MarkLogic Server

Entity Services Developer’s Guide

MarkLogic 10
May, 2019

Last Revised: 10.0-5, July, 2020

Copyright © 2020 MarkLogic Corporation. All rights reserved.

MarkLogic Server Table of Contents

Table of Contents

Entity Services Developer’s Guide

1.0

INtroduction t0 ENtity SEIVICESccceecieiie e 6

11
1.2
1.3

14
15

1.6

Terms and DEfINITIONScccooiiiiiieeee e 7
Why Use Entity MOGEIING?c.ooiiiiieieeeriesee e 8
ENtity SErVICES OVEIVIEWocviieeieeie sttt ee sttt nne e 10
1.3.1 MOdeling VOCADUIAIYc.coiuieiiiiieiieeiesee e 11
1.3.2 Persistence CONVENTIONcccocceerierieiiesieesie e sreeseeseesseseesseessesseesseessesnenns 12
1.3.3 Application SCaffoldingcccceeeeiieiiiie e 13
INEXE SEEPS ...ttt ettt et b e st e e be e s e e e se e sareenbeeenneeneesaneeneennns 14
Exploring the Entity Services Open-Source EXamplescccceovieveneneneneniens 14
1.5.1 Downloadingthe Project asaZIP Filecccooveieiecicceceecece e 15
SeCUrity CONSIAEIALIONScooveieiiieeiieie sttt sb e sae e 15

Getting Started With Entity SErviCescocoeveeiieiieeie e 17

21
22
2.3

24

2.5

BEfOr@ YOU BEGIN ...ttt s 17
Optional: Create a Content DataDaseccceverererenineneeeee e 17
Getting Started USINg XQUENYeeiuiiieiieciie et 18
231 Stagethe SOUrCE Da@cccceeiiiiiriiiie e 19
2.3.2 Create aMOodel DESCIIPLONccoerviriiriirieieieiee e 20
2.3.3 Creat@aMOdel ... s 23
2.34 Create and Deploy an Instance CONVErtercccooevevenennenieseeseeseene 25

2.34.1 Generate the Default Converter Modulecccevveeeieecinneenne. 25

2.3.4.2 Customize the Converter Modulecccceverieeienenenenenenens 26

2.3.4.3 Deploy the Converter Moduleccooeeiiniiniiiieeeeee 28
235 Create Entity INSIANCEScooiiiiiieeiieeeeee s 28
2.3.6 QUENY theDalaccceevveeieceeceee e e 33
2.3.7 QuEry the MOEccooiiieeee e 34
Getting Started USING JAVASCITPEovvvverieriirieieieriesie s 35
241 Stagethe SOUrCEDaAcccveveeeeiiiee e e 36
24.2 Create aModel DESCIPLONoceeiiieiieiiesieeie e e 37
24.3 Creat@aMOEccooeeiiiieciee e 39
2.4.4 Create and Deploy an Instance CONVErterccoooeveveveececceeseesee e 41

2441 Generate the Default Converter Moduleccocevviieieniinnienne 41

24.4.2 Customizethe Converter Moduleccccccevvevieeienceeneeieneens 43

2.4.4.3 Deploy the Converter Moduleccoveeeieeieiieiece e 44
245 Create Entity INSIANCEScovieiieiieiieieseesee e e 45
24.6 QUENY tNEDAAoceeeeeee et 49
247 QuEry the MOEc.ooovieeee e e e 52
INEXE SEEPS ..ttt ettt b e e st e e be e s e e e se e s e e e abeeemneennessaneenneeanns 53

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 2

MarkLogic Server Table of Contents

3.0 Creating and Managing MOdElSccoeiiiiiiiiic s 54
G300 R 1111 (8 o 1o IO R 54
3.2 Writing aMOdel DESCIIPLONccverieeiesieeieeeeseesieeeesie e sre e sreesseenae e sseeneas 56

3.2.1 Model DESCIIPLOr BASICScceevveieeiiieiie ettt 57

3.2.2 Entity Type Definition OVEIVIEWcccoceeiueriienienieeie e 58

3.2.3 Defining an Entity Property with a SimpleTypecccooevvvevveeiecciecien 61

3.24 Defining an Entity Property with a Complex TYPeccccoceveevvieeniecnenee. 62

3.2.5 Defining an Entity Property with Array TYPeccocevireeiieieeereie e 63

3.2.6 Defining an IRl Entity Propertyccccceceeveeeeneese e eee e 64

3.2.7 ldentifying the Primary Key Entity Propertyccccvvevevceiceiecceecnene 64

3.2.8 Identifying Personally Identifiable Information (PI1)ccccceoeiirininienne. 66

3.2.9 Distinguishing Required and Optional Entity Propertiescc.cceue.. 67

3.2.10 Defining a Namespace URI for an Entity TYPEcccovveeveereccie e 68

3.2.11 Identifying Entity Propertiesfor INeXingccccveeeerereeneneneneniesienes 72
3.2.11.1 Specifying Indexable Propertiescccccveevviveeneecieseeseenn 72

3.2.11.2 Interaction with Generated Artifactsccoceveveienvieienennns 73

3.2.11.3 Example: Identifying Indexable Entity Properties 74

3.2.11.4 Supported DAELYPES ...cceecverreerieriesieeie e steeeeseesee e e nre e 75

3.2.12 Controlling the Model IRl and Module Namespacesccccceeveeverneene. 76

3.3 Defining Entity REGIONSNIPS ...c.vooviiiiiiieieeieieeeese s 77
3.3.1 Defining aLocal Entity REFErENCEccoceevvvecvcieiece e 78

3.3.2 Defining an External Entity REfErenceccceveveece e 79

34 CreatingaModel from aModel DESCIPLONooeveeeeieiiieree s 80
3.5 Working Withan XML Model DESCIIPLOrccceeveeeeiierieeeesieerie e sie e see s 81
3.6 Vaidating aModel DESCIIPLONccceecueieeiieieceesie e 82
3.7 Extending aModel with Additional Factsc.ccooverinirieireeee e 84
3.8 Managing Model ChangESccccereeiuereereee e eee e e eee e sae e nae e es 85
3.8.1 Generating Instances From the New Modélcccoveevievece e 85

3.8.2 Replacing the Old Model with aNew VEersionc.cccecevevenenencnene. 87

3.8.3 Making Multiple Model Versions Availablecccccvveveeceieececcecie 87
3.8.3. 1 INSLANCE DELAc.eeeveeieieeieesee e 88

3.8.3.2 Entity Type SChemacccoeiiriiinineseeeeeee e 89

3.8.3.3 TDETEMPIALEocereeeiirieieierierie et 90

3.8.3.4 QUENY OPLIONSoecveciieieeie ettt 90

3.8.3.5 Database Configurationccocemerienerieriinieieesese e 90

3.9 Mode Descriptor Syntax REFEIENCEccccveeiieie e 91
3.9. 1 MOAE _INFO e e e 91
3.9.1.1 Syntax SUMMANYocceeirireerieeie e 91

3.9.1.2 Component DESCIIPLIONcceecvereereeieseerie e sieeeeseesee e 92

3.9.1.3 EXAMPIES ..o 93

3.9.2 entity_type definitioNcociiiiieicieee s 93
3.9.2.1 SyntaX SUMMAIYcoooiiiiieiieeeniee e sree e se s 94

3.9.2.2 Component DESCIPLIONcccevuereererienienie e 95

3.9.2.3 EXAMPIES ..o 97

3.9.24 SEEAISD .ottt 98

3.9.3 property_definition ..o 98

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 3

MarkLogic Server Table of Contents

4.0

3.9.3.1 Syntax SUMMANYcccoeiireeriieieseeseere e e 99

3.9.3.2 Component DESCIIPLIONccceeeeereerieeieseesie e sreereeseesee s 100

3.9.3.3 EXAMPIES ..o 101

3.9.34 SEEAISD cooeicece e 102

3.9.4 PrOPEITY _LYPE .oooieieeiie ettt 102
Generating Code and Other ArtifactSoocvevvevee s 104
4.1 Codeand Artifact Generation OVEIVIEWcccovererenerenenesesesnee e see e seesnas 104
4.2 Summary of Available GENEratorsccceieienie i 106
4.3 Creating an Instance Converter ModUIE ... 107
4.3.1 Purposeof aConverter Moduleccccoveeiieiecieeseece e 107

4.3.2 Generating a Converter Module Templateccocceveeveriencennenieeeee 108

4.3.3 Understanding the Default Converter Implementationc.ccoceveeene 108
4.3.3.1 Module Namespace Declarationccccceeeveevecieesecsiesnenn, 109

4.3.3.2 Generated FUNCLIONScoovieiniieiinee e 110

4.3.4 Customizing aConverter MOAUIEcccooiiirinirenieeee e 111

4.4 CreatingaModel Version Trandator Modulecceoevieieeieceececce e 113
4.4.1 Purpose of aVersion TranSlatorcceoeeeeereenenieeseeriesee e 113

4.4.2 Generating aVersion Trandator Module Templateccccecvvvrenennene 113

4.4.3 Understanding the Default Version Tranglator Implementation 114
4.4.3.1 Module Namespace Declarationcccceeeveeienieenesiinneeenne 114

4.4.3.2 Generated FUNCLIONSccooviierieeriiniesieerie e 115

4.4.4 Customizing aVersion Trandator Modulecccoeveeveecevecceceecreenee, 116

45 Generating A TDE TeMPIELEcovveeiiiieieeieseese et 119
451 Generating @aTDE TEMPIALEccoiviiiriiiereseeeeee e 120

45.2 Characteristics of aGenerated Templatecccccveveveeveecieceececeeceee, 121

4521 Triples Sub-Template CharaCteristiCsoccoverveneeneriinniene 121

45.2.2 Rows Sub-Template CharaCteristiCscccceoererenenereneniens 122

45.2.3 RowsTemplate Array Property View Characteristics 122

453 Customizing aTDE TeMPIALecocvveeiieiiineeeeeeee e 123

454 Deploying aTDE TEMPIELEcceiiriiiiiienienieeeeeeee e 123

455 Example: TDE Template Generation and Deploymentccccceeneeee. 124

4.6 Generating an Entity Instance SChemaccccoovvieierii e 126
4.6.1 SchemaGeneration OVEIVIEWcccoeeerieeieeieenieeeeseeie e seeeee e seeeneas 127

4.6.2 SChema CharaCteristiCscccrerieierere et 127

4.6.3 SChema CuStOMIZALIONccceieeriieiirie e e 128

4.6.4 Example: Generating and Installing an Instance Schema. 128

4.6.5 Example: Validating an Instance Against aSchemac.cccceeeeveneeee. 130

4.7 Generating a Pl Security Configuration Artifactccoccevveriinenininneeienne 131
4.8 Generating a Database Configuration Artifactcccocveevenienienenenesesenee 134
4.9 Generating Query Options for Searching INStaNCESccevvevvceevecie e, 138
4.9.1 Options Generation OVEINVIEWccccoveeiieriiereerieneeseesee e siesee e ssesneas 138

4.9.2 Characteristics of the Generated Optionsccceevveeveeieseereeieeseenens 139

4.9.3 Example: Generating QUEry OPLioNSccceveeveeeieeseereceeseeee e 141

4.10 Deploying Generated Code and ArtifactSccocveeereeieneenienieseese e 144

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 4

MarkLogic Server Table of Contents

5,0 Managing Entity INSLANCEScccoeeiiieiieciesiee e 146
51 Entity INStANCE CONCEPLS ...covireeerieriiiiienieeie ettt st s 146

511 What iSan INSIANCE?ociiiiiieeieieee et 146

5.1.2 What isan ENVelope DOCUMENL?cccciveeeeieeiieeiesieere e ee s 147

5.1.3 Example: Entity Instance Representationsc.cccccevveeeeneenesiennennnens 149

5.1.3.1 XML Entity Instance Representationsccccceveverveceesrnenn. 149

5.1.3.2 JSON Entity Instance Representationsccccceeeevveeeenveenen. 152

52 Creating an Entity Instance from aData SOUICeccerereeeeieeiieneneseseens 154

5.3 Generating Test Entity INSLANCESccccovveeiicieciesece e 157

5.4 Extracting an Entity Instance from an Envelope Documentc.ccccoeeevveenee. 158

5.5 Extracting the Original Source from an Envelope Documentcccoceeeeeeeene. 161

5.6 Updating Entity Instance Data When Y our Model Changesccccccevveviennenne. 164

5.7 Managing Datawith Nested ENtitieScccceeviiieiicie i 164

6.0 QueryingaModel or Entity INStANCEScccvveviieeiiesie e 166
6.1 Query Support Provided by Entity SErVICEScccvevvveevecie e 166

6.2 Search BasiCSTOr MOGEScccoviiiiiiiie e 167

6.3 Search BasiCSTor INStanCe D@coevereeieiieriesie e 168

6.3.1 DOCUMENE SEAICHeoiviiiiiiciieeee e 168

6.3.2 ROW SEAICH ..o 169

6.3.3 SEMANLIC SEAICNeoiveiiciicice e 169

6.4 Pre-Installing QUErY OPLIONSccceeiuiiieieeiie ettt 170

6.5 Example: Using SPARQL for Model QUENIEScccoviriirininieeeeene e 171

6.6 Example Using cts.query or cts.query for Instance QUENesScccceevveeereenne 172

6.7 Example: Using the Search API for Instance QUENEScccceeveeieeeesiecciesneene, 173

6.8 Example: Using JSearch for Instance QUENIESccoveverenenenieeieesesesiesieiene 176

6.9 Example: Using the Client APIsfor Instance QUENEScccocevvvcveeesieeeesinne, 177

6.9.1 JAVACHENT APl ..o e 177

6.9.2 NOUE S ClIENT APL ..ot 179

6.9.2.1 Search Using Pre-Installed Optionscccccveeevvevievieesiennnn, 180

6.9.2.2 Search Without Pre-Installing Optionscccccceeveieveeiiennnen, 181

6.9.3 REST CHENL AP ..o e 184

6.10 Example: Using SPARQL for Instance QUENIEScccevveieereesieeieseenie e 186

6.11 Example: Using SQL for Instance QUENESccvecueeeevieeiie st 187

6.12 Example: Using the Optic API for Instance QUENESccccvvveeveeieeeesieenennenn 188
6.12.0.1 Querying TriplesUsingthe OptiC APIcccovevevvecieveeieeenns 188

6.12.0.2 Querying RowsUsingthe Optic APcccccovivevviceviecieee, 189

6.13 Whereto Find Additional INfOrmationccccceeveeiiiinneenesieseee e 190

7.0 TeChniCal SUPPOITooeeeeiie e 191
8.0 COPYIIGNL ..ot 193

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 5

MarkLogic Server

1.0

Introduction to Entity Services

Introduction to Entity Services

Business analysts often describe processesin terms of logical business entities, such as Customers
and Orders, and the relationships between them. MarkL ogic Entity Servicesis a set of tools and
interfaces that make it easier to create applications that manipulate these business entities, even
when your raw data has a different structure.

You can use Entity Servicesto model your business entities and generate code and configuration
artifacts that facilitate creating, querying, and exporting entity instances.

This section contains the following topics:

Terms and Definitions

Why Use Entity Modeling?

Entity Services Overview

Next Steps

Exploring the Entity Services Open-Source Examples

Security Considerations

MarkLogic 10—May, 2019

Entity Services Developer’s Guide—Page 6

MarkLogic Server

Introduction to Entity Services

1.1 Terms and Definitions
The material in this guide assumes the reader is familiar with the following terms and definitions:

Term

Definition

model descriptor

A definition of a set of entity types, their properties, and rel ationships.
You use adescriptor to create amodel and model-based application code
and configuration artifacts. For more details, see “Creating and
Managing Models’ on page 54.

model

A model includes entity type definitions, entity property definitions,
rel ationships between entity types, and facts about the model (as
semantic triples). A model descriptor contributes the entity type and
entity property definitions, and relationships between entities.

MarkL ogic generates a default set of facts from the descriptor, and you
can add additional facts to the model. For details, see “ Creating and
Managing Models’ on page 54.

entity

An abstraction of alogical business object that can be stored and
manipulated by applications. For example, a sales model might include
entities such as a customer, order, or inventory item.

entity type

A definition of the characteristics of an entity instance, including its
properties and rel ationships to other entities.

entity instance

A concrete instantiation of an entity type, as represented by a populated
data structure representing an individual entity, or adocument containing
such a data structure.

entity property

A concrete characteristic of an entity type. For example, a customer
entity type might have properties such as a name, address, and customer
id. Entity properties whose type is an entity type express an entity
relationship.

entity relationship

A logical relationship between entity types. For example, an order entity
type might include relationships with a customer and inventory item
entities. In Entity Services, an entity relationship is expressed as an entity
property whose typeis an entity type (rather than scalar or array type).
For details, see “Defining Entity Relationships’ on page 77.

envel ope document

By Entity Services convention, a document that encapsulates an entity
instance, metadata, and, optionally, the raw source from which the entity
was generated. For details, see “Managing Entity Instances’ on

page 146.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 7

MarkLogic Server Introduction to Entity Services

Term Definition

local reference In amodel descriptor, areference to an entity type that can be fully
resolved within that descriptor. For example, if amodel defines Race and
Runner entity types, and a Race entity type has a property that is an array
of references to Runners, then those references are local references. For
details, see “ Defining Entity Relationships’ on page 77.

external reference | Inamodel descriptor, areference to an entity type that is not defined
within the same descriptor. For details, see “Defining Entity
Relationships’ on page 77.

TDE template A Template Driven Extraction (TDE) template. Use Entity Servicesto
generate a template that enables querying your entity instance data as
rows or semantic triples. For details, see “ Generating a TDE Template”
on page 119 and “ Search Basics for Instance Data’” on page 168.

harmonization The process of transforming data from disparate sources into a common,
model-based representation.

data hub An application that takes in raw data from disparate sources and
transforms the data into canonical business entities that can be used by
applications without regard to differences in the original source.

1.2 Why Use Entity Modeling?

Enterprise applications must often work with data from multiple sources. The data shares
common conceptual objects, such as*customer” or “order”, but representation details can differ
significantly. The “meaning” of the data is spread across schemas, application code, ETL code,
and the minds of developers, DBAs, and data stewards.

Working directly with this heterogeneous data imposes cognitive load on devel opers and adds
complexity to applications. A model-based view of your data eliminates these problems because it
surfaces a consistent view of the “real world” objects and relationshipsin your data, independent
of the raw representation.

A model defineslogical entity types, their properties, and the relationships between entities. For
example, say your model includeslogical “customer” and “order” entities. A customer entity
includes a“name’ property. An order entity includes an “order number” property. There are

rel ationships between customer and order entities: A customer is associated with each order, and a
customer has alist of aorders.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 8

MarkLogic Server Introduction to Entity Services

You might capture this information in amodeling diagram such as the following:

emmmm- Entity ————-- -
¢ b Y
\4 \
Customer | 1 Order
name 0.n »|orderld €ef===" Property
orders customer <

Relationship

Entity modeling fits well with MarkL ogic. You can ingest your heterogeneous raw data and
immediately get value out of it, using MarkL ogic’s application development, search, and indexing
features. These same features enable you to explore your data for purposes of data discovery. As
you explore your data, you uncover entities and relationships that can be model ed.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 9

MarkLogic Server Introduction to Entity Services

Using the Entity Services API, you can capture your modeled entity types, properties, and
relationships in amodel descriptor, and then use the descriptor to create a model. Given amodel,
you can use Entity Servicesto generate a variety of artifacts on which to build your model-based
application. The diagram below outlines this process. For more details, see “Entity Services
Overview” on page 10.

Modeling Pipeline

Raw Data
Src1 | =
ingest discover ersist
Src 2 | =—t——=yp-| MarkLogicC | =i Derizgaor p—h
Src3 |- |
L generate &
customize
Application < |
Components

You can build up amodel iteratively. You do not need to finalize your model to begin getting
value from the model or your data. The model can grow and change as your data does, without
negatively impacting downstream data consumers. Model based code can easily accommodate a
new data source or a new data discovery, such as the need to expose a new entity type.

Modeling also enables you to expose different views of your data. For example, if you are
modeling patient data, you might have one model that exposes a billing view of the data and
another model that exposes a“quality of care” view of the data. Both models can sit on top of the
same raw data set and need not be defined simultaneously.

1.3 Entity Services Overview

Entity Servicesisan API and a set of conventions you can use to quickly stand up an application
based on entity modeling.

The Entity Services API provides the following services to facilitate application devel opment
based on entity modeling:

* Modeling Vocabulary: The modeling vocabulary supported by Entity Services provides a
structured way to describe entities, their properties, and relationships between entities.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 10

MarkLogic Server Introduction to Entity Services

» Persistence Convention: The entity persistence pattern promoted by Entity Services
defines a convention for representing harmonized entities, metadata, and raw data as
documents. Y our applications can centralize on a single pattern for storing and
manipul ating entities.

» Application Scaffolding: Y ou can use Entity Servicesto generate code and configuration
artifacts from an entity model. This provides a well-defined framework on which to base
an application.

Entity Services promotes a convention for implementing model -based applications, but it does not
force this convention on you. For example, you can use the API to generate code for
encapsulating entity instances, metadata, and raw source in an envelope document with a
recommended structure. However, you are free to modify or replace this structure.

1.3.1 Modeling Vocabulary

Entity Services supports amodeling “vocabulary” in the form of amodel descriptor. The
descriptor syntax is based on Swagger and JSON schema. A model descriptor not only identifies
entity types, their properties, and relationships, but also captures information such as data types
and metadata.

For example, recall the entity diagram from “Why Use Entity Modeling?’ on page 8:

e ——— Entity —==——_ -
¢ b Y
\4 \
Customer < 1 Order
name 0.n »| orderld .2-’-:-:_'::::- Property
orders : customer
:
1
|
Relationship

This diagram captures entity types and relationships, but does not include data type and other
details required by a developer. Entity Services uses amodel descriptor to capture detailed entity
type definition and metadata in one place. This enables data stewards and developers to share a
common view of the model.

The model descriptor isthe basisfor creating a model, generating code templates, and generating

schemas and configuration artifacts. An Entity Services model descriptor can be expressed in
either XML or JSON.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 11

MarkLogic Server Introduction to Entity Services

A JSON descriptor for the above diagram might ook like the following. Metadata about the
model is captured in the “info” section, while the entity types, their properties, and relationships
are captured in the “definitions’ section.

{ minfo": {

"title": 'OrderTracker',
"version": '1.0.0',
"baseUri": 'http://acme.com/sales/"',
"description": 'A model of customer order tracking'
b
"definitions":
"Customer": {
"properties":
"name": { "datatype": 'string' },
"orders": {
"datatype": "array",
"items": { "ref": "#/definitions/Order"}
P
"Order": {
"properties":
"orderId": { "datatype": "string" },
"customer": { "ref": "#/definitions/Customer"}

b1
I

You can express additional requirements, such as which properties are required and which
properties should be indexed for efficient search.

For more details, see “ Creating and Managing Models’ on page 54.

1.3.2 Persistence Convention

When you follow the Entity Services paradigm, you persist two kinds of modeling related
artifacts in the database: The model and entity instance envelope documents.

When you persist amodel descriptor in MarkLogic as a document in the special Entity Services

collection, MarkL ogic generates a model from the descriptor. This model is a graph of semantic

triples representing “facts’ about the model. The initial set of facts are those that can be derived

from the model descriptor. You can then extend the model to include your own facts, in the form
of additional triples. For more details, see “Creating and Managing Models” on page 54.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 12

MarkLogic Server Introduction to Entity Services

The following diagram depicts the key parts of an entity model:

Entity Model

Auto-Derived Facts

Generated by MarkLogic when
you persist the model descriptor.

Persisted
Descriptor

Added by you after persisting
the model descriptor.

By convention, an entity instance is persisted in MarkL ogic as part of an envelope document that
encapsulates the instance, instance metadata, and the raw source data from which the instance is
derived. You manage envelope documents like any other document in MarkLogic. You can use
Entity Services to generate some configuration and other artifacts that facilitate searching
instance data stored in recommended envelope layout. For more details, see “Managing Entity
Instances’ on page 146.

1.3.3 Application Scaffolding

Once you create a model, you can use it with Entity Servicesto generate code, schemas, and
configuration artifacts to help you create a model-based application. The generated code and
artifacts are designed to be customized and extended to meet the needs of your application. Entity
Services does not enforce any particular datalayout or code pattern.

You can generate the following code modules using Entity Services. Theinput in al casesisa
model descriptor. You are expected to customize the generated code to meet the needs of your
application.

* Instance Converter Module: A code template for converting raw source data into entity
instances and encapsul ating the instances into entity envel ope documents. The code will
run as-is, but you will need to customize the code to meet the needs of your application.

* Version Translator Module: A code template for converting between different versions of
amodel. For example, if you add a new entity type or a new entity property, you can use a
converter module to easily upgrade your entity instances to the new model.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 13

MarkLogic Server Introduction to Entity Services

You can generate the following additional artifacts using Entity Services. Theinput in al casesis
amodel descriptor. You can extend or customize any or all of these artifacts, if needed, but they
all deliver value to your application as-is.

Model Schema: An XML schema derived from the model. Useful for validating entity
instances. For example, when harmonizing source data with your model, you can use
schema validation to ensure your envel ope documents contain correct entity instances.

Template Driven Extraction Template: A TDE template that can be used to generate views
of your instance data as rows or triples. If you deploy the template, you can use interfaces
such as SQL, SPARQL, and the Optic API to query your instances.

Query Options: A set of query options usable with the Search API and the REST, Java,
and Node.js Client APIs. For example the options define a constraint for each required
property of an entity type and limit search results to returning just the canonical instance
datafrom an envel ope document.

Database Configuration: A database configuration file compatible with m1-gradie that can
be used to create indexes and lexicons based on your entity type definitions. Y ou can
easily extract the configuration to use with the REST Management API rather than
ml-gradle.

For more details, see “Generating Code and Other Artifacts’ on page 104.

1.4

Next Steps

Use the following suggestions to continue learning about Entity Services:

15

Walk through a simple example of creating amodel, harmonizing data, creating envelope
documents, and searching entity instances. See “ Getting Started With Entity Services’ on

page 17.

Learn about creating model descriptors. See “Creating and Managing Models’ on

page 54.

Learn about creating entity instances from amodel. See “Managing Entity Instances’ on
page 146.

L earn more about the application code, schemas, and other configuration artifacts that you
can generate from amodel using Entity Services. See * Generating Code and Other
Artifacts’ on page 104.

Explore several end to end examples built with Entity Services. See “Exploring the Entity
Services Open-Source Examples’ on page 14.

Exploring the Entity Services Open-Source Examples

The Entity Serviceslibrary isautomatically installed when you install MarkLogic Server. The
library is no longer being maintained as an open source project on GitHub. The GitHub project
does contain severa examples, which you recommend you download and review.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 14

MarkLogic Server Introduction to Entity Services

The examplesin this guide are simple ones based on data from the GitHub examples, but they are
independent of the GitHub examples. You might still wish to explore the GitHub examples
because they illustrate end-to-end integration of Entity Services with other MarkL ogic tools and
interfaces.

The example directory of the project can be found at the following URL :

http://github.com/marklogic/entity-services/tree/master/entity-services-examples

Before you can deploy and run the examples, you must create alocal copy of the project. You can
do thisusing the git tool (or other git client), or by downloading a zip file from GitHub. For
details, see one of the following topics:

Detailed instructions for deploying and running these examples are on GitHub.

151 Downloading the Project as a ZIP File
To obtain alocal copy from aZIPfile, follow these steps:

1 Navigate to the following URL in your browser: http:/github.com/marklogic/entity-services.
The entity-services project home page on GitHub is displayed.

2. Click the “Clone or download” dropdown. A dialog box appears.

3. Click “Download ZIP’. When prompted, choose alocation in which to save the ZIP file
and click Save.

4, Unzip the download file to afolder of your choice. By default, this creates afolder named
entity-services-branch. FOr example, you will have adirectory named
entity-services-master if you downloaded the “master” branch.

5. Change di rectory into entity-services-branch/entity-services-examples.

6. Follow the instructions on this page to configure, deploy, and run the examples:

http://github.com/marklogic/entity-services/blob/master/entity-services-examples/README.md

1.6 Security Considerations
No special security privileges or roles are needed to use the Entity Services API.

The entity envelope documents, code modules, schemas, and other artifacts you generate when
using the Entity Services API are generic and can be secured using the same mechanisms as other
documents and modules. For example, you should use document permissions to manage access to
your envelope documents and persisted model descriptor.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 15

http://github.com/marklogic/entity-services
http://github.com/marklogic/entity-services/blob/master/entity-services-examples/README.md
http://github.com/marklogic/entity-services/tree/master/entity-services-examples

MarkLogic Server Introduction to Entity Services

Special privileges might be required to deploy some of the generated artifacts. For example, the
user who installs generated code modules must have permission to insert into modul es database.
Similarly, the user who installs a TDE template created using Entity Services requires the
tde-admin role or equivalent privileges, as when installing any other template.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 16

MarkLogic Server Getting Started With Entity Services

2.0 Getting Started With Entity Services

This chapter walks through a very simple Entity Services example of creating amodel, creating
entity instances from source data, and querying the model and instances. Choose either the
XQuery walkthrough or the Server-Side JavaScript walkthrough.

e Before You Begin

e Optional: Create a Content Database

¢ Getting Started Using XQuery

e Getting Started Using JavaScript

* Next Steps

2.1 Before You Begin

All the exercisesin this section use the Query Console browser application to evaluate code on
MarkLogic Server. You can launch Query Console by navigating to port 8000 of a host running
MarkLogic.

For example, if MarkLogic isinstalled on localhost, launch Query Console by opening the
following location in your browser:

http://localhost:8000

To use Query Console, you must have the gconsole-user role or equivalent privileges. You can
learn more about Query Console in the Query Console User Guide.

Note: You do not require specia security privileges to use the Entity Services API.
However, some exercises in this chapter involve deploying application code to
MarkL ogic, so you should log into Query Console as a user with the admin role or
equivalent privileges.

Some exercises in this chapter save generated code and configuration artifacts to the local
filesystem on the host where MarkLogic isinstalled, and later read them back. You can choose
any directory, but the directory must be readable and writeable by MarkL ogic and by you. The
examples use the variable arrrracT prr to represent this directory in the instructions.

2.2 Optional: Create a Content Database

You can use any database for the exercises in this chapter. However, if you would like to isolate
thiswork from the rest of your environment, you can use the procedure in this section to create a
new content database named “es-gs’, with one forest of the same name attached to it.

The following procedure uses the XQuery Admin API to create a database and a forest, and then

attach the forest to the database. You could also use the Admin Interface or the REST
Management API.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 17

http://localhost:8000

MarkLogic Server Getting Started With Entity Services

1. Navigate to Query Console in your browser. For example, if MarkLogic isinstalled on
localhost, navigate to the following URL:

http://localhost:8000/qconsole

2. When prompted for login credentials, login as a user with admin privileges.
3. Add anew query to the workspace by clicking on the “+” button on the query editor.
4, Select XQuery in the Query Type dropdown.

5. Copy and paste the following code into the new query. This code creates aforest and a
database, and then attaches the forest to the database.

(: create a database:)
xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin"
at "/MarkLogic/admin.xqy";
admin:save-configuration (
admin:database-create (admin:get-configuration(),
"es-gs", xdmp:database("Security"), xdmp:database ("Schemas")));

(: create a forest :)
xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin"
at "/MarkLogic/admin.xqy";
admin:save-configuration (
admin: forest-create (admin:get-configuration(),
"es-gs", xdmp:host (), ()));

(: attach the forest to the database :)
xquery version "1.0-ml";
import module namespace admin = "http://marklogic.com/xdmp/admin"
at "/MarkLogic/admin.xqy";
admin:save-configuration (
admin:database-attach-forest (admin:get-configuration(),
xdmp:database ("es-gs"), xdmp:forest("es-gs")));

6. Click the Run button. A database named “es-gs’ is created.

7. Optionally, confirm the existence of the new database by browsing to the Admin Interface.
For example, browse to http://localhost:8001 and observe “es-gs’ in thelist of databases.

2.3 Getting Started Using XQuery

This section uses XQuery and XML to introduce the Entity Services APIs. If you prefer to use
Server-Side JavaScript, see “ Getting Started Using JavaScript” on page 35. You can aso use
JSON with XQuery and XML with JavaScript, but these combinations are not illustrated here.

¢ Stage the Source Data

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 18

http://localhost:8001
http://localhost:8000/qconsole

MarkLogic Server Getting Started With Entity Services

23.1

Create a Model Descriptor

Create a Model

Create and Deploy an Instance Converter

Create Entity Instances

Query the Data

Query the Model

Stage the Source Data

This exercise ingests the raw source data from which we will create entity instances. One benefit
of Entity Servicesisthat you do not have to model your data up front. You can load your data
as-isand useit in your application, and then incrementally model your entities.

You usually create entity instances from XML or JSON data. The raw datain this exampleis 2
XML documents and a JSON document. Each document contains information about a person,
such asfirst name and last name. Each person document also includes a unique person identifier.

Use the following procedure to load the raw source documents into your content database. The
newly created documents are put into a collection named “raw” so we can easily reference them

| ater.

1.

Navigate to Query Console in your browser. For example, if MarkLogic isinstalled on
localhost, navigate to the following URL:

http://localhost:8000/gconsole

Add a new query to the workspace by clicking on the “+” button on the query editor.

Select XQuery in the Query Type dropdown.
Select your content database from the Database dropdown.
Copy and paste the following code into the new query.

(: Stage raw source in the form of 2 XML and 1 JSON document :)

xquery version "1.0-ml";

import module namespace es = "http://marklogic.com/entity-services"
at "/MarkLogic/entity-services/entity-services.xqy";

(: Synthesize source data in memory. Normally, this would come
: from an external source. :)
let $source-data := (
<person>
<pid>1234</pid>
<given>George</givens>
<family>Washington</family>

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 19

http://localhost:8000/qconsole

MarkLogic Server Getting Started With Entity Services

</person>,
xdmp :unquote ('
{"pid": 2345,

"given": "Martha",
"family": "Washington"}
") /node (),
<persons>
<pid>3456</pid>

<given>Alexander</givens>
<family>Hamilton</family>
</person>
)
for $source in $source-data return
let Suri-suffix :=
typeswitch (S$source)
case element () return ".xml"
case object-node () return ".json"
default return ()
return xdmp:document-insert (
fn:concat ('/es-gs/raw/', Ssource/pid, S$uri-suffix),
$source,
<options xmlns="xdmp:document-insert">
<collections>
<collection>raw</collection>
</collections>
</options>

)

6. Click the Run button. Three documents are created in the database.

7. Optionally, click the Explore button and observe that the following documents were
created in the “raw” collection.

les-gs/raw/1234.xml
/es-gs/raw/2345.json
les-gs/raw/3456.xml

2.3.2 Create a Model Descriptor

You define the entity types, attributes, and relationships of your model in an XML or JISON model
descriptor. The model descriptor isthe foundation for the model. Model descriptors are discussed
in detail in “Creating and Managing Models’ on page 54.

The model descriptor in this exampleis based on the rerson example from the Entity Services

examples on GitHub. For more details about the original example, see “ Exploring the Entity
Services Open-Source Examples’ on page 14.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 20

MarkLogic Server Getting Started With Entity Services

This exercise saves an XML model descriptor asafile on the filesystem. Discussion of the
descriptor follows the procedure. For an equivalent JSON example, see “ Create a Model
Descriptor” on page 37.

1. Choose a filesystem directory on your MarkLogic host to hold the model descriptor file.
The exercisesin this chapter use arrrracT pIr tO represent thislocation.

2. Create atext file named person-desc.xml iN arTrracT prr With the following contents.

<es:model xmlns:es="http://marklogic.com/entity-services">
<es:info>
<es:title>Person</es:title>
<es:version>1.0.0</es:version>
<es:base-uri>http://example.org/example-person/</es:base-uri>
<es:description>
A model of a person, to demonstrate several extractions
</es:description>
</es:info>
<es:definitions>
<Person>
<es:propertiess>
<id><es:datatype>string</es:datatype></id>
<firstName><es:datatype>string</es:datatype></firstName>
<lastName><es:datatype>string</es:datatype></lastName>
<fullName><es:datatype>string</es:datatype></fullName>
<friends>
<es:datatype>array</es:datatype>
<es:items><es:ref>#/definitions/Person</es:ref></es:items>
</friends>
</es:properties>
<es:primary-key>id</es:primary-key>
<es:required>firstName</es:required>
<es:required>lastName</es:required>
<es:required>fullName</es:required>
</Person>
</es:definitions>
</es:model>

3. Set the permissions on arrrracT prr and the newly created file so that MarkLogic can
read thefile.

You now have afile named arrrracT pIr/person-desc.xml that contains the person model
descriptor.

We stored the model on the filesystem because this most closely resembles areal development
cycle, in which an important project artificial like the model descriptor is under source control.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 21

MarkLogic Server Getting Started With Entity Services

The descriptor defines a single entity type named person. A person entity instance contains
string-valued properties named id, firstName, lastName, fullName and alist-valued property
named friends.

<Person>
<es:propertiess
<id><es:datatype>string</es:datatype></id>
<firstName><es:datatype>string</es:datatype></firstName>
<lastName><es:datatype>string</es:datatype></lastName>
<fullName><es:datatype>string</es:datatype></fullName>
<friends>
<es:datatype>array</es:datatype>
<es:itemss><es:ref>#/definitions/Person</es:ref></es:items>
</friends>

The triends property isalist (array) of referencesto other rerson entities. Since the reference to
person appears in the same descriptor in which rerson is defined, it isa“local reference’. Entity
Services knows the “shape” of the referenced entity type when generating code from a person
model. You can also reference entity types defined el sewhere.

