item, equivalent to the following JSON:

{ "id":"1234",
 "firstName":"George",
 "lastName":"Washington",
 "fullName":"George Washington",
 "$type": "Person"
}

Language Example

XQuery xquery version "1.0-ml";
import module namespace es =
"http://marklogic.com/entity-services"
 at "/MarkLogic/entity-services/entity-services.xqy";

es:instance-from-document(fn:doc('/es-gs/env/1234.xml'))[1]

JavaScript 'use strict';
const es =
require('/MarkLogic/entity-services/entity-services.xqy');

fn.head(
 es.instanceFromDocument(cts.doc('/es-gs/env/1234.xml'))
);

MarkLogic Server Version MarkLogic 9—May, 2017 Managing Entity Instances

Page 164—Entity Services Developer’s Guide

The following table illustrates the result of calling each of the instance envelope extraction
functions.

For more detailed coverage of instance representations, see “What is an Instance?” on page 149
and “Example: Entity Instance Representations” on page 152.

5.5 Extracting the Original Source from an Envelope Document
If you follow the Entity Services conventions, an envelope document encapsulates both the
canonical instance data and the raw source from which it was derived. This encapsulation happens
when you call the instance-to-envelope XQuery function in a model’s generated instance
converter module.

You can extract the attachments from an envelope document using the
es:instance-get-attachments XQuery function or the es.instanceGetAttachments JavaScript
function. You can use these function on a customized envelope, as long as the attacments are
locatable via the XPath expression //es:attachments.

The raw source data is saved in the envelope as an attachment. For example, the highlighted
<person/> element below is the raw XML source from which the enveloped instance was derived.

Function Result

es:instance-from-document

es.instanceFromDocument

A json:object (XQuery) or JavaScript object
(JavaScript) equivalent to the following:
{ "id":"1234",
 "firstName":"George",
 "lastName":"Washington",
 "fullName":"George Washington",
 "$type":"Person"
}

es:instance-json-from-document

es.instanceJsonFromDocument

A JSON object-node() equivalent to the following:
{ "Person": {
 "id":"1234",
 "firstName":"George",
 "lastName":"Washington",
 "fullName":"George Washington"
}

es:instance-xml-from-document

es.instanceXmlFromDocument

The following XML element:
<Person xmlns:es=...>
 <id>1234</id>
 <firstName>George</firstName>
 <lastName>Washington</lastName>
 <fullName>George Washington</fullName>
</Person>

MarkLogic Server Managing Entity Instances

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 165

<es:envelope xmlns:es="http://marklogic.com/entity-services">
 <es:instance>...</es:instance>
 <es:attachments>
 <person>
 <pid>1234</pid>
 <given>George</given>
 <family>Washington</family>
 </person>
 </es:attachments>
</es:envelope>

If the format of the source data does not match the format of the envelope, the source data is
serialized and stored in the envelope as a string. For example, if the source data is JSON and the
envelope value is XML, then the source is stored as the text value of an es:attachments XML
element. The following snippet is from an XML envelope document created from JSON source:

<es:envelope xmlns:es="http://marklogic.com/entity-services">
 <es:instance>...</es:instance>
 <es:attachments>{"pid":2345, "given":"Martha",
"family":"Washington"}</es:attachments>
</es:envelope>

The following code extracts the raw source attachment from an envelope document, assuming it is
the only attachment.

If there are multiple children in the //es:attachments element, you are responsible for picking
out the raw source from the other attachments. There will only be multiple attachments if you
explicitly add extra attachments.

Language Example

XQuery xquery version "1.0-ml";
import module namespace es =
"http://marklogic.com/entity-services"
 at "/MarkLogic/entity-services/entity-services.xqy";

es:instance-get-attachments(fn:doc('/es-gs/env/1234.xml'))[1]

JavaScript 'use strict';
const es =
require('/MarkLogic/entity-services/entity-services.xqy');

fn.head(
 es.instanceGetAttachments(cts.doc('/es-gs/env/2345.xml'))
);

MarkLogic Server Version MarkLogic 9—May, 2017 Managing Entity Instances

Page 166—Entity Services Developer’s Guide

If the original source attachment and the envelope format do not match, you must convert the
serialization if you want to work with the data in its original form. For example, the following
code deserializes a serialized JSON attachment from an XML envelope document, and then
accesses one of its properties.

The following code is a similar example that extracts an XML attachment from a JSON envelope:

Language JSON Deserialization Example

XQuery xquery version "1.0-ml";
import module namespace es =
"http://marklogic.com/entity-services"
 at "/MarkLogic/entity-services/entity-services.xqy";

map:get(
 xdmp:from-json-string(

es:instance-get-attachments(fn:doc('/es-gs/env/2345.xml'))[1]
)[1], "pid"
)

Server-Side
JavaScript

'use strict';
const es =
require('/MarkLogic/entity-services/entity-services.xqy');

fn.head(xdmp.fromJsonString(
 fn.head(
 es.instanceGetAttachments(cts.doc('/es-gs/env/2345.xml')))
)).pid;

Language XML Deserialization Example

XQuery xquery version "1.0-ml";
import module namespace es =
"http://marklogic.com/entity-services"
 at "/MarkLogic/entity-services/entity-services.xqy";

xdmp:unquote(
 es:instance-get-attachments(fn:doc('/es-gs/env/1234.json'))[1]
)[1]//pid/data()

Server-Side
JavaScript

'use strict';
const es =
require('/MarkLogic/entity-services/entity-services.xqy');

fn.head(xdmp.unquote(
 fn.head(es.instanceGetAttachments(cts.doc('/es-gs/env/1234.json')))
)).xpath('//pid/data()')

MarkLogic Server Managing Entity Instances

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 167

5.6 Updating Entity Instance Data When Your Model Changes
As your model changes, you might need to update your instance data to match. Model changes
can also impact generated and configuration artifacts. For details, see “Managing Model
Changes” on page 88.

MarkLogic Server Version MarkLogic 9—May, 2017 Managing Entity Instances

Page 168—Entity Services Developer’s Guide

MarkLogic Server Querying a Model or Entity Instances

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 169

6.0 Querying a Model or Entity Instances
194

This chapter contains the following topics related to searching entity instances and models using
MarkLogic. Unless otherwise noted, all the examples in this chapter use the entity model and data
from “Getting Started With Entity Services” on page 19.

This chapter covers the following topics:

• Query Support Provided by Entity Services

• Search Basics for Models

• Search Basics for Instance Data

• Pre-Installing Query Options

• Example: Using SPARQL for Model Queries

• Example: Using cts:query or cts.query for Instance Queries

• Example: Using the Search API for Instance Queries

• Example: Using JSearch for Instance Queries

• Example: Using the Client APIs for Instance Queries

• Example: Using SPARQL for Instance Queries

• Example: Using SQL for Instance Queries

• Example: Using the Optic API for Instance Queries

• Where to Find Additional Information

Additional examples are available in the Entity Services GitHub repository. For more details, see
“Exploring the Entity Services Open-Source Examples” on page 15.

6.1 Query Support Provided by Entity Services
The Entity Services API includes the following utility functions that make it easier to create and
configure an application that searches entity models and entity instances.

