
Copyright © 2019 MarkLogic Corporation. All rights reserved.

MarkLogic Server

Reference Application Architecture
Guide
1

MarkLogic 10
May, 2019

Last Revised: 10.0, May, 2019

MarkLogic Server Table of Contents

MarkLogic 10—May, 2019 Reference Application Architecture Guide—Page 1

Table of Contents

Reference Application Architecture Guide

1.0 Understanding the Reference Architecture ..2
1.1 Purpose ..2
1.2 Why a Three Tier Architecture ...2
1.3 Reference Architecture Overview ..3
1.4 Database Tier ..4
1.5 Middle Tier ...6
1.6 Browser Tier ...7
1.7 Next Steps ...8

2.0 Recommended Best Practices ..9
2.1 Organize your project around logical components ...9
2.2 Use source control for code, tests, and automation drivers9
2.3 Make project development and deployment easy to configure9
2.4 Automate development, testing, and deployment tasks ..9
2.5 Incorporate automated testing into all phases of development10

3.0 Technical Support ..11

4.0 Copyright ...13

MarkLogic Server Understanding the Reference Architecture

MarkLogic 10—May, 2019 Reference Application Architecture Guide—Page 2

1.0 Understanding the Reference Architecture
8

The MarkLogic Reference Application Architecture is a three-tier application template and set of
best practices for architects, developers, and administrators designing, developing, and deploying
applications that use MarkLogic Server.

This guide covers the following topics:

• Purpose

• Reference Architecture Overview

• Database Tier

• Middle Tier

• Browser Tier

• Next Steps

1.1 Purpose
MarkLogic is a flexible and powerful platform, capable of fitting into many different application
solutions. The MarkLogic Reference Application Architecture provides an three-tier application
template and set of best practices for architects, developers, and administrators designing,
developing, and deploying applications that use MarkLogic Server.

The MarkLogic Reference Application Architecture consists of the following parts:

• A description of the application architecture, the responsibilities of each tier, and the
relationship between the tiers.

• A set of recommended best practices for developing reliable, large-scale application on
top of MarkLogic Server.

1.2 Why a Three Tier Architecture
Historically, much of what end users see of a web application is rendered by a back-end server
that manages application and session state, and constructs HTML for the browser. Today,
browsers and browser frameworks are more capable, so the balance has shifted towards browser
applications managing their own views, session state, and some of the business logic. It is also
now common for applications to expose business services through REST-style APIs that are easy
to integrate with, making it easier to swap out parts of the application.

There are many ways to structure a MarkLogic application, including the traditional 2-tier model.
For example, MarkLogic Server includes an application server, so you can easily create two-tier
MarkLogic applications that generate HTML for the browser from within MarkLogic Server
using XQuery or JavaScript.

MarkLogic Server Understanding the Reference Architecture

MarkLogic 10—May, 2019 Reference Application Architecture Guide—Page 3

However, we’ve chosen a three-tier model that leverages JSON, REST over HTTP, and
Java/JavaScript as the reference architecture because we believe it enables a team new to
MarkLogic to become productive as quickly and easily as possible. The MarkLogic Reference
Application Architecture offers the following advantages:

• The team can work exclusively with industry standard frameworks and programming
languages (Java, Spring, JavaScript, AngularJS, JSON).

• Little knowledge of MarkLogic internals is required to get started.

• Separation of business logic from the data services layer makes it easier to integrate
MarkLogic with existing enterprise infrastructure.

A three-tier architecture offers additional benefits such as the ability to scale and optimize the
tiers independently and separation of security concerns.

1.3 Reference Architecture Overview
The MarkLogic Reference Application Architecture is a three-tier model containing database,
middle, and browser tiers. As shown in the following diagram, JSON over RESTful HTTP is the
transport mechanism between all tiers.

The database tier provides high availability, long-running data services to the middle tier. All the
data required by the application is managed by MarkLogic Server in the database tier. Persistent
application state is managed here for purposes of scalability and simplicity. This tier can include
code that needs to run close to the data for performance reason or to enforce the data model.
MarkLogic provides services and data to the middle tier through one of the powerful and
extensible MarkLogic client APIs. For details, see “Database Tier” on page 4.

The middle tier provides data to and shares session state with the browser tier. In a MarkLogic
application, it brokers exchanges between the browser and database tiers using one of the
MarkLogic client APIs. The middle tier implements business logic verification and can have
additional responsibilities such as rate limiting and integrations with non-MarkLogic external
services. For details, see “Middle Tier” on page 6.