The firstName, lastName, 8Nd fullName properties must all be present in every person entity
instance because these properties are explicitly flagged as required through the use of

<es:required/>.

<es:required>firstName</es:requireds>
<es:required>lastName</es:required>
<es:required>fullName</es:required>

The ia property isimplicitly required because it is identified as the primary key for a person:
<es:primary-key>id</es:primary-key>

The primary key isaunique identifier for an entity instance. You are not required to define a
primary key, but the existence of a primary key facilitates other Entity Services features; for
details, see “Identifying the Primary Key Entity Property” on page 64.

Since the £riends property is neither a primary key nor an explicitly required property, it is
optional. That is, you can create entities that do not include a £riends property.

You can also flag propertieswith other characteristics, such aswhether or not a property should be
indexed for efficient search. For more details, see “Writing a Model Descriptor” on page 56.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 22

MarkLogic Server Getting Started With Entity Services

2.3.3 Create a Model

Inserting an XML or JSON model descriptor document into the specia collection
http://marklogic.com/entity-services/models tells MarkLoglc the document is part of an
Entity Services model. Membership in this collection causes MarkL ogic to generate semantic
triples that define the model.

We “authored” a model descriptor in “Create aModel Descriptor” on page 20. The following
procedure covers the validation and persistence steps that create the model. An explanation of the
code follows the procedure.

1 Open Query Console in your browser if you do not already have it open.

2. Add anew query to the workspace by clicking on the “+” button on the query editor.
3. Select XQuery in the Query Type dropdown.

4. Select your content database from the Database dropdown.

5. Copy and paste the following code into the new query. This code creates amodel from a
descriptor.

(: Create a model. :)

xquery version "1.0-ml";

import module namespace es = "http://marklogic.com/entity-services"
at "/MarkLogic/entity-services/entity-services.xqy";

let $ARTIFACT DIR := '/space/es/gs/'
let $Sdesc := xdmp:document-get (
fn:concat ($SARTIFACT DIR, 'person-desc.xml'))
let $validated-desc := es:model-validate ($desc)
let Sdesc-as-json := xdmp:to-json($validated-desc)
return xdmp:document-insert (
'/es-gs/models/person-1.0.0.json', $Sdesc-as-json,
<options xmlns="xdmp:document-insert"s>
<collections>{
<collections>http://marklogic.com/entity-services/models</collection>,
for $coll in xdmp:default-collections ()
return <collection>{$coll}</collection>
}</collections>
</options>

)

6. Changethe value of the arrrract prr variableto the directory where you saved the model
descriptor in “ Create aModel Descriptor” on page 20. Include the trailing directory
separator in the pathname.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 23

MarkLogic Server Getting Started With Entity Services

7. Click the Run button. A model is created. The descriptor is persisted as a document with
the URI /es-gs/models/person-1.0.0.json.

If the query is unable to open the input model descriptor file, check the permissions on the
directory and file.

8. Optionally, click the Explore button at the top of the query editor to view the JSON
version of the descriptor.

Thefirst step isto validate the descriptor. An invalid descriptor will produce an invalid model.
Validation introduces overhead, but an invalid descriptor will produce an invalid model, so
validation is recommended during development.

let $desc := xdmp:document-get (
fn:concat (SARTIFACT DIR, 'person-desc.xml'))
let $validated-desc := es:model-validate($desc)

The function es:model-validate refUrnsajson:object representation of the descriptor. A
json:object ISagpecial kind of map:map. Thisisthe form expected by Entity Services API
functionsthat operate on the model, but it is not the proper form for creating amodel. Instead, you
must persist an XML or JSON descriptor.

If you persist adescriptor as XML, then you must USe es :model-validate OF es:model-from-xml
to convert it to the map: map form if you extract it from the database to pass to an Entity Services
function. If you persist the descriptor as JSON, then subsequent conversion is not necessary.
Therefore, this example persists a JSON version of the original XML descriptor.

The function xdmp : to-json CONVErts the json:object created by es:model-validate iNt0 a JSON
object-node that represents the JSON version of our XML descriptor. For example:

let Sdesc-as-json := xdmp:to-json($validated-desc)

Finally, we insert the descriptor into the database as part of the special Entity Services collection
to create the model. The following document insertion adds the Entity Services collection to any
default collections associated with the user performing the insertion.

xdmp : document -insert (
'/es-gs/models/person-1.0.0.json', $model-as-json,
<options xmlns="xdmp:document-insert">
<collections>{
<collection>http://marklogic.com/entity-services/models</collection>,
for $coll in xdmp:default-collections ()
return <collection>{$coll}</collection>
}</collections>
</options>

)

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 24

MarkLogic Server Getting Started With Entity Services

2.3.4 Create and Deploy an Instance Converter
An instance converter isalibrary module containing code for transforming your raw source data

into entity instances that conform to your model. You can use the Entity Services APl to generate
a baseline converter, and then customize it to meet the requirements of your application.
This section walks through deploying a converter module in the following steps:

* Generate the Default Converter Module

* Customize the Converter Module

* Deploy the Converter Module

2.3.4.1 Generate the Default Converter Module

This exercise creates an instance converter module template using the
es:instance-converter-generate funNction. An explanation of the code follows the procedure.

1 Open Query Console in your browser if you do not already have it open.

2. Add a new query to the workspace by clicking on the “+” button on the query editor.
3. Select XQuery in the Query Type dropdown.

4, Select your content database from the Database dropdown.

5. Copy and paste the following code into the new query. This code generates the instance
converter module and savesiit to the filesystem.

(: Create an instance converter and save it to a file :)

xquery version "1.0-ml";

import module namespace es = "http://marklogic.com/entity-services"
at "/MarkLogic/entity-services/entity-services.xqy";

let $desc := fn:doc('/es-gs/models/person-1.0.0.json')
let SARTIFACT DIR := ' /space/es/gs/’ (: MODIFY THIS VALUE :)
return xdmp:save (
fn:concat ($ARTIFACT DIR, 'person-1.0.0-conv.xqy'),
es:instance-converter-generate ($desc)

)

6. Change the value of sarrrracT p1rto adirectory on your MarkLogic host where the
generated code can be saved. Include the trailing directory separator in the pathname.

The directory must be readable and writable by MarkL ogic.

7. Click the Run button. The file arrrracT DIR/person-1.0.0-conv.xqy IS cCreated.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 25

MarkLogic Server Getting Started With Entity Services

8. Optionally, go to arrrracT prr and review the generated code. In the next section, we will
modify this code.

Though the generated code is runnable as-is, you will need to customize the code to match the
characteristics of your source data and the requirements of your application. The generated code
contains extensive comments to assist you with customization.

We could insert the converter module directly into the modules database to which it will
eventually be deployed. However, the converter is an important project artifact, so you would
normally saveit to afile and place it under source control before proceeding with customizations.

The generated modul e defines the following externally visible functions, plus some private hel per
functions. The namespace prefix defined for the module is derived from the mode! title.

* person:extract-instance-Person - Create arerson instance from raw source data. The
returned instance isa json:object (map:map). Y OU are expected to customize this function
to harmonize your source data with your model.

* person:instance-to-envelope - CONVert an entity instance into an XML or JSON
envel ope document that encapsul ates the instance and the original source. Most
applications will use this function as-is, but you might customize it if you include
additional datain the envelope.

* person:instance-to-canonical - Convert themap :map representation of aninstanceintoits
canonical XML or JSON representation. Y ou will not usually need to customize this
function or call it directly; it exists for use by the generated instance-to-envelope
function.

For more details, see “ Creating an Instance Converter Module” on page 107.

2.3.4.2 Customize the Converter Module

The converter module generated by Entity Servicesimplements a
modeltitle:extract-instance-T function for each entity type T defined in the descriptor. In our
example, the converter module implements @ person:extract-instance-person function.

The default implementation of an instance converter assumes the source data has the same
“shape”’ asarerson entity. However, our source datahaspid, given, and fami1y propertiesinstead
of id, firstName, lastName, and fullName. YOU mMust modlfy person:extract-instance-Person {O
do the following:

e Extract ia frompia

* Extract firstName from given

* Extract 1astName from family

* Synthesize fulilname by concatenating given and family

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 26

MarkLogic Server Getting Started With Entity Services

Production applications can require many other types of customizations. For example, you might
need to normalize adate value, perform a more sophisticated type conversion, or extract the value
of an entity property from somewhere other than the source data.

Use the following procedure to customize the instance extraction code as described. A discussion
of the code follows the procedure.

1. Confirm you have read and write permissions on ARTIFACT DIR/person-1.0.0-conv.xqy. |f
not, set the permissions accordingly. The file must also be readable by MarkL ogic.

2. Open arTIFACT DIR/person-1.0.0-conv.xqy iNthetext editor of your choice.

3. L ocate the section of person:extract-instance-Person that prepares the value of the ig,
firstName, lastName, and fullname properties. The code should look similar to the
following:

let sid := $source-node/id ! xs:string(.)

let sfirstName $source-node/firstName ! xs:string(.)
let SlastName $source-node/lastName ! xs:string(.)
let $fullName := $source-node/fullName ! xs:string(.)

4, Replace these lines with the following code. The bold text highlights the changes.

let sid := $source-node/pid ! xs:string(.)

let $firstName := $source-node/given ! xs:string(.)

let $lastName := $source-node/family ! xs:string(.)

let $fullName := fn:concat($firstName, " ", $lastName) ! xs:stringf(.)

5. Save your changes.

Recall that the person entity type has id, firstName, lastName, fullName, and friends properties.
The default i mpI ementation of person:extract-instance-Person aSSUMES the source data
contains the same properties. For example, the default implementation includes the following
code:

let $id := $source-node/id ! xs:string(.)

let $firstName := $source-node/firstName ! xs:string(.)
let $lastName := $source-node/lastName ! xs:string(.)
let $fullName := $source-node/fullName ! xs:string(.)

Our customization changes the names of the source fields to match our source data, and derives
the ful1name property from the given and fami1y source values. The modified portions are shown
in bold, below.

let $id := $source-node/pid ! xs:string(.)

let $firstName := $source-node/given ! xs:string(.)

let $lastName = Ssource-node/family ! xs:string(.)

let $fullName := fn:concat($firstName, " ", $lastName) ! xs:string(.)

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 27

MarkLogic Server Getting Started With Entity Services

2.3.4.3 Deploy the Converter Module

Like any application code, the converter module must be deployed to MarkL ogic before you can
useit. Best practiceisto install it in the modules database of your App Server. Our example uses
the pre-defined App Server on port 8000, which is configured to use the Modules database.

The following procedure uses XQuery to install the customized converter module into the
Modules database. You could also use Server-Side JavaScript or the REST, Java, or Node.,js
Client APIsfor this task.

1 Open Query Consolein your browser if you do not already have it open.

2. Add a new query to the workspace by clicking on the “+” button on the query editor.
3. Select XQuery in the Query Type dropdown.

4, Select the “Modules’ database from the Database dropdown.

5. Copy and paste the following code into the new query. This code saves the instance
converter module to the database.

xquery version "1.0-ml";
let SARTIFACT DIR := ' /space/es/gs/’ (: MODIFY THIS VALUE :)
return xdmp:document-load (
fn:concat ($ARTIFACT DIR, 'person-1.0.0-conv.xqgy'),
<options xmlns="xdmp:document-load">
<uri>/es-gs/person-1.0.0-conv.xgy</uri>
</options>

)

6. Modify the value of sarrrracT prrto the directory where you previously saved the
converter module. Include the trailing directory separator in the pathname.

7. Click the Run button. The converter module is inserted into the Modul es database.

8. Optionally, click the Explore button to confirm the presence of the module in the database.

2.3.5 Create Entity Instances

An envelope document is the recommended way to persist and interact with entity instancesin
MarkLogic. An envelope document encapsul ates an entity instance with model metadata and the
original source. Storing the logical aspects of an entity (canonical instance representation,
metadata, source) in one physical document facilitates managing, searching, retrieving, indexing,
and securing your data.

An envelope document enables your application to query data as harmonized instances, but still

recover the raw source when needed. You can generate either XML or JSON envelope
documents.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 28

MarkLogic Server Getting Started With Entity Services

You can use the person: instance-to-envelope function in the converter module to create entity
envelope documents. Theinput is an instance created by calling
person:extract-instance-Person. |f you do not explicitly specify an envelope format of “xml” or
“json”, the function generates an XML envelope.

Use the following procedure to create XML envel ope documents from the source documents
loaded in “ Stage the Source Data” on page 19. Discussion of the code follows the procedure.

1 Open Query Consolein your browser if you do not already have it open.

2. Add a new query to the workspace by clicking on the “+” button on the query editor.
3. Select XQuery in the Query Type dropdown.

4, Select your content database from the Database dropdown.

5. Copy and paste the following code into the new query. This code creates a person entity
envelope XML document from each source document.

(: Create envelope documents from raw source documents :)

xquery version "1.0-ml";

import module namespace es = "http://marklogic.com/entity-services"
at "/MarkLogic/entity-services/entity-services.xqy";

import module namespace person =
"http://example.org/example-person/Person-1.0.0"
at "/es-gs/person-1.0.0-conv.xqy";

for $source in fn:collection('raw') return

let $instance := person:extract-instance-Person($source)
let suri :=

fn:concat ('/es-gs/env/', map:get ($instance, 'id'), '.xml')
return xdmp:document-insert (

suri,

person:instance-to-envelope($instance, "xml"),
<options xmlns="xdmp:document-insert"s>
<collections>
<collection>person-envelopes</collection>
</collections>
</options>

)

6. Click the Run button. The following envelope documents are created in your content
database:

les-gg/env/1234.xml
les-gs/env/2345.xml
les-gs/env/3456.xml

7. Optionally, click the Explore button to confirm creation of the envelope documents.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 29

MarkLogic Server Getting Started With Entity Services

An envelope document can be either XML or JSON. This exercise uses XML envelopes. An
XML envelope hasthe following form. Thees:attachments portion of the envelope holds the raw
source data.

<es:envelope xmlns:es="http://marklogic.com/entity-services">
<es:instance>
<es:infos>metadata from info section of descriptor</es:info>
..instance canonical XML..
</es:instance>
<es:attachmentss>
source data
</es:attachments>
</es:envelope>

The equivaent JSON envelope, generated by passing "json” as the second parameter of
person:instance-to-envelope, has the followi ng form:

{ "envelope": ({
"instance": {
"info": { ...metadata from info section of descriptor... },

...lnstance canonical JSON. ..
"attachments": [...source data...]

1

Except when constructing path expressions, you do not usually have to be aware of the internal
structure of an envel ope document because the Entity Services API includes functions for
extracting an instance or the attachments from an envelope document handle it for you. For
details, see “ Extracting an Entity Instance from an Envelope Document” on page 158 and
“Extracting the Original Source from an Envelope Document” on page 161.

You create an envelope document for some entity type T and envelope format F using the
extract-instance-T aNd instance-to-envelope fUNctions of the instance converter. For example:

(: creating an XML envelope :)
modeltitle:instance-to-envelope (
modeltitle:extract-instance-T(Ssource), "xml")

(: creating a JSON envelope :)
modeltitle:instance-to-envelope (
modeltitle:extract-instance-T($source), "json")

For example, the sample code does the following to create a person entity XML envelope:

let S$instance := person:extract-instance-Person($source)

return xdmp:document-insert (
suri,
person:instance-to-envelope($instance, "xml"),

-)

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 30

MarkLogic Server

Getting Started With Entity Services

Inside person:instance-to-envelope, the person:instance-to-canonical function is called to
create the Person entity embedded inside es:envelope/es: instance.

The table below illustrates the progression from raw data to XML envelope document, through
use of the instance converter module functions.

Operation

Result

ingest raw source

<persons
<pid>1234</pid>
<given>George</givens>
<family>Washington</family>
</person>

extract-instance-Person ($
source)

input: raw source
output: a map:map
(json:object), shown here
serialized as JSON

{"sattachments": "<?xml version=\"1.0\"
encoding=\"UTF-8\"?>\n<person>\n
<pid>1234</pid>\n <givens>George</givens>\n
<family>Washington</family>\n</persons",

"Stype": "Person",

llidll . "1234" ,

"firstName": "George",
"lastName": "Washington",
"fullName": "George Washington"

MarkLogic 10—May, 2019

Entity Services Developer’s Guide—Page 31

MarkLogic Server Getting Started With Entity Services

Operation Result
instance-to-canonical (Sin | <Person>
stance, "xml") <id>1234</id>
<firstName>George</firstName>
input: instance map:map <lastName>Washington</lastName>
output: XML elem <fullName>George Washington</fullName>
</Person>

instance-to-envelope ($ins | <es:envelope

tance, "xml") xmlns:es="http://marklogic.com/entity-services">
<es:instance>

input: instance map:map <es:info>

output: XML envelope doc <es:title>Person</es:title>

<es:version>1.0.0</es:version>
</es:info>
<Person>
<id>1234</1id>
<firstName>George</firstName>
<lastName>Washington</lastName>
<fullName>George Washington</fullName>
</Persons>
</es:instance>
<es:attachmentss>
<person>
<pid>1234</pid>
<givens>George</givens>
<family>Washington</family>
</persons>
</es:attachments>
</es:envelope>

Thefollowing is an equivalent JSON envelope, generated by calling

instance-to-envelope ($instance, "json").

{ "envelope": {
"instance": {

"info": {
"title":"Person",
"version":"1.0.0"

b

"Person": {

"idn."2345",
"firstName":"Martha",
"lastName" : "Washington",
"fullName" : "Martha Washington"}

b

"attachments": [

"<person><pid>2345</pid><given>Martha</given><family>Washington</family></pers
on>"

]
H

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 32

MarkLogic Server Getting Started With Entity Services

Note that the source data in the attachments is represented as a string if it does not match the
envelope data format. For example, in the above JSON envel ope, the source attachment isa
string, rather than an XML node. This has implications for extracting the source from the
envelope as a node; see the example in “Query the Data’” on page 49.

2.3.6 Query the Data

This section illustrates one way to search your entity instance data using the cts:search XQuery
function. You can also use other MarkL ogic document search APIs, search your instances as row
data, or use semantic search. The Entity Services API includestoolsto facilitate all these forms of
search. For details, see “Querying aModel or Entity Instances’ on page 166.

Thefollowing example uses the XQuery cts:query API tofind al Person entitieswith a1astname
property of Washington, and then emits the original source from which the entity was derived.

1 Open Query Console in your browser if you do not already have it open.

2. Add anew query to the workspace by clicking on the “+” button on the query editor.
3. Select XQuery in the Query Type dropdown.

4. Select your content database from the Database dropdown.

5. Copy and paste the following code into the new query. The code matches documentsin the
person-envelopes COllection where the 1astyame €lement has the value “washington”, and
then returns the original source data from the envelope.

xquery version "1.0-ml";
import module namespace es = "http://marklogic.com/entity-services"
at "/MarkLogic/entity-services/entity-services.xqy";

(: match all envelopes containing an entity instances with
: a lastName property value of 'washington' :)
let Smatches := cts:search(
fn:collection('person-envelopes'),
cts:element-query (
fn:QName ('http://marklogic.com/entity-services', 'instance'),
cts:element-value-query (xs:QName ('lastName'), 'washington')
))
(: extract the original source, as a node :)
for Sattachment in Smatches/es:envelope/es:attachments/node ()
return typeswitch ($attachment)
case element () return S$attachment
case text () return xdmp:from-json-string(Sattachment)
default return ()

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 33

MarkLogic Server Getting Started With Entity Services

6. Click the Run button. The query returns a JSON node and an XML node similar to the
following:

{ "pid":2345,
"given":"Martha",
"family":"Washington" }

<person xmlns:es="http://marklogic.com/entity-services">
<pid>1234</pid>
<given>George</givens>
<family>Washington</family>

</person>

The search matches two entity instances, one extracted from JSON source and one extracted from
XML source, so final query results are one JSON node and one XML node.

The search islimited to the envel ope documents by specifying the person-envelopes collection. A
container query (cts:element-query) further constrains the search to occurrences within the
es:instance portion Of an envelope document. Finally, acts:element-value-query iSused to
match envelopes where the 1astvame property value is “washington”.

cts:search(
fn:collection('person-envelopes'),
cts:element-query (
fn:QName ('http://marklogic.com/entity-services', 'instance'),
cts:element-value-query (xs:QName ('lastName'), 'washington')

))

The container query ensures the search will not find matches in any part of the envelope
document except the entity instance. You could similarly search just the es:attachments, but
remember that you cannot perform a structured search on JSON source in the attachments
because it is stored in the envelope document as a string.

Notice that the example code can return the original XML source data directly out of the envelope
document, but the original JSON document must be converted from a string to a JSON node using
xdmp : from-json-string, If yOou want to return it as a node.

2.3.7 Query the Model

When you created amodel in “Create aModel” on page 23, MarkL ogic automatically generated
some facts from the persisted descriptor, as semantic triples. These facts (and any additional facts
you add) define the model and enable semantic queries against the model.

For example, you can use a SPARQL query to discover what entity types are defined by a model,
what properties are required in an entity instance of a particular type, or the datatype of a
particular entity type property. For more details, see “ Querying a Model or Entity Instances’ on
page 166.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 34

MarkLogic Server Getting Started With Entity Services

The following procedure uses a SPARQL query to generate alist of all the required properties of
an instance of the person entity type:

1 Open Query Console in your browser if you do not already have it open.

2. Add anew query to the workspace by clicking on the “+” button on the query editor.
3. Select SPARQL Query in the Query Type dropdown.

4. Select your content database from the Database dropdown.

5. Copy and paste the following code into the new query. This code retrieves the names of all
required properties of a rerson entity instance.

prefix es:<http://marklogic.com/entity-services#>
select ?ptitle
where {
?X a es:EntityType;
es:title "Person";
es:property ?property .
?property a es:RequiredProperty;
es:title ?ptitle

}
6. Click the Run button. The query results are displayed as atable.

You should see results similar to the following:

ptitle
"lastName"
"fullName"
"firstName"

You can also use the SQL and Optic APIsto query your model and entities as rows if you install
an Entity Services generated TDE template based on your model. For more details and examples,
see “Querying aModel or Entity Instances’ on page 166. To learn more about Semanticsin
MarkLogic Server, see the Semantics Developer’s Guide.

2.4 Getting Started Using JavaScript

This section uses Server-Side JavaScript and JSON to introduce the Entity Services APIs. If you
prefer to use XQuery, see “ Getting Started Using XQuery” on page 18. You can aso use JSSON
with XQuery and XML with JavaScript, but these combinations are not illustrated here.

¢ Stage the Source Data

e Create a Model Descriptor

e Create a Model

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 35

MarkLogic Server Getting Started With Entity Services

e Create and Deploy an Instance Converter

e Create Entity Instances

* Query the Data
* Query the Model

24.1 Stage the Source Data

This exercise ingests the raw source data from which we will create entity instances. One benefit
of Entity Servicesisthat you do not have to model your data up front. You can load your data
as-isand useit in your application, and then incrementally model your entities.

You usually create entity instances from XML or JSON data. The raw datain this exampleis 2
XML documents and a JSON document. Each document contains information about a person,
such asfirst name and last name. Each person document also includes a unique person identifier.

Use the following procedure to load the raw source documents into your content database. The
newly created documents are put into a collection named “raw” so we can easily reference them
later.

1. Navigate to Query Console in your browser. For example, if MarkLogic isinstalled on
localhost, navigate to the following URL:

http://localhost:8000/gconsole

2. Add a new query to the workspace by clicking on the “+” button on the query editor.
3. Select JavaScript in the Query Type dropdown.
4, Select your content database from the Database dropdown.

5. Copy and paste the following code into the new query.

'use strict';
declareUpdate () ;

// Synthesize source data in memory. This would normally come
// from an external source.
const sourceData = [
fn.head (xdmp.ungquote (
'<person>' +
'<pid>1234</pid>"' +
'<given>George</givens>' +
'<family>Washington</family>"' +
'</person>"')),
{pid: 2345,
given: 'Martha',
family: 'Washington'},

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 36

http://localhost:8000/qconsole

MarkLogic Server Getting Started With Entity Services

fn.head (xdmp.unquote (
'<person>"' +
'<pid>3456</pid>"' +
'<given>Alexander</givens>' +
'<family>Hamilton</family>' +
'</person>"'))

1;

// Insert each source item into the db as an XML or JSON doc.
sourceData.forEach (function (source) {
let uri = '/es-gs/raw/';
if (source instanceof Document)
// XML doc created by xdmp.unquote

uri += source.xpath('/node()/pid/data()') + '.xml';
} else if (source instanceof Object) {
uri += source.pid + '.json';
}
xdmp .documentInsert (uri, source, {collections: ['raw']});

1)
6. Click the Run button. Three documents are created in the database.

7. Optionally, click the Explore button and observe that the following documents were
created in the “raw” collection.

les-gs/raw/1234.xml
/es-gs/raw/2345.json
les-gs/raw/3456.xml

The sourcenata array, above, creates raw datain avery artificial way in order to have a
self-contained example. Your source data will normally come from an external source, such as
fileson thefile system, an HTTP request payload, or an micp job.

Part of this artificiality is the use of xdmp.unquote as quick way to create an XML node from a
literal. You would normally use NodeBuilder to create in-memory XML documents from
Server-Side JavaScript.

2.4.2 Create a Model Descriptor

You define the entity types, entity type properties, and relationships of your model in an XML or
JSON model descriptor. The model descriptor isthe staring point for creating a model. Model
descriptors are discussed in detail in “ Creating and Managing Models” on page 54.

The model descriptor in this exampleis based on the person example from the Entity Services

examples on GitHub. For more details about the original example, see “ Exploring the Entity
Services Open-Source Examples’ on page 14.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 37

MarkLogic Server Getting Started With Entity Services

This exercise saves a JSON model descriptor as afile on the filesystem. Discussion of the
descriptor follows the procedure.

1 Choose a filesystem directory on your MarkL ogic host to hold the model descriptor file.
The exercisesin this chapter use arTrracT prr to represent thislocation.

2. Create atext file named file person-desc. json iN arRTIFACT DIR With the following
contents.

{ minfo": {

"title": "Person",

"version": "1.0.0",

"baseUri": "http://example.org/example-person/",
"description":

"A model of a person, to demonstrate several extractions"

b

"definitions":
"Person": {
"properties":
"id": {"datatype": "string"},
"firstName": {"datatype": "string"},
"lastName": {"datatype": "string"},
"fullName": {"datatype": "string"},
"friends":
"datatype": "array",
"items": {"Sref": "#/definitions/Person"
}
Iy
"primaryKey": "id",
"required": ["firstName", "lastName", "fullName"]
}
}
}
3. Set the permissions on arrrract prr and the newly created file so that MarkLogic can
read the file.

You now have afile named ARTIFACT DIR/person-desc.json that contains the person model
descriptor. For an example of the equivalent XML descriptor, see“ Create aModel Descriptor” on
page 37 in the XQuery walkthrough.

We stored the model on the filesystem because this most closely resembles area development
cycle, in which an important project artificial like the model descriptor is under source control.

The descriptor defines a single entity type named person. A person entity instance contains
string-valued propertiesnamed id, firstName, lastName, fullName and list-valued property named

friends.

"Person":
"properties":

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 38

MarkLogic Server Getting Started With Entity Services

"id": {"datatype": "string"},
"firstName": {"datatype": "string"},
"lastName": {"datatype": "string"},
"fullName": {"datatype": "string"},
"friends":

"datatype": "array",

"items": {"Sref": "#/definitions/Person"

}
VoL

The £riends property isalist (array) of referencesto other rerson entities. Since the reference to
person appears in the same descriptor in which person is defined, it isa“local reference’. Entity
Services knows the “shape” of the referenced entity type when generating code from a person
model. You can also reference entity types defined elsewhere.

The firstName, lastName, aNd fullName properties must be present in every Person entity instance
because these properties are explicitly flagged as required through the requirea descriptor

property:
"required": ["firstName", "lastName", "fullName"]

The ia property isimplicitly required becauseit is identified as the primary key for a person:
"primaryKey":"id"

The primary key isaunique identifier for an entity instance. You are not required to define a
primary key, but the existence of a primary key facilitates other Entity Services features; for
details, see“Identifying the Primary Key Entity Property” on page 64.

Sincethe triends property is neither a primary key nor an explicitly required property, it is
optional. That is, you can create person entities that do not include a £riends property.

You can also flag propertieswith other characteristics, such aswhether or not aproperty should be
indexed for efficient search. For more details, see “Writing a Model Descriptor” on page 56.

2.4.3 Create a Model

Inserting an XML or JSON model descriptor document into the specia collection
http://marklogic.com/entity-services/models tells MarkLogiC the document is part of an
Entity Services model. Membership in this collection causes MarkL ogic to generate semantic
triples that define the model.

We “authored” amodel descriptor in “Create aModel Descriptor” on page 37. The following
procedure covers the validation and persistence steps that create the model. An explanation of the
code follows the procedure.

The following procedure creates amodel using the rerson model descriptor. An explanation of
the code follows the procedure.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 39

MarkLogic Server Getting Started With Entity Services

1 Open Query Console in your browser if you do not already have it open.

2. Add anew query to the workspace by clicking on the “+” button on the query editor.
3. Select JavaScript in the Query Type dropdown.

4. Select your content database from the Database dropdown.

5. Copy and paste the following code into the new query. This code creates amodel from a
descriptor.

'use strict';
declareUpdate () ;
const es = require('/MarkLogic/entity-services/entity-services.xqy');

// Retrieve descriptor from filesystem
const ARTIFACT DIR = '/space/es/gs/'; // CHANGE THIS VALUE
const desc = fn.head(

xdmp . documentGet (ARTIFACT DIR + 'person-desc.json'));

// Create the model

xdmp . documentInsert (
'/es-gs/models/person-1.0.0.json', es.modelValidate (desc),
{collections: ['http://marklogic.com/entity-services/models'] }

)i

6. Changethe value of the arrrract prr variableto the directory where you saved the model
descriptor in “ Create aModel Descriptor” on page 37. Include the trailing directory
separator in the pathname.

7. Click the Run button. A model is created. The descriptor portion is persisted asa
document with the URI /es-gs/models/person-1.0.0.7json.

If the query is unable to open the model descriptor file, check the permissions on the
directory and file.

8. Optionally, click the Explore button at the top of the query editor to view the descriptor
document in the database.

The model is created by persisting the descriptor as part of the collection

http://marklogic.com/entity-services/models.

xdmp . documentInsert (
'/es-gs/models/person-1.0.0.json', es.modelValidate (desc),
{collections: ['http://marklogic.com/entity-services/models'] }

) ;

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 40

MarkLogic Server Getting Started With Entity Services

The example also uses es.mode1validate t0 check the descriptor for errors before inserting it. An
invalid descriptor will generate an invalid model. If the descriptor isinvalid, es.mode1lvalidate
throws an exception. If you know your model descriptor isvalid, you can skip validation.
Skipping validation is faster, but validation is recommended during devel opment.

2.4.4 Create and Deploy an Instance Converter

An instance converter is an XQuery library module containing code for transforming your raw
source data into entity instances that conformsto your model. You can use the Entity Services
API to generate a baseline converter, and then customize it to meet the requirements of your
application.

This section walks through deploying a converter module in the following steps:

* Generate the Default Converter Module

e Customize the Converter Module

e Deploy the Converter Module

2.4.4.1 Generate the Default Converter Module

This exercise creates an instance converter module template using the
es.instanceConverterGenerate function. An explanation of the code follows the procedure.

1 Open Query Console in your browser if you do not already have it open.

2. Add anew query to the workspace by clicking on the “+” button on the query editor.
3. Select JavaScript in the Query Type dropdown.

4. Select your content database from the Database dropdown.

5. Copy and paste the following code into the new query. This code generates the instance
convert module and savesit to the filesystem.

'use strict';

const es = require('/MarkLogic/entity-services/entity-services.xqy');
const ARTIFACT DIR = '/space/es/gs/'; // CHANGE THIS VALUE
const desc = cts.doc('/es-gs/models/person-1.0.0.json') ;

xdmp . save (
ARTIFACT DIR + 'person-1.0.0-conv.xqgy',
es.instanceConverterGenerate (desc)

)i

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 41

MarkLogic Server Getting Started With Entity Services

6. Change the value of arrrracT prr to adirectory on your MarkLogic host where the
generated code can be saved. Include the trailing directory separator in the pathname.

The directory must be readable and writable by MarkLogic.
7. Click the Run button. The file arTrrFacT DIR/person-1.0.0-conv.xqy IS Created.

8. Optionally, go to arrrract prr and review the generated code. In the next section, we will
modify this code.

We could have inserted the converter module directly into the modules database to which it will
eventually be deployed. However, the converter is an important project artifact, so you would
normally saveit to afile and place it under source control. Also, most applications will require
converter customizations.

The generated code is runnable as-is, but you are expected to customize the code to match the
characteristics of your source data and the requirements of your application. The generated code
contains comments to assist you with customization. You will need to understand some XQuery
to customize the converter for a production application.

The generated module defines the following functions. The namespace prefix defined for the
module is derived from the model title.

* person:extract-instance-Person - Create arerson instance from raw source data. You
are expected to customize this function to harmonize your source data with your model.

* person:instance-to-envelope - COnvert an entity instance into an XML or JSON
envel ope document that encapsul ates the instance and the original source. Most
applications will use this function as-is, but you might customize if you include additional
datain the envelope.

* person:instance-to-canonical - Convert the sson object representation of an instance
into its canonical XML or JSON representation. Y ou will not usually need to customize
thisfunction or call it directly; it exists for use by the generated instance-to-envelope
function.

Aswith any XQuery module in MarkLogic, you can use the instance converter module from
Server-Side JavaScript, once you install the module. Bring the module into scope using a require
statement. For example, if the moduleisinstalled in the modules database with the URI
“/es-gs/person-1.0.0-conv.xqy”, then use a require Statement such as the following:

const person = require('/es-gs/person-1.0.0-conv.xqgy') ;

Invoke the functions using their JavaScript-style, camel-case names. For example, in the case of
the Person entity type, the module converter functions can be invoked from Server-Side
JavaScript using the following names, assuming the module is represented by a variable named
person, aS shown in the above require Statement.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 42

MarkLogic Server Getting Started With Entity Services

person.extractInstancePerson
person.instanceToEnvelope
person.instanceToCanonical

For more details, see “ Creating an Instance Converter Module” on page 107.

2.4.4.2 Customize the Converter Module

The converter module generated by Entity Servicesimplements a
modeltitle:extract-instance-T function for each entity type T defined in the descriptor. In our
example, the converter module implements @ person:extract-instance-person fUNction.

The default implementation of an instance converter assumes the source data has the same
“shape”’ asarerson entity. However, our source datahaspid, given, and fami1y propertiesinstead
of id, firstName, lastName, and fullName. YOU must modlfy person:extract-instance-Person {O
do the following:

e Extract ia frompia

* Extract firstName from given

e Extract 1astName from family

* Synthesize fuliname by concatenating family and given

Production applications can require many other types of customizations. For example, you might
need to normalize adate value, perform amore sophisticated type conversion, or extract the value
of an entity property from somewhere other than the source data.

Use the following procedure to customize the instance extraction code. A discussion of the code
follows the procedure.

1. Confirm you have read and write permiSsionS ON ARTIFACT DIR/person-1.0.0-conv.xqy. |f
not, set the permissions accordingly. The file must also be readable by MarkLogic.

2. Open arTrFacT DIR/person-1.0.0-conv.xqy INthe text editor of your choice.

3. L ocate the section of person:extract-instance-Person that sets the value of the id,
firstName, lastName, aNd fullname properties. The code should look similar to the
following:

let $id := $source-node/id ! xs:string(.)

let $firstName := $source-node/firstName ! xs:string(.)
let $lastName = Ssource-node/lastName ! xs:string(.)
let $fullName := $source-node/fullName ! xs:string(.)

4, Replace these lines with the following code. The text in bold highlights the changes.

let sid := $source-node/pid ! xs:string(.)
let $firstName := $source-node/given ! xs:string(.)

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 43

MarkLogic Server Getting Started With Entity Services

let $lastName
let $fullName

$source-node/family ! xs:string(.)
fn:concat($firstName, " ", $lastName) ! xs:string(.)

5. Save your changes.

Recall that the person entity type has id, firstName, lastName, fullName, and friends properties.
The default i mpI ementation of person:extract-instance-Person aSSUMES the source data
contains the same properties. For example, the default implementation includes the following
code:

let $id := $source-node/id ! xs:string(.)

let $firstName := $source-node/firstName ! xs:string(.)
let $lastName := $source-node/lastName ! xs:string(.)
let $fullName := $source-node/fullName ! xs:string(.)

Each of the variable declarations assumes the value of a property in the new entity instance
(sinstance) iSthe value of a property with the same name in the source node. Since that
assumption does not match the example model, customization is required.

Our customization changes the names of the source fields to match our source data, and derives
the fuliname property value from the given and fami1y source values. The modified portions are
shown in bold, below.

let sid := $source-node/pid ! xs:string(.)

let $firstName := $source-node/given ! xs:string(.)

let $lastName $source-node/family ! xs:string(.)

let $fullName fn:concat($firstName, " ", $lastName) ! xs:string(.)

2.4.4.3 Deploy the Converter Module
Like any application code, the converter module must be deployed to MarkL ogic before you can

useit. Best practiceisto install it in the modules database of your App Server. Our example uses
the pre-defined App Server on port 8000, which is configured to use the Modules database.

The following procedure uses XQuery to install the customized converter module into the
Modules database. You could also use Server-Side JavaScript or the REST, Java, or Node.,js
Client APIsfor this task.