• Use es:database-properties-generate (XQuery) or es.databasePropertiesGenerate
(JavaScript) to create a database configuration artifact with which to configure database
range indexes and lexicons. This function relies on the model descriptor to identify
properties that should be indexed or cataloged in a lexicon. For details, see “Generating a
Database Configuration Artifact” on page 137.

• Use es:search-options-generate (XQuery) or es.searchOptionsGenerate (JavaScript) to
generate a set of query options suitable for use with the Search API and the Client APIs.
Some of the generated options rely on the model descriptor to identify properties that
should be indexed or cataloged in a lexicon. For details, see “Generating Query Options
for Searching Instances” on page 141.

MarkLogic Server Version MarkLogic 9—May, 2017 Querying a Model or Entity Instances

Page 170—Entity Services Developer’s Guide

• Use es:extraction-template-generate (XQuery) or es.extractionTemplateGenerate
(JavaScript) to create a TDE template to enable querying instances as semantic or row
data. For details, see “Generating a TDE Template” on page 122.

You can customize all of these generated artifacts to suit the requirements of your application.

You are not required to generate and use any of these artifacts, but doing so can make it easier to
build a search application around your model. The examples in this chapter take advantage of
these artifacts where appropriate.

6.2 Search Basics for Models
You can use Semantic search to search and make inferences about a model.

Recall that when you persist a model descriptor as part of the special Entity Services collection,
MarkLogic generates a set of facts that define the core of your model, expressed as semantic
triples. You can also enrich your model with additional facts (triples) that are not derivable from
the model descriptor. For details, see “Introduction” on page 57.

The auto-generated triples include facts such as the following. For the complete ontology, see
MARKLOGIC_INSTALL_DIR/Modules/MarkLogic/entity-services/entity-services.ttl.

• Model M defines entity type T

• Entity type T has a property P

• Property P of entity type T has data type D

• Entity Type T has primary key P

You can inspect all the triples associated with a model by evaluating a SPARQL query such as the
following in Query Console:

You can use SPARQL or the Optic API to perform a semantic search of the model. The following
interfaces accept SPARQL input:

• The sem:sparql XQuery function or the sem.sparql Server-Side JavaScript function.

• The REST, Java, and Node.js client APIs accept SPARQL queries as input to their search
interfaces. You can embed a SPARQL query in a combined query, or use an appropriate
Java or Node.js query builder.

XQuery Server-Side JavaScript

xquery version "1.0-ml";
cts:triples(
 (), (), (), (), (),
 cts:document-query(yourModelURI))

'use strict';
cts.triples(
 null, null, null, null, null,
 cts.documentQuery(yourModelURI));

MarkLogic Server Querying a Model or Entity Instances

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 171

• Evaluate SPARQL directly in Query Console during development.

For a server-side model query example, see “Example: Using SPARQL for Model Queries” on
page 174. For the Client APIs, refer to the respective developer guides listed in “Where to Find
Additional Information” on page 193.

The Optic API enables semantic queries directly using JavaScript and XQuery, without requiring
you to use a secondary query language (SPARQL). You can use the Optic API to query your
model server-side using the op:from-triples XQuery function or the op.fromTriples Server-Side
JavaScript function. For more details, see “Optic API for Multi-Model Data Access” on page 305
in the Application Developer’s Guide.

6.3 Search Basics for Instance Data
You can query your instance data as documents, rows, or triples. See the following topics for
more details:

• Document Search

• Row Search

• Semantic Search

Document search is always available. Row and semantic search are only available if you generate
and install a TDE template, as described in “Generating a TDE Template” on page 123. In
addition, semantic search is only available if an entity type defines a primary key.

6.3.1 Document Search
If you follow the Entity Services conventions, your instance data, as well as original source data is
stored in envelope documents. The default structure of envelope documents is covered in “What
is an Envelope Document?” on page 150.

You can use any of the available document search interfaces to search your envelope documents.
For example:

• The cts:search XQuery function or cts.search Server-Side JavaScript Function. See
“Example: Using cts:query or cts.query for Instance Queries” on page 175.

• The Server-Side JavaScript JSearch API. See “Example: Using JSearch for Instance
Queries” on page 179.

• The XQuery Search API (search:search). See “Example: Using the Search API for
Instance Queries” on page 176.

• The REST, Java, and Node.js Client APIs. See “Example: Using the Client APIs for
Instance Queries” on page 180.

To learn more about any of these interfaces, see the links in “Where to Find Additional
Information” on page 193.

MarkLogic Server Version MarkLogic 9—May, 2017 Querying a Model or Entity Instances

Page 172—Entity Services Developer’s Guide

The Search API and the Client APIs can take advantage of the query options you can generate
using the Entity Services API. These options can help streamline and customize your searches.
See the examples and “Generating Query Options for Searching Instances” on page 141.

You can also generate a database configuration artifact based on your model. The artifact includes
index configuration for selected properties identified in the model. Creating these indexes can
enhance search performance. For details, see “Generating a Database Configuration Artifact” on
page 137.

6.3.2 Row Search
You can search your entity instance data as rows if you generate and install a TDE template based
on your model. Broadly speaking there is an implicit table that corresponds to each entity type,
with a row for each instance and columns for each property. For more details, see “Generating a
TDE Template” on page 122.

You can use SQL or the Optic API to search your entities as rows using the following interfaces:

• The xdmp:sql XQuery function and the xdmp.sql Server-Side JavaScript function accept
SQL input directly. See “Example: Using SQL for Instance Queries” on page 190.

• The Optic API op:from-view XQuery function and op.fromView Server-Side JavaScript
function enable you to build and execute a query plan based on a row-oriented view of
your data. See “Example: Using the Optic API for Instance Queries” on page 191.

• The Java Client API. Use the com.marklogic.client.row.RowManager interface and
com.marklogic.client.expression.PlanBuilder class to build and evaluate an Optic
row-based or triples-based query plan. For details, see Optic Java API for Relational

Operations in the Java Application Developer’s Guide.

• The REST Client API /rows service enables you to execute an Optic row-based or
triples-based query plan. For details, see GET:/v1/rows or POST:/v1/rows in the MarkLogic
REST API Reference.

You can also evaluate SQL directly in Query Console during development.

For more information about these interfaces, see the resources listed in “Where to Find Additional
Information” on page 193.

6.3.3 Semantic Search
You can search your entity instances using semantic queries if and only if all of the following
conditions are met:

• The entity type definition defines a primary key. A primary key enables unique
identification of each instance. For details, see “Identifying the Primary Key Entity
Property” on page 67.

MarkLogic Server Querying a Model or Entity Instances

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 173

• You generate and install a TDE template as described in “Generating a TDE Template” on
page 122.

When these requirements are met, MarkLogic automatically generates a few facts about each
instance when you insert an envelope document into the database. The facts take the form of
semantic triples, which you can query using SPARQL or the Optic API. You can also extend the
TDE template to include your own triples.

For an example of semantic queries on instance data, see “Example: Using SPARQL for Instance
Queries” on page 189 and “Example: Using the Optic API for Instance Queries” on page 191.

You can use the following interfaces to perform a semantic search of your entity instance data:

• The sem:sparql XQuery function or the sem.sparql Server-Side JavaScript function. See
“Example: Using SPARQL for Instance Queries” on page 189.

• The op:from-triples XQuery function or the op.fromTriples Server-Side JavaScript
function of the Optic API. See “Example: Using the Optic API for Instance Queries” on
page 191.

