MarkLogic Server

JavaScript Reference Guide

MarkLogic 10
May, 2019

Last Revised: 10.0, May, 2019

Copyright © 2019 MarkLogic Corporation. All rights reserved.

MarkLogic Server Table of Contents

Table of Contents

JavaScript Reference Guide
1.0 Server-Side JavaScript iIN MarkLOGQICccecveiiieeiiiiiie e 5
1.1 Google V8 JavaSCript ENGINEcccoeceiieriiiiinieeie ettt e s ee e naeas 5
1.2 Familiarity For the JavaScript DeVElOPEY ..o 6
1.3 Server-Side MarkLogic Power for Data SErVICESccvevvveevieecie e 6
1.4 Datesin Server-Side JAVASCIIPE ...oceoieriereeieeee e 6
15 Numeric Datatype MappingSin JAVASCIIPLcccoveririerenineneseeeeee e 7
1.6 JavaScript in QUErY CONSOIEccueeiieiiesieecie ettt s 8
1.7 Programming in Server-Side JAVASCIIPEcccvvieererirrierieeee e saeas 8
1.8 Using xdmp.invoke or xdmp.invokeFunction for Scriptingcccccceeevevencnenne. 8
19 Each App Server Thread RunsaV8 Engine INStancecccccevveveeieenecceesveenne. 9
1.10 EXCeption HANAIING ...ccooeiiieiiiiesieeie et nneas 9
1.11 Interaction With XQUENYccoiiiiiiiiiieieeeee e 10
2.0 MarkLogic JavaScript ODJECt APccev i 11
21 Nodeand DOCUMENT AP ... 11
225 5 R (N[0 =X @ o] =" ox S 12
2.1.2 Document ODJECEcooiiiiiieieee e 13
2.2 XML DOM APIUS ...ttt sttt ettt e s ntennenreenas 13
2.2.1 Node Object for XML NOESc.coeeviiieeiieiecee e 14
2.2.2 Document Object for Document NOESccccceereriienienienieseesee e 16
220G T \[0o = 2 U] [L= AN S 17
224 ElBIMENT .ot 19
T A | PSSP 21
2.2.6 CharacterDataand SUDLYPESccceiriiiiirerenireneeeeee e 21
227 TYPEINTO oot ere e 23
2.2.8 NaMEANOUEM@Dcoveiiiiiieiieie e 23
22K T Lo = 1 SRS 24
G T - 11 L= O o = S 24
231 Example: XS dat@ @S VaUEcccooeeiiiiiieeeeese e 25
2.3.2 Comparison to Native JavaScript ValUEScccvceverierieeieieneseeesiee 25
2.3.3 Example: Comparison between aValue and aNumbercccceeeee. 26
24 ACCESSING JSON NOUESooouiiuieiiriiriienie ettt s sr e se e aee e 26
25 SEOUENCE ..o n e 26
2 I VA 11 L (= = o ST PRPR 27
2.7 Javascript INStaNCEOf OPEIELOLc.oveeruerieerieeiiesie e ree et sree e e e eesseeneeas 28
2R N 7= V7= S o 1 oL = (o) o OSSR 30
2.8.1 JavaScript Error Properties and FUNCLIONSccccevevieieeiece e 30
2.8.2 JavaScript stackFrame Propertiesccccooeeveneneeie e 31

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 2

MarkLogic Server Table of Contents

3.0

4.0

2.8.3 JavaScript try/catch EXample ..o 31
2.9 Javascript conSOle ODJECEceeveeiiiieeee e 31
210 JavaScript Duration and Date Arithmetic and Comparison Methods 32
2.10.1 Arithmetic Methods 0N DUFatioNSc.cceveeieneeneeiiesieeseeeee e 32
2.10.1.1 xsyearMonthDuration Methodscccoovevevieieccnceesec 33
2.10.1.2 xs.dayTimeDuration Methodscccooiiiniinniineneee 34
2.10.2 Arithmetic Methods on Duration, Dates, and TIMEScccccvveervrrerreene 35
2.10.2.1 xS.dateTime Methodscccocvverininenininieie e 35
2.10.2.2 XS.date MEthOdScccoiiiiiiieieeeseee e 37
2.10.2.3 XSHMEMENOAScceveiieieieee e 38
2.10.3 Comparison Methods on Duration, Date, and Time Values 39
2.10.3.1 xsyearMonthDuration Comparison Methodsc.cccceneee. 40
2.10.3.2 xs.dayTimeDuration Comparison Methodsc.ccoccveenennene 41
2.10.3.3 xs.dateTime Comparison Methodscccceeveeveieeneccie e, 42
2.10.3.4 xs.date Comparison Methodsccooeeiiniinenin e 43
2.10.3.5 xstime Comparison Methodsccocviriiinieieneieseeseene 44
2.10.3.6 xs.gYearMonth Comparison Methodscccccevveieiecciecnnene 45
2.10.3.7 xs.gYear Comparison Methodsccocevininenienienececen 46
2.10.3.8 xs.gMonthDay Comparison Methodscccccevevenencienennens a7
2.10.3.9 xs.gMonth Comparison Methodsccccceeveveeieiiecicce e 47
2.10.3.10xs.gDay Comparison Methodsccccooeveriininneninneee e 48
211 MarkLogic JavaSCript FUNCLIONSccererieieieiesiesie s 49
JavaScript Functions and CONSLIUCLONScccoveeeieriieniee e 50
3.1 Built-In JavaScript FUNCLIONSccooiiiiiiiriesieseses e 50
3.2 Functions That are part of the Global Objectcccoevvevviieiiciece e, 50
3.21 declareUpdate FUNCLIONcccciiiiiiiiiiiieieciee e e 51
322 TEQUITE FUNCLIONoiiiiieieieie st 51
3.3 Using XQuery Functions and Variablesin JavaScriptcccccceveevveeveeieseeneeenn. 52
3.3 1 reqUITE FUNCLION ...oueeieieieiee et st 52
3.3.2 Importing XQuery Modules to JavaScript Programsccccceeeeereeceene 52

3.3.2.1 Mapping Between XQuery Function and Variable Namesto

JavaScript 53

3.3.2.2 Type Mapping Between XQuery and JavaScriptccccceeveee. 53
3.4 Importing JavaScript Modules Into JavaScript Programscccccceveeeveeeenneenne. 54
3.5 Other MarkLogic Objects Available in JavaSCriptcccccevevreenenieneenenieneee, 54
3.6 Ampsand the module.amp FUNCLIONcooiiiiininerieeee e 55
3.6.1 module.amp FUNCLIONccoieiiiiccece e 55
3.6.2 Simple JavaScript AmMP EXAMPIEccceieiieriniereee e 55
3.7 JavaSCript TYPE CONSLIUCIONScouveieieieriesiesieste et 57
Converting JavaScript SCriptsSto MOAUIEScccoeveeiiiiiieiin e 61
4.1 Benefitsof JavaScript MOUUIESccceevvieeieee e 61
4.2 Other differences between JavaScript Scripts and Modulescccoceevveeennennen. 61
4.3 Performance CONSIAEralioNSccceeereriiereerenie e 62

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 3

MarkLogic Server Table of Contents

4.4 Creating and USINg ESE MOUIEScoeriiiiieieeseseseseeee e 62
45 Dynamic Importsare NOt AHIOWEdcccoocveiieieiiee e 65
4.6 Using JavaScript Modulesin the BrOWSESccceeieieeneninnee e 65
4.7 New Mimetype for JavaScript MOAUIEScccooiririninineeeeee e 66
4.8 Importing MarkLogic BUilt-IN MOAUIEScccveverieiiee e 66
4.9 Evaluating Variables with ESE MOAUIEScccoveeiiiiiiniceeeeree e 67
5,0 TechniCal SUPPOITc.cocuiiiiiieiie ettt eere e 70
(G300 V] o || S 72

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 4

MarkLogic Server Server-Side JavaScript in MarkLogic

1.0 Server-Side JavaScript in MarkLogic

MarkLogic 10 integrates JavaScript as a first-class server-side programming language. You can
call a JavaScript program from an App Server, and that program has server-side access to the
MarkLogic built-in functions. This chapter describes the JavaScript implementation in

MarkL ogic and includes the following sections:

* Google V8 JavaScript Engine

e Familiarity For the JavaScript Developer

e Server-Side Marklogic Power for Data Services

e Dates in Server-Side JavaScript

* Numeric Datatype Mappings in JavaScript

e JavaScript in Query Console

* Programming in Server-Side JavaScript

e Using xdmp.invoke or xdmp.invokeFunction for Scripting

e Each App Server Thread Runs a V8 Engine Instance

e Exception Handling

e |nteraction with XQuery

1.1 Google V8 JavaScript Engine

MarkLogic Server integrates the Google V8 JavaScript engine (https:/code.google.com/p/v8/), a
high-performance open source C++ implementation of JavaScript.

MarkL ogic embeds version 6.7 of the Google V8 JavaScript engine.

Thisversion of V8 offers some of the newer EcmaScript 2015 (formerly known as EcmaScript 6)
features. Some EcmaScript 15 features are:

* Arrow Function

» Spread Operator and rest Parameters

* Mapsand Sets

* Classes

» Constants and Block-Scoped Variables

* Template Strings

* Symbols

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 5

https://code.google.com/p/v8/

MarkLogic Server Server-Side JavaScript in MarkLogic

EcmaScript 2015 generators use the function* Syntax. For a description of EcmaScript 6
generators, see documentation for implementation of generators such as https:/
developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/function* and http://
wiki.ecmascript.org/doku.php?id=harmony:generators. For generators, MarkLogic only supports the
Generator.prototype.next () method (WhICh the for ... of |00p USGS), not the
Generator.prototype.return () and Generator. prototype.throw () methods.

The following is a simple JavaScript generator example to run in MarkL ogic:

function* gen(limit) {
for (let i = 0; 1 < limit; i++)
vield xdmp.eval ('xs.dateTime (new Date())');}
const result=[];
for (const i of gen(10)) {
result.push (i) ;}
result;
/* returns ten different dateTime values (because they are each run
in a separate eval) */

1.2 Familiarity For the JavaScript Developer

JavaScript as a programming language has become extremely popular, and it is familiar to a huge
number of developers. Over the last several years, JavaScript has expanded its footprint from the
browser to other programming environments like Node.js. MarkL ogic Server-Side JavaScript
expands that familiarity one level deeper into the database server level. Thisallows you to

combine the power of programming at the database level with the familiarity of JavaScript.

1.3 Server-Side MarkLogic Power for Data Services

With JavaScript running within MarkL ogic, you can do processing of your dataright at the server
level, without having to transfer the datato amiddletier. In MarkL ogic, you have always been
able to do thiswith XQuery. In MarkL ogic 8, you can do that same processing using JavaScript,
for which most organizations have alot of experienced programmers.

1.4 Dates in Server-Side JavaScript

MarkL ogic has many XQuery functions that return date values, using W3C standard XML dates
and durations. These functions are al available in Server-Side JavaScript, and their values are
returned in the XML types.

For the return value from any of these functions, you can call toobject () and the date values are
converted into JavaScript UTC dates. Thisway you can use the powerful XML date and duration
functionsif you want to, and you can combine that with any JavaScript handling of dates that you
might prefer (or that you might already have JavaScript code to handle). For reference material on
JavaScript Date functions, see any JavaScript reference (for example, Mozilla). For the MarkLogic
Server-Side JavaScript date functions, see http:/docs.marklogic.com/js/fn/dates.

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 6

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/function*
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/function*
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date
http://docs.marklogic.com/js/fn/dates
http://wiki.ecmascript.org/doku.php?id=harmony:generators
http://wiki.ecmascript.org/doku.php?id=harmony:generators

MarkLogic Server Server-Side JavaScript in MarkLogic

Consider the following example:

const results = new Array () ;
const cdt = fn.currentDateTime () ;
results.push (cdt) ;

const utc = cdt.toObject () ;
results.push (utc) ;

results;

=>

["2015-01-05T15:36:17.804712-08:00", "2015-01-05T23:36:17.804"]

In the above example, notice that the output from the cac variable (the first itemin the resuits
array) retains the timezone information inherent in XML dateTime values. The output from the
utc variable (the second item in the resuits array) no longer has the timezone shift, asit isnow a
UTC value.

Similarly, you can use any of the UTC methods on MarkL ogic-based dates that are converted to
objects, For example, the following returns the UTC month:

fn.currentDateTime () .toObject ()
.getMonth(); // note that the month is 0-based, so January is 0

The following returns the number of milliseconds since January 1, 1970:

const utc = fn.currentDateTime () .toObject () ;
Date.parse (utc) ;
// => 1420502304000 (will be different for different times)

The flexibility to use JavaScript date functions when needed and XML/XQuery date functions
when needed provides flexibility in how you use dates in Server-Side JavaScript.

