
Copyright © 2019 MarkLogic Corporation. All rights reserved.

MarkLogic Server

Java Application Developer’s Guide
1

MarkLogic 10
May, 2019

Last Revised: 10.0, May, 2019

MarkLogic Server Table of Contents
Table of Contents

Java Application Developer’s Guide

1.0 Introduction to the Java API ..12
1.1 Java Client API Overview ..12
1.2 Java Client API or Java XCC? ..13
1.3 Getting Started ..14

1.3.1 Required Software ..14
1.3.2 Make the Libraries Available to Your Application14

1.3.2.1 ZIP File ..14
1.3.2.2 Maven ..15
1.3.2.3 Gradle ..15

1.3.3 Choose a REST API Instance ...15
1.3.4 Create Users ..16
1.3.5 Explore the Examples ...16

1.4 Creating, Working With, And Releasing a Database Client17
1.4.1 The Role of a Database Client ..17
1.4.2 Expected Database Client Lifetime ..17
1.4.3 Connection Management and Configuration ..17
1.4.4 Creating a Database Client ...18
1.4.5 Connecting Through a Load Balancer ..19
1.4.6 Releasing a Database Client ...19

1.5 Authentication and Connection Security ..20
1.5.1 Creating a SecurityContext Object ...20
1.5.2 Using Kerberos Authentication ..20

1.5.2.1 Configuring MarkLogic to Use Kerberos21
1.5.2.2 Configuring Your Client Host for Kerberos21
1.5.2.3 Creating a Database Client that Uses Kerberos22

1.5.3 Connecting to MarkLogic with SSL ...22
1.5.4 Using SAML Authentication ..24

1.6 A Basic “Hello World” Method ..26
1.7 Document Managers ...26
1.8 Streaming ..27
1.9 Using Handles for Input and Output ...27

1.9.1 Handle Overview ..27
1.9.2 Specifying Content Format ...29
1.9.3 Handle Type Quick Reference ..29
1.9.4 Handle Example ..30

1.10 Shortcut Methods as an Alternative to Creating Handles31
1.10.1 Understanding Shortcut Methods ...31
1.10.2 When to Choose Strongly Typed Over Shortcut32
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 2

MarkLogic Server Table of Contents
1.10.3 Extending Shortcuts by Registering Handle Factories33
1.11 Thread Safety of the Java API ..34
1.12 Downloading the Library Source Code ..34

2.0 Single Document Operations ...36
2.1 Document Creation ...36

2.1.1 Writing an XML or JSON Document To The Database37
2.1.2 Creating a Text Document In the Database ..38
2.1.3 Automatically Generating Document URIs ..39
2.1.4 Format-Specific Write Capabilities ..40

2.2 Document Deletion ...40
2.3 Reading Document Content ..41
2.4 Writing A Binary Document ...43
2.5 Reading Content From A Binary Document ..43
2.6 Reading, Modifying, and Writing Metadata ...43

2.6.1 Document Metadata ..44
2.6.2 Reading Document Metadata ..44
2.6.3 Collections Metadata ..46
2.6.4 Values Metadata ...47
2.6.5 Properties Metadata ..48
2.6.6 Quality Metadata ...48
2.6.7 Permissions Metadata ...49
2.6.8 Manipulating Document Metadata In Your Application49
2.6.9 Writing Metadata ..50

2.7 Working with Temporal Documents ..50
2.8 Conversion of Document Encoding ..51
2.9 Partially Updating Document Content and Metadata ...53

2.9.1 Introduction to Content and Metadata Patching54
2.9.2 Basic Steps for Patching Documents and Metadata56
2.9.3 Construct a Patch From Raw XML or JSON ...58
2.9.4 Defining the Context for a Patch Operation ...60
2.9.5 Example: Replacing Parts of a JSON Document60
2.9.6 Example: Patching Metadata ..61
2.9.7 Managing XML Namespaces in a Patch ...65

2.9.7.1 Defining Namespaces With a Builder66
2.9.7.2 Defining Namespaces in Raw XML ...67

2.9.8 Construct Replacement Data on the Server ..67

3.0 Synchronous Multi-Document Operations ..70
3.1 Write Multiple Documents ...70

3.1.1 Overview of Multi-Document Write ..70
3.1.2 Example: Loading Multiple Documents ...72
3.1.3 Understanding Metadata Scoping ...73
3.1.4 Understanding When Metadata is Preserved or Replaced76
3.1.5 Example: Controlling Metadata Through Defaults77
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 3

MarkLogic Server Table of Contents
3.1.6 Example: Adding Documents to a Collection ..80
3.1.7 Example: Writing a Mixed Document Set ..81

3.2 Read Multiple Documents by URI ...83
3.3 Read Multiple Documents Matching a Query ..84

3.3.1 Overview of Multi-Document Read by Query ...84
3.3.2 Example: Read Documents Matching a Query ...85
3.3.3 Add Query Options to a Search ..87
3.3.4 Return Search Results ...88
3.3.5 Read Documents Incrementally ..88
3.3.6 Extracting a Portion of Each Matching Document89

3.4 Apply a Read Transformation ...90
3.5 Selecting a Batch Size ...91

4.0 Asynchronous Multi-Document Operations ..92
4.1 Terms and Definitions ..93
4.2 Data Movement Feature Overview ...94
4.3 Data Movement Concepts ...95

4.3.1 Summary of Key Classes and Interfaces ..96
4.3.2 Basic Data Movement Job Life Cycle ..96
4.3.3 Job Types ..98

4.3.3.1 Write Job ...98
4.3.3.2 Query Job ..99

4.3.4 Object Lifetime Considerations ..101
4.3.5 How Work is Distributed Across a Cluster ..101

4.4 Creating and Managing a Write Job ...102
4.4.1 Creating a Batcher and Configuring a Write Job103
4.4.2 Attaching Listeners to a Write Job ...103
4.4.3 Starting a Write Job ..104
4.4.4 Adding Documents and Metadata to a Job ...104
4.4.5 Stopping a Write Job ...105
4.4.6 Write Job Performance Considerations ..107

4.4.6.1 Batch Size ..107
4.4.6.2 Thread Count ...108
4.4.6.3 Work Item Input Rate ..108
4.4.6.4 Listener Design ...108

4.4.7 Example: Loading Documents From the Filesystem108
4.5 Creating and Managing a Query Job ..110

4.5.1 Creating and Configuring a Query Job ...110
4.5.2 Attaching Listeners to a Query Job ...112
4.5.3 Starting a Query Job ...113
4.5.4 Stopping a Query Job ..113
4.5.5 Using a Consistent Snapshot ...114

4.5.5.1 When to Use a Consistent Snapshot ..115
4.5.5.2 How to Use a Consistent Snapshot ...115
4.5.5.3 The Problem Solved by a Consistent Snapshot115

4.5.6 Performance Considerations for Query Jobs ..117
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 4

MarkLogic Server Table of Contents
4.5.6.1 Batch Size ..117
4.5.6.2 Thread Count ...118
4.5.6.3 Listener Design ...118

4.6 Reading Documents from MarkLogic ..118
4.6.1 Using ExportListener to Read Documents ...119
4.6.2 Using ExportToWriterListener to Read Documents120
4.6.3 Example: Exporting Documents that Match a Query122

4.7 Applying an In-Database Transformation ..124
4.7.1 Applying an In-Database Transformation with QueryBatcher124
4.7.2 Example: Applying an In-Database Transformation127

4.8 Deleting Documents from a Database ..129
4.9 Applying a Read or Write Transformation ...130
4.10 Job Control ..131

4.10.1 Checking the Status of a Job ...131
4.10.2 Pausing and Restarting a Job ..132
4.10.3 Graceful Termination of a Job ..132
4.10.4 Terminating a Job Prematurely ...133
4.10.5 Updating Forest Configuration for a Job ..133
4.10.6 Working with a Load Balancer ...134
4.10.7 Restricting the Hosts Used by a Job ...134

4.11 Failover Handling ...135
4.11.1 Default Failover Handler ..135
4.11.2 Failover When Connecting Through a Load Balancer136
4.11.3 Interaction with In-Database Transform ...136
4.11.4 Failover Handling in Custom Listeners ..137

4.11.4.1 Always Retry ...138
4.11.4.2 Conditionally Retry ...139

4.12 Working With Listeners ..140
4.12.1 Guidelines for Creating Listeners ...140
4.12.2 Attaching Multiple Listeners to a Job ...141
4.12.3 Removing or Replacing a Listener ...141

4.13 Alternative Interfaces ..142

5.0 Searching ..144
5.1 Overview of Search Using the Java API ..144
5.2 Using SearchHandle to Examine Query Results ..145
5.3 Search Using String Query Definition ..146
5.4 Search Documents Using Structured Query Definition147

5.4.1 Ways to Create a Structured Query ..147
5.4.2 Basic Steps to Define a Structured Query Definition147
5.4.3 Creating a Structured Query From Raw XML or JSON148
5.4.4 Structured Query Examples ..149

5.4.4.1 Example: Date Range Structured Query152
5.4.4.2 Example: Element Index Structured Query152
5.4.4.3 Example: Document Property Structured Query153
5.4.4.4 Example: Directory Structured Query154
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 5

MarkLogic Server Table of Contents
5.4.4.5 Example: Document Structured Query154
5.4.4.6 Example: JSON Property Structured Query155
5.4.4.7 Example: Collection Structured Query156

5.5 Prototype a Query Using Query By Example ...156
5.5.1 What is QBE ...157
5.5.2 Search Documents Using a QBE ..157
5.5.3 Validate a QBE ...159
5.5.4 Convert a QBE to a Combined Query ..159

5.6 Apply Dynamic Query Options to Document Searches159
5.6.1 Searching Using Combined Query ...160
5.6.2 Creating a Combined Query Using StructuredQueryBuilder164
5.6.3 Interaction with Persistent Query Options ..164
5.6.4 Combined Query Examples ..166

5.6.4.1 Example: Structured and String Query166
5.6.4.2 Example: cts and String Query ..167
5.6.4.3 Shared Scaffolding for Combined Query Examples168

5.6.5 Performance Considerations ...170
5.7 Search On Tuples (Tuples Query / Values Query) ...170

5.7.1 Values Search ...171
5.7.2 Tuples Search ..171
5.7.3 Adding a Constraining Query ...172

5.8 Limiting A Search To Specific Collections And/Or A Directory173
5.9 Searching Values Metadata Fields ..173
5.10 Transforming Search Results ..173

5.10.1 Writing a Search Result Transform ..173
5.10.2 Using a Search Result Transform ...174

5.11 .. Generating Search Term Completion Suggestions 175
5.11.1 Basic Steps ..175
5.11.2 Example: Generating Search Suggestions ..176

5.11.2.1 Initialize the Database ...176
5.11.2.2 Install Query Options ..178
5.11.2.3 Get Search Suggestions ...180

5.11.3 Where to Find More Information ..180
5.12 Extracting a Portion of Matching Documents ..180

5.12.1 Overview of Extraction ...181
5.12.2 Basic Steps for Search Match Extraction ...182
5.12.3 Example: Extracting a Portion of Each Matching Document184

6.0 Query Options ..190
6.1 Using Query Options ..190
6.2 Default Query Options ..191
6.3 Using QueryOptionsManager To Delete, Write, and Read Options192
6.4 Using Query Options With Search ...193
6.5 Creating Persistent Query Options From Raw JSON or XML193
6.6 Validating Query Options With setQueryOptionValidation()195
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 6

MarkLogic Server Table of Contents
7.0 Working With Semantic Data ..196
7.1 Introduction ...196
7.2 Overview of Common Semantic Tasks ..197
7.3 Creating and Managing Graphs ..198

7.3.1 GraphManager Interface Summary ..198
7.3.2 Creating a GraphManager Object ...199
7.3.3 Specifying the Triple Format ..199
7.3.4 Creating or Overwriting a Graph ..200
7.3.5 Reading Triples from a Graph ..202
7.3.6 Replacing Quad Data in Graphs ...202
7.3.7 Adding Triples to an Existing Graph ..202
7.3.8 Adding Quads into an Existing Graph ..203
7.3.9 Deleting a Graph ...203

7.4 Querying Semantic Triples With SPARQL ..204
7.4.1 Basic Steps for SPARQL Query Evaluation ...204
7.4.2 Handling Query Results ..205

7.4.2.1 SELECT Results ...205
7.4.2.2 CONSTRUCT and DESCRIBE Results206
7.4.2.3 ASK Results ..207

7.4.3 Defining Variable Bindings ..207
7.4.4 Limiting the Number of Results ...207
7.4.5 Inferencing Support ..208

7.4.5.1 Enabling or Disabling Automatic Inferencing208
7.4.5.2 Associating a Rule Set with a Query208

7.5 Querying Triples with the Optic API ..208
7.6 Example: Loading, Managing, and Querying Triples ..209
7.7 Using SPARQL Update to Manage Graphs and Graph Data213
7.8 Managing Permissions ..214

7.8.1 Default Graph Permissions and Required Privileges214
7.8.2 Setting Graph Permissions ..215
7.8.3 Retrieving Graph Permissions ..216
7.8.4 Managing Permissions on Unmanaged Triples216

8.0 Optic Java API for Relational Operations ..218
8.1 Overview ...218
8.2 Getting Started ..218
8.3 Java Packages ...219
8.4 Structure of the Java Optic API ..220

8.4.1 Values and Expressions ..220
8.4.2 Items and Sequences ...221
8.4.3 Atomic Values and Nodes in RowRecord ..221

8.5 Examples ...221

9.0 POJO Data Binding Interface ..226
9.1 Data Binding Interface Overview ...226
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 7

MarkLogic Server Table of Contents
9.2 Limitations of the Data Binding Interface ..227
9.3 Annotating Your Object Definition ..227
9.4 Saving POJOs in the Database ..229
9.5 Retrieving POJOs from the Database By Id ...230
9.6 Example: Saving and Restoring POJOs ..231
9.7 Searching POJOs in the Database ...232

9.7.1 Basic Steps for Searching POJOs ...233
9.7.2 Full Text Search with String Query ..234
9.7.3 Search Using Structured Query ..234
9.7.4 How Indexing Affects Searches ...236
9.7.5 Creating Indexes from Annotations ..236

9.8 Example: Searching POJOs ..240
9.8.1 Overview of the Example ...240
9.8.2 Source Code ..241

9.8.2.1 Person Class Definition ...241
9.8.2.2 Name Class Definition ..242
9.8.2.3 PeopleSearch Class Definition ..243

9.8.3 Exploring the Example Queries ..246
9.9 Retrieving POJOs Incrementally ..249
9.10 Removing POJOs from the Database ...249
9.11 Testing Your POJO Class for Serializability ..249
9.12 Troubleshooting ..250

9.12.1 Error: XDMP-UNINDEXABLEPATH ..250
9.12.2 Error: XDMP-PATHRIDXNOTFOUND ...250
9.12.3 Unexpected Search Results ...250

10.0 Alerting ..252
10.1 Alerting Pre-Requisites ...252
10.2 Alerting Concepts ...252
10.3 Defining Alerting Rules ..253

10.3.1 Defining a Rule Using RuleDefinition ...253
10.3.2 Defining a Rule in Raw XML ...255
10.3.3 Defining a Rule in Raw JSON ..256

10.4 Testing for Matches to Alerting Rules ..258
10.4.1 Basic Steps ..258
10.4.2 Identifying Input Documents Using a Query ..259
10.4.3 Identifying Input Documents Using URIs ..259
10.4.4 Matching Against a Transient Document ...260
10.4.5 Filtering Match Results ...260
10.4.6 Transforming Alert Match Results ...260

10.4.6.1 Writing a Match Result Transform ...261
10.4.6.2 Using a Match Result Transform ..261

11.0 Transactions and Optimistic Locking ..264
11.1 Multi-Statement Transactions ...264
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 8

MarkLogic Server Table of Contents
11.1.1 Transactions and the Java API ..264
11.1.2 Transaction Interface ..266
11.1.3 Starting A Transaction ..266
11.1.4 Operations Inside A Transaction ..267
11.1.5 Rolling Back A Transaction ...267
11.1.6 Committing A Transaction ...268
11.1.7 Cookbook: Multistatement Transaction ..268
11.1.8 Transaction Management When Using a Load Balancer268

11.2 Optimistic Locking ...269
11.2.1 Activating Optimistic Locking ...270
11.2.2 DocumentDescriptors ...271
11.2.3 Using Optimistic Locking ...271
11.2.4 Cookbook: Version Control and Optimistic Locking272

12.0 Logging ..274
12.1 Starting Logging ...274
12.2 Suspending and Resuming Logging ...274
12.3 Stopping Logging ...275
12.4 Log Entry Format ..275
12.5 Logging To The Server’s Error Log ...275

13.0 REST Server Configuration ...276
13.1 Creating a Server Configuration Manager Object ..276
13.2 Reading and Writing Server Configuration Properties276
13.3 REST Server Properties ..277
13.4 Creating New Server-Related Manager Objects ...277
13.5 Namespaces ..277

13.5.1 Namespaces Manager ...278
13.5.2 Getting Server Defined Namespaces ..279
13.5.3 Adding And Updating A Namespace Prefix ...279
13.5.4 Reading Prefixes ...280
13.5.5 Deleting Prefixes ...280

13.6 Logging Namespace Operations ...281

14.0 Content Transformations ..282
14.1 Installing Transforms ..282
14.2 Using Transforms ...283

14.2.1 Transforming a Document When Reading It ..283
14.2.2 Transforming a Document When Writing It ...285
14.2.3 Transforming Search Results ..286
14.2.4 Transforming Alert Match Results ...286
14.2.5 Overall Transform Administration ...286
14.2.6 Reading Transforms ..286
14.2.7 Logging ...287

14.3 Writing Transformations ...287
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 9

MarkLogic Server Table of Contents
15.0 Extending the Java API ..288
15.1 Available Extension Points ...288
15.2 Introduction to Resource Service Extensions ...289
15.3 Creating a Resource Extension ...290
15.4 Installing Resource Extensions ...290
15.5 Deleting Resource Extensions ..292
15.6 Listing Resource Extensions ...292
15.7 Using Resource Extensions ..292
15.8 Managing Dependent Libraries and Other Assets ..295

15.8.1 Maintenance of Dependent Libraries and Other Assets295
15.8.2 Installing or Updating Assets ..295
15.8.3 Removing an Asset ...297
15.8.4 Retrieving an Asset List ..297
15.8.5 Retrieving an Asset ...298

15.9 Evaluating an Ad-Hoc Query or Server-Side Module ..298
15.9.1 Security Requirements ..298
15.9.2 Basic Step for Ad-Hoc Query Evaluation ...299
15.9.3 Basic Steps for Module Invocation ...300
15.9.4 Specifying External Variable Values ..301
15.9.5 Interpreting the Results of Eval or Invoke ..302

16.0 Creating Data Services Using the MarkLogic Java Development Tools ...306
16.1 Advantages of Data Services ..307
16.2 Where Data Service Fit Within the Enterprise Stack ...307

16.2.1 How it Works ..308
16.2.2 Prerequisites ..309
16.2.3 Relation to the Java Client API ...309

16.3 Creating a Proxy Service ..309
16.3.1 Setting Up an App Server for the Proxy Service310
16.3.2 Creating the Proxy Service Directory ...311
16.3.3 Declaring the Proxy Service ...311
16.3.4 Declaring the Endpoint ...312

16.3.4.1 Structure of a Parameter Definition ..313
16.3.4.2 Structure of the Return Type Definition314
16.3.4.3 Example of an Endpoint Proxy ...314
16.3.4.4 Server Data Types for Values ...315
16.3.4.5 Mapping Values to Alternative Java Classes315
16.3.4.6 Calling Endpoints in a Session ..317

16.3.5 Providing the Module for an Endpoint Proxy ...318
16.3.6 Deploying a Proxy Service ...320
16.3.7 Generating the Proxy Service Class ..321
16.3.8 Using a Proxy Service Class ...322

16.3.8.1 Compiling a Proxy Service Class ..322
16.3.8.2 Testing a Proxy Service Class ...322
16.3.8.3 Documenting a Proxy Service Class322
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 10

MarkLogic Server Table of Contents
16.3.8.4 Packaging a Proxy Service ..322
16.4 Publishing Your Data Service for Use in Other Projects323

16.4.1 Modifying the Source project to Enable Publication323
16.4.2 Using the Maven Bundle in Other Projects ..324

17.0 Troubleshooting ...326
17.1 Error Detection ...326
17.2 General Troubleshooting Techniques ...326

18.0 Technical Support ..328

19.0 Copyright ...330
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 11

MarkLogic Server Introduction to the Java API
1.0 Introduction to the Java API
35

The Java Client API is an open source API for creating applications that use MarkLogic Server
for document and search operations. This chapter includes the following sections:

• Java Client API Overview

• Java Client API or Java XCC?

• Getting Started

• Creating, Working With, And Releasing a Database Client

• Authentication and Connection Security

• A Basic “Hello World” Method

• Document Managers

• Streaming

• Using Handles for Input and Output

• Shortcut Methods as an Alternative to Creating Handles

• Thread Safety of the Java API

• Downloading the Library Source Code

1.1 Java Client API Overview
The Java Client API provides the following capabilities:

• Insert, update, or remove documents and document metadata, either individually or in
batches. For details, see “Single Document Operations” on page 36, “Synchronous
Multi-Document Operations” on page 70, or “Asynchronous Multi-Document
Operations” on page 92.

• Query documents, lexicons, and semantic data. For details, see “Searching” on page 144.

• Extract data from MarkLogic as tables. For details, see “Optic Java API for Relational
Operations” on page 218.

• Persist, retrieve, and query Java objects in stored in MarkLogic. For details, see “POJO
Data Binding Interface” on page 226.

• Configure persistent and dynamic query options. For details, see “Query Options” on
page 190.

• Apply transformations to new content and search results. For details, see “Content
Transformations” on page 282.

• Extend the Java API to expose custom capabilities you install on MarkLogic Server. For
details, see “Extending the Java API” on page 288.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 12

MarkLogic Server Introduction to the Java API
When working with the Java API, you first create a manager for the type of document or
operation you want to perform on the database (for instance, a JSONDocumentManager to write and
read JSON documents or a QueryManager to search the database). To write or read the content for
a database operation, you use standard Java APIs such as InputStream, DOM, StAX, JAXB, and
Transformer as well as Open Source APIs such as JDOM and Jackson.

The Java API provides a handle (a kind of adapter) as a uniform interface for content
representation. As a result, you can use APIs as different as InputStream and DOM to provide
content for one read() or write() method. In addition, you can extend the Java API so you can
use the existing read() or write() methods with new APIs that provide useful representations for
your content.

This chapter covers a number of basic architecture aspects of the Java API, including fundamental
structures such as database clients, managers, and handles used in almost every program you will
write with it. Before starting to code, you need to understand these structures and the concepts
behind them.

The MarkLogic Java Client API is built on top of the MarkLogic REST API. The REST API, in
turn, is built using XQuery that is evaluated against an HTTP App Server. For this reason, you
need a REST API instance on MarkLogic Server to use the Java API. A suitable REST API
instance on port 8000 is pre-configured when you install MarkLogic Server. You can also create
your own on another port. For details, see “Choose a REST API Instance” on page 15.

1.2 Java Client API or Java XCC?
The Java API co-exists with the previously developed XCC API, as they are intended for different
use cases.

You can use the Java Client API to quickly become productive in your existing Java environment,
using the Java interfaces for search and document management. You can also use the Java Client
API extension capability to invoke XQuery and Server-Side JavaScript code on MarkLogic
Server. This enables you to take advantage of MarkLogic functionality not exposed directly
through the Java Client API.

XCC provides a lower-level interface for running remote or ad hoc XQuery or Server-Side
JavaScript. While XCC provides significant flexibility, it also has a somewhat steeper learning
curve for developers. You can think of XCC as being to ODBC or JDBC: A low level API for
sending query language directly to the server. By contrast, the Java Client API is a higher level
API for working with database constructs in Java.

In terms of performance, the Java API is very similar to Java XCC for compatible queries. The
Java API is a very thin wrapper over a REST API with negligible overhead.

For more information about XCC, see the XCC Developer’s Guide.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 13

MarkLogic Server Introduction to the Java API
1.3 Getting Started
To get started with the Java Client API, do the following:

• Required Software

• Make the Libraries Available to Your Application

• Choose a REST API Instance

• Create Users

• Explore the Examples

1.3.1 Required Software
For information about Java platform requirements, see the following page:

https://github.com/marklogic/java-client-api

The Java Client API also requires access to a MarkLogic Server installation configured with a
REST Client API instance. When you install MarkLogic 8 or later, a pre-configured REST API
instance is available on port 8000. For more details, see Administering REST Client API Instances in
the REST Application Developer’s Guide.

For information specific to rolling upgrades, see Java Client API in the Administrator’s Guide.

1.3.2 Make the Libraries Available to Your Application
You can make the Java Client API libraries available to your project in one of the following ways:

• ZIP File

• Maven

• Gradle

For more details, see the following page:

http://developer.marklogic.com/products/java

The Java Client API is an open-source project, so you can also access the sources and build your
own library. For details, see “Downloading the Library Source Code” on page 34.

1.3.2.1 ZIP File
You can download a ZIP file from the following URL:

http://developer.marklogic.com/products/java

Download the ZIP file and uncompress it to a directory of your choice. The jar files you need to
add to your class path are in the lib/ subdirectory.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 14

https://github.com/marklogic/java-client-api
http://developer.marklogic.com/products/java
http://developer.marklogic.com/products/java

MarkLogic Server Introduction to the Java API
1.3.2.2 Maven
To use the Maven repository, add the following to dependency to your Maven project POM file.
(You may need to change the version data to match the release you’re using.)

<dependency>
 <groupId>com.marklogic</groupId>
 <artifactId>marklogic-client-api</artifactId>
 <version>4.0.3</version>
</dependency>

You must also add the following to the repositories section of your pom.xml.

<repository>
 <id>jcenter</id>
 <url>http://jcenter.bintray.com</url>
</repository>

1.3.2.3 Gradle
If you use Gradle as your build tool, you must use Gradle version 1.7 or later. Add the following
to your build.gradle file. Modify the version number as needed.

compile group: 'com.marklogic',
name: 'marklogic-client-api',
version: '4.0.3'

Add the following to your build.gradle repositories section:

jcenter()

1.3.3 Choose a REST API Instance
The Java API implementation interacts with MarkLogic Server using the MarkLogic REST Client
API. Therefore you must have access to a REST API instance in MarkLogic Server before you
can run an application that uses the Java Client API.

A REST API instance includes a specially configured HTTP App Server capable of handling
REST Client API requests, a content database, and a modules database. MarkLogic Server comes
with a suitable REST API instance attached to the Documents database, listening on port 8000.

The examples in this guide assume you’re using the pre-configured REST API instance on port
8000 of localhost. If you want to create and use a different REST instance, see , see Administering

REST Client API Instances in the REST Application Developer’s Guide.

Note: Each application must use a separate modules database and REST API instance.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 15

MarkLogic Server Introduction to the Java API
1.3.4 Create Users
You might need to create MarkLogic Server users with appropriate security roles, or give
additional privileges to existing users.

Any user who reads data will need at least the rest-reader role and any user that writes data will
need at least the rest-writer role.

REST instance configuration operations, such as setting instance properties require the
rest-admin role. For details, see “REST Server Configuration” on page 276.

Some operations require additional privileges. For example, a DatabaseClient that connects to a
database other than the default database associated with the REST instance must have the
http://marklogic.com/xdmp/privileges/xdmp-eval-in privilege. Using the
ServerEvaluationCall interface also requires special privileges; for details, see “Evaluating an
Ad-Hoc Query or Server-Side Module” on page 298.

Note that MarkLogic Server Administration is not exposed in Java, so operations such as creating
indices, creating users, creating databases, etc. must be done via the Admin Interface, REST
Management API, or other MarkLogic Server administration tool. The server configuration
component of the Java API is restricted to configuration operations on the REST instance.

For details, see Security Requirements in the REST Application Developer’s Guide.

1.3.5 Explore the Examples
The Java Client API distribution includes several examples in the examples/ directory. The
examples include the following packages:

• com.marklogic.client.example.cookbook: A collection of small examples of using the
core features of the API, such as document operations and search. Most of the example
code in this guide is drawn from the Cookbook examples.

• com.marklogic.client.example.handle: Examples of using handles based on open source
document models, such as JDOM or Jackson. Examples of handle extensions that read or
write database documents in a new way.

• com.marklogic.client.example.extension: A collection of extension classes and
examples for manipulating documents in batches.

For instructions on building and running the examples, see the project wiki on GitHub:

http://github.com/marklogic/java-client-api/wiki/Running-the-Examples
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 16

http://github.com/marklogic/java-client-api/wiki/Running-the-Examples

MarkLogic Server Introduction to the Java API
1.4 Creating, Working With, And Releasing a Database Client
Your application must create at least one DatabaseClient object before it can interact with
MarkLogic using the Java Client API. The following topics cover key things you should know
about the DatabaseClient interface.

• The Role of a Database Client

• Expected Database Client Lifetime

• Connection Management and Configuration

• Creating a Database Client

• Connecting Through a Load Balancer

• Releasing a Database Client

1.4.1 The Role of a Database Client
A DatabaseClient object encapsulates the information needed to connect to MarkLogic, such as
the host and port of a REST API instance, the database to operate on, and the authentication
context. Internally, each DatabaseClient object is associated with a connection pool, as described
in “Connection Management and Configuration” on page 17.

Most tasks you perform using the Java Client API are handled by a manager object. For example,
you use a QueryManager to search the database and a DocumentManager to read, update, and delete
documents. You create manager objects using factory methods on DatabaseClient, such as
newQueryManager and newDocumentManager.

1.4.2 Expected Database Client Lifetime
Best practice is to maintain a single, shared reference to a DatabaseClient object for the lifetime
of your application’s interaction MarkLogic, rather than frequently creating and destroying client
objects.

You need multiple DatabaseClient objects if you need to connect to multiple databases or to
connect to MarkLogic as multiple users. You must create a different DatabaseClient instance for
each combination of (host, port, database, authentication context). Again, it is best to keep these
instances around throughout their potential useful lifetime, rather than repeatedly recreating them.

You can one DatabaseClient object across multiple threads. After initial configuration, a
DatabaseClient object is thread safe.

1.4.3 Connection Management and Configuration
Internally, the Java Client API maintains an OkHttpClient connection pool that is shared by all
DatabaseClient objects. The connection pool efficiently re-uses connections whether you use a
single DatabaseClient instance throughout the lifetime of your application or create and discard
DatabaseClient objects on demand.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 17

MarkLogic Server Introduction to the Java API
Whenever a DatabaseClient object makes a request to MarkLogic, an available connection is
drawn from the connection pool. New connections are created on demand, as needed.

A DatabaseClient object returns its connection to the pool once it receives and processes the
HTTP request on whose behalf it claimed the connection. A connection in the pool persists until it
is explicitly released or times out due to idleness. The default maximum idle time is 5 minutes.

No state information is maintained with a connection. All cookies are discarded unless a
multi-statement (multi-request) transaction is in use. The cookies associated with a
multi-statement transaction are cached on the transaction object rather than with the connection.

You can adjust the connection pool configuration by implementing OkHttpClientConfigurator
and calling its configure method. However, such adjustments depend on Java Client API internals
and will be ignored if a future version of the API uses a different HTTP client implementation.

1.4.4 Creating a Database Client
To create a database client, use the com.marklogic.client.DatabaseClientFactory.newClient()
method. For example, the following client connects to the default content database associated
with the REST instance on port 8000 of localhost using digest authentication.

DatabaseClient client =
DatabaseClientFactory.newClient(

"localhost", 8000,
new DatabaseClientFactory.DigestAuthContext("myuser", "mypassword"));

You can also create clients that connect to a specific content database. For example, the following
client also connects to the REST instance on port 8000 of localhost, but all operations are
performed against the database “MyDatabase”:

DatabaseClient client =
DatabaseClientFactory.newClient(

"localhost", 8000, "MyDatabase",
new DatabaseClientFactory.DigestAuthContext("myuser", "mypassword"));

Note: To use a database other than the default database associated with the REST
instance requires a user with the following privilege or the equivalent role:
http://marklogic.com/xdmp/privileges/xdmp-eval-in.

The host and port values must be those of a REST API instance. When you install MarkLogic, a
REST API instance associated with the Documents database is pre-configured for port 8000. You
can also create your own instance.

The authentication context object should match the configuration of the REST API instance. For
more details, see “Authentication and Connection Security” on page 20.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 18

MarkLogic Server Introduction to the Java API
1.4.5 Connecting Through a Load Balancer
When your application connects to MarkLogic through a load balancer, you should follow these
guidelines:

• Configure your DatabaseClient objects to make a GATEWAY type connection. This tells the
Java Client API that direct connections to hosts in your MarkLogic cluster are not
available.

• Configure your load balancer and MarkLogic cluster timeouts to be consistent with each
other. Unavailable hosts should be invalidated by the load balancer only after the
MarkLogic host timeout. Cookies should expire only after the MarkLogic session timeout.

For most Java Client API operations, the connection type is transparent. However, features such
as the Data Movement SDK need to know whether or not all traffic must go through a gateway
host.

The default connection type for a DatabaseClient is DIRECT, meaning that the Java Client API can
make direct connections to hosts in your MarkLogic cluster if necessary.

To configure a DatabaseClient for a gateway connection, pass a DatabaseClient.ConnectionType
value of GATEWAY as the last parameter to DatabaseClientFactory.newClient. For example:

DatabaseClient client =
DatabaseClientFactory.newClient(

"localhost", 8000, "MyDatabase",
new DatabaseClientFactory.DigestAuthContext("myuser", "mypassword"),

DatabaseClient.ConnectionType.GATEWAY);

For additional, context-specific load balancer guidelines, see the following topics:

• Multi-statement transactions: “Transaction Management When Using a Load Balancer”
on page 268.

• Asynchronous batch-oriented document operations: “Working with a Load Balancer” on
page 134.

1.4.6 Releasing a Database Client
When you no longer need a client and want to release connection resources, use the
DatabaseClient object’s release() method.

client.release();

DatabaseClient objects efficiently manage connection resources and are expected to be long lived.
You do not need to release and re-create client objects just because your application might not
require a connection for an extended time. For more details, see “Expected Database Client
Lifetime” on page 17 and “Connection Management and Configuration” on page 17.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 19

MarkLogic Server Introduction to the Java API
1.5 Authentication and Connection Security
This section provides an overview of several methods for securing the communication between
your client application and MarkLogic. See the following topics for details:

• Creating a SecurityContext Object

• Using Kerberos Authentication

• Connecting to MarkLogic with SSL

• Using SAML Authentication

1.5.1 Creating a SecurityContext Object
One of the inputs to DatabaseClientFactory.newClient is a SecurityContext object. This object
tells the API what credentials to use to authenticate with MarkLogic. You can select from
authentication methods such as Kerberos, digest, and basic.

For example, the database client created by the following statement uses digest authentication.
The username and password are those of a user configured into MarkLogic.

import com.marklogic.client.DatabaseClientFactor.DigestAuthContext;
...
DatabaseClient client = DatabaseClientFactory.newClient(

"localhost", 8000, new DigestAuthContext(username, password));

The authentication context object should match the configuration of the REST API instance.
Kerberos based authentication is most secure. Basic authentication sends the password in
obfuscated, but not encrypted, mode. Digest authentication encrypts passwords sent over the
network.

You can connect to MarkLogic using SSL by attaching SSL configuration information to the
security context. For details, see “Connecting to MarkLogic with SSL” on page 22.

For more information about user authentication, see Authenticating Users in the Security Guide.

1.5.2 Using Kerberos Authentication
Use the following steps to configure your MarkLogic installation and client application
environment for Kerberos authentication:

• Configuring MarkLogic to Use Kerberos

• Configuring Your Client Host for Kerberos

• Creating a Database Client that Uses Kerberos

Your client host must be running Linux in order to use Kerberos with the Java Client API.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 20

MarkLogic Server Introduction to the Java API
1.5.2.1 Configuring MarkLogic to Use Kerberos
Before you can use Kerberos authentication, you must configure MarkLogic to use external
security. If your installation is not already configured for Kerberos, you must perform at least the
following steps:

1. Create a Kerberos external security configuration object. For details, see Creating an

External Authentication Configuration Object in the Security Guide.

2. Create a Kerberos keytab file and install it in your MarkLogic installation. For details, see
Creating a Kerberos keytab File in the Security Guide.

3. Create one or more users associated with an external name. For details, see Assigning an

External Name to a User in the Security Guide.

4. Configure your App Server to use “kerberos-ticket” authentication. For details, see
Configuring an App Server for External Authentication in the Security Guide.

For more details, see External Security in the Security Guide.

1.5.2.2 Configuring Your Client Host for Kerberos
On the client, the Java Client API must be able to access a Ticket-Granting Ticket (TGT) from the
Kerberos Key Distribution Center. The API uses the TGT to obtain a Kerberos service ticket.

Follow these steps to make a TGT available to the client application:

1. Install MIT Kerberos in your client environment if it is not already installed. You can
download MIT Kerberos from http://www.kerberos.org/software/index.html.

2. If this is a new installation of MIT Kerberos, configure your installation by editing the
krb5.conf file. For details, see
https://web.mit.edu/kerberos/krb5-1.15/doc/admin/conf_files/krb5_conf.html.

On Linux, Java expects this file to be located in /etc/ by default. Java uses the conf file to
determine your default realm and the KDC for that realm.

If your krb5.conf file contains a setting for default_ccache_name, the value must be a file
reference of the form FILE:/tmp/krb5cc_%{uid}. This is required because the Java Client
API sets the useTicketCache option of Krb5LoginModule to true. For more details, see the
javadoc for com.sun.security.auth.module.Krb5LoginModule.

3. Use kinit or a similar tool on your client host to create and cache a TGT with the
Kerberos Key Distribution Center. The principal supplied to kinit must be one you
associated with a MarkLogic user when performing the steps in “Configuring MarkLogic
to Use Kerberos” on page 21.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 21

http://www.kerberos.org/software/index.html
https://web.mit.edu/kerberos/krb5-1.15/doc/admin/conf_files/krb5_conf.html

MarkLogic Server Introduction to the Java API
For more details, see the following topics:

• Using Kerberos with Java:
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/KerberosReq.html

• Kinit command: https://web.mit.edu/kerberos/krb5-1.15/doc/user/user_commands/kinit.html

• Obtaining a ticket:
http://web.mit.edu/kerberos/krb5-current/doc/user/tkt_mgmt.html#obtaining-tickets-with-kinit

• Krb5LoginModule javadoc:
https://docs.oracle.com/javase/9/docs/api/com/sun/security/auth/module/Krb5LoginModule.html

1.5.2.3 Creating a Database Client that Uses Kerberos
In your client application, use KerberosAuthContext for your security context object. For example:

import com.marklogic.client.DatabaseClientFactory.KerberosAuthContext;
...
DatabaseClient client = DatabaseClientFactory.newClient(

"localhost", 8000, new KerberosAuthContext());

You do not need to pass an explicit externalName parameter to KerberosAuthContext unless you
have multiple principals authenticated in your ticket cache and need to specify which one to use.

For a working example, see the project on GitHub:

Note: The working example includes comments that provide suggestions for setting up a
Kerberos configuration in a production environment.

https://github.com/marklogic/java-client-api/blob/master/marklogic-client-api/src/main/java/com/
marklogic/client/example/cookbook/KerberosSSLClientCreator.java

1.5.3 Connecting to MarkLogic with SSL
You can use the security context to specify whether or not to use a secure SSL connection to
communicate with MarkLogic. The App Server you connect to must also be configured to accept
SSL connections. By default, the Java Client API does not use SSL.

For example, the database client created by the following statement uses digest authentication and
an SSL connection:

// create a trust manager
// (note: a real application should verify certificates. This
// naive trust manager which accepts all the certificates should be replaced
// by a valid trust manager or get a system default trust manager
// which would validate whether the remote authentication credentials
// should be trusted or not.)
TrustManager naiveTrustMgr[] = new X509TrustManager[] {

new X509TrustManager() {
@Override
public void checkClientTrusted(X509Certificate[] chain, String authType)
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 22

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/KerberosReq.html
https://github.com/marklogic/java-client-api/blob/master/marklogic-client-api/src/main/java/com/marklogic/client/example/cookbook/KerberosSSLClientCreator.java
https://web.mit.edu/kerberos/krb5-1.15/doc/user/user_commands/kinit.html
http://web.mit.edu/kerberos/krb5-current/doc/user/tkt_mgmt.html#obtaining-tickets-with-kinit

MarkLogic Server Introduction to the Java API
{
}

@Override
public void checkServerTrusted(X509Certificate[] chain, String authType)
{

}

@Override
public X509Certificate[] getAcceptedIssuers() {

return new X509Certificate[0];
}

}
};

// create an SSL context
SSLContext sslContext = SSLContext.getInstance("TLSv1.2");
/*
* Here, we use a naive TrustManager which would accept any certificate
* which the server produces. But in a real application, there should be a
* TrustManager which is initialized with a Keystore which would determine
* whether the remote authentication credentials should be trusted or not.
*
* If we init the sslContext with null TrustManager, it would use the
* <java-home>/lib/security/cacerts file for trusted root certificates, if
* javax.net.ssl.trustStore system property is not set and
* <java-home>/lib/security/jssecacerts is not present. See this link for
* more information on TrustManagers -
* http://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/
* JSSERefGuide.html
*
* If self signed certificates, signed by CAs created internally are used,
* then the internal CA's root certificate should be added to the keystore.
* See this link -
* https://docs.oracle.com/cd/E19226-01/821-0027/geygn/index.html for adding
* a root certificate in the keystore.
*/

sslContext.init(null, naiveTrustMgr, null);

// create the client
// (note: a real application should use a COMMON, STRICT, or implemented
hostname verifier)

DatabaseClient client = DatabaseClientFactory.newClient(
props.host, props.port,
new DigestAuthContext(props.writerUser, props.writerPassword)
.withSSLContext(sslContext, (X509TrustManager) naiveTrustMgr[0])
.withSSLHostnameVerifier(SSLHostnameVerifier.ANY));

The SSLContext object represents a secure socket protocol implementation which acts as a factory
for secure socket factories. For more information about creating and working with SSLContext
objects, see Accessing SSL-Enabled XDBC App Servers in the XCC Developer’s Guide.

For even more security, you can also include a DatabaseClientFactory.SSLHostnameVerifier
object to check if a hostname is acceptable.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 23

MarkLogic Server Introduction to the Java API
For a working example, see the project on GitHub:

Note: The working example includes comments that provide suggestions for configuring
SSL in a production environment.

https://github.com/marklogic/java-client-api/blob/master/marklogic-client-api/src/main/java/com/
marklogic/client/example/cookbook/SSLClientCreator.java

For more information about secure communication with MarkLogic, see the Security Guide.

1.5.4 Using SAML Authentication
Your client application is responsible for acquiring a SAML assertions token from the SAML
Identity Provider (IDP). You can then use the SAML assertions token to make requests to the
MarkLogic App Server with the MarkLogic Client Java API. That division of responsibility
makes it possible for your application to adapt to a wide variety of possible SAML scenarios and
IDPs.

After configuring the MarkLogic App Server to authenticate with the SAML IDP, specify a
SAMLAuthContext as the SecurityContext when calling DatabaseClientFactory to create a new
DatabaseClient.

You can construct a SAMLAuthContext in any of three ways, depending on your approach to
authorization:

• If you plan to finish using the DatabaseClient before the SAML assertions token expires,
you can call the SAMLAuthContext constructor with the SAML assertions token.

• If you need to extend the expiration of the SAML assertions token before you finish using
the DatabaseClient, you can call the SAMLAuthContext constructor with an
ExpiringSAMLAuth object and a callback that renews the SAML assertions token with the
SAML IDP.

The ExpiringSAMLAuth object provides getters for the SAML assertions token and the
expiration timestamp. Your client application can construct an ExpiringSAMLAuth object
by calling the SAMLAuthContext.newExpiringSAMLAuth factory method.

The renewer callback conforms to the SAMLAuthContext.RenewerCallback functional
interface by taking the initial ExpiringSAMLAuth object as input and returning an Instant
with the new expiration timestamp for the renewed SAML assertions token, as in the
following example:

class MyClass {
Instant renewer(ExpiringSAMLAuth authorization) {

.... call to IDP
}

}

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 24

https://github.com/marklogic/java-client-api/blob/master/marklogic-client-api/src/main/java/com/marklogic/client/example/cookbook/SSLClientCreator.java

MarkLogic Server Introduction to the Java API
• If you need to get a new SAML assertions token before you finish using the
DatabaseClient, you can call the SAMLAuthContext constructor with a callback that
authorizes with the SAML IDP by getting a new SAML assertions token.

The authorizer callback conforms to the SAMLAuthContext.AuthorizerCallback functional
interface that takes an ExpiringSAMLAuth object as input and returns an ExpiringSAMLAuth
object with the new SAML assertions token and an expiration timestamp, as shown in the
following example:

class MyClass {
ExpiringSAMLAuth authorizer(ExpiringSAMLAuth previous) {

.... call to IDP
}

}

On the first call, the ExpiringSAMLAuth parameter is null because no existing authorization
exists. Your callback can construct an ExpiringSAMLAuth object by calling the
SAMLAuthContext.newExpiringSAMLAuth factory method.

Tradeoffs to consider when choosing whether to renew or reauthorize include the following:

• The renewer callback executes in a background thread, allowing continued requests to the
MarkLogic appserver while renewing the SAML assertions token, improving utilization
and performance. Extending the life of the SAML assertions token, however, could
increase vulnerability in less secure environments.

• The authorizer callback blocks requests to the MarkLogic appserver while getting a new
SAML assertions token, reducing utilization and performance but maintaining the highest
level of security.

You can reduce the expiration time to allow for network latency and the IDP response generation.
Renewer and authorizer callbacks are called in advance of the stated expiration time to reduce the
possibility that the SAML assertions token expires as a request is sent to the MarkLogic
appserver.

If you need to maintain state between calls to a renewer or authorizer callback, you can implement
the ExpiringSAMLAuth interface with your own class instead of calling the
SAMLAuthContext.newExpiringSAMLAuth factory method to construct a default instance.

Apart from the specifics of acquiring the SAML assertions token, the use of a DatabaseClient
remains the same:

• Multiple threads can use the same DatabaseClient object.

• DatabaseClient objects can be created with different authorizations (including different
SAML assertions tokens).
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 25

MarkLogic Server Introduction to the Java API
1.6 A Basic “Hello World” Method
The following code is a basic method that creates a new document in the database. Digest
authentication is used in this example; for more details, see “Authentication and Connection
Security” on page 20.

public static void run(String host, int port, String user, String
password, Authentication authType) {

// Create the database client
DatabaseClient client = DatabaseClientFactory.newClient(

host, port, new DigestAuthContext(username, password));

// Make a document manager to work with text files.
TextDocumentManager docMgr = client.newTextDocumentManager();

// Define a URI value for a document.
String docId = "/example/text.txt";

// Create a handle to hold string content.
StringHandle handle = new StringHandle();

// Give the handle some content
handle.set("A simple text document");

// Write the document to the database with URI from docId
// and content from handle
docMgr.write(docId, handle);

// release the client
client.release();
}

The above code is a slightly modified version of the run method from the
com.marklogic.client.example.cookbook.ClientCreator cookbook example. It, along with a
number of other basic example applications for the Java API, is located in
example/com/marklogic/client/example/cookbook directory found in the zip file containing the
Java API.

1.7 Document Managers
Different document formats are handled by different document manager objects, which serve as
an interface between documents and the database connection. The package
com.marklogic.client.document includes document managers for binary, XML, JSON, and text.
If you don’t know the document format, or need to work with documents of multiple formats, use
a generic document manager. DatabaseClient instances have factory methods to create a new
com.marklogic.client.document.DocumentManager of any subtype.

BinaryDocumentManager binDocMgr = client.newBinaryDocumentManager();
XMLDocumentManager XMLdocMgr = client.newXMLDocumentManager();
JSONDocumentManager JSONDocMgr = client.newJSONDocumentManager();
TextDocumentManager TextDocMgr = client.newTextDocumentManager();
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 26

MarkLogic Server Introduction to the Java API
GenericDocumentManager genericDocMgr =
client.newGenericDocumentManager();

Your application only needs to create one document manager for any given type of document, no
matter how many of that type of document it works with. So, even if you expect to work with, say,
1,000,000,000 JSON documents, you only need to create one JSONDocumentManager object.

Document managers are thread safe once initially configured; no matter how many threads you
have, you only need one document manager per document type.

If you make a mistake and try to use the wrong type of document with a document manager, the
result depends on the combination of types. For example, a BinaryDocumentManager will try to
interpret the document content as binary. JSONDocumentManager and XMLDocumentManager are the
most particular, since if a document is not in their format, it will not parse. Most of the time, you
will get an exception error, with FailedRequestException the default if the manager cannot
determine the document type.

1.8 Streaming
To stream, you supply an InputStream or Reader for the data source, not only when reading from
the database but also when writing to the database. This approach allows for efficient write
operations that do not buffer the data in memory. You can also use an OutputWriter to generate
data as the API is writing the data to the database.

When reading from the database using a stream, be sure to close the stream explicitly if you do
not read all of the data. Otherwise, the resources that support reading continue to exist.

1.9 Using Handles for Input and Output
The Java Client API uses Handles to for I/O when interacting with MarkLogic. See the following
topics for more details:

• Handle Overview

• Specifying Content Format

• Handle Type Quick Reference

• Handle Example

1.9.1 Handle Overview
Content handles are key to working with the Java Client API. Handles make use of the Adapter
design pattern to enable strongly typed reading and writing of a diverse and extensible set of
content formats. For example, you can create a com.marklogic.client.io.DOMHandle to read or
write XML DOM data.

// reading
XMLDocumentManager docMgr = client.newXMLDocumentManager();
Document doc = docMgr.read(docURI, new DOMHandle()).get();
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 27

MarkLogic Server Introduction to the Java API
// writing
docMgr.write(docURI, new DOMHandle(someDocument));

You can also create a com.marklogic.client.io.JacksonHandle to read or write JSON data.

// reading
JSONDocumentManager JSONDocMgr = client.newJSONDocumentManager();
JsonNode node = JSONDocMgr.read(docURI, new JacksonHandle()).get();

// writing
JSONDocMgr.write(docURI, new JacksonHandle(someJsonNode));

The Java Client API pre-defines many handle implementations. The following packages contain
handle classes:

• com.marklogic.client.io - Handles classes for standard representations such as String,
File, and DOM.

• com.marklogic.extra - Handle classes for 3rd party formats such as DOM4J and GSON.
Using these handle classes requires 3rd party libraries that are not included in the Java
Client API distribution.

Some handles support both read and write operations. For example, you can use a FileHandle for
reading and writing files. Some handles have a special purpose. For example, you use
SearchHandle for processing the results of a search operation. For a complete list of handles and
what they do, see the com.marklogic.client.io package in the Java Client API Documentation.

Note: Handles are not thread safe. Whenever you create a new thread, you will have to
also create new handle objects to use while in that thread.

Some Java Client API methods enable you to use I/O short cuts that do not require explicit
creation of a handle. These shortcut methods always have an “As” suffix, such as “readAs”. For
example, the XMLDocumentManager.read method shown above has an XMLDocumentManager.readAs
counterpart that implicitly creates the handle for you. For example:

// reading
Document doc = docMgr.readAs(docURI, Document.class);

// writing
docMgr.writeAs(docURI, someDocument);

Likewise, the JSONDocumentManger.read method shown above has an
JSONDocumentManager.readAs counterpart that implicitly creates the handle for you.

// reading
JsonNode node = JSONDocMgr.readAs(docURI, JsonNode.class);

// writing
JSONDocMgr.writeAs(docURI, someJsonNode);
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 28

MarkLogic Server Introduction to the Java API
These shortcut methods are not more efficient, but they can improve the readability of your code.
For more details, see “Shortcut Methods as an Alternative to Creating Handles” on page 31.

1.9.2 Specifying Content Format
Some handles can be used with multiple document formats. For example, an InputStream can
provide content in any format, so InputStreamHandle can be used for any document format.
Where content format is not explicit in the handle type, use the handle’s setFormat method to
specify it. For example, the following call tells the Java Client API that the handle can be used
with JSON content:

new InputStreamHandle().setFormat(Format.JSON);

You cannot set a format for all handle types. For example, a DOMHandle can only be used for
reading and writing XML, so you cannot specify a format.

1.9.3 Handle Type Quick Reference
Not all handles support all content types. In addition, though most handles can be used for either
reading or writing, some are more limited. This section provides a quick guide to the content
formats, operations, and data types supported by each handle class. Special purpose handle
classes, such as SearchHandle, are not included.

Handle Class
Content Format

Supported Java Type
XML Text JSON Binary

BytesHandle RW RW RW RW byte[]

DocumentMetadataHandle RW MarkLogic proprietary XML
format; for details, see XML

Metadata Format in the REST
Application Developer’s
Guide.

DOMHandle RW org.w3c.dom.Document

FileHandle RW RW RW RW java.io.File

InputSourceHandle RW org.xml.sax.InputSource

InputStreamHandle RW RW RW RW java.io.InputStream

JacksonHandle RW com.fasterxml.jackson.data
bind.JsonNode

JacksonDatabindHandle RW your POJO class
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 29

MarkLogic Server Introduction to the Java API
1.9.4 Handle Example
The following code uses a DOMHandle to read an XML document from the server into an
in-memory DOM object:

XMLDocumentManager docMgr = client.newXMLDocumentManager();
DOMHandle handle = new DOMHandle();
docMgr.read(docURI, handle);
org.w3c.dom.Document document = handle.get();

The following code uses a JacksonHandle to read a JSON document from the server into an
in-memory JsonNode:

JSONDocumentManager JSONDocMgr = client.newJSONDocumentManager();
JacksonHandle handleJson = new JacksonHandle();
JSONDocMgr.read(docURI, handleJson);
com.fasterxml.jackson.databind.JsonNode node = handleJson.get();

The following code uses a DOMHandle to write an XML document to MarkLogic. Assume document
is some previously initialized in-memory XML DOM document.

XMLDocumentManager docMgr = client.newXMLDocumentManager();
DOMHandle handle = new DOMHandle();
handle.set(document);
docMgr.write(docId, handle);

The following code uses a JacksonHandle to write a JSON document to MarkLogic. Assume node
is some previously initialized in-memory JsonNode document.

JacksonParserHandle RW com.fasterxml.jackson.core
.JsonParser

JAXBHandle RW your POJO class

OutputStreamHandle W W W W java.io.OutputStream

ReaderHandle RW RW RW java.io.Reader

SourceHandle RW javax.xml.transform.Source

StringHandle RW RW RW String

XMLEventReaderHandle RW javax.xml.stream.XMLEventR
eader

XMLStreamReaderHandle RW javax.xml.stream.XMLStream
Reader

Handle Class
Content Format

Supported Java Type
XML Text JSON Binary
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 30

MarkLogic Server Introduction to the Java API
JSONDocumentManager JSONDocMgr = client.newJSONDocumentManager();
JacksonHandle handleJson = new JacksonHandle();
handleJson.set(node);
JSONDocMgr.write(docId, handleJson);

For additional examples, see the examples in the following packages. The source is available on
GitHub. For details, see “Downloading the Library Source Code” on page 34.

• com.marklogic.client.example.cookbook

• com.marklogic.client.example.handle

1.10 Shortcut Methods as an Alternative to Creating Handles
Shortcut methods enable you to pass supported data types directly into or out of an operation
without explicitly creating a handle to reference the data. These convenience methods can make
your code more readable.

For more details, see the following topics:

• Understanding Shortcut Methods

• When to Choose Strongly Typed Over Shortcut

• Extending Shortcuts by Registering Handle Factories

1.10.1 Understanding Shortcut Methods
Many Java Client API classes and interfaces include “shortcut” methods of the form operationAs,
such as readAs or writeAs. These methods enable you to bypass the equivalent, more strongly
typed methods that require you to pass in a handle. Using shortcut methods instead of handles can
make your code more readable.

For example, the XMLDocumentManager and JSONDocument Manager interfaces includes both read
and readAs methods such as the following:

// strongly typed, handle based
read(String docId, T contentHanlde)

// shortcut equivalent
readAs(String docId, Class<T> as)

This means you can read a document from the database using a call of either of the following
forms:

// strongly typed, returns the populated DOMHandle object
DOMHandle handle = docMgr.read(docURI, new DOMHandle());

// shortcut, returns a DOM Document
Document doc = docMgr.readAs(docURI, Document.class);
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 31

MarkLogic Server Introduction to the Java API
// strongly typed, returns the populated JacksonHandle object
JacksonHandle handleJSON = JSONDocMgr.read(docURI, new
JacksonHandle());

// shortcut, returns a JsonNode
JsonNode node = JSONDocMgr.readAs(docURI, JsonNode.class);

Similarly, you can use XMLDocumentManager or JSONDocumentManager to write a document to the
database using either of the following calls:

// strongly typed
docMgr.write(docURI, new DOMHandle(theDocument));

// shortcut
docMgr.writeAs(docURI, theDocument);

// strongly typed
JSONDocMgr.write(docURI, new JacksonHandle(theJsonNode));

// shortcut
JSONDocMgr.writeAs(docURI, theJsonNode));

Shortcut methods are not limited to document read and write operations. For example, you can
use either QueryManager.newRawCombinedQueryDefinition or
QueryManager.newRawCombinedQueryDefinitionAs to create a RawCombinedQueryDefinition.

1.10.2 When to Choose Strongly Typed Over Shortcut
Shortcut methods are the best choice in most cases because they improve the readability and
maintainability of your code. However, you should keep the following points in mind:

• A shortcut method is not more efficient than the equivalent strongly typed method.
Internally, a Handle is still created to manage the data.

• Using a shortcut method introduces a small risk because you’re side-stepping the strong
typing provided by a handle. For example, an exception is thrown if there is no handle
type corresponding to class type you provide to the shortcut method.

The typing exposure is limited since the Java Client API pre-defines Handle classes for a broad
range of types. You can register your own class-to-handle pairings to extend the supported
classes. For details, see “Extending Shortcuts by Registering Handle Factories” on page 33.

Consider the strongly typed call form in the following cases:

• You want compile-time checking of input and output types.

• You want a slight increase in efficiency over a large number of requests.

• You need to control the MIME type or format of a handle.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 32

MarkLogic Server Introduction to the Java API
1.10.3 Extending Shortcuts by Registering Handle Factories
Though you do not have to create a handle when using a shortcut method, the shortcut
implementation still creates a Handle to manage the data.

For example, when you issue a shortcut call such as the following, the implementation creates a
DOMHandle to receive the document read from the database.

docMgr.readAs(docURI, Document.class);

Similarly, the following implementation creates a JacksonHandle to receive the document read
from the database.

JSONDocMgr.readAs(docURI, JsonNode.class);

This means that a shortcut method must be able to create a handle capable of handling the targeted
class type. This capability is provided by a registry for handle factories. The shortcut method can
query the registry for a handle factory that can process a particular class type. For details, see
DatabaseClientFactory.HandleFactoryRegistry in the Java Client API Documentation.

The Java Client API automatically registers factories for the following handle classes. For details
on the data types supported by each handle type, see the handle class documentation in the Java
Client API Documentation.

If you create your own handle class, you can register a handle factory for it so that you can use
shortcut methods on the classes supported by your handle class.

Note: Handle factory registration must be completed before you create a DatabaseClient.

You can use the same mechansim with a JAXBHandle factory to enable shortcut methods on
POJOs. For example, if you have a POJO class named Product, then you can add it to the registry
as follows:

DatabaseClientFactory.getHandleRegistry().register(
JAXBHandle.newFactory(Product.class);

You can also use JacksonDatabindHandle factory to enable shortcut methods on POJOs.

DatabaseClientFactory.getHandleRegistry().register(
JacksonDatabindHandle.newFactory(Product.class);

BytesHandle InputStreamHandle SourceHandle

DOMHandle JacksonHandle StringHandle

FileHandle JacksonParserHandle XMLEventReaderHandle

InputSourceHandle ReaderHandle XMLStreamReaderHandle
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 33

MarkLogic Server Introduction to the Java API
Then you can subsequently write Product POJOs to MarkLogic and read them back as follows:

XMLDocumentManager docMgr = client.newXMLDocumentManager();
Product product = // ...create a Product

docMgr.writeAs(docURI, Product.class);
// ...
product = docMgr.readAs(docURI, Product.class);

Likewise with a JSONDocumentManager:

JSONDocumentManager JSONDocMgr = client.newJSONDocumentManager();
Product product = // ...create a Product

JSONDocMgr.writeAs(docURI, Product.class);
// ...
product = JSONDocMgr.readAs(docURI, Product.class);

Note that the Java Client API also includes a POJO data binding capability as an alternative to
managing your own POJOs with JAXB. Using this feature eliminates the need for the above
registration. For more details, see “POJO Data Binding Interface” on page 226.

1.11 Thread Safety of the Java API
You should be aware of the following API characteristics with respect to thread safety:

• DatabaseClient is thread safe after initialization.

• The various manager classes are thread safe after initial configuration. Examples:
DocumentManager, QueryManager, ResourceManager.

• Handles are not thread safe. Examples: StringHandle, FileHandle, SearchHandle.

• Builders are not thread safe. Examples: DocumentPatchBuilder, StructuredQueryBuilder.

For example, you can create a DocumentManager for manipulating XML documents and share it
across multiple threads. Similarly, you can create a QueryManager, set the page length, and then
share it between multiple threads.

Handles can be used across multiple requests within the same thread, but cannot be used across
threads, so whenever you create a new thread, you must create new Handle objects to use in that
thread.

1.12 Downloading the Library Source Code
The Java API is an open source project. Though you do not need the source code to use the
library, the source is available from GitHub at the following URL:

https://github.com/marklogic/java-client-api
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 34

https://github.com/marklogic/java-client-api

MarkLogic Server Introduction to the Java API
Assuming you have a Git client and the git command is on your path, you can download a local
copy of the latest source using the following command:

git clone https://github.com/marklogic/java-client-api.git
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 35

MarkLogic Server Single Document Operations
2.0 Single Document Operations
69

This chapter describes how to create, delete, update, and read a single document content and/or its
metadata using the Java Client API. The Java Client API also enables you to work with multiple
documents in a single request, as described in “Synchronous Multi-Document Operations” on
page 70 and “Asynchronous Multi-Document Operations” on page 92.

When working with documents, it is important to keep in mind the difference between a
document on your client and a document in the database. In particular, any changes you make to a
document’s content and metadata on the client do not persist between sessions. Only if you write
the document out to the database do your changes persist.

This chapter includes the following sections:

• Document Creation

• Document Deletion

• Reading Document Content

• Writing A Binary Document

• Reading Content From A Binary Document

• Reading, Modifying, and Writing Metadata

• Working with Temporal Documents

• Conversion of Document Encoding

• Partially Updating Document Content and Metadata

2.1 Document Creation
Document creation is not done via a document creation method. When you first write content via
a Manager object to a document in the database as identified by its URI, MarkLogic Server
creates a document in the database with that URI and content.

Note: To call write(), an application must authenticate as a user with at least one of the
rest-writer or rest-admin roles (or as a user with the admin role).

This section describes the following about document creation operations:

• Writing an XML or JSON Document To The Database

• Creating a Text Document In the Database

• Automatically Generating Document URIs

• Format-Specific Write Capabilities
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 36

MarkLogic Server Single Document Operations
2.1.1 Writing an XML or JSON Document To The Database
Note that no changes you make to a document or its metadata persist until you write the document
out to the database. Within your application, you are only manipulating it within system memory,
and those changes will vanish when the application ends. The database content is constant until
and unless a write or delete operation changes it.

The basic steps needed to write a document are:

1. If you have not already done so, connect to the database, storing the connection in a
com.marklogic.client.DatabaseClient object. For example, if using digest
authentication:

DatabaseClient client = DatabaseClientFactory.newClient(
host, port, new DigestAuthContext(username, password));

2. If you have not already done so, use the DatabaseClient object to create a
com.marklogic.client.document.DocumentManager object of the appropriate subclass for
the document content you want to access (XML, text, JSON, binary, generic).

a. In this example code, an XMLDocumentManager.

XMLDocumentManager XMLDocMgr = client.newXMLDocumentManager();

b. In this example code, an JSONDocumentManager.

JSONDocumentManager JSONDocMgr = client.newJSONDocumentManager();

3. Get the document’s content. For example, by using an InputStream.

FileInputStream docStream = new FileInputStream(
"data"+File.separator+filename);

4. Create a handle associated with the input stream to receive the document’s content. How
you get content determines which handle you use. Use the handle’s set() method to
associate it with the desired stream.

InputStreamHandle handle = new InputStreamHandle(docStream);

5. Write the document’s content by calling a write() method on the DocumentManager, with
arguments of the document’s URI and the handle.

a. Calling a write() method on the XMLDocumentManager:

XMLDocMgr.write(docId, handle);

b. Calling a write() method on the JSONDocumentManager:

JSONDocMgr.write(docId, handle);
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 37

MarkLogic Server Single Document Operations
6. When finished with the database, release the connection resources by calling the
DatabaseClient object’s release() method.

client.release();

2.1.2 Creating a Text Document In the Database
This procedure outlines a very basic creation operation for a simple text document is as follows:

1. Create a com.marklogic.client.DatabaseClient for the database. For example, if using
digest authentication:

DatabaseClient client = DatabaseClientFactory.newClient(
host, port, new DigestAuthContext(username, password));

2. Create a com.marklogic.client.document.DocumentManager object of the appropriate
format for your document; text, binary, JSON, XML, or generic if you are not sure.

TextDocumentManager TextDocMgr = client.newTextDocumentManager();

3. For convenience’s sake, set a variable to your new document’s URI. This is not required;
the raw string could be used wherever docId is used.

String docId = "/example/text.txt";

4. As discussed previously in “Using Handles for Input and Output” on page 27, within
MarkLogic Java applications you use handle objects to contain a document’s content and
metadata. Since this is a text document, we will use a
com.marklogic.client.io.StringHandle to contain the text content. After creation, set the
handle’s value to the document’s initial content.

StringHandle handle = new StringHandle();
handle.set("A simple text document");

5. Write the document content out to the database. This creates the document in the database
if it is not already there (if it is already there, it updates the content to whatever is in the
handle argument). The identifier for the document is the value of the docId argument.

TextDocMgr.write(docId, handle);

6. When finished with the database, release the connection resources by calling the
DatabaseClient object’s release() method.

client.release();
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 38

MarkLogic Server Single Document Operations
2.1.3 Automatically Generating Document URIs
MarkLogic Server can automatically generate database URIs for documents inserted using the
Java API. You can only use this feature to create new documents. To update an existing
document, you must know the URI.