• Pass a SPARQL query to MarkLogic using the REST, Java, or Node.js client APIs. You
can embed a SPARQL query in a combined query, or use an appropriate Java or Node.js
query builder.

• The Java Client API. Use the com.marklogic.client.row.RowManager interface and
com.marklogic.client.expression.PlanBuilder class to build and evaluate an Optic
row-based or triple-based query plan. For details, see Optic Java API for Relational

Operations in the Java Application Developer’s Guide.

• The REST Client API /rows service enables you to execute an Optic row-based or
triples-based query plan. For details, see GET:/v1/rows or POST:/v1/rows in the MarkLogic
REST API Reference.

You can also evaluate SPARQL directly in Query Console during development.

To learn more about these interfaces, see the resources listed in “Where to Find Additional
Information” on page 193.

6.4 Pre-Installing Query Options
Recall that you can generate and customize model-specific query options for use with the Search
API and the REST, Java, and Node.js Client APIs; see “Generating Query Options for Searching
Instances” on page 141.

You must pre-install these options on MarkLogic if and only if all the following are true:

• You search your model or entity instances using one of the Client APIs (REST, Java, or
Node.js).

• You do not want to specify options dynamically at query time, such as in a combined query.

MarkLogic Server Version MarkLogic 9—May, 2017 Querying a Model or Entity Instances

Page 174—Entity Services Developer’s Guide

You can install query options using the REST and Java Client APIs. For details, see the following
topics:

• REST Client API: Creating or Modifying Query Options in the REST Application Developer’s
Guide

• Java Client API: Creating Persistent Query Options From Raw JSON or XML in the Java
Application Developer’s Guide

You can use persistent query options with the Node.js Client API, but you cannot install them.
Use REST or Java instead.

6.5 Example: Using SPARQL for Model Queries
When you insert a model descriptor document into MarkLogic as part of the special Entity
Services collection, MarkLogic creates a model from the descriptor. The model is expressed as
semantic triples; for details, see “Search Basics for Models” on page 170.

You can also extend the model with your own triples; for details, see “Extending a Model with
Additional Facts” on page 87.

You can query triples in MarkLogic using the following APIs:

• The sem:sparql XQuery function or the sem.sparql Server-Side JavaScript functions.

• The Client APIs; see Client-Side APIs for Semantics in the Semantics Developer’s Guide.

• The Optic API XQuery; see the op:from-triples XQuery function or the op.fromTriples
JavaScript function.

The following SPARQL query returns the name of all required properties of the Person entity type
of the model created in “Getting Started With Entity Services” on page 19.

prefix es:<http://marklogic.com/entity-services#>
select ?ptitle
where {
 ?x a es:EntityType;
 es:title "Person";
 es:property ?property .
 ?property a es:RequiredProperty;
 es:title ?ptitle
}

If you run this query in Query Console against the data from “Getting Started With Entity
Services” on page 19, it will return the property names “lastName”, “firstName”, and “fullName”.

MarkLogic Server Querying a Model or Entity Instances

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 175

The following example uses sem:sparql or sem.sparql to evaluate the same SPARQL query.

6.6 Example: Using cts:query or cts.query for Instance Queries
The cts query interface serves as the foundation for most higher level document search APIs in
MarkLogic. Using the cts layer gives you fine-grained control over your searches while the
XQuery Search API, JavaScript JSearch API, and the Client APIs provide higher level
abstractions on top of this layer. For details, see APIs for Multiple Programming Languages in the
Search Developer’s Guide.

Language Example

XQuery xquery version "1.0-ml";
sem:sparql('
 prefix es:<http://marklogic.com/entity-services#>
 select ?ptitle
 where {
 ?x a es:EntityType;
 es:title "Person";
 es:property ?property .
 ?property a es:RequiredProperty;
 es:title ?ptitle
 }'
)

JavaScript sem.sparql(
 'prefix es:<http://marklogic.com/entity-services#> ' +
 'select \?ptitle ' +
 'where {' +
 '?x a es:EntityType;' +
 'es:title "Person";' +
 'es:property ?property .' +
 '?property a es:RequiredProperty;' +
 'es:title ?ptitle' +
 '}'
)

MarkLogic Server Version MarkLogic 9—May, 2017 Querying a Model or Entity Instances

Page 176—Entity Services Developer’s Guide

The following example uses the cts:search XQuery function or cts.search JavaScript function
to find all Person envelope documents where the instance data includes a “lastName” element
with the value “washington”. For the sake of simplicity, the example prints out just the value of
the “fullName” property in the matched documents, rather than complete documents.

You could also use a path query instead of an element query to limit the search to es:instance
elements.

If you run the example code in Query Console against the envelope documents created in
“Getting Started With Entity Services” on page 19, the results are “George Washington” and
“Martha Washington”.

6.7 Example: Using the Search API for Instance Queries
The XQuery Search API is an interface that abstracts away some of the complexity of cts:search
operations such as the generation of facets and snippets. For details, see Search API: Understanding

and Using in the Search Developer’s Guide.

Server-Side JavaScript developers should use the JSearch API instead of the XQuery Search API.
You can use the Search API from JavaScript, but the search configuration and results are
expressed in XML, so it is not as convenient or “natural”. See “Example: Using JSearch for
Instance Queries” on page 179, instead.

Language Example

XQuery xquery version "1.0-ml";

cts:search(fn:collection('person-envelopes'),
 cts:element-query(
 fn:QName("http://marklogic.com/entity-services", "instance"),
 cts:element-value-query(xs:QName("lastName"), "washington")
)
)//fullName/fn:data()

JavaScript const results = cts.search(cts.andQuery((
 cts.collectionQuery('person-envelopes'),
 cts.elementQuery(
 fn.QName('http://marklogic.com/entity-services', 'instance'),
 cts.elementValueQuery(xs.QName('lastName'), 'washington')
)
)));

// Accumulate the matched names in an array for easy display
// in Query Console.
const names = [];
for (const doc of results) {
 names.push(doc.xpath('//Person/fullName/fn:data()'));
}
names

MarkLogic Server Querying a Model or Entity Instances

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 177

Recall that you can generate Search API compatible query options using the Entity Services API;
for details, see “Generating Query Options for Searching Instances” on page 141. The code
samples in this section assume you generated options from the model in “Getting Started With
Entity Services” on page 19. To learn more about the generated options, see “Characteristics of
the Generated Options” on page 142.

The following example uses generated options to find all Person envelope documents where the
instance data includes the word “washington”. For simplicity, only the value of the “fullName”
property is displayed. (In practice, you would probably customize the generated options for your
application.)

xquery version "1.0-ml";
import module namespace search =
 "http://marklogic.com/appservices/search"
 at "/MarkLogic/appservices/search/search.xqy";
import module namespace es = "http://marklogic.com/entity-services"
 at "/MarkLogic/entity-services/entity-services.xqy";

let $options := es:search-options-generate(
 fn:doc('/es-gs/models/person-1.0.0.json'))
let $matches :=
 search:search("entity-type:Person AND washington", $options)
return $matches//Person/fullName/fn:data()

If you run this code in Query Console against the envelope documents created in “Getting Started
With Entity Services” on page 19, then you should see output similar to the following:

Martha Washington
George Washington

The search term “entity-type:Person” constrains the search to Person entities. The entity-type
constraint is automatically generated for all models.

