
Copyright © 2019 MarkLogic Corporation. All rights reserved.

MarkLogic Server

Flexible Replication Guide
1

MarkLogic 10
May, 2019

Last Revised: 10.0, May, 2019

MarkLogic Server Table of Contents

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 2

Table of Contents

Flexible Replication Guide

1.0 Flexible Replication in MarkLogic Server ...4
1.1 Terms Used in this Guide ...4
1.2 Understanding Flexible Replication ...5

2.0 Flexible Replication Quick Start ..9
2.1 Creating Master and Replica Databases ...9
2.2 Configuring a Flexible Replication Pipeline for the Master Database9
2.3 Creating a Replication App Server ...13
2.4 Configuring Push Replication on the Master Database ..15
2.5 Scheduling Replication Push Task ...17
2.6 Loading Documents into the Master Database and Checking Replication19

3.0 Configuring Replication ...20
3.1 Replication Security ..20
3.2 Defining Replicated Domains ...22
3.3 Configuring Replication App Servers ...24
3.4 Configuring Push Replication ...25
3.5 Creating a Scheduled Replication Task ..28

3.5.1 Creating a Push-Local-Forests Replication Task32
3.5.2 Creating a Pull Replication Task ..33

3.6 Configuring Pull Replication ..35
3.7 Configuring Alerting With Flexible Replication ..39

3.7.1 Configuring Alerts ..39
3.7.1.1 Create an Alerting Domain ...40
3.7.1.2 Create an Alerting Action ...40
3.7.1.3 Associate Flexible Replication with the Alerting Configuration ..

41
3.7.1.4 Associate the Target With a User ..41
3.7.1.5 Create an Alerting Rule ...41

3.7.2 Using QBFR ...42
3.8 Backing Up, Restoring, and Clearing the Master and Replica Databases43

3.8.1 Interrupted replication ...43

4.0 Filtering Replicated Documents ...45
4.1 Creating a Filter Module ...45

4.1.1 Outbound Filters ...45
4.1.2 Inbound Filters ..46

MarkLogic Server Table of Contents

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 3

4.2 Configuring MarkLogic Server to use a Replication Filter Module47
4.2.1 Configuring a Master Database to Use an Outbound Filter47
4.2.2 Configuring a Replica Database to Use an Inbound Filter48

4.3 Example Outbound Filter Modules ...48
4.3.1 Adding a Collection ..49
4.3.2 Changing the Document Quality ..51
4.3.3 Adding Document Permissions ..52
4.3.4 Adding a Forest Name ..54
4.3.5 Changing the Document URI ...55
4.3.6 Changing a Document Element ..56
4.3.7 Prohibiting Replication on Select Documents ..57

4.4 Example Inbound Filter Modules ...58
4.4.1 Adding a Collection ..58
4.4.2 Changing the Document URI ...59

4.5 Setting Outbound Filter Options ...60

5.0 Checking Replication Status ..62
5.1 Special Circumstances that Impact Replication ..62
5.2 Checking the Replication Status of a Master Database ..62
5.3 Checking the Replication Status of a Domain ..64
5.4 Checking the Replication Status of a Target ..66

6.0 Technical Support ..69

7.0 Copyright ...71

MarkLogic Server Flexible Replication in MarkLogic Server

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 4

1.0 Flexible Replication in MarkLogic Server
8

This chapter describes Flexible Replication in MarkLogic Server in general terms, and includes
the following sections:

• Terms Used in this Guide

• Understanding Flexible Replication

Note: To enable Flexible Replication, a license key that includes Flexible Replication is
required. For details on purchasing a Flexible Replication license, contact your
MarkLogic sales representative.

1.1 Terms Used in this Guide
The following are the definitions for the replication terms used in this guide:

• To Replicate is to create a copy of a document in another database and to keep that copy in
sync (possibly with some time-lag/latency) with the original.

• The Master is the repository that gets updated by the applications. The master, in turn,
replicates the updates to other repositories, known as replicas.

• A Replica is a repository that receives replicated updates from the master.

• A Master Copy is the content being replicated. For any piece of replicated content there is
a master and at least one copy.

• A Master Cluster is the cluster on which the replicated documents are updated by the
applications.

• Flexible Replication is an implementation of replication based on the MarkLogic Server
Content Processing Framework (CPF). Flexible replication is single-master,
asynchronous, and provides a medium level of throughput and latency.

• Replication Domain is the specification of the set of documents to be replicated. This may
be a collection or some other set definition.

• A Filter is an XQuery program that modifies the replicated documents in some manner,
determines whether to replicate a change, or selects which parts of a document will be
replicated.

• Asynchronous Replication refers to a configuration in which the Master does not wait for
confirmation that the update has been received by the Replica before sending further
updates. Flexible Replication is asynchronous.

• Transaction-aware refers to a configuration in which all updates that make up a
transaction on the master are applied as a single transaction on the replica.

• Zero-day Replication refers to replicating the data in the replicated domains that existed
before replication was configured.

MarkLogic Server Flexible Replication in MarkLogic Server

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 5

1.2 Understanding Flexible Replication
Flexible Replication is the process of maintaining copies of data on multiple MarkLogic Servers.
The purpose of replication is to make data continuously available to mission-critical applications
and to enhance application performance. Some of the benefits of replication include:

• High Availability: You can maintain duplicate data on two or more MarkLogic Servers. In
the event of a software or hardware failure on one server, the data is available from
another server.

• Disaster Recovery: In the event of some irreversible disaster on the Master server,
duplicate data is preserved on its Replica.

• Performance: Companies with geographically dispersed clusters can use replication to
maintain common data on each local cluster. Queries and updates done locally, are faster
and the workload can be scaled across clusters, so that each cluster handles less of the
query and update load.

In a replicated environment, the original content is created by an application on the Master
MarkLogic Server. Replication then copies the content to one or more Replica MarkLogic
Servers. The Master and Replica servers are typically in different clusters, which may be in the
same location or in different locations.

Flexible Replication is asynchronous, which means that the Master does not wait for confirmation
that the update has been received by the Replica before sending further updates. Replication from
the Master to the Replica occurs as soon as possible after the document is added or updated by the
application.

Application

Master
Database

Replica
Database

Replication

Master
MarkLogic

Server

Replica
MarkLogic

Server

MarkLogic Server Flexible Replication in MarkLogic Server

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 6

MarkLogic Server uses the Content Processing Framework (CPF) as the underlying replication
mechanism. The documents to be replicated are defined by a CPF domain. The scope of a domain
may be a document, a collection of documents, or a directory. For more details about domains, see
Understanding and Using Domains in the Content Processing Framework Guide. You can replicate
multiple domains either to the same Replica or to different Replicas, as shown is the illustrations
below.

Application

Master
Database

Replica
Database

Replication

Master
MarkLogic

Server

Replica
MarkLogic

Server

Replicating Two Domains to a Single Replica

Domains

Application

Master
Database

Replica
Database

Replication
Master

MarkLogic
Server

Replica
MarkLogic

Server

Replica
Database

Replica
MarkLogic

Server

Replicating Two Domains to Separate Replicas

Domains

MarkLogic Server Flexible Replication in MarkLogic Server

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 7

Replicated databases do not necessarily need to be configured as entirely a Master or a Replica in
the replication scheme. For example, you may have two databases, DB1 and DB2, where DB1
replicates updates to the documents in Domain A to DB2 and DB2 replicates updates to the
documents in Domain B to DB1.

Note: This is not a multi-master replication configuration, as the documents updated by
each application must be in different domains. Any overlap between the replicated
domains may result in unpredictable behavior.

Application

DB1
Database

DB2
Database

Replication

DB1
MarkLogic

Server

DB2
MarkLogic

Server

Replicating Different Domains Between Databases

Domains

Application

Domains

= Application Updates
= Replicated Updates

A
BB

A

MarkLogic Server Flexible Replication in MarkLogic Server

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 8

Another possible Master/Replica configuration is where a Master replicates updates to a
Replica/Master that replicates the updates to another Replica. For example, you may have three
databases, DB1, DB2, and DB3, where DB1 replicates updates to DB2 and DB2 replicates
updates to DB3.

You can set up filters that narrow the scope of what documents and what parts of the documents
are replicated within a domain. For example, you can set up a filter to replicate only XML
documents, or you can create filters to only replicate inserts and updates (not deletes), or only
replicate a particular node or element within each document.

Replication can be configured to either push or pull updates from the Master to the Replica. Push
replication means that the Master pushes updates to the Replica. Pull replication means the
Replica pulls updates from the Master. Push replication is triggered whenever an update is made
on the Master database. Pull replication can only be configured as a scheduled task, as described
in “Configuring Pull Replication” on page 35. Typically, you should use push replication, unless
the Master and Replica are separated by a firewall through which a Replica server can only pull
content from a Master server outside the firewall.

Application

DB1
Database

DB2
Database

Replication

DB1
MarkLogic

Server

DB2
MarkLogic

Server

Master Replicates to a Master/Replica that Replicates to a Replica

Domains Domains

= Application Updates
= Replicated Updates

A
BB

A

DB3
Database

DB3
MarkLogic

Server

Domains

B
A

Replication

MarkLogic Server Flexible Replication Quick Start

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 9

2.0 Flexible Replication Quick Start
19

This chapter provides the quick-start procedures for creating a simple flexible replication
configuration on a single MarkLogic Server. Typical flexible replication configurations will have
the Master and Replica databases on different MarkLogic Servers located on different hosts.
Replicated MarkLogic Servers may reside in the same cluster or in different clusters. In order to
keep the hardware requirements to a minimum, this quick start describes how to set up replication
between two databases on the same MarkLogic Server.