To insert a document with a generated URI, use a
com.marklogic.client.document.DocumentUriTemplate with DocumentManager.create(), as
described by the following procedure.

1. If you have not already done so, connect to the database, storing the connection in a
com.marklogic.client.DatabaseClient object. For example, if using digest
authentication:

DatabaseClient client = DatabaseClientFactory.newClient(
host, port, new DigestAuthContext(username, password));

2. If you have not already done so, use the DatabaseClient object to create a
com.marklogic.client.document.DocumentManager object of the appropriate subclass for
the document content you want to access (XML, text, JSON, binary, generic).

a. In this example code, an XMLDocumentManager.

XMLDocumentManager XMLDocMgr = client.newXMLDocumentManager();

b. In this example code, an JSONDocumentManager.

JSONDocumentManager JSONDocMgr = client.newJSONDocumentManager();

3. Create a DocumentUriTemplate using the document manager. Specify the extension suffix
for the URIs created with this template. Do not include a "." separator.

a. The following example creates a template that generates URIs ending with ".xml".

DocumentUriTemplate templateXML =
XMLDocMgr.newDocumentUriTemplate("xml");

b. The following example creates a template that generates URIs ending with ".json".

DocumentUriTemplate templateJSON =
JSONDocMgr.newDocumentUriTemplate("json");

4. Optionally, specify additional URI template attributes, such as a database directory prefix
and document format. The following example specifies a directory prefix of "/my/docs/".

templateXML.setDirectory("/my/docs/");
// Or
templateJSON.setDirectory("/my/docs/");
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 39

MarkLogic Server Single Document Operations
5. Get the document’s content. For example, by using an InputStream.

FileInputStream docStream =
new FileInputStream("data" + File.separator + filename);

6. Create a handle associated with the input stream to receive the document’s content. How
you get content determines which handle you use. Use the handle’s set() method to
associate it with the desired stream.

InputStreamHandle handle = new InputStreamHandle(docStream);

7. Insert the document into the database by calling a create() method on the
DocumentManager, passing in a URI template and the handle. Use the returned
DocumentDescriptor to obtain the generated URI.

DocumentDescriptor descXML = XMLDocMgr.create(templateXML, handle);
// Or
DocumentDescriptor descJSON = JSONDocMgr.create(templateJSON,handle);

8. When finished with the database, release the connection resources by calling the
DatabaseClient object’s release() method.

client.release();

2.1.4 Format-Specific Write Capabilities
When inserting or updating a binary document, you can request metadata extraction using
BinaryDocumentManager.setMetadataExtraction. For an example, see “Writing A Binary
Document” on page 43.

When inserting or updating an XML document, you can request XML repair using
XMLDocumentManager.setDocumentRepair.

See the Java Client API Documentation for details.

2.2 Document Deletion
To delete one or more documents, call DocumentManager.delete and pass in the URI(s) of the
documents.

Note: To delete documents, an application must authenticate as a user with at least one of
the rest-writer or rest-admin roles (or as a user with the admin role).

The following example shows how to delete an XML document from the database.

1. Create a com.marklogic.client.DatabaseClient for connecting to the database.For
example, if using digest authentication:
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 40

MarkLogic Server Single Document Operations
DatabaseClient client = DatabaseClientFactory.newClient(
host, port, new DigestAuthContext(username, password));

2. If you have not already done so, use the DatabaseClient object to create a
com.marklogic.client.document.DocumentManager object of the appropriate subclass for
the document format (XML, text, JSON, or binary).

a. In this example code, an XMLDocumentManager.

XMLDocumentManager XMLDocMgr = client.newXMLDocumentManager();

b. In this example code, an JSONDocumentManager.

JSONDocumentManager JSONDocMgr = client.newJSONDocumentManager();

3. Delete the document(s). For example, the following statement deletes 2 documents:

XMLDocMgr.delete("/example/doc1.xml", "/example/doc2.json");
// Or
JSONDocMgr.delete("/example/doc1.xml", "/example/doc2.json");

4. When finished with the database, release the connection resources by calling the
DatabaseClient object’s release() method.

client.release();

2.3 Reading Document Content
Reading requires a handle to access document content.

Note that no changes you make to a document or its metadata persist until you write the document
out to the database. Within your application, you are only manipulating it on the client, and those
changes will vanish when the application ends. The database content is persistent until and unless
a write or delete operation changes it.

If you read content with a stream, you must close the stream when done. If you do not close the
stream, HTTP clients do not know that you are finished and there are fewer connections available
in the connection pool.

The basic steps to read a document from the database are:

1. Create a com.marklogic.client.DatabaseClient for connecting to the database.For
example, if using digest authentication:

DatabaseClient client = DatabaseClientFactory.newClient(
host, port, new DigestAuthContext(username, password));
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 41

MarkLogic Server Single Document Operations
2. If you have not already done so, use the DatabaseClient object to create a
com.marklogic.client.document.DocumentManager object of the appropriate subclass for
the document format (XML, text, JSON, or binary).

a. In this example code, an XMLDocumentManager.

XMLDocumentManager XMLDocMgr = client.newXMLDocumentManager();

b. In this example code, an JSONDocumentManager.

JSONDocumentManager JSONDocMgr = client.newJSONDocumentManager();

3. Create a handle to receive the document’s content. For information on handles and the
wide variety of handle types, see “Using Handles for Input and Output” on page 27.

a. This example uses a com.marklogic.client.io.DOMHandle object.

DOMHandle handleXML = new DOMHandle();

b. This example uses a com.marklogic.client.io.JacksonHandle object.

JacksonHandle handleJSON = new JacksonHandle();

4. Read the document’s content by calling a read() method on the DocumentManager, with
arguments of the document’s URI and the handle. Here, assume docId contains the
document’s URI.

XMLDocMgr.read(docId, handleXML);
// Or(
JSONDocMgr.read(docId, handleJSON);

5. Access the content by calling a get() method on the handle.

a. For example, DOMHandle.get returns a W3C Document object.

Document document = handleXML.get();

b. For example, JacksonHandle.get returns a JsonNode object.

JsonNode node = handleJSON.get();

6. When finished with the database, release the connection resources by calling the
DatabaseClient object’s release() method.

client.release();
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 42

MarkLogic Server Single Document Operations
2.4 Writing A Binary Document
To insert or update a binary document, use a handle containing your binary content with
com.marklogic.client.document.BinaryDocumentManager. You can use any handle that
implements BinaryWriteHandle, such as BytesHandle or FileHandle.

No metadata extraction is performed by default. You can request metadata extraction and specify
how it is saved by calling BinaryDocumentManager.setMetadataExtraction().

The following example reads a JPEG image from a file named my.png and inserts it into the
database as a binary document with URI /images/my.png. During insertion, metadata is extracted
from the binary content and saved as document properties.

String docId = "/example/my.png";
String mimetype = "image/png";

BinaryDocumentManager docMgr = client.newBinaryDocumentManager();
docMgr.setMetadataExtraction(MetadataExtraction.PROPERTIES);

docMgr.write(
docId,
new FileHandle().with(new File("my.png")).withMimetype(mimetype)

);

2.5 Reading Content From A Binary Document
There are several ways to read content from a binary document.

To stream binary content, use InputStream as follows:

InputStream byteStream =
docMgr.read(docID, new InputStreamHandle()).get();

To buffer the binary content, use com.marklogic.client.io.BytesHandle object as follows:

byte[] buf = docMgr.read(docID, new BytesHandle()).get();

Or you can read only part of the content:

BytesHandle handle = new BytesHandle();
buf = docMgr.read(docId, handle, 9, 10).get();

2.6 Reading, Modifying, and Writing Metadata
Reading and writing document metadata from and to the database are very similar operations to
reading and writing document content. Each requires calling methods on
com.marklogic.client.document.DocumentManager. The handle for metadata can be a
DocumentMetadataHandle to modify metadata in a POJO, or it can be raw XML or JSON.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 43

MarkLogic Server Single Document Operations
You can perform operations on the metadata associated with documents such as collections,
permissions, properties, and quality. This section describes those metadata operations and
includes the following parts:

• Document Metadata

• Reading Document Metadata

• Collections Metadata

• Values Metadata

• Properties Metadata

• Quality Metadata

• Permissions Metadata

• Manipulating Document Metadata In Your Application

• Writing Metadata

2.6.1 Document Metadata
The enum DocumentManager.Metadata enumerates the metadata categories (including ALL). The
following are the metadata types covered by this enumeration:

• COLLECTIONS: Document collections, a non-hierarchical way of organizing documents in
the database. For details, see “Collections Metadata” on page 46.

• METADATAVALUES: Key-value metadata, sometimes called “metadata fields”. For details, see
“Values Metadata” on page 47.

• PERMISSIONS: Document permissions. For details, see “Permissions Metadata” on page 49.

• PROPERTIES: Document properties. Property-value pairs associated with the document. For
details, see “Properties Metadata” on page 48.

• QUALITY: Document search quality. Helps determine which documents are of the best
quality. For details, see “Quality Metadata” on page 48.

These metadata types are described in detail later in this chapter.

2.6.2 Reading Document Metadata
The basic steps needed to read a document’s metadata are:

1. If you have not already done so, create a com.marklogic.client.DatabaseClient for
connecting to the database. For example, if using digest authentication:

DatabaseClient client = DatabaseClientFactory.newClient(
host, port, new DigestAuthContext(username, password));
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 44

MarkLogic Server Single Document Operations
2. If you have not already done so, use the DatabaseClient object to create a
com.marklogic.client.document.DocumentManager object of the appropriate subclass for
the document format (XML, text, JSON, or binary).

a. In this example code, an XMLDocumentManager.

XMLDocumentManager XMLDocMgr = client.newXMLDocumentManager();

b. In this example code, an JSONDocumentManager.

JSONDocumentManager JSONDocMgr = client.newJSONDocumentManager();

3. Create a com.marklogic.client.io.DocumentMetadataHandle object, which will receive
the document’s metadata. Alternately, you can create raw XML or JSON.

DocumentMetadataHandle metadataHandle = new DocumentMetadataHandle();

4. If you also want to get the document’s content, create a handle to receive it. Note that you
need separate handles for a document’s content and metadata.

a. This example uses a com.marklogic.client.io.DOMHandle object.

DOMHandle handleXML = new DOMHandle();

b. This example uses a com.marklogic.client.io.JacksonHandle object.

JacksonHandle handleJSON = new JacksonHandle();

5. Read the document’s metadata by calling a readMetadata() method on the
DocumentManager, with an argument of the metadata handle. Note that you can also call
read() with an additional argument of a content handle so that it will read the metadata
into the metadata handle and the content into the content handle in a single operation. To
call read(), an application must authenticate as rest-reader, rest-writer, or rest-admin.
Below, docId is a variable containing a document URI.

a. Calling methods on a XMLDocumentManager:

//read only the metadata into a handle
XMLDocMgr.readMetadata(docId, metadataHandle);

//read metadata and content
XMLDocMgr.read(docId, metadataHandle, handleXML);

b. Calling methods on a JSONDocumentManager

//read only the metadata into a handle
JSONDocMgr.readMetadata(docId, metadataHandle);
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 45

MarkLogic Server Single Document Operations
//read metadata and content
JSONDocMgr.read(docId, metadataHandle, handleJSON);

6. Access the metadata by calling get() methods on the metadata handle. Later sections in
this chapter show how to access the other types of metadata.

DocumentCollections collections = metadataHandle.getCollections();
Document document = handleXML.get();
JsonNode node = handleJSON.get();

7. When finished with the database, release the connection resources by calling the
DatabaseClient object’s release() method.

client.release();

By default, DocumentManager reads and writes all categories of metadata. To read or write a subset
of the metadata categories, configure DocumentManager by calling setMetadataCategories(). For
example, to retrieve just collection metadata, make the following call before calling
DocumentManager.read or DocumentManager.readMetadata:

docMgr.setMetadataCategories(DocumentManager.Metadata.COLLECTIONS);

2.6.3 Collections Metadata
Collections are a way to organize documents in a database. A collection defines a set of
documents in the database. You can set documents to be in any number of collections either at the
time the document is created or by updating a document. Searches against collections are both
efficient and convenient. For more details on collections, see Collections in the Search Developer’s
Guide.

The Java API allows you to read and manipulate collections metadata using the
com.marklogic.client.io.DocumentMetadataHandle.DocumentCollections. Collections are
named by specifying a URI. A collection URI serves as an identifier, and it can be any valid URI.

The code in this section assumes a DocumentManager object of an appropriate type for the
document, docMgr, and a string containing a document URI, docId, have been created.

To get all collections for a document and put them in an array, do the following:

//Get the set of collections the document belongs to and put in array.
DocumentCollections collections = metadataHandle.getCollections();

To check if a collection URI exists in a document’s set of collections, do the following:

collections.contains("/collection_name/collection_name2");

To add a document to one or more collections, do the following:

collections.addAll("/shakespeare/sonnets", "/shakespeare/plays");
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 46

MarkLogic Server Single Document Operations
To remove a document from a collection, do the following:

collections.remove("/shakespeare/sonnets");

To remove a document from all its collections, do the following:

collections.clear();

2.6.4 Values Metadata
The METADATAVALUES metadata category represents simple key-value metadata for a document.
Both the key and the value are strings. You can define your own key-value pairs. MarkLogic also
adds key-value pairs to this type of metadata to documents in certain situations, such as when you
work with temporal documents.

MarkLogic stores values metadata separately from its associated document. To search values
metadata, define a metadata field and use a field query. For more details, see Metadata Fields in the
Administrator’s Guide.

To access metadata values you’ve read from the database, use
DocumentMetadataHandle.getMetadataValues. For example, if you read the metadata from a
document using a call sequence similar to the following:

DocumentMetadataHandle metadataHandle = new DocumentMetadataHandle();
docMgr.setMetadataCategories(METADATAVALUES);
docMgr.readMetadata(docId, metadataHandle);

Then you can access the returned values metadata as follows:

DocumentMetadataValue mvMap = metadataHandle.getMetadataValues();
String someValue = mvMap.get("someKey");

DocumentMetadataValue is an extension of java.util.Map, so you can use the Map methods to
explore the returned metadata.

To add a new key-value pair or change the value of an existing pair, in a document’s metadata,
use DocumentMetadataValue.put or DocumentMetadataHandle.withMetadataValue. For example,
the following adds a key-value pair with key “myKey” and value “myValue”:

mvMap.put("myKey", "myValue");
//or
metadataHandle.withMetadataValue("myKey", "myValue");

Once you initialize your map or handle with values metadata, write the new metadata to the
database as described in “Writing Metadata” on page 50.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 47

MarkLogic Server Single Document Operations
2.6.5 Properties Metadata
Manipulate properties metadata using the
com.marklogic.client.io.DocumentMetadataHandle.DocumentProperties class.

The code in this section assumes a DocumentManager object, docMgr, and a string containing a
document’s URI, docId, have been created.

To get all of a document’s properties metadata, do the following:

DocumentProperties properties = metadataHandle.getProperties();

DocumentProperties objects represent a document’s properties as a map.

To check if a document’s properties contain a specific property name, do the following:

exists = properties.containsKey("name");

To get a specific property’s value do the following:

value = metadataHandle.getProperties("name");

To add a new property or change the value of an existing property in a document’s metadata,
build up the new set of properties using DocumentProperties.put or
DocumentMetadataHandle.withProperty, and then write the new metadata to the database as
described in “Writing Metadata” on page 50. For example, the following adds a property named
“name” with the value “value”.

metadataHandle.getProperties().put("name", "value");

2.6.6 Quality Metadata
The code in this section assumes a com.marklogic.client.io.DocumentManager object, docMgr,
and a string containing a document’s URI, docId, have been created.

The quality metadata affects the ranking of documents for use in searches by creating a multiplier
for calculating the score for that document, and the default value for quality in the Java API is 0.

To get a document’s search quality metadata value do the following:

int quality = metadataHandle.getQuality();

To set a document’s search quality value do the following:

metadataHandle.setQuality(3);
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 48

MarkLogic Server Single Document Operations
2.6.7 Permissions Metadata
Permissions on documents control who can access a document for the capabilities of read, update,
insert, and execute. To perform one of these operations on a document, a user must have a role
corresponding to the permission for each capability needed. For details on permissions and on the
security model in MarkLogic Server, see the Security Guide.

The code in this section assumes a DocumentManager object, docMgr, and a string containing a
document’s URI, docId, have been created. Manipulate document properties using the class
com.marklogic.client.io.DocumentMetadataHandle.DocumentPermissions.

MarkLogic Server defines permissions using roles and capabilities.

The allowed values for capabilities are those in the enum
com.marklogic.client.io.DocumentMetadataHandle.Capability:

• EXECUTE - Permission to execute the document.

• INSERT - Permission to create but not modify or delete the document.

• READ - Permission to read the document but not modify it..

• UPDATE - Permission to create, modify, or delete the document, but not to read it.

Roles are assigned to users via the Admin Interface or through other administrative tools, and
cannot be assigned via the Java Client API. You can, however, control permissions on documents
as part of their metadata.

To get permissions metadata for a document, do the following:

DocumentPermissions permissions = metadataHandle.getPermissions()

metadataHandle.getPermissions().add("app-user",
Capability.UPDATE, Capability.READ);

2.6.8 Manipulating Document Metadata In Your Application
A DocumentMetadataHandle represents metadata as a POJO. A DocumentMetadataHandle has
several methods for manipulating a document’s metadata. That may not be how you want to work
with the metadata, however. If you would prefer to work with it as XML, then read it with an
XML handle. If you would prefer to work with it as JSON, read it with a JSON handle. A
StringHandle can use either XML or JSON, defaulting to XML.

To specify the format for reading content, use withFormat() or setFormat(), as in the following
example:

StringHandle metadataHandle =
new StringHandle().withFormat(Format.JSON);
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 49

MarkLogic Server Single Document Operations
2.6.9 Writing Metadata
When you are finished modifying metadata categories, you must write it to the database to persist
it. Note that the above operations all only change the document’s metadata stored on the client,
and do not change the metadata for document in the database. To write the metadata changes to
the database, as well as the document content, do the following:

InputStreamHandle handle = new InputStreamHandle(docStream);
docMgr.write(docId, metadataHandle, handle);

2.7 Working with Temporal Documents
Most document write operations on JSON and XML documents enable you to work with
temporal documents. Temporal-aware document inserts and updates are made available through
the com.marklogic.client.document.TemporalDocumentManager interface. JSONDocumentManager
and XMLDocumentManager implement TemporalDocumentManager.

The TemporalDocumentManager interface exposes methods for creating, updating, patching, and
deleting documents that accept temporal related parameters such as the following:

• temporalCollection: The URI of the temporal collection into which the new document
should be inserted, or the name of the temporal collection that contains the document
being updated.

• temporalDocumentURI: The “logical” URI of the document in the temporal collection; the
temporal collection document URI. This is equivalent to the first parameter of the
temporal:statement-set-document-version-uri XQuery function or of the
temporal.statementSetDocumentVersionUri Server-Side JavaScript function.

• sourceDocumentURI: The temporal collection document URI of the document being
operated on. Only applicable when updating existing documents. This parameter
facilitates working with documents with user-maintained version URIs.

• systemTime: The system start time for an update or insert.

During an update operation, if you do not specify sourceDocumentURI or temporalDocumentURI
parameters, then the uri parameter indicates the source document. If you specify
temporalDocumentURI, but do not specify sourceDocumentURI, then the temporalDocumentURI
identifies the source document.

The uri parameter always refers to the output document URI. When the MarkLogic manages the
version URIs, the document URI and temporal document collection URI have the same value.
When the user manages version URIs, they can be different.

The TemporalDocumentManager.protect method enables you to protect a temporal document from
operations such as update, delete, and wipe for a specified period of time. This method is
equivalent to calling the temporal:document-protect XQuery function or the
temporal.documentProtect Server-Side JavaScript function.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 50

MarkLogic Server Single Document Operations
Use TemporalDocumentManager.advanceLsqt to advance LSQT on a temporal collection. This
method is equivalent to calling the temporal:advance-lsqt XQuery function or the
temporal.advanceLsqt Server-Side JavaScript function.

For more details, see the Temporal Developer’s Guide and the JavaDoc in the Java Client API
Documentation.

2.8 Conversion of Document Encoding
The Java API handles encoding conversions for you, but you have to:

• know the encoding

• use the appropriate handle

If you specify the encoding and it turns out to be the wrong encoding, then the conversion will
likely not turn out as you expect.

MarkLogic Server stores text, XML, and JSON as UTF-8. In Java, characters in memory and
reading streams are UTF-16. The Java API converts characters to and from UTF-8 automatically.

When writing documents to the server, you need to know if they are already UTF-8 encoded. If a
document is not UTF-8, you must specify its encoding or you are likely to end up with data that
has incorrect characters due to the incorrect encoding. If you specify a non-UTF-8 encoding, the
Java API will automatically convert the encoding to UTF-8 when writing to MarkLogic.

When writing characters to or reading characters from a file, Java defaults to the platform’s
standard encoding. For example, there is different platform encoding on Linux than Windows.

XML supports multiple encodings as defined by the header (called an XML declaration):

<?xml version="1.0" encoding ="utf-8">

The XML declaration declares a file’s encoding. XML parsing tools, including handles, can
determine encoding from this and do the conversion for you.

When writing character data to the database, you need to pick an appropriate handle type,
depending on your intent and circumstances.

Depending on your application, you may need to be aware that MarkLogic Server normalizes text
to precomposed Unicode characters for efficiency. Unicode abstract characters can either be
precomposed (one character) or decomposed (two characters). If you write a decomposed
Unicode document to MarkLogic Server and then read it back, you will get back precomposed
Unicode. Usually, you do not need to care if characters are precomposed or decomposed. This
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 51

MarkLogic Server Single Document Operations
Unicode issue only affects some characters, and many APIs abstract away the difference. For
instance, the Java collator treats the precomposed and decomposed forms of a character as the
same character. If your application needs to compensate for this difference, you can use
java.text.Normalizer; for details, see:

http://docs.oracle.com/javase/6/docs/api/java/text/Normalizer.html

The following table describes possible cases for reading character data with recommended
handles to use in each case.

The following table describes possible cases for writing character data with recommended
handles to use in each case.

Read Condition Recommended Handle(s)

If reading binary data: Use BytesHandle, FileHandle, or
InputStreamHandle.

If reading character data from the database: BytesHandle, FileHandle, InputStreamHandle,
and the XML handles are encoded as UTF-8.
StringHandle and ReaderHandle convert to
UTF-16.

Write Condition Recommended Handle(s)

If the data you are writing is a Java string: Use StringHandle; it converts on write from
UTF-16 to UTF-8.

If writing binary data: Use BytesHandle, FileHandle, or
InputStreamHandle.

If the data you are writing is encoded as
UTF-8 and you do not need to modify the
data:

Use BytesHandle, FileHandle, or
InputStreamHandle.

If it is XML that declares an encoding other
than UTF-8 in the XML declaration and you
do not need to modify the data:

 Use InputSourceHandle,
XMLEventReaderHandle, or
XMLStreamReaderHandle; these convert to
UTF-8.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 52

http://docs.oracle.com/javase/6/docs/api/java/text/Normalizer.html

MarkLogic Server Single Document Operations
2.9 Partially Updating Document Content and Metadata
The interface com.marklogic.client.document.DocumentPatchBuilder enables you to update a
portion of an existing document or its metadata. This section covers the following topics:

• Introduction to Content and Metadata Patching

If the character data to write is XML that
declares the encoding in a prolog and you
need to modify the data:

Use DOMHandle, SourceHandle, or create a
handle class on an open source DOM. For
examples of the latter, see JDOMHandle,
XOMHandle, or DOM4JHandle in the package
com.marklogic.client.extra. All these
classes convert to UTF-8.

If the character data to write has a known
encoding other than UTF-8 and you don't need
to modify the data:

Use ReaderHandle and specify the encoding
when creating the Reader (as usual in Java);
these convert to UTF-8.

If the character data to write is XML with a
known but undeclared encoding and you need
to modify the data:

Use DOMHandle with a DocumentBuilder
parsing an InputSource with a specified
encoding as in:

DOMHandle handle = new DOMHandle();
handle.set(
handle.getFactory().newDocumentBuild

er()
parse(newInputSource(...reader

specifying charset ...)));

or Use SourceHandle with a StreamReader on a
Reader with a specified encoding as in:

SourceHandle handle = new
SourceHandle();
handle.set(new StreamSource(...

reader specifying charset
...));

If the character data to write is JSON and you
need to modify the data:

Consider using a JSON library such as
Jackson or GSON. See
com.marklogic.client.extra.JacksonHandle
for an example.

If the character data to write is text other than
JSON or XML and you need to modify the
data:

Consider using a StreamTokenizer with a
Reader, or Pattern with a String

Write Condition Recommended Handle(s)
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 53

MarkLogic Server Single Document Operations
• Basic Steps for Patching Documents and Metadata

• Construct a Patch From Raw XML or JSON

• Defining the Context for a Patch Operation

• Example: Replacing Parts of a JSON Document

• Example: Patching Metadata

• Managing XML Namespaces in a Patch

• Construct Replacement Data on the Server

2.9.1 Introduction to Content and Metadata Patching
A partial update is an update you apply to a portion of a document or metadata, rather than
replacing an entire document or all of the metadata. For example, inserting an XML element or
attribute or changing the value associated with a JSON property. You can only apply partial
content updates to XML and JSON documents. You can apply partial metadata updates to any
document type.

Use a partial update to do the following operations:

• Add, replace, or delete an XML element, XML attribute, or JSON object or array item of
an existing document.

• Add, replace, or delete a subset of the metadata of an existing document. For example,
modify a permission or insert a property.

• Dynamically generate replacement content or metadata on MarkLogic Server using builtin
or user-defined functions. For details, see “Construct Replacement Data on the Server” on
page 67.

You can apply multiple updates in a single patch, and you can update both content and metadata
in the same patch.

A patch is a partial update descriptor, expressed in XML or JSON, that tells MarkLogic Server
where to apply an update and what update to apply. Four operations are available in a patch:
insert, replace, replace-insert, and delete. (A replace-insert operation functions as a replace, as
long as at least one match exists for the target content; if there are no matches, then the operation
functions as an insert.)

Patch operations can target XML elements and attributes, JSON property values and array items,
and data values. You identify the target of an operation using XPath and JSONPath expressions.
When inserting new content or metadata, the insertion point is further defined by specifying the
position; for details, see How Position Affects the Insertion Point in the REST Application Developer’s
Guide.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 54

MarkLogic Server Single Document Operations
Note: You can only use a subset of XPath to define path expressions in patch operations.
For details, see Patch Feature of the Client APIs in the XQuery and XSLT Reference
Guide.

When applying a patch to document content, the patch format must match the document format:
An XML patch for an XML document, a JSON patch for a JSON document. You cannot patch the
content of other document types. You can patch metadata for all document types. A
metadata-only patch can be in either XML or JSON. A patch that modifies both content and
metadata must match the document content type.

You can construct a patch from raw JSON or XML, or using one of the following builder
interfaces:

• com.marklogic.client.document.DocumentPatchBuilder

• com.marklogic.client.document.DocumentMetadataPatchBuilder

The patch builder interface contains value and fragment oriented methods, such as replaceValue
and replaceFragment. You can use the *Value methods when the new value is an atomic value,
such as a string, number, or boolean. Use the *Fragment methods when the new value is a complex
structure, such as an XML element or JSON object or array.

Apply a patch by passing a handle to it to the patch() method of a DocumentManager. The
following example sketches construction of a patch using a builder, and then applying the patch to
an XML document. The patch inserts a <child/> element as the last child element of the node
addressed by the XPath expression /data.

DocumentPatchBuilder xmlPatchBldr = XMLDocMgr.newPatchBuilder();
DocumentPatchHandle xmlPatch =

xmlPatchBldr.insertFragment(
"/data",
Position.LAST_CHILD,
"<child>the last one</child>")

.build();
XMLDocMgr.patch(docId, xmlPatch);

The following example sketches construction of a patch using a builder, and then applying the
patch to a JSON document. The patch inserts a before element as the element before the node
adressed by the path expression /data.

DocumentPatchBuilder jsonPatchBldr = JSONDocMgr.newPatchBuilder();
DocumentPatchHandle jsonPatch =

jsonPatchBldr.insertFragment(
"/data",
Position.BEFORE,
"{\"before\":\"element before data attribute\"}")

.build();
JSONDocMgr.patch(docId, jsonPatch);

For detailed instructions, see “Basic Steps for Patching Documents and Metadata” on page 56.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 55

MarkLogic Server Single Document Operations
If a patch contains multiple operations, they are applied independently to the target document.
That is, within the same patch, one operation does not affect the context path or select path results
or the content changes of another. Each operation in a patch is applied independently to every
matched node. If any operation in a patch fails with an error, the entire patch fails.

Content transformations are not directly supported in a partial update. However, you can
implement a custom replacement content generation function to achieve the same effect. For
details, see “Construct Replacement Data on the Server” on page 67.

2.9.2 Basic Steps for Patching Documents and Metadata
This section describes how to create a patch builder, use it to construct a patch descriptor, and then
apply the patch. To construct a patch without using a builder, see “Construct a Patch From Raw
XML or JSON” on page 58.

For JSON and XML documents, you can use a
com.marklogic.client.document.DocumentPatchBuilder to patch content only, content plus
metadata, or metadata only. For all document types, you can use a
com.marklogic.client.document.DocumentMetadataPatchBuilder to patch metadata only. A
DocumentPatchBuilder is also a DocumentMetadataPatchBuilder. Use a DocumentManager subclass
such as JSONDocumentManager or GenericDocumentManager to create a patch builder.

When you combine content and metadata updates in the same patch, the patch format (XML or
JSON) must match the content type of the patched documents.

Follow this procedure to use a builder to create and apply a patch to the contents of an XML or
JSON document, or to the metadata of any type of document.

1. If you have not already done so, connect to the database, storing the connection in a
com.marklogic.client.DatabaseClient object. For example, if using digest
authentication:

DatabaseClient client = DatabaseClientFactory.newClient(
host, port, new DigestAuthContext(username, password));

2. If you have not already done so, use the DatabaseClient object to create a
com.marklogic.client.document.DocumentManager object of the appropriate subclass for
the document content you want to access (XML, JSON, binary, or text).

a. In this example code, an XMLDocumentManager.

XMLDocumentManager XMLDocMgr = client.newXMLDocumentManager();

b. In this example code, an JSONDocumentManager.

JSONDocumentManager JSONDocMgr = client.newJSONDocumentManager();
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 56

MarkLogic Server Single Document Operations
Note: You can only apply content patches to XML and JSON documents.

3. Create a document patch builder or metadata patch builder using the document manager.

a. For example:

DocumentPatchBuilder builderXML = XMLDocMgr.newPatchBuilder();

b. Or:

DocumentPatchBuilder builderJSON = JSONDocMgr.newPatchBuilder();

4. Call the patch builder methods to define insert, replace, replace-insert, and delete
operations for the patch.

a. The following example adds an element insertion operation:

builderXML.insertFragment("/data", Position.LAST_CHILD,
"<child>the last one</child>");

b. The following example adds an element insertion operation:

builderJSON.insertFragment("/data", Position.BEFORE,
"{\"before\":\"element before data attribute\"}");

For more details on identifying the target content for an operation, see “Defining the
Context for a Patch Operation” on page 60.

5. Create a handle associated with the patch using DocumentPatchBuilder.build().

a. For example:

DocumentPatchHandle handleXML = builderXML.build();

b. Or:

DocumentPatchHandle handleJSON = builderJSON.build();

Note: Once you call build(), the patch contents are fixed. Subsequent calls to define
additional operation, such as calling insertFragment again, will have no effect.

6. Apply the patch by calling a patch() method on the DocumentManager, with arguments of
the document’s URI and the handle.

a. For example:

XMLDocMgr.patch(docId, handleXML);
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 57

MarkLogic Server Single Document Operations
b. Or:

JSONDocMgr.patch(docId, handleJSON);

7. When finished with the database, release the connection resources by calling the
DatabaseClient object’s release() method. For example:

client.release();

2.9.3 Construct a Patch From Raw XML or JSON
This section describes how to create and apply a patch that you construct directly using XML or
JSON. To construct a patch using a Java builder, see “Basic Steps for Patching Documents and
Metadata” on page 56.

When you construct a patch that modifies both content and metadata, the patch format must match
the content type of the target XML or JSON document. When you construct a patch that only
modifies metadata, the patch format can use either XML or JSON, and the patch can be applied to
the metadata of any type of document (XML, JSON, text, or binary).

For examples of raw patches, see XML Examples of Partial Updates or JSON Examples of Partial

Update in the REST Application Developer’s Guide:

Follow this procedure to create and apply a raw XML or JSON patch to the contents of an XML
or JSON document, or to the metadata of any type of document.

1. Create a JSON or XML representation of the patch operations, using the tools or library of
your choice. For syntax, see XML Patch Reference and JSON Patch Reference and in the
REST Application Developer’s Guide.

a. The following example uses a String representation of a patch that inserts an element in
an XML document:

String xmlPatch =
"<rapi:patch xmlns:rapi='http://marklogic.com/rest-api'>" +

"<rapi:insert context='/data' position='last-child'>" +
"<child>the last one</child>" +

"</rapi:insert>" +
"</rapi:patch>";

b. The following example uses a String representation of a patch that inserts an element in a
JSON document:

String jsonPatch = "{ \"patch\": " +
 "[{ \"insert\": { " +

"\"context\": \"/parent/child1\", " +
"\"position\": \"before\", " +
"\"content\": { \"INSERT1\": \"INSERTED1\" }

}}] }";
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 58

MarkLogic Server Single Document Operations
2. If you have not already done so, connect to the database, storing the connection in a
com.marklogic.client.DatabaseClient object. For example, if using digest
authentication:

DatabaseClient client = DatabaseClientFactory.newClient(
host, port, new DigestAuthContext(username, password));

3. If you have not already done so, use the DatabaseClient object to create a
com.marklogic.client.document.DocumentManager object of the appropriate subclass for
the document content you want to access (XML, JSON, binary, or text).

a. In this example code, an XMLDocumentManager.

XMLDocumentManager XMLDocMgr = client.newXMLDocumentManager();

b. In this example code, an JSONDocumentManager.

JSONDocumentManager JSONDocMgr = client.newJSONDocumentManager();

Note: You can only apply content patches to XML and JSON documents.

4. Create a handle that implements DocumentPatchHandle and associate your patch with the
handle. Set the handle content type appropriately. For example:

// For an XML patch
DocumentPatchHandle handle =

new StringHandle(xmlPatch).withFormat(Format.XML);

// For a JSON patch
DocumentPatchHandle handle =

new StringHandle(jsonPatch).withFormat(Format.JSON);

5. Apply the patch by calling a patch() method on the DocumentManager, with arguments of
the document’s URI and the handle.

XMLDocMgr.patch(docId, handle);
// Or
JSONDocMgr.patch(docId, handle);

6. When finished with the database, release the connection resources by calling the
DatabaseClient object’s release() method.

client.release();
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 59

MarkLogic Server Single Document Operations
2.9.4 Defining the Context for a Patch Operation
When you insert, replace, or delete content or metadata, the patch definition must include enough
context to tell MarkLogic Server what XML or JSON components to operate on. For example,
which XML element or JSON property to modify, where to insert a new element or object, or
which element, object, or value to replace.

When you create a patch using a builder, you specify the context through the contextPath and
selectPath parameters of builder methods such as DocumentPatchBuilder.insertFragment() or
DocumentPatchBuilder.replaceValue(). When you create a patch from raw XML or JSON, you
specify the operation context through the context and select XML attributes or JSON properties.

For XML documents, you specify the context using an XPath (XML) expression.The XPath you
can use is limited to a subset of XPath. For details, see Patch Feature of the Client APIs in the
XQuery and XSLT Reference Guide.

For JSON documents, use JSONPath (JSON). The JSONPath you can use has the same limitation
as those that apply to XPath. For details, see Introduction to JSONPath and Patch Feature of the Client

APIs in the XQuery and XSLT Reference Guide.

2.9.5 Example: Replacing Parts of a JSON Document
This example uses patch operations to perform the document transformation shown in the table
below. The patch replaces one JSON property with another, replaces the simple value of a
property, and replaces the array value of a property.

The raw patch that applies these changes is shown below.

{ "patch": [
 { "replace": {
 "select": "/parent/child1",
 "content": { "REPLACE1": "REPLACED1" }
 }},
 { "replace": {

Before Update After Update

{ "parent": {
 "child1": {
 "grandchild": "value"
 },
 "child2": "simple",
 "child3": ["av1", "av2"]
} }

{ "parent": {
 "child1": {

"REPLACE1": "REPLACED1"
},

 "child2": "REPLACED2",
 "child3": [
 "REPLACED3a",
 "REPLACED3b"
]
} }
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 60

MarkLogic Server Single Document Operations
 "select": "/parent/child2",
 "content": "REPLACED2"
 }},
 { "replace": {
 "select": "/parent/array-node('child3')",
 "content": ["REPLACED3a", "REPLACED3b"]
 }}
]}

The following code demonstrates how to use the PatchBuilder interface to create the equivalent
raw patch. A Jackson ObjectMapper is used to construct the complex replacement values (the
object value of child1 and the array value of child3).

JSONDocumentManager jdm = client.newJSONDocumentManager();
DocumentPatchBuilder pb = jdm.newPatchBuilder();
pb.pathLanguage(DocumentPatchBuilder.PathLanguage.XPATH);
ObjectMapper mapper = new ObjectMapper();

pb.replaceFragment("/parent/child1",
 mapper.createObjectNode().put("REPLACE1", "REPLACED1"));
pb.replaceValue("child2", "REPLACED2");
pb.replaceFragment("/parent/array-node('child3')",
 mapper.createArrayNode().add("REPLACED3a").add("REPLACED3b"));
jdm.patch(URI, pb.build());

For additional (raw) patch examples, see XML Examples of Partial Updates and JSON Examples of

Partial Update in the REST Application Developer’s Guide. These examples can assist you with
constructing appropriate XPath expressions and replacement context in Java.

2.9.6 Example: Patching Metadata
This example demonstrates using a patch builder to modify metadata such as collections,
permissions, quality, document properties, and key-value metadata.

Assume a document exists in the database with the following metadata. The document is in one
collection, has no document properties or key-value metadata, has default permissions, and has
quality 2.

<rapi:metadata uri="/java/doc.json"
xsi:schemaLocation="http://marklogic.com/rest-api restapi.xsd"
xmlns:rapi="http://marklogic.com/rest-api"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <rapi:collections>
 <rapi:collection>original</rapi:collection>
 </rapi:collections>
 <rapi:permissions>
 <rapi:permission>
 <rapi:role-name>rest-writer</rapi:role-name>
 <rapi:capability>update</rapi:capability>
 </rapi:permission>
 <rapi:permission>
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 61

MarkLogic Server Single Document Operations
 <rapi:role-name>rest-reader</rapi:role-name>
 <rapi:capability>read</rapi:capability>
 </rapi:permission>
 </rapi:permissions>
 <prop:properties xmlns:prop="http://marklogic.com/xdmp/property"/>
 <rapi:quality>2</rapi:quality>
 <rapi:metadata-values/>
</rapi:metadata>

The example modifies the metadata to do the following:

• Add the document to another collection.

• Set the quality to 3.

• Add some key-value metadata.

• Add a new role to the permissions

The following code builds and applies the patch using a GenericDocumentManager and
DocumentMetadataPatchBuilder.

public static void metadataExample() {
 GenericDocumentManager gdm = client.newDocumentManager();
 DocumentMetadataPatchBuilder pb = gdm.newPatchBuilder(Format.XML);

 pb.addCollection("new");
 pb.setQuality(3);
 pb.addMetadataValue("newkey", "newvalue");
 pb.addPermission("newrole",

DocumentMetadataHandle.Capability.READ,
DocumentMetadataHandle.Capability.UPDATE);

 gdm.patch(URI, pb.build());
}

After applying the patch, the document has the following metadata. The portion modified by the
patch are shown in bold.

<rapi:metadata uri="/java/doc.json"
xsi:schemaLocation="http://marklogic.com/rest-api restapi.xsd"
xmlns:rapi="http://marklogic.com/rest-api"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <rapi:collections>
 <rapi:collection>original</rapi:collection>
 <rapi:collection>new</rapi:collection>
 </rapi:collections>
 <rapi:permissions>
 <rapi:permission>
 <rapi:role-name>rest-writer</rapi:role-name>
 <rapi:capability>update</rapi:capability>
 </rapi:permission>
 <rapi:permission>
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 62

MarkLogic Server Single Document Operations
 <rapi:role-name>newrole</rapi:role-name>
 <rapi:capability>update</rapi:capability>
 <rapi:capability>read</rapi:capability>
 </rapi:permission>
 <rapi:permission>
 <rapi:role-name>rest-reader</rapi:role-name>
 <rapi:capability>read</rapi:capability>
 </rapi:permission>
 </rapi:permissions>
 <prop:properties xmlns:prop="http://marklogic.com/xdmp/property"/>
 <rapi:quality>3</rapi:quality>
 <rapi:metadata-values>
 <rapi:metadata-value key="newkey">newvalue</rapi:metadata-value>
 </rapi:metadata-values>
</rapi:metadata>

Assume a document exists in the database with the following metadata. The document is in one
collection, has default permissions, and has quality 0.

{

 "collections": [

 "squares"

],

 "permissions": [

 {

 "role-name": "rest-writer",

 "capabilities": [

 "update"

]

 }

],

 "properties": {

 "myprop": "this is my prop",

 "myotherprop": "this is my other prop"

 },

 "quality": 0
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 63

MarkLogic Server Single Document Operations
}

The example modifies the metadata to do the following:

• Add the document to another collection.

• Set the quality to 3.

• Add some key-value metadata.

• Add a new role to the permissions

The following code builds and applies the patch using a GenericDocumentManager and
DocumentMetadataPatchBuilder.

public static void metadataExample() {
 GenericDocumentManager gdm = client.newDocumentManager();
 DocumentMetadataPatchBuilder pb = gdm.newPatchBuilder(Format.JSON);

 pb.addCollection("new");
 pb.setQuality(3);
 pb.addMetadataValue("newkey", "newvalue");
 pb.addPermission("newrole",

DocumentMetadataHandle.Capability.READ,
DocumentMetadataHandle.Capability.UPDATE);

 gdm.patch(URI, pb.build());
}

After applying the patch, the document has the following metadata. The portion modified by the
patch are shown in bold.

{

 "collections": [

 "shapes",

 "new"

],

 "permissions": [

 {

 "role-name": "rest-writer",

 "capabilities": [

 "update"

]
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 64

MarkLogic Server Single Document Operations
 }, {

 "role-name": "new-role",

 "capabilities": [

 "update",

 "read"

]

 }

],

 "properties": {

 "myprop": "this is my prop",

 "myotherprop": "this is my other prop"

 },

 "quality": 3,

 "metadataValues": {

 "newkey": "newvalue"

 }

}

You could also use a document type specific document manager to apply the patch. For example,
you could use a JSONDocumentManager to create a DocumentPatchBuilder as shown below. The
patch builder operations (pb.addCollection, etc.) do not change as a consequence.

JSONDocumentManager jdm = client.newJSONDocumentManager();
DocumentPatchBuilder pb = jdm.newPatchBuilder();
pb.pathLanguage(DocumentPatchBuilder.PathLanguage.XPATH);

// Construct and apply patch as previously shown

2.9.7 Managing XML Namespaces in a Patch
Namespaces potentially impact two parts of a patch operation:

• The XPath expression(s) that define the context for an operation, such as which nodes to
replace or where to insert new content.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 65

MarkLogic Server Single Document Operations
• New or replacement content.

Your patch must include definitions of any namespaces used in these contexts. The way you do so
varies, depending on whether or not you use a builder to construct your patch. This section covers
the following topics:

• Defining Namespaces With a Builder

• Defining Namespaces in Raw XML

2.9.7.1 Defining Namespaces With a Builder
When you construct a patch with DocumentPatchBuilder, define any namespaces used in XPath
context or select expressions by calling DocumentPatchBuilder.setNamespaces(). Such
namespace definitions are patch-wide. That is, they apply to all operations in the patch.

Namespaces used in insertion or replacement content can either be patch-wide, as with XPath
expressions, or defined inline on content elements.

The patch generated by the builder pre-defines the following namespace aliases for you:

• xmlns:rapi="http://marklogic.com/rest-api"

• xmlns:prop="http://marklogic.com/xdmp/property"

• xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

• xmlns:xi="http://www.w3.org/2001/XMLSchema"

The following example defines three namespace aliases (r, t, and n) and uses them in defining the
insertion context and the content to be inserted.

import com.marklogic.client.util.EditableNamespaceContext;
...
// construct a list of namespace definitions
EditableNamespaceContext namespaces = new EditableNamespaceContext();
namespaces.put("r", "http://root.org");
namespaces.put("t", "http://target.org");
namespaces.put("n", "http://new.org");

// add the namespace definitions to the patch
DocumentPatchBuilder builder = docMgr.newPatchBuilder();
builder.setNamespaces(namespaces);

// use the namespace aliases when definition operations
String newElem = "<n:new>";
builder.insertFragment(

"/r:root/t:target", Position.LAST_CHILD, newElem);

You can also define the content namespace element n inline, as shown in the following example:

String newElem = "<n:new xmlns:n=\"http://new.org\">";
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 66

MarkLogic Server Single Document Operations
2.9.7.2 Defining Namespaces in Raw XML
When you construct a patch directly in XML, define any namespaces used in XPath context or
select expressions on the root <patch/> element. Namespace definitions are patch-wide and apply
to both XPath expressions and insertion or replacement content.

The <patch /> element must be defined in the namespace http://marklogic.com/rest-api. It is
recommended that you use a namespace alias for this namespace so that element and attribute
references in your patch that are not namespace qualified do not end up in the
http://marklogic.com/rest-api namespace.

The following example defines four namespace aliases, one for the patch (rapi) and three
content-specific aliases (r, n, and t). The content-specific aliases are used in defining the insertion
context and the content to be inserted.

<rapi:patch xmlns:rapi="http://marklogic.com/rest-api"
xmlns:r="http://root.org" xmlns:t="http://target.org"
xmlns n="http://new.org">

<rapi:insert context="/r:root/t:target" position="last-child">
<n:new />

</rapi:insert>
</rapi:patch>

For more details, see Managing XML Namespaces in a Patch in the REST Application Developer’s
Guide.

2.9.8 Construct Replacement Data on the Server
This section describes using builtin or user-defined XQuery or Server-Side JavaScript
replacement functions to generate the content for a partial update replace or replace-insert
operation dynamically on MarkLogic Server.

The builtin functions support simple arithmetic and string manipulation. For example, you can
use a builtin function to increment the current value of numeric data or concatenate strings. For
more complex operations, create and install a user-defined function.

To create a user-defined replacement function, see Writing an XQuery User-Defined Replacement

Constructor or Writing a JavaScript User-Defined Replacement Constructor in the REST Application
Developer’s Guide. Install your implementation into the modules database associated with your
REST Server; for details, see “Managing Dependent Libraries and Other Assets” on page 295.

To apply a builtin or user-defined server-side function to a patch operation when you create a
patch with a patch builder, use a DocumentMetadataPatchBuilder.CallBuilder, obtained by calling
DocumentMetadataPatchBuilder.call(). The builtin functions are exposed as methods of
CallBuilder. The following example adds a replace operation to a patch that multiplies the current
data value in child elements by 3.

DocumentPatchBuilder builder = docMgr.newPatchBuilder();
builder.replaceApply("child", builder.call().multiply(3));
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 67

MarkLogic Server Single Document Operations
To apply the same operation to a raw XML or JSON patch, use the apply XML attribute or JSON
property of the operation. The following raw patches are equivalent to the patch produced by the
above builder example. For details, see Constructing Replacement Data on the Server in the REST
Application Developer’s Guide.

To apply a user-defined replacement function using a patch builder, first associate the module
containing the function with the patch by calling DocumentPatchBuilder.library(), and then
apply the function to an operation using one of the CallBuilder.applyLibrary* methods. The
following example applies the function my-func in the module namespace http://my/ns,
implemented in the XQuery library module installed in the modules database at
/my.domain/my-lib.xqy.

DocumentPatchBuilder builder = docMgr.newPatchBuilder();

builder.library("http://my/ns", "/my.domain/my-lib.xqy");
builder.replaceApply("child", builder.call().applyLibrary("my-func");

When you construct a raw XML or JSON patch, associate the containing library module with the
patch using the replace-library patch component, then apply the function to a replace or
replace-insert operation using the apply XML attribute or JSON property. The following
examples are equivalent to the above builder code. For more details, see Using a Replacement

Constructor Function in the REST Application Developer’s Guide.

XML JSON

<rapi:patch
xmlns:rapi="http://marklogic.com/rest-api">

<rapi:replace
select="child"
apply="ml.multiply">3</rapi:replace>

</rapi:patch>

{"patch": [
{"replace": {
"select": "child",
"apply": "ml.multiply",
"content": 3

} }
] }

XML JSON

<rapi:patch
xmlns:rapi="http://marklogic.com/rest-api">

<rapi:replace-library
at="/my.domain/my-lib.xqy"
ns="http://my/ns" />

 <rapi:replace select="child" apply="my-func"/>
</rapi:patch>

{"patch": [
{"replace-library": {
"at": "/my.domain/my-lib.xqy",
"ns": "http://my/ns"

} },
{"replace": {
"select": "child",
"apply": "my-func"

} }
] }
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 68

MarkLogic Server Single Document Operations
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 69

MarkLogic Server Synchronous Multi-Document Operations
3.0 Synchronous Multi-Document Operations
91

This chapter describes how to read and write multiple documents in a single request to MarkLogic
Server using the Java Client API. You can operate on both document content and metadata. The
interfaces described here are synchronous, meaning your application will block during the
operation.

If you only need to work with one document at a time, you can use the simpler single document
interfaces. For details, see “Single Document Operations” on page 36. If you have a potentially
long running multi-document task, consider using the asynchronous interfaces described in
“Asynchronous Multi-Document Operations” on page 92.

This chapter includes the following sections:

• Write Multiple Documents

• Read Multiple Documents by URI

• Read Multiple Documents Matching a Query

• Apply a Read Transformation

• Selecting a Batch Size

3.1 Write Multiple Documents
This section describes how to create or update content and/or metadata for multiple documents in
a single request to MarkLogic Server. This section includes the following topics:

• Overview of Multi-Document Write

• Example: Loading Multiple Documents

• Understanding Metadata Scoping

• Understanding When Metadata is Preserved or Replaced

• Example: Controlling Metadata Through Defaults

• Example: Adding Documents to a Collection

• Example: Writing a Mixed Document Set

3.1.1 Overview of Multi-Document Write
You can perform a multi-document write by building up a DocumentWriteSet that describes the
document content and metadata to write, and then passing it to a DocumentManager to execute the
write operation.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 70

MarkLogic Server Synchronous Multi-Document Operations
For example, the following code snippet writes content for an XML document with URI doc1.xml
and both content and metadata for a JSON document with URI doc2.json. For a complete
example, see “Example: Loading Multiple Documents” on page 72.

import com.marklogic.client.document.DocumentManager;
import com.marklogic.client.document.DocumentWriteSet;
...

DocumentWriteSet batch = docMgr.newWriteSet();

batch.add("doc1.xml", doc1ContentHandle);
batch.add("doc2.json", doc2MetadataHandle, doc2ContentHandle);

docMgr.write(batch);

A DocumentWriteSet represents a batch of document content and/or metadata to be written to the
database in a single transaction. If any insertion or update in a write set fails, the entire batch fails.
You should size each batch according to the guidelines described in “Selecting a Batch Size” on
page 91.

A DocumentWriteSet has the following key features:

• Document content can be either heterogeneous or homogeneous, depending on the type of
DocumentManager you use. For example, you can create or update any combination of
XML, JSON, Text, and Binary documents in a single operation if you use
GenericDocumentManager.

• For each document, a batch can include just content, just metadata, or both. If you include
only metadata for a document, then the document must already exist.

• You can create or update documents with the system default metadata, batch default
metadata, or document-specific metadata. You can mix these metadata sources in the
same operation. For details, see “Understanding Metadata Scoping” on page 73.

The write operation is carried out by a DocumentManager. If all documents in the write set are of the
same type, then using a DocumentManager of the corresponding type has the following advantages:

• The database document type is implicitly set by the DocumentManager. For example, an
XMLDocumentManager sets the document type to XML for you and a JSONDocumentManager
sets the document type to JSON for you.

• You can use the DocumentManager to set batch-wide, type specific options. For example,
you can use BinaryDocumentManager.setMetadataExtraction() to direct MarkLogic
Server to extract metadata from each binary document and store it in the document
properties.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 71

MarkLogic Server Synchronous Multi-Document Operations
If you create a heterogeneous write set that includes documents of more than one type, then you
must use a GenericDocumentManager to perform the write. In this case, you must explicitly set the
type of each document and you cannot use any type specific options, such as XML repair or
Binary metadata extraction. For details, see “Example: Writing a Mixed Document Set” on
page 81.

When you use bulk write, pre-existing document properties are preserved, but other categories of
metadata are completely replaced. If you want to preserve pre-existing metadata, use a single
document write. For details, see “Understanding When Metadata is Preserved or Replaced” on
page 76.

You can apply a server-side write transformation to each document in a multi-document write.
First, install your transform on MarkLogic Server, as described in “Installing Transforms” on
page 282. Then, include a reference to the transform in your write call, similar to the following:

ServerTransform transform = new ServerTransform(TRANSFORM_NAME);
docMgr.write(batch, transform);

3.1.2 Example: Loading Multiple Documents
This example provides a quick introduction to multi-document write. It creates two JSON
documents in one transaction. The first document uses the system default metadata and the second
document uses document-specific metadata.

Three items are added to the DocumentWriteSet for this operation: JSON content for a document
with URI doc1.json, metadata for a document with URI doc2.json, and content for a JSON
document with URI doc2.json. The core of the example is the following lines that build up a
DocumentWriteSet and send it to MarkLogicServer for committing to the database:

// Create and populate the batch of docs to write
JSONDocumentManager jdm = client.newJSONDocumentManager();
DocumentWriteSet batch = jdm.newWriteSet();
batch.add("doc1.json", doc1);
batch.add("doc2.json", doc2Metadata, doc2);

// Perform the write operation
jdm.write(batch);

The full example function is shown below. This example uses StringHandle for the content, but
you can use other handle types, such as JacksonHandle or FileHandle.

package examples;
import com.marklogic.client.io.*;
import com.marklogic.client.document.JSONDocumentManager;
import com.marklogic.client.document.DocumentWriteSet;
import com.marklogic.client.DatabaseClientFactory;
import com.marklogic.client.DatabaseClientFactory.DigestAuthContext;
import com.marklogic.client.DatabaseClient;
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 72

MarkLogic Server Synchronous Multi-Document Operations
public class Example implements ConnInfo {
 // replace with your MarkLogic Server connection information
 static String HOST = "localhost";
 static int PORT = 8000;
 static String USER = "username";
 static String PASSWORD = "password";
 static DatabaseClient client = DatabaseClientFactory.newClient(

HOST, PORT, new DigestAuthContext(USER, PASSWORD));

 /// Basic example of writing 2 JSON documents.
 public static void example1() {
 // Create some example content and metadata
 StringHandle doc1 = new StringHandle(
 "{\"animal\": \"dog\"}").withFormat(Format.JSON);
 StringHandle doc2 = new StringHandle(
 "{\"animal\": \"cat\"}").withFormat(Format.JSON);
 DocumentMetadataHandle doc2Metadata =
 new DocumentMetadataHandle();
 doc2Metadata.setQuality(2);

 // Create and populate the batch of docs to write
 JSONDocumentManager jdm = client.newJSONDocumentManager();
 DocumentWriteSet batch = jdm.newWriteSet();
 batch.add("doc1.json", doc1);
 batch.add("doc2.json", doc2Metadata, doc2);

 // Perform the write operation
 jdm.write(batch);
 }

 public static void main(String[] args) {
 example1();
 }
}

3.1.3 Understanding Metadata Scoping
This topic describes how metadata is selected for documents created or updated with a
multi-document write.

Note: For performance reasons, pre-existing metadata other than properties is completely
replaced during a bulk write operation, either with values supplied in the
DocumentWriteSet or with system defaults.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 73

MarkLogic Server Synchronous Multi-Document Operations
Metadata in a bulk write can be drawn from 3 possible sources, as shown in the table below. The
table lists the metadata sources from highest to lowest precedence, so a source supercedes those
below it if both are present.

The metadata associated with a document is determined when you add the document to a
DocumentWriteSet. This means that when you add default metadata, it only applies to documents
subsequently added to the batch, not to documents already in the batch. Default metadata applies
from the point it is added to the batch until a subsequent call to
DocumentWriteSet.addDefaultMetadata(). Passing null to addDefaultMetadata() causes
subsequent documents to revert to using system default metadata rather than batch default
metadata.

The following code snippet illustrates the metadata interactions:

DatabaseClient client = ...;
JSONDocumentManager jdm = client.newJSONDocumentManager();
DocumentWriteSet batch = jdm.newWriteSet();

// using system default metadata
batch.add("doc1.json", doc1); // use system default metadata

// using batch default metadata
batch.addDefaultMetadata(defaultMetadata1);
batch.add("doc2.json", doc2); // use batch default metadata
batch.add("doc3.json", docSpecificMetadata, doc3);
batch.add("doc4.json", doc4); // use batch default metadata

// replace batch default metadata with new metadata
batch.addDefaultMetadata(defaultMetadata2);
batch.add("doc5.json", doc5); // use batch default metadata

Metadata Type Description

document-specific metadata Metadata that applies to a single document. Specify
document-specific metadata by including a
DocumentMetadataHandle along with the content handle when
you call DocumentWriteSet.add().

 default metadata Batch-specific metadata that can apply to multiple documents
in a DocumentWriteSet. Specify default metadata by calling
DocumentWriteSet.addDefaultMetadata().

system default metadata Default metadata configured into MarkLogic server. This
metadata applies when neither document-specific nor set
default metadata is present.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 74

MarkLogic Server Synchronous Multi-Document Operations
// revert to system default metadata
batch.addDefaultMetadata(null);
batch.add("doc6.json", doc6); // use system default metadata

// Execute the write operation
jdm.write(batch);

For a complete example, see “Example: Controlling Metadata Through Defaults” on page 77.

The following rules determine what metadata applies during document creation.

• Document-specific metadata always takes precedence over other metadata sources.
Document-specific metadata is not merged with default metadata.

• System default metadata is used when there is no batch default metadata and no
documents-specific metadata for a given document.

• Each time you add default metadata to a batch, the new default completely replaces any
old default.

• When setting metadata for a document, any missing metadata category is either set to the
system default metadata value or left unchanged, depending upon whether or not the batch
includes a content update for the document. For details, see “Understanding When
Metadata is Preserved or Replaced” on page 76.

For performance reasons, no merging of document-specific or batch default metadata occurs. For
example, if a document-specific metadata part contains only a collections setting, it inherits
quality, permissions and properties from the system default metadata, not from any preceding
batch default metadata.

The following examples illustrate application of these rules. In these examples, Cn represents a
content part for the Nth document, Mn represents document-specific metadata for the Nth
document, Mdfn represents the Nth occurrence of batch default metadata, and Msys is the system
default metadata. The batch build stream represents the order in which content and metadata is
added to the batch.

The following input creates 3 documents. Documents 1 and Document 3 use system default
metadata. Document 2 uses document-specific metadata.

C1 M2 C2 C3

Msys

C1

M2

C2

Document 1 Document 2

Msys

C1

Document 3

1st add() last add()

Created
Documents

Batch build
“stream”
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 75

MarkLogic Server Synchronous Multi-Document Operations
The following input creates four documents, using a combination of batch default metadata and
document-specific metadata. Document 1, Document 3, and Document 4 use batch default
metadata. Document 2 uses document-specific metadata. Document 1 and Document 3 use the
first block of batch default metadata, Mdf1. After Document 3 is added to the batch, Mdf2 replaces
Mdf1 as the default metadata, so Document 4 uses the metadata in Mdf2.

3.1.4 Understanding When Metadata is Preserved or Replaced
This topic discusses when a multi-document write preserves or replaces pre-existing metadata.
You can skip this section if your multi-document write operations only create new documents or
you do not need to preserve pre-existing metadata such as permissions, document quality,
collections, and properties.

When there is no batch default metadata and no document-specific metadata, all metadata
categories other than properties are set to the system default values. Properties are unchanged.

In all other cases, either batch default metadata or document-specific metadata is used when
creating a document, as described in “Understanding Metadata Scoping” on page 73.

When you update both content and metadata for a document in the same multi-document write
operation, the following rules apply, whether applying batch default metadata or
document-specific metadata:

• The metadata in scope is determined as described in “Understanding Metadata Scoping”
on page 73.

• Any metadata category that has a value in the in-scope metadata completely replaces that
category.

• Any metadata category other than properties that is missing or empty in the in-scope
metadata is completely replaced by the system default value.

Mdf1 C1 C3 Mdf2 C4

Mdf1

C1

Mdf1

C3

M2

C2

Mdf2

C4

Document 1

Document 3

Document 2

Document 4

Batch build
“stream” M2 C2
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 76

MarkLogic Server Synchronous Multi-Document Operations
• If the in-scope metadata does not include properties, then existing properties are
preserved.

• If the in-scope metadata does not include collections, then collections are reset to the
default. There is no system default for collections, so this results in a document being
removed from all collections if no default collections are specified for the user role
performing the update.

When your write set includes metadata for a document, but no content, you update only the
metadata for a document. In this case, the following rules apply:

• Any metadata category that has a value in the document-specific metadata completely
replaces that category.

• Any metadata category that is missing or empty in the document-specific metadata is
preserved.

The table below shows how pre-existing metadata changes if a multi-document write updates just
the content, just the collections metadata (via document-specific metadata), or both content and
collections metadata (via batch default metadata or document-specific metadata).

The results are similar if the metadata update modifies other metadata categories.

3.1.5 Example: Controlling Metadata Through Defaults
This example uses document quality to illustrate how default metadata affects the documents you
create. The document quality setting used in this example result in creation of the following
documents:

• sys-default.json with document quality 0, from the system default metadata

• batch-default.json with document quality 2, from Mdf1

• doc-specific.json with document quality 1, from M3

Metadata
Category

Update Content Only Update Metadata Only
Update Content &

Metadata

collections reset modified to new value modified to new value

quality reset preserved reset

permissions reset preserved reset

properties preserved preserved preserved
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 77

MarkLogic Server Synchronous Multi-Document Operations
The following graphic illustrates the construction of the batch and the documents created from it.
In the picture, Mn represents metadata, Cn represents content. Note that the metadata is not
literally embedded in the created documents; content and metadata are merely grouped here for
illustrative purposes.

The following code snippet is the core of the example, building up a batch of document updates
and inserting them into the database:

// Create and build up the batch
JSONDocumentManager jdm = client.newJSONDocumentManager();
DocumentWriteSet batch = jdm.newWriteSet();

batch.add("sys-default.json", content1);
batch.addDefault(defaultMetadata);
batch.add("batch-default.json", content2);
batch.add("doc-specific.json", docSpecificMetadata, content3);

// Create the documents
jdm.write(batch);

The full example function is shown below. This example uses StringHandle for the content, but
you can use other handle types, such as JacksonHandle or FileHandle.

package examples;
import com.marklogic.client.io.*;
import com.marklogic.client.document.JSONDocumentManager;
import com.marklogic.client.document.DocumentWriteSet;
import com.marklogic.client.DatabaseClientFactory;
import com.marklogic.client.DatabaseClient;

public class Example {
 // replace with your MarkLogic Server connection information
 static String HOST = "localhost";
 static int PORT = 8000;
 static String USER = "user";
 static String PASSWORD = "password";
 static DatabaseClient client = DatabaseClientFactory.newClient(
 HOST, PORT, new DigestAuthContext(USER, PASSWORD));

C1 M3 C3

Msys

C1

M3

C3

sys-default.json doc-specific.json

1st add() last add()

Created
Documents

Batch build
“stream” Mdf1 C2

Mdf1

C2

batch-default.json
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 78

MarkLogic Server Synchronous Multi-Document Operations
 static void example2() {
 // Synthesize input content
 StringHandle content1 = new StringHandle(
 "{\"number\": 1}").withFormat(Format.JSON);
 StringHandle content2 = new StringHandle(
 "{\"number\": 2}").withFormat(Format.JSON);
 StringHandle content3 = new StringHandle(
 "{\"number\": 3}").withFormat(Format.JSON);

 // Synthesize input metadata
 DocumentMetadataHandle defaultMetadata =
 new DocumentMetadataHandle().withQuality(1);
 DocumentMetadataHandle docSpecificMetadata =
 new DocumentMetadataHandle().withQuality(2);

 // Create and build up the batch
 JSONDocumentManager jdm = client.newJSONDocumentManager();
 DocumentWriteSet batch = jdm.newWriteSet();

 batch.add("sys-default.json", content1);
 batch.addDefault(defaultMetadata);
 batch.add("batch-default.json", content2);
 batch.add("doc-specific.json", docSpecificMetadata, content3);

 // Create the documents
 jdm.write(batch);

 // Verify results
 System.out.println(

"sys-default.json quality: Expected=0, Actual=" +
 jdm.readMetadata("sys-default.json",
 new DocumentMetadataHandle()).getQuality()
);
 System.out.println("batch-default.json quality: Expected=" +
 defaultMetadata.getQuality() + ", Actual=" +
 jdm.readMetadata("batch-default.json",
 new DocumentMetadataHandle()).getQuality()
);
 System.out.println("doc-specific.json quality: Expected=" +
 docSpecificMetadata.getQuality() + ", Actual=" +
 jdm.readMetadata("batch-default.json",
 new DocumentMetadataHandle()).getQuality()
);
 }

 public static void main(String[] args) {
 example2();
 }
}

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 79

MarkLogic Server Synchronous Multi-Document Operations
3.1.6 Example: Adding Documents to a Collection
This example demonstrates using batch default metadata to add all documents to the same
collection during a multi-document write. For general information about working with metadata,
see “Reading, Modifying, and Writing Metadata” on page 43.

Since the metadata in this example request only includes settings for collections metadata, other
metadata categories such as permissions and quality use the system default settings. You can add
individual documents to a different collection using document-specific metadata or by including
additional batch default metadata that uses a different collection; see “Example: Controlling
Metadata Through Defaults” on page 77.

The code snippet below inserts 2 JSON documents into the database with a collection named
“April 2014”.