1.5 Numeric Datatype Mappings in JavaScript

In Server-Side JavaScript, you have full accessto all of the rich datatypes in MarkL ogic,
including the numeric datatypes. In general, Server-Side JavaScript maps numeric datatypes in
MarkL ogic to a JavaScript number. There are afew cases, however, where MarkL ogic wraps the
number in a MarkLogic numeric type instead of returning a JavaScript number. Those cases are:

» If avauewill overflow or might lose precision in a JavaScript number, then MarkLogic
wraps it in anumeric datatype (xs . decimal, for example).

» If thereturned value contains frequency information (for example, a numeric value
returned from a search), then it iswrapped in a numeric type such asxs. integer,
xs:double, O xs:float.

» If thereturned value is a JavaScript future, then MarkLogic wrapsit in a numeric type.

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 7

MarkLogic Server Server-Side JavaScript in MarkLogic

1.6 JavaScript in Query Console

Query Console, which ships on port 8000 on default installations of MarkL ogic, allows you to
evaluate JavaScript using Server-Side JavaScript, making it is very easy to try out examples. For
example, the following are each “hello world” examples that you can run in Query Console by
entering the following (with JavaScript selected as the Query Type):

"hello world"
fn.concat ("hello ", "world")

Both return the string he110 wor1d. For details about Query Console, see the Query Console User
Guide.

1.7 Programming in Server-Side JavaScript

When you put a JavaScript module under an App Server root with as;s file extension, you can
evauate that module viaHTTP from the App Server. For example, if you havean HTTP

App Server with aroot /space/appserver, and the port set to 1234, then you can save the
followi ng fileas /space/appserver/my-js.sjs.

xdmp . setResponseContentType ("text/plain") ;
"hello”

Evaluating thismodulein abrowser pointed to http://localhost:1234/my-3s.sjs (Or substituting
your hostname for localhost if your browser is on adifferent machine) returns the string nei1o.

You cannot serve up a Server-Side JavaScript module with a . s file extension (application/
javascript mimetype) directly from the App Server; directly served modulesneed a .sjs
extension (application/vnd.marklogic—javascript mlmetype) You can import JavaScrlpt
libraries with either extension, however, as described in “Importing JavaScript Modules Into
JavaScript Programs’ on page 54.

1.8 Using xdmp.invoke or xdmp.invokeFunction for Scripting

If you want to have a single program that does some scripting of tasks, where one task relies on
updates from the previous tasks, you can create a JavaScript module that uses xdmp . invoke OF
xdmp . invokeFunction, where the callsto xdmp . invoke OI xdmp . invokeFunction have Opti onsto
make their contents eval uate in a separate transaction.

The module being invoked using xamp . invoke May either be JavaScript or XQuery. The moduleis
considered to be JavaScript if the module path ends with afile extension configured for the
MIME type application/vnd.marklogic-javascript Of application/vnd.marklogic-js-module
in MarkL ogic's Mimetypes configuration. Otherwise, it is assumed to be X Query.

Invoking afunction is programming-language specific. The XQuery version of

xdmp : invoke-function Can only be used to invoke XQuery functions. The Server-Side JavaScript
version of thisfunction (xdmp . invokeFunction) can only be used to invoke JavaScript functions.

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 8

MarkLogic Server Server-Side JavaScript in MarkLogic

The next example invokes a module using external variables, and executes in a separate
transaction.

Assume you have a module in the modules database with a URI "http://example.com/application/
log.gs" containing the following code:

xdmp . log (myvar)

Then you can call this module using xdmp.invoke as follows:

xdmp . invoke ("log.sjs",
{myvar: "log this"},
{
modules : xdmp.modulesDatabase(),
root : "http://example.com/application/",

isolation : "different-transaction"

13N,

=> Invokes a JavaScript module from the modules database
with the URI http://example.com/application/log.sjs.
The invoked module will then be executed, logging the

message sent in the external variable to the log.

1.9 Each App Server Thread Runs a V8 Engine Instance

Each App Server thread runsits own isolate of the V8 JavaScript engine. Objects from oneisolate
cannot be used in another. This means that V8 data structures such as function objects cannot be
shared across App Server threads.

For example, if you cache afunction object in aserver field in one thread, and then try to accessit
from another thread (such as from code executed under xamp . spawn), the function will not be
valid. A Server-Side JavaScript function is only valid in the thread in which it is created.

1.10 Exception Handling

If you are accustomed to working with XQuery or you are developing in both XQuery and
Server-Side JavaScript, you should be aware that the semantics of exception handling are not the
same in the two languages.

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 9

MarkLogic Server Server-Side JavaScript in MarkLogic

MarkL ogic implements the standard exception handling semantics for JavaScript: JavaScript
statementsin atry block are not rolled back if they complete before a caught exception is raised.
In XQuery, al expressions evaluated in atry block are rolled back, even if the exception is caught.

For example, in the following code, the call t0 xdmp . documentsetMetadata datathrows an

XDMP - CONFLICTINGUPDATES €XCeption because it tries to update the document metadata twice in the
same transaction. The exception is trapped by the try-catch. The initial document insert succeeds
because it was evaluated before the exception occurs.

'use strict';
declareUpdate () ;

try{
xdmp . documentInsert ("doc.json",
{content :"value"},
{metadata:{a:1, b:2}})
xdmp . documentSetMetadata ("doc.json", {c:3})
} catch(err) {
err.toString() ;

}

The equivalent XQuery code would not insert "doc.json”. For more details, see try/catch Expression
in the XQuery and XSLT Reference Guide.

1.11 Interaction with XQuery
You can call into Server-Side JavaScript code from XQuery, and vice versa.

For example, you can use a library module such as the XQuery triggers library (trgr) from
Server-Side JavaScript, whether or not the documentation explicitly callsit out. For details, see
“Using XQuery Functions and Variables in JavaScript” on page 52.

You can also eval or invoke code blocks in either language. Use xdmp . xqueryEval t0 evaluate a
block of XQuery from Server-Side JavaScript. Use xamp . invoke t0 invoke either XQuery or
Server-Side JavaScript from Server-Side JavaScript.

Similarly, you can use xdmp: javascript-eval t0 evaluate Server-Side JavaScript from XQuery,
and xdmp : invoke t0 invoke either XQuery or Server-Side JavaScript from XQuery.

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 10

MarkLogic Server MarkLogic JavaScript Object API

2.0 MarkLogic JavaScript Object API

This chapter describes the Object API built into Server-Side JavaScript in MarkL ogic and
includes the following sections:

* Node and Document API

e XML DOM APIs

* Value Object
¢ Accessing JSON Nodes

e Sequence

* Valuelterator

e JavaScript instanceof Operator

e JavaScript Error API

e JavaScript console Object

e JavaScript Duration and Date Arithmetic and Comparison Methods

e MarkLogic JavaScript Functions

2.1 Node and Document API

MarkLogic APIs often return or expect nodes and/or documents. To make it easy to use these
APIsin JavaScript, MarkL ogic has added the built-in node and pocument Objects. These are
objects but they are not part of the global object. This section describes the interface for these
objects and includes the following parts:

* Node Object

e Document Object

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 11

MarkLogic Server

2.1.1 Node Object

MarkLogic JavaScript Object API

A node can be any kind of node, such as an element node, a document node, atext node, and so
on. If afunction returns aNode in Server-Side JavaScript, you can examine the node object using

the following properties:

Property Description

baseURI A String representing the base URI of the node.

valueOf () The atomic value of the node.

nodeType A number representing the type of the Node object. The

following are meanings the possible values of nodeType:

ELEMENT NODE 1
ATTRIBUTE NODE 2
TEXT NODE 3
PROCESSING INSTRUCTION_ NODE 7
COMMENT_ NODE 8
DOCUMENT NODE 9
BINARY NODE 13
NULL_ NODE 14
BOOLEAN NODE 15
NUMBER NODE 16
ARRAY NODE 17
OBJECT_ NODE 18

toObject () JavaScript object if the node istype array, Boolean,

Number, Object OI Text, otherwise it iISundefined.

xpath (String
XPathExpression,
Object NamespaceBindings)

Evaluate the XPath expression. The first argument isa
string representing the X Path expression, and the second
argument is an Object where each key is a namespace
prefix used in the first argument, and each value isthe
namespace in which to bind the prefix. For the XPath
expression, if you want the expression evaluated relative
to the current node, start the path with adot (.); for
example, . /my-node". Note that xpath returns a Sequence
if the expression matches more than one node.

MarkLogic 10—May, 2019

JavaScript Reference Guide—Page 12

MarkLogic Server MarkLogic JavaScript Object API

For additional DOM properties available on XML nodes (document, element, attribute,
processing instruction, and comment), see “Node Object for XML Nodes’ on page 14.

The following is an example of using the xpath function on a Node object. The cts. doc function
returns a Node, specifically a Document node, which inherits an xpath method from Node. The
second parameter to node . xpath binds the XML namespace prefix “bar” to the XML namespace
URI “bar”.

// assume a document created as follows:
declareUpdate () ;
xdmp . documentInsert (" /my/doc.xml", fn.head (xdmp.unquote (
'<bar:foo xmlns:bar="bar"s><bar:hello><bar:goodbye \n\
attr="attr value">bye</bar:goodbye>\n\
</bar:hello>\n\
</bar:foo>"'))) ;

// Use the Node.xpath method on the document node:
const node = cts.doc("/my/doc.xml") ;
node.xpath ("//bar:goodbye/@attr", {"bar":"bar"});

// Running in Query Console displays the following value (as an
// attribute node): "attr value"

2.1.2 Document Object

The pocument 0bject inherits all of the properties from the Node Object above, and has the
following additional properties:

Property Description

documentFormat A string representing the format of the document
node. The following are the meanings of the possible
values of documentFormat:

BINARY "BINARY"

JSON "JSON"

TEXT "TEXT"

XML "XML"
root The root node of the document.

2.2 XML DOM APIs

MarkLogic implements XML DOM APIsto provide read-only access to XML nodes. This
section describes these APIs and includes the following parts:

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 13

MarkLogic Server

MarkLogic JavaScript Object API

* Node Obiject for XML Nodes

* Document Object for Document Nodes

¢ NodeBuilder API

e Element

* Atr

e CharacterData and Subtypes

e Typelnfo

* NamedNodeMap

e NodelList

2.2.1 Node Object for XML Nodes

In addition to the noge properties described in “Node Object” on page 12, the XML node typesall
have a subset of the W3C DOM API of noge, asfollows:

Properties Description

childNodes An Iterator that contains al children of this node.

firstcChild Thefirst child of thisnode. If there is no such node, returns null. Note
that it returnsthefirst child node of any kind, not just the first element
child, soif thefirst child is atext node with empty spaceinit that is
what is returned.

lastChild The last child of this node. If there is no such node, returns null. Note
that it returns the last child node of any kind, not just the last el ement
child, so if the last child is atext node with empty spaceinit that is
what is returned.

localname Returns the local name part of the qualified name (QName) of this
node. For nodes of any type other that eLemenT NoDE OF
ATTRIBUTE_ NODE, thisaways returns null.

namespaceURI The namespace URI of thisnode, or null if it is unspecified. For nodes
of any type other that eLevMeENT NoODE OF ATTRIBUTE NODE, this always
returns null.

nextSibling The node immediately following this node. If there is no such node,
returns null.

nodeName The name of this node, depending on its type.

nodevValue The value of this node, depending on its type.

MarkLogic 10—May, 2019

JavaScript Reference Guide—Page 14

MarkLogic Server

MarkLogic JavaScript Object API

Node other)

Properties Description

ownerDocument The document the node belongs to.

parentNode Node that is the parent of the node.

prefixSibling Node representing the previous node in the tree, or null if no such
node exists.

hasChildNodes () Boolean indicating if the node has child nodes.

hasAttributes () Boolean indicating if the node has any attributes.

attributes NamedNodeMap Of @l the attributes, if any. For nodes of any type other
than eLemenT NobE this map will be empty.

baseURI The base URI of thisnode, if any.

textContent Like £n.string 0N the node except that document nodes are nu11.

isSameNode (Returns true if the two nodes are the same (similar to the XQuery

operator = on nodes).

isEqualNode (
Node other)

Returns true if the two nodes are the equal (similar to the XQuery
fn:deep-equals, but treating everything as untyped).

insertBefore (
Node newChild,
Node refChild)

RaisessNO_MODIFICATION_ALLOWED error.

replaceChild (
Node newChild,
Node o0ldChild)

RaisessNO_MODIFICATION_ALLOWED error.

removeChild (
Node o0ldChild)

RaisesNO_MODIFICATION_ALLOWED error.

appendChildNodes (
Node newChild)

RaisessNO_MODIFICATION_ALLOWED error.

normalize ()

Does nothing (MarkL ogic documents are already normalized).