The generated options also include an additional-query option that constrains results to the
instance data in an envelope document. For example:

<search:constraint name="entity-type">
 <search:value>
 <search:element ns="http://marklogic.com/entity-services" name="title"/>
 </search:value>
</search:constraint>

<search:additional-query>
 <cts:element-query xmlns:cts="http://marklogic.com/cts">
 <cts:element xmlns:es="...">es:instance</cts:element>
 <cts:true-query/>
 </cts:element-query>
</search:additional-query>

MarkLogic Server Version MarkLogic 9—May, 2017 Querying a Model or Entity Instances

Page 178—Entity Services Developer’s Guide

Though the code above returns just the value of the “fullName” property in each matched
instance, the search results contain the entire entity, as if you called es:entity-from-document on
the envelope document. This data is contained in the search:extracted element of each
search:result. For example:

<search:response snippet-format="empty-snippet" total="2" start="1"
 page-length="10" selected="include" xmlns:search=...>
 <search:result index="1" uri="/es-gs/env/2345.xml"
 path="fn:doc("/es-gs/env/2345.xml")" score="15872"
 confidence="0.4703847" fitness="0.7823406">
 <search:snippet/>
 <search:extracted kind="element">
 <Person>
 <id>2345</id>
 <firstName>Martha</firstName>
 <lastName>Washington</lastName>
 <fullName>Martha Washington</fullName>
 </Person>
 </search:extracted>
 </search:result>
 <search:result .../>
 <search:qtext>entity-type:Person AND washington</search:qtext>
 <search:metrics>...</search:metrics>
</search:response>

The generated options enable this behavior by disabling snippeting and faceting, and defining an
extract-document-data option that extracts just the instance from the envelope document. For
example:

<search:extract-document-data selected="include">
 <search:extract-path
xmlns:es=...>//es:instance/(Person)</search:extract-path>
</search:extract-document-data>

<search:additional-query>
 <cts:element-query xmlns:cts="http://marklogic.com/cts">
 <cts:element xmlns:es=...>es:instance</cts:element>
 <cts:true-query/>
 </cts:element-query>
</search:additional-query>

<search:return-facets>false</search:return-facets>
<search:transform-results apply="empty-snippet"/>

If the model included more than one entity type definition, then the extract-document-data
option would use an extract path that matched any of the defined types. For example, if the model
defines a second entity type named “Family”, then the extract path would be the following:

//es:instance/(Family|Person)

MarkLogic Server Querying a Model or Entity Instances

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 179

If an entity type definition includes range index or word lexicon specifications, then the options
would include additional range or word constraints options. For example, if we extend the Person
entity to include a “rating” property of type float with a pathRange-index specification, then the
generated options would include a path range constraint similar to the following:

<search:constraint name="rating">
 <search:range type="xs:float" facet="true">
 <search:path-index xmlns:es="http://marklogic.com/entity-services">
 //es:instance/Person/rating
 </search:path-index>
 </search:range>
</search:constraint>

This enables a query string such as “entity-type:Person AND rating GT 3.0”.

For an example of a complete set of generated options, see “Example: Generating Query Options”
on page 144.

To learn more about query options, see Search Customization Using Query Options and Appendix:

Query Options Reference in the Search Developer’s Guide.

6.8 Example: Using JSearch for Instance Queries
The JSearch API is a fluent Server-Side JavaScript search interface. You can use it to search
documents using a variety of query styles, as well as for querying lexicons and range indexes. For
details, see Creating JavaScript Search Applications in the Search Developer’s Guide.

The following example use a cts.query to find all Person envelope documents where the instance
data includes a “lastName” element with the value “washington”. For the sake of display
simplicity, a custom mapper is used to extract just the value of the “fullName” property from each
matched instance, instead of returning full search results.

'use strict';
const jsearch = require('/MarkLogic/jsearch.sjs');

jsearch.collections('person-envelopes').documents()
 .where(cts.elementQuery(
 fn.QName('http://marklogic.com/entity-services', 'instance'),
 cts.elementValueQuery('lastName', 'washington')))
 .map(function(match) {
 return match.document.xpath('//fullName/fn:data()');
 })
 .result();

If you run the example in Query Console against the envelope documents created in “Getting
Started With Entity Services” on page 19, the results should be similar to the following:

{ "results":[
 "Martha Washington",

MarkLogic Server Version MarkLogic 9—May, 2017 Querying a Model or Entity Instances

Page 180—Entity Services Developer’s Guide

 "George Washington"],
 "estimate":2}

6.9 Example: Using the Client APIs for Instance Queries
This section provides examples of querying instances with the REST, Java, and Node.js Client
APIs. Note that these APIs support more query styles than are shown here. For details, refer to the
development guide for each API. These guides are listed in “Where to Find Additional
Information” on page 193.

• Java Client API

• Node.js Client API

• REST Client API

6.9.1 Java Client API
The Java Client API is an API for creating client applications that interact with MarkLogic. The
API enables you to search documents using a variety of query styles. For more details, see the
Java Application Developer’s Guide and the Java Client API Documentation. The Java Client
API can take advantage of the Search API compatible query options you can generate with the
Entity Services API, as discussed in “Generating Query Options for Searching Instances” on
page 141.

The following example uses a string query to find all Person envelope documents where the
instance data includes the word “washington”. The code assumes you have already generated
query options using the Entity Services API and installed them on MarkLogic as persistent query
options under the name OPTIONS_NAME; see the complete example below for an example of how to
install the options.

QueryManager qm = client.newQueryManager();
StringQueryDefinition query =
 qm.newStringDefinition(OPTIONS_NAME)
 .withCriteria("entity-type:Person AND washington");
SearchHandle results = qm.search(query, new SearchHandle());

For a discussion of how the generated options enable this query string, see “Example: Using the
Search API for Instance Queries” on page 176.

You could also create a RawCombinedQueryDefinition and embed the generated options inside the
combined query. This enables you to use the generated options without first persisting them on
MarkLogic. For more details, see Apply Dynamic Query Options to Document Searches in the Java
Application Developer’s Guide.

The following code is a complete example of installing options and performing the above search.
This code installs the query options (if necessary), performs the search, and prints out the value of
the fullName property in the matched entities.