// Synthesize input metadata
DocumentMetadataHandle defaultMetadata =
 new DocumentMetadataHandle().withCollections("April 2014");

// Create and build up the batch
JSONDocumentManager jdm = client.newJSONDocumentManager();
DocumentWriteSet batch = jdm.newWriteSet();

batch.addDefault(defaultMetadata);
batch.add("coll-doc1.json", content1);
batch.add("coll-doc2.json", content2);
jdm.write(batch);

The full example is shown below. This example uses StringHandle for the content, but you can
use other handle types, such as JacksonHandle, XMLHandle, or FileHandle.

package examples;
import com.marklogic.client.io.*;
import com.marklogic.client.query.MatchDocumentSummary;
import com.marklogic.client.query.QueryManager;
import com.marklogic.client.query.StructuredQueryBuilder;
import com.marklogic.client.document.JSONDocumentManager;
import com.marklogic.client.document.DocumentWriteSet;
import com.marklogic.client.DatabaseClientFactory;
import com.marklogic.client.DatabaseClient;

public class Example {
 // replace with your MarkLogic Server connection information
 static String HOST = "localhost";
 static int PORT = 8000;
 static String USER = "username";
 static String PASSWORD = "password";

static DatabaseClient client = DatabaseClientFactory.newClient(
 HOST, PORT, new DigestAuthContext(USER, PASSWORD));

 /// Inserting all documents in a batch into the same collection
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 80

MarkLogic Server Synchronous Multi-Document Operations
 public static void example3() {
 // Synthesize input content
 StringHandle content1 = new StringHandle(
 "{\"number\": 1}").withFormat(Format.JSON);
 StringHandle content2 = new StringHandle(
 "{\"number\": 2}").withFormat(Format.JSON);
 // Synthesize input metadata
 DocumentMetadataHandle defaultMetadata =
 new DocumentMetadataHandle().withCollections("April 2014");

 // Create and build up the batch
 JSONDocumentManager jdm = client.newJSONDocumentManager();
 DocumentWriteSet batch = jdm.newWriteSet();

 batch.addDefault(defaultMetadata);
 batch.add("coll-doc1.json", content1);
 batch.add("coll-doc2.json", content2);
 jdm.write(batch);

 // Verify results by finding all documents in the collection
 QueryManager qm = client.newQueryManager();
 StructuredQueryBuilder builder = qm.newStructuredQueryBuilder();

 SearchHandle results = qm.search(

builder.collection("April 2014"), new SearchHandle());
 for (MatchDocumentSummary summary : results.getMatchResults()) {
 System.out.println(summary.getUri());
 }
 }

 public static void main(String[] args) {
 example3();
 }
}

3.1.7 Example: Writing a Mixed Document Set
This example uses GenericDocumentManager to create a batch that contains documents with a
mixture of document types in a single operation. The batch contains a JSON document, an XML
document, and a binary document. The following code snippet demonstrates construction of a
mixed document batch:

GenericDocumentManager gdm = client.newDocumentManager();
DocumentWriteSet batch = gdm.newWriteSet();
batch.add("doc1.json", jsonContent);
batch.add("doc2.xml", xmlContent);
batch.add("doc3.jpg", binaryContent);
gdm.write(batch);
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 81

MarkLogic Server Synchronous Multi-Document Operations
When you use GenericDocumentManager, you must either use handles that imply a specific
document or content type, or explicitly set it. In this example, the JSON and XML contents are
provided using a StringHandle, and the document type is specified using withFormat().The
binary content is read from a file on the local filesystem, using FileHandle.withMimeType() to
explicitly specify the a MIME type of image/jpeg, which implies a binary document.

Note: Document type specific options such as XML repair and binary document
metadata extract cannot be performed using GenericDocumentManager. You must
use a document type specific document manager and a homogeneous batch to use
these features.

The full example, including setting of the document/MIME types, is shown below. To run this
example in your environment, you need a binary file to subsitute for /some/jpeg/file.jpg. If your
file is not a JPEG image, change the MIME type in the call to FileHandle.withMimeType().

package examples;
import java.io.File;

import com.marklogic.client.io.*;
import com.marklogic.client.document.GenericDocumentManager;
import com.marklogic.client.document.DocumentWriteSet;
import com.marklogic.client.DatabaseClientFactory;
import com.marklogic.client.DatabaseClient;

public class standalone {
 // replace with your MarkLogic Server connection information
 static String HOST = "localhost";
 static int PORT = 8000;
 static String USER = "user";
 static String PASSWORD = "password";

static DatabaseClient client = DatabaseClientFactory.newClient(
 HOST, PORT, new DigestAuthContext(USER, PASSWORD));

 /// Inserting documents with different document types
 static void example4() {
 // Synthesize input content
 StringHandle jsonContent = new StringHandle(
 "{\"key\": \"value\"}").withFormat(Format.JSON);
 StringHandle xmlContent = new StringHandle(
 "<data>some xml content</data>").withFormat(Format.XML);
 String filename = new String("/some/jpeg/file.jpg");
 FileHandle binaryContent =
 new FileHandle().with(new
File(filename)).withMimetype("image/jpeg");

 // Create and build up the batch
 GenericDocumentManager gdm = client.newDocumentManager();
 DocumentWriteSet batch = gdm.newWriteSet();
 batch.add("doc1.json", jsonContent);
 batch.add("doc2.xml", xmlContent);
 batch.add("doc3.jpg", binaryContent);
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 82

MarkLogic Server Synchronous Multi-Document Operations
 gdm.write(batch);

 // Verify results
 System.out.println("doc1.json exists as: " +
 gdm.exists("doc1.json").getFormat().toString());
 System.out.println("doc2.xml exists as: " +
 gdm.exists("doc2.xml").getFormat().toString());
 System.out.println("doc3.jpg exists as: "
 + gdm.exists("doc3.jpg").getFormat().toString());
 }

 public static void main(String[] args) {
 example4();
 }
}

3.2 Read Multiple Documents by URI
You can retrieve multiple documents by URI in a single request by passing multiple URIs to
DocumentManager.read(). For example, the following code snippet reads 3 documents from the
database:

DocumentPage documents =
docMgr.read("doc1.json", "doc2.json", "doc3.json");

while (documents.hasNext()) {
DocumentRecord document = documents.next();
// do something with the contents

}

The multi-document read operation returns a DocumentRecord for each matched URI. Use the
DocumentRecord to access content and/or metadata about each document. By default, only content
is available. To retrieve metadata, use DocumentManager.setMetadataCategories(). For example,
the following code snippet retrieves both content and document quality for three documents:

DatabaseClient client = DatabaseClientFactory.newClient(...);
JSONDocumentManager jdm = client.newJSONDocumentManager();

jdm.setMetadataCategories(Metadata.QUALITY);

DocumentPage documents =
jdm.read("doc1.json", "doc2.json", "doc3.json");

while (documents.hasNext()) {
 DocumentRecord document = documents.next();
 DocumentMetadataHandle metadata =

document.getMetadata(new DocumentMetadataHandle());
 System.out.println(

document.getUri() + ": " + metadata.getQuality());
 // do something with the content
}

For more information about metadata categories, see “Reading, Modifying, and Writing
Metadata” on page 43.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 83

MarkLogic Server Synchronous Multi-Document Operations
Multi-document read also supports server side transformations and transaction controls. For more
details on these features, see “Apply a Read Transformation” on page 90 and “Multi-Statement
Transactions” on page 264.

Note: Applying a transform creates an additional in-memory copy of each document on
the server, rather than streaming each document directly out of the database, so
memory consumption is higher.

3.3 Read Multiple Documents Matching a Query
Use com.marklogic.client.document.DocumentManager.search() to retrieve all documents that
match a query. This section covers the following topics:

• Overview of Multi-Document Read by Query

• Example: Read Documents Matching a Query

• Add Query Options to a Search

• Return Search Results

• Read Documents Incrementally

• Extracting a Portion of Each Matching Document

3.3.1 Overview of Multi-Document Read by Query
To retrieve all documents from the database that match a query, use DocumentManager.search().

The search methods of DocumentManager differ from QueryManager.search() methods in that
DocumentManager search returns document contents while QueryManager search returns search
results and facets. Though you can retrieve search results along with contents using
DocumentManager.search(), and you can retrieve document contents using
QueryManager.search(), the interfaces are optimized for different use cases.

You can pass a string, structured, or combined query or a QBE to DocumentManager.write(). For
example, the following code snippet reads all documents that contain the phrase “bird”:

JSONDocumentManager jdm = client.newJSONDocumentManager();
QueryManager qm = client.newQueryManager();
StringQueryDefinition query =
 qm.newStringDefinition().withCriteria("bird");

DocumentPage documents = jdm.search(query, 1);
while (documents.hasNext()) {
 DocumentRecord document = documents.next();

// do something with the contents
}

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 84

MarkLogic Server Synchronous Multi-Document Operations
Documents are returned as a DocumentPage that you can use to iterate over returned content and
metadata. You might have to call DocumentManager.search() multiple times to retrieve all
matching documents. The number of documents per DocumentPage is controlled by
DocumentManager.setPageLength(). For details, see “Read Documents Incrementally” on page 88.

To return search results along with matching documents, include a SearchHandle in your call to
DocumentManager.search(). For details, see “Return Search Results” on page 88. For example:

docMgr.search(query, 1, new SearchHandle());

You can apply server-side content transformations to matching documents by configuring a
ServerTransform on the QueryDefinition. For details, see “Apply a Read Transformation” on
page 90.

3.3.2 Example: Read Documents Matching a Query
This example demonstrates using a query to retrieve documents from the database using
DocumentManager.search(). Though you can use any query type, this example focuses on Query
By Example.You should be familiar with QBE basics. For details, see “Prototype a Query Using
Query By Example” on page 156.

The following QBE matches documents with an XML element or JSON property named “kind”
that has a of value “bird”:

The following example code uses the above query to retrieve matching documents. Only
document content is returned because no metadata categories are set on the DocumentManager.

The number of documents matching the input query is available using
DocumentPage.getTotalResults(). This number is equivalent to @total on a search response and
is only an estimate. The document URI, document type, and contents are available on each
DocumentRecord in the DocumentPage.

package examples;

Format Query

XML <q:qbe xmlns:q="http://marklogic.com/appservices/querybyexample">
 <q:query>
 <kind>bird</kind>
 </q:query>
</q:qbe>

JSON { "$query":
{ "kind": "bird" }

}

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 85

MarkLogic Server Synchronous Multi-Document Operations
import com.marklogic.client.DatabaseClient;
import com.marklogic.client.DatabaseClientFactory;
import com.marklogic.client.document.DocumentPage;
import com.marklogic.client.document.DocumentRecord;
import com.marklogic.client.document.JSONDocumentManager;
import com.marklogic.client.io.Format;
import com.marklogic.client.io.StringHandle;
import com.marklogic.client.query.QueryManager;
import com.marklogic.client.query.RawQueryByExampleDefinition;

public class QueryExample {
 // replace with your MarkLogic Server connection information
 static String HOST = "localhost";
 static int PORT = 8000;
 static String USER = "user";
 static String PASSWORD = "password";

static DatabaseClient client = DatabaseClientFactory.newClient(
 HOST, PORT, new DigestAuthContext(USER, PASSWORD));

 public static void qbeExample() {
 JSONDocumentManager jdm = client.newJSONDocumentManager();
 QueryManager qm = client.newQueryManager();

 // Build query
String queryAsString = "{ \"$query\": { \"kind\": \"bird\" }}";

 StringHandle handle = new StringHandle();
 handle.withFormat(Format.JSON).set(queryAsString);
 RawQueryByExampleDefinition query =
 qm.newRawQueryByExampleDefinition(handle);

// Perform the multi-document read and process results
 DocumentPage documents = jdm.search(query, 1);
 System.out.println("Total matching documents: "
 + documents.getTotalSize());
 for (DocumentRecord document: documents) {
 System.out.println(document.getUri());
 // Do something with the content using document.getContent()
 }
 }

 public static void main(String[] args) {
 qbeExample();
 client.release();
 }
}

To perform the equivalent operation using an XML QBE, use an XMLDocumentManager. Note that
the format of a QBE (XML or JSON) can affect the kinds of documents that match the query. For
details, see Scoping a Search by Document Type in the Search Developer’s Guide.

To use a string, structured, or combined query instead of a QBE, change the QueryDefinition. The
search operation and results processing are unaffected by the type of query. For more details on
query construction, see “Searching” on page 144.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 86

MarkLogic Server Synchronous Multi-Document Operations
For example, to use a string query to find all documents containing the phrase “bird”, replace the
query building section of the above example with the following:

StringQueryDefinition query =
qm.newStringDefinition().withCriteria("bird");

To return metadata in addition to content, set one or more metadata categories on the
DocumentManager prior to the search. Use DocumentPage.getMetadata() to access it. For example,
the following changes to the above example returns the quality of each document, along with the
contents.

jdm.setMetadataCategories(Metadata.QUALITY);
DocumentPage documents = jdm.search(query, 1);
System.out.println("Total matching documents: "

+ documents.getTotalSize());
for (DocumentRecord document: documents) {

System.out.println(document.getUri() + "quality: " +
document.getMetadata(

new DocumentMetadataHandle()).getQuality());
// Do something with the content using document.getContent()

}

Use QueryDefinition.setOptionsName() to include persistent query options in your search; for
details, see “Add Query Options to a Search” on page 87. For example, to apply persistent query
options previously installed under the name “myOptions”, pass the options name during query
creation:

RawQueryByExampleDefinition query =
qm.newRawQueryByExampleDefinition(handle, "myOptions");

3.3.3 Add Query Options to a Search
You can customize your multi-document read using query options in the same way you use them
with QueryManager.search():

• Pre-install persistent query options and configure them by name into your
QueryDefinition.

• Embed dynamic query options into a combined query or QBE. Note that QBE supports
only a limited set of query options.

For example, if you previously installed persistent query options under the name “myOptions”,
then you can use them in a multi-document read as follows:

JSONDocumentManager jdm = client.newJSONDocumentManager();
QueryManager qm = client.newQueryManager();
StringQueryDefinition query =
qm.newStringDefinition("myOptions").withCriteria("bird");

DocumentPage documents = jdm.search(query, 1);
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 87

MarkLogic Server Synchronous Multi-Document Operations
For details, see “Query Options” on page 190 and “Apply Dynamic Query Options to Document
Searches” on page 159.

3.3.4 Return Search Results
When you use QueryManager.search() to find matching documents, you receive a search response
that can contain snippets, facets, and other match details. This information is not returned by
default with DocumentManager.search(), but you can request it by including a SearchHandle in
your call. When you include a SearchHandle, you receive both a search response and the
matching documents.

For example, the following code snippet requests search results in addition the content of
matching documents.

SearchHandle results = new SearchHandle().withFormat(Format.XML);
DocumentPage documents = jdm.search(query, 1, results);
for (MatchDocumentSummary match : results.getMatchResults()) {
 // process snippets, facets, and other result info
}

3.3.5 Read Documents Incrementally
When you read documents using DocumentManager.search(), the page size defined on the
DocumentManager determines how many documents are returned. You can use this feature, plus the
start parameter of DocumentManager.search() to incrementally read matching documents. The
defualt page size is 10 documents. Incrementally reading batches of documents limits resource
consumption on both the client and server.

For example, the following function sets the page size and reads all matching documents in
batches of no more than 5 documents.

public static void pagingExample() {
 JSONDocumentManager jdm = client.newJSONDocumentManager();
 QueryManager qm = client.newQueryManager();
 StringQueryDefinition query =
 qm.newStringDefinition().withCriteria("bird");

 // Retrieve 5 documents per read
 jdm.setPageLength(5);

 // Fetch and process documents incrementally
 int start = 1;
 DocumentPage documents = null;
 while (start == 1 || documents.hasNextPage()) {
 // Read and process one batch of matching documents
 documents = jdm.search(query, start);
 for (DocumentRecord document : documents) {
 // process the content
 }
 // advance starting position to the next page of results
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 88

MarkLogic Server Synchronous Multi-Document Operations
 start += documents.getPageSize();
 }
}

3.3.6 Extracting a Portion of Each Matching Document
This section illustrates how to use the extract-document-data query option with the Java Client
API to return selected portions of each matching document instead of the whole document. For
details about the option components, see Extracting a Portion of Matching Documents in the Search
Developer’s Guide.

The following example code snippet uses a combined query to specify that the search should only
return the portions of matching documents that match the path /parent/body/target.

String rawQuery =
 "<search xmlns=\"http://marklogic.com/appservices/search\">" +
 " <qtext>content</qtext>" +
 " <options xmlns=\"http://marklogic.com/appservices/search\">" +
 " <extract-document-data selected=\"include\">" +
 " <extract-path>/parent/body/target</extract-path>" +
 " </extract-document-data>" +
 " <return-results>false</return-results>" +
 " </options>" +
 "</search>";
StringHandle qh = new StringHandle(rawQuery).withFormat(Format.XML);

GenericDocumentManager gdm = client.newDocumentManager();
QueryManager qm = client.newQueryManager();
RawCombinedQueryDefinition query =
qm.newRawCombinedQueryDefinition(qh);

DocumentPage documents = gdm.search(query, 1);
System.out.println("Total matching documents: " +
documents.getTotalSize());
for (DocumentRecord document: documents) {
 System.out.println(document.getUri());
 // Do something with the content using document.getContent()
}

You can also use a JSON raw query to search the portions of matching documents that match the
path /parent/body/target.

portions of matching documents that match the path /parent/body/target.

String rawQuery =
"{\"options\": {" +
 "\"extract-document-data\": {" +
 "\"selected\": \"include\"," +
 "\"extract-path\": \"/parent/body/target\" } },
\"qtext\" : \"content\" }";
StringHandle qh = new StringHandle(rawQuery).withFormat(Format.JSON);
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 89

MarkLogic Server Synchronous Multi-Document Operations
GenericDocumentManager gdm = client.newDocumentManager();
QueryManager qm = client.newQueryManager();
RawCombinedQueryDefinition query =
qm.newRawCombinedQueryDefinition(qh);

DocumentPage documents = gdm.search(query, 1);
System.out.println("Total matching documents: " +
documents.getTotalSize());
for (DocumentRecord document: documents) {
 System.out.println(document.getUri());
 // Do something with the content using document.getContent()

If one of the matching documents looked like the following:

{"parent": {
 "a": "foo",
 "body": { "target":"content" },
 "b": "bar"} }

Then the search returns the following sparse projection for this document. There will be one item
in the “extracted” array (or one “extracted” element in XML) for each projection in a given
context.

{ "context":"fn:doc(\"/extract/doc2.json\")",
"extracted":[{"target":"content"}]

}

If you set the selected attribute to “all”, “include-with-ancestors”, or “exclude”, then the
resulting document just contains the extracted content. For example, if you set selected to
“include-with-ancestors” in the previous example, then the projected document conains the
following. Notice that there are no “context” or “extracted” wrappers.

{"parent":{"body":{"target":"content1"}}}

You can also use extract-document-data to embed sparse projections in the search result
summary returned by QueryManager.search. For details, see “Extracting a Portion of Matching
Documents” on page 180.

3.4 Apply a Read Transformation
When you perform a multi-document read using DocumentManager.read() or
DocumentManager.search(), you can apply a server-side document read transformation by
configuring a ServerTransform into your DocumentManager.

The transform function is called on the returned documents, but not on metadata. If you include
search results when reading documents with DocumentManager.search(), the transform function is
called on both the returned documents and the search response, so the transform must be prepared
to handle multiple kinds of input.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 90

MarkLogic Server Synchronous Multi-Document Operations
For more details, see “Content Transformations” on page 282.

The following example code demonstrates applying a read transform when reading documents
that match a query.

ServerTransform transform = new ServerTransform(TRANSFORM_NAME);

docMgr.setReadTransform(transform);
docMgr.search(query, start);

Note: Applying a transform creates an additional in-memory copy of each document,
rather than streaming each document directly out of the database, so memory
consumption is higher.

3.5 Selecting a Batch Size
The best batch size for reading and writing multiple documents in a single request depends on the
nature of your data. A batch size of 100 is a good starting place for most document collections.
Experiment with different batch sizes of data characteristic to your application until you find one
that fits within the limits of your MarkLogic Server installation and acceptable request timeouts.

If you need to ingest or retrieve a very large number of documents, you can also consider
MarkLogic Content Pump (mlcp), a command line tool for loading and retrieving documents
from a MarkLogic database. For details, see Loading Content Using MarkLogic Content Pump in the
Loading Content Into MarkLogic Server Guide.

For additional tuning tips, see the Query Performance and Tuning Guide.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 91

MarkLogic Server Asynchronous Multi-Document Operations
4.0 Asynchronous Multi-Document Operations
143

The Data Movement Software Development Kit (SDK) is a package in the Java Client API
intended for manipulating large numbers of documents and/or metadata through an asynchronous
interface that efficiently distributes workload across a MarkLogic cluster. This framework is best
suited for long running operations and/or those that manipulate large numbers of documents.

You can use the Data Movement SDK “out-of-the-box” to insert, extract, delete, and transform
documents in MarkLogic. You can also easily extend the framework to perform other operations.

The Java Client API also includes simpler interfaces for single-document operations and
synchronous multi-document operations. For details, see “Alternative Interfaces” on page 142.

This chapter includes the following topics:

• Terms and Definitions

• Data Movement Feature Overview

• Data Movement Concepts

• Creating and Managing a Write Job

• Creating and Managing a Query Job

• Reading Documents from MarkLogic

• Applying an In-Database Transformation

• Deleting Documents from a Database

• Applying a Read or Write Transformation

• Job Control

• Failover Handling

• Working With Listeners

• Alternative Interfaces
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 92

MarkLogic Server Asynchronous Multi-Document Operations
4.1 Terms and Definitions
You should be familiar with the following terms and definitions when working with the Data
Movement SDK.

Term Definition

job An operation or large amount of work to be performed using the Data
Movement SDK, such as loading documents into or reading
documents from MarkLogic. For details, see “Basic Data Movement
Job Life Cycle” on page 96.

batch A small unit of work for a Data Movement job. For details, see “Basic
Data Movement Job Life Cycle” on page 96.

batcher An object that encapsulates the characteristics of a job and coordinates
the work. The batcher is the job controller. It splits the work requested
by a job into batches, coordinates distribution of work, and notifies
listeners of events. For details, see “Basic Data Movement Job Life
Cycle” on page 96.

listener A callback object that is notified whenever an “interesting” job event
occurs. You register listeners through a batcher. For details, see
“Working With Listeners” on page 140.

write job A job whose purpose is writing documents and optional metadata to
MarkLogic. Write jobs are driven by a WriteBatcher. For details, see
“Job Types” on page 98 and “Creating and Managing a Write Job” on
page 102.

query job A job whose purpose is gathering a set of URIs for documents in the
database, and dispatching batches of URIs to listeners for action. The
listeners determine the outcome. For example, you can use a query job
to read or delete documents from MarkLogic. For details, see “Job
Types” on page 98 and “Creating and Managing a Query Job” on
page 110.

job ticket An identifier for a job that can be used to retrieve status and other
information about a job.

job report A job status report. For details, see “Checking the Status of a Job” on
page 131.

read transformation A content, metadata, or search response transformation that is applied
on MarkLogic server when you read a document from the database.
For details, see “Applying a Read or Write Transformation” on
page 130.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 93

MarkLogic Server Asynchronous Multi-Document Operations
4.2 Data Movement Feature Overview
The Data Movement SDK is designed to efficiently operate on large amounts of data. The
operations are carried out asynchronously to facilitate spreading the workload across a cluster and
to enable your application to continue other processing during a long-running job.

You can use the Data Movement SDK to perform the following operations out-of-the-box. You
can easily customize the framework to perform other operations.

• Write data into MarkLogic.

• Read data from MarkLogic.

• Delete data from MarkLogic.

• Apply in-database transformations without fetching data to the client.

The Data Movement SDK provides the following additional benefits.

• A programmatic interface that enables easy integration into existing ETL and data flow
tool chains.

• Asynchronous operation. Your application does not block while importing, exporting,
deleting, or transforming data. You can incrementally change the workload. For example,
as you receive data from an ETL stream, you can add the new input to a running import
job.

• Control over workload characteristics, such as thread count and batch size.

write transformation A content or metadata transformation that is applied on MarkLogic
server when you insert a document into the database. The
transformation is applied before committing the content. For details,
see “Applying a Read or Write Transformation” on page 130.

in-database
transformation

A content or metadata transformation that is applied on MarkLogic
server to content already in the database. The content is not fetched
from MarkLogic to the client or sent from the client to MarkLogic.
For details, see “Applying an In-Database Transformation” on
page 124.

consistent snapshot A consistent snapshot is a conceptual snapshot of the state of the
database at a specific point in time. Consistent snapshots are useful for
securing an unchanging view of the database for a long-running that
accesses documents in the database. For details, see “Using a
Consistent Snapshot” on page 114.

Term Definition
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 94

MarkLogic Server Asynchronous Multi-Document Operations
• Data format flexibility. When importing documents, you can use any input source
supported by Java, such as a file or a stream. The same applies to output when exporting
documents.

• Data consistency. You can ensure that a long running export, delete, or transform job
operates on the database state in effect when the job started.

• High performance and efficient use of client and server resources. You can tune client and
server resource consumption through configuration. The API automatically distributes the
server-side workload across your MarkLogic cluster.

Since the Data Movement SDK is part of the Java Client API, your data movement application
can leverage the full power of the Java Client API to support high volume operations. For
example, you can do the following:

• Use the full suite of search features in the Java Client API to select documents for export,
deletion, or in-database transformation. For example, select documents using a string or
structured query.

• Operate on documents and document metadata.

• Apply server-side XQuery or JavaScript transformations when importing or exporting
documents. You can use the same transformation code and deployment for both data
movement and lighter weight document operations.

If you prefer a command line interface, consider using the mlcp command line tool. Be aware that
the Data Movement SDK offers some features unavailable to mlcp, and vice versa. For details,
see “Alternative Interfaces” on page 142.

4.3 Data Movement Concepts
This section discusses the basic concepts behind the Data Movement SDK.

• Summary of Key Classes and Interfaces

• Basic Data Movement Job Life Cycle

• Job Types

• Object Lifetime Considerations

• How Work is Distributed Across a Cluster
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 95

MarkLogic Server Asynchronous Multi-Document Operations
4.3.1 Summary of Key Classes and Interfaces
The following table summarizes the classes and interfaces that drive work in Data Movement
SDK. This is not a complete list of available classes and interfaces. For details, see the
com.marklogic.client.datamovement package in the Java Client API Documentation.

4.3.2 Basic Data Movement Job Life Cycle
Data Movement is based on an asynchronous “job” model of interaction with MarkLogic. You
create a job (represented by a Batcher object), configure its characteristics, and then start the job.
Your application does not block while the job runs. Rather, you interact with the job
asynchronously via one or more event listeners (represented by a BatchListener).

Once you configure and start a job, the underlying API manages distribution of the workload for
you, both across the resources available to your client application and across your MarkLogic
cluster.

Class Description

DataMovementManager The primary job control interface. You use a DataMovementManager
object to create, start, and stop jobs.

Batcher A batcher encapsulates the characteristics of a job (threads, batch
size, listeners) and controls the workflow. The subinterfaces of
Batcher determine the workflow, such as read or write.

WriteBatcher A Batcher for jobs that write documents to MarkLogic.

QueryBatcher A Batcher for jobs that read documents in MarkLogic. Documents
are selected by query or by URI. The action taken on read depends
on the BatchListener’s configured for the job. For example, you
might fetch the documents back to the client, delete them, or apply
an in-place transformation.

BatchListener The interface through which you respond to interesting job state
changes. For example, you might log a message whenever a batch
of documents is successfully written to the database. The events to
which you can attach a listener depend on the type of Batcher. The
DataMovement SDK includes several implementations, and you
can define your own.

BatchFailureListener The listener interface for responding to job failure events. The
DataMovement SDK includes several implementations, and you
can define your own.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 96

MarkLogic Server Asynchronous Multi-Document Operations
The following diagram illustrates key operations and components common to all Data Movement
jobs. Details vary depending on the type of job; for details on specific job types, see “Job Types”
on page 98.

The following procedure describes the high level flow in more detail. The details vary, depending
on the job type; see “Job Types” on page 98.

1. Create a DataMovementManager to manage jobs. This object is intended to be long-lived,
and can manage multiple jobs. The DataMovementManager is not represented in the above
diagram, but it is the agent through which you create, start, and stop jobs.

2. Create a batcher. The batcher acts as the job controller. The type of batcher you create
determines the basic job flow (write or query); for details, see “Job Types” on page 98.

3. Configure job characteristics such as batch size and thread count.

4. Attach one or more listeners to interesting job events. The available events depend on the
type of job.

5. Start the job. The job runs asynchronously, so this is a non-blocking operation.

6. Depending on the type of job, your application might periodically interact with the batcher
to update the state of the running job. For example, periodically add documents to the
work queue of a write job.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 97

MarkLogic Server Asynchronous Multi-Document Operations
7. The batcher interacts with MarkLogic on behalf of each batch of work using one of the
configured job threads.

8. Whenever an important job life cycle event occurs, the batcher notifies all listeners for that
event. For example, a write job notifies batch success listeners whenever a batch of
documents is successfully written to MarkLogic.

9. Stop the job when you no longer need it. A job can run indefinitely. Graceful shutdown of
a job includes waiting for in-progress batches to complete. For more details, see “Job
Control” on page 131.

4.3.3 Job Types
The Data Movement SDK supports the following job types. The job type determines the detailed
workflow and the kind of operation a job can perform.

• Write Job

• Query Job

4.3.3.1 Write Job
A write job sends batches of documents to MarkLogic for insertion into a database. You can insert
both content and metadata.

Your code submits documents to the batcher (job controller), and the batcher submits a batch of
documents to MarkLogic whenever a full batch of documents is queued by your application. The
number of documents in a batch is a configuration parameter of the job.

Batches are processed in multiple client application threads and distributed across the cluster. The
batcher notifies listeners of the success or failure of each batch.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 98

MarkLogic Server Asynchronous Multi-Document Operations
The following diagram gives an overview of the key components and actions of a write job:

For more details, see “Creating and Managing a Write Job” on page 102.

4.3.3.2 Query Job
A query job creates batches of URIs and dispatches each batch to listeners. The batcher gets URIs
either by identifying documents that match a query or from a list of URIs you provide as an
Iterator.

When the job is driven by a query, the batches of URIs are obtained by evaluating the query on
MarkLogic and fetching the URIs of subsets of the matching documents. This enables the job to
handle large query result sets efficiently.

The action applied to a URI batch is dependent on the listener. For example, a listener might read
the documents specified by batch from the database and then save them to the filesystem.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 99

MarkLogic Server Asynchronous Multi-Document Operations
The following diagram gives an overview of the key components and actions of a typical query
job.

The Data Movement SDK pre-defines query job listeners that support the following actions:

• Read documents from MarkLogic (ExportListener and ExportToWriterListener).

• Delete documents from MarkLogic (DeleteListener).

• Apply an in-database transformation to documents in MarkLogic
(ApplyTransformListener).

• Save the URIs of matched documents to a file or other output sink
(UrisToWriterListener).

You can also create custom listeners to accomplish these and other operations. The pre-defined
listeners are meant to serve as guides for creating your own listeners. For more details, see
“Working With Listeners” on page 140.

You can also create query jobs that operate on a pre-defined set of URIs, rather than querying
MarkLogic to find URIs. In this case, the Batcher does not interact with MarkLogic to collect
URIs, but your listeners can still interact with MarkLogic to act on the URIs.

For more details, see “Creating and Managing a Query Job” on page 110.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 100

MarkLogic Server Asynchronous Multi-Document Operations
4.3.4 Object Lifetime Considerations
A DataMovementManager object is usually a long-lived object. For example, create one when your
data movement application starts up, and keep it until your application exits. A
DataMovementManager object is the agent through which you create, start, and stop jobs. It also
manages the MarkLogic connection resources used by jobs (in the form of DatabaseClient
objects).

A Batcher can be released after you stop the job. Jobs cannot be restarted, so a Batcher cannot be
re-used once the job is stopped.

When you pass a Closeable handle to WriteBatcher.add or WriteBatcher.addAs, the batcher takes
responsibility for closing the handle. All Closeable content and metadata handles held by the
batcher will be closed as soon as possible after a batch is written.

4.3.5 How Work is Distributed Across a Cluster
This section describes how a Data Movement job distributes its workload across a MarkLogic
cluster. You do not need to understand this to use the Data Movement SDK, but you might find it
useful in understanding the impact of host failures and cluster topology changes.

When you create a DataMovementManager object using DatabaseClient.newDataMovementManager,
the DataMovementManager is implicitly associated with the connection held by the creating client.
This connection is used to discover which hosts in your MarkLogic cluster contain available
forests for the target database.

When you create a batcher using the DataMovementManager, the batcher’s default configuration
includes this forest host data. The batcher distributes its work among these hosts, helping to
ensure no single host becomes a chokepoint or gets overloaded.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 101

MarkLogic Server Asynchronous Multi-Document Operations
The following diagram illustrates this discovery process and propagation of forest configuration
to a batcher. Assume the job targets the database named “mydb” in cluster that contains three
hosts (Host 1, Host 2, and Host 3). Only Host 1 and Host 2 contains forests from “mydb”.

When a forest host becomes unavailable, the batcher attempts to recover by removing the failed
host from its host list and redirecting work elsewhere. If the batcher runs out of viable hosts, the
job stops.

If you change the forest topology of the database operated on by a job, the batcher will not be
aware of this change unless you update the batcher forest configuration information. For details,
see “Updating Forest Configuration for a Job” on page 133.

4.4 Creating and Managing a Write Job
A write job inserts documents into a database. The following topics describe creating and
managing a write job. The flow of a write job is also illustrated in “Job Types” on page 98.

• Creating a Batcher and Configuring a Write Job

• Attaching Listeners to a Write Job

• Starting a Write Job

• Adding Documents and Metadata to a Job
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 102

MarkLogic Server Asynchronous Multi-Document Operations
• Stopping a Write Job

• Write Job Performance Considerations

• Example: Exporting Documents that Match a Query

4.4.1 Creating a Batcher and Configuring a Write Job
You can use a WriteBatcher object to load documents into MarkLogic. You can include both
content and metadata. Use the batcher to configure runtime characteristics of the job, such as the
batch size, and register listeners for batch success and failure events.

The following code snippet configures batch size and thread count. For additional configuration
options see “Attaching Listeners to a Write Job” on page 103 and the Java Client API
Documentation..

// Assume "dmm" is a previously created DataMovementManager object.
WriteBatcher batcher = dmm.newWriteBatcher();
batcher.withBatchSize(1000)

.withThreadCount(10)
/* ... additional configuration ... */
;

The order in which you configure job characteristics and attach listeners is not significant, other
than that listeners for the same event are invoked in the order in which they’re attached.

For an end-to-end example, see “Example: Loading Documents From the Filesystem” on
page 108.

4.4.2 Attaching Listeners to a Write Job
Whenever a WriteBatcher accumulates a batch of documents, it dispatches the batch to
MarkLogic for writing. The success or failure of committing the batch to the database is reported
back to the batcher, which in turn notifies appropriate listeners.

You can attach listeners to a WriteBatcher for the following events:

• Batch success: A batch success event occurs whenever all the documents in a batch are
successfully committed to MarkLogic. Use WriteBatcher.onBatchSuccess to attach a
listener to this event.

• Batch failure: A batch failure event occurs whenever at least one document in a batch
cannot be committed to MarkLogic. Use WriteBatcher.onBatchFailure to attach a listener
to this event.

You are not required to attach a listener, but doing so gives your application access to information
that may not be included in the default logging and error handling, as well as more control over
your job. Tracking success and failure details can also assist in error recovery.

Listeners for the same event are invoked in the order in which they are attached to the batcher.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 103

MarkLogic Server Asynchronous Multi-Document Operations
The following code snippet illustrates attaching a success and a failure listener, both in the form
of a lambda function.

// Assume "dmm" is a previously created DataMovementManager object.
WriteBatcher batcher = dmm.newWriteBatcher();
batcher.onBatchSuccess(batch-> {/* take some action */})

.onBatchFailure((batch,throwable) -> {/* take some action */})
// ...additional configuration...

dmm.startJob(batcher);

To learn more about listeners, see “Working With Listeners” on page 140.

For an end-to-end example, see “Example: Loading Documents From the Filesystem” on
page 108.

4.4.3 Starting a Write Job
Start a job using DataMovementManager.startJob. For example:

// Assume "dmm" is a previously created DataMovementManager object.
WriteBatcher batcher = dmm.newWriteBatcher();
// ... configure the job and attach listeners ...

JobTicket ticket = dmm.startJob(batcher);

You receive a JobTicket that can be used to check status or stop the job. You can also retrieve the
ticket later from the batcher.

You should not change the configuration of a job after you start it, with the possible (rare)
exception of updating the forest configuration if your cluster topology changes; for details, see
“Updating Forest Configuration for a Job” on page 133. The job will run until you stop it or a fatal
error occurs. For more details, see “Job Control” on page 131.

For an end-to-end example, see “Example: Loading Documents From the Filesystem” on
page 108.

4.4.4 Adding Documents and Metadata to a Job
While the job is running, add documents to the job using WriteBatcher.add or
WriteBatcher.addAs. You can add document content or a combination of content and metadata.

A WriteBatcher object is thread safe, so you can add data to the job from multiple threads.

Whenever your application adds enough documents to the batcher to compose a full batch, the
batcher dispatches the batch to one of its job threads for uploading to MarkLogic. Each batch of
documents is committed as a single transaction, so if any document in a batch cannot be
committed, the whole batch fails. The success or failure of the batch is reported to appropriate
attached listeners.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 104

MarkLogic Server Asynchronous Multi-Document Operations
The batcher will always wait for a full batch by default. If your input rate is very slow, you can
periodically flush partial batches using WriteBatcher.flushAsync.

The following code snippet adds files from a directory (signified by the DATA_DIR variable) to a
job. For an end-to-end example, see “Example: Loading Documents From the Filesystem” on
page 108.

try {
Files.walk(Paths.get(DATA_DIR))

.filter(Files::isRegularFile)

.forEach(p -> {
 String uri = "/dmsdk/" + p.getFileName().toString();

FileHandle handle =
new FileHandle().with(p.toFile());

batcher.add(uri, handle);
 });
} catch (IOException e) {

e.printStackTrace();
}

The batcher takes responsibility for closing any Closeable content or metadata handles you pass
in. Such handles are closed by the batcher as soon as possible after the resource is written to
MarkLogic.

Note: If you have a resource that needs to be closed after writing, but is not closed by the
handle, you should override the close method of your handle and dispose of your
resource there.

4.4.5 Stopping a Write Job
Graceful shutdown of a write job should include draining the document queue before shutting
down the job. You usually want to ensure that all documents that have been added to the job are
fully processed (either committed to the database or rejected due to an error).

You can achieve graceful shutdown with the following steps:

1. Stop any activity adding work to the job. That is, stop calling WriteBatcher.add or
WriteBatcher.addAs. As long as you keep adding work to the job, the batcher will keep
dispatching work to job threads whenever a batch accumulates.

2. Call WriteBatcher.flushAndWait. The batcher dispatches any partial batch in its work
queue, and then waits for in-progress batches to complete.

3. Call DataMovementManager.stopJob. The job is marked as stopped. Queued (but not yet
started) tasks are cancelled. Subsequent calls to WriteBatcher.add, WriteBatcher.addAs,
WriteBatcher.flushAndWait, and WriteBatcher.flushAsync will throw an exception.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 105

MarkLogic Server Asynchronous Multi-Document Operations
If you are concerned that the JVM might exit before all work completes, you can call
WriteBatcher.awaitCompletion after you call stopJob.

The following code snippet demonstrates a graceful shutdown.

DataMovementManager dmm = ...;
WriteBatcher batcher = ...;

// ... disable any input sources ...

batcher.flushAndWait();
dmm.stopJob(ticket);

The following walkthrough explores the interactions between flush and stop in more detail to help
you understand the tradeoff if you to shut a job down prematurely by just calling stopJob.

Suppose you have a write job with a batch size of 100, and the job is in the following state:

• Completed: Batches 1-3. That is, 300 documents have been written to MarkLogic and the
listeners for these batches have completed their work.

• In-Progress: Batch 4 is being written to MarkLogic, but has not yet completed.

• In-Progress: Batch 5 has been written to MarkLogic, but the listeners have not completed
their work.

• Not Started: 75 documents are sitting in the batcher’s work queue, waiting for a full batch
to accumulate.

Now, consider the following possible shutdown scenarios:

1. Stop calling WriteBatcher.add and WriterBatcher.addAs, then call
WriteBatcher.flushAndWait, followed by DataMovementManager.stopJob.

• The flushAndWait call creates a batch from the 75 documents in queue, then blocks
until this batch and batches 4 and 5 complete.

• No new batches will be started, and no batches will be in progress when you call
stopJob because no new work is flowing into the job when you call flush.

2. You call WriteBatcher.flushAndWait, followed by DataMovementManager.stopJob.

• The flushAndWait call creates a batch from the 75 documents in queue, then blocks
until this batch and batches 4 and 5 complete.

• Any batches that start between calling flushAndWait and stopJob will complete,
assuming the JVM does not exit.

• Any partial batch that accumulates between the calls is discarded.

Calling flushAsync instead of flushAndWait has the same outcome, if the JVM does not
exit before in-progress batches complete.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 106

MarkLogic Server Asynchronous Multi-Document Operations
3. You call DataMovementManager.stopJob.

• The 75 documents in the queue are discarded.

• Batches 4 and 5 will complete, assuming the JVM does not exit.

• Any subsequent attempt to call WriteBatcher.add or WriteBatcher.addAs throws
an exception, so no additional batches are started or documents lost.

Only sequence #1 ensures that no submitted documents are lost.

4.4.6 Write Job Performance Considerations
You should consider the following factors when configuring and tuning a write job:

• Batch Size

• Thread Count

• Work Item Input Rate

• Listener Design

4.4.6.1 Batch Size
The batch size configuration parameter of a WriteBatcher is the number of items that are sent to
MarkLogic at once. The “ideal” batch size depends on many factors, including the size of the
input documents and network latency. A batch size in the range 100-1000 works for most
applications.

The following list calls out some factors you should consider when choosing a batch size:

• All items in a batch are sent to MarkLogic in a single request and committed as a single
transaction.

• If your job updates existing documents, locks must be acquired on those documents and
held for the lifetime of the transaction. A large batch size can thus potentially increase
lock contention and affect overall application performance.

• Selecting a batch size is a speed vs. memory tradeoff. Each request to MarkLogic
introduces overhead, but all the items in a batch must stay in memory until the batch is
processed, so a larger batch size consumes more memory.

• Since the batcher will not send any queued items until a full batch accumulates, you
should also consider the input rate of your application. A large batch size and a slow input
rate can cause items to be in a pending state for a long time. You can avoid this by
periodically calling WriteBatcher.flushAsync or WriteBatcher.flushAndWait.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 107

MarkLogic Server Asynchronous Multi-Document Operations
4.4.6.2 Thread Count
The thread count configuration parameter of a WriteBatcher is the number of threads in the client
JVM that will be dedicated to writing batches to MarkLogic. The threads operate in parallel, each
servicing one batch at a time.

Ideally, you should choose a thread count that will keep most of the job threads busy and keep
MarkLogic busy without overwhelming your cluster. You should usually configure at least as
many client threads as hosts containing forests in the target database. The default is one thread per
forest host.

4.4.6.3 Work Item Input Rate
Write job performance can be affected by the input rate. That is, by the rate at which you add
documents to the batcher.

If you queue documents much faster than the batcher’s job threads can process batches, you can
overwhelm the batcher. When this happens, the batcher adopts a strategy that uses submitting
threads instead of the busy job threads. This effectively throttles submitting threads and prevents
the task queue from using too much memory, while still enabling the job to progress.

To tune performance, you can adjust the number of threads adding work to the batcher or the rate
at which items are added.

4.4.6.4 Listener Design
When a batch succeeds or fails, the job thread that submitted the batch invokes all the appropriate
listeners. If you register a listener that takes a long time to complete, it slows down the
notification of other listeners for the same event, and slows down the rate at which the job can
complete batches.

A listener can also slow down a job if it calls synchronized resources since lock contention can
occur.

4.4.7 Example: Loading Documents From the Filesystem
The following example creates and configures a WriteBatcher job, and then feeds the job files all
the files in a directory on the filesystem.

Though this example simply pulls input from the filesystem, it could come from any source
supported by Java. For example, the application could asynchronously receive data from an ETL
pipeline, a message queue, or periodically pull from a file system drop box.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 108

MarkLogic Server Asynchronous Multi-Document Operations
The example attaches listeners to the batch success and batch failure events. The success listener
logs the number of documents written so far, and the failure listener simply rethrows the failure
exception. A production application would have more sophisticated listeners.

package examples;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;

import com.marklogic.client.io.*;
import com.marklogic.client.datamovement.DataMovementManager;
import com.marklogic.client.datamovement.WriteBatcher;
import com.marklogic.client.DatabaseClientFactory;
import com.marklogic.client.DatabaseClient;
import com.marklogic.client.DatabaseClientFactory.DigestAuthContext;

public class DMExamples {
 // replace with your MarkLogic Server connection information
 static String HOST = "localhost";
 static int PORT = 8000;
 static String USER = "username";
 static String PASSWORD = "password";
 private static DatabaseClient client =
 DatabaseClientFactory.newClient(
 HOST, PORT, new DigestAuthContext(USER, PASSWORD));
 private static String DATA_DIR = "/your/input/dir/";

 // Loading files into the database asynchronously
 public static void importDocs() {
 // create and configure the job
 DataMovementManager dmm = client.newDataMovementManager();
 WriteBatcher batcher = dmm.newWriteBatcher();
 batcher.withBatchSize(5)
 .withThreadCount(3)
 .onBatchSuccess(batch-> {

System.out.println(
batch.getTimestamp().getTime() +
" documents written: " +
batch.getJobWritesSoFar());

})
 .onBatchFailure((batch,throwable) -> {
 throwable.printStackTrace();
 });

 // start the job and feed input to the batcher

dmm.startJob(batcher);
 try {
 Files.walk(Paths.get(DATA_DIR))
 .filter(Files::isRegularFile)
 .forEach(p -> {
 String uri = "/dmsdk/" + p.getFileName().toString();

FileHandle handle =
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 109

MarkLogic Server Asynchronous Multi-Document Operations
new FileHandle().with(p.toFile());
batcher.add(uri, handle);

 });
 } catch (IOException e) {
 e.printStackTrace();
 }

 // Start any partial batches waiting for more input, then wait
 // for all batches to complete. This call will block.
 batcher.flushAndWait();
 dmm.stopJob(batcher);
 }

 public static void main(String[] args) {
 importDocs();
 }
}

4.5 Creating and Managing a Query Job
A query job takes either a query or a list of URIs as input, and distributes batches of URIs to
listeners for action. The flow of a query job is outlined in “Job Types” on page 98.

The outcome of a query job is dependent on the actions taken by the listeners. This section covers
the following topics common to all query jobs, regardless of the end goal.

• Creating and Configuring a Query Job

• Attaching Listeners to a Query Job

• Starting a Query Job

• Stopping a Query Job

• Using a Consistent Snapshot

• Performance Considerations for Query Jobs

To learn more about specific query job use cases, see the following topics:

• Reading Documents from MarkLogic

• Applying an In-Database Transformation

• Deleting Documents from a Database

4.5.1 Creating and Configuring a Query Job
To run a query job, use a QueryBatcher object created with
DataMovementManager.newQueryBatcher. A QueryBatcher distributes batches of URIs to listeners
registerd for the “URIs ready” event.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 110

MarkLogic Server Asynchronous Multi-Document Operations
The set of URIs that a query job operates on can come from the following sources:

• A string query, structured query, or combined query. The job retrieves batches of URIs of
matching documents from MarkLogic.

• A raw or unstructured query. Because it requires no transformation on the server, a raw
query is faster than a structured query.

• An application-defined list of URIs (in the form of an Iterator). The job splits these URIs
into batches.

The following code snippet constructs a QueryBatcher based on a structured query. The query is a
directory query on the path “/dmsdk/”.

// Assume "client" is a previously created DatabaseClient object.
QueryManager qm = client.newQueryManager();
StructuredQueryBuilder sqb = qm.newStructuredQueryBuilder();
StructuredQueryDefinition query = sqb.directory(true, "/dmsdk/");

// Create the batcher
DataMovementManager dmm = client.newDataMovementManager();
QueryBatcher batcher = dmm.newQueryBatcher(query);

The following code snippet takes a raw query (querydefRawCts).

QueryBatcher queryBatcher2 =
dmManager.newQueryBatcher(querydefRawCts);

Note: The raw CTS query is the representation of a query that executes most quickly.
Although the Java API supports other kinds of raw queries, including a raw query
that is equivalent to a structured query, raw queries are not as fast as a raw CTS
query.

The following code snippet constructs a QueryBatcher based on a list of URIs.

// Assume "client" is a previously created DatabaseClient object.
DataMovementManager dmm = client.newDataMovementManager();
String uris[] =

{"/dmsdk/doc1.xml", "/dmsdk/doc3.xml", "/dmsdk/doc5.xml"};
QueryBatcher batcher =

dmm.newQueryBatcher(Arrays.asList(uris).iterator());

You can configure runtime characteristics of the job, such as the batch size, thread count and
whether or not to use a consistent snapshot of the documents in the database.

Note: Whether or not to use a consistent snapshot is an important consideration for query
jobs. For details, see “Using a Consistent Snapshot” on page 114.

The following code snippet sets the batch size and thread count, and imposes a consistent
snapshot requirement for a previously created batcher.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 111

MarkLogic Server Asynchronous Multi-Document Operations
batcher.withBatchSize(100)
.withThreadCount(10)
.withConsistenSnapshot()
/* ... additional configuration ... */
;

For more complete examples, see the following topics:

• “Example: Exporting Documents that Match a Query” on page 122

• “Example: Applying an In-Database Transformation” on page 127

• “Deleting Documents from a Database” on page 129

The order in which you configure job characteristics and attach listeners is not significant, other
than that listeners for the same event are invoked in the order in which they’re attached.

You should also attach at least one listener; for details, see “Attaching Listeners to a Query Job”
on page 112.

4.5.2 Attaching Listeners to a Query Job
Whenever a QueryBatcher accumulates a batch of URIs, it dispatches the URIs to the listeners
attached using QueryBatcher.onUrisReady. If you do not attach at least one onUrisReady listener,
the job will not do anything meaningful.

You can attach listeners to a QueryBatcher for the following events:

• URIs ready: This event occurs whenever the batcher accumulates a batch of URIs to be
processed. Use QueryBatcher.onUrisReady to attach a QueryBatchListener to this event.

• Query failure: This event can occur when you use a query to derive the list of URIs for a
job, and the query fails for some reason. Use QueryBatcher.onQueryFailure to attach a
QueryFailureListener to this event.

You should attach at least one success listener and one failure listener to perform
application-specific monitoring and business logic. A listener has access to information that may
not be captured by the default logging from the Java Client API.

The action taken when a batch of URIs is available is up to the onUrisReady listeners. Data
Movement SDK comes with listeners that support the following operations.

• Read documents from MarkLogic (ExportListener, ExportToWriterListener). For details,
see“Reading Documents from MarkLogic” on page 118.

• Apply an in-database transformation to documents in MarkLogic
(ApplyTransformListener). For details, see “Applying an In-Database Transformation” on
page 124.

• Delete documents in MarkLogic (DeleteListener). For details, see “Deleting Documents
from a Database” on page 129.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 112

MarkLogic Server Asynchronous Multi-Document Operations
• Log or otherwise track progress of a query job (ProgressListener).

You can also create your own listeners. The listeners that come with Data Movement SDK are
meant to serve as a starting point for your customizations.

The following code snippet illustrates attaching listeners to a query job. This job prints the URIs
in each batch to stdout.

// Assume "dmm" is a previously created DatabaseMovementManager object
// and "query" is a previously created StructuredQueryDefinition.

DataMovementManager dmm = client.newDataMovementManager();
QueryBatcher batcher = dmm.newQueryBatcher(query);

batcher.onUrisReady(batch -> {
for (String uri : batch.getItems()) {

System.out.println(uri);
}

})
 .onQueryFailure(exception -> exception.printStackTrace());

// ...additional configuration...

dmm.startJob(batcher);

The order in which you configure job characteristics and attach listeners is not significant, other
than that listeners for the same event are invoked in the order in which they’re attached.

To learn more about listeners, see “Working With Listeners” on page 140.

4.5.3 Starting a Query Job
Start a job using DataMovementManager.startJob. For example:

// Assume "client" is a previously created DatabaseClient object
DataMovementManager dmm = client.newDataMovementManager();
QueryBatcher batcher = dmm.newQueryBatcher(someQuery);
// ... configure the job and attach listeners ...

JobTicket ticket = dmm.startJob(batcher);

You receive a JobTicket that can be used to check status or stop the job. You can also retrieve the
ticket later from the batcher.

You should not change the configuration of a job after you start it. The job will run until you stop
it or a fatal error occurs. For more details, see “Job Control” on page 131.

4.5.4 Stopping a Query Job
A query job will go on dispatching batches of URIs to its listeners until all batches have been
dispatched or you call DataMovementManager.stopJob. Follow these steps to ensure the listeners
complete processing all URI batches before shutdown:
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 113

MarkLogic Server Asynchronous Multi-Document Operations
1. Call QueryBatcher.awaitCompletion. This call blocks until all URIs are processed. You
can set a time limit on how long to block, but the job will go on processing batches after
the timeout expires.

2. Call DataMovementManager.stopJob. The job will not start any additional batches.
In-progress batches will run to completion unless the JVM exits. Resources are released as
the in-progress work completes.

For example, suppose you have a query job that will ultimately fetch 10 batches of URIs from
MarkLogic, and the job is in the following state:

• Completed: Batches 1-3. That is, the URIs were dispatched to listeners and the listeners
completed their work.

• In-Progress: Batch 4 is awaiting query results from MarkLogic.

• In-Progress: Batch 5 has been dispatched to the listeners, but the listeners have not
completed their work.

• Not Started: Batches 6-10 not yet assigned to any job threads.

If you call awaitCompletion, the call will block until batches 4-10 are completed.

If you instead call stopJob, batches 4 and 5 will complete (unless the JVM exits), but batches 6-10
will not be processed, even if they could have been started while waiting on batches 4 and 5.

The following code gracefully shuts down a query job after it completes all work:

DataMovementManager dmm = ...;
QueryBatcher batcher = ...;

batcher.awaitCompletion();
dmm.stopJob(ticket);

The following code shuts down a job without necessarily completing all work. Work in progress
when you call stopJob completes, but no additional work is done. The call to awaitCompletion is
optional, but can be useful to prevent the application from exiting before work is completed.

DataMovementManager dmm = ...;
QueryBatcher batcher = ...;

dmm.stopJob(ticket);
batcher.awaitCompletion();

4.5.5 Using a Consistent Snapshot
“Consistent snapshot” is a configuration option for a query job that causes the query driving the
job to be evaluated against the state of the database at the point in time when the job begins.

• When to Use a Consistent Snapshot
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 114

MarkLogic Server Asynchronous Multi-Document Operations
• How to Use a Consistent Snapshot

• The Problem Solved by a Consistent Snapshot

4.5.5.1 When to Use a Consistent Snapshot
You must use a consistent snapshot if your job meets the following criteria:

• The job is driven by a query (rather than an application-defined list of URIs), and

• The job (or other activity) modifies the database in way that can cause successive
evaluations of the query to return different results.

Failing to use a consistent snapshot under these circumstances can cause inconsistent and
unpredictable job results. For details, see “The Problem Solved by a Consistent Snapshot” on
page 115.

For example, you should always use a consistent snapshot when using DeleteListener or
ApplyTransformListener with a query-driven job.

You might also want to use a consistent snapshot when reading documents from the database if
you need to capture a deterministic set of documents and there is a possibility of the database
contents changing while your job runs.

4.5.5.2 How to Use a Consistent Snapshot
To enable the use of a consistent snapshot, call QueryBatcher.withConsistentSnapshot and ensure
your database configuration supports point-in-time queries.

The following code snippet configures a query job to use a consistent snapshot:

QueryBatcher batcher = dmm.newQueryBatcher(someQuery);
batcher.withConsistentSnapshot();

This causes the job to evaluate the query as a point-in-time query. You might have to change your
database configuration to enable point-in-time queries by setting a merge timestamp. For details,
see Enabling Point-In-Time Queries in the Admin Interface in the Application Developer’s Guide.

You might also want to use a consistent snapshot in your listeners. For example, ExportListener
and ExportToWriterListener have a withConsistentSnapshot method you can use to ensure the
listeners capture exactly the same set of documents as were matched by the query.

4.5.5.3 The Problem Solved by a Consistent Snapshot
When you drive a query job using a query (rather than a static list of URIs), the batcher fetches the
URIs for matching documents incrementally, rather than fetching them all at once and holding
them in memory.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 115

MarkLogic Server Asynchronous Multi-Document Operations
The batches are fetched using the same pagination model that the search interfaces use to fetch
results incrementally, specifying the desired page by a starting position in the results plus a page
length. The examples below illustrate the problems that can occur if the query results are
changing as the job runs.

Suppose the initial query for a job matches documents with the following URIs, and that the batch
(page) size is 3. When the job fetches the first page, it gets the URIs for doc1, doc2, doc3.

doc1 doc2 doc3 doc4 doc5 doc6 doc7 doc8 doc9 doc10
-------------- -------------- -------------- -----

page 1 page 2 page 3 page 4

While that batch of URIs is being processed, a change in the database causes doc3 to no longer
match the query. Thus, the query results now look like the following:

doc1 doc2 doc4 doc5 doc6 doc7 doc8 doc9 doc10
-------------- -------------- ---------------

page 1 page 2 page 3

When the job requests the next page of matches, beginning at position 4, it gets back the URIs for
doc5, doc6, and doc7. Notice that doc4 has been skipped because it is now in the first page of
results, which has already been processed from the perspective of the job.

A similar problem can occur if the database changes in a way that adds a new document to the
query results. Imagine that, after the job processes the first batch of URIs, a new docA matches the
query and is part of the first page, as follows:

doc1 doc2 docA doc3 doc4 doc5 doc6 doc7 doc8 doc9 doc10
-------------- -------------- -------------- ----------

page 1 page 2 page 3 page 4

When the job fetches page 2, the batch includes doc3 again, which has already been processed. If
the job is applying an in-database transformation, this double processing could have an
undesirable effect.

If you use a consistent snapshot of the database state at the beginning of a query job, then the
query always matches the same documents.

You might also want to use a consistent snapshot in your query job listeners, depending on the
operation.

Consider a query job that uses ExportListener to read documents from the database. Say the
batcher is running at a consistent snapshot, but the listener is not. Some time after the start of the
job, one of the documents matching the query is deleted. The deleted document URI will still be
included in a batch because of the consistent snapshot. However, the listener will get an error
trying to read the nonexistent document.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 116

MarkLogic Server Asynchronous Multi-Document Operations
The following diagram illustrates this case. The job starts at some time T. The document is deleted
at time T+1. At T+2, the job produces a batch that includes the URI for the deleted document and
passes it to the listener. If the listener is not pinned to a point-in-time, then it will find the deleted
document does not exist, which might result in an error.

T T+1 T+2
|-------+------------+-----------+-------|

job doc process
start deleted doc

If you call ExportListener.withConsistentSnapshot as well as
QueryBatcher.withConsistentSnapshot, then both the query evaluation and the URI processing
will be carried out against a fixed snapshot of the database.

ExportToWriterListener also has a withConsistentSnapshot method.

4.5.6 Performance Considerations for Query Jobs
You should consider the following factors when configuring and tuning a query job:

• Batch Size

• Thread Count

• Listener Design

4.5.6.1 Batch Size
For a query-driven job, the batch size configuration parameter of a QueryBatcher is the number of
URIs that are fetched from MarkLogic at once. For a URI iterator driven job, batch size is the
number of URIs the batcher picks off the list at once. In both cases, the batch size determines the
number of items sent to the listeners for processing.

The “ideal” batch size depends on many factors, including the size of the input documents and
network latency. A batch size in the range 100-1000 works for most applications.

The following list calls out some factors you should consider when choosing a batch size:

• Selecting a batch size is a speed vs. memory tradeoff. Each request to MarkLogic
introduces overhead, but all the items in a batch must stay in memory until the batch is
processed, so a larger batch size consumes more memory.

• Consider how batch size interacts with the implementation of your listener. For example,
ExportListener fetches all the documents in a batch from MarkLogic in a single request, so
a large batch size causes the listener to hold many documents in memory. For more
details, see “Listener Design” on page 118.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 117

MarkLogic Server Asynchronous Multi-Document Operations
4.5.6.2 Thread Count
The thread count configuration parameter of a QueryBatcher is the number of threads in the client
JVM that will be dedicated to processing URI batches. The threads operate in parallel, each
servicing one batch at a time.

Ideally, you should choose a thread count that will keep most of the job threads busy. If your
listener interacts with MarkLogic, you should ideally also keep MarkLogic busy without
overwhelming the cluster. For a job that interacts with MarkLogic, you should usually have more
client threads than hosts containing forests in the target database.

4.5.6.3 Listener Design
The performance of a query job is heavily depending on the processing performed by the
QueryBatcher.onUrisReady listeners.

When a batch of URIs is ready for processing, the batcher invokes each onUrisReady listener, in
the order in which they were register. If you register a listener that takes a long time to complete,
it delays the execution of other listeners for the same event, and slows down the rate at which the
job can complete batches.

A listener can also slow down a job if it calls synchronized resources since lock contention can
occur.

If one of your listeners is too slow, you can design it to do its processing in a separate thread,
allowing control to return to the job and other listeners to execute.

Listener performance can be affected by batch size. For example, an ApplyTransformListener
performs all the transformations for a batch of URIs as a single transaction. An open transaction
holds locks on fragments with pending updates, potentially increasing lock contention and
affecting overall application performance. If you run into lock contention, you might be able to
address it by using a smaller batch size.

4.6 Reading Documents from MarkLogic
To read documents and/or metadata from MarkLogic using the Data Movement SDK, use a
QueryBatcher and attach an ExportListener, ExportToWriterListener, or equivalent custom
QueryBatchListener to onUrisReady. An export listener also has attached listeners. These listeners
take action when the export listener has a document available for processing.

This section only details how to use ExportListener and ExportToWriterListener to read
documents from MarkLogic with a query job. However, you can create your own listener for
reading documents.

For more details, see the following topics:

• Using ExportListener to Read Documents
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 118

MarkLogic Server Asynchronous Multi-Document Operations
• Using ExportToWriterListener to Read Documents

• Example: Exporting Documents that Match a Query

This section assumes you are familiar with query job basics. If not, review “Creating and
Managing a Query Job” on page 110.

4.6.1 Using ExportListener to Read Documents
When an ExportListener receives a batch of URIs from a QueryBatcher, it reads these documents
from MarkLogic, and then dispatches each document to its own listener(s). Attach per-document
listeners using ExportListener.onDocumentReady. For example, you might register a document
listener that writes a document to the filesystem.

The following diagram illustrates the flow between QueryBatcher, ExportListener, and document
listeners.

You can configure aspects of the ExportListener document read operation such as the following.
For a complete list, refer to the Java Client API Documentation.

• Fetch metadata such as collections or properties, as well as document content. See
ExportListener.withMetadataCategory.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 119

MarkLogic Server Asynchronous Multi-Document Operations
• Use a consistent snapshot to fetch documents as they were when the query job started. See
ExportListener.withConsistenSnapshot and “Using a Consistent Snapshot” on page 114.

• Apply a server-side read transform to each document before returning it to the client
application. See ExportListener.withTransform.

The ExportListener uses the interfaces described in “Synchronous Multi-Document Operations”
on page 70 to fetch the documents, so the listener blocks during the fetch. Each fetched document
(and its metadata) is made available to the listeners as a DocumentRecord. This is the same
interface used by the synchronous interfaces, such as the multi-document read shown in “Read
Multiple Documents by URI” on page 83.

The following code snippet attaches a document listener in the form of a lambda function to an
ExportListener. The document listener simply writes the return document to a known place in the
filesystem (DATA_DIR), with a filename corresponding to the last path step in the URI.

// ...construct a query...
QueryBatcher batcher = dmm.newQueryBatcher(query);

batcher.onUrisReady(
 new ExportListener()
 .onDocumentReady(doc-> {
 String uriParts[] = doc.getUri().split("/");
 try {
 Files.write(
 Paths.get(DATA_DIR, "output",
 uriParts[uriParts.length - 1]),
 doc.getContent(new StringHandle()).toBuffer());
 } catch (Exception e) {
 e.printStackTrace();
 }
 }))

// ...additional configuration...

For a more complete example, see “Example: Exporting Documents that Match a Query” on
page 122.

4.6.2 Using ExportToWriterListener to Read Documents
When you create an ExportToWriterListener, you must supply a Writer that will receive the
documents read from MarkLogic. When an ExportToWriterListener receives a batch of URIs
from a QueryBatcher, it reads these documents from MarkLogic, and then calls Writer.write on
each document.

If sending the contents of each document to the writer as-is does not meet the needs of your
application, you can register an output listener to prepare custom input for the writer. Use
ExportToWriterListener.onGenerateOutput to register such a listener.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 120

MarkLogic Server Asynchronous Multi-Document Operations
The following diagram illustrates the flow when you register an onGenerateOutput listener.

If you do not register an onGenerateOutput listener, then the flow in the above diagram skips Step
4. That is, the ExportToWriterListener sends content of each document directly to the Writer;
metadata is ignored.

You can configure aspects of the ExportToWriterListener document read operation such as the
following. For a complete list, refer to the Java Client API Documentation.

• Fetch metadata such as collections or properties, as well as document content. See
ExportToWriterListener.withMetadataCategory. You should register an
onGenerateOutputListener if you fetch metadata because the default flow with no listener
ignores metadata.

• Use a consistent snapshot, fetching documents as they were when the query job started.
See ExportToWriterListener.withConsistenSnapshot and “Using a Consistent Snapshot”
on page 114.

• Apply a server-side read transform to each document before returning it to the client
application. See ExportToWriterListener.withTransform and “Applying a Read or Write
Transformation” on page 130.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 121

MarkLogic Server Asynchronous Multi-Document Operations
• Prepend a string to the output sent to the Writer for each document. This prefix is included
whether or not control flow goes through an onGenerateOutputListener. See
ExportToWriterListener.withRecordPrefix.

• Append a string to the output sent to the Writer for each document. This suffix is included
whether or not control flow goes through an onGenerateOutputListener. See
ExportToWriterListener.withRecordSuffix.

The ExportToWriterListener uses the interfaces described in “Synchronous Multi-Document
Operations” on page 70 to fetch the documents, so the listener blocks during the fetch. Each
fetched document (and its metadata) is made available to the onGenerateOutput listeners as a
DocumentRecord. This is the same interface used by the synchronous interfaces, such as the
multi-document read shown in “Read Multiple Documents by URI” on page 83.