The DOM APIs provide read-only accessto the XML nodes; any DOM APIs that attempt to
modify the nodes will raise the DOM €efror No MODIFICATION ALLOWED ERR.

MarkLogic 10—May, 2019

JavaScript Reference Guide—Page 15

MarkLogic Server

MarkLogic JavaScript Object API

2.2.2 Document Object for Document Nodes

The pocument Object inherits al of the properties from the Node Object for XML Nodes above (in
addition to the properties from the Node Object), and has the following additional properties:

Properties Description
documentElement Element that is the direct child of the document.
documentURI The URI of the document.

getElementsByTagName (
String tagname)

NodeL ist of elementsin the document with the given tag
name, in document order. The tag nameisastring. If it
includes a colon, it will match as a string match with the
exact prefix. The getElement sByTagNameNS functionis
preferred for namespaced elements.

getElementsByTagNameNS (
String namespaceURI,
localname)

NodeL ist of elements in document with the given
namespace URI and local name, in document order. A
null value for the namespace URI signifies no namespace.

getElementById (
String elementId)

Element that has the given ID, if any.

importNode (
Node importedNode,
Boolean deep)

Raises NO_MODIFICATION_ALLOWED error.

normalizeDocument ()

Does nothing (MarkL ogic documents are already
normalized).

MarkLogic 10—May, 2019

JavaScript Reference Guide—Page 16

MarkLogic Server MarkLogic JavaScript Object API

2.2.3 NodeBuilder API

The NodeBuilder APl makes it easy to construct nodes in JavaScript, including XML nodes and
JSON nodes, and has the following functions and properties:

Functions/Properties Description
addAttribute (String name, Add anew attribute to the current element being created.
String value, You cannot create duplicate attributes; if an attribute with

[String URI]) that name already is present in the element,

XDMP-DUPATTR isthrown.

addComment (String text) Add a comment node to the current parent node being
created.
addDocument (String text, Add adocument with the given URI and the specified text
[String URI])) content. This resultsin adocument of format text (that is,
document node with atext node root).
addDocument (Add adocument with the given URI. The function will be
Function content, given the builder asits argument and eval uated to produce

[String URI])) the content. For example:

const x new NodeBuilder () ;
const b x .addDocument (
function (builder) {
builder.addElement ("foo",
"some stuff")});
b.toNode () .root;
=>

<foo>some stuff</foo>

addElement (String name, Add an element to the current parent node with the
String text, specified name, text content, and namespace URI. The
[String URI]) function will be given the builder asits argument and
evaluated to produce the content. The element creation is
completed after calling adde1ement, and consequently
subsequent callSto addattribute would not apply to this
element.

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 17

MarkLogic Server

MarkLogic JavaScript Object API

Functions/Properties

Description

addElement (String name,
Function content,
[String URI])

Add an element to the current parent node with the
specified name and namespace URI. The element creation
is completed after calling adgae1ement, and consequently
subsequent callsto addattribute Would not apply to this
element. The function in the second argument will be
given the builder asits argument and eval uated to produce
the content. For example:

const X = new NodeBuilder () ;
const b = x.addElement ("foo",
function (builder) {
builder.addText ("some stuff")});
b.toNode () ;
=>
<foos>some stuff</foo>

addNode (Node node)

Add acopy of the specified node to the current parent
node.

String target,
String text)

addProcessingInstruction (

Add a processing instruction node to the current parent
node with the specified target and text.

addText (String value)

Add atext node to the current parent node being created.

addBinary (String hex)

Add abinary node to the current parent node being
created. The argument is a hex encoded string.

addNumber (Number wval)

Add a number node to the current parent node being
created.

addBoolean (Boolean val)

Add a boolean node to the current parent node being
created.

addNull () Add anull node to the current parent node being created.
endDocument () Complete creation of the document.
endElement () Complete creation of the element.

startDocument ([String URI])

Start creating a document with the specified URI.

startElement (String name,
[String URI])

Start creating an element as a child of the current
document or element with the specified name and
(optionally) namespace URI.

toNode ()

Returns the constructed node.

In order to use anything created with NodeBuilder as anode, you must first call tonode ().

MarkLogic 10—May, 2019

JavaScript Reference Guide—Page 18

MarkLogic Server

MarkLogic JavaScript Object API

The following is an example of creating an XML document node:

const x = new NodeBuilder() ;

.startDocument () ;
.startElement ("foo",

.endElement () ;
.endDocument () ;
const newNode =
newNode;

XXX XX

llbarll) ,.
.addText ("text in bar");

x.toNode () ;

// returns a document node with the following serialization:
// <?xml version="1.0" encoding="UTF-8"?>
// <foo xmlns="bar"stext in bar</foo>

2.2.4 Element

The following properties and functions are available on element nodes:

Properties/Functions

Description

tagName

Qualified name of the element.

getAttribute (String name)

Returns an attribute value by name.

getAttributeNode (String name)

Returns an attribute node (attr) by name.

getAttributeNsS (
String namespace,
String name)

Returns the value of the attribute with the specified
namespace and name, from the current node.

getAttributeNode (String name)

Return the named attribute of this element, if any, asa
node.

getAttributeNodeNsS (
String namespaceURI,
String localname)

Return the attribute of this element with a matching
namespace URI and local name.

getElementsByTagName (
String tagname)

NodeList Of element descendants of this element with
the given tag name, in document order. Thetag nameis
astring. If it includes a colon, it will match asastring
match with that exact prefix. getElement sByTagNameNS
is preferred for namespaced el ements.

getElement sByTagNameNS (
String namespaceURI,
String localname)

NodeList Of element descendants with the given
namespace URI and local name, in document order. A
null value for the namespace URI signifies no
namespace.

hasAttribute (String name)

Returnstrueif the e ement has the named attribute.

MarkLogic 10—May, 2019

JavaScript Reference Guide—Page 19

MarkLogic Server

MarkLogic JavaScript Object API

Properties/Functions

Description

hasAttributeNsS (
String namespaceURI,
String localname)

Returns true if the e ement has an attribute with the
given namespace URI and local name.

schemaTypeInfo

TypeInfo of the e ement.

setAttribute (String name,
String value)

RaisesNO_MODIFICATION_ALLOWED error.

removeAttribute (String name)

RaisessNO_MODIFICATION_ALLOWED error.

setAttributeNode (Attr newAttr)

RaisessNO_MODIFICATION_ALLOWED error.

removeAttributeNode (
Attr newAttr)

RaisessNO_MODIFICATION_ALLOWED error.

setAttributeNs (
String namespaceURI,
String localname)

RaisesNO_MODIFICATION_ALLOWED error.

removeAttributeNS (
String namespaceURI,
String localname)

RaisesNO_MODIFICATION_ALLOWED error.

setIdAttribute (
String name,
Boolean isId)

RaisesNO_MODIFICATION_ALLOWED error.

setIdAttributeNsS (
String namespaceURI,
String localname,
Boolean isId)

RaisesNO_MODIFICATION_ALLOWED error.

setIdAttributeNode (
Attr idAttr,
Boolean isId)

RaisesNO_MODIFICATION_ALLOWED error.

MarkLogic 10—May, 2019

JavaScript Reference Guide—Page 20

MarkLogic Server MarkLogic JavaScript Object API

2.2.5 Attr

The following properties are available on attribute (attr) nodes, in addition to the XMLNode
properties which it inherits:

Properties Description
name Qualified name of this attribute.
specified Boolean indicating whether the attribute is explicit
(true) or defaulted from the schema (false).
value Value of this attribute, as a string.
ownerElement Element that has the attribute.
isId Boolean indicating whether thisis an ID attribute. (It

has the type xs: 1p).

schemaTypeInfo TypeInfo Of the element.

The attr object is being deprecated in DOMA4.

2.2.6 CharacterData and Subtypes

The CharacterDatainherits all of the APIsfrom an XMLNode plus the following additional
properties and methods. It has subtypes that inherit from Text node, Comment nodes, and
Processing Instruction nodes, which are also included in the table.

Functions/Properties Description

data The textual content of the node (same as £n:data).

length The number of charactersin the textual content of the
node.

substringData (Number offset, Substring of the textual content, starting at the given

Number count) character offset and continuing for the given number of

characters.

isElementContentWhitespace Trueif the Text node isignorable whitespace. In a
MarkLogic context thisis amost always false as
MarkL ogic strips ignorable whitespace on ingest. It
can betrue of datawere ingested before aschemafor it
was loaded. (Text node only).

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 21

MarkLogic Server

MarkLogic JavaScript Object API

Functions/Properties

Description

wholeText

Returns the value of this node concatenated with
logically adjacent text nodes. For MarkL ogic, because
it already combines logically adjacent text nodes, this
Isjust the value of the node itself. (Text node only)

target

The target of the processing instruction. For example,
given the PI <?example something?>, example isthe
target and something iSthe data.

appendData (String arg)

RaisesNO_MODIFICATION_ALLOWED error.

insertData (Number offset,
Number count)

RaisesNO_MODIFICATION_ALLOWED error.

deleteData (Number offset,
Number count)

RaisesNO_MODIFICATION_ALLOWED error.

replaceData (Number offset,

Number count,
String arg)

RaisesNO_MODIFICATION_ALLOWED error.

replaceWholeText (
String content)

RaisesNO_MODIFICATION_ALLOWED error.
(Text node only)

splitText (Number offset)

RaisesNO_MODIFICATION_ALLOWED error.
(Text node only)

MarkLogic 10—May, 2019

JavaScript Reference Guide—Page 22

MarkLogic Server MarkLogic JavaScript Object API

2.2.7 Typelnfo

The following are the functions and properties of Typelnfo. Additionally, it has the schema
component methods bound to it.

Functions/Properties Description
typeName The local name of the type.
typeNamespace The namespace URI of the type.
isDerivedFrom Returnstrueif thistypeisderived from the type named by
String typeNamespace, the arguments. The derivation method argument is aflag

String typeName,
unsigned long
derivationMethod)

indicating acceptable derivation methods (0 means all
methods are acceptable). The flag values that may be
combined are:

DERIVATION_RESTRICTION (0x1)
DERIVATION_EXTENSION (0x2)
DERIVATION_UNION (0x4)

DERIVATION_LIST (0x8)

2.2.8 NamedNodeMap
The following are the functions and properties of NamedNodeM ap.

Functions/Properties Description
length Number of nodes in the map.
getNamedItem (name) Returns the node in the map with the given name, if any.
getNamedItemns IS preferred for namespaced nodes.
getNamedItemNs (Returns the node in the map with the given namespace
String namespaceURI, URI and local name.

String localName)

item (Number index) Get the node at the index place (first, second, and so on).

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 23

MarkLogic Server MarkLogic JavaScript Object API

Functions/Properties Description
setNamedItem(Node arg) Raises NO_MODIFICATION_ALLOWED error.
removeNamedItem (Raises NO_MODIFICATION_ALLOWED error.

String name)

setNamedItemNS (Node arg) RaisesNO_MODIFICATION_ALLOWED error.

removeNamedItem (RaisesNO_MODIFICATION_ALLOWED error.
String namespaceURI,
String localname)

2.2.9 NodeList
Thenoderist iSan iterator that has the following additional properties.

Properties Description
length Number of nodesin thelist.
item (Number index) Get the item at the index place (first, second, and so on).

2.3 Value Object

value IS an object class that wraps MarkL ogic X Query types, enabling you to pass these objects
into functions that are designed for those types.

value SUPPOrtS valueof and toobject Methods for converting the underlying value to its closest
native JavaScript value or object. For more details, see Vaue in the MarkLogic Server-Sde
JavaScript Function Reference.

Any builtin function whose signature indicates an XML atomic return type such as xs . date,
xs.int, Of xs.string FetUrnsavalue Object. A function whose signature indicates a native
JavaScript type such as number, boolean, or string returns asimple, native value.

For example, the £n. currentpate builtin function returns avaiue representing an xs: date, and its
return type in the MarkLogic Server-Sde JavaScript Function Reference is xs . date. It returnsa
Value object that contains an XQuery xs:date Value. This enables you to pass the result to
date-specific functions such as xdmp . weekFrompate.

Slmllarly, lexicon functions such as cts.values, cts.words, and cts.geospatialBoxes leturn a

sequence Of value Objects rather than native JavaScript objectsin order to preserve type and
support passing the sequence IteMS10 cts. frequency.

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 24

MarkLogic Server MarkLogic JavaScript Object API

See the following topics for more details:

e Example: xs:date as Value

e Comparison to Native JavaScript Values

e Example: Comparison between a Value and a Number

2.3.1 Example: xs:date as Value

JavaScript has no native equivalent to xs : date. Such values can only be represented natively as a
string, which loses the “ dateness’ of the value. The string has to be parsed back into a date before
you can use it asinput to afunction that expects an xs: date:

xdmp . daynameFromDate (xs.date ('1997-07-20")) ;

A DateTime function such as £n. currentbate returns avalue Object representing an XQuery
xs:date Value. The following test returns true:

fn.currentDate () instanceof Value

The vaiue returned by £n.currentpate can be passed directly into functions that expect an
xs.date, SUCh @S xdmp . daynameFrompate Without conversion from a string:

xdmp . daynameFromDate (fn.currentDate ()) ;
If you probe the value returned by £n.currentpate, yOU Can Seeit is not a native JavaScript type:

typeof fn.currentDate() ; // object
Object.prototype.toString.call (fn.currentDate()); // [object xs.datel

For more details about dates, see Dates in Server-Side JavaScript.