1 Open Query Consolein your browser if you do not already have it open.

2. Add a new query to the workspace by clicking on the “+” button on the query editor.

3. Select JavaScript in the Query Type dropdown.

4, Select the “Modules’ database from the Database dropdown.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 44

MarkLogic Server Getting Started With Entity Services

5. Copy and paste the following code into the new query. This code saves the instance
converter module to the database.

// ** RUN AGAINST MODULES DB **
'use strict';
declareUpdate () ;

const ARTIFACT DIR = '/space/es/gs/'; // CHANGE THIS VALUE

xdmp . documentLoad (
ARTIFACT DIR + 'person-1.0.0-conv.xqgy',
{ uri: '/es-gs/person-1.0.0-conv.xqy' }

) ;

6. Modify the value of arTiFacT p1r O the directory where you previously saved the
converter module. Include the trailing directory separator in the pathname.

7. Click the Run button. The converter module is inserted into the Modul es database.

8. Optionally, click the Explore button to confirm the presence of the modulein the database.

2.4.5 Create Entity Instances

An envelope document is the recommended way to persist and interact with entity instancesin
MarkLogic. An envelope document encapsul ates an entity instance with model metadata and the
origina source. Storing the logical aspects of an entity (canonical instance representation,
metadata, source) in one physical document facilitates managing, searching, retrieving, indexing,
and securing your data.

An envelope document enables your application to query data as harmonized instances, but stil
recover the raw source when needed. You can generate either XML or JSON envelope
documents.

You can use the person. instanceToEnvelope function in the converter module to create entity
envel ope documents. The input is an instance created by calling person. extractIinstanceperson.
If you do not explicitly specify an envelope format of “xml” or “json”, the function generates an
XML envelope.

Use the following procedure to create envel ope documents from the source documents loaded in
“ Stage the Source Data’ on page 36. Discussion of the code follows the procedure.

1 Open Query Console in your browser if you do not already have it open.
2. Add anew query to the workspace by clicking on the “+” button on the query editor.
3. Select JavaScript in the Query Type dropdown.

4, Select your content database from the Database dropdown.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 45

MarkLogic Server Getting Started With Entity Services

5. Copy and paste the following code into the new query. This code creates a person entity
envel ope document from each source document.

'use strict';

declareUpdate () ;
const es = require('/MarkLogic/entity-services/entity-services.xqgy');

const person = require('/es-gs/person-1.0.0-conv.xqgy') ;

for (const source of fn.collection('raw')) {
let instance = person.extractInstancePerson (source) ;
let uri = '/es-gs/env/' + instance.id + '.xml';

xdmp . document Insert (
uri, person.instanceToEnvelope (instance, "xml"),

{collections: ['person-envelopes']}
)
}

6. Click the Run button. The following envelope documents are created in your content
database:

les-gg/env/1234.xml
les-gg/env/2345.xml
les-gs/env/3456.xml

7. Optionally, click the Explore button to confirm creation of the envelope documents.

An envelope document can be either XML or JSON. This exercise uses XML envelopes. An
XML envelope hasthe following form. Thees:attachments portion of the envelope holds the raw

source data

<es:envelope xmlns:es="http://marklogic.com/entity-services">

<es:instance>
<es:infos>metadata from info section of descriptor</es:info>

..instance canonical XML..
</es:instance>
<es:attachmentss>

source data
</es:attachments>
</es:envelope>

The equivaent JSON envelope, generated by passing "json” as the second parameter of
person.instanceToEnvelope, has the followi ng form:

{ "envelope": {
"instance": {
"info": { ...metadata from info section of descriptor... },

..instance canonical JSON. ..

b

"attachments": [...source data...]

b}

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 46

MarkLogic Server Getting Started With Entity Services

Except when constructing path expressions, you do not usually have to be aware of the internal
structure of an envel ope document because the Entity Services API includes functions for
extracting an instance or the attachments from an envel ope document handle it for you. For
details, see “Managing Entity Instances’ on page 146.

You create an envelope document for some entity type T using the extractInstancer and
instanceToEnvelope functions of the instance converter. (These arethe extract-instance-rand
instance-to-envelope functionsin the XQuery module.) For example:

modeltitle.instanceToEnvelope (
modeltitle.extractInstanceT(Ssource))

For example, the sample code does the following to create a Person entity envelope:

let instance = person.extractInstancePerson (source) ;

xdmp . documentInsert (
uri, person.instanceToEnvelope (instance, "xml"),

-)

Inside person.instanceToEnvelope, the person.instanceToCanonical function is called to create
the person entity embedded inside es:envelope/es: instance.

The table below illustrates the progression from raw datato XML envelope document, through
use of the instance converter module functions.

Operation Result
ingest raw source {
"pid": 2345,
"given": "Martha",
"family": "Washington"
}
extractInstancePerson(sou | {"$attachments": {\"pid\":2345,
rce) \"given\":\"Martha\",
\"family\":\"Washington\"}",
input: raw source "Stype": "Person",
output: a map:map "idn:. "2345",
(json:object), shown here "firstName": "Martha",
serialized as JSON "lastName": "Washington",
"fullName": "Martha Washington"
}

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 47

MarkLogic Server Getting Started With Entity Services
Operation Result
instanceToCanonical (insta | <Persons>
nce, "xml") <1d>2345</1id>
<firstName>Martha</firstName>
input: instance map:map <lastName>Washington</lastName>
output: XML elem <fullName>Martha Washington</fullName>

</Person>

instanceToEnvelope (instan | <es:envelope

ce, "xml") xmlns:es="http://marklogic.com/entity-services">
<es:instance>

input: instance map:map <es:info>

output: XML envelope doc <es:titles>Person</es:title>

<es:version>1.0.0</es:version>
</es:info>
<Person>
<id>2345</1id>
<firstName>Martha</firstName>
<lastName>Washington</lastName>
<fullName>Martha Washington</fullName>
</Persons>
</es:instance>
<es:attachmentss>{"pid":2345, "given":"Martha",
"family":"Washington"}</es:attachments>
</es:envelope>

The following is an equivalent JSON envelope, generated by calling

instanceToEnvelope (instance, "json").
{ "envelope": {
"instance": {

"info": {
"title":"Person",
"version":"1.0.0"

"Person": {
nign.n2345" ,
"firstName":"Martha",
"lastName" : "Washington",

"fullName" : "Martha Washington"}

b

"attachments": [

"<person><pid>2345</pid><given>Martha</given><family>Washington</family></pers
on>"

]
H

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 48

MarkLogic Server Getting Started With Entity Services

Note that the source data in the attachmentsisas astring if it does not match the envelope data
format. For example, in the above JSON envelope, the source attachment is a string, rather than
an XML node. Thishasimplicationsfor extracting the source from the envel ope as anode; seethe
examplein “Query the Data’ on page 49.

2.4.6 Query the Data

This section illustrates one way to search your entity instance data, using the JSearch API. You
can also use other MarkL ogic document search APIs, search your instances as row data, or use
semantic search. The Entity Services API includestoolsto facilitate all these forms of search. For
details, see “ Querying aModel or Entity Instances’ on page 166.

The following example uses the JSearch API to find al person entitieswith a1astname property
of Washington.

1 Open Query Console in your browser if you do not already have it open.

2. Add anew query to the workspace by clicking on the “+” button on the query editor.

3. Select JavaScript in the Query Type dropdown.

4. Select your content database from the Database dropdown.

5. Copy and paste the following code into the new query. The code matches documentsin the

person-envelopes COllection wherethe es:instance lement includes a 1astname €lement
with the value “washington”, and then returns the original source data from the envelope.

'use strict';
import jsearch from '/MarkLogic/jsearch.mjs';

// Find all occurences of lastName with the value 'washington'

contained
// in an es:instance element. Return just the documents in the results.
const people = jsearch.collections ('person-envelopes') ;

const matches = people.documents ()
.where (cts.elementQuery (

fn.QName ('http://marklogic.com/entity-services', 'instance'),
cts.elementValueQuery ('lastName', 'washington')))

.map (match => match.document)

.result () ;

// Extract the raw source data from the search results,
// as XML or JSON nodes
const asNodes = [];
for (let match of matches.results) ({
let attachment = fn.head(match.xpath('//*:attachments/node()"'));
if (attachment instanceof Element) {
// already an XML node
asNodes .push (attachment) ;

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 49

MarkLogic Server Getting Started With Entity Services

} else {
// serialized JSON; deserialize to a JSON document node
asNodes.push (fn.head (xdmp.unquote (attachment))) ;

}
}
// Dump the results in Query Console. The conversion from array
// to Sequence is just used to finesse the way QC renders array

// items that are XML nodes. It is not functionally significant.
Sequence. from(asNodes) ;

6. Click the Run button. You should see results similar to the following:

{ "pid":2345,
"given":"Martha",
"family":"Washington" }

<person xmlns:es="http://marklogic.com/entity-services">
<pid>1234</pid>
<given>George</givens>
<family>Washington</family>

</person>

The search matches two envelope documents, one extracted from JSON source and one extracted
from XML source.

The search isfirst constrained to documents in the person-envelopes collection. Then a container
guery (cts.elementguery) further constrains matches to those contained in an es: instance
element. Finally, avalue query (cts.elementvalueguery) iSused to find elements named 1astName
with the value ‘washington'.

const people = jsearch.collections('person-envelopes');
const matches = people.documents ()
.where (cts.elementQuery (
fn.QName ('http://marklogic.com/entity-services', 'instance'),
cts.elementValueQuery ('lastName', 'washington')))

The container query ensures the search will not find matches in any part of the envelope data
except the instance. You could similarly search just the attachments, though you cannot
effectively perform a structured search on raw JSON data this way because JSON sourceis stored
in the XML envelope document as a serialized string.

The map feature of JSearch is used to just return the matched documents, eliminating the search
metadata such as the URI, relevance score, and confidence. The mapper was used just to
streamline the output; a mapper is not required by Entity Services or the JSearch API.

people.documents ()
.where(...)
.map (match => match.document)

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 50

MarkLogic Server Getting Started With Entity Services

The search produces the following output, which we saved to the matches variable for subsequent
processing.

{"results": [
<es:envelope xmlns:es="http://marklogic.com/entity-services">
<es:instance>
<es:info>
<es:title>Person</es:title>
<es:version>1.0.0</es:versions>
</es:info>
<Person>
<id>2345</id>
<firstName>Martha</firstName>
<lastName>Washington</lastName>
<fullName>Martha Washington</fullName>
</Person>
</es:instance>
<es:attachments>{"pid":2345, "given":"Martha",
"family":"Washington"}</es:attachments>
</es:envelope>
<es:envelope xmlns:es="http://marklogic.com/entity-services">
<es:instance>
<es:info>
<es:title>Person</es:title>
<es:version>1.0.0</es:versions>
</es:info>
<Person>
<id>1234</id>
<firstName>George</firstName>
<lastName>Washington</lastName>
<fullName>George Washington</fullName>
</Person>
</es:instance>
<es:attachments>
<person>
<pid>1234</pid>
<given>George</givens>
<family>Washington</family>
</person>
</es:attachments>
</es:envelope>
1,

"egstimate":2

}

Note that the example code can return the original XML source data directly out of the envelope
document because the attachments contain an XML element node. However, the original JSON

source data must be converted from a string to a JSON node using xdmp : from-json-string, if you
want to work with it as structured data. This conversion isthe purpose of the following section of

code:

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 51

MarkLogic Server Getting Started With Entity Services

if (attachment instanceof Element) ({
// already an XML node
asNodes .push (attachment) ;
} else {
// serialized JSON; deserialize to a JSON document node
asNodes .push (fn.head (xdmp. fromJsonString (attachment))) ;

}

(The accumulation of the attachments into the asnodes array and subsequent conversion of
asNodes INtO @ sequence IS just done to finesse the way Query Console displays results.)

For more details and examples, see “ Querying aModel or Entity Instances’ on page 166.

2.4.7 Query the Model

When you created amodel in “Create aModel” on page 39, MarkL ogic automatically generated
semantic triples from the descriptor. These triples define the model. You can add more “facts’
about the model in the form of additional triples. You can use SPARQL or the Optic API to query
amodel.

For example, you can use a SPARQL query to discover what entity types are defined by a model,
what properties are required in an entity instance of a particular type, or the datatype of a
particular entity type property. For more details, see “Querying aModel or Entity Instances’ on
page 166.

The following procedure uses a SPARQL query to generate alist of all the required properties of
an instance of the rerson entity type:

1 Open Query Consolein your browser if you do not already have it open.

2. Add a new query to the workspace by clicking on the “+” button on the query editor.
3. Select SPARQL Query in the Query Type dropdown.

4, Select your content database from the Database dropdown.

5. Copy and paste the following code into the new query. This code retrieves the names of all
required properties of a rerson entity instance.

prefix es:<http://marklogic.com/entity-services#>
select ?ptitle
where {
?X a es:EntityType;
es:title "Person";
es:property ?property .
?property a es:RequiredProperty;
es:title ?ptitle

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 52

MarkLogic Server Getting Started With Entity Services

6. Click the Run button. The query results are displayed as atable.

You should see results similar to the following:

ptitle
"lastName"
"fullName"
"firstName"

You can aso use the SQL and Optic APIsto query your model and entities as rows if you install
an Entity Services generated TDE template based on your model. For more details and examples,
see “Querying aModel or Entity Instances’ on page 166. To learn more about Semantics in
MarkLogic Server, see the Semantics Developer’s Guide.

2.5 Next Steps
The following topics can help deegpen your understanding of the Entity Services API.

* Explore the end to end Entity Services examples on GitHub. For details, see “Exploring
the Entity Services Open-Source Examples’ on page 14.

» Learn more about defining model descriptors; see “Creating and Managing Models’ on
page 54.

Model descriptors support several features not covered here, such asidentifying a primary
key and flagging properties for indexing to facilitate fast searches.

» Learn about generating additional code and configuration artifacts from your model using
the Entity Services API; see “ Generating Code and Other Artifacts’ on page 104.

For example, you can use Entity Servicesto generate Search and Client API query options
and database configuration artifacts based on your model. Y ou can also generate a
Template Driven Extraction (TDE) template that enables row and semantic search of
instances. For details, see “ Generating a TDE Template” on page 119.

» Learn more about querying models and instance data; see “ Querying a Model or Entity
Instances’ on page 166.

» Explore the open source MarkL ogic Data Hub project on GitHub
(http://github.com/marklogic/marklogic-data-hub). Version 2.0 and later use the Entity
Services AP to create a Data Hub application that enables quick and easy entity modeling
and creation of entities from source data.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 53

http://github.com/marklogic/marklogic-data-hub

MarkLogic Server Creating and Managing Models

3.0 Creating and Managing Models

This chapter covers entity model description management tasks. A model descriptor defines entity
types, their properties, and relationships between entities. The following topics are covered:

e Introduction

e Writing a Model Descriptor

¢ Defining Entity Relationships

e Creating a Model from a Model Descriptor

e Working With an XML Model Descriptor

¢ Validating a Model Descriptor

e Extending a Model with Additional Facts

* Managing Model Changes

¢ Model Descriptor Syntax Reference

3.1 Introduction

A fully constructed model consists of a set of “facts’ about the modeled entity types, their
properties, and the relationships between them. The facts are represented in MarkLogic as
semantic triples.

The entity types, properties, and relationships are defined by an XML or JSON model descriptor.
When you persist the descriptor in the database in the prescribed way, MarkL ogic automatically
creates the model by generating facts about the model, expressed astriples. You can also add your
own facts (triples) to the model.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 54

MarkLogic Server Creating and Managing Models

The following diagram depicts the building blocks of an entity model in MarkLogic:

Entity Model

Auto-Derived Facts

Generated by MarkLogic when
you persist the model descriptor.

Persisted
Descriptor

Added by you after persisting
the model descriptor.

Building amodel involves the following steps:

1 Define your entity types, entity type properties (attributes), and relationships in amodel
descriptor. For details, see “Writing a Model Descriptor” on page 56.

2. Optionally, validate your descriptor. An invalid descriptor will produce an invalid model,
so it isagood ideato validate the descriptor during development. For details, see
“Validating a Model Descriptor” on page 82.

3. Create amodel by persisting the descriptor as a document in the special Entity Services
collection. MarkL ogic automatically generates facts about your entity types. For details,
see “Creating aModel from aModel Descriptor” on page 80.

4, Optionally, extend the model with additional facts. “ Extending a Model with Additional
Facts’ on page 84.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 55

MarkLogic Server Creating and Managing Models

The following diagram is apictorial representation of this process.

Building aModel

l 1. define
2. validate _ 3. persist 4. extend
model » | validated > < other
descriptor descriptor model facts

Once you have avalid descriptor or model, you can use the Entity Services APl to generate code
and other artifacts that provide afoundation for creating an application based on your model. You
can use the API to create the following:

A framework for transforming data from heterogeneous sources into canonical entity
instances.

A Template Driven Extraction (TDE) template for interfacing with your instance data as
rows or triples. The template facilitates querying your instances using SQL, SPARQL, or
the Optic API.

A framework for converting instances from one version of your model to another as your
model evolves and changes.

Index configuration and other database configuration properties that facilitate querying
your model, based on characteristics you define.

Query options that facilitate full text search of your entity instances using the XQuery
Search API or the REST, Java, and Node.js Client APIs.

For more details, see “Generating Code and Other Artifacts’ on page 104.

3.2

Writing a Model Descriptor

This section describes how to define amodel descriptor containing entity type definitions and
model metadata. This section includes the following topics:

Model Descriptor Basics

Entity Type Definition Overview

Defining an Entity Property with a SimpleType

Defining an Entity Property with a Complex Type

Defining an Entity Property with Array Type

Defining an IRI Entity Property

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 56

MarkLogic Server Creating and Managing Models

¢ |dentifying the Primary Key Entity Property

e Identifying Personally Identifiable Information (PII)

e Distinguishing Required and Optional Entity Properties

* Defining a Namespace URI for an Entity Type

¢ |dentifying Entity Properties for Indexing

e Controlling the Model IRl and Module Namespaces

3.2.1 Model Descriptor Basics

A model descriptor isan XML element or JSON object that defines one or more entity types,
model metadata, and relationships between entity types. You can generate code templates and
configuration artifacts from the descriptor in the form of either a JSON object-node OF a
json:object (aspeC|aI kind of map :map).

A model descriptor has two parts. The info Section contains model metadata, such as atitle and
version; the definitions Section contains entity type definitions, including entity properties and
relationships, plus type-specific metadata.

A descriptor must define at least one entity type and can define multiple entity types. Each type
definition can include additional metadata to guide code and artifact generation. For details, see
“Entity Type Definition Overview” on page 58.

Note: Theentity type property namesin your model should be unique, even across entity
types to avoid name collisions in generated code and artifacts.

The “natural” representation for amodel descriptor is JSON because it already matches the
internal representation of the model. When you use an XML model descriptor, you must call one
of the following functions to translate your descriptor into a form usable with Entity Services
functions that accept amodel asinput.

e XQuery: es:model-from-xml Of es:model-validate

* Server-Side JavaScri pt: es.modelFromxml O es.modelvalidate
For more details, see “Working With an XML Model Descriptor” on page 81.
You might find it useful to generate test entity instances during model development so you can see

a concrete example of the default entities produced by your model. For details, see “ Generating
Test Entity Instances’” on page 157.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 57

MarkLogic Server Creating and Managing Models

The following is an example of the simplest possible model descriptor. The descriptor must
contain at least tit1e and version Metadatain the info section, and define at least one entity type
with at least one property in the definitions Section. In this example, the model named
“Example’ defines an entity type named “Person”. A person entity has an iq property.

Format Descriptor Example
JSON { minfo": {
"title": "Example",
"version": "1.0.0"
1
"definitions": {
"Person": {
"properties": {
"id": { "datatype": "int" }
}
1
XML <es:model xmlns:es="http://marklogic.com/entity-services">

<es:info>
<es:title>Example</es:title>
<es:version>1.0.0</es:versions>
</es:info>
<es:definitions>
<Person>
<eg:propertiess
<id>
<es:datatypes>int</es:datatype>
</id>
</es:properties>
</Persons>
</es:definitions>
</es:model>

3.2.2 Entity Type Definition Overview

An entity type definition usually includes one or more entity property definitions and can include
the type metadata such as a primary key specification. This section provides a brief overview of
defining an entity type. For syntax details, see “entity_type definition” on page 93

All property definitions must include either a data type or areference to another entity type. The
datatype of aproperty can be string, array, iri, or one of several XSD types. Depending on the
data type, a property definition may require additional information. For details, see “Writing a
Model Descriptor” on page 56 and “ property _definition” on page 98.

The data type of an entity property can be any of the following:

* Any of the XSD typeslisted in “property _type’ on page 102.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 58

MarkLogic Server Creating and Managing Models

» A reference to another entity type.
 AnIRI.
* A homogeneous array of items of any of these types.

Depending on the type, the property definition can include additional information. For example
when the datatypeis “ string”, you can specify a collation. For syntax details, see
“property_definition” on page 98.

An entity type definition can include the following type-specific metadata that is used when
generating code and configuration artifacts:

» Thename of an entity property to use as aprimary key. Designation of a primary key
affects semantic and row searches of instance data. For details, see “Identifying the
Primary Key Entity Property” on page 64.

* Which entity properties must be present in every entity of thistype. For details, see
“Distinguishing Required and Optional Entity Properties’ on page 67.

» Which entity properties should be backed by an index or lexicon. This affects database
configuration and query option generation. For details, see “Identifying Entity Properties
for Indexing” on page 72.

* A description of the entity type. Thisis purely informational and does not affect code or
artifact generation.

Property names should be unique across all the entity typesin amodel. Duplicate property names
can lead to name collisions in generated code and artifacts, causing some code and configuration
to be generated commented out.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 59

MarkLogic Server Creating and Managing Models

For example, the following model descriptor defines a Person entity with two required entity
properties (“id” and “name”) and two optional entity properties (“address’ and “rating”). The“id”
property is the primary key. In addition, the descriptor specifies that a path range index
configuration and query options should be generated for the “rating” property.

Language Example
JSON { minfo": { "title": "Example", "version": "1.0.0" },
"definitions": {
"Person": {
"description": "Example person entity type",
"properties":
"idv: { "datatype": "int" },
"name": { "datatype": "string" },
"address": { "datatype": "string" },
"rating": { "datatype": "float" }
b
"required": ["id", "name"],
"primaryKey": "id",

"pathRangeIndex": ["rating"]

}
}
}

XML <es:model xmlns:es="http://marklogic.com/entity-services">
<es:info>
<es:title>Example</es:title>
<es:version>1.0.0</es:versions>
</es:info>
<es:definitions>
<Person>
<es:description>Example person entity type</es:descriptions
<es:properties>
<id><es:datatype>int</es:datatype></id>
<name><es:datatype>string</es:datatype></name>
<address><es:datatype>string</es:datatype></address>
<rating><es:datatype>float</es:datatype></rating>
</es:properties>
<es:required>id</es:required>
<es:required>name</es:required>
<es:primary-key>id</es:primary-key>
<es:path-range-index>rating</es:path-range-index>
</Person>
</es:definitions>
</es:model>

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 60

MarkLogic Server Creating and Managing Models

3.2.3 Defining an Entity Property with a SimpleType

To define an entity type property with a ssmple type such as string, integer, or date, specify the
type name as the value of the datatype JSON property or XML element. For a complete list of
supported type names, see “property_type” on page 102.

Note: Not all the supported data types are usable as range index or word lexicon types. If
you specify an entity property with an incompatible type in the range index or
word lexicon specification of an entity type definition, then the resulting model
will not validate.

For example, the following entity type definition contains entity properties with four different
simple types.

Format Example
JSON { "info": { "title": "Example", "version": "1.0.0"},
"definitions": ({
"Person": {
"properties":
"id": { "datatype": "positivelnteger" },
"name": { "datatype": "string" },
"birthdate": { "datatype": "date" },
"rating": { "datatype": "float" }
}
1
XML <es:model xmlns:es="http://marklogic.com/entity-services">

<es:info>
<es:title>Example</es:title>
<es:version>1.0.0</es:version>
</es:info>
<eg:definitions>
<Person>
<eg:propertiess>
<id><es:datatypes>positivelnteger</es:datatype></id>
<name><es:datatypes>string</es:datatype></name>
<birthdates><es:datatype>date</es:datatype></birthdate>
<ratings><es:datatype>float</es:datatype></rating>
</es:properties>
</Persons>
</es:definitions>
</es:model>

If the type nameis “string”, then you can optionally include a collation URI to be used when
generating index, lexicon, and query option configuration artifacts from the model. If you omit
the collation for a string-typed entity property, the collation defaults to
“http://marklogic.com/collation/en”.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 61

MarkLogic Server Creating and Managing Models

The following example demonstrates including a collation in an entity property definition.

Format Example
JSON { "info": { "title": "Example", "version": "1.0.0"},
"definitions": {
"Person": {
"properties": {
"name": {
"datatype": "string",
"collation": "http://marklogic.com/collation/"
}
}
1
XML <es:model xmlns:es="http://marklogic.com/entity-services">

<es:info>
<es:title>Example</es:title>
<es:version>1.0.0</es:versions>
</es:info>
<es:definitions>
<Person>
<eg:propertiess
<name>
<es:datatypes>string</es:datatype>
<es:collation>http://marklogic.com/collation/</es:collation>
</name>
</es:properties>
</Persons>
</es:definitions>
</es:model>

3.2.4 Defining an Entity Property with a Complex Type

To specify an entity property whose type is complex, such as an object type, define the complex
type as an entity type and use an entity type reference in the property definition.

For example, suppose a rerson entity type contains a“name” property, and that “name” should
have entity properties “first”, “middle’, and “last”. You could model a name as an entity type and
then reference it in the definition of person Similar to the following:

JSON: "name": { "Sref": "#/definitions/Name" }
XML: <names<es:ref>#/definitions/Name</es:ref></name>

You can reference entity types defined in the same model (alocal reference) or externally. For
more details and examples, see “Defining Entity Relationships’ on page 77.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 62

MarkLogic Server Creating and Managing Models

3.2.5 Defining an Entity Property with Array Type

To specify an entity property whose typeisalist of values, specify “array” in the dgatatype JSON
property or XML element of the property definition, and then include an i tems type definition that
specifies the datatype of thelist items. For alist of supported item type names, see
“property_type” on page 102.

Note: You cannot use an entity property with array type as a primary key or for
generating database configuration artifacts such as range index or word lexicon
configuration.

For example, the following entity type definition defines an entity property named “orders’
whose value is an array of values of type “integer”.

Format Example
JSON { "info": { "title": "Example", "version": "1.0.0"},
"definitions": ({
"Person": {
"properties":
"orders": {
"datatype": "array",
"items": {
"datatype": "integer"
}
}
}
b
XML <es:model xmlns:es="http://marklogic.com/entity-services">

<es:info>
<es:title>Example</es:title>
<es:version>1.0.0</es:version>
</es:info>
<eg:definitions>
<Persons>
<eg:propertiess>
<orders>
<es:datatypes>array</es:datatype>
<es:items>
<es:datatype>integer</es:datatype>
</es:items>
</orders>
</es:properties>
</Persons>
</es:definitions>
</es:model>

For more details, see “property_definition” on page 98.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 63

MarkLogic Server Creating and Managing Models

3.2.6 Defining an IRI Entity Property

To model the type of an entity property as an IRI (Internationalized Resource Identifier), specify
“iri” in the datatype JSON property or XML element of the property definition. IRI-typed entity
properties can be useful for working with entities using SPARQL.

The value of a property with IRI type must be a string that represents a sem: iri value. The value
is opague to the Entity Services API.

For example, the following entity type definition contains an entity property “name” with IRI data
type.

Format Example
JSON { "info": { "title": "Example", "version": "1.0.0"},
"definitions": ({
"Person": {
"properties":
"name": { "datatype": "iri" }
}
11}
XML <es:model xmlns:es="http://marklogic.com/entity-services">

<eg:info>
<es:title>Example</es:title>
<es:version>1.0.0</es:versions>
</es:info>
<eg:definitions>
<Person>
<es:propertiess
<name><es:datatypes>iri</es:datatype></name>
</es:properties>
</Persons>
</es:definitions>
</es:model>

For more details about creating Semantic applications in MarkLogic, see the Semantics
Developer’s Guide.

3.2.7 Identifying the Primary Key Entity Property

An entity type definition can designate one entity property as a primary key that uniquely
identifies each instance of that type.

The primary key is used in the following ways:

* Primary and foreign key for SQL views of your instance data. If you generate a TDE
template from the model, the primary key property is the primary key for arow view of

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 64

MarkLogic Server

Creating and Managing Models

instance data. It is also used as aforeign key for some supporting views. For details, see

“Generating a TDE Template” on page 119.

» Uniqueidentifier for auto-generated instance facts (triples). If you generate a TDE
template from the model, the template enables generation of triples about each instance of
an entity type that defines aprimary key. For details, see “ Generating a TDE Template’

on page 119.

* Vaue constraint on the primary key. If you generate query options from the model, the
options pre-define a value constraint on the primary key. For details, see “ Generating
Query Options for Searching Instances’ on page 138.

An entity type definition can contain at most one primary key. If you generate a schema from the
model, the primary key entity property hasits cardinality set to exactly 1; for details, see
“Generating an Entity Instance Schema” on page 126.

To specify aprimary key, include aprimarykey JSON property or primary-key XML element in
the entity type definition. The value must be the name of an entity property defined in thistype
definition. The primary key entity property cannot have array type.

For example, the following definition of a Person entity definesthe “id” entity property asa

primary key:
Format Example
JSON { "info": { "title": "Example", "version": "1.0.0"},
"definitions": ({
"Person": {
"properties":
"id": { "datatype": "positivelnteger" },
"name": { "datatype": "string" }
} 7
"primaryKey": "id"
1

MarkLogic 10—May, 2019

Entity Services Developer’s Guide—Page 65

MarkLogic Server Creating and Managing Models

Format Example
XML <es:model xmlns:es="http://marklogic.com/entity-services">
<es:info>
<es:title>Example</es:title>
<es:version>1.0.0</es:versions>
</es:info>
<es:definitions>
<Person>
<es:propertiess
<id><es:datatype>positivelnteger</es:datatype></id>
<name><es:datatypes>string</es:datatype></name>
</es:properties>
</Persons>
</es:definitions>
<es:primary-key>id</es:primary-key>
</es:model>
3.2.8 Identifying Personally Identifiable Information (PII)

Security policies often require strict access controls for Personally Identifiable Information (PII),
such as a telephone number, address, or social security number. Entity Services enablesyou to tag
entity properties as containing PI1, and subsequently generate special security configuration to
control accessto Pl datain your entity instances. For more details, see“ Generating a Pl Security
Configuration Artifact” on page 131.

The following example entity type definition flags the “name” and “address’ entity properties as

Pll.
Format Example
JSON { "info": { "title": "Example", "version": "1.0.0"},
"definitions":
"Person":
"description": "Example person entity type",
"properties":
rid": { "datatype": "int" },
"name": { "datatype": "string" },
"address": { "datatype": "string" }
b
"pii" : ["name", "address"],
"required": ["id", "name"]
}
}
}

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 66

MarkLogic Server Creating and Managing Models

Format Example

XML <es:model xmlns:es="http://marklogic.com/entity-services">
<es:info>
<es:title>Example</es:title>
<es:version>1.0.0</es:version>
</es:info>
<es:definitions>
<Person>
<es:description>Example person entity type</es:descriptions
<es:propertiess
<id><es:datatype>int</es:datatype></id>
<name><es:datatype>string</es:datatype></name>
<address><es:datatype>string</es:datatype></address>
</es:properties>
<es:pii>name</es:pii>
<es:pii>address</es:pii>
<es:required>id</es:required>
<es:required>name</es:required>
</Person>
</es:definitions>
</es:model>

3.2.9 Distinguishing Required and Optional Entity Properties

By default, all entity properties defined in an entity type are optional. You can identify required
properties by including their names in the required Section of your entity type definition. The
entity properties named in the required Section must be defined in the containing entity type.

An entity property specified asaprimary key isimplicitly required, so you should not also include
it in the explicit list of required properties.

When you validate an instance against the schema generated for an instance type, validation fails
if the instance does not include at |east one occurrence of arequired entity property. Similarly,
when you generate a TDE template for an instance type, required entity properties are not
considered nullable.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 67

MarkLogic Server Creating and Managing Models

The following example entity type definition defines 3 entity properties. “id”, “name”, and
“address’. The“id” and “name” properties are required. The “address’ entity property isoptional.

Format Example
JSON { "info": { "title": "Example", "version": "1.0.0"},
"definitions":
"Person":

"description": "Example person entity type",

"properties":
ridv: { "datatype": "int" },
"name": { "datatype": "string" },
"address": { "datatype": "string" }

I
"required": ["id", "name"]
}
}
}

XML <es:model xmlns:es="http://marklogic.com/entity-services">
<es:info>
<es:title>Example</es:title>
<es:version>1.0.0</es:version>
</es:info>
<es:definitions>
<Person>
<es:description>Example person entity type</es:descriptions
<es:properties>
<id><es:datatype>int</es:datatype></id>
<name><es:datatype>string</es:datatype></name>
<address><es:datatype>string</es:datatype></address>
</es:properties>
<es:required>id</es:required>
<es:required>name</es:required>
</Persons>
</es:definitions>
</es:model>

3.2.10 Defining a Namespace URI for an Entity Type

By default, the elements of an XML entity instance are in no namespace. If you include a
namespace URI and prefix in your model, then your entity instances names will be qualified by
the namespace, as long as you use an XML representation for your envelope documents.

Use of entity type namespacesis optional. If you choose to use a hamespace, you must specify
both a namespace URI and a prefix in your entity type definition.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 68

MarkLogic Server Creating and Managing Models

In an XML model descriptor, use the following format to define a namespace URI and prefix:

<es:namespace>namespaceURI</es:namespace>
<es:namespace-prefix>prefix</es:namespace-prefix>

In a JSON model descriptor, use the following format to define a namespace URI and prefix:

"namespace": "namespaceURI",
"namespacePrefix": "prefix"

The following restrictions apply to defining namespace prefix binding. Any model that violates
these restrictions will fail validation.

» No namespace prefix can begin with “xml”, in any case combination. See
https://www.w3.0org/TR/REC-xml-names/.

» Thefollowing namespace prefixes are reserved and must not be used: xsi, xs, xsd, es, json.
In general, you should not use namespace prefixes pre-defined by MarkL ogic, such
“xdmp”.

* The namespace XML element or JSON property value must be avalid absolute URI.

» Entity type namespace prefixes must be unique across the model. Y ou cannot define
multiple entity types with the same namespace prefix.

If you define a namespace for an entity type, the Entity Services APl uses it when creating XML
envel ope documents, extracting instances from XML envelopes, and generating model artifacts
such as schemas, query options, and TDE templ ates.

Note: The namespace is discarded when generating JSON envel ope documents or
extracting an instance from an envel ope document as JSON. This means that
generated code, query options, and TDE templates based on the model will include
XPath expressions that will not match your JSON envel opes or instances without
modification.

For example, the following model descriptor specifies that Person entities should be in the
namespace “ http://example.org/es/gs’ and bind that namespace URI to the prefix “esgs’:

<es:model xmlns:es="http://marklogic.com/entity-services">
<es:info>
<es:title>Person</es:title>
<es:version>1.1.0</es:version>
<es:base-uri>http://example.org/example-person/</es:base-uri>
</es:info>
<es:definitions>
<Person>
<es:properties>
<id><es:datatype>string</es:datatype></id>
<firstName><es:datatype>string</es:datatype></firstName>
<lastName><es:datatype>string</es:datatype></lastName>
<fullName><es:datatype>string</es:datatype></fullName>

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 69

https://www.w3.org/TR/REC-xml-names/

MarkLogic Server

Creating and Managing Models

<friends>

<es:datatype>array</es:datatype>
<es:itemss><es:ref>#/definitions/Person</es:ref></es:items>

</friends>
</es:properties>

<es:
<es:

<es

<es:

<es

namespace>http://example.org/es/gs</es:namespace>
namespace-prefix>esgs</es:namespace-prefix>

:primary-key>id</es:primary-key>
<es:

required>firstName</es:requireds>
required>lastName</es:requireds>

:required>fullName</es:required>

</Person>
</es:definitions>
</es:model>

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 70

MarkLogic Server Creating and Managing Models

The following table illustrates how the envel ope documents change, based on whether or not the
model defines an entity type namespace.

Use Case Example Envelope
No namespace in Person <es:envelope
entity type definition xmlns:es="http://marklogic.com/entity-services">

<es:instance>
<es:info>

</es:info>
<Person>
<id>1234</id>
<firstName>George</firstName>
<lastName>Washington</lastName>
<fullName>George Washington</fullName>
</Person>
</es:instance>
<es:attachmentss>

</es:attachmentss>
</es:envelope>

Person entity type definition | <es:envelope
defines namespace URI xmlns:es="http://marklogic.com/entity-services">

"http://example.org/es/gs’ <és:instance>
. . <es:info>
with prefix "esgs"
</es:info>
<esgs:Person
xmlns:esgs="http://example.org/es/gs">
<esgs:id>1234</esgs:id>
<esgs:firstName>George</esgs: firstName>
<esgs:lastName>Washington</esgs:lastName>
<esgs:fullName>George Washington</esgs:fullName>
</esgs:Person>
</es:instance>
<es:attachmentss>

</es:attachments>
</es:envelope>

If you call es:instance-xml-from-document Of es.instancexmlFrombocument ONanN XML envel ope
document for an entity type that uses namespaces, the returned instance includes the namespace.

For example, the following instance is extracted from the envel ope document shown in the table
above. Notice that it uses the “esgs’ namespace.

<esgs:Person xmlns:es="http://marklogic.com/entity-services"
xmlns:esgs="http://example.org/es/gs">
<esgs:1d>1234</esgs:id>

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 71

MarkLogic Server Creating and Managing Models

<esgs:firstName>George</esgs:firstName>

<esgs:lastName>Washington</esgs:lastName>

<esgs:fullName>George Washington</esgs:fullName>
</esgs:Person>

The namespace is not preserved when you use JSON envelopes or when you generate a JSON
instance from an XML or JSON envelope.