The following example creates an ExportToWriterListener that is configured to fetch documents
and collection metadata. The onGenerateOutput listener generates a comma-separated string
containing the document URI, first collection name, and the document content.
ExportToWriterListener.withRecordSuffix is used to emit a newline after each document is
processed. The end result is a three-column CSV file.

FileWriter writer = new FileWriter(outputFile));
ExportToWriterListener listener = new ExportToWriterListener(writer)
 .withRecordSuffix("\n")
 .withMetadataCategory(DocumentManager.Metadata.COLLECTIONS)
 .onGenerateOutput(
 record -> {

try{
 String uri = record.getUri();
 String collection =
 record.getMetadata(new DocumentMetadataHandle())
 .getCollections().iterator().next();
 String contents = record.getContentAs(String.class);
 return uri + "," + collection + "," + contents;

} catch (Exception e) {
e.printStackTrace();

}
}

);

For the complete example, see ExportToWriterListenerTest in
com.marklogic.client.test.datamovement. The test source is available on GitHub. For more
details, see “Downloading the Library Source Code” on page 34.

4.6.3 Example: Exporting Documents that Match a Query
The following function uses QueryBatcher and ExportListener to read documents from
MarkLogic and save them to the filesystem. The job uses a structured query to select the
documents to be exported. Further explanation follows the code sample.

// Assume "client" is a previously created DatabaseClient object.
private static String EX_DIR = "/your/directory/here";
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 122

MarkLogic Server Asynchronous Multi-Document Operations
private static DataMovementManager dmm =
client.newDataMovementManager();

// ...

public static void exportByQuery() {
 // Construct a directory query with which to drive the job.
 QueryManager qm = client.newQueryManager();
 StructuredQueryBuilder sqb = qm.newStructuredQueryBuilder();
 StructuredQueryDefinition query = sqb.directory(true, "/dmsdk/");

 // Create and configure the batcher
 QueryBatcher batcher = dmm.newQueryBatcher(query);
 batcher.onUrisReady(
 new ExportListener()
 .onDocumentReady(doc-> {
 String uriParts[] = doc.getUri().split("/");
 try {
 Files.write(

Paths.get(EX_DIR, "output",
uriParts[uriParts.length - 1]),

doc.getContent(
new StringHandle()).toBuffer());

 } catch (Exception e) {
 e.printStackTrace();
 }
 }))
 .onQueryFailure(exception -> exception.printStackTrace());

dmm.startJob(batcher);

 // Wait for the job to complete, and then stop it.
 batcher.awaitCompletion();
 dmm.stopJob(batcher);
}

The query driving the job is a simple directory query that matches all documents in the directory
“/dmsdk/”, such as the documents inserted in “Example: Loading Documents From the
Filesystem” on page 108:

QueryManager qm = client.newQueryManager();
StructuredQueryBuilder sqb = qm.newStructuredQueryBuilder();
StructuredQueryDefinition query = sqb.directory(true, "/dmsdk/");

You can use any string, structured, or combined query. For details on query construction, see
“Searching” on page 144.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 123

MarkLogic Server Asynchronous Multi-Document Operations
The ExportListener.onDocumentsReady listener attached by the example writes each document to
the filesystem, using the last path step in the URI as the file name. That is, if the document URI is
/dmsdk/doc1.xml, then a file named doc1.xml is written to the output directory. The output
directory is EX_DIR/output/, where EX_DIR is a variable holding the path of your choice.

new ExportListener()
 .onDocumentReady(doc-> {
 String uriParts[] = doc.getUri().split("/");
 try {
 Files.write(Paths.get(EX_DIR, "output",

uriParts[uriParts.length - 1]),
 doc.getContent(new StringHandle()).toBuffer());
 } catch (Exception e) {
 e.printStackTrace();
 }
 }))

The ExportListener.onQueryFailure listener is just a lambda function that emits a stack trace.
You would use a more sophisticated listener in a production application.

4.7 Applying an In-Database Transformation
You can use the Data Movement SDK to orchestrate in-place transformations of documents
already in the database by using an ApplyTransformListener with a QueryBatcher. This section
includes the following topics:

• Applying an In-Database Transformation with QueryBatcher

• Example: Applying an In-Database Transformation

4.7.1 Applying an In-Database Transformation with QueryBatcher
An in-database transformation is driven by a client-side query job, but carried out entirely inside
MarkLogic, without fetching any documents to the client. Use a QueryBatcher with an
ApplyTransformListener attached to the batcher’s onUrisReady event. You could also create a
custom transform listener.

This section assumes you are familiar with query job basics. If not, review “Creating and
Managing a Query Job” on page 110.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 124

MarkLogic Server Asynchronous Multi-Document Operations
The following diagram illustrates the default flow of query job that performs an in-database
transformation.

By default, the output of the transform replaces the original document in MarkLogic.You can
configure the listener to run the transform without updating the source document by calling
ApplyTransformListener.withApplyResult. For example, you could use this approach if your
“transform” computes an aggregate over the documents matching a query and stores the result
elsewhere in the database.

The transform to be applied by the job must be installed on MarkLogic before you can use it. Data
Movement SDK uses the same transform framework as the single document operations and
synchronous multi-document operations. For details on authoring and installing a transform, see
“Content Transformations” on page 282.

You identify the transform by supplying a ServerTransform object when you create the
ApplyTransformListener for the job.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 125

MarkLogic Server Asynchronous Multi-Document Operations
The following example applies a previously installed transformation to a set of URIs using a
query job. The contents of the three target documents are replaced by the documents created by
the transform function.

private static DataMovementManager dmm =
client.newDataMovementManager();

// ...
public static void inPlaceTransform(String txName) {
 ServerTransform txform = new ServerTransform(txName);
 String uris[] =

{"/dmsdk/doc1.xml", "/dmsdk/doc3.xml", "/dmsdk/doc5.xml"};
 QueryBatcher batcher =

dmm.newQueryBatcher(Arrays.asList(uris).iterator());
 batcher.withConsistentSnapshot()
 .onUrisReady(
 new ApplyTransformListener().withTransform(txform))
 .onQueryFailure(exception -> exception.printStackTrace());

dmm.startJob(batcher);
 batcher.awaitCompletion();
 dmm.stopJob(batcher);
}

For a more complete example, see “Example: Applying an In-Database Transformation” on
page 127.

All the transformed documents associated with a batch of URIs are committed as a single
transaction, so if the transformation of any document fails, the whole batch fails. The absence of a
targeted document in the database is not treated as an error and does not cause the batch to fail.
Such documents are simply skipped.

Note: If you use a query to select the documents to be transformed, then you should use
QueryBatcher.withConsistentSnapshot with ApplyTransformListener. For details,
see “Using a Consistent Snapshot” on page 114.

You can attach listeners to an ApplyTransformListener to receive notifications about batch
success, batch failure, and skipped document events. These listeners use the QueryBatchListener
interface. Use the following methods to attach listeners:

• ApplyTransformListener.onSuccess: Register a listener that is called whenever all the
documents corresponding to a batch of URIs have been successfully transformed or
skipped. The URIs of the batch of transformed documents are accessible through the
registered listener’s getItems method.

• ApplyTransformListener.onSkipped: Register a listener that is called whenever one or
more documents corresponding to a batch of URIs were not found in the database. The
URIs of the missing documents are accessible through getItems method of the batch
passed to the listener.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 126

MarkLogic Server Asynchronous Multi-Document Operations
• ApplyTransformListener.onBatchFailure: Register a listener that is called whenever an
entire batch of transformations is rejected due to an error transforming at least one
document.

4.7.2 Example: Applying an In-Database Transformation
The example in this section applies an in-database XQuery transformation using QueryBatcher
and ApplyTransformListener.

The following XQuery module implements a trivial transform that inserts a <now/> XML child
element into the input document if the root element is <data/>. (This matches the document
structure created by “Example: Loading Documents From the Filesystem” on page 108.) The
element value is the current xs:dateTime when the transform is applied. For more details, see
“Writing Transformations” on page 287.

xquery version "1.0-ml";
module namespace dmex =
"http://marklogic.com/rest-api/transform/dm-in-place";

(: Add an element named "now" that contains the current dateTime. :)
declare function dmex:transform(
 $context as map:map,
 $params as map:map,
 $content as document-node())
as document-node() {
 if (fn:empty($content/data)) then $content
 else document {
 let $root := $content/*
 return
 element {fn:name($root)} {
 element now { fn:current-dateTime() },
 $root/@*,
 $root/node()
 }
 }
};

The following server-side Javascript module implements a trivial transform that adds a property
named writeTimestamp corresponding to the current dateTime to the document stored in the
database. If the input document is not JSON, the content is unchanged.

function insertTimestamp(context, params, content)
{

 if (context.inputType.search('json') >= 0) {

 const result = content.toObject();

 result.writeTimestamp = fn.currentDateTime();

 return result;
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 127

MarkLogic Server Asynchronous Multi-Document Operations
 } else {

 /* Pass thru for non-JSON documents */

 return content;

 }

};

exports.transform = insertTimestamp;

If you any of the above codes to a file (namefile.xqy or namefile.sjs), you can install it on
MarkLogic with code similar to the following. This function expects the transform name (which
is subsequently used to identify the transform during operations), and the name of the file
containing the code as input. It reads the file from EX_DIR/ext/txFilename and installs it under the
specified name.

// Assume "client" is a previously created DatabaseClient object.
// The example also assumes the following context:
private static String EX_DIR = "/your/data/dir/here/";
private static DataMovementManager dmm =

client.newDataMovementManager();

// Helper function for installing transformations.
public static void installTransform(String txName, String txFilename) {
 FileHandle txImpl = new FileHandle().with(
 Paths.get(EX_DIR, "ext", txFilename).toFile());
 TransformExtensionsManager txmgr =
 client.newServerConfigManager()
 .newTransformExtensionsManager();
 txmgr.writeXQueryTransform(txName, txImpl);

// Or, if you use a servser-side JavaScript module
txmgr.writeJavascriptTransform(txName, txImpl);

}

For more details, see “Installing Transforms” on page 282.

Assuming the transformation is installed, the following function creates a query job to apply it to
a set of documents specified by a URI list. You could also apply it to documents matching a
query.

public static void inPlaceTransform(String txName) {
 ServerTransform txform = new ServerTransform(txName);
 String uris[] = {

"/dmsdk/doc1.xml", "/dmsdk/doc3.xml", "/dmsdk/doc5.xml"};
 QueryBatcher batcher =

dmm.newQueryBatcher(Arrays.asList(uris).iterator());
 batcher.onUrisReady(
 new ApplyTransformListener().withTransform(txform))
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 128

MarkLogic Server Asynchronous Multi-Document Operations
 .onQueryFailure(exception -> exception.printStackTrace());
dmm.startJob(batcher);

 batcher.awaitCompletion();
 dmm.stopJob(batcher);
}

The example accepts the transform name as input and constructs a ServerTransform object from
this name. The ServerTransform is required to configure the ApplyTransformListener. For more
details, see “Using Transforms” on page 283.

ServerTransform txform = new ServerTransform(txName);
...
new ApplyTransformListener().withTransform(txform)

Whenever a batch of URIs is ready for processing, the ApplyTransformListener applies the
transform to all the documents in the batch.

If the job was driven by a query rather than a list of URIs, you would include a call to
QueryBatcher.withConsistentSnapshot in the job configuration. You should use a consistent
snapshot when running query driven jobs that modify the database. For details, see “Using a
Consistent Snapshot” on page 114.

4.8 Deleting Documents from a Database
You can use the Data Movement SDK to delete documents stored in MarkLogic by using a
DeleteListener with a QueryBatcher. This section assumes you are familiar with query job basics.
If not, review “Creating and Managing a Query Job” on page 110.

As with any query job, the target URIs are fetched to the client so that the delete operation can be
distributed across the cluster. No documents are fetched to the client. You can select the
documents to be deleted by specifying a query or supplying a list of URIs.

Note: A job that deletes documents alters the state of the database in a way that affects
query results. If you use a query to select the documents for deletion, you should
enable merge timestamps on the database and use a consistent snapshot. For more
details, see “Using a Consistent Snapshot” on page 114.

All the deletions associated with a batch of URIs are committed as a single transaction, so if the
deletion of any document fails, the whole batch fails. Note that the absence of a targeted
document in the database is not treated as an error and does not cause the batch to fail.

The following example deletes all documents where the “data” element has a value of 5:

// Assume "client" is a previously created DatabaseClient object and
// "dmm" is a previously created DataMovementManager.
public static void deleteDocs() {
 QueryManager qm = client.newQueryManager();
 StructuredQueryBuilder sqb = qm.newStructuredQueryBuilder();
 StructuredQueryDefinition query = sqb.value(sqb.element("data"),5);
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 129

MarkLogic Server Asynchronous Multi-Document Operations

 QueryBatcher batcher = dmm.newQueryBatcher(query);
 batcher.withConsistentSnapshot()
 .onUrisReady(new DeleteListener())
 .onQueryFailure(exception -> exception.printStackTrace());

dmm.startJob(batcher);

 batcher.awaitCompletion();
 dmm.stopJob(batcher);
}

4.9 Applying a Read or Write Transformation
You can apply a server-side transformation to documents when you insert them into MarkLogic
with a write job. Similarly, you can apply a server-side transformation to documents when you
read them from MarkLogic using a query job.

Applying a read or write transformation uses the same framework as an in-database
transformation (and other Java Client API document operations), but the flow is different. A write
transform is applied to content received from the client; this content may not already be present in
the database. A read transform is applied to content just before it is returned to the client, leaving
the document in the database unchanged.

You must install a transformation in MarkLogic before you can use it in a job. Other Java Client
API document operations use the same transformation framework, including single document
operations and synchronous multi-document operations. Authoring and installation of
transformations are discussed in “Content Transformations” on page 282.

Configure a write transformation using WriteBatcher.withTransform. Supply a ServerTransform
object that represents a previously installed transformation. When creating the ServerTransform,
you must use the name under which the transform is installed on MarkLogic.

The following code snippet configures a WriteBatcher with a write transform.

DataMovementManager dmm = ...;

WriteBatcher batcher = dmm.newWriteBatcher();
batcher.withBatchSize(5)
 .withThreadCount(3)
 .withTransform(new ServerTransform(txName))

// ...additional configuration
;

For a query job, the listener determines whether or not to support a transform because the action
performed by the job is determined by the listener. For example, ExportListener and
ExportToWriterListener both have a withTransform method through which you can specify a
server-side read transform. However, a transform makes no sense in the context of a
DeleteListener, so it has no such method.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 130

MarkLogic Server Asynchronous Multi-Document Operations
The following code snippet configures an ExportListener with a read transform.

DataMovementManager dmm = ...;

QueryBatcher batcher = dmm.newQueryBatcher(query);
batcher.onUrisReady(
 new ExportListener()
 .withTransform(new ServerTransform(txName))
 .onDocumentReady(...))
 .onQueryFailure(...);

4.10 Job Control

• Checking the Status of a Job

• Pausing and Restarting a Job

• Graceful Termination of a Job

• Terminating a Job Prematurely

• Updating Forest Configuration for a Job

• Working with a Load Balancer

• Restricting the Hosts Used by a Job

4.10.1 Checking the Status of a Job
When you start a job, you receive a JobTicket. You can use the JobTicket to retrieve the type and
id of a job, and to get a job report (using DataMovementManager.getJobReport). The job report
provides statistics such as the number of successfully processed batches. The meaning of the
statistics depends on the type of job; refer to the javadoc for JobReport for details.

The following code snippet retrieves a job report from the ticket for a write job:

DataMovementManager dmm = ...;
WriterBatcher batcher = dmm.newWriteBatcher();
//...
JobTicket ticket = dmm.startJob(batcher);
//...
JobReport report = dmm.getJobReport(ticket);

You can also retrieve batch-level information about a job within a listener. For example, a
WriteBatcher.onBatchSuccessListener can call WriteBatch.getJobWritesSoFar.

A JobReport gathers its statistics by querying listeners that are automatically attached to query
and write job batchers. For example, a WriteJobReportListener is automatically attached to the
onBatchSuccess and onBatchFailure events when you create a WriteBatcher.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 131

MarkLogic Server Asynchronous Multi-Document Operations
You can use the implementation of these listeners as a starting point for your own reporting, and
even replace the default reporting listeners with your own. For more information on replacing
listeners, see “Working With Listeners” on page 140.

4.10.2 Pausing and Restarting a Job
The Data Movement SDK does not support restarting jobs. Once you call
DataMovementManager.stopJob, you cannot perform additional work with the job.

You can effectively mimic pausing and restarting a write job by controlling the flow of work into
the job. For example, the following steps “pause” and “restart” a write job:

1. Stop any activity that calls WriteBatcher.add or WriteBatcher.addAs.

2. Call WriteBatcher.flushAndWait or WriteBatcher.flushAsync. This ensure any partial
batch is processed and in-progress batches get completed.

3. When you’re ready to resume work, start calling WriteBatcher.add and
WriteBatcher.addAs again.

After Step 2, above, the job is effectively paused since it has finished all available work and new
work is not arriving.

A query job always runs until all URIs are processed unless you shut it down prematurely.
However, you can effectively pause a query job by blocking the listener(s). For example, you
could create a listener that conditionally blocks on an object by calling Object.wait. For a timed
pause, pass a timeout period to wait. You can use Object.notifyAll to reactivate all listeners and
resume processing.

4.10.3 Graceful Termination of a Job
Graceful termination means shutting down a job in a way that leaves it in a deterministic state. For
example, if you were to abruptly terminate a write job, some queued documents might not be
written to the database.

Graceful termination usually means draining the work queue of a job before calling
DataMovementManager.stopJob. These steps differ between write jobs and query jobs. For details
on shutting down each type of job, see the following topics:

• “Stopping a Write Job” on page 105

• “Stopping a Query Job” on page 113

A job cannot be restarted after calling DataMovementManager.stopJob.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 132

MarkLogic Server Asynchronous Multi-Document Operations
4.10.4 Terminating a Job Prematurely
If you need to stop a job without waiting for work to be completed, you can call
DataMovementManager.stopJob without first calling methods that drain the work queue like
WriteBatcher.flushAndWait or QueryBatcher.awaitCompletion.

If you do not follow the graceful shutdown procedure, you cannot guarantee that queued work
will be started or in-progress work will be completed after calling stopJob. Any work that started
prior to calling stopJob will be allowed to complete as long as the JVM does not exit.

For example, if documents have been added to a write job, but a full batch has not yet
accumulated, the partial batch will not be processed.

For details on shutting down each type of job, see the following topics:

• “Stopping a Write Job” on page 105

• “Stopping a Query Job” on page 113

A job cannot be restarted after calling DataMovementManager.stopJob.

4.10.5 Updating Forest Configuration for a Job
This section describes how to update a batcher’s understanding of which hosts in a cluster include
forests for the database on which the job operates. You are unlikely to need to do this unless you
have a very long running job and change your cluster topology.

As mentioned in “How Work is Distributed Across a Cluster” on page 101, when you create a
batcher, the DataMovementManager initializes the batcher with information about which hosts in
your MarkLogic cluster contain forests in the database targeted by the job. The batcher uses this
forest configuration information to determine how to distribute work across the cluster.

If you change the database forest locations in such a way that this list of forest hosts becomes
inaccurate, the batcher will not be aware of the change. For example, if you add a forest to a host
that previously contained no forests for the database, the batcher will not direct work to the new
host.

To refresh a batcher’s forest model, pass the output of
DataMovementManager.readForestConfiguration to Batcher.withForestConfig. When you call
DataMovementManager.readForestConfig(), the DataMovementManager queries the cluster for the
current forest configuration and returns the new configuration. For example:

DataMovementManager dmm = ...;
WriteBatcher batcher = ...;
dmm.startJob(batcher);

// some time later...
batcher.withForestConfig(dmm.readForestConfig());
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 133

MarkLogic Server Asynchronous Multi-Document Operations
4.10.6 Working with a Load Balancer
By default, a job tries to connect directly to multiple hosts in your cluster in order to efficiently
distribute work. However, if there is a load balancer sitting between your client application and
your MarkLogic cluster, these direct connections may not be possible.

In such a case, you must configure your DatabaseClient objects to specify a GATEWAY connection,
instead of the default DIRECT connection. For example:

DatabaseClient client =
DatabaseClientFactory.newClient(

"localhost", 8000, "MyDatabase",
new DatabaseClientFactory.DigestAuthContext("myuser", "mypassword"),

DatabaseClient.ConnectionType.GATEWAY);

You cannot use a FilteredForestConfiguration with a GATEWAY connection since all traffic will be
routed through the gateway.

You should configure your load balancer timeout periods to be consistent with your MarkLogic
cluster timeouts. For more details, see “Connecting Through a Load Balancer” on page 19.

For details on failover handling, see “Failover When Connecting Through a Load Balancer” on
page 136.

4.10.7 Restricting the Hosts Used by a Job
By default, a job tries to connect to all hosts in your cluster that contain forests in the database.
This optimizes the performance of your job. However, if you need to restrict host list for a reason
other than connecting through a load balancer, you can use FilteredForestConfiguration to
configure that list.

Note: If you connect to MarkLogic through a load balancer, see “Working with a Load
Balancer” on page 134, instead of using FilteredForestConfiguration.

You can configure a white list (hosts allowed) or a black list (host disallowed). The Java Client
API uses the same mechanism internally to manage failover.

The following example restricts a job to connecting to MarkLogic through only the hosts
“good-host-1” and “good-host-2”:

// Assume "dmm" is a previously created DataMovementManager object.
batcher.withForestConfig(

new FilteredForestConfiguration(
dmm.readForestConfig()

).withWhiteList("good-host-1", "good-host-2")
);

Note that limiting a job to connect to a restricted host list can negatively impact the performance
of your job.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 134

MarkLogic Server Asynchronous Multi-Document Operations
4.11 Failover Handling
Failover occurs when a forest or a host in a cluster becomes unavailable due to events such as a
forest restart or a host becoming unreachable. The unavailable host might become available again
or be replaced by a failover host that is configured for the database as described in High Availability

of Data Nodes With Failover in the Scalability, Availability, and Failover Guide. The Data
Movement SDK attempts to recover from such events with no data loss.

This section covers the following topics:

• Default Failover Handler

• Failover When Connecting Through a Load Balancer

• Interaction with In-Database Transform

• Failover Handling in Custom Listeners

4.11.1 Default Failover Handler
The Data Movement SDK provides a default error handling listener, HostAvailabilityListener,
for managing failover events. Whenever you create a QueryBatcher or a WriteBatcher object, a
HostAvailabilityListener is attached to it. You can also use HostAvailabilityListener as an
example for creating your own failover handler.

Note: This discussion applies when you connect directly to MarkLogic. If you connect
through a load balancer, see “Failover When Connecting Through a Load
Balancer” on page 136.

When the HostAvailabilityListener detects an unavailable host, the Data Movement SDK
responds as follows:

1. Check to see if the configured minimum number of hosts remain in the forest
configuration (minus the failed host). If not, stop the job with an error. If so, proceed with
the recovery procedure.

2. To avoid repeated occurrences of the same error, remove the failed host from the forest
configuration on which the job operates. The failed host is considered “suspended” for a
configurable time period and will not be used by the job while in this state.

3. Schedule an asynchronous task to re-acquire the forest configuration from MarkLogic
when the suspension time period expires. This enables the failed host to come back into
rotation or be replaced by a failover host.

4. Retry the failed batch with one of the hosts remaining in the forest configuration modified
in Step 2.

Use HostAvailabilityListener.withSuspendTimeForHostUnavailable to configure the suspension
time period. The default suspension period is 10 minutes.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 135

MarkLogic Server Asynchronous Multi-Document Operations
Use HostAvailabilityListener.withMinHosts to configure the minimum number of host required
to enable retrying a failed batch.

Use HostAvailabilityListener.withHostUnavailableExceptions to configure the exceptions that
trigger the retry flow. By default, HostAvailabilityListener acts on the following exceptions
classes: SocketException, SSLException, UnknownHostException.

For example, the following code configures the default HostAvailability listener attached to a
batcher with a suspension period of 5 minutes and a two host minimum:

HostAvailabilityListener.getInstance(batcher)
.withSuspendTimeForHostUnavailable(Duration.ofMinutes(5))
.withMinHosts(2);

If the behavior of HostAvailabilityListener does not meet the needs of your application, you can
use it as a basis for developing your own failover handler. To review the implementation on
GitHub or download a local copy of the source code, see “Downloading the Library Source Code”
on page 34.

4.11.2 Failover When Connecting Through a Load Balancer
When you connect to MarkLogic through a load balancer, you must configure your
DatabaseClient objects to use a GATEWAY connection, as described in “Working with a Load
Balancer” on page 134.

When you use a GATEWAY connection, all traffic goes through the load balancer host, so it is not
possible for the job to modify its host list if a host in your MarkLogic cluster becomes
unavailable, as described in “Default Failover Handler” on page 135.

Instead, HostAvailabilityListener retries against the load balancer for some time. When the
MarkLogic cluster successfully recovers from the host failure, batches submitted through the load
balancer start succeeding again.

If the MarkLogic cluster is not able to recover within the timeout period, then the job fails. If the
load balancer host becomes unavailable, your job is cancelled.

4.11.3 Interaction with In-Database Transform
When you attach an ApplyTransformListener to a QueryBatcher, the retry mechanism described in
“Default Failover Handler” on page 135 applies only to the process of fetching batches of URIs
from MarkLogic by default because the Java Client API cannot assume it is safe to retry the
intended in-database transformation or deletion.

If a failover event occurs while fetching a batch of URIs, HostAvailabilityListener retries the
failed URI fetch, just as it does when handling failovers for reading and writing documents. If a
failover event occurs after a batch of URIs is dispatched to an attached onUrisReady listener such
as an ApplyTransformListener, the batch will fail by default if a failover event occurs.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 136

MarkLogic Server Asynchronous Multi-Document Operations
To handle this more complex situation, the Java Client API supports the following types of
listener for failover handling:

• HostAvailabilityListener: If a failover event occurs while fetching a batch of URIs,
HostAvailabilityListener retries the failed URI fetch, just as it does when handling
failovers for reading and writing documents.

• NoResponseListener: Handles the case where no response is received from MarkLogic.
The default NoResponseListener handles the case where no response is received while
fetching URIs. This listener is register by default for all listeners created by the Java Client
API.

• BatchFailureListener<QueryBatch> for HostAvailabilityListener: Implements the retry
logic when a qualifying exception is raised while fetching URIs. Such a retry listener is
associated with all listeners created by the Java Client API, including
ApplyTransformListener.

• BatchFailureListener<QueryBatch> for NoResponseListener: Implements the retry logic
when no response is received from MarkLogic during the transform operation. The Java
Client API adds this listener to listeners for idempotent operations, such as DeleteListener.
It is not added to ApplyTransformListener by default

If you know that your transform is idempotent and can safely be repeated, then you can enable
failover handling for the no response case by attaching a retry listener to the NoResponseListener.
For example:

ApplyTransformListener txformListener = new ApplyTransformListener()
.withTransform(txform);

QueryBatcher batcher = ...;

NoResponseListener noResponseListener =
NoResponseListener.getInstance(batcher);

if (noResponseListener != null) {
BatchFailureListener<QueryBatch> retryListener =

noResponseListener.intializeRetryListener(txformListener);
if (retryListener != null) {

txformListener.onFailure(retryListener);
}

}

If your in-database transform is not idempotent, but you want to retry in some no-response cases,
you implement your own BatchFailureListener. For details, see “Conditionally Retry” on
page 139.

4.11.4 Failover Handling in Custom Listeners
This section describes how to implement failover handling in a custom listener. Your listener can
respond to failover events in the following ways:
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 137

MarkLogic Server Asynchronous Multi-Document Operations
• Never retry. Allow the batch to fail. You do not need to write any special code to address
this case. This is the default behavior of ApplyTransformListener.

• Always Retry. If the operation performed by the listener is idempotent, such as document
write or delete, then you can always safely retry. DeleteListener implements this
approach.

• Conditionally Retry. You must implement a custom BatchFailureListener for this case.

4.11.4.1 Always Retry
If you create a custom QueryBatchListener that should always retry on a qualifying error, override
the initializeListener method to do the following:

1. Obtain the HostAvailabilityListener from the batcher.

HostAvailabilityListener hostAvailabilityListener =
HostAvailabilityListener.getInstance(queryBatcher);

2. Obtain a RetryListener by calling HostAvailabilityListener.intializeRetryListener.

BatchFailureListener<QueryBatch> retryListener =
hostAvailabilityListener.initializeRetryListener(this);

3. Register the RetryListener as an onFailureListener of your custom listener.

if (retryListener != null) onFailure(retryListener);

4. Obtain a NoResponseListener from the batcher.

NoResponseListener noResponseListener =
NoResponseListener.getInstance(queryBatcher);

5. Obtain a RetryListener by calling NoResponseListener.initializeRetryListener.

BatchFailureListener<QueryBatch> noResponseRetryListener =
noResponseListener.initializeRetryListener(this);

6. Register the RetryListener as an onFailure listener of your custom listener.

if (noResponseRetryListener != null)
onFailure(noResponseRetryListener);

The RetryListener for the noResponseListener is required to handle cases where a host becomes
unavailable without returning any response from MarkLogic, rather than raising an error.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 138

MarkLogic Server Asynchronous Multi-Document Operations
The following code puts these steps together into an implementation of initializeListener for a
custom query batch listener:

public class myListener : extends Object implements QueryBatchListener
{

 // ...

 @Override
 public void initializeListener(QueryBatcher queryBatcher) {
 HostAvailabilityListener hostAvailabilityListener =
 HostAvailabilityListener.getInstance(queryBatcher);
 if (hostAvailabilityListener != null) {
 BatchFailureListener<QueryBatch> retryListener =
 hostAvailabilityListener.initializeRetryListener(this);
 if (retryListener != null) onFailure(retryListener);
 }
 NoResponseListener noResponseListener =
 NoResponseListener.getInstance(queryBatcher);
 if (noResponseListener != null) {
 BatchFailureListener<QueryBatch> noResponseRetryListener =
 noResponseListener.initializeRetryListener(this);
 if (noResponseRetryListener != null)
 onFailure(noResponseRetryListener);
 }
 }

};

See the implementation of com.marklogic.client.datamovement.DeleteListener for a complete
example. To review the implementation on GitHub or download a local copy of the source code,
see “Downloading the Library Source Code” on page 34.

4.11.4.2 Conditionally Retry
If you only want to retry your operation under certain circumstances, do the following:

• Create a class that implements BatchFailureListener<QueryBatch>. Implement your retry
logic in the processFailure method.

• Attach an instance of your BatchFailureListener as an onFailure listener of your custom
listener.

To initiate a retry from your batch failure listener, invoke QueryBatcher.retry. This enables a
retry if an error occurs when fetching URIs. For example:

public void processFailure(QueryBatch batch, Throwable throwable) {
// ...
batch.getBatcher().retry(batch);
// ...

}

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 139

MarkLogic Server Asynchronous Multi-Document Operations
To create a custom availability listener, override QueryBatchListener.intializeListener. The
default implementation of this method does nothing. Your implementation should be similar to
the following:

@Override
public void initializeListener(QueryBatcher queryBatcher) {
 HostAvailabilityListener hostAvailabilityListener =
 HostAvailabilityListener.getInstance(queryBatcher);
 if (hostAvailabilityListener != null) {
 BatchFailureListener<QueryBatch> retryListener =
 hostAvailabilityListener.initializeRetryListener(this);
 if(retryListener != null) onFailure(retryListener);
 }
}

The batcher calls the initializeListener method on each attached QueryBatchListener.

The retry listener should call QueryBatchListener.retryListener in its processFailure method to
re-attempt the failed operation. That is, to retry in cases where a batch of URIs is successfully
retrieved from MarkLogic, but a failure occurs during the in-database operation. For an example,
see the implementation of HostAvailabilityListener.RetryListener.processFailure.

4.12 Working With Listeners
A listener is a callback through which your application responds to interesting job state changes,
such as when a write job successfully inserts a batch of documents, or a query job prepares a batch
of URIs for processing.

This section covers the following listener-related topics:

• Guidelines for Creating Listeners

• Attaching Multiple Listeners to a Job

• Removing or Replacing a Listener

4.12.1 Guidelines for Creating Listeners
Data Movement SDK pre-defines several listener classes that are fully functional, but also meant
to serve as a starting place for you to implement your own listeners.

For example, Data Movement SDK includes an ExportToWriterListener class for reading
documents from the database and sending the contents as a string to a Writer. You might create a
custom listener that also emits metadata, or one that generates zip file entries instead of strings.

When creating your own listeners, keep the following points in mind:

• All listener code must be thread safe because listeners are executed asynchronously across
all job threads. For example, you should not have multiple listeners updating a shared
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 140

MarkLogic Server Asynchronous Multi-Document Operations
collection unless the collection is thread safe (Collections.synchronizedMap<T>,
Collections.synchronizedList<T>, ConcurrentHashMap, ConcurrentLinkedQueue, etc.).

• In query jobs driven by a query (rather than a fixed set of URIs), each QueryBatchListener
has access to the host and forest that contain the documents identified by a URI batch.
Your job will be more efficient if you use the same host for your per batch operations. See
QueryBatch.getClient and QueryBatch.getForest.

The thread safety requirement also applies to “listener listeners”. For example, if you attach
document ready event listeners to an ExportListener (ExportListener.onDocumentReady) that
code must also be thread safe.

4.12.2 Attaching Multiple Listeners to a Job
You can attach listeners to multiple events, and you can attach multiple listeners to a single event.
When there are multiple listeners for an event, they are invoked serially, in the order in which they
were attached to the job. An event is not complete until all listeners complete their processing.

For example, when you create a WriteBatcher, the DataMovementManager automatically attaches a
WriteJobReportListener to the batch success event. When you attach your own batch success or
failure event listeners using WriteBatcher.onBatchSuccess, it doesn’t replace the
WriteJobReportListener. Rather, the batch success event now has multiple listeners.

You can probe the listeners attached to a job using methods such as
WriteBatcher.getBatchSuccessListeners and QueryBatcher.getQueryFailureListeners.

4.12.3 Removing or Replacing a Listener
You can add a listener to a batcher using the appropriate onEvent method, such as
WriteBatcher.onBatchSuccess. You should not attach a listener to a running job.

To remove or replace a listener, you must retrieve the list of listeners attached to an event, modify
the list, and set the listener list on the batcher to the value of the new list.

Note that the Data Movement SDK attaches a default set of listeners to WriteBatcher and
QueryBatcher in support of job reporting, error recovery, and job management. If you replace or
remove the entire set of listeners attached to an event, you will lose these automatically attached
listeners.

The WriteBatcher and QueryBatcher interfaces include setters and getters for their respective
event listener lists. For example, the QueryBatcher interface includes getUrisReadyListeners and
getQueryFailureListeners methods.

The listener classes provided by Data Movement SDK, such as ExportListener, do not expose
any kind of listener id. You can only distinguish them on the listener list by probing the type.

The following code snippet demonstrates removing a custom batch success listener from a
WriteBatcher.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 141

MarkLogic Server Asynchronous Multi-Document Operations
WriteBatchListener oldListeners[] =
batcher.getBatchSuccessListeners();

ArrayList<WriteBatchListener> newListeners =
 new ArrayList<WriteBatchListener>();
for (WriteBatchListener listener : oldListeners) {
 if (!(listener instanceof MyWriteBatchListener)) {
 newListeners.add(listener);
 }
}
batcher.setBatchSuccessListeners(

Stream.of(batcher.getBatchSuccessListeners())
.filter(listener -> !(listener instanceof MyWriteBatchListener))
.toArray(WriteFailureListener[]::new)

);

4.13 Alternative Interfaces
If your application is not working with large workloads or does not require an asynchronous
interface, consider using the interfaces described in the following sections:

• “Single Document Operations” on page 36. Synchronous document operations on one
document at a time. You can create, read, update and delete documents.

• “Synchronous Multi-Document Operations” on page 70. Synchronous document
operations on multiple documents. You can create, read, update, and delete documents.
You might find this interface simpler if you do not require asynchrony or the level of
control provided by the Data Movement SDK.

If you want to move data into, out of, or between MarkLogic clusters using the command line,
consider the mlcp tool. This tool provides many of the capabilities and performance
characteristics of the Data Movement interfaces. For details, see the mlcp User Guide.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 142

MarkLogic Server Asynchronous Multi-Document Operations
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 143

MarkLogic Server Searching
5.0 Searching
189

This chapter describes how to submit searches using the Java API, and includes the following
sections:

• Overview of Search Using the Java API

• Using SearchHandle to Examine Query Results

• Search Using String Query Definition

• Search Documents Using Structured Query Definition

• Prototype a Query Using Query By Example

• Apply Dynamic Query Options to Document Searches

• Search On Tuples (Tuples Query / Values Query)

• Limiting A Search To Specific Collections And/Or A Directory

• Searching Values Metadata Fields

• Transforming Search Results

• Generating Search Term Completion Suggestions

• Extracting a Portion of Matching Documents

5.1 Overview of Search Using the Java API
The MarkLogic Java API provides the following fundamental ways of querying the database:

• Searches on documents, which return search results, snippets, and facets.

• Value or Tuple (co-occurrences) searches, which return data from range indexes and the
results of aggregate functions (including user-defined aggregate functions) from range
indexes.

In addition to typical document searches, you can search Java POJOs that have been stored in the
database. For details, see “POJO Data Binding Interface” on page 226.

When you search documents you can express search criteria using one of the following kinds of
query:

• String query: Use a Google-style query string to search documents and metadata. For
details, see “Search Using String Query Definition” on page 146.

• Query By Example: Search documents by constructing a query that directly models the
structure of the documents you want to match. For details, see “Prototype a Query Using
Query By Example” on page 156.

• Structured query: A simple and easy way to construct queries as a Java, XML, or JSON
structure, allowing you to manipulate complex queries (such as geospatial polygons) in
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 144

MarkLogic Server Searching
the Java client. For details, see “Search Documents Using Structured Query Definition”
on page 147

• Combined query: Combine a string or structured query with dynamic query options. For
details, see “Apply Dynamic Query Options to Document Searches” on page 159.

When you query aggregate range indexes, you express your search criteria using a values query.

All search methods can also use persistent query options. Persistent query options are stored on
the REST Server and referenced by name in future queries. Once created and persisted, you can
apply query options to multiple searches, or even set to be the default options for all searches.
Note that in XQuery, query option configurations are called options nodes.

Some search methods support dynamic query options that you specify at search time. A combined
query allows you to bundle a string and/or structured query with dynamic query options to further
customize a search on a per search basis. You can also specify persistent query options with a
combined query search. The search automatically merges the persistent (or default) query options
and the dynamic query options together. For details, see “Apply Dynamic Query Options to
Document Searches” on page 159.

Query options can be very simple or very complex. If you accept the defaults, for example, there
is no need to specify explicit query options. You can also make them as complex as is needed.

For details on how to create and work with query option configurations, see “Query Options” on
page 190. For details on individual query options and their values, see Appendix: Query Options

Reference in the Search Developer’s Guide. For more information on search concepts, see the
Search Developer’s Guide.

In the examples in this chapter, assume a DatabaseClient called client has already been defined.

5.2 Using SearchHandle to Examine Query Results
Usually, you will use a SearchHandle object to contain your query results. The exact nature of
results varies, depending on both the handle’s configuration and what query options and values
were used for the search operation.

You can specify snippets to return in various ways. By default, they return as Java objects. But for
custom or raw snippets, they are returned as DOM documents by using the forceDOM flag.

There are several ways to access different parts of the search result or control search results from
a SearchHandle.

• The getMatchResults() method returns an array of MatchDocumentSummary objects of the
matched documents, from which you can further extract for each result its match
locations, path, metadata, an array of snippets, fitness, confidence measure, and URI. For
details, see the MatchDocumentSummary entry in Java API JavaDoc.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 145

MarkLogic Server Searching
• getMetrics() returns a SearchMetrics object containing various timing metrics about the
search.

• getFacetNames(), getFacetResult(name), getFacetResults() return, respectively, a list of
returned facet names, the specified named facet result, and an array of facet results for this
search.

• getTotalResults() returns an estimate of the number of results from the search.

• setForceDOM(boolean) sets the force DOM flag, which if true causes snippets to always
be returned as DOM documents.

See the Java API JavaDoc for SearchHandle for the full interface.

The following is a typical programming technique for accessing search results using a search
handle:

// iterate over MatchDOcumentSummary array locations, getting
// the snippet text for each location (you would then do something
// with the snippet text)
MatchDocumentSummary[] summaries = results.getMatchResults();
for (MatchDocumentSummary summary : summaries) {

MatchLocation[] locations = summary.getMatchLocations();
for (MatchLocation location : locations) {

location.getAllSnippetText();
// do something with the snippet text

}
}

5.3 Search Using String Query Definition
The MarkLogic Server Search API lets you do searches on string arguments, including the usual
search operators such as AND and OR. For example, you could search on “Batman”, “Batman
AND Robin”, “Batman OR Robin”, etc. For details, see Search Grammar in the Search
Developer’s Guide.

1. Instantiate a QueryManager. The manager deals with interaction between the client and the
database.

QueryManager queryMgr = client.newQueryManager();

2. Instantiate a StringQueryDefinition object. Use StringQueryDefinition.setCriteria() to
specify your search string.

StringQueryDefinition qd = queryMgr.newStringDefinition();

qd.setCriteria("Batman AND Robin");

3. Run a search with the StringQueryDefinition object as an argument, returning a
SearchHandle object or an XML or JSON handle to get the search results in either of those
formats:
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 146

http://docs.marklogic.com/javadoc/client/com/marklogic/client/io/SearchHandle.html

MarkLogic Server Searching
SearchHandle results = queryMgr.search(qd, new SearchHandle());
DOMHandle results = queryMgr.search(qd, new DOMHandle());
JacksonHandle results = queryMgr.search(qd, new JacksonHandle());

4. Process and/or display the results using the handle.

5.4 Search Documents Using Structured Query Definition
Structured queries let you construct and modify complex queries in Java, XML, or JSON. For
details, see Searching Using Structured Queries in the Search Developer’s Guide. This section
includes the following parts:

• Ways to Create a Structured Query

• Basic Steps to Define a Structured Query Definition

• Creating a Structured Query From Raw XML or JSON

• Structured Query Examples

5.4.1 Ways to Create a Structured Query
You can create a structured query in XML, in JSON, or using the StructuredQueryBuilder or
PojoQueryBuilder interfaces in the Java API.

To specify a structured query directly in XML or JSON, use RawStructuredQueryDefinition; for
details, see “Creating a Structured Query From Raw XML or JSON” on page 148. If you
construct a structured query directly, it is up to you to make sure the query is constructed
correctly. Incorrectly constructed queries can result in syntax errors, a query that does not do what
you expect, or other exceptions. For syntax details, see Searching Using Structured Queries in the
Search Developer’s Guide.

The StructuredQueryBuilder interface in the Java API enables you build out a structured query
one piece at a time in Java. The PojoQueryBuilder interface is similar, but you use it specifically
for searching persistent POJOs; for details see “Searching POJOs in the Database” on page 232.

5.4.2 Basic Steps to Define a Structured Query Definition
The following are the basic steps needed to define a structured query definition in the Java API.
This procedure creates a structured query definition using StructuredQueryBuilder. You can also
create one directly in XML/JSON; for details, see “Creating a Structured Query From Raw XML
or JSON” on page 148.

1. Instantiate a QueryManager. The manager deals with interaction between the client and the
database.

QueryManager queryMgr = client.newQueryManager();

2. Instantiate a StructuredQueryBuilder, optionally passing in the name of persistent query
options to use with your search.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 147

MarkLogic Server Searching
StructuredQueryBuilder qb = new StructuredQueryBuilder(OPTIONS_NAME);

3. Use the query builder to create a StructuredQueryDefinition object with the desired
search criteria.

StructuredQueryDefinition querydef =
qb.and(qb.term("neighborhood"),

qb.valueConstraint("industry", "Real Estate"));

4. Run a search with the StringQueryDefinition object as an argument, returning a result
handle:

SearchHandle results = queryMgr.search(querydef, new SearchHandle());

5.4.3 Creating a Structured Query From Raw XML or JSON
To create a structured query from a raw XML or JSON representation, use any handle class that
implements com.marklogic.client.io.marker.StructureWriteHandle.

The Java API includes StructureWriteHandle implementations that support creating a structure in
XML or JSON from a string (StringHandle), a file (FileHandle), a stream (InputStreamHandle),
and popular abstractions (DOMHandle, DOM4JHandle, JDOMHandle). For a complete list of
implementations, see the Java API JavaDoc.

Follow this procedure to create a structured query using a handle:

1. Instantiate a QueryManager. The manager deals with interaction between the client and the
database.

QueryManager queryMgr = client.newQueryManager();

2. Create a JSON or XML representation of the query, using a text editor or other tool or
library. Use the syntax detailed in Searching Using Structured Queries in the Search
Developer’s Guide. The following example uses String for the raw representation:

String rawXMLQuery =
 "<search:query "+
 "xmlns:search='http://marklogic.com/appservices/search'>"+
 "<search:term-query>"+
 "<search:text>neighborhoods</search:text>"+
 "</search:term-query>"+
 "<search:value-constraint-query>"+
 "<search:constraint-name>industry</search:constraint-name>"+
 "<search:text>Real Estate</search:text>"+
 "</search:value-constraint-query>"+
 "</search:query>";

String rawJSONQuery =
 "{\"query\": {" +
 " \"term-query\": {" +
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 148

MarkLogic Server Searching
 " \"text\": \"neighborhoods\"" +
 " }," +
 " \"value-constraint-query\": {" +
 " \"constraint-name\": \"industry\"," +
 " \"text\": \"Real Estate\"" +
 " }" +
 "}" +
 "}";

3. Create a handle on your raw query using a class that that implements
StructureWriteHandle. Set the handle content format appropriately. For example:

// For an XML query
StringHandle rawHandle =

new StringHandle(rawXMLQuery).withFormat(Format.XML);

// For a JSON query
StringHandle rawHandle =

new StringHandle(rawJSONQuery).withFormat(Format.JSON);

4. Create a RawStructuredQueryDefinition from the handle. Optionally, include the name of
persistent query options. For example:

// Use the default persistent query options
RawStructuredQueryDefinition querydef =
 queryMgr.newRawStructuredQueryDefinition(rawHandle);

// Use the persistent options previously saved as "myoptions"
RawStructuredQueryDefinition querydef =
 queryMgr.newRawStructuredQueryDefinition(rawHandle, "myoptions");

5. Perform a search using the RawStructuredQueryDefinition and a results handle.

SearchHandle resultsHandle =
queryMgr.search(querydef, new SearchHandle());

5.4.4 Structured Query Examples
This section shows some structured query examples, showing the XML for a structured query and
the corresponding Java code using StructuredQueryBuilder. You can put each of these examples
in context by inserting the StructuredQueryDefinition line in the following code:

QueryManager queryMgr = dbClient.newQueryManager();
StructuredQueryBuilder sb =

queryMgr.newStructuredQueryBuilder("myopt");

// put code from examples here
StructuredQueryDefinition criteria =

... example of building query definition ...
// end code from examples

StringHandle searchHandle =
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 149

MarkLogic Server Searching
queryMgr.search(
criteria, new StringHandle()).get();

Additionally, these examples use query options from the following code:

String xmlOptions =
"<search:options " +

"xmlns:search='http://marklogic.com/appservices/search'>" +
 "<search:constraint name='date'>" +
 "<search:range type='xs:date'>" +
 "<search:element name='date'
ns='http://purl.org/dc/elements/1.1/'/>" +
 "</search:range>" +
 "</search:constraint>" +

"<search:constraint name='popularity'>" +
 "<search:range type='xs:int'>" +
 "<search:element name='popularity' ns=''/>" +
 "</search:range>" +
 "</search:constraint>" +

"<search:constraint name='title'>" +
 "<search:word>" +
 "<search:element name='title' ns=''/>" +
 "</search:word>" +
 "</search:constraint>" +

"<search:return-results>true</search:return-results>" +
"<search:transform-results apply='raw' />" +

"</search:options>";

//JSON equivalant
String jsonOptions =
 "{\"options\":{" +
 " \"constraint\": [" +
 " {" +
 " \"name\": \"date\"," +
 " \"range\": {" +
 " \"type\":\"xs:date\", " +
 " \"element\": {" +
 " \"name\": \"date\"," +
 " \"ns\":
\"http://purl.org/dc/elements/1.1/\"" +
 " }" +
 " }" +
 " }," +
 " {" +
 " \"name\": \"popularity\"," +
 " \"range\": {" +
 " \"type\":\"xs:int\", " +
 " \"element\": {" +
 " \"name\": \"popularity\"," +
 " \"ns\": \"\"" +
 " }" +
 " }" +
 " }," +
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 150

MarkLogic Server Searching
 " {" +
 " \"name\": \"title\"," +
 " \"word\": {" +
 " \"element\": {" +
 " \"name\": \"title\"," +
 " \"ns\": \"\"" +
 " }" +
 " }" +
 " }" +
 "]," +
 " \"return-results\": \"true\"," +
 " \"transform-results\": {" +
 " \"apply\": \"raw\"" +
 " }" +
 "}}";

QueryOptionsManager optionsMgr =
dbClient.newServerConfigManager().newQueryOptionsManager();

optionsMgr.writeOptions("myopt",
new StringHandle(xmlOptions).withFormat(Format.XML));

// Or, with JsonOptions:
new StringHandle(jsonOptions).withFormat(Format.JSON));

This section contains the following examples:

• Example: Date Range Structured Query

• Example: Element Index Structured Query

• Example: Document Property Structured Query

• Example: Directory Structured Query

• Example: Document Structured Query

• Example: JSON Property Structured Query

• Example: Collection Structured Query
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 151

MarkLogic Server Searching
5.4.4.1 Example: Date Range Structured Query
For the boilerplate code environment in which this example runs, see the code snippet in
“Structured Query Examples” on page 149.

The following example defines a query that searches for the "2005-01-01" value in the date range
index.

StructuredQueryDefinition criteria =
sb.containerQuery("date", Operator.EQ, "2005-01-01");

/* XML equivalent
<search:query xmlns:search=

"http://marklogic.com/appservices/search">
<search:range-constraint-query>

<search:constraint-name>date</search:constraint-name>
<search:value>2005-01-01</search:value>

</search:range-constraint-query>
</search:query>
*/

/* JSON equivalent
{"query":{

"range-constraint-query": {
"constraint-name": "date",
"value": "2005-01-01"

}
}

}
*/

5.4.4.2 Example: Element Index Structured Query
For the boilerplate code environment in which this example runs, see the code snippet in
“Structured Query Examples” on page 149.

The following example defines a query that searches for the "Bush" value within an element range
index on title.

StructuredQueryDefinition criteria =
sb.wordConstraint("title", "Bush");

/* XML equivalent
<search:query xmlns:search=

"http://marklogic.com/appservices/search">
<search:word-constraint-query>

<search:constraint-name>title</search:constraint-name>
<search:text>Bush</search:text>

</search:word-constraint-query>
</search:query>
*/
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 152

MarkLogic Server Searching
/* JSON equivalent
{"query":{

"word-constraint-query": {
"constraint-name": "title",
"text": "Bush"

}
}

}
*/

5.4.4.3 Example: Document Property Structured Query
For the boilerplate code environment in which this example runs, see the code snippet in
“Structured Query Examples” on page 149.

The following example defines a query that searches for the "hello" term in the value of any
property.

StructuredQueryDefinition criteria =
sb.properties(sb.term("hello"));

/* XML equivalent
<search:query xmlns:search=

"http://marklogic.com/appservices/search">
<search:properties-fragment-query>

<search:term-query>
<search:text>hello</search:text>

</search:term-query>
</search:properties-fragment-query>

</search:query>
*/

/* JSON equivalent
{"query":{

"property-fragment-query": {
"term-query": {,
"text": "hello"

}
}

}
}
*/
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 153

MarkLogic Server Searching
5.4.4.4 Example: Directory Structured Query
For the boilerplate code environment in which this example runs, see the code snippet in
“Structured Query Examples” on page 149.

The following example defines a query that searches for documents in the
"http://testdoc/doc6/" directory.

StructuredQueryDefinition criteria =
sb.directory(true, "http://testdoc/doc6/");

/* XML equivalent
<search:query xmlns:search=

"http://marklogic.com/appservices/search">
<search:directory-query>

<search:uri>
<search:text>http://testdoc/doc6/</search:text>

</search:uri>
</search:directory-query>

</search:query>
*/

/* JSON equivalent
{"query":{

"directory-query": {
"uri": {,
"text": "http://testdoc/doc6/"

}
}

}
}
*/

5.4.4.5 Example: Document Structured Query
For the boilerplate code environment in which this example runs, see the code snippet in
“Structured Query Examples” on page 149.

The following example defines a query that searches for the "http://testdoc/doc6/" document.

StructuredQueryDefinition criteria =
sb.document("http://testdoc/doc2");

/* XML equivalent
<search:query xmlns:search=

"http://marklogic.com/appservices/search">
<search:document-query>

<search:uri>
<search:text>http://testdoc/doc2</search:text>

</search:uri>
</search:document-query>

</search:query>
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 154

MarkLogic Server Searching
*/
/* JSON equivalent
{"query":{

"document-query": {
"uri": {,

"text": "http://testdoc/doc2/"
}

}
}

}
*/

5.4.4.6 Example: JSON Property Structured Query
For the boilerplate code environment in which this example runs, see the code snippet in
“Structured Query Examples” on page 149.

The following example defines a query that searches for documents containing a JSON property
named .

StructuredQueryDefinition criteria =
sb.containerQuery(sb.jsonProperty("myProp"), sb.term("theValue"));

/* XML equivalent
<search:query xmlns:search=

"http://marklogic.com/appservices/search">
<search:container-query>

<search:json-property>myProp</search:json-property>
<search:term-query>

<search:text>theValue</search:text>
</search:term-query>

</search:container-query>
</search:query>
*/

/* JSON equivalent
{"query":{

"container-query": {
"json-property" : "myProp",
"term-query": {,

"text": "the-value"
}

}
}

}
*/
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 155

MarkLogic Server Searching
5.4.4.7 Example: Collection Structured Query
For the boilerplate code environment in which this example runs, see the code snippet in
“Structured Query Examples” on page 149.

The following example defines a query that searches documents belonging to the
"http://test.com/set3/set3-1" collection.

StructuredQueryDefinition criteria =
sb.collection("http://test.com/set3/set3-1");

/* XML equivalent
<search:query xmlns:search=

"http://marklogic.com/appservices/search">
 <search:collection-query>

<search:uri>
<search:text>http://test.com/set3/set3-1</search:text>
</search:uri>

</search:collection-query>
</search:query>
*/
/* JSON equivalent
{"query":{

"collection-query": {
"uri": {,

"text": "http://test.com/set3/set3-1"
}

}
}

}
*/

5.5 Prototype a Query Using Query By Example
This section describes how to use the Java API to perform a search using a Query By Example
(QBE). A QBE enables rapid prototyping of queries for “documents that look like this” using
search criteria that resemble the structure of documents in your database. If you are not familiar
with QBE, see Searching Using Query By Example in Search Developer’s Guide.

This section covers the following topics:

• What is QBE

• Search Documents Using a QBE

• Validate a QBE

• Convert a QBE to a Combined Query
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 156

MarkLogic Server Searching
5.5.1 What is QBE
A Query By Example (QBE) enables rapid prototyping of queries for “documents that look like
this” using search criteria that resemble the structure of documents in your database. If you are not
familiar with QBE, see Searching Using Query By Example in Search Developer’s Guide.

If your documents include an author XML element or JSON property, you can use the following
example QBE to find documents with an author value of “Mark Twain”.

You can only use QBE to search XML and JSON documents. Metadata search is not supported.
You can search by element, element attribute, and JSON property; fields are not supported. For
details, see Searching Using Query By Example in Search Developer’s Guide

A QBE is represented by com.marklogic.client.query.RawQueryByExampleDefinition in the Java
API. Operations on a QBE are performed through a QueryManager.

The Java API supports the following operations on a QBE:

• Search XML and JSON documents.

• Validate the correctness of a QBE.

• Convert a QBE to a combined query for improved performance and full expressiveness.

5.5.2 Search Documents Using a QBE
To create a QBE from a raw XML or JSON representation, use any handle class that implements
com.marklogic.client.io.marker.StructureWriteHandle to create a
RawQueryByExampleDefinition.

The Java API includes StructureWriteHandle implementations that support creating a structure in
XML or JSON from a string (StringHandle), a file (FileHandle), a stream (InputStreamHandle),
and popular abstractions (DOMHandle, DOM4JHandle, JDOMHandle). For a complete list of
implementations, see the Java API JavaDoc.

Format Example

XML <q:qbe xmlns:q="http://marklogic.com/appservices/querybyexample">
 <q:query>

<author>Mark Twain</author>
 </q:query>
</q:qbe>

JSON {
"$query": { "author": "Mark Twain" }

}

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 157

MarkLogic Server Searching
Follow this procedure to create a QBE and use it in a search:

1. Instantiate a QueryManager. The manager deals with interaction between the client and the
database.

QueryManager queryMgr = client.newQueryManager();

2. Create a JSON or XML representation of the query, using a text editor or other tool or
library. Use the syntax detailed in Searching Using Query By Example in the Search
Developer’s Guide. The following example uses String for the raw representation:

String rawXMLQuery =
"<q:qbe xmlns:q='http://marklogic.com/appservices/querybyexample'>"+

"<q:query>" +
"<author>Mark Twain</author>" +

"</q:query>" +
"</q:qbe>";

//Or
String rawJSONQuery =
 "{" +
 "\"$query\": { \"author\": \"Mark Twain\" }" +
 "}";

3. Create a handle using a class that implements StructureWriteHandle, set the handle
content format, and associate your query with the handle. For example:

// For an query expressed as XML
StringHandle rawHandle =

new StringHandle(rawXMLQuery).withFormat(Format.XML);

// For a query expressed as JSON
StringHandle rawHandle =

new StringHandle(rawJSONQuery).withFormat(Format.JSON);

4. Create a RawQueryByExampleDefinition from the handle. Optionally, include the name of
persistent query options. For example:

// Use the default persistent query options
RawQueryByExampleDefinition querydef =
 queryMgr.newRawQueryByExampleDefinition(rawHandle);

// Use the persistent options previously saved as "myoptions"
RawQueryByExampleDefinition querydef =
 queryMgr.newRawQueryByExampleDefinition(rawHandle, "myoptions");

5. Perform a search using the RawQueryByExampleDefinition and a results handle.

SearchHandle resultsHandle =
queryMgr.search(querydef, new SearchHandle());
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 158

MarkLogic Server Searching
5.5.3 Validate a QBE
When you perform a search, MarkLogic Server does not verify the correctnesss of your QBE. If
your QBE is syntactically or semantically incorrect, you might get errors or surprising results. To
avoid such issues, you can validate your QBE.

To validate a QBE, construct a query as described in “Search Documents Using a QBE” on
page 157, and then pass it to QueryManager.validate() instead of QueryManager.search(). The
validation report is returned in a StructureReadHandle. For example:

StringHandle validationReport =
queryMgr.validate(qbeDefn, new StringHandle());

The report can be in XML or JSON format, depending on the format of the input query and the
format you set on the handle. By default, validation returns a JSON report for a JSON input query
and an XML report for an XML input query. You can override this behavior using the
withFormat() method of your response handle.

5.5.4 Convert a QBE to a Combined Query
Generating a combined query from a QBE has the following potential benefits:

• Improve search performance.

• Access a wider array of search features.

• Debug your QBE by examining the lower level Search API constructs it generates.

A combined query combines a structured query and query options into a single XML or JSON
query. For details, see “Apply Dynamic Query Options to Document Searches” on page 159.

To generate a combined query from a QBE, construct a query as described in “Search Documents
Using a QBE” on page 157, and then pass it to QueryManager.convert() instead of
QueryManager.search(). The results are returned in a StructureReadHandle. For example:

StringHandle combinedQueryHandle =
queryMgr.convert(qbeDefn, new StringHandle());

The resulting handle can be used to construct a RawCombinedQueryDefinition; for details, see
“Searching Using Combined Query” on page 160.

For more details on the query component of a combined query, see Searching Using Structured

Queries in Search Developer’s Guide.

5.6 Apply Dynamic Query Options to Document Searches
You can use a combined query to specify query options at query time, without first persisting
them as named options. A combined query is an XML or JSON wrapper around a string query
and/or a structured, cts, or QBE query, plus query options.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 159

MarkLogic Server Searching
Note: The Java Client API does not support using a QBE in a combined query at this
time. Use a standalone QBE and persistent query options instead.

This section covers the following topics:

• Searching Using Combined Query

• Creating a Combined Query Using StructuredQueryBuilder

• Interaction with Persistent Query Options

• Combined Query Examples

• Performance Considerations

5.6.1 Searching Using Combined Query
Combined queries are useful for rapid prototyping during development and for applications that
need to modify query options on a per query basis. The RawCombinedQueryDefinition class
represents a combined query in the Java API.

You can only create a combined query from raw XML or JSON; there is no builder class. A
combined query can contain the following components, all optional:

• A string query

• A serialized structured query or cts query

• Query options

If you include both a string query and a structured query or cts query, the two queries are AND’d
together.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 160

MarkLogic Server Searching
For example, the following raw combined query uses a string query and a structured query to
match all documents where the TITLE element contains the word “henry” and the term “fourth”.
The options embedded in the query suppress the generation of snippets and extract just the
/PLAY/TITLE element from the matched documents.

For syntax details, see Syntax and Semantics in the REST Application Developer’s Guide.

Since there is no builder for RawCombinedQueryDefinition, you must construct the contents “by
hand”, associate a handle with the contents, and then attach the handle to a
RawCombinedQueryDefinition object. For example:

RawCombinedQueryDefinition xmlCombo =
 qm.newRawCombinedQueryDefinition(new StringHandle().with(
 // your raw XML combined query here

Format Example

XML <search:search xmlns:search="http://marklogic.com/appservices/search">
<search:query>

 <search:word-query>
 <search:element name="TITLE"/>
 <search:text>henry</text>
 </search:word-query>
 </search:query>

<search:qtext>fourth</search:qtext>
<search:options>

 <search:extract-document-data>
 <search:extract-path>/PLAY/TITLE</search:extract-path>
 </search:extract-document-data>
 <search:transform-results apply="empty-snippet"/>
 </search:options>
</search:search>

JSON {"search" : {
 "query": {
 "word-query": {
 "element": { "name": "TITLE" },
 "text": ["henry"]
 }
 },
 "qtext": "fourth",
 "options": {
 "extract-document-data": {
 "extract-path": "/PLAY/TITLE"
 },
 "transform-results": {
 "apply": "empty-snippet"
 }
 }
} }
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 161

MarkLogic Server Searching
).withFormat(Format.XML));
// your raw JSON combined query here
).withFormat(Format.JSON));

For more complete examples, see “Combined Query Examples” on page 166.

Use any handle class that implements com.marklogic.client.io.marker.StructureWriteHandle.
The Java API includes StructureWriteHandle implementations that support creating a structure in
XML or JSON from input sources such as a string (StringHandle), a file (FileHandle), a stream
(InputStreamHandle), and popular abstractions (DOMHandle, DOM4JHandle, JDOMHandle). For a
complete list of implementations, see the Java Client API Documentation.

Though there is no builder for combined queries, you can use StructuredQueryBuilder to create
the structured query portion of a combined query; for details, see “Creating a Combined Query
Using StructuredQueryBuilder” on page 164.

The following procedure provides more detailed instructions for binding a handle on the raw
representation RawCombinedQueryDefinition object usable for searching.

1. Instantiate a QueryManager. The manager deals with interaction between the client and the
database. For example:

QueryManager queryMgr = client.newQueryManager();

2. Create a JSON or XML representation of the query, using a text editor or other tool or
library. For syntax details, see Syntax and Semantics in the REST Application Developer’s
Guide. The following example uses String for the raw representation of a combined query
that contains a structured query:

String rawXMLQuery =
"<search:search "+

 "xmlns:search='http://marklogic.com/appservices/search'>"+
 "<search:query>"+
 "<search:term-query>"+
 "<search:text>neighborhoods</search:text>"+
 "</search:term-query>"+
 "<search:value-constraint-query>"+
 "<search:constraint-name>industry</search:constraint-name>"+
 "<search:text>Real Estate</search:text>"+
 "</search:value-constraint-query>"+
 "</search:query>"+
 "<search:options>"+
 "<search:constraint name='industry'>"+
 "<search:value>"+
 "<search:element name='industry' ns=''/>"+
 "</search:value>"+
 "</search:constraint>"+
 "</search:options>"+
 "</search:search>";
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 162

MarkLogic Server Searching
//Or
String rawJSONQuery =
 "{\"search\":{" +
 " \"query\": {" +
 " \"term-query\": {" +
 " \"text\": \"neighborhoods\"" +
 " }," +
 " \"value-constraint-query\": {" +
 " \"constraint-name\": \"industry\"," +
 " \"text\": \"Real Estate\"" +
 " }" +
 " }," +
 " \"options\": {" +
 " \"constraint\": {" +
 " \"name\": \"industry\"," +
 " \"value\": {" +
 " \"element\": {" +
 " \"name\": \"industry\"," +
 " \"ns\": \"\"" +
 " }" +
 " }" +
 " }" +
 " }" +
 "}" +
 "}";

3. Create a handle on your raw query, using a class that implements StructureWriteHandle.
For example:

// Query as XML
StringHandle rawHandle =

new StringHandle().withFormat(Format.XML).with(rawXMLQuery);

// Query as JSON
StringHandle rawHandle =

new StringHandle().withFormat(Format.JSON).with(rawJSONQuery);

4. Create a RawCombinedQueryDefinition from the handle. Optionally, include the name of
persistent query options. For example:

// Use the default persistent query options
RawCombinedQueryDefinition querydef =
 queryMgr.newRawCombinedQueryDefinition(rawHandle);

// Use persistent options previously saved as "myoptions"
RawCombinedQueryDefinition querydef =
 queryMgr.newRawCombinedQueryDefinition(rawHandle, "myoptions");

5. Perform a search using the RawCombinedQueryDefinition and a results handle.

SearchHandle resultsHandle =
queryMgr.search(querydef, new SearchHandle());
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 163

MarkLogic Server Searching
For a complete example of searching with a combined query, see
com.marklogic.client.example.cookbook.RawCombinedSearch in the example/ directory of your
Java API installation.

5.6.2 Creating a Combined Query Using StructuredQueryBuilder
When building a RawCombinedQuery that contains a structured query, you can use
StructuredQueryBuilder to create the structured query portion of a combined query. This
technique always produces an XML combined query.