2.3.2 Comparison to Native JavaScript Values

You can use avalue like a native JavaScript value in contexts in which loose equality is
sufficient. For example, when comparing avaiue to a number using the “==" operator:

someDecimalValue ==

You cannot successfully compare avaiue to anative JavaScript value in contexts where strict
equality or “same value’ equality is used, such asthe“===" operator, array.prototype.indexof,
OI Array.prototype.includes.

For more details, see “Example: Comparison between a Value and a Number” on page 26.

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 25

MarkLogic Server MarkLogic JavaScript Object API

2.3.3 Example: Comparison between a Value and a Number

Supposeyou call cts.values ONalexicon over xs: int values. Thereturn value will be a Sequence
containing Value objects that represent integer values. Supposed the first item in the returned
sequence CONtaiNs avalue Object equivalent to the number 10. Then following expressions
evaluate to the results shown:

const mlValues = cts.values (cts.pathReference ('/my/int/property')) ;
fn.head (mlvalues) == 10; // true

fn.head (mlvalues) === 10; // false

fn.head (mlvalues) .valueOf () === 10; // true

mlvalues.toArray () .includes (10) ; // false

mlvValues.toArray () .indexOf (10) ; // -1 (no match)

fn.head (mlvValues) instanceof Value; // true

typeof fn.head(mlvalues) ; // 'object'

typeof fn.head(mlvalues) .valueOf(); // 'number'

2.4 Accessing JSON Nodes

When you store JSON in a MarkLogic database, it is stored as a document node with a JISON
node child. You can access JSON documents stored in the database with £n. doc, Or with any other
function that returns adocument. You have direct read-only access to the JSON nodes through the
native JavaScript properties, including get a named property, querying for the existence of a
named property, and enumerate all available named properties.

If you want to convert a JavaScript object to a JSON node, you can call xdmp . togson On the
JavaScript object and it will return a JSON node.

For more details about JSON nodes and documents, see Working With JSON in the Application
Developer’s Guide.

2.5 Sequence

A sequence iSaJavaScript rterable Object that represents a set of values. Many MarkLogic
functions that return multiple values do so in Server-Side JavaScript by returning a sequence. An
iterable is a JavaScript object which returns an iterator object from the eeiterator method.

You can iterate over the valuesin a sequence USING @ for. .of loop. FOr example:

for (const doc of fn.collection('/my/coll')) {
// do something with doc

}

If you want to extract just the first (or only) item in asequence Without iteration, use £n.nead. For
example, the xdmp . unquote fuNCtion returns a sequence, but in many casesit isa sequence
containing only one item, so you could extract that single result with code like the following:

const node = fn.head(xdmp.ungquote ('<data>some xml</data>'))

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 26

MarkLogic Server MarkLogic JavaScript Object API

You can create your own sequence Object from an array, an array-like, or another iterable using
sequence . from. FOr example, the following code snippet creates a sequence from an array:

const mySeq = Sequence.from([1,2,3,4]);

Use £n. count to count the number of itemsin a sequence. For example:

const mySeq = Sequence.from([1,2,3,4]);
fn.count (mySeq) ; // returns 4

For more details, see Sequence Object in the MarkLogic Server-Sde JavaScript Function
Reference.

2.6 Valuelterator

Note: Thisinterface is deprecated. As of MarkLogic 9, no MarkLogic functions return a
ValueIterator OF aCCEPt avaluelterator aSinput. Usethe guidelinesin this
section to transition your code to Sequence.

Code that manipulates vailuerterator results as described in the following table will continue to
work transparently when the return type is sequence.

Guideline Do Do Not
On|y use afor. . .of |00p to | const uris = cts.uris('/'); const uris =
iterate over thevaluesin a for (const u of uris) { cts.uris('/");
// do something with u uris.next.value () ;
ValueIterator returned by } uris.next.value () ;

MarkLogic. Do not program
directly to the underlying
Iterator interface

Use £n.head to access the fn.head(cts.uris('/') .next () .value
firstitemina cts.uris('/")

valueIterator, father than Vi

using the pattern

results.next () .value.

Use £n. count to count the fn.count (cts.uris('/').count
number of itemsin a cts.uris('/")

ValueIterator object, rather)i

than the count property.

Code that depends on the valuerterator properties and methods next, count, and c1one cannot
used with a Sequence value.

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 27

MarkLogic Server MarkLogic JavaScript Object API

You can use the instanceof Operator to create code that behaves differently, depending on
whether you are working with avaluerterator Or @ sequence. NO MarkLogic 8 functions will
return a sequence, SO you can be certain that code will not execute in MarkLogic 8.

For example, the following code useS valuerterator.clone t0 preserve a set of values across
iteration in MarkLogic 8, but skips the unnecessary cloning when the result type becomes

Sequence.

const results = cts.uris('/', ['limit=10']);

const clone = {};

if (uris instanceof Valuelterator) ({
// iterator destructive, so clone to preserve orig
clone = results.clone() ;

} else if (results instanceof Sequence) {
// lteration is not destructive, no clone needed
clone = results;

}

for (const val of clone)
// do something with val

}

2.7 JavaScript instanceof Operator

The JavaScript instanceof Operator isavailableto test MarkL ogic types (in addition to JavaScript
types). For example, the following returns true:

const a = Sequence.from(["saab", "alfa romeo", "tesla"l);
a instanceof Sequence;
// returns true

Similarly, the following are some other examples of using instaceof With MarkLogic and
JavaScript object types.

Anxs.date Object type:

const a = fn.currentDate () ;
a instanceof xs.date;
// returns true

Not an xs.date Object type:

const a = fn.currentDate() .toObject () ;
a instanceof xs.date;
// returns false

A JavaScript pate Object type:

const a = fn.currentDate () .toObject () ;
a instanceof Date;
// returns true

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 28

MarkLogic Server MarkLogic JavaScript Object API

You can test for any of the following MarkLogic object types using instanceof:

* value (all MarkLogic Object types are subtypes of vaiue)

e xs.anyAtomicType
* cts.query (andall of its subtypes—the subtypes are also instance of cts.query)

e ArrayNode

e BinaryNode

e BooleanNode

e ObjectNode

e XMLNode

. Document

e Node

e NodeBuilder

e Attr

e CharacterData
e Comment

. Sequence

. Text

e Element

e ProcessingInstruction
. XMLDocument

e Valuelterator

The following is an example using an XML document:

// assume "/one.xml" has content <names>value</names>
const a = fn.head(fn.doc("/one.xml")) .root;

const b = fn.head(a.xpath("./text()"));

b instanceof Text;

// returns true

The following is an example using a JSON document:

// Assume "/car.json" has the content:

// {"car":"The fast electric car drove down the highway."}
const res = new Array () ;

const a = fn.head(fn.doc("/car.json")) ;

res.push(a instanceof Document) ;

const b = a.root;

res.push (b instanceof ObjectNode) ;

res;

// returns [true, true]

Similarly, you can test for any XML type. Note that the XML types in JavaScript have adot (.)
instead of a colon (:) between the namespace and the type name. For example, xs . integer,
Xs.string, and so on.

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 29

MarkLogic Server MarkLogic JavaScript Object API

2.8 JavaScript Error API

When errors and exceptions are thrown in a Server-Side JavaScript program, a stack is thrown
and can be caught using a standard JavaScript try/catch block. For details about each individual
error message, see the Messages and Codes Reference Guide. This section includes the following
parts:

e JavaScript Error Properties and Functions

e JavaScript stackFrame Properties

e JavaScript try/catch Example

2.8.1 JavaScript Error Properties and Functions
The following isthe API available to JavaScript exceptions.

Properties/Functions Description

code A string representing the code number.Only available for
DOM errors, where the number isthe DOM error code.

data An array of strings containing the data thrown with the
error.

message The Error message string.

name The error code string.

retryable A boolean indicating if the error is retryable.

stack The JavaScript stack. If the error isthrown from XQuery,

the stack contains the concatenated stack from both
XQuery and JavaScript.

stackFrame An array of stack frames. See the stackFrame table below
for details. For details, see “ JavaScript stackFrame
Properties” on page 31.

toString () A formatted error message popul ated with data.

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 30

MarkLogic Server MarkLogic JavaScript Object API

2.8.2 JavaScript stackFrame Properties
The following isthe API available to each stackFrame:

Properties Description
line The line number of the current frame.
column The column number starting the current frame.
operation The function name or operation of the current frame.
uri The name of the resource that contains the script for the

function/operation of thisframe, or if the script name is
undefined and its source ends with //# sourceurL-..
string or deprecated //@ sourceurL=... String..

language The query language of the current frame.

isEval Was the associated function compiled from acall to evai.
(JavaScript only)

variables An array of (name, value) objects containing the variable
bindingsin aframe. Undefined if no variable bindings are
available. (XQuery only)

contextItem Context item in the frame. Undefined if no context itemis
available. (XQuery only)

contextPosition Context position in the frame. Undefined if no context
item isavailable. (XQuery only)

2.8.3 JavaScript try/catch Example
The following is asimple JavaScript try/catch example:

try{ xdmp.documentInsert ("/foo.json", {"foo": "bar"}); }
catch (err) { err.toString(); }

=> catches the following error

(because it is missing the declareUpdate() call)

XDMP - UPDATEFUNCTIONFROMQUERY: xdmp:eval ("// query

try{ xdmp.documentInsert ("/foo.json", {&g...", ())
-- Cannot apply an update function from a query

2.9 JavaScript console Object

MarkL ogic implements a console 0Object, which contains functions to do things that log output to
ErrorLog.txt in the MarkL ogic data directory. The following are the conso1e functions.

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 31

MarkLogic Server MarkLogic JavaScript Object API

. console.assert
e console.debug
. console.dir

. console.error
e console.log

. console.trace

. console.warn

2.10 JavaScript Duration and Date Arithmetic and Comparison Methods

XQuery has operatorsthat allow you to perform date math on duration typed datato do thingslike
subtract durations to return dateTime values. In Server-Side JavaScript, you can get data returned
in the various dateTime duration types and use the duration methods to add, subtract, multiply,
divide and compare those durations. This section describes these duration arithmetic and
comparison methods and includes the following parts:

¢ Arithmetic Methods on Durations

¢ Arithmetic Methods on Duration, Dates, and Times

e Comparison Methods on Duration, Date, and Time Values

2.10.1 Arithmetic Methods on Durations
Arithmetic methods are available on the following duration objects:

¢ xs.yearMonthDuration Methods

e xs.dayTimeDuration Methods

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 32

MarkLogic Server MarkLogic JavaScript Object API

2.10.1.1 xs.yearMonthDuration Methods

The JavaScript object that is an instance of xs.yearMonthburation IS anaogous to and has the
same lexical representation to the XQuery xs:yearMonthpuration type, as described
http://www.w3.0rg/TR/xpath-functions/#dt-yearMonthDuration. The following methods are available on
xs.yearMonthDuration Obj ects:

Method Description

add (xs.yearMonthDuration) Adds two xs . yearMonthburation Values. Returns

dN xs.yearMonthDuration.

subtract (xs.yearMonthDuration) Subtracts one xs . yearMonthpuration Value from
another. Returns an xs.yearMonthburation.

multiply (Number) Multiplies one xs . yearMonthburation Value by a
Number. REIUrNS an xs . yearMonthburation.

divide (Number) Divides an xs.yearMonthDuration Dy aNumber.
Returns an xs . yearMonthDuration.

divide (xs.yearMonthDuration) Divides an xs . yearMonthDuration by an
xs.yearMonthDuration. REIUrNS a Number.

The following are some simple examples using these methods:

const vl = xs.yearMonthDuration ("P3Y7M") ;

const v2 = xs.yearMonthDuration ("P1Y4M") ;
const r = {

"vl1 + v2" : vl.add(v2),

"vl1 - v2" : vl.subtract (v2),

"vl * 2" : vl.multiply(2),

"wl / 2" : vl.divide(2),

"wl / v2" : vl.divide (v2)

r;

/*

returns:

{"Vl + v2":"P4Y11M",

"vl - v2":"P2Y3M",
"yl *x 2":nP7Y2M",
"yl / 2":"P1Y10M",
"vl / v2":2.6875}

*/

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 33

http://www.w3.org/TR/xpath-functions/#dt-yearMonthDuration

MarkLogic Server MarkLogic JavaScript Object API

2.10.1.2 xs.dayTimeDuration Methods

The JavaScript object that is an instance of xs.dayTimeburation iSanalogous to and has the same
lexical representation to the XQuery xs:dayTimeburation type, as described
http://www.w3.0rg/TR/xpath-functions/#dt-dayTimeDuration. The following methods are available on
xs.dayTimeDuration Obj ects.