MarkLogic Server Querying a Model or Entity Instances

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 181

Note: Modify the values in bold to fit your environment.

package examples;

import java.io.File;

import com.marklogic.client.DatabaseClient;
import com.marklogic.client.DatabaseClientFactory;
import com.marklogic.client.admin.QueryOptionsManager;
import com.marklogic.client.io.FileHandle;
import com.marklogic.client.io.Format;
import com.marklogic.client.io.QueryOptionsListHandle;
import com.marklogic.client.io.SearchHandle;
import com.marklogic.client.query.ExtractedItem;
import com.marklogic.client.query.ExtractedResult;
import com.marklogic.client.query.MatchDocumentSummary;
import com.marklogic.client.query.QueryManager;
import com.marklogic.client.query.StringQueryDefinition;

import javax.xml.xpath.XPathExpression;
import javax.xml.xpath.XPathExpressionException;
import javax.xml.xpath.XPathFactory;

import org.w3c.dom.Document;

public class EntityServices {
 private static DatabaseClient client =
 DatabaseClientFactory.newClient(
 "localhost", 8000, "es-gs",
 new DatabaseClientFactory.DigestAuthContext(USER, PASSWORD));
 static String OPTIONS_NAME = "person-1.0.0";
 static String OPTIONS_PATHNAME =
 "/path/to/options/person-options-1.0.0.xml";

 // Install the options generated by ES, if needed.
 public static void installOptions(String filename, String optionsName) {
 QueryOptionsManager optMgr =
 client.newServerConfigManager()
 .newQueryOptionsManager();
 QueryOptionsListHandle optList =
 optMgr.optionsList(new QueryOptionsListHandle());

 if (optList.getValuesMap().get(OPTIONS_NAME) == null) {
 FileHandle options =
 new FileHandle(new File(filename))
 .withFormat(Format.XML);
 optMgr.writeOptions(optionsName, options);
 }
 }

 public static void main(String[] args) throws XPathExpressionException {
 // Install the options generated by ES, if necessary

MarkLogic Server Version MarkLogic 9—May, 2017 Querying a Model or Entity Instances

Page 182—Entity Services Developer’s Guide

 installOptions(OPTIONS_PATHNAME, OPTIONS_NAME);

 // Build the query
 QueryManager qm = client.newQueryManager();
 StringQueryDefinition query =
 qm.newStringDefinition(OPTIONS_NAME)
 .withCriteria("entity-type:Person AND washington");

 // Perform the search
 SearchHandle results = qm.search(query, new SearchHandle());

 // Iterate over the results, and write out just the value of
 // the "fullName" property.
 XPathExpression xpath =
 XPathFactory.newInstance().newXPath().compile("//fullName");
 for (MatchDocumentSummary match : results.getMatchResults()) {
 ExtractedResult extracted = match.getExtracted();
 for (ExtractedItem item : extracted) {
 Document person = item.getAs(Document.class);
 System.out.println(xpath.evaluate(person));
 }
 }

 client.release();
 }
}

If you run this example, it will print the values “Martha Washington” and “George Washington”.

As discussed in “Example: Using the Search API for Instance Queries” on page 176, the matched
entities are returned as extracted items in the search response. The following part of the example
iterates over the search results, accesses the extracted entity data, and then prints out just the value
of the fullName property. The person variable holds the entity, as a DOM Document.

XPathExpression xpath =
 XPathFactory.newInstance().newXPath().compile("//fullName");
for (MatchDocumentSummary match : results.getMatchResults()) {
 ExtractedResult extracted = match.getExtracted();
 for (ExtractedItem item : extracted) {
 Document person = item.getAs(Document.class);
 System.out.println(xpath.evaluate(person));
 }
}

6.9.2 Node.js Client API
The Node.js Client API enables you to create Node.js client applications that interact with
MarkLogic. The API enables you to search documents using a variety of query styles. For more
details, see the Node.js Application Developer’s Guide and the Node.js API Reference.

MarkLogic Server Querying a Model or Entity Instances

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 183

Recall that you can generate Search API compatible query options using the Entity Services API;
for details, see “Generating Query Options for Searching Instances” on page 141. You can only
take advantage of these options if you pre-install them as described in “Pre-Installing Query
Options” on page 173 and then reference them in a combined query.

However, you can use the Node.js query builder to create equivalent behavior without using the
generated options. This section explores both approaches:

• Search Using Pre-Installed Options

• Search Without Pre-Installing Options

6.9.2.1 Search Using Pre-Installed Options
This example uses a combined query and pre-installed query options. The example assumes you
generated options from the model in “Getting Started With Entity Services” on page 19, and then
installed the options on MarkLogic with the name “person-1.0.0”. You can install the options
using the REST Client API or Java Client API; for details, see “Pre-Installing Query Options” on
page 173.

The following example finds all Person envelope documents where the instance data includes the
word “washington”. The search returns just the matched instance data, as serialized XML.

const marklogic = require('marklogic');

// MODIFY THIS VAR TO MATCH YOUR ENV
const connInfo = {
 host: 'localhost',
 port: 8000,
 user: 'username',
 password: 'password',
 database: 'es-gs'
 };
const db = marklogic.createDatabaseClient(connInfo);
const qb = marklogic.queryBuilder;

// entity-type is a constraint defined by the options.
// The options should already be installed, with name 'person-1.0.0'.
const combinedQuery = {
 search: {
 query: 'entity-type:Person AND washington'
 },
 optionsName: 'person-1.0.0'
};

db.documents.query(
 { search: {
 qtext: 'entity-type:Person AND washington'
 },
 optionsName: 'person-1.0.0'
 }

MarkLogic Server Version MarkLogic 9—May, 2017 Querying a Model or Entity Instances

Page 184—Entity Services Developer’s Guide

).result(function(results) {
 for (let result of results) {
 console.log(JSON.stringify(result.content));
 }
});

The query matches entities with “fullName” property values of “Martha Washington” and
“George Washington”. The options limit the returned data to just the matched entities through the
extract-document-data option. Since the envelope documents are XML, each extracted entity is
returned as a string containing serialized XML, with a root element of <search:extracted/>. For
example, the result for “Martha Washington” looks like the following. (Line breaks have been
added for readability; the value of the “content” property is one string.)

{ "uri":"/es-gs/env/2345.xml",
 "category":"content",
 "format":"xml",
 "contentType":"application/xml",
 "contentLength":"394",
 "content":
 "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n
 <search:extracted kind=\"element\" format=\"xml\"
 context=\"fn:doc("/es-gs/env/2345.xml")\"
 xmlns:search=\"http://marklogic.com/appservices/search\">
 <Person>
 <id>2345</id>
 <firstName>Martha</firstName>
 <lastName>Washington</lastName>
 <fullName>Martha Washington</fullName>
 </Person>
 </search:extracted>"}

6.9.2.2 Search Without Pre-Installing Options
The following example uses the Node.js queryBuilder interface to perform a search equivalent to
“Search Using Pre-Installed Options” on page 183. This approach requires a more in-depth
understanding of the relationship between the builder interface and the underlying Search API
query options.

Before you can run this example, you must configure the REST Client API instance through
which you connect to MarkLogic so that it defines a namespace binding for the prefix “es”. The
binding is required because the example uses queryBuilder.extract to extract just the
es:instance portion of an envelope document.

The Node.js Client API does not directly support namespace binding configuration, so this
example uses the REST Client API and the curl command line tool to do so. For more details, see
Using Namespace Bindings in the REST Application Developer’s Guide. You can replace the use of
curl with any tool that can send HTTP requests.

MarkLogic Server Querying a Model or Entity Instances

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 185

Run the following command to define a binding between the “es” prefix and the
“http://marklogic.com/entity-services”. Change the user, password, host, and port as needed to
match your environment.

Windows users, see Modifying the Example Commands for Windows
curl --anyauth --user user:password -X PUT \
 -d '{ "prefix": "es", "uri": "http://marklogic.com/entity-services" }' \
 -H "Content-type: application/json" -i \
 http://localhost:8000/v1/config/namespaces/es

If the command is successful, MarkLogic returns a 201 Created status.