3.2.11 Identifying Entity Properties for Indexing
Searchable entity properties should usually be backed by an index or lexicon.

A model descriptor can contain optional range index and word lexicon sections that indicate
which entity properties should have an associated range index or word lexicon and search
constraint definition. This specification affects generated artifacts such as query options and
database configuration.

For more details, see the following topics:

e Specifying Indexable Properties

¢ Interaction with Generated Artifacts

e Example: Identifying Indexable Entity Properties

e Supported Datatypes

3.2.11.1 Specifying Indexable Properties

A range index enables range queries over an entity property, such as“match al inventory item
instances with a price property greater than 5”. Range indexes and word lexicons also enable
search application features such as faceting and search term suggestions.

The Entity Services modeling language enables you to specify entity type properties that should
be backed by an element range index, path range index, or word lexicon. (The element range
index specification is applicable to both XML elements and JSON properties.)

To indicate that a property should be backed by arange index, include the following components
in your model descriptor:

¢ JSON: pathrangeIndex Of elementRangeIndex
e XML: es:path-range-index Of es:element-range-index

In JSON, the value of pathrangeIndex and elementRangeIndex iSan array of entity property
names. In XML, define multi p| €path-range-index O element-range-index elementsto tag
multiple properties. For example:

JSON: "pathRangeIndex": ["price", "rating"]

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 72

MarkLogic Server Creating and Managing Models

XML: <es:path-range-index>price</es:path-range-index>
<es:path-range-index>rating</es:path-range-index>

Note that an element range index is applicable to both XML elements and JSON properties, so
your choice of index type isnot limited by the representation of your entity instances. For details,
See Creating Indexes and Lexicons Over JSON Documents in the Application Developer’s Guide.

To specify properties to be backed by aword lexicon, include awordrexicon JSON property or
word-lexicon XML element in your model descriptor. In JSON, the value of wordrexicon IS an
array of property names. In XML, define multiple word-1exicon €lements to tag multiple
properties. The syntax is analogous to the range index example, above.

The properties named in arange index or word lexicon specification must be defined in the
containing entity type definition and must conform to certain data type restrictions. For data type
details, see “ Supported Datatypes’ on page 75.

For a complete example, see “ Example: Identifying Indexable Entity Properties’ on page 74.

3.2.11.2 Interaction with Generated Artifacts

Specifying the name of an entity property in the range index section has the following
implications:

» The database properties generated by the es: database-properties-generate XQuery
function or thees. databasePropertiesGenerate JavaScript function will include path
range index configuration for the named entity property.

e The query OptiOl’lS generated by thees: search-options-generate XQuery function or the
es.searchOptionsGenerate JavaScript function will include a path range constraint
definition for the named entity property.

Specifying the name of an entity property in the word lexicon section has the following
implications:

* The database properti&s generaIed by thees: database-properties-generate XQuery
function or the es.databasepropertiescenerate JavaScript function will include word
lexicon configuration for the named entity property.

* Thequery options generated by the es: search-options-generate XQuery function or the
es.searchOptionsGenerate JavaScript function will include aword constraint definition
for the named entity property.

Note: If your model specifies a namespace binding for an entity type and you use JSON
envelopes, the namespace is discarded in the JSON representation, but the
generated index configuration still assumes a namespace, so the index
configuration will not match your JSON data. Y ou should usually use XML
envel opes when you include a namespace specifier in your model.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 73

MarkLogic Server Creating and Managing Models

For more details, see “ Generating a Database Configuration Artifact” on page 134 and
“Generating Query Options for Searching Instances’ on page 138.

3.2.11.3 Example: Identifying Indexable Entity Properties

The following example descriptors specify a path range index on the “rating” entity property and
aword lexicon on the “bio” entity property of a“Person” entity type.

Format Model Descriptor Example
JSON { minfo": { "title": "Example", "version": "1.0.0"},
"definitions": {
"Person": {

"description": "Example person entity type",

"properties":
"idv: { "datatype": "int" },
"name": { "datatype": "string" },
"rating": { "datatype": "float" },
"bio": { "datatype": "string" }

}l
"pathRangeIndex": ["rating"],
"wordLexicon": ["bio"]

}
}
}

XML <es:model xmlns:es="http://marklogic.com/entity-services">
<es:info>
<es:title>Example</es:title>
<es:version>1.0.0</es:version>
</es:info>
<es:definitions>
<Person>
<es:description>Example person entity type</es:descriptions
<es:properties>
<id><es:datatype>int</es:datatype></1id>
<name><es:datatype>string</es:datatype></name>
<rating><es:datatype>float</es:datatype></rating>
<bio><es:datatype>string</es:datatype></bio>
</es:properties>
<es:path-range-index>rating</es:path-range-index>
<es:word-lexicon>bio</es:word-lexicon>
</Person>
</es:definitions>
</es:model>

If you generate database properties from the resulting model (using
es:database-properties-generate Ol es. databasePropertiesGenerate), then the generated
database configuration properties include the following details:

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 74

MarkLogic Server Creating and Managing Models

{ "database-name" : "$%$DATABASE$S%",
"element-word-lexicon": [{
"collation":"http://marklogic.com/collation/en",
"localname":"bio",
"namespace-uri":""

1,

"range-path-index": [{
"collation":"http://marklogic.com/collation/en",
"invalid-values":"reject",

"path-expression":"//es:instance/Person/rating",
"range-value-positions":false,
"scalar-type":"float"

1
}

If you generate query options from the resulting model (using es:search-options-generate Of
es.searchOptionsGenerate), then the generated options include the following constraint
definitions:

<search:options
xmlns:search="http://marklogic.com/appservices/search">

<search:constraint name="rating">
<search:range type="xs:float" facet="true">
<search:path-index xmlns:es=...>
//es:instance/Person/rating
</search:path-index>
</search:range>
</search:constraint>
<search:constraint name="bio">
<search:word>
<search:element ns="" name="bio"/>
</search:word>
</search:constraint>

</search:options>

For details on generating database properties and query options, see “ Generating Code and Other
Artifacts’ on page 104. For details on using the generated artifacts, see “ Deploying Generated
Code and Artifacts” on page 144 and “Querying a Model or Entity Instances’ on page 166.

3.2.11.4 Supported Datatypes

Any property named in arange index specification must have a data type that can be used to
define arange index or can be mapped to an indexable super type. You can define a property with
any of the datatypeslisted in “property _type’ on page 102, but only scalar types can be used to
define arangeindex. For example, you cannot specify a property that hastype hexsinary, an array
type, or areference to another entity type.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 75

MarkLogic Server Creating and Managing Models

For alist of type usable to define range indexes, see Understanding Range Indexes in the
Administrator’s Guide.

Any entity property specified in the word lexicon section of amodel descriptor must have string
type, or atype which normalizesto string, such as anyurzt Or iri.

Some datatypes are normalized to a supported index type for purposes of index configuration. For
exampl e, the positiveInteger, negativelInteger, and integer datatypes normalize to the XSD
decimal type. The following mapping is used for purposes of index configuration:

® byte, short become int

® unsignedByte, unsignedShort beCOH“EunsignedInt

e al rinteger types become decimal

® iri, anyURI, boolean become string

3.2.12 Controlling the Model IRl and Module Namespaces

Theinfo section of amodel descriptor can include an optional base-uri XML element of baseuri
JSON property. If abase URI isdefined, it is used for the following purposes:

* When you use Entity Servicesto generate code modules such as an instance converter, the
module namespace uses the base URI as the beginning of the module namespace URI.

* When you generate amodel from the descriptor, the base URI is used as the beginning of
the model IRl when generating facts about the model as RDF triples.

If you do not include a base URI definition in your descriptor, Entity Services uses
“http://example.org/”.

For example, the following descriptor defines a base URI of “http://my/org/”.

Format Model Descriptor Example
JSON { "info": {

"title": "Example",
"version": "1.0.0"
"baseUri": "http://my/org/"

¥

"definitions": {
"Person": { ... }

}

}

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 76

MarkLogic Server Creating and Managing Models

Format Model Descriptor Example

XML <es:model xmlns:es="http://marklogic.com/entity-services">
<es:info>
<es:title>Example</es:title>
<es:version>1.0.0</es:version>
<es:base-uri>http://my/org/</es:base-uri>
</es:info>
<es:definitions>
<Persons>...</Person>
</es:definitions>
</es:model>

If you generate an instance converter module from this descriptor, then the module namespace is
created by appending the module title (Example) and version (1.0.0) to the base URI
(“http://my/org/”), asfollows:

module namespace example = "http://my/org/Example-1.0.0";

If you did not define a base URI, then the module namespace URI would be
“http://example.org/Example-1.0.0". For more details on the generated module namespace, see
“Module Namespace Declaration” on page 109.

Similarly, when you create amodel from the above exampl e descriptor, the base URI isused asan
IRI prefix for the generated model and instance triples. For example, the Person entity type
defined by the example has the following IRI:

http://my/org/Example-1.0.0/Person

If you do not define a base URI, then the above IRl would be

http://example.org/Example-1.0.0/Person.

The base URI is always combined with other model metadata, such as the model title and version.

3.3 Defining Entity Relationships

You can model relationships between entity types by referencing an entity typein place of a
datatype IN the definition of an entity property. Thisisthe sref JSON property or es:ref XML
element of the property definition.

References can either be local (identifying atype defined in the same descriptor) or external
(identifying a type that cannot be locally resolved by the Entity Services API).

e Defining a Local Entity Reference

* Defining an External Entity Reference

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 77

MarkLogic Server Creating and Managing Models

3.3.1 Defining a Local Entity Reference

A local entity reference refers to an entity type defined in the current model. A local referenceis
defined by arelative URI of the following form:

#/definitions/entityTypeName

A local entity reference is resolvable during code generation, such as when you call the
es:instance-converter-generate XQuUery function or the es. instanceconverterGenerate
JavaScript function. This resolvability enables the Entity Services code generation tools to, for
example, embed the properties of alocal reference inside an instance of the referencing type.

For example, the following model descriptor defines two entity types, “Person” and “Name”. The
“Person” entity type definition includesa®name” entity property that is areference to the “ Name”
entity type. The type of the “name’ property isalocal reference.

Format Example
JSON { "info": { "title": "Example", "version": "1.0.0"},
"definitions":
"Name": {
"description": "The name of a person.",
"properties":
"first": { "datatype": "string" },
"middle": { "datatype": "string" },
"last": { "datatype": "string" }
I
"required": ["first", "last"]
b
"Person": {
"description": "Example person entity type",
"properties":
ridv: { "datatype": "int" },
"name": { "$ref": "#/definitions/Name" },
}
b1}

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 78

MarkLogic Server Creating and Managing Models

Format Example

XML <es:model xmlns:es="http://marklogic.com/entity-services">
<es:info>
<es:title>Example</es:title>
<es:version>1.0.0</es:version>
</es:info>
<es:definitions>
<Name >
<es:description>The name of a person.</es:description>
<es:propertiess
<first><es:datatype>string</es:datatype></first>
<middle><es:datatype>string</es:datatype></middle>
<last><es:datatype>string</es:datatype></last>
</es:properties>
<es:required>first</es:required>
<es:requireds>last</es:requireds>
</Name>
<Person>
<es:description>Example person entity type</es:descriptions
<es:propertiess
<id><es:datatype>int</es:datatype></id>
<name><es:ref>#/definitions/Name</es:ref></name>
</es:properties>
</Person>
</es:definitions>
</es:model>

If you generate an instance converter from this model, the default code template assumes that a
Person entity instance has a Name entity instance embedded within it. For example, a Person
entity instance generated by es: instance-json-from-document Of es.instanceJsonFromDocument
might look like the following:

{ "person": {
"id":. 1234,
"name": {
"first": "John",
"middle": "NMI",
"last": "Smith"

}
I

You could also choose to have the Name persisted separately and reference it from a Person entity
viaaprimary key, URI, or other identifier. That is a choice you make when customizing your
instance converter. For more details, see “ Creating an Instance Converter Module” on page 107.

3.3.2 Defining an External Entity Reference

An external entity reference refersto an entity type defined outside the model. The referenced
typeisidentified by an IRI. The referenced type should be defined el sewhere in MarkLogic.
Resolution of the reference is handled by MarkLogic’s SPARQL engine.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 79

MarkLogic Server Creating and Managing Models

No validation is performed on the value of an external reference. When you use the Entity
Services APIs to generate code and other artifacts, the reference is treated as an opaque string.

For example, the following model descriptor defines a“Person” entity type that contains a
“name” property that is an external reference to atype identified by “ http://example.org/Name”.
This could be an entity type defined by a different Entity Services model.

Format Example
JSON { minfo": { "title": "Example", "version": "1.0.0"},
"definitions":
"Person": {
"description": "Example person entity type",
"properties":
rid": { "datatype": "int" },
"name": { "$ref": "http://example.org/Name" },
}
b}
XML <es:model xmlns:es="http://marklogic.com/entity-services">

<es:info>
<es:title>Example</es:title>
<es:version>1.0.0</es:version>
</es:info>
<es:definitions>
<Person>
<es:description>Example person entity type</es:descriptions
<es:propertiess
<id><es:datatype>int</es:datatype></id>
<name><es:ref>http://example.org/Name</es:ref></name>
</es:properties>
</Person>
</es:definitions>
</es:model>

You would customize your person instance converter code to fill in the value of the name
property with an appropriate reference or embedded value. Since the “shape” of the external
entity type is not defined by the model, the Entity Services code generation tools cannot assume
an embedded object as they can for local references. To learn more about instance generation, see
“Creating an Instance Converter Module” on page 107.

3.4 Creating a Model from a Model Descriptor

Create amodel from a JSON or XML descriptor by inserting the descriptor document into the
database as part of the special Entity Services collection

http://marklogic.com/entity-services/models.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 80

MarkLogic Server Creating and Managing Models

During insertion, MarkL ogic generates amodel from the descriptor. The model includesthe entity
type definitions, properties, and relationships defined by your descriptor, plus facts about the
model that MarkL ogic automatically infers from the descriptor. These facts are expressed as
Semantic triples; for details, see “ Search Basics for Models” on page 167. You can also add your
own facts; for details, see “ Extending a Model with Additional Facts’ on page 84.

For example, the following code snippet creates a model from a descriptor. For a more complete
example see “ Getting Started With Entity Services’ on page 17.

Language Example

XQuery xquery version "1.0-ml";
import module namespace es = "http://marklogic.com/entity-services"
at "/MarkLogic/entity-services/entity-services.xqy";

let $desc := ... (: your model descriptor :)
return xdmp:document-insert (
'/es-gs/models/person-1.0.0.json', s$desc,
<options xmlns="xdmp:document-insert"s>
<collections>{
<collections>http://marklogic.com/entity-services/models</collection>,
for $coll in xdmp:default-collections()
return <collection>{$coll}</collection>
}</collections>
</options>

)

JavaScript | 'use strict';

declareUpdate () ;
const es = require ('/MarkLogic/entity-services/entity-services.xqy') ;
const desc = ...; // your model descriptor

xdmp . documentInsert (
'/es-gs/models/person-1.0.0.json', desc,
{collections: ['http://marklogic.com/entity-services/models'] }

) ;

Note that if you create amodel with an XML descriptor, then you will have to convert the
persisted document to its in-memory JSON representation before you can use it with any Entity
Services functions that expect amodel as input. For details, see “Working With an XML Model
Descriptor” on page 81.

3.5 Working With an XML Model Descriptor

The “natural” representation of a model descriptor in the Entity Services APl isa JSON object
node. In XQuery, thein-memory JSON representation of amodel descriptor isasajson:object (a
special kind of map:map). The equivalent representation in Server-Side JavaScript isa JSON
object node or JavaScript object. (MarkLogic implicitly converts JavaScript objects to JSON
objects when you pass them as parameters.)

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 81

MarkLogic Server Creating and Managing Models

If you create amodel by persisting an XML descriptor, you must convert the persisted descriptor
into its JSON representation before you can passit to most Entity Services functions. You can
create a JSON object from an XML descriptor using the following functions:

e XQuery:es:model-validate Of es:model-from-xml

* Server-Side JavaScri pt: es.modelvalidate O es.modelFromXml
To learn more about descriptor validation, see “Validating a Model Descriptor” on page 82.
The following example code snippet generates an instance converter module from an XML

descriptor by first converting the descriptor to JSON. ASSUME /es-gs/models/person-1.0.0.xml
is previously persisted descriptor used to create a model.

Language Example

XQuery xquery version "1.0-ml";
import module namespace es = "http://marklogic.com/entity-services"
at "/MarkLogic/entity-services/entity-services.xqy";

let $desc := fn:doc('/es-gs/models/person-1.0.0.xml")
return es:instance-converter-generate (
es:model-from-xml (Sdesc))

JayaScﬂpt 'use strict';

const es = require('/MarkLogic/entity-services/entity-services.xqy') ;

const desc = cts.doc('/es-gs/models/person-1.0.0.xml') ;
es.instanceConverterGenerate (es.modelFromXml (desc)) ;

If you persist your XML descriptor as JSON instead of XML, then you only need to do the
conversion once, at model creation time. Thisis the technique used in “Create aModel” on

page 23.

In X Query, you can manipul ate the JISON representation of the descriptor as amap : map; for details,
see “Building a JSON Object from aMap” on page 404.

3.6 Validating a Model Descriptor

To validate amodel descriptor, usethe es:model-validate XQuery function or the
es.modelvalidate Server-Side JavaScript function.

If the input descriptor isvalid, this function returns avalid JISON descriptor that can be persisted

in the database or used as input to any Entity Services interfaces that accepts amodel asinput. If

the input descriptor isinvalid, this function throws an es-mopeL- 1nvaLTD €xception and reports the
validation failuresin the error details.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 82

MarkLogic Server

Since an invalid model descriptor produces an invalid model, you should use model validation
during development. Model validation does introduce added overhead, however, so you might

choose to skip it when going between a descriptor and a model in production situations.

The following example validates a simple model descriptor containing a*“Person” entity type
definition. The model descriptor isvalid, so no exception is raised, and the returned model is

identical to the JSON model descriptor used in the JavaScript example.

Language Example
XQuery xquery version "1.0-ml";
import module namespace es =
"http://marklogic.com/entity-services"
at "/MarkLogic/entity-services/entity-services.xqy";
es:model-validate (
<es:model xmlns:es="http://marklogic.com/entity-services">
<es:info>
<es:title>Example</es:title>
<es:version>1.0.0</es:version>
</es:info>
<es:definitions>
<Person>
<es:properties>
<id><es:datatype>int</es:datatype></id>
<name><es:datatype>string</es:datatype></name>
</es:properties>
<es:requireds>id</es:required>
<es:requiredsname</es:required>
</Person>
</es:definitions>
</es:model>
)
JayaSCﬂpt var es = require('/MarkLogic/entity-services/entity-services');
es.modelValidate (
{ "info": { "title": "Example", "version": "1.0.0" },
"definitions":
"Person": {
"properties":
"idv: { "datatype": "int" },
"name": { "datatype": "string" },
b
"required": ["id", "name"]
Pl
) ;

MarkLogic 10—May, 2019

Creating and Managing Models

Entity Services Developer’s Guide—Page 83

MarkLogic Server Creating and Managing Models

If we introduce an error by specifying that an undefined entity property named “UNDEF” isa
required property, then validation raises an error similar to the following:

ES-MODEL-INVALID (err:FOER0000): "Required" property UNDEF doesn't
exist.

3.7 Extending a Model with Additional Facts

You can extend your model with information and relationships that cannot be expressed in or
derived from the model descriptor by storing additional semantic triples related to your model in
MarkLogic.

You can use the model, entity type, and property IRIs generated by Entity Servicesto express
these new facts. Entity Services uses the following patterns for constructing |RIs when generating
RDF triple data about a model:

« modd IRI: baseUri/modelTitle-modelVersion

. entity type IRI: model1ri/typeName

o entity property IRI: entityTypelri/propertyName

For example, suppose you have the following model descriptor:

{ minfo": {
"title": "People",
"version": "1.0.0",
"baseUri": "http://marklogic.com/example/"
I
"definitions":
"Person":
"properties":
"id": { "datatype": "int" },
"name": { "datatype": "string" },

}
byl

Then the following IRIs are generated and used by Entity Services:

i People mode! IRI: http://marklogic.com/example/People-1.0.0
e F%!sm1enﬂtytypelF2h http://marklogic.com/example/People-1.0.0/Person
e Person property “name” IRI: http://marklogic.com/example/People-1.0.0/Person/name

You can use any of MarkLogic’s Semantic capabilities to add, manage, and query triples you add
to your model, including embedding triples in your entity instance envel ope documents and
customizing the TDE template you can generate with Entity Services. You can also use the model
IRI as named graph IRI for integrating separate triples-based modeling with an Entity Services
model.

For more information about using Semantics with MarkL ogic, see Semantics Devel oper’s Guide.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 84

MarkLogic Server Creating and Managing Models

3.8 Managing Model Changes

Some kinds of changes do not affect the structure and content of your instances. For example, if
you decide to index a property that was not previously indexed or change a property from
required to optional, your instances will not change.

However, changes such as the following typically impact the content in your instances,
application code, and generated artifacts:

e add or remove a property

» change the data type of a property

e make an optional property required

* add or remove an entity type
Entity Services can help you update your application as your model evolves.
When integrating model changes, you must decide if all consumers of your instance data will
move to the new model at the same time, or if you need to support both old and new models

during some transition period. You must aso choose how to generate instances based on your
new model version.

See the following topics for more details:

* Generating Instances From the New Model

¢ Replacing the Old Model with a New Version

* Making Multiple Model Versions Available

For an end to end example of updating a model version, see example-versions in the Entity
Services examples on GitHub. For more details, see “ Exploring the Entity Services Open-Source
Examples’ on page 14.

3.8.1 Generating Instances From the New Model
You can upgrade your instance data using one of the following strategies:

* Re-extract instances from original source using an instance converter generated from the
new model.

» Convert old version instances into new using a version tranglator.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 85

MarkLogic Server Creating and Managing Models

What you do with the instance data based on the new model depends on your version transition
strategy. For details, see “ Replacing the Old Model with aNew Version” on page 87 and “Making
Multiple Model Versions Available” on page 87.

You should use aversion tranglator if re-extraction is not practical. A version translator is also
useful for creating in-memory instances of adifferent version to return to downstream consumers.
For example, if you' ve advanced your content to v2 of your model, you could use av2-to-v1l
trangator to synthesize v1 instances for v1 clients.

Both the instance converter and the version translator can be generated using the Entity Services
API.

To re-extract instances from origina source, generate, customize, and install an instance
converter based on the new model, as described in “ Creating an Instance Converter Module” on
page 107. Send your raw source data through the converter, just as you did with the previous
model version.

To use aversion tranglator to generate new version instances from old ones, generate, customize,
and install aversion translator module from the old and new models as described in “ Creating a
Model Version Tranglator Modul€” on page 113. Then, use the trandator to convert instance data
from the old model to the new one.

The following diagram illustrates using a version trangator to generate an envelope document

containing an instance based on a new model version. You can also pass just an instance (rather
than an envel ope document) to the translator.

Envelope Conversion

Person Person Person
Envelope 5 10.0.2 from v0.0.1 Envelope
Translator
Person Person
Instance l instance + Instance
v0.0.1 attachments v0.0.2

Person v0.0.2 |
Attachments instance-to-envelope Attachments

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 86

MarkLogic Server Creating and Managing Models

3.8.2 Replacing the Old Model with a New Version

If all consumerswill immediately move to the new model then you can do the following to update
your model-based artifacts:

» TDE template, query options, schema artifacts:
» Generate aversion based on the new model.

* Apply your customizations, including merging in appropriate customizations from
the old model.

* Redeploy the artifacts.

» Database configuration: If the new model adds or removes range indexes and word
lexicons, you will need to generate a new configuration artifact, apply your
customi zations, and update your database configuration.

¢ |nstance converter:

» Generate a converter based on the new model.

* Apply your customizations, including merging in appropriate customizations from
the old model.

* Redeploy the module.
* |nstance data:

» Generate instance data based on the new model, as described in “ Generating
Instances From the New Model” on page 85.

* Replace the envelope documents based on the old model with the new envelope
documents.

Note that you might still be able to serve old version instances to clients by using a
down-converting version tranglator to convert new instances to old ones during extraction. You
can generate such atrandator using Entity Services; for details, see “ Creating aModel Version
Translator Module” on page 113.

3.8.3 Making Multiple Model Versions Available
When maintaining multiple model versions, the procedures are similar to those described in

“Replacing the Old Model with aNew Version” on page 87, but you must consider how to
manage multiple versions of your code and configuration artifacts, such as the following:

* Instance Data

e Entity Type Schema

¢ TDE Template
* Query Options

e Database Configuration

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 87

MarkLogic Server Creating and Managing Models

3.8.3.1 Instance Data
You must choose an approach to storing your updated instance data in the database. You might

use one of the following approaches to managing versions:
» Each envelope document contains either an old OR a new version of an instance.
» Each envelope document contains both an old AND a new version of an instance.

In the first approach, the database contains envel ope documents for instances based on both
model versions, as shown in the following diagram:

Database Contains
Envelopes for
Multiple Versions

Person Person
Envelope Envelope
Person Person
Instance Instance
v0.0.1 v0.0.2
Attachments Attachments
Database

In this case, putting the envelope documents in different collections based on version will make
them easier to manage and search. You can also use the value of
es:instance/es:info/es:version tO disti nguish between versions.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 88

MarkLogic Server Creating and Managing Models

In the second approach, the database still contains only one set of envel ope documents, but each
envel ope contains multiple instances, as shown in the following diagram:

Envelope Contains
Multiple Instance
Versions

Person
Envelope

Person
Instance
v0.0.1

Person
Instance
v0.0.2

Attachments

Database

You can usethevalue of es:instance/es:info/es:version tO disti nguish between versions
during search and entity extraction. Your instance converter must be customized to store multiple
instances in asingle envelope.

3.8.3.2 Entity Type Schema

This topic refers to maintaining more than one version of the schemas generated by the
es:schema-generate XQuery function or the es. schemaGenerate Server-Side JavaScri pt function.

It isusually best to avoid multiple schemas for the same type name. Schemavalidation isbased on
type name, so if you do not explicitly specify which schemato use for validation you won't know
which schemais applied.

During explicit validation in XQuery, you can import a schema into your evaluation context. For
example, if you have v1.0.0 and v2.0.0 schemas installed for amodel that defines a person entity
type, then you could force validation against the v2.0.0 model by doing the following:

xquery version "1.0-ml";

import module namespace es = "http://marklogic.com/entity-services"
at "/MarkLogic/entity-services/entity-services.xqy";

import schema default element namespace "'
at "/es-gs/person-2.0.0.xsd";

xdmp:validate (
es:instance-xml-from-document (

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 89

MarkLogic Server Creating and Managing Models
fn:doc('/es-gs/envelopes/1234.xml")),
'type', xs:QName ('PersonType'))

For XML instance representations, you can add eschemaLocation t0 control which schemais
applied. For more details, see Referencing Your Schema in the Application Developer’s Guide.

3.8.3.3 TDE Template

The triples generated from a TDE template generated by Entity Services use a subject IRI that
includes the model version. Therefore, thereis no collision between the facts generated from each
template version.

However, both templates will use the same row schema-name for the same entity types, which will
cause row searches to return the union of matched by both templates. To avoid this, you should
give each entity type row schema a unique name.

3.8.3.4 Query Options

You can merge old and new version query options together, or keep them separate and use the
version appropriate for entity instance versions you' re searching.

If you choose to keep multiple versions of canonical instancesin a single envel ope document, you
should probably modify your query options to include version related constraints or additional
queries.

For example, you might want to add a version constraint based on

es:envelope/es:instance/es:info/es:version.

3.8.3.5 Database Configuration

The database configuration is single-state. You can configure the union of range indexes and
word lexicons defined by the two models.

You should usually not remove arange index or word lexicon required by the older model if you
wish to continue supporting searches on that version. Also, if you define arange index or word
lexicon for a property that existsin both model versions, you might see different search results
against the old version entities because queries against the shared property can now be resolved
out of the index.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 90

MarkLogic Server Creating and Managing Models

3.9 Model Descriptor Syntax Reference

This section provides a detailed description of the layout of a model descriptor, including syntax,
component descriptions, and examples. A model descriptor has the following top level structure,
wherethe info section contains model metadata, and the gefinitions SECtion contains your entity
type definitions. A model descriptor must define at least one entity type.

JSON XML
{ <es:model xmlns:es="http://marklogic.com/entity-services">
"info": model info, <es:info>model_info</es:info>
"definitions": { <es:definitions>
entity type_definition, entity type_definition
} <es:definitions>
} </es:model>

To explore the component parts of a model descriptor in more detail, see the following topics:

e model_info

* entity type_definition

e property_definition

3.9.1 model_info

The“info” section of amodel descriptor contains model metadata, such as a description or
version.

e Syntax Summary

e Component Description

e Examples

3.9.1.1 Syntax Summary
The “info” section of amodel descriptor has the following structure:

JSON XML
{ <es:info xmlns:es="http://marklogic.com/entity-services">
"title": string, <es:title>model title</es:title>
"version": string, <es:versions>model version</es:versions
"baseUri": string, <es:base-urisabsolute uri</es:base-uris>
"description": string <es:description>model desc</es:descriptions>
} </es:info>

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 91

MarkLogic Server Creating and Managing Models

3.9.1.2 Component Description

The “info” section of amodel descriptor can contain the following XML elements or JSON
properties. Title and version are the only required items.

Property Name Description

title Required. The title of this model descriptor. The title string must be avalid
XQuery namespace prefix.

If you plan to generate a TDE template from the model, you should avoid
using hyphens (“-") in thetitle. Hyphens will be converted to underscores
(“_") inthe TDE schema, view, and column names, in order to avoid
invalid SQL names.

Thetitleis used as the module namespace prefix when generating code
from the model. If the first character of the title is upper case, it will be
converted to lower space when used as namespace prefix.

version Required. The version of this model descriptor. Best practiceis to use the
“semver” format, such as“1.0.0”; for details, see http://semver.ora/. The
version number of the model is considered the version number of all the
entity types defined within the model.

baseUri (JSON) | Optional. A valid absolute URI, usable to resolve RDF valuesin the
base-uri (XML) | descriptor. If this entity property is not present, nttp://example.org/ iS
used as the default URI. For details, see “Controlling the Model IRl and
Module Namespaces’ on page 76.

description Optional. A description of this set of entity type definitions. Thisis purely
information metadata.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 92

http://semver.org/

MarkLogic Server Creating and Managing Models

3.9.1.3 Examples

The following example contains an info Section that uses all available properties. Only the titie
and version properties are required.

Format Example Model Descriptor
JSON { minfo": {
"title": "Example",
"description": "ES Examples",
"version": "1.0.0",
"baseUri": "http://es-ex/examples",
Y
"definitions":
"Person": {
"properties":
"id": { "datatype": "int" },
"name": { "datatype": "string" }
brobd
XML <es:model xmlns:es="http://marklogic.com/entity-services">

<es:info>
<es:title>Example</es:title>
<es:description>ES Examples</es:descriptions>
<es:version>1.0.0</es:versions>
<es:base-uri>http://es-ex/examples</es:base-uris>
</es:info>
<es:definitions>
<Person>
<es:properties>
<id><es:datatype>int</es:datatype></id>
<name><es:datatype>string</es:datatype></name>
</es:properties>
</Persons>
</es:definitions>
</es:model>

3.9.2 entity _type_definition

An entity type definition is a child of the “definitions” section of amodel descriptor. A model
descriptor must include at least one entity type definition, and may contain multiple entity type
definitions.

e Syntax Summary

e Component Description

e Examples
e See Also

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 93

MarkLogic Server Creating and Managing Models

3.9.2.1 Syntax Summary

An entity type definition has the following structure, where ent i tyTypename (in JISON) and
entity-type-name (iN XML) represent the user-defined entity type name, such as Person or Order.
By convention, entity type names begin with a capital letter (“Person”, not “person”).

If you plan to generate a TDE template from the model, you should avoid using hyphens (“-”) in
the entity type and entity property names. Hyphens will be converted to underscores (*_") in the
TDE schema, view, and column names, in order to avoid invalid SQL names.

JSON XML
entityTypeName : <entity-type-name
"properties": { xmlns:es="http://marklogic.com/entity-services">
propertyName: property definition, <es:propertiess>
.. <property-names
I property_definition
"required": [string], </property-name>
"primaryKey": string, ...
"namespace": string, </es:properties>
"namespacePrefix": string, <es:requireds>property name</es:required>
"pii": [string 1, <es:primary-key>
"pathRangeIndex": [string 1], property name
"elementRangeIndex": [string], </es:primary-key>
"rangeIndex": [string], <es:namespace>namespace URI</es:namespace>
"wordLexicon": [string] <eg:namespace-prefixs>
"description": string namespace prefix
</es:namespace-prefix>
} <es:piisproperty name</es:piis

<es:path-range-index>
property name
</es:path-range-index>
<es:element-range-index>
property name
</es:element-range-index>
<es:range-index>
property name
</es:range-index>
<eg:word-lexicon>
property name
</es:word-lexicon>
<es:description>type desc</es:descriptions>
</entity-type-name>

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 94

MarkLogic Server

Creating and Managing Models

3.9.2.2 Component Description
An entity type definition can contain the following XML elements or JSON properties.

Property Name Description

properties Optional. Zero or more entity property definitions. Each child
JSON property or XML element name is the name of a
property of the entity type. In XML, the element name must
not be namespace qualified. For more details, see “Writing a
Model Descriptor” on page 56.

description Optional. A description of this entity type.

required Optional. Specify the names of entity properties that must be

in every instance of thisentity type. In XML, include multiple
required €lements to specify multiple required property
names. Each named entity property must match the name of
an entity property defined in the properties section of this
entity type definition. Any entity properties not tagged as
required are treated as optional. For more details, see
“Distinguishing Required and Optional Entity Properties’ on
page 67.

primaryKey (JSON)
primary-key (XML)

Optional. The name of an entity property to use as a primary
key when generating artifacts such as an extraction template.
The value must match the name of an entity property defined
in the properties section of this entity type definition. There
can be at most one primary key in an entity type definition.
The primary key property isimplicitly also arequired
property. For more details, see “ldentifying the Primary Key
Entity Property” on page 64.

namespace

Optional. A namespace URI with which to qualify canonical
XML entity instances of thistype. If you include a namespace
URI, you must also define a namespace prefix using the
namespace-prefix XML element or namespacebrefix JSON
property. The namespace is aso used in generated database
configuration and query options artifacts. For details and
restrictions, see “Defining a Namespace URI for an Entity
Type’ on page 68.

MarkLogic 10—May, 2019

Entity Services Developer’s Guide—Page 95

MarkLogic Server

Creating and Managing Models

Property Name

Description

namespacePrefix (JSON)
namespace-prefix (XML)

Optional. A namespace prefix to bind to the XML namespace
defined by the namespace XML element or JSON property.
You must define a prefix if you define a namespace. For
details and restrictions, see “Defining a Namespace URI for
an Entity Type” on page 68.

pii

Optional. The name(s) of entity properties that can contain
Personally Identifiable Information (PIl). You can generate
an Element Level Security (ELS) configuration to more
tightly restrict access to Pl1 properties than access to other
instance properties. For details, see “Identifying Personally
|dentifiable Information (PI1)” on page 66. In XML, include
multiple pii elementsto specify multiple properties.

pathRangeIndex (JSON)
path-range-index (XML)

Optional. The name(s) of entity properties that should be
backed by a path range index. This affects the database
configuration and query options you can generate from a
model. Each named property must match the name of an
entity property defined in the properties Section of thisentity
type definition. In XML, include multiple path-range-index
elements to specify multiple properties. For more details, see
“ldentifying Entity Properties for Indexing” on page 72.

elementRangeIndex (JSON)

element-range-index

(XML)

Optional. The name(s) of entity properties that should be
backed by an element range index. This affects the database
configuration and query options you can generate from a
model. Each named property must match the name of an
entity property defined intheproperties section of thisentity
type definition. In XML, include multiple

element - range-index €lementsto specify multiple properties.
For more details, see “Identifying Entity Properties for
Indexing” on page 72.

rangeIndex (JSON)
range-index (XML)

Optional. Deprecated. Equivalent to the pathrange Index
property in a JSON descriptor, or the path-range-index
element in an XML descriptor.

wordLexicon (JSON)
word-lexicon (XML)

Optional. The name(s) of entity properties that should be
backed by aword lexicon. This affects the database
configuration and query options you can generate from a
model. Each named property must match the name of an
entity property defined in the properties Section of thisentity
type definition. In XML, include multiple word-1exicon
elements to specify multiple properties. For details, see
“ldentifying Entity Propertiesfor Indexing” on page 72.

MarkLogic 10—May, 2019

Entity Services Developer’s Guide—Page 96

MarkLogic Server Creating and Managing Models

3.9.2.3 Examples

The following example defines a Person entity type that contains entity properties named “id”,
“name’, “bio”, and “rating”. The“id” and “name” properties are required. The “id” entity
property isaprimary key. A path rangeindex isrequired for “id” and “rating”, and aword lexicon

isrequired for “bio”. The “name” property istagged as PII.