This chapter includes the following sections:

• Creating Master and Replica Databases

• Configuring a Flexible Replication Pipeline for the Master Database

• Creating a Replication App Server

• Configuring Push Replication on the Master Database

• Scheduling Replication Push Task

• Loading Documents into the Master Database and Checking Replication

All of the procedures described in this chapter are done using the Admin Interface described in
the Administrative Interface chapter in the Administrator’s Guide.

2.1 Creating Master and Replica Databases
Before attempting to configure replication, create a Master and a Replica database. In these
examples, the databases are named Master and Replica. However, you can use any name you wish
for either the master or its replica.

1. Create two forests, one for the Master database and one for the Replica database. For
details on creating forests, see Creating a Forest in the Administrator’s Guide.

2. Create two databases, Master and Replica, and attach the respective forest to each
database. For details on creating databases and attaching forests, see Creating a New

Database and Attaching and/or Detaching Forests to/from a Database in the Administrator’s
Guide.

2.2 Configuring a Flexible Replication Pipeline for the Master Database
This section describes how to configure the Content Processing Framework (CPF) for the
replicated domains on the Master database. In order to replicate data, CPF on the Master domains
must be configured with the Status Change Handling and Flexible Replication pipelines. In this
example, we use the existing Triggers database. However, if you are replicating more than one
database, you should create a separate CPF database for each master database.

MarkLogic Server Flexible Replication Quick Start

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 10

1. Configure the Master database to use a triggers database.

2. Select Content Processing on the Master database:

MarkLogic Server Flexible Replication Quick Start

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 11

3. In the Content Processing Summary, click on the Install tab:

4. On the Content Processing Installation page, click Install:

Then click OK.

MarkLogic Server Flexible Replication Quick Start

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 12

5. Confirm that Flexible Replication appears in the Pipelines section of the Content
Processing Summary page:

6. On the left-hand navigation menu, navigate to the Content Processing > Domains >
Default Master > Pipelines page. Select the Status Change Handling and Flexible
Replication pipelines and click OK:

MarkLogic Server Flexible Replication Quick Start

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 13

2.3 Creating a Replication App Server
In a push replication configuration, the Replica database must be connected to a Replication App
Server, an HTTP server used to communicate between the Master database and the Replica
database. In a pull replication configuration, the Master database must be connected to a
Replication App Server.

The following procedure describes how to create an App Server for a Replica in a push replication
configuration.

1. Under the Replica database, navigate to Flexible Replication. On the Flexible Replication
Administration page, click Create under Application Server:

MarkLogic Server Flexible Replication Quick Start

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 14

2. On the Create HTTP Server page, specify a port number of the App Server. Set the other
fields as required, but do not change the server name, root directory, or database settings,
which have been pre-set by MarkLogic Server. When finished, click OK.

MarkLogic Server Flexible Replication Quick Start

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 15

2.4 Configuring Push Replication on the Master Database
1. For the Master database, navigate to Flexible Replication on the Flexible Replication

Administration page, and click Default Master under Content Processing:

2. Click Create to configure replication for the Default Master domain:

3. Click Create to configure a replication target for the Default Master domain:

4. In the Database Replication Target page, specify a target name, the target URL that
includes the hostname and port number you specified for the Replica’s App Server in
“Creating a Replication App Server” on page 13.

MarkLogic Server Flexible Replication Quick Start

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 16

Note: In this example, you will be using a secure credential to access the Replica App
Server, so the URL must start with https.

5. In order to communicate securely with the Replica, you should configure a secure
credential, as described in Secure Credentials in the Security Guide. Assuming that you

MarkLogic Server Flexible Replication Quick Start

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 17

have configured a secure credential, select the name of the credential from the credential
id menu.

6. Click OK.

Note: There are additional security options you may want to enable for your
configuration, as described in “Replication Security” on page 20.

2.5 Scheduling Replication Push Task
You must create a scheduled task to periodically push updated content on the Master to the
Replicas. When a document is updated on the Master, it is immediately replicated to the Replica.
A scheduled replication task provides a retry mechanism in the event the initial replication fails. A
task is also required to replicate deletes and to replicate all of the documents that were on the
master before replication was enabled. For more information on scheduled replication tasks, see
“Creating a Scheduled Replication Task” on page 28.

MarkLogic Server Flexible Replication Quick Start

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 18

1. For the Master database, navigate to Flexible Replication and click Create under
Scheduled Tasks:

2. Create a Scheduled Task that defines the frequency in which documents are to be
replicated from the Master to the Replica. You must also specify the task user. Do not
specify a task host. Click OK.

MarkLogic Server Flexible Replication Quick Start

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 19

2.6 Loading Documents into the Master Database and Checking
Replication

At this point, any documents loaded into the Master database will be replicated to the Replica
database.

Note: Be sure to load your data using the same URI as specified in your replicated
domain. For example, if you use the default URI (/), make sure all of your
document names start with ‘/’.

Methods for loading content into a database include:

• Using the XQuery load document functions, as described in Loading Content Using XQuery
in the Loading Content Into MarkLogic Server Guide.

• Setting up a WebDAV server and client, such as Windows Explorer, to load your
documents. See the section Simple Drag-and-Drop Conversion in the Content Processing
Framework Guide for information on how to configure a WebDAV server to work with
Windows Explorer.

• Creating an XCC application, as described in Using the Sample Applications in the XCC
Developer’s Guide.

One way to confirm the content has been replicated to the replica is to use the explore feature in
Query Console to view the contents of the Replica database. For details on how to use Query
Console to explore the contents of a database, see Exploring a Database in the Query Console User
Guide.

MarkLogic Server Configuring Replication

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 20

3.0 Configuring Replication
44

This chapter describes how to configure your MarkLogic Servers for replication. The topics in
this chapter assume you are familiar with the replication principles described in “Understanding
Flexible Replication” on page 5 and the basic configuration procedures described in the “Flexible
Replication Quick Start” on page 9.

For details on how to write scripts to configure Flexible Replication, see Scripting Flexible

Replication Configuration in the Scripting Administrative Tasks Guide.

This chapter includes the following sections:

• Replication Security

• Defining Replicated Domains

• Configuring Replication App Servers

• Configuring Push Replication

• Creating a Scheduled Replication Task

• Configuring Pull Replication

• Configuring Alerting With Flexible Replication

• Backing Up, Restoring, and Clearing the Master and Replica Databases

3.1 Replication Security
The flexrep-admin role is required to configure replication. The user who will access the Replica
App Server when pushing, or access the Master App Server when pulling, requires the
flexrep-user role. Though you will typically configure replication as the Admin user, you should
create a unique replication user to be associated with the replication tasks. The replication user
must be given the flexrep-user role and have the privileges necessary to update the domain
content on both the Master and Replica App Servers.

If you configure your replication target to use any of the security schemes described in this
section, the Target URL must start with https.

MarkLogic Server Configuring Replication

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 21

It is a best practice to create a secure credential, as described in Secure Credentials in the Security
Guide, to communicate with the replication target. To do so, select the name of the secure
credential from the credential id menu.

As an alternative to secure credentials and mostly to provide backward compatibility with
previous versions of MarkLogic, you can configure SSL on your Master and Replica App Servers
to encrypt the replicated data passed between them. For details on configuring SSL on App
Server, see the Configuring SSL on App Servers in the Security Guide.

If SSL on the Replica App Server is configured to require a client certificate from the Master,
paste the PEM-encoded client certificate and client key in the fields located at the bottom of the
Database Replication Target Administration page. If the client key is encrypted, you must also
specify a pass phase.

The same security configuration applies when configuring the Replica App Server for pull
replication, if the Master App Server requires a client certificate from the Replica. For details on
how to configure pull replication, see “Creating a Pull Replication Task” on page 33

MarkLogic Server Configuring Replication

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 22

3.2 Defining Replicated Domains
Before you can define replicated domains, you must enable CPF as described in “Configuring a
Flexible Replication Pipeline for the Master Database” on page 9.

CPF domains are described in detail in the Understanding and Using Domains chapter in the Content
Processing Framework Guide. The purpose of this section is to describe how to create a domain
that defines the scope of the documents in the Master database to be replicated to the Replica
database.

Warning Each domain must contain a unique set of documents. No single document can be
in more than one domain.

The following procedure describes how to create a new domain for defining the scope of the
replicated documents. By default, CPF creates a Default Master domain to replicate from the “/”
root directory of the Master database. The “/” root means that the document URIs must be
preceded by a “/”, such as /foo.xml or /content/foo.xml. You can also set the Document Scope
of the domain to replicate a user collection or an individual document.

1. To replicate a portion of a database, you can create another domain. For example, you can
create a domain that specifies the documents in the /projects/Baz/ directory on the
Master database, as shown below.

MarkLogic Server Configuring Replication

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 23

You may receive a warning that this domain overlaps with the Default Master domain.
This means that the both the Baz domain and the Default Master domain are configured to
replicate the documents in the /projects/Baz/ directory. You cannot have any document
that is in more than one domain, so you must either delete or modify the Default Master to
resolve this conflict.

Note: If you want to create a domain to replicate the entire database, you can assign a
default collection to all of your users and then set the Document Scope to
Collections and the URI to the name of the default collection. For details on how to
establish a default collection for a user, see Creating a User in the Administrator’s
Guide.

2. Select Pipelines in the navigation frame and select the Flexible Replication and Status
Change Handling pipelines. These are the minimum pipelines required for replication.
You can select other pipelines, as required for your configuration.

MarkLogic Server Configuring Replication

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 24

3.3 Configuring Replication App Servers
As described in “Creating a Replication App Server” on page 13, in a push replication
configuration, the Replica database must be connected to a Replication App Server. In a pull
replication configuration, the Master database must be connected to a Replication App Server.
This section goes into more detail on creating and configuring Replication App Servers.