Method Description

add (xs.dayTimeDuration) Addstwo xs.dayTimeburation Values. Returns
dN xs.dayTimeDuration.

subtract (xs.dayTimeDuration) Subtracts one xs . dayTimeburation Value from
another. Returns an xs . dayTimeburation.

multiply (Number) Multiplies one xs .dayTimebpuration Value by a
Number. RE{UrNS an xs . dayTimeDuration.

divide (Number) Divides an xs.dayTimeDuration Dy aNumber.
Returns an xs.dayTimeDuration.

divide (xs.dayTimeDuration) Divides an xs.dayTimeDuration by an
xs.dayTimeDuration. REtUrNS & Number.

The following are some simple examples using these methods:

const vl = xs.dayTimeDuration ("P5DT4H") ;

const v2 = xs.dayTimeDuration ("P1DT1H") ;
const r = {

"vl1 + v2" : vl.add(v2),

"vl1 - v2" : vl.subtract (v2),

"vl * 2" : vl.multiply(2),

"wl / 2" : vl.divide(2),

"wl / v2" : vl.divide (v2)

r;

/*

returns:

{"Vl + v2":"P6DT5H",

"v1l - v2":"P4DT3H",
"yl * 2":"P1ODT8H",
"yl / 2":"P2DT14H",
"vl / v2":4.96}

*/

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 34

http://www.w3.org/TR/xpath-functions/#dt-dayTimeDuration

MarkLogic Server

MarkLogic JavaScript Object API

2.10.2 Arithmetic Methods on Duration, Dates, and Times
Methods are available on the following duration, date, and dateTime objects:

e xs.dateTime Methods

e xs.date Methods

e xs.time Methods

2.10.2.1 xs.dateTime Methods

The following methods are available on xs . daterime Objects:

Method

Description

add (xs.dayTimeDuration)

Returns the xs . dateTime Value representing the
end of the time period by adding an
xs.dayTimeDuration 0 thexs.dateTime Value
that starts the period. Returns an xs. dateTime.

add (xs.yearMonthDuration)

Returns the xs . dateTime Value representing the
end of the time period by adding an
xs.yearMonthpuration tO the xs.dateTime Value
that starts the period. Returns an xs. dateTime.

subtract (xs.dateTime)

Returns the difference between two xs.dateTime
values as an xs.dayTimeDuration.

subtract (xs.dayTimeDuration)

Returns the xs . dateTime Value representing the
beginning of the time period by subtracting an
xs.yearMonthDuration from the xs.dateTime
value that ends the period. Returns an
xs.dateTime.

subtract (xs.dayTimeDuration)

Returns the xs . dateTime Value representing the
beginning of the time period by subtracting an
xs.dayTimeDuration from the xs .dateTime Value
that ends the period. Returns an xs.dateTime.

MarkLogic 10—May, 2019

JavaScript Reference Guide—Page 35

MarkLogic Server

The following are some simple examples using these methods:

const vl = xs.dateTime(xs.date('2013-08-15"),

xs.time('12:30:45-05:00"))

const

v2

xs.dateTime (xs.date('2012-04-01"),

xXs.time('01:10:25-02:00"))

const
const

const
"v1 +
"v1 +
Ilvl -
Ilvl -
Ilvl -
Vi

r;

/*

v3
v4

v3"
v4"
va"
v3"
v4"

returns:

{"v1i +
"vl +
Ilvl -
Ilvl -

Ilvl -

*/

v3":
v4":
v2":
v3":

V4 n

xs.yearMonthDuration ("P3Y3M")

xs.dayTimeDuration ("PT1H")

vl
vl
vl
vl
vl

"2016-11-15T12:30:45-05:
"2013-08-15T13:30:45-05:
"P501DT14H20M208™",

"2010-05-15T12:30:45-05:
:"2013-08-15T11:30:45-05:

MarkLogic 10—May, 2019

.add (v3),

.add (v4),
.subtract (v2),
.subtract (v3),
.subtract (v4)

oo,
oo,

oo",
00"}

MarkLogic JavaScript Object API

JavaScript Reference Guide—Page 36

MarkLogic Server MarkLogic JavaScript Object API

2.10.2.2 xs.date Methods
The following methods are available on xs . date Objects:

Method Description

add (xs.dayTimeDuration) Returns the xs . date value representing the end of
the time period by adding an
xs.dayTimeDuration 10 thexs.date Value that
starts the period. Returns an xs . date.

add (xs.yearMonthDuration) Returnsthe xs . date value representing the end of
the time period by adding an
xs.yearMonthpuration tO the xs.date value that
starts the period. Returns an xs . date.

subtract (xs.date) Returns the difference between two xs . date
values as an xs.dayTimeDuration.

subtract (xs.dayTimeDuration) Returns the xs . date Value representing the
beginning of the time period by subtracting an
xs.yearMonthDuration from the xs .date value
that ends the period. Returns an xs. date.

subtract (xs.dayTimeDuration) Returns the xs . date Value representing the
beginning of the time period by subtracting an
xs.dayTimeDuration from the xs . date value that
ends the period. Returns an xs . date.

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 37

MarkLogic Server

The following are some simple examples using these methods:

const vl = xs.date('2013-08-15")
const v2 = xs.date('2012-04-01")

MarkLogic JavaScript Object API

const v3 = xs.yearMonthDuration ("P3Y3M")
const v4 = xs.dayTimeDuration ("P1DT3H")
const r = {

"v1 + v3" : vl.add(v3),

"v1 + v4" : vl.add(v4),

"v1 - v2" : vl.subtract (v2),

"v1 - v3" : vl.subtract (v3),

"v1l - v4" : vl.subtract(v4)

Vi

r;

/*

returns:

{"v1 + v3":"2016-11-15",
"vl + v4":"2013-08-16",
"vl - v2":"P501D",

"vl - v3":"2010-05-15",
"vl - v4":"2013-08-13"}
*/

2.10.2.3 xs.time Methods

The following methods are available on xs . time Objects:

Method

Description

add (xs.dayTimeDuration)

Addsthe value of the hours, minutes, and seconds
components of an xs.dayTimeDuration {0 an
xs.time VAlUe. Returns an xs. time.

subtract (xs.time)

Returns the difference between two xs . t ime
values as an xs.dayTimeDuration.

subtract (xs.dayTimeDuration)

Subtracts the value of the hours, minutes, and
seconds components of an xs.dayTimeburation
from an xs . time Value. Returns an xs . time.

MarkLogic 10—May, 2019

JavaScript Reference Guide—Page 38

MarkLogic Server MarkLogic JavaScript Object API

The following are some simple examples using these methods:

const vl = xs.time('12:30:45-05:00")

const v2 = xs.time('01:10:25-02:00")
const v3 = xs.dayTimeDuration ("PT1H")
const r = {

"v1 + v3" : vl.add(v3),

"v1 - v2" : vl.subtract (v2),

"v1l - v3" : vl.subtract (v3)

Vi

r;

/*

returns:

{"vl + v3":"13:30:45-05:00",
"vl - v2":"PT14H20M20S",
"vl - v3":"11:30:45-05:00"}

*/

2.10.3 Comparison Methods on Duration, Date, and Time Values

Comparison methods are available to compare values (less than, greater than, and so on) on the
following duration, date, and dateTime objects:

e xs.yearMonthDuration Comparison Methods

e xs.dayTimeDuration Comparison Methods

e xs.dateTime Comparison Methods

e xs.date Comparison Methods

* xs.time Comparison Methods

e xs.gYearMonth Comparison Methods

* xs.gYear Comparison Methods

e xs.gMonthDay Comparison Methods

* xs.gMonth Comparison Methods

e xs.gDay Comparison Methods

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 39

MarkLogic Server MarkLogic JavaScript Object API

2.10.3.1 xs.yearMonthDuration Comparison Methods
The following comparison methods are available on xs . yearMonthburation ObjeCts:

Method Description

1t (xs.yearMonthDuration) L ess than comparison on xs . yearMonthburation
values. Returns asoolean.

le (xs.yearMonthDuration) Less than or equal to comparison on
xs.yearMonthpuration Values. Returns a

Boolean.

gt (xs.yearMonthDuration) Greater than comparison on
xs.yearMonthbpuration Values. Returns a

Boolean.

ge (xs.yearMonthDuration) Greater than or equal to comparison on
xs.yearMonthpuration Values. Returns a

Boolean.

eq (xs.yearMonthDuration) Equality comparison on xs.yearMonthburation
values. Returns asoolean.

ne (xs.yearMonthDuration) Not equal to comparison on
xs.yearMonthpuration Values. Returns a

Boolean.

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 40

MarkLogic Server

MarkLogic JavaScript Object API

The following are some simple examples using these methods:

const vl =
const v2 =

cons
"v1l
"v1l
"v1l
"v1l
"v1l
"v1l
}i

r;

/*

t r

= {

1t van
le v2"

gt
ge
eq
ne

va"
va"
va"
va"

returns:

{"v1
"v1l
"v1l
"v1l
"v1l
"v1l

*/

1t
le
gt
ge
eq
ne

va"
va"
va"
va"
va"
va"

xs.yearMonthDuration ("P3Y7M") ;
xs.yearMonthDuration ("P1Y4M") ;

. vli.1lt
: vl.le
: vli.gt
: vli.ge
: vli.eqg
: vl.ne

:false,
:false,
:true,
:true,
:false,
:true}

2.10.3.2 xs.dayTimeDuration Comparison Methods
The following comparison methods are available on xs . dayTimeburation Objects:

Method Description

1t (xs.dayTimeDuration) L ess than comparison oNn xs.dayTimeDuration
values. Returns asoolean.

le (xs.dayTimeDuration) Less than or equal to comparison on
xs.dayTimeDuration values. Returns asoolean.

gt (xs.dayTimeDuration) Greater than comparison on xs . dayTimeburation
values. Returns asooilean.

ge (xs.dayTimeDuration) Greater than or equal to comparison on
xs.dayTimeDuration values. Returns asoolean.

eq (xs.dayTimeDuration) Equality comparison on xs.dayTimeDuration
values. Returns asoolean.

ne (xs.dayTimeDuration) Not equal to comparison on xs.dayTimeDuration

values. Returns asoolean.

MarkLogic 10—May, 2019

JavaScript Reference Guide—Page 41

MarkLogic Server

MarkLogic JavaScript Object API

The following are some simple examples using these methods:

const vl =

const v2

cons
"v1l
"v1l
"v1l
"v1l
"v1l
"v1l
}i

r;

/*

tr
1t
le
gt
ge
eq
ne

= {
va"
va"
va"
va"
va"
va"

returns:

{"v1
"v1l
"v1l
"v1l
"v1l
"v1l

*/

1t
le
gt
ge
eq
ne

va"
va"
va"
va"
va"
va"

xs.dayTimeDuration ("P5DT4H") ;
xs.dayTimeDuration ("P1DT1H") ;

. vli.1lt
: vl.le
: vli.gt
: vli.ge
: vli.eqg
: vl.ne

:false,
:false,
:true,
:true,
:false,
:true}

2.10.3.3 xs.dateTime Comparison Methods
The following comparison methods are available on xs . datetime 0Objects:

Method Description

1t (xs.dateTime) L ess than comparison on xs . daterime Values.
Returns aBoolean.

le (xs.dateTime) Less than or equal to comparison on xs.dateTime
values. Returns aeoolean.

gt (xs.dateTime) Greater than comparison on xs . dateTime ValUes.
Returns asoolean.

ge (xs.dateTime) Greater than or equal to comparison on
xs.dateTime Values. Returns asoolean.

eq (xs.dateTime) Equality comparison on xs.dateTime ValUES.
Returns asoolean.

ne (xs.dateTime) Not equal to comparison on xs.dateTime ValUES.

Returns aBoolean.