The following Node.js script finds all Person envelope documents where the instance data
includes the word “washington”. The search returns just the matched instance data, as serialized
XML. A discussion of the relationship between the built query below and the generated query
options follows.

const marklogic = require('marklogic');

// MODIFY THIS VAR TO MATCH YOUR ENV
const connInfo = {
 host: 'localhost',
 port: 8000,
 user: 'username',
 password: 'password',
 database: 'es-gs'
 };
const db = marklogic.createDatabaseClient(connInfo);
const qb = marklogic.queryBuilder;

db.documents.query(
 qb.where(
 qb.collection('person-envelopes'),
 qb.scope(
 qb.element(
 qb.qname('http://marklogic.com/entity-services','instance')),
 qb.and()),
 qb.parsedFrom('entity-type:person AND washington',
 qb.parseBindings(
 qb.value(
 qb.element(
 qb.qname('http://marklogic.com/entity-services','title')),
 qb.bind('entity-type'))))
).slice(qb.extract({
 paths: ['//es:instance/(Person)'],
 selected: 'include'
 }))
).result(function(results) {
 for (let result of results) {
 console.log(JSON.stringify(result.content));
 }
});

MarkLogic Server Version MarkLogic 9—May, 2017 Querying a Model or Entity Instances

Page 186—Entity Services Developer’s Guide

Use qb.scope to create a container query that mimics the generated additional-query option
restricting results to matches within es:instance elements.

Use a parse binding to bind the tag “entity-type” to the title element of an entity instance so that
you can constrain string queries to specific entity types. The bind enables search terms such as
“entity-type:Person”.

Description Example

Generated
Option

<search:additional-query>
 <cts:element-query xmlns:cts="...">
 <cts:element xmlns:es="http://marklogic.com/entity-services">
 es:instance
 </cts:element>
 <cts:true-query/>
 </cts:element-query>
</search:additional-query>

Node.js
Equivalent

qb.scope(
 qb.element(
 qb.qname('http://marklogic.com/entity-services',
 'instance')),
 qb.and())

Description Example

Generated
Option

<search:constraint name="entity-type">
 <search:value>
 <search:element ns="http://marklogic.com/entity-services"
 name="title"/>
 </search:value>
</search:constraint>

Node.js
Equivalent

qb.parseBindings(
 qb.value(
 qb.element(qb.qname(
 'http://marklogic.com/entity-services','title')),
 qb.bind('entity-type')))

MarkLogic Server Querying a Model or Entity Instances

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 187

If your entity type definition assigns properties to range indexes or word lexicons, the generated
options will include additional named constraints. You can define similar parse bindings for these
constraints. For more details, see Using Constraints in a String Query in the Node.js Application
Developer’s Guide.

Use qb.slice(qb.extract...)) to mimic the behavior of the extract-document-data option. This
causes the search to return just the matched entity instance, instead of the entire envelope
document. This is the section of the query that required us to define a namespace prefix binding
for “es”.

6.9.3 REST Client API
The REST Client API enables client applications to interact with MarkLogic using HTTP
requests. The API enables you to search documents using a variety of query styles, including
string query, structured query, QBE, and combined query. For more details, see Using and

Configuring Query Features in the REST Application Developer’s Guide.

Recall that you can generate Search API compatible query options using the Entity Services API;
for details, see “Generating Query Options for Searching Instances” on page 141. To take
advantage of these option, you must either pre-install the options as described in “Pre-Installing
Query Options” on page 173, or embed them in a combined query.

The following command uses a string query to find all Person envelope documents where the
instance data contains the word “washington”. The command uses a string query and assumes the
options are pre-installed under the name “person-1.0.0”. The search is performed by a request to
GET:/v1/search.

Windows users, see Modifying the Example Commands for Windows
$ curl --anyauth --user user:password -X GET -i \
 'http://localhost:8000/LATEST/search?q=entity-type:person AND
washington&options=person-1.0.0&database=es-gs'

Description Example

Generated
Option

<search:extract-document-data selected="include">
 <search:extract-path xmlns:es="http://marklogic.com/entity-services">
 //es:instance/(Person)
 </search:extract-path>
</search:extract-document-data>

Node.js
Equivalent

qb.where(...)
 .slice(qb.extract({
 paths: ['//es:instance/(Person)'],
 selected: 'include'
 }))

MarkLogic Server Version MarkLogic 9—May, 2017 Querying a Model or Entity Instances

Page 188—Entity Services Developer’s Guide

If you run the command against the model and instance data from “Getting Started With Entity
Services” on page 19, the request returns the entity instance data for “Martha Washington” and
“George Washington” in the <search:extracted/> element of the response. For example:

<search:response snippet-format="empty-snippet" total="2"
 start="1" page-length="10" selected="include"
 xmlns:search="http://marklogic.com/appservices/search">
 <search:result index="1" uri="/es-gs/env/2345.xml"
 path="fn:doc("/es-gs/env/2345.xml")"
 score="15872" confidence="0.4703847" fitness="0.7823406"
 href="/v1/documents?uri=%2Fes-gs%2Fenv%2F2345.xml&database=es-ex"
 mimetype="application/xml" format="xml">
 <search:snippet/>
 <search:extracted kind="element">
 <Person>
 <id>2345</id>
 <firstName>Martha</firstName>
 <lastName>Washington</lastName>
 <fullName>Martha Washington</fullName>
 </Person>
 </search:extracted>
 </search:result>
 ...
 <search:qtext>entity-type:person AND washington</search:qtext>
 <search:metrics>...</search:metrics>
</search:response>

The response includes only the matched entity instances because of the extract-document-data
option. For a discussion of the generated options used in this example, see “Example: Using the
Search API for Instance Queries” on page 176.

You can use the request Accept headers to retrieve results as JSON, but the “extracted” property
value in the JSON response will contain serialized XML because entity data is stored as XML in
the envelope documents.

To perform an equivalent search without pre-installing the options use a combined query that
embeds the options in a <search:search/> element. Use the combined query as the request body
for POST:/v1/search. For example, create a combined query of the following form:

<search xmlns="http://marklogic.com/appservices/search">
 <qtext>entity-type:Person AND washington</qtext>
 <options> <!-- the generated options here -->
 ...
 </options>
</search>

For more details, see Specifying Dynamic Query Options with Combined Query in the REST
Application Developer’s Guide.

MarkLogic Server Querying a Model or Entity Instances

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 189

6.10 Example: Using SPARQL for Instance Queries
The default TDE template that you can generate with the Entity Services API auto-generates
triples from your entity envelope documents, as long as the instance entity type defines a primary
key.

Note: You must install the template before this triple generation can occur. For details,
see “Generating a TDE Template” on page 122.

The default generated triples express facts such as the following, where the instance is identified
by primary key. For more details, see “Characteristics of a Generated Template” on page 124.

• This instance has this entity type. For example, this triple expresses the fact that an entity
instance has the type defined by the IRI
<http://example.org/example-person/Person-1.0.0/Person> The type IRI takes
the form of {baseURI}{modelTitle}-{modelVersion}/{entityTypeName}.

<http://example.org/example-person/Person-1.0.0/Person/1234>
 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
 <http://example.org/example-person/Person-1.0.0/Person>

• This instance is defined by this envelope document (identified by URI). For example, the
following triple expresses the fact that a particular entity instance is defined by the
envelope document with URI /es-gs/env/1234.xml. The entity instance IRI takes the form
of {baseURI}{modelTitle}-{modelVersion}/{entityTypeName}/{primaryKey}.