1. Create a Replication App Server by clicking Create in the Application Server section of
the Flexible Replication Administration page:

Note: The Server Name, Root, and Database fields are preconfigured and should not be
changed.

MarkLogic Server Configuring Replication

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 25

2. Enter a unique port number for the App Server:

The purpose of the other fields in the HTTP Server Configuration page are described in
Creating a New HTTP Server in the Administrator’s Guide. If you are going to configure
SSL on the App Server to require a client certificate, you must specify the certificate in the
Database Replication Target Administration configuration page, as described in
“Replication Security” on page 20.

For example, if you are configuring the Master database to push updates to a Replica App
Server that requires a client certificate, you must include a client certificate in the
Database Replication Target Administration configuration page for the Master database. If
you are configuring a Replica App Server to pull updates from the Master database that
requires a client certificate, you must you must include a client certificate in the
Replication Pull configuration page for the Replica database. For details on providing a
client certificate for either a push or pull replication configuration, see “Replication
Security” on page 20.

3.4 Configuring Push Replication
This section describes how to configure your Master database for Push Replication.

Before you can configure a replication target, you must have content processing enabled for the
Master database. After configuring push replication, you must create a scheduled task, as
described in “Creating a Push-Local-Forests Replication Task” on page 32.

1. Under Databases, click the Master database.

MarkLogic Server Configuring Replication

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 26

2. Click Flexible Replication under the Master database.

3. Locate the Content Processing section on the Flexible Replication Administration page
and click on the domain name.

4. Click Create to configure replication for the domain:

5. Click Create to configure a replication target for the domain:

6. In the Database Replication Target Administration page, specify a target name and one or
more target URLs that include the hostname and port number you specified for your

MarkLogic Server Configuring Replication

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 27

Replica App Servers in “Creating a Replication App Server” on page 13. The Retry
Seconds Min/Max and Documents Per Batch setting are for scheduled tasks, as described
in “Creating a Scheduled Replication Task” on page 28.

Under Authentication, specify the username and password for a user assigned the
flexrep-user role. This user must have the same username/password as the user on the
Master App Server who creates and updates the documents. This user needs to have
sufficient permissions on the target system to insert and update the replicated documents.

Because Flexible Replication passes through the permissions set on the Master App
Server when replicating, the user on the target must have permissions to update the
document later on. Permissions can either be configured by the administrator on both the
Master and Replica App Server, or you can use a filter to adjust the document permissions
so the target user can later update the document, as described in “Adding Document
Permissions” on page 52.

You can optionally disable pushing replication to the target by setting Enabled to false.
Do not set the Replicate CPF option to true without the direction from MarkLogic
Customer Support.

MarkLogic Server Configuring Replication

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 28

7. If the Replica App Server requires a client certificate, the Target URL must start with
HTTPS. Paste the client certificate, client key and pass phrase (if the client key is
encrypted) in the fields located at the bottom of the Database Replication Target
Administration page. For details on how to configure the Master to provide a client
certificate, see “Replication Security” on page 20.

3.5 Creating a Scheduled Replication Task
Regardless of whether you configure replication as push or pull, you must create a scheduled task
to periodically replicate updated content on the Master to the Replicas. A scheduled replication
task does the following:

MarkLogic Server Configuring Replication

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 29

• Moves existing content that was on the Master before replication was configured
(zero-day replication).

• Provides a retry mechanism in the event the initial replication fails.

• Replicates deletes on the Master to the Replica.

• Provides the ability to pull data from a Master server located outside a firewall.

There are three types of scheduled tasks, as described in the table below.

Task Description

push-local-forests The push-local-forests task setting is the preferred method for retry and
zero-day replication. Once the initial scheduled interval is reached, this
task pushes each batch of documents, immediately following the
previous batch, regardless of the scheduled task frequency. If you had
previously used the push task, switching over to the push-local-forests
setting will provide better performance.

Note: The push-local-forests task for each forest can only be
respawned a maximum of 500 times per replication
period. in order to avoid overflowing the task limit. After
500 respawns, the task will wait for the next replication
period to start replicating again. For each respawn, the
task will replicate the batch size to the replica.

Do not specify a task host for the push-local-forests task. This allows the
task to run on all hosts in the cluster.

push The push task pushes a batch of documents from all of the forests in the
database. This task pushes one batch from the entire database per
scheduled interval. This form of push replication is available for users
who configured replication on earlier versions of MarkLogic Server. If
you are currently configured for this form of push replication, you will
obtain better performance if you switch to push-local-forests replication.

The push task runs on a single host, which you must specify as the task
host.

pull The pull task is configured on a Replica database to pull data from the
Master database. This is the only replication option available to a
Replica, so the pull scheduled task must serve as the initial replication
mechanism in addition to retry and zero-day replication.

The pull task runs on a single host, which you must specify as the task
host.

MarkLogic Server Configuring Replication

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 30

For all scheduled replication tasks, the replication retry configuration is a combination of the
scheduled task frequency settings and the target settings, Retry Seconds Min, Retry Seconds Max,
and Document Per Batch.

The task type in the Scheduled Task Configuration page indicates the interval at which each
scheduled replication task is to run. In most configurations, the task type will be minutely. For
details on configuring scheduled tasks, see Scheduling Tasks in the Administrator’s Guide.

MarkLogic Server Configuring Replication

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 31

The Retry Seconds Min/Max settings in the Database Replication Target Administration page
indicate the minimum and maximum number of seconds any documents that failed to replicate are
eligible for replication retries. In a push configuration, the Documents Per Batch setting specifies
how many documents that have failed to replicate are to be retried during each scheduled task
interval. In a pull configuration, the Documents Per Batch setting specifies the total number of
replicated documents (retries of failed documents and newly added or updated documents) that
are to be pulled from the Master during each scheduled task interval.

For example, the retry minimum is 30 seconds, the retry maximum is 300 seconds (five minutes)
and the scheduled replication task period is every one minute. If a document fails replication, it is
eligible to be retried in 30 seconds. This means that MarkLogic Server will attempt to replicate
the document at the next minute interval. The retry interval is doubled each time the document
fails to replicate until the interval reaches the maximum retry setting, at which time the retry
interval remains at the maximum. So, if the document in our example fails a second time, it will
be eligible for retry in one minute. Should the document fail to replicate the second time, the retry
interval is set to two minutes, and so on until the interval reaches the five-minute retry maximum
setting, after which MarkLogic Server tries to replicate the document every five minutes.

The Documents Per Batch setting also plays a role with replication retries. For example, if the
batch value is one and five documents have failed to replicate, then MarkLogic Server will only
attempt to retry one failed document that is eligible for replication retries during each scheduled
task interval. The document selected for replication retry is the earliest eligible document.

Though the Documents Per Batch setting is 1 by default, a more typical value is in the range of 10
- 100. If there is a large number of documents to be replicated in a zero-day fashion, you can
maximize the load speed by closely matching the scheduled interval with the Documents Per
Batch setting, so that the maximum number of documents are loaded within the time interval. For
example, if your scheduled interval is one minute and you have determined that you can replicate
a maximum of 250 documents per minute, then the optimum Documents Per Batch setting would
be 250.

When a flexible replication domain includes multiple targets, the scheduled task will use the
smallest of the configured Documents per Batch settings. So if one target has Documents per
Batch set to 1, and another has Documents per Batch set to 100, the scheduled task will use a
batch size of 1.

MarkLogic Server Configuring Replication

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 32

3.5.1 Creating a Push-Local-Forests Replication Task
This section describes how to configure a push-local-forests replication task to provide the Master
with the means to replicate deletes to the Replica, retry replication on documents that have failed
the initial attempt to replicate, and to replicate documents that were in the replicated domain
before replication was configured.

Note: A scheduled push-local-forests task should be run by a user assigned the
flexrep-admin role or the admin role.

Do the following to create a push-local-forests scheduled replication task:

1. For the Master database, navigate to Flexible Replication, select push local forests in the
drop-down menu, select the group in which you want to schedule the task, and click
Create under Scheduled Tasks:

2. Create a Scheduled Task that defines the frequency in which documents are to be
replicated from the Master to the Replica (when using push-local-forests, this interval only
defines the timeframe to wait before pushing the initial batch). You must also specify the
task user.

MarkLogic Server Configuring Replication

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 33

Note: Do not specify a host if you are creating a push-local-forests scheduled task.

3.5.2 Creating a Pull Replication Task
In a pull replication configuration, the Replicas pull updates from the Master. Unlike push
replication, which replicates as soon as the documents on the Master are updated, the only way to
configure pull replication is by means of a scheduled task.

MarkLogic Server Configuring Replication

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 34

1. On the Replica, create a scheduled task to pull the content from the Master:

2. Specify the pull frequency. In the task user pull-down menu, select the user with the
flexrep-user role on a Replica host. Under task host, select a Replica host or leave the
field empty so the task can run on any host in the cluster. Click OK.

MarkLogic Server Configuring Replication

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 35

3.6 Configuring Pull Replication
Pull Replication is useful when a Replica is behind a firewall that only allows its internal servers
to pull from a Master server outside the firewall. This section describes how to configure your
Replica database for Pull Replication.

Note: If the Replica is to act as a Master for another Replica, then you must have CPF
enabled on the Replica, as described in “Configuring a Flexible Replication
Pipeline for the Master Database” on page 9. However, if the Replica has CPF
installed and it is not to act as a Master, then you must disable the Flexible
Replication pipeline on the Replica.

The procedure for configuring Pull Replication on the Master and Replica databases is as follows:

MarkLogic Server Configuring Replication

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 36

1. On a Master host, define a replication target for the Master Content Processing Domain
with push replication disabled. You can do this by either not defining a target URL in the
target configuration page and enabling the replication target.