Create a StructuredQueryDefinition using StructuredQueryBuilder, just as you would when
searching with a standalone structured query. Then, extract the serialized structured query using
StructuredQueryDefinition.serialize, and embed it in your combined query. For example:

QueryManager qm = client.newQueryManager();

StructuredQueryBuilder qb = qm.newStructuredQueryBuilder();
StructuredQueryDefinition structuredQuery =

qb.word(qb.element("TITLE"), "henry");
String comboq =
 "<search xmlns=\"http://marklogic.com/appservices/search\">" +
 structuredQuery.serialize() +
 "</search>";
RawCombinedQueryDefinition query =

qm.newRawCombinedQueryDefinition(
new StringHandle(comboq).withFormat(Format.XML));

You can also include a string query and/or query options in your combined query. For a more
complete example, see “Combined Query Examples” on page 166.

5.6.3 Interaction with Persistent Query Options
Dynamic query options supplied in a combined query are merged with persistent and default
options that are in effect for the search. If the same non-constraint option is specified in both the
combined query and persistent options, the setting in the combined query takes precedence.

Constraints are overridden by name. That is, if the dynamic and persistent options contain a
<constraint/> element with the same name attribute, the definition in the dynamic query options
is the one that applies to the query. Two constraints with different name are both merged into the
final options.

For example, suppose the following query options are installed under the name my-options:

<options xmlns="http://marklogic.com/appservices/search">
<fragment-scope>properties</fragment-scope>
<return-metrics>false</return-metrics>
<constraint name="same">

 <collection prefix="http://server.com/persistent/"/>
</constraint>
<constraint name="not-same">
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 164

MarkLogic Server Searching
 <element-query name="title" ns="http://my/namespace" />
 </constraint>
</options>

Further, suppose you use the following raw XML combined query to define dynamic query
options:

<search xmlns="http://marklogic.com/appservices/search">
<options>

<return-metrics>true</return-metrics>
<debug>true</debug>

<constraint name="same">
 <collection prefix="http://server.com/dynamic/"/>

</constraint>
<constraint name="different">

 <element-query name="scene" ns="http://my/namespace" />
 </constraint>

</options>
</search>

You can create a RawQueryDefinition that encapsulates the combined query and the persistent
options:

StringHandle rawQueryHandle =
new StringHandle(...).withFormat(Format.XML);

RawCombinedQueryDefinition querydef =
 queryMgr.newRawCombinedQueryDefinition(

rawQueryHandle, "my-options");

The query is evaluated with the following merged options. The persistent options contribute the
fragment-scope option and the constraint named not-same. The dynamic options in the combined
query contribute the return-metrics and debug options and the constraints named same and
different. The return-metrics setting and the constraint named same from my-options are
discarded.

<options xmlns="http://marklogic.com/appservices/search">
<fragment-scope>properties</fragment-scope>
<return-metrics>true</return-metrics>
<debug>true</debug>
<constraint name="same">

 <collection prefix="http://server.com/dynamic/"/>
</constraint>
<constraint name="different">

<element-query name="scene" ns="http://my/namespace" />
</constraint>
<constraint name="not-same">

 <element-query name="title" ns="http://my/namespace" />
 </constraint>
</options>
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 165

MarkLogic Server Searching
5.6.4 Combined Query Examples
The examples in this section demonstrate constructing different types of combined queries using
the Java Client API. The example queries are constructed as in-memory strings to keep the
example self-contained, but you could just as easily read them from a file or other external source.

Unless otherwise noted, the examples all use equivalent queries and query options. The query is a
word query on the term “henry” where it appears in a TITLE element, AND’d with a string query
for the term “henry”.

The examples also share the scaffolding in “Shared Scaffolding for Combined Query Examples”
on page 168, which defines the query options and drives the search. However, the primary point
of the examples is the query construction.

See the following topics for example code:

• Example: Structured and String Query

• Example: cts and String Query

• Shared Scaffolding for Combined Query Examples

5.6.4.1 Example: Structured and String Query
The following two functions perform a search using a combined query that contains a string
query, a structured query, and query options.

The first function expresses the query in XML, using StructuredQueryBuilder to create the
structured query portion of the combined query. The second function expresses the query in
JSON. Both functions use the options and search driver from “Shared Scaffolding for Combined
Query Examples” on page 168.

// Use a combined query containing a structured query, string query,
// and query options. A StructuredQueryBuilder is used to create the
// structured query portion. The combined query is expressed as XML.
//
public static void withXmlStructuredQuery() {
 StructuredQueryBuilder qb = new StructuredQueryBuilder();
 StructuredQueryDefinition builtSQ =
 qb.word(qb.element("TITLE"), "henry");

 System.out.println("** Searching with an XML structured query...");
 doSearch(new StringHandle().with(
 "<search xmlns=\"http://marklogic.com/appservices/search\">" +
 "<qtext>fourth</qtext>" +
 builtSQ.serialize() +
 XML_OPTIONS +
 "</search>").withFormat(Format.XML));
}

// Use a combined query containing a structured query, string query,
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 166

MarkLogic Server Searching
// and query options. The combined query is expressed as JSON.
public static void withJsonStructuredQuery() {
 System.out.println("** Searching with a JSON structured query...");
 doSearch(new StringHandle().with(
 "{\"search\" : {" +
 "\"query\": {" +
 "\"word-query\": {" +
 "\"element\": { \"name\": \"TITLE\"}," +
 "\"text\": [\"henry\"]" +
 "}" +
 "}, " +
 "\"qtext\": \"fourth\"," +
 JSON_OPTIONS +
 "} }").withFormat(Format.JSON));
}

5.6.4.2 Example: cts and String Query
The following two functions perform a search using a combined query that contains a string
query, a cts query, and query options.

The first function expresses the query in XML. The second function expresses the query in JSON.
Both functions use the options and search driver from “Shared Scaffolding for Combined Query
Examples” on page 168.

// Use a combined query containing a cts query, string query,
// and query options. The combined query is expressed as XML.
public static void withXmlCtsQuery() {
 System.out.println("** Searching with an XML cts query...");
 doSearch(new StringHandle().with(
 "<search xmlns=\"http://marklogic.com/appservices/search\">" +

"<cts:element-word-query xmlns:cts=\"http://marklogic.com/cts\">" +

"<cts:element>TITLE</cts:element>" +
"<cts:text xml:lang=\"en\">henry</cts:text>" +

"</cts:element-word-query>" +
"<qtext>fourth</qtext>" +
XML_OPTIONS +

 "</search>").withFormat(Format.XML));
}

// Use a combined query containing a cts query, string query,
// and query options. The combined query is expressed as JSON.
public static void withJsonCtsQuery() {
 System.out.println("** Searching with a JSON cts query...");
 doSearch(new StringHandle().with(
 "{\"search\" : {" +
 "\"ctsquery\": {" +
 "\"elementWordQuery\": {" +
 "\"element\" : [\"TITLE\"]," +
 "\"text\" : [\"henry\"]," +
 "\"options\" : [\"lang=en\"]" +
 "}" +
 "}, " +
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 167

MarkLogic Server Searching
 "\"qtext\": \"fourth\"," +
 JSON_OPTIONS +
 "} }").withFormat(Format.JSON));
}

5.6.4.3 Shared Scaffolding for Combined Query Examples
The examples in “Combined Query Examples” on page 166 share the scaffolding in this section
for connecting to MarkLogic, defining query options, performing a search, and displaying the
search results.

The query options are designed to strip down the search results into something easy for the
example code to process while still emitting simple but meaningful output. This is done by
suppressing snippeting and using the extract-document-data option to return just the TITLE
element from the matches.

The doSearch method performs the search, independent of the structure of the combined query,
and prints out the matched titles. The shown result processing is highly dependent on the query
options and structured of the example documents.

package examples;

import javax.xml.xpath.XPathExpression;
import javax.xml.xpath.XPathFactory;

import org.w3c.dom.Document;

import com.marklogic.client.DatabaseClient;
import com.marklogic.client.DatabaseClientFactory;
import com.marklogic.client.io.Format;
import com.marklogic.client.io.SearchHandle;
import com.marklogic.client.io.StringHandle;
import com.marklogic.client.io.marker.StructureWriteHandle;
import com.marklogic.client.query.ExtractedItem;
import com.marklogic.client.query.ExtractedResult;
import com.marklogic.client.query.MatchDocumentSummary;
import com.marklogic.client.query.QueryManager;
import com.marklogic.client.query.RawCombinedQueryDefinition;
import com.marklogic.client.query.StructuredQueryBuilder;
import com.marklogic.client.query.StructuredQueryDefinition;

import javax.xml.xpath.XPathExpressionException;

public class CombinedQuery {
 // replace with your MarkLogic Server connection information
 static String HOST = "localhost";
 static int PORT = 8000;
 static String DATABASE = "bill";
 static String USER = "username";
 static String PASSWORD = "password";
 private static DatabaseClient client =
 DatabaseClientFactory.newClient(
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 168

MarkLogic Server Searching
 HOST, PORT, DATABASE,
 new DatabaseClientFactory.DigestAuthContext(USER, PASSWORD));

 // Define query options to be included in our raw combined query.
 static String XML_OPTIONS =
 "<options xmlns=\"http://marklogic.com/appservices/search\">" +
 "<extract-document-data>" +
 "<extract-path>/PLAY/TITLE</extract-path>" +
 "</extract-document-data>" +
 "<transform-results apply=\"empty-snippet\"/>" +
 "<search-option>filtered</search-option>" +
 "</options>";
 static String JSON_OPTIONS =
 "\"options\": {" +
 "\"extract-document-data\": {" +
 "\"extract-path\": \"/PLAY/TITLE\"" +
 "}," +
 "\"transform-results\": {" +
 "\"apply\": \"empty-snippet\"" +
 "}" +
 "}";

 // Perform a search using a combined query. The input handle is
 // assumed to contain an XML or JSON combined query.
 //
 // The combined query must contain either the XML_OPTIONS or

// JSON_OPTIONS defined above. The options produce a
 // search:response in which each search:match has this form:
 //
 // <search:result index="n" uri="..." path="..." score="..."
 // confidence="....4450079" fitness="0.5848901" href="..."
 // mimetype="..." format="xml">
 // <search:snippet/>
 // <search:extracted kind="element">

// <TITLE>a title</TITLE>
// </search:extracted>

 // </search:result>
 //
 // XML DOM is used to extract the title text from the extrace elems
 //
 public static void doSearch(StructureWriteHandle queryHandle) {
 // Create a raw combined query
 QueryManager qm = client.newQueryManager();
 RawCombinedQueryDefinition query =
 qm.newRawCombinedQueryDefinition(queryHandle);

 // Perform the search
 SearchHandle results = qm.search(query, new SearchHandle());

 // Process the results, printint out the title of each match
 try {

XPathExpression xpath = XPathFactory.newInstance()
.newXPath().compile("//TITLE");

for (MatchDocumentSummary match : results.getMatchResults()) {
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 169

MarkLogic Server Searching
ExtractedResult extracted = match.getExtracted();
if (!extracted.isEmpty()) {

for (ExtractedItem item : extracted) {
System.out.println(

xpath.evaluate(item.getAs(Document.class)));
}

}
}

 } catch (XPathExpressionException e) {
 e.printStackTrace();
 }
 }

// with*Query methods go here

public static void main(String[] args) {
// call with*Query methods of interest to you

}

5.6.5 Performance Considerations
Using persistent query options usually performs better than using dynamic query options. In most
cases, the performance difference between the two methods is slight.

When MarkLogic Server processes a combined query, the per request query options must be
parsed and merged with named and default options on every search. When you only use persistent
named or default query options, you reduce this overhead.

If your application does not require dynamic per-request query options, you should use a
QueryOptionsManager to persist your options under a name and associate the options with a simple
StringQueryDefinition or StructuredQueryDefinition.

5.7 Search On Tuples (Tuples Query / Values Query)
You can return values and tuples (co-occurrences) through the Java API. Value and tuple searches
require the appropriate range indexes are configured on your MarkLogic Server database. For
background on values and co-occurrences, see Browsing With Lexicons in the Search Developer’s
Guide.

This section includes the following parts:

• Values Search

• Tuples Search

•
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 170

MarkLogic Server Searching
5.7.1 Values Search
The following returns values through the Java API:

The following are the basic steps to search on values:

1. Instantiate a QueryManager. The manager deals with interaction between the client and the
database.

QueryManager queryMgr = client.newQueryManager();

2. Create a ValuesDefinition object using the query manager. In the following example, the
parameters define a named values constraint (myvalue) defined in previously persisted
query options (valueoptions):

// build a search definition
ValuesDefinition vdef =

queryMgr.newValuesDefinition("myvalue", "valuesoptions");

3. Configure additional values or tuples search properties, as needed. For example, call
setAggregate() to set the name of the aggregate function to be applied as part of the query.

vdef.setAggregate("correlation", "covariance");

4. Run a search with the ValuesDefinition object as an argument, returning a ValuesHandle
object. Note that the tuples search method is called values(), not search().

ValuesHandle results = queryMgr.values(vdef, new ValuesHandle());

You can retrieve results one page at a time by defining a page length and starting position with the
QueryManager interface. For example, the following code snippet retrieves a “page” of 5 values
beginning with the 10th value.

queryMgr.setPageLength(5);
ValuesHandle result = queryMgr.values(vdef, new ValuesHandle(), 10);

For more information on values search concepts, see Returning Lexicon Values With search:values
and Browsing With Lexicons in the Search Developer’s Guide.

5.7.2 Tuples Search
The following returns tuples (co-occurrences) through the Java API:

1. Instantiate a QueryManager. The manager deals with interaction between the client and the
database.

QueryManager queryMgr = client.newQueryManager();
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 171

MarkLogic Server Searching
2. Create a ValuesDefinition object using the query manager. In the following example, the
parameters define a named tuples constraint (co) defined in previously persisted query
options (tupleoptions):

// build a search definition
ValuesDefinition vdef =

queryMgr.newValuesDefinition("co", "tupleoptions");

3. Run a search with the ValuesDefinition object as an argument, returning a TuplesHandle
object. Note that the tuples search method is called tuples(), not search().

TuplesHandle results = queryMgr.tuples(vdef, new TuplesHandle());

You can retrieve results one page at a time by defining a page length and starting position with the
QueryManager interface. For example, the following code snippet retrieves a “page” of 5 tuples
beginning with the 10th one.

queryMgr.setPageLength(5);
TuplesHandle result = queryMgr.tuples(vdef, new TuplesHandle(), 10);

For more information on tuples search concepts, see Returning Lexicon Values With search:values
and Browsing With Lexicons in the Search Developer’s Guide.

5.7.3 Adding a Constraining Query
You can constrain the results of a values or tuples query to only return values in documents
matching the constraining query. The constraining query can be a string, structured, combined, or
cts query.

To add a constraining query to a values or tuples query, construct the query definition as usual and
then attach it to the values or tuples query using the ValuesDefinition.setQueryDefintion
method.

The following example adds a constraining cts:query to a values query, assuming a set of query
options are installed under the name “valopts” that defines a values option named “title”. Only
values in documents matching the cts:element-word-query will be returned.

QueryManager qm = client.newQueryManager();

// Create a cts:query with which to constrain the values query result
String serializedQuery =
 "<cts:element-word-query xmlns:cts=\"http://marklogic.com/cts\">" +
 "<cts:element>TITLE</cts:element>" +
 "<cts:text xml:lang=\"en\">fourth</cts:text>" +
 "</cts:element-word-query>";
RawCtsQueryDefinition ctsquery =
 qm.newRawCtsQueryDefinition(
 new StringHandle(serializedQuery).withFormat(Format.XML));

// Create a values query and evaluate it
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 172

MarkLogic Server Searching
ValuesDefinition vdef = qm.newValuesDefinition("title", "valopts");
vdef.setQueryDefinition(ctsquery);
ValuesHandle results = qm.values(vdef, new ValuesHandle());

5.8 Limiting A Search To Specific Collections And/Or A Directory
All query definition interfaces have setCollections() and setDirectory() methods. By calling
setDirectory(directory_URI_string) on your query definition, you limit your search to that
directory. By calling setCollections(list_of_collection_name_strings) on your query
definition, you limit your search to those collections. You can call both and limit your search to
collections and a single directory.

5.9 Searching Values Metadata Fields
Values metadata, sometimes called key-value metadata, can only be searched if you define a
metadata field on the keys you want to search. Once you define a field on a metadata key, use the
normal field search capabilities to include a metadata field in your search. For example, you can
use a cts:field-word-query or a structured query word-query on a metadata field, or define a
constraint on the field and use the constraint in a string query.

For more details, see Metadata Fields in the Administrator’s Guide. For some examples, see
Example: Structured Search on Key-Value Metadata Fields or Searching Key-Value Metadata Fields in
the Search Developer’s Guide.

5.10 Transforming Search Results
You can make arbitrary changes to the results of a search or values query by applying a
server-side transformation function to the results. This section covers the following topics:

• Writing a Search Result Transform

• Using a Search Result Transform

5.10.1 Writing a Search Result Transform
Search response transforms use the same interface and framework as content transformations
applied during document ingestion, described in Writing Transformations in the REST Application
Developer’s Guide.

Your transform function receives the XML or JSON search response prepared by MarkLogic
Server in the content parameter. For example, if the response is XML, then the content passed to
your transform is a document node with a <search:response/> root element. Any customizations
made by the transform-results query option or result decorators are applied before calling your
transform function.

You can probe the document type to test whether the input to your transform receives JSON or
XML input. For example, in server-side JavaScript, you can test the documentFormat property of
a document node:
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 173

MarkLogic Server Searching
function myTransform(context, params, content) {
if (content.documentFormat == "JSON") {

// handle as JSON or a JavaScript object
} else {

// handle as XML
}

...
}

In XQuery and XSLT, you can test the node kind of the root of the document, which will be
element for XML and object for JSON.

declare function dumper:transform(
 $context as map:map,
 $params as map:map,
 $content as document-node()
) as document-node()
{

if (xdmp:node-kind($content/node() eq "element")
then(: process as XML :)
else (: process as JSON :)

As with read and write transforms, the content object is immutable in JavaScript, so you must call
toObject to create a mutable copy:

var output = content.toObject();
...modify output...
return output;

The type of document you return must be consistent with the output-type (outputType) context
value. If you do not return the same type of document as was passed to you, set the new output
type on the context parameter.

5.10.2 Using a Search Result Transform
To use a server transform function:

1. Create a transform function according to the interface described in Writing Transformations
in the REST Application Developer’s Guide.

2. Install your transform function on the REST API instance following the instructions in
“Installing Transforms” on page 282.

3. Specify the transform function in your QueryDefinition by calling
setResponseTransform(). For example:

QueryManager queryMgr = dbClient.newQueryManager();
StringQueryDefinition query = queryMgr.newStringDefinition();
query.setCriteria("cat AND dog");
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 174

MarkLogic Server Searching
query.setResponseTransform(new ServerTransform("example"));

You are responsible for specifying a handle type capable of interpreting the results produced by
your transform function. The SearchHandle implementation provided by the Java API only
understands the search results structure that MarkLogic Server produces by default.

5.11 Generating Search Term Completion Suggestions
Use com.marklogic.client.query.QueryManager.suggest() to generate search term completion
suggestions that match a wildcard terminated string. For example, if the user enters the text “doc”
into a search box, you can use suggest() with “doc” as string criteria to retrieve a list of terms
matching “doc*”, and then display them to user. This service is analogous to calling the XQuery
function search:suggest or the REST API method GET /version/suggest.

The following topics are covered:

• Basic Steps

• Example: Generating Search Suggestions

• Where to Find More Information

5.11.1 Basic Steps
Use the following procedure to retrieve search term completion suggestions:

1. Configure at least one database index on the XML element, XML attribute, or JSON
property values you want to include in the search for suggestions. For performance
reasons, a range or collection index is recommended over a word lexicon; for details, see
search:suggest.

2. Create and install persistent query options that use your index as a suggestion source by
including it in the definition of a default-suggestion-source or suggestion-source
option. For details, see Search Term Completion Using search:suggest in the Search
Developer’s Guide and “Creating Persistent Query Options From Raw JSON or XML” on
page 193.

3. Instantiate a QueryManager. The manager deals with interaction between the client and the
database.

QueryManager queryMgr = client.newQueryManager();

4. Use the query manager to obtain a SuggestDefinition object.

SuggestDefinition sd = queryMgr.newSuggestDefinition();

5. Configure the definition with the string for which to retrieve suggestions. For example, the
following call configures the operation to return matches to the wildcard string "doc*":
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 175

MarkLogic Server Searching
sd.setStringCriteria("doc");

6. Optionally, associate persistent query options with the suggest definition. You can skip
this step if your default query options include one or more suggestion-source or
default-suggestion-source options. Otherwise, specify the name of previously installed
query options that include suggestion-source and/or default-suggestion-source settings.

sd.setOptions("opt-suggest");

7. Optionally, configure additional properties, such as the maximum number of suggestions
to return or additional string queries with which to filter the results. For example:

sd.setLimit(5);
sd.setQueryStrings("prefix:xdmp");

8. Retrieve the suggestions using your suggest definition and query manager:

String[] results = queryMgr.suggest(sd);

5.11.2 Example: Generating Search Suggestions
This example walks you through configuring your database and REST instance to try retrieving
search suggestions. The Documents database is assumed in this example, but you can use any
database. This example has the following parts:

1. Initialize the Database

2. Install Query Options

3. Get Search Suggestions

5.11.2.1 Initialize the Database
Run the following query in Query Console to load the sample data into your database, or use a
DocumentManager to insert equivalent documents into the database. The example will retrieve
suggestions for the <name/> element, with and without a constraint based on the <prefix/>
element.

xdmp:document-insert("/suggest/load.xml",
 <function>
 <prefix>xdmp</prefix>
 <name>document-load</name>
 </function>
);
xdmp:document-insert("/suggest/insert.xml",
 <function>
 <prefix>xdmp</prefix>
 <name>document-insert</name>
 </function>
);
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 176

MarkLogic Server Searching
xdmp:document-insert("/suggest/query.xml",
 <function>
 <prefix>cts</prefix>
 <name>document-query</name>
 </function>
);
xdmp:document-insert("/suggest/search.xml",
 <function>
 <prefix>cts</prefix>
 <name>search</name>
 </function>
);

The equivalent in Javascript:

declareUpdate();
xdmp.documentInsert("/suggest/load.json",

{function:
{prefix: "xdmp",
name: "document-load"}

});

xdmp.documentInsert("/suggest/insert.json",
{function:

{prefix: "xdmp",
name: "document-insert"}

});

xdmp.documentInsert("/suggest/query.json",
{function:

{prefix: "cts",
name: "document-query"}

});

xdmp.documentInsert("/suggest/load.search",
{function:

{prefix: "cts",
name: "document-search"}

});

To create the range index used by the example, run the following query in Query Console, or use
the Admin Interface to create an equivalent index on the name element. The following query
assumes you are using the Documents database; modify as needed.

xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin"

at "/MarkLogic/admin.xqy";
admin:save-configuration(
 admin:database-add-range-element-index(
 admin:get-configuration(),
 xdmp:database("Documents"),
 admin:database-range-element-index(
 "string", "http://marklogic.com/example",
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 177

MarkLogic Server Searching
 "name", "http://marklogic.com/collation/", fn:false())
)
);

The equivalent in Javascript:

declareUpdate();
const admin = require("/MarkLogic/admin.xqy");
admin.saveConfiguration(

admin.databaseAddRangeElementIndex(admin.getConfiguration(),

xdmp.database("Documents"),

admin.databaseRangeElementIndex("string"

"http://marklogic.com/example",

"name",

"http://marklogic.com/collation/",

fn.false()))
)

5.11.2.2 Install Query Options
The example relies on the following query options. These options use the <name/> element as the
default suggestion source. The value constraint named “prefix” is included only to illustrate how
to use additional query to filter suggestions. It is not required to get suggestions.

<options xmlns="http://marklogic.com/appservices/search">
 <default-suggestion-source>
 <range type="xs:string" facet="true">
 <element ns="http://marklogic.com/example" name="name"/>
 </range>
 </default-suggestion-source>
 <constraint name="prefix">
 <value>
 <element ns="http://marklogic.com/example" name="prefix"/>
 </value>
 </constraint>
</options>

The equivalent in JSON:

{"options":{
 "default-suggestion-source": {
 "range": {
 "facet": "true",
 "element": {
 "ns": "http://marklogic.com/example",
 "name": "name"
 }
 }
 },
 "constraint": {
 "name": "prefix",
 "value": {
 "element": {
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 178

MarkLogic Server Searching
 "ns": "http://marklogic.com/example",
 "name": "prefix"
 }
 }
 }
 }
}

Install the options under the name "opt-suggest" using QueryOptionsManager, as described in
“Creating Persistent Query Options From Raw JSON or XML” on page 193. For example, to
configure the options using a string literal, do the following:

String options =
"<options xmlns=\"http://marklogic.com/appservices/search\">" +

"<default-suggestion-source>" +
"<range type="xs:string" facet="true">" +
"<element ns="http://marklogic.com/example" name="name"/>" +

"</range>" +
"</default-suggestion-source>" +
"<constraint name="prefix">" +

"<value>
"<element ns="http://marklogic.com/example" name="prefix"/>" +

"</value>" +
"</constraint>" +

"</options>";

// Or the JSON equivalent:

String optionsJson =
 "{\"options\":{" +
 " \"default-suggestion-source\": {" +
 " \"range\": {" +
 " \"facet\": \"true\"," +
 " \"element\": {" +
 " \"ns\": \"http://marklogic.com/example\"," +
 " \"name\": \"name\"" +
 " }" +
 " }" +
 " }," +
 " \"constraint\": {" +
 " \"name\": \"prefix\"," +
 " \"value\": {" +
 " \"element\": {" +
 " \"ns\": \"http://marklogic.com/example\"," +
 " \"name\": \"prefix\"" +
 " }" +
 " }" +
 " }" +
 "}" +
 "}";

StringHandle handle =
new StringHandle(options).withFormat(Format.XML);
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 179

MarkLogic Server Searching
QueryManager queryMgr = client.newQueryManager();

QueryOptionsManager optMgr =
client.newServerConfigManager().newQueryOptionsManager();

optMgr.writeOptions("opt-suggest", handle);

5.11.2.3 Get Search Suggestions
To retrieve search suggestions, use QueryManager.suggest(). For example:

QueryManager queryMgr = client.newQueryManager();
SuggestDefinition sd = queryMgr.newSuggestDefinition();
sd.setStringCriteria("doc");
String[] results = queryMgr.suggest(sd);

The results contain the following suggestions derived from the sample input documents:

document-insert
document-load
document-query

Recall that the query options include a value constraint on the prefix element. You can use this
constraint with the string query prefix:xdmp as filter so that the operation returns only suggestions
occuring in a documents with a prefix value of xdmp. For example:

sd.setStringCriteria("doc");
sd.setQueryStrings("prefix:xdmp");
String[] results = queryMgr.suggest(sd);

Now, the results contain only document-insert and document-load. The function named
document-query is excluded because the prefix value for this document is not xdmp.

5.11.3 Where to Find More Information
For more details on using search suggestions, including performance recommendations and
additional examples, see the following:

• search:suggest (XQuery function)

• Search Term Completion Using search:suggest in Search Developer’s Guide.

5.12 Extracting a Portion of Matching Documents
This section describes how to use the extract-document-data query option with
QueryManager.search to extract a subset of each matching document and return it in your search
results.

This section covers the following related topics:

• Overview of Extraction
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 180

MarkLogic Server Searching
• Basic Steps for Search Match Extraction

• Example: Extracting a Portion of Each Matching Document

You can also use this option with a multi-document read (DocumentManager.search) to retrieve the
extracted subset instead of the complete document; for details, see “Extracting a Portion of Each
Matching Document” on page 89.

5.12.1 Overview of Extraction
By default, QueryManager.search returns a search result summary. When you perform a search
that includes the extract-document-data query option, you can embed selected portions of each
matching document in the search results and access them through returned Handle.

The projected contents are specified through absolute XPath expressions in
extract-document-data and a selected attribute that specifies how to treat the selected content.

The extract-document-data option has the following general form. For details, see
extract-document-data in the Search Developer’s Guide and Extracting a Portion of Matching

Documents in the Search Developer’s Guide.

<extract-document-data selected="howMuchToInclude">
<extract-path>/path/to/content</extract-path>

</extract-document-data>

The equivalent in JSON:

{"extract-document-data":{
 "selected": "howMuchToInclude",
 "extract-path": "/path/to/content"
 }
}

The path expression in extract-path is limited to the subset of XPath described in The

extract-document-data Query Option in the XQuery and XSLT Reference Guide.

Use the selected attribute to control what to include in each result. This attribute can take on the
following values: “all”, “include”, “include-with-ancestors”, and “exclude”. For details, see
Search Developer’s Guide.

The document projections created with extract-document-data are accessible in the following
way. For a complete example, see “Example: Extracting a Portion of Each Matching Document”
on page 184.

QueryManager qm = client.newQueryManager();
SearchHandle results = qm.search(query, new SearchHandle());
MatchDocumentSummary matches[] = results.getMatchResults();
for (MatchDocumentSummary match : matches) {
 ExtractedResult extracts = match.getExtracted();
 for (ExtractedItem extract: extracts) {
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 181

MarkLogic Server Searching
 // do something with each projection
 }
}

The ExtractedItem interface includes get and getAs methods for manipulating the extracted
content through either a handle (ExtractedItem.get) or an object (ExtractedItem.getAs). For
example, the following statement uses getAs to access the extracted content as a String:

String content = extract.getAs(String.class);

You can use ExtractedResult.getFormat with ExtractedItem.get to detect the type of data
returned and access the content with a type-specific handle. For example:

for (MatchDocumentSummary match : matches) {
 ExtractedResult extracts = match.getExtracted();
 for (ExtractedItem extract: extracts) {
 if (match.getFormat() == Format.JSON) {
 JacksonHandle handle = extract.get(new JacksonHandle());
 // use the handle contents
 } else if (match.getFormat() == Format.XML) {
 DOMHandle handle = extract.get(new DOMHandle());
 // use the handle contents
 }
 }
}

The search returns an ExtractedItem for each match to a path in a given document when you set
select to “include”. For example, if your extract-document-data option includes multiple
extraction paths, you can get an ExtractedItem for each path. Similarly, if a single document
contains more than one match for a single path, you get an ExtractedItem for each match.

By contrast, when you set select to “all”, “include-with-ancestors”, or “exclude”, you get a single
ExtractedItem per document that contains a match.

5.12.2 Basic Steps for Search Match Extraction
Use the following technique to perform a search that includes extracted data in the search results.
For a complete example of applying this pattern, see “Example: Extracting a Portion of Each
Matching Document” on page 184.

1. Instantiate a QueryManager. The manager deals with interaction between the client and the
database.

QueryManager queryMgr = client.newQueryManager();

2. Define query options that include the extract-document-data option. Make the option
available to your search by embedding it in the options of a combined query or installing it
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 182

MarkLogic Server Searching
as part of a named persistent query options set. The following example uses the option in a
String that can be used to construct a RawCombinedQuery:

String rawQuery =
 "<search xmlns=\"http://marklogic.com/appservices/search\">" +
 " <query><directory-query><uri>/extract/</uri></directory-query></query>" +
 " <options xmlns=\"http://marklogic.com/appservices/search\">" +
 " <extract-document-data selected=\"include\">" +
 " <extract-path>/parent/body/target</extract-path>" +
 " </extract-document-data>" +
 " </options>" +
 "</search>";

//The equivalent in JSON:
String rawQueryJson =
 "{\"search\":{" +
 " \"query\": {" +
 " \"directory-query\": {" +
 " \"uri\": \"/extract/\"" +
 " }" +
 " }," +
 " \"options\": {" +
 " \"extract-document-data\": {" +
 " \"selected\": \"include\"," +
 " \"extract-path\": \"/parent/body/target\"" +
 " }" +
 " }" +
 "}" +
 "}";

For details, see “Prototype a Query Using Query By Example” on page 156 or “Using
QueryOptionsManager To Delete, Write, and Read Options” on page 192.

3. Create a query using any of the techniques discussed in this chapter. For example, the
following snippet creates a RawCombinedQuery from the string shown in Step 2.

StringHandle qh = new StringHandle(rawQuery).withFormat(Format.XML);
//Or with rawQueryJson
StringHandle qh = new
StringHandle(rawQueryJson).withFormat(Format.JSON);
QueryManager qm = client.newQueryManager();
RawCombinedQueryDefinition query =
qm.newRawCombinedQueryDefinition(qh);

4. Perform a search using your query and options that include extract-document-data.

SearchHandle results = qm.search(query, new SearchHandle());
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 183

MarkLogic Server Searching
5. Use the search handle to access the extracted content through the match results. For
example:

MatchDocumentSummary matches[] = results.getMatchResults();
for (MatchDocumentSummary match : matches) {
 ExtractedResult extracts = match.getExtracted();
 for (ExtractedItem extract: extracts) {
 // do something with each projection
 }
}

If you do not use a SearchHandle to capture your search results, you must access the extracted
content from the raw search results. For details on the layout, see Extracting a Portion of Matching

Documents in the Search Developer’s Guide.

5.12.3 Example: Extracting a Portion of Each Matching Document
This example demonstrates the use of the extract-document-data query option to embed a
selected subset of data from matched documents in the search results. For an example of using
extract-document-data as part of a multi-document read, see “Extracting a Portion of Each
Matching Document” on page 89.

The example documents are inserted into the “/extract/” directory in the database to make them
easy to manage in the example. The example data includes one XML document and one JSON
document, structured such that a single XPath expression can be used to demonstrate using
extract-document-data on both types of document.

The example documents have the following contents, with the bold portion being the content
extracted using the XPath expression /parent/body/target.

JSON:

{"parent": {
 "a": "foo",
 "body": {
 "target": "content1"
 },
 "b": "bar"
}}

XML:

<parent>
<a>foo
<body>

<target>content2</target>
</body>
bar

</parent>
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 184

MarkLogic Server Searching
The example uses a RawCombinedQuery that contains a directory-query structured query and query
options that include the extract-document-data option. The example creates the combined query
from a string literal, but you can also use StructuredQueryBuilder to create the query portion of
the combined query. For details, see “Creating a Combined Query Using
StructuredQueryBuilder” on page 164.

The following example program inserts some documents into the database, performs a search that
uses the extract-document-data query option, and then deletes the documents. Before running the
example, modify the values of HOST, PORT, USER, and PASSWORD to match your environment.

package com.marklogic.examples;

import org.w3c.dom.Document;

import com.marklogic.client.document.DocumentWriteSet;
import com.marklogic.client.document.GenericDocumentManager;
import com.marklogic.client.io.*;
import com.marklogic.client.query.DeleteQueryDefinition;
import com.marklogic.client.query.ExtractedItem;
import com.marklogic.client.query.ExtractedResult;
import com.marklogic.client.query.MatchDocumentSummary;
import com.marklogic.client.query.QueryManager;
import com.marklogic.client.query.RawCombinedQueryDefinition;
import com.marklogic.client.DatabaseClientFactory;
import com.marklogic.client.DatabaseClient;
import com.marklogic.client.DatabaseClientFactory.DigestAuthContext;

public class ExtractExample {
 // replace with your MarkLogic Server connection information
 static String HOST = "localhost";
 static int PORT = 8000;
 static String USER = "username";
 static String PASSWORD = "password";
 static DatabaseClient client = DatabaseClientFactory.newClient(
 HOST, PORT,

new DigestAuthContext(USER, PASSWORD));
 static String DIR = "/extract/";

 // Insert some example documents in the database.
 public static void setup() {
 StringHandle jsonContent = new StringHandle(
 "{\"parent\": {" +
 "\"a\": \"foo\"," +
 "\"body\": {" +
 "\"target\": \"content1\"" +
 "}," +
 "\"b\": \"bar\"" +
 "}}").withFormat(Format.JSON);
 StringHandle xmlContent = new StringHandle(
 "<parent>" +
 "<a>foo" +
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 185

MarkLogic Server Searching
 "<body><target>content2</target></body>" +
 "bar" +
 "</parent>").withFormat(Format.XML);
 GenericDocumentManager gdm = client.newDocumentManager();

 DocumentWriteSet batch = gdm.newWriteSet();
 batch.add(DIR + "doc1.json", jsonContent);
 batch.add(DIR + "doc2.xml", xmlContent);
 gdm.write(batch);
 }

 // Perform a search with RawCombinedQueryDefinition that extracts
 // just the "target" element or property of docs in DIR.
 public static void example() {
 String rawQuery =
 "<search xmlns=\"http://marklogic.com/appservices/search\">" +
 " <query>" +
 " <directory-query><uri>" + DIR + "</uri></directory-query>" +
 " </query>" +

" <options>" +
 " <extract-document-data selected=\"include\">" +
 " <extract-path>/parent/body/target</extract-path>" +
 " </extract-document-data>" +
 " </options>" +
 "</search>";

//The equivalent in JSON:
String rawQueryJson =

 "{\"search\":{" +
 " \"query\": {" +
 " \"directory-query\": {" +
 " \"uri\": \"/extract/\"" +
 " }" +
 " }," +
 " \"options\": {" +
 " \"extract-document-data\": {" +
 " \"selected\": \"include\"," +
 " \"extract-path\": \"/parent/body/target\"" +
 " }" +
 " }" +
 "}" +
 "}";

 StringHandle qh =
new StringHandle(rawQuery).withFormat(Format.XML);

// Or with rawQueryJson
new StringHandle(rawQueryJson).withFormat(Format.JSON);

 QueryManager qm = client.newQueryManager();
 RawCombinedQueryDefinition query =

qm.newRawCombinedQueryDefinition(qh);

 SearchHandle results = qm.search(query, new SearchHandle());
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 186

MarkLogic Server Searching
System.out.println(
"Total matches: " + results.getTotalResults());

 MatchDocumentSummary matches[] = results.getMatchResults();
 for (MatchDocumentSummary match : matches) {
 System.out.println("Extracted from uri: " + match.getUri());
 ExtractedResult extracts = match.getExtracted();
 for (ExtractedItem extract: extracts) {
 System.out.println(" extracted content: " +

extract.getAs(String.class));
 }
 }
 }

 // Delete the documents inserted by setup.
 public static void teardown() {
 QueryManager qm = client.newQueryManager();
 DeleteQueryDefinition byDir = qm.newDeleteDefinition();
 byDir.setDirectory(DIR);
 qm.delete(byDir);
 }

 public static void main(String[] args) {
 setup();
 example();
 teardown();
 }
}

When you run the example, you should see output similar to the following:

Total matches: 2
Extracted from uri: /extract/doc1.json

extracted content: {"target":"content1"}
Extracted from uri: /extract/doc2.xml

extracted content: <target xmlns="">content2</target>

If you add a second extract path, such as “//b”, then you get multiple extracted items for each
matched document:

Extracted items from uri: /extract/doc1.json
 extracted content: {"target":"content1"}
 extracted content: {"b":"bar"}
Extracted items from uri: /extract/doc2.xml
 extracted content: <target xmlns="">content2</target>
 extracted content: <b xmlns="">bar

By varying the value of the selected attribute of extract-document-data, you further control how
much of the matching content is returned in each ExtractedItem. For example, if you modify the
original example to set the value of selected to “include-with-ancestors”, then the output is similar
to the following:
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 187

MarkLogic Server Searching
Extracted items from uri: /extract/doc1.json
 extracted content: {"parent":{"body":{"target":"content1"}}}
Extracted items from uri: /extract/doc2.xml
 extracted content:

<parent xmlns=""><body><target>content2</target></body></parent>

For more examples of how selected affects the results, see Extracting a Portion of Matching

Documents in the Search Developer’s Guide.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 188

MarkLogic Server Searching
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 189

MarkLogic Server Query Options
6.0 Query Options
195

This chapter describes how to use, write, read, and delete query options. In the MarkLogic
XQuery Search API, a query options object is called an options node.

This chapter contains the following sections:

• Using Query Options

• Default Query Options

• Using QueryOptionsManager To Delete, Write, and Read Options

• Using Query Options With Search

• Creating Persistent Query Options From Raw JSON or XML

• Validating Query Options With setQueryOptionValidation()

For details on each of the query options, see Appendix: Query Options Reference in the Search
Developer’s Guide. While there are a large number of options, in order to configure your searches
properly and build persistent query options, you will need to familiarize yourself with them.

6.1 Using Query Options
Query options let you specify a set of options for search and apply them repeatedly to multiple
searches. The individual options can specify the following:

• Define constraints that do not require indexes, such as word, value and element
constraints.

• Define constraints that do require indexes, such as collection, field-value, and other range
constraints.

• Control search characteristics such as case sensitivity and ordering.

• Extend the search grammar.

• Customize query results including pagination, snippeting, and filtering.

Query options can be persistent or dynamic. Persistent query options are stored on the REST
Server and referenced by name in future queries. Dynamic query options are options created on a
per-request basis. Choosing between the two is a trade off between flexibility and performance:
Dynamic query options are the more flexible, but persistent query options usually provide better
performance. You can use both persistent and dynamic query options in the same query. Dynamic
query options are only available for operations that accept a RawCombinedQueryDefinition. For
details, see “Apply Dynamic Query Options to Document Searches” on page 159.

Use a QueryOptionsManager object to manage persistent query options and store them on the
REST Server. To see individual option values, use the appropriate get() command on a handle
class that implements QueryOptionsReadHandle.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 190

MarkLogic Server Query Options
The persistent query options are the static part of the search, and are generally used for many
different queries. For example, you might create persistent query options that define a range
constraint on a date range index so that you can facet the results by date.

Additionally, many queries have a component that is constructed dynamically by your Java code.
For example, you might change the result page, the query criteria (terms, facet values, and so on),
or other dynamic parts of the query. The static and dynamic parts of the query are merged together
during a search.

For details on specific query options, see Appendix: Query Options Reference in the Search
Developer’s Guide. While there are a large number of options, in order to configure your searches
properly, you will need to familiarize yourself with them.

For additional examples, see Query Options Examples in the Search Developer’s Guide.

6.2 Default Query Options
The MarkLogic Java API comes with predefined persistent query options called default. It acts
just like any other options and is used if options are not specified elsewhere. You can read it into a
handle, change values, and write it back out, where it will still be used as the default query
options. While changing its values should not be done casually, this can be very useful if your site
needs different default behaviors.

The default options are selected for optimal performance; searches run unfiltered, and document
quality is not taken into consideration during scoring. If you install different default options,
consider including the following options unless your application requires filtering or the use of
document quality.

<options xmlns="http://marklogic.com/appservices/search">
<search-option>unfiltered</search-option>
<quality-weight>0</quality-weight>

</options>

The equivalent in JSON:

{"options":{
 "search-option": "unfiltered",
 "quality-weight": "0"
 }
}

If you delete default, the server will fall back to its own defaults.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 191

MarkLogic Server Query Options
6.3 Using QueryOptionsManager To Delete, Write, and Read Options
Interactions with the database are done via a manager object, in this case QueryOptionsManager.
Use com.marklogic.client.admin.QueryOptionsManager to manage persistent query options
that are stored on the REST server. Since query options are associated with the REST server
configuration, to create a QueryOptionsManager you call
ServerConfigManager.newQueryOptionsManager().

As with all operations on ServerConfigManager, an application must authenticate as
rest-admin. Note that any application that authenticates as rest-reader and rest-writer can
use query options, but to write or delete them from the server requires rest-admin.

// create a manager for writing, reading, and deleting query options
QueryOptionsManager qoManager=

client.newServerConfigManager().newQueryOptionsManager();

The simplest QueryOptions operation is deleting a stored one:

qoManager.deleteOptions("myqueryoptions");

To read query options from the database, use a handle object of a class that implements
QueryOptionsReadHandle. To write query options to the database, use a handle object of a class
that implements QueryOptionsWriteHandle. The API includes several handle classes that
implement these interfaces, including StringHandle, BytesHandle, DOMHandle, and
JacksonHandle. These interfaces allow you to work with query options as raw strings, XML, and
JSON.

The following example reads in the options configuration called myqueryoptions from the
server, then writes it out again.

// read a query option configuration from the database
// qoHandle now contains the query option
// "myqueryoptions"
DOMHandle qoHandle =

qoManager.readOptions("myqueryoptions", new DOMHandle());

//Or the equivalent with a JacksonHandle
JacksonHandle qoHandle =

qoManager.readOptions("myqueryoptions", new JacksonHandle());

// write the query option to the database
qoManager.writeOptions("myqueryoptions", qoHandle);

You can get a list of all named QueryOptions from the server via the QueryOptionsListHandle
object:

QueryManager queryMgr = dbclient.newQueryManager();
QueryOptionsListHandle qolHandle =

queryMgr.optionsList(new QueryOptionsListHandle());
Set<String> results = qolHandle.getValuesMap().keySet();
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 192

MarkLogic Server Query Options
6.4 Using Query Options With Search
You can customize a query with query options in the following ways:

• Create persistent query options, save them to the REST server with an associated name,
and then reference them by name when you construct a query. To use the default query
options, omit an options name when you construct the query. The following example
creates a string query that uses the options stored as “myoptions”:

// Create a string query that uses persistent query options
QueryManager qMgr = new QueryManager();
StringQueryDefinition qDef = qMgr.newStringDefinition("myoptions");
...
qMgr.search(qDef, resultsHandle);

• Embed dynamic query options in a combined query definition.

You can use both persistent and dynamic query options in the same search by including a query
options name when constructing a combined query (RawCombinedQueryDefinition).

Persistent query options must be stored on the REST server before you can use them in a search.
For details, see “Using QueryOptionsManager To Delete, Write, and Read Options” on page 192.

To construct persistent query options, use a handle class that implements
QueryOptionsWriteHandle, such as StringHandle or DOMHandle. Using a handle, you can
create query options directly in XML or JSON; for details, see “Creating Persistent Query
Options From Raw JSON or XML” on page 193.

To construct dynamic query options, use a handle that implements StructureWriteHandle, such
as StringHandle or DOMHandle to create a combined query that includes an options component,
then associate the handle with a RawCombinedQueryDefinition. For details, see “Apply
Dynamic Query Options to Document Searches” on page 159.

6.5 Creating Persistent Query Options From Raw JSON or XML
To create persistent query options from a raw XML or JSON representation, use any handle class
that implements com.marklogic.client.io.marker.QueryOptionsWriteHandle. Follow this
procedure to create persistent query options using a handle:

1. Create a JSON or XML representation of the query options, using the tools of your choice.
The following example uses a String representation:

String xmlOptions =
 "<search:options "+
 "xmlns:search='http://marklogic.com/appservices/search'>"+
 "<search:constraint name='industry'>"+
 "<search:value>"+
 "<search:element name='industry' ns=''/>"+
 "</search:value>"+
 "</search:constraint>"+
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 193

MarkLogic Server Query Options
 "</search:options>";

String jsonOptions =
 "{\"search\":{" +
 " \"constraint\": {" +
 " \"name\": \"industry\"," +
 " \"value\": {" +
 " \"element\": {" +
 " \"name\": \"industry\"," +
 " \"ns\": \"\"" +
 " }" +
 " }" +
 " }" +
 "}" +
 "}";

2. Create a handle that implements QueryOptionsWriteHandle and associate your options
with the handle. Set the content format type appropriately. For example:

// For XML options
StringHandle writeHandle =

new StringHandle(xmlOptions).withFormat(Format.XML);

// For JSON options
StringHandle writeHandle =

new StringHandle(jsonOptions).withFormat(Format.JSON);

3. Save the options to the REST server using QueryOptionsManager.writeOptions. For
example:

optionsMgr.writeOptions(optionsName, writeHandle);

For a complete example, see com.marklogic.client.example.cookbook.QueryOptions in the
following directory of the Java API distribution:

example/com/marklogic/client/example/cookbook

The Java API includes QueryOptionsWriteHandle implementations that support constructing
query options as XML or JSON using several alternatives to String. These alternatives include
reading from a file (FileHandle) or stream (InputStreamHandle), and popular abstractions,
such as DOM, DOM4J, and JDOM. For details, see the Java API JavaDoc.

You can use any handle that implements QueryOptionsReadHandle to fetch previously persisted
query options from the REST server. The following example fetches the JSON representation of
query options into a String object:

StringHandle jsonStringHandle = new StringHandle();
jsonStringHandle.setFormat(Format.JSON);

qoManager.readOptions("jsonoptions", jsonStringHandle);
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 194

MarkLogic Server Query Options
6.6 Validating Query Options With setQueryOptionValidation()
Query options can be complex. By default, the server validates query options before writing them
out to a database. This takes a small amount of time, but because the query options are usually
created once and then persisted, it does not really make a difference.

If you do try to write out an invalid query options and validation is enabled (which is the default),
you get a 400 error from the server and a FailedRequestException thrown.

If you want to turn validation off, you can do so by calling the following right after you create
your ServerConfigurationManager object:

ServerConfigurationManager.setQueryOptionValidation(false)

Note that if validation is disabled and you have query options that turn out to be invalid, your
searches will still run, but any invalid options will be ignored. For example, if you define an
invalid constraint and then try to use it in a search, the search will run, but the constraint will not
be used. The search results will contain a warning in cases where a constraint is not used. You can
access those warnings via SearchHandle.getWarnings().
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 195

MarkLogic Server Working With Semantic Data
7.0 Working With Semantic Data
217

This chapter discusses the following topics related to using the Java Client API to load semantic
triples, manage semantics graphs, and query semantic data. The following topics are covered:

• Introduction

• Overview of Common Semantic Tasks

• Creating and Managing Graphs

• Querying Semantic Triples With SPARQL

• Querying Triples with the Optic API

• Example: Loading, Managing, and Querying Triples

• Using SPARQL Update to Manage Graphs and Graph Data

• Managing Permissions

7.1 Introduction
This chapter focuses on details specific to using the Java Client API for semantic operations. For
more details and general concepts, see the Semantics Developer’s Guide.

The graph management capabilities of the Java Client API enable you to manipulate managed

triples stored in MarkLogic. For example, you can create, modify, or delete a graph using a
GraphManager. For details, see “Creating and Managing Graphs” on page 198.

You can insert unmanaged triples into MarkLogic using standard document operations. Use the
DocumentManager interfaces to insert XML or JSON documents with triples embedded in them.
Unmanaged triples are indexed and searchable, just like managed triples, but you use typical
XML and JSON document permissions and interfaces to control them. Unmanaged triples enable
you to store semantic data alongside the content to which it applies. “Example: Loading,
Managing, and Querying Triples” on page 209 illustrates the use of an unmanaged triple.

Triples can also be made available for queries through the use of MarkLogic features such as the
following. See the listed topics for details.

• Inferencing: Inference in the Semantics Developer’s Guide.

• TDE templates: Using a Template to Identify Triples in a Document in the Semantics
Developer’s Guide.

• Entity Services modeling: Extending a Model with Additional Facts and Generating a TDE

Template in the Entity Services Developer’s Guide.

You can use the Java Client API to query all types of semantic data using the SPARQLQueryManager
interface. You can evaluate both SPARQL and SPARQL Update queries. For more details, see
“Querying Semantic Triples With SPARQL” on page 204 and “Using SPARQL Update to
Manage Graphs and Graph Data” on page 213.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 196

MarkLogic Server Working With Semantic Data
7.2 Overview of Common Semantic Tasks
You can use the SPARQL, semantic query, and semantic graph interfaces of MarkLogic

The following table lists some common tasks related to Semantics, along with the interfaces best
suited for completing the task using the Java Client API. For a complete list of interfaces, see
Java Client API Documentation. All of the following interfaces are in the package
com.marklogic.client.semantics.

If you want to Then use

Load semantic triples into a named graph or
the default graph without using SPARQL
Update.

GraphManager.write or GraphManager.writeAs

For details, see “Creating or Overwriting a
Graph” on page 200.

Manage graphs or graph data with SPARQL
Update.

SPARQLQueryManager.executeUpdate

For details, see “Using SPARQL Update to
Manage Graphs and Graph Data” on page 213.

Read a semantic graph from the database. GraphManager.read or GraphManager.readAs

For details, see “Reading Triples from a
Graph” on page 202.

Query semantic data with SPARQL SPARQLQueryManager.executeAsk

SPARQLQueryManager.executeConstruct

SPARQLQueryManager.executeDescribe

SPARQLQueryManager.executeSelect

For details, see “Querying Semantic Triples
With SPARQL” on page 204.

Manage graph permissions. GraphManager.writePermissions

GraphManager.mergePermissions

GraphManager.deletePermissions

For details, see “Managing Permissions” on
page 214.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 197

MarkLogic Server Working With Semantic Data
7.3 Creating and Managing Graphs
Use the GraphManager interface to perform graph management tasks such as creating, reading,
updating, and deleting graphs. This section contains the following topics related to graph
management tasks:

• GraphManager Interface Summary

• Creating a GraphManager Object

• Specifying the Triple Format

• Creating or Overwriting a Graph

• Reading Triples from a Graph

• Replacing Quad Data in Graphs

• Adding Triples to an Existing Graph

• Adding Quads into an Existing Graph

• Deleting a Graph

7.3.1 GraphManager Interface Summary
The following table summarizes key GraphManager methods. For a complete list of methods, see
the Java Client API Documentation.

GraphManager
Method

Description

write
writeAs

Create or overwrite a graph. If the graph already exists, the effect is the
same as removing the graph and then recreating it from the input data.
For details, see “Creating or Overwriting a Graph” on page 200.

read
readAs

Retrieve triples from a specific graph. For details, see “Reading Triples
from a Graph” on page 202.

replaceGraphs
replaceGraphsAs

Remove triples from all graphs, and then insert the quads in the input
data set. Unmanaged triples are not affected. The effect is the same as
first calling GraphManager.deleteGraphs, and then inserting the quads.
For details, see “Replacing Quad Data in Graphs” on page 202.

merge
mergeAs

Add triples to a named graph or the default graph. If the graph does not
exist, it is created. For more details, see “Adding Triples to an Existing
Graph” on page 202.

mergeGraphs
mergeGraphsAs

Add quads to the graphs specified in the input quad data. Any graphs that
do not already exist are created. “Adding Triples to an Existing Graph”
on page 202
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 198

MarkLogic Server Working With Semantic Data
7.3.2 Creating a GraphManager Object
Operations on graphs, such as loading triples and reading a graph, require a
com.marklogic.client.semantics.GraphManager object. To create a GraphManager, use
DatabaseClient.newGraphManager.

For example, the following code snippet creates a DatabaseClient, and then uses it to create a
GraphManager.

import com.marklogic.client.DatabaseClientFactory;
import com.marklogic.client.DatabaseClient;
import com.marklogic.client.DatabaseClient.DigestAuthContext;
import com.marklogic.client.semantics.GraphManager;
...
DatabaseClient client = DatabaseClientFactory.newClient(

"localhost", 8000, "myDatabase",
new DigestAuthContext("username", "password"));

GraphManager gmgr = client.newGraphManager();

You do not have to create a new DatabaseClient object to create a GraphManager. You can re-use
any client object previously created by your application that represents the desired connection to
MarkLogic.

7.3.3 Specifying the Triple Format
When reading and writing triples, you must specify the triples format MIME type. You can
specify the format in the following ways:

• Use the withMimeType method on your triples Handle to set the format on a per source
basis. For example, the following code initializes a FileHandle for reading triples in Turtle
format:

import com.marklogic.client.io.FileHandle;
...
FileHandle fileHandle =

new FileHandle(new File("example.ttl"))
.withMimetype(RDFMimeTypes.TURTLE);

delete Delete a specific graph. “Deleting a Graph” on page 203.

deleteGraphs Delete all graphs. Unmanaged triples are not affected. For details, see
“Deleting a Graph” on page 203.

writePermissions
mergePermissions
deletePermissions

Manage graph permissions. You can also set graph permissions during
write and merge operations. For details, see “Managing Permissions” on
page 214.

GraphManager
Method

Description
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 199

MarkLogic Server Working With Semantic Data
• Use GraphManager.setDefaultMimeType to set a format to be used across all operations
performed through a given GraphManager. For example, the following code sets the default
MIME type to Turtle:

import com.marklogic.client.io.FileHandle;
...
GraphManager graphMgr = ...;
graphMgr.setDefaultMimeType(RDFMimeTypes.TURTLE);

Setting a default MIME type frees you from setting the MIME type on every triples handle and
enables use of the GraphManager.*As methods, such as GraphManager.writeAs and
GraphManager.readAs. For example:

graphMgr.setDefaultMimeType(RDFMimeTypes.TURTLE);
...
graphMgr.writeAs(

someGraphURI, new FileHandle(new File("example.ttl")));

Set the MIME type to one of the values exposed by the RDFMimeTypes class, such as
RDFMimeTypes.RDFJSON or RDFMimeTypes.TURTLE. For more details about triples formats accepted
by MarkLogic, see Supported RDF Triple Formats in Semantics Developer’s Guide.

To learn more about Handles, see “Using Handles for Input and Output” on page 27.

7.3.4 Creating or Overwriting a Graph
Use GraphManager.write and GraphManager.writeAs to create or overwrite a graph. If a graph
already exists with the specified URI, the effect is the same as removing the existing graph and
then recreating it f rom the input triple data.

Note that if you use GraphManager.write to load quads, any graph URI in a quad is ignored in
favor of the graph URI parameter passed into write.

For example, the following code loads triples from a file into a graph. For the complete example,
see “Example: Loading, Managing, and Querying Triples” on page 209.

public static void loadGraph(String filename, String graphURI, String
format) {
 System.out.println("Creating graph " + graphURI);
 FileHandle tripleHandle =
 new FileHandle(new File(filename)).withMimetype(format);
 graphMgr.write(graphURI, tripleHandle);
}

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 200

MarkLogic Server Working With Semantic Data
Use the following procedure to load semantic triples into a graph in MarkLogic.

1. If you have not already done so, create a com.marklogic.client.semantics.GraphManager.
as described in “Creating a GraphManager Object” on page 199. For example:

GraphManager graphMgr = client.newGraphManager();

2. Create a Handle associated with the input triples. The Handle type depends on the source
for your content, such as a file or in-memory data. For example, the following Handle can
be used to read triples in Turtle format from a file:

FileHandle tripleHandle =
new FileHandle(new File("example.ttl"));

3. If no default triples format is set on your GraphManager, specify the triples format for the
Handle, using the withMimetype method. For more details, see “Querying Semantic Triples
With SPARQL” on page 204. For example:

tripleHandle.withMimeType(RDFMimeTypes.TURTLE);

4. Write the triples to MarkLogic using GraphManager.write . For example:

a. To load triples into a named graph, specify the graph URI as the graph URI parameter. For
example:

graphMgr.write(someGraphURI, tripleHandle);

b. To load triples into the default graph, specify GraphManager.DEFAULT_GRAPH as the graph
URI parameter. For example:

graphMgr.write(GraphManager.DEFAULT_GRAPH, tripleHandle);

5. If your application no longer needs to connect to MarkLogic, release the connection
resources by calling the DatabaseClient object’s release() method.

client.release();

As an alternative to GraphManager.write, if you already have triples in an in-memory object, you
can use GraphManager.writeAs to short circuit explicit creation of a handle. For example:

graphManager.setDefaultMimeType(RDFMimeTypes.RDFJSON);
...
Object graphData = ...;
graphMgr.writeAs(someGraphURI, graphData);

For more details on this technique, see “Shortcut Methods as an Alternative to Creating Handles”
on page 31.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 201

MarkLogic Server Working With Semantic Data
7.3.5 Reading Triples from a Graph
Use GraphManager.read or GraphManager.readAs to read the contents of a graph in MarkLogic.
You must specify the serialization format from the triples, either on the read Handle or the
GraphManager; for details, see “Specifying the Triple Format” on page 199.

The following example retrieves the contents of the default graph, in Turtle format and makes the
results available to the application through a StringHandle:

StringHandle triples = graphMgr.read(
 GraphManager.DEFAULT_GRAPH,
 new StringHandle().withMimetype(RDFMimeTypes.TURTLE));
//...work with the triples as one big string

For a complete example, see “Example: Loading, Managing, and Querying Triples” on page 209.

7.3.6 Replacing Quad Data in Graphs
Use GraphManager.replaceGraphs and GraphManager.replaceGraphsAs to remove all quads from
all graphs and then insert quad data into the graphs specified in the new quads. Unmanaged triples
are not affected by this operation. The end result is the same as first calling GraphManager.delete
(or deleteAs) and then inserting the quads.

The quad data can be in either NQuad or TriG format. Set the MIME type appropriate, as
described in “Specifying the Triple Format” on page 199.

The following example adds a single triple in Turtle format to the default graph. This triple is
passed via a StringHandle.

StringHandle quadHandle = new StringHandle()
 .with(someQuadData)
 .withMimetype(RDFMimeTypes.NQUAD);
graphMgr.replaceGraphs(quadHandle);

The following example performs a similar operation, using replaceAs:

graphMgr.setDefaultMimeType(RDFMimeTypes.NQUAD);
...
File graphData = new File(filename);
graphMgr.replaceGraphsAs(graphData);

7.3.7 Adding Triples to an Existing Graph
Use GraphManager.merge or GraphManager.mergeAs to merge triples into an existing graph. You
must specify the serialization format from the triples, either on the read Handle or the
GraphManager; for details, see “Specifying the Triple Format” on page 199.

For quad data, use mergeGraphs or mergeGraphsAs. For details, see “Adding Quads into an Existing
Graph” on page 203.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 202

MarkLogic Server Working With Semantic Data
The following example adds a single triple in Turtle format to the default graph. This triple is
passed via a StringHandle.

StringHandle stringHandle = new StringHandle()
 .with("<http://example.org/subject2> " +

"<http://example.org/predicate2> " +
"<http://example.org/object2> .")

 .withMimetype(RDFMimeTypes.TURTLE);
graphMgr.merge("myExample/graphUri", stringHandle);

The following example performs a similar operation, using mergeAs:

graphMgr.setDefaultMimeType(RDFMimeTypes.TURTLE);
...
Object graphData = ...;
graphMgr.mergeAs(someGraphURI, graphData);

7.3.8 Adding Quads into an Existing Graph
Use GraphManager.mergeGraphs and GraphManager.mergeGraphsAs to add quads to an existing
graph. If a quad specifies the URI of an existing graph, the quad data is merged into that graph. If
no such graph exists, the graph is created.

The quad data can be in either NQuad or TriG format. Set the MIME type appropriate, as
described in “Specifying the Triple Format” on page 199.

The following example adds a single triple in Turtle format to the default graph. This triple is
passed via a StringHandle.

StringHandle quadHandle = new StringHandle()
 .with(someQuadData)
 .withMimetype(RDFMimeTypes.NQUAD);
graphMgr.mergeGraphs(quadHandle);

The following example performs a similar operation, using mergeAs:

graphMgr.setDefaultMimeType(RDFMimeTypes.NQUAD);
...
File graphData = new File(filename);
graphMgr.mergeGraphsAs(graphData);

7.3.9 Deleting a Graph
Use GraphManager.delete to remove a single graph. Use GraphManager.deleteGraphs to delete
all graphs.

The following example removes a single graph with the specified URI:

graphMgr.delete(someGraphURI);
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 203

MarkLogic Server Working With Semantic Data
The following example removes all graphs:

graphMgr.deleteGraphs(someGraphURI);

For a complete example, see “Example: Loading, Managing, and Querying Triples” on page 209.

7.4 Querying Semantic Triples With SPARQL
To query semantic data using SPARQL, create a SPARQLQueryDefinition, and then evaluate it
using one of the SPARQLQueryManager.execute* methods. You can configure many aspects of your
query, such as variable bindings, the graphs to which to apply the query, the query optimization
level.

• Basic Steps for SPARQL Query Evaluation

• Handling Query Results

• Defining Variable Bindings

• Limiting the Number of Results

• Inferencing Support

7.4.1 Basic Steps for SPARQL Query Evaluation
Evaluating a SPARQL query consists of the following basic steps:

1. Create a query manager using DatabaseClient.newSPARQLQueryManager. For example:

DatabaseClient client = ...;
SPARQLQueryManager sqmgr = client.newSPARQLManager();

2. Create a query using SPARQLQueryManager.newSPARQLQueryDefinition and configure the
query as needed. For example:

SPARQLQueryDefinition query = sqmgr.newSPARQLQueryDefinition(
"SELECT * WHERE { ?s ?p ?o } LIMIT 10")
.withBinding("o", "http://example.org/object1");

3. Evaluate the query and receive results by calling one of the execute* methods of
SPARQLQueryManager. For example, use executeSelect for a SELECT query:

JacksonHandle results = new JacksonHandle();
results.setMimetype(SPARQLMimeTypes.SPARQL_JSON));
results = sqmgr.executeSelect(query, results);
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 204

MarkLogic Server Working With Semantic Data
The format of the results you receive depends on the type of query you evaluate and how you
configure your results Handle and/or the SPARQLQueryManager. For details, see “Handling
Query Results” on page 205.

For example, the following evaluates a SPARQL SELECT query and returns the results as JSON.
For a complete example, see “Example: Loading, Managing, and Querying Triples” on page 209.

SPARQLQueryManager qm = client.newSPARQLQueryManager();
SPARQLQueryDefinition query = qm.newQueryDefinition(
 "SELECT ?person " +
 "WHERE { ?person <http://example.org/marklogic/predicate/livesIn>
\"London\" }"
);

JsonNode results = qm.executeSelect(query, new JacksonHandle()).get();
// ... Process results

7.4.2 Handling Query Results
The layout and available format of the results from a SPARQL query depend on the type of query.
For details, see the following topics:

• SELECT Results

• CONSTRUCT and DESCRIBE Results

• ASK Results

7.4.2.1 SELECT Results
A SPARQL SELECT query returns a SPARQL result set, serialized as JSON, XML, or plain text
comma-separated values (CSV). You must set the MIME type on your results ReadHandle as
appropriate for the results format you want to use. The supported MIME types for a SELECT
query are defined by com.marklogic.client.semantics.SPARQLMimeTypes.

For example, JacksonHandle implements SPARQLResultsReadHandle and JSONReadHandle, so you
should set the handle MIME type to SPARQLMimeTypes.SPARQL_JSON when receiving SELECT
query results through a JacksonHandle:

JacksonHandle handle = new JacksonHandle();
handle.setMimeType(SPARQLMimeTypes.SPARQL_JSON);
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 205

MarkLogic Server Working With Semantic Data
The following table summarizes the supported Handle and MIME type combinations:

For examples of the raw XML, JSON, and CSV results, see the examples in Response Output

Formats in the Semantics Developer’s Guide.

7.4.2.2 CONSTRUCT and DESCRIBE Results
CONSTRUCT and DESCRIBE queries return triples. You can request the results in any of the
triples formats defined by com.marklogic.client.semantics.RDFMimeTypes, except TRIG. For
best performance, use the N-triples format (RDFMimeTypes.NTRIPLES).