<http://example.org/example-person/Person-1.0.0/Person/1234>
 <http://www.w3.org/2000/01/rdf-schema#isDefinedBy>
 "/es-gs/env/1234.xml"^^xs:anyURI

You can also extend the template to generate additional triples or manually add triples to the
database.

The following SPARQL query returns the URIs of all Person entities.

prefix es: <http://marklogic.com/entity-services#>
prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
prefix xs: <http://www.w3.org/2001/XMLSchema#>

select ?uri
where {
 ?person a ?personType .
 ?person rdfs:isDefinedBy ?docUri .
 ?personType es:title 'Person'
 bind(xs:string(?docUri) as ?uri)
}

MarkLogic Server Version MarkLogic 9—May, 2017 Querying a Model or Entity Instances

Page 190—Entity Services Developer’s Guide

If you generate and install a TDE template using the model from “Getting Started With Entity
Services” on page 19, then the query display the following entity envelope document URIs:

/es-gs/env/1234.xml
/es-gs/env/2345.json
/es-gs/env/3456.xml

You can query facts about your instance data using the following APIs.

• The sem:sparql XQuery function or the sem.sparql Server-Side JavaScript functions.

• The Client APIs; see Client-Side APIs for Semantics in the Semantics Developer’s Guide.

• The Optic API XQuery; see the op:from-triples XQuery function or the op.fromTriples
JavaScript function.

6.11 Example: Using SQL for Instance Queries
If you generate and install a TDE template for your model, then MarkLogic auto-generates row
data from your entity envelope documents. The row data enables you to query your entity
instances as rows.

You must install the template before this row generation can occur. For details, see “Generating a
TDE Template” on page 122. To learn more about the characteristics of the row data, see
“Characteristics of a Generated Template” on page 124.

You can evaluate SQL using the xdmp:sql XQuery function or the xdmp.sql Server-Side
JavaScript function, as shown below. You can also use the Optic API to query row data; see
“Example: Using the Optic API for Instance Queries” on page 191.

The following example finds all Person rows where the “lastName” column has the value
“Washington” and returns the value of the “fullName” column for the matched rows.

Language Example

XQuery xquery version "1.0-ml";
xdmp:sql("
 SELECT Person.fullName
 FROM Person
 WHERE Person.lastName='Washington'
", "format")

JavaScript xdmp.sql(
 'SELECT Person.fullName ' +
 'FROM Person ' +
 'WHERE Person.lastName=\'Washington\''
, "format");

MarkLogic Server Querying a Model or Entity Instances

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 191

If you generate and install a TDE template from the model from “Getting Started With Entity
Services” on page 19 and run the query against the instance data, then you should see output
similar to the following:

| Person.Person.fullName|
| Martha Washington|
| George Washington|

6.12 Example: Using the Optic API for Instance Queries
If you generate and install a TDE template for your model, then MarkLogic auto-generates row
data from your entity envelope documents. The row data enables you to query your entity
instances as rows. If an entity defines a primary key, the template also causes MarkLogic to
auto-generate semantic triples about each instance.

Note: You must install the template before this auto-generation can occur. For details,
see “Generating a TDE Template” on page 122.

The examples in this section are based on the model and instance data from “Getting Started With
Entity Services” on page 19. The examples also assume you have generated and installed a
template based on this model, as shown in “Generating a TDE Template” on page 122.

• Querying Triples Using the Optic API

• Querying Rows Using the Optic API

6.12.0.1 Querying Triples Using the Optic API
This example uses the Optic API to query semantic “facts” about instance data. You can also use
the Optic API for semantic queries on an entity model. For examples using SPARQL, see
“Example: Using SPARQL for Instance Queries” on page 189 and “Example: Using SPARQL for
Model Queries” on page 174.

MarkLogic Server Version MarkLogic 9—May, 2017 Querying a Model or Entity Instances

Page 192—Entity Services Developer’s Guide

The following example finds all entity instances that have Person type.

If you run the query in Query Console against the expected configuration, it matches the
following instance IRIs:

http://example.org/example-person/Person-1.0.0/Person/1234
http://example.org/example-person/Person-1.0.0/Person/2345
http://example.org/example-person/Person-1.0.0/Person/3456

6.12.0.2 Querying Rows Using the Optic API
This example uses the Optic API to query instance data as rows. For examples using SQL, see
“Example: Using SQL for Instance Queries” on page 190.

Language Example

XQuery import module namespace op =
 "http://marklogic.com/optic" at "/MarkLogic/optic.xqy";

let $ps :=
 op:prefixer("http://example.org/example-person/Person-1.0.0/")
let $rdf :=
 op:prefixer("http://www.w3.org/1999/02/22-rdf-syntax-ns#")
return
 op:from-triples((op:pattern(op:col("instanceIri"),
 $rdf("type"),
 op:col("type"))))
 =>op:where(op:eq(op:col("type"), $ps("Person")))
 =>op:result()

JavaScript const op = require('/MarkLogic/optic');
const ps =
 op.prefixer('http://example.org/example-person/Person-1.0.0/');
const rdf =
 op.prefixer('http://www.w3.org/1999/02/22-rdf-syntax-ns#');

op.fromTriples(op.pattern(op.col('instanceIri'),
 rdf('type'),
 op.col('type')))
 .where(op.eq(op.col('type'), ps('Person')))
 .result();

MarkLogic Server Querying a Model or Entity Instances

MarkLogic 9—May, 2017 Entity Services Developer’s Guide—Page 193

The following query finds the Person entity with an id property of “2345”. Each entity instance is
represented by a row in the Person table, with a column for each property.

If you run the query in Query Console against the expected configuration, it returns “Martha
Washington”.

6.13 Where to Find Additional Information
You can find more examples in the Entity Services GitHub repository. For details, see “Exploring
the Entity Services Open-Source Examples” on page 15.

For more details on the APIs used in this chapter, see the following resources:

• The Search Developer’s Guide

• Searching in the Java Application Developer’s Guide

• Querying Documents and Metadata in the Node.js Application Developer’s Guide

• Using and Configuring Query Features in the REST Application Developer’s Guide

• The SQL Data Modeling Guide

• Optic API for Multi-Model Data Access in the Application Developer’s Guide

• Semantic Queries in the Semantics Developer’s Guide

Language Example

XQuery import module namespace op =
 "http://marklogic.com/optic" at "/MarkLogic/optic.xqy";
import module namespace opxs =
 "http://marklogic.com/optic/expression/xs"
 at "/MarkLogic/optic/optic-xs.xqy";

op:from-view("Person", "Person")
 =>op:where(op:eq(op:col("id"), opxs:string("2345")))
 =>op:select((op:col("fullName")))
 =>op:result()

JavaScript var op = require("/MarkLogic/optic");
var opxs = op.xs;

op.fromView("Person", "Person")
.where(op.eq(op.col("id"), opxs.string("2345")))
.select([op.col("fullName")])
.result();

MarkLogic Server Version MarkLogic 9—May, 2017 Querying a Model or Entity Instances

Page 194—Entity Services Developer’s Guide

MarkLogic Server Technical Support
7.0 Technical Support
196

MarkLogic provides technical support according to the terms detailed in your Software License
Agreement or End User License Agreement.

We invite you to visit our support website at http://help.marklogic.com to access information on
known and fixed issues, knowledge base articles, and more. For licensed customers with an active
maintenance contract, see the Support Handbook for instructions on registering support contacts
and on working with the MarkLogic Technical Support team.