2. Under Databases, click the Replica database.

3. Click Flexible Replication under the Replica database.

4. Create a Pull Replication Task, as described in “Creating a Pull Replication Task” on
page 33.

MarkLogic Server Configuring Replication

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 37

5. Under Pull Configuration, click Create:

6. On a Master host, obtain the Master domain id from the Database Domain Replication
Summary page:

MarkLogic Server Configuring Replication

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 38

7. On a Master host, obtain the Replica target id from the Database Domain Replication
Administration page. If a Replica target does not exist, create one, as described in
“Configuring Push Replication” on page 25, Step 5.

8. In the Replication Pull Administration page on the Replica host, enter a pull name, the
domain id of the Master, the target id of the Replica, and one or more pull URLs for the
Master App Servers. Fill in the username and password fields required to access the
Master App Servers.

9. You can optionally specify a client certificate, if one is required by the Master App Server.
For details on how to configure the Replica to provide a client certificate, see “Replication
Security” on page 20.

MarkLogic Server Configuring Replication

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 39

3.7 Configuring Alerting With Flexible Replication
Combining alerting with flexible replication is often referred to as QBFR (Query-Based Flexible

Replication). Query-based flexible replication enables customizable information sharing (using
filters) between systems, allowing for the easy and secure distribution of portions of data even
across disconnected, intermittent, and latent networks.

This type of replication is based on a query (an alert) that triggers because of an event that
matches that query. A user can have more than one alert, in which case they would receive
documents that match any of their alerts. In addition to queries, the permissions for a user are
taken into account. The user will only receive replicated content that they have permission to view
in the database. If the permissions change, the replica will be updated accordingly. Most often
query-based flexible replication is a pull configuration, but it can also be set up as a push
configuration.

By setting up alerts, replication takes place any time content in the database matches that query.
Any new or updated content within the domain scope will cause all matching rules or alerts to
perform their corresponding action. Query-based flexible replication can be used with filters to
share specific documents or parts of documents. Filters can be set up in either a push or pull
configuration.

To set up query-based flexible replication, you need to have the environment for flexible
replication already configured. See “Flexible Replication Quick Start” on page 9 for information
on setting up flexible replication using the Admin UI. Configuring Query-based Replication using the

REST API in the Scripting Administrative Tasks Guide explains how to set up query-based flexible
replication including alerts using scripting and REST.

QBFR users should have the flexrep-user role. QBFR targets will only replicate documents for
which the associated user has read permission, as in normal MarkLogic security. Your
configuration will most likely have additional or more complex permissions on documents.

This section contains these topics:

• Configuring Alerts

• Using QBFR

3.7.1 Configuring Alerts
Query-based flexible replication requires an alert to trigger the replication. These steps use
XQuery to access MarkLogic built-in functions to create and configure alerts. To see the complete
scripted version of this process, see Configuring Query-based Replication using the REST API in the
Scripting Administrative Tasks Guide.

To configure an alert for query-based flexible replication you need to:

• Create an alerting domain using alert:make-config

MarkLogic Server Configuring Replication

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 40

• Create an alerting action using alert:make-action

• Associate flexible replication with the alerting domain using
flexrep:configuration-set-alerting-uri

After the flexible replication, alerting domain, alerting action, and alert(s) have been set up, you
associate the target of the alert with a user and create an alerting rule.

To do this:

• Associate the target of the alert with a user using
flexrep:configuration-target-set-user-id

• Create an alerting rule with alert:make-rule

This section includes examples of these tasks using XQuery. See Configuring Query-based

Replication using the REST API in the Scripting Administrative Tasks Guide for a complete scripting
example using REST.

3.7.1.1 Create an Alerting Domain
Once you have your flexible replication environment configured, to set up query-based flexible
replication you need to create an alerting domain. This example uses alert:make-config to create
an alerting domain named “http://acme.com/alerting” containing “alerting rules for query-based
flexrep” and then alert:config-insert is used to add it to the acme.com alert configuration:

xquery version "1.0-ml";
import module namespace alert = "http://marklogic.com/xdmp/alert"
 at "/MarkLogic/alert.xqy";

alert:config-insert(
 alert:make-config(
 "http://acme.com/alerting",
 "qbfr", "alerting rules for query-based flexrep",
<alert:options/>))

3.7.1.2 Create an Alerting Action
Next you would create an alerting action using alert:make-action. This example creates an
alerting action named “log”:

xquery version "1.0-ml";
import module namespace alert = "http://marklogic.com/xdmp/alert"
 at "/MarkLogic/alert.xqy";

alert:action-insert("http://acme.com/alerting",
 alert:make-action(
 "log", "QBFR log action",
 xdmp:database("master-modules"), "/", "/log.xqy",
<alert:options/>))'

MarkLogic Server Configuring Replication

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 41

Note: Traditional alerting in MarkLogic requires that log.xqy exist in the modules
database so it can be called when the alert triggers. For QBFR log.xqy will not be
called and therefore does not actually need to exist.

3.7.1.3 Associate Flexible Replication with the Alerting Configuration
Next you need to associated the alerting configuration with a CPF domain. Use
flexrep:configuration-set-alerting-uri to associate the configure domain (my-cpf-domain in
this example) to be used for flexible replication.

xquery version "1.0-ml";
import module namespace alert = "http://marklogic.com/xdmp/alert"
 at "/MarkLogic/alert.xqy";

let $domain := "my-cpf-domain"
let $cfg := flexrep:configuration-get($domain, fn:true())
let $domain-id :=

flexrep:configuration-insert(
 flexrep:configuration-set-alerting-uri($cfg,
 flexrep:domain-alerting-uri($domain-id)))

3.7.1.4 Associate the Target With a User
Once alerting has been set up, the next step is to associate the QBFR target with a user using
flexrep:configuration-target-set-user-id.

xquery version "1.0-ml";
import module namespace flexrep =
 "http://marklogic.com/xdmp/flexible-replication"
 at "/MarkLogic/flexrep.xqy";

let $domain := "my-cpf-domain"
let $cfg := flexrep:configuration-get($domain, fn:true())
let $target-id := flexrep:configuration-target-get-id($cfg, "QBFR target")
let $user-id := xdmp:user("User1")

flexrep:configuration-insert(
 flexrep:configuration-target-set-user-id(
$cfg, $target-id, $user-id))

The user can also be configured with flexrep:target-create when creating the target.

3.7.1.5 Create an Alerting Rule
The next step is to create an alerting rule for the replication using alert:make-rule. This example
uses alert:make-rule to create an alert that says if any new content contains the words “dna” or
“rna” send an email alert to me@somedomain.com.

xquery version "1.0-ml";
import module namespace alert = "http://marklogic.com/xdmp/alert"
 at "/MarkLogic/alert.xqy";

MarkLogic Server Configuring Replication

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 42

alert:make-rule(
 "nucleic acids email",
 "Alert me to anything concerning nucleic acids",
 0,
 cts:or-query((
 cts:word-query("dna"),
 cts:word-query("rna")
)),
 "email",
 <alert:options>
 <alert:email-address>me@somedomain.com</alert:email-address>
 </alert:options>
)

See Configuring Query-based Replication using the REST API in the Scripting Administrative Tasks
Guide for a complete scripting example, including how to create an alerting rule. For more details
about creating an alert, see Creating Alerting Applications in the Search Developer’s Guide.

3.7.2 Using QBFR
Query-based flexible replication is useful in circumstances where you need to share specific
information (documentation, photographs, and so on) with many others in different locations. to
improve security or reliability, flexible replication allows data to be transformed and filtered
before replication. This enables control of what documents or parts of documents are shared, or
how data should be presented. In remote locations you might have disconnected devices or
intermittent connectivity, so a pull setup will be more effective.

Query-based flexible replication enables people in the field to have access to specific, targeted
information in a timely manner, be able to update or add to that information, and then replicate the
results back to headquarters, with all the security and reliability provided by MarkLogic. For
example, geologists for oil and gas companies can take information that they need with them to
remote locations, perform field analysis, take pictures, write up reports, and share that
information when they reconnect to the network.

Safety inspectors could perform a quick search online to acquire the exact information they need
to inspect a certain location and replicate the data to a laptop. When the on-site inspection has
been performed, analysis and information can be updated locally. Once connection to the network
has been established, the results are replicated and shared back the main office.

Researchers working in different company locations can share large data sets of information, with
fast local access and the ability to independently update the data. The information can then be
aggregated and shared, as appropriate, with others throughout the company.

QBFR does not guarantee the order in which documents will arrive, it only guarrantees that the
final version will arrive.

MarkLogic Server Configuring Replication

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 43

With a push configuration, if the devices are disconnected, the server will continue to retry the
operation to send the information. You could end up with a document error condition if you have
too many retries in a row. The flexrep:document-reset function can be used to clear the error
condition and schedule replication of the document. You can use flexrep:domain-target-status
to query for documents that have had an error in replication.

3.8 Backing Up, Restoring, and Clearing the Master and Replica
Databases

The configuration for flexible replication is stored in the Master and Replica databases. Clearing a
Master database has the effect of deleting the target configurations, as well as all document-level
information about target replication status. When you backup a Master database, you are also
saving the replication configuration information. Should you restore that database to another
cluster, the flexible replication configuration will also be present for the database in that cluster.
Should you restore a database that is not configured for replication to one that was previously
configured for replication, the replication configuration will be lost.

Before clearing or restoring a Master database, you can save the replication configuration by
calling the flexrep:configuration-get function. Once the Master is cleared or restored, the
replication configuration can be restored using the flexrep:configuration-insert function.
Alternatively you can recreate the replication configuration programmatically, as described in
Scripting Flexible Replication Configuration in the Scripting Administrative Tasks Guide.