When using a JSONReadHandle, set the handle MIME type to RDFMimeTypes.RDF_JSON. This
produces results in RDF/JSON format.

When using an XMLReadHandle, set the handle MIME type to RDFMimeTypes.RDF_XML. This
produces results in RDF/XML format.

Any TriplesReadHandle implementation that handle plain text can use any of the
RDFMimeTypes, such as NTRIPLE, NQUADS, or TURTLE.

For RDF/XML. use an XMLReadHandle with the MIME type set to RDFMimeTypes.RDF_XML.

To set the handle MIME type, use the setMimeType method. For example:

JacksonHandle handle = new JacksonHandle();
handle.setMimeType(RDFMimeTypes.RDFJSON);

Handle Type MIME Type Result

JSONReadHandle SPARQLMimeTypes.SPARQL_JSON SPARQL results, serialized as JSON.
For details on this format, see
https://www.w3.org/TR/sparql11-results-jso
n/.

XMLReadHandle SPARQLMimeTypes.SPARQL_XML SPARQL results, serialized as XML.
For details on this format, see
https://www.w3.org/TR/2013/REC-rdf-spar
ql-XMLres-20130321/.

Other Handle
types

SPARQLMimeTypes.SPARQL_CSV SPARQL results, serialized as CSV,
with line per query solution. For details
on this format, see
https://www.w3.org/TR/2013/REC-sparql11
-results-csv-tsv-20130321/.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 206

https://www.w3.org/TR/sparql11-results-json/
https://www.w3.org/TR/sparql11-results-json/
https://www.w3.org/TR/2013/REC-rdf-sparql-XMLres-20130321/
https://www.w3.org/TR/2013/REC-rdf-sparql-XMLres-20130321/
https://www.w3.org/TR/2013/REC-sparql11-results-csv-tsv-20130321/
https://www.w3.org/TR/2013/REC-sparql11-results-csv-tsv-20130321/

MarkLogic Server Working With Semantic Data
7.4.2.3 ASK Results
An ASK query always returns a simple boolean value. For details, see QueryManager.executeAsk.

7.4.3 Defining Variable Bindings
If your query depends on runtime variable definitions, you can define variable bindings one at a
time using the fluent SPARQLQueryDefinition.withBinding definition, or build up a set of bindings
using SPARQLBindings and then attach them to the query using
SPARQLQueryDefinition.setBindings.

The following example incrementally attaches bindings to a query definition using withBindings:

// incrementally attach bindings to a query
SPARQLQueryDefinition query = ...;
query.withBinding("o", "http://example.org/object1")

.withBinding(...);

The following example builds up a setting of bindings and then attaches them all to the query at
once, using setBindings:

// build up a set of bindings and attach them to a query
SPARQLBindings bindings = new SPARQLBindings();
bindings.bind("o", "http://example.org/object1");
bindings.bind(...);
query.setBindings(bindings);

Both SPARQLQueryDefinition.withBinding and SPARQLBindings enable you to specify a language
tag or RDF type for the bound value.

For more details, see SPARQLBindings in the Java Client API Documentation.

7.4.4 Limiting the Number of Results
When you evaluate a SPARQL SELECT query, by default, all results are returned. You can limit the
number of results returned in a “page” using SPARQLQueryManager.setPageLength or a SPARQL
LIMIT clause. You can retrieve successive pages of results by repeatedly calling executeSelect
with a different page start position. For example:

// Change the max page length
sqmgr.setPageLength(NRESULTS);

// Fetch at most the first N results
long start = 1;
JacksonHandle results = sparqlMgr.executeSelect(query, handle, start);

// Fetch the next N results
start += N;
JacksonHandle results = sparqlMgr.executeSelect(query, handle, start);
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 207

/javadoc/client/com/marklogic/client/semantics/SPARQLBindings.html

MarkLogic Server Working With Semantic Data
7.4.5 Inferencing Support
Inferencing enables discovery of new “facts” based on a combination of data and rules for
understanding that data. The Java Client API includes the following features that facilitate
inferencing:

• Enabling or Disabling Automatic Inferencing

• Associating a Rule Set with a Query

7.4.5.1 Enabling or Disabling Automatic Inferencing
When automatic inferencing is enabled, MarkLogic can apply a default inferencing ruleset at
query time. Default ruleset management is a function of the REST Management API. However,
you can enable or disable the use of a default ruleset at query time using
SPARQLQueryDefinition.withIncludeDefaultRulesets. Use of the default ruleset is enabled by
default.

For more details, see Rulesets in the Semantics Developer’s Guide.

7.4.5.2 Associating a Rule Set with a Query
You can explicitly apply a ruleset at query time rather than implicitly using the default ruleset.

The Java Client API includes the com.marklogic.client.semantics.SPARQLRuleset class with a
set of built-in rulesets and a factory method to enable you to use custom rulesets. To associate a
ruleset with a query, use SPARQLQueryDefinition.withRuleset or
SPARQLQueryDefinition.setRulesets.

For more details, see Rulesets in the Semantics Developer’s Guide.

7.5 Querying Triples with the Optic API
The Optic features of the Java Client API enable you to query semantic data without using
SPARQL. The Optic features of the Java Client API are covered in detail in “Optic Java API for
Relational Operations” on page 218.

To perform a semantic query using the Optic API, construct a query plan using
com.marklogic.client.expression.PlanBuilder, and then evaluate it using
com.marklogic.client.row.RowManager. For example, the following function creates a query plan
that finds “persons who live in London”, based on the data from “Example: Loading, Managing,
and Querying Triples” on page 209.

public static void opticQuery() {
RowManager rowMgr = client.newRowManager();
PlanBuilder p = rowMgr.newPlanBuilder();
PlanPrefixer predPrefixer =

p.prefixer("http://example.org/marklogic/predicate/");
Plan plan =
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 208

MarkLogic Server Working With Semantic Data
p.fromTriples(
p.pattern(p.col("person"),
predPrefixer.iri("livesIn"),
p.xs.string("London")));

RowSet<RowRecord> results = rowMgr.resultRows(plan);

System.out.println("OPTIC: Persons who live in London:");
for (RowRecord row: results) {

System.out.println(" " + row.getString("person"));
}

}

When the above function runs as part of the end to end example, it produces output of the
following form:

OPTIC: Persons who live in London:
http://example.org/marklogic/person/Jane_Smith
http://example.org/marklogic/person/John_Smith
http://example.org/marklogic/person/Mother_Goose

7.6 Example: Loading, Managing, and Querying Triples
The following example program demonstrates how to perform the following tasks:

• Load triples into a graph. These triples become “managed” triples. Use the operations
discussed in “Creating and Managing Graphs” on page 198 for graph management.

• Load a document containing a triple. This becomes an unmanaged triple. It is indexed and
can be queried, but it is not managed through the graph operations.

• Execute a semantic query using either SPARQL or the Optic API.

• Removed a graph, thereby removing all the managed triples in the graph.

This example creates a graph from the following input data. Copy and paste this data to a file, and
then modify the variable tripleFilename in the example code to point to this file.

<http://example.org/marklogic/person/John_Smith>
<http://example.org/marklogic/predicate/livesIn>
"London"^^<http://www.w3.org/2001/XMLSchema#string> .
<http://example.org/marklogic/person/Jane_Smith>
<http://example.org/marklogic/predicate/livesIn>
"London"^^<http://www.w3.org/2001/XMLSchema#string> .
<http://example.org/marklogic/person/Jack_Smith>
<http://example.org/marklogic/predicate/livesIn>
"Glasgow"^^<http://www.w3.org/2001/XMLSchema#string> .
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 209

MarkLogic Server Working With Semantic Data
The example data contains triple data that define relationships of the form “Person X livesIn Y”.
The query run by the example finds all persons who live in London. The program runs the query
several times:

• After loading triples into the default graph. This query matches John Smith and Jack
Smith.

• After loading a document containing an unmanaged triple that asserts Mother Goose lives
in London. This query matches John Smith, Jack Smith, and Mother Goose.

• After removing the default graph. Only the unmanaged triple remains, so the query
matches only Mother Goose.

• After removing the document containing the unmanaged triple. No matches are found.

The example code demonstrates how to use a SPARQL query and an Optic query to fetch the
same information. For more details, see “Querying Semantic Triples With SPARQL” on page 204
and “Querying Triples with the Optic API” on page 208.

Before running the following program, modify the definition of the client and tripleFilename
variables to match your environment.

package examples;

import java.io.File;

import com.fasterxml.jackson.databind.JsonNode;
import com.marklogic.client.DatabaseClient;
import com.marklogic.client.DatabaseClientFactory;
import com.marklogic.client.document.JSONDocumentManager;
import com.marklogic.client.expression.PlanBuilder;
import com.marklogic.client.expression.PlanBuilder.Plan;
import com.marklogic.client.io.FileHandle;
import com.marklogic.client.io.Format;
import com.marklogic.client.io.JacksonHandle;
import com.marklogic.client.io.StringHandle;
import com.marklogic.client.row.RowManager;
import com.marklogic.client.row.RowRecord;
import com.marklogic.client.row.RowSet;
import com.marklogic.client.semantics.GraphManager;
import com.marklogic.client.semantics.RDFMimeTypes;
import com.marklogic.client.semantics.SPARQLQueryDefinition;
import com.marklogic.client.semantics.SPARQLQueryManager;
import com.marklogic.client.type.PlanPrefixer;

public class Graphs {
static DatabaseClient client = DatabaseClientFactory.newClient(

"localhost", 8000, "Documents",
new DatabaseClientFactory.DigestAuthContext(

"username", "password"));
static private GraphManager graphMgr = client.newGraphManager();
static private String graphURI = GraphManager.DEFAULT_GRAPH;
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 210

MarkLogic Server Working With Semantic Data
static private String tripleFilename = "/path/to/your/file.ttl";
static private String unmanagedTripleDocURI = "mothergoose.json";

// Load managed triples from a file into a graph in MarkLogic
public static void loadGraph(String filename, String graphURI, String

format) {
System.out.println("Creating graph " + graphURI);
FileHandle tripleHandle =

new FileHandle(new File(filename)).withMimetype(format);
graphMgr.write(graphURI, tripleHandle);

}

// Insert a document that includes an unmanaged triple.
public static void addUnmanagedTriple() {

System.out.println("Inserting doc containing an unmanaged triple...");

StringHandle contentHandle = new StringHandle(
"{ \"name\": \"Mother Goose\"," +

"\"triple\" : {" +
"\"subject\" :

\"http://example.org/marklogic/person/Mother_Goose\"," +
"\"predicate\" :

\"http://example.org/marklogic/predicate/livesIn\"," +
"\"object\" : {" +

"\"value\" : \"London\"," +
"\"datatype\" :

\"http://www.w3.org/2001/XMLSchema#string\"" +
"} } }").withFormat(Format.JSON);

JSONDocumentManager jdm = client.newJSONDocumentManager();
jdm.write(unmanagedTripleDocURI, contentHandle);

}

public static void deleteUnmanagedTriple() {
System.out.println("Removing doc containing unmanaged triple...");

JSONDocumentManager jdm = client.newJSONDocumentManager();
jdm.delete(unmanagedTripleDocURI);

}

public static void readGraph(String graphURI, String format) {
System.out.println("Reading graph " + graphURI);
StringHandle triples =

graphMgr.read(graphURI, new StringHandle().withMimetype(format));

System.out.println(triples);
}

// Delete a graph. Unmmanaged triples are unaffected.
public static void deleteGraph(String graphURI) {

System.out.println("Deleting graph " + graphURI);
graphMgr.delete(graphURI);

}

// Evaluate a SPARQL query.
public static void sparqlQuery() {

SPARQLQueryManager qm = client.newSPARQLQueryManager();
SPARQLQueryDefinition query = qm.newQueryDefinition(
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 211

MarkLogic Server Working With Semantic Data
"SELECT ?person " +
"WHERE { ?person

<http://example.org/marklogic/predicate/livesIn> \"London\" }"
);

JsonNode results =
qm.executeSelect(query, new JacksonHandle()).get();

JsonNode matches = results.path("results").path("bindings");
System.out.println("SPARQL: Persons who live in London:");
for (int i = 0; i < matches.size(); i++) {

String subject =
matches.get(i).path("person").path("value").asText();

System.out.println(" " + subject);
}

}

public static void opticQuery() {
RowManager rowMgr = client.newRowManager();
PlanBuilder pb = rowMgr.newPlanBuilder();
PlanPrefixer predPrefixer =

pb.prefixer("http://example.org/marklogic/predicate/");
Plan plan = pb.fromTriples(

pb.pattern(
pb.col("person"),
predPrefixer.iri("livesIn"),
pb.xs.string("London")));

RowSet<RowRecord> results = rowMgr.resultRows(plan);
System.out.println("OPTIC: Persons who live in London:");
for (RowRecord row: results) {

System.out.println(" " + row.getString("person"));
}

}

public static void main(String[] args) {
loadGraph(tripleFilename, graphURI, RDFMimeTypes.TURTLE);
readGraph(graphURI, RDFMimeTypes.TURTLE);

// Query the graph for persons who live in London.
// Should find 2 matches.
sparqlQuery();

// Add a document containing an unmanaged triple. Query again.
// Should find 3 matches.
addUnmanagedTriple();
sparqlQuery();

// Perform the same query using the Optic API
opticQuery();

// Delete the created graph. Unmanaged triple remains.
// Query should find 1 match.
deleteGraph(graphURI);
sparqlQuery();
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 212

MarkLogic Server Working With Semantic Data
// Remove the document containing the unmanaged triple.
// Query should find no matches.
deleteUnmanagedTriple();
sparqlQuery();

client.release();
}

}

When you run the example, you should see output similar to the following. Whitespace has been
added to the output to more easily distinguish between the operations.

Creating graph com.marklogic.client.semantics.GraphManager.DEFAULT_GRAPH
@prefix p1: <http://example.org/marklogic/predicate/> .
@prefix p0: <http://example.org/marklogic/person/> .
p0:Jane_Smith p1:livesIn "London" .
p0:Jack_Smith p1:livesIn "Glasgow" .
p0:John_Smith p1:livesIn "London" .

SPARQL: Persons who live in London:
http://example.org/marklogic/person/Jane_Smith
http://example.org/marklogic/person/John_Smith
http://example.org/marklogic/person/Mother_Goose

Inserting a document containing an unmanaged triple...
SPARQL: Persons who live in London:

http://example.org/marklogic/person/Jane_Smith
http://example.org/marklogic/person/John_Smith
http://example.org/marklogic/person/Mother_Goose

OPTIC: Persons who live in London:
http://example.org/marklogic/person/Jane_Smith
http://example.org/marklogic/person/John_Smith
http://example.org/marklogic/person/Mother_Goose

Deleting graph com.marklogic.client.semantics.GraphManager.DEFAULT_GRAPH
SPARQL: Persons who live in London:

http://example.org/marklogic/person/Mother_Goose

Removing document containing unmanaged triple...
SPARQL: Persons who live in London:

7.7 Using SPARQL Update to Manage Graphs and Graph Data
You can use SPARQL Update to insert, update, or delete triples and graphs, as an alternative to
the graph management interface described in “Creating and Managing Graphs” on page 198. You
cannot use SPARQL Update to operate on unmanaged triples.

To learn about SPARQL Update, see SPARQL Update in the Semantics Developer’s Guide.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 213

MarkLogic Server Working With Semantic Data
To use SPARQL Update with the Java Client API, follow the same procedure as for SPARQL
query, but initialize your SPARQLQueryDefinition with update rather than query code, and use
SPARQLQueryManager.executeUpdate to evaluate the update. For details, see “Basic Steps for
SPARQL Query Evaluation” on page 204.

For example, the following code adds a single triple to the default graph. You can add this
function to the example framework in “Example: Loading, Managing, and Querying Triples” on
page 209 to experiment with SPARQL Update.

public static void sparqlUpdate() {
SPARQLQueryManager qm = client.newSPARQLQueryManager();
SPARQLQueryDefinition query = qm.newQueryDefinition(

"PREFIX exp: <http://example.org/marklogic/people/>" +
"PREFIX pre: <http://example.org/marklogic/predicate/>" +
"INSERT DATA {" +
" exp:Humpty_Dumpty pre:livesIn \"London\" ." +
" }"

);
System.out.println("Inserting a triple using SPARQL Update");
qm.executeUpdate(query);

}

A successful SPARQL Update returns no results.

You can bind variables to values using the procedure described in “Defining Variable Bindings”
on page 207.

7.8 Managing Permissions
Permissions on semantic data are managed at either the graph or document level, depending on
whether the triples are managed or unmanaged. Querying and reading semantic data requires read
permissions on either the containing graph (managed triples) or document (unmanaged triples).

This section covers the following topics related to controlling permissions on semantic data:

• Default Graph Permissions and Required Privileges

• Setting Graph Permissions

• Retrieving Graph Permissions

• Managing Permissions on Unmanaged Triples

7.8.1 Default Graph Permissions and Required Privileges
All graphs created and managed using the Java, REST, or Node.js Client APIs grant “read”
capability to the rest-reader role and “update” capability to the rest-writer role. These default
permissions are always assigned to a graph, even if you do not explicitly specify them.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 214

MarkLogic Server Working With Semantic Data
If you explicitly specify other permissions when creating a graph, the default permissions are still
set, in addition to the permissions you specify.

You can use custom roles to limit access to selected users on a graph by graph basis. Your custom
roles must include equivalent rest-reader and rest-writer privileges. Otherwise, users with
these roles cannot use the Java Client API to manage or query semantic data. For details, see
Controlling Access to Documents and Other Artifacts in the REST Application Developer’s Guide.

For more information on the MarkLogic security model, see the Security Guide.

7.8.2 Setting Graph Permissions
When you create a graph with the Java Client API, MarkLogic assigns a set of default
permissions, even if you do not specify any explicit permissions; for details, see “Default Graph
Permissions and Required Privileges” on page 214. You can modify permissions on a graph as a
standalone operation or as part of another operation, such as when creating or merging graphs.

Graph permissions are encapsulated in a GraphPermissions object. To create a set of graph
permissions, use GraphManager.newGraphPermissions or GraphManager.permission.

To modify permissions standalone, use the following GraphManager methods:

• GraphManager.writePermissions

• GraphManager.mergePermissions

• GraphManager.deletePermissions

To modify permissions as part of another operation, such as GraphManager.write or
GraphManager.merge, include a GraphPermissions object in your call.

The following example sets the permissions on the graph with URI “myExample/graphUri”. The
code grants the role “example_manager” read and update permissions on the graph.

graphMgr.writePermissions("myExample/graphUri",
graphMgr.permission("example_manager", Capability.READ)

.permission("example_manager", Capability.UPDATE));

The following example sets the graph permissions as part of a graph merge operation:

graphMgr.merge(
"myExample/graphUri", someTriplesHandle,
graphManager.permission("role1", Capability.READ)

.permission("role2", Capability.READ, Capability.UPDATE));
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 215

MarkLogic Server Working With Semantic Data
7.8.3 Retrieving Graph Permissions
To retrieve permissions metadata for a named graph or the default graph, use
GraphManager.getPermissions. Explore the resulting GraphPermissions object using Map
operations. The Map keys are role names, such as “rest-reader”, and the values are the
capabilities.

For example, the following code fetches the permissions on the default graph and prints the
capabilities associated with the “rest-reader” role:

GraphPermissions permissions =
graphMgr.getPermissions(GraphManager.DEFAULT_GRAPH);

System.out.println(permissions.get("rest-reader");

7.8.4 Managing Permissions on Unmanaged Triples
Unmanaged triples are stored in documents, alongside other content, rather than being inserted
into the triple store. You control access to unmanaged triples through the permissions on the
documents that contain them.

For example, a SPARQL query will only return a matching unmanaged triple if the user running
the query has read permissions on the document that contains the triple.

Permissions are considered document metadata. Set permissions using the DocumentManager
interface and a MetadataHandle. For example, set permissions using
DocumentMetadataHandle.setPermissions, and then including the metadata handle in a call to
DocumentManager.write. For more details, see “Reading, Modifying, and Writing Metadata” on
page 43.

For more information document permissions, see Protecting Documents in the Security Guide.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 216

MarkLogic Server Working With Semantic Data
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 217

MarkLogic Server Optic Java API for Relational Operations

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 218

8.0 Optic Java API for Relational Operations
225

The MarkLogic Optic API is implemented in JavaScript, XQuery, REST, and Java. A general
overview and the JavaScript and XQuery implementations of the Optic API is described in Optic

API for Multi-Model Data Access in the Application Developer’s Guide. This chapter describes the
Java Client implementation of the Optic API, which is very similar in structure to the JavaScript
version of the Optic API.

This chapter has the following main sections:

• Overview

• Getting Started

• Java Packages

• Structure of the Java Optic API

• Examples

8.1 Overview
The Optic Java Client API provides classes to support building a plan on the client, executing the
plan on the server, and processing the response on the client.

On the server, the Optic API can yield a row that satisfies any of several common use cases:

• A traditional flat list of atomic values with names and XML Schema atomic datatypes.

• A dynamic JSON or XML document with substructure and leaf atomic values or mixed
text.

• An envelope with out-of-band metadata properties and relations for a list of documents.

The second use case can take advantage of document joins or constructor expressions. The third
use case can take advantage of document joins.

On the client, the Optic Java Client API can consume a set of rows in one of the following ways:

• As a single CSV, JSON, or XML payload with all of the rows in the set.

• By iterating over each row with a Java map key-value interface, a pre-defined Plain Old
Java Object (POJO) tree structure, or a JSON or XML document structure.

A structured value in a format alien to the response format is encoded as a string. In particular,
when getting a CSV payload, a JSON or XML column value is encoded as a string. Similarly,
when getting a JSON payload or row, an XML value is encoded as a string (and vice versa).

8.2 Getting Started
The Optic Java Client communicates with a REST App Server on MarkLogic.

MarkLogic Server Optic Java API for Relational Operations

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 219

1. Download the MarkLogic Java Client API to your client system and configure, as
described in “Getting Started” on page 14.

2. You can use the preconfigured REST App Server at port 8000, as described in “Choose a
REST API Instance” on page 15, however it is generally better that you create your own
REST App Server. You can use the POST:/v1/rest-apis call to quickly and conveniently
create a REST App Server. For example, to create a REST App Server, named Optic, on a
server named MLserver, you can simply enter:

curl -X POST --anyauth -u admin:admin -H
"Content-Type:application/json" \
-d '{
 "rest-api": {"name": "Optic"}
}' \
http://MLserver:8002/v1/rest-apis

The Optic App Server will be assigned an unused port number and all of the required
forests and databases will be created for it. The Optic database created for you will use the
default Schemas database. However, you should create a unique schemas database and
assign it to the Optic database.

To run the examples described in this chapter, do the following:

1. Follow the steps in Load the Data in the SQL Data Modeling Guide to load the sample
documents into the database. Use the database associated with your REST API instance
(Optic) rather than the one used in the procedure.

2. Follow the stops in Create Template Views in the SQL Data Modeling Guide to create views
and insert the template view documents into the schema database assigned to the Optic
database.

8.3 Java Packages
The following packages implement the Optic features in the Java API:

Package Description

com.marklogic.client.expression Provides classes for building Optic plan pipelines and
expressions for execution on the REST server.

com.marklogic.client.row Provides classes for sending plan requests to and
processing row responses from the REST server.

com.marklogic.client.type Provides interfaces that specify the type of an expression
or value passed to a PlanBuilder method or returned
from a RowRecord method.

MarkLogic Server Optic Java API for Relational Operations

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 220

See the MarkLogic Java API JavaDoc reference for details.

8.4 Structure of the Java Optic API
The Java Optic API is similar to the server-side JavaScript and XQuery implementations of the
Optic API described in Optic API for Multi-Model Data Access in the Application Developer’s Guide.
This chapter describes the Java Client implementation of the Optic API, which is similar in
structure.

The Optic API for Multi-Model Data Access chapter in the Application Developer’s Guide contains
the following main topics of interest to Java Optic developers:

• Objects in an Optic Pipeline

• Data Access Functions

• Kinds of Optic Queries

• Expression Functions For Processing Column Values

• Functions Equivalent to Boolean, Numeric, and String Operators

• Node Constructor Functions

• Best Practices and Performance Considerations

• Optic Execution Plan

• Parameterizing a Plan

• Exporting and Importing a Serialized Optic Query

8.4.1 Values and Expressions
The *Val interfaces represent client-side values typed with server data types. For example, the
PlanBuilder.xs.decimal method constructs a client value with an xs.decimal data type.

The *Expr interfaces represent server expressions typed with server data types. For example, the
PlanBuilder.fn.formatNumber method constructs a server expression to format the result of a
numeric expression as a string expression.

Server expressions executed to produce the boolean expression for a where operation or the
expression assigned to a column by the PlanBuilder.as function can take columns as arguments.
The function call calculates the result of the expression for each row using the values of the
columns in the row. For example, if the first argument to PlanBuilder.fn.formatNumber is a
column, the formatted string will be produced for each row with the value of the column. The
column must have a value in each row with the data type required in the expression.

The API provides some overloads for typical literal arguments of expression functions as a
convenience.

/javadoc/client/index.html

MarkLogic Server Optic Java API for Relational Operations

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 221

The com.marklogic.client.type package has the marker interfaces for the server data types.

8.4.2 Items and Sequences
Some functions can take multiple values or expressions for a parameter. Such parameters have a
sequence data type. A sequence data type can take either a single item of the data type or a
sequence of the data type. The API provides constructor functions that take a varargs of items of
the appropriate data type and return the sequence.

For instance, PlanBuilder.pattern takes a sequence for the subject, predicate, and object
parameters.

The call can pass either one PlanTriplePosition instance (an XsAnyAtomicTypeVal, PlanColumn, or
PlanParamExpr object) as the subject or use PlanBuilder.subject to construct a sequence of such
objects to pass as the subject.

8.4.3 Atomic Values and Nodes in RowRecord
RowRecord provides the getKind metadata method for discovering the ColumnKind of a column in
the current row (ATOMIC_VALUE, CONTENT, or NULL).

For an ATOMIC_VALUE column, the getDatatype metadata method reports the atomic data
type.

You can call a get* getter to cast the value to the appropriate primitive or to a *Val type.

For a CONTENT column, the getContentFormat and getContentMimetype metadata methods
report the format and mime type. The caller can pass the appropriate handle to the getContent
getter to read the JSON, XML, binary, or text content (consistent with the Java API elsewhere).

8.5 Examples
The following two examples are based on documents and template views described in the Creating

Template Views chapter in the SQL Data Modeling Guide.

List all of the employees in order of ID number.

package Optic;

import com.marklogic.client.DatabaseClient;
import com.marklogic.client.DatabaseClientFactory;
import com.marklogic.client.io.StringHandle;
import com.marklogic.client.expression.PlanBuilder;
import com.marklogic.client.expression.PlanBuilder.ModifyPlan;
import com.marklogic.client.row.RowManager;

public class optic4 {
 public static void main(String[] args) {
 DatabaseClient db = DatabaseClientFactory.newClient(

MarkLogic Server Optic Java API for Relational Operations

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 222

 "localhost", 8000,
 new DatabaseClientFactory.DigestAuthContext("admin", "admin")
);

 RowManager rowMgr = db.newRowManager();
 PlanBuilder p = rowMgr.newPlanBuilder();

 ModifyPlan plan = p.fromView("main", "employees")
 .select("EmployeeID", "FirstName", "LastName")
 .orderBy("EmployeeID")
 .offsetLimit(0, 25);

 System.out.println(
 rowMgr.resultDoc(plan,
 new StringHandle().withMimetype("text/csv")).get()
);

 return;
 }
}

Return the ID and full name for the employee with an EmployeeID of 3.

package Optic;

import com.marklogic.client.DatabaseClient;
import com.marklogic.client.DatabaseClientFactory;
import com.marklogic.client.io.StringHandle;
import com.marklogic.client.expression.PlanBuilder;
import com.marklogic.client.expression.PlanBuilder.ModifyPlan;
import com.marklogic.client.row.RowManager;
import com.marklogic.client.type.XsIntVal;

public class optic {

 public static void main(String[] args) {
 DatabaseClient db = DatabaseClientFactory.newClient(
 "MLserver", 8000,
 new DatabaseClientFactory.DigestAuthContext("admin", "admin")
);

 RowManager rowMgr = db.newRowManager();
 PlanBuilder p = rowMgr.newPlanBuilder();
 XsIntVal EmployeeID = p.xs.intVal(3);

 ModifyPlan plan = p.fromView("main", "employees")
 .where(p.eq(p.col("EmployeeID"), EmployeeID))
 .select("EmployeeID", "FirstName", "LastName")
 .orderBy("EmployeeID");

 System.out.println(
 rowMgr.resultDoc(plan,
 new StringHandle().withMimetype("text/csv")).get()

MarkLogic Server Optic Java API for Relational Operations

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 223

);

 return;
 }
}

The following example returns a list of the people who were born in Brooklyn in the form of a
table with two columns, person and name. This is executed against the example dataset described
in Loading Triples in the Semantics Developer’s Guide. This example is the Java equivalent of the
last JavaScript example described in fromView Examples in the Optic API for Multi-Model Data Access
chapter in the Application Developer’s Guide.

package Optic;

import com.marklogic.client.DatabaseClient;
import com.marklogic.client.DatabaseClientFactory;
import com.marklogic.client.DatabaseClientFactory.DigestAuthContext;
import com.marklogic.client.io.StringHandle;
import com.marklogic.client.expression.PlanBuilder;
import com.marklogic.client.row.RowManager;
import com.marklogic.client.type.PlanColumn;

public class optic2 {

 public static void main(String[] args) {
 DatabaseClient db = DatabaseClientFactory.newClient(
 "localhost", 8000,
 new DigestAuthContext("admin", "admin")
);
 RowManager rowMgr = db.newRowManager();
 PlanBuilder p = rowMgr.newPlanBuilder();

 PlanBuilder.Prefixer foaf =
 p.prefixer("http://xmlns.com/foaf/0.1");
 PlanBuilder.Prefixer onto =
 p.prefixer("http://dbpedia.org/ontology");
 PlanBuilder.Prefixer resource =
 p.prefixer("http://dbpedia.org/resource");

 PlanColumn person = p.col("person");

 PlanBuilder.QualifiedPlan plan = p.fromTriples(
 p.pattern(person, onto.iri("birthPlace"),
 resource.iri("Brooklyn")),
 p.pattern(person, foaf.iri("name"), p.col("name"))
);

 System.out.println(
 rowMgr.resultDoc(plan,
 new StringHandle().withMimetype("text/csv")).get()
);

 return;

MarkLogic Server Optic Java API for Relational Operations

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 224

 }
}

MarkLogic Server Optic Java API for Relational Operations

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 225

MarkLogic Server POJO Data Binding Interface
9.0 POJO Data Binding Interface
251

You can use the Java Client API to persist POJOs (Plain Old Java Objects) as documents in a
MarkLogic database. This feature enables you to apply the rich MarkLogic Server search and data
management features to the Java objects that represent your application domain model without
explicitly converting your data to documents.

This chapter includes the following topics:

• Data Binding Interface Overview

• Limitations of the Data Binding Interface

• Annotating Your Object Definition

• Saving POJOs in the Database

• Retrieving POJOs from the Database By Id

• Example: Saving and Restoring POJOs

• Searching POJOs in the Database

• Example: Searching POJOs

• Retrieving POJOs Incrementally

• Removing POJOs from the Database

• Testing Your POJO Class for Serializability

• Troubleshooting

9.1 Data Binding Interface Overview
The data binding feature of the Java Client API enables your data to flow seamlessly between
application-level Java objects and JSON documents stored in a MarkLogic server. With the
addition of minimal annotations to your class definitions, you can store POJOs in the database,
search them with the full power of MarkLogic Server, and recreate POJOs from the stored
objects.

The Java Client API data binding interface uses the data binding capabilities of Jackson to convert
between Java objects and JSON. You can leverage Jackson annotations to fine tune the
representation of your objects in the database, but generally you should not need to. Not all
Jackson annotations are compatible with the Java Client API data binding capability. For details,
see “Limitations of the Data Binding Interface” on page 227.

The data binding capabilities of the Java Client API are primarily exposed through the
com.marklogic.client.pojo.PojoRepository interface. To get started with data binding, follow
these basic steps:
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 226

MarkLogic Server POJO Data Binding Interface
• For each Java class you want to bind to a database representation, add source code
annotations to your class definition that call out the Java property to be used as the object
id.

• Use a PojoRepository to save your objects in the database. You can create, read, update,
and delete persisted objects.

• Search your object data using a string (StringQueryDefinition) or structured query
(PojoQueryDefinition). You can use search to identify and retrieve a subset of the stored
POJOs.

The object id annotation is required. Additional annotations are available to support more
advanced features, such as identifying properties on which to create database indexes and latitude
and longitude identifiers for geospatial search. For details, see “Annotating Your Object
Definition” on page 227.

9.2 Limitations of the Data Binding Interface
You should be aware of the following restrictions and limitations of the data binding feature:

• The Data Bind interface is intended for use in situations where the in-database
representation of objects is not as important as using a POJO-first Java API.

If you have strict requirements for how your objects must be structured in the database,
use JacksonDatabindHandle with JSONDocumentManager and StructuredQueryBuilder
instead of the Data Binding interface.

• You can only persist and restore objects of consistent type.

That is, if you persist objects of type T, you must restore them and search them as type T.
For example, you cannot persist an object as type T and then restore it as a some type T'
that extends T, or vice versa.

• You cannot use the data binding interface with classes that contain inner classes.

• The object property you chose as the object id must not contain values that do not form
valid database URIs when serialized. You should choose object properties that have
atomic type, such as Integer, String, or Float, rather than a complex object type such as
Calendar.

• Though the Java Client API uses Jackson to convert between POJOs and JSON, not all
Jackson features are compatible with the Java Client API data binding capability. For
example, you can add Jackson annotations to your POJOs that result in objects not being
persisted or restored properly.

9.3 Annotating Your Object Definition
The data binding interface in the Java Client API is driven by simple annotations in your class
definitions. Annotations are of the form @annotationName. You can attach an annotation to a
public class field or a public getter or setter method.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 227

MarkLogic Server POJO Data Binding Interface
Every bound class requires at least an @Id annotation to define the object property that holds the
object id. A bound POJO class must contain exactly one @Id annotation. Each object must have a
unique id.

Additional, optional annotations support powerful search features such as range and geospatial
queries.

For example, the following annotation says the object id should be derived from the getter
MyClass.getMyId. If you rely on setters and getters for object identity, your setters and getters
should follow the Java Bean convention.

import com.marklogic.client.pojo.annotation.Id;
public class MyClass {

Long myId;

@Id
public Long getMyId() {

return myId;
}

}

Alternatively, you can associated @Id with a member. The following annotation specifies that the
myId member holds the object id for all instances of myClass:

import com.marklogic.client.pojo.annotation.Id;
public class MyClass {

@Id
public Long myId;

}

Annotations can be associated with a member, a getter or a setter because an annotation decorates
a logical property of your POJO class.

The following table summarizes the supported annotations. For a complete list, see
com.marklogic.pojo.annotation in the JavaDoc.

Annotation Description

@Id The object identifier. The value in the @Id property or the
value returned by the @Id method is used to generate a
unique database URI for each persistent object of the
class. Each object must have a unique id. Each POJO
class may have only one @Id.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 228

MarkLogic Server POJO Data Binding Interface
9.4 Saving POJOs in the Database
Use PojoRepository.write to insert or update POJOs in a MarkLogic database. Your POJO class
definition must include at least an @Id annotation and each object must have a unique id.

The class whose objects you want to persist must be serializable by Jackson. For details, see
“Testing Your POJO Class for Serializability” on page 249.

Use the following procedure to persist POJOs in the database:

1. Ensure the class you want to work with includes at least an @Id annotation, as described in
“Annotating Your Object Definition” on page 227.

1. If you have not already done so, create a com.marklogic.client.DatabaseClient object.
For example, if using digest authentication:

DatabaseClient client = DatabaseClientFactory.newClient(
host, port, new DigestAuthContext(username, password));

2. Create a PojoRepository object associated with the class you want to bind. For example, if
you want to bind the class named MyClass and the @Id annotation in MyClass identifies a
field or method return type of type Long, create a repository as follows:

@PathIndexProperty Identifies a property for which a path range index is
required. Any property on which you perform range
queries must be indexed. For details, see “Creating
Indexes from Annotations” on page 236.

@GeospatialLatitude Identifies the property that contains the geospatial
latitude coordinate value, in support of a geospatial
element pair index. For details, see “Creating Indexes
from Annotations” on page 236.

@GeospatialLongitude Identifies the property that contains the geospatial
longitude coordinate value, in support of a geospatial
element pair index. For details, see “Creating Indexes
from Annotations” on page 236.

@GeoSpatialPathIndexProperty Identifies a property for which a geospatial point path
range index is required. Any property on which you
perform geospatial point queries must be indexed. For
details, see “Creating Indexes from Annotations” on
page 236.

Annotation Description
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 229

MarkLogic Server POJO Data Binding Interface
PojoRepository myClassRepo =
client.newPojoRepository(MyClass.class, Long.class);

3. Call PojoRepository.write to save objects to the database. For example:

MyClass obj = new MyClass();
myClass.setId(42);

myClassRepo.write(obj);

4. When you are finished with the database, release the connection.

client.release();

For a working example, see “Example: Saving and Restoring POJOs” on page 231.

To load POJOs from the database into your application, use PojoRepository.read or
PojoRepository.search. For details, see “Retrieving POJOs from the Database By Id” on
page 230 and “Searching POJOs in the Database” on page 232

9.5 Retrieving POJOs from the Database By Id
Use PojoRepository.read to load POJOs from the database into your application. You should
only use PojoRepository.read on objects created using PojoRepository.write.

Use the following procedure to load POJOs from the database by object id:

1. Ensure the class you want to work with includes at least an @Id annotation , as described in
“Annotating Your Object Definition” on page 227.

2. If you have not already done so, create a com.marklogic.client.DatabaseClient object.
For example, if using digest authentication:

DatabaseClient client = DatabaseClientFactory.newClient(
host, port, new DigestAuthContext(username, password));

3. Create a PojoRepository object associated with the class you want to work with. For
example, if you want to restore objects of the class named MyClass and the @Id annotation
in MyClass identifies a field or method return type of type Long, create a repository as
follows:

PojoRepository myClassRepo =
client.newPojoRepository(MyClass.class, Long.class);

4. Call PojoRepository.read to restore one or more objects from the database. For example:

MyClass obj = myClassRepo.read(42);

PojoPage<MyClass> objs = myClassRepo.read(new Long[] {1,3,5});
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 230

MarkLogic Server POJO Data Binding Interface
5. When you are finished with the database, release the connection.

client.release();

For a working example, see “Example: Saving and Restoring POJOs” on page 231.

To restore POJOs from the database using criteria other than object id, see “Searching POJOs in
the Database” on page 232.

9.6 Example: Saving and Restoring POJOs
The following example saves several objects of type MyType to the database, recreates them as
POJOs by reading them by id from the database, and then prints out the contents of the restored
objects.

The objects are written to the database by calling PojoRepository.write and read back using
PojoRepository.read. In this example, the objects are read back by id. You can retrieve objects by
searching for a variety of object features. For details, see “Searching POJOs in the Database” on
page 232.

package examples;

import com.marklogic.client.DatabaseClient;
import com.marklogic.client.DatabaseClientFactory;
import com.marklogic.client.DatabaseClientFactory.DigestAuthContext;
import com.marklogic.client.pojo.PojoPage;
import com.marklogic.client.pojo.PojoRepository;
import com.marklogic.client.pojo.annotation.Id;

public class PojoExample {
 private static DatabaseClient client =
DatabaseClientFactory.newClient(

"localhost", 8000, new DigestAuthContext(user, password));

// The POJO class
 static public class MyClass {
 Integer myId;
 String otherData;

 public MyClass() { myId = 0; otherData = ""; }
 public MyClass(Integer id) { myId = id; otherData = ""; }
 public MyClass(Integer id, String data) {

myId = id; otherData = data;
}

 @Id
 public int getMyId() { return myId; }
 public void setMyId(int id) { myId = id; }

 public String getOtherData() { return otherData; }
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 231

MarkLogic Server POJO Data Binding Interface
 public void setOtherData(String data) { otherData = data; }

 public String toString() {
 return "myId=" + getMyId() + " " +
 "otherData=\"" + getOtherData() + "\"";
 }
 }

static void tryPojos() {
 PojoRepository<MyClass,Integer> repo =
 client.newPojoRepository(MyClass.class, Integer.class);
 Integer ids[] = {1, 2, 3};
 String data[] = {"a", "b", "c"};

// Save objects in the database
 for (int i = 0; i < ids.length; i++) {
 repo.write(new MyClass(ids[i], data[i]));
 }

// Restore objects from the database by id
 PojoPage<MyClass> outputObjs = repo.read(ids);
 while (outputObjs.hasNext()) {
 MyClass obj = outputObjs.next();
 System.out.println(obj.toString());
 }
 }

 public static void main(String[] args) {
 tryPojos();

client.release();
 }
}

9.7 Searching POJOs in the Database
You can use PojoRepository.search to search POJOs in the database that match a query. A rich
set of query capabilities is available, including full text search using a simple string query
grammar and more finely controllable search using structured query.

This section covers concept and procedural information on searching POJOs. For a complete
example, see “Example: Searching POJOs” on page 240.

This section covers the following topics:

• Basic Steps for Searching POJOs

• Full Text Search with String Query

• Search Using Structured Query

• How Indexing Affects Searches

• Creating Indexes from Annotations
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 232

MarkLogic Server POJO Data Binding Interface
9.7.1 Basic Steps for Searching POJOs
This section describes the basic process for searching POJOs. The variations are in how you
express your search criteria.

Note: You should only use PojoRepository.search on objects created using
PojoRepository.write. Using it to search JSON documents created in a different
way can lead to errors.

1. Ensure the class you want to work with includes at least an @Id annotation, as described in
“Annotating Your Object Definition” on page 227.

2. If you have not already done so, create a com.marklogic.client.DatabaseClient object.
For example, if using digest authentication:

DatabaseClient client = DatabaseClientFactory.newClient(
host, port, new DigestAuthContext(username, password));

3. Create a PojoRepository object associated with the class you want to work with. For
example, if you want to restore objects of the class named MyClass and the @Id annotation
in MyClass identifies a field or method return type of type Long, create a repository as
follows:

PojoRepository<MyClass, Long> myClassRepo =
client.newPojoRepository(MyClass.class, Long.class);

4. Optionally, set the limit on the number of matching objects to return. The default is 10
objects.

myClassRepo.setPageLength(5);

5. Create a StringQueryDefinition or StructuredQueryDefinition that represents the
objects you want to find.

a. For a string query, create a StringQueryDefinition using a QueryManager object. For
details, see “Full Text Search with String Query” on page 234. For example, the following
query performs a full text search for the phrase “dog”:

QueryManager qm = client.newQueryManager();
StringQueryDefinition query =

qm.newStringDefinition().withCriteria("dog");

b. For a structured query, use PojoRepository.getQueryBuilder to create a query builder, and
then use the query builder to create your query. For details, see “Search Using Structured
Query” on page 234. For example, the following query matches objects whose
“otherData” property value is “dog”:

StructuredQueryDefinition query =
myClassRepo.getQueryBuilder().value("otherData", "dog");
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 233

MarkLogic Server POJO Data Binding Interface
6. Call PojoRepository.search to find matching objects in the database. Set the start
parameter to 1 to retrieve results beginning with the first match, or set it to higher value to
return subsequent pages of results, as described in “Retrieving POJOs Incrementally” on
page 249.

PojoPage<MyClass> matchingObjs = repo.search(query,1);
while (matchingObjs.hasNext()) {

MyClass ojb = matchingObjs.next();
...

}

7. When you are finished with the database, release the connection.

client.release();

Matching objects are returned as a PojoPage, which represents a limited number of results. You
may not receive all results in a single page if you read a large number objects. You can fetch the
matching objects in batches, as described in “Retrieving POJOs Incrementally” on page 249. You
can configure the page size using PojoRepository.setPageLength.

9.7.2 Full Text Search with String Query
A string query is a plain text search string composed of terms, phrases, and operators that can be
easily composed by end users typing into an application search box. For example, 'cat AND dog'
is a string query for finding documents that contain both the term 'cat' and the term 'dog'. For
details, see The Default String Query Grammar in the Search Developer’s Guide.

Using a string query to search POJOs performs a full text search. That is, matches can occur
anywhere in an object.

For example, if the sample data contains an object whose “title” property is “Leaves of Grass” and
another object whose “author” property is “Munro Leaf”, then the following search matches both
objects. (The search term “leaf” matches “leaves” because string search uses stemming by
default.)

QueryManager qm = client.newQueryManager();
StringQueryDefinition query =

qm.newStringDefinition().withCriteria("leaf");
PojoPage<Book> matches = repo.search(query, 1);

For a complete example, see “Searching POJOs in the Database” on page 232.

9.7.3 Search Using Structured Query
A structured query is an Abstract Syntax Tree representation of a search expression. You can use
structured query to build up a complex query from a rich set of sub-query types. For example,
structured query enables you to search specific object properties.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 234

MarkLogic Server POJO Data Binding Interface
Use PojoQueryBuilder to create structured queries over your persisted POJOs. Though you can
create structured queries in other ways, using a PojoQueryBuilder enables you to create queries
without knowing the details of how your objects are persisted in the database or the syntax of a
structured query. Also, PojoQueryBuilder exposes only those structured query capabilities that are
applicable to POJOs.

To create a PojoQueryBuilder, use PojoRepository.getQueryBuilder to create a builder. For
example:

PojoQueryBuilder<Person> qb = repo.getQueryBuilder();

Use the methods of PojoQueryBuilder to create complex, compound queries on your objects,
equivalent to structured query constructs such as and-query, value-query, word-query,
range-query, container-query, and geospatial queries. For details, see Structured Query Concepts
in the Search Developer’s Guide.

To match data in objects nested inside your top level POJO class, use
PojoQueryBuilder.containerQuery (or PojoQueryBuilder.containerQueryBuilder) to constrain a
query or sub-query to a particular sub-object.

For example, suppose your objects have the following structure:

public class Person {
public Name name;

}
public class Name {

public String firstName;
public String lastName;

}

The following search matches the term “john” in Person objects only when it appears somewhere
in the name object. It matches occurrences in either firstName or lastName.

PojoQueryBuilder qb = repo.getQueryBuilder();
PojoPage<Person> matches = repo.search(

qb.containerQuery("name", qb.term("john")), 1);

The following query further constrains matches to occurrences in the lastName property of name.

qb.containerQuery("name",
qb.containerQuery("lastName", qb.term("john")))

For a complete example, see “Searching POJOs in the Database” on page 232.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 235

MarkLogic Server POJO Data Binding Interface
9.7.4 How Indexing Affects Searches
You can search POJOs with many query types without defining any indexes. This enables you to
get started quickly. However, indexes are required for range queries (PojoQueryBuilder.range)
and can significantly improve search performance by enabling unfiltered search, as described
below.

A filtered search uses available indexes, if any, but then checks whether or not each candidate
meets the query requirements. This makes a filtered search accurate, but much slower than an
unfiltered search. An unfiltered search relies solely on indexes to identify matches, which is much
faster, but can result in false positives. For details, see Fast Pagination and Unfiltered Searches in
Query Performance and Tuning Guide.

By default, a POJO search is an unfiltered search. To force use of a filtered search, wrap your
query in a call to PojoQueryBuilder.filteredQuery. For example:

repo.search(builder.filteredQuery(builder.word("john")))

Unless your database is small or your query produces only a small set of pre-filtering results, you
should define an index over any object property used in a word, value, or range query. If your
search includes a range query, you must either have an index configured on each object property
used in the range query, or you must wrap your query in a call to PojoRepository.filteredQuery
to force a filtered search.

The POJO interfaces of the Java API include the ability to annotate object properties that should
be indexed, and then generate an index configuration from the annotation. For details, see
“Creating Indexes from Annotations” on page 236.

9.7.5 Creating Indexes from Annotations
As described in “How Indexing Affects Searches” on page 236, you should usually create indexes
on object properties used in range queries. Though no automatic index creation is provided, the
POJO interface can simplify index creation for you by generating index configuration information
from annotations.

Use the following procedure to create an index on an object property.

1. Attach an @PathIndexProperty annotation to each object property you want to index. You
can attach the annotation to a member, setter, or getter. Set scalarType to a value
compatible with the type of your object property. For example:

import com.marklogic.client.pojo.annotation.PathIndexProperty;

public class Person {
 ...

 @PathIndexProperty(scalarType=PathIndexProperty.ScalarType.INT)
 public int getAge() {
 return age;
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 236

MarkLogic Server POJO Data Binding Interface
 }
 ...
}

2. Run the com.marklogic.client.pojo.util.GenerateIndexConfig tool to generate an index
configuration for your application. For example, if you run the following command
against the example code in “Example: Searching POJOs” on page 240:

$ java com.marklogic.client.pojo.util.GenerateIndexConfig \
-classes "examples.Person examples.Name"
-file personIndexes.json

Then the following index configuration is saved to the file personIndexes.json.

{
 "range-path-index" : [{
 "path-expression" : "examples.Person/age",
 "scalar-type" : "int",
 "collation" : "",
 "range-value-positions" : "false",
 "invalid-values" : "ignore"
 }],
 "geospatial-path-index" : [],
 "geospatial-element-pair-index" : []
}

3. Use the generated index configuration to add the required indexes to the database in which
you store your POJOs. See below for details.

You can use the output from GenerateIndexConfig to add the required indexes to your database in
several ways, including the Admin Interface, the XQuery Admin API, and the Management
REST API.

The output from GenerateIndexConfig is suitable for immediate use with the REST Management
API method PUT:/manage/v2/databases/{id|name}/properties. However, be aware that this
interface overwrites all indexes in your database with the configuration in the request.

To use the output of GenerateIndexConfig to create indexes with the REST Management API, run
a command similar to the following. This example assumes you are using the Documents
database for your POJO store and that the file personIndexes.json was generated by
GenerateIndexConfig.

Warning The following command will replace all indexes in the database with the indexes
in personIndexes.json. Do not use this procedure if your database configuration
includes other indexes that should be preserved.

$ curl --anyauth --user user:password -X PUT -i
-H "Content-type: application/json" -d @./personIndexes.json \
http://localhost:8002/manage/LATEST/databases/Documents/properties
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 237

MarkLogic Server POJO Data Binding Interface
To create the required indexes with the REST Management API while preserving existing indexes
follow this procedure:

1. Use GET:/manage/v2/databases/{id|name}/properties to retrieve the current database
properties. For example, the following command saves the properties of the Documents
database to the file allProperties.json:

$ curl --anyauth --user user:password -X GET \
-H "Accept: application/json" -o allProperties.json
http://localhost:8002/manage/LATEST/databases/Documents/properties

2. Locate the indexes of the same types as those generated by GenerateIndexConfig in the
output from Step.

a. If there are no indexes of the same type as those generated by GenerateIndexConfig, you
can safely apply the generated configuration directly.

b. If there are existing indexes of the same type as those generated by
GeneratedIndexConfig, extract the existing indexes of that type from the output of Step 1
and combine this configuration information with the output from GenerateIndexConfig.
See the example below.

3. Use PUT:/manage/v2/databases/{id|name}/properties to install the merged index
configuration. For example:

$ curl --anyauth --user user:password -X PUT -i
-H "Content-type: application/json" -d @./comboIndex.json \
http://localhost:8002/manage/LATEST/databases/Documents/properties

For example, suppose GenerateIndexConfig generates the following output, which includes one
path range index on Person.age and no geospatial indexes.

{
 "range-path-index" : [{
 "path-expression" : "examples.Person/age",
 "scalar-type" : "int",
 "collation" : "",
 "range-value-positions" : "false",
 "invalid-values" : "ignore"
 }],
 "geospatial-path-index" : [],

"geospatial-region-path-indexes" : [],
 "geospatial-element-pair-index" : []
}

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 238

MarkLogic Server POJO Data Binding Interface
Further suppose retrieving the current database properties reveals an existing range-path-index
setting such as the following:

$ curl --anyauth --user user:password -X GET \
-H "Accept: application/json" -o allProperties.json
http://localhost:8002/manage/LATEST/databases/Documents/properties

==> Properties saved to allProperties.json include the following:

{
 "database-name": "Documents",
 "forest": [
 "Documents"
],
 "security-database": "Security",

...
"range-path-index": [

 {
 "scalar-type": "string",
 "collation": "http://marklogic.com/collation/",
 "path-expression": "/some/other/data",
 "range-value-positions": false,
 "invalid-values": "reject"
 }
],

...
}

Then combining the existing index configuration with the generated POJO index configuration
results in the following input to PUT:/manage/v2/databases/{id|name}/properties. (You can
omit the generated geospatial-path-index, geospatial-region-path-index, and
geospatial-element-pair-index configurations in this case because they are empty.)

{ "range-path-index" : [
 {
 "path-expression" : "examples.Person/age",
 "scalar-type" : "int",
 "collation" : "",
 "range-value-positions" : "false",
 "invalid-values" : "ignore"
 },
 {
 "scalar-type": "string",
 "collation": "http://marklogic.com/collation/",
 "path-expression": "/some/other/data",
 "range-value-positions": false,
 "invalid-values": "reject"
 }
] }
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 239

MarkLogic Server POJO Data Binding Interface
As shown above, it is not necessary to merge the generated index configuration into the entire
properties file and reapply all the property settings. However, you can safely do so if you know
that none of the other properties have changed since you retrieved the properties.

For more information on the REST Management API, see the Monitoring MarkLogic Guide and
the Scripting Administrative Tasks Guide.

9.8 Example: Searching POJOs
The example in this section demonstrates using string and structured queries to search POJOs, as
well as pagination of search results. The following topics are covered:

• Overview of the Example

• Source Code

• Exploring the Example Queries

9.8.1 Overview of the Example
The example uses Person objects as POJOs. Each Person contains data such as name, age, gender,
unique id, and birthplace. The name is represented by a Name object that contains the first and last
name. Age is an integer value. Gender is an enumeration. The remaining properties are strings.
Thus, the data available for a person has the following conceptual structure:

name:
firstName: John
lastName: Doe

gender: MALE
age: 27
id: 123-45-6789
birthplace: Hometown, NY

The id object property is used as the unique POJO identifier.

The example is driven by the PeopleSearch class. Running PeopleSearch.main loads Person
objects into the database, performs several searches using string and structured queries, and then
removes the objects from the database.

The following methods are the operations of PeopleSearch.

• dbInit: Load Person objects into the database

• dbTeardown: Remove all Person objects from the database

• stringQuery: Perform a string query and print the first page of results

• doQuery: Perform a structured query and print the first page of results

The PeopleSearch class uses the helper methods stringQuery and doQuery to abstract the invariant
mechanics of the search from the query construction.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 240

MarkLogic Server POJO Data Binding Interface
The stringQuery and doQuery helper methods simply encapsulate the invariant parts of
performing a search and displaying the results in order to make it easier to focus on query
construction.

9.8.2 Source Code
This section contains the full source code for the example. Copy this code to files in order run the
example.

• Person Class Definition

• Name Class Definition

• PeopleSearch Class Definition

9.8.2.1 Person Class Definition
Person is the top level POJO class used by the example. Person.getId is annotated as the object
id. Additional annotations call out the need for an index on the age property so it can be used in
range queries.

Copy the following code into a file with the relative pathname examples/Person.java.

package examples;

import com.fasterxml.jackson.annotation.JsonIgnore;
import com.marklogic.client.pojo.annotation.Id;
import com.marklogic.client.pojo.annotation.PathIndexProperty;

public class Person {
 public Person() {}
 public Person(String first, String last, Gender gender,
 int age, String id, String birthplace) {
 this.name = new Name(first, last);
 this.age = age;
 this.id = id;
 this.gender = gender;
 this.birthplace = birthplace;
 }

 public Name getName() {
 return name;
 }
 public void setName(Name name) {
 this.name = name;
 }

 @PathIndexProperty(scalarType=PathIndexProperty.ScalarType.INT)
 public int getAge() {
 return age;
 }
 public void setAge(int age) {
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 241

MarkLogic Server POJO Data Binding Interface
 this.age = age;
 }

 @Id
 public String getSSN() {
 return id;
 }
 public void setSSN(String ssn) {
 this.id = ssn;
 }

 public Gender getGender() {
 return gender;
 }
 public void setGender(Gender gender) {
 this.gender = gender;
 }

 @JsonIgnore
 public String getFullName() {
 return this.name.getFullName();
 }

 public String getBirthplace() {
 return birthplace;
 }
 public void setBirthplace(String birthplace) {
 this.birthplace = birthplace;
 }

 enum Gender {MALE, FEMALE}

 private Name name;
 private Gender gender;
 private int age;
 private String id;
 private String birthplace;
}

9.8.2.2 Name Class Definition
The Name class exists to demonstrate searching sub-objects of your top level POJO class. Each
Person object contains a Name.

Copy the following code into a file with the relative pathname examples/Name.java.

package examples;

import com.fasterxml.jackson.annotation.JsonIgnore;
import com.marklogic.client.pojo.annotation.PathIndexProperty;

public class Name {
 public Name() { }
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 242

MarkLogic Server POJO Data Binding Interface
 public Name(String first, String last) {
 this.firstName = first;
 this.lastName = last;
 }

 @PathIndexProperty(scalarType=PathIndexProperty.ScalarType.STRING)
 public String getFirstName() {
 return firstName;
 }
 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 @PathIndexProperty(scalarType=PathIndexProperty.ScalarType.STRING)
 public String getLastName() {
 return lastName;
 }
 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 @JsonIgnore
 public String getFullName() {
 return this.firstName + " " + this.lastName;
 }

 private String firstName;
 private String lastName;
}

9.8.2.3 PeopleSearch Class Definition
PeopleSearch is the class that drives the examples. The main method loads Person POJOs into the
database, performs some searches, and then removes the POJOs from the database.

Copy the following code into a file with the relative path examples/PeopleSearch.java. Modify
the call to DatabaseClientFactory.newClient to use your connection information. You will need
to change at least the username and password parameter values.

package examples;

import com.marklogic.client.DatabaseClient;
import com.marklogic.client.DatabaseClientFactory;
import com.marklogic.client.DatabaseClientFactory.DigestAuthContext;
import com.marklogic.client.pojo.PojoPage;
import com.marklogic.client.pojo.PojoQueryBuilder;
import com.marklogic.client.pojo.PojoQueryBuilder.Operator;
import com.marklogic.client.pojo.PojoQueryDefinition;
import com.marklogic.client.pojo.PojoRepository;
import com.marklogic.client.query.QueryManager;
import com.marklogic.client.query.StringQueryDefinition;

import examples.Person.Gender;
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 243

MarkLogic Server POJO Data Binding Interface
public class PeopleSearch {
 private static DatabaseClient client = DatabaseClientFactory.newClient(
 "localhost", 8000, new DigestAuthContext(USER, PASSWORD));
 private static PojoRepository<Person,String> repo =
 client.newPojoRepository(Person.class, String.class);

 // The pojos to be stored in the database for searching
 private static Person people[] = {
 new Person("John", "Doe", Gender.MALE, 27, "123-45-6789", "Albany, NY"),
 new Person("John", "Smith",

Gender.MALE, 41, "234-56-7891", "Las Vegas, NV"),
 new Person("Mary", "John",

Gender.FEMALE, 19, "345-67-8912", "Norfolk, VA"),
 new Person("Jane", "Doe",

Gender.FEMALE, 72, "456-78-9123", "St. John, FL"),
 new Person("Sally", "St. John", Gender.MALE, 34,

"567-89-1234", "Reno, NV"),
 new Person("Kate", "Peters",

Gender.FEMALE, 17, "678-91-2345", "Denver, CO")
 };

 // Save the example pojos to the database
 static void dbInit() {
 // Save objects to the database
 for (int i = 0; i < people.length; i++) {
 repo.write(people[i]);
 }
 }

 // Remove the pojos from the database
 static void dbTeardown() {
 repo.deleteAll();
 }

 // Print one page of results
 static void printResults(PojoPage<Person> matchingObjs) {
 if (matchingObjs.hasContent()) {
 while (matchingObjs.hasNext()) {
 Person person = matchingObjs.next();
 System.out.println(" " + person.getFullName() + " from "
 + person.getBirthplace());
 }
 } else {
 System.out.println(" No matches");
 }
 System.out.println();
 }

 // Perform a structured query and print the first page of results
 public void doQuery(PojoQueryDefinition query) {
 printResults(repo.search(query,1));
 }

 // Perform a full text search and print first page of results
 public void stringQuery(String qtext) {
 QueryManager qm = client.newQueryManager();
 StringQueryDefinition query = qm.newStringDefinition().withCriteria(qtext);
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 244

MarkLogic Server POJO Data Binding Interface
 printResults(repo.search(query,1));
 }

 // Fetch all matches, one page at a time
 public void fetchAll(PojoQueryDefinition query) {
 PojoPage<Person> matches;
 int start = 1;
 do {
 matches = repo.search(query, start);
 System.out.println("Results " + start +

" thru " + (start + matches.size() - 1));
 printResults(matches);
 start += matches.size();
 } while (matches.hasNextPage());
 }

 public static void main(String[] args) {
 PeopleSearch ps = new PeopleSearch();

 // load the POJOs
 dbInit();

 // Perform a string query
 System.out.println("Full text search for 'john'");
 ps.stringQuery("john");

 System.out.println(

"Full text search for 'john' only where there is no 'NV'");
 ps.stringQuery("john AND -NV");

 // Perform structured queries
 PojoQueryBuilder<Person> qb = repo.getQueryBuilder();

 System.out.println("'john' appears anywhere in the person record");
 ps.doQuery(qb.term("john"));

 System.out.println("name contains 'john'");
 ps.doQuery(qb.containerQuery("name", qb.term("john")));

 System.out.println("last name exactly matches 'John'");
 ps.doQuery(qb.value("lastName","John"));

 System.out.println("last name contains the term 'john'");
 ps.doQuery(qb.word("lastName", "john"));

 System.out.println("First name or last name contains 'john'");
 ps.doQuery(

qb.containerQuery("name",
qb.or(qb.value("firstName", "John"),

qb.value("lastName", "John"))));

 System.out.println("'john' occurs in lastName property of name");
 ps.doQuery(

qb.containerQuery("name",
qb.containerQuery("lastName", qb.term("john"))));

 System.out.println("find all females");
 ps.doQuery(qb.value("gender", "FEMALE"));

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 245

MarkLogic Server POJO Data Binding Interface
 // This query requires the existence of a range index on age
 System.out.println("all persons older than 30");
 ps.doQuery(qb.range("age", Operator.GT, 30));

 // Demonstrate retrieving successive pages of results.
 // Page length is set artificially low to force multiple pages of results.
 repo.setPageLength(2);
 System.out.println("Retrieve multiple pages of results");
 ps.fetchAll(qb.range("age", Operator.GT, 30));

 // comment this line out to leave the objects in the database between runs
 dbTeardown();
 client.release();
 }
}

9.8.3 Exploring the Example Queries
This section provides an overview of the queries performed by the PeopleSearch example. The
searches are driven by the helper functions stringSearch and doQuery. These are simply wrappers
around PojoRepository.search to abstract the invariant parts of each search, such as displaying
the results. For example, the following call to doQuery:

ps.doQuery(qb.value("gender", "FEMALE"));

Is equivalent to the following code, fully unrolled. Additional calls to doQuery in the example vary
only by the query that is passed to PojoRepository.search.

PojoPage<Person> matchingObjs =
repo.search(qb.value("gender", "FEMALE"),1));

if (matchingObjs.hasContent()) {
while (matchingObjs.hasNext()) {
Person person = matchingObjs.next();
System.out.println(" " + person.getFullName() + " from " +

 person.getBirthplace());
}

} else {
System.out.println(" No matches");

}
System.out.println();

The example begins with some simple string queries. The table below describes the interesting
features of these queries.

Query Text Description

"john" Match the term "john" wherever it appears in the Person objects. The
match is not case-sensitive and will match portions of values, such as
“St. John”.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 246

MarkLogic Server POJO Data Binding Interface
The default treatment of case sensitivity in string queries is that phrases that are all lower-case are
matched case-insensitive. Upper case or mixed case phrases are handled in a case-sensitive
manner. You can control this behavior through the term query option; for details, see term in the
Search Developer’s Guide.

The remaining queries in the example are structured queries. The table below describes the key
characteristics of these queries.

"john AND -NV" Match Person objects that contain the phrase "john" and do not contain
"NV". The “-” operator is a NOT operator in string queries. Since the
search term “NV” is capitalized, that term is matched in a case-sensitive
manner. By contrast, the term “-nv” is a case-insensitive match that
would match “nv”, “NV”, “nV”, and “nV”.

Query Description

qb.term("john") Match the phrase "john" anywhere in the Person
objects. The match is not case-sensitive and will match
portions of values, such as “St. John”.

qb.containerQuery(
"name",
qb.term("john"))

Match the phrase "john" only in the value of the name
object property. Matches can be at any level within
name.

qb.value("lastName","John") Match objects whose lastName object property has the
exact value "John". Values such as "john" or "St.
John” do not match.

qb.word("lastName", "john") Match objects whose lastName object property value
includes the phrase "john". The match is not
case-sensitive and will match portions of values, such
as “St. John”.

The search does not recurse through sub-objects. For
example, since Person.name is an object,
qb.word("name", "john") finds no matches because it
will not look into the values of lastName and firstName
object properties.

The lastName object property can appear at any level.
That is, it is not restricted to occurrences within name.

Query Text Description
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 247

MarkLogic Server POJO Data Binding Interface
The final query in the example demonstrates pagination of query results, using the
PeopleSearch.fetchAll helper function. The query result page length is first set to 2 to force
pagination to occur on our small results. After this call, each call to PojoRepository.search or
PojoRepository.readAll will return at most 2 results.

repo.setPageLength(2);

The fetchAll helper function below repeatedly call PojoRepository.search (and prints out the
results) until there are no more pending matches. Each call to search includes the starting position
of the first match to return. This parameter starts out as 1, to retrieve the first match, and is
incremented each time by the number of matches on the fetched page (PojoPage.size). The loop
terminates when there are no more results (PojoPage.hasNextPage returns false).

public void fetchAll(PojoQueryDefinition query) {
 PojoPage<Person> matches;
 int start = 1;
 do {
 matches = repo.search(query, start);
 System.out.println("Results " + start +

" thru " + (start + matches.size() - 1));
 printResults(matches);
 start += matches.size();
 } while (matches.hasNextPage());
 }

qb.containerQuery(
"name",
qb.or(
qb.value("firstName","John"),
qb.value("lastName","John")))

Match objects whose lastName or firstName object
property is exactly "John". You can combine
arbitrarily complex queries together.

qb.containerQuery(
"name",
qb.containerQuery(
"lastName",
qb.term("john")))

Match objects whose name property contains a
lastName property that includes the phrase "john" at
any level.

qb.value("gender", "FEMALE") Match objects whose gender property is exactly the
value "FEMALE". The match must be exact.

qb.range("age", Operator.GT, 30) Match objects whose age property value is greater than
30. The database configuration must include a path
range index on age of type int. If a matching index is
not found, a XDMP-PATHRIDXNOTFOUND error occurs. For
details, see “How Indexing Affects Searches” on
page 236.