The browser tier contains the web application front-end that faces end users. The application
includes code that runs in the browser, markup, and styles that tailor the user experience. In the
MarkLogic Reference Application Architecture, the browser application is a rich client. That is,
the browser tier fully owns the rendering of the UI, including decisions about how views are
organized and most of transitions within a flow. The browser tier shares awareness of business
logic with the middle tier. For details, see “Browser Tier” on page 7.

Database
Tier

Middle
Tier

Browser
Tier

JSON

HTTP

JSON

HTTP

MarkLogic Server Understanding the Reference Architecture

MarkLogic 10—May, 2019 Reference Application Architecture Guide—Page 4

1.4 Database Tier
The database tier provides data and application services to the middle tier. The following diagram
outlines the major components of the database tier.

MarkLogic Server manages data and code required by the application, such as the following:

• JSON, XML, Binary and Text documents

• Metadata about documents, such as permissions, quality, collections, and
application-specific document properties

• Persistent application state, such as domain objects realized in the middle tier as Java or
JavaScript objects

• Semantic graphs

• Schemas

• Extensions, transformations, and other application-specific code that needs runs in the
database tier for purposes of performance, encapsulation, or enforcement of data rules

Documents

Metadata

Domain Objects

Extensions

Content Database(s)

Modules Database

MarkLogic Server

Database Tier

Transforms

Semantic
Graphs

Other Custom
Code

R
E

S
T

 C
lient

A
P

I Instance
R

E
S

T
 M

anagem
ent

A
P

I

REST requests
from the

Middle Tier

REST requests
from Admin

scripts

MarkLogic Server Understanding the Reference Architecture

MarkLogic 10—May, 2019 Reference Application Architecture Guide—Page 5

Storing such assets in the database provides transactional integrity to the application. The
MarkLogic transaction model includes multi-statement transactions that enable applications to
interleave transactional operations in the database tier with business logic in the middle and
browser tiers.

The middle tier communicates with MarkLogic Server through the REST Client API and the
REST Management API. Incoming REST requests are handled by an HTTP App Server
embedded in MarkLogic Server.

The REST Client API is the foundation of a family of MarkLogic client APIs that enable
applications to create, read, update, delete, and search database content. The Java Client API and
the Node.js Client API use this foundation. All the MarkLogic client APIs are extensible, so you
can easily install and use content transformations, search customizations, REST resource services
extensions, and other database tier library modules. All such database tier code is stored in a
modules database and can be managed through the MarkLogic client APIs.

The REST Management API enables developers and administrators to manage, monitor, and
review their MarkLogic Server configuration and status remotely through REST requests. Though
MarkLogic Server has user interfaces for interactive administration and monitoring, the REST
Management API makes it easy to script such tasks.

MarkLogic Server Understanding the Reference Architecture

MarkLogic 10—May, 2019 Reference Application Architecture Guide—Page 6

1.5 Middle Tier
The middle tier brokers inter-server communications between the browser tier and the database
tier and other external services. The following diagram shows the major components of the
middle tier of a MarkLogic application:

Even in a thick client model where the majority of the business logic may be in the browser tier
and data flows between the browser tier and the database tier with little or no modification, the
middle tier provides critical services such as the following:

• Coordination of inter-server communications for the browser tier, such as between the
browser tier and the database tier or the browser tier and other external services.

• Security services. The middle tier can provide user authentication services and verify that
data coming from the insecure browser tier adheres to the business rules.

• Network traffic optimization for the browser tier. Communication between the browser
and the middle and database tier is typically a relatively long hop, so minimizing requests
from the browser improves performance. The browser tier can make a single request to the
middle tier that requires multiple requests between the middle tier and the database tier.

Other External
Integrations

Java or Node.js
Client API

REST
Client

API

Business Logic
REST
API

REST
requests from
Browser Tier

REST
requests to
Database

Tier

Database Client

Middle Tier

MarkLogic Server Understanding the Reference Architecture

MarkLogic 10—May, 2019 Reference Application Architecture Guide—Page 7

• Transactional integrity. The middle tier can coordinate application logically discrete
operations that should be part of a single transaction, such as updating an account balance
at the same time the user authorizes a withdrawal or deposit.