Format Example Model Descriptor

JSON { "info": {
"title": "Example",
"description": "ES Examples",
"version": "1.0.0"
b
"definitions": {
"Person": {
"properties":
"id": { "datatype": "int" },
"name": { "datatype": "string" },
"bio": { "datatype": "string" },
"rating": { "datatype": "float" }
b
"required": ["id", "name"],
"primaryKey": "id",
"pii": ["name"],
"pathRangeIndex": ["id", "rating"],
"wordLexicon": ["bio"],
"namespace": "http://example.org/es/gs",
"namespacePrefix": "es"

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 97

MarkLogic Server Creating and Managing Models

Format Example Model Descriptor

XML <es:model xmlns:es="http://marklogic.com/entity-services">
<es:info>
<es:title>Example</es:title>
<es:description>ES Examples</es:descriptions>
<es:version>1.0.0</es:version>
</es:info>
<es:definitions>
<Person>
<es:propertiess
<id><es:datatype>int</es:datatype></id>
<name><es:datatype>string</es:datatype></name>
<bio><es:datatype>string</es:datatype></bio>
<rating><es:datatype>float</es:datatype></rating>
</es:properties>
<es:required>id</es:required>
<es:required>name</es:requireds>
<es:primary-key>id</es:primary-key>
<es:pii>name</es:pii>
<es:path-range-index>id</es:path-range-index>
<es:path-range-index>rating</es:path-range-index>
<es:word-lexicon>bio</es:word-lexicons>
<es:namespace>http://example.org/es/gs</es:namespace>
<es:namespace-prefix>esgs</es:namespace-prefixs>
</Person>
</es:definitions>
</es:model>

3.9.24 SeeAlso
For more details about using this component, see the following topics:

* “Writing aModel Descriptor” on page 56

3.9.3 property_definition

An entity property definitionisachild of the entity_type_definition section of amodel descriptor.
Each entity type must include at least one entity property definition.

e Syntax Summary

e Component Description

e Examples
e See Also

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 98

MarkLogic Server

3.9.3.1 Syntax Summary

Creating and Managing Models

An entity property definition can have one of the following forms. Entity property definition are
used in the properties child of an entity_type_definition.

"collation": string,
"description": string

"datatype" "array",
"items": property_definition
"description": string

"datatype" property type,

"description": string

"Sref": string,
"description": string

’

JSON XML
{ <!-- string-valued entity property -->
"datatype" "string", <es:datatype>string</es:datatype>

<es:collations>

collationUri
</es:collation>
<es:description>desc</es:description>

<!-- array/list-valued property -->
<es:datatypes>array</es:datatype>
<es:itemss>property definition</es:items>

<!-- prop of any other type -->

<es:datatypes>property type</es:datatypes>
<es:description>desc</es:description>

<!-- ref to another entity type -->
<es:ref>type path ref</es:ref>
<es:description>desc</es:description>

MarkLogic 10—May, 2019

Entity Services Developer’s Guide—Page 99

MarkLogic Server Creating and Managing Models

3.9.3.2 Component Description

This portion of amodel descriptor can contain the following XML elements or JSON properties.
An entity property definition must include either a datatype Or ref JSON property or XML
element, but not both.

Property Name Description

datatype Required if sref (JSON) or es:ref (XML) isnot present. The data
type of valuesin this entity property. The value must be one of the
types listed in “property_type” on page 102. The datatype can affect
what other JSON properties or XML elements can be included in this
definition, such as a datatype of string enabling the inclusion of a
collation URI in the property definition.

$ref (JSON Required if aatatype iSnot present. A reference to another entity type,
ref (XML) in the form of either arelative path to an entity type defined in this
model descriptor or an absolute IRI. The value must end in asimple
type name so that it can be treated as a type name during code
generation. For details, see “ Defining Entity Relationships’ on

page 77 and “ Defining an Entity Property with a Complex Type”’ on

page 62.

collation Optional. Only usable when the value of datatype iISstring. The
collation to use when generating index/lexicon configuration and
guery options. If you do not specify a collation, then it defaultsto
http://marklogic.com/collation/en.

items Required when the value of datatype iSarray. The type definition for
the array items. The valueisitsalf an entity_type_definition. For details,
see “Defining an Entity Property with Array Type” on page 63.

description Optional. A description of this entity type.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 100

MarkLogic Server Creating and Managing Models

3.9.3.3 Examples

Thefollowing exampl e defines a Person entity type with 3 entity properties: An*“id” of type*“int”,
a“name” with type string whose definition includes a collation, and a*“friend” entity property
with array type. Each item value in the “friend” array isareferenceto a person entity.

Format Example Model Descriptor
JSON { minfo": {
"title": "Example",
"description": "ES Examples",
"version": "1.0.0"
1
"definitions": ({
"Person": {
"properties":
"id": { "datatype": "int" },
"name": {
"datatype": "string",
"collation": "http://marklogic.com/collation/"
b
"friend": {
"datatype" : "array",
"items": { "Sref" : "#/definitions/Person" }
}
Y
XML <es:model xmlns:es="http://marklogic.com/entity-services">

<eg:info>
<es:title>Example</es:title>
<es:description>ES Examples</es:descriptions>
<es:version>1.0.0</es:versions>
</es:info>
<eg:definitions>
<Person>
<es:propertiess
<id><es:datatype>int</es:datatype></id>
<name>
<es:datatypes>string</es:datatype>
<es:collation>http://marklogic.com/collation/</es:collation>
</name>
<friend>
<es:datatypes>array</es:datatype>
<eg:items>
<es:ref>#/definitions/Person</es:ref>
</es:items>
</friend>
</es:properties>
</Persons>
</es:definitions>
</es:model>

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 101

MarkLogic Server

3.9.3.4 See Also

For more details, see the following topics:

* “Writing aModel Descriptor” on page 56

3.9.4 property_type

Creating and Managing Models

This section defines the type names that can be specified in the gatatype JSSON property or XML
element of an entity property definition. With the exception of “iri” and “array”, these types
correspond to XML Schema Definition Language (XSD) of the same name; for details, see

https://www.w3.0org/TR/xmlschemall-2/#built-in-datatypes.

iri duration negativelnteger
array float nonNegativeInteger
anyURI gDay nonPositiveInteger
base64Binary gMonth short

boolean gMonthDay string

byte gYear time

date gYearMonth unsignedByte
dateTime hexBinary unsignedInt
dayTimeDuration int unsignedLong
decimal integer unsignedShort
double long yearMonthDuration

Note: Not all these datatypes are usable as range index or word lexicon types. If you
specify an entity property with an incompatible type in the range index or word
lexicon specification of an entity type definition, then the resulting model will not

validate.

An array-typed entity property contains an item type definition that also uses thistype list. For
details, see “property_definition” on page 98 and “ Defining an Entity Property with Array Type”

on page 63.

Some types are folded into a compatible super-type when defining range indexes. For example,
entity properties of type “iri” are indexed as “string”, and entity properties of type “byte” or
“short” are indexed as “int”. Some data type cannot be used for index or word lexicon

configuration.

For more details, see the following topics:

MarkLogic 10—May, 2019

Entity Services Developer’s Guide—Page 102

https://www.w3.org/TR/xmlschema11-2/#built-in-datatypes

MarkLogic Server Creating and Managing Models

* “property_definition” on page 98

» “Writing aModel Descriptor” on page 56

* “ldentifying Entity Propertiesfor Indexing” on page 72

» “Supported Datatypes’ on page 75 (about type restrictions on indexing)

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 103

MarkLogic Server Generating Code and Other Artifacts

4.0 Generating Code and Other Artifacts

The Entity Services API includes tools for generating code templates and configuration artifacts
that enable you to quickly bring up a model-based application.

For example, you can generate code for creating instances and instance envel ope documents from
raw source and converting instances between different versions of your model. You can also
generate an instance schema, TDE template, query options, and database configuration based on a
model.

This chapter covers the following topics:

* Code and Artifact Generation Overview

e Summary of Available Generators

* Creating an Instance Converter Module

e Creating a Model Version Translator Module

e Generating a TDE Template

* Generating an Entity Instance Schema

* Generating a Database Configuration Artifact

* Generating a Pll Security Configuration Artifact

* Generating Query Options for Searching Instances

* Deploying Generated Code and Artifacts

4.1 Code and Artifact Generation Overview

The following steps outline the basic procedure for generating code and configuration artifacts
using the Entity Services API. The specifics are described in detail in the rest of this chapter.

1 Author amodel descriptor and create a model, as described in “Creating and Managing
Models’ on page 54.

2. Pass the model (in the form of a json:object Or JSON object-node) to one of the
es:*-generate XQuery functions or es. *cenerate JavaScript functions to generate a code
module or configuration artifact.

3. Customize the generated code or artifact to meet the needs of your application. All
generated code and artifacts are usable as-is, but you will want to customize some of them.

4, Deploy the (customized) code or artifact, as needed. Code modules must be deployed to

the modules database. Artifacts such as the TDE template must be deployed to the
schemas database. Artifacts such as query options do not require deployment.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 104

MarkLogic Server Generating Code and Other Artifacts

The following diagram illustrates this process. The relevant part of the model is the portion
represented by the model descriptor.

Generating Code & Other Artifacts

customize
& deploy

— |N5tance converter] E modules

— yorsion translator db

— es"-gererate Ly instance schema] 5 (Schemas
ode —>» TDE template db

= query options — Searchsearch, .
—3» database conmfiguration ———— gradle REST, .

Thefollowing diagram illustrates the high level flow for creating, deploying and using an instance
converter module. The instance converter module is discussed in more detail in “ Creating an
Instance Converter Module” on page 107.

Generating Instance Envelope Documents

aw es:envelope
source “insta
E!Siir'IStEIHEE-EDHVEITEI'-QEHEI'ETE Eis.ms e
instance metadata
i l instance data
customize es:attachments
converter & deploy :
template ." ccn‘u’erter ___.,_ raw source

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 105

MarkLogic Server Generating Code and Other Artifacts

4.2 Summary of Available Generators

The following table summarizes the code and artifact generation functions provided by Entity
Services. Both the XQuery (es: +) and Server-Side JavaScript (es. *) name of each functionis
included. For more details, see the MarkLogic XQuery and XSLT Function Reference or
MarkLogic Server-Sde JavaScript Function Reference.

Function Description

es:instance-converter-generate Generate an XQuery Ilbrary module containi ng
functions useful for data conversion, such as converting
es.instanceConverterGenerate raw source data into entity instances or an instance into
its canonical representation. You can use this module
from either XQuery or Server-Side JavaScript. For more
details, see “ Creating an Instance Converter Module” on
page 107.

es:version-translator-generate Generate an XQuery Ilbrary module containi ng
functions useful for converting entity instances from one
es.versionTranslatorGenerate version to another. You can use this module from either
XQuery or Server-Side JavaScript. For more details, see
“Creating aModel Version Translator Module” on

page 113.
es:schema-generate Generate an XSD schemafor amodel. The resulting
schemais suitable for validating canonical entity
es.schemaGenerate instances. For details, see” Generating an Entity Instance

Schema’ on page 126.

es:extraction-template-generate Generate a TDE template that facilitates searching entity
instances as row or semantic data. For more details, see
es.extractionTemplateGenerate “Generating a TDE Template’ on page 119.

es:database-properties-generate Generate a JSON database properties configuration
object, suitable for use with the REST Management AP
es.databasePropertiesGenerate O ml-gradle. This artifact includes range index and
word lexicon configuration based on the model
descriptor. For details, see “ Generating a Database
Configuration Artifact” on page 134.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 106

MarkLogic Server Generating Code and Other Artifacts

Function Description

es:search-options-generate Generates a set of query options helpful for searching
entity instances with the XQuery Search API or the

es.searchOptionsGenerate REST, Java, or Node.js Client APIs. For more details,
see” Generating Query Optionsfor Searching Instances’
on page 138.

es:pii-generate Generate an Element Level Security configuration
artifact that enables stricter control of entity properties

es.piiGenerate that contain Personally Identifiable Information (PII).
For more details, see “Generating a Pl Security
Configuration Artifact” on page 131.

4.3 Creating an Instance Converter Module

An instance converter helps you create entity instance documents from raw source data. Generate
adefault instance converter using Entity Services, then customize the code for your application.

* Purpose of a Converter Module

* Generating a Converter Module Template

¢ Understanding the Default Converter Implementation

e Customizing a Converter Module

4.3.1 Purpose of a Converter Module
An instance converter isakey part of amodel-driven application. Theinstance converter provides

functions that facilitate the following tasks:
» Creating an entity instance from raw source data.

» Creating an entity envelope document that encapsulates an instance, metadata, and raw
source data.

» Extracting a canonical instance or its attachments (such as the raw source) from an
envel ope document.

For more details on envel ope documents, see “What is an Envelope Document?’ on page 147.

You usually use the instance converter to create entity instance envelope documents and to extract
canonical instances for use by downstream entity consumers.

You are expected to customize the generated converter module to meet the needs of your
application.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 107

MarkLogic Server Generating Code and Other Artifacts

4.3.2 Generating a Converter Module Template

Generate an instance converter from the JSON object-node OF json:object representation of a
model descriptor by Calllng the XQuery function es: instance-converter-generate Of the
JavaScri pt function es. instanceConverterGenerate. Theresult isan XQuery Ilbrary module
containing both model-specific and entity type specific code.

The input to the generator is a JSON descriptor. If you have an XML descriptor, you must first
convert it to the expected format; for details, see “Working With an XML Model Descriptor” on
page 81. The output of the generator function is an XQuery library module.

You can use the generated code as-is, but most applications will require customization of the
converter implementation. For details, see “ Customizing a Converter Module” on page 111.

The following example code generates a converter module from a previously persisted descriptor,
and then saves the generated code as afile on the filesystem.

Language Example

XQuery xquery version "1.0-ml";

import module namespace es =
"http://marklogic.com/entity-services"
at "/MarkLogic/entity-services/entity-services.xqy";

let $desc := fn:doc('/es-gs/models/person-1.0.0.json')
return xdmp:save (
' /space/es/gs/person-1.0.0-conv.xqy',
es:instance-converter-generate ($desc)

)

JavaScript | 'use strict';

const es = require('/MarkLogic/entity-services/entity-services.xqy') ;

const desc = cts.doc('/es-gs/models/person-1.0.0.json') ;
xdmp . save (
' /space/es/gs/person-1.0.0-conv.xqy',
es.instanceConverterGenerate (desc)

) ;

You could aso insert the converter directly into the modul es database, but the converter isan
important project artifact that should be placed under source control. You will want to track
changesto it as your application evolves.

4.3.3 Understanding the Default Converter Implementation

This section explores the default code generated for an instance converter module. The following
topics are covered:

¢ Module Namespace Declaration

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 108

MarkLogic Server Generating Code and Other Artifacts

* Generated Functions

4.3.3.1 Module Namespace Declaration

The generated modul e begins with a module namespace declaration of the following form,
derived from the info section of the model.

module namespace normalizedTitle = "baseUri/title-version";

For example, if your descriptor contains the following metadata:

"info": {
"title": "Example",
"version": "1.0.0",
"baseUri": "http://marklogic.com/examples/"

}

Then the converter module will contain the following modul e namespace declaration. Notice that
the leading upper case letter inthe titie value (“Example’) is converted to lower case when used
as a namespace prefix.

module namespace example =
"http://marklogic.com/examples/Example-1.0.0";

If the model info section does not include abaseuri Setting, then the namespace declaration uses
the base URI “http://example.org/”.

If the vaseuri does not end in aforward slash (“/”), then the module namespace URI isrelative.
For example, if vaseuri in the previous exampleis set to * http://marklogic.com/example’, then
the modul e namespace declaration is as follows:

module namespace example =
"http://marklogic.com/examples#Example-1.0.0";

To learn more about the base URI, see “Controlling the Model IRI and Module Namespaces’ on
page 76.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 109

MarkLogic Server Generating Code and Other Artifacts

4.3.3.2 Generated Functions

The converter module implements the following public functions, plus some private utility
functions for internal use by these functions.

Function Description

ns:extract-instance-T Transform raw source data into an in-memory entity
instance. One such function is generated for each entity
type T defined by the model descriptor. This function
producesaT instance asajson:object (aspecia type of
map:map)

ns:instance-to-envelope Create an entity envelope document from an entity
instance. You will not usually need to customize this
function. The input to this function is an entity instance
of the form produced by ns:extract-instance-T.

ns:instance-to-canonical Create the canonical XML or JSON representation of an
entity instance from the json:object representation.
You will not usually call this function directly or
customize it. Rather, the ns: instance-to-envelope
function usesit internally.

Each extract-instance-7functionisastarting place for synthesizing an entity instance from raw
source data. These functions are where you will apply most of your customizations to the
generated code.

The input to an extract-instance- function is a node containing the source data. The output is
an entity instance represented as a son:object. By default, the instance encapsulates a
canonicalized entity with the original source document. Thisis default envel ope document
representation.

In pseudo code, the generated implementation is as follows:

declare function ns:extract-instance-T(
Ssource-node as node ()
) as map:map

normalize the input source reference

initialize variables for the values of each entity property
initialize an empty instance of type T

attach the source data to the instance

assign values to the instance properties

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 110

MarkLogic Server Generating Code and Other Artifacts

The portion of the function that sets up the entity property valuesiswhere you will apply most or
all of your customizations. The default implementation assumes a one-to-one mapping between
source and entity instance property values.

For example, suppose the model contains a*“Person” entity type, with entity properties
“firstName”, “lastName’, and “fullName”. Then the default extract-instance-pPerson
implementation contains code similar to the following. The section following the “begin
customizations here” comment is where you make most or all of your customizations.

declare function example:extract-instance-Name (
Ssource-node as node ()
) as map:map

let S$source-node := es:init-source ($source, 'Person')

(: begin customizations here :)

let $id := $source-node/id ! xs:string(.)

let $firstName := $source-node/firstName ! xs:string(.)
let $lastName := $source-node/lastName ! xs:string(.)
let $fullName := $source-node/fullName ! xs:string(.)

(: end customizations :)

let $instance := es:init-instance ($Ssource-node, 'Person')
(: Comment or remove the following line to suppress attachments :)
=>es:add-attachments (Ssource)

return

if (empty(Ssource-node/*))
then $instance

else S$instance

=> map:with('id', $id)
=> map:with('firstName', $firstName)
=> map:with('lastName', $lastName)

(

=> map:with('fullName', $fullName)

If the source XML elements or JISON objects have different names or require a more complex
transformation than a simple type cast, customize the implementation. For more details, see
“Customizing a Converter Module” on page 111.

Comments in the generated code describe the default implementation in more detail and provide
suggestions for common customi zations.

4.3.4 Customizing a Converter Module

Most customization involves changing the portion of each ns:extract-instance-7 function that
sets the values of the instance properties.

MarkLogic 10—May, 2019 Entity Services Developer’'s Guide—Page 111

MarkLogic Server Generating Code and Other Artifacts

The default implementation of this portion of an extract function assumes that some property P in
the entity instance gets its value from a node of the same name in the source data, and that a
simple typecast is sufficient to convert the source value to the instance property type defined by
the model.

For example, if an entity type named rerson defines a string-valued property named firstName,
then the generated code in firstName IN example:extract-instance-person related to initializing
this property looks like the following:

let $firstName := $source-node/firstName ! xs:string(.)
let $instance := es:init-instance($Ssource-node, 'Person')

if (empty (Ssource-node/*))
then S$Sinstance
else Sinstance

=> map:with('firstName', $firstName)

You might need to modify the code to perform a more complex transformation of the value, or
extract the value from a different location in the source node. For example, if your source data
uses the property name “given” to hold this information, then you would modify the generated
code asfollows:

let $firstName := $source-node/given ! xs:string(.)

The following list describes other common customization use cases:

» Synthesize a property value from other data. For example, aggregate an instance property
from other values in your source data, or extract a value from other sources, based on
information in the source node.

* Normalize dataformats. For example, data such as dates, telephone numbers, and social
security numbers often occur in multiple formatsin raw data. Y ou can normalize such data
to asingle format in your instances for easy search and comparison.

» Assignadefault value for missing data. If you know that arequired property in your entity
instance is not always present in your source data, you can modify the code to ensure the
entity instance contains a reasonabl e default value.

Once you finish customizing the code, you must deploy the module to your App Server before
you can use the code. For details, see “ Deploying Generated Code and Artifacts’ on page 144.

For amore complete example, see” Getting Started With Entity Services’ on page 17 or the Entity
Services examples on GitHub. For details on locating the GitHub examples, see “ Exploring the
Entity Services Open-Source Examples’ on page 14.

MarkLogic 10—May, 2019 Entity Services Developer’'s Guide—Page 112

MarkLogic Server Generating Code and Other Artifacts

4.4 Creating a Model Version Translator Module

You can use the Entity Services API to generate atemplate for transitioning entity instance data
from one version of your model to another. This section covers the following topics:

e Purpose of a Version Translator

* Generating a Version Translator Module Template

e Understanding the Default Version Translator Implementation

For an end-to-end example of handling model version changes, see the Entity Services examples
on GitHub. For more details, see “ Exploring the Entity Services Open-Source Examples’ on

page 14.

44.1 Purpose of a Version Translator

A version trandator isan XQuery library modul e that helps you convert instance data conforming
to one model version into another.

The version trandlator only addresses instance conversion. Model changes can also require
changesto other artifacts, such asthe TDE template, schema, query options, instance converter,
and database configuration. For more details, see “Managing Model Changes’ on page 85.

Though you can run the generated translator code as-is, it is meant to serve as a starting point for
your customizations. Depending on the ways in which your source and target models differ, you
might be required to modify the code.

4.4.2 Generating a Version Translator Module Template

Generate a version trandlator using the XQuery function es:version-translator-generate O the
JavaScript function es.versionTranslatorGenerate. The output isan XQuery library module that
you can customize and install in your modules database.

Theinputsto the generator are source and target model descriptors, as JSON. If you have an XML
descriptor, you must first convert it to the expected format; for details, see “Working With an
XML Model Descriptor” on page 81.

You can use the generated code as-is, but most applications will require customization of the
converter implementation. For details, see “Customizing a Version Translator Module” on
page 116.

You must install the translator module in your modul es database before you can useit. For details,
see “ Deploying Generated Code and Artifacts’ on page 144.

MarkLogic 10—May, 2019 Entity Services Developer’'s Guide—Page 113

MarkLogic Server Generating Code and Other Artifacts

The following example code generates a translator module from previously persisted descriptors,
and then saves the generated code as a file on the filesystem. The resulting module is designed to
convert instances of version 1.0.0 to instances of version 2.0.0.

Language Example

XQuery Xquery version "1.0-ml";

import module namespace es =
"http://marklogic.com/entity-services"
at "/MarkLogic/entity-services/entity-services.xqy";

let $vl := fn:doc('/es-gs/models/person-1.0.0.json')
let $v2 := fn:doc('/es-gs/models/person-2.0.0.json')
return xdmp:save (
' /space/es/gs/models/person-1.0.0-t0-2.0.0.xqgy",
es:version-translator-generate($vl, $v2)

)

JayaScﬂpt 'use strict!';

const es = require('/MarkLogic/entity-services/entity-services.xqy');

const vl cts.doc('/es-gs/models/person-1.0.0.json') ;
const v2 = cts.doc('/es-gs/models/person-2.0.0.json') ;
xdmp . save (
' /space/es/gs/models/person-1.0.0-to-2.0.0.xqy",
es.versionTranslatorGenerate ($vl, $v2)

) ;

You could also insert the trandator directly into the modules database, but the translator is an
important project artifact that should be placed under source control. You will want to track
changesto it as your application evolves.

4.4.3 Understanding the Default Version Translator Implementation

This section explores the default code generated for aversion translator module. Thisinformation
can help guide your customizations. This section covers the following topics:

* Module Namespace Declaration

e Generated Functions

* Customizing a Version Translator Module

4.4.3.1 Module Namespace Declaration

The generated module begins with a module namespace declaration of the following form,
derived from the info section of the two models.

module namespace title2-from-titlel =
"baseUri2/title2-version2-from-titlel-versionl";

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 114

MarkLogic Server

Generating Code and Other Artifacts

Where titie1 and version: comefrom the info section of the source model, titie2 and version2
come from the info section of the target model, and paseuri2 comes from the info section of the
target model. (The base URI from the source model is unused.) The titles are normalized to al

lower case.

For example, suppose the source and target models contain the following info sections, reflecting
achange from version 1.0.0 to version 2.0.0 of amodel with thetitle “Person”. The model titleis

unchanged between versions.

Model Info Section
Source "info": {
"title": "Person",
"version": "1.0.0",
"baseUri": "http://example.org/example-person/"
}
Target "info": {
"title": "Person",
"version": "2.0.0",
"baseUri": "http://example.org/example-person/"
}

Then the version tranglator module will contain the following module namespace declaration.

module namespace person-from-person
= "http://example.org/example-person/Person-2.0.0-from-Person-1.0.0";

If the info Section of the target model does not include avaseuri Setting, then the namespace
declaration uses the base URI “http://example.org/”.

If the target baseuri does not end in aforward slash (“/7), then the module namespace URI is
relative. For example, if baseuri in the previous example has no trailing slash, then the module

namespace declaration is asfollows:

module namespace person-from-person
= "http://example.org/example-person#Person-2.0.0-from-Person-1.0.0";

4.4.3.2 Generated Functions

The version translator modul e contains a translation function named ns: convert-instance-T for
each entity type T defined in the target model. The module can contain additional functions, but
thesefor internal use by the trandator module. The convert - instance-rfunctions are the* public”

face of the converter.

MarkLogic 10—May, 2019

Entity Services Developer’s Guide—Page 115

MarkLogic Server Generating Code and Other Artifacts

For example, if the target model defines aname entity type and a rerson entity type and the title of
the both the source and target model is rerson, then the generated translation module will contain
the following functions:

o person-from-person:convert-instance-Name
® person-from-person:convert-instance-Person

The input to a convert-instance-T7 function should be an entity instance or envel ope document
conforming to the source model version of type T. The output is an in-memory instance
conforming to the target model version of type T, similar to the output from the
extract-instance-T function of an instance converter module.

For each entity type property that is unchanged between the two versions, the default
convert-instance-T cOde Simply copies the value from source instance to target instance. Actual
differences, such as a property that only exists in the target model, require customization of the
trand ator. For details, see “ Customizing a Version Translator Module” on page 116.

For an example, see example-version iN the Entity Services examples on GitHub. To download a
copy of the examples, see “Exploring the Entity Services Open-Source Examples’ on page 14.

4.4.4 Customizing a Version Translator Module

This section describes some common model changes, how they are handled by the default
translation code, and when customizations are likely to be required.

Most of your trandlator customizations go in the block of variable declarations near the beginning
of the conversion function. For example, the block of code shown in bold, below. These
declarations set up the values to be assigned to the properties of the new instance, later in the
conversion function. The variable names and default initial values are model-dependent.

declare function person-from-person:convert-instance-Person (
Ssource as node ()
) as map:map

let S$source-node := es:init-translation-source ($Ssource, 'Person')
let $id := $source-node/id ! xs:string(.)
let $firstName := $source-node/firstName ! xs:string(.)

let $lastName :
let $fullName :

$source-node/lastName ! xs:string(.)
$source-node/fullName ! xs:string(.)

return. ..

MarkLogic 10—May, 2019 Entity Services Developer’'s Guide—Page 116

MarkLogic Server

Generating Code and Other Artifacts

The table below provides abrief overview of some common entity type definition changes and
what customizations they might require. The context for the code snippets is the property value
initialization block shown in the previous example. All the code snippets assume arequired
property; if the property under consideration is optional, then the call t0 wap:with would be
replaced by acall to es:optional.

Use Case Notes on the Generated Code
Unchanged The default code copies the value of the source instance to the target
Property instance. For array valued properties, the es: extract-array Utility function
performs the copy.
For example, if both source and target contain a property named “thing”, the
default trandator function includes a line similar to one of the following:
(: atomic type (string, in this case) :)
let $thing := S$source-node/thing ! xs:string(.)
(: array type (item type string, in this case) :)
let sSthing := ex:extract-array($source-node/thing, xs:string#))
(: reference to a locally resolvable "Name" entity of type :)
let S$extract-reference-Name := es:init-instance(?, 'Name')
let $thing := Ssoure-node/thing/* ! $extract-reference-Name (.)
Property Type | The default code assumes a simple type cast to the target type is sufficient.
Change From Customization is required if the types are not meaningfully convertible this
One Atomic way.
Typeto
Another For example, if a property named “rating” has string type in the source but
float type in the target, then the generated code includes the following:
let $rating := $source-node/rating ! xs:float(.)
Property Type | The default code constructs an array containing asingle item that is the
Change from value from the source property. Thisisdone by es:extract-array.
Atomicto Customization is required if the source and target value types differ and are
Array Type not meaningfully convertible by a simple type cast.

For example, if the “rating” property isasimple string value in the source,
but an array of float valuesin the target, then the generated code containsthe
following:

let Srating :=
es:extract-array ($source-node/rating, xs:float#1))

MarkLogic 10—May, 2019

Entity Services Developer’s Guide—Page 117

MarkLogic Server

Generating Code and Other Artifacts

Use Case Notes on the Generated Code
Property Type | The default code populates the target instance with the value from the first
Change From item in the source array. A simple type cast is used to convert the value;
Array to customization isrequired if the source and target value types differ and are
Atomic Type not meaningfully convertible this way.
For example, if the “rating” property isan array of float valuesin the source
and a single string value in the target, then you see:
(: Warning: potential data loss, truncated array. :)
let $rating := xs:string(fn:head($source-node/rating))
Property Type | The default code creates areference from the source value. Since the source
Change From value is not an entity, customization is required to construct a meaningful
Atomicto reference.
Local
Reference Type | For example, if aproperty named “name” is a string in the source but a
locally resolvable reference to aname entity typein the target, then following
is the default translation code:
let $name := $source-node/name ! es:init-instance(?, 'Name') (.)
Property in The default code copies the value from the source instance to the target
Target Only instance. However, the source instance probably doesn’t contain this

property, so customization isusualy required. You might modify the code to
assign a meaningful default value or extract the new value from the raw
source in the attachments of the source envelope.

For example, if only the target contains a float typed property named
“rating”, then the generated code includes the following:

(: The following property was missing from the source type.
The XPath will not up-convert without intervention. :)
let $rating := $source-node/rating ! xs:float(.)

You could modify the codeto give the “rating” property a default value of O:

let Srating := 0 ! xs:float(.)

Alternatively, if an XML source envelope contains the desired value in its
attachments, you could extract it as follows:

let $rating := $source-node/rating ! xs:float(.)=>
map:with('rating', xs:float (
$source//es:attachments/Person/rating/fn:data()))

MarkLogic 10—May, 2019

Entity Services Developer’s Guide—Page 118

MarkLogic Server

Generating Code and Other Artifacts

Use Case

Notes on the Generated Code

Property in
Source Only

The default code contains only a commented out line you can use as a basic
template for extraction, if appropriate. If this property has no analog in the
target model, you can remove or ignore the commented out code.

For example, if only the source contains a property named “address’, then
the generated code includes the following:

(: The following properties are in the source, but not the target
=> map:with ('NO TARGET',
Xs:string(Ssource-node/Person/address))

:)

Rename a
Property

This appears asif the property in the source model was removed and a new
property was added to the target model. Treat it like the “ Property in Target
Only” case, above, but use the original property as the source value.

For example, if the source model contains a property named “firstName”
that you change to “first”, then the default code contains the following:

let $first := Ssource-node/first ! xs:string(.)
Modify it to pull the value from the “firstName” property of the source:

let $first := Ssource-node/firstName ! xs:string(.)

Entity Type
Added to
Target Model

A conversion function is generated that copies properties from the input
source node to the output instance as if there are no differences. The codeis
GQUiV8| ent towhat es: instance-converter-generate produc&s. You should
usually customize this function. For example, you could modify it to extract
the new entity type property values from the raw source attachment of a
source envelope. You could also use raw source as input to this function,
rather than an envel ope document.

Entity Type
Removed from
Source Model

A commented out conversion function is generated that copies properties
from the input source node to the output instance as if there are no
differences. You must uncomment and customize this function if you plan to
store the values from instances of the defunct entity type somewherein
instances based on the target model.

4.5

Generating a TDE Template

You can generate a Template Driven Extraction (TDE) template from your model using Entity
Services. Once installed, the template enables the following capabilities for your model-based

application:

* Query your entity instances as row data using SQL or the Optic API.

MarkLogic 10—May, 2019

Entity Services Developer’s Guide—Page 119

MarkLogic Server Generating Code and Other Artifacts

* Query facts about and infer connections between your entity instances using SPARQL or
the Optic API.

Note: You can only take advantage of these capabilities for entity types that define a
primary key. Without a primary key, there is no way to uniquely identify entity
instances. For details on defining a primary key, see “ldentifying the Primary Key
Entity Property” on page 64.

This section contains the following topics:

e Generating a TDE Template

* Characteristics of a Generated Template

¢ Deploying a TDE Template

e Example: TDE Template Generation and Deployment

To learn more about TDE, see Template Driven Extraction (TDE) in the Application Developer’s
Guide.

45.1 Generating a TDE Template

Usethe es:extraction-template-generate XQuery function or the
es.extractionTemplateGenerate JavaScript function to create a TDE template. The input to the
template generation function isa JSON oOr json:object representation of amodel descriptor. You
can use the template as-is, or customize it for your application. You must install the template
before your application can benefit from it. For details, see “Deploying a TDE Template” on
page 123.
Note: Any hyphens (“-") in the model title, entity type names, or entity property names
are converted to underscores (“_") when used in the generated template, in order to
avoid invalid SQL names.

For example, the following code snippet generates atemplate from amodel previously persisted
in the database. For a more complete example, see “ Example: TDE Template Generation and
Deployment” on page 124.

Language Example

XQuery es:extraction-template-generate (
fn:doc('/es-gs/models/person-1.0.0.json'))

JavaScri pt es.extractionTemplateGenerate (
cts.doc('/es-gs/models/person-1.0.0.json"')) ;

The template is an important project artifact that you should put under source control.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 120

MarkLogic Server Generating Code and Other Artifacts

If you customize the template, you should validate it. You can use the tde:validate XQuery
function or the tde .va1idate JavaScript function for standalone validation, or combine validation
with insertion, as described in “Deploying a TDE Template” on page 123.

45.2 Characteristics of a Generated Template

A TDE template generated by the Entity Services API isintended to apply to entity envelope
documents with the structure produced by an instance converter module. If you use a different
structure, you will have to customize the template. For more details, see “What is an Envelope
Document?’ on page 147.

The generated template has the following characteristics:

» Thedefault root context for the template matches instance data in both XML and JSON
envel opes, assuming the envelopes conform to the Entity Services envelope convention.
The generated template includes comments on how to change the context path for better
performance if you only use a single envelope format (only XML or only JSON).

» A triples sub-template is defined for each entity type in the model that defines a primary
key. This enables Semantic queries and inferencing on entity instances. For details, see
“Triples Sub-Template Characteristics’ on page 121.

* A rows sub-template is defined for each entity type in the model that defines at |east one
required property. This enables querying instances as rows using SQL or the Optic API.
For details, see “Rows Sub-Template Characteristics’ on page 122 and “ Rows Template
Array Property View Characteristics’ on page 122.

» If you define a namespace prefix for an entity type as described in “ Defining a Namespace
URI for an Entity Type” on page 68, the prefix is used in XPath expressionsin the
template. Namespace prefixes are not used for references to entity types external to the
model because such prefixes are unknown to the template generator.

45.2.1 Triples Sub-Template Characteristics
The triples sub-template for an entity type T has the following characteristics.

» A triples sub-template is only generated for entity types that define a primary key.

* Thecontext for the sub-templateis . /7. That is, //es:instance/T IN @n envelope
document. For example, //es:instance/person if the model defines arerson entity type.

* A subject identifier variable named subject-iri isdefined. The value of thisvariableisan
IRI created by concatenating the entity type name with an instance’s primary key value.
ThisIRI identifies a particular instance of the entity type.

* A triples Specification that will cause the following facts (triples) to be generated about
each instance of type T:

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 121

MarkLogic Server Generating Code and Other Artifacts

* “Thisentity hastype T, where the entity isidentified by its primary key, and the
typeisidentified by the subject-iri Of the entity type. In RDF terms, the triple
eXpreSSGS“<subject—iri> a <entity-type-iris .

* “Thisentity isdefined by thismodel”, where the entity isidentified by its primary
key, and the model isidentified by the persisted descriptor URI. In RDF terms, the
tri p| € expresses “<subject-iri> rdfs:isDefinedBy <descriptor-document-uris .
Thistriple defines how to join instance/class membership to the instance
document.

45.2.2 Rows Sub-Template Characteristics
The rows sub-template for an entity type T has the following characteristics.

* A rowssub-template is only generated for entity types that define at |east one required
property. (A primary key property isimplicitly arequired property.)

* The context for the sub-templateis . /7. That is, //es: instance/T N @n envelope
document.

» The schemaname for the sub-template is the same as mode! title.

» For each entity property that does not have array type, a column with same name as the
property is defined. (A property with array typeis supported with arelated view, soitis
not present in the main view.)

» For each entity property with array type, a separate view named 7 propertyName IS
defined. For example, person_friends, if the person entity type has an array typed
property named friends. The characteristics of thisview are described below.

* Anentity property with iri asits datatypeisindexed as 1r.

* Any entity property that is not required is marked as nullable.

45.2.3 Rows Template Array Property View Characteristics
The T propertyname View generated in the rows sub-template for an entity property with array

type has the following characteristics:
* If thearray item typeisascalar type, the view has two colums:

* Theleft column has the same name and type as the primary key of the enclosing
entity type (7).
* Theright column contains the scalar valuesin the array, each in its own row.

» |Ifthearray itemtypeisalocal reference and the referenced type defines a primary key,
then view has two columns:

* Theleft column has the same name and type as the primary key of the enclosing
entity type (7).

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 122

MarkLogic Server Generating Code and Other Artifacts

* Theright column has the name arrayPropName_primaryKey and contains the
primary key of the referenced type.