MarkLogic 10—May, 2019

JavaScript Reference Guide—Page 42

MarkLogic Server

MarkLogic JavaScript Object API

The following are some simple examples using these methods:

const vl = xs.dateTime(xs.date('2013-08-15"),

xs.time('12:30:45-05:00"))

const v2 = xs.dateTime(xs.date('2012-04-01"),

xXs.time('01:10:25-02:00"))

const r = {

"vl1 1t v2" : v1.lt(v2),
"v1 le v2" : vl.le(v2),
"vl gt v2" : vl.gt(v2),
"vl ge v2" : vl.ge(v2),
"vl eq v2" : vl.eqg(v2),
"vl ne v2" : vl.ne(v2)
Vi

r;

/*

returns:

{"v1 1t v2":false,

"v1 le v2":false,
"vl gt v2":true,
"vl ge v2":true,

Ilvl
Ilvl

*/

eq v2":false,
ne v2":true}

2.10.3.4 xs.date Comparison Methods
The following comparison methods are available on xs.date oObjects:

Method Description

1t (xs.date) Less than comparison on xs . date values. Returns
AdABoolean.

le (xs.date) Less than or equal to comparison on xs.date
values. Returns aeoolean.

gt (xs.date) Greater than comparison on xs . date Values.
Returns asoolean.

ge (xs.date) Greater than or equal to comparison on xs.date
values. Returns asoolean.

eq(xs.date) Equality comparison on xs . date Values. Returnsa
Boolean.

ne (xs.date) Not equal to comparison on xs.date values.
Returns aBoolean.

MarkLogic 10—May, 2019

JavaScript Reference Guide—Page 43

MarkLogic Server

The following are some simple examples using these methods:

const vl = xs.date('2013-08-15") ;

MarkLogic JavaScript Object API

const v2 = xs.date('2012-04-01");

const r = {

"v1 1t v2" : v1.lt(

"vl le v2" : vl.le(

"v1l gt v2" : vl.gt(

"vl ge v2" : vl.ge(

"vl eq v2" : vl.eq(

"vl ne v2" : vl.ne(

Vi

r;

/*

returns:

{"v1 1t v2":false,
"v1 le v2":false,
"vl gt v2":true,
"vl ge v2":true,
"vl eq v2":false,
"vl ne v2":true}

*/

2.10.3.5 xs.time Comparison Methods
The following comparison methods are available on xs . time Objects:

Method Description

1t (xs.time) Less than comparison on xs . time Values. Returns
AdABoolean.

le (xs.time) Less than or equal to comparison on xs . time
values. Returns aeoolean.

gt (xs.time) Greater than comparison on xs . t ime ValUes.
Returns asoolean.

ge (xs.time) Greater than or equal to comparison on xs. time
values. Returns asoolean.

eq(xs.time) Equality comparison on xs. time Values. Returnsa
Boolean.

ne (xs.time) Not equal to comparison on xs . time Values.
Returns aBoolean.

MarkLogic 10—May, 2019

JavaScript Reference Guide—Page 44

MarkLogic Server

MarkLogic JavaScript Object API

The following are some simple examples using these methods:

const vl = xs.time('12:30:45-05:00") ;
const v2 = xs.time('01:10:25-02:00") ;

cons
"v1l
"v1l
"v1l
"v1l
"v1l
"v1l
}i

r;

/*

tr
1t
le
gt
ge
eq
ne

returns:

{"v1
"v1l
"v1l
"v1l
"v1l
"v1l

*/

1t
le
gt
ge
eq
ne

= {

v2" : vl.1lt
v2" : vl.le
va2" : vl.gt
va2" : vl.ge
va2" : vl.eqg
v2" : vl.ne
v2":false,
v2":false,
v2":true,

v2":true,

v2":false,

v2":true}

2.10.3.6 xs.gYearMonth Comparison Methods
The following comparison methods are available on xs . gvearMonth 0Objects:

Method

Description

eq (xs.gYearMonth)

Equality comparison on xs . gvearMonth ValUES.
Returns aBoolean.

ne (xs.gYearMonth)

Not equal to comparison on xs.gYearMonth
values. Returns asoolean.

MarkLogic 10—May, 2019

JavaScript Reference Guide—Page 45

MarkLogic Server MarkLogic JavaScript Object API

The following are some simple examples using these methods:

const vl = xs.gYearMonth('2013-08");
const v2 = xs.gYearMonth('2012-04"');

const r = {

"vl eq v2" : vl.eqg(v2),
"v1l ne v2" : vl.ne(v2)
Vi

r;

/*

returns:

{"vl eq v2":false,
"vl ne v2":true}

*/

2.10.3.7 xs.gYear Comparison Methods
The following comparison methods are available on xs.gvear Objects:

Method Description
eq (xs.gYear) Equality comparison on xs . gvear vValues. Returns
dBoolean.
ne (xs.gYear) Not equal to comparison on xs.gvear Values.
Returns asoolean.

The following are some simple examples using these methods:

const vl = xs.gYear ('2013");

const v2 = xs.gYear('2012");
const r = {

"vl eq v2" : vl.eqg(v2),

"vl ne v2" : vl.ne(v2)

Vi

r;

/*

returns:

{"vl eq v2":false,
"vl ne v2":true}

*/

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 46

MarkLogic Server MarkLogic JavaScript Object API

2.10.3.8 xs.gMonthDay Comparison Methods
The following comparison methods are available on xs . gMonthpay 0Objects:

Method Description
eq (xs.xs.gMonthDay) Equality comparison on xs . xs . gMonthpay ValUES.
Returns asoolean.
ne (xs.xs.gMonthbDay) Not equal to comparison on xs . xs . gMonthbay
values. Returns aeoolean.

The following are some simple examples using these methods:

const vl = xs.gMonthDay('--08-20");
const v2 = xs.gMonthDay('--04-14");
const r = {

"vl eq v2" : vl.eqg(v2),

"vl ne v2" : vl.ne(v2)

r;

/*

returns:

{"v1 eq v2":false,
"vl ne v2":true}

*/

2.10.3.9 xs.gMonth Comparison Methods
The following comparison methods are available on xs . gvonth 0Objects:

Method Description
eq (xs.gMonth) Equality comparison on xs . gMonth values.
Returns asoolean.
ne (xs.gMonth) Not equal to comparison on xs . gMonth ValUES.
Returns asoolean.

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 47

MarkLogic Server

MarkLogic JavaScript Object API

The following are some simple examples using these methods:

const vl = xs.gMonth('--08");
const v2 = xs.gMonth('--04");
const r = {

"vl eq v2" : vl.eqg(v2),

"vl ne v2" : vl.ne(v2)

}i

r;

/*

returns:

{"vl eq v2":false,

"vl ne v2":true}

*/

2.10.3.10xs.gDay Comparison Methods
The following comparison methods are available on xs . gpay oObjects:

Method

Description

eq (xs.gbhay)

Equality comparison on xs . gpay values. Returnsa

Boolean.

ne (xs.gbhay)

Not equal to comparison on xs . gpay Values.
Returns aeoolean.

The following are some simple examples using these methods:

const vl = xs.gDay('---08");
const v2 = xs.gDay('---04");
const r = {

"vl eq v2" : vl.eqg(v2),

"vl ne v2" : vl.ne(v2)

Vi

rj

/*

returns:

{"vl eq v2":false,
"vl ne v2":true}

*/

MarkLogic 10—May, 2019

JavaScript Reference Guide—Page 48

MarkLogic Server MarkLogic JavaScript Object API

2.11 MarkLogic JavaScript Functions

There are alarge number of MarkL ogic built-in functions available in JavaScript. In general, most
functions available in XQuery have siblings that are available in JavaScript. For details on the
MarkL ogic functions available in JavaScript, see “ JavaScript Functions and Constructors’ on
page 50.

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 49

MarkLogic Server JavaScript Functions and Constructors

3.0 JavaScript Functions and Constructors

This chapter describes how to use the MarkL ogic built-in functions, and describes how to import
and use XQuery librariesin your JavaScript program. It includes the following sections:

e Built-In JavaScript Functions

¢ Functions That are part of the Global Object

¢ Using XQuery Functions and Variables in JavaScript

* Importing JavaScript Modules Into JavaScript Programs

e Other MarkLogic Objects Available in JavaScript

* Amps and the module.amp Function

e JavaScript Type Constructors

3.1 Built-In JavaScript Functions

MarkL ogic contains many built-in functions that offer fast and convenient programmatic access
to MarkL ogic functionality. The built-in functions are available as JavaScript functions without
the need to import or require any libraries (that iswhy they are called “ built-in”). You can find the
functions in the Server-Side JavaScript API Documentation.

The functions are available via the following global objects:

e cts.

e fn.

e math.
e rdf.

e sc.

e sem.

e spell.
e sgl.

e xdmp.

for example, to get the current time, you can call the following:

fn.currentDateTime () ;

3.2 Functions That are part of the Global Object

There are MarkL ogic-specific functions that are part of the global JavaScript object (without a
namespace prefix). This section calls out the following global functions:

¢ declareUpdate Function

* require Function

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 50

http://docs.marklogic.com/js/all

MarkLogic Server JavaScript Functions and Constructors

3.2.1 declareUpdate Function

In order to perform an update to a document, you must declare the transaction as an update; if
declareUpdate IS NOt called at the beginning of a statement, the statement isrun as aquery. The
followi ng isthe syntax of the declareUpdate function (see Global-Object. declareUpdate):

declareUpdate (Object options)

where options iSan optional argument as follows:

{explicitCommit: true/false}

If the options argument is omitted Or explicitcommit Property isset to raise, the transaction is
automatically committed. If the explicitcommit property isset to crue, thenit startsa
multi-statement transaction and requires an explicCit xdmp . commit OF xdmp.rollback t0 complete
the transaction.

For details on transactions, see Understanding Transactions in MarkLogic Server in the Application
Developer’s Guide.

The following is an example of an update transaction in JavaScript:

declareUpdate () ;

const myDoc = {"foo":"bar"};

xdmp . documentInsert (" /myDoc.json", myDoc) ;
// creates the /myDoc.json document

The following runs as a multi-statement transaction (although this transaction only has asingle
statement):

declareUpdate ({explicitCommit: true});
const myDoc = {"foo":"bar"};

xdmp . documentInsert (" /myDoc.json", myDoc) ;
xdmp . commit () ;

// creates the /myDoc.json document

3.2.2 reqguire Function

The require function (See ciobal-object.require) iSavailablein the global object, and it allows
you to import alibrary into your JavaScript program. For details, see “require Function” on

page 52.

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 51

MarkLogic Server JavaScript Functions and Constructors

3.3 Using XQuery Functions and Variables in JavaScript

You can import XQuery library modules into a Server-Side JavaScript program and then call
those functions and/or variables from JavaScript. Importing XQuery librariesisuseful if you have
existing XQuery code that you want to use in your JavaScript programs, and it isalso useful if you
want to perform atask that is well-suited to XQuery from your JavaScript Program. This section
describes how to use X Query modules with your JavaScript programs and includes the following
parts:

* require Function

* |mporting XQuery Modules to JavaScript Programs

3.3.1 require Function
You can import an XQuery or JavaScript library by using the following JavaScript function:

require (String location)

where 1ocation iSthe path to the JavaScript or XQuery file. The extension of the path can be
omitted for ssmplicity. The path obeys the same rules for XQuery defined in Rules for Resolving
Import, Invoke, and Spawn Paths in the Application Devel oper’s Guide.

Typically, the require function isthefirst line of the JavaScript program, and a program can have
0 or more require functions. When importing an XQuery library, a common practice isto name
your JavaScript variable as you would name your namespace prefix. For example, if you are
importing the Search API library, your require statement might look as follows:

const search = require ("/MarkLogic/appservices/search/search.xgy") ;
search.search("hello") ;
// returns a search response for documents matching "hello"

3.3.2 Importing XQuery Modules to JavaScript Programs

MarkLogic has arich set of XQuery library modules to make it easy to write programsto do a
variety of things, such as building a search application, building an alerting application, adding
spelling correction to your application, and so on. You might have created your own rich sets of
XQuery libraries. There might be something (such as an X Path statement) that is convenient to
write in XQuery but might be less convenient to write in JavaScript.

You can make use of these XQuery librariesin MarkLogic Server-Side JavaScript programs by
using the require function. This section describes the mapping of names and types from an
XQuery environment to a JavaScript environment and includes the following parts:

e Mapping Between XQuery Function and Variable Names to JavaScript

e Type Mapping Between XQuery and JavaScript

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 52

MarkLogic Server JavaScript Functions and Constructors

3.3.2.1 Mapping Between XQuery Function and Variable Names to
JavaScript

In XQuery, it iscommon to create function and variable names with hyphens (-) in them; in
JavaScript, a hyphen (-) is a subtraction operator, so the names are not compatible. In JavaScript,
camel Case is a common way to name functions and variables. To deal with these differences
between the languages, any X Query function or variable imported to a JavaScript program with
the require function is accessible according to the following rules:

* Namespace prefixes, which in XQuery are followed by a colon (:) and then the function
local name, are denoted by the namespace prefix followed by a period (.), like any object
notation.

* Function or variable names that have hyphen characters (-) are converted to camel Case
names. For example, afunction in XQuery named my - function IS available to JavaScript
with the name myFunction.

» For cases where the above rules might cause some ambiguity (these cases are rare), you
can also access afunction by its bracket notation, using the literal names from the X Query
function or variable. For example, an XQuery function names helio:my-worid (that is, a
function bound to the ne11o prefix with the local name my-wor1ad) can be accessed with the
following JavaScript notation: hello ["my-world"] ().