Complete product documentation, the latest product release downloads, and other useful
information is available for all developers at http://developer.marklogic.com. For technical
questions, we encourage you to ask your question on Stack Overflow.
MarkLogic 9

http://help.marklogic.com/
https://stackoverflow.com/questions/tagged/marklogic
http://developer.marklogic.com
http://www.marklogic.com/files/Mark_Logic_Support_Handbook.pdf

MarkLogic Server Version MarkLogic 9—May, 2017 Technical Support
Page 196—Glossary, Copyright, and Support

MarkLogic Server Copyright
8.0 Copyright
999

MarkLogic Server 9.0 and supporting products.
Last updated: August 5, 2020

Copyright © 2020 MarkLogic Corporation.

MarkLogic and the MarkLogic logo are trademarks or registered trademarks of MarkLogic
Corporation in the United States and other countries.

MarkLogic technology is protected by one or more U.S. Patent Nos. 7,127,469, 7,171,404,
7,756,858, 7,962,474, 8,935,267, 8,892,599, 9,092,507, 10,108,742, 10,114,975, 10,311,088,
10,325,106, 10,339,337, 10,394,889, and 10,503,780.

MarkLogic software incorporates certain third-party software under license. Third-party
attributions, copyright notices, and other disclosures required under license are available in the
respective notice document for your version of the MarkLogic software.
MarkLogic 9

MarkLogic Server Version MarkLogic 9—May, 2017 Copyright
Page 198—Glossary, Copyright, and Support

	Entity Services Developer’s Guide
	Table of Contents
	1.0 Introduction to Entity Services
	1.1 Terms and Definitions
	1.2 Why Use Entity Modeling?
	1.3 Entity Services Overview
	1.3.1 Modeling Vocabulary
	1.3.2 Persistence Convention
	1.3.3 Application Scaffolding

	1.4 Next Steps
	1.5 Exploring the Entity Services Open-Source Examples
	1.5.1 Downloading the Project as a ZIP File

	1.6 Security Considerations

	2.0 Getting Started With Entity Services
	2.1 Before You Begin
	2.2 Optional: Create a Content Database
	2.3 Getting Started Using XQuery
	2.3.1 Stage the Source Data
	2.3.2 Create a Model Descriptor
	2.3.3 Create a Model
	2.3.4 Create and Deploy an Instance Converter
	2.3.5 Create Entity Instances
	2.3.6 Query the Data
	2.3.7 Query the Model

	2.4 Getting Started Using JavaScript
	2.4.1 Stage the Source Data
	2.4.2 Create a Model Descriptor
	2.4.3 Create a Model
	2.4.4 Create and Deploy an Instance Converter
	2.4.5 Create Entity Instances
	2.4.6 Query the Data
	2.4.7 Query the Model

	2.5 Next Steps

	3.0 Creating and Managing Models
	3.1 Introduction
	3.2 Writing a Model Descriptor
	3.2.1 Model Descriptor Basics
	3.2.2 Entity Type Definition Overview
	3.2.3 Defining an Entity Property with a SimpleType
	3.2.4 Defining an Entity Property with a Complex Type
	3.2.5 Defining an Entity Property with Array Type
	3.2.6 Defining an IRI Entity Property
	3.2.7 Identifying the Primary Key Entity Property
	3.2.8 Identifying Personally Identifiable Information (PII)
	3.2.9 Distinguishing Required and Optional Entity Properties
	3.2.10 Defining a Namespace URI for an Entity Type
	3.2.11 Identifying Entity Properties for Indexing
	3.2.12 Controlling the Model IRI and Module Namespaces

	3.3 Defining Entity Relationships
	3.3.1 Defining a Local Entity Reference
	3.3.2 Defining an External Entity Reference

	3.4 Creating a Model from a Model Descriptor
	3.5 Working With an XML Model Descriptor
	3.6 Validating a Model Descriptor
	3.7 Extending a Model with Additional Facts
	3.8 Managing Model Changes
	3.8.1 Generating Instances From the New Model
	3.8.2 Replacing the Old Model with a New Version
	3.8.3 Making Multiple Model Versions Available

	3.9 Model Descriptor Syntax Reference
	3.9.1 model_info
	3.9.2 entity_type_definition
	3.9.3 property_definition
	3.9.4 property_type

	4.0 Generating Code and Other Artifacts
	4.1 Code and Artifact Generation Overview
	4.2 Summary of Available Generators
	4.3 Creating an Instance Converter Module
	4.3.1 Purpose of a Converter Module
	4.3.2 Generating a Converter Module Template
	4.3.3 Understanding the Default Converter Implementation
	4.3.4 Customizing a Converter Module

	4.4 Creating a Model Version Translator Module
	4.4.1 Purpose of a Version Translator
	4.4.2 Generating a Version Translator Module Template
	4.4.3 Understanding the Default Version Translator Implementation
	4.4.4 Customizing a Version Translator Module

	4.5 Generating a TDE Template
	4.5.1 Generating a TDE Template
	4.5.2 Characteristics of a Generated Template
	4.5.3 Customizing a TDE Template
	4.5.4 Deploying a TDE Template
	4.5.5 Example: TDE Template Generation and Deployment

	4.6 Generating an Entity Instance Schema
	4.6.1 Schema Generation Overview
	4.6.2 Schema Characteristics
	4.6.3 Schema Customization
	4.6.4 Example: Generating and Installing an Instance Schema
	4.6.5 Example: Validating an Instance Against a Schema

	4.7 Generating a PII Security Configuration Artifact
	4.8 Generating a Database Configuration Artifact
	4.9 Generating Query Options for Searching Instances
	4.9.1 Options Generation Overview
	4.9.2 Characteristics of the Generated Options
	4.9.3 Example: Generating Query Options

	4.10 Deploying Generated Code and Artifacts

	5.0 Managing Entity Instances
	5.1 Entity Instance Concepts
	5.1.1 What is an Instance?
	5.1.2 What is an Envelope Document?
	5.1.3 Example: Entity Instance Representations

	5.2 Creating an Entity Instance from a Data Source
	5.3 Generating Test Entity Instances
	5.4 Extracting an Entity Instance from an Envelope Document
	5.5 Extracting the Original Source from an Envelope Document
	5.6 Updating Entity Instance Data When Your Model Changes

	6.0 Querying a Model or Entity Instances
	6.1 Query Support Provided by Entity Services
	6.2 Search Basics for Models
	6.3 Search Basics for Instance Data
	6.3.1 Document Search
	6.3.2 Row Search
	6.3.3 Semantic Search

	6.4 Pre-Installing Query Options
	6.5 Example: Using SPARQL for Model Queries
	6.6 Example: Using cts:query or cts.query for Instance Queries
	6.7 Example: Using the Search API for Instance Queries
	6.8 Example: Using JSearch for Instance Queries
	6.9 Example: Using the Client APIs for Instance Queries
	6.9.1 Java Client API
	6.9.2 Node.js Client API
	6.9.3 REST Client API

	6.10 Example: Using SPARQL for Instance Queries
	6.11 Example: Using SQL for Instance Queries
	6.12 Example: Using the Optic API for Instance Queries
	6.13 Where to Find Additional Information

	7.0 Technical Support
	8.0 Copyright