» Ifthearray itemtypeisalocal reference and the referenced type does not define a primary
key, then:

* Theleftmost column of the view has the same name and type as the primary key of
the enclosing entity type (T).
* Thereisacolumn for each property of the referenced type.
» If thearray item type is an external reference, then the view has two columns:

» Theleft column of the view has the same name and type as the primary key of the
enclosing entity type (T).

» Theright column has the same name as the array property and type string. You
usually need to customize this column definition.

45.3 Customizing a TDE Template
The following entity type characteristics result in a TDE template that requires customization:

* If noprimary key is defined for an entity type that contains an array-typed property, you
will like need to customize the template to define an appropriate type and value for the left
column in the array view. Thisview isdiscussed in more detail in “Rows Template Array
Property View Characteristics’ on page 122.

* Thetemplate generator cannot determine the datatype of an external entity type reference,
so it defaults to string. Y ou must manually set the type in the template.

» If you choose to embed entity instances inside one another, then the context element of
the embedded type must be changed to reflect its position in instance documents.

You can make other customizations required by your application. For example, you might want to
generate additional facts about your instances, or remove some columns from arow sub-template.

The generated template should work for both XML and JSON envel ope documents in most cases,
but some entity type structures might require customization of XPath expressionsin the template
in order to accommodate both formats.

For more details on the structure and content of TDE templates, see Template Driven Extraction
(TDE) in the Application Developer’s Guide.

45.4 Deploying a TDE Template

You must install your TDE template in the schemas database associated with your content
database. The template must be in the special collection http://marklogic.com/xdmp/tde fOr
MarkL ogic to recognize it as template document.

MarkLogic 10—May, 2019 Entity Services Developer’'s Guide—Page 123

MarkLogic Server Generating Code and Other Artifacts

Choose one of the following template installation methods:

* Usethetde:template-insert XQuery function or the tde. templaternsert JavaScript
function. This method combines validation and installation in one step, and automatically
inserts the template into the required collection.

» Use any general-purpose document insertion interface, such as xdmp : document - insert
(XQuery) or xdmp . documentInsert (JavaScript). You must explicitly insert the template
document into the special collection nttp: //marklogic.com/xdmp/tde. NO validation is
performed.

For more details, see Validating and Inserting a Template in the Application Developer’s Guide.

Once your template isinstalled, MarkL ogic will update the row index and generate triples rel ated
to your instances whenever you ingest instances or reindexing occurs.

45.5 Example: TDE Template Generation and Deployment

The following example generates a TDE template from the model used in “ Getting Started With
Entity Services’ on page 17, and then installs the template in the schemas database.

The following code generates atemplate from a previously persisted model, and then saves the
template to afile on the filesystem as sarTrFacT DIR/person-templ.xml.

L anguage

Example

XQuery

xquery version "1.0-ml";

import module namespace es =
"http://marklogic.com/entity-services"
at "/MarkLogic/entity-services/entity-services.xqy";

let SARTIFACT DIR := '/space/es/gs/'
return xdmp:save (
fn:concat (SARTIFACT DIR, 'person-templ.xml'),
es:extraction-template-generate (
fn:doc('/es-gs/models/person-1.0.0.json')))

JavaScript

'use strict';
const es = require('/MarkLogic/entity-services/entity-services');

const ARTIFACT DIR = '/space/es/gs/';
xdmp . save (
ARTIFACT DIR + 'person-templ.xml',
es.extractionTemplateGenerate (
cts.doc (' /es-gs/models/person-1.0.0.json'))

) ;

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 124

MarkLogic Server Generating Code and Other Artifacts

You are not required to save the template to the filesystem. However, the template is an important
project artifact that you should place under source control. Saving the template to the filesystem
makes it easier to do so.

If you apply the code above to the model from “ Getting Started With Entity Services” on page 17,
the resulting template defines two sub-templates. The first sub-template defines how to extract
semantic triples from rerson entity instances. The second sub-template defines how to extract a
row-oriented projection of person entity instances.

<template xmlns="http://marklogic.com/xdmp/tde">

<templates>
<template xmlns:tde="http://marklogic.com/xdmp/tde" >
<context>./Person</context>
<vars>
<var>
<name>subject-iri</name>
<vals>sem:iri(...)</val>
</var>
</varss>
<triples>...</triples>
</template>
<template xmlns:tde="http://marklogic.com/xdmp/tde" >
<context>./Person</context>
<rows>...</rows>

</template>

</templates>
</template>

If the model includes additional entity types, then the template contains additional, similar
sub-templates for these types.

The following code validates and installs a template using the convenience function provided by
the TDE library module. Evaluate this code in the context of your content database.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 125

MarkLogic Server Generating Code and Other Artifacts

Language Example
XQuery xquery version "1.0-ml";
import module namespace tde = "http://marklogic.com/xdmp/tde"
at "/MarkLogic/tde.xgy";
let SARTIFACT DIR := '/space/es/gs/'
return tde:template-insert (
'/es-gs/templates/person-1.0.0.xml",
xdmp : document -get (
fn:concat ($SARTIFACT DIR, 'person-templ.xml'))
)
JavaScript | 'use strict';
const tde = require('/MarkLogic/tde') ;
const ARTIFACT DIR = '/space/es/gs/';
tde.templatelInsert (
'/es-gs/templates/person-1.0.0.xml",
fn.head (xdmp.documentGet (ARTIFACT DIR + 'person-templ.xml'))
)

If the query runs successfully, the document /es-gs/templates/person-1.0.0.xml iScreated inthe
schemas database. If you explore the schemas database in Query Console, you should see that the
templateisin the specia collection http: //marklogic.com/xdmp/tde.

4.6 Generating an Entity Instance Schema

Entity Services can generate an X SD schemathat you can use to validate canonical (XML) entity
instances. Instance validation can be especially useful if you have a client or middle tier
application submitting instances.

This section contains the following topics:

e Schema Generation Overview

* Schema Characteristics

¢ Schema Customization

e Example: Generating and Installing an Instance Schema

e Example: Validating an Instance Against a Schema

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 126

MarkLogic Server Generating Code and Other Artifacts

46.1 Schema Generation Overview

To generate a schema, apply the es: schema-generate XQuery function or the es . schemaGenerate
JavaScript function to the object-node OF json:object representation of amodel descriptor, as
shown in the following table. For a more complete example, see “Example: Generating and
Installing an Instance Schema’ on page 128.

Language Example

XQuery es:schema-generate (fn:doc (' /es-gs/models/person-1.0.0.json"'))

JavaS(;ript es.schemaGenerate (cts.doc (' /es-gs/models/People-1.0.0.json')) ;

The schemais an important project artifact, so you should place it under source control.

Before you can use the generated schema(s) for instance validation, you must deploy the schema
to the schemas database associated with your content database. You can use any of the usual
document insertion APIsfor this operation.

Note: If your model defines multiple entity typesand the entity type definitions do not all
use the same namespace, a schemais generated for each unique namespace. Install
all of the generated schemas in the schemas database.

Use the xdmp : validate XQuery function or the xdmp.validate JavaScript function to validate
instances against your schema. For an example, see “Example: Validating an Instance Against a
Schema’ on page 130.

Note that you can only validate entity instances expressed as XML. You can extract the XML
representation of an instance from an envelope document using the
es:instance-xml-from-document XQuery function or the es. instancexml Frombocument JavaScript
function.

4.6.2 Schema Characteristics
The Entity Services API applies the following rules when generating a schema from a model:

* A scalar property typeistrandated into a simple, type-enforced xs:element.

* The schemaincludes an xs : comp1exType foOr each entity type defined by the model. This
type contains a sequence of elements representing the entity type properties.

» For each external entity type reference, atypeis generated that can hold avaue for a
reference of that type by using the string after the last slash (‘/”) in the external reference
URI.

» For each local entity type reference, an es: complexType IS generated.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 127

MarkLogic Server Generating Code and Other Artifacts

4.6.3

Array typed entity properties are handled using minoccurs and maxoccurs ON the property’s

xs:element.
Any entity property that is not a primary key or required is Set tO minoccurs="0".
A required property has cardinality 1.

The automated schema generation cannot resolve multiple properties with same name, but
different datatype. If thisoccurs, an xs:element IS generated for one property, and then
the xs: e1ement definitions for the other properties will be commented out. Y ou must
customize the schema (or modify your model) to resolve this conflict.

A separate schemais generated for each namespace declared in the model. For more
details on using namespacesin entity type definitions, see “ Defining aNamespace URI for
an Entity Type” on page 68.

Schema Customization

The following list describes some situations in which schema customization might be needed.

4.6.4

If your model contains multiple entity type properties with the same name, only one of
them will be reflected in the schema. The other(s) will be commented out. Change the
schema (or your model) to resolve this conflict.

Depending on how entity references are used in the model, parts of the schema might be
superfluous and can be removed.

Y ou might have to choose between validating entity references or validating embedded
entity instances, depending on the choices you make with respect to normalization and
entity document structure.

Example: Generating and Installing an Instance Schema

The following example generates a schema from a previously persisted model, and then inserts it
into the schemas database.

Since the model isin the content database and the schema must be inserted into the schemas
database, xamp: eval IS used to switch database contexts for the schemainsertion. If you generated
the schema and saved it to the filesystem first, then you would only have to work with the
schemas database, so the eval would be unnecessary.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 128

MarkLogic Server Generating Code and Other Artifacts

The following code inserts a schemawith the URI /es-gs/person-1.0.0.xsd into the schemas
database associated with the content database that holds the source model. Assume the model was
previously persisted as a document with URI /es-gs/models/person-1.0.0. son.

Language Example

XQuery Xquery version "1.0-ml";
import module namespace es =
"http://marklogic.com/entity-services"

at "/MarkLogic/entity-services/entity-services.xqy";

(: The query that inserts the schema into the schemas db :)
let Squery :=
'xquery version "1.0-ml";
declare variable S$schema as element (xs:schema) external;
declare variable Suri as xs:string external;
xdmp :document -insert ($uri, $schema)'’

(: Generate the schema :)
let $schema :=
es:schema-generate (fn:doc('/es-gs/models/person-1.0.0.json'))

(: Insert the schema into the Schemas db :)
return xdmp:eval (Squery,
(xs:QName ("schema"), S$schema,
Xs:QName ("uri"), '/es-gs/person-1.0.0.xsd'),
<options xmlns="xdmp:eval"s>
<database>{xdmp:schema-database () }</database>
</options>

)

JavaScript 'use strict';

const es = require('/MarkLogic/entity-services/entity-services')

// The query that inserts the schema into the schemas db

const query = 'declareUpdate(); xdmp.documentInsert (uri,
schema) ;'

// Generate the schema

const schema = fn.head(

es.schemaGenerate (cts.doc('/es-gs/models/person-1.0.0.json'))) ;
xdmp . eval (

query,
{schema: schema, uri: '/es-gs/person-1.0.0.xsd'}, // vars
{database: xdmp.schemaDatabase () } // options

)i

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 129

MarkLogic Server Generating Code and Other Artifacts

4.6.5 Example: Validating an Instance Against a Schema

The following example validates an instance against a schema generated using the
es:schema-generate XQuUery function or the es. schemacenerate Server-Side JavaScri pt function.
It is assumed that the schemais already installed in the schema database associated with the
content database, as shown in “Example: Generating and Installing an Instance Schema’ on
page 128.

The following code validates an entity instance within a previously persisted envel ope document.
Assume this instance was created using the instance converter module for its entity type, and
therefore isvalid. Thus, the validation succeeds. The query returns an empty

xdmp :validation-errors €lement in XQuery and an empty object in JavaScript.

Language Example

XQuery xquery version "1.0-ml";

import module namespace es =
"http://marklogic.com/entity-services"
at "/MarkLogic/entity-services/entity-services.xqy";

xdmp:validate (
es:instance-xml-from-document (
fn:doc('/es-gs/envelopes/1234.xml"')),
'type', xs:QName ('PersonType'))

JavaScript 'use strict';

const es = require('/MarkLogic/entity-services/entity-services')

xdmp.validate (
es.instanceXmlFromDocument (
cts.doc('/es-gs/envelopes/1234.xml')),
'type', 'PersonType')

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 130

MarkLogic Server Generating Code and Other Artifacts

Thefollowing example validates an in-memory instance against the schema. The schemais based
on the model from “ Getting Started With Entity Services” on page 17. The instance was
intentionally created without a required property (“id”) so that it will fail validation.

Language Example

XQuery Xquery version "1.0-ml";
import module namespace es =
"http://marklogic.com/entity-services"

at "/MarkLogic/entity-services/entity-services.xqgy";

let $invalid-entity :=
<Person>
<firstName>George</firstName>
<lastName>Washington</lastName>
<fullName>George Washington</fullName>
</Persons>
return
xdmp:validate (Sinvalid-entity, 'type',6 xs:QName ('PersonType'))

JavaScript 'use strict';
const invalidiEntity = fn.head (xdmp.unquote (
'<Person>"'+

'<firstName>George</firstName>' +
'<lastName>Washington</lastName>' +
'<fullName>George Washington</fullName>' +

'</Person>"')) ;

xdmp.validate (invalidEntity, 'type', 'PersonType');

4.7 Generating a Pll Security Configuration Artifact

You identify Pll entity properties using the pii property of an entity model, as described in
“ldentifying Personally Identifiable Information (PI1)” on page 66. Then, use the
es:pii-generate XQuery function or the es.piicenerate JavaScript function to generate a
security configuration artifact that enables stricter access control for Pl entity instance properties.

The generated configuration contains an Element Level Security (ELS) protected path definition
for each Pl property, and an EL S query roleset configuration. The protected path configuration
limits read access to users with the “pii-reader” security role. The query roleset prevents users
without the “ pii-reader” role from seeing the protected content in response to a query or XPath
expression. The “pii-reader” roleis pre-defined by MarkLogic.

To learn more about Element Level Security, protected paths, and query rolesets, see Element Level
Security in the Security Guide.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 131

MarkLogic Server Generating Code and Other Artifacts

For example, the following model descriptors specify that the name and nio properties can contain

PII:
Format Example Model Descriptor
JSON { minfo": {
"title": "People",
"description": "People Example",
"version": "4.0.0"
b
"definitions":
"Person":
"properties":
"id": { "datatype": "int" },
"name": { "datatype": "string" },
"bio": { "datatype": "string" },
"rating": { "datatype": "float" }
¥
"required": ["name"],
"primaryKey": "id",
"pii": ["name", "bio"]
I
XML <es:model xmlns:es="http://marklogic.com/entity-services">

<es:info>
<es:title>People</es:title>
<esg:description>People Example</es:descriptions
<es:version>4.0.0</es:versions>
</es:info>
<es:definitions>
<Person>
<es:properties>
<id><es:datatype>int</es:datatype></id>
<name><es:datatype>string</es:datatype></name>
<bio><es:datatype>string</es:datatype></bio>
<ratings><es:datatype>float</es:datatype></rating>
</es:properties>
<es:requiredsname</es:requireds>
<es:primary-key>id</es:primary-key>
<es:piisname</es:pii>
<es:piisbio</es:pii>
</Persons>
</es:definitions>
</es:model>

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 132

MarkLogic Server Generating Code and Other Artifacts

Assuming the above model descriptor is persisted in the database as
/es-ex/models/people-4.0.0.json, then the following code generates a database configuration
artifact from the mode!:

Language Example

XQuery xquery version "1.0-ml";

import module namespace es =
"http://marklogic.com/entity-services"
at "/MarkLogic/entity-services/entity-services.xqy";

es:pii-generate (
fn:doc (' /es-ex/models/people-4.0.0.json'))

JayaScﬂpt 'use strict';

const es = require('/MarkLogic/entity-services/entity-services');

es.piiGenerate (
cts.doc('/es-ex/models/people-4.0.0.json'))

The generated security configuration artifact should look similar to the following. If you deploy
this configuration, then only users with the “ pii-reader” security role can read the “name” and
“bio” properties of a Person instance. The “pii-reader” roleis pre-defined by MarkL ogic.

{ "name": "People-4.0.0",
"desc": "A policy that secures name,bio of type Person",
"config":

"protected-path": [

{

"path-expression": "/envelope//instance//Person/name",
"path-namespace": [],
"permission":
"role-name": "pii-reader",
"capability": "read"
}
b
{
"path-expression": "/envelope//instance//Person/bio",
"path-namespace": [],
"permission": {
"role-name": "pii-reader",
"capability": "read"
}
}
1,
"query-roleset": {
"role-name": [

"pii-reader"

byl

MarkLogic 10—May, 2019 Entity Services Developer’'s Guide—Page 133

MarkLogic Server Generating Code and Other Artifacts

Note that the configuration only includes protected paths for PlI properties in the entity instance.
Envel ope documents also contain the original source document as an attachment by default. Any
PII in the source attachment is not protected by the generated configuration. You might want to
define additional protected paths or modify the extract-instance-7 function of your instance
converter module to exclude the source attachment.

Deploy the artifact using the Configuration Management API. For example, if thefile
pii-config.json contains the configuration generated by the previous example, then the
following command adds the protected paths and query roleset to MarkLogic's security
configuration:

curl --anyauth --user user:password -X PUT -i \
-d @./pii-config.json -H "Content-type: application/json" \
http://localhost:8002/manage/v3

You can add additional configuration settings to the generated artifact, or merge the generated
settings into configuration settings created and maintained el sewhere. For example, you could
configure additional protected paths to control access to the source data for the “name” and “bio”
properties in the source attachment of your instance envel ope documents.

4.8 Generating a Database Configuration Artifact

Usethees: database-properties-generate XQuery function or the
es.databasePropertiesGenerate JavaScript function to create a database configuration artifact
from the JSON object-node OF json:object representation of a model descriptor. This artifact is
helpful for configuring your content database. You are not required to use this artifact; itisa
convenience feature.

The generated configuration information always has at |east the following items, and may contain
additional property definitions, depending on the mode!:

» Enablethetripleindex and the collection lexicon, both of which are required for querying
amodel as described in “Search Basics for Models’ on page 167.
* Definethe“es’ namespace prefix globally so that it can be used in path queries.

If an entity type definition specifies entity properties for range index and word lexicon
configuration, then the database configuration artifact includes corresponding index and/or
lexicon configuration information.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 134

MarkLogic Server Generating Code and Other Artifacts

For example, the following model descriptors specify a path range index for the ia and rating
properties and aword lexicon for the bio property of the person entity type:

Format Example Model Descriptor
JSON { minfo": {
"title": "People",
"description": "People Example",
"version": "3.0.0"
I
"definitions":
"Person":
"properties":
"id": { "datatype": "int" },
"name": { "datatype": "string" },
"bio": { "datatype": "string" },
"rating": { "datatype": "float" }
¥
"required": ["name"],
"primaryKey": "id",

"pathRangeIndex": ["id", "rating"],
"wordLexicon": ["bio"]

b

XML <es:model xmlns:es="http://marklogic.com/entity-services">
<es:info>
<es:title>People</es:title>
<esg:description>People Example</es:descriptions
<es:version>3.0.0</es:version>
</es:info>
<es:definitions>
<Person>
<es:properties>
<id><es:datatype>int</es:datatype></id>
<name><es:datatype>string</es:datatype></name>
<bio><es:datatype>string</es:datatype></bio>
<ratings><es:datatype>float</es:datatype></rating>
</es:properties>
<es:required>name</es:required>
<es:primary-keys>id</es:primary-key>
<es:path-range-index>id</es:path-range-index>
<es:path-range-index>rating</es:path-range-index>
<es:word-lexicon>bio</es:word-lexicon>
</Persons>
</es:definitions>
</es:model>

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 135

MarkLogic Server Generating Code and Other Artifacts

Assuming the above model descriptor is persisted in the database as
/es-ex/models/people-3.0.0.json, then the following code generates a database configuration

artifact from the model:
Language Example
XQuery xquery version "1.0-ml";

import module namespace es =
"http://marklogic.com/entity-services"
at "/MarkLogic/entity-services/entity-services.xqy";

es:database-properties-generate (
fn:doc (' /es-ex/models/people-3.0.0.json'))

JavaScript

'use strict';
const es = require('/MarkLogic/entity-services/entity-services');

es.databasePropertiesGenerate (
cts.doc('/es-ex/models/people-3.0.0.json'))

The generated configuration artifact should look similar to the following. Notice that range index

information

isincluded for ia and rating and word lexicon information isincluded for vio.

"database-name": "$%$DATABASE%%",
"schema-database": "%%SCHEMAS_ DATABASE%%",
"path-namespace": [
"prefix": "es",
"namespace-uri": "http://marklogic.com/entity-services"
1,
"element-word-lexicon": [
"collation": "http://marklogic.com/collation/en",
"localname": "bio",

"namespace-uri": ""

}
1,

"range-path-index": [

{
"collation": "http://marklogic.com/collation/en",
"invalid-values": "reject",
"path-expression": "//es:instance/Person/id",
"range-value-positions": false,
"scalar-type": "int"

b

{
"collation": "http://marklogic.com/collation/en",
"invalid-values": "reject",
"path-expression": "//es:instance/Person/rating",

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 136

MarkLogic Server Generating Code and Other Artifacts

"range-value-positions": false,
"scalar-type": "float"

] I
"triple-index": true,
"collection-lexicon": true

}

Note that the generated range index configuration disables range value positions and rejects
invalid values by default. You might choose to change one or both of these settings, depending on
your application.

You can add additional configuration settings to the generated artifact, or merge the generated
settings into configuration settings created and maintained elsewhere.

You can use the generated configuration properties with your choice of configuration interface.
For example, you can use the artifact with the REST Management API (after minor modification),
or you can extract the configuration information to use with the XQuery Admin API.

To use the generated database configuration artifact with the REST Management APl method
PUT:/manage/v2/databases/{id|name}/properties,rnakethefO”OMﬂngrnOd”iCaﬁonS

* Replace sspaTarasess with the name of your content database.

* Replace s3scurvas_patasasess With the name of the schemas database associated with
your content database.

» If you have configured other range indexes or word lexicons into your database, merge
your existing index or lexicon configuration with the generated configuration so that no
settings are lost.

For example, you can use a curl command similar to the following to change the properties of the
database named “es-ex”. Assume the file do-props . json contains the previously shown config
artifact above, with the database-name and schema-database property values modified to “es-ex”
and “ Schemas”, respectively.

curl --anyauth --user user:password -X PUT -i \
-d @./db-props.json -H "Content-type: application/json" \
http://localhost:8002/manage/v2/databases/es-ex/properties

If you then examine the configuration for the “es-ex” database using the Admin Interface or the
REST M anagement APl method ceT: /manage/v2/databases/{id|name}/properties, YOU should
see the expected range indexes and word lexicon have been created.

For more information about database configuration, see the following:

® PUT:/manage/v2/databases/{id|name}/properties

* Range Indexes and Lexicons in the Administrator’s Guide

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 137

MarkLogic Server Generating Code and Other Artifacts

* Using the Management API in the Monitoring MarkLogic Guide

4.9 Generating Query Options for Searching Instances

This section describes how to use the Entity Services APl to generate a set of query options you
can use to search entity instances using the XQuery Search API or the REST, Java, and Node.js
Client APIs. This section covers the following topics:

* Options Generation Overview

e Characteristics of the Generated Options

e Example: Generating Query Options

For more details and examples, see “ Querying aModel or Entity Instances’ on page 166.

49.1 Options Generation Overview

Generate model-based query options using the es: search-options-generate XQuery function or
thees. searchOptionsGenerate JavaScri pt function. Passin the JSON object-node OI json:object
representation of amodel descriptor.

For example, if the document /es-gs/models/person-1.0.0.3son iSapreviousy persisted
descriptor, then you can generate query options from the model with one of the following calls.

Language Example

XQuery es:search-options-generate (
fn:doc('/es-gs/models/person-1.0.0.json'))

JavaScri pt es.searchOptionsGenerate (
cts.doc('/es-gs/models/person-1.0.0.json')) ;

For amore complete example, see “Example: Generating Query Options’ on page 141.
You can use the generated options in the following ways:
* Passthem as the second parameter of the search:search Of search:resolve XQuery
fUﬂCtiOﬂS, Or the search.search O search.resolve JavaScript functions.

» Embed them in acombined query used with the REST, Java, or Node.js APIs.

* Install themin the database and use them as persistent query options with the REST, Java,
or Node.jsAPIs.

e Usethem asajumping off point for creating constraint bindings for use with the
cts:parse XQuery function or the cts.parse JavaScript function. Then use the resulting
cts.query object with cts:search or the JSearch API.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 138

MarkLogic Server Generating Code and Other Artifacts

For an example and discussion of the options, see “Example: Using the Search API for Instance
Queries’ on page 173.

4.9.2 Characteristics of the Generated Options
The generated options include the following:

» A vaue constraint named “entity-type” for constraining searchesto entities of a particular
type. For example:

<search:constraint name="entity-type">
<search:value>
<search:element ns="http://marklogic.com/entity-services" name="title"/>
</search:value>
</search:constraint>

* A URI value constraint named “uris’. For example:

<search:values name="uris">
<search:uri/>
</search:values>

* Anextract-document-data Option for returning just the canonical entity instance(s) from
matched documents. For example, the following option extracts just the person entity
instance from matched documents:

<search:extract-document-data selected="include">
<search:extract-path xmlns:es="...">
//es:instance/ (Person)
</search:extract-path>
</search:extract-document-datas

* Anadditional-query Option that constrains results to documents containing es: instance
elements. For example:

<search:additional-querys>
<cts:element-query xmlns:cts="http://marklogic.com/cts">
<cts:element xmlns:es="...">es:instance</cts:elements>
<cts:true-query/>
</cts:element-query>
</search:additional-query>

* Optionsthat disable faceting and snippeting (in favor of just extracting the instances). For
example:

<search:return-facets>false</search:return-facets>
<search:transform-results apply="empty-snippet"/>

* An option that enables unfiltered search. For example:

<search:search-option>unfiltered</search:search-option>

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 139

MarkLogic Server Generating Code and Other Artifacts

* If the model defines aprimary key, avalue constraint on the primary key property. For
example:

<search:constraint name="id">
<search:value>
<search:element ns="" name="id"/>
</search:value>
</search:constraint>

» For each property named in the pathrangeIndex Or rangeIndex property of an entity type
definition, a path range index constraint with the same name as the entity property. For
example:

<search:constraint name="rating"s>
<search:range type="xs:float" facet="true">
<search:element ns="" name="rating" />
</search:range>
</search:constraint>

» For each property named in the e1ementrangendex property of an entity type definition,
an element range index constraint with the same name as the entity property. For example:

<search:constraint name="rating"s>
<search:range type="xs:float" facet="true">
<search:path-index xmlns:es="...">
//es:instance/Person/rating
</search:path-index>
</search:range>
</search:constraint>

» For each property named in the wordrexicon property of an entity type definition, aword
constraint with the same name as the entity property. For example:

<search:constraint name="bio">
<search:word>
<search:element ns="" name="bio"/>
</search:words>
</search:constraint>

* If an entity type includes more than one property in the range index specification, a tuples
option with the same name as the entity type for finding co-occurrences of the indexed
properties. For example:

<search:tuples name="Item">
<search:range type="xs:int" facet="true">
<search:path-index xmlns:es="...">
//es:instance/Item/price
</search:path-index>
</search:range>
<search:range type="xs:float" facet="true">
<search:path-index xmlns:es="...">
//es:instance/Item/rating

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 140

MarkLogic Server Generating Code and Other Artifacts

</search:path-index>
</search:range>
</search:tuples>

The generated options include extensive comments to assist you with customization. The options
are usable as-is, but optimal search configuration is highly application dependent, so it islikely
that you will extend or modify the generated options.

If the primary key property is also listed in the range index specification, then both avalue
constraint and a range constraint would be generated with the same name. Since thisis not
allowed, one of these constraints will be commented out. You can change the name and
uncomment it. For an example of this conflict, see “ Example: Generating Query Options’ on
page 141.

4.9.3 Example: Generating Query Options

The following example generates a set of query options from amodel and saves the resultsto a
file on the filesystem so you can place it under source control or make modifications.

This example assumes the following descriptor has been inserted into the database with the URI
/es-ex/models/people-1.0.0.json.

{ minfo": {

"title": "People",
"description": "People Example",
"version": "1.0.0"
I
"definitions":
"Person": {
"properties":
"id": { "datatype": "int" },
"name": { "datatype": "string" },
"bio": { "datatype": "string" },
"rating": { "datatype": "float" }
¥
"required": ["name"],
"primaryKey": "id",
"pathRangeIndex": ["id", "rating"],
"wordLexicon": ["bio"]

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 141

MarkLogic Server Generating Code and Other Artifacts

The following code generates a set of query options from the above model. The options are saved
to thefile ARTIFACT DIR/people-options.xml.

Language Example

XQuery xquery version "1.0-ml";

import module namespace es =
"http://marklogic.com/entity-services"
at "/MarkLogic/entity-services/entity-services.xqy";

let SARTIFACT DIR := '/space/es/ex/' (: CHANGE THIS VALUE :)
return xdmp:save (

fn:concat ($SARTIFACT DIR, 'people-options.xml'),
es:search-options-generate (
fn:doc (' /es-ex/models/people-1.0.0.json')))

JavaScript | 'use strict';

const es = require('/MarkLogic/entity-services/entity-services');

const ARTIFACT DIR = ' /space/es/ex/"'; // CHANGE THIS VALUE
xdmp . save (
ARTIFACT DIR + 'people-options.xml',
es.searchOptionsGenerate (
cts.doc (' /es-ex/models/people-1.0.0.json"'))
)i

The resulting options should be similar to the following.

<search:options
xmlns:search="http://marklogic.com/appservices/search">
<search:constraint name="entity-type">
<search:value>
<search:element ns="http://marklogic.com/entity-services"
name="title"/>
</search:value>
</search:constraint>
<search:constraint name="id">
<search:value>
<search:element ns="" name="id"/>
</search:value>
</search:constraint>
<!--This item is a duplicate and is commented out so as to create
a valid artifact.
<search:constraint name="id"
xmlns:search="http://marklogic.com/appservices/search">
<search:range type="xs:int" facet="true">
<search:path-index
xmlns:es="http://marklogic.com/entity-services">
//es:instance/Person/id
</search:path-index>
</search:range>

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 142

MarkLogic Server Generating Code and Other Artifacts

</search:constraint>
-=>
<search:constraint name="rating"s>
<search:range type="xs:float" facet="true">
<search:path-index
xmlns:es="http://marklogic.com/entity-services">
//es:instance/Person/rating
</search:path-index>
</search:range>
</search:constraint>
<search:constraint name="bio">
<search:word>
<search:element ns="" name="bio"/>
</search:words>
</search:constraint>
<search:tuples name="Person">
<search:range type="xs:int" facet="true">
<search:path-index
xmlns:es="http://marklogic.com/entity-services">
//es:instance/Person/id
</search:path-index>
</search:range>
<search:range type="xs:float" facet="true">
<search:path-index
xmlns:es="http://marklogic.com/entity-services">
//es:instance/Person/rating
</search:path-index>
</search:range>
</search:tuples>
<! --Uncomment to return no results for a blank search, rather
than the default of all results
<search:term xmlns:search="http://marklogic.com/appservices/search">
<search:empty apply="no-results"/>
</search:term>
-=>
<search:values name="uris">
<search:uri/>
</search:values>
<!--Change to 'filtered' to exclude false-positives in certain
searches-->
<search:search-option>unfiltered</search:search-option>
<!--Modify document extraction to change results returned-->
<search:extract-document-data selected="include">
<search:extract-path
xmlns:es="http://marklogic.com/entity-services">
//es:instance/ (Person)
</search:extract-path>
</search:extract-document-datas>
<!--Change or remove this additional-query to broaden search
beyond entity instance documents-->
<search:additional-querys>
<cts:element-query xmlns:cts="http://marklogic.com/cts">
<cts:element xmlns:es="http://marklogic.com/entity-services">
es:instance

MarkLogic 10—May, 2019 Entity Services Developer’'s Guide—Page 143

MarkLogic Server Generating Code and Other Artifacts

</cts:element>
<cts:true-query/>
</cts:element-query>
</search:additional-query>
<!--To return facets, change this option to 'true' and edit
constraints-->
<search:return-facets>false</search:return-facetss>
<!--To return snippets, comment out or remove this option-->
<search:transform-results apply="empty-snippet"/>
</search:options>

Notice that two constraints are generated for the ia property. A value constraint is generated
because ia isthe primary key for arerson entity. A path range constraint is generated because id
islisted in the pathrange 1ndex property of the rerson entity type definition. Sinceit isnot possible
for two constraints to have the same name in a set of options, the second constraint is commented
out:

<search:constraint name="id">
<search:value>
<search:element ns="" name="id"/>
</search:value>
</search:constraint>
<!--This item is a duplicate and is commented out so as to create
a valid artifact.
<search:constraint name="id"
xmlns:search="http://marklogic.com/appservices/search">
<search:range type="xs:int" facet="true">
<search:path-index
xmlns:es="http://marklogic.com/entity-services">
//es:instance/Person/id
</search:path-index>
</search:range>
</search:constraint>

If you do not need both constraint types on id, you can remove one of them. Alternatively, you can
change the name of at least one of these constraints and uncomment the path range constraint.

For an example of using the generated options, see “ Example: Using the Search API for Instance
Queries’ on page 173.

4.10 Deploying Generated Code and Artifacts

Library modules and some configuration artifacts that you generate using the Entity Services AP
must be installed before you can use them.

» Code modules: Insert into the modul es database associated with your App Server.

For example, if you’ re using the pre-configured App Server on port 8000, insert your
instance converter module into the Modules database. For more details, see Importing
XQuery Modules, XSLT Stylesheets, and Resolving Paths in the Application Developer’s
Guide.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 144

MarkLogic Server Generating Code and Other Artifacts

» Schemas: Insert into the schemas database associated with your content database.

For example if your content database is the pre-configured Documents database, deploy
schemas to the Schemas database.

» TDE templates: Insert into the schemas database associated with your content database.

For example if your content database is the pre-configured Documents database, deploy
templates to the Schemas database. For details, see “Deploying a TDE Template” on
page 123.

» Database configuration: This artifact does not require installation. Rather, you useit as
input during configuration operations, as described in “Generating a Database
Configuration Artifact” on page 134.

* Query Options: Installation on MarkLogic isoptional. If you choose to use these as
persistent options with the Java, Node,js, or REST Client APIs, see“Pre-Installing Query
Options’ on page 170. Otherwise, no installation is required.

Unless otherwise noted, you can install a module or configuration artifact using any document
insertion interfaces, including the following MarkLogic APIs:

e The xdmp : document -insert XQuery function or the xdmp . document Insert Server-Side
JavaScript function.

* TheJava Node,js, and REST Client APIs. The Client APIsinclude interfaces specifically
for managing documents in the modul es database associated with aREST API instance, as
well as normal document operations that can be performed against any database.

For an example of deploying a module using simple document insert, see “ Create and Deploy an
Instance Converter” on page 25 (XQuery) or “Create and Deploy an Instance Converter” on
page 41 (JavaScript).

In addition, open source application deployment tools such asmi1-gradie and roxy (both available
on GitHub) support module deployment tasks. The Entity Services examples on GitHub use
ml-gradle for this purpose; for more details, see “ Exploring the Entity Services Open-Source
Examples’ on page 14.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 145

MarkLogic Server Managing Entity Instances

5.0 Managing Entity Instances

This chapter describes how to create, retrieve, update, and delete entity instances derived from a
model created with MarkL ogic Entity Services. The chapter covers the following topics:

e Entity Instance Concepts

e Creating an Entity Instance from a Data Source

* Generating Test Entity Instances

e Extracting an Entity Instance from an Envelope Document

e Extracting the Original Source from an Envelope Document

e Updating Entity Instance Data When Your Model Changes

5.1 Entity Instance Concepts

This section introduces entity instance concepts helpful in creating, persisting, querying, and
extracting entity instance data. The following topics are included:

¢ What is an Instance?

e What is an Envelope Document?

e Example: Entity Instance Representations

5.1.1 What is an Instance?
An entity instance is a concrete instantiation of an entity type defined in a model.

For example, suppose you have a JISON model descriptor that defines a person entity type with
the following properties. Thisis based on the model in “ Getting Started With Entity Services’ on

page 17.

"Person":
"properties":
"id": {"datatype": "string"},
"firstName": {"datatype": "string"},
"lastName": {"datatype": "string"},
"fullName": {"datatype": "string"},
"friends": {
"datatype": "array",
"items": {"Sref": "#/definitions/Person"

b

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 146

MarkLogic Server Managing Entity Instances

Then the canonical representation of a rerson instance would have the following form, depending
on whether you choose to work with XML or JSON.

XML Canonica Form JSON Canonical Form
<Person> {"Person": ({
<id>1234</id> midn."2345",
<firstName>George</firstName> "firstName":"Martha",
<lastName>Washington</lastName> "lastName": "Washington",
<fullName>George Washington</fullName> "fullName":"Martha Washington"
</Person> }}

By convention, an instance is stored as child XML elements or JSON properties of an envelope
document. You can extract an instance from an envelope as XML or JSON, regardless of the
envelope format. For details, see“What is an Envelope Document?’ on page 147 and “ Extracting
an Entity Instance from an Envelope Document” on page 158.

An instance can have multiple representations, depending on the context:

* Whileyou are synthesizing an instance from raw source or converting one between model
versions, you work with an in-memory representation of the instance as amap : map
containing not only the entity type property values, but additional information such astype
and source. This representation is designed to be easy to modify during instance
construction.

» By Entity Services convention, instances are persisted in envelope documents. An XML
envelope document includes an es: instance XML element with achild element that isthe
canonical XML representation of the instance. A JSON envelope document contains an
"instance" property that contains the canonical JSON representation of the instance. The
canonical representation is the one on which queries are based. For details, see“What is
an Envelope Document?’ on page 147.