You can use these rules to access any public XQuery function or variable from your JavaScript
program.

3.3.2.2 Type Mapping Between XQuery and JavaScript

JavaScript haslooser typing rules that X Query, and also has fewer typesthan X Query. MarkL ogic
automatically maps types from XQuery to JavaScript. The following table shows how XQuery
types are mapped to JavaScript types.

XQuery Type JavaScript Type Notes
xs:boolean Boolean
xs:integer Integer
xs:double Number
xs:float Number
xs:decimal Number If the value us greater than

9007199254740992 or the scaleislessthan
0, then the value is a String.

json:array Array

json:object Object

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 53

MarkLogic Server JavaScript Functions and Constructors

XQuery Type JavaScript Type Notes
map : map Object
xs:date Date Any extraprecision is preserved.
xs:dateTime Date Any extraprecision is preserved.
xs:time String
empty-sequence () | null
item() String
xs:anyURI String
node () Node
node () * ValuelIterator

3.4 Importing JavaScript Modules Into JavaScript Programs

You can use the require function to import a Server-Side JavaScript library into a Server-Side
JavaScript program. When you import a JavaScript library using the require function, al of the
functions and global variablesin the JavaScript library are available viathe exports object, which
isreturned by the require function. For example:

const circle = require("circle.js");
circle.area (4) ;

// evaluates the area function from circle.js,
// passing 4 as its parameter

You can import JavaScript libraries with either the . s or .sjs extension (with corresponding

mi Metypes application/javascript and application/vnd.marklogic-j avascript). You cannot,
however, serve up directly from the App Server a Server-Side JavaScript module with a . 5s file
extension; directly served modules need a . s5s extension. For more details about the require
function, see “require Function” on page 52.

3.5 Other MarkLogic Objects Available in JavaScript

There are anumber of MarkL ogic objects available in JavaScript to make it easier to work with
nodes and documents in JavaScript. For details on these objects, see “MarkL ogic JavaScript
Object API” on page 11.

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 54

MarkLogic Server JavaScript Functions and Constructors

3.6 Amps and the module.amp Function

You can create amped functions in JavaScript. An amped function is afunction that evaluates
with amplified privileges based on the role to which an amp is configured. Amps require a
function that isin the Modules database or under the <marklogic-dir>/Modul es directory, as well
asapiece of configuration (the amp) in the security database. For details on amps, see Temporarily
Increasing Privileges with Amps in the Security Guide. This section describes JavaScript amps and
includes the following parts:

* module.amp Function

¢ Simple JavaScript Amp Example

3.6.1 module.amp Function
The module.amp function has the following signature:

module.amp (Function namedFunction)

It must be used in an exports statement that isin a JavaScript module that isin the Modules
database or is under the <marklogic-dir>/Modules directory. A sample exports statement is as
follows:

exports.ampedFunctionName = module.amp (ampedFunctionName) ;

where ampedrunctionName iSthe name of the function in your library to be amped.

Use the import.meta.amp() function to amp with ES6 modules. Use the style shown in the
following sample statement:

export function fileExists(filename) {
xdmp.filesystemFileExists (filename) ;

}

export const fileExistsAmped = import.meta.amp(fileExists) ;

3.6.2 Simple JavaScript Amp Example

The following creates a JavaScript module for an amp, creates an amp to reference the module,
and then calls the function from another module. The result is that the function can be run by an
unprivileged user, even though the function requires privileges.

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 55

MarkLogic Server JavaScript Functions and Constructors

1 Create the amp module as afile in your Modules database or under the
<marklogic-dir>/Modules directory. For example, on aUNIX system, create the
following file as /opt /MarkLogic/test-amp.sjs (You will need to make surethefileis
readable by MarkL ogic):

// This is a simple amp module
// It requires creating an amp to the URI of this sjs file with the
// function name.

function ampedInsert ()
xdmp .document Insert (" /amped.json", {prop:"this was produced by an \n\
amped function"}, [xdmp.permission("gconsole-user", "read"),
xdmp .permission ("gconsole-user", "update")]l);

}i
exports.ampedInsert = module.amp (ampedInsert) ;

2. Create the amp that points to this function. For example, in the Admin Interface, go to
Security > Amps and select the Create tab. Then enter the name of the amp function under
local name (ampednsert), leave the namespace blank, enter the path to the JavaScript
module (for example, /test-amp.sjs), Select filesystem for the database, and finally
assign it arole to which the function amps. For this example, sect the admin role.

3. Now, from an App Server root, create a JavaScript module with the following contents:

declareUpdate () ;
const mod = require("/test-amp.sjs");
mod.ampedInsert () ;

4, As an unprivileged user, run the program created above. For example, if the program was
saved as /space/appserver/test.sjs, and your App Server root on port 8005is
/space/appserver,thEYIaCCeSShttp://localhost:8005/test.sjs.

Y ou can create an unprivileged user in the Admin Interface by creating a user without
giving it any roles.

You can then go to Query Console and see that it created the document called /amped. §son.

This example is simplified from areal-world example in two ways. Firgt, it places the amped
module under the Modules directory. The best practice is to use a modules database to store your
amped function. Note that when using amodules database, you need to insert the module into that
database with the needed permissions on the document. Second, the example amps to the admin
role. In areal-world example, it is best practice to create arole that has the minimal privileges
needed to perform the functions that users with the role require.

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 56

MarkLogic Server JavaScript Functions and Constructors

3.7 JavaScript Type Constructors

There are MarkL ogic-specific constructors added to the JavaScript environment to allow you to
construct X Query types in JavaScript. The constructors have the same names as their XQuery
counterparts, but with adot (.) instead of a colon(:) to separate the namespace from the
constructor name. For constructors that have aminus sign (-) in them, you will have to put square
brackets around the local nameto call it (for example, cts['complex-polygon']).

To use each constructor, pass a constructible object into the constructor. The following example
shows how to use the xs . oname cONstructor:

fn.namespaceUriFromQName (xs.QName ("xdmp: foo"))
=> http://marklogic.com/xdmp
(because the xdmp namespace is always in scope)

Thefollowing isalist of MarkLogic constructors that you can call from JavaScript.

xs.simpleDerivationSet
Xs.gYear

xs.public

xs.language

xs.short

xs.decimal
xs.reducedDerivationControl
xs.gYearMonth

xs.date

xs.double
xs.nonPositiveInteger
xs.positivelInteger
xs.blockSet
xs.normalizedString
xs.namespacelist
xs.gMonth

xs.integer

xs.int
xs.anyAtomicType
xs.gMonthDay

xs .NCName
xs.unsignedShort
xs.derivationControl
xs.IDREFS
xs.derivationSet

xs . token

xs.1D
xs.nonNegativeInteger
xs.anyURI

xs .NMTOKEN

xs.allNNI

XS .QName
xs.base64Binary
xs.boolean

xs.long

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 57

MarkLogic Server

XSs.
XS
XSs.
XSs.
XS
XSs.
XS
xS
XSs.
XSs.
XSs.
XS
XSs.
XSs.
XS
XSs.
XS
XSs.
XSs.
XSs.
Xs.
Xs.
cts

cts.

cts

cts.
cts.
cts.
cts.
cts.
cts.

cts

cts.
cts.

cts

cts.
cts.

cts

cts.
cts.

cts

cts.

cts
cts

cts.
cts.

cts

cts.
cts.

cts

cts.
cts.

cts

cts.

Name

.yearMonthDuration

duration
NMTOKENS

.dayTimeDuration

negativeInteger

.NOTATION
.unsignedInt

unsignedLong
untypedAtomic
formChoice

.dateTime

float
ENTITY

.byte

time

.unsignedByte

ENTITIES

string

IDREF

hexBinary

gDay

.andNotQuery

andQuery

.boostQuery

box

circle

collectionQuery
collectionReference
complexPolygon
confidenceOrder
.directoryQuery
documentFragmentQuery
documentOrder
.documentQuery
elementAttributePairGeospatialQuery
elementAttributeRangeQuery
.elementAttributeReference
elementAttributeValueQuery
elementAttributeWordQuery
.elementChildGeospatialQuery
elementGeospatialQuery
.elementPairGeospatialQuery
.elementQuery
elementRangeQuery
elementReference
.elementValueQuery
elementWordQuery
falseQuery
.fieldRangeQuery
fieldReference
fieldvalueQuery
.fieldWordQuery
fitnessOrder

MarkLogic 10—May, 2019

JavaScript Functions and Constructors

JavaScript Reference Guide—Page 58

MarkLogic Server

cts.

cts

cts.
cts.

cts

cts.

cts
cts

cts

cts.
cts.

cts

cts

cts

cts

cts

cts

cts

cts

cts

cts

cts

cts

cts
cts

JavaScript Functions and Constructors

geospatialElementAttributePairReference

.geospatialElementChildReference
geospatialElementPairReference
geospatialElementReference
.geospatialdsonPropertyChildReference
geospatialdsonPropertyPairReference
.geospatialdsonPropertyReference
.geospatialPathReference
cts.
cts.

indexOrder

jsonPropertyChildGeospatialQuery
.jsonPropertyGeospatialQuery
jsonPropertyPairGeospatialQuery

jsonPropertyRangeQuery

.jsonPropertyReference
cts.
cts.

jsonPropertyScopeQuery
jsonPropertyValueQuery

.jsonPropertyWordQuery
cts.
cts.
.longLatPoint
cts.
cts.

linestring
locksFragmentQuery

lsgtQuery
nearQuery

.notInQuery
cts.
cts.
.orQuery
cts.
cts.

notQuery
order

pathGeospatialQuery
pathRangeQuery

.pathReference
cts.
cts.

period
periodCompareQuery

.periodRangeQuery
cts.
cts.

point
polygon

.propertiesFragmentQuery
cts.
cts.

punctuation
qualityOrder

.query
cts.
cts.

reference
region

.registeredQuery
cts.
cts.
.searchOption
cts.
cts.

reverseQuery
scoreOrder

similarQuery
space

.special
cts.
cts.
.tripleRangeQuery
.trueQuery

cts.
cts.
cts.

termQuery
token

unordered
uriReference
word

MarkLogic 10—May, 2019

JavaScript Reference Guide—Page 59

MarkLogic Server JavaScript Functions and Constructors

cts.wordQuery
dir.type
math.coefficients
sem.iri
sem.variable
sem.blank

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 60

MarkLogic Server Converting JavaScript Scripts to Modules

4.0

Converting JavaScript Scripts to Modules

Evaluating a JavaScript program may generate side-effects on the JavaScript global environment;
therefore, each JavaScript program is evaluated in a separate v8 context. The overhead of creating
such a context is significant, and in the recent v8 version that overhead has increased by roughly

40%.

To compensate for this overhead, it is suggested that you convert your JavaScript scripts to
JavaScript modules.

4.1

Benefits of JavaScript Modules

Other differences between JavaScript Scripts and Modules

Performance Considerations

Creating and Using ES6 Modules

Dynamic Imports are not Allowed

Using JavaScript Modules in the Browser

New Mimetype for JavaScript Modules

Importing MarkLogic Built-ln Modules

Evaluating Variables with ES6 Modules

Benefits of JavaScript Modules

In addition to the performance improvements, there are some other side benefitsto using
JavaScript modules, such as:

4.2

Modules may be executed any humber of times, but are loaded only once, thus improving performance.
Module scripts may be shared by multiple applications.

Modules help identify and remove naming conflicts. The content page will not load if there are naming clashes across
different modules. This helpsidentify conflicts early in your development cycle.

If anything changes in the modul e dependency chain, the issue isidentified quickly during module parsing.
Your code may be created as a set of small, maintainable files, which will help with very large projects.

For convenience, you may then bring together under all those small modules under the scope of a single module.

Other differences between JavaScript Scripts and Modules

In addition to the performance improvements, there are some other side benefitsto using
JavaScript modules, such as:

Modules are always executed in strict mode, regardless of whether strict mode is declared.
Modules may both import and export.
Just about any object may be exported, including class, function, let, var or const and any top-level function.

Module code is (with the exception of export) regular JavaScript code and can use any object or other functionality
available to any other JavaScript program.

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 61

MarkLogic Server Converting JavaScript Scripts to Modules

« By default, everything declared in an ES6 module is private, and runs in strict mode. Only functions, classes, variables
and constants that are exposed using export are public.

¢ Module objects are frozen and there is no way to modify them once they are loaded.

« All import and export declarations must be made at the top level. So you cannot declare an export inside afunction, or as
part of a conditional clause. You also cannot export items programmatically by iterating through an array or on demand.

« Thereisno way to recover from an import error. Program execution will stop as soon as any module in the dependency
tree failsto load. All module dependencies are |oaded eagerly, and there is no programmatic way to load a module on
demand.