A rich browser client is usually the first line implementer of business logic, but the middle tier
injects business logic as necessary, to support the services listed above.

The middle tier communicates with MarkLogic Server through a database client using one of the
MarkLogic client APIs, such as the Java Client API or the Node.js Client API. These APIs access
MarkLogic through REST requests over HTTP, while providing a fluent interface natural to your
application. Using these APIs means developers do not need to learn a new programming or query
language and injection risks via unsafe evaluation of strings of code can be eliminated.

The MarkLogic client APIs enable you to do the following:

• Insert, read, update, and delete documents, metadata, semantic triples, and domain objects,
singly or in batches.

• Query documents and other data in the database using MarkLogic’s powerful search
features. Choose from among several query styles, depending on what best fits your needs.

• Extend the built-in services through several extension points. You can use and manage
your extensions through the MarkLogic client APIs.

The data structures that are returned by MarkLogic through the client APIs can be passed through
directly to the browser tier as JSON or XML. Similarly, domain objects stored in the database can
be retrieved as native Java and JavaScript objects.

The business logic in the middle tier validates data delivered by the browser tier, as well as
handling integration with other systems. The middle tier may publish a REST interface with
which to communicate with the browser tier in a way natural to the application. This API should
be flexible enough to support swapping in a different front-end implementation. Typically, data
flows between the middle tier and the browser tier as JSON.

1.6 Browser Tier
MarkLogic does not require any particular web application architecture. The reference
architecture promotes a thick client such as a Single Page Application (SPA), where the browser
tier is responsible for all view rendering and transient application state. However, other browser
tier solutions can be plugged into the architecture.

The browser tier uses JavaScript to interact with the middle tier through JSON services provided
by an application-specific REST API. The services provided by this REST API model the tier
interactions in a way that is natural to the application. The existence of this API does not
necessarily require data transformations.

MarkLogic Server Understanding the Reference Architecture

MarkLogic 10—May, 2019 Reference Application Architecture Guide—Page 8

In the thick client, SPA solution, the browser is an Model-View-Controller (MVC) application
that includes business logic and shares a high degree of fidelity with the data model exposed by
the database tier. This enables the browser tier to consume data from the database tier (by way of
the middle tier) with minimal transformation.

Though the browser tier implements much of the business logic, the browser is inherently more
vulnerable to risks like injection and denial of service attacks. The middle and database tiers
provide protection in the form of security, verification of the business and data rules, rate limiting.

The model can perform JavaScript object validation against a JSON schema. The view is HTML
and CSS based.

1.7 Next Steps
Refer to the following table for suggestions of further reading and activities to continue learning
about MarkLogic Server application development.

If you want to Then see

Learn more about the Reference Architecture “Samplestack: A Reference Architecture
Instantiation” on page 12

Explore a full-feature MarkLogic Application
based on the Reference Architecture

The samplestack application at
http://github.com/marklogic/marklogic-samplestack

Learn about specific MarkLogic capabilities
such as document operations, search, or
semantics.

Tutorials on the MarkLogic developer
community site,
http://developer.marklogic.com/learn

Learn more about the MarkLogic client APIs Java Application Developer’s Guide
Node.js Application Developer’s Guide
REST Application Developer’s Guide

Learn about MarkLogic Server internals The “Inside MarkLogic Server” paper on the
MarkLogic developer community site,
http://developer.marklogic.com/inside-marklogic

http://github.com/marklogic/marklogic-samplestack
http://developer.marklogic.com/learn
http://developer.marklogic.com/inside-marklogic

MarkLogic Server Recommended Best Practices

MarkLogic 10—May, 2019 Reference Application Architecture Guide—Page 9

2.0 Recommended Best Practices
10

When designing your MarkLogic application, you should consider incorporate at least the
following best practices into your development process:

• Organize your project around logical components

• Use source control for code, tests, and automation drivers

• Make project development and deployment easy to configure

• Automate development, testing, and deployment tasks

• Incorporate automated testing into all phases of development

2.1 Organize your project around logical components
You should organize your project in a way that preserves the logical separation of concerns in
your application. This makes it easier to share the project among teams working in the different
tiers and makes it easier to find source files and other assets.

2.2 Use source control for code, tests, and automation drivers
Your source code, tests, automation scripts, and other application assets should all be under
source control. Source control preserves historical changes to your application and enables
multiple people to work on a project concurrently. Putting all your application development and
deployment components under source control also makes it easy to know goes into each release of
your product. Even the smallest team benefits from source control.