Clearing a Replica database impacts the Master in that it no longer understands the status of the
target. The same issues related to backing up and restoring the Master database described above
also apply to backing up and restoring the Replica database. If the target status is lost on the
Replica, new updates will replicate to the target, but the Master will not know that the older,
unchanged documents are missing. Before clearing or restoring a Replica database, disable
replication. After clearing or restoring the Replica database, delete the existing target on the
Master, create a new target with the same configuration as the old one, and re-enable replication.
The scheduled task will gradually populate the new target's database with all the documents in the
domain.

If you have pull replication configured on the Replica, then you can save the configuration by
calling the flexrep:pull-get function before clearing the database. After clearing or restoring the
Replica database, you can restore the pull replication configuration by calling the
flexrep:pull-insert function.

3.8.1 Interrupted replication
In flexible replication, a large binary is replicated in chunks to the replica. In normal
circumstances, when all chunks are replicated, the replica will reassemble these chunks back into
one large binary. If the master dies while replicating some of the chunks, the chunks that were
already replicated will be left on the replica. When the master comes back online again, the
process will resume.

MarkLogic Server Configuring Replication

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 44

In some cases the master may be permanently removed while the chunks are being replicated. To
reclaim disk space, you can use the timestamp of the binary chunks to find and remove them. The
flexrep:binary-chunk-uris(ts as xs:dateTime)function returns the URIs of all binary chunks
that are older than the given wall clock time. This will list all of the binary chunks that are older
than the time specified by ts.

For example:

xquery version "1.0-ml";
import module namespace flexrep =
"http://marklogic.com/xdmp/flexible-replication"
 at "/MarkLogic/flexrep.xqy";

 flexrep:binary-chunk-uris(xs:dateTime("2014-10-01T08:00:00"))

 (: Returns the URIs of binary chunks that were created before
2014-10-01T08:00:00. :)

Note: The flexrep:binary-chunk-uris API requires the flexrep-admin privilege and the
URI lexicon must be enabled (by default it is enabled).

Once you have the list of URIs, you can use flexrep-delete to remove these binary chunks.

xquery version "1.0-ml";
import module namespace flexrep =
"http://marklogic.com/xdmp/flexible-replication"
 at "/MarkLogic/flexrep.xqy";

let $delete :=
<flexrep:delete
xmlns:flexrep="http://marklogic.com/xdmp/flexible-replication">
<doc:uri xmlns:doc="xdmp:document-load">/content/foo.xml</doc:uri>
<flexrep:last-updated>2010-09-28T14:35:12.714-08:00</flexrep:last-upda
ted>
</flexrep:delete>
return flexrep:delete($delete)

(: Applies the specified delete element to /content/foo.xml. This
effectively deletes the document from both the Master and Replica
databases. :)

Note: To use theflexrep-delete function you need the flexrep-user privilege.

MarkLogic Server Filtering Replicated Documents

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 45

4.0 Filtering Replicated Documents
61

Documents may be optionally filtered as part of the replication process by configuring a filter
module for either outbound documents from the Master database or inbound documents to the
Replica database. Filter modules are placed in the modules database for the replicated domain,
and configured for either the Master or Replica database.

When a document is replicated, the document node, along with either an update or delete node,
are sent by the Master to the Replicas. You can create filters to modify the contents of the
document, update or delete node before it is sent to the Replicas (outbound filter) or when it is
received by a Replica (inbound filter).

This chapter includes the following sections:

• Creating a Filter Module

• Configuring MarkLogic Server to use a Replication Filter Module

• Example Outbound Filter Modules

• Example Inbound Filter Modules

• Setting Outbound Filter Options

4.1 Creating a Filter Module
You can create replication filters to modify the document node, update node, or delete node
before it is replicated to the target or after it is received by the target. If no document node follows
the update node in the sequence, the document's root node will be removed on the Replica. If the
filter returns an empty sequence, the framework will not replicate the document to the target.

A filter returns both an update and a document node in the case of a document update, or an
update node only, in the case of a document delete. If a filter returns multiple update nodes, they
will all be applied to the target. This could be used to break a replicated document apart into
multiple documents on the target.

4.1.1 Outbound Filters
An outbound replication filter receives the following external variables as parameters:

declare variable $flexrep:uri as xs:string external;
declare variable $flexrep:target as element(flexrep:target) external;
declare variable $flexrep:update as element() external;
declare variable $flexrep:doc as document-node()? external;

The $flexrep:target variable contains the replication target configuration and the $flexrep:doc
variable identifies the replicated document node. The $flexrep:update variable will be either a
flexrep:update or a flexrep:delete node. Following is an example of each to illustrate the
contained information (in the flexrep namespace).

MarkLogic Server Filtering Replicated Documents

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 46

A flexrep:update node looks like:

<flexrep:update
 xmlns:flexrep="http://marklogic.com/xdmp/flexible-replication">
 <doc:uri xmlns:doc="xdmp:document-load">
 /content/myDoc.xml
 </doc:uri>
 <flexrep:last-updated>
 2010-09-29T14:08:28.391-07:00
 </flexrep:last-updated>
 <doc:format xmlns:doc="xdmp:document-load">xml</doc:format>
 <flexrep:permissions>
 <flexrep:permission>
 <sec:role-name xmlns:sec="http://marklogic.com/xdmp/security">
 admin
 </sec:role-name>
 <sec:capability
 xmlns:sec="http://marklogic.com/xdmp/security">
 read
 </sec:capability>
 </flexrep:permission>
 <flexrep:permission>
 <sec:role-name xmlns:sec="http://marklogic.com/xdmp/security">
 admin
 </sec:role-name>
 <sec:capability
 xmlns:sec="http://marklogic.com/xdmp/security">
 update
 </sec:capability>
 </flexrep:permission>
 </flexrep:permissions>
 <doc:collections xmlns:doc="xdmp:document-load"/>
 <doc:quality xmlns:doc="xdmp:document-load">0</doc:quality>
 <flexrep:forests/>
 <prop:properties xmlns:prop="http://marklogic.com/xdmp/property"/>
</flexrep:update>

A flexrep:delete node looks like:

<flexrep:delete xmlns:flexrep=
 "http://marklogic.com/xdmp/flexible-replication">
 <doc:uri xmlns:doc="xdmp:document-load">
 /content/myDoc.xml
 </doc:uri>
 <flexrep:last-updated>
 2010-03-04T14:35:12.714-08:00
 </flexrep:last-updated>
</flexrep:delete>

4.1.2 Inbound Filters
An inbound replication filter receives the following external variables as parameters:

MarkLogic Server Filtering Replicated Documents

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 47

declare variable $dts as element(flexrep:domain-target-status) external;
declare variable $update as node()* external;

The $update sequence is a sequence of elements describing the replicated document. It could be a
flexrep:update element followed by a document, a flexrep:delete element, or a series of these.
The sequence may contain a mix of updates and deletes (the result of having passed through a
target filter on the master that returned something more complicated than the original document).

The filter module should return a sequence that is derived from $update. For example, the same
sequence but mapping the document URI in any update or delete element to a different directory.
Another example might be to add a collection or document properties that track where the
document was received from.

If an empty sequence is returned, then the replication is dropped and treated as successful.

If the replication was the result of a push, the module will run as the user that was used to log in to
the flexible replication application server, but with the flexrep:internal role added. If the
replication was the result of a pull, the module will run as whatever user did the pull (e.g. as
configured on a scheduled task), and also with the flexrep:internal role.

If an error is thrown, the replication attempt will fail. If an empty sequence is returned, the
replication attempt will become a successful nop.

4.2 Configuring MarkLogic Server to use a Replication Filter Module
This section describes:

• Configuring a Master Database to Use an Outbound Filter

• Configuring a Replica Database to Use an Inbound Filter

4.2.1 Configuring a Master Database to Use an Outbound Filter
Once you have written an outbound filter module, such as those shown in “Example Outbound
Filter Modules” on page 48, you can configure replication on the Master database to use the
outbound replication filter module.

To configure MarkLogic Server to use a outbound replication filter module, you can call the
flexrep:configuration-target-set-filter-module function or do the following in the Admin
Interface:

1. Navigate to the Domain Definition page for the replicated domain, as described in
“Defining Replicated Domains” on page 22. At the bottom of the page, specify the

MarkLogic Server Filtering Replicated Documents

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 48

location of your replication filters. The default location for filters is the root directory in
the modules database for the replicated domain:

2. Navigate to the Replication Target page, as described in “Configuring Push Replication”
on page 25. At the bottom of the page, specify the name of the replication filter module to
be used:

4.2.2 Configuring a Replica Database to Use an Inbound Filter
A target system can run a filter on any inbound replication operations (regardless of whether it’s
push or pull). Once you have written an inbound filter module, such as those shown in “Example
Inbound Filter Modules” on page 58, you can create an inbound filter using
flexrep:inbound-filter-create and load the filter into the database using
flexrep:inbound-filter-insert. You will need to create a script with XQuery to access these
built-in functions.

xquery version "1.0-ml";
import module namespace flexrep =
 "http://marklogic.com/xdmp/flexible-replication"
 at "/MarkLogic/flexrep.xqy";

flexrep:inbound-filter-insert(
 flexrep:inbound-filter-create(
 "/inbound-filter.xqy",
 <flexrep:filter-options xmlns="xdmp:eval">
 <modules>{xdmp:database("Modules")}</modules>
 <root>/</root>
 </flexrep:filter-options>))

4.3 Example Outbound Filter Modules
This section shows the following outbound filter examples:

• Adding a Collection

• Changing the Document Quality

MarkLogic Server Filtering Replicated Documents

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 49

• Adding Document Permissions

• Adding a Forest Name

• Changing the Document URI

• Changing a Document Element

• Prohibiting Replication on Select Documents

The first example, Adding a Collection, demonstrates how to use either an XQuery function or an
XSL stylesheet to produce the same results. The remaining examples make use of XQuery
functions, only.