4.3 Performance Considerations

Evaluating a JavaScript program may generate side-effects on the JavaScript global environment;
therefore, each JavaScript program is evaluated in a separate v8 context. The overhead of creating
such a context is significant, and in the recent v8 version that overhead has increased by roughly
40%.

To compensate for this overhead, it is suggested that you convert your JavaScript scripts to
JavaScript modules. A JavaScript module program is one that adheres to the following:

1 A program that uses strict JavaScript syntax and can be compiled as a JavaScript module.
2. A program that contains a main module with the “.mjs’ extension.
3. Any ad hoc program that usesimport or export syntax.

For further reading on the details of converting script programs into module programs, please see
the chapter on modules in the ECMASCRIPT Language Specification.

4.4 Creating and Using ES6 Modules

Creating an ES6 module may be accomplished by adding an export Statement to any JavaScript
script file: Thiswill make the objects being exported available for al scripts to import.

Public variables, functions and classes are exposed using an export Statement. By default, all
declared objects within an ES6 module are private. The module runsin strict mode with no need
for theuse strict declaration. Here is a simple example:

// myMathLib.mjs

export const PI = 3.14159265359;
export const E = 2.718281828459;
export const GAMMA = 0.577215;

export const reducer = (accumulator, currentValue) => accumulator +
currentValue;

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 62

https://tc39.es/ecma262/#sec-modules

MarkLogic Server Converting JavaScript Scripts to Modules

// The following objects are private

const G = 0.915965594177;

const x

0.110001000000000000000001;

export function adder (arguments) {
console.log('Grand Total: ', arguments) ;
return arguments.reduce (reducer) ;

}

You may also dispense with al individua export Statements and use asingle export line to
define them al:

// myMathLib.mjs

const PI = 3.14159265359;
const E = 2.718281828459;
const GAMMA = 0.577215;

const reducer = (accumulator, currentValue) => accumulator +
currentValue;

// The following objects will remain private

const G = 0.915965594177;

const x = 0.110001000000000000000001;

export function adder (arguments) {
console.log('Grand Total: ', arguments) ;

return arguments.reduce (reducer) ;

export { PI, E, GAMMA, reducer, adder, ... };

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 63

MarkLogic Server Converting JavaScript Scripts to Modules

You then use an import Statement to pull items from a module into another script or module:

// myScript.js

import { adder } from './myMathLib.mjs';

console.log(adder(1,2,3,4,5));
=> 15

From the import Sstatement, we know that myMathL ib.mjs resides in the same directory as
myScript.js. In addition to the relative path shown above, you may also use:

* Full URLs- starting with HTTPS or FILE.
» Absolutefile references - starting with /.

Multiple items may be imported in the same export line:

import { adder, aglomerator } from './myMathLib.mjs';

console.log(adder(1,2,3,4,5)); // 15

console.log(aglomerator(1,2,3,4,5)); // 12345

To resolve naming collisions, imported functions may be aliased as follows:

import { adder as sum, aglomerator as glob } from './myMathLib.mjs';

console.log(sum(1,2,3,4,5)); // 15

console.log(glob(1,2,3,4,5)); // 12345

Lastly, you are able to import al public items by providing a namespace:

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 64

MarkLogic Server Converting JavaScript Scripts to Modules

import * as trans from './myMathLib.mjs';

console.log(trans.PI); // 3.14159265359
console.log(trans.E); // 2.718281828459
console.log(trans.GAMMA); // 0.577215

4.5 Dynamic Imports are not Allowed

As stated above: All import and export declarations must be made at the top level. So you cannot
declare an export inside afunction, or as part of a conditional clause. You also cannot export
items programmatically by iterating through an array or on demand

import ... from someFunction(); // ERROR: may only import from "string"

The following statements will also not work:

if (some-condition)

import ...; // ERROR: can’t import conditionally

import ...; // ERROR: import is only allowed at the top level

}

The net result isthat, by only allowing import at the top level, your code is much more easy to
parse, analyze and to bundle. In the process, unused functions will be *shakes out,” potentially
reducing the size of the executable. Thisis possible because of the strict rules under which
modul es operate.

4.6 Using JavaScript Modules in the Browser

On the web, you can tell browsers to treat a <script> element as a module by setting the type
attribute to module.

<script type="module" src="optic.mjs"></scripts>

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 65

MarkLogic Server Converting JavaScript Scripts to Modules

<script nomodule src="optic.sjs"></scripts>

Thisworks because modern browsers understand type="module" and will also ignore scripts with
anomodule atribute. This allows the programmer to serve a module-based payload to
module-supporting browsers while providing afailover mode to older browsers. Only older
browsers will get the nomodu1e payload.

4.7 New Mimetype for JavaScript Modules
In order to support JavaScript module programs, a new server mimetype has been created. All

module URIs must conform to the new mimetype:

* name: “application/vnd.marklogic-js-modul €”

* Extension: “mjs’
You may view this new mimetype by navigating to the Admin Ul and selecting the Mimetypes
from the explorer pane.

The extension for amodule URI in the import statement may be omitted. When the module URI
in an import statement doesn’t contain an extension, an extension mapping to any of the above
MIME types must be added to resolve the specified module. For example:

import { square, diag } from 'lib/top'; // map to lib/top.js or lib/top.mjs

4.8 Importing MarkLogic Built-In Modules

Based on these Performance Considerations, it is recommended that you import the following
modules:

jsearch.mjs instead of jsearch.gs.
optic.mjsinstead of optic.gs
Hereis an example of importing optic.mjs:
'use strict';
import op from '/MarkLogic/optic.mjs';
op.fromLiterals ([
{group:1, val:2},
{group:1, val:4},
{group:2, val:3},

{group:2, val:5},

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 66

MarkLogic Server Converting JavaScript Scripts to Modules

{group:2, val:7}
1)
.groupBy ('group', op.avg('valAvg', 'wval'))
.result () ;
=>
{"group":1, "valAvg":3}

{"group":2, "valAvg":5}

Here is an example of importing jsearch.mjs:

// Find all documents where the "author" JSON property value is "Mark
Twain"

import jsearch from '/MarkLogic/jsearch.mjs';

jsearch.documents ()
.where (jsearch.byExample ({author: 'Mark Twain'}))
.result ()

=>

{

"results": ...,

"estimate": 25

}

4.9 Evaluating Variables with ES6 Modules

Sometimes you will need to evaluate a JavaScript snippet from within an XQuery program. Prior
to ES6, you could simply pass the names of the required variables as a map of string and value
pairs. For instance, given the following program:

hello.gs:

'use strict';

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 67

MarkLogic Server Converting JavaScript Scripts to Modules

function specialFunction (

X, Y

return "Hello " + x + " and " + vy;
module.exports.specialFunction = specialFunction;

You could invoke it viathe following code:

xguery version “1.0”;

let $x := "'use strict'; var ext=require('/hello.sjs');
ext.specialFunction(x,y) ;"

return

xdmp:javascript-eval ($x,map:map () =>map:with("x","Laurel")=>map:with("y
n , IlHardyll)) ,.

Hello Laurel and Hardy

In ES6 modules, the same code will complain about variable x being undefined. Thisis becausein
ES6, variables are available as properties on the external global object. So you will need to
re-write your module in the following manner:

hello.mjs:

'use strict';

export function specialFunction(x,y)

{

return "Hello " + x + " and " + y;
}i
And your code that imports this module will look like this:
Xquery version "1.0-ml";

let $x := "'use strict'; import {specialFunction} from '/hello.mjs';
specialFunction (external .x,external.y) ;"

return

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 68

MarkLogic Server Converting JavaScript Scripts to Modules

xdmp:javascript-eval ($x,map:map () =>map:with ("x", "Tom")=>map:with("y
Jerry")) ;

n n
1

Hello Tom and Jerry

Note that use of external.x and external.y inthe function call. Thisisthe way to reference
variablesin the externa1 global object.

MarkLogic 10—May, 2019 JavaScript Reference Guide—Page 69

MarkLogic Server Technical Support

5.0 Technical Support

MarkL ogic provides technical support according to the terms detailed in your Software License
Agreement or End User License Agreement.

We invite you to visit our support website at http://help.marklogic.com to access information on
known and fixed issues, knowledge base articles, and more. For licensed customers with an active
maintenance contract, see the Support Handbook for instructions on registering support contacts
and on working with the MarkL ogic Technical Support team.

Complete product documentation, the latest product release downloads, and other useful
information is available for al developers at http:/developer.marklogic.com. For technical
guestions, we encourage you to ask your question on Stack Overflow.

MarkLogic 10

http://help.marklogic.com/
https://stackoverflow.com/questions/tagged/marklogic
http://developer.marklogic.com
http://www.marklogic.com/files/Mark_Logic_Support_Handbook.pdf

MarkLogic Server Technical Support

MarkLogic 10—May, 2019 Administrator’ s Guide—Page 71

MarkLogic Server Copyright

6.0 Copyright

MarkLogic Server 10.0 and supporting products.
Last updated: February, 2022

Copyright © 2022 MarkL ogic Corporation. All rights reserved.
Thistechnology is protected by U.S. Patent No. 7,127,469B2, U.S. Patent No. 7,171,404B2, U.S.
Patent No. 7,756,858 B2, and U.S. Patent No 7,962,474 B2, US 8,892,599, and US 8,935,267.

The MarkL ogic software is protected by United States and international copyright laws, and
incorporates certain third party libraries and components which are subject to the attributions,
terms, conditions and disclaimers set forth below.

For all copyright notices, including third-party copyright notices, see the Combined Product
Notices for your version of MarkLogic.

MarkLogic 10

MarkLogic Server Copyright

MarkLogic 10—May, 2019 Administrator’s Guide—Page 73

	JavaScript Reference Guide
	Table of Contents
	1.0 Server-Side JavaScript in MarkLogic
	1.1 Google V8 JavaScript Engine
	1.2 Familiarity For the JavaScript Developer
	1.3 Server-Side MarkLogic Power for Data Services
	1.4 Dates in Server-Side JavaScript
	1.5 Numeric Datatype Mappings in JavaScript
	1.6 JavaScript in Query Console
	1.7 Programming in Server-Side JavaScript
	1.8 Using xdmp.invoke or xdmp.invokeFunction for Scripting
	1.9 Each App Server Thread Runs a V8 Engine Instance
	1.10 Exception Handling
	1.11 Interaction with XQuery

	2.0 MarkLogic JavaScript Object API
	2.1 Node and Document API
	2.1.1 Node Object
	2.1.2 Document Object

	2.2 XML DOM APIs
	2.2.1 Node Object for XML Nodes
	2.2.2 Document Object for Document Nodes
	2.2.3 NodeBuilder API
	2.2.4 Element
	2.2.5 Attr
	2.2.6 CharacterData and Subtypes
	2.2.7 TypeInfo
	2.2.8 NamedNodeMap
	2.2.9 NodeList

	2.3 Value Object
	2.3.1 Example: xs:date as Value
	2.3.2 Comparison to Native JavaScript Values
	2.3.3 Example: Comparison between a Value and a Number

	2.4 Accessing JSON Nodes
	2.5 Sequence
	2.6 ValueIterator
	2.7 JavaScript instanceof Operator
	2.8 JavaScript Error API
	2.8.1 JavaScript Error Properties and Functions
	2.8.2 JavaScript stackFrame Properties
	2.8.3 JavaScript try/catch Example

	2.9 JavaScript console Object
	2.10 JavaScript Duration and Date Arithmetic and Comparison Methods
	2.10.1 Arithmetic Methods on Durations
	2.10.2 Arithmetic Methods on Duration, Dates, and Times
	2.10.3 Comparison Methods on Duration, Date, and Time Values

	2.11 MarkLogic JavaScript Functions

	3.0 JavaScript Functions and Constructors
	3.1 Built-In JavaScript Functions
	3.2 Functions That are part of the Global Object
	3.2.1 declareUpdate Function
	3.2.2 require Function

	3.3 Using XQuery Functions and Variables in JavaScript
	3.3.1 require Function
	3.3.2 Importing XQuery Modules to JavaScript Programs

	3.4 Importing JavaScript Modules Into JavaScript Programs
	3.5 Other MarkLogic Objects Available in JavaScript
	3.6 Amps and the module.amp Function
	3.6.1 module.amp Function
	3.6.2 Simple JavaScript Amp Example

	3.7 JavaScript Type Constructors

	4.0 Converting JavaScript Scripts to Modules
	4.1 Benefits of JavaScript Modules
	4.2 Other differences between JavaScript Scripts and Modules
	4.3 Performance Considerations
	4.4 Creating and Using ES6 Modules
	4.5 Dynamic Imports are not Allowed
	4.6 Using JavaScript Modules in the Browser
	4.7 New Mimetype for JavaScript Modules
	4.8 Importing MarkLogic Built-In Modules
	4.9 Evaluating Variables with ES6 Modules

	5.0 Technical Support
	6.0 Copyright