* You can extract an instance from an envelope document as XML, JSON, Or @map : map.
Y ou might use one or more of these representations to pass instances to downstream
applications. For details, see “Extracting an Entity Instance from an Envelope Document”
on page 158.

For more details, see “ Example: Entity Instance Representations’ on page 149.

51.2 What is an Envelope Document?

If you follow the Entity Services conventions, your entity instances are persisted in MarkLogic as
part of an envelope document. An envel ope document encapsul ates instance data with related
metadata that might be useful to your application. You can use either XML or JSON envelopes.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 147

MarkLogic Server Managing Entity Instances

An envelope document for some entity type T is created using the instance-to-envelope function
in T'sinstance converter module. For more details, see “ Creating an Entity Instance from a Data
Source” on page 154 and “ Creating an Instance Converter Module” on page 107.

An envelope document has the following form by default.

Format Envelope Template

XML <es:envelope xmlns:es="http://marklogic.com/entity-services">
<es:instance>
<es:info>
<es:title>model title</es:title>
<es:version>model version</es:versions
</es:info>

<T>
...T's entity properties as elements...
</T>
</es:instance>
<es:attachmentss>...source data...</es:attachments>

</es:envelope>

JSON {renvelope": ({

"instance": {
"info": {
"title": "model title",
"version": "model version"
nn {

...T’s entity properties as JSON properties...

}
b

"attachments": [...source data...]

b}

The instance Section contains the canonical representation of the instance, plus metadata such as
the model title and version from which entity typeis derived. The attachments Section contains
the source data, by convention; you can add additional attachments.

The envelope format does not have to match the format of your raw source data. You can generate
JSON envelopes for instances based on XML source and vice versa. However, if the source and
envelope formats differ, the raw sourceis stored in the attachments Section of the envelope as a
string.

You can customize an envelope document to include other information, but you should generally
not modify the instance portion. The instance data should accurately reflect the entity type
definition in your model. If you need to normalize or derive property values, do so in the
extract-instance-T function of your instance converter.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 148

MarkLogic Server Managing Entity Instances

If you customize the envelope by adding data to the attachments €lement, then you can use the
es:instance-get-attachments XQuery function or the es. instanceGetattachments JavaScrlpt
function to retrieve the data. If you put it elsewhere in the envelope, then you are solely
responsible for retrieving it from the envelope.

The Entity Services API includes functions for retrieving the instance data and attachments from
an envelope. For details, see “ Extracting an Entity Instance from an Envelope Document” on
page 158 and “ Extracting the Original Source from an Envelope Document” on page 161.

5.1.3 Example: Entity Instance Representations

This example illustrates the various instance representations discussed in “What is an Instance?’
on page 146.

e XML Entity Instance Representations

e JSON Entity Instance Representations

5.1.3.1 XML Entity Instance Representations

This example uses the rerson entity type from the model defined in “ Getting Started With Entity
Services’ on page 17.

Representation Example

1| Raw Source <person>

<pid>1234</pid>
<givens>George</givens>
<family>Washington</family>

</person>
2| In-memory instance, as {"$attachments": "<?xml version=\"1.0\"
returned by encoding=\"UTF-8\"?>\n<person>\n

<pid>1234</pid>\n <given>George</givens>\n
<family>Washington</last>\n</family>",

Shown here as JSON for Stype": "Person",

extract-instance-Person

- midr: "1234",
readability, but really a "firstName": "George',
jSOH:ObjeCt(map:map)VVWh "lastName": "Washington",
keyssattachments,$type,id, "fullName": "George Washington"

etc. }

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 149

MarkLogic Server Managing Entity Instances
Representation Example
3| Canonical XML instance <Person>
<i1d>1234</id>

generated by

instance-to-canonical

Used to construct the instance
within an envel ope document.

<firstName>George</firstName>

<lastName>Washington</lastName>

<fullName>George Washington</fullName>
</Persons>

Envelope document, as
generated by

instance-to-envelope

<es:envelope
xmlns:es="http://marklogic.com/entity-services">
<eg:instance>
<eg:info>
<es:title>Person</es:title>
<es:version>1.0.0</es:version>
</es:info>
<Person>
<i1d>1234</id>
<firstName>George</firstName>
<lastName>Washington</lastName>
<fullName>George Washington</fullName>
</Persons>
</es:instance>
<es:attachmentss>
<person>
<pid>1234</pid>
<first>George</first>
<last>Washington</last>
</person>
</es:attachmentss>
</es:envelope>

json:object(map:map)
representation extracted from
envel ope document by
es:instance-from-document O

es.instanceFromDocument

Shown here as JSON for
readability, thisisredly a

map : map in XQuery In
JavaScript, this function
returns a JavaScript object. The
valueis mutable.

{ nigne. "1234",
"firstName":
"lastName": "Washington",
"fullName": "George Washington',
"Stype": "Person"

"George",

MarkLogic 10—May, 2019

Entity Services Developer’s Guide—Page 150

MarkLogic Server Managing Entity Instances

Representation Example

6| XML representation extracted | <Person>

from envel ope document by <id>1234</id>

es:instance-xml - from-documen <firstName>George</firstName>

tor <lastName>Washington</lastName>

, <fullName>George Washington</fullName>
es.instanceXmlFromDocument
</Persons>

The value is immutable.

7| JSON representation extracted | { "pPerson": {

from envel ope document by "idr: "12340,
es:instance-json-from-docume "firstName": "George",
nt Or "lastName": "Washington",

, "fullName": "George Washington"
es.lnstancedsonFromDocument } }

This function returns a JSON
object node. Thevalueis
immutable.

The representations you see on lines 2, 3, and 4 were created by an instance converter module. For
details, see “Creating an Instance Converter Module” on page 107. Therepresentationonline2 is
atransient, mutable in-memory representation designed for ease of usein instance converter code.
If you pass an envel ope document to the convert-instance- 7 function of aversion trandator
module, it returns a similar representation; for details, see “Creating a Model Version Translator
Module” on page 113.

The envel ope document representation on line 4 is the recommended way to store entity instances
in MarkLogic. You can customize the contents of your envelope, but should usually leave the
es:instance poOrtion as-is. Thisisthe layout produced by the instance-to-envelope function of
an instance converter.

The representations on lines 5, 6, and 7 are instances extracted from an envelope document using
the Entity Services API. The nap :map representation on line 5 differs from the other extracted
entitiesin that it is mutable and carries explicit type information in the stype property. This
representation differs from the one on line 2 in that it contains only the instance entity type
properties. Thereisno sattachments. FOr more details, see * Extracting an Entity Instance from an
Envelope Document” on page 158.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 151

MarkLogic Server

Managing Entity Instances

5.1.3.2 JSON Entity Instance Representations
This example uses the rerson entity type from the model defined in “ Getting Started With Entity

Services’ on page 17.

Representation Example
1| Raw Source { "pid": 2345,
"given": "Martha",
"family": "Washington"
}
2| In-memory instance, as { "stype": "Person",
returned by "Sattachments": {
extract-instance-Person "pid" 12345 !
"given": "Martha",
Shown here as JSON for "family": "Washington®
- b
readability, but really a _ nidv: 2345,
json:object (map:map) With "firstName": "Martha",
keys Sattachments, Stype, id, "lastName": "Washington",
etc. "fullName": "Martha Washington"
}
3| Canonical JSON instance {"Person": {
gmamaj by "ld'.":"2345",
instance-to-canonical "firstName": "Martha",
"lastName": "Washington",
Used to construct the instance "fullName": "Martha Washington"
o i3
within an envel ope document.
4| JSON Envelope document, as | {"envelope": {
generataj by "instance": {
instance-to-envelope "info": {
"title": "Person",
"version": "1.0.0"
} 7
"Person": {
nign. n2345" ,
"firstName": "Martha",
"lastName": "Washington",
"fullName": "Martha Washington"
}
} 7
"attachments": [{
"pid": 2345,
"given": "Martha",
"family": "Washington"
3l
b}

MarkLogic 10—May, 2019

Entity Services Developer’s Guide—Page 152

MarkLogic Server Managing Entity Instances

Representation Example
5| json:object (map :map) { "$type": "Person",
representation extracted from "id":"2345",

"firstName":"Martha",
"lastName" : "Washington",
"fullName" : "Martha Washington"

envel ope document by
es:instance-from-document O

es.instanceFromDocument }

Shown here as JSON for
readability, thisisredly a

map : map in XQuery In
JavaScript, this function
returns a JavaScript object. The
value is mutable.

6| XML representation extracted | <Person>

from envel ope document by <id>2345</id>
es:instance-xml - from-documen <firstName>Martha</firstName>
tor <lastName>Washington</lastName>
) <fullName>Martha Washington</fullName>
es.instanceXmlFromDocument
</Persons>

The value isimmutable.

7| JSON representation extracted | { "Person": {

from envel ope document by "ig":"2345",

es:instance-json-from-docume "firstName":"Martha",
nt Or "lastName":"Washington",

, "fullName" : "Martha Washington"
es.1lnstancedsonFromDocument } }

This function returns a JSON
object node. Thevaueis
immutable.

The representations you see on lines 2, 3, and 4 were created by an instance converter module. For
details, see “ Creating an Instance Converter Module” on page 107. Therepresentationonline2is
atransient, mutable in-memory representation designed for ease of usein instance converter code.
If you pass an envelope document to the convert -instance- 7 function of aversion translator
module, it returns a similar representation; for details, see “ Creating a Model Version Translator
Module” on page 113.

The envel ope document representation on line 4 is the recommended way to store entity instances
in MarkLogic. You can customize the contents of your envelope, but should usually leave the
instance portion as-is. Thisisthe layout produced by the instance-to-envelope function of an
instance converter.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 153

MarkLogic Server Managing Entity Instances

The representations on lines 5, 6, and 7 are instances extracted from an envelope document using
the Entity Services APIl. The nap :map representation on line 5 differs from the other extracted
entitiesin that it is mutable and carries explicit type information in the stype property. This
representation differs from the one on line 2 in that it contains only the instance entity type
properties. Thereisno sattachments property. For more details, see “ Extracting an Entity
Instance from an Envelope Document” on page 158.

5.2 Creating an Entity Instance from a Data Source

The Entity Services API does not dictate how you create an entity instance from source data, but
the recommended processis as follows:

» Generate, customize, and install an instance converter module, as described in “ Creating
an Instance Converter Module’ on page 107.

e Usetheextract-instance-Tand instance-to-envelope functions of the instance
converter module to create instance envel ope documents for some entity type r from
source data.

* Insert your envelope documents in the database.

By convention, instances are stored as child elements of an XML or JSON envel ope document.
You can extract an instance from an envelope document in several formats. For details, see
“Extracting an Entity Instance from an Envelope Document” on page 158.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 154

MarkLogic Server

Managing Entity Instances

The following code illustrates one way to create envel ope documents from raw source. In this
example, the source data comes from documents in MarkL ogic that are in a collection named
“raw”, and instances are generated for an entity type named rerson. The generated envelope
documentsarein XML format; you could also choose JSON. This example uses the converter and

data from “ Getti

ng Started With Entity Services’ on page 17.

Language

Example

XQuery

(: Create envelope documents from raw source documents :)
xquery version "1.0-ml";
import module namespace es =
"http://marklogic.com/entity-services"
at "/MarkLogic/entity-services/entity-services.xqy";
import module namespace person =
"http://example.org/example-person/Person-1.0.0"
at "/es-gs/person-1.0.0-conv.xqgy";

for $source in fn:collection('raw') return
let S$instance := person:extract-instance-Person ($Ssource)
let Suri :=
fn:concat ('/es-gs/env/', map:get ($Sinstance, 'id'), '.xml')
return xdmp:document-insert (
Suri,
person:instance-to-envelope (Sinstance, "xml"),
<options xmlns="xdmp:document-insert">
<collections>
<collection>person-envelopes</collection>
</collections>
</options>

)

JavaScript

'use strict';

declareUpdate () ;

const es = require('/MarkLogic/entity-services/entity-services.xqy') ;
const person = require('/es-gs/person-1.0.0-conv.xqy') ;

for (const source of fn.collection('raw')) {
let instance = person.extractInstancePerson (source) ;
let uri = '/es-gs/env/' + instance.id + '.xml';
xdmp .documentInsert (
uri, person.instanceToEnvelope (instance, 'xml'),
{collections: ['person-envelopes']}

) i

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 155

MarkLogic Server Managing Entity Instances

The resulting envel ope documents have the following form by default. The instance datais
accessible in an envelope document via the XPath expression //es: instance (OF //*:instance).
The original source from which the instance was derived is accessible via the X Path expression
//es:attachments(Or//*:attachments)

<es:envelope xmlns:es="http://marklogic.com/entity-services">
<es:instance>
<es:info>
<es:title>Person</es:title>
<es:version>1.0.0</es:versions>
</es:info>
<Person>
<id>1234</id>
<firstName>George</firstName>
<lastName>Washington</lastName>
<fullName>George Washington</fullName>
</Person>
</es:instance>
<es:attachmentss>
<person>
<pid>1234</pid>
<given>George</givens>
<family>Washington</family>
</person>
</es:attachments>
</es:envelope>

If you generate JSON envel opes rather than XML envelopes, you get envel opes of the following
form by default. The instance data is accessible in an envel ope document via the X Path
EXPression //instance (Or //+:instance). The original source from which the instance was
derived is accessible viathe X Path expr ON //attachments (OI' //* :attachments).

{ "envelope": ({
"instance":
"info": {
"title": "Person'",
"version": "1.0.0"
"Person":
nign. ni1234n" ,
"firstName": "George",
"lastName": "Washington",
"fullName": "George Washington"
"attachments": [

"<person><pid>1234<\/pid><given>George<\/given><family>Washington<\/famil
y><\/person>"

]
I

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 156

MarkLogic Server Managing Entity Instances

Note: If your model specifies a namespace binding for an entity type and you use JSON
envelopes, the namespace is discarded in the JSON representation, but the code
and configuration artifacts still assumes a namespace, so it will not work properly
with JSON envel ope documents. Y ou should use XML envel ope documents for
entity types that define a namespace binding.

For an end-to-end exampl e of creating envel ope documents using this model, see “ Getting Started
With Entity Services’ on page 17.

5.3 Generating Test Entity Instances

You can generate test instances from amodel using the es :model-get-test-instances XQuery
function or es.modelcetTestInstances Server-Side JavaScript function. You can use test
instances for tasks such as experimenting with model refinement and testing code that

mani pul ates instances.

The test instances are based purely on the model and do not reflect data normalization or
customization you add to your instance converter. The test instances can help you identify
properties for which converter customization is required.

The es:model-get-test-instances @Nd es.modelGetTest Instances fUNCtions return a sequence of
instances, one for each entity type defined in the input model.

If an entity type property definition contains alocal reference, the referenced entity typeis
assumed to be embedded in the referencing entity. If an entity type property definition contains an
external reference, no meaningful test value can be generated.

For example, assume the following model defining two entity types, name and person. A person
contains alocal reference to aname.

{ minfo": {

"title": "Example",
"version": "1.0.0",
"description": "ES Examples"
b
"definitions":
"Name": {
"properties":
"first": { "datatype": "string" },
"last": { "datatype": "string" }
}
b
"Person": {
"properties":
"id": { "datatype": "int" },
"name": { "$ref": "#/definitions/Name" },

}
I

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 157

MarkLogic Server Managing Entity Instances

If you generate test instances from this model, the name property of the person test instance
contains aname instance value:

<Person>
<id>123</1id>
<name>
<Name>
<first>some string</first>
<last>some string</last>
</Name>
</name>
</Person>

If the name property of arerson entity was an external reference to such as
“http://example.com/SomeType” instead, then no meaningful test value can be generated. The
person test instance would look like the following:

<Person>
<id>123</id>
<name><SomeType>externally-referenced-instance</SomeType></name>
</Persons>

To generate instances from real source data, use an instance converter. For more details, see
“Creating an Instance Converter Module” on page 107 and “ Creating an Entity Instance from a
Data Source” on page 154.

5.4 Extracting an Entity Instance from an Envelope Document

Though Entity Services encourages storing your instances in MarkL ogic in the form of envelope
documents, downstream consumers of your data, such as client applications, will probably expect
to receive the canonical instance data, not the entire envelope.

The Entity Services API includes the following X Query functions for extracting an instance from
an envelope document. The corresponding JavaScript functions follow.

XQuery Function Extracted Instance Format
es:instance-from-document map;map(json;object,nuﬂabhﬂ
es:instance-json-from-document object-node () (immutable)
es:instance-xml-from-document element () (immutable)

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 158

MarkLogic Server

Managing Entity Instances

The Entity Services API includes the following Server-Side JavaScript functions for extracting an

instance from an envelope document.

JavaScript Function

Extracted |nstance Format

es.instanceFromDocument

JavaScript object (mutable)

es.instancedsonFromDocument

object-node () (immutable)

es.instanceXmlFromDocument

element () (immutable)

For example, suppose you have the following envelope document in the database with the URI

/es-gs/env/1234 .xml.

<es:envelope xmlns:es="http://marklogic.com/entity-services">

<es:instance>
<es:info>

<es:title>Person</es:title>
<es:version>1.0.0</es:versions>

</es:info>
<Person>
<id>1234</id>

<firstName>George</firstName>
<lastName>Washington</lastName>
<fullName>George Washington</fullName>

</Person>
</es:instance>
<es:attachments>

<person>

<pid>1234</pid>
<given>George</givens>

<family>Washington</family>

</person>
</es:attachments>
</es:envelope>

MarkLogic 10—May, 2019

Entity Services Developer’s Guide—Page 159

MarkLogic Server

Managing Entity Instances

Then, the following code snippet extracts an instance from the envel ope document as a
json:object IN XQuery or a JavaScript object in JavaScript.

Language Example
XQuery xquery version "1.0-ml";
import module namespace es =
"http://marklogic.com/entity-services"
at "/MarkLogic/entity-services/entity-services.xqgy";
es:instance-from-document (fn:doc('/es-gs/env/1234.xml"')) [1]
JavaScript 'use strict';

const es =
require (' /MarkLogic/entity-services/entity-services.xqy') ;

fn.head (

es.instanceFromDocument (cts.doc (' /es-gs/env/1234.xml"'))
) i

The result is a sequence containing one item, equivalent to the following JSON:

{ widv:m1234",
"firstName":"George",
"lastName" : "Washington",
"fullName" : "George Washington",
"Stype": "Person"

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 160

MarkLogic Server Managing Entity Instances

The following table illustrates the result of calling each of the instance envelope extraction
functions.

Function Result
es:instance-from-document A json:object (XQuery) or JavaScript object
(JavaScript) equivaent to the following:
es.instanceFromDocument { nidn:n1234n,

"firstName":"George",
"lastName":"Washington",
"fullName" : "George Washington",
"Stype":"Person"

}

es:instance-json-from-document | A JSON object-node () equivalent to the following:

{ "pPerson": ({
es.instanceJsonFromDocument nidn.n1234",

"firstName":"George",
"lastName":"Washington",
"fullName": "George Washington"

}

es:instance-xml-from-document | Thefollowing XML element:

<Person xmlns:es=...>
es.instanceXmlFromDocument <id>1234</id>

<firstName>George</firstName>

<lastName>Washington</lastName>

<fullName>George Washington</fullName>
</Person>

For more detailed coverage of instance representations, see “What is an Instance?’ on page 146
and “Example: Entity Instance Representations’ on page 149.

5.5 Extracting the Original Source from an Envelope Document

If you follow the Entity Services conventions, an envel ope document encapsulates both the
canonical instance dataand the raw source from which it was derived. This encapsul ation happens
when you call the instance-to-envelope XQuery function in amodel’s generated instance
converter module.

You can extract the attachments from an envelope document using the
es:instance-get-attachments XQuery function or the es. instancegetattachments JavaScript
function. You can use these function on a customized envelope, aslong as the attachments are
locatable viathe XPath expression //es:attachments.

The raw source datais saved in the envel ope as an attachment. For example, the highlighted
<person/> €lement below isthe raw XML source from which the enveloped instance was derived.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 161

MarkLogic Server Managing Entity Instances

<es:envelope xmlns:es="http://marklogic.com/entity-services">
<es:instances>...</es:instance>
<es:attachments>
<person>
<pid>1234</pid>
<given>George</given>
<family>Washington</family>
</person>
</es:attachments>
</es:envelope>

If the format of the source data does not match the format of the envelope, the source datais
serialized and stored in the envelope as a string. For example, if the source datais JSON and the
envelope value is XML, then the source is stored as the text value of an es:attachments XML
element. The following snippet isfrom an XML envel ope document created from JSON source:

<es:envelope xmlns:es="http://marklogic.com/entity-services">
<es:instance>...</es:instance>
<es:attachments>{"pid":2345, "given":"Martha",
"family":"Washington"}</es:attachments>
</es:envelope>

Thefollowing code extracts the raw source attachment from an envel ope document, assumingiitis
the only attachment.

Language Example

XQuery xquery version "1.0-ml";
import module namespace es =
"http://marklogic.com/entity-services"

at "/MarkLogic/entity-services/entity-services.xqy";

es:instance-get-attachments (fn:doc('/es-gs/env/1234.xml"')) [1]

JavaScript 'use strict';
const es =
require (' /MarkLogic/entity-services/entity-services.xqy') ;

fn.head(
es.instanceGetAttachments (cts.doc('/es-gs/env/2345.xml"'))

) i

If there are multiple children inthe //es:attachments element, YOU are responsible for picking
out the raw source from the other attachments. There will only be multiple attachmentsif you
explicitly add extra attachments.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 162

MarkLogic Server Managing Entity Instances

If the original source attachment and the envelope format do not match, you must convert the
serialization if you want to work with the datain its original form. For example, the following
code deserializes a serialized JSON attachment from an XML envelope document, and then
accesses one of its properties.

Language JSON Deserialization Example

XQuery xquery version "1.0-ml";
import module namespace es =
"http://marklogic.com/entity-services"

at "/MarkLogic/entity-services/entity-services.xqy";

map :get (
xdmp : from-json-string(

es:instance-get-attachments (fn:doc('/es-gs/env/2345.xml"')) [1]
) [1] , npidn
)

Server-Side 'use strict';
JavaScript const es =

require (' /MarkLogic/entity-services/entity-services.xqy') ;

fn.head (xdmp. fromJsonString(
fn.head(
es.instanceGetAttachments (cts.doc('/es-gs/env/2345.xml')))
)) .pid;

Thefollowing codeis asimilar example that extracts an XML attachment from a JSON envelope:

Language XML Deserialization Example

XQuery xquery version "1.0-ml";
import module namespace es =
"http://marklogic.com/entity-services"

at "/MarkLogic/entity-services/entity-services.xqy";

xdmp : unquote (
es:instance-get-attachments (fn:doc('/es-gs/env/1234.json')) [1]
) [1]1//pid/data()

Server-Side 'use strict';
JavaScript const es =

require (' /MarkLogic/entity-services/entity-services.xqy') ;

fn.head (xdmp.unquote (
fn.head (es.instanceGetAttachments (cts.doc('/es-gs/env/1234.json')))
)) .xpath('//pid/data() ")

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 163

MarkLogic Server Managing Entity Instances

5.6 Updating Entity Instance Data When Your Model Changes

Asyour model changes, you might need to update your instance data to match. Model changes
can also impact generated and configuration artifacts. For details, see “Managing Model
Changes’ on page 85.

5.7 Managing Data with Nested Entities

Let's say you have an object ro1e, and it contains a number of ro1e oObjects as children. Further,
let’s say you have an instance of role called permanentworker, and that you have arequirement to
match on an element in permanentWorker named personnelNumber. Thismeans you need to be able
to match on an element that is three levels deep in the ro1e hierarchy. Here are some options at
your disposal for making the desired match:

Thefirst option isto make data conform to the Entity model. Assuming you have an Entity Model
named roleModel, the nested item could then be matched against a property name

RoleModel . personnelNumber. MOre information about entity instances and their canonical
representation that can be found in the section Generating Test Entity Instances. Take alook at the
example of arerson entity that has a child name entity that illustrates how nested entity instances
should be composed.

Another approach isto create different models for each role to be assigned. The resulting instance
would look something like this:

"permanentWorker" : {

"permanentWorkerModel": {
"personnelNumber":"12345",
"positionNumber":"111111",
"positionName":"Program Manager",
"officeLocation":"1801 Main Street",

"department":"Health Care"

"temporaryWorker" : {
"temporaryWorkerModel" : {
"supplier":"12345",

"assignmentNumber":"111111",

"officelLocation":"1801 Main Street",

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 164

MarkLogic Server Managing Entity Instances

"department":"Health Care"

"vendorWorker" : {
"vendorWorkerModel" : {
"vendor":"12345",
"officeLocation":"1801 Main Street",

"department":"Health Care"

}

Yet another option isto remove the targetentity option from their Data Hub Matching Step
Settings. Thistells the Data Hub Framework to not enforce avalid Entity Model.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 165

https://docs.marklogic.com/datahub/flows/flow-definition.html#flow-definition__matching-step-settings
https://docs.marklogic.com/datahub/flows/flow-definition.html#flow-definition__matching-step-settings

MarkLogic Server Querying a Model or Entity Instances

6.0 Querying a Model or Entity Instances

This chapter contains the following topics related to searching entity instances and models using
MarkLogic. Unless otherwise noted, all the examplesin this chapter use the entity model and data
from “Getting Started With Entity Services’ on page 17.

This chapter covers the following topics:

* Query Support Provided by Entity Services

e Search Basics for Models

e Search Basics for Instance Data

¢ Pre-Installing Query Options

e Example: Using SPARQL for Model Queries

e Example: Using cts:query or cts.query for Instance Queries

e Example: Using the Search API for Instance Queries

e Example: Using JSearch for Instance Queries

e Example: Using the Client APIs for Instance Queries

e Example: Using SPAROL for Instance Queries

e Example: Using SOL for Instance Queries

e Example: Using the Optic API for Instance Queries

e Where to Find Additional Information

Additional examples are availablein the Entity Services GitHub repository. For more details, see
“Exploring the Entity Services Open-Source Examples’ on page 14.

6.1 Query Support Provided by Entity Services

The Entity Services API includes the following utility functions that make it easier to create and
configure an application that searches entity models and entity instances.

¢ USees:database-properties-generate (XQuery) Ol es.databasePropertiesGenerate
(JavaScript) to create a database configuration artifact with which to configure database
range indexes and lexicons. This function relies on the model descriptor to identify
properties that should be indexed or cataloged in alexicon. For details, see “ Generating a
Database Configuration Artifact” on page 134.

* Usees:search-options-generate (XQuery) Or es.searchOptionsGenerate (JavaScrlpt) to
generate a set of query options suitable for use with the Search API and the Client APIs.
Some of the generated options rely on the model descriptor to identify properties that
should be indexed or cataloged in alexicon. For details, see “ Generating Query Options
for Searching Instances’ on page 138.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 166

MarkLogic Server Querying a Model or Entity Instances

* UsSees:extraction-template-generate (XQUENY) Of es.extractionTemplateGenerate
(JavaScript) to create a TDE template to enable querying instances as semantic or row
data. For details, see “Generating a TDE Template” on page 119.

You can customize all of these generated artifacts to suit the requirements of your application.
You are not required to generate and use any of these artifacts, but doing so can make it easier to

build a search application around your model. The examples in this chapter take advantage of
these artifacts where appropriate.

6.2 Search Basics for Models
You can use Semantic search to search and make inferences about a model.

Recall that when you persist amodel descriptor as part of the special Entity Services collection,
MarkL ogic generates a set of facts that define the core of your model, expressed as semantic
triples. You can also enrich your model with additional facts (triples) that are not derivable from
the model descriptor. For details, see “Introduction” on page 54.

The auto-generated triples include facts such as the following. For the complete ontology, see
MARKLOGIC INSTALL DIR/Modules/MarkLogic/entity-services/entity-services.ttl.

* Model M defines entity type T

* Entity type T has a property P

* Property P of entity type T has datatype D

* Entity Type T has primary key P

You can inspect all the triples associated with amodel by evaluating a SPARQL query such asthe
following in Query Console:

XQuery Server-Side JavaScript
xquery version "1.0-ml"; 'use strict';
cts:triples(cts.triples(
O, O, O, O, O, null, null, null, null, null,
cts:document -query (yourModelURI)) cts.documentQuery (yourModelURI)) ;

You can use SPARQL or the Optic API to perform a semantic search of the model. The following
interfaces accept SPARQL inpult:
* The sem:sparql XQuery function or the sem. sparq1 Server-Side JavaScript function.

* TheREST, Java, and Node,js client APIs accept SPARQL queries asinput to their search
interfaces. Y ou can embed a SPARQL query in acombined query, or use an appropriate
Java or Node.js query builder.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 167

MarkLogic Server Querying a Model or Entity Instances

* Evauate SPARQL directly in Query Console during development.

For a server-side model query example, see “Example: Using SPARQL for Model Queries’ on
page 171. For the Client APIs, refer to the respective developer guides listed in “Where to Find
Additional Information” on page 190.

The Optic API enables semantic queries directly using JavaScript and XQuery, without requiring
you to use a secondary query language (SPARQL). You can use the Optic API to query your
model server-side using the op: from-triples XQuery function or the op . fromrripies Server-Side
JavaScript function. For more details, see “ Optic API for Multi-Model Data Access’ on page 296
in the Application Developer’s Guide.

6.3 Search Basics for Instance Data

You can query your instance data as documents, rows, or triples. See the following topics for
more details:

e Document Search

* Row Search

e Semantic Search

Document search isaways available. Row and semantic search are only availableif you generate
and install a TDE template, as described in “ Generating a TDE Template” on page 120. In
addition, semantic search isonly available if an entity type defines a primary key.

6.3.1 Document Search

If you follow the Entity Services conventions, your instance data, aswell asoriginal source datais
stored in envelope documents. The default structure of envel ope documentsis covered in “What
isan Envelope Document?’ on page 147.

You can use any of the available document search interfaces to search your envel ope documents.
For example:

* Thects:search XQuery function or cts.search Server-Side JavaScript Function. See
“Example: Using cts.query or cts.query for Instance Queries’ on page 172.

* The Server-Side JavaScript JSearch API. See “ Example: Using JSearch for Instance
Queries’ on page 176.

* The XQuery Search APl (search:search). See“Example: Using the Search API for
Instance Queries’ on page 173.

* TheREST, Java, and Node.js Client APIs. See “Example: Using the Client APIsfor
Instance Queries’ on page 177.

To learn more about any of these interfaces, see the linksin “Where to Find Additional
Information” on page 190.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 168

MarkLogic Server Querying a Model or Entity Instances

The Search API and the Client APIs can take advantage of the query options you can generate
using the Entity Services API. These options can help streamline and customize your searches.
See the examples and “ Generating Query Options for Searching Instances’ on page 138.

You can also generate a database configuration artifact based on your model. The artifact includes
index configuration for selected propertiesidentified in the model. Creating these indexes can
enhance search performance. For details, see “ Generating a Database Configuration Artifact” on
page 134.

6.3.2 Row Search

You can search your entity instance dataas rows if you generate and install a TDE templ ate based
on your model. Broadly speaking there is an implicit table that corresponds to each entity type,
with arow for each instance and columns for each property. For more details, see “Generating a
TDE Template” on page 119.

You can use SQL or the Optic API to search your entities as rows using the following interfaces:

* Thexdamp:sq1 XQuery function and the xdmp . sq1 Server-Side JavaScript function accept
SQL input directly. See “Example: Using SQL for Instance Queries’ on page 187.

* TheOptic APl op: from-view XQuery function and op . fromview Server-Side JavaScript
function enable you to build and execute a query plan based on a row-oriented view of
your data. See “Example: Using the Optic API for Instance Queries’ on page 188.

 TheJavaClient API. Usethe com.marklogic.client.row.RowManager iNterface and
com.marklogic.client.expression.PlanBuilder class to build and evaluate an OptiC
row-based or triples-based query plan. For details, see Optic Java API for Relational
Operations in the Java Application Developer’s Guide.

» TheREST Client APl /rows Service enables you to execute an Optic row-based or
triples-based query plan. For details, see Get: /vi/rows OF pPosT: /vi/rows iNthe MarkLogic
REST API Reference.

You can aso evaluate SQL directly in Query Console during devel opment.

For more information about these interfaces, see the resourceslisted in “Whereto Find Additional
Information” on page 190.

6.3.3 Semantic Search

You can search your entity instances using semantic queriesif and only if all of the following
conditions are met:

» Theentity type definition defines aprimary key. A primary key enables unique

identification of each instance. For details, see “Identifying the Primary Key Entity
Property” on page 64.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 169

MarkLogic Server Querying a Model or Entity Instances

* Yougenerate and install a TDE template as described in “Generating aTDE Template” on
page 119.

When these requirements are met, MarkL ogic automatically generates afew facts about each
instance when you insert an envel ope document into the database. The facts take the form of
semantic triples, which you can query using SPARQL or the Optic API. You can also extend the
TDE template to include your own triples.

For an example of semantic queries on instance data, see “ Example: Using SPARQL for Instance
Queries’ on page 186 and “Example: Using the Optic API for Instance Queries’ on page 188.

You can use the following interfaces to perform a semantic search of your entity instance data:

* The sem:sparql XQuery function or the sem. sparq1 Server-Side JavaScript function. See
“Example: Using SPARQL for Instance Queries’ on page 186.

* Theop:from-triples XQuery function or the op. fromrriples Server-Side JavaScript
function of the Optic API. See “Example: Using the Optic API for Instance Queries’ on
page 188.

* PassaSPARQL query to MarkLogic using the REST, Java, or Node,js client APIs. You
can embed a SPARQL query in acombined query, or use an appropriate Java or Node.js
query builder.

» TheJavaClient APl. Usethe com.marklogic.client.row.RowManager interface and
com.marklogic.client.expression.PlanBuilder Classto build and evaluate an OptiC
row-based or triple-based query plan. For details, see Optic Java API for Relational
Operations in the Java Application Developer’s Guide.

* TheREST Client APl /rows Service enables you to execute an Optic row-based or
triples-based query plan. For details, see GeT: /v1/rows OF PoST: /v1/rows inthe MarkLogic
REST API Reference.

You can aso evaluate SPARQL directly in Query Console during development.

To learn more about these interfaces, see the resources listed in “Where to Find Additional
Information” on page 190.

6.4 Pre-Installing Query Options

Recall that you can generate and customize model-specific query options for use with the Search
API and the REST, Java, and Node.js Client APIs; see “ Generating Query Options for Searching
Instances’ on page 138.

You must pre-install these options on MarkLogic if and only if all the following are true:

* You search your model or entity instances using one of the Client APIs (REST, Java, or
Node,js).

* Youdo not want to specify options dynamically at query time, such asin acombined guery.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 170

MarkLogic Server Querying a Model or Entity Instances

You can install query options using the REST and Java Client APIs. For details, see the following
topics:

* REST Client API: Creating or Modifying Query Options in the REST Application Developer’s
Guide

» JavaClient API: Creating Persistent Query Options From Raw JSON or XML in the Java
Application Developer’s Guide

You can use persistent query options with the Node.js Client API, but you cannot install them.
Use REST or Javainstead.

6.5 Example: Using SPARQL for Model Queries

When you insert amodel descriptor document into MarkL ogic as part of the special Entity
Services collection, MarkL ogic creates amodel from the descriptor. The model is expressed as
semantic triples; for details, see “ Search Basics for Models” on page 167.

You can also extend the model with your own triples; for details, see “ Extending a Model with
Additional Facts’ on page 84.

You can query triplesin MarkLogic using the following APIs:

* The sem:sparql XQuery function or the sem. sparq1l Server-Side JavaScript functions.

» TheClient APIs; see Client-Side APIs for Semantics in the Semantics Developer’ s Guide.

* TheOptic APl XQuery; seethe op: from-tripies XQuery function or the op. fromrriples
JavaScript function.

Thefollowing SPARQL query returnsthe name of all required properties of the person entity type
of the model created in “ Getting Started With Entity Services’ on page 17.

prefix es:<http://marklogic.com/entity-services#>
select ?ptitle
where {
?X a es:EntityType;
es:title "Person";
es:property ?property .
?property a es:RequiredProperty;
es:title ?ptitle
}

If you run this query in Query Console against the data from “ Getting Started With Entity
Services’ on page 17, it will return the property names “lastName”, “firstName”, and “fullName”.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 171

MarkLogic Server Querying a Model or Entity Instances

The following example uses sem: sparql Of sem.spargl t0 evaluate the same SPARQL query.

Language Example

XQuery xquery version "1.0-ml";
sem: sparqgl ('
prefix es:<http://marklogic.com/entity-services#>
select 7?ptitle
where
?X a es:EntityType;
es:title "Person";
es:property ?property .
?property a es:RequiredProperty;
es:title ?ptitle
} 1

)

JavaScript sem. spargl (
'prefix es:<http://marklogic.com/entity-services#> ' +
'select \?ptitle ' +
'where {' +
'?x a es:EntityType;' +
'egs:title "Person";' +
'es:property ?property .' +
'?property a es:RequiredProperty;' +
'es:title ?ptitle’ +

1}1

6.6 Example: Using cts:query or cts.query for Instance Queries

The cts query interface serves as the foundation for most higher level document search APIsin
MarkLogic. Using the cts layer gives you fine-grained control over your searches while the
XQuery Search API, JavaScript JSearch API, and the Client APIs provide higher level
abstractions on top of this layer. For details, see APIs for Multiple Programming Languages in the
Search Developer’s Guide.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 172

MarkLogic Server Querying a Model or Entity Instances

The following example uses the cts: search XQuery function or cts. search JavaScript function
to find al rerson envelope documents where the instance data includes a“lastName” element
with the value “washington” . For the sake of simplicity, the example prints out just the value of
the “fullName” property in the matched documents, rather than complete documents.