Note: Filter modules must be in the modules database for the replicated domain. You can
either use xdmp:document-insert to insert the module into the modules database or
specify ‘(file system)’ for the modules database and place the module in the
/MarkLogic/Modules directory.

4.3.1 Adding a Collection
This section shows two filters that add a collection to replicated documents. The first example is a
filter that makes use of an XQuery function. The second is a filter that makes use of an XSL
stylesheet. Both filters produce the same results.

The following filter defines an XQuery function that iterates through the elements of the update
node, locates the doc:collections element, and inserts a sec:uri element with the value of
http://marklogic.com/flexrep/collection-two:

xquery version "1.0-ml";

declare namespace flexrep =
 "http://marklogic.com/xdmp/flexible-replication";

declare namespace doc = "xdmp:document-load";

declare variable $flexrep:uri as xs:string external;
declare variable $flexrep:target as element(flexrep:target) external;
declare variable $flexrep:update as element() external;
declare variable $flexrep:doc as document-node()? external;

declare function local:add-my-collection(
 $update as element(flexrep:update))
 {
 element flexrep:update {
 $update/@*,
 for $n in $update/node()
 return
 typeswitch($n)
 case element(doc:collections)
 return element doc:collections {
 $n//sec:uri,

MarkLogic Server Filtering Replicated Documents

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 50

 element sec:uri
 { "http://marklogic.com/flexrep/collection-two" }
 }
 default return $n
 }
 };

(
 xdmp:log(fn:concat("Filtering ", $flexrep:uri)),
 typeswitch($flexrep:update)
 case element(flexrep:update)
 return (local:add-my-collection($flexrep:update), $flexrep:doc)
 case element(flexrep:delete)
 return $flexrep:update
 default
 return fn:error((), "FILTER-UNEXPECTED", ())
)

The following filter defines an XSLT stylesheet that creates a copy of the update node, locates the
doc:collections element, and inserts a sec:uri element with the value of
http://marklogic.com/flexrep/collection-two:

xquery version "1.0-ml";

declare namespace flexrep =
"http://marklogic.com/xdmp/flexible-replication";
declare namespace doc = "xdmp:document-load";
declare variable $flexrep:uri as xs:string external;
declare variable $flexrep:target as element(flexrep:target) external;
declare variable $flexrep:update as element() external;
declare variable $flexrep:doc as document-node()? external;

let $stylesheet :=
 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:doc = "xdmp:document-load"
 xmlns:sec="http://marklogic.com/xdmp/security"
 version="2.0">
 <!-- Default recursive copy transform -->
 <xsl:template match="@*|node()">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
 </xsl:template>

 <!-- Add my collection to the existing collections -->
 <xsl:template match="doc:collections">
 <xsl:copy>
 <xsl:apply-templates select="node()"/>
 <sec:uri>http://marklogic.com/flexrep/collection-two</sec:uri>
 </xsl:copy>
 </xsl:template>
 </xsl:stylesheet>

MarkLogic Server Filtering Replicated Documents

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 51

return (
 xdmp:log(fn:concat("Filtering ", $flexrep:uri)),
 typeswitch($flexrep:update)
 case element(flexrep:update)
 return (
 xdmp:xslt-eval($stylesheet, $flexrep:update)/flexrep:update,
 $flexrep:doc)
 case element(flexrep:delete)
 return $flexrep:update
 default
 return fn:error((), "FILTER-UNEXPECTED", ())
)

Either of the above filters will convert the update node to:

<flexrep:update xmlns:flexrep=
 "http://marklogic.com/xdmp/flexible-replication">

 <doc:collections xmlns:doc="xdmp:document-load">
 <sec:uri xmlns:sec="http://marklogic.com/xdmp/security">
 http://marklogic.com/flexrep/collection-two
 </sec:uri>
 </doc:collections>

 <prop:properties xmlns:prop="http://marklogic.com/xdmp/property"/>
</flexrep:update>

4.3.2 Changing the Document Quality
The following filter changes the quality of documents to 3. This is done by iterating through the
elements of the update node, locating the doc:document-quality element, and resetting its value
to 3.

xquery version "1.0-ml";

declare namespace flexrep =
 "http://marklogic.com/xdmp/flexible-replication";

declare namespace doc = "xdmp:document-load";

declare variable $flexrep:uri as xs:string external;
declare variable $flexrep:target as element(flexrep:target) external;
declare variable $flexrep:update as element() external;
declare variable $flexrep:doc as document-node()? external;

declare function local:change-quality($update as
element(flexrep:update))
{
 element flexrep:update {
 $update/@*,
 for $n in $update/node()
 return
 typeswitch($n)

MarkLogic Server Filtering Replicated Documents

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 52

 case element(doc:quality)
 return element doc:quality { 3 }
 default return $n
 }
};

(
 xdmp:log(fn:concat("Filtering ", $flexrep:uri)),
 typeswitch($flexrep:update)
 case element(flexrep:update)
 return (local:change-quality($flexrep:update), $flexrep:doc)
 case element(flexrep:delete)
 return $flexrep:update
 default
 return fn:error((), "FILTER-UNEXPECTED", ())
)

This will convert the update node to:

<flexrep:update xmlns:flexrep=
 "http://marklogic.com/xdmp/flexible-replication">

 <doc:quality xmlns:doc="xdmp:document-load">3</doc:quality>

</flexrep:update>

4.3.3 Adding Document Permissions
The following filter adds read and update permission for users with the “developer” role to
documents. This is done by iterating through the elements of the update node, locating the
doc:permissions element, and inserting sec:permission elements containing sec:capability and
sec:role-id elements that establish read and update permissions for “developer” users.

xquery version "1.0-ml";

declare namespace flexrep =
 "http://marklogic.com/xdmp/flexible-replication";

declare namespace doc = "xdmp:document-load";

declare variable $flexrep:uri as xs:string external;
declare variable $flexrep:target as element(flexrep:target) external;
declare variable $flexrep:update as element() external;
declare variable $flexrep:doc as document-node()? external;

declare function local:change-permission(
 $update as element(flexrep:update))
{
 element flexrep:update {
 $update/@*,
 for $n in $update/node()
 return
 typeswitch($n)

MarkLogic Server Filtering Replicated Documents

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 53

 case element(flexrep:permissions)
 return element flexrep:permissions {
 $n/flexrep:permission ,
 element flexrep:permission {
 element sec:role-name { "developer" },
 element sec:capability { "read" }
 },
 element flexrep:permission {
 element sec:role-name { "developer" },
 element sec:capability { "update" }
 }
 }
 default return $n
 }
};

(
 xdmp:log(fn:concat("Filtering ", $flexrep:uri)),
 typeswitch($flexrep:update)
 case element(flexrep:update)
 return (local:change-permission($flexrep:update), $flexrep:doc)
 case element(flexrep:delete)
 return $flexrep:update
 default
 return fn:error((), "FILTER-UNEXPECTED", ())
)

This will convert the update node to:

<flexrep:update xmlns:flexrep=
 "http://marklogic.com/xdmp/flexible-replication">

 <flexrep:permissions>
 <flexrep:permission>
 <sec:role-name xmlns:sec="http://marklogic.com/xdmp/security">
 admin
 </sec:role-name>
 <sec:capability
 xmlns:sec="http://marklogic.com/xdmp/security">
 read
 </sec:capability>
 </flexrep:permission>
 <flexrep:permission>
 <sec:role-name xmlns:sec="http://marklogic.com/xdmp/security">
 admin
 </sec:role-name>
 <sec:capability
 xmlns:sec="http://marklogic.com/xdmp/security">
 update
 </sec:capability>
 </flexrep:permission>
 </flexrep:permissions>
 <flexrep:permissions>

MarkLogic Server Filtering Replicated Documents

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 54

 <flexrep:permission>
 <sec:role-name xmlns:sec="http://marklogic.com/xdmp/security">
 developer
 </sec:role-name>
 <sec:capability
 xmlns:sec="http://marklogic.com/xdmp/security">
 read
 </sec:capability>
 </flexrep:permission>
 <flexrep:permission>
 <sec:role-name xmlns:sec="http://marklogic.com/xdmp/security">
 developer
 </sec:role-name>
 <sec:capability
 xmlns:sec="http://marklogic.com/xdmp/security">
 update
 </sec:capability>
 </flexrep:permission>
 </flexrep:permissions>

</flexrep:update>

4.3.4 Adding a Forest Name
The following filter adds the forest name, myFavoriteForest, to the update node. MarkLogic
Server maps the forest name to its ID and passes it to the xdmp:document-insert function to insert
the document into the named forest. If you specify multiple forests, MarkLogic Server will insert
the document into one of them. See the documentation for the xdmp:document-insert function for
more information.

xquery version "1.0-ml";

declare namespace flexrep =
 "http://marklogic.com/xdmp/flexible-replication";

declare namespace doc = "xdmp:document-load";

declare variable $flexrep:uri as xs:string external;
declare variable $flexrep:target as element(flexrep:target) external;
declare variable $flexrep:update as element() external;
declare variable $flexrep:doc as document-node()? external;

declare function local:add-forest(
 $update as element(flexrep:update))
 {
 element flexrep:update {
 $update/@*,
 for $n in $update/node()
 return
 typeswitch($n)
 case element(flexrep:forests)
 return element flexrep:forests {
 element flexrep:forest { "myFavoriteForest" }