Query Description
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 248

MarkLogic Server POJO Data Binding Interface
9.9 Retrieving POJOs Incrementally
By default, when you retrieve POJOs using PojoRepository.read or PojoRepository.search, the
number of results returned is limited to one “page”. Paging results enables you to retrieve large
result sets without consuming undue resources or bandwidth.

The number of results per page is configurable on PojoRepository. The default page length is 10,
meaning at most 10 objects are returned. You can change the page length using
PojoRepository.setPageLength. When you’re reading POJOs by id, you can also retrieve an
unconstrained number of results by calling PojoRepository.readAll.

All PojoRepository methods for retrieving POJOs include a “start” parameter you can use to
specify the 1-based index of the first object to return from the result set. Use this parameter in
conjunction with the page length to iteratively retrieve all results.

For example, the following function fetches successive groups of Person objects matching a
query. For a runnable example, see “Example: Searching POJOs” on page 240.

public void fetchAll(PojoQueryDefinition query) {
 PojoPage<Person> matches;
 int start = 1;
 do {
 matches = repo.search(query, start);
 // ...do something with the matching objects...
 start += matches.size();
 } while (matches.hasNextPage());
 }

Both PojoRepository.search and PojoRepository.read return results in a PojoPage. Use the same
basic strategy whether fetching objects by id or by query.

A PojoPage can container fewer than PojoRepository.getPageLength objects, but will never
contain more.

9.10 Removing POJOs from the Database
You can delete POJOs from the database in two ways:

• By id, using PojoRepository.delete. You can specify one or more object ids.

• By POJO class, using PojoRepository.deleteAll.

Since a PojoRepository is bound to a specific POJO class, calling PojoRepository.deleteAll
removes all POJOs of the bound type from the database.

9.11 Testing Your POJO Class for Serializability
You can only use the data binding interfaces with Java POJO classes that can be serialized and
deserialized by Jackson. You can use a test such as the following to check whether or not your
POJO class is serializable.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 249

MarkLogic Server POJO Data Binding Interface
try {
String value = objectMapper.writeValueAsString(

new MyClass(42,"hello"));
MyClass newobj = objectMapper.readValue(value, MyClass.class);
// class is serializable if no exception is raised by objectMapper

} catch (Exception e) {
e.printStackTrace();

}

9.12 Troubleshooting
This section contains topics for troubleshooting errors and surprising behaviors you might
encounter while working with the POJO interfaces. The following topics are covered:

• Error: XDMP-UNINDEXABLEPATH

• Error: XDMP-PATHRIDXNOTFOUND

• Unexpected Search Results

9.12.1 Error: XDMP-UNINDEXABLEPATH
If you see an error similar to the following:

search failed: Internal Server Error. Server Message:
XDMP-UNINDEXABLEPATH: examples.PojoSearch$Person/id

Then you are probably using an object property of a nested class as the target of your @Id
annotation. You cannot use the POJO interfaces with nested classes.

Nested class names serialize with a “$” in their name, such as examples.PojoSearch$Person,
above. Path expressions with such symbols in them cannot be indexed.

9.12.2 Error: XDMP-PATHRIDXNOTFOUND
If you see an error similar to the following:

search failed: Bad Request. Server Message: XDMP-PATHRIDXNOTFOUND:
cts:search(...)

Then you need to configure a supporting index in the database in which you store your POJOs.
For details, see “How Indexing Affects Searches” on page 236 and “Creating Indexes from
Annotations” on page 236.

9.12.3 Unexpected Search Results
If your POJO search does not return the results you expect, you can dump out the serialization of
the query produced by PojoQueryBuilder to see if the resulting structured query is what you
expect. For example:
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 250

MarkLogic Server POJO Data Binding Interface
System.out.println(qb.range("age", Operator.GT, 30).serialize());
==>
<query xmlns="http://marklogic.com/appservices/search"

xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:search="http://marklogic.com/appservices/search"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<range-query type="xs:int">
<path-index>examples.Person/age</path-index>
<value>30</value>
<range-operator>GT</range-operator>

</range-query>
</query>

If your query looks as you expect, the surprising results might be the result of using unfiltered
search. Search on POJOs are unfiltered by default, which makes the search faster, but can produce
false positives. For details, see “How Indexing Affects Searches” on page 236.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 251

MarkLogic Server Alerting
10.0 Alerting
263

The MarkLogic Java API enables you to create applications that include client-side alerting
capabilities through the com.marklogic.client.alerting package. You can use the
RuleDefinition and RuleManager interfaces to create and maintain alerting rules and to test
documents for matches to rules.

This chapter covers the following topics:

• Alerting Pre-Requisites

• Alerting Concepts

• Defining Alerting Rules

• Testing for Matches to Alerting Rules

10.1 Alerting Pre-Requisites
You should enable “fast reverse searches” on the content database associated with your REST
API instance. Enable fast reverse searches using the Admin Interface, as described in Indexes for

Reverse Queries in Search Developer’s Guide, or using the XQuery function
admin:database-set-fast-reverse-searches.

Creating or delete alerting rules requires the rest-writer role, or equivalent privileges. All other
alerting operations require the rest-reader role, or equivalent privileges.

10.2 Alerting Concepts
An alerting application is one that takes action whenever content matches a pre-defined set of
criteria. For example, send an email notification to a user whenever a document about influenza is
added to the database. In this case, the criteria might be “the abstract contains the word
influenza”, and the action is “send an email”.

MarkLogic Server supports server-side alerting through the XQuery API and Content Processing
Framework (CPF), and client-side alerting through the REST and Java APIs.

A server-side alerting application usually uses a “push” model. You register alerting rules and
XQuery action functions with MarkLogic Server. Whenever content matches the rules,
MarkLogic Server evaluates the action functions. For details, see Creating Alerting Applications in
Search Developer’s Guide.

By contrast, a client-side alerting application uses a “pull” alerting model. You register altering
rules with MarkLogic Server, as in the push model. However, your application must poll
MarkLogic Server for matches to the configured rules, and the application initiates actions in
response to matches. This is the model used by the REST Client API.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 252

MarkLogic Server Alerting
An alerting rule is a query used in a reverse query to determine whether or not a search using that
query would match a given document. A normal search query asks “What documents match these
search criteria?” A reverse query asks “What criteria match this document?” In the influenza
example above, you might define a rule that is a word query for “influenza”, with an element
constraint of <abstract/>. Alerting rules are stored in the content database associated with your
REST API instance.

MarkLogic Server provides fast, scalable rule matching by storing queries in alerting rules in the
database and indexing them in the reverse query index. You must explicitly enable “fast reverse
searches” on your content database to take advantage of the reverse quer index. For details, see
Indexes for Reverse Queries in Search Developer’s Guide.

Use the procedures described in this chapter to create and maintain search rules and to test
documents for matches to the rules installed in your REST API instance. Determining what
actions to take in response to a match and initiating those actions is left to the application.

10.3 Defining Alerting Rules
An alerting rule is defined by a name, a query, and optional metadata. The core of a rule is the
combined query that describes the search criteria to use in future match operations. A combined
query encapsulates a string and/or structured query plus query options; for syntax details and
examples, see Specifying Dynamic Query Options with Combined Query in REST Application
Developer’s Guide.

Choose one of the following methods to define a rule:

• Defining a Rule Using RuleDefinition

• Defining a Rule in Raw XML

• Defining a Rule in Raw JSON

Note that although you can define a rule in JSON, it will be returned as XML when you read it
back from the database.

10.3.1 Defining a Rule Using RuleDefinition
Follow this procedure to define a rule using com.marklogic.client.alerting.RuleDefinition:

1. If you have not already done so, connect to the database, storing the connection in a
com.marklogic.client.DatabaseClient object. For example, if using digest
authentication:

DatabaseClient client = DatabaseClientFactory.newClient(
host, port, new DigestAuthContext(username, password));

2. If you have not already done so, create a com.marklogic.client.alerting.RuleManager.

RuleManager ruleMgr = client.newRuleManager();
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 253

MarkLogic Server Alerting
3. Create a com.marklogic.client.admin.RuleDefinition object and populate it with your
rule name and data. Optionally, you can include a description and metadata.

RuleDefinition rule = new RuleDefinition(RULE_NAME, RULE_DESC);

String combinedQuery = ...; // see complete example, below
StringHandle qHandle = new StringHandle(combinedQuery);
rule.importQueryDefinition(qHandle);

RuleMetadata metadata = rule.getMetadata();
metadata.put(new QName("author"), "me");

4. Save the rule to the database by calling RuleManager.writeRule().

ruleMgr.writeRule(rule);

The following example code snippet puts all the steps together. The example rule matches
documents containing the term “xdmp”.

// create a manager for configuring rules
RuleManager ruleMgr = client.newRuleManager();
RuleDefinition rule = new RuleDefinition(RULE_NAME, RULE_DESC);

// Configure metadata
RuleMetadata metadata = rule.getMetadata();
metadata.put(new QName("author"), "me");

// Configure the match query
String combinedQuery =
 "<search:search "+
 "xmlns:search='http://marklogic.com/appservices/search'>"+
 "<search:qtext>xdmp</search:qtext>"+
 "<search:options>"+
 "<search:term>"+
 "<search:term-option>case-sensitive</search:term-option>"+
 "</search:term>"+
 "</search:options>"+
 "</search:search>";

//Or the JSON equivalent
String combinedQueryJson =
 "{\"search\":{" +
 " \"qtext\": \"xdmp\"," +
 " \"options\": {" +
 " \"term\": {" +
 " \"term-option\": \"case-sensitive\"" +
 " }" +
 " }" +
 "}" +
 "}";

StringHandle qHandle =
new StringHandle(combinedQuery).withFormat(Format.XML);
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 254

MarkLogic Server Alerting
//JSON equvalent
new StringHandle(combinedQueryJson).withFormat(Format.JSON);

rule.importQueryDefinition(qHandle);

// Write the rule to the database
ruleMgr.writeRule(rule);

10.3.2 Defining a Rule in Raw XML
Follow this procedure to define a rule directly in XML. When creating the rule, use the template
in Defining an Alerting Rule in REST Application Developer’s Guide.

1. If you have not already done so, connect to the database, storing the connection in a
com.marklogic.client.DatabaseClient object. For example, if using digest
authentication:

DatabaseClient client = DatabaseClientFactory.newClient(
host, port, new DigestAuthContext(username, password));

2. If you have not already done so, create a com.marklogic.client.alerting.RuleManager.

RuleManager ruleMgr = client.newRuleManager();

3. Create an XML representation of the rule, using a text editor or other tool or
library.cription and metadata. The following example uses String for the raw
representation.

String rawRule =
 "<rapi:rule xmlns:rapi='http://marklogic.com/rest-api'>"+
 "<rapi:name>"+RULE_NAME+"</rapi:name>"+
 "<rapi:description>An example rule.</rapi:description>"+
 "<search:search "+
 "xmlns:search='http://marklogic.com/appservices/search'>"+
 "<search:qtext>xdmp</search:qtext>"+
 "<search:options>"+
 "<search:term>"+
 "<search:term-option>case-sensitive</search:term-option>"+
 "</search:term>"+
 "</search:options>"+
 "</search:search>"+
 "<rapi:rule-metadata>"+
 "<author>me</author>"+
 "</rapi:rule-metadata>"+
 "</rapi:rule>";

4. Create a handle on your raw query, using a class that implements RuleWriteHandle. For
example:

StringHandle handle =
new StringHandle(rawRule).withFormat(Format.XML);
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 255

MarkLogic Server Alerting
5. Save the rule to the database by calling RuleManager.writeRule().

ruleMgr.writeRule(RULE_NAME, handle);

The following example code snippet puts all the steps together. The example rule matches
documents containing the term “xdmp”.

// create a manager for configuring rules
RuleManager ruleMgr = client.newRuleManager();

// Define the rule in raw XML
String rawRule =
 "<rapi:rule xmlns:rapi='http://marklogic.com/rest-api'>"+
 "<rapi:name>"+RULE_NAME+"</rapi:name>"+
 "<rapi:description>An example rule.</rapi:description>"+
 "<search:search "+
 "xmlns:search='http://marklogic.com/appservices/search'>"+
 "<search:qtext>xdmp</search:qtext>"+
 "<search:options>"+
 "<search:term>"+
 "<search:term-option>case-sensitive</search:term-option>"+
 "</search:term>"+
 "</search:options>"+
 "</search:search>"+
 "<rapi:rule-metadata>"+
 "<author>me</author>"+
 "</rapi:rule-metadata>"+
 "</rapi:rule>";

// create a handle for writing the rule
StringHandle handle =

new StringHandle(rawRule).withFormat(Format.XML);

// write the rule to the database
ruleMgr.writeRule(RULE_NAME, handle);

10.3.3 Defining a Rule in Raw JSON
Follow this procedure to define a rule directly in XML. When creating the rule, use the template
in Defining an Alerting Rule in REST Application Developer’s Guide.

1. If you have not already done so, connect to the database, storing the connection in a
com.marklogic.client.DatabaseClient object. For example, if using digest
authentication:

DatabaseClient client = DatabaseClientFactory.newClient(
host, port, new DigestAuthContext(username, password));

2. If you have not already done so, create a com.marklogic.client.alerting.RuleManager.

RuleManager ruleMgr = client.newRuleManager();
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 256

MarkLogic Server Alerting
3. Create a JSON representation of the rule, using a text editor or other tool or
library.cription and metadata. The following example uses String for the raw
representation.

String rawRule =
 "{ \"rule\": {"+
 "\"name\" : \""+RULE_NAME3+"\","+
 "\"search\" : {"+
 "\"qtext\" : \"xdmp\","+
 "\"options\" : {"+
 "\"term\" : { \"term-option\" : \"case-sensitive\" }"+
 "}"+
 "},"+
 "\"description\": \"A JSON example rule.\","+
 "\"rule-metadata\" : { \"author\" : \"me\" }"+
 "}}";

4. Create a handle using a class that implements RuleWriteHandle and associate your raw
rule with the handle. For example:

StringHandle handle =
new StringHandle(rawRule).withFormat(Format.JSON);

5. Save the rule to the database by calling RuleManager.writeRule().

ruleMgr.writeRule(RULE_NAME, handle);

The following example code snippet puts all the steps together. The example rule matches
documents containing the term “xdmp”.

// create a manager for configuring rules
RuleManager ruleMgr = client.newRuleManager();

// Define the rule in raw JSON
String rawRule =
 "{ \"rule\": {"+
 "\"name\" : \""+RULE_NAME3+"\","+
 "\"search\" : {"+
 "\"qtext\" : \"xdmp\","+
 "\"options\" : {"+
 "\"term\" : { \"term-option\" : \"case-sensitive\" }"+
 "}"+
 "},"+
 "\"description\": \"A JSON example rule.\","+
 "\"rule-metadata\" : { \"author\" : \"me\" }"+
 "}}";

// Create a handle for writing the rule
StringHandle qHandle =

new StringHandle(rawRule).withFormat(Format.JSON);

// Write the rule to the database
ruleMgr.writeRule(RULE_NAME3, qHandle);
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 257

MarkLogic Server Alerting
10.4 Testing for Matches to Alerting Rules
Once you install alerting rules in your REST API instance, use RuleManager.match() to determine
which rules match one or more input documents. You can select the input documents using a
database query or database URIs, or by passing a transient document.

This section covers the following topics:

• Identifying Input Documents Using a Query

• Identifying Input Documents Using URIs

• Matching Against a Transient Document

• Filtering Match Results

• Transforming Alert Match Results

10.4.1 Basic Steps
Follow this procedure to test one or more documents to see if they match installed alerting rules.
Identify the input documents using a query or URIs, or by passing in a transient input document.

1. If you have not already done so, connect to the database, storing the connection in a
com.marklogic.client.DatabaseClient object. For example, if using digest
authentication:

DatabaseClient client = DatabaseClientFactory.newClient(
host, port, new DigestAuthContext(username, password));

2. If you have not already done so, create a com.marklogic.client.alerting.RuleManager.

RuleManager ruleMgr = client.newRuleManager();

3. Find the rules that match your input documents by calling RuleManager.match(). The
result is a list of RuleDefinition objects. The following example uses a query to identify
the input documents.

StringQueryDefinition querydef = ...;
RuleDefinitionList matchedRules =

ruleMgr.match(querydef, new RuleDefinitionList());

The match() method returns the definition of any rules matching your input documents.

You can further customize rule matching by limiting the match results to a subset of the installed
rules or applying a server-side transformation to the match results. For details, see the JavaDoc for
RuleManager.

For a complete example, see com.marklogic.client.example.cookbook.RawClientAlert.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 258

MarkLogic Server Alerting
10.4.2 Identifying Input Documents Using a Query
You can use a string query, structured query, or combined query to select the documents in the
database that you want to test for rule matches. These instructions assume you are familiar with
constructing queries using the Java API; for details, see “Searching” on page 144.

Use the following procedure to select input documents using a query:

1. Construct a string, structured, or combined query definition as described in “Searching”
on page 144. The following example uses StringQueryDefinition.

QueryManager queryMgr = client.newQueryManager();
String criteria = "document";
StringQueryDefinition querydef = queryMgr.newStringDefinition();
querydef.setCriteria(criteria);

2. If you constructed a raw XML or JSON query definition, create a handle using a class that
implements StructureWriteHandle. For example, if you created an XML query using
String, create a StringHandle:

StringHandle rawHandle =
new StringHandle(rawXMLQuery).withFormat(Format.XML);

//Or
new StringHandle(rawJSONQuery).withFormat(Format.JSON);

3. Call RuleManager.match(), passing in either a QueryDefinition or StructureWriteHandle
to the document selection query.

RuleDefinitionList matchedRules =
ruleMgr.match(querydef, new RuleDefinitionList());

For a complete example, see com.marklogic.client.example.cookbook.RawClientAlert.

You can limit the rules under consideration by passing an array of rule names to
RuleManager.match(). You can limit the input documents to a subset of the input query results by
specifying start and page length. For details, see the JavaDoc for RuleManager.

10.4.3 Identifying Input Documents Using URIs
You can select the documents you want to test for rule matches by specifying a list of document
URIs to RuleManager.match(). Each URI must identify a document, not a database directory.

Use the following procedure to select input documents using URIs:

1. Construct a String array of document URIs.

String[] docIds = { "/example/doc1.xml", "/suggest/doc2.xml" };

2. Call RuleManager.match(), passing in the list of URIs.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 259

MarkLogic Server Alerting
RuleDefinitionList matchedRules =
ruleMgr.match(docIds, new RuleDefinitionList());

You can limit the rules under consideration by passing an array of rule names to
RuleManager.match(). For details, see the JavaDoc for RuleManager.

10.4.4 Matching Against a Transient Document
You can test for rule matches against a document that is not in the database by passing the
transient document to RuleManager.match().

1. Create a handle using a class that implements StructureWriteHandle. The following
example uses a String as the source document.

String doc = "<prefix>xdmp</prefix>";
//Or
String doc = "{\"prefix\": \"xdmp\"}"

StringHandle handle = new StringHandle(doc).withFormat(Format.XML);
//Or
StringHandle handle = new StringHandle(doc).withFormat(Format.JSON);

2. Call RuleManager.match(), passing in a StructureWriteHandle to the document.

RuleDefinitionList matchedRules =
ruleMgr.match(handle, new RuleDefinitionList());

You can limit the rules under consideration by passing an array of rule names to
RuleManager.match(). For details, see the JavaDoc for RuleManager.

10.4.5 Filtering Match Results
By default, the result of an alert match includes all matching rules. You can limit the result to a
subset of matching rules by passing a list of candiate rule names to RuleManager.match(). For
example, the result of the following match includes at most the definitions of the rules named
“one” and “two”, even if more rules match the input query definition:

RuleManager ruleMgr = client.newRuleManager();
StringQueryDefinition querydef = ...;
String [] candidateRules = new String[] {"one", "two"};
RuleDefinitionList matchedRules =

ruleMgr.match(querydef, 0L, QueryManager.DEFAULT_PAGE_LENGTH,
candidateRules, new RuleDefinitionList());

10.4.6 Transforming Alert Match Results
You can make arbitrary changes to the results from a match request by applying a server-side
XQuery transformation function to the results. This section covers the following topics:
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 260

MarkLogic Server Alerting
• Writing a Match Result Transform

• Using a Match Result Transform

10.4.6.1 Writing a Match Result Transform
Alert match transforms use the same interface and framework as content transformations applied
during document ingestion, described in Writing Transformations in the REST Application
Developer’s Guide.

Your transform function receives the raw XML match result data prepared by MarkLogic Server
as input, such as a document with a <rapi:rules/> root element. For example:

<rapi:rules xmlns:rapi="http://marklogic.com/rest-api">
 <rapi:rule>
 <rapi:name>one</rapi:name>
 <rapi:description>Rule 1</rapi:description>
 <search:search

xmlns:search="http://marklogic.com/appservices/search">
 <search:qtext>xdmp</search:qtext>
 </search:search>

</rapi:rule>
</rapi/rules>

If your function produces XML output and the client application requested JSON output,
MarkLogic Server will transform your output to JSON only if one of the following conditions are
met.

• Your function produces an XML document that conforms to the “normal” output from the
search operation. For example, a document with a <rapi:rules/> root element whose
contents are changed in a way that preserves the normal structure.

• Your function produces an XML document with a root element in the namespace
http://marklogic.com/xdmp/json/basic that can be transformed by
json:transform-to-json.

Under all other circumstances, the output returned by your transform function is what is returned
to the client application.

10.4.6.2 Using a Match Result Transform
To use a server transform function:

1. Create a transform function according to the interface described in Writing Transformations
in the REST Application Developer’s Guide.

2. Install your transform function on the REST API instance following the instructions in
“Installing Transforms” on page 282.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 261

MarkLogic Server Alerting
3. In your application, create a ServerTransform object to represent the installed transform,
and pass it as a parameter on your call to RuleManager.match(). For example:

RuleManager ruleMgr = client.newRuleManager();
StringQueryDefinition querydef = ...;
RuleDefinitionList matchedRules =

ruleMgr.match(querydef, 0L, QueryManager.DEFAULT_PAGE_LENGTH,
new String[] {}, new RuleDefinitionList(),
new ServerTransform("your-transform-name"));

You are responsible for specifying a handle type capable of interpreting the results produced by
your transform function. The RuleDefinitionList implementation provided by the Java API only
understands the match results structure that MarkLogic Server produces by default.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 262

MarkLogic Server Alerting
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 263

MarkLogic Server Transactions and Optimistic Locking
11.0 Transactions and Optimistic Locking
273

This chapter covers two different ways for locking documents during MarkLogic Server
operations, multi-statement transactions and optimistic locking.

This chapter includes the following sections:

• Multi-Statement Transactions

• Optimistic Locking

11.1 Multi-Statement Transactions
The following sections cover how to put multiple MarkLogic Server operations in a single
multi-statement transaction. Specifically, you open a transaction, perform multiple operations in
it, and then either rollback or commit the transaction. This section includes the following parts:

• Transactions and the Java API

• Transaction Interface

• Starting A Transaction

• Operations Inside A Transaction

• Rolling Back A Transaction

• Committing A Transaction

• Cookbook: Multistatement Transaction

• Transaction Management When Using a Load Balancer

For detailed information about transactions in MarkLogic Server, see Understanding Transactions in

MarkLogic Server in the Application Developer’s Guide.

11.1.1 Transactions and the Java API
By default, most Java Client API interactions with MarkLogic happen in a single transaction. For
example, if you use DocumentManager.write to insert a document into the database, the insertion
happens as a single transaction that is automatically committed by MarkLogic before a response
is sent back to the Java client application.

Note: Requests without multi-statement transactions commit automatically and
atomically and can be load balanced

You can use a multi-statement transaction to perform multiple interactions with MarkLogic
Server in the context of a single transaction. A multi-statement transaction must be explicitly
created and committed or rolled back. For example, you could use a multi-statement transaction
to make several calls to DocumentManager.write, and then commit all the writes at once. None of
the writes would be visible outside the transaction context unless or until you commit the
transaction.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 264

MarkLogic Server Transactions and Optimistic Locking
Note: If at all possible, developers should avoid using multi-statement transactions,
because 1 atomic network request is more efficient than 3 network requests to
open, work, and commit, and because atomic requests can be retried, whereas
multi-statement transactions cannot be retried. If you have a use case that requires
multi-statement transactions (e.g., where multiple separate requests that mutate the
database must complete together or not at all), consider using optimistic locking as
a lighter-weight but safe alternative for reading before writing.

Database updates performed in a multi-statement transactions either all succeed or all roll back,
depending on whether the transaction is committed or rolled back.

For example, suppose you open a transaction, create a document, and then try to perform a
metadata operation on a different document that fails. If, in response to the failure, you roll back
the transaction, then neither the document creation nor the metadata update is successful. If you
commit the transaction instead, then the document creation succeeds.

Rollbacks do not take place automatically on operation failure. Your application must check for
operation success or failure and explicitly rollback the transaction if that is the desired outcome.
Failure can be detected by tests of your devising or by trapping and handling a related exception.

Transactions have an associated time limit. If a transaction is not committed before the time limit
expires, it is automatically rolled back. The time limit is only a failsafe. You should not design
your code with the expectation that a timeout will handle needed rollbacks. Leaving transactions
open unnecessarily ties up server-side resources and holds locks on documents. The default time
limit is the session time limit configured for your App Server. You can also specify a per
transaction time limit when you create a multi-statement transaction; for details, see “Starting A
Transaction” on page 266.

A multi-statement transaction must honor host affinity within your MarkLogic cluster. For
example, all requests within the context of a transaction should be serviced by the same host. If
you use multi-statement transactions in an environment where a load balancer sits between your
client application and MarkLogic, then you might need to configure your load balancer to
preserve session affinity. For more details, see “Transaction Management When Using a Load
Balancer” on page 268.

Note that a document operation performed in the default single statement transaction context
locks the document until that operation succeeds or fails. If MarkLogic detects a deadlock, then
the transaction is automatically restarted until either it completes or an exception is thrown (for
example, by reaching a time limit for the update transaction). This happens automatically, and you
normally do not need to worry about it.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 265

MarkLogic Server Transactions and Optimistic Locking
11.1.2 Transaction Interface
Use the com.marklogic.client.Transaction interface to manage a transaction. The following are
the key operations for managing multi-statement transactions in the Java Client API:

• Start a multi-statement transaction. For more details, see “Starting A Transaction” on
page 266.

DatabaseClient.openTransaction()

• Commit a multi-statement transaction when it successfully finishes. For more details, see
“Committing A Transaction” on page 268.

Transaction.commit()

• Rollback a multi-statement transaction, resetting any actions that previously took place in
that transaction. For example, delete any created documents, restore any deleted
documents, revert updates, etc. For more details, see “Rolling Back A Transaction” on
page 267.

Transaction.rollback()

You perform operations inside a given multi-statement transaction by passing the Transaction
object returned by DatabaseClient.openTransaction into the operation. For details, see
“Operations Inside A Transaction” on page 267

Use the Transaction.readStatus method to check whether or not a transaction is still open. That
is, whether or not it has been committed or rolled back.

11.1.3 Starting A Transaction
To create a multi-statement transaction and obtain a Transaction object, call the
openTransaction() method on a DatabaseClient object. To call openTransaction(), an
application must authenticate as rest-writer or rest-admin. For example:

Transaction transaction = client.openTransaction();

You can also include a transaction name and time limit arguments. The timeLimit value is the
number of seconds the transaction has to finish and commit before it is automatically rolled back.
As previously noted, you should not depend on the time limit rolling back your transaction; it is
only meant as a failsafe to end the transaction if all else fails.

Transaction transaction1 = client.openTransaction(“MyTrans”, 10);
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 266

MarkLogic Server Transactions and Optimistic Locking
11.1.4 Operations Inside A Transaction
To perform an operation within the context of a multi-statement transaction, pass the Transaction
object returned by DatabaseClient.openTransaction into the operation. For example, pass a
Transaction object into DocumentManager.read, DocumentManager.write, or QueryManager.search.
For example:

// read a document inside a transaction
docMgr.read(myDocId1, handle, myTransaction);

// write a document inside a transaction
docMgr.write(myDocId1, handle, myTransaction);

// delete a document inside a transaction
docMgr.delete(myDocId2, myTransaction);

You can have more than one transaction open at once. Other users can also be running
transactions on or sending requests to the same database. To prevent conflicts, whenever the
server does something to a document while in a transaction, the database locks the document until
that transaction either commits or rolls back. Because of this, you should commit or roll back your
transactions as soon as possible to avoid slowing down your and possibly others’ applications.

You can intermix commands which are not part of a transaction with transaction commands. Any
command without a Transaction object argument is not part of a multi-statement transaction.
However, you usually group all operations for a given transaction together without interruption so
you can commit or roll it back as fast as possible.

Note: The database context in which you perform an operation in a multi-statement
transaction must be the same as the database context in which the transaction was
created. The database is set when you create a DatabaseClient, so consistency is
assured as long as you do not attempt to use a Transaction object created by one
DatabaseClient with an operation performed through a DatabaseClient with a
different configuration.

11.1.5 Rolling Back A Transaction
In case of an error or exception, call a transaction’s rollback() method:

transaction.rollback()

The rollback() method cancels the remainder of the transaction, and reverts the database to its
state prior to the transaction start. Proactively rolling back a transaction puts less load on
MarkLogic than waiting for the transaction to time out.

To roll back a transaction, your application must authenticate as rest-writer or rest-admin.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 267

MarkLogic Server Transactions and Optimistic Locking
11.1.6 Committing A Transaction
Once your application successfully completes all operations associated with a multi-statement
transaction, commit the transaction so that the actions are reflected in the database. Commit a
transaction by calling Transaction.commit:

transaction.commit();

To commit a multi-statement transaction, your application must authenticate as rest-writer or
rest-admin.

Once a transaction has been committed, it cannot be rolled back and the Transaction object is no
longer available for use. To perform another transaction, you must create a new Transaction
object.

11.1.7 Cookbook: Multistatement Transaction
See com.marklogic.client.example.cookbook.MultiStatementTransaction for a full example of
how to use multi-statement transactions. The Cookbook examples are in the Java API distribution
in the following directory:

example/com/marklogic/client/example/cookbook

11.1.8 Transaction Management When Using a Load Balancer
This section applies only to client applications that use multi-statement transactions and interact
with a MarkLogic Server cluster through a load balancer. For additional general-purpose load
balancer guidelines, see “Connecting Through a Load Balancer” on page 19.

When you use a load balancer, it is possible for requests from your application to MarkLogic
Server to be routed to different hosts, even within the same session. This has no effect on most
interactions with MarkLogic Server, but operations that are part of the same multi-statement
transaction need to be routed to the same host within your MarkLogic cluster. This consistent
routing through a load balancer is called session affinity.

Most load balancers provide a mechanism that supports session affinity. This usually takes the
form of a session cookie that originates on the load balancer. The client acquires the cookie from
the load balancer, and passes it on any requests that belong to the session. The exact steps required
to configure a load balancer to generate session cookies depends on the load balancer. Consult
your load balancer documentation for details.

To the load balancer, a session corresponds to a browser session, as defined in RFC 2109
(https://www.ietf.org/rfc/rfc2109.txt). However, in the context of a Java Client API application using
multi-statement transactions, a session corresponds to a single multi-statement transaction.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 268

https://www.ietf.org/rfc/rfc2109.txt

MarkLogic Server Transactions and Optimistic Locking
The Java Client API leverages a session cookie to preserve host affinity across operations in a
multi-statement transaction in the following way. This process is transparent to your application;
the information is provided to illustrate the expected load balancer behavior.

1. When you create a transaction using DatabaseClient.openTransaction, the Java Client
API receives a transaction id from MarkLogic and, if the load balancer is properly
configured, a session cookie from the load balancer. This information is cached in the
Transaction object.

2. Each time you perform a Java Client API operation that includes a Transaction object, the
Java Client API attaches the transaction id and the session cookie to the request(s) it sends
to MarkLogic. The session cookie causes the load balancer to route the request to the same
host in your MarkLogic cluster that created the transaction.

3. When MarkLogic receives a request, it ignores the session cookie (if present), but uses the
transaction id to ensure the operation is part of the requested transaction. When
MarkLogic responds, the load balancer again adds a session cookie, which the Java Client
API caches on the Transaction object.

4. When you commit or roll back a transaction, any cookies returned by the load balancer are
discarded since the transaction is no longer valid. This effectively ends the session from
the load balancer’s perspective because the Java Client API will no longer pass the session
cookie around.

Any Java Client API operation that does not include a Transaction object will not include a
session cookie (or transaction id) in the request to MarkLogic, so the load balancer is free to route
the request to any host in your MarkLogic cluster.

11.2 Optimistic Locking
An application under optimistic locking creates a document only when the document does not
exist and updates or deletes a document only when the document has not changed since this
application last changed it. However, optimistic locking does not actually involve placing a lock
on an object.

Optimistic locking is useful in environments where integrity is important, but contention is rare
enough that it is useful to minimize server load by avoiding unnecessary multi-statement
transactions.

This section includes the following sub-sections:

• Activating Optimistic Locking

• DocumentDescriptors

• Using Optimistic Locking
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 269

MarkLogic Server Transactions and Optimistic Locking
11.2.1 Activating Optimistic Locking
Optimistic locking relies on an opaque numeric identifier that is associated with the state of the
document’s content at a point of time. By default, the REST Server to which the Java API
connects does not keep track of this identifier, but you can enable it for use by setting a property,
and make it optional or required.

To expand, there is a number associated with every document. Whenever a document’s content
changes, the value of its number changes. By comparing the stored value of that number at a point
in time with the current value, the REST Server can determine if a document’s content has
changed since the time the stored value was stored.

Note: While this numeric identifier lets you compare state, and uses a numeric value to
do so, this is not document versioning. The numeric identifier only indicates that a
document has been changed, nothing more. It does not store multiple versions of
the document, nor does it keep track of what the changes are to a document, only
that it has been changed at some point. You cannot use this for change-tracking or
archiving previous versions of a document.

Since this App Server configuration parameter applies either to all documents or none, it is
implemented in the REST Server. This means it is part of the overall server configuration, and
must be turned on and off via a ServerConfigurationManager object and thus requires rest-admin
privileges. For more about server configuration management, see “REST Server Configuration”
on page 276.

To activate optimistic locking, do the following:

// if not already done, create a database client
DatabaseClient client = DatabaseClientFactory.newClient(...);

// create server configuration manager
ServerConfigurationManager configMgr =

client.newServerConfigManager();

// read the server configuration from the database
configMgr.readConfiguration();

// require content versions for updates and deletes
// use UpdatePolicy.VERSION_OPTIONAL to allow but not
// require identifier use. Use UpdatePolicy.MERGE_METADATA
// (the default) to deactive identifier use
configMgr.setUpdatePolicy(UpdatePolicy.VERSION_REQUIRED);

// write the server configuration to the database
configMgr.writeConfiguration();

// release the client
client.release();

Allowed values for UpdatePolicy are in the Enum ServerConfigurationManager.UpdatePolicy.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 270

MarkLogic Server Transactions and Optimistic Locking
11.2.2 DocumentDescriptors
To work with a document’s change identifier, you must create a DocumentDescriptor for the
document. A DocumentDescriptor describes exactly one document and is created via use of an
appropriately typed method for the document. For more information on document managers, see
“Document Managers” on page 26.

// create a descriptor for versions of the document
DocumentDescriptor desc = docMgr.newDescriptor(docId);

You can also get a document’s DocumentDescriptor by checking to see if the document exists.
This code returns the specified document’s DocumentDesciptor or, if the document does not exist,
null:

DocumentDescriptor desc = docMgr.exists(docId);

11.2.3 Using Optimistic Locking
Each read(), write(), and delete() method for DocumentManager has both a version that uses a
URI string parameter to identify the document to be read, written, or deleted, and an identical
version that uses a DocumentDescriptor object instead. The descriptor is only populated with state
when you read a document or when you check for a document’s existence. When you write, the
state changes, but is not reflected in the descriptor.

When UpdatePolicy is set to VERSION_REQUIRED, you must use the DocumentDescriptor versions
of the write() (when modifying a document) and delete() methods. If the change identifier has
not changed, the write or delete operation succeeds. If someone else has changed the document so
that a new version has been created, the operation fails by throwing an exception.

Note: There is no general notification when UpdatePolicy changes to
VERSION_REQUIRED. If the policy changes to required and an application uses
the URI string version of read(), etc., such requests will now fail and throw
exceptions.

If you are creating a document under VERSION_REQUIRED, you either must not supply a descriptor,
or if you do pass in a descriptor it must not have state. A descriptor is stateless if it is created
through a DocumentManager and has not yet been populated with state by a read() or exists()
method. If the document does not exist, the operation succeeds. If the document exists, the
operation fails and throws an exception.

When UpdatePolicy is set to VERSION_OPTIONAL, if you do not supply an identifier value via the
descriptor and use the docId versions of write() and delete(), the operation always succeeds. If
you do supply an identifier value by using the DocumentDescriptor versions of write() and
delete(), the same rules apply as above when the update policy is VERSION_REQUIRED.

The identifier value always changes on the server when a document’s content changes there.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 271

MarkLogic Server Transactions and Optimistic Locking
The “optimistic” part of optimistic locking comes from this not being an actual lock, but rather a
means of checking if another application has changed a document since you last accessed it. If
another application does try to modify the document, the Server does not even try to stop it from
doing so. It just changes the document’s identifier value.

So, the next time your application accesses the document, it compares the number it stored for
that document with its current number. If they are different, your application knows the document
has been changed since it last accessed the document. It could have been changed once, twice, a
hundred times; it does not matter. All that matters is that it has been changed. If the numbers are
the same, the document has not been changed since you last accessed it.

11.2.4 Cookbook: Version Control and Optimistic Locking
See com.marklogic.client.example.OptimisticLocking in the Cookbook for a full example of
how to use and optimistic locking. The Cookbook examples are in the Java API distribution in the
following directory:

example/com/marklogic/client/example/cookbook
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 272

MarkLogic Server Transactions and Optimistic Locking
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 273

MarkLogic Server Logging
12.0 Logging
275

RequestLogger objects are supplied to individual manager objects, most commonly document and
query managers. You can choose to log content sent to the server as well as any requests. It is
located in com.marklogic.client.util.

This chapter includes the following sections:

• Starting Logging

• Suspending and Resuming Logging

• Stopping Logging

• Log Entry Format

• Logging To The Server’s Error Log

12.1 Starting Logging
First, you must obtain a RequestLogger object via DatabaseClient’s newLogger() method, which
takes an argument of an output stream to send the log messages to. This output stream can be
shared with other loggers outside of the MarkLogic Server Java API. You are responsible for
flushing the output stream.

out = new ByteArrayOutputStream();
RequestLogger logger = client.newLogger(out);

To start logging, call the startLogging() method on a manager object with an argument of a
RequestLogger object. For example:

MyDocumentManager.startLogging(logger)

There is only one logger for any given object. However, you can share a RequestLogger object
among multiple manager objects, just by specifying the same RequestLogger object in multiple
startLogging() method calls.

12.2 Suspending and Resuming Logging
By using RequestLogger’s setEnabled() method, you can pause and resume logging on any
logger object. For example, to suspend logging:

logger.setEnabled(false)

To reenable logging:

logger.setEnabled(true)

To check if logging is enabled or not:
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 274

MarkLogic Server Logging
logger.isEnabled(); //returns a boolean

When you change a logger’s enable status, it applies to all manager objects for which that
RequestLogger object was used as an argument to StartLogging().

12.3 Stopping Logging
To stop logging on a manager, call the stopLogging() method. If called on a manager not
currently logging, nothing happens, not even an error or exception. The RequestLogger object
associated with the manager is not destroyed by this method and you can reuse and restart it.

MyDocumentManager.stopLogging()

12.4 Log Entry Format
Two types of things can be logged once logging is turned on and enabled. Requests to the server
are always logged. These include search requests, configuration requests, and all database
requests. By default, only requests are logged.

You can use RequestLogger’s setContentMax() method to control how much content is logged. By
giving it the constant ALL_CONTENT value, all content is logged. To revert to no content being
logged, use the constant NO_CONTENT. If you use a numeric value, such as 1000, the first that many
content bytes are logged. Note that if the request is for a deletion, no content is logged.

FileHandle is an exception to the ability to log content. Only the name of the file is logged.

You can also retrieve a request logger’s underlying print stream by calling getPrintStream() on
the RequestLogger object. Once you access the log’s print stream, writing to it adds your own
messages to the log.

12.5 Logging To The Server’s Error Log
You can also use ServerConfigurationManager.setServerRequestLogging()to turn logging
requests to the server’s error log on or off, based on the boolean argument you provide. This log’s
location is platform dependent. For details about log files in MarkLogic Server, see Log Files in
the Administrator’s Guide.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 275

MarkLogic Server REST Server Configuration
13.0 REST Server Configuration
281

REST Server configuration is done through a ServerConfigurationManager object located in
package com.marklogic.client.admin. REST Server configuration deals with the underlying
REST instance running in MarkLogic. You can configure REST Server properties, namespace
bindings, query options, and transform and resource extensions.

Note that you can only configure aspects of the underlying REST instance with the Java API.
MarkLogic Server administration is not exposed in Java, so things such as creating indexes,
creating users, creating databases, and assigning roles to users must be done via the MarkLogic
Admin Interface or other means (for example, the Admin API or REST Management API). For
more information about administering MarkLogic Server, see the Administrator’s Guide.

This chapter includes the following sections:

• Creating a Server Configuration Manager Object

• Reading and Writing Server Configuration Properties

• REST Server Properties

• Creating New Server-Related Manager Objects

• Namespaces

• Logging Namespace Operations

13.1 Creating a Server Configuration Manager Object
Using a com.marklogic.client.DatabaseClient object, call newServerConfigManager()

DatabaseClient client = DatabaseClientFactory.newClient(...);

// create a manager for server configuration
ServerConfigurationManager configMgr =

client.newServerConfigManager();

Your application only needs one active ServerConfigurationManager at any time.

13.2 Reading and Writing Server Configuration Properties
Use com.marklogic.client.admin.ServerConfigurationManager to manage server configuration
properties. To read the current server configuration values into the ServerConfigurationManager
object, do:

configMgr.readConfiguration();

If your application changes these values, they will not persist unless written out to the server. To
write the REST Server Configuration values to the server, do:

configMgr.writeConfiguration();
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 276

MarkLogic Server REST Server Configuration
13.3 REST Server Properties
com.marklogic.client.admin.ServerConfigurationManager objects have get and set methods for
the following server properties:

• ContentVersionRequests: Deprecated. Use UpdatePolicy instead.

• DefaultDocumentReadTransform: Name of the default transform applied to documents as
they are read from the server. For information about document transforms, see “Content
Transformations” on page 282.

• QueryOptionsValidation: Boolean specifying whether the server validates query options
before storing them in configurations. For information about query options, see “Query
Options” on page 190.

• ServerRequestLogging: Boolean specifying whether the REST Server logs requests to the
MarkLogic Server error log (ErrorLog.txt). For performance reasons, you should only
enable this when debugging your application. For information about logging, see
“Logging” on page 274.

• UpdatePolicy: Value from the ServerConfigurationManager.UpdatePolicy enum
specifying whether the system tries to detect if a document is “fresh” or not via use of an
opaque numeric identifier and whether to merge or overwrite metadata on update. For
more information, see “Optimistic Locking” on page 269.

13.4 Creating New Server-Related Manager Objects
Most manager objects described so far handle access to the database and its content, and
accordingly are created via a method on a DatabaseClient object. The following managers handle
listing, reading, writing, and deleting REST Server data and settings, rather than those of the
database. Therefore, these managers are created by factory methods on a
ServerConfigurationManager instead of a DatabaseClient.

The ServerConfigurationManager associated managers are:

• NamespaceManager: Namespace bindings. For details about namespaces, see “Namespaces”
on page 277.

• QueryOptionsManager: Query options. For details, about query options, see “Query
Options” on page 190.

• ResourceExtensionsManager: Resource service extensions. For details about resource
service extensions, see “Extending the Java API” on page 288.

• TransformExtensionManager: Transform extensions. For details, about transform
extensions, see “Content Transformations” on page 282.

13.5 Namespaces
Namespaces are similar to Java packages in that they differentiate between potentially ambiguous
XML elements. With the Java API, you can define namespace bindings on the REST Server.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 277

MarkLogic Server REST Server Configuration
In XML and XQuery, element and attribute nodes are always in a namespace, even if it is the
empty namespace (sometimes called no namespace) which has the name of the empty string ("").
Each non-empty namespace has an associated URI, which is essentially a unique string that
identifies the namespace. That string can be bound to a namespace prefix, which is a shorthand
string used as an alias for the namespace in path expressions, element QNames, and variable
declarations. Namespace operations in the Java Client API are used to define namespace prefixes
on the REST Server so the client and server can share identical namespace bindings on XML
elements and attributes for use in queries.

Note that a namespace URI can be bound to multiple prefixes, but a prefix can only be bound to
one URI.

If you need to use a namespace prefix in a context in which you cannot declare it, use the REST
Management API to define the binding in the App Server. For details, see
PUT:/manage/v2/servers/[id-or-name]/properties.

For more information about namespaces, see Understanding XML Namespaces in XQuery in the
XQuery and XSLT Reference Guide, which provides a detailed description of XML namespaces
and their use.

This section includes the following parts:

• Namespaces Manager

• Getting Server Defined Namespaces

• Adding And Updating A Namespace Prefix

• Reading Prefixes

• Deleting Prefixes

13.5.1 Namespaces Manager

Note: The NamespacesManager interface is deprecated. Use the REST Management API
instead. For details, see PUT:/manage/v2/servers/[id-or-name]/properties or
GET:/manage/v2/servers/[id-or-name]/properties.

The com.marklogic.admin.NamespacesManager class provides editing for namespaces defined on
the REST Server. To use NamespacesManager, the application must authenticate as rest-admin.
Since namespaces are based on the REST Server, a new NamespacesManager is defined via
com.marklogic.client.admin.ServerConfigManager.

NamespacesManager nsManager =
client.newServerConfigManager().newNamespacesManager();
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 278

MarkLogic Server REST Server Configuration
13.5.2 Getting Server Defined Namespaces

Note: The NamespacesManager interface is deprecated. Use the REST Management API
instead. For details, see PUT:/manage/v2/servers/[id-or-name]/properties or
GET:/manage/v2/servers/[id-or-name]/properties.

Use com.marklogic.client.admin.NamespacesManager to get all of the namespaces defined on the
REST Server. For example:

nsManager.readAll();

This returns a javax.xml.namespace.NamespaceContext interface that includes all of the REST
Server defined namespaces. You can run the following on the NamespaceContext object.

nsContext.getNamespaceURI(prefix-string);
nsContext.getPrefix(URI-string);
nsContext.getPrefixes(URI-string);

getNamespaceURI() returns the URI associated with the given prefix. getPrefix() returns one of
the prefixes associated with the given URI. getPrefixes() returns an iterator of all the prefixes
associated with the given URI.

In addition, by casting the NamespaceContext to EditableNamespaceContext, you can iterate over
the complete set of prefixes and URIs:

EditableNamespaceContext c =(EditableNamespaceContext)nsMgr.readAll();
for (Entry e:c.entrySet()){

prefix = e.getKey();
nsURI = e.getValue();

...
}

13.5.3 Adding And Updating A Namespace Prefix

Note: The NamespacesManager interface is deprecated. Use the REST Management API
instead. For details, see PUT:/manage/v2/servers/[id-or-name]/properties or
GET:/manage/v2/servers/[id-or-name]/properties.

Use com.marklogic.client.admin.NamespacesManager to add a new namespace prefix. For
example:

nsManager.addPrefix("ml", "http://marklogic.com/exercises");

The first argument is the prefix, and the second argument is the URI being associated with the
prefix.

To update the value of an existing prefix, do the following:
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 279

MarkLogic Server REST Server Configuration
nsManager.updatePrefix("ml", "http://marklogic.com/new_exercises");

Where the first argument is the prefix, and the second argument is the new URI bound to it.

13.5.4 Reading Prefixes

Note: The NamespacesManager interface is deprecated. Use the REST Management API
instead. For details, see PUT:/manage/v2/servers/[id-or-name]/properties or
GET:/manage/v2/servers/[id-or-name]/properties.

Use com.marklogic.client.admin.NamespacesManager to read, or get, the associated URI value, of
a single prefix. For example:

nsManager.readPrefix("ml");

It returns the prefix’s associated URI as a string.

In order to read, or get, all of the prefixes associated with a Namespace Manager, do the
following:

NamespaceContext context = nsManager.readAll();

NamespaceContext is a standard javax.xml Interface for storing a set of namespace declarations on
the client. With a NamespaceContext object, you can:

• Get the prefix for any URI for which a prefix-URI binding has been created in this
NamespaceServer. The below would return its prefix, say, "ml".

context.getPrefix("http://marklogic.com/new_exercises");

• Get the URI for any prefix for which a prefix-URI binding has been created in this
NamespaceServer. The below returns the URI "http://marklogic.com/new_exercises"

context.getNamespaceURI("ml");

• Get all of the prefixes for any URI for which prefix-URI bindings have been created in
this NamespaceServer. The below returns all the associated prefixes in an Iterator.

context.getPrefixes(“http://marklogic.com/new_exercises);

13.5.5 Deleting Prefixes

Note: The NamespacesManager interface is deprecated. Use the REST Management API
instead. For details, see PUT:/manage/v2/servers/[id-or-name]/properties or
GET:/manage/v2/servers/[id-or-name]/properties.

To delete a single prefix from the namespaces manager, do:
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 280

MarkLogic Server REST Server Configuration
nsManager.deletePrefix("ml");

To delete all of the prefixes defined under a NamespaceManager, do:

nsManager.deleteAll();

13.6 Logging Namespace Operations
As with all manager objects, you can start and stop logging operations on a NamespacesManager
via the startLogging() and stopLogging() methods. For details on how to use the logging facility,
see “Logging” on page 274.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 281

MarkLogic Server Content Transformations
14.0 Content Transformations
287

The MarkLogic Java API allows you to create custom content transformations and apply them
during operations such as document ingestion and retrieval. You can also apply transformations to
search results. Transforms can be implemented using server-side JavaScript, XQuery, and XSLT.
A transform can accept transform-specific parameters.

You can specify default transformations as well as operation-specific transformations. For
example, setting the DefaultDocumentReadTransform property of ServerConfigurationManager to
the name of a content transformation automatically applies the transformation to every document
as it is read from the database. By default, there is no default read transform. Setting up default
transforms requires rest-admin privileges.

This chapter contains the following sections:

• Installing Transforms

• Using Transforms

• Writing Transformations

14.1 Installing Transforms
To install a transform on your server, do the following steps:

1. If you have not already done so, create a DatabaseClient for connecting to the database.
For example, if using digest authentication:

DatabaseClient client = DatabaseClientFactory.newClient(
host, port, new DigestAuthContext(username, password));

2. Create a manager for transform extensions. Since transforms are installed on the REST
API instance, use a ServerConfigManager to create the manager.

TransformExtensionsManager transMgr =
client.newServerConfigManager().newTransformExtensionsManager();

3. Optionally, specify the metadata for the transform, using an ExtensionMetadata object.

ExtensionMetadata metadata = new ExtensionMetadata();
metadata.setTitle("XML-TO-HTML XSLT Transform");
metadata.setDescription("This plugin transforms an XML document with a

known vocabulary to HTML");
metadata.setProvider("MarkLogic");
metadata.setVersion("0.1");
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 282

MarkLogic Server Content Transformations
4. Create a handle to the transform implementation. For example, the following code creates
a handle that streams the implementation from a file.

FileInputStream transStream = new FileInputStream(
"scripts"+File.separator+TRANSFORM_NAME+".xsl");

InputStreamHandle handle = new InputStreamHandle(transStream);

5. Install the transform and its metadata on MarkLogic Server.

transMgr.writeXSLTransform(TRANSFORM_NAME, handle, metadata);

6. Release the client if you no longer need the database connection.

client.release();

14.2 Using Transforms
Once you install a transform, you can apply it under the following circumstances:

• inserting a document into the database

• reading a document from the database

• retrieving search results

• testing for alerting rule matches

This section describes how to use transforms and includes the following topics:

• Transforming a Document When Reading It

• Transforming a Document When Writing It

• Transforming Search Results

• Transforming Alert Match Results

• Overall Transform Administration

• Reading Transforms

• Logging

14.2.1 Transforming a Document When Reading It
A read transform receives the document from the database as input and produces the document to
be returned to the client application as output. Specify a read transform by including a
ServerTransform object in your call to DocumentManager.read.

Use the following procedure to transform a document when reading it:

1. If you have not already done so, create a DatabaseClient for connecting to the database.
For example, if using digest authentication:
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 283

MarkLogic Server Content Transformations
DatabaseClient client = DatabaseClientFactory.newClient(
host, port, new DigestAuthContext(username, password));

2. Create an appropriate Document Manager for the to be transformed document.

a. In this case, we use a XMLDocumentManager.

XMLDocumentManager XMLDocMgr = client.newXMLDocumentManager();

b. In this case, we use JSONDocumentManager.

JSONDocumentManager JSONDocMgr = client.newJSONDocumentManager();

3. Create an appropriate read handle for the document’s content.

a. This example uses a com.marklogic.client.io.DOMHandle object.

DOMHandle handleXML = new DOMHandle();

b. This example uses a com.marklogic.client.io.JacksonHandle object.

JacksonHandle handleJSON = new JacksonHandle();

4. Optionally, specify the expected MIME type for the content. This is only needed if the
transform supports content negotiation and changes the content from one MIME type to
another.

handleXML.setMimetype("text/xml");
//OR
handleJSON.setMimetype("text/json");

5. Create a transform descriptor by creating a ServerTransform object. Specify the transform
name and any parameter values expected by the transform.

ServerTransform transform = new ServerTransform(TRANSFORM_NAME);
transform.put("some-param", "value");

6. Read the document from the database, supplying the ServerTransform object. The read
handle will contain the transformed content.

XMLDocMgr.read(theDocURI, handleXML, transform);
//OR
JSONDocMgr.read(theDocURI, handleJSON, transform);

7. Release the database client if you no longer need the database connection.

client.release();
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 284

MarkLogic Server Content Transformations
14.2.2 Transforming a Document When Writing It
A write transform receives the document from the client application as input, and should produce
the document to be written to the database as output. Specify a write transform by including a
ServerTransform object in your call to DocumentManager.write.

Use the following procedure to transform a document when writing it:

1. If you have not already done so, create a DatabaseClient for connecting to the database.
For example, if using digest authentication:

DatabaseClient client = DatabaseClientFactory.newClient(
host, port, new DigestAuthContext(username, password));

1. Create an appropriate Document Manager for the document. In this case, we use a
TextDocumentManager.

TextDocumentManager writeMgr = client.newTextDocumentManager();

2. Create a handle to input data. For example, the following code streams the content from
the file system.

FileInputStream docStream = new FileInputStream("/path/to/my.txt");
InputStreamHandle writeHandle = new InputStreamHandle(docStream);

3. Optionally, specify the MIME type for the content. This is only needed if the transform
supports content negotiation and changes the content from one MIME type to another.

writeHandle.setMimetype("text/xml");

4. Create a transform descriptor by creating a ServerTransform object. Specify the transform
name and any parameter values expected by the transform.

ServerTransform transform = new ServerTransform(TRANSFORM_NAME);
transform.put("drop-font-tags", "yes");

5. Write the content to the database. The transform is applied to the content on MarkLogic
Server before inserting the document into the database.

String theDocURI = "/examples/mydoc.xml";
writeMgr.write(docId, writeHandle, transform);

6. Release the database client if you no longer need the database connection.

client.release();
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 285

MarkLogic Server Content Transformations
14.2.3 Transforming Search Results
When you apply a transform to search results, the transform receives the search response data
prepared by MarkLogic Server as input, and should produce the output to be returned to the client
application. For example, if the response is in XML, the input is a document with a
<search:response/> root element.

For details, see “Transforming Search Results” on page 173.

14.2.4 Transforming Alert Match Results
When you apply a transform to the results of an alerting match, the transform receives the match
results prepared by MarkLogic Server as input, and should produce the output to be returned to
the client application. For example, if the response is in XML, the input is a document with a
<rapi:rules> root element.

For details, see “Transforming Alert Match Results” on page 260.

14.2.5 Overall Transform Administration
You can list all currently installed transform extensions by doing the following:

String result = transMgr.listTransforms(
new StringHandle().withFormat(Format.XML)).get();

// format can be JSON as well
new StringHandle().withFormat(Format.JSON)).get();

By default, calling listTransforms() rebuilds the transform metadata to ensure the metadata is up
to date. If you find this refresh makes discovery take too long, you can disable the refresh by
setting the refresh parameter to false:

String result = transMgr.listTransforms(
new StringHandle().withFormat(Format.XML), false).get();

//Or
new StringHandle().withFormat(Format.JSON), false).get();

Disabling the refresh can result in this request returning inaccurate information, but it does not
affect the “freshness” or availability of the implementation of any transforms.

To delete a transform, effectively uninstalling it from the server do the following:

transMgr.deleteTransform(TRANSFORM_NAME);

14.2.6 Reading Transforms
To read the source code of an XQuery implemented transform into your application, do:

StringHandle textHandle = transMgr.readXQueryTransform(TRANSFORM_NAME,
new StringHandle()); // can be any text handle
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 286

MarkLogic Server Content Transformations
To read the source code of an XSLT implemented transform into your application, do:

XMLReadHandle xHandle = transMgr.readXSLTransform(TRANSFORM_NAME,
new XMLReadhandle());

To read the source code of an Javascript implemented transform into your application, do:

JSONReadHandle jHandle =
transMgr.readJavascriptTransform(TRANSFORM_NAME,

new JSONReadHandle());

14.2.7 Logging
Since it is a manager, you can define a RequestLogger object and start and stop logging client
requests to the TransformExtensionsManager. For more information, see “Logging” on page 274

RequestLogger logger = client.newLogger(stream);
transformsMgr.startLogging(logger);
transformsMgr.stopLogging();

14.3 Writing Transformations
You can write transforms using server-side JavaScript, XQuery, or XSLT. The transform interface
is shared across multiple MarkLogic client APIs, so you can use the same transforms with the
Java Client API, Node.js Client API, and the REST Client API. For the interface definition,
authoring guidelines, and example implementations, see Writing Transformations in the REST
Application Developer’s Guide.

Warning Resource service extensions, transforms, row mappers and reducers, and other
hooks cannot be implemented as JavaScript MJS modules.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 287

MarkLogic Server Extending the Java API
15.0 Extending the Java API
305

You can extend the Java API in a variety of ways, including resource service extensions and
evaluation of ad-hoc queries and server-side modules. This chapter covers the following topics:

• Available Extension Points

• Introduction to Resource Service Extensions

• Creating a Resource Extension

• Installing Resource Extensions

• Deleting Resource Extensions

• Listing Resource Extensions

• Using Resource Extensions

• Managing Dependent Libraries and Other Assets

• Evaluating an Ad-Hoc Query or Server-Side Module

15.1 Available Extension Points
The Java API offers several ways to extend and customize the capabilities using user-defined
code that is either pre-installed on MarkLogic Server or supplied at request time. The following
extension points are available:

• Content transformations: A user-defined transform function can be applied when
documents are written to the database or read from the database; for details, see “Content
Transformations” on page 282. You can also define custom replacement content
generators for the patch feature; for details, see “Construct Replacement Data on the
Server” on page 67.

• Search result customization: Customization opportunities include constraint parsers for
string queries, search result snippet generation, and search result customization. For
details, see “Searching” on page 144 and the Search Developer’s Guide.

• Resource service extensions: Define your own REST endpoints, accessible from Java
using the ResourceExtensionsManager interface. Resource service extensions are covered
in detail in this chapter. To get started, see “Introduction to Resource Service Extensions”
on page 289.

• Ad-hoc query execution: Send an arbitrary block of XQuery or JavaScript code to
MarkLogic Server for evaluation. For details, see “Evaluating an Ad-Hoc Query or
Server-Side Module” on page 298.

• Server-side module evaluation: Evaluate user-defined XQuery or JavaScript modules after
installing them on MarkLogic Server. For details, see “Evaluating an Ad-Hoc Query or
Server-Side Module” on page 298.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 288

MarkLogic Server Extending the Java API
15.2 Introduction to Resource Service Extensions
Resource service extensions extend the MarkLogic Java API by making XQuery and server-side
JavaScript modules available for use from Java. A resource extension implements services for a
server-side resource. For example, you can create a dictionary program resource extension that
looks up words, checks spelling, and makes suggestions for not found words. The individual
operations an application programmer may call, for example, lookUpWords(), spellCheck(), and
so on, are the services that make up the resource extension.

The following are the basic steps to create and use a resource extension using the Java API:

1. Create an XQuery or JavaScript module that implements the services for the resource.

2. Install the resource service extension implementation in the modules database associated
with the REST API instance using
com.marklogic.client.admin.ResourceExtensionsManager.

3. Make your resource extension available to Java applications by creating a wrapper class
that is a subclass of com.marklogic.client.extensions.ResourceManager. Inside this class,
access the resource extension methods using a
com.marklogic.client.extensions.ResourceServices object obtained through the
ResourceManager.getServices() method.

4. Use the methods of your ResourceManager subclass to access the services provided by the
extension from the rest of your application.

The key classes for resource extensions in the Java API are:

• ResourceExtensionsManager, which manages creation, modification, and deletion of
resource service service extension implementations on the REST Server. You must
connect to MarkLogic as a user with the rest-admin role to create and work with
ResourceExtensionsManager.

• ResourceManager, the base class for classes that you write to provide client interfaces to
resource services.

• ResourceServices, which supports calling the services for a resource. The resource
services extension implementation must already be installed on the server via the
ResourceExtensionsManager before ResourceServices can access it.

These objects are created via a ServerConfigManager, since resource services are associated with
the server, not the database.

For a complete example of implementing and using a resource service extension, see
com.marklogic.client.example.cookbook.ResourceExtension in the example/ directory of your
Java API installation.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 289

MarkLogic Server Extending the Java API
15.3 Creating a Resource Extension
You can implement a resource service Extension using server-side JavaScript or XQuery. The
interface is shared across multiple MarkLogic client APIs, so you can use the same extensions
with the Java Client API, Node.js Client API, and the REST Client API. For the interface
definition, authoring guidelines, and example implementations, see Extending the REST API in the
REST Application Developer’s Guide.

Warning Resource service extensions, transforms, row mappers and reducers, and other
hooks cannot be implemented as JavaScript MJS modules.

15.4 Installing Resource Extensions
Before you can use a resource extension, you must install the implementation on MarkLogic
Server as follows:

1. If your resource extension depends on additional library modules, install these dependent
libraries on MarkLogic Server. For details, see “Managing Dependent Libraries and Other
Assets” on page 295.

1. If you have not already done so, create a DatabaseClient for connecting to the database.
For example, if using digest authentication:

DatabaseClient client = DatabaseClientFactory.newClient(
host, port, new DigestAuthContext(username, password));

2. If you have not already done so, create a ResourceExtensionsManager using
ServerConfigManager.

ResourceExtensionsManager resourceMgr =
client.newServerConfigManager().newResourceExtensionsManager();

3. Create a com.marklogic.client.admin.ExtensionMetadata object to hold the
implementation language of your extension.

ExtensionMetadata metadata = new ExtensionMetadata();
metadata.setScriptLanguage(ExtensionMetadata.JAVASCRIPT);

4. Optionally, populate the ExtensionMetadataObject with your resource extension’s
metadata. You can set title, description, provider name, version, and expected parameters.
For example:

metadata.setTitle("Spelling Dictionary Resource Services");
metadata.setDescription("This plugin supports spelling dictionaries");
metadata.setProvider("MarkLogic");
metadata.setVersion("0.1");

5. Optionally, define one or more objects containing method interface metadata using
com.marklogic.client.admin.ResourceExtensionsManager.MethodParameters. The
following example creates metadata for a GET method expecting one string parameter:
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 290

MarkLogic Server Extending the Java API
MethodParameters getParams = new MethodParameters(MethodType.GET);
getParams.add("my-uri", "xs:string?");

6. Create a handle (such as an input stream and a handle associated with it) to the extension’s
source code. For example:

FileInputStream myStream = new FileInputStream("sourcefile.sjs");
InputStreamHandle handle = new InputStreamHandle(myStream);
handle.set(myStream);

7. Install the extension by calling the ResourceExtensionManager.writeServices() method,
supplying the extension name, the handle to the implementation, and any metadata
objects. For example:

resourceMgr.writeServices(DictionaryManager.NAME,handle,metadata,getParams);

8. Release the client if you no longer need the database connection.

client.release();

The following code sample demonstrates the above steps. For a complete example, see
com.marklogic.client.example.cookbook.ResourceExtension in the example/ directory of your
Java API distribution.

// create a manager for resource extensions
ResourceExtensionsManager resourceMgr =

client.newServerConfigManager().newResourceExtensionsManager();

// specify metadata about the resource extension
ExtensionMetadata metadata = new ExtensionMetadata();
metadata.setScriptLanguage(ExtensionMetadata.XQUERY);
metadata.setTitle("Spelling Dictionary Resource Services");
metadata.setDescription("This plugin supports spelling dictionaries");
metadata.setProvider("MarkLogic");
metadata.setVersion("0.1");

// specify metadata about method interfaces
MethodParameters getParams = new MethodParameters(MethodType.GET);
getParams.add("my-uri", "xs:string?");

// acquire the resource extension source code
InputStream sourceStream = new FileInputStream("dictionary.xqy");

// create a handle on the extension source code
InputStreamHandle handle = new InputStreamHandle();
handle.set(sourceStream);

// write the resource extension to the database
resourceMgr.writeServices(DictionaryManager.NAME, handle,

metadata, getParams);
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 291

MarkLogic Server Extending the Java API
15.5 Deleting Resource Extensions
To delete a resource extension, call the deleteServices() method of
com.marklogic.client.admin.ResourceExtensionManager. For example, assuming you have
already obtained a ResourceExtensionsManager object, do the following:

resourceMgr.deleteServices(resourceName);

15.6 Listing Resource Extensions
To list all the installed extensions, use a handle as in the following example, which gets the
extensions list in XML or JSON format:

String result = resourceMgr.listServices(
new StringHandle().withFormat(Format.XML)).get();

//Or
String result = resourceMgr.listServices(

new StringHandle().withFormat(Format.JSON)).get();

By default, calling listServices() rebuilds the extension metadata to ensure the metadata is up to
date. If you find this refresh makes discovery take too long, you can disable the refresh by setting
the refresh parameter to false:

String result = resourceMgr.listServices(
new StringHandle().withFormat(Format.XML), false).get();

//Or
String result = resourceMgr.listServices(

new StringHandle().withFormat(Format.JSON), false).get();

Disabling the refresh can result in this request returning inaccurate information, but it does not
affect the “freshness” or availability of the implementation of any extensions.