2.3 Make project development and deployment easy to configure
The building, testing, and deployment of your application should be configuration driven.

For example, if you move your testing infrastructure to a new host, you should only need to
update a single configuration file, not every test. Similarly, you should be able to change product
build dependencies with minimal configuration file changes.

Consolidating such variables into configuration files makes it easier to track and less prone to
error when change is required.

2.4 Automate development, testing, and deployment tasks
Project development involves many repetitive tasks. For example, a developer goes through the
edit-test-debug cycle many times in a single day. Automating common tasks improves
productivity and reproducibility.

Similarly, using automation to simplify testing removes barriers to frequent developer testing.
Frequent testing improves product stability because problems are easiest to diagnose and fix close
to the point at which they’re introduced. Test automation also helps improve the reliability of test
results.

MarkLogic Server Recommended Best Practices

MarkLogic 10—May, 2019 Reference Application Architecture Guide—Page 10

Automating the setup of your application development and deployment environment makes it
easier to add new developers, manage dependencies, and provide a stable development, testing,
and release platform.

2.5 Incorporate automated testing into all phases of development
It is important to have several levels of tests for your product. For example:

• Unit tests verify the functionality of specific sections of code, usually at the
function/class/interface level. Unit tests are usually created by the developers. Unit tests
can easily be run during a developer’s edit-test-debug cycle and before each checkin.

• Integration tests verify the interfaces and integration points between components, such as
between the browser tier and the middle tier.

• Regression tests detect when previously working features break as an unintended
consequence of a code change.

• System tests verify the end-to-end behavior of your application.

• Smoke tests, sometimes called sanity tests, are a small test set that check for some
minimal level of operability. For example, you can use smoke tests to test a project
integration branch before merging changes into a code line shared with a larger set of
developers.

MarkLogic Server Technical Support
3.0 Technical Support
12

MarkLogic provides technical support according to the terms detailed in your Software License
Agreement or End User License Agreement.

We invite you to visit our support website at http://help.marklogic.com to access information on
known and fixed issues, knowledge base articles, and more. For licensed customers with an active
maintenance contract, see the Support Handbook for instructions on registering support contacts
and on working with the MarkLogic Technical Support team.

Complete product documentation, the latest product release downloads, and other useful
information is available for all developers at http://developer.marklogic.com. For technical
questions, we encourage you to ask your question on Stack Overflow.
MarkLogic 10

http://help.marklogic.com/
https://stackoverflow.com/questions/tagged/marklogic
http://developer.marklogic.com
http://www.marklogic.com/files/Mark_Logic_Support_Handbook.pdf

MarkLogic Server Technical Support
MarkLogic 10—May, 2019 Administrator’s Guide—Page 12

MarkLogic Server Copyright
4.0 Copyright
999

MarkLogic Server 10.0 and supporting products.
Last updated: February, 2022

Copyright © 2022 MarkLogic Corporation. All rights reserved.
This technology is protected by U.S. Patent No. 7,127,469B2, U.S. Patent No. 7,171,404B2, U.S.
Patent No. 7,756,858 B2, and U.S. Patent No 7,962,474 B2, US 8,892,599, and US 8,935,267.

The MarkLogic software is protected by United States and international copyright laws, and
incorporates certain third party libraries and components which are subject to the attributions,
terms, conditions and disclaimers set forth below.

For all copyright notices, including third-party copyright notices, see the Combined Product
Notices for your version of MarkLogic.
MarkLogic 10

MarkLogic Server Copyright
MarkLogic 10—May, 2019 Administrator’s Guide—Page 14

	Reference Application Architecture Guide
	Table of Contents
	1.0 Understanding the Reference Architecture
	1.1 Purpose
	1.2 Why a Three Tier Architecture
	1.3 Reference Architecture Overview
	1.4 Database Tier
	1.5 Middle Tier
	1.6 Browser Tier
	1.7 Next Steps

	2.0 Recommended Best Practices
	2.1 Organize your project around logical components
	2.2 Use source control for code, tests, and automation drivers
	2.3 Make project development and deployment easy to configure
	2.4 Automate development, testing, and deployment tasks
	2.5 Incorporate automated testing into all phases of development

	3.0 Technical Support
	4.0 Copyright