MarkLogic Server Filtering Replicated Documents

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 55

 }
 default return $n
 }
 };

(
 xdmp:log(fn:concat("Filtering ", $flexrep:uri)),
 typeswitch($flexrep:update)
 case element(flexrep:update)
 return (local:add-forest($flexrep:update), $flexrep:doc)
 case element(flexrep:delete)
 return $flexrep:update
 default
 return fn:error((), "FILTER-UNEXPECTED", ())
)

This will convert the update node to:

<flexrep:update xmlns:flexrep=
 "http://marklogic.com/xdmp/flexible-replication">

 <flexrep:forests>
 <flexrep:forest>myFavoriteForest</flexrep:forest>
 </flexrep:forests>

</flexrep:update>

4.3.5 Changing the Document URI
The following filter adds /replicated/ to the front of each document URI. This is done by
iterating through the elements of the update node, locating the doc:uri element and adding
/replicated/ to its value.

xquery version "1.0-ml";

declare namespace flexrep =
 "http://marklogic.com/xdmp/flexible-replication";

declare namespace doc = "xdmp:document-load";

declare variable $flexrep:uri as xs:string external;
declare variable $flexrep:target as element(flexrep:target) external;
declare variable $flexrep:update as element() external;
declare variable $flexrep:doc as document-node()? external;

declare function local:change-uri($update as element(flexrep:update))
{
 element flexrep:update {
 $update/@*,
 for $n in $update/node()
 return
 typeswitch($n)
 case element(doc:uri)

MarkLogic Server Filtering Replicated Documents

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 56

 return element doc:uri {
 fn:concat("/replicated", $flexrep:uri)
 }
 default return $n
 }
};

(
 xdmp:log(fn:concat("Filtering ", $flexrep:uri)),
 typeswitch($flexrep:update)
 case element(flexrep:update)
 return (local:change-uri($flexrep:update), $flexrep:doc)
 case element(flexrep:delete)
 return $flexrep:update
 default
 return fn:error((), "FILTER-UNEXPECTED", ())
)

This will convert the update node to:

<flexrep:update xmlns:flexrep=
 "http://marklogic.com/xdmp/flexible-replication">
 <doc:uri xmlns:doc="xdmp:document-load">
 <doc:uri>/replicated//content/foo.xml</doc:uri>
 </doc:uri>

</flexrep:update>

4.3.6 Changing a Document Element
The following filter changes all <PARA> elements in replicated documents to <PARAGRAPH> and
leaves all of the other elements in the documents unchanged. This is done by iterating through the
elements of the document node, locating each PARA element and converting its value to PARAGRAPH.

xquery version "1.0-ml";

declare namespace flexrep =
 "http://marklogic.com/xdmp/flexible-replication";
declare namespace doc = "xdmp:document-load";

declare variable $flexrep:uri as xs:string external;
declare variable $flexrep:target as element(flexrep:target) external;
declare variable $flexrep:update as element() external;
declare variable $flexrep:doc as document-node()* external;

(: recursive typeswitch function to transform the element :)
declare function local:change-element($x as node()*) as node()*
{
for $n in $x return
 typeswitch ($n)
 case document-node() return
 document {local:change-element($n/node())}
 case text() return $n

MarkLogic Server Filtering Replicated Documents

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 57

 case element (PARA)
 return <PARAGRAPH>{local:change-element($n/node())}</PARAGRAPH>
 default return element {
 fn:node-name($n)} {$n/@*, local:change-element($n/node())}
};

 xdmp:log(fn:concat("Filtering ", $flexrep:uri)),
 typeswitch($flexrep:update)
 case element(flexrep:update)
 return ($flexrep:update, local:change-element($flexrep:doc))
 case element(flexrep:delete)
 return $flexrep:update
 default return fn:error((), "FILTER-UNEXPECTED", ())

4.3.7 Prohibiting Replication on Select Documents
Should you want to prohibit replication on certain documents in a replicated domain, you can add
a property to the document that flags it as a no-replicate document. You can then write a filter that
checks for the property and determines whether or not to replicate the document, depending on
the presence or value of the property.

For example, if the /content directory is in a replicated domain, but you don’t want to replicate
the document, /content/foo.xml, you can assign the document a replicate property with a value
of no.

xquery version "1.0-ml";

declare namespace prop = "http://marklogic.com/xdmp/property";

xdmp:document-add-properties(
 "/content/foo.xml",
 (<prop:replicate>no</prop:replicate>))

You can write a filter that looks for the replicate property on each document. If the property is
missing or it is some value other than no, then the document is replicated. If the property is set on
the document and its value is no, then the document will not be replicated.

xquery version "1.0-ml";

declare namespace flexrep =
 "http://marklogic.com/xdmp/flexible-replication";

declare namespace doc = "xdmp:document-load";

declare variable $flexrep:uri as xs:string external;
declare variable $flexrep:target as element(flexrep:target) external;
declare variable $flexrep:update as element() external;
declare variable $flexrep:doc as document-node()? external;

(
 xdmp:log(fn:concat("Filtering ", $flexrep:uri)),
 typeswitch($flexrep:update)

MarkLogic Server Filtering Replicated Documents

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 58

 case element(flexrep:update)
 return
 if (xdmp:document-properties($flexrep:uri)//prop:replicate = "no")
 then ()
 else ($flexrep:update, $flexrep:doc)
 case element(flexrep:delete)
 return $flexrep:update
 default
 return fn:error((), "FILTER-UNEXPECTED", ())
)

4.4 Example Inbound Filter Modules
This section shows a few examples of inbound filters that do the same operations as two of the
outbound filters shown above for the Master database, but these example filters are inbound filters
on the Replica database.

This section shows the following inbound filter examples:

• Adding a Collection

• Changing the Document URI

4.4.1 Adding a Collection
This section an inbound filter that add a collection to replicated documents in the same manner as
the outbound filter described in “Adding a Collection” on page 49.

The following filter defines an XQuery function that iterates through the elements of the update
node, locates the doc:collections element, and inserts a sec:uri element with the value of
http://marklogic.com/flexrep/collection-A:

xquery version "1.0-ml";

import module
 namespace flexrep = "http://marklogic.com/xdmp/flexible-replication"
 at "/MarkLogic/flexrep.xqy";

declare namespace doc = "xdmp:document-load";

declare variable $dts as element(flexrep:domain-target-status)
external;
declare variable $update as node()* external;

declare function local:add-my-collection(
 $update as element(flexrep:update))
 {
 element flexrep:update {
 $update/@*,
 for $n in $update/node()
 return
 typeswitch($n)

MarkLogic Server Filtering Replicated Documents

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 59

 case element(doc:collections)
 return element doc:collections {
 $n//sec:uri,
 element sec:uri
 { "http://marklogic.com/collection-A" }
 }
 default return $n
 }
 };

for $u in $update
return
 typeswitch ($u)
 case element(flexrep:update) return
 local:add-my-collection($u)
 default
 return $u

4.4.2 Changing the Document URI
This section an inbound filter that changes the URI of the replicated documents in the same
manner as the outbound filter described in “Changing the Document URI” on page 55.

The following filter adds /replicated/ to the front of each document URI. This is done by
iterating through the elements of the update node, locating the doc:uri element and adding
/replicated/ to its value.

xquery version "1.0-ml";

import module
 namespace flexrep = "http://marklogic.com/xdmp/flexible-replication"
 at "/MarkLogic/flexrep.xqy";

declare namespace doc = "xdmp:document-load";

declare variable $dts as element(flexrep:domain-target-status)
external;
declare variable $update as node()* external;

declare function local:change-uri(
 $update as element(flexrep:update))
 {
 element flexrep:update {
 $update/@*,
 for $n in $update/node()
 return
 typeswitch($n)
 case element(doc:uri)
 return element doc:uri {
 fn:concat("/replicated", $n)
 }
 default return $n

MarkLogic Server Filtering Replicated Documents

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 60

 }
 };

for $u in $update
return
 typeswitch ($u)
 case element(flexrep:update) return
 local:change-uri($u)
 default
 return $u

4.5 Setting Outbound Filter Options
You can use the flexrep:configuration-target-set-filter-options function to change the
evaluation parameters used to invoke an outbound filter. For example, you can specify filter
options that determine which user can invoke the outbound filter or on what database the filter is
to be invoked. The options specified by the flexrep:configuration-target-set-filter-options
function are passed to the xdmp:invoke function of the filter module, so any of the options you
would specify in the xdmp:eval function are recognized.

Outbound filter options cannot be set in by the Admin Interface. You must set outbound filter
options programmatically using the flexrep API. The flexrep API is described in the Scripting

Flexible Replication Configuration chapter in the Scripting Administrative Tasks Guide and the
reference documentation for each function is in the MarkLogic XQuery and XSLT Function
Reference.