15.7 Using Resource Extensions
After you install the extension as described in “Installing Resource Extensions” on page 290,
create a wrapper class that exposes the functionality of the extension to your application. The
wrapper class should be a subclass of com.marklogic.client.extensions.ResourceManager. In the
implementation of your wrapper class, use com.marklogic.client.extensions.ResourceServices
to invoke the GET, PUT, POST and/or DELETE methods of the resource extension.

Use these guidelines in implementing your wrapper subclass:

1. Before using any services, initialize your ResourceManager subclass by passing it to
com.marklogic.client.DatabaseClient.init(). For example:

public class DictionaryManager extends ResourceManager {
static final public String NAME = "dictionary";
...
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 292

MarkLogic Server Extending the Java API
 public DictionaryManager(DatabaseClient client) {
 super();

 // Initialize the Resource Manager via the Database Client
 client.init(NAME, this);

}
...

}

2. To pass parameters to a resource extension method, create a
com.marklogic.client.util.RequestParameters object and add parameters to it. Each
parameter is represented by a parameter name and value. Use the parameter names defined
by the resource extension. For example:

//Build up the set of parameters for the service call
RequestParameters params = new RequestParameters();
params.add("service", "dictionary");
params.add("uris", uris);

3. Obtain a com.marklogic.com.extensions.ResourceServices object through the inherited
protected method getServices(). For example:

public class DictionaryManager extends ResourceManager {
...
public Document[] checkDictionaries(String. . . uris) {

...
// get the initialized service object from the base class
ResourceServices services = getServices();
...

}
}

4. Use the get(), put(), post(), and delete() methods of ResourceServices to invoke
methods of the resource extension on the server. For example:

ResourceServices services = getServices();
ServiceResultIterator resultItr = services.get(params, mimetypes);
ServiceResultIterator resultItr = services.post(params, mimetypes);
ServiceResultIterator resultItr = services.put(params, mimetypes);
ServiceResultIterator resultItr = services.delete(params, mimetypes);

The results from calling a resource extension method are returned as either a
com.marklogic.client.extensions.ResourceServices.ServiceResultIterator or a handle on the
appropriate content type. Use a ServiceResultIterator when a method can return multiple items;
use a handle when it returns only one. Resources associated with the results are not released until
the associated handle is discarded or the iterator is closed or discarded.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 293

MarkLogic Server Extending the Java API
The following code combines all the guidelines together in a sample application that exposes
dictionary operations. For the complete example, see the Cookbook example
com.marklogic.client.example.cookbook.ResourceExtension in the example/ directory of your
Java API distribution.

public class DictionaryManager extends ResourceManager {
 static final public String NAME = "dictionary";
 private XMLDocumentManager docMgr;

 public DictionaryManager(DatabaseClient client) {
 super();

 // Initialize the Resource Manager via the Database Client
 client.init(NAME, this);

}

// Our first Java implementation of a specific service from
// the extension

 public Document[] checkDictionaries(String. . . uris) {
 //Build up the set of parameters for the service call
 RequestParameters params = new RequestParameters();
 // Add the dictionary service parameter
 params.add("service", "dictionary");

params.add("uris", uris);

 String[] mimetypes = new String[uris.length];
 for (int i=0; i < uris.length; i++) {
 mimetypes[i] = "application/xml";
 }

 // get the initialized service object from the base class
 ResourceServices services = getServices();

// call the service implementation on the REST Server,
// returning a ResourceServices object
ServiceResultIterator resultItr =

services.get(params, mimetypes);

 //iterate over results, get content
...
// release resources
resultItr.close();

 }
...

}

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 294

MarkLogic Server Extending the Java API
15.8 Managing Dependent Libraries and Other Assets
This section covers installation and maintenance of XQuery libraries and other server-side assets
used by your application. This includes dependent libraries needed by resource extensions and
transformations, and replacement content generation functions usable for partially updates to
documents and metadata.

The following topics are covered:

• Maintenance of Dependent Libraries and Other Assets

• Installing or Updating Assets

• Removing an Asset

• Retrieving an Asset List

• Retrieving an Asset

You can also manage assets using the MarkLogic REST API. For details, see Managing Dependent

Libraries and Other Assets in the REST Application Developer’s Guide.

15.8.1 Maintenance of Dependent Libraries and Other Assets
When you install or update a dependent library module or other asset as described in this section,
the asset is replicated across your cluster automatically. There can be a delay of up to one minute
between updating and availability.

MarkLogic Server does not automatically remove dependent assets when you delete the related
extension or transform.

Since dependent assets are installed in the modules database, they are removed when you remove
the REST API instance if you include the modules database in the instance teardown.

If you installed assets in a REST API instance using MarkLogic 6, they cannot be managed using
the /ext service unless you re-install them using /ext. Reinstalling the assets may require
additional changes because the asset URIs will change. If you choose not to migrate such assets,
continue to maintain them according to the documentation for MarkLogic 6.

15.8.2 Installing or Updating Assets
Follow this procedure to install or update a library module or other asset in the modules database
associated with your REST Server. If the REST Server is part of a cluster, the asset is
automatically propagated throughout the cluster.

Note: The modules database path under which you install an asset must begin with
/ext/.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 295

MarkLogic Server Extending the Java API
1. If you have not already done so, connect to the database, storing the connection in a
com.marklogic.client.DatabaseClient object. For example, if using digest
authentication:

DatabaseClient client = DatabaseClientFactory.newClient(
host, port, new DigestAuthContext(username, password));

1. If you have not already done so, create a
com.marklogic.client.admin.ExtensionLibrariesManager. Note that the method for
doing so is associated with a ServerConfigManager.

ExtensionLibrariesManager libMgr =
client.newServerConfigManager().newExtensionLibrariesManager();

2. Associate a handle with the asset.

a. The following example associates a FileHandle with the text file containing an XQuery
module.

FileHandle handle =
new FileHandle(new File("module.xqy")).withFormat(Format.TEXT));

b. The following example associates a FileHandle with the text file containing an Javascript
module.

FileHandle handle =
new FileHandle(new File("module.sjs")).withFormat(Format.TEXT));

3. Install the module in the modules database by calling
ExtensionLibrariesManager.write(). For example:

libMgr.write("/ext/my/path/to/my/module.xqy", handle);
//Or
libMgr.write("/ext/my/path/to/my/module.sjs", handle);

You can also specify asset-specific permissions by passing an ExtensionLibraryDescriptor
instead of a simple path string to ExtensionLibrariesManager.write(). The following example
uses an descriptor:

ExtensionLibraryDescriptor desc = new ExtensionLibraryDescriptor();
desc.setPath("/ext/my/path/to/my/module.xqy");
//Or
desc.setPath("/ext/my/path/to/my/module.sjs");

desc.addPermission("my-role", "my-capability");
...
libMgr.write(desc, handle);
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 296

MarkLogic Server Extending the Java API
To use a dependent library installed with /ext in your extension or transform module, use the
same URI under which you installed the dependent library. For example, if a dependent library is
installed with the URI /ext/my/domain/my-lib.xqy, then the extension module using this library
should include an import of the form:

import module namespace dep="mylib" at "/ext/my/domain/my-lib.xqy";

In Javascript:

const dep = require("/ext/my/domain/my-lib.sjs");

15.8.3 Removing an Asset
To remove an asset from the modules database associated with the REST Server, call
com.marklogic.client.admin.ExtensionLibrariesManager.delete(). For example:

DatabaseClient client = DatabaseClientFactory.newClient(...);
ExtensionLibrariesManager libMgr =

client.newServerConfigManager().newExtensionLibrariesManager();

libMgr.delete("/ext/my/path/to/my/module.xqy");
//Or
libMgr.delete("/ext/my/path/to/my/module.sjs");

You can also call delete() with a ExtensionLibraryDescriptor.

If the path passed to delete(), whether by String or descriptor, is a database directory path, all
assets in the directory are deleted. If the path is a single asset, just that asset is deleted.

15.8.4 Retrieving an Asset List
You can retrieve a list of all the assets installed in the modules database associated with the REST
Server by calling com.marklogic.client.admin.ExtensionsLibraryManager.list(). If you call
list() with no parameters, you get a list of ExtensionLibraryDescriptor objects for all assets. If
you call list() with a path, you get a similar list of descriptors for all assets installed in that
database directory.

The following code snippet retrieves descriptors for all installed assets and prints the path of each
one to stdout.

DatabaseClient client = DatabaseClientFactory.newClient(...);
ExtensionLibrariesManager libMgr =

client.newServerConfigManager().newExtensionLibrariesManager();

ExtensionLibraryDescriptor[] descriptors = libMgr.list();
for (ExtensionLibraryDescriptor descriptor : descriptors) {

System.out.println(descriptor.getPath());
}

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 297

MarkLogic Server Extending the Java API
15.8.5 Retrieving an Asset
To retrieve the contents of an asset installed in the modules database associated with a REST
Server, call com.marklogic.client.admin.LibrariesExtensionManager.read(). You must first
create a handle to receive the contents.

The following code snippet reads the contents of an XQuery library module into a string:

DatabaseClient client = DatabaseClientFactory.newClient(...);
ExtensionLibrariesManager libMgr =

client.newServerConfigManager().newExtensionLibrariesManager();

StringHandle handle =
libMgr.read("/ext/my/path/to/my/module.xqy", new StringHandle());

The following code snippet reads the contents of an Javascript library module into a string:

DatabaseClient client = DatabaseClientFactory.newClient(...);
ExtensionLibrariesManager libMgr =

client.newServerConfigManager().newExtensionLibrariesManager();

StringHandle handle =
libMgr.read("/ext/my/path/to/my/module.sjs", new StringHandle());

15.9 Evaluating an Ad-Hoc Query or Server-Side Module
The com.marklogic.client.eval.ServerEvaluationCall enables you to send blocks of JavaScript
and XQuery to MarkLogic Server for evaluation or to invoke an XQuery or JavaScript module
installed in the modules database. This is equivalent to calling the builtin server functions
xdmp:eval or xdmp:invoke (XQuery), or xdmp.eval or xdmp.invoke (JavaScript).

This section covers the following related topics:

• Security Requirements

• Basic Step for Ad-Hoc Query Evaluation

• Basic Steps for Module Invocation

• Specifying External Variable Values

• Interpreting the Results of Eval or Invoke

15.9.1 Security Requirements
Evaluating an ad-hoc query on MarkLogic Server requires the following privileges or the
equivalent:

• http://marklogic.com/xdmp/privileges/xdmp-eval

• http://marklogic.com/xdmp/privileges/xdmp-eval-in

• http://marklogic.com/xdmp/privileges/xdbc-eval
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 298

MarkLogic Server Extending the Java API
• http://marklogic.com/xdmp/privileges/xdbc-eval-in

Invoking a module on MarkLogic Server requires the following privileges or the equivalent:

• http://marklogic.com/xdmp/privileges/xdmp-invoke

• http://marklogic.com/xdmp/privileges/xdmp-invoke-in

• http://marklogic.com/xdmp/privileges/xdbc-invoke

• http://marklogic.com/xdmp/privileges/xdbc-invoke-in

15.9.2 Basic Step for Ad-Hoc Query Evaluation
Follow this procedure to evaluate an Ad-Hoc XQuery or JavaScript query on MarkLogic Server.
You must use a user that has the privileges listed in “Security Requirements” on page 298.

1. If you have not already done so, create a DatabaseClient for connecting to the database.
For example, if using digest authentication:

DatabaseClient client = DatabaseClientFactory.newClient(
host, port, new DigestAuthContext(username, password));

1. Create a ServerEvaluationCall object.

ServerEvaluationCall theCall = client.newServerEval();

2. Associate your ad-hoc query with the call object. You can specify the query using a
String or a TextWriteHandle.

a. For a JavaScript query, pass in the query text using ServerEvaluationCall.javascript:

String query = "word1 \" \" + word2";
theCall.javascript(query);

b. For an XQuery query, pass in the query text using ServerEvaluationCall.xquery.

String query =
"xquery version '1.0-ml';" +
"declare variable $word1 as xs:string external;" +
"declare variable $word2 as xs:string external;" +
"fn:concat($word1, ' ', $word2)";

theCall.xquery(query);

3. If the query expects input variable values, supply them using
ServerEvaluationCall.addVariable. For details, see “Specifying External Variable
Values” on page 301.

theCall.addVariable("word1", "hello");
theCall.addVariable("word2", "world");
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 299

MarkLogic Server Extending the Java API
4. Send the query to MarkLogic Server for evaluation by calling ServerEvaluationCall.eval
or ServerEvaluationCall.evalAs. For details, see “Interpreting the Results of Eval or
Invoke” on page 302.

String response = theCall.evalAs(String.class);

5. Release the client if you no longer need the database connection.

client.release();

The following code puts these steps together into a single block.

DatabaseClient client = DatabaseClientFactory.newClient(
host, port, new DigestAuthContext(username, password));

ServerEvaluationCall theCall = client.newServerEval();
String query = "word1 \" \" + word2";

String result = theCall.javascript(query)
.addVariable("word1", "hello")
.addVariable("word2", "world")
.evalAs(String.class);

15.9.3 Basic Steps for Module Invocation

Note: A JavaScript MJS module can be invoked through the /v1/invoke endpoint. This
is the preferred method.

Note: A data service endpoint can be implemented as a JavaScript MJS module. This is
the preferred method.

You can invoke an arbitrary JavaScript or XQuery module installed in the modules database
associated with the REST API instance by setting a module path on a ServerEvaluationCall object
and then calling ServerEvaluationCall.eval or ServerEvaluationCall.evalAs. The module path
is resolved using the rules described in “Rules for Resolving Import, Invoke, and Spawn Paths”
on page 87 in the Application Developer’s Guide.

You can install your module is using com.marklogic.client.admin.ExtensionLibrariesManager.
For details, see “Installing or Updating Assets” on page 295. If you install your module using the
ExtensionLibrariesManager interface, your module path will always being with “/ext/”.

Follow this procedure to invoke an XQuery or JavaScript module pre-installed on MarkLogic
Server. You must use a user that has the privileges listed in “Security Requirements” on page 298.

1. If you have not already done so, create a DatabaseClient for connecting to the database.
For example, if using digest authentication:

DatabaseClient client = DatabaseClientFactory.newClient(
host, port, new DigestAuthContext(username, password));
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 300

MarkLogic Server Extending the Java API
2. Create a ServerEvaluationCall object.

ServerEvaluationCall invoker = client.newServerEval();

3. Associate your module with the call object by setting the module path.

invoker.modulePath("/my/module/path.sjs");

4. If the query expects input variable values, supply them using
ServerEvaluationCall.addVariable. For details, see “Specifying External Variable
Values” on page 301.

invoker.addVariable("word1", "hello");
invoker.addVariable("word2", "world");

5. Invoke the module on MarkLogic Server by calling ServerEvaluationCall.eval or
ServerEvaluationCall.evalAs. For details, see “Interpreting the Results of Eval or
Invoke” on page 302.

String response = invoker.evalAs(String.class);

6. Release the client if you no longer need the database connection.

client.release();

The following code puts these steps together into a single block.

DatabaseClient client = DatabaseClientFactory.newClient(
host, port, new DigestAuthContext(username, password));

ServerEvaluationCall invoker = client.newServerEval();

String result = invoker.modulePath("/ext/invoke/example.sjs")
.addVariable("word1", "hello")
.addVariable("word2", "world")
.evalAs(String.class);

15.9.4 Specifying External Variable Values
You can pass values to an ad-hoc query or invoked module at runtime using external variables.
Specify the variable values using ServerEvaluationCall.addVariable. or
ServerEvaluationCall.addVariableAs.

Use addVariable for simple value types, such as String, Number, and Boolean and values with a
suitable AbstractWriteHandle, such as DOMHandle for XML and JacksonHandle for JSON. For
example:

ServerEvaluationCall theCall = client.newServerEval();
...
theCall.addVariable("aString", "hello")
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 301

MarkLogic Server Extending the Java API
.addVariable("aBool", true)

.addVariable("aNumber", 3.14);

Use addVariableAs for other complex value types such as objects. For example, the following
code uses a Jackson object mapper to set an external variable value to a JSON object that can be
used as a JavaScript object by the server-side code:

theCall.addVariableAs("anObj",
new ObjectMapper().createObjectNode().put("key", "value"))

If you’re evaluating or invoking XQuery code, you must declare the variables explicitly in your
ad-hoc query or module. For example, the following XQuery prolog declares two external
string-valued variables whose values can be supplied at runtime.

xquery version "1.0-ml";
declare variable $word1 as xs:string external;
declare variable $word2 as xs:string external;
...

If your XQuery external variables are in a namespace, use ServerEvaluationCall.addNamespace
to associate a prefix with the namespace, and then use the namespace prefix in the variable name
passed to ServerEvaluationCall.addVariable. For example, given the following ad-hoc query:

xquery version "1.0-ml";
declare namespace my = "http://example.com";
declare variable $my:who as xs:string external;
fn:concat("hello", " ", $my:who)

Set the variable values as follows:

theCall.addNamespace("my", "http://example.com")
.addVariable("my:who", "me")
...

15.9.5 Interpreting the Results of Eval or Invoke
You can request results in the following ways:

• If you know the ad-hoc query or invoked module returns a single value of a simple known
type, use ServerEvaluationCall.evalAs. For example, if you know an ad-hoc query
returns a single String value, you can evaluate it as follows:

String result = theCall.evalAs(String.class);

• Pass an AbstractReadHandle to ServerEvaluationCall.eval to process a single result
through a handle. For example:

DOMHandle result = theCall.eval(new DOMHandle());
//Or
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 302

MarkLogic Server Extending the Java API
JacksonHandle result = theCall.eval(new JacksonHandle());

• If the query or invoked module can return multiple values or you do not know the return
type, use ServerEvaluationCall.eval with no parameters to return an
EvalResultIterator. For example:

EvalResultIterator result = theCall.eval();

When you use an EvalResultIterator, each value is encapsulated in a
com.marklogic.client.eval.EvalResult that provides type information and accessors for the
value. The EvalResult.format method provides abstract type information, such as text, binary,
json, or xml. The EvalResult.getType method provides more detailed type information, when
available, such as string, integer, decimal, or date. Detailed type information is not always
available.

The table below maps common server-side value types to the values you can expect to their
corresponding com.marklogic.client.io.Format (from EvalResult.format) and EvalResult.Type
(from EvalResult.getType).

Value Type Format Type

document-node[object-node()] Format.JSON Type.JSON

object-node() Format.JSON Type.JSON

document-node[array-node()] Format.JSON Type.JSON

array-node() Format.JSON Type.JSON

map:map Format.JSON Type.JSON

json:array Format.JSON Type.JSON

document-node[element()] Format.XML Type.XML

element() Format.XML Type.XML

document-node[binary()] Format.BINARY Type.BINARY

binary() Format.BINARY Type.BINARY

document-node[text()] Format.TEXT Format.TEXT

text() Format.TEXT Format.TEXT
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 303

MarkLogic Server Extending the Java API
any atomic value Format.TEXT corresponding type, such as
Format.BOOLEAN or
Format.INTEGER.

JavaScript string Format.TEXT Format.STRING

JavaScript number Format.TEXT Format.DECIMAL, a derived
type such as FORMAT.INTEGER,
or Format.STRING (for
infinity)

JavaScript boolean Format.TEXT Format.BOOLEAN

Value Type Format Type
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 304

MarkLogic Server Extending the Java API
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 305

MarkLogic Server Creating Data Services Using the MarkLogic Java
16.0 Creating Data Services Using the MarkLogic Java
Development Tools

325

Data Services is a convenient way to integrate MarkLogic into an existing enterprise
environment. A data service is a fixed interface over the data managed in MarkLogic expressed in
terms of the consuming application. Data services can run queries ("Find eligible insurance plans
for an applicant"), updates ("Flag this claim as fraudulent"), or both ("Adjust the rates of plans
that haven't made claims in the last year"). A MarkLogic cluster can support dozens or even
hundreds of different data services operating over the data and metadata managed in a data hub.

• Advantages of Data Services

• Where Data Service Fit Within the Enterprise Stack

• How it Works

• Prerequisites

• Relation to the Java Client API

• Creating a Proxy Service

• Setting Up an App Server for the Proxy Service

• Creating the Proxy Service Directory

• Declaring the Proxy Service

• Declaring the Endpoint

• Providing the Module for an Endpoint Proxy

• Deploying a Proxy Service

• Generating the Proxy Service Class

• Using a Proxy Service Class

• Publishing Your Data Service for Use in Other Projects

A data service is different from a generic query interface, like JDBC or ODBC, which typically
operates at the physical layer of the database. Architecturally, a data service is more like a remote
procedure call or a stored procedure. The data service allows the service developer to obscure the
physical layout of the data and constrain or enhance queries and updates with business logic.

MarkLogic provides a rich scripting environment as part of the DBMS. The developer
implements data services using either JavaScript or XQuery. MarkLogic supports JavaScript and
XQuery runtimes. MarkLogic optimizes this code to run close to the data, minimizing data
transfer and leveraging cluster-wide indexes and caches.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 306

MarkLogic Server Creating Data Services Using the MarkLogic Java
16.1 Advantages of Data Services

• Avoid unnecessary round-trips by encapsulating the data logic, ensuring that service
implementations run close to the data.

• Reduce custom plumbing code by handling network and data marshalling transparently.

• Reduce the potential for API drift as requirements and implementations change by
enforcing strongly typed interfaces.

The Java Client API supports physical operations on the database. In particular, the Java Client
API provides DocumentManager (and its derivations) and QueryManager to write, read, or query
for documents and their metadata at the Uris identifying the documents in the database. Where a
transaction must span multiple requests, the client uses a physical Transaction object.

Proxy services complement these physical operations with logical operations. The Java
middle-tier invokes endpoints, passing and receiving values. The endpoint is entirely responsible
for the implementation of the operation against the database - including the reading and writing of
values. Where an operation must interleave middle-tier and e-node tasks, the client uses a logical
session represented by a SessionState object (as described later).

The Java Client API and proxy services connect with the database in the same way. Both use the
DatabaseClientFactory class to instantiate a DatabaseClient object for use in requests.

A REST server used for the Java Client API can coexist with proxy services, provided the user
abides by the following conditions:

1. Do not try to use proxy services on port 8000.

2. You must avoid filename collisions by using a different directory than the one used by the
REST API.

One way to avoid such collisions would be to establish a convention such as using a "/ds"
directory for all data services.

Note: The middle-tier client cannot specify the database explicitly when creating a
DatabaseClient but, instead, must use the default database associated with the App Server.

16.2 Where Data Service Fit Within the Enterprise Stack
The diagram below illustrates how MarkLogic Data Services fits within the enterprise
development stack.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 307

MarkLogic Server Creating Data Services Using the MarkLogic Java
Enterprise middle-tier business logic generally integrates many services: data services from a
MarkLogic cluster as well as services from other providers. This service orchestration and
business logic happen at a layer above the data infrastructure, outside of a particular service
provider. The flexibility to mix and match services and to decouple providers and consumers is
one of the benefits of a service-oriented architecture:

16.2.1 How it Works
You declare a function signature for each endpoint that implements a data service.

From a set of such declarations, the development tools generate a Java proxy service class that
encapsulates the execution of the endpoints including the marshalling and transport of the request
and response data. The middle-tier business logic can then call the methods of the generated class.

A MarkLogic data service consists of three main components:

• Endpoint Declaration: This is a JSON document used to specify the name of the service as
well as the names and data types of the inputs and outputs.

• Endpoint Proxy: Code that exposes the service definition in Java, automatically invoking
the services remotely against a MarkLogic cluster for the caller.

• Endpoint Module: This is the implementation of a data service in MarkLogic as a
JavaScript or XQuery module.

By declaring the data tier functions needed by the middle-tier business logic, the endpoint
declaration establishes a division of responsibility between the Java middle-tier developer and the
data service developer. The endpoint declaration acts as a contract for collaboration between the
two roles.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 308

MarkLogic Server Creating Data Services Using the MarkLogic Java
It is the responsibility of the end point service developer to limit access to the Data Services assets
by adding the necessary security asserts (using xdmp.securityAssert or xdmp:security-assert
functions) to test for privileges.

16.2.2 Prerequisites
To create a proxy service, you need a Java JDK environment with Gradle and the following
MarkLogic software components:

• Current version of MarkLogic Server

• Current version of MarkLogic Client Java API

• Current version of ml-gradle

The MarkLogic Java development tools are available as a Gradle plugin.

This document assumes that you are familiar with Java and Gradle.

If you are unfamiliar with Gradle, the ml-gradle project lists some resources for getting started:

Installing and learning Gradle

Typically, you create one Gradle project directory for all of the work on proxy services for one
content database.

16.2.3 Relation to the Java Client API
The MarkLogic Java Client API includes development tooling and runtime proxies so that a Java
application can access custom data services in a MarkLogic cluster. The Java application calls
strongly typed services running in the databases as if they were "out of the box" Java methods.
The API handles the underlying network protocol and data marshalling.

16.3 Creating a Proxy Service
From the proxy service source files, you generate Java methods that call endpoint modules
deployed to the modules database:
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 309

http://developer.marklogic.com/products
https://github.com/marklogic/java-client-api/
https://github.com/marklogic-community/ml-gradle
https://github.com/marklogic-community/ml-gradle/wiki/Getting-started#installing-and-learning-gradle
https://github.com/marklogic-community/ml-gradle/wiki/Getting-started#installing-and-learning-gradle
https://github.com/marklogic-community/ml-gradle/wiki/Getting-started#installing-and-learning-gradle

MarkLogic Server Creating Data Services Using the MarkLogic Java
The development process consists of the following steps:

1. Set up a MarkLogic App Server

2. Create a proxy service directory within the Gradle project directory

3. Create a file to declare the service

4. Create files to declare one or more endpoint proxies for the service

5. Implement the module for each endpoint proxy

6. Deploy the proxy service directory to the modules database of the App Server

7. Generate the Java Class from the proxy service declaration.

16.3.1 Setting Up an App Server for the Proxy Service
Typically, you set up a single App Server for all of the proxy services for a content database.

The App Server configuration must have the following characteristics:

• Must have a modules database.

• Must have a root of /.

You cannot use the following App Servers, created by default when you install MarkLogic:
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 310

MarkLogic Server Creating Data Services Using the MarkLogic Java
• The REST/HTTP/XDBC App Server on port 8000

• The Admin API App Server on port 8001

• The REST Management API App Server on port 8002

As noted above, you are also able to use a REST server (that is, an App Server created for the
Client REST API).

Note: Data services can reside on REST and non-REST App Servers.

To make creation and configuration of the App Server and its modules database, you should
manage a repeatable operation in a version control system. You can also put resources in the
Gradle project directory and use ml-gradle to operate on those resources.

See Getting started for a step-by-step guide to this Gradle procedure.

As an easy expedient when learning about MarkLogic, you can instead configure the App Server
and modules database manually. As a long-term practice, however, we recommend a repeatable
approach using Gradle.

16.3.2 Creating the Proxy Service Directory
For each proxy service, you create a separate subdirectory under the Gradle project directory.

Each proxy service directory holds all of the resources required to support the proxy service,
including:

• The service declaration

• The endpoint proxy declarations

• The module called by each endpoint proxy

• Any server-side libraries to support the endpoint modules

For easier deployment to the modules database using ml-gradle, you should create the proxy
service directory under the src/main/ml-modules/root project subdirectory. If you are
working under a MarkLogic ReST server application, you should use the following proxy service
directory: src/main/ml-modules/root/ds.

For instance, a project might choose to provide the priceDynamically service in the following
proxy service directory:

src/main/ml-modules/root/inventory/priceDynamically

16.3.3 Declaring the Proxy Service
The proxy service directory must contain exactly one service declaration file. The service
declaration file must have the name service.json
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 311

https://github.com/marklogic-community/ml-gradle/wiki/Getting-started

MarkLogic Server Creating Data Services Using the MarkLogic Java
The service declaration consists of a JSON object with the following properties:

The following example declares the /inventory/priceDynamically/ directory as the address of the
endpoints in the modules database and declares
com.some.business.inventory.DynamicPricer as the generated Java class:

{
"endpointDirectory" : "/inventory/priceDynamically/",
"$javaClass" : "com.some.business.inventory.DynamicPricer"

}

Conventionally, the value of the endpointDirectory property should be the same as the path of the
proxy service directory under the special ml-gradle src/main/ml-modules/root directory (so, the
service directory for this service.json file would conventionally be
src/main/ml-modules/root/inventory/priceDynamically).

The endpoint directory value should include the leading / and should resemble a Linux path.

After declaring the service, you populate it with endpoint proxy declarations

16.3.4 Declaring the Endpoint
The name, parameters, and return value for each endpoint is declared in a file with the .api
extension in the service directory. The file contains a JSON data structure with the following
properties:

Table 1: Service Declaration File Properties

Property Declares

endpointDirectory The directory path for the installed endpoint modules within the
modules database.

$javaClass The full name of the generated service class including the package
qualification.

desc Optional; plain text documentation for the service (emitted as Java-
Doc by the generated class).

comment Optional; can contain an object, array, or value with developer com-
ments about the declaration.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 312

MarkLogic Server Creating Data Services Using the MarkLogic Java
The endpoint declaration is used both to generate a method in a Java class to call on the
middle-tier and to unmarshal the request and marshal the response when the App Server executes
the endpoint module.

Note: The .api file for proxy endpoint must be loaded into the modules database with
the endpoint module.

The following sections provide more detail about the params and return declarations

16.3.4.1 Structure of a Parameter Definition
A parameter definition in the params property is an array with the following properties:

Table 2: Endpoint Properties

Property Declares

functionName The name used to call the endpoint, which must match the name
(without the .api extension) of the declaration file.

desc Optional; plain text documentation for the endpoint (emitted as
JavaDoc).

params Optional; an array specifying the parameters of the endpoint; omit-
ted for endpoints with no parameters. Parameter objects have name,
desc, datatype, nullable, and multiple properties.

return Optional; an object specifying the endpoint return value; omitted for
endpoints with no return value. The child object has desc, datatype,
nullable, and multiple properties.

errorDetail Optional; specifies a value from the following enumeration to con-
trol whether error responses include stack traces:

• log: (the default) to log the stack trace on the server but not
return the stack trace to the middle-tier.

• return: to include the stack trace in the exception on the
middle-tier as well as log it on the server.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 313

MarkLogic Server Creating Data Services Using the MarkLogic Java
16.3.4.2 Structure of the Return Type Definition
The return property of an endpoint declaration is an object with the following properties:

16.3.4.3 Example of an Endpoint Proxy
The following example declares that the lookupPricingFactors endpoint has two required
parameters as well as a required return value:

{
 "functionName" : "lookupPricingFactors",
 "params" : [{
 "name" : "productCode",
 "datatype" : "string"
 }, {

Table 3: Parameter Definitions

Property Declares

name The name of the parameter

desc Optional; a description of the parameter to include in JavaDoc.

datatype The datatype of the parameter (see Server Data Types for Values).

nullable Optional; whether the parameter can be null (defaulting to false).

multiple Optional; whether the parameter can have more than one value
(defaulting to false).

Table 4: Return Type Definitions

Property Declares

desc Optional; a description of the return to include in JavaDoc.

datatype The datatype of the return (see Server Data Types for Values).

nullable Optional; whether the return can be null (defaulting to false).

multiple Optional; whether the return can have more than one value
(defaulting to false).
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 314

MarkLogic Server Creating Data Services Using the MarkLogic Java
 "name" : "customerId",
 "datatype" : "unsignedLong"
 }],
 "return" : {
 "datatype" : "jsonDocument"
 }}

16.3.4.4 Server Data Types for Values
You can specify atomic or node server data types for parameters and return values:

The data types with direct equivalents in the Java language atomics are represented with those
Java classes by default. These data types include boolean, double, float, int, long, string,
unsignedInt, and unsignedLong. For instance, a Java Integer represents an int. Likewise, the
unsigned methods of the Java Integer and Long classes can manipulate the unsignedInt and
unsignedLong types.

By default, a Java String represents the other atomic types (including date, dateTime, and
dayTimeDuration, decimal and time).

Other server atomic data types can be passed as a string and cast using the appropriate constructor
on the server.

A binaryDocument value is represented as an InputStream by default. All other node data types
are represented as a Reader by default.

The array and object data types differ from the jsonDocument data type in not having a document
node at the root, which can provide a more natural and efficient JSON value for manipulating in
SJS (Server-Side JavaScript).

16.3.4.5 Mapping Values to Alternative Java Classes
Instead of the default Java representation, an alternative Java class may represent some server
data types. For example, a String can represent a date by default, but you can choose to use
java.time.LocalDate instead.

Table 5: Server Data Types

Category Data Types

atomics boolean, date, dateTime, dayTimeDuration, decimal, double,
float, int, long, string, time, unsignedInt, unsignedLong

nodes array, object, binaryDocument, jsonDocument, textDocument,
xmlDocument
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 315

MarkLogic Server Creating Data Services Using the MarkLogic Java
To specify an alternative Java class, supply the fully qualified class name in the $javaClass
property of a parameter or return type. You must still specify the server data type in the datatype
property.

The following table lists server data types with their available alternative representations:

Table 6:

Server Data Type Mappable Java Classes

date java.time.LocalDate

dateTime java.util.Date, java.time.LocalDateTime, java.time.OffsetDateTime

dayTimeDuration java.time.Duration

decimal java.math.BigDecimal

time java.time.LocalTime, java.time.OffsetTime

array java.io.InputStream,
java.io.Reader,
java.lang.String,
com.fasterxml.jackson.databind.node.ArrayNode,
com.fasterxml.jackson.core.JsonParser

object java.io.InputStream,
java.io.Reader,
java.lang.String,
com.fasterxml.jackson.databind.node.ObjectNode,
com.fasterxml.jackson.core.JsonParser

binaryDocument java.io.InputStream

jsonDocument java.io.InputStream,
java.io.Reader,
java.lang.String,
com.fasterxml.jackson.databind.JsonNode,
com.fasterxml.jackson.core.JsonParser

textDocument java.io.InputStream,
java.io.Reader,
java.lang.String
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 316

MarkLogic Server Creating Data Services Using the MarkLogic Java
The following example represents the occurred date parameter as a Java LocalDate and represents
the returned JSON document as a Jackson JsonNode.

{
 "functionName" : "produceReport",
 "params":[{
 "name":"id", "datatype":"int"
 }, {
 "name":"occurred", "datatype":"date",
 "$javaClass":"java.time.LocalDate"
 }],
 "return" : {
 "datatype":"jsonDocument",
 "$javaClass":"com.fasterxml.jackson.databind.JsonNode"}
 }
}

16.3.4.6 Calling Endpoints in a Session
Ordinarily, the database server does not keep any state associated with a call to an endpoint (with
the obvious but important exception of documents persisted in the database). When the
middle-tier sends all of the input needed for a data tier operation, the operation can be completed
in a single request. This approach typically maximizes performance and minimizes load.

Some operations, however, use sessions that coordinate multiple requests. Examples of such
operations include:

• Interleaving middle-tier and data tier operations (such as multi-statement transactions in
which the middle-tier logic must be inserted between the initial database change and a
subsequent database change)

• Implementing Host affinity with an e-node when working with a load balancer to exploit
query caches on the e-node.

xmlDocument java.io.InputStream,
java.io.Reader,
java.lang.String,
org.w3c.dom.Document,
org.xml.sax.InputSource,
javax.xml.transform.Source,
javax.xml.stream.XMLEventReader,
javax.xml.stream.XMLStreamReader

Table 6:

Server Data Type Mappable Java Classes
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 317

MarkLogic Server Creating Data Services Using the MarkLogic Java
You can handle these edge cases by calling the endpoints in a session. If an endpoint needs to
participate in a session, its declaration must include exactly one parameter with the session data
type. The session parameter may be nullable but not multiple (and may never be a return value).

// A simple example of the use of "session" in an .api declaration:
{
 "functionName" : "SessionChecks",
 "params" : [{
 "name" : "api_session",
 "datatype" : "session",
 "desc" : "Holds the session object"
 },
...
}

If at least one endpoint has a session parameter, the generated class provides a newSessionState()
factory that returns a SessionState object. The expected pattern of use:

• Construct a new session object when needed.

• Pass the same session object on each call that should execute in the same session.

Where endpoint modules need to participate in the same session, you must declare a session
parameter for each of the corresponding endpoint proxies and document the expectations for
coordination in the middle-tier consumer code. For instance, if one session endpoint starts a
multi-statement transaction, another continues work in the same multi-statement transaction, and
a third commits the transaction, the documentation should explain that each call would use the
same session, as well as the sequence in which to make the calls.

The proxy service does not end the session explicitly. Instead, the session eventually times out (as
controlled by the configuration of the App Server). The middle-tier code is responsible for calling
an endpoint module to commit a multi-statement transaction before the session expires.

16.3.5 Providing the Module for an Endpoint Proxy

Note: A JavaScript MJS module can be invoked through the /v1/invoke endpoint. This
is the preferred method.

Note: A data service endpoint can be implemented as a JavaScript MJS module. This is
the preferred method.

You implement the data operations for an endpoint proxy in an XQuery or Server-Side JavaScript
endpoint module. The proxy service directory of your project must contain exactly one endpoint
module for each endpoint declaration in your service.

An endpoint module must have the same base name as the endpoint declaration. In addition, it
must have either an .xqy (XQuery) or .sjs (JavaScript) extension, depending on the
implementation language.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 318

MarkLogic Server Creating Data Services Using the MarkLogic Java
The App Server handles marshalling and unmarshalling for the endpoint. That is, the endpoint
does not interact directly with the transport layer (which, internally, is currently HTTP).

The endpoint module must define an external variable for each parameter in the endpoint
declaration. In an SJS endpoint, use a var statement at the top of the module with no initialization
of the variable. In an XQuery endpoint, use an external variable with the server data type
corresponding to the parameter data type.

The endpoint module must also return a value with the appropriate data type.

For the lookupPricingFactors endpoint whose declaration appears earlier, the SJS endpoint
module would resemble the following fragment:

'use strict';
var productCode; // an xs.string value
var customerId; // an xs.unsignedLong value
... /* the code that produces a JSON document as output */

The equivalent XQuery endpoint module would resemble the following fragment:

xquery version "1.0-ml";
 declare variable $productCode as xs:string external;
 declare variable $customerId as xs:unsignedLong external;
 declare option xdmp:mapping "false";
 ... (: the code that produces a JSON document as output :)

As a convenience, you can use the initializeModule Gradle task to create the skeleton for an
endpoint module from an endpoint declaration. You specify the path (relative to the project
directory) for the endpoint declaration with the endpointDeclarationFile property and the
module extension (which can be either sjs or xqy) with the moduleExtension property.

Your Gradle build script should apply the com.marklogic.ml-development-tools plugin. You can
execute the Gradle task using any of the following techniques:

• By setting the properties in the gradle.properties file and specifying the initializeModule
task on the gradle command line

• By specifying the properties with the -P option as well as the initializeModule task on the
gradle command line

• By supplying a build script with a custom task of the
com.marklogic.client.tools.gradle.ModuleInitTask type

For the command-line approach, the Gradle build script would resemble the following example:

plugins {
 id 'com.marklogic.ml-development-tools' version '4.1.1'
}

MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 319

MarkLogic Server Creating Data Services Using the MarkLogic Java
On Linux, the command-line for initializing the lookupPricingFactors.sjs SJS endpoint module
from the lookupPricingFactors.api endpoint declaration might resemble the following example:

gradle \
-PendpointDeclarationFile=src/main/ml-modules/root/inventory/priceDyna
mically/lookupPricingFactors.api \
 -PmoduleExtension=sjs \
 initializeModule

Once each .api endpoint declaration file has an equivalent endpoint module to implement the
endpoint, you can load the proxy service directory into the modules database and generate the
proxy service Java class. (The Java code generation checks the endpoint module in the service
directory to determine how to invoke the endpoint.)

16.3.6 Deploying a Proxy Service
You must load the resources from the proxy service directory into the module database of the App
Server. Deploy your resources to the same database directory as the value of the
endpointDirectory property of the service declaration file (service.json).

To load a directory into the modules database, you can use either of the mlLoadModules or
mlReloadModules tasks provided by ml-gradle. You supply the properties required for deployment
including the following:

• mlHost - required

• mlAppServicesUsername - required if not admin and mlPassword not set

• mlAppServicesPassword - required if not admin and mlUsername not set

• ml|AppServicesPort - required if not 8000

• mlModulesDatabaseName - required

• mlModulePermissions - required

• mlNoRestServer - required to be true, so that mlDeploy will not create a REST API server
by default.

• mlReplaceTokensInModules - typically false

If you did not create the proxy service directory under the src/main/ml-modules/root project
subdirectory, you must specify the parent directory for the root directory with the mlModulePaths
property.

You can supply properties using a gradle.properties file or a task.

After you have configured the properties, the command to load the modules would resemble the
following example (or the equivalent with mlReloadModules):

gradle mlLoadModules
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 320

MarkLogic Server Creating Data Services Using the MarkLogic Java
For more information, see How modules are loaded.

16.3.7 Generating the Proxy Service Class
A proxy service class is a Java interface for calling the endpoint modules for your service on the
MarkLogic e-node. You generate the proxy service class from the resources in the proxy service
directory.

The proxy service class has the name specified by the $javaClass property of the service
declaration file (service.json). The class has one method for each endpoint declaration with an
associated endpoint module in the proxy service directory.

To generate the class, you use the generateEndpointProxies Gradle task. You specify the path
(relative to the project directory) of the service declaration file (service.json) with the
serviceDeclarationFile property. You can also specify the output directory with the
javaBaseDirectory property or omit the property to use the default (which is the src/main/java
subdirectory of the project directory).

Your Gradle build script should apply the com.marklogic.ml-development-tools plugin. You can
execute the task using any of the following techniques:

• By setting the properties in the gradle.properties file and specifying the
generateEndpointProxies task on the gradle command line

• By specifying the properties with the -P option as well as the generateEndpointProxies
task on the gradle command line

• By supplying a build script with custom task of the
com.marklogic.client.tools.gradle.EndpointProxiesGenTask type

• By supplying a build script with the endpointProxiesConfig extension configuration and
specifying the generateEndpointProxies task on the gradle command line

For the custom task approach, the Gradle build script for generating a class with a method for
each endpoint in the priceDynamically service might resemble the following example:

plugins {
 id 'com.marklogic.ml-development-tools' version '4.1.1'
}
task generateDynamicPricer(type:
com.marklogic.client.tools.gradle.EndpointProxiesGenTask) {
 serviceDeclarationFile =
'src/main/ml-modules/root/inventory/priceDynamically/service.json'
}

The command-line to execute the custom task would resemble the following example:

gradle generateDynamicPricer
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 321

https://github.com/marklogic-community/ml-gradle/wiki/How-modules-are-loaded

MarkLogic Server Creating Data Services Using the MarkLogic Java
You only need to regenerate the proxy service class when the list of endpoints or the name,
parameters, or return value for an endpoint changes. You do not need the regenerate the proxy
service class after changing the module that implements the endpoint.

16.3.8 Using a Proxy Service Class
In general, you can work with your generated proxy service Java class in the same way as with
manually written Java source files.

The generated class has an on() static method that is a factory for constructing the class. The on()
method requires a DatabaseClient for the App Server. You construct the database client by using
the DatabaseClientFactory class of the Java API.

Note: You cannot specify the database explicitly when creating the DatabaseClient but, instead,
must use the default database associated with the App Server.

16.3.8.1 Compiling a Proxy Service Class
After generating the proxy service class, you compile it in the usual way. In particular, by
generating the proxy service class in the conventional directory for Gradle (which is
src/main/java) and declaring a dependency on the MarkLogic Java API in the build script, you
can use Gradle to compile the generated class without other configuration.

16.3.8.2 Testing a Proxy Service Class
After deploying your proxy service to the MarkLogic modules database, you can test your proxy
service Java class in the same manner as any other Java class.

To write functional tests that confirm the endpoint modules work correctly, you can use any
general-purpose test framework (for instance, JUnit). The test framework should:

• Call the on() static factory method to construct an instance.

• Call the appropriate method to invoke the endpoint module.

• Inspect the returned value to confirm the operation of the endpoint module.

Because the generated proxy service class is available as a Java interface, you can replace the
implementation with a mock implementation of the interface for testing a middle-tier consumer.

16.3.8.3 Documenting a Proxy Service Class
The generated class has JavaDoc comments based on the desc properties from the service
declaration and endpoint declarations. You can generate JavaDoc for the middle-tier consumer of
the proxy service class in the usual way.

16.3.8.4 Packaging a Proxy Service
Finally, you can create a jar file with the compiled executable proxy service class in the usual way.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 322

MarkLogic Server Creating Data Services Using the MarkLogic Java
16.4 Publishing Your Data Service for Use in Other Projects
Users of Data Services need to know how to publish a Data Service for use in another project, and
developers that require the end-points provided by a Data Service need to have a way to access
them in their own projects.

This section shows you how to use the ml-gradle tool to enable publication of your Data Services.

• Modifying the Source project to Enable Publication

• Using the Maven Bundle in Other Projects

16.4.1 Modifying the Source project to Enable Publication
The procedure is to modify the build.gradle file for the source project to publish the Data Services
implementation to a Maven repository, as in:

plugins {

 ...

 id 'maven-publish'

 ...

}

configurations {

 ...

 myDataServiceBundle

}

task myDataServiceJar(type: Jar) {

 baseName = 'myDataService'

 description = "..."

 from("src/test/ml-modules/root/ds/myDataService") {

 into("myDataService/ml-modules/root/ds/myDataService")

 }

 destinationDir file("build/libs")

}

publishing {
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 323

MarkLogic Server Creating Data Services Using the MarkLogic Java
 publications {

 ...

 MainMyDataService(MavenPublication) {

 artifactId "myDataService"

 artifact myDataServiceJar

 }

 ...

 }

}

16.4.2 Using the Maven Bundle in Other Projects
After the bundle for the Data Service endpoint implementation has been published to a Maven
repository, other projects can use the bundle by configuring build.gradle to use the mlBundle task
provided by the ml-gradle tool:

plugins {

 ...

 id "com.marklogic.ml-gradle" version "..."

 ...

}

dependencies {

 ...

 mlBundle group: '...', name: 'myDataService', version: '...'

 ...

}

For more information, see the Bundles section of our ml-gradle documentation:

Following the standard approach for Gradle and Maven repositories, the client interface can be
published and consumed as a Java jar.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 324

https://github.com/marklogic-community/ml-gradle/wiki/Bundles

MarkLogic Server Creating Data Services Using the MarkLogic Java
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 325

MarkLogic Server Troubleshooting
17.0 Troubleshooting
327

This chapter describes how to troubleshoot errors while programming in the Java API, and
contains the following sections:

• Error Detection

• General Troubleshooting Techniques

17.1 Error Detection
As you would expect, the Java API client indicates errors by throwing exceptions. It does not
return errors or otherwise indicate problems by any other means. The exceptions are located in
com.marklogic.client and are:

• FailedRequestException: Indicates a problem at the REST API level.

• ForbiddenUserException: Indicates credentials used to connect to a REST instance are not
sufficient for the requested task. Equivalent to a 403 HTTP status code.

• MarkLogicBindingException: Indicates a problem binding a value.

• MarkLogicInternalException: Indicates a defect in the API. Call MarkLogic Support.

• MarkLogicIOException: RuntimeException Thrown when a code block internally throws
java.lang.IOException.

• MarkLogicServerException: The MarkLogic REST Server threw an exception.

• ResourceNotFoundException: Thrown when the server responds with an HTTP 404 status.

• UnauthorizedUserException: Thrown when a user attempts an operation to which they do
not have the rights for.

17.2 General Troubleshooting Techniques
The following are some general guidelines for troubleshooting your program.

• To troubleshoot unexpected search results, pass the query option for debug, which returns
errors in the query options, and the return-qtext option, which returns the pre-parsed
query text for the search.

• Remember that documents with no read permission are hidden.

• To troubleshoot exceptions, pay close attention to any messages returned from the server.

• Set the MarkLogic Server error log to debug and view the server log
(<marklogic-dir>/Logs/ErrorLog.txt) for more details.

• To monitor the HTTP requests against the REST Server, look at the access logs under the
<marklogic-dir>/Logs directory for your REST App Server (for example,
1234_AccessLog.txt for the server running on port 1234).

• Configure managers with a request logger to confirm requests are correct.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 326

MarkLogic Server Troubleshooting
• To troubleshoot extensions, first execute the XQuery code in an XQuery environment.
Then look at the requests and server log.

• Check the query options builder output to make sure it is what you expect, either with
QueryOptionsHandle.toString(), which outputs the XML representation of the query
options, or by checking the stored options against what is expected. Errors reported by
MarkLogic Server refer to the structure of this document.

• When you have a mismatch between query options and existing indexes, you can look at
the /v1/config/indexes?format=html endpoint on your REST Server.

• If you want a closer look at the requests against the REST Server, use a network sniffer to
watch the HTTP trafic against the REST Server. You can also try to execute an equivalent
request for the REST API using cURL or some other HTTP client.
MarkLogic 10—May, 2019 Java Application Developer’s Guide—Page 327

MarkLogic Server Technical Support
18.0 Technical Support
329

MarkLogic provides technical support according to the terms detailed in your Software License
Agreement or End User License Agreement.

We invite you to visit our support website at http://help.marklogic.com to access information on
known and fixed issues, knowledge base articles, and more. For licensed customers with an active
maintenance contract, see the Support Handbook for instructions on registering support contacts
and on working with the MarkLogic Technical Support team.

Complete product documentation, the latest product release downloads, and other useful
information is available for all developers at http://developer.marklogic.com. For technical
questions, we encourage you to ask your question on Stack Overflow.
MarkLogic 10

http://help.marklogic.com/
https://stackoverflow.com/questions/tagged/marklogic
http://developer.marklogic.com
http://www.marklogic.com/files/Mark_Logic_Support_Handbook.pdf

MarkLogic Server Technical Support
MarkLogic 10—May, 2019 Administrator’s Guide—Page 329

MarkLogic Server Copyright
19.0 Copyright
999

MarkLogic Server 10.0 and supporting products.
Last updated: February, 2022

Copyright © 2022 MarkLogic Corporation. All rights reserved.
This technology is protected by U.S. Patent No. 7,127,469B2, U.S. Patent No. 7,171,404B2, U.S.
Patent No. 7,756,858 B2, and U.S. Patent No 7,962,474 B2, US 8,892,599, and US 8,935,267.

The MarkLogic software is protected by United States and international copyright laws, and
incorporates certain third party libraries and components which are subject to the attributions,
terms, conditions and disclaimers set forth below.

For all copyright notices, including third-party copyright notices, see the Combined Product
Notices for your version of MarkLogic.
MarkLogic 10

MarkLogic Server Copyright
MarkLogic 10—May, 2019 Administrator’s Guide—Page 331

	Java Application Developer’s Guide
	Table of Contents
	1.0 Introduction to the Java API
	1.1 Java Client API Overview
	1.2 Java Client API or Java XCC?
	1.3 Getting Started
	1.3.1 Required Software
	1.3.2 Make the Libraries Available to Your Application
	1.3.3 Choose a REST API Instance
	1.3.4 Create Users
	1.3.5 Explore the Examples

	1.4 Creating, Working With, And Releasing a Database Client
	1.4.1 The Role of a Database Client
	1.4.2 Expected Database Client Lifetime
	1.4.3 Connection Management and Configuration
	1.4.4 Creating a Database Client
	1.4.5 Connecting Through a Load Balancer
	1.4.6 Releasing a Database Client

	1.5 Authentication and Connection Security
	1.5.1 Creating a SecurityContext Object
	1.5.2 Using Kerberos Authentication
	1.5.3 Connecting to MarkLogic with SSL
	1.5.4 Using SAML Authentication

	1.6 A Basic “Hello World” Method
	1.7 Document Managers
	1.8 Streaming
	1.9 Using Handles for Input and Output
	1.9.1 Handle Overview
	1.9.2 Specifying Content Format
	1.9.3 Handle Type Quick Reference
	1.9.4 Handle Example

	1.10 Shortcut Methods as an Alternative to Creating Handles
	1.10.1 Understanding Shortcut Methods
	1.10.2 When to Choose Strongly Typed Over Shortcut
	1.10.3 Extending Shortcuts by Registering Handle Factories

	1.11 Thread Safety of the Java API
	1.12 Downloading the Library Source Code

	2.0 Single Document Operations
	2.1 Document Creation
	2.1.1 Writing an XML or JSON Document To The Database
	2.1.2 Creating a Text Document In the Database
	2.1.3 Automatically Generating Document URIs
	2.1.4 Format-Specific Write Capabilities

	2.2 Document Deletion
	2.3 Reading Document Content
	2.4 Writing A Binary Document
	2.5 Reading Content From A Binary Document
	2.6 Reading, Modifying, and Writing Metadata
	2.6.1 Document Metadata
	2.6.2 Reading Document Metadata
	2.6.3 Collections Metadata
	2.6.4 Values Metadata
	2.6.5 Properties Metadata
	2.6.6 Quality Metadata
	2.6.7 Permissions Metadata
	2.6.8 Manipulating Document Metadata In Your Application
	2.6.9 Writing Metadata

	2.7 Working with Temporal Documents
	2.8 Conversion of Document Encoding
	2.9 Partially Updating Document Content and Metadata
	2.9.1 Introduction to Content and Metadata Patching
	2.9.2 Basic Steps for Patching Documents and Metadata
	2.9.3 Construct a Patch From Raw XML or JSON
	2.9.4 Defining the Context for a Patch Operation
	2.9.5 Example: Replacing Parts of a JSON Document
	2.9.6 Example: Patching Metadata
	2.9.7 Managing XML Namespaces in a Patch
	2.9.8 Construct Replacement Data on the Server

	3.0 Synchronous Multi-Document Operations
	3.1 Write Multiple Documents
	3.1.1 Overview of Multi-Document Write
	3.1.2 Example: Loading Multiple Documents
	3.1.3 Understanding Metadata Scoping
	3.1.4 Understanding When Metadata is Preserved or Replaced
	3.1.5 Example: Controlling Metadata Through Defaults
	3.1.6 Example: Adding Documents to a Collection
	3.1.7 Example: Writing a Mixed Document Set

	3.2 Read Multiple Documents by URI
	3.3 Read Multiple Documents Matching a Query
	3.3.1 Overview of Multi-Document Read by Query
	3.3.2 Example: Read Documents Matching a Query
	3.3.3 Add Query Options to a Search
	3.3.4 Return Search Results
	3.3.5 Read Documents Incrementally
	3.3.6 Extracting a Portion of Each Matching Document

	3.4 Apply a Read Transformation
	3.5 Selecting a Batch Size

	4.0 Asynchronous Multi-Document Operations
	4.1 Terms and Definitions
	4.2 Data Movement Feature Overview
	4.3 Data Movement Concepts
	4.3.1 Summary of Key Classes and Interfaces
	4.3.2 Basic Data Movement Job Life Cycle
	4.3.3 Job Types
	4.3.4 Object Lifetime Considerations
	4.3.5 How Work is Distributed Across a Cluster

	4.4 Creating and Managing a Write Job
	4.4.1 Creating a Batcher and Configuring a Write Job
	4.4.2 Attaching Listeners to a Write Job
	4.4.3 Starting a Write Job
	4.4.4 Adding Documents and Metadata to a Job
	4.4.5 Stopping a Write Job
	4.4.6 Write Job Performance Considerations
	4.4.7 Example: Loading Documents From the Filesystem

	4.5 Creating and Managing a Query Job
	4.5.1 Creating and Configuring a Query Job
	4.5.2 Attaching Listeners to a Query Job
	4.5.3 Starting a Query Job
	4.5.4 Stopping a Query Job
	4.5.5 Using a Consistent Snapshot
	4.5.6 Performance Considerations for Query Jobs

	4.6 Reading Documents from MarkLogic
	4.6.1 Using ExportListener to Read Documents
	4.6.2 Using ExportToWriterListener to Read Documents
	4.6.3 Example: Exporting Documents that Match a Query

	4.7 Applying an In-Database Transformation
	4.7.1 Applying an In-Database Transformation with QueryBatcher
	4.7.2 Example: Applying an In-Database Transformation

	4.8 Deleting Documents from a Database
	4.9 Applying a Read or Write Transformation
	4.10 Job Control
	4.10.1 Checking the Status of a Job
	4.10.2 Pausing and Restarting a Job
	4.10.3 Graceful Termination of a Job
	4.10.4 Terminating a Job Prematurely
	4.10.5 Updating Forest Configuration for a Job
	4.10.6 Working with a Load Balancer
	4.10.7 Restricting the Hosts Used by a Job

	4.11 Failover Handling
	4.11.1 Default Failover Handler
	4.11.2 Failover When Connecting Through a Load Balancer
	4.11.3 Interaction with In-Database Transform
	4.11.4 Failover Handling in Custom Listeners

	4.12 Working With Listeners
	4.12.1 Guidelines for Creating Listeners
	4.12.2 Attaching Multiple Listeners to a Job
	4.12.3 Removing or Replacing a Listener

	4.13 Alternative Interfaces

	5.0 Searching
	5.1 Overview of Search Using the Java API
	5.2 Using SearchHandle to Examine Query Results
	5.3 Search Using String Query Definition
	5.4 Search Documents Using Structured Query Definition
	5.4.1 Ways to Create a Structured Query
	5.4.2 Basic Steps to Define a Structured Query Definition
	5.4.3 Creating a Structured Query From Raw XML or JSON
	5.4.4 Structured Query Examples

	5.5 Prototype a Query Using Query By Example
	5.5.1 What is QBE
	5.5.2 Search Documents Using a QBE
	5.5.3 Validate a QBE
	5.5.4 Convert a QBE to a Combined Query

	5.6 Apply Dynamic Query Options to Document Searches
	5.6.1 Searching Using Combined Query
	5.6.2 Creating a Combined Query Using StructuredQueryBuilder
	5.6.3 Interaction with Persistent Query Options
	5.6.4 Combined Query Examples
	5.6.5 Performance Considerations

	5.7 Search On Tuples (Tuples Query / Values Query)
	5.7.1 Values Search
	5.7.2 Tuples Search
	5.7.3 Adding a Constraining Query

	5.8 Limiting A Search To Specific Collections And/Or A Directory
	5.9 Searching Values Metadata Fields
	5.10 Transforming Search Results
	5.10.1 Writing a Search Result Transform
	5.10.2 Using a Search Result Transform

	5.11 Generating Search Term Completion Suggestions
	5.11.1 Basic Steps
	5.11.2 Example: Generating Search Suggestions
	5.11.3 Where to Find More Information

	5.12 Extracting a Portion of Matching Documents
	5.12.1 Overview of Extraction
	5.12.2 Basic Steps for Search Match Extraction
	5.12.3 Example: Extracting a Portion of Each Matching Document

	6.0 Query Options
	6.1 Using Query Options
	6.2 Default Query Options
	6.3 Using QueryOptionsManager To Delete, Write, and Read Options
	6.4 Using Query Options With Search
	6.5 Creating Persistent Query Options From Raw JSON or XML
	6.6 Validating Query Options With setQueryOptionValidation()

	7.0 Working With Semantic Data
	7.1 Introduction
	7.2 Overview of Common Semantic Tasks
	7.3 Creating and Managing Graphs
	7.3.1 GraphManager Interface Summary
	7.3.2 Creating a GraphManager Object
	7.3.3 Specifying the Triple Format
	7.3.4 Creating or Overwriting a Graph
	7.3.5 Reading Triples from a Graph
	7.3.6 Replacing Quad Data in Graphs
	7.3.7 Adding Triples to an Existing Graph
	7.3.8 Adding Quads into an Existing Graph
	7.3.9 Deleting a Graph

	7.4 Querying Semantic Triples With SPARQL
	7.4.1 Basic Steps for SPARQL Query Evaluation
	7.4.2 Handling Query Results
	7.4.3 Defining Variable Bindings
	7.4.4 Limiting the Number of Results
	7.4.5 Inferencing Support

	7.5 Querying Triples with the Optic API
	7.6 Example: Loading, Managing, and Querying Triples
	7.7 Using SPARQL Update to Manage Graphs and Graph Data
	7.8 Managing Permissions
	7.8.1 Default Graph Permissions and Required Privileges
	7.8.2 Setting Graph Permissions
	7.8.3 Retrieving Graph Permissions
	7.8.4 Managing Permissions on Unmanaged Triples

	8.0 Optic Java API for Relational Operations
	8.1 Overview
	8.2 Getting Started
	8.3 Java Packages
	8.4 Structure of the Java Optic API
	8.4.1 Values and Expressions
	8.4.2 Items and Sequences
	8.4.3 Atomic Values and Nodes in RowRecord

	8.5 Examples

	9.0 POJO Data Binding Interface
	9.1 Data Binding Interface Overview
	9.2 Limitations of the Data Binding Interface
	9.3 Annotating Your Object Definition
	9.4 Saving POJOs in the Database
	9.5 Retrieving POJOs from the Database By Id
	9.6 Example: Saving and Restoring POJOs
	9.7 Searching POJOs in the Database
	9.7.1 Basic Steps for Searching POJOs
	9.7.2 Full Text Search with String Query
	9.7.3 Search Using Structured Query
	9.7.4 How Indexing Affects Searches
	9.7.5 Creating Indexes from Annotations

	9.8 Example: Searching POJOs
	9.8.1 Overview of the Example
	9.8.2 Source Code
	9.8.3 Exploring the Example Queries

	9.9 Retrieving POJOs Incrementally
	9.10 Removing POJOs from the Database
	9.11 Testing Your POJO Class for Serializability
	9.12 Troubleshooting
	9.12.1 Error: XDMP-UNINDEXABLEPATH
	9.12.2 Error: XDMP-PATHRIDXNOTFOUND
	9.12.3 Unexpected Search Results

	10.0 Alerting
	10.1 Alerting Pre-Requisites
	10.2 Alerting Concepts
	10.3 Defining Alerting Rules
	10.3.1 Defining a Rule Using RuleDefinition
	10.3.2 Defining a Rule in Raw XML
	10.3.3 Defining a Rule in Raw JSON

	10.4 Testing for Matches to Alerting Rules
	10.4.1 Basic Steps
	10.4.2 Identifying Input Documents Using a Query
	10.4.3 Identifying Input Documents Using URIs
	10.4.4 Matching Against a Transient Document
	10.4.5 Filtering Match Results
	10.4.6 Transforming Alert Match Results

	11.0 Transactions and Optimistic Locking
	11.1 Multi-Statement Transactions
	11.1.1 Transactions and the Java API
	11.1.2 Transaction Interface
	11.1.3 Starting A Transaction
	11.1.4 Operations Inside A Transaction
	11.1.5 Rolling Back A Transaction
	11.1.6 Committing A Transaction
	11.1.7 Cookbook: Multistatement Transaction
	11.1.8 Transaction Management When Using a Load Balancer

	11.2 Optimistic Locking
	11.2.1 Activating Optimistic Locking
	11.2.2 DocumentDescriptors
	11.2.3 Using Optimistic Locking
	11.2.4 Cookbook: Version Control and Optimistic Locking

	12.0 Logging
	12.1 Starting Logging
	12.2 Suspending and Resuming Logging
	12.3 Stopping Logging
	12.4 Log Entry Format
	12.5 Logging To The Server’s Error Log

	13.0 REST Server Configuration
	13.1 Creating a Server Configuration Manager Object
	13.2 Reading and Writing Server Configuration Properties
	13.3 REST Server Properties
	13.4 Creating New Server-Related Manager Objects
	13.5 Namespaces
	13.5.1 Namespaces Manager
	13.5.2 Getting Server Defined Namespaces
	13.5.3 Adding And Updating A Namespace Prefix
	13.5.4 Reading Prefixes
	13.5.5 Deleting Prefixes

	13.6 Logging Namespace Operations

	14.0 Content Transformations
	14.1 Installing Transforms
	14.2 Using Transforms
	14.2.1 Transforming a Document When Reading It
	14.2.2 Transforming a Document When Writing It
	14.2.3 Transforming Search Results
	14.2.4 Transforming Alert Match Results
	14.2.5 Overall Transform Administration
	14.2.6 Reading Transforms
	14.2.7 Logging

	14.3 Writing Transformations

	15.0 Extending the Java API
	15.1 Available Extension Points
	15.2 Introduction to Resource Service Extensions
	15.3 Creating a Resource Extension
	15.4 Installing Resource Extensions
	15.5 Deleting Resource Extensions
	15.6 Listing Resource Extensions
	15.7 Using Resource Extensions
	15.8 Managing Dependent Libraries and Other Assets
	15.8.1 Maintenance of Dependent Libraries and Other Assets
	15.8.2 Installing or Updating Assets
	15.8.3 Removing an Asset
	15.8.4 Retrieving an Asset List
	15.8.5 Retrieving an Asset

	15.9 Evaluating an Ad-Hoc Query or Server-Side Module
	15.9.1 Security Requirements
	15.9.2 Basic Step for Ad-Hoc Query Evaluation
	15.9.3 Basic Steps for Module Invocation
	15.9.4 Specifying External Variable Values
	15.9.5 Interpreting the Results of Eval or Invoke

	16.0 Creating Data Services Using the MarkLogic Java Development Tools
	16.1 Advantages of Data Services
	16.2 Where Data Service Fit Within the Enterprise Stack
	16.2.1 How it Works
	16.2.2 Prerequisites
	16.2.3 Relation to the Java Client API

	16.3 Creating a Proxy Service
	16.3.1 Setting Up an App Server for the Proxy Service
	16.3.2 Creating the Proxy Service Directory
	16.3.3 Declaring the Proxy Service
	16.3.4 Declaring the Endpoint
	16.3.5 Providing the Module for an Endpoint Proxy
	16.3.6 Deploying a Proxy Service
	16.3.7 Generating the Proxy Service Class
	16.3.8 Using a Proxy Service Class

	16.4 Publishing Your Data Service for Use in Other Projects
	16.4.1 Modifying the Source project to Enable Publication
	16.4.2 Using the Maven Bundle in Other Projects

	17.0 Troubleshooting
	17.1 Error Detection
	17.2 General Troubleshooting Techniques

	18.0 Technical Support
	19.0 Copyright