Language Example

XQuery xquery version "1.0-ml";

cts:search(fn:collection('person-envelopes'),
cts:element-query (
fn:QName ("http://marklogic.com/entity-services", "instance"),
cts:element-value-query (xs:QName ("lastName"), "washington")
)
) //fullName/fn:data()

JayaSCﬂpt const results = cts.search(cts.andQuery ((

cts.collectionQuery ('person-envelopes'),

cts.elementQuery (
fn.QName ('http://marklogic.com/entity-services', 'instance'),
cts.elementValueQuery (xs.QName ('lastName'), 'washington')

)))

// Accumulate the matched names in an array for easy display
// in Query Console.
const names = [];
for (const doc of results) (
names.push (doc.xpath('//Person/fullName/fn:data() ")) ;

}

names

You could aso use a path query instead of an element query to limit the search tO es: instance
elements.

If you run the example code in Query Console against the envel ope documents created in
“Getting Started With Entity Services’ on page 17, the results are “ George Washington” and
“Martha Washington”.

6.7 Example: Using the Search API for Instance Queries

The XQuery Search API isan interface that abstracts away some of the complexity of cts:search
operations such as the generation of facets and snippets. For details, see Search API: Understanding
and Using in the Search Developer’s Guide.

Server-Side JavaScript devel opers should use the JSearch API instead of the XQuery Search API.
You can use the Search API from JavaScript, but the search configuration and results are
expressed in XML, so it isnot as convenient or “natural”. See “ Example: Using JSearch for
Instance Queries’ on page 176, instead.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 173

MarkLogic Server Querying a Model or Entity Instances

Recall that you can generate Search API compatible query options using the Entity Services API;
for details, see “ Generating Query Options for Searching Instances’” on page 138. The code
samplesin this section assume you generated options from the model in “ Getting Started With
Entity Services’ on page 17. To learn more about the generated options, see “ Characteristics of
the Generated Options’ on page 139.

The following example uses generated options to find all rerson envelope documents where the
instance data includes the word “washington”. For simplicity, only the value of the “fullName’
property is displayed. (In practice, you would probably customize the generated options for your
application.)

xquery version "1.0-ml";

import module namespace search =
"http://marklogic.com/appservices/search"
at "/MarkLogic/appservices/search/search.xqy";

import module namespace es = "http://marklogic.com/entity-services"
at "/MarkLogic/entity-services/entity-services.xqy";

let Soptions := es:search-options-generate (
fn:doc('/es-gs/models/person-1.0.0.json'))
let Smatches :=
search:search("entity-type:Person AND washington", Soptions)
return Smatches//Person/fullName/fn:data()

If you run this code in Query Console against the envel ope documents created in “ Getting Started
With Entity Services” on page 17, then you should see output similar to the following:

Martha Washington
George Washington

The search term “entity-type:Person” constrains the search to person entities. The entity-type
constraint is automatically generated for al models.

The generated options also include an additional-query Option that constrains results to the
instance data in an envelope document. For example:

<search:constraint name="entity-type">
<search:value>
<search:element ns="http://marklogic.com/entity-services" name="title"/>
</search:value>
</search:constraint>

<search:additional-querys
<cts:element-query xmlns:cts="http://marklogic.com/cts">
<cts:element xmlns:es="..."s>es:instance</cts:elements>
<cts:true-query/>
</cts:element-query>
</search:additional-query>

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 174

MarkLogic Server Querying a Model or Entity Instances

Though the code above returns just the value of the “fullName” property in each matched
instance, the search results contain the entire entity, asif you called es:entity-from-document ON
the envelope document. Thisdatais contained in the search:extracted element of each
search:result. FOr example:

<search:response snippet-format="empty-snippet" total="2" start="1"

page-length="10" selected="include" xmlns:search=...>
<search:result index="1" uri="/es-gs/env/2345.xml"
path="fn:doc (" /es-gs/env/2345.xml" ;)" score="15872"

confidence="0.4703847" fitness="0.7823406">
<search:snippet/>
<search:extracted kind="element">
<Person>
<id>2345</id>
<firstName>Martha</firstName>
<lastName>Washington</lastName>
<fullName>Martha Washington</fullName>
</Person>
</search:extracted>
</search:result>

<search:result .../>
<search:gtext>entity-type:Person AND washington</search:gtexts>
<search:metrics>...</search:metrics>

</search:response>

The generated options enable this behavior by disabling snippeting and faceting, and defining an
extract-document -data Option that extracts just the instance from the envel ope document. For
example:

<search:extract-document-data selected="include">
<search:extract-path

xmlns:es=...>//es:instance/ (Person) </search:extract-path>

</search:extract-document-datas>

<search:additional-querys>
<cts:element-query xmlns:cts="http://marklogic.com/cts">
<cts:element xmlns:es=...>es:instance</cts:elements>
<cts:true-query/>
</cts:element-query>
</search:additional-query>

<search:return-facets>false</search:return-facets>
<search:transform-results apply="empty-snippet"/>

If the model included more than one entity type definition, then the extract-document-data
option would use an extract path that matched any of the defined types. For example, if the model
defines a second entity type named “Family”, then the extract path would be the following:

//es:instance/ (Family|Person)

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 175

MarkLogic Server Querying a Model or Entity Instances

If an entity type definition includes range index or word lexicon specifications, then the options
would include additional range or word constraints options. For example, if we extend the person
entity to include a“rating” property of type float with apathrange-index Specification, then the
generated options would include a path range constraint similar to the following:

<search:constraint name="rating"s>
<search:range type="xs:float" facet="true">
<search:path-index xmlns:es="http://marklogic.com/entity-services">
//es:instance/Person/rating
</search:path-index>
</search:range>
</search:constraint>

This enables a query string such as “entity-type:Person AND rating GT 3.0”.

For an example of acomplete set of generated options, see “ Example: Generating Query Options’
on page 141.

To learn more about query options, see Search Customization Using Query Options and Appendix:
Query Options Reference in the Search Developer’s Guide.

6.8 Example: Using JSearch for Instance Queries

The JSearch API isafluent Server-Side JavaScript search interface. You can use it to search
documents using avariety of query styles, aswell asfor querying lexicons and range indexes. For
details, see Creating JavaScript Search Applications in the Search Developer’s Guide.

Thefollowing example use a cts. query to find all person envelope documents where the instance
dataincludes a*“lastName” element with the value “washington” . For the sake of display
simplicity, acustom mapper is used to extract just the value of the “fullName” property from each
matched instance, instead of returning full search results.

'use strict';
import * as jsearch from '/MarkLogic/jsearch.mjs';

jsearch.collections ('person-envelopes') .documents ()
.where (cts.elementQuery (
fn.QName ('http://marklogic.com/entity-services', 'instance'),
cts.elementValueQuery ('lastName', 'washington')))

.map (function (match)
return match.document.xpath('//fullName/fn:data() ") ;

3]

.result () ;

If you run the example in Query Console against the envel ope documents created in “ Getting
Started With Entity Services’ on page 17, the results should be similar to the following:

{ "results":[
"Martha Washington",

MarkLogic 10—May, 2019 Entity Services Developer’'s Guide—Page 176

MarkLogic Server Querying a Model or Entity Instances

"George Washington"],
"estimate":2}

6.9 Example: Using the Client APIs for Instance Queries

This section provides examples of querying instances with the REST, Java, and Node,js Client
APIs. Note that these APIs support more query stylesthan are shown here. For details, refer to the
development guide for each API. These guides are listed in “Where to Find Additional
Information” on page 190.

e Java Client API

* Node.js Client API

* REST Client API

6.9.1 Java Client API

The Java Client APl isan API for creating client applications that interact with MarkLogic. The
API enables you to search documents using a variety of query styles. For more details, see the
Java Application Developer’s Guide and the Java Client APl Documentation. The Java Client
API can take advantage of the Search API compatible query options you can generate with the
Entity Services API, as discussed in “Generating Query Options for Searching Instances’ on
page 138.

The following example uses a string query to find all rerson envelope documents where the
instance data includes the word “washington”. The code assumes you have already generated
guery options using the Entity Services APl and installed them on MarkL ogic as persistent query
options under the name orr1oNns_NaME; See the complete example below for an example of how to
install the options.

QueryManager gm = client.newQueryManager () ;
StringQueryDefinition query =
gm.newStringDefinition (OPTIONS NAME)
.withCriteria ("entity-type:Person AND washington") ;
SearchHandle results = gm.search(query, new SearchHandle()) ;

For adiscussion of how the generated options enable this query string, see “ Example: Using the
Search API for Instance Queries’ on page 173.

You could also create a rawcombinedouerybefinition and embed the generated optionsinside the
combined query. This enables you to use the generated options without first persisting them on
MarkLogic. For more details, see Apply Dynamic Query Options to Document Searches in the Java
Application Developer’s Guide.

The following code is a complete example of installing options and performing the above search.
This code installs the query options (if necessary), performs the search, and prints out the value of
the fullName property in the matched entities.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 177

MarkLogic Server Querying a Model or Entity Instances

Note: Modify the valuesin bold to fit your environment.

package examples;
import java.io.File;

import com.marklogic.client.DatabaseClient;

import com.marklogic.client.DatabaseClientFactory;
import com.marklogic.client.admin.QueryOptionsManager;
import com.marklogic.client.io.FileHandle;

import com.marklogic.client.io.Format;

import com.marklogic.client.io.QueryOptionsListHandle;
import com.marklogic.client.io.SearchHandle;

import com.marklogic.client.query.ExtractedItem;

import com.marklogic.client.query.ExtractedResult;
import com.marklogic.client.query.MatchDocumentSummary;
import com.marklogic.client.query.QueryManager;

import com.marklogic.client.query.StringQueryDefinition;

import javax.xml.xpath.XPathExpression;
import javax.xml.xpath.XPathExpressionException;
import javax.xml.xpath.XPathFactory;

import org.w3c.dom.Document ;

public class EntityServices ({
private static DatabaseClient client =
DatabaseClientFactory.newClient (
"localhost", 8000, "es-gs",

new DatabaseClientFactory.DigestAuthContext (USER, PASSWORD)) ;

static String OPTIONS NAME = "person-1.0.0";
static String OPTIONS PATHNAME =
"/path/to/options/person-options-1.0.0.xml";

// Install the options generated by ES, 1f needed.

public static void installOptions (String filename, String optionsName)

QueryOptionsManager optMgr =
client.newServerConfigManager ()
.newQueryOptionsManager () ;
QueryOptionsListHandle optList =

optMgr.optionsList (new QueryOptionsListHandle()) ;

if (optList.getValuesMap () .get (OPTIONS NAME) == null)

FileHandle options =
new FileHandle (new File(filename))
.withFormat (Format .XML) ;
optMgr.writeOptions (optionsName, options) ;

public static void main(String[] args) throws XPathExpressionException
// Install the options generated by ES, if necessary

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 178

MarkLogic Server Querying a Model or Entity Instances

installOptions (OPTIONS PATHNAME, OPTIONS NAME) ;

// Build the query
QueryManager gm = client.newQueryManager () ;
StringQueryDefinition query =
gm.newStringDefinition (OPTIONS_ NAME)
.withCriteria ("entity-type:Person AND washington") ;

// Perform the search
SearchHandle results = gm.search(query, new SearchHandle()) ;

// Iterate over the results, and write out just the value of
// the "fullName" property.
XPathExpression xpath =
XPathFactory.newInstance () .newXPath () .compile ("//fullName") ;
for (MatchDocumentSummary match : results.getMatchResults()) {
ExtractedResult extracted = match.getExtracted() ;
for (ExtractedItem item : extracted) {
Document person = item.getAs (Document.class) ;
System.out .println (xpath.evaluate (person)) ;

}

client.release() ;

}
If you run this example, it will print the values “Martha Washington” and “ George Washington”.

Asdiscussed in “ Example: Using the Search API for Instance Queries’ on page 173, the matched
entities are returned as extracted items in the search response. The following part of the example
iterates over the search results, accesses the extracted entity data, and then prints out just the value
of the fu11name property. The person variable holds the entity, asa DOM Document.

XPathExpression xpath =
XPathFactory.newInstance () .newXPath() .compile ("//fullName") ;
for (MatchDocumentSummary match : results.getMatchResults()) ({
ExtractedResult extracted = match.getExtracted() ;
for (ExtractedItem item : extracted) ({
Document person = item.getAs (Document.class) ;
System.out.println (xpath.evaluate (person)) ;

6.9.2 Node.js Client API

The Node.js Client API enables you to create Node.js client applications that interact with
MarkLogic. The API enables you to search documents using avariety of query styles. For more
details, see the Node.js Application Developer’s Guide and the Node.js APl Reference.

MarkLogic 10—May, 2019 Entity Services Developer’'s Guide—Page 179

MarkLogic Server Querying a Model or Entity Instances

Recall that you can generate Search API compatible query options using the Entity Services API;
for details, see “ Generating Query Options for Searching Instances’ on page 138. You can only
take advantage of these optionsif you pre-install them as described in “Pre-Installing Query
Options’ on page 170 and then reference them in a combined query.

However, you can use the Node.js query builder to create equivalent behavior without using the
generated options. This section explores both approaches:

e Search Using Pre-Installed Options

e Search Without Pre-Installing Options

6.9.2.1 Search Using Pre-Installed Options

This example uses a combined query and pre-installed query options. The example assumes you
generated options from the model in “Getting Started With Entity Services” on page 17, and then
installed the options on MarkL ogic with the name “person-1.0.0". You can install the options
using the REST Client API or Java Client API; for details, see “Pre-Installing Query Options’ on
page 170.

The following example finds all rerson envelope documents where the instance data includes the
word “washington”. The search returns just the matched instance data, as serialized XML.

const marklogic = require('marklogic') ;

// MODIFY THIS VAR TO MATCH YOUR ENV

const connInfo = {
host: 'localhost',
port: 8000,
user: 'username',
password: 'password',
database: 'es-gs'
Vi
const db = marklogic.createDatabaseClient (connInfo) ;

const gb marklogic.queryBuilder;

// entity-type is a constraint defined by the options.
// The options should already be installed, with name 'person-1.0.0'.
const combinedQuery =
search:
query: 'entity-type:Person AND washington'

b

optionsName: 'person-1.0.0"
}i
db.documents.query (

{ search: {

gtext: 'entity-type:Person AND washington'

optionsName: 'person-1.0.0"

}

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 180

MarkLogic Server Querying a Model or Entity Instances

) .result (function(results) {
for (let result of results) ({
console.log (JSON.stringify (result.content)) ;

}
s

The query matches entities with “fullName” property values of “Martha Washington” and
“George Washington”. The options limit the returned data to just the matched entities through the
extract-document -data Option. Since the envelope documents are XML, each extracted entity is
returned as a string containing serialized XML, with aroot element of <search:extracted/>. FOr
example, the result for “Martha Washington” looks like the following. (Line breaks have been
added for readability; the value of the “content” property is one string.)

{ "muriv:"/es-gs/env/2345.xml",
"category":"content",
"format":"xml",
"contentType":"application/xml",
"contentLength":"394",
"content":
"<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n
<search:extracted kind=\"element\" format=\"xml\"
context=\"fn:doc ("/es-gs/env/2345.xml") \"
xmlns:search=\"http://marklogic.com/appservices/search\">
<Person>
<id>2345</1id>
<firstName>Martha</firstName>
<lastName>Washington</lastName>
<fullName>Martha Washington</fullNames>
</Persons>
</search:extracted>"}

6.9.2.2 Search Without Pre-Installing Options

The following example uses the Node.js querysuiider interface to perform a search equivalent to
“Search Using Pre-Installed Options” on page 180. This approach requires a more in-depth
understanding of the relationship between the builder interface and the underlying Search API
guery options.

Before you can run this example, you must configure the REST Client API instance through
which you connect to MarkLogic so that it defines a namespace binding for the prefix “es’. The
binding is required because the example Uses queryBuilder.extract t0 extract just the
es:instance portion of an envelope document.

The Node.js Client API does not directly support namespace binding configuration, so this
example usesthe REST Client API and the cur1 command line tool to do so. For more details, see
Using Namespace Bindings in the REST Application Developer’s Guide. You can replace the use of
curl with any tool that can send HT TP requests.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 181

MarkLogic Server Querying a Model or Entity Instances

Run the following command to define a binding between the “es” prefix and the
“http://marklogic.com/entity-services’. Change the user, password, host, and port as needed to
match your environment.

Windows users, see Madifying the Example Commands for Windows

curl --anyauth --user user:password -X PUT \
-d '{ "prefix": "es", "uri": "http://marklogic.com/entity-services" }' \
-H "Content-type: application/json" -i \
http://localhost:8000/v1l/config/namespaces/es

If the command is successful, MarkLogic returns a2o1 created Status.

The following Node.js script finds all rerson envelope documents where the instance data
includes the word “washington”. The search returns just the matched instance data, as serialized
XML. A discussion of the relationship between the built query below and the generated query
options follows.

const marklogic = require('marklogic') ;

// MODIFY THIS VAR TO MATCH YOUR ENV

const connInfo = {
host: 'localhost',
port: 8000,

user: 'username',

password: 'password',

database: 'es-gs'
const db = marklogic.createDatabaseClient (connInfo) ;
const gb marklogic.queryBuilder;

db.documents.query (
gb.where (
gb.collection('person-envelopes'),
gb . scope (
gb.element (
gb.gname ('http://marklogic.com/entity-services', 'instance')),
gb.and()),
gb.parsedFrom('entity-type:person AND washington',
gb.parseBindings (
gb.value (
gb.element (
gb.gname ('http://marklogic.com/entity-services', 'title')),
gb.bind('entity-type'))))
) .slice (gb.extract ({
paths: ['//es:instance/ (Person) '],
selected: 'include'
)
) .result (function(results) {
for (let result of results) {
console.log (JSON.stringify (result.content)) ;

}
13N,

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 182

MarkLogic Server Querying a Model or Entity Instances

Use gb. scope t0 create a container query that mimics the generated additional-query Option
restricting results to matches within es: instance elements.

Description Example
Generated <search:additional-querys>
(Jpﬁon <cts:element-query xmlns:cts="...">
<cts:element xmlns:es="http://marklogic.com/entity-services">
es:instance
</cts:element>
<cts:true-query/>
</cts:element-query>
</search:additional-query>
Nodejs gb . scope (
Equival ent gb.element (
gb.gname ('http://marklogic.com/entity-services',
'instance')),
gb.and())

Use a parse binding to bind the tag “entity-type” to thetitle element of an entity instance so that
you can constrain string queries to specific entity types. The bind enables search terms such as
“entity-type:Person”.

Description Example
Generated <gearch:constraint name="entity-type">
()pﬁon <search:value>

<search:element ns="http://marklogic.com/entity-services"

name="title"/>
</search:values>
</search:constraints>

Node,js gb.parseBindings (
Equivalent qb.value (

gb.element (gb.gname (

'http://marklogic.com/entity-services', 'title')),
gb.bind('entity-type')))

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 183

MarkLogic Server Querying a Model or Entity Instances

If your entity type definition assigns properties to range indexes or word lexicons, the generated
optionswill include additional named constraints. You can define similar parse bindings for these
constraints. For more details, see Using Constraints in a String Query in the Node.js Application
Developer’s Guide.

Usegb.slice(gb.extract...)) 1O mimic the behavior of the extract-document-data option. This
causes the search to return just the matched entity instance, instead of the entire envelope
document. Thisis the section of the query that required us to define a namespace prefix binding
for “es’.

Description Example
Generated <search:extract-document-data selected="include">
Optl on <search:extract-path xmlns:es="http://marklogic.com/entity-services">

//es:instance/ (Person)
</search:extract-path>
</search:extract-document-datas>

Nodejs gb.where (. ..)
Equivalent .slice(gb.extract ({
paths: ['//es:instance/ (Person) '],

selected: 'include'

1)

6.9.3 REST Client API

The REST Client API enables client applications to interact with MarkLogic using HTTP
requests. The API enables you to search documents using a variety of query styles, including
string query, structured query, QBE, and combined query. For more details, see Using and
Configuring Query Features in the REST Application Developer’s Guide.

Recall that you can generate Search API compatible query options using the Entity Services API;
for details, see “ Generating Query Options for Searching Instances’ on page 138. To take
advantage of these option, you must either pre-install the options as described in “Pre-Installing
Query Options’ on page 170, or embed them in a combined guery.

The following command uses a string query to find all rerson envelope documents where the
instance data contains the word “washington”. The command uses a string query and assumes the
options are pre-installed under the name “person-1.0.0". The search is performed by arequest to
GET:/v1l/search.

Windows users, see Modifying the Example Commands for Windows

$ curl --anyauth --user user:password -X GET -1 \
'http://localhost:8000/LATEST/search?g=entity-type:person AND

washington&options=person-1.0.0&database=es-gs'

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 184

MarkLogic Server Querying a Model or Entity Instances

If you run the command against the model and instance data from “ Getting Started With Entity
Services’ on page 17, the request returns the entity instance data for “ Martha Washington” and
“George Washington” in the <search:extracted/> element of the response. For example:

<search:response snippet-format="empty-snippet" total="2"
start="1" page-length="10" selected="include"
xmlns:search="http://marklogic.com/appservices/search">
<search:result index="1" uri="/es-gs/env/2345.xml"
path="fn:doc (" /es-gs/env/2345.xml " ;)"
score="15872" confidence="0.4703847" fitness="0.7823406"
href="/vl/documents?uri=%2Fes-gs%2Fenv%2F2345.xml&database=es-ex"
mimetype="application/xml" format="xml">
<search:snippet/>
<search:extracted kind="element">
<Person>
<id>2345</id>
<firstName>Martha</firstName>
<lastName>Washington</lastName>
<fullName>Martha Washington</fullName>
</Person>
</search:extracted>
</search:result>

<search:gtext>entity-type:person AND washington</search:gtext>
<gsearch:metrics>...</search:metrics>
</search:response>

The response includes only the matched entity instances because of the extract-document-data
option. For adiscussion of the generated options used in this example, see “ Example: Using the
Search API for Instance Queries’ on page 173.

You can use the request Accept headers to retrieve results as JSON, but the “extracted” property
value in the JISON response will contain serialized XML because entity datais stored as XML in
the envel ope documents.

To perform an equivalent search without pre-installing the options use a combined query that
embeds the optionsin a <search:search/> element. Use the combined query as the request body
for post: /v1/search. FOr example, create a combined query of the following form:

<search xmlns="http://marklogic.com/appservices/search">
<gtext>entity-type:Person AND washington</gtexts>
<options> <!-- the generated options here -->

</optionss>
</search>

For more details, see Specifying Dynamic Query Options with Combined Query in the REST
Application Developer’s Guide.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 185

MarkLogic Server Querying a Model or Entity Instances

6.10 Example: Using SPARQL for Instance Queries

The default TDE template that you can generate with the Entity Services APl auto-generates
triples from your entity envel ope documents, as long as the instance entity type defines a primary
key.

Note: You must install the template before this triple generation can occur. For details,
see “ Generating a TDE Template” on page 119.

The default generated triples express facts such as the following, where the instance is identified
by primary key. For more details, see “Characteristics of a Generated Template” on page 121.

* Thisinstance has this entity type. For example, this triple expresses the fact that an entity
instance has the type defined by the IRI

<http://example.org/example-person/Person-1.0.0/Person> ThetypelRI takes
the form of {basevrI}{modelTitle}-{modelversion}/{entityTypeName}.

<http://example.org/example-person/Person-1.0.0/Person/1234>
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://example.org/example-person/Person-1.0.0/Person>

» Thisinstance is defined by this envelope document (identified by URI). For example, the
following triple expresses the fact that a particular entity instance is defined by the
envel ope document with URI /es-gs/env/1234.xm1. The entity instance IRI takestheform
Of {baseURI}{modelTitle}-{modelVersion}/{entityTypeName}/{primaryKey}.

<http://example.org/example-person/Person-1.0.0/Person/1234>
<http://www.w3.0rg/2000/01/rdf-schema#isDefinedBy>
"/es-gs/env/1234 .xml" " *xs:anyURI

You can also extend the template to generate additional triples or manually add triplesto the
database.

The following SPARQL query returns the URIs of all person entities.

prefix es: <http://marklogic.com/entity-services#s>
prefix rdfs: <http://www.w3.o0rg/2000/01/rdf-schema#>
prefix xs: <http://www.w3.org/2001/XMLSchema#>

select ?uri

where {
?person a ?personType .
?person rdfs:isDefinedBy ?docUri .
?personType es:title 'Person'
bind(xs:string(?docUri) as ?uri)

}

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 186

MarkLogic Server Querying a Model or Entity Instances

If you generate and install a TDE template using the model from “Getting Started With Entity
Services’ on page 17, then the query display the following entity envel ope document URIs:

/es-gs/env/1234.xml
/es-gs/env/2345.json
/es-gs/env/3456 .xml

You can query facts about your instance data using the following APIs.

* Thesem:sparql XQuery function or the sen. sparq1l Server-Side JavaScript functions.

» TheClient APIs; see Client-Side APIs for Semantics in the Semantics Developer’ s Guide.

e The OptiC API XQuery; seethe op:from-triples XQuery function or the op.fromTriples
JavaScript function.

6.11 Example: Using SQL for Instance Queries

If you generate and install a TDE template for your model, then MarkL ogic auto-generates row
data from your entity envelope documents. The row data enables you to query your entity
instances as rows.

You must install the template before this row generation can occur. For details, see “ Generating a
TDE Template” on page 119. To learn more about the characteristics of the row data, see
“Characteristics of a Generated Template” on page 121.

You can evaluate SQL using the xdmp : sq1 XQuery function or the xamp . sq1 Server-Side
JavaScript function, as shown below. You can also use the Optic API to query row data; see
“Example: Using the Optic API for Instance Queries’ on page 188.

The following example finds all Person rows where the “lastName” column has the value
“Washington” and returns the value of the “fullName” column for the matched rows.

Language Example

XQuery Xquery version "1.0-ml";
xdmp:sqgl ("

SELECT Person.fullName

FROM Person

WHERE Person.lastName='Washington'
", "format")

JavaScript | xdmp.sql (

'SELECT Person.fullName ' +

'FROM Person ' +

'WHERE Person.lastName=\'Washington\''
"format") ;

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 187

MarkLogic Server Querying a Model or Entity Instances

If you generate and install a TDE template from the model from * Getting Started With Entity
Services’ on page 17 and run the query against the instance data, then you should see output
similar to the following:

| Person.Person.fullName |
| Martha Washington|
| George Washington|

6.12 Example: Using the Optic API for Instance Queries

If you generate and install a TDE template for your model, then MarkL ogic auto-generates row
data from your entity envelope documents. The row data enables you to query your entity
instances as rows. If an entity defines a primary key, the template also causes MarkL ogic to
auto-generate semantic triples about each instance.

Note: You must install the template before this auto-generation can occur. For details,
see “Generating a TDE Template” on page 119.

The examples in this section are based on the model and instance data from “ Getting Started With
Entity Services’ on page 17. The examples also assume you have generated and installed a
template based on this model, as shown in “ Generating a TDE Template” on page 119.

e Querying Triples Using the Optic API

e Querying Rows Using the Optic API

6.12.0.1 Querying Triples Using the Optic API

This example uses the Optic API to query semantic “facts’ about instance data. You can also use
the Optic API for semantic queries on an entity model. For examples using SPARQL, see
“Example: Using SPARQL for Instance Queries’ on page 186 and “ Example: Using SPARQL for
Model Queries’ on page 171.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 188

MarkLogic Server

Querying a Model or Entity Instances

The following example finds all entity instances that have Person type.

Language Example
XQuery import module namespace op =
"http://marklogic.com/optic" at "/MarkLogic/optic.xqy";
let S$ps :=
op:prefixer ("http://example.org/example-person/Person-1.0.0/")
let $rdf :=
op:prefixer ("http://www.w3.0rg/1999/02/22-rdf-syntax-ns#")
return
op:from-triples((op:pattern(op:col("instanceIri"),
Srdf ("type"),
op:col ("type"))))
=>o0p:where(op:eq(op:col("type"), S$ps("Person")))
=>op:result ()
JayaSCﬂpt const op = require('/MarkLogic/optic') ;
const ps =
op.prefixer ('http://example.org/example-person/Person-1.0.0/") ;
const rdf =
op.prefixer ('http://www.w3.0rg/1999/02/22-rdf-syntax-ns#') ;
op.fromTriples(op.pattern(op.col('instanceIri'),
rdf ('type'),
op.col('type')))
.where (op.eg(op.col('type'), ps('Person')))
.result () ;

If you run the query in Query Console against the expected configuration, it matches the
following instance IRIs:

http://example.org/example-person/Person-1.0.0/Person/1234
http://example.org/example-person/Person-1.0.0/Person/2345
http://example.org/example-person/Person-1.0.0/Person/3456

6.12.0.2 Querying Rows Using the Optic API

This example uses the Optic API to query instance data as rows. For examples using SQL, see
“Example: Using SQL for Instance Queries’ on page 187.

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 189

MarkLogic Server Querying a Model or Entity Instances

The following query finds the Person entity with an id property of “2345”. Each entity instanceis
represented by arow in the Person table, with a column for each property.

Language Example

XQuery import module namespace op =
"http://marklogic.com/optic" at "/MarkLogic/optic.xqy";
import module namespace opxs =
"http://marklogic.com/optic/expression/xs"
at "/MarkLogic/optic/optic-xs.xqy";

op:from-view ("Person", "Person")
=>0p:where (op:eqg(op:col ("id"), opxs:string("2345")))
=>op:select((op:col("fullName")))

=>op:result ()

JayaScﬂpt var op = require ("/MarkLogic/optic") ;

var opXs = Op.Xs;
op.fromView ("Person", "Person")

.where (op.eg(op.col ("id"), opxs.string("2345")))
.select([op.col("fullName")])

.result () ;

If you run the query in Query Console against the expected configuration, it returns “Martha
Washington”.

6.13 Where to Find Additional Information

You can find more examplesin the Entity Services GitHub repository. For details, see “Exploring
the Entity Services Open-Source Examples’ on page 14.

For more details on the APIs used in this chapter, see the following resources:

* The Search Developer’s Guide
» Searching in the Java Application Developer’s Guide

* Querying Documents and Metadata in the Node.js Application Developer’s Guide

* Using and Configuring Query Features in the REST Application Developer’s Guide
* The QL Data Modeling Guide

* Optic API for Multi-Model Data Access in the Application Developer’s Guide

* Semantic Queries in the Semantics Developer’s Guide

MarkLogic 10—May, 2019 Entity Services Developer’s Guide—Page 190

MarkLogic Server Technical Support

7.0 Technical Support

MarkL ogic provides technical support according to the terms detailed in your Software License
Agreement or End User License Agreement.

We invite you to visit our support website at http://help.marklogic.com to access information on
known and fixed issues, knowledge base articles, and more. For licensed customers with an active
maintenance contract, see the Support Handbook for instructions on registering support contacts
and on working with the MarkL ogic Technical Support team.

Complete product documentation, the latest product release downloads, and other useful
information is available for al developers at http:/developer.marklogic.com. For technical
guestions, we encourage you to ask your question on Stack Overflow.

MarkLogic 10

http://help.marklogic.com/
https://stackoverflow.com/questions/tagged/marklogic
http://developer.marklogic.com
http://www.marklogic.com/files/Mark_Logic_Support_Handbook.pdf

MarkLogic Server Technical Support

MarkLogic 10—May, 2019 Administrator’ s Guide—Page 192

MarkLogic Server Copyright

8.0 Copyright

MarkLogic Server 10.0 and supporting products.
Last updated: February, 2022

Copyright © 2022 MarkL ogic Corporation. All rights reserved.
Thistechnology is protected by U.S. Patent No. 7,127,469B2, U.S. Patent No. 7,171,404B2, U.S.
Patent No. 7,756,858 B2, and U.S. Patent No 7,962,474 B2, US 8,892,599, and US 8,935,267.

The MarkL ogic software is protected by United States and international copyright laws, and
incorporates certain third party libraries and components which are subject to the attributions,
terms, conditions and disclaimers set forth below.

For all copyright notices, including third-party copyright notices, see the Combined Product
Notices for your version of MarkLogic.

MarkLogic 10

MarkLogic Server Copyright

MarkLogic 10—May, 2019 Administrator’ s Guide—Page 194

	Entity Services Developer’s Guide
	Table of Contents
	1.0 Introduction to Entity Services
	1.1 Terms and Definitions
	1.2 Why Use Entity Modeling?
	1.3 Entity Services Overview
	1.3.1 Modeling Vocabulary
	1.3.2 Persistence Convention
	1.3.3 Application Scaffolding

	1.4 Next Steps
	1.5 Exploring the Entity Services Open-Source Examples
	1.5.1 Downloading the Project as a ZIP File

	1.6 Security Considerations

	2.0 Getting Started With Entity Services
	2.1 Before You Begin
	2.2 Optional: Create a Content Database
	2.3 Getting Started Using XQuery
	2.3.1 Stage the Source Data
	2.3.2 Create a Model Descriptor
	2.3.3 Create a Model
	2.3.4 Create and Deploy an Instance Converter
	2.3.5 Create Entity Instances
	2.3.6 Query the Data
	2.3.7 Query the Model

	2.4 Getting Started Using JavaScript
	2.4.1 Stage the Source Data
	2.4.2 Create a Model Descriptor
	2.4.3 Create a Model
	2.4.4 Create and Deploy an Instance Converter
	2.4.5 Create Entity Instances
	2.4.6 Query the Data
	2.4.7 Query the Model

	2.5 Next Steps

	3.0 Creating and Managing Models
	3.1 Introduction
	3.2 Writing a Model Descriptor
	3.2.1 Model Descriptor Basics
	3.2.2 Entity Type Definition Overview
	3.2.3 Defining an Entity Property with a SimpleType
	3.2.4 Defining an Entity Property with a Complex Type
	3.2.5 Defining an Entity Property with Array Type
	3.2.6 Defining an IRI Entity Property
	3.2.7 Identifying the Primary Key Entity Property
	3.2.8 Identifying Personally Identifiable Information (PII)
	3.2.9 Distinguishing Required and Optional Entity Properties
	3.2.10 Defining a Namespace URI for an Entity Type
	3.2.11 Identifying Entity Properties for Indexing
	3.2.12 Controlling the Model IRI and Module Namespaces

	3.3 Defining Entity Relationships
	3.3.1 Defining a Local Entity Reference
	3.3.2 Defining an External Entity Reference

	3.4 Creating a Model from a Model Descriptor
	3.5 Working With an XML Model Descriptor
	3.6 Validating a Model Descriptor
	3.7 Extending a Model with Additional Facts
	3.8 Managing Model Changes
	3.8.1 Generating Instances From the New Model
	3.8.2 Replacing the Old Model with a New Version
	3.8.3 Making Multiple Model Versions Available

	3.9 Model Descriptor Syntax Reference
	3.9.1 model_info
	3.9.2 entity_type_definition
	3.9.3 property_definition
	3.9.4 property_type

	4.0 Generating Code and Other Artifacts
	4.1 Code and Artifact Generation Overview
	4.2 Summary of Available Generators
	4.3 Creating an Instance Converter Module
	4.3.1 Purpose of a Converter Module
	4.3.2 Generating a Converter Module Template
	4.3.3 Understanding the Default Converter Implementation
	4.3.4 Customizing a Converter Module

	4.4 Creating a Model Version Translator Module
	4.4.1 Purpose of a Version Translator
	4.4.2 Generating a Version Translator Module Template
	4.4.3 Understanding the Default Version Translator Implementation
	4.4.4 Customizing a Version Translator Module

	4.5 Generating a TDE Template
	4.5.1 Generating a TDE Template
	4.5.2 Characteristics of a Generated Template
	4.5.3 Customizing a TDE Template
	4.5.4 Deploying a TDE Template
	4.5.5 Example: TDE Template Generation and Deployment

	4.6 Generating an Entity Instance Schema
	4.6.1 Schema Generation Overview
	4.6.2 Schema Characteristics
	4.6.3 Schema Customization
	4.6.4 Example: Generating and Installing an Instance Schema
	4.6.5 Example: Validating an Instance Against a Schema

	4.7 Generating a PII Security Configuration Artifact
	4.8 Generating a Database Configuration Artifact
	4.9 Generating Query Options for Searching Instances
	4.9.1 Options Generation Overview
	4.9.2 Characteristics of the Generated Options
	4.9.3 Example: Generating Query Options

	4.10 Deploying Generated Code and Artifacts

	5.0 Managing Entity Instances
	5.1 Entity Instance Concepts
	5.1.1 What is an Instance?
	5.1.2 What is an Envelope Document?
	5.1.3 Example: Entity Instance Representations

	5.2 Creating an Entity Instance from a Data Source
	5.3 Generating Test Entity Instances
	5.4 Extracting an Entity Instance from an Envelope Document
	5.5 Extracting the Original Source from an Envelope Document
	5.6 Updating Entity Instance Data When Your Model Changes
	5.7 Managing Data with Nested Entities

	6.0 Querying a Model or Entity Instances
	6.1 Query Support Provided by Entity Services
	6.2 Search Basics for Models
	6.3 Search Basics for Instance Data
	6.3.1 Document Search
	6.3.2 Row Search
	6.3.3 Semantic Search

	6.4 Pre-Installing Query Options
	6.5 Example: Using SPARQL for Model Queries
	6.6 Example: Using cts:query or cts.query for Instance Queries
	6.7 Example: Using the Search API for Instance Queries
	6.8 Example: Using JSearch for Instance Queries
	6.9 Example: Using the Client APIs for Instance Queries
	6.9.1 Java Client API
	6.9.2 Node.js Client API
	6.9.3 REST Client API

	6.10 Example: Using SPARQL for Instance Queries
	6.11 Example: Using SQL for Instance Queries
	6.12 Example: Using the Optic API for Instance Queries
	6.13 Where to Find Additional Information

	7.0 Technical Support
	8.0 Copyright