For example, you can write a module that specifies that the outbound filter can only be invoked by
the user John:

xquery version "1.0-ml";

import module namespace flexrep =
 "http://marklogic.com/xdmp/flexible-replication"
 at "/MarkLogic/flexrep.xqy";

import module namespace trgr="http://marklogic.com/xdmp/triggers"
 at "/MarkLogic/triggers.xqy";

let $trigger := trgr:get-trigger("cpf:update Replicated Content")

(: Obtain the id of the replicated CPF domain from the
 Triggers database. :)

let $domain := xdmp:eval(
 'xquery version "1.0-ml";
 import module namespace dom = "http://marklogic.com/cpf/domains"
 at "/MarkLogic/cpf/domains.xqy";
 fn:data(dom:get("Replicated Content")//dom:domain-id)',
 (),
 <options xmlns="xdmp:eval">

MarkLogic Server Filtering Replicated Documents

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 61

 <database>{xdmp:database("MyTriggers")}</database>
 </options>)

(: Obtain the replication configuration. :)
let $cfg := flexrep:configuration-get($domain, fn:true())

(: Obtain the ID of the replication target. :)
let $target-id := flexrep:configuration-target-get-id($cfg, "Replica")

(: Define a flexrep:filter-options element. :)
let $filter-opts :=
 <flexrep:filter-options>
 <user-id xmlns="xdmp:eval">{xdmp:user("John")}</user-id>
 </flexrep:filter-options>

(: Set the flexrep:filter-options element. :)
let $cfg :=
 flexrep:configuration-target-set-filter-options(
 $cfg,
 $target-id,
 $filter-opts)

(: Save the new replication configuration. :)
return flexrep:configuration-insert($cfg)

MarkLogic Server Checking Replication Status

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 62

5.0 Checking Replication Status
68

This chapter describes how to check replication status for a Master database, a domain, and a
target. This chapter includes the following sections:

• Special Circumstances that Impact Replication

• Checking the Replication Status of a Master Database

• Checking the Replication Status of a Domain

• Checking the Replication Status of a Target

5.1 Special Circumstances that Impact Replication
If the task server queue is more than half full, the Master Server will not push documents to the
Replica and will instead leave it for the scheduled push task. This is to help avoid overflowing the
task queue when ingesting at a high rate.

See Examining the Host and Task Server Status Pages For Tasks in the Queue in the Content
Processing Framework Guide for information on checking the status of the task server.

5.2 Checking the Replication Status of a Master Database
You can check the replication status of a Master database by selecting the Flexible Replication
icon under the Master database in the left tree menu and clicking on the Status tab on the Flexible
Replication Administration page.

MarkLogic Server Checking Replication Status

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 63

The Outgoing Replication Status indicates the replication status for each replicated domain from
the perspective of the Master database.

Field Description

Domain The name of the replicated domain.

Documents The number of documents in the domain on the Master.

Unpropertied The number of documents in the replicated domain without a
replication status. This generally means that these documents
existed before the replication domain was configured and have not
yet been replicated.

Deleted The number of replicated documents that were deleted, but the
delete has not yet been replicated.

Error The number of replication errors.

Pending The number of documents in the replicated domain that have not
yet been replicated to the Replicas.

Partial The number of documents in the replicated domain that have been
sent to one or more Replicas, but are pending or have errors for at
least one Replica.

Deleted Targets The number of targets that were deleted from the replication
configuration for this domain.

MarkLogic Server Checking Replication Status

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 64

The Incoming Replication Status indicates the replication status for each replicated domain from
the perspective of the Replica database.

5.3 Checking the Replication Status of a Domain
You can check the replication status of a replicated domain by the following procedure:

CPF Active The number of documents that are currently in the CPF pipeline.

CPF Error The number of documents that encountered an error while in the
CPF pipeline.

Field Description

Domain The name of the replicated domain.

Target The name and id of the replication target.

Source The IP address of the Master host server.

Last Update The date and time of the last replicated update.

Status The status of the last replicated update

Field Description

MarkLogic Server Checking Replication Status

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 65

1. Select the domain icon under Flexible Replication in the left tree menu and click on the
Status tab on the Flexible Replication Domain Administration page:

2. The page containing the replication status of the domain appears:

Field Description

Target The name of the replication target.

Last Success The date and time of the last successful update to the target.

Pending The number of documents in the replicated domain that have not
yet been replicated to the target.

Missing The number of documents missing replication properties. For
example, documents that were already in the replicated domain
before replication was configured.

Error The number of replication errors.

Pending Large
Binaries

The number of large binaries in the replicated domain that have not
yet been replicated to the target. See “Interrupted replication” on
page 43 for details.

Last Error The last replication error.

MarkLogic Server Checking Replication Status

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 66

5.4 Checking the Replication Status of a Target
You can check the replication status of a replication target by the following procedure:

1. Select the domain icon under Flexible Replication in the left tree menu, selecting the
Target Name from the Domain Administration page, and clicking on the Status tab on the
Flexible Replication Target Administration page.

2. Click the Target Name on the Flexible Replication Domain Administration page:

MarkLogic Server Checking Replication Status

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 67

3. Click the Status tab on the Flexible Replication Target Administration page:

4. The page containing the replication status of the target appears. The overall status of
replicated documents to the target appears in the top field. The documents that failed to
replicate are listed in the second field, along with last and next replication retry times. You
can click Retry to retry replication on selected documents or Retry All Documents to retry
replication on all of the documents in the list.

Field Description

Target The name of the replication target.

Last Success The date and time of the last successful update to the target.

Pending The number of documents in the replicated domain that have not
yet been replicated to the target.

Missing The number of documents missing replication properties. For
example, documents that were already in the replicated domain
before replication was configured.

Error The number of replication errors.

MarkLogic Server Checking Replication Status

MarkLogic 10—May, 2019 Flexible Replication Guide—Page 68

Check the Retry all # error documents box to retry replicating all documents that were
not replicated due to errors, or Retry all documents in the domain to retry replicating all
documents in the domain.

You can query the status of a specific document by entering its URI in the Check URI
field and clicking Query. The status of the document, whether it replicated successfully or
returned an error is displayed and highlighted in the above field.

Pending Large
Binaries

The number of large binaries in the replicated domain that have not
yet been replicated to the target. See “Interrupted replication” on
page 43 for details.

Document The document that failed to replicate to the Replica.

Last Try The last attempt to replicate the failed document.

Next Try The next attempt to replicate the failed document.

Tries The number of times MarkLogic Server attempted to replicate the
failed document.

Status The error generated on the last attempt to replicate the failed
document.

 Retry Check box to retry replicating the failed document.

Field Description

MarkLogic Server Technical Support
6.0 Technical Support
70

MarkLogic provides technical support according to the terms detailed in your Software License
Agreement or End User License Agreement.

We invite you to visit our support website at http://help.marklogic.com to access information on
known and fixed issues, knowledge base articles, and more. For licensed customers with an active
maintenance contract, see the Support Handbook for instructions on registering support contacts
and on working with the MarkLogic Technical Support team.

Complete product documentation, the latest product release downloads, and other useful
information is available for all developers at http://developer.marklogic.com. For technical
questions, we encourage you to ask your question on Stack Overflow.
MarkLogic 10

http://help.marklogic.com/
https://stackoverflow.com/questions/tagged/marklogic
http://developer.marklogic.com
http://www.marklogic.com/files/Mark_Logic_Support_Handbook.pdf

MarkLogic Server Technical Support
MarkLogic 10—May, 2019 Administrator’s Guide—Page 70

MarkLogic Server Copyright
7.0 Copyright
999

MarkLogic Server 10.0 and supporting products.
Last updated: February, 2022

Copyright © 2022 MarkLogic Corporation. All rights reserved.
This technology is protected by U.S. Patent No. 7,127,469B2, U.S. Patent No. 7,171,404B2, U.S.
Patent No. 7,756,858 B2, and U.S. Patent No 7,962,474 B2, US 8,892,599, and US 8,935,267.

The MarkLogic software is protected by United States and international copyright laws, and
incorporates certain third party libraries and components which are subject to the attributions,
terms, conditions and disclaimers set forth below.

For all copyright notices, including third-party copyright notices, see the Combined Product
Notices for your version of MarkLogic.
MarkLogic 10

MarkLogic Server Copyright
MarkLogic 10—May, 2019 Administrator’s Guide—Page 72

	Flexible Replication Guide
	Table of Contents
	1.0 Flexible Replication in MarkLogic Server
	1.1 Terms Used in this Guide
	1.2 Understanding Flexible Replication

	2.0 Flexible Replication Quick Start
	2.1 Creating Master and Replica Databases
	2.2 Configuring a Flexible Replication Pipeline for the Master Database
	2.3 Creating a Replication App Server
	2.4 Configuring Push Replication on the Master Database
	2.5 Scheduling Replication Push Task
	2.6 Loading Documents into the Master Database and Checking Replication

	3.0 Configuring Replication
	3.1 Replication Security
	3.2 Defining Replicated Domains
	3.3 Configuring Replication App Servers
	3.4 Configuring Push Replication
	3.5 Creating a Scheduled Replication Task
	3.5.1 Creating a Push-Local-Forests Replication Task
	3.5.2 Creating a Pull Replication Task

	3.6 Configuring Pull Replication
	3.7 Configuring Alerting With Flexible Replication
	3.7.1 Configuring Alerts
	3.7.2 Using QBFR

	3.8 Backing Up, Restoring, and Clearing the Master and Replica Databases
	3.8.1 Interrupted replication

	4.0 Filtering Replicated Documents
	4.1 Creating a Filter Module
	4.1.1 Outbound Filters
	4.1.2 Inbound Filters

	4.2 Configuring MarkLogic Server to use a Replication Filter Module
	4.2.1 Configuring a Master Database to Use an Outbound Filter
	4.2.2 Configuring a Replica Database to Use an Inbound Filter

	4.3 Example Outbound Filter Modules
	4.3.1 Adding a Collection
	4.3.2 Changing the Document Quality
	4.3.3 Adding Document Permissions
	4.3.4 Adding a Forest Name
	4.3.5 Changing the Document URI
	4.3.6 Changing a Document Element
	4.3.7 Prohibiting Replication on Select Documents

	4.4 Example Inbound Filter Modules
	4.4.1 Adding a Collection
	4.4.2 Changing the Document URI

	4.5 Setting Outbound Filter Options

	5.0 Checking Replication Status
	5.1 Special Circumstances that Impact Replication
	5.2 Checking the Replication Status of a Master Database
	5.3 Checking the Replication Status of a Domain
	5.4 Checking the Replication Status of a Target

	6.0 Technical Support
	7.0 Copyright

